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Abstract. In this paper a novel coarse-grained architecture virtualiza-
tion for Field Programmable Gate Arrays (FPGA) is presented which
can be used as basis for run-time dynamic hardware multithreading. The
architecture uses on-chip networking to interconnect routers and compu-
tational elements providing a flexible and highly configurable structure.
Quadratic routers are reducing total router count while ensuring short
communication paths and minimal resource overhead.
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1 Introduction

Decreasing size of transistors and increasing packing density have led the tran-
sition from high-clocked single processors to multicore. However, pure multicore
solutions without customized computing components will not be able to provide
the required performance in many computational fields such as image process-
ing, oil and gas exploration, and programmatic financial trading, which requires
complex 3D convolutions on large data arrays and tight requirements on mem-
ory and IO [10]. Studies are predicting that increase in power as result of chip
density will drastically reduce the usage of manycores to a maximum of 75%
[7]. Heterogeneous architectures made upon general purpose processors and spe-
cialized computing components, intelligent methods to dynamically adapt chip
resources to run-time computational and power consumption requirements can
improve the performance of future multicores [10]. Reconfigurable logic such as
FPGAs can be used for this purpose, as part of heterogeneous multiprocessors,
either on the same die or as separate co-processor. However, for such platforms
to be successful, the FPGA must be able to dynamically accommodate multi-
ple threads running as hardware tasks. Dynamically placing and replacing those
threads on the FPGA to allow critical parts of applications to be accelerated at
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run-time is done today using partial reconfiguration, a process technically and
conceptually limited in currently FPGAs. Firstly, there is currently no support
for communication among tasks arbitrarily placed on FPGA at run-time. The
modular design flow used for partial reconfiguration in today’s FPGAs places
high restrictions on designs, requesting computational bins and direct communi-
cation tracks to be specified at compile-time. Once fixed, this structure cannot
be modified at run-time, which drastically reduces the flexibility. The process
is done manually for every design and is very sensitive to small changes. Sec-
ondly, FPGA configuration is very fine-grained, which increases reconfiguration
overhead, particularly when tasks consuming large amount of resources must
be frequently placed on the device. Finally, the programmability of FPGAs is
essentially reduced to hardware design, a difficult process that prevents its adop-
tion in the software community where the bulk of programmers are to be found.
Hardware virtualization can help overcome the aforementioned hurdles by plac-
ing a coarse-grained reconfigurable hardware overlay between hardware tasks
and raw FPGA. This reduces the configuration overhead, allows design decision
to be made on-line and reduce the programmability burdens through compil-
ers that can map instructions to coarse-grained processing elements. Overlay
architectures recently proposed for FPGAs are based on existing concepts of
coarse-grained reconfigurable architectures. They consist of microarchitectural
components like ALU, multiplexers and direct interconnection among neighbor-
ing or distant cores. Existing overlays are accessible as a single large monolithic
block that can accommodate only one hardware function at a time. Their com-
munication is based on direct interconnection paradigm, which must be fixed
at design time and never changed at run-time. As result, their communication
infrastructure does not promote hardware multithreading. Tasks cannot to be
randomly placed on the reconfigurable device at run-time and be accessible by
other tasks, either on the same device or on external devices.

In this work, we propose a novel virtualization architecture for FPGAs which
allows for unrestricted communication among hardware tasks running on the
device. The architecture combines direct interconnection for high-performance
at local level within a task’s boundary, while using reduced overhead network-
on-chip for global communication beyond component boundary. The architec-
ture is based on a quadratic router access mechanism that drastically reduce
the number of routers, thus leading to short communication paths and reduced
resource overhead. We address the inefficient resource usage with a novel class
of routers that can be dynamically recycled as computing resource in modules in
the boundary of which they are placed at run-time. The viability of our approach
is demonstrated with benchmarks in signal and image processing, which shows
a performance difference between applications running on raw FPGAs and the
same applications running on the virtualization layer.

The paper is organized as follow: Section 2 provides a motivation of the
problem solved in this paper with help of a case study. In section 3 we discuss
coarse-grained reconfigurable architectures and recent work in FPGA virtual-
ization. In section 4, we present our architecture and explain design choices we
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made to address problems of existing overlays. Section 5 shows our evaluation
approach and the meaning of the results, while section 6 concludes the paper
and provide some indication of our future work.

2 Motivation Example

The problem addressed in this work, namely hardware multitasking on coarse-
grained reconfigurable devices is illustrated in Figure 1. Consider a device with
a 2-D mesh and a global and flexible form of communication, in this case a
network on chip. The first set of threads on the device represent the execution of
a video communication application consisting of a video capture module, a video
compressor after the H.264 protocol and a communication using WLAN. This
implementation is constrained by the two already placed components CR1 and
CR2, which cause the communication between the compressor and the WLAN
modules to go through 5 hops. Upon completion of CR1 and CR2, a relocation
can be done, which reduces the distance between the compressor and the WLAN
to just 3 hops. The WLAN modules can further be replaced by a Bluetooth
module with a much smaller footprint, lower power and performance, which
reduces the distance between the two modules to just 2 hops, without altering
the distance between the compressor and the video capture module.
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Fig. 1. Video capture, compression and transmission (left) and performance improve-
ment through reconfiguration and relocation.

Resource organization for efficient temporal execution of those tasks at run-
time is very challenging. High performance and accessibility are the two main
objectives to be reached. High performance is defined by architectural consider-
ations and efficient run-time organization and management, while accessibility
allows hardware tasks running of the device to be reachable regardless of their
placement location and later relocation. While virtualization on FPGA provides
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an answer to the first challenge, existing implementation do not address acces-
sibility since they are tailored only for fixed usage. As consequence, no exist-
ing coarse-grained architecture and overlay can handle the scenario previously
described.

Our main contribution in this work is the design of a novel virtualization
infrastructure allowing a flexible and unrestricted communication among hard-
ware tasks arbitrarily placed on the virtual hardware at run-time.

3 Related Work

Published work in coarse-grained reconfigurable architectures and FPGA over-
lays such as [3,11,15] are essentially dataflow machines, ususally consisting of
small arithmetic and logic units, register files, all of which are immersed in an
switch-based interconnect structure. Data-flow machines are mostly used in sys-
tems as co-processors for acceleration of a single tasks, which can be replaced
by configuring the entire device. Communication is based on direct intercon-
nect among neighbor or distant processing elements. While data-flow machines
fulfill high-performance requirements, they do not address accessibility, which
is mostly enforced by the communication mechanism. Bus systems currently
in use in system-on-chips represent a potential communication alternative in
coarse-grained architectures. However, current bus-based architectures will not
be able to sustain the communication load among hundreds of processing ele-
ments a coarse-grained overlay would be able to accommodate in future FPGAs.
The overhead needed to manage hundred of connected cores on a single bus will
drastically reduce system performance and offset all parallelism gains. Network-
on-Chip (NoC) was designed as a means to overcome the communication bottle-
neck in high density chips in the future [1,6]. In NoC, messages are exchanged
among cores, memories and peripherals, all of which are connected in a network
infrastructure on the chip, instead of using dedicated wires. While the advantage
of NoCs have been quantitatively and qualitatively elucidated in some publica-
tions [2,13], they also present some drawbacks, mostly due to the adoption of
regular computer network paradigms in the chip domain. NoCs are usually pro-
vided as a 2-dimensional grid with routers placed at intersections between lines
and columns and connected to homogeneous PEs. This approach creates three
main problems: 1) communication within the boundary of complex components
split across several PEs is message-based instead of directed and dedicated, thus
leading to performance degradation; 2) Routers in the 2D Mesh are tailored for
the general case. As consequence, dedicated topologies must be mapped to the
2D mesh, which increases resource redundancy; 3) the number of routers on many
routes in the 2D are usually more than needed to route a packet to destination,
which increases the routing time. Routing techniques such as virtual-cut-through
are able to bypass some idle routers to improve the speed, but they don’t address
the redundancy issue. As solution to the three mentioned problems, Application
Specific NoCs (ASNoC) have been proposed in several publications [5,8,12]. In
a ASNoC large components spanning beyond a single PEs are implemented in
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dedicated area, where direct interconnections within the module boundary are
used to increase their speed. The topology of the network is usually determined
by the communication pattern of the system, which eliminates redundancies and
improves performance. However, the main drawback of ASNoCs is their lack of
flexibility. For each application an ASNoC-Chip must be built, which incurs high
design and production costs that most companies cannot afford. The resulting
chip is optimal for the targeted application, but cannot be used for others appli-
cations. The Zippy architecture [4] attempts to provide an answer to accessibility
and high-performance though a mixture of direct connection for neighbor PE and
bus for global interconnect. Beside low performance, the use of a bus restricts the
placement of components to certain location on the chip, thus limiting device’s
flexibility. In [14] preliminary results of a dynamic network-on-chip paradigms
was presented. However, high-router count and large resource overhead of routers
prevented the usage of this technology, particularly on FPGA devices.

In this work, we propose a novel architecture that combines coarse-grained
elements, a mixture of network-on-chip and direct interconnection. With router
reuse in components, our approach overcomes the problems of current coarse-
grained reconfigurable devices and FPGA overlays.

4 The Novel Architecture

We present our architecture in this section and discuss our design choices. The
overall architecture organization is first explained at high level, with emphasis on
local and global connectivity. Thereafter, processing elements and interconnect
are explained in more details.

4.1 General Device Organization

We propose the general organization of figure 2d, which goes far beyond the
capabilities of the most advance architectures proposed so far. For instance the
Zippy architecture [4](Figure 2a) uses direct interconnect locally and a bus for
global interconnection. The bus is used to access every single PE from an exter-
nal processor attached to the device. Interconnection between modules executing
on chip must go through an external memory or external processor, which dras-
tically slows down computations. Using a regular NoC (figure 2b) to provide
communication among modules on the chip would be very efficient and flexi-
ble. However, the performance of large modules split across many processing
element will suffer because of the message-based data exchange within a com-
ponent boundary. Our proposed architecture reduces the number of router by 4
by providing one router for a group of four PEs, similar to the Arteris FlexNoC
architecture (figure 2c). However, as oppose the FlexNoC, our proposed archi-
tecture also provides direct interconnection to neighbor PE, thus increasing the
streaming bandwidth among PEs used in the same module. This fulfills the high-
performance requirement. Each component consisting of several PEs will access
the network and be reachable through one of the routers in the set of routers
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it covers, which fulfills the accessibility requirement. The last innovation of our
architecture is that remaining routers will be used to provide additional com-
putational power to that component. To our best knowledge, no existing device
has make use of this paradigm. We call our architecture Quattuor because it
connects 4 PE on a single router.

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(a)

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(b)

R R

R R

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(c)

R R

R R

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

(d)

Fig. 2. The Zippy architecture [4] (2a) uses buses for global communication, while
regular NoC (2b) exhibits high routers redundancy. Arterix FlexNoC [9] (2c) has less
routers, but does not provide direct connection between neighbor modules. Our pro-
posed architecture (2d) extends the best of existing architectures with direct intercon-
nect, network-on-chip and router reuse.

4.2 Processing Elements

Like other coarse-grained reconfigurable architectures, the Quattuor processing
elements consist of several arithmetic and logic units for data processing, register
files for data storage, multiplexers and demultiplexers for controlling the flow of
data among the units. The processing elements (PE) proposed in this section
are kept relatively simple due to the early stage of development. More complex
functional units are planned for the future. The organization of a Quattuor-PE
is presented in Figure 3. The computation is done using ALUs, each of which
provides 8 arithmetic and logic operations: addition, subtraction, multiplication,
division, nop, and, or and xor.
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Fig. 3. Structure of a Quattuor-PE

The register files as well as the ALUs within a 4-block are connected to the
router and neighbor PEs, so they can receive exchange operands and results of
computation. The configuration of a PE is done by the configuration register
which is connected to all units in the PE. Configuring a unit consists of defining
its behavior at certain point until the next configuration or a repeating operation.
Each processing element has a unique address and receives its configuration
through the network using its closest router. Sending configuration data through
the network removes the need for dedicated configuration lines present in existing
coarse-grained architecture and overlays. Because we use one router for 4 PEs,
the configuration path is reduced by 4. Furthermore depending on the geographic
location on the chip, configuration data can be sent from the closest router to
the PE, which further reduce configuration time.
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Fig. 4. Configuration Bits of a Quattuor-PE.

The format of configuration data is shown in Figure 4. It consists of a 96-
bit packet. The bits 95-64 define operands for the ALU if they are needed.
The following eight bits 63-56 control the operand multiplexers and define the
source of each operand. The bits 55-52 select the operation for the ALU. The
following bits 51-12 define the destinations for the result of the ALU operation.
The possibility to define more than one destination offers a great flexibility to
implement data-flow graphs in the network. The bits 11-8 define what should
be done with the result. Bit 7 can be set to allow a continuous operation of the
current PE configuration. The last bits are reserved for future use.
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The flexible operand selection allows the mapping of complex data-flow
graphs on the PEs. The default choice for the operand selection (0000) is that
the ALU takes operands directly from the PE configuration. But to allow more
complex data-flows the operand can also be taken from neighboring PEs. This
direct connection enables fast exchange of results and operands between multi-
ple ALUs and because of the Quattuor architecture complex operations can be
implemented with multiple PEs while avoiding router communication.

To keep flexibility in the network operands can be also sent using the router
interconnect. This functionality allows sending operation results to other parti-
tions in the network while no PE has to be blocked for the transfer.

The result output of a PE can be configured in various ways. The default
action is to define the ALU result as final result which will be reported back to
the processor. The type of result will be sent to the Quattuor network output
by using the router interconnect. Another possibility is to deliver the result to a
neighboring PE using the direct interconnect. This is the fastest transfer possible
in the network. For transferring results to a more distant location in the network
the router interconnect can be used.

4.3 Router Architecture

Besides the processing elements, routers are one of the most important compo-
nents on our dynamic network on chip concept. Our router is created with a
set of FIFOs and a controller. There is one input FIFO that collects the four
inputs of the router using a round-robin mechanism. All messages get collected
and delivered to the designated outputs.

To transfer the configurations for the PEs a small header is added to the 96
configuration bits. This header defines the target router which is connected to
the target PE. Considering the growing capabilities of upcoming FPGA series
the router address is given by 16 bits allowing to identify 256 routers in every
dimension which lead to 262144 PEs.

The routing is performed using dimension ordering routing, so called Y-X
routing.

4.4 Quattuor-PE Direct Interconnect

As stated earlier, then main differentiation of the Quattuor-Architecture is the
capability of using direct interconnect locally, within a task for fast data exchange
among the sub-modules, and global communication using messages beyond com-
ponents boundary. The first approach is useful when building computational
data-flow graphs that leverages parallelism within a task. Direct communication
between two neighbor PE takes just 1 clock cycle. In the second case, global
communication goes through the router and depends on the distance between
the two hardware tasks. We do not address this part in this work and simply
assume that a function in change of run-time resource management will keep
components which heavily communicate close to each other.
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Fig. 5. Internal structure of routers with PEs

The delay of ALU operation depends on the implementation of the single
operations. While bit manipulations like shift, and, or, xor etc. can be handled
in a single clock cycle, more complex operations like division may take longer.
As mentioned before the router implements a round-robin scheduling on the
router inputs. That leads to a variable input delay of one to four clock cycles
plus a delay depending on the FIFO implementation of the input buffers. All
communication between routers implements a hand-shake-algorithm to ensure
data integrity even if a router buffer is completely filled. Communication between
router and the connected PEs is done in a single clock cycle.

5 Evaluation

For evaluation, we implemented the Quattuor-Architecture on various FPGA in
diverse configurations. Our first objective was assess the resource consumption
on diverse FPGAs, which will then give an estimate of the size of the overlay
that can be accommodated on contemporary devices. Beside resource consump-
tion, we also wanted to measure the performance decrease resulting from the
implementation of applications on the overlay compare to their implementation
on the raw FPGA.

Table 1 summarizes the resource consumption for single Quattuor-Elements
as well as Quattuor-Arrays of size (in number of routers) of 3x3 (6x6 PEs) and
4x4 (8x8 PEs) in 3 different FPGA-Types: Cyclone IV (Altera EP4CE115F29C7),
Cyclone V (Altera 5CSXFC6D6F31C6), Zynq-7000 (Xilinx XC7Z020-3-CLG484).
The chosen FPGAs are considered the low-cost series from Altera and Xilinx. Our
tests show that even these device are capable of hosting 3x3 and 4x4 router arrays
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providing 36 respectively 64 PEs. Also an important characteristic of the design is
the operational frequency. Here we can see that on the Zynq platform the design
achieves a significantly higher frequency.

Table 1. Evaluation of the Quattuor-Architecture in term of area and speed on various
FPGAs

Area Cyclone-IV Cyclone-V Zynq-7000

3x3 Array 37% 37% 34%
4x4 Array 67% 67% 61%

Speed in MHz Cyclone-IV Cyclone-V Zynq-7000

3x3 Array 147 173 223
4x4 Array 142 165 223

Our second part of the evaluation is more oriented on the application side and
performed on a Cyclone IV FPGA running a NIOS2 processor together with a
Quattuor network. For the benchmark the system-on-chip performs several oper-
ations which will be compared to raw software and raw FPGA implementations.
The following section shows how a Quattuor configuration is derived from an
application on the example of 3x3 matrix multiplication.

a =

⎛
⎝
a00 a01 a02
a10 a11 a12
a20 a21 a22

⎞
⎠ b =

⎛
⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞
⎠ (1)

c =

⎛
⎝
a00b00 + a01b10 + a02b20 . . . a00b02 + a01b12 + a02b22
a10b00 + a11b10 + a12b20 . . . a10b02 + a11b12 + a12b22
a20b00 + a11b10 + a22b20 . . . a20b02 + a21b12 + a22b22

⎞
⎠ (2)

Each component of the final result matrix can be implemented using three
multiplications and two additions and be represented using the following data-
flow graph (for the first element of the result matrix):

a01 a02 b00 b10 b20

x x x

+

+ c00

a00

(a)

a00 x b00 + a01 x b10

a02 x b20 +
c00

Router Router

(b)

Fig. 6. Data-flow for matrix component c00 and mapping on PEs



Architecture Virtualization for Run-Time Hardware Multithreading 177

Now there are some possibilities for the implementation. The first intention
is that every component of the result matrix can be build by the same operations
only changing the operands. That means one implementation would be to map
this particular set of operations shown in the data-flow graph to the Quattuor
array like in Figure 6b.

To evaluate the performance of this implementation we created a small
system-on-chip on the Cyclone-IV FPGA consisting a NIOS2 soft-core CPU.
The complete system (CPU, Quattuor, memory) is running at 50 MHz and the
results are compared to others systems.

Table 2. Evaluation of the Quattuor-Performance for a 3x3 Matrix Multiplication

Application Quattuor/NIOS2 NIOS2 Intel 2.1GHz FPGA

3x3 Matrix 4.8ms (6us) 504us 2us 405us (720ns)
3x1 Matrix 1.8ms (2us) 120us 1us 149us (240ns)

In Table 2 the results for the performance evaluation are listed. We can
state that in this example using the Quattuor network creates a large overhead.
The measured execution time is about five milliseconds for the complete 3x3
matrix multiplication but calculating the results takes only 6 µs. The rest of
the execution time is taken by the configuration of the PEs which has to be
done for every component of the result matrix and the communication between
the Quattuor network, CPU and memory. This can also be seen in comparison
with a raw FPGA implementation. This was done by creating a small IP core
with bus interface implementing the data-flow as seen in Figure 6a. Even in this
implementation we can see that for operand writing to and result reading from
the IP core there is a large overhead.

6 Conclusion and Future Work

In this paper, we presented a concept and implementation of a novel coarse-
grained architecture virtualization for Field Programmable Gate Arrays. The
Quattuor architecture allows for run-time dynamic hardware multithreading by
using a combination of direct interconnection to allow for high-performance com-
munication within task boundaries, low-overhead network-on-chip for communi-
cation beyond component boundaries. Our evaluation shows a performance lost
toward raw software and FPGA implementations which is generated by the com-
munication overhead which is needed to configure the PEs via the bus connection
of the Quattuor IP core and the interconnect latency in the network. The future
work on the topic will focus on effective PE configuration and configuration
reusing to minimize the impact for real world applications. Also in our future
work we are going to investigate how to automatically map applications on the
network without requiring users to recode their programs. For instance binary
synthesis will be made possible with our approach, with the goal of extracting
parallel kernel at run-time and synthesizing them for FPGA acceleration.
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