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Abstract. In this paper a SystemC-based framework for run-time par-
tial reconfiguration modeling and simulation is introduced which allows
to perform early design space exploration for dynamically reconfigurable
systems. Besides, a middleware to extend the capability of TLM intro-
ducing a semantic to interconnect components described at different
abstraction levels or languages is added. This middleware allows to auto-
mate the creation of the corresponding communication adapters to these
new components. Finally, the services provided by the middleware are
described and experimental results are presented to validate the proposal.
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1 Introduction

Nowadays, embedded systems composed by one or several microprocessors plus
reconfigurable hardware are gaining importance in the implementation of a large
range of applications. Their success is largely due to its flexibility, the capability
to exploit hw reconfiguration and the high ratio of performance versus power con-
sumption. In this context, partial reconfiguration capability is one of the most
important features concerning many of these reconfigurable devices. However,
although run-time reconfiguration enables new possibilities in the reconfigurable
computation field, it also introduces new challenges such as how to get an efficient
use of the reconfigurable resources, including how to obtain an optimum manage-
ment of the reconfiguration process. These reconfigurable resources are used to
host different components during design life-cycle. However, the characteristics
of these resources such as occupied area size, shape, location, communication
interface, etc., must be defined in the first stages of the design process, forcing
developers to deal not only with traditional co-design techniques and high-level
design problems, but with efficient reconfiguration process scheduling as well.
Moreover, there is a lack of tools to handle the modeling of partially reconfig-
urable FPGAs at high level of abstraction making almost impossible to explore
the impact of reconfigurable sub-systems on the performance and behaviour of
the system as a whole in early design phases.
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To solve this problem, there have been some proposals, based on sw/hw sys-
tems for dynamic resource management in FPGAs, that combine both scheduling
and instantiation tasks, and providing a complete flow management to support
the design of dynamically reconfigurable hw [12]. However, this kind of solu-
tion lead designers to the need of a platform where designs could be tested
and simulated, in order to avoid the implementation in hw until the design has
been correctly checked out. Thus, the capability to model partial reconfigura-
tion devices in this sort of platform is revealed as a fundamental requirement in
the design flow. Furthermore, due to the ever increasing complexity of hw and
hw/sw co-designs, developers strive for higher levels of abstraction in the early
stages of the design flow.

In this context, SystemC [1] language has been revealed as an important
tool to deal with not only modelling in high level of abstraction, but also to
work at all stages of the design flow in hw/sw co-designs. SystemC allows the
design and verification of sw, hw or mixed systems. It allows also describing a
system at different levels of abstraction, from RTL up to functional models that
may be timed or untimed. SystemC mainly consists of a class library of C++,
composed of classes, macros and templates; and a simulation kernel, forming
together a framework. This framework has the capability to model a concurrent
system using modules, communications mechanisms and hw-oriented data types.
A module is formed by one or several processes modeling its behaviour; ports to
communicate with other modules; and internal variables to save its states. The
communication ports can be interconnected by using channels. In a SystemC
model hierarchy is allowed so a module can contain other modules. This hierarchy
is dynamically constructed during the execution of the model elaboration phase
and it cannot be changed once the simulation phase has started. This implies a
major difficulty to model the partial dynamic reconfiguration using SystemC.

The simulation kernel executes a SystemC model scheduling and calling C++
functions registered by using SC THREAD, SC CTHREAD or SC METHOD
processes. This execution is divided into two phases: the elaboration phase and
the simulation phase[2]. During the elaboration phase the modules are instanti-
ated and initialized by executing their constructor. It is in this phase where the
processes are also registered. Following, the connections between modules are
established as a part of the initialization phase.

1.1 Dynamic Reconfiguration in SystemC

A reconfigurable system is one that can change part of its configuration at run-
time. Dynamically reconfigurable FPGAs can modify part of its structure to
implement different components with different functionalities in the same area
whereas the rest of the system is running.

Modelling a reconfigurable system requires modelling its behavior as a whole,
in where all possible configurations are taken into account. However, the main
problem that a developer faces when trying to model dynamic reconfiguration
in SystemC is that new instances can’t be generated once the simulation phase
has already started. This limitation can be solved by stopping the simulation
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phase, opening the elaboration phase in order to make all necessary changes, and
running again the simulation phase. However in this way the dynamic reconfig-
uration process is still not modeled.

Therefore, in a system formed by a set of microprocessor and dynamically
reconfigurable FPGAs, a platform that allows the simulation, testing and verifi-
cation of the system including dynamic reconfiguration at the first stage of the
design, arises as a need.

To address these problems, in this paper a simulation framework is proposed,
where reconfiguration takes place at two diffent levels. On one side, it allows the
reconiguration of the interconnection infrastructure at run-time, where compo-
nents can be described at different abstraction levels and languages, such as
C/C++, SystemC RTL, or VHDL. On the other side partial run-time reconfigu-
ration of components is modeled after the use of dynamically loadable libraries,
which do not imply the modification of the simulation kernel, and provides a
simple and homogeneous mecanism for the replacement of the different behav-
iors associated to a reconfigurable area. This framework is based on a lightweight
middleware, using TLM-2.0 as the common transport layer.

The remainder of the paper is structured as follows: in Sect. 2, we discuss
works related to SystemC and partial reconfiguration modeling. Section 3 intro-
duces our simulation framework and the way to model dynamically reconfig-
urable systems, and Sect. 4 presents the application used to validate it. Finally,
we discuss conclusions of our work in Sect. 5.

2 Related Works

Although there are some authors who have proposed a solution based on a
modified SystemC kernel as presented in [3] and [4], most of the researchers
have chosen to stay into the standard and not modify the simulation kernel.

Regarding an unmodified simulation kernel, works shown in [5] associated
to ADRIATIC (Advanced Methodology for Designing Reconfigurable SoC and
Application Targeted IP-entities in wireless Communications) Project, carries
out the concept of Dynamic Reconfigurable Fabric. The fabric is a special com-
ponent that contains several contexts and the capability to dynamically switch
from one context to another. This paper propose a methodology for modeling
dynamically re-configurable blocks, that takes as an input a SystemC model
of a static system and transforms it into a code implementing a reconfigurable
module. Candidate modules to a dynamic implementation are chosen by their
common interface. The main drawback of this work is that it is necessary to
have all the functionalities implemented in each reconfigurable module and it is
not allowed to change it once the simulation has began.

Sharing the same point of view, authors in [6] present their approach to
model partial reconfiguration as a SystemC library, called ReChannel. Although
the concept of reconfigurable zone is added, a reconfigurable module consists in
instantiating all possible modules for each reconfigurable zone, as the previous
case, where only one module is activated at a time by a dynamic circuit switching.
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To connect the set of reconfigurable modules and the remaining system, a portal
is used by handling the basic channel defined on SystemC. The control to manage
reconfiguration is carried out by dedicated portals. However, not only the tasks
are assigned once at the beginning of the simulation, which means that it is not
possible to move the task from one reconfigurable zone to another, but also, it
is not allowed to add new modules in run-time either.

One approach closely related to the architecture of Xilinxs FPGAs, especially
Virtex-II, Virtex-4 and Virtex-5 is shown in [7] and [8]. In this case, the authors
put forward a simulation model where reconfiguration capabilities are included
as well. The starting point is in the smallest unit that can be reconfigured at
the hw level, generating a 1D sequence of columns or 2D grid of tiles, using a
tile as a container encapsulating all needed functionalities. The inner process
of a SystemC module is implemented using SC CTHREAD, SC THREAD and
SC METHOD to represent a synchronous sequential, asynchronous sequential,
and combinational circuits, respectively. The method bodies only consists of a
function pointer that indicates the currently configured functionality. Commu-
nication between tiles has been implemented by manifold ports, modelling the
bus macros used as connectors in the FPGA. When components use more than
one tile, there will be a master tile that execute the task while the others are
functionally switched off, or simply route signals to neighbour tiles. This is an
excellent solution to simulate dynamic systems in this type of FPGAs, however
there are several aspects to take into account. Firstly, the set of ports per edge is
given by the superset of ports required by all implemented functionalities. Thus
every tiles must implement all possible communication protocols. Besides, every
systemC module must include an empty function as well as those implementing
simple signal transfers from incoming to outgoing ports, increasing simulation
time. Finally, this simulation platform does not allow inclusion of new function-
alities once the simulation has started, nor reuse it in architectures other than
1D or 2D meshes.

In [9], authors presented OSSS+R by adding reconfigurable support to the
extension OSSS (Oldenburg System Synthesis Subset), and where they proposes
the automatic synthesis of a reconfigurable system. This synthesisable subset of
SystemC is extended by additional elements for high-level modelling, like shared
variables, polymorphism or transaction level modelling. The C++ polymorphism
concept is used to assign different modules to one reconfigurable zone, as long
as they share the same static interface. This reconfigurable zone are modeled as
a special container called osss recon, which is the basis to take into account the
reconfiguration and the context switch times to provide a RTL model. However,
tasks are assigned to a reconfigurable zone within this container in a static way,
and it is not allowed to change or add one in run-time.

The capability to enable, disable, resume and kill process on systemC were
concepts introduced in SystemC-2.1 as dynamic threads, and it had been used by
authors in [10]. In contrast of static threads, dynamic threads may be spawned
during runtime and not only during the elaboration phase. In this work a recon-
figurable module is composed of two dynamic threads: one for the actual user
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process, modeling the functionality; and the other one for the creation and
destruction processes (control). This work also define the concept of dynamic
port, making possible the construction of a port after the elaboration phase.
However the dynamic port comprises a set of static channels that generate
instance of channel pool before the simulation, and manages the connection
and disconnection of channels in the channel pool. Concerning the two dynamic
threads that compose a reconfigurable module, the control thread is not part of
the reconfiguration process, since it is not the module which is in charge of the
reconfiguration process.

In [11] authors present a simulator, based on the separation of concerns
between the application and the architecture, and it can be used either in early
development stages, or during the implementation phase. As already mentioned
in previous works, they use the concept of reconfigurable zone characterized by a
set of resources. Through their methodology they have taken into account func-
tionality changing and resources sharing. During simulation, a manager is used to
map the reconfigurable modules into the appropriate zone according to available
resources. In order to model the dynamic behaviour of the tasks, a module is set
up with two dynamic threads. The first one is the User Algorithm and represents
the functionality of a dynamically reconfigurable module, spawning at runtime.
The second one is the Reconfiguration Control, that communicates with the
configuration interface and it is responsible for the creation and the destruction
of the User Algorithm. All the communications in this work (between modules
and from the reconfiguration manager to a module) were described using OSCI
TLM-2.0 standard.

Encapsulating a reconfigurable task, modeling its dynamic behaviour by Sys-
temCs dynamic threads, and carrying out the communication by using TLM is
by far the most flexible and complete method to work with partial dynamic
reconfiguration on SystemC.

Extending some issues shown in related works, we presented in [12] a frame-
work to manage partially dynamic reconfiguration in a completed transparent
way for both the user and the application. In this work a Reconfiguration Engine
has been designed to efficiently handle the reconfiguration process without pro-
cessor intervention, and reducing considerably the reconfiguration time. Fur-
thermore, we extended the use of TLM [13] not only to communicate between
modules, or between a module and the remaining system, but also to show a
method to widen flexibility concerning to the topology of the reconfigurable
modules. Although the capability to change or add tasks in run-time on Sys-
temC has not been successfully treated yet, in [14] is shown a method to work
with plugins in C++ that opens a way for reconfigurable modules in run-time
on SystemC.

Our approach relies on a combination between dynamic threads of SystemC
and plugins of C++ to change the functionality of modules during run-time,
and on transaction level modeling for all the communications. One of the most
important features of our proposal is that it is not necessary to change the
simulation kernel of SystemC, and therefore, it is in the line followed by the
standard.
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3 Simulation Framework

3.1 Heterogeneous Component Integration

One of the contributions of the paper is the definition of a common integration
environment, where different kinds of heretogeneous (hw and sw) comoponents
can be integrated at different abstraction levels. This is achived thanks to the
use of a TLM communication infrastructure, and therefore to the separation of
concerns between communcation and functionality. However, TLM is only used
as the communication physical layer because, as novel contribution in this work,
a middleware is added, incorporating a new logical layer, and appending a set
of semantic rules to TLM (See Fig: 1).

The TLM layer works as a communication network that routes messages from
one physical TLM destination to another. On the other side, each component
has a logical identifier, and follows some simple and predefined rules for the con-
struction and parsing of the communication messages, which define the fields to
include in the message as well as the way data must be serialized to be consistent
in both ends of the communication process. The purpose of the logical layer is
to stablish a biunivocal correspondence between the behavior representation of
the component as a set of functions and parameters, and how their invocations
and return values are translated into messages. However, components may be
modelled at any abstraction layer, as far as their final interface is compatible
with the logical messages defined.

The separation of both the physical and logical planes of the communication
is the key to provide transparency between components, and avoid unnecessary
coupling between functionality and low-level integration details. However it relies
on the use of a specific adapter, called CA (Communication Adapter), provided
as part of the framework, and which will act as a bridge between both worlds.

Fig. 1. Communication adapter

3.2 Communication Adapter Architecture

As a result, the simulation framework allows the interconnection of not only a set
of components described in different abstraction levels, but also any other entity
(such a external subsystem), as long as it is done through a specific CA. For
instance, it is possible to connect our system to an emulator, where an specific
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sw is running, and which makes use of a component simulated in our tool as a
hw accelerator.

As its name describes, the purpose of the Communication Adapter (figure 1)
is the adaptation of the component interface to the TLM communication infras-
tructure that links the rest of components in the system. On the TLM side, oper-
ation requests and data are encapsulated following the payload format described
in the TLM-2.0 standard. On the component side, communication is performed
by a double set of input/ouput FIFOs. The use of a FIFO interface may seem
restrictive with respect to the use of a richer component interface at a first glance.
However, the payload format used by TLM perfectly fits this approach with
almost no overhead, and additionally, it is possible to add an specific adapter to
map it into a more appropriate one.

The CA is a library component provided by the simulation framework. From
the physical communication point of view, it can be configured to act as a TLM
initiator and/or target. Each kind of interface has its counterpart input and
output FIFOs in the component side. But from a logical point of view, the CA is
the responsible for the implementation of the basic middleware services, which in
the simplest case implies that communication transparency between components
is guaranteed. This is achieved by the:

– separation between physical and logical addressing spaces. The
physical one relates to the references used by TLM, which are used to route
messages from initiators to targets and vice-versa. Logical references are used
by the components, regardless of their physical location. Logical addresses
are mapped into physical ones depending on the topology defined in the
model. The mapping can be hardcoded in the CA, or may be delegated into
a location service, such as the one described in section 3.6.

– message format. Messages are routed by the TLM infrastructure based on
the information in their headers, which corresponds to the physical address-
ing space. The TLM data field of the payload can be divided into two parts.
The first one can be considered the logical header of the message, and
includes the logical address from the source and target, as well as a mes-
sage identifier, that the CA can use to link return values with the requests.
Finally the last part of the message includes the real data of the message,
serialized following a set of fixed rules. That data can be directly forwarded
to the component interface FIFOs.

– message protocol. In this case a simple request/replay protocol is used.

3.3 Partial Dynamic Run-Time Reconfiguration

As already mentioned in the introduction, SystemC suffers from some limi-
tations when considering partial dynamic reconfiguration modelling.The main
conclusion to be drawn from these limitations is that there is no direct way to
add functionality to a component at runtime without modifying the simulation
kernel.

Alternatively, this paper proposes of a novel technique for modelling partial
dynamic reconfiguration using SystemC, which is based in the combination of
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dynamic libraries, plus the use of a special component adaptor: the Reconfig-
urable Unit (RU). Such units can be configured to embed completely different
behaviors, that may be replaced during the life cycle of the application. RUs
and regular components are integrated into the simulation model using the CA
described in section 3.2, since once configured, RUs act as any other component
in the system.

RU reconfiguration is performed by the Reconfiguration Controller (RC).
The task of the controller is to dynamically (at run-time) load the behaviors
associated to each RU, and configure the CA to be accessible from other compo-
nents in the system. The RU doesn’t take any reconfiguration decisions by itself,
but it provides a very simple abstraction layer for reconfiguration management.
Currently the framework doesn’t include any facility such as a reconfiguration
scheduler, so it must be modelled as part of the application. However, nothing
prevents from building it as a service on top of the RC.

Finally a directory service is required, in order to map logical references of
the components into their physical TLM identity. As part of the reconfiguration
process both the logical and physical identities of the component in the CA of
the RU are updated.

3.4 Reconfigurable Unit Architecture

RUs are not real components but an almost empty frame that provides the
FIFO interfaces described in section 3.2 (figure 2), as well as a reference variable
that can instantiate different component behaviors, not statically determined
(figure 2). The reconfiguration process then consists in the instantiation of a
certain behavior included in a dynamic library, which can be loaded at run-
time, just like a sw plugin. Once the library is downloaded, the reference is
updated, and the RU behaves as specified in the library.

As it happens with plugins, something to take into account is that the inter-
face of the component is fixed at design time, and therefore every component
that maps into a RU must comply with it. However, that’s not really a prob-
lem because in the proposed model, the entry point to the component are FIFO
channels. If a more specific interface is required (for third party IP integration,
for example), it can be easily adapted. The reconfigurable behavior thus will
include the adaptor as part of the model. Furthermore, the existance of a fixed
interface resembles the real physical behavior of reconfigurable logic in FPGAs.

3.5 Reconfiguration Controller

The Reconfiguration Controller includes a list of the available RUs in the system.
This list is defined at compile, when the concrete number of available RUs is
fixed. Therefore there is no limitation in the number of different behaviors used
in the RUs, but the number of different RUs remains constant.

After elaboration, at run-time, the RC waits for the reception of reconfigu-
ration requests. The RC works at a different plane than the RUs in the system,
and does not share the same TLM communication infrastructure. The requests
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Fig. 2. Communication adapter

are received though the input FIFO as a serialized message, that can include
one of the following type of operations:

– start: for the activation of the component, either because it has been pre-
viously stopped or it has just been configured

– stop: that disables both the execution and reception of messages
– reconfigure: the request includes the name of the behavior to download, as

well as the physical and logical identities of the new resulting component.

From the simulator point of view, the reconfiguration process involves three
operations, all of them managed from the RC:

1. First the binary code of the new behavior must be downloaded from a
dynamic library. Previously the source code of the model must be compiled,
and the compatibility of the interface has to be ensured. Once downloaded,
the RU reference to the real code is updated (through a sc process handle
reference).

2. The next step consists in the configuration of the logical addressing in the CA
of the RU, so the new component becomes available to the rest of components
in the system. At the same time such reference must be updated in the
directory service (locator), so it can be queried by other CAs during logical
to physical address translation.

3. Finally, a call to the sc spawn function will initiate the execution of the
process that acts as the entry point to the component behavior, which is
equivalent to the start operation.

The procedure described above can also include time modelling, and a recon-
figurable latency can be asociated in the form of a parametrizable function.

3.6 Location Service

This service is used to map physical and logical addresses, and can be easily
implemented using a table. The use of a table even allows for the dynamic
replacement of the references, a necessary feature to implement partial dynamic
reconfiguration.
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Components should only refer to the logical references of their targets so the
models are not dependant from the concrete topology of the implementation.
The translation between both of them should be a responsibility of the CA
which will request for it to the location service. Such requests can be cached in
the adapter to reduce the execution overhead.

4 Experimental Results

In order to check the validity of the approach two simple experiments have been
carried out. The first one consists in the reconfiguration of a simple signal gen-
erator component with two versions, one producing a sinusoidal output, and the
other generating a saw shaped signal. The top of the system simply instanti-
ates one RU plus the corresponding CA, and the RC, and data communication
reduces to a single message for starting/stopping the generation procedure. The
result of the execution is shown in figure 3.

Fig. 3. Simulation of a reconfiguration

The second experiment consists in the simulation of a set of several versions
of the Features from Accelerated Segment Test (FAST) Corner Detection algo-
rithm [15] [16], used to detect corners in an image. In this experiment different
versions of the algorithm are implemented in the same RU, and taking 9, 10,
11 or 12 pixels in the working out for each version. This experiment is used to
model a dynamically reconfigurable part of a system in which the execution of
this algorthm is accelerated in reconfigurable areas of a FPGA in which the hw
implementation of the algorithm can be reconfigured in run-time according to
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the version required [17]. In this experiment for each version, a golden refer-
ence model exists to check the correct performance of the algorithm. The top
application uses the dynamically reconfigurable environment to keep the same
system simulation environment to systematically evaluate all different versions.
The model includes a test module that consecutively loads a different configu-
ration into a single RU, injects the corresponding data through the TLM infras-
tructure, receives the results of the computation, and finally checks the correct
performance of the model.

Fig. 4. FAST test simulation

However, the framework described is not limited to the use of a single dynami-
cally reconfigurable component. Any number of them can be combined, including
the static part of the design, or even linked with a third party models, as far as
the communication takes place through the appropriate CA. This framework is
specially well suited for the simulation of highly adaptable systems, such as the
ones used in mixed mode genetic architectures, for example.

5 Conclusions

The main contribution presented in this paper has been a straightforward way to
model partial dynamic reconfiguration in SystemC without the need to modify
the simulation kernel of the language. Although the work mostly refers to recon-
figurable components, it can be extensible to the whole model of the system,
since the use of a communication middleware ensures communication flexibly
and transparency between heterogeneous components. Such middleware is based
in the use of TLM as the physical transport layer for messages, and therefore
inherits the benefits in the modelling capabilities as well as the flexibility already
provided by the standard.

Moreover, the proposed technique for reconfiguration implies almost no sim-
ulation overhead, since the number of components instantiated are kept to the
minimum, there is only one active processes in execution per RU, and there is
not any other in the background, disabled or waiting to be resumed. Finally,
the extension of the system through the inclusion of new behaviors that can be
instantiated into the RUs, implies no modification in the simulation model.
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