
Advanced SystemC Tracing and Analysis
Framework for Extra-Functional Properties

Philipp A. Hartmann1, Kim Grüttner1(B), and Wolfgang Nebel2

1 OFFIS – Institute for Information Technology, Oldenburg, Germany
pah@computer.org, gruettner@offis.de

2 Department for Computer Science, University of Oldenburg, Oldenburg, Germany
nebel@informatik.uni-oldenburg.de

Abstract. System-level simulations are an important part in the design
flow for today’s complex systems-on-a-chip. Trade-off analysis during
architectural exploration as well as run-time reconfiguration of applica-
tions and their mapping require detailed introspection of the dynamic
effects on the target platform. Additionally, extra-functional properties
like power consumption and performance characteristics are important
metrics to assess the quality of a design. In this paper, we present an
advanced framework for instrumentation, pre-processing and recording of
functional and extra-functional properties in SystemC-based virtual pro-
totyping simulations.The framework is based on a hierarchy of so-called
timed value streams, allowing to address the requirements for highly con-
figurable, dynamic architectures while allowing tailored introspection of
the required system characteristics under analysis.

1 Introduction

One of the main challenges for extra-functional property monitoring in today’s
complex embedded systems is the correct attribution of platform activity (com-
putation, communication and e.g. the resulting power dissipation) to the cur-
rently active (software) applications running on the platform. Especially in
dynamic reconfigurable scenarios, where multiple applications share the same
processing elements, interconnects, memories, peripherals and even energy
sources over time, the implicit, parasitic interference along extra-functional
dimensions can be hard to quantify and consequently to control.

In order to integrate such a monitoring infrastructure in a virtual platform
simulation enhanced with extra-functional properties, several requirements have
to be fulfilled, both for the functional models used in the simulation, as well
as for the recording and pre-processing capabilities provided by the simulation
environment. Last but not least, as some use cases require an online feedback
(e.g. power management, power-aware scheduling, etc.), the modelling of extra-
functional sensors and probes needs to be integrated in the same simulation
environment as well.

Fig. 1 shows a typical virtual platform simulation model. Here, the extra-
functional activity is ultimately consumed at the architecture level within pro-
cessing elements, interconnects, memories and peripherals. For multi-application
c© Springer International Publishing Switzerland 2015
K. Sano et al. (Eds.): ARC 2015, LNCS 9040, pp. 141–152, 2015.
DOI: 10.1007/978-3-319-16214-0 12

142 P.A. Hartmann et al.

Fig. 1. Application-aware platform activity monitoring

scenarios, the correct attribution to the triggering application tasks needs to be
ensured. Moreover, the hardware and software architecture consists of multiple
service layers, including operating and run-time layers and potentially further
platform support for dynamic reconfiguration. Starting from the activity record-
ing at the SoC component level, the requirements for an application-aware sim-
ulation infrastructure are summarized in the following.

– Simplicity: Only use those (dynamic) parameters needed for the current use
case (e.g. ignore area, when not looking for thermal behaviour).

– Composability: Derive combined values from physical relations between
individual contributors (e.g. total power, temperature-dependent power, ca-
pacitance-based power).

– Hierarchy: Put parameters on “correct” geometric level, inheriting parame-
ters from the context and/or the environment.

– Adaptivity: Allow changing parameters during run-time to support the mod-
elling of dynamic (e.g. power management) subsystems.

– Abstraction: Allow flexible selection and structural/temporal abstraction
according to the current analysis and monitoring requirements.

From the simulation infrastructure perspective, this requires a flexible and
composable framework to describe customized, use case specific, extra-functional
models. As the extra-functional simulation infrastructure has to deal with phys-
ical quantities (like capacitance, temperatures, etc.), a shortcoming of many
C/C++-based environments is the lack of a proper checking for correctly com-
bined quantities. To avoid such modelling errors, strongly-typed physical units
support is needed, where composition errors can be caught by the compiler.

Today’s system-level simulations oftentimes use sophisticated mechanisms to
improve the simulation speed. In virtual platform simulations, temporal decou-
pling is a widespread technique to achieve the required simulation performance
to run complex software stacks on the simulated platform. Another approach
includes co-simulation with models described in other simulators (e.g. RTL, cus-
tom instruction-set simulators, Matlab/Simulink) or the integration of emulators
or hardware/prototypes in the loop. Even third-party extra-functional models
might need to be integrated into a single system simulation. Both of these aspects
require the separation of the functional and the extra-functional simula-
tion time progression. This means that functional blocks need to be able

Advanced SystemC Tracing and Analysis Framework 143

to inject their property updates independently from a global simulation time,
preferably in a distributed manner. Hence, a separate update and synchronisa-
tion mechanism is required for the extra-functional model.

In this paper, we present a highly flexible instrumentation, tracing, and anal-
ysis infrastructure for SystemC-based virtual platform simulations. This frame-
work can be used to record arbitrary (physical) values and quantities over time,
based on so-called timed value streams. These streams can be combined to a
run-time (pre-)processing hierarchy before recording the required data for offline
analysis. The paper is organised as follows: In Section 2, we give an overview of
the state-of-the-art and refine the goals behind this work. The details of the timed
value streams semantics are given in Section 3 and the recording and instrumen-
tation of the functional models is described in Section 4. The stream processing
and analysis capabilities are then presented in Section 5, and Section 6 concludes
the paper with an outline of future work based on the presented infrastructure.

2 Goals of this Framework beyond the State-of-the-Art

The main motivation for a dedicated tracing and analysis framework explicitly
targeting extra-functional modelling in SystemC is the lack of physical quantity
support in the existing, standardized SystemC tracing facilities. Additionally,
based on the requirements given in Section 1, more flexibility for the instrumen-
tation, tracing and analysis is needed.

– sc_core::sc_trace [5] is not flexible enough, e.g. by being tied to the global
simulation time and lacking pre-processing and filtering capabilities.

– sca_core::sca_trace [9] is SystemC AMS-specific, not widely supported in
commercial environments, and not compatible with temporal decoupling.

– SCV transaction recording [10] not appropriate for physical quantities.
– Some advanced instrumentation APIs are partly available in commercial

tools [11], but usually not flexible enough for online preprocessing.

Explicit support for dimensional analysis based on the Boost.Units library [1]
has been added to SystemC-AMS in [7]. This approach addresses the lack of
proper composition of physical quantities in (SystemC AMS) models. It does
not address their tracing, recording, and preprocessing explicitly, though.

Extended tracing frameworks for SystemC have been proposed in the research
literature already [3,6]. These approaches focus on transaction-level modelling
and do not address the need for the separation of the functional model and
the run-time preprocessing of platform activity information. The DUST frame-
work [6] is designed for transaction-level introspection and analysis with
advanced storage and online debugging capabilities. The (transaction) recording
itself is based on the SCV API [10] and not suitable for extra-functional prop-
erties. In [3], “CULT: A Unified Framework for Tracing and Logging C-based
Designs” has been proposed. The main features include support for custom back-

144 P.A. Hartmann et al.

Fig. 2. Composable stream processing framework for activity extraction, pre-
processing, monitoring and recording

ends and an minimal-invasive instrumentation of the functional models. Explicit
support for physical quantities and their online processing is not addressed.

To cover all of the requirements and to provide the required flexibility and
composability, we present an instrumentation framework based on timed value
streams. The basic idea is shown in Fig. 2. The source streams contents are
produced by (functional) components, recording the relevant activity informa-
tion according to their distributed time model (to support temporal decoupling).
These primary traces are then processed by a set of stream processors to derive
the physical quantities based on the extra-functional property model.

3 Timed Value Streams

The underlying core technique of the extra-functional monitoring framework
presented to the user is based on so-called timed value streams, consisting of a
sequence of (value,duration) tuples.

The basic timed value stream infrastructure is shown in Fig. 3: The leaf
annotations in the functional model (1) are pushed as tuples according to the
current local simulation time of the producing process. These incoming tuples
are buffered within the stream (2) without advancing the local time of the stream
itself. Once the stream writer explicitly commits its updates, the local simulation
time of the stream is advanced and the pending tuples are sent to the listen-
ing readers (3). Each reader receives its own copy of the tuples, in order to
allow independent consumption of the tuples in the following stream processors
(Section 5).

Advanced SystemC Tracing and Analysis Framework 145

Fig. 3. Basic timed value stream infrastructure

Definition 1 (timed value stream).
A timed value stream S = 〈(v0, τ0), . . . , 〉 is a sequence of tuples (vi, τi) with
vi ∈ V (S) and τi ∈ T ⊆ R>0, where

• V (S) is the value domain of the stream, optionally with a physical dimension,
• τi denote the durations of each tuple, taken from the time domain T .

A stream window Sn
t is a finite subsequence of a stream S of length n, where

• t denotes the starting time, with ∃j : t =
∑j

i=0 τi,
• and n tuples in the stream 〈(vj , τj), . . . , (vj+n, τj+n)〉.1 ♣

During simulation, the (infinite) stream stays a theoretical concept and the
following discussion uses finite stream windows instead. Together with the dis-
tributed time model, this leads to the phased approach shown in Fig. 3, where
individual streams can advance separately and independently from the SystemC
simulation time.

It is important to note, that according to above’s definition each stream has
a strictly monotonic time advance and consists of gapless windows. On the other
hand, the activity recording can lead to empty intervals. Furthermore, during
the stream processing, streams with unaligned tuples need to be normalized (i.e.
split into aligned tuples) to define the time resolution (tuple durations) of the
output streams. Both aspects need to be addressed properly in the context of
physical quantities.

3.1 Support for Extra-Functional/Physical Quantities

Especially in light of extra-functional properties, the values held by a timed value
stream need to be classified according to their semantics. While functional trac-
ing usually observes the state of a system over time, extra-functional properties
emerge both as state quantities and process quantities.2

1 We sometimes omit j for improved readability.
2 This classification is loosely adopted from the theory of thermodynamics. Sometimes,

these classes are called state and process functions.

146 P.A. Hartmann et al.

State Quantities describe the state of a system at a given time. Without
external influences, this state is kept. In the context of system-level modeling,
this can include extra-functional properties like the cache hit/miss rates, power
consumption, (ambient) temperature and of course the functional state. For
timed streams, tuples can simply be split into separate tuples with the same value
and the same total duration. Empty periods can be completed by extending the
previous tuple in the stream. A reduction of the stream length can be performed
by joining consecutive tuples with the same value without loosing information.

Process Quantities describe a state change with an associated duration. Exam-
ples include the amount of cache hits/misses,the energy needed for a dynamic fre-
quency/voltage switch, or number of transferred bytes in a transaction. Timed
stream tuples of such quantities cannot be split, joined or completed in the same
way as state quantities. Instead, splitting requires the distribution of the state
change into two (or more) intermediate steps with a combined value equivalent
to the original value. Empty periods can be filled with a dedicated “silence value”
(usually 0) and a lossless reduction of the stream length is not possible without
reducing accuracy of the temporal resolution.

Timed Stream Traits are used in the implementation to address the need for
the above distinction. A special template parameter defining the different stream
tuple policies can be given. The different policies provide an implementation for
the different stream (tuple) operations, like splitting, joining and merging tuples.

An example for the default traits of the more interesting process quantity
traits is given in Listing 1.1. For state quantities corresponding traits classes are
available as well. The merge_policy is needed for conflicting pushes to a stream
(see Section 4). If the default traits are not sufficient, users can define their own
traits (and policies) by inheriting from the default classes and overriding the
nested typedefs.

template<typename ValueType> struct timed_process_traits {
typedef ValueType value_type;
// provide default value for empty periods
typedef timed_silence_policy<value_type> empty_policy;
// distribute values proportionally to duration
typedef timed_divide_policy<value_type> split_policy;
// keep tuples separate
typedef timed_separate_policy<value_type> join_policy;
// resolve conflicts by accumulating values
typedef timed_accumulate_policy<value_type> merge_policy;

}; // timed_process_traits<ValueType>

timed_stream<energy_quantity, timed_process_traits> energy_stream;
timed_stream<power_quantity> power_stream; // state traits by
default

Listing 1.1. Timed stream traits for process quantities

Advanced SystemC Tracing and Analysis Framework 147

3.2 Distributed Time Model and Synchronisation

In order to support the integration of the stream-processing with a temporally
decoupled simulation, the different components integrate into a distributed time
model, enabling hierarchical synchronisation between different components.

To finalise the values written to a particular temporarily decoupled timed
stream, the pushes need to be explicitly committed. This finalizes the current
stream window with all tuples written to the stream until the current local time
offset. Subsequent pushes with explicit timestamps earlier than the committed
time lead to a run-time error. In addition, attached tracing observers (processors
or backends, see Section 5) are notified that new data is available for processing.

In case of multiple independent streams in a single component, the local
time offsets need to be consistent as well. Furthermore, the driving SystemC
process may need to consume the SystemC simulation time at some point. Both
operations are tightly coupled, therefore a second overload of sync functions is
provided by the timed streams. Having the same semantics for their arguments,
these explicit sync functions return the offset to the current absolute SystemC
simulation and perform a commit on all streams in the current component. With
this, a common idiom to finalise a local computation is the wait(sync) call using
one of the streams explicitly as shown in Listing 1.2. Alternatively, a convenience
macro to mark such a synchronisation point explicitly is available as well.3

void commit(); // commit all pending pushes
void commit(duration_type const & offset); // ... explicit window
void commit(time_type const & offset); // ... until offset

time_type sync(); // commit & synchronise
time_type sync(duration_type const & offset); // ... explicit window
time_type sync(time_type const & offset); // ... until offset

#define SYSX_SYNCHRONISATION_POINT() \
sc_core::wait([stream_scope].sync())

Listing 1.2. Stream synchronisation API

4 Activity Recording – Stream Sources

Writing to a timed stream can be done explicitly by using a timed_writer object
attached to a stream (push interface), or based on implicit extraction of stream
updates from variables within the functional model (annotation interface).

4.1 Explicit Writing to a Timed Stream

Explicitly pushing to a timed value stream can be performed via a stream writer,
attached to the stream. Writers can be attached and removed from a stream
dynamically during runtime, either based on the streams name or in terms of a
direct C++ reference.
3 The current “scope” is determined by the tracing framework automatically.

148 P.A. Hartmann et al.

void push(value_type const & value, duration_type const & duration); // (1)
void push(time_type const & offset

, value_type const & value, duration_type const & duration); // (2)
void push(value_type const & value); // (3)

Listing 1.3. Stream push interface

Overload (1) adds a given value for a given duration to the current end of the
stream. Since each stream maintains a local time offset, this time offset is auto-
matically advanced by the given duration, when this interface call is used. This
interface is particularly well suited for annotating local computations without
requiring external synchronisation in-between.

The push (2) function can be used to write (future) values to a stream,
delayed relatively to the stream’s local time as given by the offset parameter.
When using this overload, the local time of the stream is not advanced. This
variant can be used to support out-of-order temporal decoupling and potentially
leads to overlapping tuples that need to be merged according to the stream’s
merge_policy (creating an error by default).

The final overload (3) can be used in case of an unknown duration (only suited
for state quantities). In this case, the value is assumed to be held indefinitely
until overwritten again. Again, the stream’s local time is not advanced until the
next commit.

4.2 Block-Based Annotations

A frequent use case of the annotation framework is the augmentation of applica-
tion source code with extra-functional properties. If only a single stream is driven
from within a process, no inter-stream synchronisation is needed and the local
time of the component is equal to the local time of the (only) stream. If multiple
streams are maintained, each of which has different update characteristics, keep-
ing the local time offsets consistent quickly becomes inconvenient. Therefore, a
higher level abstraction for block-based annotations of execution time durations
is provided, separating the time annotation from the actual value updates again
and handling the synchronisation transparently for the user.

timed_stream<process_state> state_str; // IDLE
timed_stream<unsigned, timed_process_traits> mem_load_str; // 0

void faculty(int in0, int& out0) {
timed_var<process_state> state(state_str); //traceable var
timed_var<unsigned> mem_load(mem_load_str); //traceable var
timed_ref<int> in (in0); // alias parameter

SYSX_TIMED_BLOCK(sc_time(500, SC_NS)) { // functionality
state = BUSY;
mem_load = 10;
// ...

} // automatic push to all streams in scope

while(tmp0) SYSX_TIMED_BLOCK(sc_time(200, SC_NS)) {
state = BUSY;

Advanced SystemC Tracing and Analysis Framework 149

mem_load = 2;
} // automatic push to all streams in scope
SYSX_SYNCHRONISATION_POINT}(); // commit and sync with SystemC
return;

}

Listing 1.4. Simple example of tracing multiple local values

The different basic blocks for annotations are wrapped within SYSX_TIMED_

BLOCK C++ scopes providing the duration of the block. Instead of explicit pushes
to different streams, timed_var objects can be used and updated via plain assign-
ments. These timed variables (or their timed_ref counterpart, aliasing an existing
variable) are used to implicitly push the corresponding tuples upon exit of the
annotated block.

5 Run-Time Extra-Functional Property Monitoring –
Stream Processing

As sketched in Fig. 2, the actual processing of the leaf instrumentation towards
derived extra-functional properties is performed by a hierarchical set of so-called
stream processors. These processors are triggered based on the object-oriented
Observer pattern, without relying on the SystemC simulation itself (no SystemC
processes, events, channels) to facilitate a separation of the models and to allow
dynamic reconfiguration of the analysis environment during runtime. Stream
processors can attach to a (set of) timed_readers and subscribe to commits, either
for each extension of a pending window or just for the start of new windows.

void notify(timed_reader_base & src);

Listing 1.5. Stream observer interface

Subsequently reading pending values via a timed_reader can be done in sev-
eral ways. For most pre-processing operations, the (const_)tuple_iterator based
interface is sufficient. The streams provide the output interface for consuming
the committed data sketched in the following listing:

value_type const & get() const; // read a
value value_type const & get(duration_type const & o) const;
// ... at given offset

tuple_type const & front() const; // read
first tuple tuple_type const & front(duration_type const & d);
// ... for a duration

void pop_front(); // drop
first tuple void pop_until(time_type const & until);
// ... for a duration void pop_all();
// ... all tuples

const_tuple_iterator begin() const; // get iterators to the
pending tuples const_tuple_iterator end() const;

Listing 1.6. Stream reader interface

150 P.A. Hartmann et al.

C0(t) 50pF 60pF 50pF 60pF 50pF 60pF 50pF

C1(t) 40pF 40pF 40pF 40pF

C(t) 50pF 90pF 100 60pF 40pF 90pF 60pF 40pF 90 50pF 90 100pF 40pF 50pF

Fig. 4. Structural abstraction: Accumulating switching activity by stream processing

Additionally, various querying functions about the different time offsets and
other utility functions are available in the stream base class.

5.1 Time Normalisation of Streams

When combining streams with different time resolutions, a time normalisation
needs to be performed. This means that tuple boundaries need to be aligned
before combining their values according to the stream processor’s output func-
tion.

For a stream processor listening to multiple streams S0, . . . ,Sk, the pending
windows4 Sni

i,t0
are transformed to normalised windows Sn′

i,t0
by applying the

stream’s split_policy according to the following rules:

Sn′
i,t0 =

〈(
v′
i,0, τ

′
0

)
, . . . ,

(
v′
i,n′−1, τn′−1

)〉

=
〈(

v′
i,0, (t

′
1 − t0)

)
, . . . ,

(
v′
i,n′−1, (t

′
n′−1 − t′n′−2

)
)
〉
,with

ti,j = t0 +
∑

l<j

τi,l

t′j = inf
0≤i≤k

{
ti,l : ti,l > t′j−1

}
, t′0 = t0

v′
i = SplitPolicy(Sni

i,t0
, τ ′

i)

This normalisation can be performed by the stream processor base class to
simplify the stream processor implementation itself. An example for this oper-
ation is shown in Fig. 4, which depicts a structural abstraction by combining
two (average) switching activity streams from two functional components into a
joint switching activity stream.

Another dimension for stream abstraction is the reduction of the time resolu-
tion, called temporal abstraction. A stream processor can for instance reduce the
number of tuples in a stream by averaging the values over a fixed time window.
This is useful to reduce the amount of tuples that need to be processed and helps
improving the simulation performance.

5.2 Offline Analysis – Stream Backends

Especially for offline or post-mortem analysis, a special set of stream processors
can be used, so called stream backends. Compared to a generic stream processor,
4 The starting time is assumed to be aligned already.

Advanced SystemC Tracing and Analysis Framework 151

Fig. 5. Example trace integration into Synopsys Virtualizer

a stream backend has no outgoing timed streams on its own and merely pro-
cesses (a set of) incoming streams for specific purposes. Different use cases for
stream backends are to be considered, as described in the following. The detailed
external interface of these backends are specific to these use cases and therefore
out of the scope of this paper.

Trace File Generation. One of the most obvious backends for a tracing and
analysis infrastructure is the generation of value-over-time trace files, e.g. based
on the Value Change Dump (VCD) format [4]. This widespread text-based for-
mat is supported by most graphical analysis tools and can be generated by the
standard SystemC sc_trace API as well. Consequently, a VCD backend has been
implemented for timed streams.

Secondly, some commercial simulation environments provide additional anal-
ysis capabilities beyond a mere visualisation of traces. One example for such an
environment is the Synopsys Virtualizer tool suite [11], which includes an generic
data analysis API suitable for the integration with the timed value streams
extension. An example excerpt of a dynamic power trace stream visualized by
the Virtualizer user interface is shown in Fig. 5.

Metrics/Statistics Collection. Another frequent requirement of system-level
simulations is the gathering of compact performance or quality metrics for exam-
ple to drive an automatic design space exploration. To enable the collection of
such metrics or statistical information, user-defined stream backends can be used
as well. These specific metric backends then report their value(s) at the end of
the simulation (or explicitly upon request). As there is no feedback to the simu-
lation model itself, the computation of the design metrics can run independently
of the SystemC simulation time.

6 Conclusion

In this paper, we have presented a novel approach for instrumentation, prepro-
cessing and analysis of extra-functional properties in system-level simulations.
The SystemC-based implementation uses timed value stream to transport such

152 P.A. Hartmann et al.

extra-functional properties through a hierarchy of stream processors towards
dedicated backends for offline analysis (trace files or report generators). The app-
roach is currently included in our simulation environment for power-aware virtual
prototypes [2].

As a special extension, we will now start to define a dedicated set of stream
backends to allow simulation-based validation of extra-functional contracts [8]
(assumption/guarantee pairs covering extra-functional properties). The under-
lying linear-temporal logic properties (LTL) will be used to run-time monitors
based on stream processors. With the capability to store a continuous window
of tracing history (see Section 5), the stream-based infrastructure is perfectly
suited for this kind of temporal monitoring.

Acknowledgments. This work has been partially supported by the EU integrated
projects COMPLEX (FP7-247999) and CONTREX (FP7-611146).

References

1. Boost. Units library 1.1.0. http://www.boost.org/doc/html/boost units.html
2. Grüttner, K., Hartmann, P.A., Hylla, K., Rosinger, S., Nebel, W., Herrera, F.,

Villar, E., Brandolese, C., Fornaciari, W., Palermo, G., Ykman-Couvreur, C.,
Quaglia, D., Ferrero, F., Valencia, R.: The COMPLEX reference framework for
HW/SW co-design and power management supporting platform-based design-
space exploration. Microprocessors and Microsystems 37(8,C), 966–980 (2013),
Special Issue on European Projects in Embedded System Design (EPESD 2012)

3. Hong, W., Joshi, J., Vieh, A., Bannow, N., Kramer, A., Post, H., Bringmann,
O., Rosenstiel, W.: Advanced features for industry-level logging and tracing of
C-based designs. In: Forum on Specification and Design Languages (FDL 2013).
IEEE (September 2013)

4. IEEE Standard Verilog Hardware Description Language. IEEE Std. 1364–2005,
IEEE Computer Society (April 2006) ISBN 0-7381-4851-2

5. IEEE Standard SystemC Language Reference Manual. IEEE Std. 1666–2011. IEEE
Computer Society (January 2012). http://standards.ieee.org/getieee/1666/ ISBN
978-0-7381-6801-2

6. Klingauf, W., Geffken, M.: Design structure analysis and transaction recording in
SystemC designs: A minimal-intrusive approach. In: Forum on Specification and
Design Languages (FDL 2006). IEEE (September 2006)

7. Maehne, T., Vachoux, A.: Supporting dimensional analysis in SystemC-AMS. In:
IEEE Behavioral Modeling and Simulation Workshop (BMAS 2009), pp. 108–113
(September 2009)

8. Nitsche, G., Grüttner, K., Nebel, W.: Power contracts: A formal way towards
power-closure?! In: Proc. of the 23rd Intl. Workshop on Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), pp. 59–66 (September 2013)

9. Standard SystemC AMS extensions 2.0 Language Reference Manual. Accellera Sys-
tems Initiative (March 2013). http://accellera.org/downloads/standards/systemc

10. SystemC Verification Library 2.0. Accellera Systems Initiative (July 2014).
http://accellera.org/downloads/standards/systemc

11. Synopsys: Virtualizer. http://www.synopsys.com/systems/virtualprototyping

http://www.boost.org/doc/html/boost_units.html
http://standards.ieee.org/getieee/1666/
http://accellera.org/downloads/standards/systemc
http://accellera.org/downloads/standards/systemc
http://www.synopsys.com/systems/virtualprototyping

	Advanced SystemC Tracing and Analysis Framework for Extra-Functional Properties
	1 Introduction
	2 Goals of this Framework beyond the State-of-the-Art
	3 Timed Value Streams
	3.1 Support for Extra-Functional/Physical Quantities
	3.2 Distributed Time Model and Synchronisation

	4 Activity Recording -- Stream Sources
	4.1 Explicit Writing to a Timed Stream
	4.2 Block-Based Annotations

	5 Run-Time Extra-Functional Property Monitoring -- Stream Processing
	5.1 Time Normalisation of Streams
	5.2 Offline Analysis -- Stream Backends

	6 Conclusion
	References

