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Abstract. An efficient centroid type-reduction strategy for general type-
2 fuzzy set is proposed by Liu. In Liu’s method, a type-2 fuzzy set will be
decomposed into several interval type-2 fuzzy sets. However, if the mem-
bership function of the type-2 fuzzy set is concave, the primary mem-
bership of these interval type-2 fuzzy sets on some points may not have
only one continuous interval. Existing type-reduction algorithms, such as
Karnik-Mendel algorithm and Enhanced Karnik-Mendel algorithm, can
not deal with this problem. We propose a method to decompose this
problem into several subproblems which can then be solved by existing
type-reduction algorithms. The union of the solutions to the subproblems
is the final solution to the original problem.

Keywords: Karnik-Mendel (KM) algorithm, type-reduction, type-2
fuzzy set, interval type-2 fuzzy set.

1 Introduction

The type-2 fuzzy system has evolved from the type-1 fuzzy system [1], [4], [5], [7].
One of the major differences between these two systems lies on the defuzzification
involved in the inference process. The defuzzification of a type-2 fuzzy set is
composed of type-reduction and type-1 defuzzification. Therefore, type-reduction
plays an important role in type-2 fuzzy systems [6].

Two kinds of type-reduction have been introduced. Liu proposed a method
[2] to perform type-reduction for general type-2 fuzzy sets. A type-2 fuzzy set
is decomposed into interval type-2 fuzzy sets, and one only needs to perform
type-reduction for each resulting interval type-2 fuzzy set [2], [9], [10]. There are
many type-reduction algorithms for interval type-2 fuzzy sets, such as Karnik-
Mendel algorithm (KM) [3] and Enhanced Karnik-Mendel algorithm (EKM) [8].
EKM is an iterative algorithm which is a faster version of KM. The Enhanced
Centroid-Flow algorithm [12] is a more accurate version of the Centroid-Flow
algorithm [11]. This algorithm utilizes KM or EKM only at the central α-level,
and then lets its result flow upward to the maximum α-level and downward to
the minimum α-level.

However, if the membership function of the type-2 fuzzy set is concave, the
primary membership of these interval type-2 fuzzy sets on some points may
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not have only one continuous interval. The type-reduction methods mentioned
above can not deal with this problem. We propose a method to decompose this
problem into several subproblems which can then be solved by any of the above
mentioned algorithm. The union of the solutions to the subproblems is the final
solution to the original problem.

The rest of this paper is organized as follows. Section 2 provides a brief in-
troduction to fuzzy sets. Our proposed method is described in Section 3. An
illustrating example is shown in Section 4. Finally, a conclusion is given in Sec-
tion 5.

2 Background

Some background about fuzzy sets is given here. For more details, please refer
to [1] and the other cited literature.

2.1 Type-2 Fuzzy Set

A type-2 fuzzy set ˜A can be expressed as

˜A = {(x, u), μ
˜A(x, u)|∀x ∈ X, ∀u ∈ Jx} (1)

whereX is the universe for primary variable x,and Jx is the primary membership
of ˜A at x. ˜A can also be expressed as

˜A =

∫

x∈X

∫

u∈Jx

μ
˜A(x, u)/(x, u) (2)

where
∫

denotes the union of all admissible x and u.

2.2 Interval Type-2 Fuzzy Set

An interval type-2 fuzzy set is a special case of type-2 fuzzy set. It’s membership
function degree is 1. An interval type-2 fuzzy set ˜A can be expressed as

˜A = {(x, u), μ
˜A(x, u) = 1|∀x ∈ X, ∀u ∈ Jx} (3)

or
˜A =

∫

x∈X

∫

u∈Jx

1/(x, u) (4)

The footprint of uncertainty of ˜A, denoted by FOU( ˜A), is defined by

FOU( ˜A) =
⋃

x∈X

Jx =
⋃

x∈X

[I(x), Ī(x)] (5)

where [I(x), Ī(x)] is an interval set, and [I(x), Ī(x)] ⊆ [0, 1].
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2.3 Liu’s Method

An efficient centroid type-reduction strategy for general type-2 fuzzy set is pro-
posed by Liu [2]. The key idea of Liu’s method is to decompose a type-2 fuzzy
set into several interval type-2 fuzzy sets, called α-plane representation, as illus-
trated in Fig. 1. The α-plane for a type-2 fuzzy set ˜A, denoted by ˜Aα, is defined

Fig. 1. Liu’s method

to be
˜Aα =

⋃

x∈X

{(x, u)|μ
˜A(x, u) ≥ α} (6)

The ˜Aα is an interval type-2 fuzzy set. For each interval type-2 fuzzy set, an
interval set can be obtained by applying the centroid type-reduction. Finally,
The union of the resulting interval sets form a type-1 fuzzy set. This type-1
fuzzy set is the centroid of the type-2 fuzzy set ˜A.

2.4 Enhanced Karnik-Mendel Algorithm

The Enhanced Karnik-Mendel (EKM) algorithm [8] is a type-reduction algo-
rithm for interval type-2 fuzzy sets. It is an enhanced version of Karnik-Mendel
algorithm (KM) [3]. An interval type-2 fuzzy set ˜A can be regarded as composed
of many type-1 fuzzy sets Ai such as

˜A = A1 ∪ A2... ∪ Ai ∪ ... (7)

where
Ai = {(x, u)|∀x ∈ X, u ∈ Jx} (8)

The centroid type-reduction of the interval type-2 fuzzy set ˜A is composed of all
the centers of the type-1 fuzzy sets Ai. As a result, one can get an interval set
[cl, cr]. This interval set is the centroid of the interval type-2 fuzzy set ˜A. EKM
is a fast algorithm to find such cl and cr, and can be summarized in Table 1.

3 Proposed Method

The problem of Liu’s method is the membership function of type-2 fuzzy set
must be a convex function. If the membership function is concave function, Jx
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Table 1. EKM to calculate the centroid of an interval type-2 fuzzy set

Step EKM for cl
1 Set k = [N/2.4] (the nearest integer to N/2.4) for N = |X|.
2 Compute

c =
∑k

i=1 xiµ̄ ˜A
(xi)+

∑N
i=k+1 xiµ

˜A
(xi)

∑k
i=1 µ̄

˜A
(xi)+

∑N
i=k+1

µ
˜A
(xi)

.

3 Find k′ ∈ [1, N − 1] such that xk′ ≤ c ≤ xk′+1.
4 Check k = k′:

if yes, stop and set cl = c, L = k;
if no, set k = k′ and go to step 2.

Step EKM for cr
1 Set k = [N/2.4] (the nearest integer to N/1.7) for N = |X|.
2 Compute

c =
∑k

i=1 xiµ
˜A
(xi)+

∑N
i=k+1 xiµ̄ ˜A

(xi)
∑k

i=1 µ
˜A
(xi)+

∑N
i=k+1

µ̄
˜A
(xi)

.

3 Find k′ ∈ [1, N − 1] such that xk′ ≤ c ≤ xk′+1.
4 Check if k = k′:

if yes, stop and set cr = c, R = k;
if no, set k = k′ and go to step 2.

may be a union which is composed of two or more intervals for the α-plane
representation ˜Aα. The FOU( ˜Aα) may be

FOU( ˜Aα) =
⋃

x∈X

Jx (9)

where

Jx = [I1(x), Ī1(x)] ∪ [I2(x), Ī2(x)]... ∪ [Ij(x), Īj(x)] ∪ ...

If Jx is composed of more than one interval, we can’t use EKM algorithm to
calculate the centroid.

We propose a method to perform the centroid type-reduction of a concave
type-2 fuzzy set ˜A. The first step is to decompose ˜A into several interval type-2
fuzzy sets ˜Aαi for αi ∈ [0, 1] by the α-plane representation as shown in Fig. 2.

Since ˜A is a concave type-2 fuzzy set, the primary membership of ˜Aαi may be
the union of several interval sets, denoted by Jαi

x . The footprint of uncertainty

of ˜Aαi is defined by

FOU( ˜Aαi) =
⋃

x∈X

Jαi
x

and

Jαi
x = Iαi

x1 ∪ Iαi
x2 ... ∪ Iαi

xj ∪ ... (10)

where Iαi

xj is an interval set, and Iαi

xj ⊆ [0, 1].

For each interval type-2 fuzzy set ˜Aαi , we decompose it into several interval

type-2 fuzzy sets ˜Al
αi

as shown in Fig. 3. The footprint of uncertainty of ˜Al
αi

is
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Fig. 2. The α-plane representation

Fig. 3. The decomposition of an interval type-2 fuzzy set

defined by

FOU( ˜Al
αi
) =

⋃

x∈X

Iαi
x (11)

where Iαi
x is an interval set, and Iαi

x ⊆ Jαi
x . Then we can have S interval type-2

fuzzy sets from ˜Al
αi
, i.e.,

S =
∏

x∈X

sx (12)

where sx is the number of intervals contained in Jαi
x . If ˜A is a convex type-2

fuzzy set, sx is 1 for all x ∈ X .
The primary membership of each interval type-2 fuzzy set ˜Al

αi
is an interval

set for all x ∈ X , so we can perform the centroid type-reduction by EKM for
each interval type-2 fuzzy set ˜Al

αi
. Then, we collect all the results from the

application of EKM to each interval type-2 fuzzy set ˜Al
αi

and get a set Wαi

Wαi =

S
⋃

l=1

wl
αi

(13)
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where wl
αi

is the result of applying EKM on ˜Al
αi
. Note that wl

αi
is an interval

set, but Wαi is not necessarily an interval set. The Wαi we obtain is the centroid

of the interval type-2 fuzzy set ˜Aαi .
Finally, we can obtain a type-1 fuzzy set by doing a union of Wαi for all i.

This type-1 fuzzy set is then the centroid of the concave type-2 fuzzy set ˜A. The
whole process of our proposed method for computing the centroid of a concave
type-2 fuzzy set can be summarized in Fig. 4.

Fig. 4. Our method for computing the centroid of a concave type-2 fuzzy set

4 Numerical Results

In this section, we show the result of applying our method on a type-2 fuzzy
set. Liu’s method is not applicable for this case. The universal set X involved
is [0.0, 0.2, 0.4, ..., 4] and the α set adopted is [0.000, 0.025, 0.050, 0.075, ..., 1] for
this example.

This example is a concave type-2 fuzzy set ˜A which is shown in Fig. 5. The pri-
mary membership function f

˜A(x) and secondary membership function μ
˜A(x, u)

of ˜A are defined by

f
˜A(x) = exp

[

− (x− 2)2

2 ∗ (0.3)2
]

(14)

Fig. 5. ˜A for illustration
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Fig. 6. The α-plane with α = 0.5

and

μ
˜A(x, u) =

⎧

⎨

⎩

exp
[

− (u−(f
˜A(x)−0.15))2

2∗(0.001)2
]

, u ≤ f
˜A(x)

exp
[

− (u−(f
˜A(x)+0.15))2

2∗(0.001)2
]

, u > f
˜A(x)

(15)

Firstly, we get α-planes from ˜A. For example, the α-plane with α = 0.5 is shown
in Fig. 6. Note that each point in this figure signifies an interval. Secondly, each
α-plane is further decomposed into several interval type-2 fuzzy sets. For the α-
plane with α = 0.5, it is decomposed into 16 interval type-2 fuzzy sets. One of the
decomposed interval type-2 fuzzy set is shown in Fig. 7, where each point signi-
fies an interval. Finally, we do type-reduction for each decomposed interval type-2
fuzzy set using EKM. Since the secondary membership function of ˜A is a concave
function, Wαi may contain several intervals. It means that the result of ˜A can be

a concave type-1 fuzzy set. The centroid obtained for ˜A is shown in Fig. 8.

Fig. 7. A decomposed interval type-2 fuzzy set of Fig. 6
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Fig. 8. The type-reduction result of ˜A

5 Conclusion

We have presented a method to perform type-reduction for type-2 fuzzy sets.
Our method is based on Liu’s method which can only handle the type-2 fuzzy
sets with convex membership functions. By our method, an underlying type-2
fuzzy set is decomposed into several interval type-2 fuzzy sets by the α-plane
representation. Then, we decompose each interval type-2 fuzzy set into several
new interval type-2 fuzzy sets. These new interval type-2 fuzzy sets are then
handled by existing type-reduction algorithms, e.g., EKM, and we collect the
type-reduction results from the new interval type-2 fuzzy sets to form the type-
reduction result of each interval type-2 fuzzy set of the α-plane representation.
The union of the type-reduction results of all the α planes is the centroid of the
original type-2 fuzzy set. In this way, type-reduction of both convex and concave
type-2 fuzzy sets can be done properly.
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