
High Level Models for IaaS Cloud Architectures

Ales Komarek, Jakub Pavlik, and Vladimı́r Soběslav

Faculty of Informatics and Management, University of Hradec Kralove,
Rokitanskeho 62, Hradec Kralove, Czech Republic

{ales.komarek,jakub.pavlik.7,vladimir.sobeslav}@uhk.cz

Abstract. This paper explains how ontology can be used to model var-
ious IaaS architectures. OpenStack is the largest open source cloud com-
puting IaaS platform. It has been gaining wide spread popularity among
users as well as software and hardware vendors over past few years. It’s
a very flexible system that can support a wide range of virtualization
scenarios at scale. In our work we propose a formalization of OpenStack
architectural model that can be automatically validated and provide suit-
able meta-data to configuration management tools. The OWL-DL based
ontology defines service components and their relations and provides
foundation for further reasoning. Model defined architectures can sup-
port simple all-in-one architecture as as well as large architectures with
clustered service components to achieve High Availability.

Keywords: IaaS, OpenStack, Meta-data, Ontology, Service-Oriented
Architecture, Configuration Management.

1 Introduction

Nowadays IT infrastructure is the key component for almost every organization
across different domains, but it must be maximally effective with the lowest
investment and operating costs. For this reason, cloud Infrastructure as a Service
(IaaS) is gradually being accepted as the right solution regardless hosting as
private, public or hybrid form. Lots of key vendors had tried to develop own
solutions for IaaS clouds during several years ago, but infrastructure is being
too complex and heterogeneous. Different vendors means different technology,
which caused vendor lock-in and limitations in migrations for future growth. In
addition, every organization has different requirements for hardware, software
and its use.

Based on the idea of openness, scalability and standardization of IaaS cloud
platform NASA together with RackSpace founded in 2010 project called Open-
Stack, which is a free and open source cloud operating system that controls
large pools of compute, storage, and networking resources across the datacenter.
It is the largest open-source cloud computing platform today [2]. Community
is driven by industry vendors as IBM, Hewlett-Packard, Intel, Cisco, Juniper,
Red Hat, VMWare, EMC, Mirantis, Cannonical, etc. In terms of numbers the
OpenStack community contains about 2,292 companies, 8,066 individual mem-
bers and 89,156 code contributors from 130 different countries [3]. These figures
confirm that OpenStack belongs to the largest solution for IaaS cloud.

c© Springer International Publishing Switzerland 2015 209
D. Barbucha et al. (eds.), New Trends in Intelligent Information and Database Systems,
Studies in Computational Intelligence 598, DOI: 10.1007/978-3-319-16211-9_22



210 A. Komarek, J. Pavlik, and V. Soběslav

OpenStack is a modular, scalable system, which can run on a single personal
computer or on the hundreds of thousands servers as e.g. CERN [4] or PayPal
[5].

Lots of vendors and wide community mean lots of ways how OpenStack can
be deployed. Each vendor tries to extend core functions and write new service
backends to fit their business goals. The actual system consists of many modules
and components designed with plugin architecture that allows custom imple-
mentations for various service backends. These components can be combined
and configured to match available software and hardware resources and real
use-case needs.

Each implementation has its own component combination and use some form
of configuration management tool to enforce the service states on designated
servers and possibly other network components. These tools require data that
covers configuration of all components. However, there is not best practise or
recommendations how to build suitable OpenStack cloud for different use cases.
Detecting component inconsistencies manually is painful and time consuming
process. Companies need standardization and validation process for their spe-
cific infrastructure requirements, which can help them automate whole imple-
mentation, operating and future upgrades of controlling software or physical
hardware.

Our project goals are to find a solution to the following issues:

1. Propose high level architecture model definition (Logical model)
2. Implement service that transforms architecture model to solution level model

for configuration management tools (physical realization)
3. Provide way how to define and validate architecture based on available hard-

ware resources and target use case.
4. Automate the whole process from high level modelling to actual enforcement

on targetted resources.

This paper is focused on designing and creation of high level architecture
model, where we propose a formalization of OpenStack service architecture
model, based on the approaches developed in classic knowledge representation
domain, especially Service-Oriented Architecture by OpenGroup. Component
definition is encoded in an ontology using the standard OWL-DL language, which
enables sharing of knowledge about configurations across various systems. Rea-
soning can be used on the specification to automate validation of configuration
changes.

When dealing with hundreds of components with thousands of properties and
relations, keeping track of changes throughout its life cycle is very challeng-
ing. Current approaches are ad hoc, even OpenStack Fuel (Mirantis OpenStack
deployment tool [6]) has severe limitations, there exists no standard for specify-
ing common OpenStack architectural model. The question how to convert the



High Level Models for IaaS Cloud Architectures 211

proposed OWL-DL schema to metadata format that configuration management
tools can process is discussed. We are working on external node classification
service that uses graph database to serialize the OWL ontology with REST
API that configuration management tools can use as metadata provider. This
can streamline the process of adopting new services and service backends in
predictable way.

In Section 2 we describe service architecture models, which contain OpenStack
moduls, deployment, etc. After we explain ontology models for IaaS cloud in
Section 3. Finally we show how to implement high level model into ontology in
Section 4.

2 Service Architecture Models

This section describes modularity and complexity of OpenStack IaaS platform
including core and supporting services. However, there is not so much place
for detail description of all components, since the main idea is contained in
Sections 3 and 4. The goal of this section is to show that OpenStack modules
are independent services, which can be implemented in many different of ways.

2.1 IaaS Achitecture Core Models

OpenStack is complete Infrastructure as a Service platform. It allows to create
virtual servers on virtual networks using virtual block devices.

Fig. 1. Logical Model of Icehouse OpenStack service achitecture

Further versions of OpenStack introduce more complex services that use basic
services to provide for example Data processsing, Database, Message Queue
or Orchestration. All services or modules within OpenStack architecture are
independent and have pluggable backends or drivers. This allows vendors to
develop plugin for their resources, that can be accessed and managed by the
OpenStack API.



212 A. Komarek, J. Pavlik, and V. Soběslav

Fig. 2. Locality 2 Architecture

Fig. 1 shows the core modules of OpenStack included in Icehouse release. Each
module is briefly described including a serveral backends or plugins.

Identity - Keystone is an OpenStack project that provides Identity, Token,
Catalog and Policy services for use specifically by projects in the OpenStack
family. Backends/plugins : sql, ldap

Image - Glance service provides services for virtual disk images. Compute
service uses image service to get the starting image of the virtual server. Back-
ends/plugins : dir, Swift, Amazon S3

Compute - Nova service is designed to provision and manage large net-
works of virtual machines, creating a redundant and scalable cloud-computing
platform. Backends/plugins : KVM, Hyper-V, VMware vSphere, Docker

Network - Neutron is an OpenStack networking project focused on de-
livering networking as a service. It makes hard to deploy advanced networking
services because of wide range of plugins. Backends/plugins : Nova flat network-
ing, OpenVSwitch gre/vxlan, OpenContrail, VMware NSX, etc.

Volume - Cinder provides an infrastructure for managing volumes in Open-
Stack. It uses storage drivers for volumes direct mapping into virtual instances
through FibreChannel or iSCSI. Backends/plugins : LVM driver, SAN driver,
EMC VNX, IBM Storwize, CEPH, Gluster, etc.

OpenStack is not only about its core services, but there are many services at
infrastructural level that are essential as well.

High Availability Cluster software is responsible for clustering Open-
Stack services and creation High Availability in active/active or active/passive
mode. Backends/plugins : corosync/pacemaker, keepalived

Communication Service is messaging between components of same Open-
Stack module. Backends/plugins : RabbitMQ, QPid, ZeroMQ

Database Services is responsible for storing persistent data of all modules.
Backends/plugins : MySQL/galera, PostgreSQL



High Level Models for IaaS Cloud Architectures 213

2.2 Use Cases

We participate in operations of several real OpenStack deployments in Central
Eastern Europe. Each of them is different, which means that uses different back-
ends in modules. Because of lack of space we decided to show only one use case.
Fig. 2 shows the logical architecture of TCP Virtual Private Cloud.

3 IaaS Service Ontology

What is an ontology? An ontology is a specification of a conceptualization. Ac-
cording to Gruber [8] an ontology defines a set of representational primitives with
which to model a domain of knowledge. These primitives are typically classes
(or sets), attributes (or properties), and relationships (or relations among class
members). The definitions of the representational primitives include information
about their meaning and constraints on their logically consistent application.

In general, any enterprise application can benefit from use of ontologies. They
are used in field of semantics-based health information systems, interoperable
reference ontologies in biology and biomedicine as summarised in Open Biological
and Biomedical Ontologies[13].

The formal definition of cloud computing ontology was introduced by Youseff
[15]. It maps the complete domain of Cloud computing from software to hardware
resources. It is divided into 5 layers of services.

1. Servers (physical and virtual)
2. Core Infrastructure Services (DNS, NTP, config management)
3. Storage (NAS and SAN)
4. Network (Routers, Switches, Firewalls, Load Balancers)
5. Facilities (Power, Cooling, Space)

The scope of IaaS Service Ontology covers the level 1 and 2 with core infras-
tructure services and servers running OpenStack services. The levels 3 and 4 with
network and storage devices will be adopted in further versions of the ontology.
The level 5 will be implemented as last as no services are directly configured.

3.1 Ontological Standards

The ontologies define the relations between terms, but does not prescribe exactly
how they should be applied. Following ontologies serve as the starting point for
creating new ontologies including the IaaS Service Ontology.

Service-Oriented Architecture. The SOA ontology specification was devel-
oped in order to aid understanding, and potentially be a basis for model-driven
implementation of software systems. It is being developed by Open Group and
was updated to version 2 in april 2014. The ontology is represented in the Web
Ontology Language (OWL) defined by the World-Wide Web Consortium (W3C).
The ontology contains classes and properties corresponding to the core concepts
of SOA [10].



214 A. Komarek, J. Pavlik, and V. Soběslav

OSLC Configuration Management. OSLC Configuration Management Re-
source Definitions [11] is a common vocabulary for versions and configurations
of linked data resources. It provides suitable classes and properties from config-
uration management domain.

Dublin Core Metadata Initiative. The Dublin Core Metadata Intiative
terms provide vocabularies for common resource definition. It is foundational
meta-data vocabulary for many other schemas and covers the basic properties.

3.2 Ontology Serialization Formats

There are severalwayshowto serialize ontology. In it’s core ontology representation
is a linking structure that formsadirected, labeledgraph,where the edges represent
the named relation between two resources, represented by the graph nodes. This
graph view is the easiest possible mental model for ontologies and is often used in
easy-to-understand visual explanations. They differ by reading and writing speed.

RDF/OWL-DL Documents. Ontologies are stored in Web Ontology Lan-
guage (OWL) defined by the World-Wide Web Consortium (W3C). OWL has
three increasingly expressive sub-languages: OWL-Lite, OWL-DL, and OWL-
Full [9]. The sub-language OWL-DL provides the greatest expressiveness possible
while retaining computational completeness and decidability. RDF is a standard
model for data interchange, it as features that facilitate data merging even if the
underlying schemas differ, and it specifically supports the evolution of schemas
over time without requiring all the data consumers to be changed. The format
is used by ontology editors.

Graph Databases. Graph databases can store ontologies very well as they have
graph format very similar to RDF format which is standard format of any XML
based graph database, just very different implementation. Graph database uses
graph structures with nodes, edges, and properties to represent and store data.
A graph database is any storage system that provides index-free adjacency. This
means that every element contains a direct pointer to its adjacent elements and
no index lookups are necessary.

3.3 Plain Meta-data Serialization

The domain of cloud computing services can be mapped not just by ontologies
but in a less formal data structures. The most common examples are YAML
or JSON files with plain or nested data structures. The schema is enforced by
documentation and no semantic validation can be used.

Hierarchical Databases. The more complex meta-data can be stored in hi-
erarchical databases. These systems allow to define service parameters through
class inheritance, which can be overridden. Hierarchical classes can be featured
as sets, commonalities, or as roles. You can assemble your infrastructure def-
inition from smaller bits, eliminating duplication and exposing all important
parameters to a single location. Within hierarchical databases parameters can
reference other parameters in the very hierarchy that are actually assembling.



High Level Models for IaaS Cloud Architectures 215

4 Ontology Usage

The journey to mapping high level models in ontologies was long. It was a process
of describing everchanging OpenStack cloud architectures over past 2 years. The
OpenStack foundation has released 4 major versions with 12 minor versions over
that period. The number of managed software components grew from 5 to 17. At
the beginnings we started mapping meta-data models in separate files containing
complete meta-data set of all services for each server or device. The meta-data
was encoded in YAML format. This approach was fine at earlier versions of
OpenStack we tested as just the basic set of OpenStack services existed at the
time.

Simple meta-data in YAML format

service_name:

service_role:

data_parameter1: data_value1

data_parameter2: data_value2

data_parameter3:

- data_value3a

- data_value3b

object_parameter:

object1:

data_parameter1a:

The next step was storing the service meta-data in hierarchical databases. The
meta-data was split into separate files. The final meta-data for given resources
is assembled using the two simple methods. The deep merging of several service
definition fragments and parameter interpolation where parameters can be ref-
erenced. The reclass [17] was used to implement the desired data manipulation
behaviour.

Meta-data in YAML format, parameter interpolation

service_name:

service_role:

data_parameter1: data_value1

data_parameter2: {service_name:service_role:data_paramer1}

object_parameter:

{otherobject:object1}

This was elegant solution that could easily model growing number of services,
but still lacked mechanisms to validate given data or encapsulate semantics. It
helped to determine the domain and scope of new ontology. The ontology should
use existing standards and provide vocabulary to define OpenStack services, core
services and later network and storage resources. The ontology should provide
mechanisms to validate schema for integrity issues, as missing parameters, dis-
joint services or values out of proper value domain.



216 A. Komarek, J. Pavlik, and V. Soběslav

All OpenStack services can be very well described by ontology as they com-
municate over common message bus, serialize their state and expose services
through interfaces in a same way. The resource within ontology have data prop-
erties that are derived mostly from Dublin Core metadata terms. Other exten-
sively used standard is OCLS Configuration Management resource definitions
and Service-Oriented Architecture Ontology. Resources can have object prop-
erty types that describe more complex relations. Following example shows ex-
cerpt from Glance image service definition on the the controller node:

Meta-data in OWL-DL format

<owl:Class rdf:about="#CinderVolumeService">

<rdfs:subClassOf>

<owl:Class rdf:about="#VolumeService"/>

</rdfs:subClassOf>

<owl:disjointWith>

<owl:Class rdf:about="#"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#NovaVolumeService"/>

</owl:disjointWith>

</owl:Class>

4.1 Implementation Details

Initial work on creating our Ontology was done in Protege, open-source ontol-
ogy editor and framework for building intelligent systems. It took some time to
evolve ontology classes and create necessary dictionaries [16] to cover first IaaS
architectures. Fig. 3 shows the current ontology service architecture.

The ontology is transformed into graph database using our python-bases ser-
vice named django-ENC that can read and write ontology from OWL-DL XML
files created by Protege and communicates with neo4j graph database through
REST API. The graph databases are part of family of NoSQL databases and
offer much better performance at any volume of data.

Fig. 3. Ontology Service Architecture

The django-ENC service use web framework Django to provide web services
and asynchronous task queue Celery to perform time consuming tasks like on-
tology assertions and synchronizations between XML and graph database. The



High Level Models for IaaS Cloud Architectures 217

HTTP REST API that can be consumed by configuration management tools
like Salt or Puppet through their External Node Classification interface. The
meta-data passed to configuration management tools is valid for level 1, 2 and
3 of unified cloud computing ontology [15].

We have successfully tested service status enforcement of several complete
OpenStack installations by SaltStack configuration management tool with meta-
data acquired from Ontology Service API. The deployment process is not yet
fully automated as there is need of setting up network and storage resources
manually (only servers are provided), but the progress in both configuration
management tools and network and storage will allow better automation of these
components by in-place agents or access protocols like SSH in the future.

5 Conclusions

We have managed to do the first steps in formalization of IaaS Architecture
high level models. The representation of models, the ontologies, can be used to
create and validate meta-data for individual OpenStack cloud installations. The
ontology provides schema for the meta-data for each installation so the overall
service integrity is ensured.

We created a python-based web service django-enc that use data from the on-
tology to generate the suitable meta-data for configuration management tools.
The service provide simple interface for manipulating the ontology as well as
interfaces for ontology editors. The ontology defines the basic services of Open-
Stack Havana and Icehouse versions. New components and service backends can
be easily defined and included.

We plan to expand ontology from virtual and physical servers to network and
storage resources by better adoption of configuration management tools. Ontol-
ogy model is suitable for software agent processing and their rational decisions.
It is possible to define agents that will maintain the state of services according
to the high-level model. The more parts of the process are modelled and their
deployment automated the more manageable the whole system becomes.

Acknowledgements. The paper is supported by the project of specific science
Smart networking & cloud computing solutions (FIM, UHK, SPEV 2015).

References

1. NIST: The NIST Definition of Cloud Computing (2011),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

2. OpenStack.org: OpenStack Open Source Cloud Computing Software (2014),
http://openstack.org

3. Stackalytics: OpenStack community contribution in Kilo release (2014),
http://stackalytics.com

4. Information-technology.web.cern.ch: OpenStack Information (2014),
http://information-technology.web.cern.ch/book/

cern-private-cloud-user-guide/openstack-information

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://openstack.org
http://stackalytics.com
http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide/openstack-information
http://information-technology.web.cern.ch/book/cern-private-cloud-user-guide/openstack-information


218 A. Komarek, J. Pavlik, and V. Soběslav

5. Openstack.org: PayPal - OpenStack Open Source Cloud Computing Software
(2014), http://www.openstack.org/user-stories/paypal/

6. Wiki.openstack.org: Fuel - OpenStack (2014),
https://wiki.openstack.org/wiki/Fuel

7. Ivanov, I., van Sinderen, M., Shishkov, B. (eds.): Cloud Computing and Services
Science. Springer Science, New York (2012)

8. Liu, L., Tamerzsu, M. (eds.): Encyclopedia of Database Systems, Springer Science,
New York (2009)

9. W3C.org: Web Ontology Language (OWL) (2004), http://www.w3.org/2004/OWL
10. The Open Group: Service-Oriented Architecture Ontology, Version 2.0, Open

Group, New York (2014)
11. OASIS: Configuration Management Resource Definitions (2013),

https://tools.oasis-open.org/version-control/browse/wsvn/oslc-ccm/

trunk/specs/config-mgt.html

12. Dublin Core Metadata Initiative: DCMI Metadata Terms (2012),
http://dublincore.org/documents/dcmi-terms/

13. Berkeley Bioinformatics Open Source Project: The Open Biological and Biomedical
Ontologies (2014), http://www.obofoundry.org/

14. W3C.org: Ontology Driven Architectures and Potential Uses of the Semantic Web
in Systems and Software Engineering (2001),
http://www.w3.org/2001/sw/BestPractices/SE/ODA/

15. Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Comput-
ing. In: Grid Computing Environments Workshop GCE 2008, IEEE, USA (2008)

16. de Oliveira A.L., de Almeida F.R., Guizzardi, G.: Evolving a Software Configura-
tion Management Ontology. IEEE (2009)

17. Martin Krafft: reclass - Recursive external node classification (2013),
http://reclass.pantsfullofunix.net/

http://www.openstack.org/user-stories/paypal/
https://wiki.openstack.org/wiki/Fuel
http://www.w3.org/2004/OWL
https://tools.oasis-open.org/version-control/browse/wsvn/oslc-ccm/trunk/specs/config-mgt.html
https://tools.oasis-open.org/version-control/browse/wsvn/oslc-ccm/trunk/specs/config-mgt.html
http://dublincore.org/documents/dcmi-terms/
http://www.obofoundry.org/
http://www.w3.org/2001/sw/BestPractices/SE/ODA/
http://reclass.pantsfullofunix.net/

	High Level Models for IaaS Cloud Architectures
	1 Introduction
	2 Service Architecture Models
	2.1 IaaS Achitecture Core Models
	2.2 Use Cases

	3 IaaS Service Ontology
	3.1 Ontological Standards
	3.2 Ontology Serialization Formats
	3.3 Plain Meta-data Serialization

	4 Ontology Usage
	4.1 Implementation Details

	5 Conclusions
	References




