
Chapter 5
Angular Velocity and Acceleration

Abstract In this chapter, a complete characterization of the angular velocity and
angular acceleration for rigid bodies in spatial multibody systems are presented. For
both cases, local and global formulations are described taking into account the
advantages of using Euler parameters. In this process, the transformation between
global and local components of the angular velocity and time derivative of the Euler
parameters are analyzed and discussed in this chapter.

Keywords Angular velocity � Angular acceleration � Spatial motion

In order to keep the present analysis simple, let concentrate on the rotation of a body
and neglect its translational motion. For this desideratum, let consider that the ξηζ
coordinate system is rotating and has its origin coincident with the origin of the
nonrotating xyz coordinate system, as shown in Fig. 5.1. The angular velocity ~x
describes the axis and the magnitude of the rotation of the ξηζ frame. This axis is
called the instantaneous axis of rotation and should not be mistaken with the orien-
tational axis of rotation. Thus, at this instant, if the rotation of the body is frozen, the
axis around which the body must rotate in order for the two coordinate systems
become parallel is the orientational axis of rotation (Shabana 1989; Schiehlen 1990).

The angular velocity vector can be projected onto either the ξηζ frame or xyz
frame resulting into algebraic vectors expressed as

x0 ¼ xn xg xff gT ; x ¼ xx xy xzf gT ð5:1Þ

Nikravesh (1988) demonstrated that the angular velocity and the time derivative
of the transformation matrix A have the following relations

_A ¼ A~x0; _A ¼ ~xA ð5:2Þ

or alternatively,

AT _A ¼ ~x0; _AA
T ¼ ~x ð5:3Þ
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It should be noted that the angular velocity vector does not have an integral, i.e.,
there is no array of three rotational coordinates that its first time derivative is
defined as the vector of angular velocity.

It is known that the global position of a point P that is fixed in the ξηζ coordinate
system is given by the equation

sP ¼ As0P ð5:4Þ

Differentiating this equation with respect to time yields

_sP ¼ _As
0P ð5:5Þ

Substituting Eq. (5.2) into Eq. (5.5) results in

_sP ¼ ~xAs0P ¼ ~xsP ð5:6Þ

Thus, for any vector~s attached to the ξηζ coordinate system, such as the one in
Fig. 3.1, Eq. (5.6) can be written as (Nikravesh 1988)

_s ¼ ~xs ¼ �~s~x ð5:7Þ

For a ξηζ frame that rotates and translates relative to the nonmoving xyz frame,
the velocity of a point Pi that is fixed in the ξηζ frame can be determined. Thus, a
point Pi can be located in the xyz frame by the relation

rP ¼ rþ sP ð5:8Þ

The time derivative of this equation gives the velocity of point P as

_rP ¼ _rþ _sP ¼ _rþ ~xsP ð5:9Þ
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Fig. 5.1 Rotating ξηζ
coordinates system
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The transformation between the xyz components of the angular velocity vector
and time derivative of Euler parameters is given by (Nikravesh 1988)

x ¼ 2G _p ð5:10Þ

In expanded form, Eq. (5.10) is

xx

xy

xz

8
<

:

9
=

;
¼ 2

�e1 e0 �e3 e2
�e2 e3 e0 �e1
�e3 �e2 e1 e0

2

4

3

5

_e0
_e1
_e2
_e3

8
>><

>>:

9
>>=

>>;

ð5:11Þ

The inverse transformation is found to be

_p ¼ 1
2
GTx ð5:12Þ

In expanded form, Eq. (5.12) is
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The transformation between the ξηζ components of the angular velocity vector
and the time derivative of Euler parameters is given by (Nikravesh 1988)

x0 ¼ 2L _p ð5:14Þ

In expanded form, Eq. (5.14) is
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The inverse transformation is found to be

_p ¼ 1
2
LTx0 ð5:16Þ

In expanded form, Eq. (5.16) is
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Differentiating Eq. (5.10) with respect to time yields

_x ¼ 2G€pþ 2 _G _p ð5:18Þ

Nikravesh (1988) showed that the product _G _p is null, and hence, Eq. (5.17) can
be simplified as

_x ¼ 2G€p ð5:19Þ

In a similar manner, differentiating Eq. (5.14) with respect to time yields

_x0 ¼ 2L€p ð5:20Þ

Vectors _x and _x0 are the global and local components of vector ~_x defined as the
angular acceleration of the ξηζ frame. Finally, it can be shown that the inverses of
Eqs. (5.19) and (5.20) are given by Nikravesh (1988)

€p ¼ 1
2
GT _x� 1

4
ðxTxÞp ð5:21Þ

and

€p ¼ 1
2
LT _x0 � 1

4
ðx0Tx0Þp ð5:22Þ

It is clear that xTx ¼ x0Tx0 ¼ x2, where ω is the magnitude of ~x.
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