Chapter 15
Demonstrative Example of Application

Abstract In this chapter a simple pendulum is considered as a demonstrative
example of application of the methodologies described in the previous paragraphs.
This example allows for the comparison of the different methods to solve the
equations of motion in terms of accuracy and efficiency. Finally, the main con-
cluding remarks of the material presented here are summarized and analyzed.
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The simple pendulum is made up of one rigid body, which is connected by revolute
joint to the ground. This system is modeled with six coordinates and five kinematic
constraints, which results in a system with one degree of freedom. Initially, the
pendulum is resting in the xy plane position, as Fig. 15.1 shows. The system is then
released from this initial configuration under the gravity action only, which is taken
as acting in the negative z direction. The geometric dimension and inertia properties
of the simple pendulum are listed in Table 15.1 (Flores et al. 2008).

Long time computational simulations are performed in order to test and compare
the accuracy and efficiency of use different methods to solve the dynamic equations
of motion. For this purpose, the four approaches are considered, namely the stan-
dard method based on the technique of Lagrange multipliers, the Baumgarte
method, the penalty method and the augmented Lagrangian formulation. The
quantitative measure of the efficiency of these approaches is drawn from the con-
straint violation as ®’®, as well as the number of function evaluations and the time
consumed during the dynamic simulations. Table 15.2 gives the parameters used for
the different models, required to characterize the problem, and for the numerical
methods, required to solve the system dynamics. In the present case, there is no
need for the initial conditions correction in the measure that the correct initial data
can be easily determined.

Figure 15.2 shows that when the standard method is utilized the violation of the
constraint equations grows indefinitely with time. In fact, this approach produces
unacceptable results because the constraint equations are rapidly violated due to the
inherent instability of the equations used and to the numerical errors that develop
during computation. In sharp contrast, with other methods the behavior of the simple
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Fig. 15.1 Simple pendulum modeled by one rigid body and one revolute joint

Table 15.1 G i
avle | overhing Length Mass Moment of inertia (kgmz)
properties for the simple «
pendulum (m) (kg) L Lo Iee
1.0 7.02 0.5855265 0.0010530 0.5855265
Table 15.2 Parameters used % 5 ¢ simulati
for the dynamic simulations Final time of simulation | 10.0 s Baumgarte-a |5
Integrator algorithm ode45 Baumgarte-f | 5
Reporting time step 0.02 s Penalty-a 1 x 107
Relative tolerance 1 x 107 | Penalty-» 10
Absolute tolerance 1x107° Penalty-u 1
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pendulum is different in the measure that the level of the constraints violation is kept
under control during the dynamic simulations. Indeed, Baumgarte approach, penalty
method and augmented Lagrangian formulation, experience tells that the numerical
result does not diverge from the exact solution, but oscillates around it. Magnitude
and frequency of the oscillation depend on the values of penalty parameters.
Table 15.3 lists the number of function evaluations and the time consumed during the
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Table 15.3 Function evaluations and time consumed

Method Function evaluations Time consumed (s)
Standard 1639 6.3
Baumgarte 2401 10.7
Penalty 3769 17.2
Augmented lagrangian 3769 17.6

dynamic simulations for the cases described above, which can be used to have a rough
idea about the computational efficiency of the different methods.

The fundamentals of the formulation for the dynamics of spatial multibody
systems have been presented throughout this work. In first place, the definition of
multibody system, made of interconnected bodies that undergo large displacements
and rotations, was presented. In addition, basic concepts in multibody dynamics
were also introduced. The main types of coordinates that can be used in the for-
mulation of the equations of motion of constrained multibody systems were ana-
lyzed, in which their relative advantages and drawbacks were also discussed.

Displacements, velocities and accelerations are quantities frequently used to
characterize the motion properties of the multibody systems. For this purpose, a
proper system of coordinates must be adopted. In addition, special attention must be
given to the selection of the angular coordinates used to describe the orientation of
the bodies. In the study, the Euler angles, Bryant angles or Euler parameters were
presented. However, due to the singularity phenomenon associated with the Euler
angles and Bryant angles, the Euler parameters has been selected as the set of
rotational coordinates utilized to define the orientation of the bodies (Nikravesh
1988).

From the mathematical point of view, Cartesian coordinates and Euler param-
eters are the supporting structure for all methodologies and dynamic analysis
developed within the multibody systems methodologies. In the sequel of this
concept, the constraint equations associated with the basic kinematic joints, as well
as those related to the constraints between two vectors, were presented. In addition,
their contributions to the Jacobian matrix of the constraints and to the right-hand
side of acceleration constraint equations were studied (Shabana 1989; Schiehlen
1990; Jalon and Bayo 1994).

The formulation of multibody systems adopted in this work uses the generalized
coordinates and the Newton-Euler approach to derive the equations of motion. This
formulation results in the establishment of a mixed set of differential and algebraic
equations, which are solved in order to predict the dynamic behavior of multibody
systems. This approach is very straightforward in terms of assembling the equations
of motion and providing all joint reaction forces. Additionally, to the standard
method based on the Lagrange multipliers technique, three different approaches
were presented and utilized to solve the equations of motion, namely the Baumgarte
stabilization scheme, the penalty method and the augmented Lagrangian formula-
tion (Baumgarte 1972; Jalén and Bayo 1994).
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Under the framework of the multibody systems formulation, some of the fun-
damental forces that can act upon the bodies were also presented. These forces
include the action of gravitational field and forces due to springs, dampers and
actuators. Applied forces can be represented by force elements that act on the
system components, modifying their dynamic response and the overall motion of
the multibody systems. Moreover, the joint reaction forces, expressed in terms of
the Jacobian matrix of the constraint equations and a vector of Lagrange multipliers,
were analyzed.

In a simple way, the equations of motion for constrained multibody systems are
expressed in the Hessenberg form. A set of initial conditions imposed on the positions
and velocities is required to start the dynamic simulation. The selection of the
appropriate initial conditions plays a crucial role in the prediction of the dynamic
response of multibody systems. The subsequent initial conditions, for each time step
in the simulation, are obtained from the final conditions of the previous time
step. Then, from the initial values for positions and velocities, the equations of motion
are solved for accelerations. The positions and velocities at the next time step are then
obtained by integration of the velocity and acceleration vectors. This procedure is
repeated until the final time of simulation is reached. The integration process can be
performed by using a constant step size scheme, such as the fourth-order Runge-Kutta
method, or a predictor-corrector algorithm with both variable step and order, such as
the Gear method. The fundamental issues related to the numerical integrators used in
dynamic analysis of multibody systems were briefly analyzed.

It was demonstrated that the numerical solution of the dynamic equations of
motion requires a set of initial conditions on the positions and velocities. Moreover,
this system of equations of motion does not use explicitly the position and velocity
equations associated with the kinematic constraints. Hence, for moderate and long
time simulations, the original constraint equations start to be violated due to the
integration process and inaccurate initial conditions. Therefore, a special procedure
to avoid this phenomenon was presented, which allows for the correction of the set
of initial conditions. The described method is a simple, general and effective to
correct the initial conditions at the position and velocity levels is presented. Finally,
a simple pendulum was considered as a demonstrative example of application of the
methodologies described in the present work. This example was utilized to quantify
the accuracy and efficiency of the different methods presented to solve the dynamic
equations of motion.
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