
Chapter 13
Integration Methods in Dynamic Analysis

Abstract This chapter describes the main integration algorithms utilized in the
resolution of the dynamics equations of motion. Particular emphasis is paid to the
Euler method, Runge-Kutta approach and Adams predictor-corrector method that
allows for the use of variable time steps during the integration process. The material
presented here, relative to numerical integration of ordinary differential equations,
follows that of any undergraduate text on numerical analysis.

Keywords Euler method � Runge-Kutta method � Adams predictor-corrector
method

In the previous paragraph, the equations of motion for multibody systems were
derived from the Newton-Euler formulation together with the augmentation
method. The Newton-Euler equations represent the translational and rotational
motions of bodies, while the augmentation method is used to adjoin the constraint
equations of the multibody systems. In other words, the augmentation formulation
denotes the process where the algebraic kinematic constraint equations are aug-
mented to the differential equations of motion, in order that the number of
unknowns for which the system is being solved corresponds to the number
of system equations (Nikravesh 1988). As a consequence, the equations of motion
of multibody systems (12.1) are differential and algebraic equations (DAE) rather
than ordinary differential equations (ODE) (Blajer 1999). Prior to integrate the
system state variables, Eq. (12.1) is solved for _v and λ.

In the present work, the DAE are converted to ODE because the most frequently
used numerical integration algorithms are useful in solving ODE (Shampine and
Gordon 1975). However, for a detailed discussion on DAE, the interested reader
may consult the works by Petzold (1983) and Brenan et al. (1989). The material
presented below, relative to numerical integration of ODE, follows that of any
undergraduate text on numerical analysis such as those by Conte and Boor (1981)
and Atkinson (1989).

The process of converting n second-order differential equations to 2n first-order
equations can be expressed by (Shampine and Gordon 1975; Conte and Boor 1981;
Atkinson 1989)

© The Author(s) 2015
P. Flores, Concepts and Formulations for Spatial Multibody Dynamics,
SpringerBriefs in Applied Sciences and Technology,
DOI 10.1007/978-3-319-16190-7_13

67

http://dx.doi.org/10.1007/978-3-319-16190-7_12
http://dx.doi.org/10.1007/978-3-319-16190-7_12


€y1 ¼ f ðy1; _y1; tÞ ð13:1Þ

such that it can be written as the following system

_y1 ¼ y2 ð13:2Þ

_y2 ¼ f ðy1; y2; tÞ ð13:3Þ

The most popular and used numerical integration methods introduced in the vast
thematic literature are Euler method, Rung-Kutta methods and Adams predictor-
corrector methods. These methods have been known for many years, for instance,
the Runge-Kutta methods have been known for more than an 100 years, but their
potential was not fully realized until computers became available. These methods
involve a step-by-step process in which a sequence of discrete points t0, t1, t2, …, tn

is generated. The discrete points may have either constant or variable spacing
defined as hi = ti+1−ti, where hi is the step size for any discrete point ti. At each point
ti, the solution y(ti) is approximated by a number yi. Since no numerical method is
capable of finding y(ti) exactly, the quantity

eig ¼ yðtiÞ � yi
�
�

�
� ð13:4Þ

represents the global or total error at t = ti. The total error consists of two com-
ponents, the truncation error and the round-off error. The truncation error depends
on the nature of the numerical algorithm used in computing yi. The round-off error
is due to the finite word length in a computer.

The integration methods are called single step methods when they only require
information on the current time step to advance to the next time step. Euler and
Runge-Kutta methods are single step methods. When information of the previous
steps is used, the algorithm methods are called multistep methods, as it is the case of
Adams predictor-corrector schemes. The single step methods are self starting and
they need a minimum amount of storage requirements. However, these methods
require a larger number of function evaluations, for instance, four for the fourth-order
Runge-Kutta method. Function evaluation is the name of the process by which, given
t and y, the value of _y is computed. The multistep methods require a small amount of
function evaluations, particularly if the time step is chosen so that the number of
predictor-corrector iterations per step is kept below two or three. Moreover, error
estimates are easily provided and step size adjustments can be performed with no
difficulties. The multistep methods are not self starting and require the help of a single
step scheme to start the integration process (Atkinson 1989).

Regardless of the numerical method used, the numerical task deals with the
integration of an initial-value problem that can be written as

_y1 ¼ f ðy; tÞ ð13:5Þ

68 13 Integration Methods in Dynamic Analysis



With the initial condition y(t0) = y0 and where y is the variable to be integrated
and function f(t, y) is defined by the computational sequence of the algorithm
selected. Equation (13.5) has a solution y(t). The initial value y0 can be defined for
any value of t0, although it is often assumed that a transformation has been made so
that t0 = 0. This does not affect the solution or method used to approximate the
solution.

It is known that the Euler integration method is one of the simplest integrators
available. This approach may be sufficient in giving a very rough idea of the motion
of multibody systems. This method solves differential equations in a single step as

yiþ1 ¼ yi þ hf ðyi; tÞ ð13:6Þ

where h is the integration step size h = ti+1 – ti, for i a non-negative integer. This
method implies that the next step of the state variable can be evaluated by using the
current state variable.

The intuitive basis of the Euler method is illustrated in Fig. 13.1, in which the
curve labeled y = y(t) is the solution of the differential Eq. (13.5), which passes
through point P(t0, y0). It is desired to find the value of y1 = y0 + Δy corresponding
to t = t1. In other words, the height RQ needs to be determined. Although the
position of the curve at every point is not known, its slope is equal to f(t, y), which
is simply the geometric interpretation of the differential equation. Thus, the slope of
the tangent at point P is _y0 ¼ f ðt0; y0Þ, which can be computed since y0 and t0 are
both known. If h is reasonable small, the tangent line PS should not deviate too
much from the curve PQ, hence, the height RS (which by simple geometry is equal
to h _y0) should be an approximation to the required height RQ. Thus, a first

t

Q

P R

h

yΔ
Δ

y=y (t)

y 0

t 0 t1

S

tan=f(t 0,y 0)

y1

y

Fig. 13.1 Geometric interpretation of the Euler integration method

13 Integration Methods in Dynamic Analysis 69



approximation to Δy is given by Δy1 = RS = hf (t0, y0). Assuming that the appro-
priate derivatives exist, then y(t) can be expanded in a Taylor series about t = ti and
the expression is evaluated at t = ti+1, yielding

yðtiþ1Þ ¼ yðtiÞ þ hf ðti; yiÞ þ Oðh2Þ ð13:7Þ

From the analysis of Eq. (13.7), neglecting the higher-order terms, the discret-
ization or local truncation error is given by

el ¼ Oðh2Þ ð13:8Þ

The order of a numerical integration method can be used to specify its accuracy
and can be expressed using the local truncation error. Knowing that for a scalar
equation of type

el ¼ Oðhpþ1Þ ð13:9Þ

is said to be of pth order, then it is clear that the Euler integration method is of first
order. Thus, for highly oscillatory motion there are rapid changes in the derivatives
of the function and if h is too large, then inaccuracies in the computation of the state
variables are made (Nikravesh 1988).

In turn, the global truncation error at ti can be evaluated as the difference
between the actual and computed solution, in the absence of round-off error by the
end of the simulation, that is

eig ¼ yðtiÞ � yi
�
�

�
� ð13:10Þ

A more accurate integration method is the second-order Runge-Kutta algorithm,
which can be expressed as

yiþ1 ¼ yi þ h
2
ðf1 þ f2Þ ð13:11Þ

where

f1 ¼ f ðti; yiÞ ð13:12Þ

f2 ¼ f ðti þ h; yi þ hf1Þ ð13:13Þ

This approach is also known as the improved Euler method, modified trape-
zoidal method or the Heun method. It should be noted that two function evaluations
are required per time step, which in the case of multibody systems implies the
solution of the equations of motion to obtain the accelerations twice at the given
time step. Figure 13.2 shows the geometric interpretation of the second-order

70 13 Integration Methods in Dynamic Analysis



Runge-Kutta method. This method is explicit in the measure that f1 does not depend
on f2 and neither one depends on yi+1 (Jalón and Bayo 1994).

The local error of the second-order Runge-Kutta method is of order h3, whereas
that of Euler method is h2. Thus, it is expected to be able to use a larger time step
with the second-order Runge-Kutta method. The price to pay for this is that it
requires to evaluate the function f(t, y) twice for each time step of the integration
process.

For larger time steps and for greater accuracy, the fourth-order Runge-Kutta
integration method is most popular and widely used. This method is stable and, as a
computer program, occupy relatively small amount of core storage. The fourth-
order Runge-Kutta integration algorithm can be expressed by Pina (1995)

yiþ1 ¼ yi þ hg ð13:14Þ

where

g ¼ 1
6
ðf1 þ 2f2 þ 2f3 þ f4Þ ð13:15Þ

f1 ¼ f ðti; yiÞ ð13:16Þ

f2 ¼ f ðti þ h
2
; yi þ h

2
f1Þ ð13:17Þ

t

y

h

y=y(t)

y 0

t 0 t1

Slope f(t 0,y 0)

Slope f(t 0+h,y 0+hf(t 0,y 0))

Average
slope

Fig. 13.2 Geometric interpretation of the second-order Runge-Kutta method

13 Integration Methods in Dynamic Analysis 71



f3 ¼ f ðti þ h
2
; yi þ h

2
f2Þ ð13:18Þ

f4 ¼ f ðti þ h; yi þ hf3Þ ð13:19Þ

This method is explicit because all fi depend only on previous values already
calculated. This algorithm is easy to implement in the measure that it only requires
function evaluations, and it is self starting integrator scheme, which means that
there is no need for any other algorithm or technique to start the integration process.

Figure 13.3 illustrates the geometric interpretation of the fourth-order Runge-
Kutta integration method. In this method four tangents are determined, being their
average weighted according to Eqs. 13.14–13.19.

The standard fourth-order Runge-Kutta method does not provide an estimate of
the local error, so that the user does not have way of knowing whether the time step
being used is adequate. The local error of this method is of order h5, which is
relatively small even for larger time steps. The major disadvantage of this method is
that the function f(t, y) needs to be evaluated four time at each time step.

For the Euler and Runge-Kutta methods the next step value yi+1 is computed by
using solely the current value yi and time ti, over a time range of h = ti+1−ti.
Multistep methods utilize information about the solution at more than one point.
The objective of the multistep methods is to automatically select the proper order
and the proper time step size, which will minimize the amount of work required to
achieve the specified accuracy for a given problem. The multistep algorithms
require only two function evaluation per step compared with four function evalu-
ations per step with the fourth-order Runge-Kutta method, being, therefore,

t

y

h

y=y(t)

y 0

t 0 t1

f4

f1

f3

f2

Fig. 13.3 Geometric interpretation of the fourth-order Runge-Kutta method

72 13 Integration Methods in Dynamic Analysis



considerably faster and require less computation work. Predictor-corrector methods
provide an automatic error estimate at each time step, thus allowing the algorithm to
select an optimum value of h for a required accuracy. This type of approach is also
better with respect to the propagation of error that it can use time steps more than
twice as large.

In Adams predictor-corrector methods an explicit method is used to predict a
value of yi+1, while an implicit method corrects that value. The implicit corrects
appear to be more stable and accurate than the explicit predictors and are both
chosen to be of equal order. The Adams-Bashforth predictor algorithm of fourth-
order can be written as

yiþ1 ¼ yi þ h
24

ð55f i � 59f i�1 þ 37f i�2 � 9f i�3Þ ð13:20Þ

where

f i ¼ f ðti; yiÞ ð13:21Þ

f i�j ¼ f ðti�j; yi�jÞ; j ¼ 1; 2; 3ð Þ ð13:22Þ

The corresponding Adams-Moulton corrector algorithm can be expressed by

yiþ1 ¼ yi þ h
24

ð9f iþ1 þ 19f i � 5f i�1 þ f i�2Þ ð13:23Þ

where

f i ¼ f ðti; yiÞ ð13:24Þ

f i�j ¼ f ðti�j; yi�jÞ; j ¼ 1; 2ð Þ ð13:25Þ

The major disadvantage of multistep methods is that they are not self starting.
Thus, in the fourth-order Adams predictor-corrector method four successive values
of function evaluation at equally spaced points before instant of time ti must be
known. These starting values must be obtained by some independent method, such
as the Runge-Kutta method. On the other hand, Adams predictor-corrector algo-
rithms are more complicated to program in the measure that they require special
techniques for starting and for doubling and halving the time step, and they be
subject to numerical instability (Conte and Boor 1981). In short, the Adams
methods, when being carefully use, are more efficient than any other method. To
achieve this efficiency it is necessary to vary the time step and the order that are
used. Thus, it is necessary to estimate the errors that are incurred for various time
steps and orders so as to make these decisions. Advanced codes also attempt to
detect abnormal situations such as discontinuities or certain types of instabilities
and to deal with them in a reasonable way. A detailed discussion on the Adams

13 Integration Methods in Dynamic Analysis 73



predictor-corrector implementation can be found in the book by Shampine and
Gordon (1975).

Gear (1971) developed a family of variable order stiffly-stable algorithms for the
solution of stiff problems. A stiff system is referred to as any initial-value problem
in which the complete solution consists of fast and slow components. The stiffness
can be produced by physical characteristics of the multibody systems, such as
components with large differences in their masses, stiffness and damping. However,
in many other instances, stiffness is numerically induced due to either the discret-
ization process, the large number of components and equations of motion, or
sudden or accumulated violations in the constraint conditions.

The Gear algorithm of fourth-order can be expressed as

yiþ1 ¼ 1
25

ð48yi � 36yi�1 þ 16yi�2 � 3yi�3 þ 12hf iþ1Þ ð13:26Þ

where

f iþ1 ¼ f ðtiþ1; yiþ1Þ ð13:27Þ

Since the Gear algorithm is an implicit multistep scheme, it is necessary to solve
an implicit equation in each time step (Nikravesh 1988).

References

Atkinson KA (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York
Blajer W (1999) Elimination of constraint violation and accuracy improvement in numerical

simulation of multibody systems. In: Ambrósio J, Schiehlen W (eds) Proceedings of
EUROMECH colloquium 404, advances in computational multibody dynamics IDMEC/IST.
Lisbon, 20–23 Sept, pp 769–787

Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems in
differential-algebraic equations. Elsevier, New York

Conte SD, Boor C (1981) Elementary numerical analysis: an algorithmic approach, 3rd edn.
McGraw-Hill, Singapore

Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall,
Englewood Cliffs

Jalón JG, Bayo E (1994) Kinematic and dynamic simulations of multibody systems: the real-time
challenge. Springer, New York

Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood
Cliffs

Petzold LR (1983) A description of DASSL: a differential/algebraic system solver. In: Stepleman
R et al (ed) Scientific computing North-Holland Pub. Co. pp 65–68

Pina H (1995) Métodos numéricos. McGraw-Hill, Lisboa
Shampine L, Gordon M (1975) Computer solution of ordinary differential equations: the initial

value problem. Freeman, San Francisco

74 13 Integration Methods in Dynamic Analysis


	13 Integration Methods in Dynamic Analysis
	Abstract
	References


