
Chapter 12
Methods to Solve the Equations of Motion

Abstract This chapter presents several methods to solve the equations of motion
of spatial multibody systems. In particular, the standard approach, the Baumgarte
method, the penalty method and the augmented Lagrangian formulation are revised
here. In this process, a general procedure for dynamic analysis of multibody sys-
tems based on the standard Lagrange multipliers method is described. Moreover,
the implications in terms of the resolution of the equations of motion, accuracy and
efficiency are also discussed in this chapter.
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As it was presented previously, the Newton-Euler equations of motion for a con-
strained multibody system of rigid bodies are written as

M _v� DTk ¼ g ð12:1Þ

In dynamic analysis, a unique solution is obtained when the algebraic constraint
equations at the acceleration level are considered simultaneously with the differ-
ential equations of motion. Therefore, the second time derivative of the constraint
equations are considered here and written as

D _v ¼ c ð12:2Þ

Equation (12.2) can be appended to Eq. (12.1), yielding a system of differential
algebraic equations (DAE). This system of equations is solved for accelerations
vector, _v, and Lagrange multipliers, λ. Then, in each integration time step, the
accelerations vector, _v, together with velocities vector, v, is integrated in order to
obtain the system velocities and positions for the next time step. This procedure is
repeated until the final analysis time is reached. A set of initial conditions, positions
and velocities, is required to start the dynamic simulation. In the present work, the
initial conditions are based on the results of kinematic simulation of the mechanical
systems. The subsequent initial conditions for each time step in the simulation are
obtained in the usual manner from the final conditions of the previous time step
(Nikravesh 2007).
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Equations (12.1) and (12.2) can be rewritten in the matrix form as

M DT

D 0

� �
_v
k

� �
¼ g

c

� �
ð12:3Þ

The linear system of Eq. (12.3) can be solved by applying any method suitable
for the solution of linear algebraic equations. The existence of null elements in the
main diagonal of the leading matrix and the possibility of ill-conditioned matrices
suggest that methods using partial or full pivoting are preferred. However, none of
these formulations help in the presence of redundant constraints. Alternatively, the
equations of motion can be solved analytically. For this purpose, Eq. (12.1) is
rearranged to put the accelerations vector in evidence, yielding

_v ¼ M�1ðgþ DTkÞ ð12:4Þ

In this process, it is assumed that the multibody system under analysis does not
include any body with null mass or inertia so that the inverse of the mass matrix
M exists. Thus, introducing Eq. (12.4) into Eq. (12.2) and after basic mathematical
manipulation results in

k ¼ DM�1DT
� ��1ðc� DM�1gÞ ð12:5Þ

Substituting now Eq. (12.5) into Eq. (12.4) yields

_v ¼ M�1gþM�1DT DM�1DT
� ��1ðc� DM�1gÞ

n o
ð12:6Þ

Thus, Eq. (12.6) can be solved for _v then, the velocities and positions can be
obtained by integration process in a similar manner as it was described above. This
manner to solve the dynamic equations of motion is commonly referred to as the
standard Lagrange multipliers method (Nikravesh 1988). Figure 12.1 presents a
flowchart that shows the algorithm of the standard solution of the equations of
motion. At t = t0, the initial conditions on q0 and v0 are required to start the
integration process. These values cannot be specified arbitrarily, but must satisfy the
constraint equations defined by Eqs. (7.2) and (7.3). The algorithm presented in
Fig. 12.1 can be summarized by the following steps:

1. Start at instant of time t0 with given initial conditions for positions q0 and
velocities v0.

2. Assemble the global mass matrix M, evaluate the Jacobian matrix D, construct
the constraint equations Φ, determine the right-hand side of the accelerations γ,
and calculate the force vector g.

3. Solve the linear set of the equations of motion (12.3) for a constrained multi-
body system in order to obtain the accelerations _v at instant t and the Lagrange
multipliers λ.
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4. Assemble the vector _yt containing the generalized velocities v and accelerations
_v for instant of time t.

5. Integrate numerically the v and _v vectors for time step t + Δt and obtain the new
positions and velocities.

6. Update the time variable, go to step (2) and proceed with the process for a new
time step, until the final time of analysis is reached.

The system of the motion Eq. (12.3) does not use explicitly the position and
velocity equations associated with the kinematic constraints, that is, Eqs. (7.2) and
(7.3). Consequently, for moderate or long simulations, the original constraint
equations start to be violated due to the integration process and/or to inaccurate
initial conditions. Therefore, methods able to eliminate errors in the position or
velocity equations or, at least, to keep such errors under control, must be imple-
mented. In order to keep the constraint violations under control, the Baumgarte
stabilization method is considered here (Baumgarte 1972). This method allows
constraints to be slightly violated before corrective actions can take place, in order
to force the violation to vanish. The objective of Baumgarte method is to replace the
differential Eq. (7.5) by the following equation
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Fig. 12.1 Flowchart of computational procedure for dynamic analysis of multibody systems based
on the standard Lagrange multipliers method
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€Uþ 2a _Uþ b2U ¼ 0 ð12:7Þ

Equation (12.7) is a differential equation for a closed-loop system in terms of
kinematic constraint equations, in which the terms 2a _U and b2U play the role of
control terms. The principle of the method is based on the damping of acceleration
of constraint violation by feeding back the position and velocity of constraint
violations, as illustrated in Fig. 12.2, which shows open-loop and closed-loop
control systems. In the open-loop systems U and _U do not converge to zero if any
perturbation occurs and, therefore, the system is unstable. Thus, using the Bau-
mgarte approach, the equations of motion for a system subjected to constraints are
stated in the following form

M DT

D 0

� �
_v
k

� �
¼ g

c� 2a _U� b2U

� �
ð12:8Þ

If α and β are chosen as positive constants, the stability of the general solution of
Eq. (12.8) is guaranteed. Baumgarte (1972) highlighted that the suitable choice of
the parameters α and β is performed by numerical experiments. Hence, the Bau-
mgarte method has some ambiguity in determining optimal feedback gains. Indeed,
it seems that the value of the parameters is purely empiric, and there is no reliable
method for selecting the coefficients α and β. The improper choice of these coef-
ficients can lead to unacceptable results in the dynamic analysis of the multibody
systems (Nikravesh 1984; Flores et al. 2011).
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Fig. 12.2 Open loop and closed loop control systems
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The penalty method presented by Jalón and Bayo (1994) constitutes an alter-
native way to solve the equations of motion. In this method, the equations of motion
are modeled as a linear second-order differential equation that can be written in the
form

mc
€Uþ dc _Uþ kcU ¼ 0 ð12:9Þ

Introducing Eq. (7.5) into Eq. (12.9) yields

mcðD _vþ _DvÞ þ dc _Uþ kcU ¼ 0 ð12:10Þ

Pre-multiplying Eq. (12.10) by the transpose of Jacobian matrix, DT, and after
mathematical treatment, results in

mcDTD _v ¼ �DTðmc _Dvþ dc _Uþ kcUÞ ð12:11Þ

Let consider now the Newton-Euler equations of motion for a system of uncon-
strained system and written here as

M _v ¼ g ð12:12Þ

Adding Eqs. (12.12) and (12.11) yields

M _vþ mcDTD _v ¼ g� DTð�mccþ dc _Uþ kcUÞ ð12:13Þ

in which Eq. (7.6) has been employed. Finally, Eq. (12.13) can be written in the
following form

ðMþ aDTDÞ _v ¼ g� aDTð�cþ 2lx _Uþ x2UÞ ð12:14Þ

where

a ¼ mc;
dc
mc

¼ 2lx and
kc
mc

¼ x2 ð12:15Þ

Equation (12.14) can be solved for _v. This method gives good results if α tends
to infinity. Typical values of α, ω and μ are 1 × 107, 10 and 1, respectively (Jalón
and Bayo 1994). It should be noted that with this penalty method, multibody
systems with redundant constraints or kinematic singular configurations can be
easily solved.

The augmented Lagrangian formulation is a methodology that penalizes the
constraint violations, much in the same form as the Baumgarte stabilization method
(Baumgarte 1972). This is an iterative procedure that presents a number of
advantages relative to other methods because it involves the solution of a smaller
set of equations, handles redundant constraints and still delivers accurate results in
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the vicinity of singular configurations. The augmented Lagrangian formulation
consists of solving the system equations of motion by an iterative process. Let index
i denote the i-th iteration. The evaluation of the system accelerations in a given time
step starts as (Jalón and Bayo 1994)

M _vi ¼ g; i ¼ 0ð Þ ð12:16Þ

The iterative process to evaluate the system accelerations proceeds with the
evaluation of

ðMþ aDTDÞ _viþ1 ¼ M _vi � aDTð�cþ 2lx _Uþ x2UÞ ð12:17Þ

The iterative process continues until

_viþ1 � _vik k ¼ e ð12:18Þ

where ε is a specified tolerance. The augmented Lagrangian formulation involves
the solution of a system of equations with a dimension equal to the number of
coordinates of the multibody system. Though mass matrix M is generally positive
semi-definite the leading matrix of Eq. (12.17) Mþ aDTD is always positive
definite (Jalón and Bayo 1994). Even when the system is close to a singular position
or when in presence of redundant constraints the system of equations can still be
solved.
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