
Chapter 10
Equations of Motion for Constrained
Systems

Abstract In this chapter, the formulation of motion’s equations of multi-rigid body
systems is described. The generalized coordinates are the centroidal Cartesian
coordinates, being the system configuration restrained by constraint equations. The
present formulation uses the Newton-Euler’s equations of motion, which are aug-
mented with the constraint equations that lead to a system of differential algebraic
equations. This formulation is straightforward in terms of assembling the equations
of motion and providing all reaction forces.
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The translational equations of motion for an unconstrained rigid body can be
expressed as (Shabana 1989; Schiehlen 1990)

m€r ¼ f ð10:1Þ

in which m represents the mass of the body, r
::
denotes the acceleration of the center

of mass and f represents the sum of all forces acting on the body (Jalón and Bayo
1994; Nikravesh 2008).

Nikravesh (1988) demonstrated that the rotational equations of motion for a rigid
body can be written in the form

J _xþ ~xJx ¼ n ð10:2Þ

where J is the global inertia tensor, _x denotes the global angular accelerations, x is
global angular velocities and n represents the sum of all moments acting on the
body. Thus, the translational and rotational equations of motion, also known as the
Newton-Euler equations of motion, for an unconstrained rigid body can be obtained
by combining Eqs. (10.1) and (10.2), which in the matrix form are written as

mI 0
0 J

� �
€r
_x

� �
þ 0

~xJx

� �
¼ f

n

� �
ð10:3Þ

or, alternatively,

© The Author(s) 2015
P. Flores, Concepts and Formulations for Spatial Multibody Dynamics,
SpringerBriefs in Applied Sciences and Technology,
DOI 10.1007/978-3-319-16190-7_10

49



mI 0
0 J

� �
€r
_x

� �
¼ f

n� ~xJx

� �
ð10:4Þ

The equations of motion can also be derived and expressed in terms of local com-
ponents, namely the rotational equations of motion. However, the form how the
equations of motion are presented here is consistent with the kinematic constraints
offered in the previous sections. Thus, in a compact form, Eq. (10.4) can be expressed as

Mi _vi ¼ gi ð10:5Þ

where

Mi ¼ miI 0
0 Ji

� �
; _vi ¼ €ri

_xi

� �
; gi ¼ f i

ni � ~xiJixi

� �
ð10:6Þ

Hence, the Newton-Euler equations of motion of a multibody system composed
by nb unconstrained bodies are written as

M _v ¼ g ð10:7Þ

in which

M ¼
M1

M1

. .
.

Mnb

2
6664

3
7775; _v ¼

_v1
_v2
..
.

_vnb

8>><
>>:

9>>=
>>;
; g ¼

g1
g2
..
.

gnb

8>>><
>>>:

9>>>=
>>>;

ð10:8Þ

In turn, for a multibody system of constrained bodies, the Newton-Euler equa-
tions of motion are written as (Nikravesh 1988)

M _v ¼ gþ gðcÞ ð10:9Þ

where g(c) denotes the vector of reaction forces that can be expressed in terms of the
Jacobian matrix and Lagrange multipliers as (Nikravesh 1988; Jalón and Bayo
1994)

gðcÞ ¼ DTk ð10:10Þ

Finally, the dynamic equations of motion for a constrained multibody system
can be written in its general form as

M _v� DTk ¼ g ð10:11Þ
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Different methods of resolution of the equations of motion will be presented and
discussed in the next sections of the present document.

It is known that physically, the Lagrange multipliers are related to the joint
reaction forces. In what follows, the relation between the constrained reaction
forces and the constraint equations is revisited. For this purpose, let first consider
that g(c) can be transformed to a coordinate system consistent with q and denoted as
g(*). Furthermore, it is assumed that there are m independent constraint equations
written as

U � UðqÞ ¼ 0 ð10:12Þ

For frictionless kinematic joints, the work done by the constraint forces in a
virtual displacement δq is zero, i.e.,

gð�ÞTdq ¼ 0 ð10:13Þ

Since the virtual displacement δq must be consistent with the constraint equa-
tions, then Eq. (10.12) yields

Ddq ¼ 0 ð10:14Þ

The vector of n coordinates q may be partitioned into a set of m dependent
coordinates u, and a set of n-m independent coordinates v, as

q � uT vT
� �T ð10:15Þ

This yields a partitioned vector of virtual displacements and a partitioned
Jacobian matrix as

dq � duT dvT
� �T

; D ¼ Du Dv½ � ð10:16Þ

Hence, Eq. (10.13) can be rewritten as

gð�ÞTu duþ gð�ÞTv dv ¼ 0 ð10:17Þ

or

gð�ÞTu du ¼ �gð�ÞTv dv ð10:18Þ

In a similar way, from Eq. (10.14) yields

Dudu ¼ �Dvdv ð10:19Þ
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Appending now Eqs. (10.18) and (10.19) results in

gð�ÞTu

Du

� �
du ¼ � gð�ÞTv

Dv

� �
dv ð10:20Þ

The matrix to the left in Eq. (10.20) is an (m + 1) × m matrix. Since Du is an
m × m nonsingular matrix, the first row of the (m + 1) × m matrix can be expressed
as a linear combination of the other rows of the matrix as

gð�Þu ¼ DT
uk ð10:21Þ

where λ is an m-vector of multipliers known as Lagrange multipliers. Substituting
now Eq. (10.21) into (10.18) yields

kTDudu ¼ �gð�ÞTv dv ð10:22Þ

or

�kTDvdv ¼ �gð�ÞTv dv ð10:23Þ

in which Eq. (10.19) has been employed. Vector δv is an arbitrary independent
vector. The consistency of the constraints for virtual displacements δq is guaranteed
by solving Eq. (10.19) for δu. Since Eq. (10.23) must hold for any arbitrary δv, then

kTDv ¼ gð�ÞTv ð10:24Þ

or

gð�Þv ¼ DT
vk ð10:25Þ

Appending Eq. (10.21)–(10.25) yields

gð�Þ ¼ DTk ð10:26Þ

which expresses the constraint reaction forces.
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