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Preface

As the name suggests, a multibody system is an assembly of several bodies connected
to each other by joints and acted upon by forces. A body, which can be rigid or
flexible, is composed of a collection of material points. A joint allows for certain
degrees of freedom and constrains others. In practice, joints are connection devices
such as bearings, rod guides, etc., which from a mathematical point of view are
denominated as revolute joints, translational joints, etc., according to the relative
degrees of motion permitted. The forces can have different sources and different
levels of complexity. Dynamics ofmultibody systems is based on classical mechanics
and has a long and prolific history. Multibody systems serve as a basis for many
models of mechanical systems and have been applied in many areas of science and
engineering. Multibody systems are often used to analyze biological and human
locomotion. Controlled systems are frequently prototyped through computer simu-
lation of multibody models. There are also applications in medical, robotics, space
subsystems, and computer games. A free or unconstrained material point is the
simplest multibody system that can be studied by applying the equations of motion
established with genial acumen by Newton. In turn, D’Alembert considered a system
of constrained rigid bodies, in which the distinction between the applied and reaction
forces was established. A systematic analysis of constrained multibody systems was
developed by Lagrange. However, it was only during the last half of the century that
multibody dynamics received conspicuous attention thanks to the impressive com-
puter progresses verified at both software and hardware levels. As a consequence, a
great variety of methodologies have been proposed, despite the fact that all of them
can be derived from a few fundamental principles of mechanics. The main purpose of
this work is to present, in a review manner, the fundamental concepts and formula-
tions for spatial multibody dynamics. The following material does not claim for
completeness nor it is designed to substitute a textbook. It provides the reader with the
basis background on the issue of spatial multibody dynamics and it might be helpful
for understanding the methodologies and approaches offered in the present work.

Paulo Flores
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Chapter 1
Definition of Multibody System

Abstract This chapter presents a general view of multibody system concept and
definition by describing the main features associated with spatial systems. The
mechanical components, which can be modeled as rigid or flexible, are constrained
by kinematic pair of different types. Additionally, the bodies can be actuated upon
by force elements and external forces due to interaction with environment. This
chapter also presents some examples of application of multibody systems that can
include automotive vehicles, mechanisms, robots and biomechanical systems.

Keywords Multibody systems � Definition � Spatial systems

In a simple manner, it can be said that a general multibody system (MBS) embraces
two main characteristics, namely: (i) mechanical components that describe large
translational and rotational displacements and (ii) kinematic joints that impose some
constraints or restrictions on the relative motion of the bodies. In other words, a
multibody system encompasses a collection of rigid and/or flexible bodies inter-
connected by kinematic joints and possibly some force elements (Nikravesh 2008).
Driving elements and prescribed trajectories for given points of the system com-
ponents, can also be represented under this general concept of multibody system.
Figure 1.1 depicts an abstract representation of a multibody system (Flores et al.
2008).

The bodies that belong to a multibody system can be considered as rigid or
flexible. A body is said to be rigid when its deformations are assumed to be small
such that they do not affect the global motion produced by the body. Such a body
can translate and rotate, but it can not change its shape. In contrast to this concept, a
flexible body has an elastic structure. In the three-dimensional space, the motion of
a free rigid body can be fully described by using six generalized coordinates
associated with the six degrees of freedom. In turn, when a body includes some
amount of flexibility, it has six rigid degrees of freedom plus the number of gen-
eralized coordinates necessary to describe the deformations (Shabana 1989). The
expression flexible multibody system refers to a system holding deformable bodies
with internal dynamics. In fact, rigid bodies are a representation of reality because
bodies are not absolutely rigid in nature. However, in a good number of common
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applications, the bodies are significantly stiff and, therefore, their flexibility can be
disregarded and the bodies can be considered to be perfectly rigid. This assumption
simplifies, in a significant manner, the process of modeling of multibody systems.
Within the scope of the present work, only rigid bodies are considered.

By and large, the kinematic joints that can exist in multibody systems constrain
the relative motion between the bodies connected by them. While the force ele-
ments represent the internal forces that are produced in the system and they are
associated with the relative motion of the bodies. Two of the most typical kinematic
joints employed in multibody systems are the revolute and the translational joints.
The forces applied over the multibody system components can be the result of
springs, dampers, actuators or external forces. External applied forces of different
nature and different level of complexity can act on a multibody system with the
purpose to simulate the interactions among the system components and between
these and the surrounding environment (Nikravesh 1988; Schiehlen 1990).

A multibody system can be used to study the kinematic and dynamic motion
characteristics of a wide variety of systems in a large number of engineering fields
of application. Multibody systems can vary from very simple to highly complex.
There is no doubt that multibody systems are ubiquitous in engineering and
research activities, such as robotics (Zhu et al. 2006), automobile vehicles
(Ambrósio and Veríssimo 2009), biomechanics (Silva and Ambrósio 2002),
mechanisms (Flores 2011), railway vehicles (Pombo and Ambrósio 2008), just to
mention a few. Figure 1.2 shows two multibody system examples of application,

Body 1

Gravitational forces

Body n

Body 3

Body i

Body 2

Spring

Spherical joint

Applied torque

Actuator

Flexible body

Spherical joint with clearance

Revolute joint

Fig. 1.1 Abstract representation of a multibody system with its most significant components:
bodies, joints and forces elements
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which result from the association of structural and mechanical subsystems with the
purpose to transmit or transform a given motion.
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Fig. 1.2 Examples of application of multibody systems: a automobile vehicle model; b human
biomechanical model
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Chapter 2
Fundamental Concepts in Multibody
Dynamics

Abstract In this chapter, the fundamental ingredients related to formulation of the
equations of motion for multibody systems are described. In particular, aspects such
as degrees of freedom, types of coordinates, basic kinematics joints and types of
analysis in multibody systems are briefly characterized. Illustrative examples of
application are also presented to better clarify the fundamental issues for spatial
rigid multibody systems, which are of crucial importance in the formulation
development of mathematical models of mechanical systems, as well as its com-
putational implementation.

Keywords Degrees of freedom � Types of coordinates � Kinematic joints

Prior to establish the equations of motion that govern the dynamic behavior of
multibody systems, it is first necessary to select the manner how to describe them.
The description variables must be able to characterize, at any instant of time, the
configuration of the system, that is, the position of all the material points that
compose the bodies. The description variables, also called generalized coordinates,
must uniquely define the position of the system components at any instant of time
during the multibody system analysis. The expression generalized coordinates is
employed to include both linear and angular coordinates (Huston 1990).

The minimum number of variables necessary to fully describe the configuration
of a system is denominated as degrees of freedom (DoF) of the system, or simply
mobility (Müller 2009). When the configuration of a multibody system is com-
pletely defined by the orientation of one of its bodies, the system is said to have one
degree of freedom. The number of degrees of freedom can also be defined as the
number of independent generalized coordinates required to uniquely describe the
configuration of a system. It is evident that the knowledge of the number of degrees
of freedom is of prime importance in the processes of modeling and analysis of
multibody systems. It is known that for the spatial case, each body has six degrees
of freedom. Introducing a kinematic joint to a system, the total number of DoF will
be reduced by the number of constraints imposed by the joint. It is clear that the
number of constraints depends on the number and type of joint applied to the
system, where the constraints must be independent from one another. The number

© The Author(s) 2015
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of degrees of freedom of a multibody system can be evaluated as the difference
between the system coordinates and the number of independent constraints. The
mathematical expression that summarizes this idea is known as the Grüebler-
Kutzback criterion and is written as (Shigley and Uicker 1995)

nDoF ¼ 6nb � m ð2:1Þ

where nb represents the number of bodies that compose the multibody system and
m is the number of independent constraints. For example, the spatial four-bar
mechanism illustrated in Fig. 2.1 has six spherical joint constraints and ten revolute
joint constraints, yielding two degrees of freedom.

Determining the number of degrees of freedom of a multibody system is mostly
the first step in analyzing mechanical system, which typically consist of several
bodies interconnected by different types of joints and force elements. When the
number of degrees of freedom is negative, it denotes an over constrained non
solvable mechanism. Zero or null degrees of freedom represents a structure, that is,
a nonmovable system. Finally, when a multibody system has a positive number of
degrees of freedom, it indicates a resolvable mechanism.

It is not unanimous and it is not a simple task either to define a criterion to classify
the different types of coordinates that can be used to describe the configuration of
multibody systems. A general and broad embracing rule to group the generalized
coordinates is to divide them into independent and dependent coordinates (Wehage

Rocker

Coupler

Crank

x

y

z

Fig. 2.1 Spatial four-bar
linkage with two degrees of
freedom
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and Haug 1982). The independent coordinates are free to vary arbitrarily, while the
dependent coordinates are required to satisfy the equations of constraints. Addi-
tionally, the dependent coordinates are classified as absolute coordinates (Orlandea
et al. 1977), relative coordinates (Chace 1967) and natural coordinates (Jalón and
Bayo 1994). Figure 2.2 summarizes the different types of coordinates most frequently
used to describe the configuration of multibody systems.

In general, there are different manners of describing the configuration of a
multibody system. In other words, there are many types of coordinates that can be
helpful in the formulation of the equations of motion for multibody systems. The
dilemma of selection of the type of coordinates to be used depends on the type of
problem to be analyzed. In fact, the choice of the most appropriate set of coordi-
nates is not indifferent, being a tradeoff between the advantages and drawbacks
associated with each type of coordinates. A valuable comparison of the main types
of coordinates are presented and discussed by Nikravesh (1988), Shabana (1989)
and Jalón and Bayo (1994), where the pros and cons of each type of coordinates are
highlighted. In particular, Shabana (1989) called attention for the selection of the
most adequate type of coordinates to be used when modeling flexible multibody
systems, which is a much more relevant task.

It is known that the degrees of freedom in a multibody system are directly related
to the types of kinematic constraints considered, namely, those associated with
kinematic joints. Furthermore, each type of joint allows for certain relative motions
between adjacent bodies and constrains others. Figure 2.3 illustrates four of the
most basic and frequently used kinematic joints when modeling multibody systems,

Independent 
coordinates

Types of 
coordinates

Dependent 
coordinates

Absolute coordinates

Relative coordinates

Natural coordinates

Fig. 2.2 Types of
coordinates frequently used
in multibody systems
formulation

(a) (b) (c) (d)

Fig. 2.3 Basic kinematic joints used in multibody systems: a spherical joint; b revolute joint;
c translational joint; d cylindrical joint
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in which their denomination, and relative degrees of freedom permitted are also
represented (Reuleaux 1963).

Multibody systems methodologies include the main two phases: (i) development
of mathematical models of multibody systems and (ii) implementation of compu-
tational procedures to perform the simulation, analysis and optimization of the
global motion produced. Modeling or formulation is the process of generating and
assembling the necessary equations of motion, when solved, would reveal the
behavior of a multibody system. In a simple manner, there are two modeling
approaches that can be considered, namely the point coordinates formulation and
the body coordinates formulation. Broadly, it can be said that in the point coor-
dinates formulation, the coordinates represent the joints and the constraints repre-
sent the bodies, whereas in the body coordinates formulation, the coordinates
represent the bodies and the constraint represent the joints (Nikravesh 2008).

By describing the geometric configuration of a system with point coordinates
formulation, the multibody system is represented as a multiple particle system. This
collection of interconnected points usually stands for the joints in the system. Then,
each point is assigned to a set of coordinates for which the kinematic constraints are
constructed. Thus, the number of constraint equations only depends on the number
and type of joint applied to the system. Using this formulation, the coordinates
represent the joints and the applied constraints represent the bodies. Although this
formulation could be realized in a computer program, the coordinates are not
associated with the bodies. The analysis of a multibody system can be more con-
venient if the governing equations are solved for coordinates which correspond to
the bodies directly.

The body coordinates formulation is a systematic approach to obtain the equa-
tions of motion for multibody systems based on the Newton-Euler equations. While
other formulations describe the equations of motion in terms of generalized coor-
dinates and generalized velocities, this formulation includes all coordinates and
velocities of the involved bodies, which are expressed as the absolute coordinates
and velocities. The resulting number of equations is large compared with other
methods and, therefore, inappropriate for solving by hand. However, the equations
are rather simple, although nonlinear, versatile and very suitable for the imple-
mentation in a computational program.

In a broad sense, the analysis of mechanical systems may be performed statically
or dynamically. While statics denotes the study of stationary systems, i.e., time
invariant systems, dynamics deals with the study of moving systems, i.e., systems
whose behavior is time dependent. Furthermore, the branch of dynamics can be
divided into two main disciplines, namely the kinematics and kinetics. In the
kinematic analysis, the geometric aspects of motion are considered independently
of forces that produce the motion. More precisely, kinematics deals with the study
of the displacement, velocity and acceleration. In turn, kinetics is the study of the
motion characteristics and the relation to the forces that produce the motion. Unlike
the case of static and kinematic analysis, where only algebraic equations are uti-
lized, in the kinetic analysis, the motion of a mechanical system is described by
second-order differential equations (Nikravesh 1988).

8 2 Fundamental Concepts in Multibody Dynamics



It is very common to refer kinetic analysis as dynamic analysis because kinetic
analysis must be based on the knowledge of the kinematic analysis of a system as
well. Therefore, in this work, the term dynamic will be used instead of kinetic. In
studying the dynamics of a mechanical system, there are two different types of
analysis that can be performed, namely forward dynamics and inverse dynamics. In
the forward dynamic analysis, the external forces acting on the bodies of a system
are known and the resulting motion is obtained by solving the equations of motion.
On the other hand, in the inverse dynamic analysis, a specific motion for a mul-
tibody system is sought and the objective is to determine the forces that are required
to produce such a motion. In the context of the present work, methods of kinematics
and forward dynamics are employed.
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Chapter 3
Global and Local Coordinates

Abstract This chapter described the global and local coordinate systems utilized in
the formulation of spatial multibody systems. Global coordinate system is con-
sidered in the present work to denote the inertia frame. Additionally, body-fixed
coordinate systems, also called local coordinate systems, are utilized to describe
local properties of points that belong to a particular body. Furthermore, the process
of transforming local coordinates into global coordinates is characterized by con-
sidering a transformation matrix. In the present work, Cartesian coordinates are
utilized to locate the center of mass of each rigid body, as well as the location of any
point that belongs to a body.

Keywords Global coordinates � Local coordinates � Transformation matrix

Displacements, velocities and accelerations are quantities frequently used to char-
acterize the configuration and motion properties of the multibody systems (Shabana
1989). For this purpose, a proper system of coordinates must be adopted, which
includes the global and local systems of coordinates. The expression global coordi-
nate system, which is represented by three orthogonal axes that are rigidly connected
at a point called origin of this system, is utilized to represent the global, absolute or
inertial frame of reference. In the present work, the global coordinate system is
denoted by xyz. In addition, a body-fixed or local coordinate system is considered to
define local properties of points that belong to a body. This local system of coordi-
nates is, in general, attached to the center of mass of the bodies and is denoted by ξηζ.
This local coordinate system translates and rotates with the body motion and, con-
sequently, its location and rotation vary with time (Nikravesh 1988).

A free particle i moving in three-dimensional space can be located by three
independent variables. Since a particle does not have dimension, it can be seen as a
point the three-dimensional Euclidean geometry that can be described by a position
vector r that contains three scalar values as

ri ¼ xi yi zif gT ð3:1Þ
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Similarly, a free rigid body i in the same environment can be described by
defining the position of one arbitrary point located on the body and the rotation of
the body around that point. Therefore, it can be observed that there are infinite
similar manners to define the spatial position of a rigid body, where some are more
convenient than others (Schiehlen 1990; Jalón and Bayo 1994). The location and
orientation of a body can be expressed with respect to any reference system. The
generalized coordinates that describe the positions of the elements of a multibody
system can be either with respect to each other or with respect to a common
reference frame. The representation of a single body i with respect to a globally
fixed xyz coordinate system, which is an absolute system, is shown in Fig. 3.1. The
body possesses its own coordinate system, the body-fixed coordinate system
denoted as ξiηiζi. Vector r, as expressed in Eq. (3.1), defines the location of the
origin the local coordinate system. This vector represents the translational coordi-
nates of the body. Another set of coordinates is needed to express the orientation of
the body with respect to the global coordinate system.

The adequate chosen of the localization of the local coordinate system can
simplify the definition of points and vectors on a body. For instance, point Pi

located on body i in Fig. 3.1 can be defined from the origin of the local reference
frame by vector sPi , in such way that its direct location with respect to the global
system can be expressed as (Flores et al. 2008)

rPi ¼ ri þ sPi ð3:2Þ

The same point can also be described with respect to the local coordinates
system by s0Pi , that contains the local components of vector sPi , and, therefore, s

0P
i is

a constant vector for rigid bodies. In turn, the components of vector sPi vary if the
body moves. The relation between s0Pi and sPi is described by a transformation,
which only depends on the relative orientation of the body with respect to the global
frame in such way that

sPi ¼ Ais0Pi ð3:3Þ

x y

z
ri

ξi

ηi
ζi

Oi

Pi
sP
i

s

(i)

Fig. 3.1 Location of an
unconstrained body i in the
three-dimensional space
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where Ai is a 3 × 3 rotation matrix that described the orientation of the local
coordinate system with respect to the global frame. This rotation matrix introduces
a general transformation from local coordinates to global coordinates. The global
and local coordinates of the point Pi can be written as

sPi ¼
xPi
yPi
zPi

8
<

:

9
=

;
and s0Pi ¼

nPi
gPi
fPi

8
<

:

9
=

;
ð3:4Þ

Matrix Ai can also be utilized to transform components of vectors, such as vector
s in Fig. 3.1, in a similar manner as

si ¼ Ais0i ð3:5Þ

in which si and s0i have the following global and local components

s ¼
sx
sy
sz

8
<

:

9
=

;
and s0i ¼

sn
sg
sf

8
<

:

9
=

;
ð3:6Þ

Matrix Ai can be expressed in terms of direction cosines as

Ai ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

2

4

3

5 ð3:7Þ

where the columns of Ai contain components of three unit vectors uξi, uηi and uζi
projected onto the xyz axes, such as

uni ¼
a11
a21
a31

8
<

:

9
=

;
; ugi ¼

a12
a22
a32

8
<

:

9
=

;
; ufi ¼

a13
a23
a33

8
<

:

9
=

;
ð3:8Þ

It should be noted that

u0ni ¼
1
0
0

8
<

:

9
=

;
; u0gi ¼

0
1
0

8
<

:

9
=

;
; u0fi ¼

0
0
1

8
<

:

9
=

;
ð3:9Þ
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Chapter 4
Euler Angles, Bryant Angles
and Euler Parameters

Abstract This chapter deals with the different approaches for describing the
rotational coordinates in spatial multibody systems. In this process, Euler angles
and Bryant angles are briefly characterized. Particular emphasis is given to Euler
parameters, which are utilized to describe the rotational coordinates in the present
work. In addition, for all the types of coordinates considered in this chapter, a
characterization of the transformation matrix is fully described.

Keywords Euler angles � Bryant angles � Euler parameters

The location of a rigid body i in the three-dimensional space can be defined by three
translational coordinates and three rotational coordinates that describe the origin
and orientation of the body-fixed coordinate system ξiηiζi attached to the body with
respect to the global frame xyz, as it is illustrated in Fig. 4.1a. For the purpose of
concentrating on the rotational coordinates of a body, let eliminate the translational
coordinates by allowing the global and local coordinates systems to coincide at the
origin, as Fig. 4.1b shows (Nikravesh 1988).

The orientation of a rigid body i can be specified by a transformation matrix, the
elements of which may be expressed in terms of suitable sets of coordinates, such as
Euler angles, Bryant angles or Euler parameters. Since the motion of the body is
continuous, the transformation matrix must be a continuous function of time. It is
known that the nine direction cosines present in the rotational transformation matrix
Ai expressed in Eq. (3.7) define the orientation of the ξiηiζi axes. Since only three
direction cosines are independent, six constraints must be considered to determine
matrix Ai. However, this manner to obtain the rotational coordinates is neither
practical nor convenient. Thus, alternative orientation coordinates are required.

The Euler angles are three angles that can be utilized to describe the orientation
of a rigid body. Euler angles represent three composed rotations that move a
reference frame to a given referred frame. This is equivalent to saying that any
orientation can be achieved by composing three elemental rotations, i.e., rotations
about a single axis, and also equivalent to saying that any rotation can be
decomposed as a product of three elemental rotation matrices. Thus, the angular
orientation of a given body-fixed coordinate system can be envisioned to be the
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result of three successive rotations. The three angles of rotation corresponding to
these three successive rotations are defined as Euler angles. This is a minimal
representation for the orientation of a rigid body since there is no need for constraint
equations. Among the twelve possible conventions of the Euler angles, without loss
of generality, the zxz convention is considered here. All the conventions are the
result of three consecutive rotations about three different axes. Thus, depending on
the choice of the rotational axis, different definitions can be found. However, the
most common convention is the zxz convention. Another common convention is the
xyz convention, being the parameters associated with this convention often known
as Bryant angles.

The sequence of rotations employed in the zxz convention starts by rotating the
initial xyz coordinate system counterclockwise about the z-axis by an angle ψ. The
resulting coordinate system is denoted by ξ’’η’’ζ’’. In the second step, this inter-
mediate coordinate system ξ’’η’’ζ’’ is rotated counterclockwise about ξ’’-axis by an
angle θ to produce another intermediate coordinate system labeled ξ’η’ζ’. Finally,
this last coordinate system is rotated counterclockwise about the ζ’-axis by an angle
σ to produce the desired ξηζ system of axes. The various phases of this sequence are
illustrated in Fig. 4.2. The angles ψ, θ and σ, which are the Euler angles, completely
specify the orientation of the ξηζ coordinate system relative to the xyz frame and
can, therefore, act as a set of three independent coordinates (Landau and Lifschitz
1976; Goldstein 1980).

When using Euler angles, the elements of the complete rotational transformation
matrix A can be obtained as the triple product of the matrices that define the planar
rotations, that is, the elemental planar matrices (Nikravesh 1988)

D ¼
cw �sw 0
sw cw 0
0 0 1

2
4

3
5; C ¼

1 0 0
0 ch �sh
0 sh ch

2
4

3
5; B ¼

cr �sr 0
sr cr 0
0 0 1

2
4

3
5 ð4:1Þ

in which c ≡ cos and s ≡ sin. Hence, A = DCB can be written as

x y

z
ri

x
y

z

ξi

ηi
ζi

Oi

(i)

ξi

ηi
ζi

Oi

(i)

(a)                                                             (b)

Fig. 4.1 a Translation and rotation; b pure rotation
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A ¼
cwcr� swchsr �cwsr� swchcr swsh
swcrþ cwchsr �swsrþ cwchcr �cwsh

shsr shcr ch

2
4

3
5 ð4:2Þ

At this stage, it should be noted that the resulting transformation matrix is highly
nonlinear in terms of the three Euler angles. Since matrix multiplication does not
commute, the order of the axes which one rotates about affect the result (Shabana
1989). Furthermore, if the three rotational angles are not chosen correctly, the rotated
frame will not coincide with the ξηζ desired coordinate system. In spite of their
popularity, Euler angles suffer from the drawback of representation of singularities. In
fact, when sin θ = 0, the axes of the first and third rotations coincide, so that ψ and σ
cannot be distinguished. This fact is visible by setting θ = 0 in Eq. (4.2) to obtain

A ¼
cðwþ rÞ �sðwþ rÞ 0
sðwþ cÞ �cðwþ rÞ 0

0 0 1

2
4

3
5 ð4:3Þ

x

y
ψ

ξ’’

η’’

y

y

σ ξ

ζ’

η

y

θ

ξ’

ζ’

η’

z z ζ’’≡z ζ’’≡

x

x
ξ’

x

z z

(a) (b)

(d)(c)

Fig. 4.2 Different stages of rotation for Euler angles. a Initial global system coordinate; b First
rotation; c Second rotation; d Third rotation
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As it was mentioned above, the Bryant angles are the xyz convention of the Euler
angles. In a similar manner, the xyz frame is rotated three times. The first rotation
may be carried out counterclockwise about the x-axis through an angle ϕ1. The
resulting coordinate system is labeled ξ’’η’’ζ’’. Then, a second rotation, through an
angle ϕ2 counterclockwise about the η’’-axis, produces the intermediate coordinate
system ξ’η’ζ’. Finally, the third rotation, counterclockwise bout ζ’-axis through an
angle ϕ3, results in the ξηζ coordinate system. The angles ϕ1, ϕ2 and ϕ3, which are
the Bryant angles, completely specify the orientation of the ξηζ frame relative to the
xyz coordinate system. Figure 4.3 shows the various steps of the sequence of
rotations associated with Bryant angles.

Similarly to the Euler angles, when using Bryant angles, the elements of the
complete rotational transformation matrix A can be obtained as the triple product
of the matrices that define the elemental planar rotations, i.e., the matrices
(Nikravesh 1988)

y

z

(a)                                                             (b)

(c)                                                             (d)

x

x

y

φ2

ξ’

η’

z

ζ’

x

y

φ3

η

x

y

φ1

ξ’’

η’’

zζ ’’

≡

ζ

ξ

ζ’’

Fig. 4.3 Different stages of rotation for Bryant angles. a Initial global system coordinate; b First
rotation; c Second rotation; d Third rotation
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D ¼
1 0 0
0 c/1 �s/1
0 s/1 c/1

2
4

3
5; C ¼

c/2 0 s/2
0 1 0

�s/2 0 c/2

2
4

3
5; B ¼

c/3 �s/3 0
s/3 c/3 0
0 0 1

2
4

3
5

ð4:4Þ

Hence, the complete transformation matrix, A = DCB, is given as

A ¼
c/2c/3 �c/2s/3 s/2

c/1s/3 þ s/1s/2c/3 c/1c/3 � s/1s/2s/3 �s/1c/2
s/1s/3 � c/1s/2c/3 s/1c/3 þ c/1s/2s/3 c/1c/2

2
4

3
5 ð4:5Þ

In a similar manner as in the zxz convention, the transformation matrix associ-
ated with the Bryant angles is highly nonlinear in terms of the three angles. In
addition, if the three Bryant angles are not chosen correctly, the rotated frame will
not coincide with the ξηζ desired frame. It can be observed that a singularity exists
when cos ϕ2 = 0, which means that the first and third rotations coincide and it is
equivalent to rotate about the original x-axis twice. Therefore, the first and third
angles can be combined as one single rotation. This fact can be illustrated by setting
cos ϕ2 = 0 in Eq. (4.5) to obtain (Nikravesh 1988)

Ai ¼
0 0 1

sð/1 þ /3Þ cð/1 þ /3Þ 0
�cð/1 þ /3Þ sð/1 þ /3Þ 0

2
4

3
5 ð4:6Þ

It can be drawn that the singularity phenomenon is an inherent problem asso-
ciated with any three rotational coordinates regardless of their forms or convention.
However, this problem can be avoided if four rotational coordinates are utilized,
namely the Euler parameters (Schiehlen 1990).

Thus, according to Euler’s theorem on finite rotation, a rotation in the three-
dimensional space can always be described by a rotation along a certain axis over a
certain angle. In other words, the Euler’s theorem states that the general dis-
placement of a body with a point fixed is a rotation about some axis. The theorem
indicates that the orientation of the body-fixed axes at any instant can be obtained
by an imaginary rotation of these axes from an orientation coincident with the
global axes. Thus according to the Euler’s theorem, there exists a unique axis that if
the xyz frame is rotated about it by an angle ϕ it becomes parallel to the ξηζ frame,
or vice versa. This imaginary axis is denoted by~u and it is called the orientational
axis of rotation, as Fig. 4.4 depicts (Nikravesh 1988). Thus, a set of rotational
coordinates can be defined as

e0 ¼ cos
/
2

ð4:7Þ
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e ¼ e1 e2 e3f gT¼ u sin
/
2

ð4:8Þ

in which vector ~e is defined along the orientational axis of rotation and has a
magnitude of sin ϕ/2. The four quantities e0, e1, e2 and e3 are the so-called Euler
parameters. Analyzing Eqs. (4.7) and (4.8) it can be observed that the Euler
parameters are not independent. Taking advantage of the fundamental equation of
trigonometry, together with Eqs. (4.7) and (4.8) yields (Nikravesh 1988)

cos2
/
2
þ uTu sin2

/
2
¼ 1 ð4:9Þ

or, alternatively,

e20 þ eTe ¼ e20 þ e21 þ e22 þ e23 ¼ 1 ð4:10Þ

Usually, the Euler parameters are expressed in the following form

p ¼ e0
e

� �
¼

e0
e1
e2
e3

8>><
>>:

9>>=
>>;

ð4:11Þ

Then, Eq. (4.10) can be rewritten as

pTp ¼ 1 ð4:12Þ

According to Euler’s theorem, any vector lying along the orientational axis of
rotation must have the same components in both initial and final coordinate sys-
tems. The transformation matrix can be expressed in terms of the Euler parameters
as (Nikravesh 1988)

x

y

φ

ξ

η

z

ζ u

e

Fig. 4.4 Representation of
the Euler parameters
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A ¼ 2
e20 þ e21 � 1

2 e1e2 � e0e3 e1e3 þ e0e2
e1e2 þ e0e3 e20 þ e22 � 1

2 e2e3 � e0e1
e1e3 � e0e2 e2e3 þ e0e1 e20 þ e23 � 1

2

2
4

3
5 ð4:13Þ

In a compact form, Eq. (4.13) can be written as

AT ¼ ð2e20 � 1ÞIþ 2ðeeT þ e0~eÞ ð4:14Þ

where I is the 3 × 3 identity matrix and ~e is the skew-symmetric matrix associated
with the vector e and is given by

~e ¼
0 �e3 e2
e3 0 �e1
�e2 e1 0

2
4

3
5 ð4:15Þ

In most practical problems, the choice of how to embed a body-fixed coordinate
system in a body is open. The ξηζ axes may be embedded in a body according to
any of the configurations illustrated in Fig. 4.5. If the ξηζ axes are parallel to xyz
axes, as shown in Fig. 4.5a, then

p ¼ 1 0 0 0f gT ; ngf jj xyz ð4:16Þ

x y

z
ξi

ηi

ζi
(i)

(a)                                                             (b)

x y

z
ξi

ηi

ζi
(i)

x y

z
ξi

ηi

ζi (i)

(c)                                                             (d)

x y

z
ξi

ηi

ζi
(i)

Fig. 4.5 Special cases of the orientation of body-fixed frame that simplify the determination of
Euler parameters: a ξηζ || xyz; b ξ || x; c η || y; d ζ || z
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In this case, any axis can be the orientational axis of rotation and the angle of
rotation is zero. If the ξ-axis is parallel to the x-axis and the angle of rotation is ϕ, as
shown in Fig. 4.5b, the Euler parameters are expressed as

p ¼ cos /2 sin /
2 0 0

n oT
; n jj x ð4:17Þ

In this case, the x-axis is the orientational axis of rotation. In a similar manner,
for orientations shown in Fig. 4.5c, d the Euler parameters can be written as
follows, respectively

p ¼ cos /2 0 sin /
2 0

n oT
; g jj y ð4:18Þ

p ¼ cos /2 0 0 sin /
2

n oT
; f jj z ð4:19Þ

In these special cases, it is relatively simple to determine the angle of rotation
and then to calculate the Euler parameters (Nikravesh 1988).
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Chapter 5
Angular Velocity and Acceleration

Abstract In this chapter, a complete characterization of the angular velocity and
angular acceleration for rigid bodies in spatial multibody systems are presented. For
both cases, local and global formulations are described taking into account the
advantages of using Euler parameters. In this process, the transformation between
global and local components of the angular velocity and time derivative of the Euler
parameters are analyzed and discussed in this chapter.

Keywords Angular velocity � Angular acceleration � Spatial motion

In order to keep the present analysis simple, let concentrate on the rotation of a body
and neglect its translational motion. For this desideratum, let consider that the ξηζ
coordinate system is rotating and has its origin coincident with the origin of the
nonrotating xyz coordinate system, as shown in Fig. 5.1. The angular velocity ~x
describes the axis and the magnitude of the rotation of the ξηζ frame. This axis is
called the instantaneous axis of rotation and should not be mistaken with the orien-
tational axis of rotation. Thus, at this instant, if the rotation of the body is frozen, the
axis around which the body must rotate in order for the two coordinate systems
become parallel is the orientational axis of rotation (Shabana 1989; Schiehlen 1990).

The angular velocity vector can be projected onto either the ξηζ frame or xyz
frame resulting into algebraic vectors expressed as

x0 ¼ xn xg xff gT ; x ¼ xx xy xzf gT ð5:1Þ

Nikravesh (1988) demonstrated that the angular velocity and the time derivative
of the transformation matrix A have the following relations

_A ¼ A~x0; _A ¼ ~xA ð5:2Þ

or alternatively,

AT _A ¼ ~x0; _AA
T ¼ ~x ð5:3Þ
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It should be noted that the angular velocity vector does not have an integral, i.e.,
there is no array of three rotational coordinates that its first time derivative is
defined as the vector of angular velocity.

It is known that the global position of a point P that is fixed in the ξηζ coordinate
system is given by the equation

sP ¼ As0P ð5:4Þ

Differentiating this equation with respect to time yields

_sP ¼ _As
0P ð5:5Þ

Substituting Eq. (5.2) into Eq. (5.5) results in

_sP ¼ ~xAs0P ¼ ~xsP ð5:6Þ

Thus, for any vector~s attached to the ξηζ coordinate system, such as the one in
Fig. 3.1, Eq. (5.6) can be written as (Nikravesh 1988)

_s ¼ ~xs ¼ �~s~x ð5:7Þ

For a ξηζ frame that rotates and translates relative to the nonmoving xyz frame,
the velocity of a point Pi that is fixed in the ξηζ frame can be determined. Thus, a
point Pi can be located in the xyz frame by the relation

rP ¼ rþ sP ð5:8Þ

The time derivative of this equation gives the velocity of point P as

_rP ¼ _rþ _sP ¼ _rþ ~xsP ð5:9Þ

x
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ξ

η

z

ζ uω

Fig. 5.1 Rotating ξηζ
coordinates system
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The transformation between the xyz components of the angular velocity vector
and time derivative of Euler parameters is given by (Nikravesh 1988)

x ¼ 2G _p ð5:10Þ

In expanded form, Eq. (5.10) is

xx

xy

xz

8
<

:

9
=

;
¼ 2

�e1 e0 �e3 e2
�e2 e3 e0 �e1
�e3 �e2 e1 e0

2

4

3

5

_e0
_e1
_e2
_e3

8
>><

>>:

9
>>=

>>;

ð5:11Þ

The inverse transformation is found to be

_p ¼ 1
2
GTx ð5:12Þ

In expanded form, Eq. (5.12) is

_e0
_e1
_e2
_e3

8
>><

>>:

9
>>=

>>;

¼ 1
2

�e1 �e2 �e3
e0 e3 �e2
�e3 e0 e1
e2 �e1 e0

2

6
6
4

3

7
7
5

xx

xy

xz

8
<

:

9
=

;
ð5:13Þ

The transformation between the ξηζ components of the angular velocity vector
and the time derivative of Euler parameters is given by (Nikravesh 1988)

x0 ¼ 2L _p ð5:14Þ

In expanded form, Eq. (5.14) is

xn

xg

xf

8
<

:

9
=

;
¼ 2

�e1 e0 e3 �e2
�e2 �e3 e0 e1
�e3 e2 �e1 e0

2

4

3

5

_e0
_e1
_e2
_e3

8
>><

>>:

9
>>=

>>;

ð5:15Þ

The inverse transformation is found to be

_p ¼ 1
2
LTx0 ð5:16Þ

In expanded form, Eq. (5.16) is

_e0
_e1
_e2
_e3

8
>><

>>:

9
>>=

>>;

¼ 1
2

�e1 �e2 �e3
e0 �e3 e2
e3 e0 �e1
�e2 e1 e0

2

6
6
4

3

7
7
5

xn

xg

xf

8
<

:

9
=

;
ð5:17Þ
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Differentiating Eq. (5.10) with respect to time yields

_x ¼ 2G€pþ 2 _G _p ð5:18Þ

Nikravesh (1988) showed that the product _G _p is null, and hence, Eq. (5.17) can
be simplified as

_x ¼ 2G€p ð5:19Þ

In a similar manner, differentiating Eq. (5.14) with respect to time yields

_x0 ¼ 2L€p ð5:20Þ

Vectors _x and _x0 are the global and local components of vector ~_x defined as the
angular acceleration of the ξηζ frame. Finally, it can be shown that the inverses of
Eqs. (5.19) and (5.20) are given by Nikravesh (1988)

€p ¼ 1
2
GT _x� 1

4
ðxTxÞp ð5:21Þ

and

€p ¼ 1
2
LT _x0 � 1

4
ðx0Tx0Þp ð5:22Þ

It is clear that xTx ¼ x0Tx0 ¼ x2, where ω is the magnitude of ~x.
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Chapter 6
Vector of Coordinates, Velocities
and Accelerations

Abstract This chapter describes the how the vector of coordinates are defined in
the formulation of spatial multibody systems. For this purpose, the translational
motion is described in terms of Cartesian coordinates, while rotational motion is
specified using the technique of Euler parameters. This approach avoids the com-
putational difficulties associated with the singularities in the case of using Euler
angles or Bryant angles. Moreover, the formulation of the velocities vector and
accelerations vector is presented and analyzed here. These two sets of vectors are
defined in terms of translational and rotational coordinates.

Keywords Positions � Velocities � Accelerations
The configuration of a body free in the space is uniquely defined by six coordinates,
whereas three coordinates are needed to specify the position of the body and
additional three coordinates are required to describe its angular orientation.
Throughout this work, translation is described in terms of Cartesian coordinates,
while rotation is specified using the technique of Euler parameters. In general, the
angular orientation of a body can be described with an arbitrary set of rotational
coordinates, such as Euler angles or Bryant angles. However, since these alternative
formulations may yield to singularities for critical configurations, Euler parameters
are selected for formulating the constraint equations and the equations of motion
presented later on in this work (Shabana 1989; Schiehlen 1990).

Thus, the position vector of a body i can be defined as

qi ¼ ri
pi

� �
ð6:1Þ

in which vector ri contains the three translational coordinates of body i defined with
respect to the global coordinates system as

ri ¼
xi
yi
zi

8<
:

9=
; ð6:2Þ
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In turn, the vector pi that includes the four Euler parameters can be written in the
following form

pi ¼
e0
e1
e2
e3

8>><
>>:

9>>=
>>;

ð6:3Þ

For simplifying the formulation at the velocity and acceleration levels, the
concept of angular velocity is employed, i.e., velocity vector specifying the
translational and rotational velocity of a body i does not correspond to the time
derivative of Eq. (6.1), but it is defined as (Jalón and Bayo 1994)

vi ¼ _ri
xi

� �
ð6:4Þ

where the vector of angular velocities is written as

xi ¼
xx

xy

xz

8<
:

9=
;

i

ð6:5Þ

Accordingly, acceleration vector specifying the translational and rotational
accelerations of a body i is defined as

_vi ¼ ri
::

_xi

� �
ð6:6Þ

which corresponds to the time derivative of Eq. (6.4).
It must that be highlighted that alternative arrays for velocity and acceleration

equations can be defined as (Nikravesh 1988)

_qi ¼
_ri
_pi

� �
; hi ¼ _ri

x0
i

� �
ð6:7Þ

and

qi
:: ¼ ri

::

pi
::

� �
; _hi ¼ ri

::

_x0
i

� �
ð6:8Þ
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Chapter 7
Kinematic Constraint Equations

Abstract This chapter presents a general methodology for the formulation of the
kinematic constraint equations at position, velocity and acceleration levels. Also a
brief characterization of the different type of constraints is offered, namely the
holonomic and nonholonomic constraints. The kinematic constraints described here
are formulated using generalized coordinates. The chapter ends with a general
approach to deal with the kinematic analysis of multibody systems.

Keywords Kinematic constraints � Positions � Velocities � Accelerations
A constraint condition implies a restriction in the kinematical degrees of freedom of
one or more bodies. The classical constraint is usually an algebraic equation that
defines the relative translation or rotation between two bodies. There are further-
more possibilities to constrain the relative velocity between two bodies or a body
and the ground. This is for example the case of a rolling disc, where the point of the
disc that contacts the ground has always zero relative velocity with respect to the
ground. In the case that the velocity constraint condition cannot be integrated in
time in order to form a position constraint, it is called nonholonomic. This is the
case for the general rolling constraint. In addition to that there are non-classical
constraints that might even introduce a new unknown coordinate, such as a sliding
joint, where a point of a body is allowed to move along the surface of another body.
In the case of contact, the constraint condition is based on inequalities and,
therefore, such a constraint does not permanently restrict the degrees of freedom of
bodies (Huston 1990).

As it was presented previously, the configuration of a multibody system is
described by a set of variables called generalized coordinates that completely define
the location and orientation of each body in the system. Hereafter, the set of
generalized coordinates of a multibody system will be denoted by vector q = {q1,
q2, q3, …, qn}

T, where n is the number of coordinates. Mostly, in multibody
systems formulation the generalized coordinates can be divided into independent
and dependent variables, consequently, several algebraic equations are needed to be
introduced to relate them. In other words, the constraint equations represent the
kinematic relation between independent and dependent coordinates. In a simple
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manner, the constraint equations can arise from the description of the system
topology and from the characterization of the driving and guiding constraints that
are used to guide the system through the analysis. In this work, the set of constraint
equations is denoted by symbol Φ. In order to distinguish among the different
constraint equations, each elementary set of constraints is identified by a superscript
containing two parameters. The first parameter denotes the type of constraint, while
the second one defines the number of independent equations that it involves. For
example, Φ(s,3) refers to a spherical (s) joint constraint, which contains three (3)
equations.

Kinematic constraints can be classified as holonomic or nonholonomic. Holo-
nomic constraints arise from geometric constraints and are integrable into a form
involving only coordinates (holo comes from Greek that means whole, integer).
Nonholonomic constraints are not integrable. The relation specified by a constraint
can be an explicit function of time designated as rheonomic constraints (rheo comes
from Greek that means hard, inflexible, independent) or not, being designated by
scleronomic constraints (scleros comes from Greek that means flexible, changing).
Figure 7.1 shows a typical spherical joint and a simple human body model placed
on a spherical surface, which represents a holonomic and a nonholonomic con-
straint, respectively. Thus, for instance, in the motion of the human model on the
spherical surface, the following mathematical relation has to be satisfied during the
analysis (Flores 2006)

rTr� R2 � 0 ð7:1Þ

where R is the radius of the spherical surface and vector r represents the position of
the model measured from the center of the spherical surface.

The kinematic constraints considered here are assumed to be holonomic, arising
from geometrical constraints on the generalized coordinates. Holonomic con-
straints, also called geometric restrictions, are algebraic equations imposed to the
system that are expressed as functions of the displacement and, possibly, time. If the
time t does not appear explicitly in the constraint equation, then the system is said to
be scleronomic. A simple example of scleronomic constraint equation is the rev-
olute joint between two bodies. Otherwise, when the constraint is holonomic and
t appears explicitly, the system is said to be rheonomic (Shabana 1989).

(a) (b)

R

Fig. 7.1 a Holonomic constraint; b nonholonomic constraint
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In general manner, the relations that describe the constraints imposed by kine-
matic pairs, such as mechanical joints, are formulated using algebraic equations.
The kinematic constraint equations can be written as

U � UðqÞ ¼ 0 ð7:2Þ

where q denotes the vector of body-coordinates defined by Eq. (6.1) and Φ rep-
resents a function describing the kinematic constraints. In general, constraint
equations may also be functions of time, however, algebraic equality constraints as
expressed by Eq. (7.2) are referred to as holonomic constraints.

The first time derivative of Eq. (7.2) yields the velocity constraints that provide
relations between the velocity variables of a system. The velocity constraints can be
expressed as

_U � Dv ¼ 0 ð7:3Þ

where D denotes the Jacobian matrix and v contains the velocity terms defined by
Eq. (6.4). For driving elements, the corresponding velocity constraint equations can
be written in the form

_U � Dv ¼ t ð7:4Þ

in which the right-hand side contains the partial derivates of Φ with respect to time,
∂Φ/∂t. The constraints at the velocity level are represented by linear algebraic
equations.

The second time derivative of Eq. (7.2) results in

€U � D _vþ _Dv ¼ 0 ð7:5Þ

where _v denotes the acceleration terms defined by Eq. (6.6) and the term � _Dv is
referred to as the right-hand side of the kinematic acceleration equations. By
introducing c ¼ � _Dv, Eq. (7.4) can be rewritten as

D _v ¼ c ð7:6Þ

In should be highlighted that the terms involved in Eqs. (7.2) through (7.6)
appear in a general form, that is, they do not reflect the type of coordinates con-
sidered. In addition, the constraint equations represented by Eq. (7.2) are non–linear
in terms of q and are, usually, solved by employing the Newton-Raphson method.
Equations (7.3) and (7.6) are linear in terms of v and _v, respectively, and can be
solved by any usual method adopted for the solution of systems of linear equations.
It should be noted that the issues related to the treatment of redundant constraints
are not presented in this work. The interested reader in the details on this particular
topic is referred to the work by Wehage and Haug (1982).
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The kinematic analysis is the study of the motion of a multibody system, inde-
pendently of the causes that produce it. Since in the kinematic analysis the forces are
not considered, the motion of the system is specified by driving or guiding elements
that govern the motion of specific degrees of freedom of the system during the
analysis. The position, velocity and acceleration of the remaining elements of the
system are defined by kinematic constraint equations that describe the system
topology. It is clear that in the kinematic analysis, the number of driving and guiding
constraints must be equal to the number of degrees of freedom of the multibody
system. In short, the kinematic analysis is performed by solving a set of equations that
result from the kinematic, driving and guiding constraints (Jalón and Bayo 1994).

The kinematic analysis of a multibody system can be carried out by solving the
set of Eqs. (7.2)–(7.6) together with the necessary driver constraints corresponding
to the free degrees of freedom. Therefore, the necessary steps to perform this type of
analysis, sketched in Fig. 7.2, are summarized as:

1. Specify initial conditions for positions q0 and initialize the time t0.
2. Evaluate the position constraint Eq. (7.2) and solve them for positions, q.
3. Evaluate the velocity constraint Eq. (7.4) and solve them for velocities, v.
4. Evaluate the acceleration constraint Eq. (7.6) and solve them for accelerations, _v.
5. Increment the time. If the time is smaller than final time, go to step (2),

otherwise stop the kinematic analysis.

STOP

Δt t t= +

Yes

No

Specify
0

0
t

t t=
=q q

Evaluate

=Φ q 0( , )t

and solve for q

Evaluate

and solve for v

Evaluate

and solve for v
>t ?Is t end

START

=Dv υ

=Dv γ
.

.

Fig. 7.2 Flowchart of computational procedure for kinematic analysis of a MBS
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A close observation of the Eqs. (7.4) and (7.6) shows that both expressions
represent systems of linear equations, with the same leading matrix and different
right-hand side vectors. Moreover, since both expressions share the same leading
matrix, Jacobian matrix of the constraints, evaluated with the latest calculated
configuration of the system, then this matrix only needs to be factorized once during
each step (Nikravesh 1988).
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Chapter 8
Basic Constraints Between Two Vectors

Abstract This chapter deals with the characterization of the basic constraints
between two vectors. This issue plays a crucial role in the formulation of constraint
equations for mechanical joints. In particular, relations between two parallel and
two perpendicular vectors are derived. Moreover, formulation for a vector that
connects two generic points is presented. The material described here is developed
under the framework of multibody systems formulation for spatial systems.

Keywords Constraints � Parallel vectors � Perpendicular vectors
The main purpose of this section is to provide the fundamental concepts that are
necessary to formulate the constraint equations associated with kinematic pairs. For
instance, some kinematic constraints require that two vectors remain parallel or
perpendicular. On the other hand, it is frequently necessary to define one or more
points on bodies. Taking into consideration that points Pi and Qi represented in
Fig. 8.1 are located on body i by their local coordinates, then the corresponding
global coordinates can be determined at any given instant by the following
expressions (Nikravesh 1988; Schiehlen 1990; Flores et al. 2008)

riP ¼ ri þ Aisi0P ð8:1Þ

riQ ¼ ri þ Aisi0Q ð8:2Þ

Considering now that points Pi and Qi are connected by a vector si, as Fig. 8.1
shows, then this vector attached on body i can be computed as

si ¼ siP � siQ ¼ Aisi0P � Aisi0Q ¼ Aiðsi0P � si0QÞ ð8:3Þ

It should be noted that vector si is only function of the rotational matrix of the
body i. This vector has a constant magnitude in any system.

Figure 8.2 depicts a vector that links two points Pi and Pj located on different
bodies. Knowing the local components of points Pi and Pj, then the corresponding
global coordinates of vector d can be evaluated as
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d ¼ rjP � riP ¼ rj þ Ajsj0P � ri � Aisi0P ð8:4Þ

which, in the most general case, can have a variable length.
Figure 8.3 shows two vectors si and sj attached to bodies i and j, respectively. In

order to specify that these two vectors remain perpendicular at all times, it is
necessary to define a constraint equation in the form

Uðn1;1Þ � siTsj ¼ 0 ð8:5Þ

where the superscripts indicate that this is a normal type 1 constraint having 1
equation (Nikravesh 1988). If vector d in Fig. 8.4, which connects points Pi and Pj,
is to remain perpendicular to si, then it can be written that

Uðn2;1Þ � siTd ¼ 0 ð8:6Þ

which is a normal type 2 constraint having 1 equation (Nikravesh 1988).
For two vectors attached to different bodies to remain parallel, two constraint

equations are required. The two constraint equations are derived by setting the cross
product between them to zero. Yet, the cross product yields three algebraic equa-
tions, of which only two are independent. Thus, two of the equations can serve as

x y

z
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Fig. 8.1 Vector connecting two points Pi and Qi located on body i
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Fig. 8.2 Vector connecting two points Pi and Pj located on different bodies
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the constraint equations. For two vectors si and sj that are embedded in corre-
sponding bodies, as Fig. 8.5 illustrates, the constraint equations imposing paral-
lelism (parallel type 1) are

Uðp1;2Þ � ~sisj ¼ 0 ð8:7Þ

In turn, the condition for two parallel vectors, one fixed to one body and the
other connecting two bodies, as it is represented in Fig. 8.6, is written in the
following form

Uðp2;2Þ � ~sid ¼ 0 ð8:8Þ

It must be highlighted that Eqs. (8.7) and (8.8) provide three equations each.
However, the sets of equations each have only two independent equations. There
exists a critical case that is associated with selection of two equations from (8.7) and
(8.8). This critical case occurs when two vectors become parallel to one of the
global axes. To circumvent this issue, the dot product can be used twice. In first
place, two perpendicular vectors to sj, and also to each other, are defined, as it is
illustrated in the representation of Fig. 8.7. Then, the two constraint equations can
be written in the following form (Nikravesh 1988)
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(j)

s j
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Fig. 8.3 Vectors si and sj located on bodies i and j that remain perpendicular at all instants of time
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Fig. 8.4 Vector si located on body i that remains perpendicular to vector d connecting points Pi

and Pj
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Uðp1;2Þ � siTaj ¼ 0
siTbj ¼ 0

�
ð8:9Þ

Finally, it must stated that the constraints that keep two vectors perpendicular or
parallel are the basic constraints between two vectors. These constraints remove
relative degrees of freedom between adjacent bodies. For instance, the constraints
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Fig. 8.5 Vectors si and sj located on bodies i and j that remain parallel
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n1 and n2 each remove one DoF from a multibody system. In general, there is no
need to use p1 and p2 constraints, therefore, n1 and n2 are utilized instead by
defining some other appropriate vectors. These basic constraints will be used to
construct the constraint equations for a variety of kinematic joints, as it will be seen
in the next section. The form of the basic constraints remains the same regardless of
the choice of rotational coordinates, in the measure that they only affect the process
of evaluating the rotational transformation matrix A for each body (Shabana 1989;
Schiehlen 1990; Jalón and Bayo 1994).
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Chapter 9
Kinematic Joints Constraints

Abstract The kinematic joints constraints for several types of mechanical joints
are derived here. Special attention is given to the spherical joint, revolute joint and
spherical-spherical joint. In this process, the fundamental issues associated with
kinematic constraints are developed, namely the right-hand side of the acceleration
constraint equations and the contributions to the Jacobin matrix. The material
presented in this chapter is developed under the framework of multibody systems
formulation for spatial systems.

Keywords Kinematic constraints � Spherical joint � Revolute joint

The goal of this paragraph is to present the formulation of the most common types
of kinematic constraint equations used to model spatial multibody systems. It is also
objective to introduce their contributions to the Jacobian matrix of the constraints
and to the right-hand side of the acceleration constraint equations (Schiehlen 1990;
Jalón and Bayo 1994). The given presentation is restricted to those constraint
formulations that are required to describe the kinematic joints utilized in the context
of the present work, namely the ideal spherical joint, the revolute or rotational joint
and the composite spherical-spherical joint. With only these three basic kinematic
joints, a large class of spatial multibody systems can be studied. For details on the
formulation of other types of kinematic joints the interested reader is referred to
Nikravesh (1988)

An ideal or perfect spherical joint, also known as ball and socket joint, illustrated
in Fig. 9.1, constrains the relative translations between two adjacent bodies i and j,
allowing only three relative rotations. Therefore, the center of the spherical joint has
constant coordinates with respect to any of the local coordinates systems of the
connected bodies, i.e., a spherical joint is defined by the condition that the point Pi

on body i coincides with the point Pj on body j. This condition is simply the
spherical constraint, which can be written in a scalar form as (Flores et al. 2008)

Uðs;3Þ � rjP � riP ¼ rj þ sjP � ri � siP ¼ 0 ð9:1Þ
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The three scalar constraint equations implied by Eq. (9.1) restrict the relative
position of points Pi and Pj. Therefore, three relative degrees of freedom are
maintained between two bodies that are connected by a perfect spherical joint.

The first time derivative of Eq. (9.1) results in the velocity constraint equations
for a spherical joint, which can be expressed as (Shabana 1989)

_U
ðs;3Þ ¼ _rj þ _sj

P � _ri � _si
P ¼ 0 ð9:2Þ

Taking advantage of Eq. (5.7), this equation can be rewritten as

_U
ðs;3Þ ¼ _rj � ~sjPxj � _ri þ ~siPxi ¼ 0 ð9:3Þ

or, alternatively, in the matrix form

_U
ðs;3Þ ¼ ½�I ~si

P I �~sjP �
_ri
xi

_rj
xj

8>><
>>:

9>>=
>>;

¼ 0 ð9:4Þ

Thus, by observing Eq. (9.4), it can be concluded that the contribution to the
Jacobian matrix of the spherical joint constraints is given by

Dðs;3Þ
ð3�12Þ ¼ ½�I ~siP I �~sjP � ð9:5Þ

In a similar manner, the acceleration constraint equations of the spherical joint
can be obtained by taking the time derivative of Eq. (9.3), which results in
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Fig. 9.1 Spherical joint connecting bodies i and j
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€~U
ðs;3Þ

¼ €rj � es: jPxj � ~sj
P _xj � €ri þ es: iPxi þ ~si

P _xi ¼ 0 ð9:6Þ

In the matrix form, Eq. (9.6) can be expressed as

€U
ðs;3Þ ¼ �I ~si

P I �~sjP
� � €ri

_xi

€rj
_xj

8>><
>>:

9>>=
>>;

¼ �~_siPxi þ ~_sj
P
xj ð9:7Þ

Thus, the contribution to the right-hand side of the acceleration of the spherical
joint constraints is given by

cðs;3Þ ¼ �~_siPxi þ ~_sj
P
xj ð9:8Þ

A revolute joint between bodies i and j, shown in Fig. 9.2, is built with a journal-
bearing that allows a relative rotation about a common axis, but precludes relative
translation along this axis. Equation (9.1) is imposed on an arbitrary point P located
on the joint axis. Let now consider two vectors aj and bj on body j perpendicular to
each other and perpendicular to the joint axis, as Fig. 9.2 shows. It is clear that these
two vectors must remain perpendicular to vector si defined along the joint axis.
Thus, there are five constraint equations for a revolute joint that can be written as

Uðr;5Þ �
Uðs;3Þ � rj þ sjP � ri � siP ¼ 0

Uðn1;1Þ � siTaj ¼ 0
Uðn1;1Þ � siTbj ¼ 0

8<
: ð9:9Þ
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It should be highlighted that these five scalar constraint equations yield only one
relative degree of freedom for this joint, that is, rotation about the common axis of
the revolute joint.

Derivate the last equation of Eq. (9.9) with respect to time yields

_U
ðn1;1Þ ¼ bjT _si þ sTi _bj ¼ 0 ð9:10Þ

Considering now Eq. (5.7), this equation can be written as

_U
ðn1;1Þ ¼ �bjT~sixi � siT~bjxj ¼ 0 ð9:11Þ

or in the matrix form

_U
ðn1;1Þ ¼ 0 �bjT~si 0 �siT~bj

� � _ri
xi

_rj
xj

8>><
>>:

9>>=
>>;

¼ 0 ð9:12Þ

Thus, the Jacobian matrix terms of the revolute joint can be written as

Dðr;5Þ
ð5�12Þ ¼

�I ~siP I �~sjP
0 �ajT~si 0 �siT~aj
0 �bjT~si 0 �siT~bj

2
4

3
5 ð9:13Þ

Differentiating now Eq. (9.10) with respect to time yields

€U
ðn1;1Þ ¼ siT €bj þ bjT €si þ 2 _bj

T
_si ¼ 0 ð9:14Þ

Substituting €s ¼ �~s _xþ ~x_s in the above acceleration yields

€U
ðn1;1Þ ¼ �bjT~si _xi � siT~bjxj ¼ c ð9:15Þ

where the right-hand side term is expressed as

c ¼ �siT ~xj _bj � bjT ~xi _si � 2 _bj
T
_si ð9:16Þ

Thus, the full right-hand side of the acceleration constraints of the revolute joint
is given by

cðr;5Þ ¼
�es: iPxi þ es: jPxj

�siT ~xj _aj � ajT ~xi _si � 2 _aj
T _si

�siT ~xj _bj � bjT ~xi _si � 2 _bj
T
_si

8><
>: ð9:17Þ
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Figure 9.3 depicts two bodies connected by a rigid link containing two spherical
joints, which makes a composite joint named spherical-spherical joint. In this
particular joint the link between the bodies is modeled as a constraint and not as a
third body. For a spherical-spherical joint only one constraint equation is required,
which can be written in the form

Uðs�s;1Þ � dTd� l2 ¼ 0 ð9:18Þ

where

d ¼ rj þ sjP � ri � siP ð9:19Þ

and l denotes the length of the link (Nikravesh 1988).
Differentiating Eq. (9.18) with respect to time yields the velocity constraint

equation of a spherical-spherical joint that can be expressed as

_U
ðs�s;1Þ ¼ 2dTð _rj þ _sj

P � _ri � _si
PÞ ¼ 0 ð9:20Þ

Taking advantage of Eq. (5.7), this equation can be rewritten as

_U
ðs�s;1Þ ¼ 2dTð _rj � ~sj

Pxj � _ri þ ~si
PxiÞ ¼ 0 ð9:21Þ

or in a compact form as

_U
ðs�s;1Þ ¼ �2dT 2dT~siP 2dT �2dT~sjP

� � _ri
xi

_rj
xj

8>><
>>:

9>>=
>>;

¼ 0 ð9:22Þ
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Thus, the Jacobian matrix associated with a spherical-spherical joint is expressed
in the form

Dðs�s;1Þ
ð1�12Þ ¼ �2dT 2dT~si

P 2dT �2dT~sj
P

� � ð9:23Þ

Differentiating now Eq. (9.21) with respect to time yields the acceleration
constraint equation as

€U
ðs�s;1Þ ¼ 2dTð€rj � ~sjP _xj � €ri þ ~siP _xiÞ � 2fdTð~xi _siP � ~xj _sjPÞ � _d

T _dg ¼ 0

ð9:24Þ

or in a compact form as

€U
ðs�s;1Þ ¼ 2dT �2dT~si

P 2dT 2dT~sj
P

� � €ri
_xi

€rj
_xj

8>><
>>:

9>>=
>>;

¼ c ð9:25Þ

where the right-hand side of the accelerations is expressed as

cðs�s;1Þ ¼ 2dTð ~fxi _si
P � ~fxj _sj

PÞ � 2 _d
T _d ð9:26Þ
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Chapter 10
Equations of Motion for Constrained
Systems

Abstract In this chapter, the formulation of motion’s equations of multi-rigid body
systems is described. The generalized coordinates are the centroidal Cartesian
coordinates, being the system configuration restrained by constraint equations. The
present formulation uses the Newton-Euler’s equations of motion, which are aug-
mented with the constraint equations that lead to a system of differential algebraic
equations. This formulation is straightforward in terms of assembling the equations
of motion and providing all reaction forces.

Keywords Equations of motion � Newton-Euler formulation � Spatial systems

The translational equations of motion for an unconstrained rigid body can be
expressed as (Shabana 1989; Schiehlen 1990)

m€r ¼ f ð10:1Þ

in which m represents the mass of the body, r
::
denotes the acceleration of the center

of mass and f represents the sum of all forces acting on the body (Jalón and Bayo
1994; Nikravesh 2008).

Nikravesh (1988) demonstrated that the rotational equations of motion for a rigid
body can be written in the form

J _xþ ~xJx ¼ n ð10:2Þ

where J is the global inertia tensor, _x denotes the global angular accelerations, x is
global angular velocities and n represents the sum of all moments acting on the
body. Thus, the translational and rotational equations of motion, also known as the
Newton-Euler equations of motion, for an unconstrained rigid body can be obtained
by combining Eqs. (10.1) and (10.2), which in the matrix form are written as

mI 0
0 J

� �
€r
_x

� �
þ 0

~xJx

� �
¼ f

n

� �
ð10:3Þ

or, alternatively,
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mI 0
0 J

� �
€r
_x

� �
¼ f

n� ~xJx

� �
ð10:4Þ

The equations of motion can also be derived and expressed in terms of local com-
ponents, namely the rotational equations of motion. However, the form how the
equations of motion are presented here is consistent with the kinematic constraints
offered in the previous sections. Thus, in a compact form, Eq. (10.4) can be expressed as

Mi _vi ¼ gi ð10:5Þ

where

Mi ¼ miI 0
0 Ji

� �
; _vi ¼ €ri

_xi

� �
; gi ¼ f i

ni � ~xiJixi

� �
ð10:6Þ

Hence, the Newton-Euler equations of motion of a multibody system composed
by nb unconstrained bodies are written as

M _v ¼ g ð10:7Þ

in which

M ¼
M1

M1

. .
.

Mnb

2
6664

3
7775; _v ¼

_v1
_v2
..
.

_vnb

8>><
>>:

9>>=
>>;
; g ¼

g1
g2
..
.

gnb

8>>><
>>>:

9>>>=
>>>;

ð10:8Þ

In turn, for a multibody system of constrained bodies, the Newton-Euler equa-
tions of motion are written as (Nikravesh 1988)

M _v ¼ gþ gðcÞ ð10:9Þ

where g(c) denotes the vector of reaction forces that can be expressed in terms of the
Jacobian matrix and Lagrange multipliers as (Nikravesh 1988; Jalón and Bayo
1994)

gðcÞ ¼ DTk ð10:10Þ

Finally, the dynamic equations of motion for a constrained multibody system
can be written in its general form as

M _v� DTk ¼ g ð10:11Þ
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Different methods of resolution of the equations of motion will be presented and
discussed in the next sections of the present document.

It is known that physically, the Lagrange multipliers are related to the joint
reaction forces. In what follows, the relation between the constrained reaction
forces and the constraint equations is revisited. For this purpose, let first consider
that g(c) can be transformed to a coordinate system consistent with q and denoted as
g(*). Furthermore, it is assumed that there are m independent constraint equations
written as

U � UðqÞ ¼ 0 ð10:12Þ

For frictionless kinematic joints, the work done by the constraint forces in a
virtual displacement δq is zero, i.e.,

gð�ÞTdq ¼ 0 ð10:13Þ

Since the virtual displacement δq must be consistent with the constraint equa-
tions, then Eq. (10.12) yields

Ddq ¼ 0 ð10:14Þ

The vector of n coordinates q may be partitioned into a set of m dependent
coordinates u, and a set of n-m independent coordinates v, as

q � uT vT
� �T ð10:15Þ

This yields a partitioned vector of virtual displacements and a partitioned
Jacobian matrix as

dq � duT dvT
� �T

; D ¼ Du Dv½ � ð10:16Þ

Hence, Eq. (10.13) can be rewritten as

gð�ÞTu duþ gð�ÞTv dv ¼ 0 ð10:17Þ

or

gð�ÞTu du ¼ �gð�ÞTv dv ð10:18Þ

In a similar way, from Eq. (10.14) yields

Dudu ¼ �Dvdv ð10:19Þ
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Appending now Eqs. (10.18) and (10.19) results in

gð�ÞTu

Du

� �
du ¼ � gð�ÞTv

Dv

� �
dv ð10:20Þ

The matrix to the left in Eq. (10.20) is an (m + 1) × m matrix. Since Du is an
m × m nonsingular matrix, the first row of the (m + 1) × m matrix can be expressed
as a linear combination of the other rows of the matrix as

gð�Þu ¼ DT
uk ð10:21Þ

where λ is an m-vector of multipliers known as Lagrange multipliers. Substituting
now Eq. (10.21) into (10.18) yields

kTDudu ¼ �gð�ÞTv dv ð10:22Þ

or

�kTDvdv ¼ �gð�ÞTv dv ð10:23Þ

in which Eq. (10.19) has been employed. Vector δv is an arbitrary independent
vector. The consistency of the constraints for virtual displacements δq is guaranteed
by solving Eq. (10.19) for δu. Since Eq. (10.23) must hold for any arbitrary δv, then

kTDv ¼ gð�ÞTv ð10:24Þ

or

gð�Þv ¼ DT
vk ð10:25Þ

Appending Eq. (10.21)–(10.25) yields

gð�Þ ¼ DTk ð10:26Þ

which expresses the constraint reaction forces.
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Chapter 11
Force Elements and Reaction Forces

Abstract In the present chapter some of the most relevant applied forces and joint
reaction forces are introduced. There are many types of forces that can be present in
multibody systems, such as gravitational forces, spring-damper-actuator forces,
normal contact forces, tangential or frictional forces, external applied forces and
moments, forces due to elasticity of bodies, and thermal, electrical and magnetic
forces. However, only the first six types of forces are relevant in the multibody
systems of common application.

Keywords Springer-damper forces � Contact forces � Reaction forces

Figure 11.1 illustrates a body i acted upon by a gravitational field in the negative
z direction. The choice of the negative z direction as the direction of gravity is
totally arbitrary. However, in the present work, the gravitational field will be
considered to be acting in this direction unless indicated otherwise. If wi is the
weight of the body i, resulting from the product of mass of the body by the
gravitational constant, then the contribution of this force to the generalized vector of
forces of body i is given by (Nikravesh 1988; Shabana 1989)

gðgÞi ¼ 0 0 �wi 0 0 0f gT ð11:1Þ

Consider a single body force fi acting on body i at point Pi, as shown in
Fig. 11.2a. This force has three Cartesian components. In addition, a moment with
respect to the body center of mass must be computed as (Jalón and Bayo 1994)

ni ¼ ~sPi f i ð11:2Þ

Thus, the contribution to generalized vector of forces of a single force is

gðf Þi � f i
ni

� �
ð11:3Þ
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When a pure moment with magnitude ni acts on a body i, as shown in Fig. 11.2b,
its contribution to the vector of forces of body i is given by

gðnÞi � 0
ni

� �
ð11:4Þ

Figure 11.3 shows a spring-damper-actuator element connecting bodies i and
j through two points of connectivity Pi and Pj. The vector l that connects the points
Pi and Pj can be evaluated by

l ¼ rPj � rPi ¼ rj þ Ajs0Pj � ri � Ais0Pi ð11:5Þ

The magnitude of this vector is

l ¼
ffiffiffiffiffi
lT l

p
ð11:6Þ

The unit vector along the spring-damper-actuator element is defined as
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u ¼ 1
l
l ð11:7Þ

The time rate of change of the damper length can be obtained by differentiating
Eq. (11.6), yielding

_l ¼ 1
l
lT _l ð11:8Þ

where _l, in turn, is found from Eq. (11.5)

_l ¼ _rPj � _rPi ð11:9Þ

Then, the resulting spring-damper-actuator force is evaluated as

f sda ¼ kðl� l0Þ þ c_lþ f a ð11:10Þ

where the first term on the right-hand side is the spring force, the second term
represents the damper force and the third term denotes the actuator force. The
spring stiffness is represented by k, l is the deformed length, l0 is the undeformed or
natural length of the spring, c is the damping coefficient of the damper and _l is the
time rate of change of the damper length.

The forces that act on the bodies i and j can be evaluated as

fsdai ¼ f sdau and fsdaj ¼ �f sdau ð11:11Þ
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Finally, the contribution to generalized vector of forces is given by

gðsdaÞi � fsdai
~sPi f

sda
i

� �
and gðsdaÞj � fsdaj

~sPj f
sda
j

( )
ð11:12Þ

As it was presented previously, the joint reaction forces and moments are
expressed in terms of the Jacobian matrix of the constraint equations and a vector of
Lagrange multipliers and expressed by Eq. (10.10). Thus, for instance, for a
spherical joint between bodies i and j, the vector of reaction forces is expressed as

DTk ¼
�I
~sPi
I

�~sPj

2
664

3
775k ð11:13Þ

Equation (9.5) has been considered in Eq. (11.13). For a spherical joint, λ is a
3-vector representing exactly the reaction force acting at point Pi. The same force
but in the opposite direction acts at point Pj, as it is shown in Fig. 11.4. It must be
noted that a spherical joint does not produce a reaction moment. However, when a
reaction force is moved to the corresponding mass center, the moment associated
with that force must be included in the rotational equations of motion. These
reaction moments are automatically taken care of by the Jacobian matrix (Nikravesh
1988).
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Fig. 11.4 Reaction forces associated with a spherical joint
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For the case of a spherical-spherical joint, the reaction force can be expressed in
the form

DTk ¼
�2dT

2dT~sPi
2dT

�2dT~sPj

2
664

3
775k ¼

�I
~sPi
I

�~sPj

2
664

3
7752dk ð11:14Þ

in which Eq. (10.23) has been employed. This composite joint contains a single
Lagrange multiplier which its value is proportional to the magnitude of the reaction
force. This reaction force acts exactly along the axis of the link that defines the
joint, as it is illustrated in Fig. 11.5. The reaction moments are the result of the
reaction forces having arms with respect to their corresponding center of mass
(Schiehlen 1990).
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Chapter 12
Methods to Solve the Equations of Motion

Abstract This chapter presents several methods to solve the equations of motion
of spatial multibody systems. In particular, the standard approach, the Baumgarte
method, the penalty method and the augmented Lagrangian formulation are revised
here. In this process, a general procedure for dynamic analysis of multibody sys-
tems based on the standard Lagrange multipliers method is described. Moreover,
the implications in terms of the resolution of the equations of motion, accuracy and
efficiency are also discussed in this chapter.

Keywords Dynamic analysis � Baumgarte method � Penalty method

As it was presented previously, the Newton-Euler equations of motion for a con-
strained multibody system of rigid bodies are written as

M _v� DTk ¼ g ð12:1Þ

In dynamic analysis, a unique solution is obtained when the algebraic constraint
equations at the acceleration level are considered simultaneously with the differ-
ential equations of motion. Therefore, the second time derivative of the constraint
equations are considered here and written as

D _v ¼ c ð12:2Þ

Equation (12.2) can be appended to Eq. (12.1), yielding a system of differential
algebraic equations (DAE). This system of equations is solved for accelerations
vector, _v, and Lagrange multipliers, λ. Then, in each integration time step, the
accelerations vector, _v, together with velocities vector, v, is integrated in order to
obtain the system velocities and positions for the next time step. This procedure is
repeated until the final analysis time is reached. A set of initial conditions, positions
and velocities, is required to start the dynamic simulation. In the present work, the
initial conditions are based on the results of kinematic simulation of the mechanical
systems. The subsequent initial conditions for each time step in the simulation are
obtained in the usual manner from the final conditions of the previous time step
(Nikravesh 2007).
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Equations (12.1) and (12.2) can be rewritten in the matrix form as

M DT

D 0

� �
_v
k

� �
¼ g

c

� �
ð12:3Þ

The linear system of Eq. (12.3) can be solved by applying any method suitable
for the solution of linear algebraic equations. The existence of null elements in the
main diagonal of the leading matrix and the possibility of ill-conditioned matrices
suggest that methods using partial or full pivoting are preferred. However, none of
these formulations help in the presence of redundant constraints. Alternatively, the
equations of motion can be solved analytically. For this purpose, Eq. (12.1) is
rearranged to put the accelerations vector in evidence, yielding

_v ¼ M�1ðgþ DTkÞ ð12:4Þ

In this process, it is assumed that the multibody system under analysis does not
include any body with null mass or inertia so that the inverse of the mass matrix
M exists. Thus, introducing Eq. (12.4) into Eq. (12.2) and after basic mathematical
manipulation results in

k ¼ DM�1DT
� ��1ðc� DM�1gÞ ð12:5Þ

Substituting now Eq. (12.5) into Eq. (12.4) yields

_v ¼ M�1gþM�1DT DM�1DT
� ��1ðc� DM�1gÞ

n o
ð12:6Þ

Thus, Eq. (12.6) can be solved for _v then, the velocities and positions can be
obtained by integration process in a similar manner as it was described above. This
manner to solve the dynamic equations of motion is commonly referred to as the
standard Lagrange multipliers method (Nikravesh 1988). Figure 12.1 presents a
flowchart that shows the algorithm of the standard solution of the equations of
motion. At t = t0, the initial conditions on q0 and v0 are required to start the
integration process. These values cannot be specified arbitrarily, but must satisfy the
constraint equations defined by Eqs. (7.2) and (7.3). The algorithm presented in
Fig. 12.1 can be summarized by the following steps:

1. Start at instant of time t0 with given initial conditions for positions q0 and
velocities v0.

2. Assemble the global mass matrix M, evaluate the Jacobian matrix D, construct
the constraint equations Φ, determine the right-hand side of the accelerations γ,
and calculate the force vector g.

3. Solve the linear set of the equations of motion (12.3) for a constrained multi-
body system in order to obtain the accelerations _v at instant t and the Lagrange
multipliers λ.
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4. Assemble the vector _yt containing the generalized velocities v and accelerations
_v for instant of time t.

5. Integrate numerically the v and _v vectors for time step t + Δt and obtain the new
positions and velocities.

6. Update the time variable, go to step (2) and proceed with the process for a new
time step, until the final time of analysis is reached.

The system of the motion Eq. (12.3) does not use explicitly the position and
velocity equations associated with the kinematic constraints, that is, Eqs. (7.2) and
(7.3). Consequently, for moderate or long simulations, the original constraint
equations start to be violated due to the integration process and/or to inaccurate
initial conditions. Therefore, methods able to eliminate errors in the position or
velocity equations or, at least, to keep such errors under control, must be imple-
mented. In order to keep the constraint violations under control, the Baumgarte
stabilization method is considered here (Baumgarte 1972). This method allows
constraints to be slightly violated before corrective actions can take place, in order
to force the violation to vanish. The objective of Baumgarte method is to replace the
differential Eq. (7.5) by the following equation
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Fig. 12.1 Flowchart of computational procedure for dynamic analysis of multibody systems based
on the standard Lagrange multipliers method

12 Methods to Solve the Equations of Motion 63

http://dx.doi.org/10.1007/978-3-319-16190-7_7
http://dx.doi.org/10.1007/978-3-319-16190-7_7
http://dx.doi.org/10.1007/978-3-319-16190-7_7


€Uþ 2a _Uþ b2U ¼ 0 ð12:7Þ

Equation (12.7) is a differential equation for a closed-loop system in terms of
kinematic constraint equations, in which the terms 2a _U and b2U play the role of
control terms. The principle of the method is based on the damping of acceleration
of constraint violation by feeding back the position and velocity of constraint
violations, as illustrated in Fig. 12.2, which shows open-loop and closed-loop
control systems. In the open-loop systems U and _U do not converge to zero if any
perturbation occurs and, therefore, the system is unstable. Thus, using the Bau-
mgarte approach, the equations of motion for a system subjected to constraints are
stated in the following form

M DT

D 0

� �
_v
k

� �
¼ g

c� 2a _U� b2U

� �
ð12:8Þ

If α and β are chosen as positive constants, the stability of the general solution of
Eq. (12.8) is guaranteed. Baumgarte (1972) highlighted that the suitable choice of
the parameters α and β is performed by numerical experiments. Hence, the Bau-
mgarte method has some ambiguity in determining optimal feedback gains. Indeed,
it seems that the value of the parameters is purely empiric, and there is no reliable
method for selecting the coefficients α and β. The improper choice of these coef-
ficients can lead to unacceptable results in the dynamic analysis of the multibody
systems (Nikravesh 1984; Flores et al. 2011).
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Fig. 12.2 Open loop and closed loop control systems
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The penalty method presented by Jalón and Bayo (1994) constitutes an alter-
native way to solve the equations of motion. In this method, the equations of motion
are modeled as a linear second-order differential equation that can be written in the
form

mc
€Uþ dc _Uþ kcU ¼ 0 ð12:9Þ

Introducing Eq. (7.5) into Eq. (12.9) yields

mcðD _vþ _DvÞ þ dc _Uþ kcU ¼ 0 ð12:10Þ

Pre-multiplying Eq. (12.10) by the transpose of Jacobian matrix, DT, and after
mathematical treatment, results in

mcDTD _v ¼ �DTðmc _Dvþ dc _Uþ kcUÞ ð12:11Þ

Let consider now the Newton-Euler equations of motion for a system of uncon-
strained system and written here as

M _v ¼ g ð12:12Þ

Adding Eqs. (12.12) and (12.11) yields

M _vþ mcDTD _v ¼ g� DTð�mccþ dc _Uþ kcUÞ ð12:13Þ

in which Eq. (7.6) has been employed. Finally, Eq. (12.13) can be written in the
following form

ðMþ aDTDÞ _v ¼ g� aDTð�cþ 2lx _Uþ x2UÞ ð12:14Þ

where

a ¼ mc;
dc
mc

¼ 2lx and
kc
mc

¼ x2 ð12:15Þ

Equation (12.14) can be solved for _v. This method gives good results if α tends
to infinity. Typical values of α, ω and μ are 1 × 107, 10 and 1, respectively (Jalón
and Bayo 1994). It should be noted that with this penalty method, multibody
systems with redundant constraints or kinematic singular configurations can be
easily solved.

The augmented Lagrangian formulation is a methodology that penalizes the
constraint violations, much in the same form as the Baumgarte stabilization method
(Baumgarte 1972). This is an iterative procedure that presents a number of
advantages relative to other methods because it involves the solution of a smaller
set of equations, handles redundant constraints and still delivers accurate results in
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the vicinity of singular configurations. The augmented Lagrangian formulation
consists of solving the system equations of motion by an iterative process. Let index
i denote the i-th iteration. The evaluation of the system accelerations in a given time
step starts as (Jalón and Bayo 1994)

M _vi ¼ g; i ¼ 0ð Þ ð12:16Þ

The iterative process to evaluate the system accelerations proceeds with the
evaluation of

ðMþ aDTDÞ _viþ1 ¼ M _vi � aDTð�cþ 2lx _Uþ x2UÞ ð12:17Þ

The iterative process continues until

_viþ1 � _vik k ¼ e ð12:18Þ

where ε is a specified tolerance. The augmented Lagrangian formulation involves
the solution of a system of equations with a dimension equal to the number of
coordinates of the multibody system. Though mass matrix M is generally positive
semi-definite the leading matrix of Eq. (12.17) Mþ aDTD is always positive
definite (Jalón and Bayo 1994). Even when the system is close to a singular position
or when in presence of redundant constraints the system of equations can still be
solved.
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Chapter 13
Integration Methods in Dynamic Analysis

Abstract This chapter describes the main integration algorithms utilized in the
resolution of the dynamics equations of motion. Particular emphasis is paid to the
Euler method, Runge-Kutta approach and Adams predictor-corrector method that
allows for the use of variable time steps during the integration process. The material
presented here, relative to numerical integration of ordinary differential equations,
follows that of any undergraduate text on numerical analysis.

Keywords Euler method � Runge-Kutta method � Adams predictor-corrector
method

In the previous paragraph, the equations of motion for multibody systems were
derived from the Newton-Euler formulation together with the augmentation
method. The Newton-Euler equations represent the translational and rotational
motions of bodies, while the augmentation method is used to adjoin the constraint
equations of the multibody systems. In other words, the augmentation formulation
denotes the process where the algebraic kinematic constraint equations are aug-
mented to the differential equations of motion, in order that the number of
unknowns for which the system is being solved corresponds to the number
of system equations (Nikravesh 1988). As a consequence, the equations of motion
of multibody systems (12.1) are differential and algebraic equations (DAE) rather
than ordinary differential equations (ODE) (Blajer 1999). Prior to integrate the
system state variables, Eq. (12.1) is solved for _v and λ.

In the present work, the DAE are converted to ODE because the most frequently
used numerical integration algorithms are useful in solving ODE (Shampine and
Gordon 1975). However, for a detailed discussion on DAE, the interested reader
may consult the works by Petzold (1983) and Brenan et al. (1989). The material
presented below, relative to numerical integration of ODE, follows that of any
undergraduate text on numerical analysis such as those by Conte and Boor (1981)
and Atkinson (1989).

The process of converting n second-order differential equations to 2n first-order
equations can be expressed by (Shampine and Gordon 1975; Conte and Boor 1981;
Atkinson 1989)
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€y1 ¼ f ðy1; _y1; tÞ ð13:1Þ

such that it can be written as the following system

_y1 ¼ y2 ð13:2Þ

_y2 ¼ f ðy1; y2; tÞ ð13:3Þ

The most popular and used numerical integration methods introduced in the vast
thematic literature are Euler method, Rung-Kutta methods and Adams predictor-
corrector methods. These methods have been known for many years, for instance,
the Runge-Kutta methods have been known for more than an 100 years, but their
potential was not fully realized until computers became available. These methods
involve a step-by-step process in which a sequence of discrete points t0, t1, t2, …, tn

is generated. The discrete points may have either constant or variable spacing
defined as hi = ti+1−ti, where hi is the step size for any discrete point ti. At each point
ti, the solution y(ti) is approximated by a number yi. Since no numerical method is
capable of finding y(ti) exactly, the quantity

eig ¼ yðtiÞ � yi
�� �� ð13:4Þ

represents the global or total error at t = ti. The total error consists of two com-
ponents, the truncation error and the round-off error. The truncation error depends
on the nature of the numerical algorithm used in computing yi. The round-off error
is due to the finite word length in a computer.

The integration methods are called single step methods when they only require
information on the current time step to advance to the next time step. Euler and
Runge-Kutta methods are single step methods. When information of the previous
steps is used, the algorithm methods are called multistep methods, as it is the case of
Adams predictor-corrector schemes. The single step methods are self starting and
they need a minimum amount of storage requirements. However, these methods
require a larger number of function evaluations, for instance, four for the fourth-order
Runge-Kutta method. Function evaluation is the name of the process by which, given
t and y, the value of _y is computed. The multistep methods require a small amount of
function evaluations, particularly if the time step is chosen so that the number of
predictor-corrector iterations per step is kept below two or three. Moreover, error
estimates are easily provided and step size adjustments can be performed with no
difficulties. The multistep methods are not self starting and require the help of a single
step scheme to start the integration process (Atkinson 1989).

Regardless of the numerical method used, the numerical task deals with the
integration of an initial-value problem that can be written as

_y1 ¼ f ðy; tÞ ð13:5Þ
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With the initial condition y(t0) = y0 and where y is the variable to be integrated
and function f(t, y) is defined by the computational sequence of the algorithm
selected. Equation (13.5) has a solution y(t). The initial value y0 can be defined for
any value of t0, although it is often assumed that a transformation has been made so
that t0 = 0. This does not affect the solution or method used to approximate the
solution.

It is known that the Euler integration method is one of the simplest integrators
available. This approach may be sufficient in giving a very rough idea of the motion
of multibody systems. This method solves differential equations in a single step as

yiþ1 ¼ yi þ hf ðyi; tÞ ð13:6Þ

where h is the integration step size h = ti+1 – ti, for i a non-negative integer. This
method implies that the next step of the state variable can be evaluated by using the
current state variable.

The intuitive basis of the Euler method is illustrated in Fig. 13.1, in which the
curve labeled y = y(t) is the solution of the differential Eq. (13.5), which passes
through point P(t0, y0). It is desired to find the value of y1 = y0 + Δy corresponding
to t = t1. In other words, the height RQ needs to be determined. Although the
position of the curve at every point is not known, its slope is equal to f(t, y), which
is simply the geometric interpretation of the differential equation. Thus, the slope of
the tangent at point P is _y0 ¼ f ðt0; y0Þ, which can be computed since y0 and t0 are
both known. If h is reasonable small, the tangent line PS should not deviate too
much from the curve PQ, hence, the height RS (which by simple geometry is equal
to h _y0) should be an approximation to the required height RQ. Thus, a first
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Fig. 13.1 Geometric interpretation of the Euler integration method
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approximation to Δy is given by Δy1 = RS = hf (t0, y0). Assuming that the appro-
priate derivatives exist, then y(t) can be expanded in a Taylor series about t = ti and
the expression is evaluated at t = ti+1, yielding

yðtiþ1Þ ¼ yðtiÞ þ hf ðti; yiÞ þ Oðh2Þ ð13:7Þ

From the analysis of Eq. (13.7), neglecting the higher-order terms, the discret-
ization or local truncation error is given by

el ¼ Oðh2Þ ð13:8Þ

The order of a numerical integration method can be used to specify its accuracy
and can be expressed using the local truncation error. Knowing that for a scalar
equation of type

el ¼ Oðhpþ1Þ ð13:9Þ

is said to be of pth order, then it is clear that the Euler integration method is of first
order. Thus, for highly oscillatory motion there are rapid changes in the derivatives
of the function and if h is too large, then inaccuracies in the computation of the state
variables are made (Nikravesh 1988).

In turn, the global truncation error at ti can be evaluated as the difference
between the actual and computed solution, in the absence of round-off error by the
end of the simulation, that is

eig ¼ yðtiÞ � yi
�� �� ð13:10Þ

A more accurate integration method is the second-order Runge-Kutta algorithm,
which can be expressed as

yiþ1 ¼ yi þ h
2
ðf1 þ f2Þ ð13:11Þ

where

f1 ¼ f ðti; yiÞ ð13:12Þ

f2 ¼ f ðti þ h; yi þ hf1Þ ð13:13Þ

This approach is also known as the improved Euler method, modified trape-
zoidal method or the Heun method. It should be noted that two function evaluations
are required per time step, which in the case of multibody systems implies the
solution of the equations of motion to obtain the accelerations twice at the given
time step. Figure 13.2 shows the geometric interpretation of the second-order
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Runge-Kutta method. This method is explicit in the measure that f1 does not depend
on f2 and neither one depends on yi+1 (Jalón and Bayo 1994).

The local error of the second-order Runge-Kutta method is of order h3, whereas
that of Euler method is h2. Thus, it is expected to be able to use a larger time step
with the second-order Runge-Kutta method. The price to pay for this is that it
requires to evaluate the function f(t, y) twice for each time step of the integration
process.

For larger time steps and for greater accuracy, the fourth-order Runge-Kutta
integration method is most popular and widely used. This method is stable and, as a
computer program, occupy relatively small amount of core storage. The fourth-
order Runge-Kutta integration algorithm can be expressed by Pina (1995)

yiþ1 ¼ yi þ hg ð13:14Þ

where

g ¼ 1
6
ðf1 þ 2f2 þ 2f3 þ f4Þ ð13:15Þ

f1 ¼ f ðti; yiÞ ð13:16Þ

f2 ¼ f ðti þ h
2
; yi þ h

2
f1Þ ð13:17Þ
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Fig. 13.2 Geometric interpretation of the second-order Runge-Kutta method
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f3 ¼ f ðti þ h
2
; yi þ h

2
f2Þ ð13:18Þ

f4 ¼ f ðti þ h; yi þ hf3Þ ð13:19Þ

This method is explicit because all fi depend only on previous values already
calculated. This algorithm is easy to implement in the measure that it only requires
function evaluations, and it is self starting integrator scheme, which means that
there is no need for any other algorithm or technique to start the integration process.

Figure 13.3 illustrates the geometric interpretation of the fourth-order Runge-
Kutta integration method. In this method four tangents are determined, being their
average weighted according to Eqs. 13.14–13.19.

The standard fourth-order Runge-Kutta method does not provide an estimate of
the local error, so that the user does not have way of knowing whether the time step
being used is adequate. The local error of this method is of order h5, which is
relatively small even for larger time steps. The major disadvantage of this method is
that the function f(t, y) needs to be evaluated four time at each time step.

For the Euler and Runge-Kutta methods the next step value yi+1 is computed by
using solely the current value yi and time ti, over a time range of h = ti+1−ti.
Multistep methods utilize information about the solution at more than one point.
The objective of the multistep methods is to automatically select the proper order
and the proper time step size, which will minimize the amount of work required to
achieve the specified accuracy for a given problem. The multistep algorithms
require only two function evaluation per step compared with four function evalu-
ations per step with the fourth-order Runge-Kutta method, being, therefore,
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Fig. 13.3 Geometric interpretation of the fourth-order Runge-Kutta method
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considerably faster and require less computation work. Predictor-corrector methods
provide an automatic error estimate at each time step, thus allowing the algorithm to
select an optimum value of h for a required accuracy. This type of approach is also
better with respect to the propagation of error that it can use time steps more than
twice as large.

In Adams predictor-corrector methods an explicit method is used to predict a
value of yi+1, while an implicit method corrects that value. The implicit corrects
appear to be more stable and accurate than the explicit predictors and are both
chosen to be of equal order. The Adams-Bashforth predictor algorithm of fourth-
order can be written as

yiþ1 ¼ yi þ h
24

ð55f i � 59f i�1 þ 37f i�2 � 9f i�3Þ ð13:20Þ

where

f i ¼ f ðti; yiÞ ð13:21Þ

f i�j ¼ f ðti�j; yi�jÞ; j ¼ 1; 2; 3ð Þ ð13:22Þ

The corresponding Adams-Moulton corrector algorithm can be expressed by

yiþ1 ¼ yi þ h
24

ð9f iþ1 þ 19f i � 5f i�1 þ f i�2Þ ð13:23Þ

where

f i ¼ f ðti; yiÞ ð13:24Þ

f i�j ¼ f ðti�j; yi�jÞ; j ¼ 1; 2ð Þ ð13:25Þ

The major disadvantage of multistep methods is that they are not self starting.
Thus, in the fourth-order Adams predictor-corrector method four successive values
of function evaluation at equally spaced points before instant of time ti must be
known. These starting values must be obtained by some independent method, such
as the Runge-Kutta method. On the other hand, Adams predictor-corrector algo-
rithms are more complicated to program in the measure that they require special
techniques for starting and for doubling and halving the time step, and they be
subject to numerical instability (Conte and Boor 1981). In short, the Adams
methods, when being carefully use, are more efficient than any other method. To
achieve this efficiency it is necessary to vary the time step and the order that are
used. Thus, it is necessary to estimate the errors that are incurred for various time
steps and orders so as to make these decisions. Advanced codes also attempt to
detect abnormal situations such as discontinuities or certain types of instabilities
and to deal with them in a reasonable way. A detailed discussion on the Adams
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predictor-corrector implementation can be found in the book by Shampine and
Gordon (1975).

Gear (1971) developed a family of variable order stiffly-stable algorithms for the
solution of stiff problems. A stiff system is referred to as any initial-value problem
in which the complete solution consists of fast and slow components. The stiffness
can be produced by physical characteristics of the multibody systems, such as
components with large differences in their masses, stiffness and damping. However,
in many other instances, stiffness is numerically induced due to either the discret-
ization process, the large number of components and equations of motion, or
sudden or accumulated violations in the constraint conditions.

The Gear algorithm of fourth-order can be expressed as

yiþ1 ¼ 1
25

ð48yi � 36yi�1 þ 16yi�2 � 3yi�3 þ 12hf iþ1Þ ð13:26Þ

where

f iþ1 ¼ f ðtiþ1; yiþ1Þ ð13:27Þ

Since the Gear algorithm is an implicit multistep scheme, it is necessary to solve
an implicit equation in each time step (Nikravesh 1988).
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Chapter 14
Correction of the Initial Conditions

Abstract This chapter presents a general approach to deal with the correction of
the initial conditions at the position and velocity levels. This procedure is of par-
amount importance to avoid constraints violation during the numerical resolution of
the equations of motion. The material presented here closely follows the standard
methodologies available in the literature. Thus, in this chapter, a simple and effi-
cient approach to correct the initial conditions at the position and velocity levels is
revised.

Keywords Initial conditions � Positions � Velocities
It was verified in the paragraph sections that the numerical solution of the dynamic
equations of motion (12.3) requires a set of initial conditions on the positions and
velocities. Moreover, this system of equations of motion does not use explicitly the
position and velocity equations associated with the kinematic constraints. Conse-
quently, for moderate and long time simulations, the original constraint equations
start to be violated due to the integration process and inaccurate initial conditions.
Therefore, special procedures must be followed to avoid or minimize this phe-
nomenon. Several methods to deal with this problem have been suggested and
tested over the last years (Blajer 2002; Zahariev and McPhee 2003; Nikravesh
2007; Masarati 2011).

It is well known that for a constrained multibody system, the kinematic con-
straints can be described by a set of linear and/or nonlinear algebraic equations as
(Nikravesh 2008)

UðqÞ ¼ 0 ð14:1Þ

The time derivative of these constraints provide the velocity constraints that can
be written as

_Uðq; _qÞ ¼ Dv ¼ 0 ð14:2Þ
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Let consider that the initial conditions for positions (q0) do not satisfy Eq. (14.1),
then the corrected positions can be expressed as

qc ¼ q0 þ dq ð14:3Þ

where δq represents the set of corrections that adjusts the initial conditions, such
that

UðqcÞ ¼ Uðq0Þ þ dU ¼ 0 ð14:4Þ

and, hence

dU ¼ �Uðq0Þ ð14:5Þ

For small δΦ, Eq. (14.1) can be expanded and the higher order terms can be
neglected, yielding the variation of the constraint equations as (Flores et al. 2011)

dU ¼ @U
@q

dq ¼ Ddq ð14:6Þ

Substituting now Eq. (14.6) in Eq. (14.5) results in

dq ¼ �D�1Uðq0Þ ð14:7Þ

It must be noted that, in general, the Jacobian matrix, D, is not square, therefore,
D−1 does not exist. However, the concept of the Moore-Penrose generalized inverse
matrix can be employed as (Rao and Mitra 1971; Neto and Ambrósio 2003)

Dþ ¼ DTðDDTÞ�1 ð14:8Þ

such that

DDþD ¼ D ð14:9Þ

DþDDþ ¼ Dþ ð14:10Þ

and both D+D and DD+ are symmetric matrices.
Consequently,

DTðDDTÞ�1 ¼ DTðDþÞTDþ ¼ ðDþDÞTDþ ¼ DþDDþ ¼ Dþ ð14:11Þ

Thus, Eq. (14.7) can be rewritten in the following form

dq ¼ �DTðDDTÞ�1Uðq0Þ ð14:12Þ
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Since the kinematic constraint equations at the position level are, in general,
nonlinear, Eq. (14.12) must be solved iteratively by employing a numerical algo-
rithm. A Newton-Raphson algorithm to solve the nonlinear position constraints can
be stated, for i-th iteration, as (Nikravesh 2007)

This approach is effective in provide the correct initial positions, and, in general,
only a few number of iterations is necessary to converge with this Newton-Raphson
scheme.

In a similar manner, the corrected initial velocities can be written as

vc ¼ v0 þ dv ð14:13Þ

It must be stated that at this stage, the initial conditions for positions are already
corrected. Thus, from Eq. (14.13) it can be verified that

_Uðqc; vcÞ ¼ _Uðqc; v0Þ þ d _U ¼ 0 ð14:14Þ

and, hence

d _U ¼ � _Uðqc; v0Þ ð14:15Þ

Again, for small d _U, the variation of the constraint velocity equations can be
obtained from Eq. (14.2) as

d _U ¼ �Ddv ð14:16Þ

Combining Eqs. (14.15) and (14.16) yields

dv ¼ �D�1 _Uðqc; v0Þ ð14:17Þ

Introducing now Eq. (14.8) in Eq. (14.17) results in

dv ¼ �DTðDDTÞ�1 _Uðqc; v0Þ ð14:18Þ
Finally, the correction of the initial velocities can be expressed as

vc ¼ v0 � DTðDDTÞ�1 _Uðqc; v0Þ ð14:19Þ
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Chapter 15
Demonstrative Example of Application

Abstract In this chapter a simple pendulum is considered as a demonstrative
example of application of the methodologies described in the previous paragraphs.
This example allows for the comparison of the different methods to solve the
equations of motion in terms of accuracy and efficiency. Finally, the main con-
cluding remarks of the material presented here are summarized and analyzed.

Keywords Application example � Constraints violation � Spatial system
The simple pendulum is made up of one rigid body, which is connected by revolute
joint to the ground. This system is modeled with six coordinates and five kinematic
constraints, which results in a system with one degree of freedom. Initially, the
pendulum is resting in the xy plane position, as Fig. 15.1 shows. The system is then
released from this initial configuration under the gravity action only, which is taken
as acting in the negative z direction. The geometric dimension and inertia properties
of the simple pendulum are listed in Table 15.1 (Flores et al. 2008).

Long time computational simulations are performed in order to test and compare
the accuracy and efficiency of use different methods to solve the dynamic equations
of motion. For this purpose, the four approaches are considered, namely the stan-
dard method based on the technique of Lagrange multipliers, the Baumgarte
method, the penalty method and the augmented Lagrangian formulation. The
quantitative measure of the efficiency of these approaches is drawn from the con-
straint violation as ΦTΦ, as well as the number of function evaluations and the time
consumed during the dynamic simulations. Table 15.2 gives the parameters used for
the different models, required to characterize the problem, and for the numerical
methods, required to solve the system dynamics. In the present case, there is no
need for the initial conditions correction in the measure that the correct initial data
can be easily determined.

Figure 15.2 shows that when the standard method is utilized the violation of the
constraint equations grows indefinitely with time. In fact, this approach produces
unacceptable results because the constraint equations are rapidly violated due to the
inherent instability of the equations used and to the numerical errors that develop
during computation. In sharp contrast, with other methods the behavior of the simple
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pendulum is different in the measure that the level of the constraints violation is kept
under control during the dynamic simulations. Indeed, Baumgarte approach, penalty
method and augmented Lagrangian formulation, experience tells that the numerical
result does not diverge from the exact solution, but oscillates around it. Magnitude
and frequency of the oscillation depend on the values of penalty parameters.
Table 15.3 lists the number of function evaluations and the time consumed during the

x

y

z

g

Fig. 15.1 Simple pendulum modeled by one rigid body and one revolute joint

Table 15.1 Governing
properties for the simple
pendulum

Length
(m)

Mass
(kg)

Moment of inertia (kgm2)

Iξξ Iηη Iζζ
1.0 7.02 0.5855265 0.0010530 0.5855265

Table 15.2 Parameters used
for the dynamic simulations Final time of simulation 10.0 s Baumgarte-α 5

Integrator algorithm ode45 Baumgarte-β 5

Reporting time step 0.02 s Penalty-α 1 × 107

Relative tolerance 1 × 10−6 Penalty-ω 10

Absolute tolerance 1 × 10−9 Penalty-μ 1
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Fig. 15.2 Constraints
violation at the position level
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dynamic simulations for the cases described above, which can be used to have a rough
idea about the computational efficiency of the different methods.

The fundamentals of the formulation for the dynamics of spatial multibody
systems have been presented throughout this work. In first place, the definition of
multibody system, made of interconnected bodies that undergo large displacements
and rotations, was presented. In addition, basic concepts in multibody dynamics
were also introduced. The main types of coordinates that can be used in the for-
mulation of the equations of motion of constrained multibody systems were ana-
lyzed, in which their relative advantages and drawbacks were also discussed.

Displacements, velocities and accelerations are quantities frequently used to
characterize the motion properties of the multibody systems. For this purpose, a
proper system of coordinates must be adopted. In addition, special attention must be
given to the selection of the angular coordinates used to describe the orientation of
the bodies. In the study, the Euler angles, Bryant angles or Euler parameters were
presented. However, due to the singularity phenomenon associated with the Euler
angles and Bryant angles, the Euler parameters has been selected as the set of
rotational coordinates utilized to define the orientation of the bodies (Nikravesh
1988).

From the mathematical point of view, Cartesian coordinates and Euler param-
eters are the supporting structure for all methodologies and dynamic analysis
developed within the multibody systems methodologies. In the sequel of this
concept, the constraint equations associated with the basic kinematic joints, as well
as those related to the constraints between two vectors, were presented. In addition,
their contributions to the Jacobian matrix of the constraints and to the right-hand
side of acceleration constraint equations were studied (Shabana 1989; Schiehlen
1990; Jalón and Bayo 1994).

The formulation of multibody systems adopted in this work uses the generalized
coordinates and the Newton-Euler approach to derive the equations of motion. This
formulation results in the establishment of a mixed set of differential and algebraic
equations, which are solved in order to predict the dynamic behavior of multibody
systems. This approach is very straightforward in terms of assembling the equations
of motion and providing all joint reaction forces. Additionally, to the standard
method based on the Lagrange multipliers technique, three different approaches
were presented and utilized to solve the equations of motion, namely the Baumgarte
stabilization scheme, the penalty method and the augmented Lagrangian formula-
tion (Baumgarte 1972; Jalón and Bayo 1994).

Table 15.3 Function evaluations and time consumed

Method Function evaluations Time consumed (s)

Standard 1639 6.3

Baumgarte 2401 10.7

Penalty 3769 17.2

Augmented lagrangian 3769 17.6
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Under the framework of the multibody systems formulation, some of the fun-
damental forces that can act upon the bodies were also presented. These forces
include the action of gravitational field and forces due to springs, dampers and
actuators. Applied forces can be represented by force elements that act on the
system components, modifying their dynamic response and the overall motion of
the multibody systems. Moreover, the joint reaction forces, expressed in terms of
the Jacobian matrix of the constraint equations and a vector of Lagrange multipliers,
were analyzed.

In a simple way, the equations of motion for constrained multibody systems are
expressed in the Hessenberg form. A set of initial conditions imposed on the positions
and velocities is required to start the dynamic simulation. The selection of the
appropriate initial conditions plays a crucial role in the prediction of the dynamic
response of multibody systems. The subsequent initial conditions, for each time step
in the simulation, are obtained from the final conditions of the previous time
step. Then, from the initial values for positions and velocities, the equations of motion
are solved for accelerations. The positions and velocities at the next time step are then
obtained by integration of the velocity and acceleration vectors. This procedure is
repeated until the final time of simulation is reached. The integration process can be
performed by using a constant step size scheme, such as the fourth-order Runge-Kutta
method, or a predictor-corrector algorithm with both variable step and order, such as
the Gear method. The fundamental issues related to the numerical integrators used in
dynamic analysis of multibody systems were briefly analyzed.

It was demonstrated that the numerical solution of the dynamic equations of
motion requires a set of initial conditions on the positions and velocities. Moreover,
this system of equations of motion does not use explicitly the position and velocity
equations associated with the kinematic constraints. Hence, for moderate and long
time simulations, the original constraint equations start to be violated due to the
integration process and inaccurate initial conditions. Therefore, a special procedure
to avoid this phenomenon was presented, which allows for the correction of the set
of initial conditions. The described method is a simple, general and effective to
correct the initial conditions at the position and velocity levels is presented. Finally,
a simple pendulum was considered as a demonstrative example of application of the
methodologies described in the present work. This example was utilized to quantify
the accuracy and efficiency of the different methods presented to solve the dynamic
equations of motion.
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