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Abstract. A general texture description model is proposed, using topol-
ogy related attributes calculated from Local Binary Patterns (LBP).
The proposed framework extends and generalises existing LBP-based
descriptors like LBP-rotation invariant uniform patterns (LBP™*?), and
Local Binary Count (LBC). Like them, it allows contrast and rotation
invariant image description using more compact descriptors than classic
LBP. However, its expressiveness, and then its discrimination capability,
is higher, since it includes additional information, including the num-
ber of connected components. The impact of the different attributes on
texture classification performance is assessed through a systematic com-
parative evaluation, performed on three texture datasets. The results
validate the interest of the proposed approach, by showing that some
combinations of attributes outperform state-of-the-art LBP-based tex-
ture descriptors.

Keywords: Local binary pattern - Local descriptor - Texture
classification

1 Introduction

Texture recognition is a very active research topic in computer vision and pattern
recognition. One of the most popular approaches for texture classification is
based on feature distribution using Local Binary Pattern (LBP), introduced
in [1]. Since the generalised work of Ojala et al. [2], LBP is widely considered
as an efficient descriptor for capturing local properties of images. The decisive
advantages of LBPs are their low computational cost and their invariance to
monotonic changes of illumination. These good properties allow to successfully
apply LBPs not only to texture recognition, but also to many other areas of
computer vision.

In the wake of LBP’s success, many authors have introduced variants of LBP
descriptors [3] to improve the performance of classic LBP, or to better suit it to a
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specific problem. Many different aspects have been considered. For preprocessing
step, Gabor filters [4] have been used for capturing more global information.
Different neighbourhoods, such as elliptical neighbourhood [5], three or four-
patch approaches [6] have been employed to exploit anisotropic information. To
address the issue of LBP instability on near constant image areas, the Local
Ternary Patterns [7] use three values {—1,0,1} in the encoding step. Multi-
scale or multi-structure approaches [8,9] are considered to represent information
at larger scales. Liao [10] chooses the most frequent patterns to improve the
recognition accuracy. Guo et al. [11] use a complementary component related to
magnitude to improve the texture classification.

In this paper, we propose a generic approach to improve the discrimination
power of LBP by considering different geometrical and topological attributes
extracted from LBPs. The proposed framework extends and generalises several
existing LBP variants, and is also compatible (and then can be combined) with
most of the other variants.

The remaining of the paper is organised as follows. The next section presents
related works. Section 3 introduces the proposed framework, based on a family of
rotation invariant attributes extracted from LBP. Section 4 is an evaluation of the
descriptors derived from our models, compound with state-of-the-art descriptors,
for the texture classification task applied on three classic datasets.

2 LBP and Its Rotation Invariant Forms

Local Binary Patterns [2] were introduced by Ojala et al. as a contrast invariant,
binary version of the texture unit to represent its spatial structure. The binary
pattern is formed by comparing a pixel value with its surrounding neighbours.
The LBP encoding can be defined as follows:

g 1.2>0
LBPpr = s(gy —ge) - 2P, s(x) =< 7 =
PR pz:;) (9 = ge) (z) {0,otherwise

where g, represents the gray value of the centre pixel and g, (0 < p < P) denotes
the gray value of the neighbour pixel on a circle of radius R, and P is the total
number of neighbours. The sample values can be calculated by interpolation.
The concept of circular neighbourhood allows to introduce the notions of uni-
form LBP, and also of rotation invariant LBP. A LBP is said uniform if the num-
ber of bit-transitions (0-1 and 1-0) in a circular scan of the pattern is at most 2. In
texture description based on uniform LBP (denoted LBP“?), non uniform LBPs
are considered irrelevant, and then discarded or put in a single class. The rota-
tion invariant LBP is defined as follows: LBPER = OI<I?<I]P{ROR(LBPP73,Z‘)},

where ROR(x,1) corresponds to the right circular bit-wise shift of ¢ bits on P-
bit number z. Very good texture classification results have been reported [2]
using rotation invariant uniform patterns (LBP"%42).
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Zhao et al. [12] introduced Local Binary Count as a variant of LBP. It ignores
the local binary structure of LBP by only counting the number of “1” in the pat-
tern. Although they dramatically simplify the geometric structure, LBC features
have been used with success for texture classification.

3 Core Texture Model

3.1 Topology Related LBP Attributes

The local descriptors used by our texture model embed and generalise sev-
eral rotation invariant descriptors, including uniform patterns and Local Binary
Count. They are based on a family of numerical attributes that are calculated on
the original LBP. Consider the support of LBP p r as a set of P points on a circle,
where 2 consecutive points are said adjacent (see Fig. 1). Topological information
can then be extracted from the LBP using the connected components (circular
runs) of 1s in the pattern. We will consider the following attributes:

— Number of connected components of 1s (#)
— Length of the largest run of 1s (M)

— Length of the smallest run of 1s (m)

Total number of 1s (X)

All these attributes are rotation invariant. # is a topological measure, whose
importance in the characterisation of shape is attested by a number of works
in digital topology, in particular in the detection of critical points in thinning
algorithms [13]. The uniform patterns correspond to # = 1 or 0. M and m can
be seen as extensions of the uniform pattern values to non uniform patterns.
X is equivalent to the Local Binary Count. Figure 1 illustrates a non-uniform
binary pattern (10111010) of 8 bits; with # =3, M =3, m =1 and ¥ = 5.

These attributes are not independent; all configurations of values are not
possible and must respect the following constraints:

. m<M<JXY
2.0 < # < | P/2] e
3.if#=0m=M=X=0 £ Ry
4. iff#=1,1<m=M=X<P ¢ ° ®
5. if#>1,1<M<P-2#+1
6. if# >1,1<m<|P/#]|-1 . el
T if#>1, #<X<P-# e

Fig. 1. A non-uniform pat-
tern where 1 (resp. 0) is rep-
resented by red filled circle
(resp. black circle)

These properties imply that for a combination
of two or more attributes, the number of different
configurations is relatively small compared to 2F
(see also Table 1).
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3.2 Texture Modelling

The purpose of this work is to evaluate the contribution of the different attributes
in texture description. Every version of the descriptor used in the experiments
is then related to a vector of s attributes A = (A, ..., As).

Basically, we describe a texture by computing, for each pixel, the LBP and
its s attributes, and then by calculating, for the whole image, the joint histogram
of the s attributes. The number of different attribute vectors depends on P, and
on the chosen subset of attributes. In general, it is much smaller than 27, the
number of different LBPs.

In practice, to reduce the size of the histogram and the computation time of
the descriptor, we associate a unique label to every value of the attribute vector,
and pre-compute the label of all the LBP values in a label table A.

To do this, for every subset of s attributes, we create an s-dimensional array
T initialized with zeros, and a scalar counter c initialized to zero. Then we
enumerate all the LBP values n from 0 to 2 — 1, and calculate the vector
attribute A(n). If T(A(n)) is equal to zero, we increment ¢, and set T'(A(n)) = c.
In all cases, we set the label table A(n) = T(A(n)). The final value of the counter
is denoted N 4, the number of distinct vectors of attributes.

Finally we represent a texture by a histogram of labels:

H(l) = |{p; A(LBPp r(p)) = I}|

In the experiments, we shall denote the texture descriptor based on the subset of
attributes A as LBP“I‘D‘, r» following the conventional notations u2 or riu2 in LBP
based models. Figure 2 shows a texture image with its corresponding label images
and label histograms for the different configurations of LBPﬁS. In addition,

Figure 3 shows images and histograms of labels corresponding to LBP’fféw ™ for
different images, from the same texture class (first row), and from different
classes (second row). The visual (di)similarity of histograms depending on the
class is apparent on the figure.

To assess the interest of differentiating uniform patterns or not, a mixed
texture representation (LBP;{;@?*A) is also evaluated in our work, by taking
into account the above encoding only on non-uniform patterns, and using riu2
encoding for uniform patterns:

LBPL' (p), if LBPp (p) is uniform

LBPriu2+A —
PR (P) p+1+4 (LBPP,R(P)) , otherwise

3.3 Relation with Previous Works

As mentioned before, LBPﬁ r are related with other rotation invariant patterns:
LBP3'% [2] and LBC [12]. We now discuss further those relations.
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- LBPIED)R is exactly LBC. It means that if X € A, LBP;‘D‘,R is a generalisation
of LBC.

— When card(A) > 2 and (# € A or X € A), LBPPR is a superset of LBPR'
patterns. In that case indeed, riu2 patterns are dlstlngulshed either by the
value of # and anyone among {M, m, X'}, or by one of the identity M = X or
m = X.! Therefore, for such combination of attributes A4, LBP;,‘fR inherits
the distinctive properties of LBPISZ}?, while containing more information. In
this sense, LBP{, generalises LBPRY?.

— As a consequence, with the same conditions on A, the performance of LBP“I‘D" R

and LBP??"‘A are the same.
— When card(A) 1 or A={M, m} A and riu2 are complementary, and
LBP;?II‘%JFA can be better than LBP4 PR OT LBP”“2 alone.

Table 1 displays the number of labels (and then of histogram bins) for the
different configurations of attributes. Note that the numbers for LBP“I‘)" r and
LBP’;%+A are different only if card(A) =1 or A = {M, m}. In addition, Table
2 shows the number of labels for several existing LBP-based methods.

Table 1. Number of different labels, i.e. number of histogram bins of the texture
descriptor in the different configurations

Schema # M |m| XY |M# |m# (MY | Mm|#X |mY | Mm# | #MY |[MmY |#mY |#MmY
LBPZ, 5(9[ofof18 1421151818 22 | 23 | 23 | 22 23
LBP7 , 9 [17[17]17] 66 [ 36 [ 92 [ 59 [ 66 | 66 | 125 | 180 | 159 | 125 | 212
LBP3, , |13]25|25[25[146] 62 [225]135[146[146] 353 | 680 | 557 | 353 | 989
LBP, 2T A12[14[14[14] 18 [14 [ 21 [ 18 [ 18| 18] 22 | 23 | 23 | 22 23
LBP] 27" [24]30[30[30] 66 [ 36 | 92 [ 66 [ 66 [ 66 | 125 | 180 | 159 | 125 | 212
LBP,"27A[36]46[46|46] 146 | 62 225|146 |146]146] 353 | 680 | 557 | 353 | 989

Table 2. Number of different labels in several encodings

Method [(P,R)=(8,1)[(P,R)=(16,2)[(P,R)=(24,3)
LBPL % 10 18 26
LBP%?, 59 243 555
CLBPRY 200 648 1352

There is a strong link between LB with previous works aiming at

exploiting information from non-uniform patterns to improve the texture descrip-
r2u2+{2} and LBPrquJr{#}

riu2+.A
PP,R

tors. In particular LBP, are close to [14]. In this work,
the authors extended the notion of umform pattern (as the X attribute does),
and the other patterns were encoded by the number of 0-1 transitions, which
corresponds to the # attribute.

! Note that {M,m} alone do not allow to distinguish uniform patterns, since the
identity M = m can occur with several connected components.
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Fig. 2. A texture image and its label images and label histograms for the different
configurations of attributes, with (P, R) = (8,1). For the best visualization, the label
images are zoomed from a part corresponding to the red square of the texture image.

Fig. 3. Texture images and their label images and histograms for LBP?{VIm. The first
row contains images of the same class, the second row images of different classes.
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3.4 Completed Texture Descriptor

Guo et al [11] proposed a state-of-the-art variant of LBP by coding the local
differences as two complementary components: signs (s, = s(gp — g.)) and mag-
nitudes (m, = |gp — gc|). They proposed to use two binary patterns, called
CLBP-Sign (CLBP.S) and CLBP-Magnitude (CLBP_M). The first pattern is
identical to the LBP. The second one which measures the local variance of mag-
nitude is defined as follows:
P—1
CLBP Mpg =Y _ s(m, —m).2",

p=0

where m is the mean value of m, for the whole image. In addition, Guo et
al. observed that the local value itself carries important information. Therefore,
they defined the operator CLBP-Center (CLBP_C) as follows:

CLBP_C = s(gc — §).

where g is the mean gray level for the whole image. Because these operators are
complementary, their combination leads to a significant improvement, and then
CLBP is now considered a reference method in texture classification.

Inspired from this work, we also evaluated our descriptors by complementing
the difference sign information (CLBP_S) by the difference magnitude (CLBP_M)
and gray level (CLBP_C). For CLBP_S and CLBP_M, instead of using riu2 map-
ping, we apply our proposed encoding to obtain CLBP?‘,’R and CLBP,M“;"R.
Finally, the feature vector of the whole image is constructed by considering the
joint histograms of CLBP_S7, 5, CLBP_M7 5, and CLBP_C. Then, if LBPZ ; has
n different labels, CLBP# 5 has 2n? labels (sce also Table 1).

3.5 Texture Classification

Because the contribution of this work is focused on texture descriptors, and the
competing LBP based methods all used x? distance as similarity metrics [2],
and nearest neighbour as classification criterion, we used the same classification
method for fair comparison purposes. If H; and Hs are two attribute label
histograms, the y2-dissimilarity between the two textures is:

N

X*(Hy, Hy) =

i=1

with N = N4 or N = N,u2+.4 the number of labels.

(H1(i) — Ha(i))?
H, (i) + Hy(i)

4 Experiments

4.1 Datasets

The effectiveness of the proposed method is assessed by a series of experiments on
three large and representative databases: Outex [15], CUReT [16] and UTUC [17].
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The Outex database (examples are shown in Figure 6) contains images cap-
tured from a wide variety of real materials. We consider the two commonly used
test suites, Outex_TC_00010 (T'C10) and Outex-TC_00012 (TC12), containing
24 classes of textures. Each image may be seen under nine different rotation
angles between 0 and 90°. For TC10, The texture images at angle 0° are cho-
sen for training the classifier, all the remaining images are used for testing. For
TC12, aside from the different viewing angles, the images can have three types of
illumination: “inca”, used for learning, and “t184” or “horizon”, used for testing
(test sets are denoted TC12t and TC12h respectively).

R

Fig. 4. Texture images with the illumination condition “inca” and zero degree rotation
angle from the 24 classes of textures on the Outex database

The CUReT database contains 61 texture classes (see Figure 5.a), each hav-
ing 205 images acquired at different viewpoints and illumination orientations.
We follow the experimental protocol proposed in [18,19], using 4 different learn-
ing sets made of 6, 12, 23 and 46 images (first line of Table 7).

) CUReT dataset (b) UIUC dataset

Fig. 5. Examples of texture images
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The UIUC texture database includes 25 classes with 40 images in each class.
The resolution of each image is 640x480. The database contains materials imaged
under significant viewpoint variations (examples are shown in Figure 5.b). Fol-
lowing [17], to eliminate the dependence of the results on the particular training
images used, four different learning sets of 5, 10, 15 and 20 images are used while
the remaining images per class are used as test set.

In the upcoming result sections, the performance measure will be given in
percentage of correct classification. As the typical size of the test sets is around
5000, the percentage values are rounded to the first decimal. Furthermore, our
methods is practically deterministic (ignoring the slight influence of interpolation
in the computation of the LBP). Finally, the test protocol of the Outex dataset
is also deterministic, and the typical observed standard deviation in the cross
validation schemes of Curet and UIUC is less than 0.1%.

4.2 Computational Cost

We consider in this section the computational cost of our descriptors with respect
to other LBP-based operators. Experiments on Outex TC10 test suite containing
4320 images of 128 x 128 pixels were performed on a machine with 2.0 GHz CPU,
4Go RAM and Linux 3.2.0-23 kernel. Table 3 presents the computation time (in
seconds) of different descriptors in the configuration (P, R) = (2, 16) and reports
the total time (in seconds) for classifying the 3840 test images against the 480
reference images.

Table 3. Complexity of our different descriptors with respect to LBP™™? (FET: Fea-
ture Extraction Time, MT: Matching Time)

Method||riu2|| # | M | m | ¥ |M#|m# | MY |Mm|#X |mX |Mm#|#MX | MY |#mX | #MmX
FET |[78.1]|79.2|78.4|78.3|80.2(80.9(80.8|79.2(78.7|79.5|78.9| 80.3 | 80.6 | 83.3 | 83.3 | 82.2
MT 1.2 /09 |1.1]1.1|1.2|4.7]21|4.7|27[45(32| 6.9 |11.4 ] 10.1 | 6.5 13.1

As can be seen from Table 3, the descriptor construction time does not vary
much from one method to the other, while the classification time is proportional
to the length of the feature vector.

4.3 1st Experiment: LBPI“‘},R and LBP’;,’;TEZ'FA

Table 4 compares our descriptors (LBPﬁ ) with the classic LBP},@% on Outex
dataset, for different (P, R) configurations. Those results can be interpreted as
follows:

— The four attributes have distinct properties. Considered alone, their perfor-
mance is comparable to LBP?}_}?, except for #, whose expressiveness is too
weak if taken alone. /

— Jointly considering 2 attributes, the results are (except in one case) better

than LBPE'?, with an average improvement which can reach 6%.
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Table 4. Comparison between LBP™**2 and the basic LBP* on Outex dataset

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
TC10[TC12 t]TC12 h[Mean|TC10[TC12 t|TC12 h[Mean[TC10[TC12 t[TC12 h[Mean
LBP "2 [2][ 84.8 | 65.5 | 63.7 [71.3|89.4[ 823 | 75.2 [82.3|95.1| 85.0 | 80.8 |87.0
LBP 52.4 | 37.4 | 32.0 |40.6]66.5]| 51.3 | 47.1 |55.0| 77.0 | 67.5 | 58.2 | 67.6
Gain - - - - - - - - - - - -
LBPM 83.6 | 67.1 | 64.4 | 71.7|87.6| 822 | 78.9 |829]959| 88.1 | 86.4 | 90.1
Gain - 1.6 07 | 04 | - - 3.7 | 06 | 08| 3.1 5.6 3.1
LBP™ 848 | 64.5 | 62.2 | 69.9| 91.0| 829 | 77.0 |83.7| 965 | 86.2 | 80.4 |87.7
Gain 0.0 - - - 1.6 | 0.6 1.8 14 | 1.4 | 1.2 - 0.7
LBP~ 82.9 | 65.0 | 63.2 | 70.4|88.7| 82.6 | 77.4 |82.9]|91.3| 83.8 | 82.7 | 86.0
Gain - - - - - 0.3 22 | 06 | - - 1.9 -
LBPM 86.5 | 69.9 | 66.2 | 74.2]93.7] 85.3 | 82.1 |87.1]96.8 | 88.7 | 84.3 | 89.9
Gain 1.7 | 4.4 2.5 2.9 | 43 | 3.0 6.9 | 48 | 1.7 | 3.7 3.5 2.9
LBP™# 85.7 | 67.4 | 66.4 | 73.1]93.1| 859 | 81.4 |86.8|97.5| 89.3 | 85.0 | 90.6
Gain 09 | 1.9 2.7 1.8 | 3.7 | 3.6 6.2 | 45 | 24 | 43 4.2 3.6
LBPMT 85.8 | 69.7 | 66.6 | 74.0 | 92.5 | 85.9 | 82.3 | 86.9| 96.9| 89.9 | 86.0 | 91.0
Gain 1.0 | 4.2 29 | 27| 31| 36 7.1 46 | 1.8 | 4.9 52 | 4.0
LBpM™ 85.6 | 66.8 | 63.6 | 72.0|92.5| 85.4 | 82.4 |86.8|98.1| 92.2 | 87.2 |92.5
Gain 0.8 | 1.3 - 07 | 31 | 3.1 72 | 45 | 3.0 | 7.2 6.4 | 5.5
LBP#Y 87.1| 69.8 | 67.8 | 749|934 84.6 | 79.7 | 859|965 | 87.5 | 83.6 | 89.2
Gain 2.3 | 43 4.1 3.6 | 4 2.3 4.5 3.6 | 1.4 | 25 2.8 2.2
LBP™Y 86.0 | 70.1 | 66.8 | 74.3 | 92.9| 85.8 | 83.4 |87.4|97.8| 91.4 | 86.8 | 92.0
Gain 1.2 | 4.6 3.1 3.0 | 35 | 3.6 8.2 51 | 2.7 | 6.4 6.0 | 5.0
LBPM™# T858[ 705 | 68.2 [74.8[94.3] 86.8 | 842 [88.4]97.2[ 90.9 [ 86.7 [91.6
Gain 1.0 | 5.0 4.5 | 35 | 49| 35 9.0 | 6.1 | 21 | 59 5.9 | 4.6
LBP#ME 1860 | 706 | 67.9 | 74.8]93.7| 87.0 | 84.3 [883]97.2| 904 | 862 |91.3
Gain 1.2 | 5.1 4.2 3.5 | 4.3 | 4.7 9.1 6.0 | 2.1 | 5.4 54 | 4.3
LBPM™> 1860 | 706 | 67.9 | 74.8 | 94.1 | 87.3 | 84.1 | 885 | 97.0| 90.3 | 86.4 | 91.2
Gain 1.2 | 5.1 4.2 35 | 47 | 5.0 89 | 62| 1.9 | 53 5.6 | 4.2
LBP#™ 86.1 | 70.8 | 67.8 |74.9]94.1| 87.0 | 84.1 |88.4|97.4| 91.0 | 86.7 | 91.7
Gain 1.3 | 5.3 41 | 3.6 | 47 | 47 8.9 6.1 | 2.3 | 6.0 5.9 | 4.7
LBP#MmET 86,0 70.6 | 67.9 [74.8[94.1] 87.6 | 84.5 [88.7]97.1[ 90.2 | 86.4 |91.2
Gain 1.2 | 5.1 4.2 35 | 4.7 | 5.3 9.3 | 6.4 20| 5.2 5.6 | 4.2

— Using 3 or 4 attributes further improves the results, except when P = 24.
This can be explained by the fact that in this case, the number of labels is
too high, which makes the histogram too sparse for the y? distance.

In addition, Table 5 presents a comparison between LBP”“QJFA and LBPTPifj%,
when A is mono attribute or {Mm}. It can be seen that the performance of
LBPT“‘H“4 is, in most cases, better than LBPAR or LBP”“ alone.

3 . A
4.4 2nd Experiment: CLBP%

Because, when the number of labels become too large (P = 24), the use of
several attributes become really inefficient due to the very high dimension of
feature vectors, in this experiment we consider only a combination of at most
two attributes.

Table 6, 7, 8 present the results obtained by our methods CLBPA p.g on the
three datasets (Outex, CUReT and UIUC) in comparison with other LBP-based
methods. From these tables, we can make the following remarks
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Table 5. Comparison between LBP™*?, LBP* and the mixed LBP™**?T4 on Outex
dataset when A is a mono attribute or {Mm}

Method [ (P,R)=(8,1) [ (P,R)=(16,2) [ (P,R)=(24,3) |
[TC10]TC12 t[TC12 h[Mean|TC10[TC12 t][TC12 h[Mean|TC10[TC12 t|TC12 h[Mean|

[LBP™2 [2] [84.8] 6556 | 63.7 [71.3[89.4] 823 [ 752 [82.3[951] 85.0 | 80.8 |87.0]

LBP# 52.4 | 37.4 | 32.0 | 40.6 | 66.5| 51.3 | 47.1 |55.0] 77.0 | 67.5 | 58.2 | 67.6
LBP"u2+# 1853 | 66.6 | 65.7 | 72.5|91.5| 83.5 78.2 | 84.4 | 96.1 | 86.3 81.6 | 88.0
Gaing.jyo 0.5 1.1 2.0 1.3 | 21 1.2 3.0 2.1 | 1.0 1.3 0.8 1.0
Gaing 32,9 | 29.2 | 337 [31.9|25.0]| 322 | 31.1 [29.47|19.17| 18.80 | 23.37 [20.44
LBPM 83.6 | 67.1 | 64.4 | 71.7|87.6 | 82.2 | 78.9 |82.9] 959 88.1 | 86.4 | 90.1
LBP"*“2+tM 1 86.3| 68.5 | 64.6 |73.2|91.0| 84.5 | 79.9 |851|96.7| 88.1 | 84.2 |89.8
Gaingjyo 1.5 3.0 0.9 19 [ 1.6 | 22 4.7 2.8 | 1.6 | 3.1 3.4 2.8
Gain s 2.7 1.4 0.2 1.5 | 3.4 | 2.3 1.0 2.2 | 0.8 - - -
LBP"™ 84.8 | 64.5 | 622 [69.9]91.0] 829 [ 77.0 [83.7]96.5] 86.2 | 80.4 |87.7
LBP™%2+™m | 851 | 66.7 | 65.3 | 72.4|922| 851 | 80.3 |85.9|97.5| 89.1 | 84.6 | 90.0
Gaingjy2 0.3 1.2 1.6 1.1 | 2.8 | 28 5.1 3.6 | 2.4 | 4.1 3.8 3.0
Gaing, 0.3 | 22 3.1 2.5 | 1.2 2.2 3.3 2.2 | 1.0 | 29 4.2 2.3
LBP~ 82.9 | 65.0 | 63.2 |70.4[88.7] 82.6 | 77.4 [829]91.3[ 83.8 | 82.7 |[86.0
LBPTiu2+% 86.1 | 68.1 65.9 |73.4|90.1| 83.7 77.1 | 83.6 | 96.0 | 86.3 82.8 | 88.4
Gaingjy2 1.3 | 2.6 2.2 2.1 | 0.7 1.4 1.9 1.3 | 0.9 1.3 2.0 1.4
Gain sy 3.2 3.1 2.7 3.0 | 1.4 1.1 - 0.7 | 47 | 25 0.1 2.4
LBPM™ 85.6 | 66.8 | 63.6 | 72.0]92.5| 85.4 | 824 |86.8]98.1]| 92.2 | 87.2 |92.5
LBpTiu2tMm| g59 | 69.8 | 66.8 | 74.2 |93.0| 85.5 | 82.8 |87.1|98.2| 91.8 87.1 | 92.4
Gaing.jyo 1.1 4.3 1.1 29 | 36 | 3.2 7.6 48 | 3.1 6.8 6.3 5.4
Gain g 0.3 | 3.0 3.2 2.2 | 0.5 0.1 0.4 0.3 | 0.1 - - -

Table 6. Comparison between CLBP}‘D"R and other LBP-based methods on Outex
dataset

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
TC10|TC12 t|TC12 h|Mean|TC10|TC12 t| TC12 h|Mean| TC10|TC12 t| TC12 h|Mean
LBPTuZ [g)] 84.8 | 65.5 63.7 | 71.3 | 89.4 | 82.3 75.2 | 82.3 | 95.1 | 85.0 80.8 | 87.0
LTP [7] 941 | 759 | 740 |81.3|97.0| 90.2 | 86.9 | 91.3| 98.2 | 93.6 | 89.4 | 93.8
DLBP [10] 97.7 | 92.1 | 88.7 | 92.8| 98.1 | 91.6 | 87.4 | 92.4
DLBP + NGF [10] 09.1 | 93.2 | 90.4 | 94.2|98.2| 91.6 | 87.4 |92.4
CLBP_S_M/C [11] | 94.5 | 81.9 | 82.5 | 86.3 | 98.0 | 91.0 | 91.1 | 93.4 | 98.3 | 94.0 | 92.4 | 94.9
CLBP-S/M [11] 04.7 | 82.7 | 83.1 | 86.8 | 97.9 | 90.5 | 91.1 | 93.2 | 99.3 | 93.6 | 93.3 | 95.4
CLBP_S/M/C [11]] 96.6 | 90.3 | 92.3 | 93.0 | 98.7 | 93.5 | 93.9 | 95.4| 98.9 | 95.3 | 94.5 | 96.3
Our proposed descriptors
CLBP# 85.4 | 71.7 | 70.7 | 75.9 | 90.6 | 83.4 | 80.9 | 85.0 | 89.0 | 81.3 | 79.3 | 83.2
cLBPM 96.5 | 90.9 | 93.0 | 93.4 | 98.4 | 955 | 96.2 | 96.7 | 99.1 | 97.2 | 96.8 | 97.7
CLBP™ 96.7 | 905 | 91.6 | 92.9 | 99.0 | 95.6 | 94.9 | 90.5 | 99.5 | 96.7 | 96.0 | 97.4
CLBPY 97.2| 89.8 | 92.9 | 933|985 | 933 | 94.1 | 95.3 | 98.8| 94.0 | 95.4 | 96.1
cLBPM# 96.2 | 90.6 93.5 | 93.5 | 98.9 | 95.5 95.8 | 96.8 | 99.5 | 97.0 | 96.3 | 97.6
CLBP™# 96.3 | 90.4 | 92.2 | 93.0|98.9| 953 | 95.1 | 96.4|99.3 | 96.4 | 96.0 | 97.2
cLBPMY 96.3 | 91.1 | 93.4 | 93.6 | 98.9| 95.3 | 96.5 |96.9|99.4 | 94.3 | 93.4 | 95.7
cLBpMm 96.8 | 90.9 | 93.2 |93.6|98.9 | 95.7 | 95.2 | 96.6 | 99.3 | 95.5 | 93.8 | 96.2
CLBP#> 96.7 | 90.7 | 93.6 | 93.6 |99.0| 95.4 | 96.1 | 96.8 |99.6| 96.2 | 95.8 | 97.2
CLBP™ 96.5 | 90.6 | 92.3 | 93.1 [99.0] 95.23 | 96.1 | 96.8 | 99.1 | 94.6 | 93.0 | 95.5

— Except when A = {#}, CLBPﬁ g outperforms the previous methods in all
configurations.

— Between mono attributes, M is the best configuration. It means that CLBP™
outperforms CLBC [12] that is exactly CLBP~*.
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Table 7. Experimentation of CLBP 7,r on CUReT dataset?.
Method (P,R)=(8,1) (P,R)=(16,3) (P,R)=(24,5)
N=46 [N=23|N=12| N=6 [N=46 | N=23|N=12| N=6 [N=46 | N=23|N=12| N=6
LTP [7] 85.13 [ 79.25 | 72.25 [63.0992.66 | 87.30 [ 80.22 [70.50] 91.81 | 85.78 | 77.88 [67.77
LBP""“2 /VARp p [21]]93.87[88.76 |81.59|71.03[94.20 | 89.12[81.64|71.81[91.87|85.58 | 77.1366.04
CLBP S/M/C [11] | 95.6 | 91.3 | 84.9 | 74.8 | 95.9 | 92.1 | 86.1 | 77.0 | 94.7 | 90.3 | 83.8 | 74.5
CLBP S/M[11] 93.5 | 88.7 | 81.9 | 72.3 | 94.4 | 90.4 | 84.2 | 75.4 | 93.6 | 89.1 | 82.5 | 73.3
Our proposed descriptors

CLBP# 81.8 | 72.2 | 61.8 | 52.0 | 82.3 | 72.8 | 61.6 | 50.2 | 77.7 | 67.6 | 56.5 | 45.2
cLBPM 95.7 | 91.5 | 84.1 | 74.0 | 96.1 | 92.5 | 85.7 | 76.3 | 96.4 | 92.3 | 85.9 | 77.6
CLBP™ 95.8 | 91.3 | 83.8 | 73.7 | 96.8 | 92.5 | 85.8 | 77.1 | 95.4 | 91.6 | 85.4 | 77.8
CLBP~ 94.8 | 90.1 | 82.7 | 72.1 | 94.7 | 89.8 | 82.3 | 72.0 | 93.9 | 87.5 | 80.6 | 69.0
CLBP™# 95.9 | 91.7 | 84.4 | 74.5 | 97.0 | 93.2 | 86.7 | 78.2] 96.1 | 92.6 | 85.9 | 78.6

CLBPM~ 96.3 | 92.1 | 84.8 | 74.8 | 96.0 | 92.0 | 85.7 | 76.5 | x x x x
cCLBPM™ 96.2 | 91.9 | 84.7 | 74.6 | 96.7 | 93.1 | 86.7 | 78.1 | 94.5 | 90.45 | 83.8 | 77.0
CLBP#~ 96.2 | 91.8 | 84.6 | 74.8 | 96.5 | 92.7 | 86.2 | 77.1 | 93.7 | 89.0 | 81.5 | 73.8
CLBP™ 96.3 | 91.0 | 84.9 | 74.4| 96.7 | 92,5 | 86.7 | 77.1 |92.27| 88.1 | 80.6 | 73.7
cLBPM 96.3 | 92.1 | 84.7 | 75.1| 96.8 | 93.2 | 87.3 | 78.2[95.01| 91.2 |84.24] 77.1
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Fig. 6. Comparing the best results of CLBP™# with the best results of recent methods

on Outex dataset

— The combination of two attributes still improves the performance of our

Outex_TC_00010

m VZ-joint

VZ-MR8 m DLBP&NGF

95,495.4

Outex_TC_00012 (tI84)

m LBPV

95,3

Outex_TC_00012 (horizon)

CLBP_CLBC

LBP

m CLBP_S/M/C

descriptors. The improvement in relation with CLBP_S/M/C varies from
0.5% to 4.5% depending on test configurations.

In addition, Figure 6 presents the best results of one configuration (M#) in

comparison with the best results of recent methods on Outex dataset: LB
[2], LTP [7], DLBP + NGF [10

2 CLBP3 54 is not tested on this dataset.

], VZ-MRS8 [20], VZ-Joint [20

PriuQ

], CLBP_S.M/C
[11] and CLBP_CLBC [12]. As can be seen from it, because the topology-related
attributes bring more information than the typical mapping riu2, our best results
in complementary scheme improve significantly with respect to CLBP.
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Table 8. Experimentation of CLBP“P?‘,R on UIUC dataset
Method (P,R)=(8,1 (P,R)=(16,2) (P,R)=(24,3)
20 15 10 5 20 15 10 5 20 15 10 5
LBP"u2 54.6152.9|47.1|39.7||161.3|56.4|51.2|42.7|| 64.0|60.0|54.2|44.6
CLBP_S/M [19] 81.8|78.5|74.8|64.8||87.9|85.1(80.6|71.6||89.2|87.4|81.9|72.5
CLBP_S/M/C [19] 87.6|85.7(82.6|75.0(|91.0|89.4(86.3|78.6||91.2(89.2|85.978.0
CRLBP(a = 1) [22] 86.9|85.7(82.2(73.9(/92.9]91.8|88.1(82.0({93.3]92.0(89.5|81.9
Number of training images N = 20 15 10 5
Xu et al. [23] 93.8 91.3 89.7 83.3
Our proposed descriptors
CLBP# 75.0(70.8[67.0[59.5[|70.8|65.7|60.3|49.9||66.4|60.9|55.4|44.3
CLBPM 88.0185.8|82.9|75.2/92.1|90.7|87.9|81.1(/93.1|92.3|88.7|81.9
CLBP™ 87.3|84.5|81.6|73.7(|191.3(89.6(86.2|78.3[(/92.1[90.3[86.5|78.1
CLBP~ 88.1|85.6|82.8|75.2||190.8(89.4(86.7[79.9(/91.2|89.9(86.9|79.4
CcLBPM 88.1)86.2|83.2|76.0//92.5[90.9|88.4|80.8(/93.8|/92.0|89.2|81.6
CLBP™# 87.8|85.7|82.5|75.4||192.4|90.6 | 88.0|80.3(/93.5|91.6 |88.5|80.6
CLBPM¥ 88.2186.4|83.6|76.3||193.0(91.7(89.2(82.2(|94.292.7|90.0 | 82.7
CLBpM™ 88.2186.2|83.4|76.0//92.9(91.6(89.1|81.8(/94.4|92.8(90.1|82.6
CLBP#~ 88.4|86.483.6|76.3|/92.3|90.6|88.2|80.9(|93.1|91.4|88.6|80.7
CLBP™ 88.2186.4|83.4|76.3/||93.0(91.4|88.8(81.9(/94.3[92.6|89.9(82.8
5 Conclusions

We have proposed a versatile and efficient variant of LBP for texture description.
The proposed framework extends existing rotation invariant LBP based coding,
including riu2 and LBC, while enhancing their expressiveness and improving
their discrimination capability. The classification results on three recent texture
datasets prove the relevance of our framework. Used in combination with the
complemented LBP coding, it even outperforms the state-of-the art LBP based
descriptors. In the future, we plan to address the problem of high dimensionality
when using more attributes in complemented LBPs.
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