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Foreword

Welcome to Zurich !
As you know, the European Conference on Computer Vision is one of the top con-

ferences on computer vision. It was first held in 1990 in Antibes (France) with subse-
quent conferences in Santa Margherita Ligure (Italy) in 1992, Stockholm (Sweden) in
1994, Cambridge (UK) in 1996, Freiburg (Germany) in 1998, Dublin (Ireland) in 2000,
Copenhagen (Denmark) in 2002, Prague (Czech Republic) in 2004, Graz (Austria) in
2006, Marseille (France) in 2008, Heraklion (Greece) in 2010, and Firenze (Italy) in
2012. Many people have worked hard to turn the 2014 edition into as great a success.
We hope you will find this a mission accomplished.

The Chairs have decided to adhere to the classical single-track scheme. In terms
of the time ordering, we have decided to largely follow the Firenze example (typically
starting with poster sessions, followed by oral sessions), which offers a lot of flexibility
to network and is more forgiving for the not-so-early-birds and hardcore gourmets.

A large conference like ECCV requires the help of many. They made sure you again
get a full program including the main conference, tutorials, workshops, exhibits, demos,
proceedings, video streaming/archive, and web descriptions. We want to cordially thank
all those volunteers! Please have a look at the conference website to see their names
(http://eccv2014.org/people/). We also thank our generous sponsors. You will see their
logos around at several occasions during the week, and also prominently on the ECCV
2014 website (http://eccv2014.org/). Their support has been vital to keep prices low and
to enrich the program. And it is good to see such level of industrial interest in what our
community is doing!

Please do not forget to take advantage of your free travel pass. It allows you to
crisscross our splendid city with its fabulous public transportation.

We hope you will enjoy ECCV 2014 to the full.
Also, willkommen in Zürich!

September 2014 Marc Pollefeys
Luc Van Gool



Preface

Welcome to the Workshop proceedings of the 13th European Conference on Computer
Vision, held during September 6–12, 2014 in Zurich, Switzerland. We are delighted that
the main ECCV 2014 was accompanied by 28 workshops.

We received 38 workshop proposals on diverse computer vision topics. The evalu-
ation process was not easy because of the high quality of the submissions, and the final
28 selected workshops complemented the main conference program. Nearly all of the
workshops were running for a full day, with the exception of two half-day workshops
and one two-day workshop. In the end, the addressed workshop topics constituted a
good mix between novel current trends and traditional issues, without forgetting to ad-
dress the fundamentals of the computational vision area.

We would like to thank all the Workshop Organizers for their hard work and for
making the workshop sessions a great success. We hope that participants enjoyed the
workshops, together with the associated papers included in these volumes.

Kind regards / mit freundlichen Grüßen,

November 2014 Michael M. Bronstein
Lourdes Agapito

Carsten Rother
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Abstract. In order to grade objectively, referees of Tai Chi practices
always have to be very concentrated on every posture of the performer.
This makes the referees easy to be fatigue and thus grade with occa-
sional mistakes. In this paper, we propose using Kinect sensors to grade
automatically. Firstly, we record the joint movement of the performer
skeleton. Then we adopt the joint differences both temporally and spa-
tially to model the joint dynamics and configuration. We apply Prin-
cipal Component Analysis (PCA) to the joint differences in order to
reduce redundancy and noise. We then employ non-parametric Nave-
Bayes-Nearest-Neighbor (NBNN) as a classifier to recognize the multiple
categories of Tai Chi forms. To give grade of each form, we study the
grading criteria and convert them into decision on angles or distances
between vectors. Experiments on several Tai Chi forms show the feasi-
bility of our method.

Keywords: Tai Chi · RGBD sensor · Kinect

1 Introduction

Tai Chi, as shortened to Tai Chi Chuan, is a traditional Chinese martial art,
which is practiced for both its defense training and its health benefits. Because
of its soft and continuously flowing movements, Tai Chi is able to cultivate both
peoples mind and physical body into a balance system [11]. Tai Chi has become
popular internationally and many Tai Chi schools have been opened around the
world. Trainees can follow the coach in order to learn different forms in Tai
Chi. Meanwhile, there are a lot of Tai Chi national or international competi-
tions for the performers to improve their skills, such as London Competition for
Traditional Tai Chi Chuan or Tai Chi Competition in New York, etc.

In a national Tai Chi competition, there are generally eight referees sitting in
six position around the playground (see figure 1 for details). The five referees on
the edge of the playground will first manually record the scores from their own
view points and show them to the three chief referees after the performer finishing

c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-16181-5 1
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his performance. The chief referees will finally give out the final score according
to all of the scores collected. Such grading s largely based on manual works. There
are also electronic systems for Tai Chi grading utilized in national competitions.
Referees press keys on a joystick to deduce a score when he found that the
performer makes a mistake. This system, along with the manual procedures,
requires the referees concentrating on observing every posture of the performers
movement in order to give a justice grade. The referees are easy to get tired and
thus subject errors are inevitable during grading. Therefore, an automatic and
objective method is urgently needed to solve these problems.

Fig. 1. The position of the referees

To facilitate the manual works, the first task is to work on recognizing
different forms of Tai Chi performance. For automatic human action recogni-
tion, traditional methods may work on video sequences captured by a single
camera. In this case, a video is a sequence of 2D RGB frames in time series.
In [1,3,8–10], the spatio-temporal volume-based method have been proposed to
compute and the similarity between two action volumes are compared to rec-
ognize the action. Another trend of methods is based on motion trajectory for
recognizing human activities [13,14]. Human actions were interpreted by the
movement of a set of body joints. In [18], naive Bayes mutual information maxi-
mization (NBMIM) is introduced as a discriminative pattern matching criterion
for action classification.

However, it is not easy to extract and track skeleton joints from 2D video
sequences quickly and accurately until the launch of Microsoft Kinect sensors.
The Kinect sensor is able to capture RGB sequences as well as depth maps
of human action in real time. With its associated SDK or OpenNI, we could
model human actions by the motion of a set of key joints [6] with reasonable
accuracy. There are applications or research with Kinect supporting martial art
practices, such as the Kinect Sports game, the posture classification of Muay
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Thai [7], etc. Human action and activity recognition with Kinect become pop-
ular research topics recently [5,12,16]. In order to have a fast, simple yet pow-
erful recognition,[15] proposes an actionlet ensemble model to characterize the
human actions, which represents the interaction of a subset of human joints.
Zanfir et. al. [19] introduce a non-parametric Moving Pose (MP) descriptor con-
sidering both pose information as well as differential quantities (speed and accel-
eration) of the human body joints.

Inspired by [17], this paper first record the joint movement of the perform-
ers skeleton. Then we adopt the joint differences both temporally and spatially
to model the joint dynamics and configuration. We apply Principal Component
Analysis (PCA) to the joint differences by reducing redundancy and noise. We
then employ non-parametric Nave-Bayes-Nearest-Neighbor (NBNN) as a classi-
fier to recognize the multiple categories of Tai Chi actions.

After the system has recognized the action of the performer, the next task
is to mark the quality of the performers action. We convert the text description
of the criteria into the grading decisions on angles or distances between vectors.
Experiments on several sample Tai Chi Chuan actions show the feasibility of our
method. Note that we have used only one Kinect sensor for grading. We plan
to use six Kinect later similar to the position configuration of the referees in
figure 1 so that the grading results will be comparable to those by the referee.

This paper is organized as follows. Section 2 introduces the feature extraction
and dimension reduction. Section 3 provides our classifier for action recognition.
Section 4 studies the grading rules and converts them into programmable deci-
sions. Then Section 5 summarized the implementation steps. The experimental
results are shown in section 6. Finally, section 7 gives the conclusions.

Fig. 2. The joints on the skeleton in OpenNI.
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2 Feature Extraction

The human skeleton captured by Kinect sensor could have n joints and their
respective 3D positions are Xk (k = 1, ..., n). In OpenNI, n = 15. The joint
3D positions Xk = {xk, yk, dk} are indicated by head, neck, torso center, left
shoulder, left elbow, left hand, left hip, left knee, left foot, etc. as shown in
figure 2. These joints are defined by the Kinect skeletal tracking system. The
joints have hierarchy that the torso center joint as the root and extends to the
head, feet and hands. Note that the three coordinate of a joint Xk = {xk, yk, dk}
are of inconsistent coordinates, e.g. {xk, yk} are in screen coordinates and dk is
in world coordinate. Therefore the data normalization has to be first applied
to Xk to avoid bias attributes in greater numeric ranges dominating those in
smaller numeric ranges.

An action Ai could be represented by a sequence of frames fij (j = 1, ..., Ni),
where fij is a vector containing n coordinates of skeleton joints,

Ai = {fi1, fi2, ..., fiNi
}, (1)

fij =

⎛
⎜⎜⎜⎜⎜⎜⎝

Xhead

Xneck

Xleftshoulder

Xleftelbow

. . .
Xrightfoot

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

X3

X4

. . .
Xn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)

To characterize the action features, we first set the initial frame to approxi-
mate the neutral posture. Then we form the preliminary feature representation
for each frame by the combination of three feature channels as fc = [fcc, fcp, fci]
(see figure 3 in detail).

Fig. 3. The framework of representing Eigen features. In each frame, we obtain three
feature sets, fcc, fcp and fci to capture the information of offset, posture, and motion.
The normalization and PCA are then applied to obtain Eigen features descriptor for
each frame.
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Here fcc is the pair-wise joints differences within the current frame, i.e.,

fcc = {Xc
s − Xc

t |s, t = 1, 2, ..., n; s �= t}, (3)

which is used to characterize the joints’ static posture information of current
frame-c. fcp is the pair-wise joints differences between the current frame-c and
its preceding frame-p, i.e.,

fcp = {Xc
s − Xp

t |s, t = 1, 2, ..., n}. (4)

fcp is used to capture the dynamic property of current frame-c. Finally, to rep-
resent the overall dynamics of the current frame-c with respect to the initial
frame-i, the pair-wise joints differences fci are computed between frame-c and
frame-i, i.e.,

fci = {Xc
s − Xi

t|s, t = 1, 2, ..., n}. (5)

By making use of PCA, we could then reduce redundancy and noise in fc. As
a result, we obtain the Eigen features Ej representation for each frame fij . Most
energy could be covered in the first few leading eigenvectors and 95% redundant
data could be removed.

3 Action Recognition with NBNN Classifier

The Naive-Bayes-Nearest-Neighbor (NBNN) [2] is used here as the classifier for
Tai Chi action recognition. The Nearest-Neighbor (NN) has several advantages
over most learning-based classifiers. First, it doesn’t require the time-consuming
learning process. Second, the Nearest-Neighbor naturally deals with a large num-
ber of classes. Third, it avoids the over fitting problem. Instead of using NBNN-
based image classification [3], we use NBNN-based video classification for Tai
Chi action recognition. We directly compute Video-to-Class distance rather than
Video-to-Video distance. Therefore the action recognition is performed by

C∗ = arg min

Ni∑
j=1

||Ej − NNc(Ej)||2, (6)

where NNc(Ej) is the nearest neighbor of Ej in class-C.

4 Converting Grading Criteria to Angles or Distances
between Vectors

From the methods of previous sections, each Tai Chi form could be recognized
correctly. Now the next task is to convert the Tai Chi grading criteria of each
action into programmable rules. We first need to study the details of the Tai Chi
grading criteria [4].

Let’s look at Tai Chi Chuan 24 forms. We analyze each form and its grading
criteria and found that some of the criteria are related with angles between two
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bones. Here is an example that a straight arm is forbidden in Tai Chi Chuan
competitions. As the competition rules, the arms should always in bending (see
figure 4 for detail).

Fig. 4. Only a bend instead of a straight arm is allowed in Tai Chi Chuan competitions

Therefore, we first get the joint points of the shoulder, the elbow and the hand
Xshoulder, Xelbow , Xhand. Then we can get the upper arm bone as the vector
Bua = Xshoulder −Xelbow and the lower arm bone as the vector Bla = Xelbow −
Xhand. Then the angle θ between Bua and Bla can be calculated as

θ = arc cos
(

Bua · Bla

|Bua||Bla|
)

. (7)

Therefore according to the creteria, if the angle θ is close to 180o, corresponding
marks will be deducted.

Other criteria may relate to the distance between two joint points or the
distance between a joint point and the ground plane. For example, if the per-
former performs the lunge motion (see figure 5 for detail), he is not allowed to
drag his step on the ground when he moves his left foot. So we need to calculate
the distance between the left foot and the ground plane. With the depth of the
points on ground captured by Kinect, we can easily calculate the ground plane
Pg : ax+by+cz+d = 0. The normal of the ground plane can be directly obtained
as Ng = (a, b, c). Thus the distance Dxp between the joint point X = (x, y, z)
and the plane Pg is

Dxp =
|ax + by + cz + d|√

a2 + b2 + c2
. (8)

Here that Dxp is the least distance that performers left foot should raise from
the ground. Note that different people has different height, so that the distance
would be varied. The body size should be scaled to a reference size first before
we measure Dxp.
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Fig. 5. In a lunge motion arm, the performer is not allowed to drag his step

5 Implementation

To implement this Tai Chi grading system, first we have to prepare a database
for storing the joint positions of standard expert’s actions captured by a single
Kinect sensor. For each action, we normalize the data and form the feature
matrix. Then we apply PCA to the feature data to reduce the data dimension.

During testing, when the system detect a new video input from Kinect, the
referee has to indicate the start and end frame for different actions of the per-
former. Then for each action, the joint positions are stored and then normalized.
We now use them to form the feature matrix. PCA will be applied to the per-
former feature data to reduce the data dimension. Thereafter, we can decide
which category the performer belongs to by using NBNN classifier.

Within each action category, corresponding grading criteria are applied to
postures such that the postures are graded objectively. Finally, the overall grade
for the performer is provided automatically by the system.

The detailed procedures can be described in the following algorithm.

6 Experimental Results

Since we use OpenNI for developing our Kinect system, there are 15 joints in
each frame. After normalization, we will have a huge feature dimension. fcc,
fcp and fci contains 105, 255 and 255 pair-wise comparisons, respectively. Since
each comparison generates three values (Δx,Δy,Δd), this results in a dimension
of 3 × (105 + 255 + 255) = 1845. Then PCA is applied to reduce redundancy
and noise to obtain the Eigen features representation for each frame. From our
experiments, the 95% energy is covered in the first 13 leading eigenvectors.

We take Tai Chi Chuan 24 forms as the example. Table 1 lists the details of
the 24 forms and totally there are 33 postures.

Here we use the commencing position and its corresponding grading criteria
for example. We will describe how to qualify criteria with conditional decisions.
In figure 6, it is clear to see the postures for the commencing position.
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Algorithm 1. Tai Chi Grading Procedure with a Kinect Sensor.
1: prepare a database for storing the joint positions of standard expert’s actions cap-

tured by a Kinect sensor;
2: normalize the data stored;
3: for each action, form the feature matrix fc with equation (3), (4), (5) (see section

2);
4: apply PCA to the feature data to reduce the data dimension;
5: during testing, the referee indicates the start and end frame for each action of the

performer;
6: then for each action, the joint positions are stored and also normalized;
7: form the feature matrix;
8: apply PCA to the performer feature data to reduce the data dimension;
9: decide which category the performer belongs to by using NBNN classifier with

equation (6);
10: within each action category, apply corresponding grading criteria to each postures

by making use of equation (7) and (8);
11: the overall grade for each action is summed automatically in order to get the

total mark.

Table 1. Tai Chi Chuan 24 forms

1. Commencing position 2. Part the wild horses mane to both sides (3)
3. White crane spreads its wings 4. Brush knee and twist hip on both sides (3)
5. Hand strums the lute 6. Repulse the monkey both sides (4)
7. Grasp the birds tail, left side 8. Grasp the birds tail, right side
9. Single whip 10. Wave hands like clouds (3)
11. Single whip 12. High pat on horse
13. Kick with the right heel 14. Strike opponents temple with fists
15. Turn body and kick left heel 16. Squatting and standing on one leg left side
17. Squatting and standing on one leg right side 18. A fair maiden threads the shuttle both sides
19. Pluck needle from the sea bottom 20. Open fan through the back
21. Turn body wrench, parry, punch 22. Apparent close-up
23. Cross-hands 24. Closing form

(a) (b) (c) (d) (e)

Fig. 6. Commencing position.

The following shows the grading rules and how to translate it into conditional
decisions.
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– Open two feet (see figure 6 (b) for detail). If the feet do not have the same
width with that of the shoulders, 0.1 point will be deducted. To convert
the criteria into qualified rules, we first connect the two foot joints and also
connect the two shoulder joints. If the length of the two line segments has
apparent difference or they are not perpendicular to the normal of the ground
plane, we will deduct 0.1 point.

– Slowly raise the two arms forward horizontally (see figure 6 (c) for detail).
If the hand or elbow joints are higher than the shoulders, 0.1 point will be
deducted. We calculate the distance from the hand / elbow joints to the
ground plane and the distance from the shoulder joints to the ground plane.
If the former ones are larger than the later, we will deduct 0.1 point.

– Move the arms up (see figure 6 (d)) and then down (see figure 6 (e) for
detail). If one of the elbow joints is above the hand joints, 0.1 point will
be deducted. We calculate the distance from the elbow joints to the ground
plane and the distance from the hand joints to the ground plane. If the
former is larger than or equal to the latter, we will deduct 0.1 point.

Fig. 7. Tai Chi Grading Interface

Here we only show three rules for grading the commencing position. There are
in fact 8 rules in our implementation for grading each form in Tai Chi 24 forms.
Through the study and on-the-spot investigation of Tai Chi, Tai Chi grading
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criteria are converted into the quantified rules by applying different algorithms
introduced in section 4.

Figure 7 illustrates the user interface of our system. The skeleton joints are
shown together with the input video. The deducted grade and which rule is
broken are illustrated in the bottom. And the total grade is given in the top left
panel.

7 Conclusions

In this paper, we introduced a Tai Chi Chuan grading system with the Microsoft
Kinect sensor. We first capture the joint movement of the performers skeleton.
Then we record the joint differences both temporally and spatially to model the
joint dynamics and configuration. Principal Component Analysis is then allied
to the joint differences in order to reduce redundancy and noise. Then non-
parametric Nave-Bayes-Nearest-Neighbor (NBNN) is employed as a classifier to
recognize the multiple categories of Tai Chi forms. To grade the quality of each
posture, we convert the competition grading criteria into decision on angles or
distances between vectors. Experiments on several sample Tai Chi Chuan forms
show the feasibility of our method.

Due to the slow and smooth motion of Tai Chi Quan, our method works well
in the good indoor environment. In the future, we need to extend our work so
that the method could be used to grade Tai Chi performance in real playground
environment. Furthermore, separate forms are evaluated but not the motion
coherence which is very important in Tai Chi performance. We would next focus
on the motion coherence. Another future work is to use multiple Kinect sensors
to capture skeleton joints and provide grading. Six Kinect sensors are required as
their positions can be located as those of the referees in figure 1. The individual
grading will be collected and a statistical result is expected to give the final
grade. This could also solve the self-occlusion problem caused by the performer
rotation.

Acknowledgments. This work is supported by the National Natural Science Founda-
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Abstract. One popular approach for human action recognition is to
extract features from videos as representations, subsequently followed by
a classification procedure of the representations. In this paper, we inves-
tigate and compare hand-crafted and random feature representation for
human action recognition on YouTube dataset. The former is built on
3D HoG/HoF and SIFT descriptors while the latter bases on random
projection. Three encoding methods: Bag of Feature(BoF), Sparse Cod-
ing(SC) and VLAD are adopted. Spatial temporal pyramid and a two-
layer SVM classifier are employed for classification. Our experiments
demonstrate that: 1) Sparse Coding is confirmed to outperform Bag
of Feature; 2) Using a model of hybrid features incorporating frame-
static can significantly improve the overall recognition accuracy; 3) The
frame-static features works surprisingly better than motion features only;
4) Compared with the success of hand-crafted feature representation, the
random feature representation does not perform well in this dataset.

Keywords: Action recognition · Hand-crafted feature · Random repre-
sentation

1 Introduction

Recognizing human action is a significant branch of computer vision and attract-
ing increasing attentions due to its widely applications like crime monitoring
and human-computer interaction. Generally, the recognition task can be simply
viewed as a combination of two subtasks: extract features as representations from
video frame sequence, and subsequent classification of the video representations.
Among the two subtasks, one key point is to built such a feature representation
which contains the main structure of an action and robust to background clutter-
ing, illumination and scale changes etc. Substantial approaches of exploring the
feature representation have been proposed and proven successful in action recog-
nition, such as 3D HoG [8], HoG/HoF [10], extended SURF [19]. These feature
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 14–28, 2015.
DOI: 10.1007/978-3-319-16181-5 2
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representations are all hand-crafted and need to be computed by a specific math-
ematical manner. Recently, random feature representation has been popular in
texture recognition [15], face recognition [20], and medical image analysis [13].
However, little work has been reported on applying the random feature represen-
tation into video based action recognition. Therefore, in this paper, we evaluate
and compare these two different feature representations for action recognition
task. We have three main contributions: (1) a comparative study of different com-
binations of existing schemes for video action recognition based on hand-crafted
feature representation and report the best combination whose performance is
competitive to one of the state-of-art techniques on the same dataset; (2) Inves-
tigate the popular random feature representation to see whether it is a feasible
approach for video based human action recognition; (3) Investigate the role of
frame-static features and motion features for action recognition on the popular
YouTube dataset.

The rest of this paper is organized as follow: Section 2 reviews relevant liter-
ature of approaches for action recognition; Section 3 describes each component
of designed algorithm in details; Section 4 indicates the implementations and
experiment results; Conclusions and future work are given in Section 5.

2 Related Work

The approach for action representations can be generally divided into two cat-
egories: global representations and local representations. For the former, the
human body is first located in the image. Then the person referred as inter-
est of region (ROI) would be encode as a whole. Local representation is a more
popular approach which describes the observation as a collection of local descrip-
tors or patches. Dollár et al.[5] extract a cuboid by 3D Gabor filter and then
concatenated the gradients for each pixel in the cuboid to form the descrip-
tors. Laptev et al.[10] introduced the HoG/HoF descriptors which compute his-
tograms of both spatial gradient and optic flow accumulated in neighbourhood
regions around the interest points. Klaser et al.[8] extend HoG to 3D and build
the 3D HoG descriptor. It is based on histograms of 3D gradient orientations
which is uniformly quantized by regular polyhedrons in an integral video repre-
sentation. Based on the image SURF descriptor [1], Willems et al.[19] present
the extended SURF descriptors for videos. The 3D patches is uniformly divided
into small girds first then each cell is represented by a vector of weighted sums
of responses of the Haar-wavelets along the three axes. Liu et al.[14] firstly
extract static feature in a video frame as the complementary of motion feature
to build representation of the video, which outperforms using motion feature
only. Le et al.[12] combined with deep learning techniques to use unsupervised
feature learning as a way to learn features directly from unlabelled video data.
Wang et al.[18] extract the dense trajectories and motion boundary descriptors
from the video as the representation. As the motion boundary descriptors can
reduce the affects of camera motions effectively, it makes a huge progress in the
realistic videos based action recognition and can be treated as the state-of-the-
art.
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3 Method

Motived by [14] and consider the large variation in realistic videos, we strongly
believe that static feature like a static pose in a single frame also contains impor-
tant action contextual information which can provide strong cues and thus be
served as a complementary of motion feature for action recognition. Motivated
by this observation, we investigate the role of motion and static feature for action
recognition and build a hybrid model upon them for both hand-crafted and ran-
dom feature representation. The flowchart of our work is shown in Figure 1. We
will follow this flowchart to describe our algorithm in details.

Fig. 1. The flowchart of video based recognition

3.1 Spatial-Temporal Interest Points Detection

Spatial-temporal interest points are the locations in space and time domain
where a significant variation occurs in the local neighborhood. We apply the
extension of Gabor filter proposed by Dollar et al. [5] to extract the 3D inter-
est cuboids, which capture the most important characteristics of the movement
occurring in the video. The response function has the form:

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (1)

where g(x, y;σ) is the 2D Gaussian smoothing kernel for spatial dimensions, and
hev and hod are a quadrature pair of 1D Gabor filters applied temporally. They
are defined as:

hev(t; τ, ω) = −cos(2πtω)e−t2/τ2
(2)

hod(t; τ, ω) = −sin(2πtω)e−t2/τ2
(3)

where ω = 4/τ . The interest points are located in the local maxima correspond-
ing to the response function. The parameter σ and τ correspond to the spatial
and temporal scale of the detected cuboid. We set the size of the cuboid to 19 ×
19 × 11 pixels. Some examples of interest cuboids detected by the 3D Gabor
detector on video frame sequence are shown in Figure 2.

3.2 Hand-Crafted Feature Representation

The visual content of a video segment can be represented by a set of descriptors
computed at every interest point position within its near cuboid region. It is
obvious that the oriented gradient can capture spatial information while optic
flow is able to catch the movement information. Therefore, we adopt the 3D
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(a)

(b)

Fig. 2. Example of 3D interest cuboids detection. (a) original frames; (b) cuboids
detected by 3D Gabor filter (best viewed in colour).

HoG/HoF descriptor similar to Laptev et al. [10], which computes histograms of
both oriented gradient and optic flow accumulated in spatial-temporal interest
cuboids.

Specifically, the 3D interest cuboid is firstly smoothed and divided into
3 × 3 × 2 grid of cells; for each cell, 4-bin histograms of gradient (HoG) and
5-bin histograms of optic flow (HoF) are calculated based on the oriented direc-
tion. Then the normalized histograms from each small grid are concatenated to
form the local descriptor. We employ PCA to reduce the dimensionality to 200
experimentally.

Using motion feature only may not be distinct enough, especially for the
unrestricted videos like YouTube action dataset. Intuitively, The static feature
can be viewed as a very strong complementary. To extract static feature, we
sample temporally at every 15 frames from the frame sequence of the video. For
each frame, we build SIFT descriptors [16] upon dense sampling grid. Addition-
ally, multi-scale static feature is achieved by changing the size of the static image
by multiplying 1/

√
2.

3.3 Random Feature Representation

We employ random projection to build random feature representation. The key
idea of random projection originated from the Johnson-Lindenstrauss lemma [4]: if
points in a high dimension are projected onto a randomly selected subspace of suit-
able dimension, then the distance between points are approximately preserved. In
practice, the original d-dimensional data is projected to a k-dimensional (k << d)
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subspace using a random matrix k×d matrix R whose columns have unit lengths.
It can be represented by:

XRP
k×N = Rk×dXd×N (4)

As before, we apply the random projection on both motion feature and static
feature to form the random feature representation. Specifically, for each extracted
cuboid, we first normalize the intensity of each pixel within the cuboid and then
uniformly divide the cuboid into 2 × 2 × 2 grids. Assume the size of each grid is
w × h × t pixels so for each grid we identify gray-scale vector v ∈ R

d(d = wht)
by stacking the intensities; then use random projection to reduce dimensionality
and form the random feature descriptor. The random matrix R is defined as
the Gaussian measurement matrix whose elements are independent, zero-mean,
unit-variance Gaussian random variables. Finally the projected vectors for each
sub-cuboid are concatenated to form the local descriptor of the whole cuboid.

Similarly, for the static feature extraction, we use dense sampling as before on
each sampled video frame sequence. For each dense point, the patch whose size
is the same as that of SIFT descriptors is extracted and the gray-scale vector
is formed by stacking the intensities. Then random projection is employed to
generate the local static random descriptors.

3.4 Descriptors Encoding

As the number of local descriptors extracted by the above methods varies from
each video, distinguishing these descriptors from different classes of action directly
is not straightforward. A popular approach is to firstly learn a codebook contain-
ing a fixed number of visual words based on the training descriptors set, then
encode the descriptors with the codebook.

A simple but effective method to learn the codebook is K-means clustering
algorithm. The main idea is to minimize the sum of squared Euclidean distances
between points xj and their nearest cluster vk:

arg min
V

k∑
i=1

∑
xj∈Vi

‖xj − vk‖2 (5)

where V = [v1, ...,vk]� are the target codebook with K cluster centers. We
propose 2-level K-means clustering to generate the codebook: for each class of
action, apply K-means for the first level clustering, then based on the first level
results, the K-means clustering is applied again to create the final codebook.
The size of codebook is set to 256.

We mainly evaluate two popular encoding methods: Bag of Feature (BoF)
and Sparse Coding (SC) [21] for both feature representations. Moreover, we
extra evaluate Vector of Locally Aggregated Descriptors (VLAD) [7] for random
feature representation.
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Bag of Feature. Let X be a set of descriptors in a D-dimensional feature space,
X = [x1, ...,xM ]� ∈ R

M×D. The Bag of Feature quantization problem can be
re-formulated into a matrix factorization problem:

min
U

M∑
m=1

‖xm − umV‖2

subject to Card(um) = 1, |um| = 1,um � 0,∀m

(6)

where U = [u1, ...,uM ]� is the cluster membership indicators and V is the pre-
calculated codebook. The cardinality constraint Card(um) = 1 means that only
one element of um is nonzero, and |um| indicates that the summation of the
absolute value of each element in um. After obtaining the encoded descriptor set
U, the video can be represented by frequencies of each visual word. Since the
number of visual words is fixed for all descriptors sets, a video with arbitrary
number of descriptors is then converted into a single histogram vector whose
length equals to the number of visual words. This provides extreme convenience
for the future classification processing.

Sparse Coding. The constraint for BoF model Card(um) = 1 is too restrictive
to reconstruction X with low error. We can relax the constraint by making um

to have a small number of nonzero element. Meanwhile, the number of nonzero
element is enforced to be minimum. Then the BoF is turned into another problem
known as Sparse Coding:

min
U,V

M∑
m=1

‖xm − umV‖2 + λ |um|

subject to ‖vk‖ � 1,∀k = 1, 2, ...,K

(7)

Similar to BoF, in the training stage a set of training descriptors are used
to solve Equation 7 with respect to U and V. The conventional way for such a
optimization problem is to iteratively optimize either over U or V while fixing the
other. We set the initial codebook V of Sparse Coding as the result generated by
K-means algorithm described above instead of using a random initialization. This
processing can make the objective function more optimized when the number of
iteration is fixed.

Each column of U corresponds to the coefficients of all the local descriptors to
one specific visual word in the codebook V, we adopt the max pooling function
for SC, which has been well established by biophysical evidence and empirically
justified by many image categorization algorithms. It can be represented by:

zj = max
{|u1,j | , |u2,j | , ..., |uM,j |

}
(8)

where zj is the j-th element of z, ui,j is the matrix element at i-th row and j-th
column of U.
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Vector of Locally Aggregated Descriptors. Besides BoF and SC, we eval-
uate another encoding method: vector of locally aggregated descriptors (VLAD)
[7] for random feature representation. The idea of the VLAD is to accumulate the
difference between each visual word vi and the descriptor xi which is assigned to
that visual word. Note that VLAD can be viewed as a non-probabilistic version
of the Fisher Vector [17]. Therefore, if the local descriptor is d-dimensional, the
dimension D of VLAD would be D = k × d. A component ui,j of VLAD can be
obtained by summing over all the local random feature descriptors:

ui,j =
∑

x belong to vi

xj − vi,j (9)

where the indices i = 1...k and j = 1...d index the visual word and the local
descriptor component respectively.

3.5 Spatial-Temporal Pyramid

All the encoding methods described above only capture the statistical character-
istic of the descriptors set. None of spatial and temporal layout of geometrical
features has been taken into consideration. Spatial Pyramid Matching (SPM)
proposed by [11] overcomes this limitation in still image classification. It works
by partitioning the image into increasingly fine sub-regions and computes his-
tograms of local descriptors over the resulting sub-regions. The final feature
vector is formed by concatenating histograms of each sub-region with the corre-
sponding weight of each level of pyramid. The spatial pyramid is a simple and
computationally efficient complement of an orderless BoF image representation.
It has shown significantly improved performance over the standard BoF model
as it describes the observations as a collection of local representations, which are
somewhat invariant to changes in scale, illumination and partial occlusions.

We extend this approach to 3D by adding subregions with respect to temporal
domain. The spatial-temporal pyramid is built by uniformly dividing the frame
sequence of video into 2 × 2 × 2 grids for the first level and 3 × 3 × 3 grids
for the second level. The descriptor set of each subregion is a set of descriptors
whose corresponding interest points are located within such a subregion. Then
the local characteristics in totally 36 subregions are calculated by BoF or SC
or VLAD with corresponding local descriptors set. Finally, for BoF or VLAD,
we concatenate the weighted histograms of each subregion of video to form a
feature vector of the video; while for SC, the corresponding coefficients to the
local descriptor sets in each subregion are concatenated, then the max pooling
function is applied to form the representation of the video.

3.6 Support Vector Machine

The size of feature vectors of videos generated by Spatial-Temporal Pyramid
(STP) approach would be very large. For example, a feature vector of a video
constructed by 3-level uniformly distributed pyramid and 256 visual words would
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have 9216 attributes. If these feature vectors are directly classified by SVM
classifiers, it would be very computationally expensive on the training stage,
especially for large dataset involving thousands of videos.

We build a two-layer SVM classifiers system for classification processing
based on [22]. The structure of the two-layer SVM classifiers system is shown in
Figure 3. In the first layer, the vectors produced by the same pyramid level in
different videos are classified separately using χ2 kernel. The decision values out-
putted by the first layer for each video against the corresponding class label can
be viewed as an abstract descriptors of the particular pyramid level of videos.
Then the decision values from each pyramid level are concatenated and classified
again by RBF kernel.

Fig. 3. The two layer SVM classifier structure

The two-layer SVM classifiers have the following attractive properties: 1) The
decision values represent the descriptors set in a more concise way and are more
robust to the effect of noise. 2) it can combine different types of feature effectively.
In our case, it is better to match the kernel in different spatial temporal pyramid.
3) the second layer SVM assigns weights based on action classes for each pyramid
level instead of assigning it to the visual words of different levels directly. 4) this
would enable parallelized computing to make the overall process more efficient.
All these properties leads to better results than the standard SPM method with
traditional one-layer SVM classifier.

4 Experiments

4.1 Dataset

The video dataset we used is the YouTube action dataset from [14]. The videos
in this dataset are mostly collected from YouTube and captured under uncon-
trolled condition so they contain significant camera motion, background clutter,
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illumination changes, viewpoint changes and objects scale changes. All these
properties of this video dataset make it closer to the realistic video data, but
also push precise recognition more highly challenging.

YouTube action dataset contains 11 action categories: basketball shooting,
cycling, diving, golf swing, horse-back riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking and walking with a dog. In
order to remove the unfair effect of the same background in recognition, the
videos in each kind of action are split into 25 groups, where each group has
different actors, backgrounds, viewpoints. Our experiments setup is the same as
that proposed in [14]. There are totally 1168 videos for use and leave-one-out
group cross validation is used. All the colorful videos are convert into gray-level
before further processing.

4.2 Hand-Crafted Feature Representation

Firstly, we evaluated BoF and SC encoding combined with spatial temporal
pyramid based on the motion feature only. The results are shown in Figure 4. As
expected, it can be observed that SC achieves higher accuracies in most classes
of action as well as the overall accuracy 64.98% than that 60.10% of BoF. We
explained this improvement as that SC can achieve a much lower reconstruction
error due to the less restrictive constraint, although it is more computationally
expensive.

Fig. 4. The classification accuracies generated by BoF and SC based on the motion
feature.

The number of static local descriptors can be tens of thousands. Because of
the high memory requirement, the static feature is built by only BoF due to its
low computational complexity. The overall accuracy based on static feature built
on original frames is 65.33%, while the accuracy based on static feature built
on multi-scale frames is 66.52%. There is no significant improvement between
multi-scale and original static feature. Therefore, we discard multi-scale static
feature for decreasing the computational complexity and use the original static
feature only for the rest experiments.
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We also evaluated the motion model, static model and hybrid model. The
motion model is based only on motion feature encoded by SC while the static
model is based only on static feature encoded by BoF. The hybrid model is to
combine the motion feature and static feature. The results are shown in Figure 5.
Intuitively, motion feature and static feature are complementary for action recog-
nition. And this has been proven by our experiment that the accuracy of hybrid
model is higher than eithor motion or static model in every class of action recog-
nition as well as the overall accuracy, which is 75.51%, 64.98%, 65.33% for hybrid,
motion and static model respectively. The hybrid model has the better perfor-
mance over 10% than both motion and static model, which is impressive. Hence,
it can be concluded that the hybrid model can achieve the best results, and
not only motion feature but also static feature plays a significant role in action
recognition. It can be also observed that the static model works surprisingly bet-
ter than motion model. We explain this improvement by the fact that the dense
feature contain more useful information than the interest points based feature.
The confusion table for classification using hybrid model is shown in Figure 6.

Fig. 5. The classification accuracies generated by motion, static and hybrid model

Lastly, we compared our method based on hand-crafted feature representa-
tion with the state-of-art on the same dataset (see Table 1). It can be clearly
seen that our method is competitive with the state-of-art. Specifically, our frame-
work is quite similar with Liu et al. [14] but our overall accuracy (75.51%) is
higher than theirs (71.2%). Note that the highest accuracy (85.4%) proposed by
Wang et al. [18] is much higher (over 10%) than all other methods because they
adopted the dense trajectories feature on building motion feature, which is very
computational intensive and memory consuming.

4.3 Random Feature Representation

The parameter settings for building random feature representation is the same as
building the hand-crafted feature representation described above. We also eval-
uated the parameters of random feature representation by grid search. Firstly,
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Fig. 6. The confusion table for classification using hybrid model

Table 1. The comparison with the state-of-art

Liu et al. (2009) [14] 71.2%
Ikizler-Cinbis and Sclaroff (2010) [6] 75.21%

Brendel and Todorovic (2010) [3] 77.8%
Le et al. (2011) [12] 75.8%

Bhattacharya et al. (2011) [2] 76.5%
Wang et al. (2013) [18] 85.4%

Our method 75.51%

we searched for the appropriate projected dimension n. The sub-feature vector
is projected into 25, 50, 100, 200 dimensions so that the dimensionality of the
final local descriptor would be 200, 400, 800 and 1600 respectively. Note that for
the descriptors with 1600 dimensionality, we sampled 400 descriptors from each
video to generate the codebook due to the high memory requirement. Another
parameter we try to optimize is the size of the cuboid, the size employed in
building hand-crafted feature representation (19×19×11 pixels) is taken as the
benchmark.

The results based on the diverse projected dimensions are shown in Figure 7.
It can be seen that the accuracies over diverse dimensions of descriptors are all
fluctuated around 50% and there is no significant difference between each dimen-
sionality. In addition, no obvious tendency of improvement or decreasing over the
diverse dimensions can be observed. Therefore, we conclude that the projected
dimension is not an important factor that affects the final classification accuracy.
The projected dimension is then fixed to 200 as same as hand-crafted descriptors
due to its lower computational complexity and for the sake of comparisons.
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Fig. 7. The accuracies based on the descriptors projected to 200, 400, 800 and 1600
dimensions by random projection on the extracted cuboid with the size of 19× 19× 11
pixels

To investigate the effect of size of cuboid, we conducted a set of experiments
based on 3 different spatial size and 2 different temporal size. The results of total
6 experiments with different cuboid sizes are shown in Table 2. Again, all the
results fluctuated between 45% and 50% and there is no significant improvement
among them. The best result we got is 51.97% with the 19×19×11 pixels cuboid
size. Therefore, changing the size of the extracted cuboid would not improve the
performance.

In addition, the result applying VLAD encoding method is 55.65% based on
the 200 dimension random descriptors and 128 visual words, which is similar to
that of using SC (55.31%). As expected, the result of VLAD is better than BoF
(51.97%) and the computational time is much less than SC but at the cost of
consuming memory.

Table 2. The results based on different sizes of the cuboid with a fixed projected 200
dimension

11 × 11 × 11 11 × 11 × 23

50.26% 45.89%

19 × 19 × 11 19 × 19 × 23

51.97% 48.03%

39 × 39 × 11 39 × 39 × 23

44.09% 46.40%

4.4 Comparisons

We also evaluated the random descriptors on the static model and the hybrid
model. Again, the hybrid model can achieve about 8% improvement on overall
accuracy over the motion and static model. The best results we obtained for
random feature representation and the corresponding results generated by the
hand-crafted feature are list in Table 3.
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Table 3. The comparison between the random feature and the hand-crafted feature
representation

Method Random Feature Hand-crafted Feature

motion - BoF 51.97% 60.10%

motion - SC 55.31% 64.98%

static - BoF 51.54% 65.33%

Combined 62.50% 75.51%

From the Table 3, we can see that there is a big difference between results
from the two proposed feature representations. For each evaluation of encoding
method, the performance of hand-crafted feature is over 10% higher than that
of random feature, which cannot be ignored. As the framework, encoding and
classifiers parameter settings are totally the same for evaluating both feature
representation, we can conclude that the random feature representation does
not perform well in this YouTube action dataset although it is simple to be
implemented and successful in other recognition domains. Recall that random
projection is a power tool in dimensionality reduction and should be benefi-
cial in the cases where the distances of the original high dimensional data are
meaningful. Therefore, we explained this failure of random feature representa-
tion for possibly one reason that the original distance or similarities information
contained by the extracted cuboids are themselves suspect so that the random
feature descriptors are not distinct enough to be classified.

5 Conclusions

In this paper, we investigate and compare two different feature representations
for video based human action recognition: hand-crafted and random feature rep-
resentation. The former is built by 3D HoG/HoF descriptors for motion feature
and SIFT descriptors for static feature while the latter is based on random pro-
jection. Three popular approaches of encoding descriptors: BoF, SC and VLAD
are applied. Additionally, spatial temporal pyramid and a two-layer SVM clas-
sifier are employed for classification processing.

For the motion feature of both representations, we evaluated both BoF and
SC encoding methods. The results confirms that SC outperforms BoF as indi-
cated in object recognition community. Based on the performance of the motion,
static and hybrid model, we found that using hybrid features of motion and
static can significantly improve the overall recognition accuracy which only uses
motion features. Therefore, as complementary of the motion feature, the static
feature plays an essential role in action recognition on this dataset and supris-
ingly it even works better than motion feature only. Compared with the success
of the popular hand-crafted feature representation such as 3D HoG/HoF, SIFT
descriptors for action recognition, the proposed random feature representation
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based on random projection does not perform well in this dataset. This is proba-
bly due to the suspect of original information contained by the extracted cuboids
as well as the random error.

The overall accuracies over YouTube action dataset based on random features
is far behind the state-of-art performance. For the future work, the random fea-
ture based approach would be experimented on other datasets, such as HMDB51
dataset [9] and Hollywood movie dataset [10].
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Abstract. This paper addresses the problem of recognizing human
interactions with close physical contact from videos. Different from con-
ventional human interaction recognition, recognizing close interactions
faces the problems of ambiguities in feature-to-person assignments and
frequent occlusions. Therefore, it is infeasible to accurately extract the
interacting people, and the recognition performance of an interaction
model is degraded. We propose a patch-aware model to overcome the two
problems in close interaction recognition. Our model learns discrimina-
tive supporting regions for each interacting individual. The learned sup-
porting regions accurately extract individuals at patch level, and explic-
itly indicate feature assignments. In addition, our model encodes a set
of body part configurations for one interaction class, which provide rich
representations for frequent occlusions. Our approach is evaluated on the
UT-Interaction dataset and the BIT-Interaction dataset, and achieves
promising results.

1 Introduction

Automatic understanding human actions in videos is important to several real-
world applications, for example, video retrieval, video annotation, and visual
surveillance. These videos often contain close interactions between multiple peo-
ple with physical contact (e.g., “hug” and “fight”). This raises two major chal-
lenges in understanding this type of interaction videos: the body part occlusion
and the ambiguity in feature assignments (features such as interest points are
difficult to be uniquely assigned to a particular person in close interactions).

Unfortunately, the aforementioned problems are not addressed in exist-
ing interaction recognition methods [1,11,12,24]. Methods in [1,11] use track-
ers/detectors to roughly extract people, and assume interactions do not contain
close physical contact (e.g., “walk” and “talk”). Their performance are limited
in close interactions since the feature of one single person may contain noises
from background or the other interacting people. Feature assignment problem is
avoided in [12,24] by treating the interaction people as a group. However, they
do not utilize the intrinsic rich context of the interaction. Interest points have
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t KickPatch-aware model

Fig. 1. Example of the inference results of our patch-aware model. Our model recog-
nizes human interaction and discriminatively learns the supporting regions for each
interacting people.

shown that they can be mainly associated with foreground moving human bod-
ies in conventional single-person action recognition methods [13,21]. However,
since multiple people present in interactions, it is difficult to accurately assign
interest points to a single person, especially in close interactions. Therefore,
action representations of people are extremely noisy and consequently degrade
the recognition performance.

In this paper, we propose a novel patch-aware model for solving the aforemen-
tioned problems in close human interaction recognition from videos (Figure 1).
Our model learns discriminative supporting regions for each interacting per-
son, which accurately separate the target person from background. The learned
supporting regions also indicate the feature-to-person assignments, which con-
sequently help better represent individual actions. In addition, each interaction
class associates with a variety of supporting region configurations, thereby pro-
viding rich and robust representations for different occlusion cases.

We propose a rich representation for close interaction recognition. Specif-
ically, we introduce a set of binary latent variables for 3D patches indicating
which subject the patch is associated with (background, person 1 or person 2),
and encourage consistency of the latent variables across all the training data.
The appearance and structural information of patches is jointly captured in
our model, which captures the motion and pose variations of interacting peo-
ple. To address the challenge of an exponentially large label space, we use a
structured output framework, employing a latent SVM [6]. During training, the
model learns which patterns belong to the foreground and background, allowing
for better labeling of body parts and identification of individual people. Results
show that the learned supporting patches significantly facilitate the recognition
task.

Our work differs from [1,2,11,14] in that they can only deal with interac-
tions that do not contain close physical contact (e.g. “queueing” and “talking”)
while our method specifically aims at recognizing close interactions. Different
from [17,19,24] which treat the interacting people as a group, our model pro-
vides fine-grained supporting regions for each interacting person, which allows us
to recognize individual action. Although methods in [18,22] can roughly extract
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each interacting person using a tracker or detector, they do not model 3D patches
and background, and cannot accurately separate people. Our method, in con-
trast, captures different importance of 3D patches in interaction classes and thus
can accurately separate people.

2 Related Work

Multi-person activity recognition has been receiving much attention in computer
vision community. Methods in [2,11] studied the collective activity recognition
problem using crowd context. People in a collective activity have no close physical
contact with each other and perform similar action, e.g. “crossing the road”,
“talking”, or “waiting”. Specifically, Choi et al.[2] utilized human pose, velocity
and spatiotemporal distribution of individuals to represent the crowd context
information. They further developed a system that can simultaneously track
multiple people and recognize their interactions [1]. Lan et al.[11] represented
crowd context by action co-occurrence of interacting people. Odashima et al.[14]
proposed the Contextual Spatial Pyramid to detect the action of multiple people.

Human interactions, e.g. “hug”, “push”, and “hi-five”, usually involve fre-
quent close physical contact. Perez et al.[15] investigated interaction recogni-
tion between two people in realistic scenarios. They adopted a human detector
to extract individual in videos. However, the ambiguities in feature-to-person
assignments during close physical contact remains a problem. Ryoo and Aggar-
wal [18] utilized body part tracker to extract each individual in videos and
then applied context-free grammar to describe spatial and temporal relation-
ships between people. To avoid the extraction of individual people, approaches
in [12,19,24] treat interacting people as a group and recognize their interactions
based on group motion patterns.

Human-object and object-object interaction have also been investigated in
recent work. Gupta et al.[8] incorporated rich context derived from object class,
object reaction, and manipulation motion into Bayesian models for recogniz-
ing human-object interaction from videos and static images. Mutual context
of objects and human poses was explored by Yao and Fei-Fei [23]. Their work
showed that using mutual context, solving human pose estimation and object
detection problems simultaneously can greatly benefit each other. A dynami-
cally multi-linked Hidden Markov Model was proposed by Gong and Xiang [7]
for recognizing group actions involving multiple objects. Desai et al.[3] encoded
geometric configurations of objects and human pose in contextual models for
recognizing human-object interactions (e.g. tennis-serve and tennis-forehand).

3 Interaction Representation

Our approach takes advantage of 3D spatiotemporal local features to jointly
recognize interaction and segment people in the interaction. Given a video, a
visual tracker is applied to extract interacting people from each other, and also
differentiate them from the background at a patch-level. In each bounding box,
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Fig. 2. Illustration of feature representation. We extract both interest points and track-
let from 3D patches.

spatiotemporal interest points [5] and tracklet [16] are computed within each
3D patch, and described using the bag-of-word model [5,12,13] (Figure 2). Spa-
tiotemporal patches are obtained by decomposing a video of size R × C × T
into a set of non-overlapping spatiotemporal 3D patches, each of which is of size
r × c × t. Similar to action representation based on histograms of video words
[5,13,17], we describe each patch by the histogram of video words within the
patch.

Noted that the detected interest points and tracklet are mainly associated
with salient regions in human body; few of them are associated with background.
This results in an inexpressive representation for background. Our aim in this
paper is to extract each interacting people from the interactions and thus the
background must be described.In this paper, we augment virtual video words
(VVWs) to describe background.

The idea of VVWs is to build a discriminative feature for background so that
background and foreground can be well differentiated. Consider the features of
patches as data points in a high-dimensional space. Then patch features associ-
ated with foreground are distributed subjecting to an unknown probability. We
would like to define some virtual data points for background and make them as
far as possible from those foreground data points in order to make these two-
class data points well separated. Since we use linear kernel in the model, the
best choice for virtual data points is the one that can be linearly separated from
foreground data points). In our work, we use origin point for virtual data points,
i.e. all the bins in the histogram of a 3D patch which have no video words in it
are set to 0.

4 Patch-Aware Model

Given the representation of an interaction video, our goal is to determine the
interaction class (e.g.“push”) as well as infer supporting regions for each inter-
acting person. These 3D regions in this work can be associated with background
or one of the interacting people.
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Suppose we are given N training samples {x(i), y(i)}N
i=1, where x ∈ R

D

denotes the video feature and y ∈ Y is the interaction class. Our purpose is
to learn a discriminative function fw : x → y, which infers the interaction
class for an unknown interaction video. To model the supporting regions for
each interacting person, we introduce a set of auxiliary binary latent variables
{hj}M

j=1 ∈ H (hj ∈ {0, 1}), each of which associates with one patch. hj = 0
denotes that the j-th patch is associated with the background and hj = 1 means
it is with foreground. Note that intra-class variability leads to different patch
configurations in certain interaction classes. For instance, in “handshake”, some
people would like to pat the other people while shaking hands with the people
but some do not like that. We solve this problem by treating regions as latent
variables and inferring the most probable states of latent variables in training.
An undirected graph G = (V, E) is employed to encode the configurations of these
patches. A vertex hj ∈ V (j = 1, · · · ,M) corresponds to the j-th patch and an
edge (hj , hk) ∈ E corresponds to the dependency between the two patches.

We define the discriminative function as

f(x;w) = arg max
y

[
max
h

F (x,h, y;w)
]

(1)

where h is vector of all latent variables. The scoring function F (x,h, y;w) is used
to measure the compatibility between between the video data x, the interaction
class y and the latent patch labels h.

We model the scoring function F (·) as a linear function F (x,h, y;w) =
〈w,Φ(x,h, y)〉 with w being model parameter and Φ(x,h, y) being a feature
vector. Specifically, the scoring function F (·) is defined as the summation of four
components:

F (x,h, y;w) =
∑
j∈V

αTψ(xj , hj , y) +
∑
j∈V

βTθ(xj , hj)

+
∑
j∈V

γT
j η(hj , y) + λTπ(x, y), (2)

where w = {α, β, γ, λ} is model parameter, xj is the feature extracted from the
j-th patch.

Class-specific PatchModel. αTψ(xj , hj , y) models the agreement between
the observed patch feature xj , the patch label hj and the interaction class y. The
definition of the feature vector ψ(xj , hj , y) is given by

ψ(xj , hj , y) = 1(y = a) · 1(hj = b) · f(xj), (3)

where f(xj) denotes the local feature of the j-th patch and 1(·) is an indicator
function. In our work, f(xj) encodes both appearance information and struc-
tural information of the j-th patch: f(xj) = [fa(xj), fs(xj)]. The appearance
information fa(xj) is the distribution of words in the patch, and the structural
information fs(xj) is the location of the patch. To compute the structural feature
fs(xj), we discretize the bounding box into M patches and the spatial location
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feature of a patch xj can be represented as a vector of all zeros with a single 1
for the bin occupied by xj . We apply a template α of size (D + M) × H × Y on
the feature function ψ(xj , hj , y) to weigh the different importance of elements
in the feature function, where Y is the number of interaction classes, and H is
the number of patches labels. Each entry in αyhcm can be interpreted as, for
patch of state h, how much the proposed model prefers to see a discriminative
word in the m-th bin when the codeword is c and the interaction label is y. The
class-specific patch model αTψ(xj , hj , y) can be regarded as a linear classifier
and scores the feature vector ψ(xj , hj , y).

The model encodes class-specific discriminative patch information which is
of great importance in recognition. Note that the patch label h is unobserved
during training and the feature function defined above models the implicit rela-
tionship between an interaction class and supporting regions. During training,
the model automatically “aware” the supporting regions for an interaction class
by maximizing the score F (x,h, y;w).

Global Patch Model. βTθ(xj , hj) measures the compatibility between the
observed patch feature xj and the patch label hj . We define the feature function
θ(xj , hj) as

θ(xj , hj) = 1(hj = b) · f(xj), (4)

where f(xj) is the local feature of the j-th patch used in the class-specific patch
model. This model encodes shared patch information across interaction classes.
It is a standard linear classifier trained to infer the label (0 or 1) of the j-th patch
given patch feature xj . The parameter β is a template, which can be considered
as the parameter of a binary linear SVM trained with data {xj , hj}M

j=1.
Essentially, the global patch model encodes the shared patch information

across interaction classes. For example, since we use a tracker to obtain a bound-
ing box of an interacting person, this person tends to appear in the middle of
the box and thus the patches in the middle of the box are likely to be labeled as
foreground. This information is shared across all interaction classes and can be
elegantly encoded by our global patch model.

Class-specific Structure Model. γT
j η(hj , y) encodes the structural infor-

mation of patches in one interaction class. Intuitively, human poses are different
in various interaction classes. Although this information are unobserved in train-
ing samples, we treat them as latent variables so that they can be automatically
discovered during model training. The class-specific structure model is given by

η(hj , y) = 1(hi = b) · 1(y = a). (5)

Clearly, the label of a patch is related to its location. Therefore, we use a set of
untied weights {γ}M

j=1 for the j-th patch, each of which is of size H × Y , where
M is the number of patches. The class-specific structure model expresses the
prior that, without observing any feature, given an interaction class a, which
state of the j-th patch is likely to be.

The class-specific structure model expresses the idea that, without observing
any low-level feature, given an interaction class a, which state of the j-th patch
is likely to be. The model shows its preference by scoring the feature vector
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η(hj , y) using a weight vector γj . Since the feature vector is a 0 − 1 vector, if an
entry in γj(b, a) is positive, the model encourages labeling the j-th patch as b
when current interaction class is a.

Global Interaction Model. λTπ(x, y) is used to differentiate different
interaction classes. We define this feature vector as

π(x0, y) = 1(y = a) · x0, (6)

where x0 ∈ R
d is a feature vector extracted from the whole action video. Here we

use the bag-of-words representation for the whole video. This potential function
is essentially a standard linear model for interaction recognition if other compo-
nents are not considered. If other potential functions in Eq.(2) are ignored, and
only the global interaction potential function is considered, the parameter λ can
be learned by a standard multi-class linear SVM.

Discussion. The proposed patch-aware model is specifically designed for
interaction recognition with close physical contact. Compared with exiting inter-
action recognition methods [1,2,11,14,17–19,22,24], our model accounts for
motion at a fine-grain patch level using the three components, the class-specific
patch component, the global patch component, and the class-specific structure
component. These three components model the appearance and structural infor-
mation of local 3D patches and allow us to accurately separate interacting people
at patch-level. To our best knowledge, our work is the first one that provides sup-
porting patches for close interaction recognition, which can be used to separate
interacting people.

5 Model Learning and Testing

Learning. The latent SVM formulation is employed to train our model given
the training examples D = {x(n), y(n)}N

n=1:

min
w,ξ

1
2
‖w‖2 + C

∑
n

(ξn + σn) (7)

s.t. max
h

wTΦ(x(n),hy(n) , y(n)) − max
h

wTΦ(x(n),h, y) (8)

� Δ(y, y(n)) − ξn,∀n,∀y,

μ(hy(n) , y(n),hy, y) � σn,∀n,∀y, (9)

where w denotes model parameter, ξ and σ are slack variable that allow for
soft margin, and C is the soft-margin parameter. Δ(y, y(n)) represents the 0-1
loss function. μ(hy(n) , y(n),hy, y) in Constraint (9) enforces the similarity over
latent regions for training videos. Our assumption is that, for videos in the
same category, they are likely to have the same latent variable values. We define
μ(hy(n) , y(n),hy, y) as

μ(hy(n) , y(n),hy, y) =
1
M

d(hy(n) ,hy) · 1(y = y(n)), (10)
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where d(·, ·) computes the Hamming distance between the two vectors. The
optimization problem (7-9) can be solved using the latent SVM framework [6].

Computing Subgradient. The above optimization problem can be effi-
ciently solved by the non-convex cutting plane algorithm [4]. The key idea of this
algorithm is that, it iteratively approximates the objective function by increas-
ingly adding new cutting planes to the quadratic approximation. The two major
steps of the algorithm are to compute the empirical loss R(w) =

∑
n(ξn + σn)

and the subgradient ∂R
∂w .

The computation of a subgradient is relatively straight-forward, assuming
the inference over h can be done. Denote the empirical loss R(w) as R(w) =∑

n Rn(w), then the subgradient can be computed by

∂R

∂w
= Φ(x(n),h∗, y∗) − Φ(x(n),h′, y(n)), (11)

where (h∗, y∗) and h′ are computed by

(h∗, y∗) = arg max
y,h

wTΦ(x(n),h, y) + Δ(y(n), y), (12)

h′ = arg max
h

wTΦ(x(n),h, y(n)) − μ(hy(n) , y(n),h, y). (13)

Testing. Given an unknown interaction video, we assume that the interac-
tion region in the video is known. Our aim is to infer the optimal interaction
label y∗ and the optimal configurations of 3D patches h∗:

max
y

max
h

wTΦ(x,h, y). (14)

To solve the above optimization problem, we enumerate all possible interaction
classes y ∈ {Y} and solve the following optimization problem:

h∗
y = arg max

h
wTΦ(x,h, y),∀y ∈ Y. (15)

Here, the latent variables h are connected by a lattice. In this work, we adopt
loopy belief propagation to solve the above optimization problem.

Given the latent variable vector h∗
y, we then compute the score fw(x,h∗

y, y) =
wTΦ(x,h∗

y, y) for all interaction classes y ∈ Y and pick up the optimal interac-
tion class y∗ which maximizes the score F (x,h∗

y, y;w).

6 Experiments

6.1 Datasets

We test our method on the UT-Interaction dataset [20] and the BIT-Interaction
dataset [9]. UT dataset consists of 6 classes of human interactions: handshake,
hug, kick, point, punch and push. The UT dataset was recorded for the human
activity recognition contest (SDHA 2010) [20], and it has been used by several
state-of-the-art action recognition methods [17,19,24]. BIT dataset consists of
8 classes of human interactions: bow, boxing, handshake, high-five, hug, kick,
pat, and push. Each class contains 50 videos, with a total of 400 videos.
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Fig. 3. Confusion matrix and classification examples of our method on UT dataset

6.2 Experiment Settings

We extract 300 interest points [5] from a video on both datasets. Gradient
descriptors are utilized to characterize the motion around interest points. Prin-
cipal component analysis algorithm is applied to reduce the dimensionality of
descriptors to 100 and build a visual word vocabulary of size 1000. We use a
visual tracker to obtain a bounding box for each interacting people. Then a
3D volume computed by stacking bounding boxes along temporal axis is split
into non-overlapping spatiotemporal cuboids of size 15 × 15 × 15. We use the
histogram of the video words in a 3D patch as the patch feature.

We adopt the leave-one-out training strategy on the UT dataset. The split
training strategy is applied on BIT dataset to train our model. 272 videos are
randomly chosen for training our patch-aware model and the remaining videos
are used for testing.

6.3 Experimental Results

Results on UT-Interaction dataset. On UT dataset, we first evaluate the
recognition accuracy of our method and report supporting region results. Then
we compare with state-of-the-art methods [10,11,13,17,24].

Recognition Accuracy. We test our method on UT dataset and show the
confusion matrix in Figure 3. Our method achieves 88.33% recognition accuracy.
Confusions are mainly due to visually similar movements in two classes (e.g.
“push” and “punch”) and the influence of moving objects in the background.
Classification examples are illustrated in Figure 3.

Eq.(5) defines a class-specific structure model for all classes. It would be
interesting to investigate the performance of a shared pose prior. We replace
the class-specific structure prior in Eq.(5) with a shared one which is defined
as η(hj , y) = 1(hi = b). Results are shown in Table 1. The accuracy difference
between the two priors is 5%. This is mainly due to that motion variations in
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(a) handshake (b) hug (c) kick (d) point (e) punch (f) push

Fig. 4. The learned supporting regions on the UT dataset

individual actions are significant. The model with class-specific prior is able to
learn pose under different classes, and benefits the recognition task.

Table 1. Accuracies of different pose prior on UT dataset

Pose prior shared class-specific

Accuracy 83.33% 88.33%

Supporting Regions. The learned supporting regions on the UT dataset
are shown in Fig. 4. Our model can accurately discover supporting regions of
interacting people. This is achieved by finding the most discriminative regions
(e.g. hand and leg) that support an interaction class. Note that some videos in the
UT dataset have background motion, e.g.,“point”, which introduces noise in the
video. However, our model uses the structure prior component in Eq. (5) and
the consistency Constraint (9) to enforce a strong structure prior information on
the patches, and thus can determine which patches are unlikely to be associated
with foreground. This leads to accurate patch labeling results. Some of the patch
labels are incorrect mainly due to intra-class variations. People in an interaction
class may behave differently according to their personal habits. This increases
the difficulty of learning class-specific pose prior.

Comparison Results. We evaluate the value of components in the proposed
model, including the global interaction model, the structure prior model, and the
patch models. We remove these from our patch-aware model respectively, and
obtain three different methods: the no-GI method that removes global interaction
potential λTπ(x, y), the no-SP method that removes the structure prior potential
γT

j η(hj , y), and the no-CGP method which removes both class-specific and global
patch model αTψ(xj , hj , y) and βTθ(xj , hj) from the full model.

We compare our full model with previous methods [11,13,17,24], the no-GI
method, no-SP method and no-CGP method, and adopt a bag-of-words repre-
sentation with a linear SVM classifier as the baseline. Results in Table 2 show
that our method outperforms all the comparison methods. It should be noted
that our method learns supporting regions, which can be used to separate people
while the methods in [11,13,17,24] cannot achieve this goal.

Results in Table 2 show that our method outperforms [11,13,17,24]. The
baseline bag-of-words method simply uses low-level features for recognition. By
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Table 2. Recognition accuracy (%) of methods on the UT dataset.

Methods Function handshake hug kick point punch push Overall

bag-of-words only Rec. 70 70 80 90 70 70 75
no-GI method Rec. and Seg. 20 30 40 30 10 20 25
no-SP method Rec. and Seg. 70 80 70 70 80 80 75
no-CGP method Rec. and Seg. 80 90 70 90 80 80 81.67
Liu et al.[13] only Rec. 60 70 100 80 60 70 73.33
Lan et al.[11] only Rec. 70 80 80 80 90 70 78.33
Yu et al.[24] only Rec. 100 65 75 100 85 75 83.33
Ryoo & Aggarwal [17] only Rec. 80 90 90 80 90 80 85
Our method Rec. and Seg. 90 90 80 100 80 90 88.33

comparison, our method treats cuboid variables as mid-level features and utilize
them to describe local motion information. With rich representation of interac-
tion, our method achieves superior performance. Our method outperforms the
method proposed in [17]. Their method uses structural information between
interest points to aid recognition. In this work, we adopt a different scheme
to encode structure information of interest points. The information is encoded
by the location of spatiotemporal cuboids which contains the interest points.
Besides, the learned supporting regions in our model can also be used to sep-
arate people in interactions while their method cannot. Lan et al.[11] utilized
action context to recognize interactions. We argue that action context may not
able to capture complex action co-occurrence since individual motion could be
totally different in an interaction class. Thus modeling the action context may
not capture significant motion variations in individual actions. We infer an inter-
action based on the mid-level patch features. The mid-level features we build can
provide detailed regional motion information of interactions and thus improve
recognition results. Compared with [24], our method learns supporting regions
to separate people while [24] treats interacting people as a group and do not
consider separation.

Evaluation on BIT-Interaction Dataset. We conduct two groups of experi-
ments on BIT dataset. First, we test the recognition performance of our method,
and show the results on supporting regions and the structure prior. We then test
the effectiveness of each component in our patch-aware model.

Recognition Results. In the first experiment, we test the proposed method
on BIT dataset. The confusion matrix is shown in Figure 5(a). Our method
achieves 85.38% accuracy in classifying human interactions. Results show that
the method can differentiate interactions in various challenging situations, e.g.
partially occlusion and background clutter (Figure 5(b)). This is mainly due
to the modeling of the supporting regions. In such challenging scenarios, the
supporting regions of each interacting people can be accurately inferred by the
patch-aware model according to their appearance and structural information. If
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Fig. 6. The learned supporting regions on the BIT dataset

the region belongs to the interacting people, the model would assign high weights
to the feature extracted from that region and thus more trust the region. If not,
the feature extracted from the region will receive low weight and thus play trivial
role in interaction recognition.

Most of the misclassifications are due to the visual similarity, e.g. “boxing”
and “push”, “pat” and “boxing”. In addition, some temporal segments in the
classes of “boxing” and “push” are shared with other classes. For example, in
“boxing”, some early segments are visually similar to some “hug” segments. Both
of them are “stretching out hand”. Since we adopt voting strategy for classifi-
cation, these misclassified segments would result in the misclassification of the
video. Moreover, some of misclassifications are due to significant occlusion in
which the extracted interest points are no discriminative enough for differenti-
ating interactions.

Supporting Regions. Results in Figure 6 show that our model can accu-
rately find supporting regions for interacting people in close interactions. For
example, in “hug” interaction (Figure 6(e)), the supporting regions of two close
people can be accurately labeled. Our model essentially conducts a refinement
in the bounding box. It utilizes both appearance and structure information of
patches, and learns latent pose prior for each interaction class. The optimal patch
label configuration (supporting regions) that maximizes the score of an interac-
tion class are automatically discovered in the learning procedure. The learned



Modeling Supporting Regions for Close Human Interaction Recognition 41

supporting regions overcome the problem of ambiguity in feature assignments
and thus facilitate the recognition task. Some of the labels are incorrect. This is
mainly due to intra-class variations. People in an interaction class may behave
differently according their personal habits. This increases the difficulty of learn-
ing class-specific pose priors. We do not fully use temporal information in our
model since the inference on a loopy graph is inefficient.

Structure Prior. We encode the shared structure prior potential function
into our patch-aware model (refer to as SS model) and compare it with the
proposed model defined in Eq.(2) (called full model). Results in Table 3 indicate
that the full model outperforms the SS model. The reason can be explained from
the view of parameters. For j-th patch, a shared prior for the patch is associated
with parameter γj where γj is a vector of length H. This shared model is too
simple to capture pose variations among all the classes. By comparison, a class-
specific prior for the cuboid is associated with parameter γj where γj is a vector
of length Y ×H. With a more complex structure prior, the full model can easily
capture large pose variations and separate background and foreground for each
interaction class. Thus the recognition performance is improved.

Table 3. Accuracies of different pose prior on BIT dataset

Pose prior shared class-specific

Accuracy 80.47% 85.38%

Comparison Results. In this experiment, we evaluate the value of compo-
nents in the proposed method, including the global interaction potential, the
structure prior potential, and the potential encoding appearance and struc-
ture information of observations. We remove these from our patch-aware model
respectively, and obtain three different methods: the no-GI method that removes
global interaction potential λTπ(x, y), the no-SP method that removes the
structure prior potential γT

j η(hj , y), and the no-CGP method which removes
the appearance and structure information of observations αTψ(xj , hj , y) and
βTθ(xj , hj) from the full model. Our patch-aware model is compared with these
three methods as well as the baseline bag-of-words representation with a linear
SVM classifier.

Table 4 indicates that our method outperforms all the baseline methods.
The performance gain achieved by our method over the baseline bag-of-words
method is significant since our model is able to automatically infer the sup-
porting regions and treat them as mid-level features. As expected, our method
significantly outperforms the no-GI method, which emphasizes the importance
of global interaction potential in interaction recognition. The global interaction
potential function can be considered as a standard linear model for interaction
recognition without considering other components. Without this potential, the
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Table 4. Recognition accuracy (%) on the BIT dataset. R. and S. are short for recog-
nition and segmentation, respectively.

Methods Func. bow boxing handshake high-five hug kick pat push Overall

bag-of-words only R. 81.25 75 50 75 81.25 68.75 62.5 68.75 70.31
no-GI model R. & S. 20.31 20.31 25 18.75 37.5 18.75 31.25 18.75 23.83
no-SP model R. & S. 75 68.75 68.75 75 68.75 87.5 81.25 68.75 74.22
no-CGP model R. & S. 62.5 56.25 62.5 87.5 81.25 87.5 87.5 68.75 75
Lan et al.[11] only R. 81.25 75 81.25 87.5 87.5 81.25 81.25 81.25 82.03
Ours R. & S. 87.5 81.25 87.5 81.25 87.5 81.25 87.5 87.5 85.38

model mainly focuses on the cuboid features which would be not discriminative
enough. The results of the proposed method are higher than the no-SP method,
which indicates the effectiveness of the structure prior in recognition. Without
the structure prior, the no-SP method is unable to capture mid-level features
in cuboids. The information the no-SP model can capture is simply the noisy
low-level features rather than meaningful regional information. Since the seg-
mentation and recognition tasks are smoothly connected in our work, the lack of
semantic understanding of cuboids would influence the recognition results. As a
result, the recognition accuracy of the no-SP method is decreased. The full model
outperforms the no-CGP method. The appearance and structure information in
the full model serves as local features and complements the global interaction
information. The local features are able to describe local motion of interaction
and provide detailed information. With appearance and structure information,
our method can recognize more challenging interaction videos and thus achieves
higher results.

7 Conclusion

We have proposed a novel model for jointly recognizing human interaction and
segmenting people in the interaction. Our model is built upon the latent struc-
tural support vector machine in which the patches are treated as latent variables.
The consistency of latent variables are encouraged across all the training data.
The learned patch labels indicate the supporting regions for interacting people,
and thus solve the problems of feature assignment and occlusion. Experiments
show that our method achieves promising recognition results and can segment
people at patch level during an interaction, even in a close interaction.
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Abstract. A family of novel texture representations called Ffirst, the
Fast Features Invariant to Rotation and Scale of Texture, is introduced.
New rotation invariants are proposed, extending the LBP-HF features,
improving the recognition accuracy. Using the full set of LBP features, as
opposed to uniform only, leads to further improvement. Linear Support
Vector Machines with an approximate χ2-kernel map are used for fast
and precise classification.

Experimental results show that Ffirst exceeds the best reported results
in texture classification on three difficult texture datasets KTH-TIPS2a,
KTH-TIPS2b and ALOT, achieving 88 %, 76 % and 96 % accuracy
respectively. The recognition rates are above 99 % on standard texture
datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.

Keywords: Texture · Classification · LBP · LBP-HF · Histogram ·
SVM · Feature maps · Ffirst

1 Introduction

Texture description and recognition techniques have been the subject to many
studies for their wide range of applications. The early work focused on the prob-
lem of terrain analysis [12,36] and material inspection [37]. Later applications of
texture analysis include face recognition [1], facial expressions [30,42] and object
recognition [39]. The relation between scene identification and texture recogni-
tion is discussed by Renninger and Malik [28]. Texture analysis is a standard
problem with several surveys available, e.g. [6,19,24,40]. Many texture descrip-
tion methods are based on the Local Binary Patterns [10,11,17,20–23,41], which
is a computationally simple and powerful approach.

We introduce a family of novel texture representations called Ffirst - the
Fast Features Invariant to Rotation and Scale of Texture. It is based on LBP-
HF-S-M, the rotation invariant features obtained from sign- and magnitude-LBP
histograms using Fourier transform proposed by Zhao et al. [41]. We enrich the
LBP-HF-S-M representation by proposing additional rotational invariants and
by the use of non-uniform patterns.

c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 47–62, 2015.
DOI: 10.1007/978-3-319-16181-5 4
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The scale invariance of Ffirst is obtained by the technique recently applied
in the context of bark recognition [32].

We show that the novelties improve performance in texture recognition exper-
iments with a feature-mapped linear SVM classifier approximating the χ2 kernel.

The rest of this paper is organized as follows: The state-of-the-art approaches
to texture recognition are briefly reviewed in Section 2. The new family of texture
representations called Ffirst is introduced and described in Section 3. Section 4
is dedicated to the proposed extensions of LBP-HF and Ffirst. Section 5 presents
our experiments on standard texture datasets. Section 6 concludes the paper.

2 State of the Art

Several recent approaches to texture recognition report fine results on the stan-
dard datasets, often using complex description methods. Sifre and Mallat [31]
used a cascade of invariants computed using scattering transforms to construct
an affine invariant texture representation. A sparse representation based Earth
Mover’s Distance (SR-EMD) presented by Li et al. [15] achieves good results
in both image retrieval and texture recognition. Quan et al. [27] propose a tex-
ture feature constructed by concatenating the lacunarity-related parameters esti-
mated from the multi-scale local binary patterns. Local Higher-Order Statistics
(LHS) proposed by Sharma et al. [30] describe higher-order differential statis-
tics of local non-binarized pixel patterns. The method by Cimpoi et al. [7] uses
Improved Fisher Vectors (IFV) for texture description. This work also shows fur-
ther improvement when combined with describable texture attributes learned on
the Describable Textures Dataset (DTD).

3 The Ffirst Method

In order to describe texture independently of the pattern size and orientation in
the image, a description invariant to rotation and scale is needed. For practical
applications we also demand computational efficiency.

In this section we introduce a new texture description called Ffirst (Fast
Features Invariant to Rotation and Scale of Texture), which combines several
state-of-the-art approaches to satisfy the given requirements. This method builds
on and improves a texture descriptor for bark recognition introduced in [32].

3.1 Completed Local Binary Pattern and Histogram Fourier
Features

The Ffirst description is based on the Local Binary Patterns (LBP) [20,22].
The common LBP operator (further denoted as sign-LBP) computes the signs
of differences between pixels in the 3 × 3 neighbourhood and the center pixel.
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LBP have been generalized [21] to arbitrary number of neighbours P on a circle of
radius R, using an image function f(x, y) and neighbourhood point coordinates
(xp, yp):

LBPP,R(x, y) =
P−1∑
p=0

s(f(x, y) − f(xp, yp))2p, s(z) =
{

1 : z ≤ 0
0 : else . (1)

To achieve rotation invariance1, Ffirst uses the so called LBP Histogram
Fourier Features (LBP-HF) introduced by Ahonen et al. [2], which describe the
histogram of uniform patterns using coefficients of the discrete Fourier trans-
form. Uniform LBP are patterns with at most 2 spatial transitions (bitwise 0-1
changes). Unlike the simple rotation invariants using LBPri[21,25], which assign
all uniform patterns with the same number of 1s into one bin,

LBPri
P,R = min {ROR (LBPP,R, i) | i = 0, 1, .., P − 1} , (2)

the LBP-HF features preserve the information about relative rotation of the
patterns.

Denoting a uniform pattern Un,r
p , where n is the “orbit” number correspond-

ing to the number of “1” bits and r denotes the rotation of the pattern, the DFT
for given n is expressed as:

H(n, u) =
P−1∑
r=0

hI(Un,r
p )e−i2πur/P , (3)

where the histogram value hI(Un,r
p ) denotes the number of occurrences of a given

uniform pattern in the image.
The LBP-HF features are equal to the absolute value of the DFT magnitudes

(which are not influenced by the phase shift caused by rotation):

LBP-HF(n, u) = |H(n, u)| =
√

H(n, u)H(n, u). (4)

Since hI are real, H(n, u) = H(n, P − u) for u = (1, .., P − 1), and therefore
only

⌊
P
2

⌋
+ 1 of the DFT magnitudes are used for each set of uniform patterns

with n “1” bits for 0 < n < P . Three other bins are added to the resulting
representation, namely two for the ”1-uniform” patterns (with all bins of the
same value) and one for all non-uniform patterns.

The LBP histogram Fourier features can be generalized to any set of uniform
patterns. In Ffirst, the LBP-HF-S-M description introduced by Zhao et al. [41] is
used, where the histogram Fourier features of both sign- and magnitude-LBP are
calculated to build the descriptor. The combination of both sign- and magnitude-
LBP called Completed Local Binary Patterns (CLBP) was introduced by Guo
and Zhang [10]. The magnitude-LBP checks if the magnitude of the difference of

1 LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circular
bit-wise shift, e.g. rotation by multiples 22.5◦ for LBP16,R.
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the neighbouring pixel (xp, yp) against the central pixel (x, y) exceeds a thresh-
old tp:

LBP-MP,R(x, y) =
P−1∑
p=0

s(|f(x, y) − f(xp, yp)| − tp)2p. (5)

We adopted the common practice of choosing the threshold value (for neigh-
bours at p-th bit) as the mean value of all m absolute differences in the whole
image:

tp =
m∑

i=1

|f(xi, yi) − f(xip, yip)|
m

. (6)

The LBP-HF-S-M histogram is created by concatenating histograms of LBP-
HF-S and LBP-HF-M (computed from uniform sign-LBP and magnitude-LBP).

3.2 Multi-scale Description and Scale Invariance

A scale space is built by computing LBP-HF-S-M from circular neighbourhoods
with exponentially growing radius R. Gaussian filtering is used2 to overcome
noise.

Unlike the MS-LBP approach of Mäenpää and Pietikäinen [17], where the
radii of the LBP operators are chosen so that the effective areas of different
scales touch each other, Ffirst uses a finer scaling with a

√
2 step between scales

radii Ri, i.e. Ri = Ri−1

√
2.

This radius change is equivalent to decreasing the image area to one half.
The finer sampling uses more evenly spaced information compared to [17], as
illustrated in Figures 1a, 1b. The first LBP radius used is R1 = 1, as the LBP
with low radii capture important high frequency texture characteristics.

Similarly to [17], the filters are designed so that most of their mass lies within
an effective area of radius ri. We select the effective area diameter, such that the
effective areas at the same scale touch each other: ri = Ri sin π

P .
LBP-HF-S-M histograms from c adjacent scales are concatenated into a sin-

gle descriptor. Invariance to scale changes is increased by creating nconc multi-
scale descriptors for one image. See Algorithm 1 for the overview of the texture
description method.

3.3 Support Vector Machine and Feature Maps

In most applications, a Support Vector Machine (SVM) classifier with a suitable
non-linear kernel provides higher recognition accuracy at the price of signifi-
cantly higher time complexity and higher storage demands (dependent on the
number of support vectors). An approach for efficient use of additive kernels
via explicit feature maps is described by Vedaldi and Zisserman [35] and can be

2 The Gaussian filtering is used for a scale i only if σi > 0.6, as filtering with lower σi

leads to significant loss of information.
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(a) Scale space of Mäenpää
and Pietikäinen [17]

(b) Scale space from [32] used
in Ffirst

Fig. 1. The effective areas of filtered pixel samples in a multi-resolution LBP8,R oper-
ator

Algorithm 1. The Ffirst description method overview
R1 := 1
for all scales i = 1...(nconc + c − 1) do

σi := Ri sin π
P

/1.96
if σi > 0.6 then

apply Gaussian filter (with std. dev. σi) on the original image
end if
extract LBPP,Ri -S and LBPP,Ri -M and build the LBP-HF-S-M descriptor
for j = 1...nconc do

if i ≥ j and i < j + c then
attach the LBP-HF-S-M to the j-th multi-scale descriptor

end if
end for
Ri+1 := Ri

√
2

end for

combined with a linear SVM classifier. Using linear SVMs on feature-mapped
data improves the recognition accuracy, while preserving linear SVM advantages
like fast evaluation and low storage (independent on the number of support vec-
tors), which are both very practical in real time applications. In Ffirst we use
the explicit feature map approximation of the χ2 kernel.

The “One versus All“ classification scheme is used for multi-class classifica-
tion, implementing the Platt’s probabilistic output [16,26] to ensure SVM results
comparability among classes. The maximal posterior probability estimate over
all scales is used to determine the resulting class.

In our experiments we use a Stochastic Dual Coordinate Ascent [29] linear
SVM solver implemented in the VLFeat library [34].
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4 Adding Rotational Invariants

The LBP-HF features used in the proposed Ffirst description are built from
the DFT magnitudes of differently rotated uniform patterns, as described in
Section 3.1. We propose 3 more variants for the description, which will appear
in our experiments in Section 5.

The variant denoted as Ffirst+ creates additional rotational invariants, LBP-
HF+ features, computed from the first harmonics for each orbit:

LBP-HF+(n) =
√

H(n, 1)H(n + 1, 1) (7)

Fig. 2. Ordering the full set of Local Binary Patterns for the Histogram Fourier features

Another variant, Ffirst∀, uses all LBP instead of only the subset of uniform
patterns. Note that in this case, some orbits have a lower number of patterns, as
some non-uniform patterns have less possible rotations, as illustrated in Figure 2.

The last variant, denoted as Ffirst∀+, uses the full set of patterns for LBP-HF
features, adding also the additional LBP-HF+ features
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5 Experiments

5.1 Datasets

The proposed Ffirst method for texture classification was tested using the stan-
dard evaluation protocols on the following texture datasets:

The KTH-TIPS texture database [9,13] contains images of 10 materials.
There are 81 images (200x200 px) of each material with different combination
of pose, illumination and scale.

The standard evaluation protocol on the KTH-TIPS dataset uses 40 training
images per material.

(a) Cotton (b) Wool

(c) White bread (d) Aluminium foil

Fig. 3. Examples of 4 texture classes from the KTH-TIPS2 database

The KTH-TIPS2 database was published [5,18] shortly after KTH-TIPS.
It builds on the KTH-TIPS database, but provides multiple sets of images -
denoted as “samples“ - per material class (examples in Figure 3).

There are 4 “samples” for each of the 11 materials in the KTH-TIPS2
database, containing 108 images per “sample” (again with different combination
of pose, illumination and scale). However, in the first version of this dataset, for
4 of those 44 “samples” only 72 images were used. This first version is usually
denoted as KTH-TIPSa, and the standard evaluation method uses 3 “samples”
from each class for training and 1 for testing. The “complete” version of this
database, KTH-TIPSb, is usually trained only on 1 “samples” per class and
tested on the remaining 3 “samples”.
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The Brodatz32 dataset [33] was published in 1998 and it contains low resolu-
tion (64x64 px) grey-scale images of 32 textures from the photographs published
by Phil Brodatz [3] in 1966, with artificially added rotation (90◦) and scale
change (a 64x64 px scaled block obtained from 45x45 pixels in the middle).
There are 64 images for each texture class in total.

The standard protocol for this dataset simply divides the data into two halves
(i.e. 32 images per class in the training set and 32 in the test set).

Even though the original images are copyrighted and the legality of their
usage in academic publications is unclear3, Brodatz textures are one of the most
popular and broadly used sets in texture analysis.

The UIUCTex database, sometimes referred to as the Ponce Group Texture
Database, was published by Lazebnik et al. [14] in 2005 and features 25 different
texture classes, 40 samples each. All images are in VGA resolution (640x480 px)
and in grey-scale.

The surfaces included in the database are of various nature (wood, mar-
ble, gravel, fur, carpet, brick, ..) and were acquired with significant viewpoint,
scale and illumination changes and additional sources of variability, including,
but not limited to, non-rigid material deformations (fur, fabric, and water) and
viewpoint-dependent appearance variations (glass). Examples of images from
different classes are in Figure 4.

(a) Brick 1 (b) Brick 2

(c) Plaid (d) Bark 3

Fig. 4. Examples of 4 texture classes from the UIUCTex database

The results on this dataset are usually evaluated using 20 or 10 training
images per class. In our experiments, the former case with a larger training set
is performed.
3 http://graphics.stanford.edu/projects/texture/faq/brodatz.html

http://graphics.stanford.edu/projects/texture/faq/brodatz.html
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(a) (b)

(c) (d)

Fig. 5. Examples of 4 texture classes from the UMD database

The UMD dataset [38] consists of 1000 uncalibrated, unregistered grey-scale
images of size 1280x960 px, 40 images for each of 25 different textures. The
UMD database contains non-traditional textures like images of fruits, shelves of
bottles and buckets, various plants, or floor textures.

The standard evaluation protocol for UMD is dividing the data into two
halves (i.e. 20 images per class in the training set and 20 in the test set).

(a) Felt (b) Polyester

(c) Lettuce Leaf (d) Corn Husk

Fig. 6. Examples of 4 texture classes from the CUReT database
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The CUReT image database [8] contains textures from 61 classes, each
observed with 205 different combinations of viewing and illumination directions.
In the commonly used version, denoted as the cropped CUReT database4, only
92 images are chosen, for which a sufficiently large region of texture is visi-
ble across all materials. A central 200x200 px region is cropped from each of
these images, discarding the remaining background. There are thus 61x92=5612
images in the cropped database.

Though CUReT also contains a BRDF (bidirectional reflectance distribution
function) database, for purposes of standard texture recognition methods, only
the image database is used. We use 46 training images per class, which is a
standard evaluation protocol for the CUReT database.

(a) (b)

(c) (d)

Fig. 7. Examples of 4 texture classes from the ALOT database

The Amsterdam Library of Textures [4], denoted as ALOT, contains 250
texture classes. Each class contains 100 images obtained with different combina-
tions of viewing and illumination directions and illumination color.

To compare our results on the ALOT dataset to the state-of-the-art [27] we
use 20 training images and 80 test images per class.

5.2 Parameter setting

In all following experiments, we use the same setting of our method: nconc = 3
multi-scale descriptors per image are used, each of them consisting of c = 6 scales
described using LBP-HF-S-M. A higher number of concatenated scales offers only
minimal improvement in accuracy, while increasing the processing time. The
final histogram is kernelized using the approximate χ2 feature map, although
using the intersection kernel would provide similar results. In the application,

4 http://www.robots.ox.ac.uk/∼vgg/research/texclass/setup.html

http://www.robots.ox.ac.uk/~vgg/research/texclass/setup.html
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the data are only trained once and the training precision is more important than
the training time. Thus we demand high accuracy, setting SVM parameters to:
regularization parameter λ = 10−7, tolerance for the stopping criterion ε =
10−7, maximum number of iterations: 108. We use the unified setting in order
to show the generality of the Ffirst description, although setting the parameters
individually for a given dataset might further increase the accuracy.

Fig. 8. Dependence of the KTH-TIPS2b recognition rate on the number of multiscale
descriptors in Ffirst, denoted c

Figures 8 and 9 illustrate the effect of different parameter settings on the
recognition accuracy for the KTH-TIPS2b texture database.

To reduce the effect of random training and test data choice, the presented
results are averaged from 10 experiments.

5.3 Classification Results

The experimental results in texture classification are compared to the state-of-
the-art in Tables 1, 2, containing the results on the KTH-TIPS datasets and on
other standart texture datasets respectively.
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Fig. 9. Feature mapping and concatenating features from multiple scales in Ffirst,
KTH-TIPS2b

Table 1. Evaluation of Ffirst on other standard datasets, compared to the state-of-
the-art methods

Brodatz32 UIUCTex UMD CUReT ALOT

Num. of classes 32 25 25 61 250

Ffirst 99.2±0.3 98.6±0.6 99.3±0.3 98.5±0.2 92.9±0.3

Ffirst+ 99.3±0.3 98.7±0.7 99.3±0.3 98.6±0.3 93.4±0.3

Ffirst∀ 99.6±0.2 99.0±0.5 99.3±0.3 99.1±0.2 95.0±0.3

Ffirst∀+ 99.7±0.2 99.3±0.4 99.3±0.3 99.2±0.2 95.9±0.5

IFVSIFT [7] – 97.0±0.9 99.2±0.4 99.6±0.3 –

IFVSIFT [7] + DeCAF 5 – 99.0±0.5 99.5±0.3 99.8±0.2 –

Scattering [31] – 99.4±0.4 99.7±0.3 – –

LHS [30] 99.5±0.2 – – – –

SR-EMD-M [15] – – 99.9 99.5 –

PLS [27] – 96.6 98.99 – 93.4

MS-LBP-HF-KlSVM [32] 96.2±0.6 96.4±0.6 – – –

5 Results from http://www.robots.ox.ac.uk/∼vgg/data/dtd/

http://www.robots.ox.ac.uk/~vgg/data/dtd/
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Table 2. Evaluation of Ffirst on the KTH-TIPS datasets, compared to the state-of-
the-art methods

KTH-TIPS2a KTH-TIPS2b KTH-TIPS

Num. of classes 11 11 10

Ffirst 86.2±5.5 72.1±5.1 98.9±0.7

Ffirst+ 86.4±5.0 72.7±5.2 98.9±0.8

Ffirst∀ 88.0±6.5 75.8±4.1 99.1±0.5

Ffirst∀+ 88.2±6.7 76.0±4.1 99.1±0.5

IFVSIFT [7] 82.5±5.2 69.3±1.0 99.7±0.1

IFVSIFT [7] + DeCAF 6 84.4±1.8 76.0±2.9 99.8±0.2

IFVSIFT[7] + DeCAF

+DTDRBF
6 7

– 77.4±2.2 –

Scattering [31] – – 99.4±0.4

LHS [30] 73.0±4.7 – –

SR-EMD-M [15] – – 99.8

PLS [27] – – 98.4

6 Results from http://www.robots.ox.ac.uk/∼vgg/data/dtd/
7 The method requires an additional training set (the DTD dataset)

5.4 Suitability for Real-Time Applications

Table 3 shows a comparison of our image processing times to the state-of-the-
art texture recognition method by Cimpoi et al. [7] based on IVFSIFT. Both the
implementation of Ffirst and IVFSIFT

8 used MATLAB scripts with a C code in
the VLFeat [34] framework (after adding a new CLBP implementation for our
method). The processing times were measured on a standard laptop (1.3 GHz
Intel Core i5, 4 GB 1600 MHz DDR3) without parallelization.

The average description time for a low resolution (200x200px) image for
Ffirst is at most 0.05 s, while for higher resolutions the processing time will
grow proportionally to the image resolution, as the number of local operations
will increase with the number of pixels.

6 Conclusions

We proposed a family of novel texture representations called Ffirst, the Fast Fea-
tures Invariant to Rotation and Scale of Texture, using several state-of-the-art
approaches. The first variant, Ffirst+, uses newly proposed rotational invariants,
another, denoted as Ffirst∀, allows to build the features from the full set of LBP,
including non-uniform patterns.
8 Using the code kindly provided by the authors of [7]

http://www.robots.ox.ac.uk/~vgg/data/dtd/
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Table 3. Average image description time for one image, compared to IFVSIFT

KTH-TIPS2b KTH-TIPS CUReT

Image resolution 200x200 px 200x200 px 200x200 px

Ffirst 0.029 s / im. 0.028 s / im. 0.029 s / im.

Ffirst+ 0.032 s / im. 0.032 s / im. 0.032 s / im.

Ffirst∀ 0.035 s / im. 0.035 s / im. 0.036 s / im.

Ffirst∀+ 0.048 s / im. 0.049 s / im. 0.049 s / im.

IFVSIFT [7] 0.089 s / im. 0.088 s / im. 0.090 s / im.

The Ffirst∀+ method, using both proposed improvements, achieves the best
results, exceeding the best reported results in texture classification on three
difficult texture datasets, KTH-TIPS2a, KTH-TIPS2b and ALOT, achieving
88%, 76% and 96% accuracy respectively. The recognition rates were above 99%
on standard texture datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.

The Ffirst description and the evaluation based on linear Support Vector
Machines are fast, making the proposed method suitable for real time applica-
tions.

Acknowledgments. Jiri Matas was supported by Czech Science Foundation
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Abstract. Osteoarthritis (OA) causes progressive degeneration of artic-
ular cartilage and pathological changes in subchondral bone. These
changes can be assessed volumetrically using micro-computed tomogra-
phy (μCT) imaging. The local descriptor, i.e. local binary pattern (LBP),
is a new alternative solution to perform analysis of local bone structures
from μCT scans. In this study, different trabecular bone samples were
prepared from patients diagnosed with OA and treated with total knee
arthroplasty. The LBP descriptor was applied to correlate the distribu-
tion of local patterns with the severity of the disease. The results obtained
suggest the appearance and disappearance of specific oriented patterns
with OA, as an adaptation of the bone to the decrease of cartilage thick-
ness. The experimental results suggest that the LBP descriptor can be
used to assess the changes in the trabecular bone due to OA.

Keywords: Bone structural analysis · Micro-CT · Osteoarthritis ·
Multiscale LBP

1 Introduction

The local binary pattern (LBP) descriptor [24][27] has been widely used for
object recognition, image segmentation, texture analysis, face analysis, et al.
in computer vision field. However, most of the LBP studies are based on tex-
ture and material classification [24][29], and the possibilities offered by the LBP
descriptor for structural analysis of objects in the medical field are still poorly
known. In general, the low sensitivity of the LBP for monotonic greyscale vari-
ations [23] makes it ideal for medical image processing. Furthermore, the LBP
descriptor offers the possibility to assess the distribution of local patterns within
a region/volume of interest both in 2D and 3D. Despite these facts very few LBP
studies have been performed for 3D data obtained by conventional medical 3D
imaging techniques, such as computed tomography (CT) or magnetic resonance
imaging (MRI).
c© Springer International Publishing Switzerland 2015
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The nature of bone tissue, and especially its inner architecture, makes it
a perfect candidate for structural analysis. As the bone adapts itself to envi-
ronmental factors, the changes in its structure not only give information on its
strength, but also provide symptomatic indications of diseases [34]. As such, CT
images has been used to assess the structural bone alterations in osteoporosis [32]
or in osteoarthritis (OA) [6]. OA is a disease of the whole joint primarily caus-
ing degeneration of the articular cartilage and remodeling of subchondral bone.
With current clinical diagnostic techniques, the disease is often diagnosed at
the end stage when the joint replacement surgery is the only effective treatment
available. In OA the subchondral bone is specifically affected by sclerosis and
undergoes structural changes such as the formation of osteophytes and bone
cysts [4]. It has been even suggested that the structural bone changes in OA
might occur before the changes at the articular cartilage [5]. However, despite
some evidence that the changes in subchondral bone could contribute to the
development of OA [11][12][22][18], clinical diagnostic methods mostly focus on
the cartilage alone by measuring its erosion and degeneration. Following this
clinical trend, a recent histopathological method to grade the severity of OA at
the tissue level, i.e. OARSI grading system, is assessing the depth and extent of
the lesions in the articular cartilage [28]. The high reliability and repeatability
of the OARSI grading system [8][26] suggest this method to be a consistent ref-
erence for comparative studies assessing OA at different stages of the disease.

Micro-computed tomography (μCT) is an imaging technique similar to clini-
cal CT, but at micro-scale level instead of macro-scale level. A significant advan-
tage of the LBP method if applied to μCT scans is its ability to take into account
the impact of partial volume effect. The partial volume effect is always a down-
side of the conventional analysis of bone structure, as a result of the binarization
of the data for volumetric reconstruction. Eventually, μCT allows to analyze the
inner structure of bone (see Fig. 1 up) with high resolution, enabling to study
the size, organization and connectivity of individual bone fibers. The analysis
of μCT data allows to assess the micro-level changes in bone structure related
to the adaptation of the wear of overlying articular cartilage. In several animal
studies characteristic bone microstructural changes related to OA have been
reported [20][33][9][15][16]. Similar trends in human studies have been observed
in microscopic studies [19][2]. However, μCT-derived bone structural parameters
have yet to be compared with the severity of OA in humans.

There is an evident lack of studies involving LBP method to bone analysis,
and in each case it has been based on plain radiographic imaging [14][35][13],
showing already the potential of this tool to assess OA [13]. The most interesting
aspect of applying the LBP method on bone microarchitecture is to obtain local
distribution of patterns on high amount of data for each sample.

The aim of this study was to establish a new protocol to assess the local
changes in bone structure using LBP descriptor and to correlate them with the
severity of OA assessed by OARSI grading as a ground truth. The procedure has
been divided in two parts: the selection of relevant pixels by using multiscale LBP
to assess the continuity of the patterns, and the grouping of the patterns based
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on both their orientation and their amount of markers. The methodological con-
cepts and results introduced here have been performed in 2D slice-by-slice as a
preliminary study before the development of real volumetric analysis.

2 LBP Method to Perform Bone Structural Analysis
from Micro CT data

2.1 Background

In this section, we will present the background of the bone structural analysis
from μCT data. After that, we describe the existing methods and their limita-
tions. The bone includes two compartments: the trabecular bone and the cortical
bone surrounding it (see Fig. 5). While the cortical compartment is more com-
pact and mainly corresponds the bending resistance of the bone [30], the trabec-
ular compartment is metabolically more active and affected by remodeling [34].
From the structural point of view, the adaptation of the internal compartment
to environmental loading conditions makes the trabecular bone a crucial region
of interest for analysis of structural changes.

Micro-computed tomography is an imaging method enabling to obtain volu-
metric data of microstructures [3]. Briefly, X-ray transmission measurements are
used to create cross-sections of a physical object, similarly to clinical CT but at
higher resolutions (<100 microns). While applied to bone analysis, it allows to
visualize the trabecular structures and obtain information on the density of the
bone. The average grey level value within a region of interest is also correlated to
bone strength. The grey level value of each pixels for each scan is highly depen-
dent on the mineralization of the structures: poorly mineralized structure (i.e.
fibers being resorbed or created) will have a lower grey level value than highly
mineralized structures. Another phenomenon affecting the grey level value of a
pixel is the partial volume effect [31]: this phenomenon occurs for features not
being totally within the slice thickness of the considered image or smaller than
the pixel size, resulting in a lowered grey level value of the pixels affected. This
peculiar event is expected to be more likely at the edges of the fibers, areas the
most affected by remodeling. Another artefact in CT analysis is the beam hard-
ening [21], causing the edges of an object to appear brighter than the center:
this artefact is caused by the attenuation of the X-rays. All of these artefacts
deteriorate the quality of CT analysis.

Traditionally, in bone structural analysis several parameters of the trabec-
ular bone is evaluated to indicate the bone inner architecture and its quality
[3]. The conventional method consists of a binarization of the image stack by a
pre-defined threshold value believed to represent the minimum gray scale value
of the bone. Subsequently, volumetric representation of the structure can be
reconstructed and parameters calculated from the 3D model. The most relevant
parameters are the bone volume fraction representing the amount of bone recon-
structed over the volume, the trabecular thickness and spacing giving indication
on morphometry of trabecular bone structure, and the structure model index
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(SMI) categorizing the trabecular structure as plate- or rod-like.
A main limitation of the conventional method to analyze bone structure is

the loss of the original pixel values. Only the information related to the location
of the bone and its organization remains. Furthermore, the selection of a bina-
rization threshold is often performed subjectively, increasing inter-repeatability
inaccuracies. Finally, image pixels/voxels representing poorly mineralized struc-
ture, or pixels affected by partial volume effect, are typically excluded from the
analysis to avoid overestimation of the bone structures (as shown in Fig. 1).

Fig. 1. up: μCT scan of a trabecular bone; down: white region are the bone and grey
region are the pixels affected by partial volume effect / poorly mineralized. These gray
regions are typically excluded from a conventional analysis of bone structure

2.2 Basics of LBP

The basics of LBP [24][27] is shown in Fig. 2. The neighborhood of a center pixel
is checked for evaluating the occurrences of equal/higher grey level values than
in the center pixel. A specific local pattern is then determined based on the loca-
tions of these occurrences. This pattern depicts the local structure surrounding
the studied pixel such as edges, contours and flat regions.

The local structure of each pixels within a region of interest can be mathe-
matically assessed by the following function:

LBP =
n−1∑
k=0

s(gk − gc)2k, s(x) =

{
1, x ≥ 0
0, x < 0,

(1)

where n is the amount of neighbors evaluated, gk the grey level value of the k -th
neighbor, and gc the pixel value of the central (studied) pixel. Depending on the
radius and amount of neighbors considered the grey level value gk might require
to be estimated by interpolation.
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Fig. 2. Basic LBP. In the example, the center pixel (value 6) is used as a threshold.
The tresholded values are then multiplied by their corresponding pixels in the weights
matrix and summed to obtain the LBP value of the center pixel

Eventually, the number of different patterns that can be assessed by the LBP
method is related to the amount n of neighbors evaluated for each center pixel;
the number of possible patterns being 2n. While in texture analysis the full his-
tograms of patterns might be required in the methods, in structural analysis some
grouping of patterns are required to avoid redundant information of similar pat-
terns corresponding to identical local structures assessed at different locations.

2.3 Selection of Relevant Pixels Using Multiscale LBP

Another difference between texture analysis and bone structural analysis using
the LBP is the selection of the evaluated pixels. In texture analysis, every pixels
within a region of interest are usually considered in the calculations. For bone
structural analysis, some pre-selection has to be performed to evaluate only
relevant information. As mentioned previously, in traditional analysis of bone
structure from μCT scans, the images are binarized by a threshold representing
the minimum grey level value of the bone. This step allows the users to separate
the relevant information (the bone) from the irrelevant empty spaces. Based on
this principle, structural analysis using LBP method should be applied solely to
pixels located nearby or within bone structures.

The selection of relevant pixels to compute LBP features has been divided in
two steps, as shown in Algorithm 1. The first step is to filter out the empty space
while the second step is to filter out the isolated noise by a connection test. In
our case, the Otsu method [25] was chosen to extract the foreground information
representing the bone from the background representing the empty spots. How-
ever, to verify that relevant pixels with lower grey level value are not considered
as background, the averaged minimum value returned by Otsu method for all the
slices is lowered by an arbitrary percentage δ of its value (δ = 95% in our case ), as
shown in Step 1 of Algorithm 1. Here S0 is the region filtered out the empty space
by Otsu method.

An important factor in the bone structural analysis using the LBP method is
to assess not only the pixels within the bone, as in traditional analysis, but also
pixels that are in the neighborhood of the bone structures. This factor is crucial
since the modelling and remodeling of the bone can be assessed in the surrounding
of the structures (Step 2 of Algorithm 1 and Fig. 3).



68 J. Thevenot et al.

Algorithm 1. The selection of relevant pixels

Input Images I obtained by μCT scan
Output The selected of relevant pixels S

Step 1 Filter out the empty space by Otsu method
1.1 S0 = Φ
1.2 Compute threshold by Otsu method gotsu
1.3 For gc ∈ I

If gc > δgotsu
S0=S0+{gc}

End
End

Step 2 Filter out the isolate noise by connection test gk,1
2.1 S1 = S2 = Φ

Let gk,1 be any of k-th neighbor at radius 1 from center
pixel {gc}; gm,2 be m-th neighbor at radius 2 from gc.
k =0,1,. . .7 and m =0,1,. . .15

2.2 For gc ∈ S0

If ∃ gk,1 > δgotsu and k =0,1,. . .7
S1=S1+{gc}

End
End

2.3 Let R be the max distance used for connectivity test
For gc ∈ I − S0

If ∃ gk,1 > δgotsu and ∃ gm,2 ≥ δgotsu,
and ‖ gk,1 − gm,2 ‖≤ R, m =0,1,. . .15

S2 = S2+{gc}
End

End
2.4 S = S1 + S2

Specifically, the structures of the bone are continuous. Based on this princi-
ple, we propose using multiscale LBP method to select only bone structures and
get rid of irrelevant artefacts. The selection of relevant pixels can be performed
by two steps: the first one assessing the pixels within the structures, and the
second assessing the pixels next to the edges of the structures. Both of the steps
can be performed at multiple scales depending on the resolution of the images.
In our case, we use two scales, i.e. it is considered that only areas with at least
two consecutive pixels higher than a specific threshold are actual bone.

As shown in Step 2.4 of Algorithm 1, S is the resulting pixels, which are used
for the following structure analysis using LBP. Increasing the amount of neigh-
bors for a higher radius improves the accuracy of the method as more similar
patterns can be considered. An option is to increase the amount of neighbors by
8 for each increase of radius, as suggested earlier [23].
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Fig. 3. Examples of center pixels considered in the analysis. Black markers have
equal/higher grey level value than the threshold. A) Both the center pixel and one
of its neighbor k have higher grey level value than the threshold. B) The empty center
pixel is neighbor with an edge at radius 1. The continuation of the bone is validated
at radius 2 within the length R (three neighbors m checked in this case)

2.4 Grouping of Patterns Using Principal Component Analysis

After applying the LBP method to an image, a histogram is generated with a
size corresponding to the amount of different patterns assessed. However, in bone
structural analysis a large amount of assessed patterns are redundant, as they
represent the same information obtained from different locations. This suggests
that grouping of the patterns is required to obtain reduced histograms with truly
relevant information. Therefore, we propose to group the patterns both by their
main orientation, but also by taking into account the amount of markers they
consist. The term marker describes a neighbor with an equal/higher grey level
value than both the central pixel gc and the threshold. The justification for this
grouping can be explained as follows:

– The main orientation of the patterns provides information on the orientation
of the structures of recognized bone fiber. For example, healthy bone fibers
are expected to have structures organized mainly along the daily loading ori-
entation. Structures with different orientations could suggest an adaptation
of the inner architecture of the bone fiber due to extra factors.

– The amount of markers in each pattern gives information on the nature of
the local structures of bone fiber. For example, if 8 neighbors are considered
in the analysis a pattern with 2-3 consecutive markers will suggest a straight
structure, while a pattern with more consecutive markers will suggest a cor-
ner or a spot.

Principal component analysis (PCA) is performed for each possible pattern
to obtain its main orientation. A score of the PCA is assessed to exclude the
patterns without a consistent orientation. For a specific pattern, the principal
components of each markers were assessed and averaged by axis. Then, the score
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corresponded to the value of the axis with highest weight, this axis being the
most affected by the location of the markers. A high value suggests a distribution
sparse along this axis and eventually along the main orientation of the pattern.
To resume, this score evaluates how well the markers of a pattern are fitted
towards the line representing the principal component, if the score is higher
than a given threshold value, then the orientation of the pattern is not clear.

Fig. 4. Affectation of a pattern in a group. In this example, 5 different angles (σ0 to
σ4) are used to group the patterns, as well as 8 neighbors. A) The principal component
(PC ) orientation of the pattern is defined from the 3 markers. B) The line representing
the PC is translated to the center pixel and the angle σp is established within the
tolerance β. For this specific case, the pattern belongs to the group (σ1,M=3)

An example of the grouping using PCA can be seen in the Fig. 4. A group
(σp,M ) correspond to the sum of patterns with an orientation σp and with M
markers. It is defined as follows:

group(σp,M) =
2n∑
j=1

patternj , if

⎧⎪⎨
⎪⎩

|angle(patternj)| ≤ β

score(patternj) < scoretresh

markers(patternj) = M,

(2)

with angle(patternj) being the orientation angle of the j pattern, β the angle
deviation tolerated and scoretresh the maximum threshold value of the score
from the PCA defining a clear orientation. Eventually, the amount of different
groups will be defined by the amount of markers (M ) and also by the number
of angles (σp) (note that an angle σp being equivalent to an angle π + σp). The
angle β represents the tolerance for the patterns orientation towards the angle
σp. The angles σp and β are defined as such:

σp =
πp

N
, with 0 ≤ p ≤ N, (3)

and β =
π

2N
, (4)
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with p the considered angle division and N being the amount of different angles
used for grouping the patterns.

3 Experiment: Assessment of Osteoarthritis

3.1 Sample Preparation, Imaging and Histopathology

In our experiments, 24 osteochondral samples [10] were earlier prepared from
14 patients with OA (age 76 ± 9 years: 2 males and 12 females), treated with
total knee arthroplasty at Oulu University Hospital. Sample collection and their
use were approved by the Ethical Committee of the Northern Ostrobothnia
Hospital District, Oulu, Finland (Diary 187/2013, Ethical Committee statement
78/2013 ). Samples were prepared from tibial plateus which are always extracted
during routine total knee endoprosthesis surgery. Tibial plateus were first visu-
ally classified into three categories in terms of degeneration of the articular carti-
lage: 1) most inviolable (or intact) cartilage, 2) moderate cartilage degeneration
and wear, and 3) partly or fully exposed subchondral bone. Samples were stored
in phosphate-buffered saline (PBS) for μCT imaging. While albeit samples had
various cartilage thickness, they were selected from comparable anatomical area.

Osteochondral samples were scanned with μCT device at isotropic voxel size
of 27.8 μm (Skyscan 1172, Bruker microCT, Kontich, Belgium). The scanned
trabecular bone was located below the subchondral plate of the proximal tibia.
While the bones were oriented along the proximal-distal axis during the scan-
ning, no information regarding the medio-lateral or antero-posterior axes were
available. This limitation is shown in Fig. 5.

After the μCT imaging, samples were formalin-fixed and decalcified in EDTA.
Paraffin-embedded blocks were sectioned to 5 μm and stained with Safranin O.
Histological sections were graded from three slices by three independent eval-
uators according to the standardized OARSI grading system [28]. The average
from three evaluators was used as a final OARSI grade in further analysis.

3.2 Data Selection and Structural Assessment

Since only the proximal-distal axis was known, all analysis presented here were
performed in both partly sagittal / coronal planes and the results obtained
were averaged. Since the specific remodeling of the trabecular bone is unknown
for patients at different stages of OA, it can be hypothesized that the inter-
nal architecture is affected differently along the antero-posterior axis and the
medio-lateral one. Thus, considering both the perpendicular planes along the
proximal-distal axis can reduce the error implied by the unknown rotation of
the sample before the scanning.

The selection of the pixels implemented within the structural analysis using
LBP was performed as suggested in Fig. 6. First, OTSU method within the
trabecular bone was applied for each slice of both planes. Then, multiscale LBP
was applied at 2 levels for the selection of relevant pixels:
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Fig. 5. A) Location of one trabecular sample (indicated by white square); only the
proximal-distal axis is known. B) MicroCT scans of one trabecular sample along the
three perpendicular planes. The lack of anatomical references suggests that the data
on the lower pictures are neither fully in the sagittal nor coronal planes

– Radius 0 (the center pixel itself) and radius 1 for a center pixel with higher/
equal value than gOtsu.

– Radius 1 and radius 2 for a center pixel within an empty space. Similarly
than in Fig. 3, 16 neighbors at radius 2 were considered. The center pixel was
included in the analysis if at least one marker at radius 1 and one marker
within the 3 closest neighbors at radius 2 existed.

Fig. 6. Comparison between different methods to select the relevant pixels within an
original μCT scan. The percentage represents the amount of selected pixels within the
segmented area of the original image. Using Otsu thresholding alone gives an initial
estimation for the bone pixels. Combination of Otsu thresholding and multiscale LBP
selects both bone areas and the relevant surrounding pixels, and it is considered to
better select relevant pixels in the analysis

Once the relevant pixels were selected, LBP analysis at radius 1 and with 8
neighbors was performed for the stack of scans. Grouping of the patterns using
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PCA was performed in order to evaluate 3 angles: 0, 45 and 90 (± β=22.5).
A scoretresh of 0.75 was used in the analysis to select the oriented patterns.
This value was experimentally chosen to allow one blank neighbor (non-marker)
within a set of consecutive markers of a pattern. The range of the possible angles
was limited to 0-90 since the analysis was performed in 2 planes perpendicular
to each other. Grouping the angles 0/180 and 45/135 by symmetry was then
required to keep relevance of the results. A representation of grouping is pre-
sented in Fig. 7.

Fig. 7. Grouping of angles using PCA. Thick lines represents main angles and thin
lines the deviation β

3.3 Correlations between Patterns Distribution and the Severity
of the Disease

The OARSI grades of the samples were distributed from 0.89 to 6.25 (mean
3.51 ± 1.69). The intra-observer and inter-observer repeatability (CVrms) of the
OARSI grading were 8.78% and 11.84%, respectively. The intra-observer and
inter-observer reliability (ICC) in the OARSI grading were 0.96% and 0.95%,
respectively. According to previous literature [8][26], both ICC values represent
an excellent reproducibility. Following this validation, the mean OARSI grade
for each sample is considered as the ground truth for the stage of OA in the
resulting LBP analysis.

For each sample, once the LBP method is applied to the stack of scans, the
full histograms are converted to obtain the occurrences of each specific pattern as
a percentage of all the patterns recognized within a volume of interest. Different
parameters are assessed from the full histograms and then correlated with the
OARSI grades:

– The percentage of studied pixels: ratio of relevant pixels used in the analysis
by the total number of pixels available in the segmented trabecular bone.

– The mean amount of markers: corresponds to the mean value of markers for
all the local patterns of the sample pooled together.
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– The amount of different patterns : for 8 neighbors, the maximum amount of
different patterns is 256. This parameter provides a count of all the local
patterns recognized for a sample.

– The entropy of local patterns: describes the randomness of local patterns
in the volume of interest. The entropy of local patterns was calculated as
follows:

E = −
∑
i

Pilog2(Pi) (5)

where Pi contains the count of a specific local pattern i occurring in the
stack of scans. If an image contains only one local pattern, the entropy of
the patterns within the image is zero.

Fig. 8. Linear regression analysis between OARSI grades and trabecular bone para-
meters (N=24) derived from LBP analysis

Based on Fig. 8, the percentage of pixels studied is positively correlated to
the severity of the disease, as suggested previously in literature [17][1]. Simi-
larly to the results obtained in the radiographical study of Hirvasniemi et al.
[13], the entropy of local patterns was proportional to the increase of OA level.
An increase of the entropy of local patterns with OA corresponds to a higher
variation in different patterns, supported by the increase of amount of different
patterns, which could be explained by the appearance of bone sclerosis at higher
OARSI grades [4][28].

The mean distribution of local patterns after the reduction of the histograms
by grouping the patterns using PCA is shown in Fig. 9. Based on the results
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obtained from the Pearson correlation analysis between each group and the
OARSI grades, it can be seen that the occurrence of patterns with lower amount
of markers (≤4) tends to disappear, while the occurrence of patterns with more
markers (>4) increases. This result is also supported in Fig. 8 by the relation
between the mean amount of markers and the OARSI grade. As an explanation,
while the severity of OA increases, the trabecular bone tends to create more
connections to improve its strength.

Fig. 9. Mean distribution of the pattern groups for all samples (n=24) pooled together.
A group is defined by the amount of markers M and the main orientation A of its pat-
terns. The group Disoriented corresponds to all the patterns without clear orientation,
with markers M between 2 and 6. Correlation coefficients between OARSI grades and
groups are red for a negative correlation and green for a positive one. *p<0.001

One interesting observation concerning the orientation of the patterns can
be seen for groups with 3 markers. These groups are highly relevant since they
are mainly representing straight edges of the fibers (as shown in Fig. 10).

Fig. 10. Examples of patterns from two different groups with 3 markers. A) M3-A90.
B) M3-A0
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As expected, because the bone fibers are mostly oriented along the daily load-
ing, the group M3-A0 is smaller than the group M3-A90. However, for an increase
in the severity of the disease, the group M3-A90 decreases while the group M3-A0
increases, suggesting the apparition of horizontal patterns connecting trabecular
fibers between each other like arches. This hypothesis is furthermore supported
by the increases of groups with more markers, suggesting the creation of corners.
The non-significant decrease of the group M3-45 can be explained as it represents
the transition between horizontal and vertical patterns.

The hypothesized creation of bridges (Fig. 11) between the fibers suggests a
reduction of the degree of anisotropy of the trabecular bone proportionally with
the disease, as previously suggested [6]. This result is furthermore supported by
the decrease of trabecular separation and structure model index, suggesting the
trend of the trabecular structures to change from a rode-like type towards a plate-
like shape [36][7].

Fig. 11. A) Representation of the creation of a bridge in red between fibers in black.
A:M3-A90, B:M5-A45 and C:M3-A0. B) Example from a μCT slice with a bridge
shown in the red rectangle

4 Conclusion

This study proposes a novel application of the local binary pattern method to
perform bone structural analysis from μCT data. The experiment performed
here suggests that this method can be used to assess the changes in the trabec-
ular bone due to OA. While traditional bone structural analysis is affected by
phenomena, such as partial volume effect or beam hardening, the LBP method
is less subject to these issues due to its nature being based on the comparison of
neighborhood intensity related to studied pixels, instead on the direct analysis
of grey level values. The results obtained here are complementary to the tra-
ditional structural parameters and suggest that the assessment of other visual
features could enhance the understanding of bone remodelling in OA. Further
development of the present method should be performed, such as applying 3D
LBP with real volumetric neighborhood analysis, using local ternary patterns
method to improve the robustness, or using classifiers to estimate the severity
of the disease.
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10. Finnilä, M., Aho, O.M., Tiitu, V., Thevenot, J., Rautiainen, J., Nieminen, M.,
Valkealahti, M., Lehenkari, P., Saarakkala, S.: Correlation of subchondral bone
morphometry and oarsi grade in osteoarthritic human knee samples. Osteoarthritis
Cartilage 22(S), 350–351 (2014)

11. Goldring, M., Goldring, S.: Articular cartilage and subchondral bone in the patho-
genesis of osteoarthritis. Ann. N.Y. Acad. Sci. 1192, 230–237 (2010)

12. Goldring, S., Goldring, M.: Bone and cartilage in osteoarthritis: is what’s best for
one good or bad for the other? Arthritis Res. Ther. 12(5), 143 (2010)

13. Hirvasniemi, J., Thevenot, J., Immonen, V., Liikavainio, T., Pulkkinen, P., Jämsä,
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Eckstein, F., Jämsä, T., Saarakkala, S.: Trabecular homogeneity index derived
from plain radiograph to evaluate bone quality. J. Bone Miner Res. 28(12), 2584–
2591 (2013)

33. Wang, T., Wen, C., Yan, C., Lu, W., Chiu, K.: Spatial and temporal changes
of subchondral bone proceed to microscopic articular cartilage degeneration in
guinea pigs with spontaneous osteoarthritis. Osteoarthritis Cartilage 21(4), 574–
581 (2013)

34. Wolff, J.: Das gesetz der transformation der knochen. The Law of Bone Remod-
elling (1892)

35. Woloszynski, T., Podsiadlo, P., Stachowiak, G., Kurzynski, M.: A signature dis-
similarity measure for trabecular bone texture in knee radiographs. Med. Phys.
37(5), 2030–2042 (2010)

36. Zhang, Z., Li, Z., Jiang, L., Jiang, S., Dai, L.: Micro-ct and mechanical evaluation
of subchondral trabecular bone structure between postmenopausal women with
osteoarthritis and osteoporosis. Osteoporos. Int. 21(8), 1383–1390 (2010)



Impact of Topology-Related Attributes
from Local Binary Patterns
on Texture Classification

Thanh Phuong Nguyen1(B), Antoine Manzanera1,
and Walter G. Kropatsch2
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Abstract. A general texture description model is proposed, using topol-
ogy related attributes calculated from Local Binary Patterns (LBP).
The proposed framework extends and generalises existing LBP-based
descriptors like LBP-rotation invariant uniform patterns (LBPriu2), and
Local Binary Count (LBC). Like them, it allows contrast and rotation
invariant image description using more compact descriptors than classic
LBP. However, its expressiveness, and then its discrimination capability,
is higher, since it includes additional information, including the num-
ber of connected components. The impact of the different attributes on
texture classification performance is assessed through a systematic com-
parative evaluation, performed on three texture datasets. The results
validate the interest of the proposed approach, by showing that some
combinations of attributes outperform state-of-the-art LBP-based tex-
ture descriptors.

Keywords: Local binary pattern · Local descriptor · Texture
classification

1 Introduction

Texture recognition is a very active research topic in computer vision and pattern
recognition. One of the most popular approaches for texture classification is
based on feature distribution using Local Binary Pattern (LBP), introduced
in [1]. Since the generalised work of Ojala et al. [2], LBP is widely considered
as an efficient descriptor for capturing local properties of images. The decisive
advantages of LBPs are their low computational cost and their invariance to
monotonic changes of illumination. These good properties allow to successfully
apply LBPs not only to texture recognition, but also to many other areas of
computer vision.

In the wake of LBP’s success, many authors have introduced variants of LBP
descriptors [3] to improve the performance of classic LBP, or to better suit it to a
c© Springer International Publishing Switzerland 2015
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specific problem. Many different aspects have been considered. For preprocessing
step, Gabor filters [4] have been used for capturing more global information.
Different neighbourhoods, such as elliptical neighbourhood [5], three or four-
patch approaches [6] have been employed to exploit anisotropic information. To
address the issue of LBP instability on near constant image areas, the Local
Ternary Patterns [7] use three values {−1, 0, 1} in the encoding step. Multi-
scale or multi-structure approaches [8,9] are considered to represent information
at larger scales. Liao [10] chooses the most frequent patterns to improve the
recognition accuracy. Guo et al. [11] use a complementary component related to
magnitude to improve the texture classification.

In this paper, we propose a generic approach to improve the discrimination
power of LBP by considering different geometrical and topological attributes
extracted from LBPs. The proposed framework extends and generalises several
existing LBP variants, and is also compatible (and then can be combined) with
most of the other variants.

The remaining of the paper is organised as follows. The next section presents
related works. Section 3 introduces the proposed framework, based on a family of
rotation invariant attributes extracted from LBP. Section 4 is an evaluation of the
descriptors derived from our models, compound with state-of-the-art descriptors,
for the texture classification task applied on three classic datasets.

2 LBP and Its Rotation Invariant Forms

Local Binary Patterns [2] were introduced by Ojala et al. as a contrast invariant,
binary version of the texture unit to represent its spatial structure. The binary
pattern is formed by comparing a pixel value with its surrounding neighbours.
The LBP encoding can be defined as follows:

LBPP,R =
P−1∑
p=0

s(gp − gc) · 2p, s(x) =

{
1, x ≥ 0
0, otherwise

where gc represents the gray value of the centre pixel and gp (0 ≤ p < P ) denotes
the gray value of the neighbour pixel on a circle of radius R, and P is the total
number of neighbours. The sample values can be calculated by interpolation.

The concept of circular neighbourhood allows to introduce the notions of uni-
form LBP, and also of rotation invariant LBP. A LBP is said uniform if the num-
ber of bit-transitions (0-1 and 1-0) in a circular scan of the pattern is at most 2. In
texture description based on uniform LBP (denoted LBPu2), non uniform LBPs
are considered irrelevant, and then discarded or put in a single class. The rota-
tion invariant LBP is defined as follows: LBPri

P,R = min
0≤i<P

{ROR(LBPP,R, i)},

where ROR(x, i) corresponds to the right circular bit-wise shift of i bits on P -
bit number x. Very good texture classification results have been reported [2]
using rotation invariant uniform patterns (LBPriu2).
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Zhao et al. [12] introduced Local Binary Count as a variant of LBP. It ignores
the local binary structure of LBP by only counting the number of “1” in the pat-
tern. Although they dramatically simplify the geometric structure, LBC features
have been used with success for texture classification.

3 Core Texture Model

3.1 Topology Related LBP Attributes

The local descriptors used by our texture model embed and generalise sev-
eral rotation invariant descriptors, including uniform patterns and Local Binary
Count. They are based on a family of numerical attributes that are calculated on
the original LBP. Consider the support of LBPP,R as a set of P points on a circle,
where 2 consecutive points are said adjacent (see Fig. 1). Topological information
can then be extracted from the LBP using the connected components (circular
runs) of 1s in the pattern. We will consider the following attributes:

– Number of connected components of 1s (#)
– Length of the largest run of 1s (M)
– Length of the smallest run of 1s (m)
– Total number of 1s (Σ)

All these attributes are rotation invariant. # is a topological measure, whose
importance in the characterisation of shape is attested by a number of works
in digital topology, in particular in the detection of critical points in thinning
algorithms [13]. The uniform patterns correspond to # = 1 or 0. M and m can
be seen as extensions of the uniform pattern values to non uniform patterns.
Σ is equivalent to the Local Binary Count. Figure 1 illustrates a non-uniform
binary pattern (10111010) of 8 bits; with # = 3, M = 3, m = 1 and Σ = 5.

These attributes are not independent; all configurations of values are not
possible and must respect the following constraints:

Fig. 1. A non-uniform pat-
tern where 1 (resp. 0) is rep-
resented by red filled circle
(resp. black circle)

1. m ≤ M ≤ Σ
2. 0 ≤ # ≤ �P/2�
3. if # = 0, m = M = Σ = 0
4. if # = 1, 1 ≤ m = M = Σ ≤ P
5. if # > 1, 1 ≤ M ≤ P - 2# + 1
6. if # > 1, 1 ≤ m ≤ �P/#� - 1
7. if # > 1, # ≤ Σ ≤ P - #

These properties imply that for a combination
of two or more attributes, the number of different
configurations is relatively small compared to 2P

(see also Table 1).
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3.2 Texture Modelling

The purpose of this work is to evaluate the contribution of the different attributes
in texture description. Every version of the descriptor used in the experiments
is then related to a vector of s attributes A = (A1, . . . ,As).

Basically, we describe a texture by computing, for each pixel, the LBP and
its s attributes, and then by calculating, for the whole image, the joint histogram
of the s attributes. The number of different attribute vectors depends on P , and
on the chosen subset of attributes. In general, it is much smaller than 2P , the
number of different LBPs.

In practice, to reduce the size of the histogram and the computation time of
the descriptor, we associate a unique label to every value of the attribute vector,
and pre-compute the label of all the LBP values in a label table Λ.

To do this, for every subset of s attributes, we create an s-dimensional array
T initialized with zeros, and a scalar counter c initialized to zero. Then we
enumerate all the LBP values n from 0 to 2P − 1, and calculate the vector
attribute A(n). If T (A(n)) is equal to zero, we increment c, and set T (A(n)) = c.
In all cases, we set the label table Λ(n) = T (A(n)). The final value of the counter
is denoted NA, the number of distinct vectors of attributes.

Finally we represent a texture by a histogram of labels:

H(l) = |{p;Λ (LBPP,R(p)) = l}|

In the experiments, we shall denote the texture descriptor based on the subset of
attributes A as LBPA

P,R, following the conventional notations u2 or riu2 in LBP
based models. Figure 2 shows a texture image with its corresponding label images
and label histograms for the different configurations of LBPA

1,8. In addition,
Figure 3 shows images and histograms of labels corresponding to LBP#Mm

1,8 for
different images, from the same texture class (first row), and from different
classes (second row). The visual (di)similarity of histograms depending on the
class is apparent on the figure.

To assess the interest of differentiating uniform patterns or not, a mixed
texture representation (LBPriu2+A

P,R ) is also evaluated in our work, by taking
into account the above encoding only on non-uniform patterns, and using riu2
encoding for uniform patterns:

LBPriu2+A
P,R (p) =

{
LBPriu2

P,R (p), if LBPP,R(p) is uniform
p + 1 + Λ (LBPP,R(p)) , otherwise

3.3 Relation with Previous Works

As mentioned before, LBPA
P,R are related with other rotation invariant patterns:

LBPriu2
P,R [2] and LBC [12]. We now discuss further those relations.
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– LBPΣ
P,R is exactly LBC. It means that if Σ ∈ A, LBPA

P,R is a generalisation
of LBC.

– When card(A) ≥ 2 and (# ∈ A or Σ ∈ A), LBPA
P,R is a superset of LBPriu2

P,R

patterns. In that case indeed, riu2 patterns are distinguished, either by the
value of # and anyone among {M,m, Σ}, or by one of the identity M = Σ or
m = Σ.1 Therefore, for such combination of attributes A, LBPA

P,R inherits
the distinctive properties of LBP riu2

P,R , while containing more information. In
this sense, LBPA

P,R generalises LBPriu2
P,R .

– As a consequence, with the same conditions on A, the performance of LBPA
P,R

and LBPriu2+A
P,R are the same.

– When card(A) = 1 or A = {M,m}, A and riu2 are complementary, and
LBPriu2+A

P,R can be better than LBPA
P,R or LBPriu2

P,R alone.

Table 1 displays the number of labels (and then of histogram bins) for the
different configurations of attributes. Note that the numbers for LBPA

P,R and
LBPriu2+A

P,R are different only if card(A) = 1 or A = {M,m}. In addition, Table
2 shows the number of labels for several existing LBP-based methods.

Table 1. Number of different labels, i.e. number of histogram bins of the texture
descriptor in the different configurations

Schema # M m Σ M# m# MΣ Mm #Σ mΣ Mm# #MΣ MmΣ #mΣ #MmΣ

LBPA
8,1 5 9 9 9 18 14 21 15 18 18 22 23 23 22 23

LBPA
16,2 9 17 17 17 66 36 92 59 66 66 125 180 159 125 212

LBPA
24,3 13 25 25 25 146 62 225 135 146 146 353 680 557 353 989

LBPriu2+A
8,1 12 14 14 14 18 14 21 18 18 18 22 23 23 22 23

LBPriu2+A
16,2 24 30 30 30 66 36 92 66 66 66 125 180 159 125 212

LBPriu2+A
24,3 36 46 46 46 146 62 225 146 146 146 353 680 557 353 989

Table 2. Number of different labels in several encodings

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

LBPriu2
P,R 10 18 26

LBPu2
P,R 59 243 555

CLBPriu2
P,R 200 648 1352

There is a strong link between LBPriu2+A
P,R with previous works aiming at

exploiting information from non-uniform patterns to improve the texture descrip-
tors. In particular LBPriu2+{Σ}

P,R and LBPriu2+{#}
P,R are close to [14]. In this work,

the authors extended the notion of uniform pattern (as the Σ attribute does),
and the other patterns were encoded by the number of 0-1 transitions, which
corresponds to the # attribute.
1 Note that {M,m} alone do not allow to distinguish uniform patterns, since the

identity M = m can occur with several connected components.
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Fig. 2. A texture image and its label images and label histograms for the different
configurations of attributes, with (P,R) = (8, 1). For the best visualization, the label
images are zoomed from a part corresponding to the red square of the texture image.
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Fig. 3. Texture images and their label images and histograms for LBP#Mm
8,1 . The first

row contains images of the same class, the second row images of different classes.
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3.4 Completed Texture Descriptor

Guo et al [11] proposed a state-of-the-art variant of LBP by coding the local
differences as two complementary components: signs (sp = s(gp − gc)) and mag-
nitudes (mp = |gp − gc|). They proposed to use two binary patterns, called
CLBP-Sign (CLBP S) and CLBP-Magnitude (CLBP M). The first pattern is
identical to the LBP. The second one which measures the local variance of mag-
nitude is defined as follows:

CLBP MP,R =
P−1∑
p=0

s(mp − m̃).2p,

where m̃ is the mean value of mp for the whole image. In addition, Guo et
al. observed that the local value itself carries important information. Therefore,
they defined the operator CLBP-Center (CLBP C) as follows:

CLBP C = s(gc − g̃),

where g̃ is the mean gray level for the whole image. Because these operators are
complementary, their combination leads to a significant improvement, and then
CLBP is now considered a reference method in texture classification.

Inspired from this work, we also evaluated our descriptors by complementing
the difference sign information (CLBP S) by the difference magnitude (CLBP M)
and gray level (CLBP C). For CLBP S and CLBP M, instead of using riu2 map-
ping, we apply our proposed encoding to obtain CLBPA

P,R and CLBP MA
P,R.

Finally, the feature vector of the whole image is constructed by considering the
joint histograms of CLBP SA

P,R, CLBP MA
P,R and CLBP C. Then, if LBPA

P,R has
n different labels, CLBPA

P,R has 2n2 labels (see also Table 1).

3.5 Texture Classification

Because the contribution of this work is focused on texture descriptors, and the
competing LBP based methods all used χ2 distance as similarity metrics [2],
and nearest neighbour as classification criterion, we used the same classification
method for fair comparison purposes. If H1 and H2 are two attribute label
histograms, the χ2-dissimilarity between the two textures is:

χ2(H1,H2) =
N∑

i=1

(H1(i) − H2(i))2

H1(i) + H2(i)
,

with N = NA or N = Nriu2+A the number of labels.

4 Experiments

4.1 Datasets

The effectiveness of the proposed method is assessed by a series of experiments on
three large and representative databases: Outex [15], CUReT [16] and UIUC [17].
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The Outex database (examples are shown in Figure 6) contains images cap-
tured from a wide variety of real materials. We consider the two commonly used
test suites, Outex TC 00010 (TC10) and Outex TC 00012 (TC12), containing
24 classes of textures. Each image may be seen under nine different rotation
angles between 0 and 90◦. For TC10, The texture images at angle 0◦ are cho-
sen for training the classifier, all the remaining images are used for testing. For
TC12, aside from the different viewing angles, the images can have three types of
illumination: “inca”, used for learning, and “t184” or “horizon”, used for testing
(test sets are denoted TC12t and TC12h respectively).

Fig. 4. Texture images with the illumination condition “inca” and zero degree rotation
angle from the 24 classes of textures on the Outex database

The CUReT database contains 61 texture classes (see Figure 5.a), each hav-
ing 205 images acquired at different viewpoints and illumination orientations.
We follow the experimental protocol proposed in [18,19], using 4 different learn-
ing sets made of 6, 12, 23 and 46 images (first line of Table 7).

(a) CUReT dataset (b) UIUC dataset

Fig. 5. Examples of texture images
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The UIUC texture database includes 25 classes with 40 images in each class.
The resolution of each image is 640×480. The database contains materials imaged
under significant viewpoint variations (examples are shown in Figure 5.b). Fol-
lowing [17], to eliminate the dependence of the results on the particular training
images used, four different learning sets of 5, 10, 15 and 20 images are used while
the remaining images per class are used as test set.

In the upcoming result sections, the performance measure will be given in
percentage of correct classification. As the typical size of the test sets is around
5 000, the percentage values are rounded to the first decimal. Furthermore, our
methods is practically deterministic (ignoring the slight influence of interpolation
in the computation of the LBP). Finally, the test protocol of the Outex dataset
is also deterministic, and the typical observed standard deviation in the cross
validation schemes of Curet and UIUC is less than 0.1%.

4.2 Computational Cost

We consider in this section the computational cost of our descriptors with respect
to other LBP-based operators. Experiments on Outex TC10 test suite containing
4320 images of 128 × 128 pixels were performed on a machine with 2.0 GHz CPU,
4Go RAM and Linux 3.2.0-23 kernel. Table 3 presents the computation time (in
seconds) of different descriptors in the configuration (P,R) = (2, 16) and reports
the total time (in seconds) for classifying the 3840 test images against the 480
reference images.

Table 3. Complexity of our different descriptors with respect to LBPriu2 (FET: Fea-
ture Extraction Time, MT: Matching Time)

Method riu2 # M m Σ M# m# MΣ Mm #Σ mΣ Mm# #MΣ MmΣ #mΣ #MmΣ
FET 78.1 79.2 78.4 78.3 80.2 80.9 80.8 79.2 78.7 79.5 78.9 80.3 80.6 83.3 83.3 82.2
MT 1.2 0.9 1.1 1.1 1.2 4.7 2.1 4.7 2.7 4.5 3.2 6.9 11.4 10.1 6.5 13.1

As can be seen from Table 3, the descriptor construction time does not vary
much from one method to the other, while the classification time is proportional
to the length of the feature vector.

4.3 1st Experiment: LBPA
P,R and LBPriu2+A

P,R

Table 4 compares our descriptors (LBPA
P,R) with the classic LBPriu2

P,R on Outex
dataset, for different (P,R) configurations. Those results can be interpreted as
follows:

– The four attributes have distinct properties. Considered alone, their perfor-
mance is comparable to LBPriu2

P,R , except for #, whose expressiveness is too
weak if taken alone.

– Jointly considering 2 attributes, the results are (except in one case) better
than LBPriu2

P,R , with an average improvement which can reach 6%.
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Table 4. Comparison between LBPriu2 and the basic LBPA on Outex dataset

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean

LBPriu2 [2] 84.8 65.5 63.7 71.3 89.4 82.3 75.2 82.3 95.1 85.0 80.8 87.0

LBP# 52.4 37.4 32.0 40.6 66.5 51.3 47.1 55.0 77.0 67.5 58.2 67.6

Gain - - - - - - - - - - - -

LBPM 83.6 67.1 64.4 71.7 87.6 82.2 78.9 82.9 95.9 88.1 86.4 90.1

Gain - 1.6 0.7 0.4 - - 3.7 0.6 0.8 3.1 5.6 3.1

LBPm 84.8 64.5 62.2 69.9 91.0 82.9 77.0 83.7 96.5 86.2 80.4 87.7

Gain 0.0 - - - 1.6 0.6 1.8 1.4 1.4 1.2 - 0.7

LBPΣ 82.9 65.0 63.2 70.4 88.7 82.6 77.4 82.9 91.3 83.8 82.7 86.0

Gain - - - - - 0.3 2.2 0.6 - - 1.9 -

LBPM# 86.5 69.9 66.2 74.2 93.7 85.3 82.1 87.1 96.8 88.7 84.3 89.9

Gain 1.7 4.4 2.5 2.9 4.3 3.0 6.9 4.8 1.7 3.7 3.5 2.9

LBPm# 85.7 67.4 66.4 73.1 93.1 85.9 81.4 86.8 97.5 89.3 85.0 90.6

Gain 0.9 1.9 2.7 1.8 3.7 3.6 6.2 4.5 2.4 4.3 4.2 3.6

LBPMΣ 85.8 69.7 66.6 74.0 92.5 85.9 82.3 86.9 96.9 89.9 86.0 91.0

Gain 1.0 4.2 2.9 2.7 3.1 3.6 7.1 4.6 1.8 4.9 5.2 4.0

LBPMm 85.6 66.8 63.6 72.0 92.5 85.4 82.4 86.8 98.1 92.2 87.2 92.5

Gain 0.8 1.3 - 0.7 3.1 3.1 7.2 4.5 3.0 7.2 6.4 5.5

LBP#Σ 87.1 69.8 67.8 74.9 93.4 84.6 79.7 85.9 96.5 87.5 83.6 89.2

Gain 2.3 4.3 4.1 3.6 4 2.3 4.5 3.6 1.4 2.5 2.8 2.2

LBPmΣ 86.0 70.1 66.8 74.3 92.9 85.8 83.4 87.4 97.8 91.4 86.8 92.0

Gain 1.2 4.6 3.1 3.0 3.5 3.6 8.2 5.1 2.7 6.4 6.0 5.0

LBPMm# 85.8 70.5 68.2 74.8 94.3 86.8 84.2 88.4 97.2 90.9 86.7 91.6

Gain 1.0 5.0 4.5 3.5 4.9 3.5 9.0 6.1 2.1 5.9 5.9 4.6

LBP#MΣ 86.0 70.6 67.9 74.8 93.7 87.0 84.3 88.3 97.2 90.4 86.2 91.3

Gain 1.2 5.1 4.2 3.5 4.3 4.7 9.1 6.0 2.1 5.4 5.4 4.3

LBPMmΣ 86.0 70.6 67.9 74.8 94.1 87.3 84.1 88.5 97.0 90.3 86.4 91.2

Gain 1.2 5.1 4.2 3.5 4.7 5.0 8.9 6.2 1.9 5.3 5.6 4.2

LBP#mΣ 86.1 70.8 67.8 74.9 94.1 87.0 84.1 88.4 97.4 91.0 86.7 91.7

Gain 1.3 5.3 4.1 3.6 4.7 4.7 8.9 6.1 2.3 6.0 5.9 4.7

LBP#MmΣ 86.0 70.6 67.9 74.8 94.1 87.6 84.5 88.7 97.1 90.2 86.4 91.2

Gain 1.2 5.1 4.2 3.5 4.7 5.3 9.3 6.4 2.0 5.2 5.6 4.2

– Using 3 or 4 attributes further improves the results, except when P = 24.
This can be explained by the fact that in this case, the number of labels is
too high, which makes the histogram too sparse for the χ2 distance.

In addition, Table 5 presents a comparison between LBPriu2+A
P,R and LBPriu2

P,R ,
when A is mono attribute or {Mm}. It can be seen that the performance of
LBPriu2+A

P,R is, in most cases, better than LBPA
P,R or LBPriu2

P,R alone.

4.4 2nd Experiment: CLBPA
P,R

Because, when the number of labels become too large (P = 24), the use of
several attributes become really inefficient due to the very high dimension of
feature vectors, in this experiment we consider only a combination of at most
two attributes.

Table 6, 7, 8 present the results obtained by our methods CLBPA
P,R on the

three datasets (Outex, CUReT and UIUC) in comparison with other LBP-based
methods. From these tables, we can make the following remarks
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Table 5. Comparison between LBPriu2, LBPA and the mixed LBPriu2+A on Outex
dataset when A is a mono attribute or {Mm}

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean

LBPriu2 [2] 84.8 65.5 63.7 71.3 89.4 82.3 75.2 82.3 95.1 85.0 80.8 87.0

LBP# 52.4 37.4 32.0 40.6 66.5 51.3 47.1 55.0 77.0 67.5 58.2 67.6

LBPriu2+# 85.3 66.6 65.7 72.5 91.5 83.5 78.2 84.4 96.1 86.3 81.6 88.0

Gainriu2 0.5 1.1 2.0 1.3 2.1 1.2 3.0 2.1 1.0 1.3 0.8 1.0

Gain# 32.9 29.2 33.7 31.9 25.0 32.2 31.1 29.47 19.17 18.80 23.37 20.44

LBPM 83.6 67.1 64.4 71.7 87.6 82.2 78.9 82.9 95.9 88.1 86.4 90.1

LBPriu2+M 86.3 68.5 64.6 73.2 91.0 84.5 79.9 85.1 96.7 88.1 84.2 89.8

Gainriu2 1.5 3.0 0.9 1.9 1.6 2.2 4.7 2.8 1.6 3.1 3.4 2.8

GainM 2.7 1.4 0.2 1.5 3.4 2.3 1.0 2.2 0.8 - - -

LBPm 84.8 64.5 62.2 69.9 91.0 82.9 77.0 83.7 96.5 86.2 80.4 87.7

LBPriu2+m 85.1 66.7 65.3 72.4 92.2 85.1 80.3 85.9 97.5 89.1 84.6 90.0

Gainriu2 0.3 1.2 1.6 1.1 2.8 2.8 5.1 3.6 2.4 4.1 3.8 3.0

Gainm 0.3 2.2 3.1 2.5 1.2 2.2 3.3 2.2 1.0 2.9 4.2 2.3

LBPΣ 82.9 65.0 63.2 70.4 88.7 82.6 77.4 82.9 91.3 83.8 82.7 86.0

LBPriu2+Σ 86.1 68.1 65.9 73.4 90.1 83.7 77.1 83.6 96.0 86.3 82.8 88.4

Gainriu2 1.3 2.6 2.2 2.1 0.7 1.4 1.9 1.3 0.9 1.3 2.0 1.4

GainΣ 3.2 3.1 2.7 3.0 1.4 1.1 - 0.7 4.7 2.5 0.1 2.4

LBPMm 85.6 66.8 63.6 72.0 92.5 85.4 82.4 86.8 98.1 92.2 87.2 92.5

LBPriu2+Mm 85.9 69.8 66.8 74.2 93.0 85.5 82.8 87.1 98.2 91.8 87.1 92.4

Gainriu2 1.1 4.3 1.1 2.9 3.6 3.2 7.6 4.8 3.1 6.8 6.3 5.4

GainMm 0.3 3.0 3.2 2.2 0.5 0.1 0.4 0.3 0.1 - - -

Table 6. Comparison between CLBPA
P,R and other LBP-based methods on Outex

dataset

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean

LBPriu2 [2] 84.8 65.5 63.7 71.3 89.4 82.3 75.2 82.3 95.1 85.0 80.8 87.0

LTP [7] 94.1 75.9 74.0 81.3 97.0 90.2 86.9 91.3 98.2 93.6 89.4 93.8

DLBP [10] 97.7 92.1 88.7 92.8 98.1 91.6 87.4 92.4

DLBP + NGF [10] 99.1 93.2 90.4 94.2 98.2 91.6 87.4 92.4

CLBP S M/C [11] 94.5 81.9 82.5 86.3 98.0 91.0 91.1 93.4 98.3 94.0 92.4 94.9

CLBP S/M [11] 94.7 82.7 83.1 86.8 97.9 90.5 91.1 93.2 99.3 93.6 93.3 95.4

CLBP S/M/C [11] 96.6 90.3 92.3 93.0 98.7 93.5 93.9 95.4 98.9 95.3 94.5 96.3

Our proposed descriptors

CLBP# 85.4 71.7 70.7 75.9 90.6 83.4 80.9 85.0 89.0 81.3 79.3 83.2

CLBPM 96.5 90.9 93.0 93.4 98.4 95.5 96.2 96.7 99.1 97.2 96.8 97.7

CLBPm 96.7 90.5 91.6 92.9 99.0 95.6 94.9 90.5 99.5 96.7 96.0 97.4

CLBPΣ 97.2 89.8 92.9 93.3 98.5 93.3 94.1 95.3 98.8 94.0 95.4 96.1

CLBPM# 96.2 90.6 93.5 93.5 98.9 95.5 95.8 96.8 99.5 97.0 96.3 97.6

CLBPm# 96.3 90.4 92.2 93.0 98.9 95.3 95.1 96.4 99.3 96.4 96.0 97.2

CLBPMΣ 96.3 91.1 93.4 93.6 98.9 95.3 96.5 96.9 99.4 94.3 93.4 95.7

CLBPMm 96.8 90.9 93.2 93.6 98.9 95.7 95.2 96.6 99.3 95.5 93.8 96.2

CLBP#Σ 96.7 90.7 93.6 93.6 99.0 95.4 96.1 96.8 99.6 96.2 95.8 97.2

CLBPmΣ 96.5 90.6 92.3 93.1 99.0 95.23 96.1 96.8 99.1 94.6 93.0 95.5

– Except when A = {#}, CLBPA
P,R outperforms the previous methods in all

configurations.
– Between mono attributes, M is the best configuration. It means that CLBPM

outperforms CLBC [12] that is exactly CLBPΣ .
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Table 7. Experimentation of CLBPA
P,R on CUReT dataset2.

Method (P,R)=(8,1) (P,R)=(16,3) (P,R)=(24,5)

N=46 N=23 N=12 N=6 N=46 N=23 N=12 N=6 N=46 N=23 N=12 N=6

LTP [7] 85.13 79.25 72.25 63.09 92.66 87.30 80.22 70.50 91.81 85.78 77.88 67.77

LBPriu2/VARP,R [21] 93.87 88.76 81.59 71.03 94.20 89.12 81.64 71.81 91.87 85.58 77.13 66.04

CLBP S/M/C [11] 95.6 91.3 84.9 74.8 95.9 92.1 86.1 77.0 94.7 90.3 83.8 74.5

CLBP S/M[11] 93.5 88.7 81.9 72.3 94.4 90.4 84.2 75.4 93.6 89.1 82.5 73.3

Our proposed descriptors

CLBP# 81.8 72.2 61.8 52.0 82.3 72.8 61.6 50.2 77.7 67.6 56.5 45.2

CLBPM 95.7 91.5 84.1 74.0 96.1 92.5 85.7 76.3 96.4 92.3 85.9 77.6

CLBPm 95.8 91.3 83.8 73.7 96.8 92.5 85.8 77.1 95.4 91.6 85.4 77.8

CLBPΣ 94.8 90.1 82.7 72.1 94.7 89.8 82.3 72.0 93.9 87.5 80.6 69.0

CLBPm# 95.9 91.7 84.4 74.5 97.0 93.2 86.7 78.2 96.1 92.6 85.9 78.6

CLBPMΣ 96.3 92.1 84.8 74.8 96.0 92.0 85.7 76.5 x x x x

CLBPMm 96.2 91.9 84.7 74.6 96.7 93.1 86.7 78.1 94.5 90.45 83.8 77.0

CLBP#Σ 96.2 91.8 84.6 74.8 96.5 92.7 86.2 77.1 93.7 89.0 81.5 73.8

CLBPmΣ 96.3 91.9 84.9 74.4 96.7 92.5 86.7 77.1 92.27 88.1 80.6 73.7

CLBPM# 96.3 92.1 84.7 75.1 96.8 93.2 87.3 78.2 95.01 91.2 84.24 77.1

Fig. 6. Comparing the best results of CLBPM# with the best results of recent methods
on Outex dataset

– The combination of two attributes still improves the performance of our
descriptors. The improvement in relation with CLBP S/M/C varies from
0.5% to 4.5% depending on test configurations.

In addition, Figure 6 presents the best results of one configuration (M#) in
comparison with the best results of recent methods on Outex dataset: LBPriu2

[2], LTP [7], DLBP + NGF [10], VZ-MR8 [20], VZ-Joint [20], CLBP S M/C
[11] and CLBP CLBC [12]. As can be seen from it, because the topology-related
attributes bring more information than the typical mapping riu2, our best results
in complementary scheme improve significantly with respect to CLBP.
2 CLBPMΣ

3,24 is not tested on this dataset.
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Table 8. Experimentation of CLBPA
P,R on UIUC dataset

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

20 15 10 5 20 15 10 5 20 15 10 5

LBPriu2 54.6 52.9 47.1 39.7 61.3 56.4 51.2 42.7 64.0 60.0 54.2 44.6

CLBP S/M [19] 81.8 78.5 74.8 64.8 87.9 85.1 80.6 71.6 89.2 87.4 81.9 72.5

CLBP S/M/C [19] 87.6 85.7 82.6 75.0 91.0 89.4 86.3 78.6 91.2 89.2 85.9 78.0

CRLBP(α = 1) [22] 86.9 85.7 82.2 73.9 92.9 91.8 88.1 82.0 93.3 92.0 89.5 81.9

Number of training images N = 20 15 10 5

Xu et al. [23] 93.8 91.3 89.7 83.3

Our proposed descriptors

CLBP# 75.0 70.8 67.0 59.5 70.8 65.7 60.3 49.9 66.4 60.9 55.4 44.3

CLBPM 88.0 85.8 82.9 75.2 92.1 90.7 87.9 81.1 93.1 92.3 88.7 81.9

CLBPm 87.3 84.5 81.6 73.7 91.3 89.6 86.2 78.3 92.1 90.3 86.5 78.1

CLBPΣ 88.1 85.6 82.8 75.2 90.8 89.4 86.7 79.9 91.2 89.9 86.9 79.4

CLBPM# 88.1 86.2 83.2 76.0 92.5 90.9 88.4 80.8 93.8 92.0 89.2 81.6

CLBPm# 87.8 85.7 82.5 75.4 92.4 90.6 88.0 80.3 93.5 91.6 88.5 80.6

CLBPMΣ 88.2 86.4 83.6 76.3 93.0 91.7 89.2 82.2 94.2 92.7 90.0 82.7

CLBPMm 88.2 86.2 83.4 76.0 92.9 91.6 89.1 81.8 94.4 92.8 90.1 82.6

CLBP#Σ 88.4 86.4 83.6 76.3 92.3 90.6 88.2 80.9 93.1 91.4 88.6 80.7

CLBPmΣ 88.2 86.4 83.4 76.3 93.0 91.4 88.8 81.9 94.3 92.6 89.9 82.8

5 Conclusions

We have proposed a versatile and efficient variant of LBP for texture description.
The proposed framework extends existing rotation invariant LBP based coding,
including riu2 and LBC, while enhancing their expressiveness and improving
their discrimination capability. The classification results on three recent texture
datasets prove the relevance of our framework. Used in combination with the
complemented LBP coding, it even outperforms the state-of-the art LBP based
descriptors. In the future, we plan to address the problem of high dimensionality
when using more attributes in complemented LBPs.
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8. Mäenpää, T., Pietikäinen, M.: Multi-scale binary patterns for texture analysis.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 885–892.
Springer, Heidelberg (2003)

9. Liao, S.C., Zhu, X.X., Lei, Z., Zhang, L., Li, S.Z.: Learning Multi-scale Block
Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB
2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)

10. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture
classification. IEEE Trans. Image Processing 18, 1107–1118 (2009)

11. Guo, Z., Zhang, Z., Zhang, D.: A completed modeling of local binary pattern
operator for texture classification. IEEE Trans. Image Processing 19(6), 1657–
1663 (2010)

12. Zhao, Y., Huang, D.S., Jia, W.: Completed local binary count for rotation invariant
texture classification. IEEE Trans. Image Processing 21, 4492–4497 (2012)

13. Yokoi, S., Toriwaki, J.I., Fukumura, T.: An analysis of topological properties of
digitized binary pictures using local features. CGIP 4, 63–73 (1975)

14. Fathi, A., Naghsh-Nilchi, A.R.: Noise tolerant local binary pattern operator for
efficient texture analysis. Pattern Recognition Letters 33, 1093–1100 (2012)

15. Ojala, T., Menp, T., Pietikinen, M., Viertola, J., Kyllnen, J., Huovinen, S.: Outex -
new framework for empirical evaluation of texture analysis algorithms. In: ICPR.
701–706 (2002)

16. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and
texture of real-world surfaces. ACM Trans. Graph. 18, 1–34 (1999)

17. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local
affine regions. IEEE Trans. PAMI 27, 1265–1278 (2005)

18. Varma, M., Zisserman, A.: A statistical approach to material classification using
image patch exemplars. IEEE Trans. PAMI 31, 2032–2047 (2009)

19. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern
operator for texture classification. IEEE Trans. Image Processing 19, 1657–1663
(2010)

20. Varma, M., Zisserman, A.: A statistical approach to texture classification from
single images. International Journal of Computer Vision 62, 61–81 (2005)

21. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Trans. PAMI 24,
971–987 (2002)

22. Zhao, Y., Jia, W., Hu, R.X., Min, H.: Completed robust local binary pattern for
texture classification. Neurocomputing 106, 68–76 (2013)

23. Xu, Y., Ji, H., Fermüller, C.: Viewpoint invariant texture description using fractal
analysis. International Journal of Computer Vision 83, 85–100 (2009)



Gait-Based Person Identification Using Motion
Interchange Patterns

Gil Freidlin(B), Noga Levy, and Lior Wolf

Tel-Aviv University, Tel Aviv, Israel
gilfreid@post.tau.ac.il

Abstract. Understanding human motion in unconstrained 2D videos
has been a central theme in Computer Vision research, and over the
years many attempts have been made to design effective representa-
tions of video content. In this paper, we apply to gait recognition the
Motion Interchange Patterns (MIP) framework, a 3D extension of the
LBP descriptors to videos that was successfully employed in action recog-
nition. This effective framework encodes motion by capturing local
changes in motion directions. Our scheme does not rely on silhouettes
commonly used in gait recognition, and benefits from the capability of
MIP encoding to model real world videos. We empirically demonstrate
the effectiveness of this modeling of human motion on several challenging
gait recognition datasets.

Keywords: MIP · LBP · Gait recognition · CASIA · TUMGAID

1 Introduction

Human gait is a valuable biometric characteristic describing the coordinated,
cyclic movements of a walking person. Gait analysis is available where other
biometrics cannot be measured, as gait can be recognized from a distance, does
not require cooperation or even awareness of the subject, and works well on
low resolution videos as recorded by standard surveillance cameras. The main
challenge of gait recognition is the inherent large variability due to physical
factors such as injuries or fatigue, carrying a load or wearing motion restrictive
clothes.

Over the years many attempts have been made to design effective represen-
tations of video content. These range from high-level shape representations, to
methods which consider low-level appearance and motion cues. In the task of
Action recognition, the video representation aims to distinguish among human
actions regardless of their performer. Interestingly, motion representations devel-
oped for action recognition and applied for gait recognition [5,9,13,15,19,32]
demonstrate good perception within the same action (walking).

In this work, we adopt the Motion Interchange Patterns (MIP) [21] repre-
sentation that was developed for action recognition applications. MIP encodes
motion directly from video frames, and does not require preprocessing such as
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 94–110, 2015.
DOI: 10.1007/978-3-319-16181-5 7
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extracting the silhouette from the background or finding the cycles of the motion
as other methods do. This rich local representation of human motion produces
a discriminative signature of human cyclic gait motion. We suggest adaptations
of the original MIP scheme to gait based identification.

2 Gait Recognition

Gait recognition approaches can be roughly divided into model-based and model-
free categories. The model-based family of methods use knowledge about the
body shape for the gait analysis. Model matching is performed in each frame in
order to measure the physical gait parameters such as trajectories, limb length
and angular speed.

Model-free techniques capture gait characteristics by analyzing the feature
distribution over the space and time extent of the motion. These techniques often
rely on extracting the human silhouette in every frame under the assumption that
the interesting information about gait pattern lies in the body shape and contour.
Popular methods such as the GEI [11] variants estimate the gait period and
average the silhouettes over the gait cycle. Motion features are then computed
either directly on the silhouette characteristics or by modeling the silhouette
sequence using, for example, optical flow [25] or dynamic texture descriptors [23].

The human silhouette represents human body motions in a compact and
efficient way but requires background subtraction, a challenging task for realistic
backgrounds. Identification performance is sensitive to the silhouettes quality
(as demonstrated in [4]), hence silhouette-based methods are not well adjusted
to unconstrained environment. Additionally, relying merely on silhouettes might
miss out details containing significant motion information.

In a recent line of work, descriptors extracted directly from video frames, that
were originally developed for action recognition, are applied to gait recognition.
A few examples are LBP descriptors [16], HOG variants [5,13,15], and dense
trajectories [9].

3 Action Recognition Descriptors

A central family of action recognition approaches uses low-level representation
schemes of the information in a video. These approaches can be further cate-
gorized as local descriptors [26], optical flow based methods [1] and dynamic-
texture representations [36].

Local descriptors [22,28,34] capture the locality of the human motion in time
and space. As a first stage, pixels that are potentially significant to understand
the scenario are detected and the region around them is represented by a local
descriptor. To represent the entire video, these descriptors are processed and
combined using, for example, a bag-of-words representation [27]. A major draw-
back of this approach is the sensitivity to the number of interest points detected.
When a small number of interest points is detected, there is insufficient infor-
mation for recognition. Videos with too much motion (e.g., background motion
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such as waves or leaves in the wind) may provide a lot of information irrelevant
for recognition.

The optical flowbetween successive frames [1,31], sub-volumes of the video [18],
or surrounding the central motion [7,8] is highly valuable for Action Recognition.
A drawback of optical flow methods is committing too soon to a particular motion
estimate at each pixel. When these estimates are mistaken, they affect subsequent
processing by providing incorrect information.

Dynamic-texture representations extend existing techniques for recognizing
textures in 2D images to time-varying “dynamic textures” [12,20]. One such
technique is Local Binary Patterns (LBP) [29], that extracts texture using local
comparisons between a pixel and the pixels surrounding it, and encodes these
relations as a short binary string. The frequencies of these binary strings are
combined to represent the entire image region.

The Local Trinary Patterns (LTP) descriptor of [36] is an LBP extension
to videos. An LTP code of a pixel is a trinary string that is computed by con-
sidering the relations among patches centered around the pixel in consecutive
frames. A video is partitioned into a regular grid of non-overlapping cells and
the histograms of the LTP codes in each cell are then concatenated to represent
the entire video.

In this work, we adopt a dynamic-texture based representation, the Motion
Interchange Patterns (MIP) [21], a recent video representation that was developed
and evaluated on action recognition applications. This representation reflects the
range of possible changes in motion and their likelihoods of occurring at each pixel
in the video. Static edges are indicated by identifiable combinations of the MIP val-
ues, and may be ignored by subsequent processing. MIP codes also allow effective
camera motion compensation, required in unconstrained videos.

4 Motion Interchange Patterns

Given an input video, the MIP encoding [21] assigns eight trinary strings consist-
ing of eight digits each, to every pixel in every frame. A single digit compares the
compatibility of one motion in a specific direction from the previous frame to the
current frame, and one motion in another direction from the current frame to
the next one. Figure 1 illustrates the motion structure extracted from comparing
different patches.

The code of a given pixel p in the current frame, denoted S(p), is constructed
by considering eight possible 3 × 3 patches around p in both preceding and
successive frames. Each digit in S(p) refers to a pair of patches, one from the
preceding frame and another from the following frame, out of 64 such pairs.

The sum of squared differences (SSD) patch-comparison operator is used to
set the matching bit. Denote by SSD1 (SSD2) the sum of squared differences
between the patch in the previous (next) frame and the patch in the current
frame, as depicted in Figure 2. Each trit, Si,j(p), is computed as follows, for
some threshold parameter θ:
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Fig. 1. Representation of motion comparisons of patches from three successive frames.
For a given pixel and frame, blue arrows show the motion from a patch in the preceding
frame and red arrows show the motion to a patch in the succeeding frame.
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SSD1 (        ,       ) SSD2(        ,       ) 

Fig. 2. Each trinary digit in the MIP encoding represents a comparison of two SSD
scores, both referring to the same central patch (in green). SSD1 is computed between
the central patch and a patch in the previous frame (in blue), and SSD2 is computed
between the central patch and a patch in the next frame (in red).

Si,j(p) =

⎧⎨
⎩

1 if SSD1 − θ > SSD2
0 if |SSD2 − SSD1| ≤ θ

−1 if SSD1 < SSD2 − θ
(1)

A value of −1 indicates that the former motion is more likely and 1 indicates
that the latter is more likely. The 0 value indicates that both are compatible
in approximately the same degree or that there is no motion is this location.
MIP compares all eight motions to the eight subsequent motions, obtaining a
comprehensive characterization of the change in motion at each video pixel.

MIP Global Descriptor. Denote by i and j the patch locations taken from
the previous and following frames respectively, and let α be the angle between
direction i and direction j out of the eight possible angle values. There are eight
(i, j) pairs for each α, and the concatenation of their Si,j(p) values creates a
trinary string. Each 8-trit string is separated into two binary strings, a positive
string indicating the ones and a negative string indicating the minus ones, and
translated into an integer in the range 0-255. Each pixel obtains 16 integer values,
two values per α, that represent the complete motion interchange pattern for
that pixel.
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For each angle α, two histograms of size 256 are pooled (for the values taken
from the positive and negative binary strings ,separately) for each 16 × 16 cell
placed inside the image and concatenated, thus creating 512-dimensional MIP
features. A dictionary containing 5000 code words is constructed using k-means
on a random subset of MIP features (50000 in our experiments), taken from the
encoded gallery set videos. Then, each local string is assigned to the closest word
in the dictionary. Denote by uα the histogram of the dictionary code words in
the entire movie, normalized to the sum of one and containing the square root
of each element. The global descriptor of a video clip is a concatenation of the
eight uα histograms of all channels.

5 MIP-Based Gait Recognition

Our baseline method employs MIP encoding on videos to find a motion signature
of a walking person. We compute the MIP encoding for each video, and then use
the local features to create a global descriptor for the whole video as described
in section 4.

The MIP encoding is well adapted to gait recognition. The MIP descriptor is
a normalized histogram of a bag-of-words of the patterns, hence contains pattern
frequencies and does not require finding the gait cycles explicitly (We assume
that each video contains at least one gait cycle). Moreover, significant motion
patterns tend to repeat in each cycle while noise is random, and are therefore
better represented in the histogram.

Another advantage is that MIP does not require silhouette extraction but
rather works directly on the video frames. When MIP encoding is applied to
moving silhouettes, the boundaries of the body motion are well encoded but
other relevant details in the raw video are lost (e.g. the hand swing when passing
over the body).

Designed for the action recognition task, MIP implicitly decodes all mov-
ing objects in the scene. Therefore, in a video clip containing a single walking
person, MIP implicitly decodes the moving person without prior knowledge of
the body location, while other methods require external human detection [15] or
bounding box assignment. However, when the scene contains other consistently
moving objects, their motion is encoded as well, hence narrowing down the area
of interest might be needed.

We suggest two modifications of MIP adjusted for gait recognition - con-
founding details removal and temporal MIP.

Confounding Details Removal. MIP is an appearance-based method, hence,
along with the action of interest, it encodes other details that can be mislead-
ing in the background or outfit. The standard MIP partly overcomes confusing
information by downscaling the input images into a fixed size (100 × 134 in
our experiments) before applying MIP. However, the degraded image quality
affects the expressiveness of pose description that might be valuable for analyz-
ing the motion, for example in the elbows region. Hence, after downscaling we
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(a) (b)

(c) (d)

(e) (h)

Fig. 3. MIP encoding. The first row contains images from CASIA-B, the second row
contains images from CASIA-C, and the bottom row contains images from TUMGAID.
In each row, the left image shows the standard MIP encoding and the right image shows
MIP with confounding details removal. The encoding after details removal is sharpened
and represent the moving human body in greater accuracy. The coded motions are
illustrated by color coding pixels by their 8-trit strings content, for a specific α between
the compared directions. Blue - motion from the previous frame to the current frame,
red - motion from the current frame to the next frame. In image (e), the bricks shape
within the shade is encoded, contributing misleading motion patterns. In image (h),
details removal is applied and the shade is not encoded as a part of the moving object.
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upscale the frames to their original size by interpolation and compute MIP on
the original size frames. We acquire a precise MIP encoding of moving body parts
represented by significantly more features compared to MIP on the downscaled
images, without being distracted by misleading details. This form of low-pass fil-
tering is more suitable compared to conventional direct smoothing on the original
image, as it tends to remove textures while keeping depth boundaries without
distorting the moving shape. By removing confounding patterns, the weight of
the motion patterns relevant for gait identification is increased, thus improving
the representation of the motion in the learned dictionaries.

As shown in Figure 3, the resulting encoding follows the moving body parts
accurately.

Temporal MIP. The local motion pattern used in the standard MIP compares
local motion in a three-sequential-frame scope, symmetrical in both preceding
and successive directions. The temporal MIP suggested here enlarges the tem-
poral scope by considering temporal a-symmetric scopes of motion.

The MIP encoding described in section 4 is computed for a given frame t on
frames t − 1, t and t + 1. The temporal MIP further encodes MIP on frames
t − 2, t and t + 1 and on frames t − 1, t and t + 2, and illustrated in Figure 4.
A normalized histogram is constructed separately for every α in each of these
encodings. Finally, the global descriptor is a concatenation of all 24 histograms.
According to our experiments, extending the temporal scope to the symmetric
five frames encoding does not improve performance either by its own or when
concatenated with the suggested encoding.

Figure 5 describes the features extracted by the three MIP components of
the temporal MIP on examples from CASIA-B and CASIA-C datasets, both on
the downscaled frames and on the original size frames after details removal. The
details removal variant is computed on the frames enlarged to their original size,
thus produces significantly more features to describe the same action compared
to standard MIP.

Fig. 4. Visualization of the Temporal MIP extension. Standard MIP encodes three
successive frames, t− 1, t and t+1 (solid arrows). Temporal MIP additionally encodes
frames t−1, t and t+2 (dotted arrows), and frames t−1, t, and t+2 (dashed arrows).
Frame t is emphasized in red.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 5. Representation of the Temporal MIP local features on walking people from the
CASIA datasets. Images (a)-(d) show temporal MIP features on a video taken from
CASIA-B , (e)-(h) show the details removal variant on the same video. Images (i)-(l)
show temporal MIP features on a video taken from CASIA-C, and (m)-(p) show the
details removal variant. In the details removal variant, MIP is applied on the full sized
frames and hence contains more features. Legend: green pluses - standard MIP features,
blue stars - MIP features on frames (t−2, t, t+1), red circles - MIP features on frames
(t − 1, t, t + 2).

6 Classification

Given a gallery set, each image is represented by a global descriptor. These
descriptors are used to train a multiclass linear SVM classifier. For N different
subjects (class labels), N binary classifiers are obtained in the One-vs-All scheme.
Prediction of a new example is performed by extracting its global descriptor,
applying all binary classifiers and choosing the subject whose matching classifier
gains the highest confidence score.
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7 Experiments

We demonstrate our method on the CASIA-B and CASIA-C datasets and on
the recently published TUM-GAID dataset. These datasets are challenging, con-
taining various walking styles such as walking in different paces, walking while
wearing a coat and carrying a bag or wearing restrictive shoes. Variation in the
time of recording given in the TUM-GAID dataset are not tested here.

We test the performance of our method for standard MIP and temporal
MIP representations, both with and without confounding details removal, and
compare to the results reported by other methods on these datasets.

Performance is evaluated by the classification accuracy – the rate of correct
identification by the first match. Experimentally, in most cases our method is
comparable or superior to the other approaches, and the temporal MIP and
confounding details removal adjustments usually outperform the vanilla MIP
classification.

7.1 CASIA-B

The CASIA-B dataset [39] is a large multi-view gait database, containing 124
subjects captured from 11 views. For each subject, three walking styles are
recorded - six video clips of normal walk (NN), two of carrying a bag (BG),
and two of wearing a coat (CL). CASIA-B was recorded in a controlled indoor
environment, with no textured outfits. Therefore, the performance of the details
removal MIP in this case is equivalent to a direct encoding of the frames in their
original resolution with no filtering applied.

In this work, only recordings captured from a lateral viewpoint are consid-
ered. The protocols used for testing are described in Table 1. The first set of
experiments follows the evaluation protocol suggested in [39]. It uses as gallery
the first four normal walk (NN) sequences per subject and three probe sets, one

Table 1. The evaluation protocols for the CASIA-B dataset. Gallery and probe size
represents the number of examples taken for each of the 124 subjects participating
in the evaluation test. (a) first set of experiments, the protocol is defined in [39], (b)
second set of experiments, the protocol is defined in [16]

Gallery Probe

NN - first 4 NN - last 2

NN - first 4 BG - 2

NN - first 4 CL - 2

(a)

Gallery Probe

NN - 5 NN -1

NN - 6 CL - 2

NN - 6 BG - 2

CL - 1 CL - 1

CL - 2 NN - 6

CL - 2 BG - 2

BG - 1 BG - 1

BG - 2 NN - 6

BG - 2 CL - 2

(b)
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Table 2. Comparison on CASIA-B dataset from a lateral viewpoint. The model is
trained on normal walking and tested separately on each of the walking styles. Left
- comparison of the performance on the normal (NN) style probe, right - comparison
of the performance on carrying a bag (BG) and wearing a coat (CL). (*) The Robust
method [17] is trained on three examples per subject and tested on the remaining
examples, differently from the protocol defined in Table 1

Method NN

MIP 95.96

Temporal MIP 96.37

MIP + Detail removal 98.79

Temporal MIP + Detail removal 99.19

LBP-FLOW [16] 94

HWLD [32] 100

GEI+ nn [39] 97.6

GEI + LDA [11] (results from [4]) 83.1

PSC [24] 97.7

FDEI - Wavelet [4] 90.3

FDEI - Frieze [4] 91.1

IDTW [38] 83.5

Method BG CL

MIP 87.9 55.64

Temporal MIP 88.3 57.66

MIP + Details removal 98.38 83.87

Temporal MIP + Details Removal 97.98 77.82

LBP-FLOW [16] 45.2 42.9

HWLD [32] 92.2 96.5

GEI+ nn [39] 32.7 52.0

GFI Fusion [3] 83.6 48.8

Cross-view [2] 78.3 44.0

Robust(*) [17] 91.9 78.0

PRWGEI [37] 93.1 44.4

Table 3. Comparison on CASIA-B dataset of all combinations of gallery and probe
against LBP-FLOW, following the protocol specified in Table 1(b)

Gallery NN BG CL

Probe NN BG CL NN BG CL NN BG CL

MIP 95.96 89.11 66.12 75 87.5 50.8 51.34 54.43 87.9

LBP-FLOW [16] 94 45.2 42.9 45.2 64.2 25 36.9 22.6 57.1

per each walking style. The second set of experiments follows the evaluation
protocol in [16] and contains all gallery-probe combinations of walking styles.

Table 2 compares the performance on the first set of experiments. The results
on the left refer to probe NN, and the results on the right refer to probes BG and
CL. All compared methods except LBP-Flow [16] rely on silhouette extraction.
Our method achieves good performance on the NN probe, and the details removal
variants generalize well to the other walking styles, outperforming the other
methods on the BG probe by ∼ 5%, and achieving the second best result on the
CL probe.

Table 3 compares performance of standard MIP against LBP-Flow [16] for all
combinations of walking styles per gallery and probe, following the evaluation
protocol given in [16]. When the gallery and probe contain different walking
styles, all existing sequences are used in both gallery and probe. When the
gallery and probe share the same walking style, cross-validation is performed
with one example per subject as the probe and the other examples in the gallery,
and the average performance is reported. In all combinations, MIP outperform
LBP-FLOW by a large gap.
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Table 4. The evaluation protocol for CASIA-C dataset: (a) the gallery and probe
are from the same walking style, (b) cross style experiments. The number of examples
per subject taken as gallery and as probe is specified, for each of the 153 subjects
participating. CV stands for cross-validation

Gallery Probe Remarks

fn - 3 fn - 1 4-fold CV

fs - 1 fs - 1 2-fold CV

fq - 1 fq - 1 2-fold CV

fb - 1 fb - 1 2-fold CV

(a)

Gallery Probe

fn - 4 fs - 2 fq - 2 fb - 2

fs - 2 fn - 4 fq - 2 fb - 2

fq - 2 fn - 4 fs - 2 fb - 2

fb - 2 fn - 4 fs - 2 fq - 2

(b)

7.2 CASIA-C

The CASIA-C dataset [33] contains video of lateral view captured at night and
recorded by a fixed low resolution infra-red camera. There are 153 subjects walk-
ing in four walking styles with 10 movies per subject: four movies for normal
walking (fn), and two movies per each of the other walking styles – slow pace
(fs), quick pace (fq) and carrying a bag (fb).

Table 4 summarizes the evaluation protocol used for CASIA-C dataset. In
the experiments referring to gallery and probe that share the same walking style
(within), the probe contains one example per subject and the other examples
serve as the gallery. Each experiment is repeated with different probe examples
for k times, where k is the number of examples per subject in the relevant walking
style. We report the average accuracy on the k repetitions. In the experiments
training on one walking style and evaluating on a different walking style (cross),
all available sequences are used.

Table 5 shows the classification accuracy when training on normal walking
and evaluating on all walking styles. The MIP variants outperform all compared
methods, and the confounding details removal boosts performance on the bag
carrying test set. Table 6 summaries the results when learning on the slow pace,
quick pace and carrying a bag train sets, evaluated within the same walking
style and on the other styles. MIP variants outperform the compared methods
on most combinations.

7.3 TUM-GAID

The TUM-GAID [14] is a recently published dataset with 305 subjects, captured
indoor from a lateral viewpoint. The movies were taken by a 3D-depth camera
and provide matching audio. In this work we only use the 2D RGB images of the
recorded subjects. For each subject, three walking styles are recorded - normal
walking (N), carrying a backpack (B) and wearing coating shoes (S). A subset
of 32 people is recorded again after a three months period in all walking styles
(TN, TB, TS).

The evaluation protocol designed in [14] defines a test set containing 155 sub-
jects. For recognition, the gallery consists of four normal walk recordings per each
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Table 5. Results on CASIA-C dataset for a gallery containing normal walking style
and evaluated on all probe sets. The first column refers to the normal walking probe.
(*) The PSA results in [24] refer to a random subset of 50 subjects (out of 153 subjects)

Method Within Cross

fs fq fb

MIP 99.34 95.09 98.69 96.73

Temporal MIP 99.34 93.79 98.69 97.05

MIP+Details removal 99.34 92.15 98.36 99.02

Temporal MIP + Details Removal 99.34 92.16 98.69 99.34

WBP [23] 99.02 86.3 89.5 80.7

PSA(*) [24] 98 92 92 93

Gait curves [6] 91 65.4 69 25

Bag Of Gait [30] 99.84 91.23 95.78 89.82

Pseudo Shape [33] 98 82.4 91.8 24.4

GEI [39] 96 74 83 60

HTI [33] 94 85 88 51

Table 6. Results on the CASIA-C dataset. The top two rows refer to the gallery and
probe walking styles respectively. (*) The PSA results in [24] refer to a random subset
of 50 subjects (out of 153 subjects).

Within Cross

Gallery fs fq fb fs fq fb

Probe fs fq fb fn fq fb fn fs fb fn fs fq

MIP 99 99.34 99 93.13 89.54 88.23 95.75 84.31 92.48 92.97 83.98 90.52

Temporal MIP 99.34 99.34 99.34 91.17 87.25 85.94 96.95 83.98 94.44 93.95 86.93 91.5

MIP + 99 99.34 99.34 87.41 66.33 80.07 97.05 62.41 88.88 96.73 84.31 91.83
Details Removal

Temporal MIP + 99.34 99.34 99.34 85.78 66.33 78.43 97.22 62.41 91.83 97.22 85.29 93.46
Details Removal

WBP [23] 95 96 96 88 61 71 84 61 71 81 70 80

PSA(*) [24] 98 96 96 93

Gait curves [6] 85 79.1 81

Table 7. Evaluation protocol for the N, B and S probe sets from the TUMGAID
dataset as defined in [14]. The number of examples per subject taken as gallery and as
probe is specified for each of the 155 subjects

Gallery Probe

N - first 4 N - last 2

N - first 4 B - 2

N - first 4 S - 2

of the 155 subjects and the probe is divided into six test sets, for each walking style
and recording phase. The experiments conducted here use the N, B and S probe
sets. Table 7 shows the evaluation protocol used for those probe sets.
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Table 8. Results on the TUM-GAID dataset trained on normal walking and evaluated
on three walking styles. N - normal walking, B - carrying a backpack and S - wearing
coating shoes. All compared methods except for our method and GEI utilize depth
information

Method N B S

MIP 98.06 95.8 97.42

Temporal MIP 98.38 97.42 96.77

MIP + Details Removal 97.41 90.96 89.35

Temporal MIP + Details Removal 97.74 94.19 91.61

GEI (results from [13]) 94.2 13.9 87.7

Depth-GHEI [13] 96.8 3.9 88.7

Depth-GEI [13] 99 40.3 96.1

GEV [13] 99.4 27.1 52.6

Unimodal RSM [10] 100 79 97

SVIM [35] 98.4 64.2 91.6

Table 8 compares our results to other methods. This comparison is challeng-
ing, as all methods apart from MIP and GEI [13] employ the depth information
provided by the dataset.

MIP and MIP variants cope well with all walking styles. When normal walk
is used for both training and testing, all presented methods show very good
performance. The RSM method [10] achieves the best performance, utilizing the
depth information to extract high quality silhouettes. When training on normal
walk and testing on either (B) or the coating shoes probe (S), Mip and temporal
MIP outperform all other methods. Temporal MIP gains the highest accuracy on
the backpack carrying probe, while MIP wins temporal MIP by a small margin
on the coating shoes probe (S).

Although the TUM-GAID dataset is captured indoor, it contains a chal-
lenging background of a brick wall nearby the subjects. Due to the lighting
conditions, the subjects cast shadows on the wall, which follow them and vary
in shape and direction.

When applying MIP, the shadow is encoded along with the movement, as
shown in Figure 6(a) and Figure 3(e). Hence, the shaded area contributes motion
patterns to the MIP encoding. Since the background contains repetitive strong
edges and colored bricks, the filtering in the details removal pre-process does
not eliminate these undesirable patterns that clearly reflects the brick edges, as
shown in Figure 6(b).

Elimination of these edges is done by applying a Gaussian filter (3×3, σ = 1)
on each frame after downscaling, and then upscaling the frame to the original
size. Figure 6(c) demonstrates the new encoding, which focuses on the moving
body while avoiding the misleading wall and shadow patterns.

The standard MIP encoding performs better on this dataset over the details
removal MIP encoding. The reason might be the information found in the shadow,
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(a) (b) (c)

Fig. 6. Detail removal preprocessing for TUMGAID dataset. (a) Low resolution MIP
encoding shows the shaded area is encoded, creating motion patterns caused by the
shade and the patterned wall. (b) After applying detail removal preprocessing (down-
scaling then upscaling again to the original frame size) misleading motion patterns that
reflects the bricks pattern are still exists in the current shaded area. (c) the result of
the new preprocessing flow using a Gaussian filtering to suppress the strong edges, now
following mostly the moving body.

that is codedwhennodetails removal is applied. Since all scenes in this datasetwere
recorded in the same location, in similar conditions and from the same viewpoint,
the information encoded in the shaded area might contribute to identification.

8 Summary and Conclusions

Most methods applied to gait recognition involve a preprocessing step of silhou-
ette extraction, making them sensitive to the silhouettes quality and unstable in
unconstrained environments.

In this work, we examine the the Motion Interchange Patterns, designed
to directly represent motion in unconstrained 2D videos, on gait recognition
datasets. Following our observations, we suggest two adaptations of MIP to the
task of gait recognition – a temporal extension of the encoded motion, and
confounding details removal that enables the analysis of the frames in their
original size without getting lost in confounding details.

Employing MIP is a step towards motion analysis that is perceptive enough
to identify people from a distance, in real world sequences and under various
appearances.

Acknowledgments. Portions of the research in this paper use the CASIA Gait
Database collected by Institute of Automation, Chinese Academy of Sciences.
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Abstract. This paper aims to investigate whether micro-facial move-
ment sequences can be distinguished from neutral face sequences. As
a micro-facial movement tends to be very quick and subtle, classify-
ing when a movement occurs compared to the face without movement
can be a challenging computer vision problem. Using local binary pat-
terns on three orthogonal planes and Gaussian derivatives, local fea-
tures, when interpreted by machine learning algorithms, can accurately
describe when a movement and non-movement occurs. This method can
then be applied to help aid humans in detecting when the small move-
ments occur. This also differs from current literature as most only concen-
trate in emotional expression recognition. Using the CASME II dataset,
the results from the investigation of different descriptors have shown a
higher accuracy compared to state-of-the-art methods.

Keywords: Micro-movement detection · Facial analysis · Random
forests · Support vector machines

1 Introduction

Detecting micro-facial movements (MFMs) is a new and challenging area of
research in computer vision that has been inspired by work done by psychologists
studying micro-facial expressions (MFEs) [7,12]. Facial expressions have strong
scientific evidence suggesting they are universal rather than culturally defined
[6]. When an emotional episode is triggered, there is an impulse that cannot be
controlled which may induce one of the 7 universal facial expressions (happy, sad,
anger, fear, surprise, disgust or contempt). When a person consciously realises
that this facial expression is happening, the person may try to suppress the facial
expression. Doing this can mask over the original facial expression and cause a
transient facial change referred to as a MFE. The speed of these MFEs are high,
typically less than 1/5th of a second. During experiments [6] where videos were
recorded at 25 frames per second (fps), MFEs have been found to last 1/25th of
a second.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-16181-5 8
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MFEs are not so straightforward that they can be interpreted as an emotion
and require the context of when the movement occurred to understand whether
the movement can be classed as an MFE or as an MFM. Both can be coded
objectively using the Facial Action Coding System (FACS) [5], which defines
muscle movements and intensity on the face with no emotional interpretation.

The process of detecting normal facial expressions in computer vision usually
involves preprocessing, feature extraction and classification. Methods such as
Support Vector Machines (SVM) or Random Forests (RF) [21,26] are used to
classify and recognise an emotion. This process is similar for MFEs and MFMs,
however the features used must be descriptive enough to detect a movement
has occurred, because large movements of normal facial expressions usually have
more descriptive features making them easier to detect.

Due to the problems described above, this paper extracts local features from
image sequences using local binary patterns on three orthogonal planes (LBP-
TOP) and Gaussian derivatives (GDs) to accurately determine that a micro-
movement has occurred on a face within the dataset compared with an image
sequence where no movement occurs (neutral expression). Using these features,
two classifiers, SVM and RF, are investigated in how they classify the move-
ments. From the results, a human interpreter would be able to see any move-
ments they may miss, and it can help in interpreting what the movements may
mean in the context of the situation.

The remainder of this paper is divided into the following sections; Section
2 discusses related work and approaches in current literature. Section 3 and 4
describe our investigation of detecting micro-facial movement against a neutral
face and the results from experiments respectively. Finally, section 5 concludes
this paper.

2 Related Work

Previous work in this field is limited, with current literature focusing on recog-
nising what emotion has occurred, and not when a movement occurs.

Pfister et al. [15] use temporal interpolation with multiple kernel learning and
RF classifiers on their own spontaneous micro-expression corpus (SMIC dataset)
[11]. The authors classify a MFE into positive or negative categories depending
on two annotators labelling based on subjects’ self reported emotions. Polikovsky
et al. [16] introduce another new dataset recorded at 200 frames per second (fps)
and the face images are divided into regions created from manually selected
points. Motion in each region is then calculated using a 3D-Gradient orientation
histogram descriptor. Shreve et al. [19] propose an automatic method of detect-
ing macro- and micro-expressions in long video sequences by utilising the strain
on the facial skin as a facial expression occurs. The magnitude of the strain is
calculated using the central difference method over the dense optical flow field
observed in regions of the face. Wang et al. [23,24] use discriminant tensor sub-
space analysis and extreme learning machine as a novel way of recognising faces
and MFEs. The authors take a grey-scaled facial image and treat it as a second
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order tensor and adopt two-sided transformations to reduce dimensionality. Fur-
ther, they use a tensor independent color space model to show performance of
MFE recognition in a different colour space compared with RGB and grey-scale.

Local Binary Pattern (LBP) features [14] form labels for each pixel in an
image by thresholding a 3x3 neighbourhood of each pixel with the centre value.
The result is a binary number where if the outside pixels are equal to or greater
than the centre pixel, it is assigned a 1, otherwise 0. The amount of labels will
therefore be 28 = 256 labels. This operator was extended to use neighbourhoods
of different sizes [13]. Using a circular neighbourhood and bilinearly interpolating
values at non-integer pixel coordinates allow any radius and number of pixels in
the neighbourhood. The grey-scale variance of the local neighbourhood can be
used as the complementary contrast measure.

As a further extension to local binary patterns (LBP) as a static texture
descriptor, Zhao et al. [27] take the LBP in three orthogonal planes, these planes
being the spatial and temporal planes (XY, XT ,YT). Originally for dynamic
texture recognition, it was used alongside volume LBP to recognise facial expres-
sions. However, unlike dynamic textures, the recognition of facial expressions was
done by dividing the facial expression image sequence into blocks and computing
the LBP for each block in each plane. These LBP features were then concate-
nated to form the final LBP-TOP feature histogram. The LBP-TOP histogram
provides a robustness to pose and illumination changes, and as the images are
split into blocks, the local features of the face better describe facial expressions
than a global description of the whole face would.

The Gaussian function is a well-known algorithm and is usually referred to
being a normal distribution. Ruiz-Hernandez et al. [18] use the second order
derivative to extract blobs, bars and corners to eventually use the features to
detect faces in a scene. GDs also provide a powerful feature set with scale and
rotation invariant image description. However, when processing higher order
derivatives, the feature selection becomes more sensitive to noise, and computa-
tionally expensive.

Classification in this area is well established. Random Forests [2] are an
ensemble learning method used for classification. It uses many decision trees
to find an average balance of votes to decide where a feature should be classi-
fied. As a supervised learning method, RF will require training from processed
images from a dataset. Support Vector Machines [4] is another supervised learn-
ing algorithm which finds the optimal separating hyperplane to decide where to
classify data. Both RF and SVM have been used in facial expression recognition
[15,21,25,27] and also in other methods such as physical rehabilitation [10] and
bioinformatics [20].

The investigation of this paper does not attempt to recognise MFEs as most
others, and treats the problem as detecting whether a MFE has occurred com-
pared with a sequence of images that does not contain any movement. These
two classes can then be classified using RF and SVM. The potential application
of this is to aid a person in detecting when the micro-movement has occurred,
and then use this to interpret potential emotion.
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3 Method

This section describes a method of differentiating between a MFM and a neutral
expression. Normalisation is described by automatically using the centre point
of the two eyes and affine transformation to rotate each face from CASME II
[25], and then cropping each image to just the face itself. Finally, LBP-TOP and
GD features are obtained and classified into either a MFM or neutral expression
using RF and SVM.

3.1 Normalisation

Normalisation is applied to all sequences so that all the faces are in the same
position based on a constant reference point, in this case, the midpoint between
the eyes. Once the midpoint has been obtained, affine transformation is used to
rotate the face so that all faces line up horizontally based on this point. The face
of the sequences then needs to be cropped to remove the unnecessary background
in each image.

To calculate the midpoint of the eyes, first the centre of both eyes are obtained
automatically by using a Viola-Jones Haar cascade detector [22] to detect both
the left and right eyes separately. Closed eye Haar detectors are available, how-
ever as the dataset does not include closed eyes, this has not been implemented.
This creates a bounding box around both eyes which the centre point of an eye
can then be extracted

(Cx, Cy) =
(

W

2
+ x,

H

2
+ y

)
(1)

where C is the centre of the eye, W is the width of the bounding box, and H
is the height and x and y are the pixel locations of the top-left corner of the
bounding box for the eye. Once the centre points are found for both the left and
the right eye, this paper computes the midpoint of the eyes

(Mx,My) =
(

LCx + RCx

2
,
LCy + RCy

2

)
(2)

where M is the midpoint between the eyes and LC and RC are the centres of the
left and right eye respectively. Using the calculated points, it can be worked out
how to apply affine transformation to all images. First the distance between the
eyes in Eq. 3 is found and then the angle between the eyes is calculated in Eq. 4

(Dx,Dy) = (|RCx − LCx|, |RCy − LCy|) (3)

θ =
arctan(Dx,Dy)180

π
(4)

where D is the distance between the eyes and θ is the angle between the eyes.
Using the extracted points, affine transform is used to align the eyes horizontally,
ready to be processed.
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3.2 Processing Images

Feature extraction begins by grey scaling each image sequence and dividing each
image into 9x8 non-overlapping blocks, as proposed by Zhao et al. [27] as their
best performing block size (see Fig. 1). This sequence then has a GD operator
applied with σ (the standard deviation) being changed from 1-7 in each iteration
once the whole database has been processed.

Fig. 1: Images are split into 9x8 blocks so each can be processed separately and
obtain local features that are concatenated to form the overall global feature
description

A Gaussian function is used as a blurring filter to smooth an image, lowering
the high frequencies denoted as

G(x, y;σ) = e− x2+y2

2σ2 (5)

To extract features such as blobs and corners from the face images, the first and
second order derivatives [17] of the Gaussian function is calculated. The first
order GD is defined as

Gx(x, y;σ) =
∂G(x, y;σ)

∂x
= − x

σ2
G(x, y;σ) (6)

Gy(x, y;σ) =
∂G(x, y;σ)

∂y
= − y

σ2
G(x, y;σ) (7)

where σ is the scaling element of the GD. The second order GD is defined as

Gxx(x, y;σ) =
(

x2

σ4
− 1

σ2

)
G(x, y;σ) (8)

Gyy(x, y;σ) =
(

y2

σ4
− 1

σ2

)
G(x, y;σ) (9)
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Gxy(x, y;σ) =
xy

σ4
G(x, y;σ) (10)

the first and second order derivative features are then summed together to get
the final GD feature and form a stronger feature representation of blobs, corners
and other important features. LBP-TOP is then applied as follows: each block
has the standard LBP operator applied [13] with α being the centre pixel and
P being neighbouring pixels with a radius of R

LBPP,R =
P−1∑
p=0

s(gp − gα)2p (11)

where gα is the grey value of the centre pixel and gp is the grey value of the p-th
neighbouring pixel around R. 2p defines weights to neighbouring pixels and is
used to convert the binary string pattern into a decimal. The sign function to
determine the binary values assigned to the pattern is

s(x) = {1,x≥0
0,x<0 (12)

where if x is greater than or equal to 0 then s(x) is 1, otherwise 0. After the
image has been assigned LBPs, the histogram can be calculated

Hi =
∑
x,y

I{fl(x, y) = i}, i = 0, ..., n − 1 (13)

where fl(x, y) is the image labelled with LBPs. Completing this task on only
the XY plane would be suitable for static images, however calculating the XY,
XT and YT planes is required to gain a spatio-temporal view of the sequence of
images, as expressions are much better described in the temporal domain than
still frames [1]. Each plane has been divided into blocks and the LBP histograms
extracted to be concatenated into the final feature histogram to be used in
classification. For this method, the radius R was set to 3 and the neighbouring
points P was set to 8. Fig. 2 shows a representation of creating the LBP-TOP
features.

Fig. 2: LBP is calculated on every block in all three planes. Each plane is then
concatenated to obtain the final LBP-TOP feature histogram
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3.3 Classification

Two popular data classification methods, SVM and RF, will be used to classify
between micro-movement and neutral faces within the whole of the CASME
dataset. The results of the experiment will compare MFMs against neutral face
sequences.

A RF model is constructed by using the bootstrap method to randomly gen-
erate a number of decision trees (ntree), which are each provided with randomly
selected samples of the training input and then all decision trees are combined
into a decision forest. For each bootstrap, a random sample of the training data is
used which determines the size of an un-pruned classification tree (mtry, default
3). Voting from all trees is used for classification, with the highest voted choice
within the data to be selected.

The selected data is taken from the CASME II dataset and consists of micro-
movement and neutral face sequences. The RF will determine the accuracy based
on correctly classified labels against incorrectly classified labels. RF requires one
parameter, ntree, which sets the number of trees to grow. In this experiment
the number of trees was set to 300. The software used to implement RF was
randomForest Toolbox for Matlab [9].

SVM attempts to find a linear decision surface (hyperplane) that can separate
the two classes and has the largest distance between support vectors (elements
in data closest to each other across classes). If a linear surface does not exist,
then the SVM maps the data into a higher dimensional space where a decision
surface can be found. The kernel selected for SVM is the radial basis function
(RBF) and will use the same movement and neutral data as RF to determine
the accuracy based on the correctly classified labels against incorrectly classified
labels.

There are two main parameters that will be selected: Parameter c is a user-
defined parameter that controls the trade-off between model complexity and
empirical error in SVM. In addition, the parameter γ determines the shape of the
separating hyperplane in the RBF kernel. Selection of the optimised parameters
was undertaken according to the method by Hsu et al. [8]. The classifier was
trained on one subset (training data) and accuracy is tested with the introduction
of the second subset (testing). The optimisation process was repeated for each
of the possible parameter in exponential steps for both c and γ between 2−10 to
210 and 2−3 to 23 respectively. The software used to implement SVM is libSVM
Toolbox for Matlab [3].

4 Experimental Results

To test this method’s performance, combinations of image planes are used with
temporal and spatial mixes. The testing data is set up to 50%, therefore if 30%
is training the remaining 70% is used for testing. No data within the training
set is used for testing to ensure all testing data is unseen. Each plane is tested
using 100-fold cross-validation. Other literature [15,25,27] use leave-one-subject-
out evaluation with data. This paper uses more or equal testing than training
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Table 1: All results using the SVM classifier. Each plane used the the combination
of LBP-TOP and GD features. The training percentage is displayed for each
plane from 10% to 50%.

Plane σ
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 1 51.20 47.10 43.30 39.90 36.20
XY 1 51.10 46.90 43.10 39.10 35.10

XTYT 1 51.90 47.90 44.20 40.00 36.80
YT 1 51.00 46.90 43.10 39.40 35.80

All Planes 1 52.50 48.70 44.80 40.90 37.50

XT 2 52.40 48.80 44.80 41.10 36.90
XY 2 52.10 48.10 44.30 40.20 36.40

XTYT 2 53.20 49.80 46.80 43.60 40.90
YT 2 52.50 48.80 45.10 41.30 37.70

All Planes 2 53.70 51.30 48.80 46.30 43.90

XT 3 52.30 48.50 44.60 41.00 37.20
XY 3 52.30 48.30 44.50 40.70 37.10

XTYT 3 53.20 50.20 47.50 44.70 41.70
YT 3 52.60 48.70 45.50 41.60 38.50

All Planes 3 54.20 52.00 50.10 48.30 46.20

XT 4 52.30 48.20 44.40 40.90 36.90
XY 4 52.40 48.30 44.60 40.70 37.10

XTYT 4 53.30 50.20 47.40 44.30 41.20
YT 4 52.40 48.70 45.30 41.90 38.50

All Planes 4 54.30 52.30 50.20 48.40 46.60

XT 5 49.82 46.33 42.47 39.56 36.21
XY 5 50.62 46.45 42.74 39.12 35.65

XTYT 5 51.51 47.36 44.03 40.18 37.00
YT 5 50.00 46.12 42.94 40.20 36.56

All Planes 5 52.28 48.26 44.32 40.62 36.40

XT 6 49.89 45.64 42.59 39.03 35.70
XY 6 50.47 46.04 42.47 38.66 35.02

XTYT 6 51.08 47.17 43.64 39.78 36.37
YT 6 49.84 45.86 42.38 38.95 36.11

All Planes 6 52.24 48.08 44.02 39.91 36.26

XT 7 49.62 45.40 41.87 38.27 34.93
XY 7 50.30 46.02 42.26 38.47 34.73

XTYT 7 50.81 46.79 43.36 39.43 36.13
YT 7 49.75 45.87 42.53 39.25 36.43

All Planes 7 52.14 48.01 43.91 39.83 36.09

to describe the robustness of this method compared to others in the literature.
The dataset being used is the CASME II recorded at 200 fps with 35 Chinese
participants with a mean age of 22.03 years.

For both RF and SVM the σ value for GDs goes from 1 − 7. In RF the
accuracy increases until the 5th value, where it peaks and begins to decrease,
indicating that when σ = 5 the accuracy is at its highest. In SVM, the accuracy
decreases as the σ value increases.

Table 1 shows the results from the SVM experiment and Table 2 shows
results from the RF experiment. SVM and RF results vary considerably with
the highest accuracy for SVM was 54.3% with training set to 10%. The accuracy
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Table 2: All results using the RF classifier. Each plane used the the combination
of LBP-TOP and GD features. The training percentage is displayed for each
plane from 10% to 50%. The results for RF are significantly higher than SVM
with results starting to plateau and decrease when σ = 6.

Plane σ
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)

XT 1 59.00 63.00 65.60 67.00 70.60
XY 1 51.20 49.30 48.10 46.30 44.50

XTYT 1 57.60 61.20 63.80 66.00 68.00
YT 1 56.60 59.00 60.50 62.70 65.30

All Planes 1 55.80 57.60 58.60 60.00 60.70

XT 2 66.80 73.70 77.20 80.70 82.30
XY 2 51.80 49.80 48.20 45.60 43.90

XTYT 2 66.10 72.20 75.90 79.30 81.60
YT 2 64.90 70.70 75.00 77.70 80.30

All Planes 2 61.30 66.40 69.50 71.20 74.00

XT 3 74.30 82.80 85.90 88.50 90.10
XY 3 52.90 50.80 49.40 48.30 46.20

XTYT 3 73.90 81.80 85.40 87.90 89.20
YT 3 72.30 80.20 84.30 86.50 88.00

All Planes 3 68.10 74.70 78.60 81.30 83.80

XT 4 79.40 86.80 89.20 91.30 92.40
XY 4 53.10 51.70 50.10 48.40 46.60

XTYT 4 78.50 86.10 88.50 90.90 91.70
YT 4 77.80 84.60 87.40 89.00 90.80

All Planes 4 70.60 78.10 81.70 84.80 86.70

XT 5 78.80 86.50 89.50 91.20 92.50
XY 5 53.30 51.50 49.80 47.10 45.40

XTYT 5 79.30 86.70 89.20 91.40 92.60
YT 5 78.30 85.70 88.70 90.60 92.20

All Planes 5 71.70 79.00 82.50 84.80 87.30

XT 6 78.60 85.70 88.70 90.80 91.80
XY 6 52.80 50.60 48.30 46.90 44.50

XTYT 6 78.30 86.10 88.70 90.90 92.00
YT 6 78.40 84.90 87.60 90.00 91.40

All Planes 6 70.30 77.30 80.40 84.30 86.40

XT 7 75.40 83.00 85.90 88.40 89.80
XY 7 52.70 50.20 48.30 45.40 42.80

XTYT 7 77.40 83.90 87.10 89.10 90.60
YT 7 77.60 83.90 87.20 88.80 90.20

All Planes 7 69.20 75.60 79.00 81.00 84.00

gradually decreased as training increased. As the data is high-dimensional and
values lie close together, SVM struggles to separate the data beyond chance. As
RF uses a bootstrap method it is able to generate many classifiers (ensemble
learning) and aggregate results to handle the data more appropriately, only
ever choosing random samples and ignoring irrelevant descriptors. This gave the
highest accuracy of 92.6% in the XTYT plane with a standard deviation (STD)
of 1.78.

By removing the spatial information and just using the temporal planes, clas-
sification results for RF are higher. In SVM the results did not vary considerably
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Fig. 3: Using RF, the accuracy of all planes where σ = 5. Notice XY decreases
as training increases due to the lack of temporal information.

Table 3: All results using the SVM classifier when using only LBP-TOP features.
The training percentage is displayed for each plane from 10% to 50%.

Plane
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 52.4 48.8 46.1 43 40.9
XY 51.9 48.1 43.9 40.1 36.7

XTYT 53.6 51.1 48.8 46.7 44.2
YT 53.1 50.6 47.9 45 43.1

All Planes 54.2 52.2 50.2 48.3 46.3

across planes, and the highest result was for all planes (54.3%, STD: 0.56) and
the lowest being the XY plane alone (34.73%, STD: 2.6).

The highest results were found to be when the σ value was set to 5. Fig. 3
shows the gradual increase in accuracy as training is increased in all planes with
a temporal element. A decrease was shown in just the XY plane, supporting that
as more training is introduced, the XY plane acts as noise to any movement.
This can also be seen when all planes are used and the accuracy is pushed lower
than just the temporal planes.

SVM and RF were also used to classify the image sequences using only LBP-
TOP features. The results in Table 3 show that all of the planes perform no
much better than chance, if not lower, with accuracy decreasing as the amount
of training data is introduced. SVM appears to perform similar to results with
GD, and separating the features is difficult. Table 4 shows the results from RF
using only LBP-TOP features. The accuracy for detecting movement increased
significantly compared with SVM, however the highest result was lower than
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Table 4: All results using the RF classifier when using only LBP-TOP features.
The training percentage is displayed for each plane from 10% to 50%.

Plane
10% Train.

Accuracy (%)
20% Train.

Accuracy (%)
30% Train.

Accuracy (%)
40% Train.

Accuracy (%)
50% Train.

Accuracy (%)
XT 60.4 64.3 66.6 69.4 71.4
XY 50.9 48.1 46 43.3 41.4

XTYT 58.8 61.7 63.3 65.5 67.8
YT 56.8 58.7 60.6 62.3 64

All Planes 56 57.8 58.5 59.6 59.9

when combined with GDs at 71.4% when using 50% training and 50% testing
data in the XT plane.

To the best of our knowledge, there has not been any results from purely
detecting MFM when comparing with neutral faces and so a benchmark for com-
paring our results could not be found. Most previous work focuses on detecting
the movements and classifying into distinct emotional categories and therefore
include automatic interpretation based on the FACS equivalent muscle move-
ments (i.e. happy would be movement in AU12).

5 Conclusion

This paper shows that the combination of LBP-TOP and GD features, clas-
sification with RF can perform significantly better than SVM when detection
micro-movement against neutral, with a highest accuracy of 92.6%. The stan-
dard deviation of results is low indicating mean accuracies are consistent using
cross-validation. This paper also shows that combining the higher order GD
and LBP-TOP can represent the subtle temporal movement of the face well
with RF. However, the features are unable to be split by the SVM hyperplane
beyond chance.

When using spatial XY planes alone or combined with temporal planes,
detection accuracy decreases, suggesting the XY plane is introducing noise to
subtle movement. Our method specifically detects micro-movement against neu-
tral faces, which has yet to become a well established method. Most current
research detects the MFEs to then classify them into emotion categories.

Future work will look into how the data is represented for MFMs and MFEs,
including exploring further methods of temporal feature selection and extrac-
tion for micro-movements and how best to discriminate clearly when a subtle
movement occurs. Other work includes exploring unsupervised learning meth-
ods of classifying movement and non-movement instead of using supervised and
computationally expensive methods that require training.
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Center for Machine Vision Research, University of Oulu, Oulu, Finland
{hamed.rezazadegan,esa.rahtu,janne.heikkila}@ee.oulu.fi

Abstract. This paper studies the role of different sampling techniques
in the process of learning Binarized Statistical Image Features (BSIF).
It considers various sampling approaches including random sampling
and selective sampling. The selective sampling utilizes either human
eye tracking data or artificially generated fixations. To generate arti-
ficial fixations, this paper exploits salience models which apply to key
point localization. Therefore, it proposes a framework grounded on the
hypothesis that the most salient point conveys important information.
Furthermore, it investigates possible performance gain by training BSIF
filters on class specific data. To summarize, the contribution of this paper
are as follows: 1) it studies different sampling strategies to learn BSIF
filters, 2) it employs human fixations in the design of a binary operator,
3) it proposes an attention model to replicate human fixations, and 4)
it studies the performance of learning application specific BSIF filters
using attention modeling.

Keywords: Binary operators · Visual attention · Salience modeling

1 Introduction

The research on image descriptors is a well-studied area in computer vision. In
general, image descriptors describe the visual characteristic (e.g., shape, color,
texture, motion) of the image. They are the building blocks of many vision
related tasks such as image retrieval, recognition tasks (e.g., texture, object,
face), action recognition, facial expression analysis, and etc.

Today, the computer vision domain is replete with image descriptors. Some
descriptors are more generic, e.g., SIFT [10], SURF [1], BRIEF [2], DAISY [18]
and their variants, compared to other operators such as LBP [12], LPQ [13]
which are mostly developed for class specific applications (e.g., texture clas-
sifications, and face recognition). Nonetheless, they are somehow linked by a
common framework of Filtering, Labeling and Statistics (FLS) which provides
a unique implementation for LBP and SIFT like features [4].

Adopting the concepts of [4], one can write the LBP operator as the
thresholded-quantized-mapped response of a series of multi-directional filter banks.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 124–134, 2015.
DOI: 10.1007/978-3-319-16181-5 9
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While traditionally the filters are hand tuned, intrigued to improve quality of fil-
ters, [9] proposed to learn the filters using image statistics in which the premise
is that statistically learned filters convey image information better. Nonetheless,
such an approach poses a new challenge by requiring effective training of the fil-
ters. Thus, this paper tries to seek a suitable answer by investigating the domain
of salience modeling and visual attention. Initially, it exploits human fixations to
train BSIF filters from natural image statistics in order to analyze possible relation
between informative regions and training of filters.

Afterwards, motivated by the success of learning based methods, e.g. [16], in
which a set of filters specific to a class category is learned, this paper explores
learning the filters from application specific data sets and particular class cat-
egories. However, it faces a difficulty in using human fixations because there is
no such a data set available. To compensate, it develops an attention model to
replicate human fixations during the learning process.

Eventually, the performance of the sampling strategies is studied in several
applications such as texture classification and face recognition. It will be demon-
strated that learning of filters somehow benefits from selective sampling and the
proposed framework for attention-based learning of filters improves the perfor-
mance of face recognition.

1.1 Related Work

This paper targets domain of binary patterns such as LBP [12]. Such operators
treat the relation of each pixel and its surrounding as a binary code string. Con-
sequently, an image is represented by the probability distribution of binary code
strings obtained in terms of histograms. Thus, the paper adopts the binarized
statistical image features (BSIF) to investigate the role of underlying data set
information in the process of learning statistical representations.

BSIF binarizes the response of a set of statistically learned filters with a
threshold at zero, in which each filter response is in correspondence with a dif-
ferent filter. The filters are learned by maximizing the statistical independence
of the filter responses using Independent Component Analysis (ICA) [6].

In a few words, given an image I and a filter wi of size l × l, the filter
response is

si = wi ∗ I, (1)

where si is the response of the i-th filter, and ∗ is the convolution operator. For
a specific pixel x, BSIF derives a binarized filter response such that bi,x = 1 if
si > 0 at x, otherwise bi,x = 0. Thus, in presence of n filters a binary string of
length n describes each pixel.

BSIF learns the filters using independent component analysis. To this end,
it forms a training set of image patches by taking random samples from natu-
ral images. Afterwards, it employs a canonical preprocessing step and performs
Principal Component Analysis (PCA) to obtain dimension-reduced whitened
data samples. Eventually, it utilizes a standard ICA algorithm [6] to obtain a
set of linearly defined filters.
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2 Fixations and BSIF

In order to learn the filters, BSIF requires several sampled image patches. It obtains
themby randomly sampling imagepatches fromnatural images.Nonetheless, there
are arguments and evidence that supports the fact that random sampling does not
necessarily provide the best informative image patches. For instance [8] proposed
taking image patch samples from the most salient regions to make descriptors in a
recognition task and demonstrated the success of the attention based learning.

Intrigued to investigate application of informative regions in training of BSIF,
the filters are learned using patches extracted around human fixation points on
natural image statistics. The learning procedure is as follows: 1) The images are
converted to grayscale, 2) The patches are selected around the fixation points of
observers, 3) the DC-component (i.e., mean value) of each image patch is dis-
carded, 4) The patches are dimension reduced and whitened, 5) the independent
components are estimated. In mathematical terms, for an image patch, {x}, of
size l × l centered at x, one can apply ICA algorithm to estimate the indepen-
dent components, i.e., the n × l2 filter matrix W. The filter matrix includes n
vectorized filters, wi, of length l2. Knowing that the all-in-one response of the
filters on a patch can be formulated as s = W{x}, one can write

s = Uz, (2)

where z = V{x}, U is a n × n matrix which is estimated via ICA. The matrix
V conveys the PCA whitening procedure which facilitates estimation of the
orthogonal matrix U using the fact that z = U−1s. Eventually, by estimating
V and U, it obtains W = UV.

2.1 Fixations’ Replicate

In order to boost the performance of the operator, one may suggest learning
the filters tuned for a specific data set, e.g. learning the filters from face images
for a face recognition task. In this context, the aforementioned methodology for
learning filters has one disadvantage which is the requirement of human fixations.
Access to reordered fixations on class specific data is not always possible due to
expensive gathering procedures. To compensate, this section introduces an arti-
ficial mechanism of fixation selection. The mechanism relies on a salience map,
which is obtained using natural image statistics, and application of inhibition of
return (IOR) procedure in selection of most salient region.

To compute the salience map, the proposed framework utilizes the filters
learned from the previous step and intensity of an image. For each filter, it
employs the Saliency Using Natural statistics (SUN) [21] to derive a conspic-
uousness map. SUN defines bottom-up salience as P (F )−1 in which F indi-
cates wi learned as described before. It approximates P (F ) as the generalized
Gaussian distribution (GGD) estimate of unidimensional distributions such that
P (F = f) =

∏
i P (fi), where fi is the i-th element in f , and
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Fig. 1. ICA filter response, left column depicts an image and 10 ICA filters and on the
right side the corresponding filter responses are visualized

P (fi) =
θi

2σiΓ(θ−1
i )

exp

(
−

∣∣∣∣
fi

σi

∣∣∣∣
θi

)
, (3)

The discriminative power of ICA filters are even enhanced by nonlinear
weighting of each dimension of f using GGD fit to their responses [15]. Fig. 1
depicts the conspicuousness maps obtained from 10 of the ICA filters. Tradi-
tionally these conspicuousness maps are combined with equal weights to derive
a central saliency map (e.g. [8,21]). Contrarily, the proposed framework treats
them as features and employs linear Support Vector Machines (SVM) to combine
the conspicuousness maps and intensity features to produce a salience map. To
this end, it learns a linear SVM on a groundtruth consisting of human fixation
density maps in which top 10% salient regions form positive set and top 10%
non-salient regions form negative set. Thus, given a training set of n points with
the feature input xi ∈ Rn and the corresponding target label yi ∈ {−1,+1}, the
SVM is defined as a linear scoring function with a prediction rule such that

ŷ(xi) = sign(ωT xi + β), (4)

where β is the bias and ω is a weight vector. The weight vector ω is obtained
via a minimization problem as follows

min .
ω

1
2
ωT ω + λ

n∑
i=1

ζi

s.t. ŷ(ωT xi + b) = 1 − ζi

ζi ≥ 0 i = 1 . . . n

(5)

where λ is a smoothing regularization parameter balancing the trade-off between
error and margin. Consequently, the saliency map is defined as the score obtained
by combining the features using ω. In other words, for a feature vector of f , the
saliency Sal is defined as Sal = ωT f . Fig. 2 depicts saliency maps produced
using the described technique.

To select fixations, the proposed method applies an inhibition of return (IOR)
like mechanism. As depicted in Fig. 3, it implements an iterative scheme con-
sisted of 1) it picks randomly among the salient locations, 2) it attenuates the
salience map response at the selected fixation proportional to a Gaussian kernel.
The procedure is repeated until enough number of fixations are obtained which
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Fig. 2. Salience maps produced using the described technique. As depicted, more
salient regions are somehow meaningful to human, e.g. eyes and mouth regions of
the face.

Compute salience Get a
salient location

n+1
delay

n

Sample
image patch

patches

Modify
salience map

Fig. 3. Sampling image patches using an artificial fixation generation mechanism. For
an image, a saliency map is generated and fixations are taken by considering the salient
locations. Each time, a location among salient locations is selected randomly and its
corresponding image patch is extracted. Afterwards, the salience map is modified and
the current fixation location is attenuated to reflect its selection. The process continues
over time until enough samples are taken.

Fig. 4. Sampling using artificial fixations, from left to right, original image, saliency
map, samples taken using artificial fixations, random sampling

replicate the human fixations. Fig. 4 visualizes samples taken by such a process,
as depicted, samples taken using artificial fixations are concentrated on more
meaningful parts of the image compared to random samples.

3 Experimental Analysis

Thissectionassesses theaforementionedscenarios.Theanalysiscoversexperiments
on texture and faces. Initially, it discusses the texture classification experiments.
Afterwards, it continues with the experiments on face recognition which is followed
by a discussion.
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3.1 Texture Classification

The texture experiments assess two sampling strategies for learning the BISF
filters. It compares filters learned from patches taken randomly with the filters
learned from patches centered on human fixations. The filters are learned using
natural images provided by MIT [7] database. It consists of 1,003 images along
with the eye movement statistics, particularly fixations, of 15 viewers at a dis-
tance of 48cm. The image set includes natural indoor and outdoor images; each
image is presented for 3 second. In order to learn the filters, the images are con-
verted to gray-scale and 500,000 image patches are sampled either randomly or
using human fixations. The image patches are of the sizes 3×3, 5×5, and 7×7,
as bigger patch sizes are demonstrated not to perform well on the textures [9,20],
which are learned at different number of bit levels (i.e. ICA filters) ranging from
5 to 11.

To perform texture analysis, this study utilizes CUReT [3], Outex [11]
datasets. The Columbia-Utrecht (CUReT) dataset consists of 61 texture classes,
each observed with almost 205 viewing and illumination combinations (more
than 12,000 images in total). The categories include a variety of surfaces such
as specular, diffuse, isotropic, and etc. The Outex database consists of several
test suits. This study utilizes test suits TC 00002 and TC 00012. Each of them
consists of 24 classes of texture, while TC 00002 has no rotation and contains
only one illuminant, TC 00012 has three illuminants and considers 7 rotation
orientations1.

The classification procedure is chosen to be consistent with the protocols
used in [9]. In other words, texture classification is carried out using nearest
neighbor classifier in which the distance measure is X 2 using l1-normalized fea-
ture histograms. To classify the CUReT textures, the images are grouped into
non-overlapping train and test sets and the procedure is repeated 100 times as
described in [19]. The Outex experiments utilizes the provided partitions of [11].

Fig. 5 depicts the results of the two differently trained filters on the CUReT
database. There seems to be a small difference between the two sampling
approaches. Nonetheless, the filters learned using the fixation sampled images
perform marginally better than randomly learned ones meanwhile achieving
maximum accuracy of 96.6.

Fig. 6 visualizes the results of the Outex database. As depicted in 6(a), sim-
ilarly the Outex TC 00002 results indicate slight improvement in training the
filters using patches sampled at fixation points. On the other hand, the perfor-
mance analysis of Outex TC 00012, showed in 6(b), reveals a 4% performance
improvement using fixations to train the BSIF filters (5 × 5-7 bits performing
66.4% vs. 5 × 5-6 bits performing 64%).

Comparing the results on Outex TC 000122 with TC 00002 and CUReT con-
veys that the selective training of filters boosts the performance of operator in
1 Please see: http://www.outex.oulu.fi/index.php?page=classification for detailed information

on test suits.
2 TC 00012 is difficult because it contains several rotations and illuminants.

http://www.outex.oulu.fi/index.php?page=classification


130 H.R. Tavakoli et al.

85

86

87

88

89

90

91

92

93

94

number of bits

5 6 7 8

ac
cu

ra
cy

3x3 window

86

87

88

89

90

91

92

93

94

95

96

number of bits

5 6 7 8 9 10 11

ac
cu

ra
cy

5x5 window

87

88

89

90

91

92

93

94

95

96

number of bits

ac
cu

ra
cy

7x7 window

5 6 7 8 9 10 11

natural image/fixation
natural image/random

Fig. 5. CUReT, performance analysis of filters trained randomly compared to filters
trained on human fixations
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Fig. 6. Outex, performance analysis of filters trained randomly compared to filters
trained on human fixations

handling data carrying more information. Thus, this study motivates the assess-
ment of sampling strategies on more complicated scenarios and data. Intrigued
to have a better understanding, this paper performs a series of analysis on face
recognition task.

3.2 Face Recognition

This section considers face recognition task in order to study the role of sampling
in training of BSIF in a more challenging task. It extends the sampling mecha-
nism by incorporating faces in the learning process. To learn the filters from face
images, it adopts a cropped version of the Labeled Faces in the Wild (LFW) [5],
recognized as LFWcrop [17]3. It consists of more than 13,000 images of faces

3 Download link: http://conradsanderson.id.au/lfwcrop/

http://conradsanderson.id.au/lfwcrop/
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which are cropped to prevent the recognition by getting advantage of the back-
ground information. However, it does not have any eye tracking data available.
Therefore, the artificial fixation generation scheme mentioned above is employed
in order to select the location of each image patch selectively. Eventually, this
section analyzes a set of 4 different filters: the filters learned on face data using
random sampling and artificial fixation selection mechanism and the two filters
applied in the texture analysis study. The same parameters and configurations
applied in the learning of the filters on face data.

The experiments are carried out on the FERET database [14] using the
frontal profile images. The images are partitioned into gallery (fa) and fb probe
images. The gallery consists of 1196 images, and the probe consists of 1195
images with varying facial expressions. Fig. 7 depicts some of the face images.
It is expected that the performance will be somehow related to the amount of
information the filters would be able to encode and the data of the experiments.

Fig. 7. Sample images from FERET data base

The recognition procedure initially crops the images using the location of
subjects’ eyes to have the complete frontal face in the center of frame. After-
wards, the images are normalized to a canonical size of 128 × 128. It divides
the face image into 8 × 8 non-overlapping rectangular regions and computes the
BSIF descriptor independently for each segment. Concatenation of l1 normalized
descriptors makes an image descriptor. The classification uses nearest neighbor
and X 2 distance measure.

Fig. 8 depicts the results of the face recognition task. The 7 × 7 filters with
12 coding bits achieve the performance of 94.23%. The comparison of curves
somehow expresses that the number of coding bits (i.e. information) has a direct
relationship with using selective sampling approach in the learning process of
ICA filters. It is worth-noting that while learning small filters does not benefit
from training on class specific data, bigger windows and higher number of bits
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Fig. 8. Face recognition and sampling strategies using different window sizes
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get advantage of such data. Nonetheless, the behavior of curves raises some
questions which this study tries to address in the next section.

3.3 Discussion

The variation in the curves depicting performance of texture and face recognition
raises some questions. Why there is a marginal contribution in adapting
selective sampling for texture? The texture often consists of simple repeating
patterns which makes them difficult to discriminate. Nonetheless, the learning
of such simple structures are somehow easily doable by having enough num-
ber of samples via ICA. As depicted in Fig. 4, the filters learned from natural
image statistics consists of similar structures which are probably enough to rep-
resent the textures. Nonetheless, the significance of selective sampling becomes
apparent in applying a rotation variant operator (i.e. BSIF) to rotated texture
samples; referring to Fig. 6(b), one realizes that selectively trained filters per-
form 4% better than randomly trained filters in the task of the recognition of
TC 00012 textures.

The sampling strategies and learning are not limited to selective sampling.
Face recognition included filters learned on class specific trained filters, i.e. filters
learned on faces. Is there any benefit in training the filters on class
specific data sets? As depicted in Fig. 8, the maximum face recognition rate
is achieved using the filters which are trained on class specific data and convey
more information. In other words, learning ICA filters from class specific data
becomes useful as the amount of information required to perform a task increases.
To find grounds for such a behavior, Fig. 4 visualizes the ICA filters learned
using various sampling techniques and data. As shown, in case of small filters
of size 3 × 3, the filters learned on natural statistics present a structure similar
to gradient filters, which effectively encodes almost any data in such a small
neighborhood. Consequently, natural image statistics somehow perform better
for that specific scale. Contrarily, as the filter size and number of bits increase,
one can observe – e.g., from Fig. 9(c) – that the filters trained from class specific

(a) 3 × 3 Filters of 7 bits

(b) 5 × 5 Filters of 12 bits (c) 7 × 7 Filters of 12 bits

Fig. 9. Visualization of the ICA filters learned using different sampling strategies, from
left to right: randomly learned from natural images, learned from fixations using natural
images, learned randomly from face images, and learned using artificial fixations from
face images
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data are absolutely different, probably reflecting the underlying data better. The
performance even slightly improves using the artificial fixation based sampling
meanwhile it seems that more complicated filters are learned using fixation.

What is the verdict? The conducted experiments reveals that there is
a relation between the amount of information conveyed by the BSIF filters,
sampling strategies and learning filters from class specific data. The conclusion
is that depending on the amount of information embedded in the data, reaching
the optimum operation point may benefit from learning on class specific data and
selective sampling.

4 Conclusion

This study examined different sampling strategies for learning ICA filters used
by BSIF operator. These strategies include random sampling and selective sam-
pling. The study employed two techniques for taking the samples selectively, first
it utilized fixation points on natural image statistics, second it developed an arti-
ficial fixation generation scheme to replicate human fixations in the process of
learning the filters.

To generate artificial fixations, it proposed an attention model. The atten-
tion model derives a salience map using natural image statistics responses and
linear support vector machine. Afterwards, it implements an inhibition of return
mechanism to replicate the human fixations. Consequently, the proposed loca-
tions of image patches are more concentrated on meaningful areas of the image.
The mechanism is particularly applied in the process of learning ICA filters for
the task of face recognition. Eventually, the proposed mechanism is applied to
replicate human fixations in the process of learning from face data.

The experiments suggest that using selective sampling and class specific data
in learning the filters affects the performance of the BSIF operator. Nonethe-
less, the improvement is somehow dependent on the assigned task because it is
affected by the the amount of information required to represent the image.
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Abstract. High dimensional engineered features have yielded high per-
formance results on a variety of visual recognition tasks and attracted
significant recent attention. Here, we examine the problem of expres-
sion recognition in static facial images. We first present a technique to
build high dimensional, ∼ 60k features composed of dense Census trans-
formed vectors based on locations defined by facial keypoint predictions.
The approach yields state of the art performance at 96.8% accuracy for
detecting facial expressions on the well known Cohn-Kanade plus (CK+)
evaluation and 93.2% for smile detection on the GENKI dataset. We also
find that the subsequent application of a linear discriminative dimen-
sionality reduction technique can make the approach more robust when
keypoint locations are less precise. We go on to explore the recognition
of expressions captured under more challenging pose and illumination
conditions. Specifically, we test this representation on the GENKI smile
detection dataset. Our high dimensional feature technique yields state of
the art performance on both of these well known evaluations.

Keywords: Facial expression recognition · Smile detection · High-dime-
nsional feature · Census transformation · Deep learning · GENKI · CK+

1 Introduction

Local binary patterns (LBPs) [1] are well known texture descriptors that are
widely used in a number of applications. LBP features have been found to be
particularly effective for face related applications [2]. As an example, high dimen-
sional features based on LBPs have yielded highly competitive results on the well
known Labeled Faces in the Wild face verification evaluation [3,4].

We are interested here in recognizing facial expressions in static imagery.
Facial expression analysis can be a particularly challenging problem, especially
when using imagery taken under “in the wild” conditions as illustrated by the
recent Emotion Recognition in the Wild Challenge [5]. Here we examine both
controlled environment facial expression analysis and an “in the wild” prob-
lem through evaluations of our proposed method using the Extended Cohn-
Kanade (CK+) database [6,7] and the GENKI-4K smile detection evaluation.
The CK+ database is a widely used standard evaluation dataset containing acted
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expressions. The expressions to be recognized are based on Ekman’s six basic
universal categories of: happiness, sadness, surprise, fear, anger, and disgust [8].
The GENKI-4K [9] dataset contains comparatively low resolution images har-
vested from the web.

We provide a number of technical contributions in this paper. First, we pro-
vide a formulation of high dimensional features that is different from other stan-
dard formulations. Our descriptor is a high dimensional feature vector in which
each dimension consists of the bits derived from Census transformation. Fea-
tures are obtained based on image patches centered on facial keypoints. We use
a slight variant of LBPs known as the Census transform [10]. To the best of our
knowledge this representation yields the highest known performance on CK+
using the same evaluation criteria as in [7].

We go on to adapt our technique to be more robust to inaccurately localized
facial keypoints using a multi-resolution technique and local Fisher discriminant
analysis (LFDA) [11] - a recently proposed extension to the widely used Fisher
discriminant analysis technique. The issue of keypoint localization accuracy is
particularly important when turning to the problem of recognition in the wild,
but even in controlled environments there are well known degradations in perfor-
mance when per subject keypoint training data is not used to fit a facial keypoint
model. Turning to the problem of smile recognition using in the wild GENKI
imagery, it is much harder to detect a large number of keypoints due to the qual-
ity and variability of the imagery. For the GENKI evaluation in particular we
are however able to detect five keypoints reliably. Adapting our method to this
setting, here again our proposed method yields the highest known performance
of which we are aware on this well known evaluation.

The remainder of this manuscript is structured as follows: We provide a
brief review of some other relevant work in section 2, but also discuss other
relevant work throughout this document. In section 3 we present our novel fea-
ture extraction technique based on high dimensional binary features, multi-scale
patches and discriminative dimensionality reduction. In section 4 we benchmark
our high dimensional feature vector technique using CK+, examining experi-
mentally the issue of facial landmark prediction quality, its impact on prediction
performance and our motivations for extending our basic formulation to include
multi-scale analysis and discriminative dimensionality reduction. We then pro-
vide our experiments on GENKI-4K, where we also compare directly with a
state of the art convolutional neural network technique that does not rely on
keypoints. We provide conclusions and additional discussion in section 5.

2 Other Relevant Work

A number of modern, state of the art approaches to expression detection are
based on handcrafted features, such as: Local binary patterns or LBP features
[1], Histograms of oriented gradients or HOG features [12], or Lowe’s Scale-
invariant feature transform (SIFT) descriptors [13]. For example, the influential
work of Shan et al. [14] studied histograms of LBP features for facial expression
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recognition. They introduced Boosted-LBP by using AdaBoost [15] for feature
selection. Their experiments showed that LBP features are powerful for low reso-
lution images. Dahmane et al. [16] built face representation based on histograms
of HOG features from dense grids. Their representation followed by nonlinear
SVM outperforms an approach based on uniform LBP. Other work has used
SIFT features for facial expression analysis [17], yielding competitive results on
CK+.

Techniques based on convolutional neural networks have also yielded state of
the art performance for the task of emotion recognition, including top performing
results on competitive challenges [18–20]. The CK+ data and classification tasks
were introduced in Lucey et al. [7]. They provided both the additional facial
examples that were used to extend the original Cohn-Kanade (CK) dataset of [6],
yielding the combined dataset known as CK+ as well a number of experimental
analyses. They provided a variety of baseline experiments and a state of the
art result at the time in which they combine a landmark based representation
(SPTS) and appearance features both before and after shape normalization using
landmarks, which they refer to as CAPP features. They combine two different
classifiers for landmarks and appearance using a logistic regression on the outputs
of the classifiers. This procedure yields their best result with an average accuracy
of 83.33%.

Jeni et al. [21] used shape only information for expression recognition exper-
iments with CK+; however, they removed the sequences with noisy landmarks.
The work of Sikka et al. [17] compares the performance for a variety of tech-
niques on the CK+ expression recognition task, including the well known uniform
LBP histogram technique in [14] which they state yields 82.38% ±2.34 average
accuracy. They state that their own bag of words architecture yields 95.85%
±1.4 average per subject accuracy using a leave one subject out evaluation pro-
tocol. Other work has also explored the problem of smile detection using the
GENKI-4K data. Jain et al. [22] report 92.97% accuracy using multi-scale gaus-
sian derivatives combined with an SVM, but they removed ambiguous cases and
images with serious illumination problems (423 removed faces). Shan et al. [23]
report 89.70% ±0.45 using an Adaboost based technique; however, they man-
ually labeled eye positions which is not practical for many applications. Liu et
al. [24] report 92.26% ±0.81 accuracy and also provide the splits used for their
evaluation. We therefore use their splits in our evaluation below to permit our
technique to be directly compared to their results.

3 Our Models

In this section, we present our technique which we show later is capable of
obtaining state of the art results on both the CK+ and GENKI evaluations. We
also present a deep neural network approach for expression recognition that we
shall use for additional comparisons on the GENKI evaluation.
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3.1 High Dimensional Engineered Features

Our high dimensional feature approach is conceptually simple. We extract a form
of local binary pattern known as the Census transform for each pixel found within
small image patches, each centered on a facial keypoint. Unlike previous work
which typically creates histograms of LBPs, here we create our feature vector by
concatenating the bits for each pixel of the image patch into a binary vector. We
also concatenate bits obtained from patches extracted at multiple scales centered
on the keypoints. As far as we are aware this is different from previous uses
of LBP techniques which have relied on histogramming operations. This high
dimensional binary feature vector is then projected into a smaller dimensional
space via principal component analysis (PCA), followed by a recently proposed
variation of multiclass Fisher Discriminant Analysis (FDA) known as local FDA
or LFDA [11]. The resulting vector is then used within a Support Vector Machine
(SVM). There are a number of choices to be made throughout this processing
and classification pipeline and we search over key subsets of these choices using
cross validation techniques. We discuss the different steps of our procedure in
more detail below.

The Census Transform. The Census transform [10] is computed as fol-
lows. If p = {u, v} is the index of a pixel and I(p) is its intensity, define
ξ(p,p′) = 1, if I(p′) < I(p); otherwise ξ(p,p′) = 0. The Census transform
simply concatenates the bits obtained from comparisons using a fixed ordering
of pixels within spatial neighborhood around the pixel. The result is a bit string
with ones representing the pixels that are less than the value of the central pixel.
Using

⊗
to denote concatenation, the census transform for the pixel at location

p = {u, v} is simply

Ic(p) =
n⊗

j=−n

m⊗
i=−m

ξ(I(u, v), I(u + i, v + j)), (1)

typically computed using a window of size (2m+1)×(2n+1). In other words, for
a given image patch the CT simply compares each pixel with the center pixel.
If its value is greater than the center pixel’s value it assigns 0 and 1 otherwise.
Common window sizes are 3 and 5. In our experiment, we used 3 as the window
size which allows the information to be stored in an 8-bit binary number if
desired. The ability to store such descriptors using a binary encoding means
that even if our descriptor is of extremely high dimension the information can
be stored in a highly compact format. Various other operations using these types
of binary descriptors can also be implemented very efficiently.

Keypoint Guided Feature Extraction. As outlined above, we construct our
descriptors by cropping small patches out of the larger facial image, applying the
Census transform to each pixel for each patch and concatenating the resulting
bits into a high dimensional vector. In our experiment below, each scale yields
19,992 features for CK+ and 4,312 for GENKI, due to the different number
of keypoints produced by different methods. Patches are extracted centered on
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each landmark, excluding the face contour. The patches have two parameters
that are optimized by cross validation: patch width, defined in proportion to
face size and the patch size. The optimal values for our initial CK+ experiment
for example were 2/5ths of the face size and 9 pixels in width respectively. Each
cropped patch is also resized before computing the Census transform allowing
us to control both the dimensionality and the size or spatial extent of the patch
separately. We will also present experiments where we extend this approach by
extracting patches at each keypoint at three different scales. Depending on the
experiment this produces about 60k features.

To obtain keypoints there are a variety of automated placement techniques
which can be applied depending on the circumstances. For example, the CK+
dataset comes with landmark positions that were estimated by fitting an Active
Appearance Model (AAM) [25]. AAMs can yield state of the art performance
when labeled keypoints have been provided to train models for each subject of
interest. For our first set of experiments we use the landmarks provided with
the CK+ data. However, AAMs yield poor performance when per subject train-
ing data is unavailable. In many real world situations it is impractical to label
keypoints for each subject. For this reason there has been a great deal of recent
activity focused towards improving alternative approaches that are not identity
dependent. For our second CK+ experiments we use the structured max mar-
gin technique of [26]. For GENKI experiments we use the convolutional neural
network cascade technique in [27].

Dimensionality Reduction. As we shall see in our experimental work, our
high dimensional Census feature technique can yield encouraging results on
the CK+ evaluation. However, Working with high dimensional vectors can be
impractical for many applications. We therefore employ a two phase dimension-
ality reduction procedure based on an initial projection using PCA followed by
LFDA [11]. LFDA obtains a discriminative linear projection matrix through min-
imizing an objective function of the same form as FDA. The underlying problem
is therefore also equivalent to solving a generalized eigenvalue problem. More
precisely, a projection matrix M is obtained from

arg max
M

Tr
{

(MTSWM)−1MTSBM
}

, (2)

where there are i = 1, . . . , n feature vectors xi with class labels Ci, given by
c = 1, . . . , nc class indices, and

SW =
1
2

n∑
i,j=1

Wi,j(xi − xj)(xi − xj)T , (3)

which defines a local within-class scatter matrix using

Wi,j =
{
Ai,j Ci = Cj = c
0 Ci �= Cj ,

(4)
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Fig. 1. The architecture of the convolutional neural network used in our experiments

and a local between-class scatter matrix defined by

SB =
1
2

∑
i,j=1

Bi,j(xi − xj)(xi − xj)T , (5)

where

Bi,j =
{
Ai,j

(
1
n − 1

nc

)
Ci = Cj = c

1
n Ci �= Cj ,

(6)

and for both types of local scatter matrix one uses an affinity matrix A defined,
for example by

Ai,j = exp(‖xi − xj‖2). (7)

3.2 A Deep Convolutional Neural Network Approach

We shall also compare with a deep convolutional neural network approach to
expression recognition based on the framework presented in [28] which was used
to win the recent ImageNet challenge. The particular architecture we used here
for expression recognition is shown in Fig. 1. A similar deep neural network
architecture and training approach for expression recognition in the wild was
used in [18] to win the recent Emotion Recognition in the Wild Challenge [29]
where the goal was to predict expressions in short clips from movies. In [18]
the deep network was only trained on the Toronto Face Database TFD [30] - a
large set of different standard expression datasets including Cohn-Kanade and
a dataset mined from Google image search results [31] containing 35,887 images
tagged with the corresponding emotion categories. In contrast for our GENKI
experiments here we do not use additional training data.

Since this implementation and architectural variants of it have won a number
of competitive challenges we believe the approach is representative of a state
of the art deep neural network approach for expression recognition with wild
imagery. We therefore use it here to provide a point of comparison for our GENKI
experiments.
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4 Experiments and Results

Here we provide two sets of experiments. First, we present experiments using
the standard CK+ evaluation and our high dimensional feature technique. We
examine in particular the sensitivity of our approach to keypoint localization
quality, the results of which partly motivated the development of the multi-
resolution extensions to our basic approach - making it more robust to inaccu-
rate keypoints. We then present results for the smile detection problem using
the GENKI-4K dataset, comparing with the deep convolutional neural network
approach presented above.

For our last CK+ experiment with noisy keypoints and for our GENKI exper-
iment we apply our full approach in which multi-scale patches are extracted and
feature descriptors are reduced in dimensionality using LFDA. The dimension-
ality reduction is applied on a per patch basis. For PCA we search in the region
of dimension reductions that capture 95% of the variance. For LFDA we search
in the region of reductions that reduce the final output to 5-20% of the original
dimensionality. It is interesting to note that the multi-scale descriptor has about
60k dimensions for our CK+ experiment and is reduced to about 6k dimensions.

4.1 Experiments on CK+

The CK+ database [6,7] is a widely used benchmark for evaluating emotion recog-
nition techniques. It is perhaps more precise to characterize the emotion recogni-
tion taskusingCK+as facial expression recognition since themajority of sequences
were acted.The evaluation includes image sequenceswith 6 basic expressions. Each
sequence starts with a neutral face and ends with an image showing the most exag-
gerated variation of a given expression.CK+has large variation in gender, ages and
ethnicity. The database consists of 593 image sequences of 123 different subjects
and covers both spontaneous and acted expressions. Only one expression ”Happy”
is spontaneous and it’s because some actors smiled during video recordings. CK+
dataset includes labels for expressions, landmarks and labels for the Facial Action
Coding System (FACS). We focus here on the expression recognition task.

We use the CK+ data in our work to benchmark and evaluate our approach
on a standard dataset before tackling data that is of principal interest to our
work in which expressions are exhibited by subjects in natural and spontaneous
situations. We begin by placing our high dimensional feature technique in context
with the state of the art by showing the complete result of Lucey et al.’s top
performing SPTS+CAPP technique discussed in more detail in our literature
review [7]. To evaluate our technique performance when high precision keypoints
are not available we then show the impact of using realistic keypoint predictions
from the keypoint predictor in [26].

High Dimensional Binary Feature Vectors. For our first experiment here
we created a high dimensional binary vector from densely sampled keypoint
locations as discussed in section 3. We give the resulting vector to a linear support
vector machine using the implementation in [32]. We perform leave one subject
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Fig. 2. (left) A confusion matrix for expression detection from the SPTS + CAPP
result of Lucey et al. [7]. The average per class recognition rate was 83.3%. The matrix
is row normalized as in [7]. (right) The confusion matrix for expression detection on
CK+ using our high dimensional binary features. The average per class accuracy is
96.8%. The overall average accuracy is 98.2%. We give the number of examples per
class in the column on the right.

out experiments and optimize hyperparameters using an inner cross validation
procedure within the training set. Results are shown in Fig. 2 (right). We are
aware of no other published result with higher performance. The best result of
which we are aware on CK+ also gives an accuracy of 96% [21]; however, they
exclude five subjects from their evaluation. Table 1 provides comparison of our
results to other methods.

The Impact of Noisy Keypoints. As we have discussed, in many practical
situations it is not possible to obtain highly accurate keypoints such as those
possible when using an AAM trained on labeled examples of each subject. For
this reason we perform the same experiment above but using the keypoint detec-
tor of [26]. As seen in Fig. 3 (left), there is a drop in performance (i.e. 90.0%
vs 96.8%), but it is not as dramatic as one might expect due in part to the
improved quality for subject independent keypoint predictions afforded by [26].

The Impact of Multiscale Patches. We then evaluated the hypothesis that
the use of multiscale patches centered on each keypoint could make the approach
more robust to keypoint localization errors. The result of this experiment is
shown in Fig. 3 (right). While we cannot recover the original performance, we
do see a slight boost in performance over the original single resolution technique.

4.2 Smile Detection Experiments

The GENKI-4K dataset [9,33] consists of 4,000 facial images labelled with pose
and smile content. The images are relatively low resolution and in jpeg for-
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Fig. 3. (left) Confusion matrix for expression detection on CK+ using our high dimen-
sional binary features, but based on less accurate keypoints. The average per class accu-
racy is 90.0%. The overall average accuracy is 93.4%. (right) The average per class
accuracy when using our multi-scale strategy increases to 91.3% as does the average
accuracy, which increases to 94.5%.

Table 1. CK+ Experiments: Comparison and summary

Method %

Lucy et al. (2010) [average accuracy] using a landmark based 83.33
representation and appearance features [7]
Sikka et al. (2012) [average accuracy] LBP histogram architecture [14,17] 82.38
Sikka et al. (2012) [average per subject accuracy] bag of words [17] 95.85

Our technique [average accuracy], accurate keypoints 96.8
Our technique [average class accuracy], accurate keypoints 98.2
Our technique [average accuracy], noisy keypoints 94.5

mat. This dataset has large variations in pose, illumination and ethnicity. We
extracted faces from the original images using a combination of the opencv’s
Haar cascade face detection [34] and the convolutional neural network cascade
of [27]. Where these detectors failed to detect any face, we just kept the original.

The resolution of imagery in this dataset was such that we were only able to
detect a set of 5 keypoints reliably for our high dimensional feature technique. In
order to cover the whole face we computed 6 more points located between eyes,
mouth corners and the nose. We provide a comparison with the convolutional
neural network (Convnet) architecture discussed in section 3.2, which does not
rely on keypoints. For both our high dimensional feature technique and our
ConvNet experiments we split the dataset into 4 equal folds using the precise
splits defined in [24].

For each experiment with the convolutional neural network, we used ran-
dom cropping with a 4-pixel border for 48×48 images. Also images were flipped
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horizontally with a probability of 0.5 at each epoch. The model with no
pre-processing yielded 91.5% 1-fold accuracy. We explored preprocessing with
isotropic smoothing [35,36], yielding 91.5%, and histogram equalization on the
grayscale imagery, which yielded 91.7%. From these experiments we found
that these preprocessing options did not alter performance in a substantial way.
We therefore ran a full four fold experiment using grayscale faces with no pre-
processing at 96×96 pixel resolution, which yielded 92.97% ±0.71 accuracy.

Using our complete high dimensional feature technique consisting of both
the initial feature construction and including the use of multi-resolution patches
and the local fisher discriminant analysis step, followed by the application of an
SVM with radial basis function kernel for the final classification, we were able
to achieve 93.2% ±0.92 average accuracy. We place our results here in context
with prior work in Table 2.

Table 2. GENKI-4K Experiments (Accuracies)

Method %

Shan et al. (2012), using an Adaboost based technique; 89.70
however, they manually labeled eye positions [23]
Jain et al. (2013), using multi-scale Gaussian derivatives 92.97
combined with an SVM; however, they removed ambiguous cases &
images with serious illumination problems (423 faces removed) [22]
Liu et al. (2013), using HOG features and SSL [24] 92.29
Liu et al. (2013), with only labeled data 91.85

Our ConvNet at 48 × 48 pixel resolution (no preprocessing) 91.5
Our ConvNet at 96 × 96 pixel resolution (±0.71) 93.0
Our high dimensional LBP technique (±0.92) 93.2

5 Final Conclusions and Discussion

It is important to emphasize that traditionally LBP based techniques have used
histogramming operations to create underlying feature representations. In con-
trast, in our work we do not compute histograms and use bits directly. For exam-
ple previous work [17] has given an accuracy of 82.38% on CK+ for a traditional
LBP approach using histograms computed on grid locations defined by a face
bounding box using a boosted SVM classification approach. Since we use LFDA
to learn a discriminative reduced dimensionality space, our work thus also blurs
the lines between traditional notions of engineered feature representations and
learned representations. Since we use LBP-like descriptors defined by keypoint
locations, in a sense we also blur the lines between keypoint vs. non-keypoint
based representations. We hope that our results here will help motivate further
work exploring other alternative approaches using LBP descriptors as underlying
input representations.
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Abstract. In this work, we have proposed a learning paradigm for
obtaining weight-optimal local binary patterns (WoLBP). We first re-
formulate the LBP problem into matrix multiplication with all the
bitmaps flattened and then resort to the Fisher ratio criterion for obtain-
ing the optimal weight matrix for LBP encoding. The solution is closed
form and can be easily solved using one eigen-decomposition. The exper-
imental results on the FRGC ver2.0 database have shown that the
WoLBP gains significant performance improvement over traditional LBP,
and such WoLBP learning procedure can be directly ported to many
other LBP variants to further improve their performances.

Keywords: Local binary patterns (LBP) · Weight-optimal local binary
patterns (WoLBP)

1 Introduction

In the field of computer vision and pattern recognition, local binary patterns
(LBP) and its variants have been widely used throughout many applications.
The LBP has gained its prominence due to its discriminative power and compu-
tational simplicity. The simple yet very efficient operator labels the pixels of an
image (patch) by thresholding the neighborhood of each pixel and converts the
result as a binary number.

The LBP was invented in 1992, with the idea that two-dimensional textures
can be described by two complementary local measures: pattern and contrast
[21]. By separating pattern information from contrast, invariance to monotonic
gray scale changes can be obtained. The first published work using LBP for
face recognition is done by Ahonen et al. in 2004 [1], where they divided the
face image into several regions from which the LBP features are extracted and
concatenated into an enhanced feature vector to be used as a face descriptor.
Following this, LBP and its variants have been widely used in the field of bio-
metrics for face recognition [27], face detection [3], facial expression recognition
[24], gender classification [25], and iris recognition [26]. Recently, Pietikäinen et
al. [21] have summarized the state-of-the-art LBP in the field of computer vision
and pattern recognition. More face recognition and analysis related work using
LBP variants can be found in [4–13].
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Recently, many efforts are devoted to learning optimal local binary patterns
for various applications. For example, Lei et al. [14] (an extended work of [15])
have learned discriminant face descriptor by first learning the discriminant image
filters; second, soft determining the optimal neighborhood sampling strategy; and
third, statistically constructing the dominant patterns. Their method is iterative
and relies on 2D-LDA type of formulation, which is quite computationally expen-
sive. Shan [23] uses AdaBoost to select discriminative LBP features for gender
classification. Liao et al. [17] again applies AdaBoost to select the most effective
uniform multi-scale block LBP for enhanced face recognition. Only this time,
the computation is done based on average values of block subregions, instead of
individual pixels. Maturana et al. [18] consider the following method. Within any
square neighborhood given by r, there are (2r+1)2−1 possible pixel comparisons.
They wish to select a subset n of those comparisons of size S that maximizes the
discriminability of the output histograms. To achieve this, an iterative heuristic
approach called stochastic hill climbing is adopted for obtaining an approximate
solution, since the exact solution is intractable due to the combinatorial nature
of the problem.

The related work is either relying on boosting algorithm for the selection of
the optimal LBP features or iterative method for solving optimization with heavy
computational cost. In this work, however, we propose an inexpensive, closed-
form solution for learning weight-optimal local binary patterns (WoLBP), which
can be easily extended to many LBP variants and should lead to performance
boost. For this very reason, we only benchmark our proposed WoLBP against
traditional LBP implementation.

2 Weight-Optimal Local Binary Patterns

In this section, we will first review the formulation of traditional local binary
patterns and then detail the formulation of the proposed weight-optimal local
binary patterns.

2.1 Traditional Local Binary Patterns

We start by formulating the traditional LBP operator first introduced by Ojala
et al. [19]. The basic idea of this approach is demonstrated in Figure 1. Here we
have shown both the 3×3 patch and 5×5 patch. All neighbors that have values
higher than the value of the center pixel are given value 1 and 0 otherwise. The
binary numbers associate with the neighbors are then read sequentially to form
an binary bit string. The equivalent of this binary number (usually converted to
decimal) may be assigned to the center pixel to characterize the local texture.

The LBP texture for center point (xc, yc) can be represented as:

LBP (xc, yc) =
L−1∑
n=0

s(in − ic)2n (1)
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where in denotes the intensity of the nth surrounding pixel, ic denotes the inten-
sity of the center pixel, L is the length of the sequence, and s = 1 if in ≥ ic,
otherwise, s = 0. In the case of a N × N neighborhood, there are N2 − 1 sur-
rounding pixels, so the bit string is of length N2 − 1.

0

0
0
00

1 1
1

01

1
01 1

0

1
1

0
0

0
0

0 0

00

0
0
01

1 1
1

(a) (b) (c) (d)

Fig. 1. (a) 3 × 3 neighborhood, (b) LBP encoding, the 8-bit representation for the
center pixel is 10110010 and 178 in decimal, (c) 5 × 5 neighborhood, and (d) LBP
encoding using both radii around the center pixel

During the formulation of the LBP feature, there are many knobs one can
play with and result in totally different LBPs. For example, the ordering of the
bit string matters if it is converted to a decimal number, the choice of the pivot
point (center point), and the choice of bases. More discussions can be found in
[13,22].

Varying Base. One can vary the base used for forming the decimal num-
ber from the bit string. Instead of using base 2 for conversion as is universally
adopted [21], fractional bases (e.g., 1.6, 0.76) or other integer bases (e.g., 3, 4)
can also be used. Unleashing the restriction of using only base 2 for decimal
conversion, much more diversity can be achieved when encoding LBPs.

Varying Pivot/Center. In the case of 3 × 3 neighborhood, the center pixel
for thresholding neighbors is usually the physical center of the neighborhood.
However, one can vary the center in a larger neighborhood as shown in Figure 2.
Each pivot (thresholding center) gives different bit string, so varying the center
will also provide much more diversity.

Varying Ordering. If the neighborhood size and the thresholding center are
both fixed, different ordering of the neighbors (or the weighting of each bit) gives
different decimal outputs. One can easily vary the ordering of the neighbors as
shown in Figure 2, and thus lead to different formulation of the LBPs.

2.2 Weight-Optimal Local Binary Patterns

All the possible variations mentioned above can be determined empirically, for
instance, the choice of center point, the base, and the ordering of the neighbors.
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Fig. 2. Example of the LBP encoding scheme [13]: (a) 7× 7 neighborhood with
the thresholding center denoted as C , (b,c) 2 ordering schemes of (a), (d) 7× 7 neigh-
borhood with different thresholding center, and (e,f) 2 possible ordering schemes of (d).
Different choices of the thresholding center and ordering schemes result in different LBP
code.

In this work, we propose to reformulate the problem of LBP encoding by using
a learning framework for obtaining the optimal weights.

First, we need to reformulate the LBP encoding problem into matrix multi-
plication. The traditional way of encoding LBP feature is to use a 3 × 3 window
to scan through the entire image. At each 3 × 3 patch, perform the encoding
using Equation 1. However, such formulation is neither efficient, nor provides
insight towards an optimal weight learning scheme.

Instead of scanning through the entire image using small window and com-
pare the neighborhood values to its center point, a simple convolution of the
image with 8 difference masks, followed by simple binarization can achieve the
same goal. As shown in Figure 3, we can use 8 difference masks of size 3 × 3
to convolve with the face image. The 8 resulting bitmaps are shown around
the original face image. The traditional LBP is simply a weighted sum of all the
bitmaps using the weight vector w = [27, 26, 25, 24, 23, 22, 21, 20]. Therefore, the
reformulation of the LBP can be shown as:

y =
8∑

i=1

σ(hi ∗ f) · wi (2)

where f ∈ d is the original image, hi’s are the difference masks, σ is the
binarization operator, and y ∈ d is the resulting LBP image. Note that only
the binarization is non-linear operation.
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Fig. 3. Reformulation of the traditional LBP encoding using convolution

Now, we are one step closer towards the formulation of WoLBP. In the context
of N training images from K classes, we re-arrange them in the following way:
the N training images are vectorized and becomes one column in the data matrix
F ∈ d×N , and for each image in F we apply convolutional mask h1 to obtain
the first bitmap X1 ∈ d×N . Then we repeat for h2 to h8 to obtain X2 to
X8. Stacking all Xi’s would give us the new bitmap matrix X ∈ 8d×N . The
weight vector w is now re-written as a weight matrix Ω ∈ d×8d, where Ω =
[Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8], and Ωi = wi · I. In this way, the LBP image
for all the N training images can be found in Y ∈ d×N using:

Y = ΩX (3)

As shown in Figure 4, the weight matrix of the traditional LBP is a horizontal
stacking of 8 diagonal matrices, each is a multiple of the identity matrix, and
the multiple is defined by the weight vector w. One generalization is as follows.
For each of the 8 diagonal weight matrices Ωi, we allow the diagonal to take
d different values corresponding to the d dimensions of each bitmap. An even
further generalization is allowing Ω to be a full matrix, as shown in Figure 5,
and when multiplied with the bitmap matrix X, the generated LBP image can
be somewhat optimal.

Here, the objective of the optimization is to make the LBP images Y have
the best class separation, and thus lead to better classification performance.
Fisher ratio is one way to characterize the class separability by simultaneously
maximizing the between-class scatter and minimizing the within-class scatter.
Note that the only non-linear part within the LBP formulation, binarization,
has been taken care of by stacking all the bitmaps in the matrix X, and a linear
method is sufficient to learn an optimal weight matrix Ω.

So we are trying to solve for the following optimization:
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Fig. 4. Traditional LBP in matrix multiplication form

maximize
|SY

b |
|SY

w | = maximize
Ω

|ΩSX
b Ω�|

|ΩSX
wΩ�| (4)

whose optimality can be found by solving the eigenvalue problem:

ΩΛ =
(
(SX

w )−1SX
b

)
Ω (5)

where

SX
w =

K∑
i=1

∑
j∈Ci

(xj − μi)(xj − μi)� (6)

SX
b =

K∑
i=1

(μi − μ)(μi − μ)� (7)

where μi are the mean vectors of all the xi’s belonging to class i (denoted as Ci),
and μ is the global mean vector. x1 . . .xN are the columns of bitmap matrix X.

Solving Equation 5 would give the optimal weight matrix Ω which leads to
the highest Fisher ratio for the LBP image matrix Y. The optimal weight matrix
can be seen as a linear transformation matrix that reduces the dimensionality
from 8d to d. Please note that this WoLBP learning procedure is different from
regular Linear Discriminant Analysis (LDA) because in LDA, a transformation
matrix W is learned to reduce the dimensionality of Y from d to d′ where d′ < d.
Whereas in WoLBP procedure, the learning is restricted to feature encoding
which maps the dimension from 8d to d on the bitmap matrix X. In short, we
have carried out feature encoding learning in WoLBP, not subspace learning for
images.

3 Experiments

In this section, the effectiveness of the proposed WoLBP is validated in the
context of face recognition. We detail the database used in the experiments first,
and then the experimental setup and results.
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Fig. 5. Allowing Ω to be a full matrix and form the WoLBP

3.1 Database

In this work, we utilize the largest frontal face database that is publicly avail-
able: NIST’s Face Recognition Grand Challenge (FRGC) ver2.0 database [20] to
validate the effectiveness of our proposed method, which is also adopted in [17].

The FRGC database is collected at the University of Notre Dame. Each sub-
ject session consists of controlled and uncontrolled still images. The controlled
full frontal facial images were taken under two lighting conditions under studio
setting with two facial expressions. The uncontrolled images were taken in var-
ious locations such as hallways, atria, or outdoors under varying illumination
settings also with two expressions, smiling and neutral, as shown in Figure 6.

Fig. 6. Examples from the FRGC ver2.0 database: (a1,a2) controlled and uncon-
trolled still, (b1,b2) cropped full face

The FRGC ver2.0 database has three components: First, the generic training
set is typically used in the training phase to extract features. It contains both
controlled and uncontrolled images of 222 subjects, and a total of 12,776 images.
Second, the target set represents the people that we want to find. It has 466
different subjects, and a total of 16,028 images. Last, the probe set represents
the unknown images that we need to match against the target set. It contains
the same 466 subjects as in target set, with half as many images for each person
as in the target set, bringing the total number of probe images to 8,014. All
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the probe subjects that we are trying to identify are present in the target set.
FRGC Experiment 1 is the largest experiment in the FRGC protocol which
involves over 256 million face matching comparisons.

One of the latest trends in face recognition community seems to be working
on unconstrained dataset such as the LFW [2], with pose variations, occlusions,
expression variations, and illumination variations. Though many algorithms have
been proposed that can perform fairly well on such datasets, given the complexity
of many of these algorithms, it remains unclear as to what underlying objective
each of them aim to achieve in the context of unconstrained face matching.
Although success on the LFW framework has been very encouraging, there has
been a paradigm shift towards the role of such large unconstrained datasets.
It has been suggested that the unconstrained face recognition problems can
be decoupled into subtasks where one such factor is tackled at a time [16].
Therefore in this work, we focus on a more constrained face recognition paradigm
where many such unconstrained factors have been marginalized out already.
The findings of this paper can be easily ported towards unconstrained cases
where the proposed feature descriptors can further improve the performance of
unconstrained face recognition.

3.2 Experimental Setup

In our experiments, we follow the NIST’s FRGC Experiment 1 protocol which
involves 1-to-1 matching of 16,028 target images to themselves (∼256 million
pair-wise face match comparisons). The WoLBP training is carried out on the
generic training set. After obtaining the optimal weight matrix Ω, it is applied on
all the images in the target set. In this experiment, we do not resort to any sub-
space learning algorithms. The normalized cosine distance (NCD) measurement
is adopted to compute similarity matrix between target set images:

d(x,y) =
−x · y
‖x‖‖y‖ . (8)

Compared to other commonly used distance measurement such as �1-norm,
�2-norm, and the Mahalanobis distance, NCD exhibits the best result.

The result of each algorithm is a similarity matrix with the size of 16, 028 ×
16, 028 whose entry SimMij is the NCD between the feature vector of target
image i and target image j. The performance of WoLBP and traditional LBP is
analyzed using verification rate (VR) at 0.1% (0.001) false accept rate (FAR),
equal error rate (EER), and receiver operating characteristic (ROC) curves.

3.3 Experimental Results

The VR at 0.1% FAR and EER are shown in Table 1. ROC curves are shown
in Figure 7 for 32 × 32 and 64 × 64 image size respectively. As can be seen, the
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WoLBP performs significantly higher than the traditional LBP which has hard-
coded encoding scheme. We have also found the same trend on other frontal face
databases such as CMU Multi-PIE and YaleB+ database. However, the scale
of these databases are no comparison with the FRGC ver2.0 database which
involves more than 256 million face matches. Therefore, we do not report the
results and ROC curves for those databases for the sake of brevity.

Table 1. VR at 0.1% FAR and EER for the FRGC evaluation

32 × 32 64 × 64

VR at 0.1% FAR EER VR at 0.1% FAR EER

WoLBP 0.807 0.040 0.801 0.042

LBP 0.516 0.131 0.496 0.137

Pixel 0.349 0.170 0.350 0.167
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Fig. 7. ROC curves on FRGC face images of size 32 × 32 (left) and 64 × 64 (right)

3.4 Discussions

The optimality discussed in this work is solely determined by Fisher ratio. Of
course, there can be other optimally obtained local binary patterns via other cri-
teria. It is also worth noted that in order to make Fisher ratio work properly, the
homoscedasticity property has to hold, meaning the training data from different
classes should all be uni-modal Gaussian distributed with equal covariance. For
natural images, this is most likely true. However, readers are encouraged to check



Weight-Optimal Local Binary Patterns 157

the homoscedasticity property when applying the WoLBP technique discussed
in this work.

4 Conclusions

In this work, we have proposed a learning paradigm for obtaining weight-optimal
local binary patterns (WoLBP). We first re-formulate the LBP problem into
matrix multiplication with all the bitmaps flattened and then resort to the Fisher
ratio criterion for obtaining the optimal weight matrix for LBP encoding. The
solution is closed form and can be easily solved using one eigen-decomposition.
The experimental results have shown that the WoLBP gains significant perfor-
mance improvement over traditional LBP, and such WoLBP learning procedure
can be directly ported to many other LBP variants to further improve their
performances.
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Abstract. This paper presents a novel method for hierarchically orga-
nizing large face databases, with application to efficient identity-based
face retrieval. The method relies on metric learning with local binary
pattern (LBP) features. On one hand, LBP features have proved to be
highly resilient to various appearance changes due to illumination and
contrast variations while being extremely efficient to calculate. On the
other hand, metric learning (ML) approaches have been proved very suc-
cessful for face verification ‘in the wild’, i.e. in uncontrolled face images
with large amounts of variations in pose, expression, appearances, light-
ing, etc. While such ML based approaches compress high dimensional
features into low dimensional spaces using discriminatively learned pro-
jections, the complexity of retrieval is still significant for large scale
databases (with millions of faces). The present paper shows that learn-
ing such discriminative projections locally while organizing the database
hierarchically leads to a more accurate and efficient system. The pro-
posed method is validated on the standard Labeled Faces in the Wild
(LFW) benchmark dataset with millions of additional distracting face
images collected from photos on the internet.

1 Introduction

In the present paper, we address the task of identity-based face retrieval: given
a query face image, retrieve the face(s) of the same person from a large database
of known faces with large changes in face appearances due to pose, expression,
illumination, etc. This task finds numerous applications, particularly in indexing
and searching large video archives and surveillance videos and in controlling
access to resources.

Many appearance features, based on highly localized pixel neighborhoods,
have been proposed in the recent literature [1–4]. All of them attempt to capture
the statistics of local pixel neighborhoods using either histograms [1,2,4] or
with higher order statistics [3]. While the more expressive features add some
extra performance, Local Binary Patterns (LBP) are attractive because of their
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 160–172, 2015.
DOI: 10.1007/978-3-319-16181-5 12
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extreme computational efficiency. Such efficiency is especially desirable in the
case of limited computational capability e.g . embedded systems (see comparisons
for LBP computation times on different architectures [5]), or in that of very
large datasets e.g . millions of faces. In the present paper, we propose to use
LBP features as our feature descriptor for the task of large scale identity based
face retrieval.

Metric learning based approaches [6–8] have shown that learned low dimen-
sional discriminative projections can be applied for the task of comparing faces
with good performances. Such metric learning can be seen as a global app-
roach where a single linear projection is learned to discriminate all types of
faces. Recently, the SVM-KNN method of Zhang et al . [9] has demonstrated
(for visual classification task) that learning a collection of local (linear) discrimi-
native models leads to better performance. Also, recent Kumar et al .’s attribute-
based works on facial analysis [10,11] hint towards the presence of local modes
in the (attribute transformed) space of faces. In the same way, Verma et al . [12]
proposed a novel framework to learn similarity metrics using class taxonomies,
showing that nearest neighbor classifiers using the learned metrics get improved
performance over the best discriminative methods. Inspired by these previous
works, we propose to organize large face databases hierarchically using locally
and discriminatively learned projections. More concretely, we propose a semi-
supervised hierarchical clustering algorithm, alternating between the two steps
of (i) learning local projections and (ii) clustering for splitting the faces into sets
of more localized regions in face space. Intuitively, we expect such a hierarchical
setup to capture coarse differences, e.g . gender, at the top levels and then spe-
cialize the different projections at the bottom levels to finer differences between
the faces. Fig. 1 gives an overview of our approach in contrast to traditional met-
ric learning. One big difference with [10,11] or [12] is that our approach does not
need any face taxonomy nor predefined set of attributes. Both are automatically
discovered.

In the following, we set the context for our work in §2 and then describe our
approach in detail in §3. We discuss our approach in relation to the most closely
related works in §3.1. We then give qualitative and quantitative experimental
results validating our approach in §4 and conclude the paper in §5.

2 Context and Related Works

Comparing face images of different persons with large variations in appearance,
pose, illumination, etc., is a challenging problem. Locally computed features
like Local Binary Patterns (LBP), Local Ternary Patterns (LTP) and Local
quantized patterns (LQP) have been quite successful to address these kinds of
problems [2,13,14]. One of the recent state-of-art methods [15] on Labeled Faces
in the Wild (LFW) [16], the most challenging face verfication dataset, computes
very high dimensional LBP (of dimension as high as 100k). In the recent years,
several other variants of LBP have been introduced for different computer vision
tasks (e.g . [17–20]). In this paper, we use the standard LBP descriptor for a
good efficiency and performance trade-off.
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Fig. 1. Principle of the proposed method, in contrast with the traditional metric learn-
ing based approach. While the traditional approach learns a single projection (LML)
the proposed approach works hierarchically and learns different projection matrices
(LHn) for different nodes. See §3 for details.

Many other recent papers address the problem with novel approaches, e.g .
discriminative part-based approach by Berg and Belhumeur [21], probabilistic
elastic model by Li et al . [22], Fisher vectors with metric learning by Simonyan
et al . [7], novel regularization for similarity metric learning by Cao et al . [23],
fusion of many descriptors using multiple metric learning by Cui et al . [24],
deep learning by Sun et al . [25], method using fast high dimensional vector
multiplication by Barkan et al . [26] or robust feature set matching for partial
face recognition by Weng et al . [27]. Many of the most competitive approaches
on LFW combine different features, e.g . [6,28,29] and/or use external data,
e.g . [10,30].

Metric learning has been recently shown to give good results on very diverse
computer vision tasks [31–35]. We refer the reader to Bellet et al . [36] for an
excellent survey on Metric Learning. More specifically, methods based on metric
learning have been reported to improve accuracy for face verification, either on
static images [6–8,23] or on videos [37]. The key idea is to learn a Mahalanobis
like metric of the form D2

M (xi,xj) = (xi − xj)�M(xi − xj), parametrized by
the symmetric positive semi-definite (PSD) matrix M , to compare any two faces
(described with some features) xi and xj . The learning is based on optimizing
some loss function which penalizes high distance between positives and small
distance between negative pairs (see [36] for a survey of different metric learning
methods/objectives). Since maintaining M as PSD is usually computationally
expensive, M is often factorized as M = L�L. Then the problem can be seen as
a linear embedding problem where the features are embedded in the row space
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of L and compared with the Euclidean distance there:

D2
L(xi,xj) = (xi − xj)�L�L(xi − xj) = ‖Lxi − Lxj‖22. (1)

Local metric learning, e.g . learning a metric as a function of input vector, has
also been studied [38]. However, this is expensive, specially in large scale as
comparison with every instance will require projecting the query with a different
matrix vs. only one projection in the case of a global metric.

Closely related to our work, hierarchically organized (metric) learning sys-
tems have also been explored in the past, e.g . the works by Hwang et al . [39],
Deng et al . [40], Zheng et al . [41], Verma et al . [12]. However, they assume the
presence of a taxonomy (most often a natural semantic taxonomy), while here we
do not assume any such information. Our method is also related to clustering in
general and with side information in particular [42–45], the side information here
being in the form of (sparse) pairwise must-link and must-not-link constraints.
The goal of many of these works is to learn a metric to improve the performance
of clustering with an implicit assumption that the constraints relate directly to
the clusters. While in the current work, the metric learning with constraints
relates to a first level of embedding which can be thought of a person identity
space and then the clustering is done in such identity space. So, unlike previous
works, it will be normal in our approach that two must-not-link vectors (faces of
different persons) get assigned to same cluster as long as these different people
share similar facial traits.

We are interested in the problem of comparing faces using learned metrics.
In particular, we are interested in identity-based face retrieval with a focus on
accuracy and efficiency of the setup for large-scale scenarios, i.e. with hundreds
of thousands of distractors. As such, in addition to the above mentioned works
on facial analysis, our method is also related to the SVM-KNN method of Zhang
et al . [9] and to works on large scale image retrieval using product quantization
of Jégou et al . [46]. We postpone discussing our method in the context of these
methods to §3.1, after describing our method in the next section.

3 Approach

We work in the semi-supervised scenario where we have some annotated training
pairs A = {(xi,xj), yij} with xi,xj ∈ R

D being features for face examples i, j
resp. (e.g ., Local Binary Patterns [1]) and yij = 1 if the image pairs are of
the same person and yij = −1 otherwise. We propose to learn a hierarchical
organization of the faces for efficient face retrieval. Note that we assume the
annotations are sparse, in the sense that only a very small fraction of pairs in
the database is annotated.

We aim at exploiting the similarities between faces of different persons. In
our hierarchical layout, we would like to first split the faces into groups based
on coarse appearance similarities, e.g . gender, and then, at finer level, we would
like to learn to discriminate between finer details in coarsely similar faces. We
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now discuss the case of a binary tree but the method could be applied for arbi-
trary k-ary trees. We start by taking all the faces into one node and learn a
discriminative subspace using margin maximizing metric learning: we minimize
a logistic loss function using the recently proposed Pairwise Constrained Prin-
cipal Components (PCCA) [8] approach. In particular, we solve the following
optimization,

min
L

E(L) =
∑

{(i,j)}
�β

(
yi,j(D2

L(xi,xj) − 1)
)
, (2)

where �β(x) = 1
β log(1 + eβx) is the generalized logistic loss,

D2
L(xi,xj) = ‖L(xi − xj)‖22 (3)

is the distance in the row space of the projection matrix L and sum is taken
over all labeled face pairs. The intuition of such metric learning formulation is
that we would like to find a subspace (parametrized by the projection matrix
L) where the distance between the positive pairs is small and that between the
negative pairs is large.

We then obtain the projected features Xp = LX, where X = [x1, . . . ,xN ]
is the matrix of all face features in the database, and use k-means to cluster
Xp into two clusters in the projected space. By doing this we hope to cluster
the faces based on relatively coarse similarities. Once we have the clustering,
we create two child nodes of the root containing only the faces from the two
clusters respectively. We then repeat the process at each of the child nodes,
working with faces in the current node only. At each node we save the indices of
the faces which belong to the node along with the current projection matrix and
cluster centroids (for the non-leaf nodes). We continue the process until a certain
depth, which is a free parameter, is achieved. Algorithm 1 gives the pseudocode
for the learning algorithm.

Once the hierarchical structure is built, the retrieval for a new query face is
done by traversing the tree with the following decision rule at each node: if it is a
non-leaf node, project the face into its subspace and compare with the centroids
and move to the closest child node (recall there is a child node for every cluster).
If it is a leaf node, then project the face to its subspace and compare with all
the faces in that node (projected onto the same subspace) and return the list of
the nearest neighbors. Fig. 1 gives an illustration of the retrieval process.

3.1 Relation with Closely Related Works

Recently, Zhang et al . [9] proposed the SVM-KNN method, which for a test
example creates on-the-fly a local discriminative support vector machine (SVM)
classifier, based on its nearest neighbors. The motivation is that a complex non-
linear decision boundary could be approximated with a piece-wise linear decision
boundary. Also recently, many works based on ‘local’ comparisons, e.g . attribute
based works of Kumar et al . [10,11] where the faces are represented as vectors
of confidences for the presence of attribute like long hairs, open mouth, etc.,
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Algorithm 1. Learning local metrics and organizing face database
hierarchically.
1: Input: (i) Set of face features X = [x1, . . . ,xN ] ∈ R

D×N , (ii) Sparse pairwise anno-
tation A, (iii) Height of the tree h, (iv) Dimensions of local projection subspaces
at different depths/levels {D0, . . . , Dh}

2: Initialize: n ← 0, idxs← (1, . . . , N), tree← ∅
3: queue.add(n, idxs) {Tree construction in a breadth-first manner}
4: while n < 2h − 1 do
5: n, idxs ← queue.pop()
6: � ← �log2 n� {Current level/depth}
7: Ln ← learn metric(X[:, idxs], A[idxs], D�)
8: if � < h then
9: C1, C2 ← cluster(LX[:, idxs], 2)

10: idxs1, idxs2 ← cluster assign(X[:, idxs], C1, C2)
11: queue.add(n + 1, idxs1)
12: queue.add(n + 2, idxs2)
13: else
14: C1, C2 ← ∅
15: end if
16: tree.add node({n, Ln, idxs, C1, C2})
17: end while

have been shown to be important. We could imagine that the faces with such
attributes would occupy a local region (or perhaps manifold) in the full face
space and, thus, the success of such facial analysis system motivates us to work
locally in the face space. Also, the success of SVM-KNN reassures us of the merit
of a local strategy. In our case, such locality is automatically discovered in a data
driven way. In the upper levels of the tree, the Vonoroi cells, corresponding to the
clustering in the respective discriminative spaces of the nodes, can be interpreted
as such local regions where the faces are similar in a coarse way, e.g . one node
could be of female faces vs. another of that of males. While as we go down the
levels we expect such differences to become more and more subtle. We show
later that qualitative results support our intuition. Hence, we could hope that
concentrating on a local region (towards the bottom of the tree) where faces differ
very slightly could help us discriminate better, perhaps even at a cheaper cost.

Another closely related but complementary stream of work is that of product
quantization by Jégou et al . [46]. They propose to learn, in an unsupervised
fashion, very compact binary codes to represent images and do very fast nearest
neighbor retrieval at large scale. The key point is that they assume/expect the
feature space to be Euclidean. However, face retrieval by directly comparing
the image representations with Euclidean distance is not optimal and learning
a Mahalanobis metric or equivalently a projection is required. Upon projecting
the faces to such a space, Euclidean distance can be used and hence product
quantization can be applied. As we have already discussed before, the proposed
method can be seen as learning different projections for different local regions,
we could use different product quantizations in corresponding different local
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regions found by the proposed method. Hence, the proposed method and product
quantization are complementary to each other.

Finally, it worth comparing our approach to the recent work of Verma et
al . [12], who proposed a framework for learning hierarchical similarity metrics
using class taxonomies. Interestingly, they show that nearest neighbor classifiers
using the learned metrics get improved performance over Euclidean distance-
based k-NN and over discriminative methods. Our approach bears similarity
with [12] as we also learn a hierarchy of similarity metrics. However, a notable
difference is that our approach does not require any taxonomy. This is a big
advantage as defining a taxonomy of faces would be more than challenging.
Providing sufficient training annotations (i.e. sufficient number of faces for each
level of the hierarchy) would be another complication.

4 Experimental Results

Metric Used. We are interested in the task of identity based face retrieval, i.e.
given a query face images, retrieving face(s) of the same person from a large
database of known face images. Our objective is to find the same person and so,
for us, it suffices if at least one of the retrieved faces is of the same person. In
the ideal case, the top ranked retrieved face would be of the same person, but it
would make a practical system if the correct face is ranked in the top n images,
for a small value of n, as they can be manually verified by an operator. Hence,
we propose to evaluate the method for k-call@n [47] (with k = 1): the metric is
1 if at least k of the top n retrieved results are relevant. We average this over
our queries and report the mean 1-call@n.

Database and Query Set. We use the aligned version [28] of the Labeled Faces
in the Wild (LFW) database by Huang et al . [16]. The dataset has more than
13000 images of over 4000 persons. In addition to LFW, for large-scale experi-
ments, we add up to one million distractor faces that were obtained by crawling
Flickr.com and retaining face detection with high confidences. We select the per-
sons/identities in LFW which have at least five example images and randomly
sample one image each from them to use as our query set. We use all the LFW
images except the query set to learn our system. The results are reported as the
mean performance (1-call@n) over all the queries. All the evaluation is done with
LFW annotations and, as the distractor images are from personal image collec-
tions from the internet while LFW images are that of well-known/celibrities, it
is assumed that the distractors do not have the same identities as the query
images.

Image Description. To describe the images we use the Local Binary Pattern
(LBP) descriptors of Ojala et al . [1]. We use grayscale images and centre crop
them to size 170 × 100 pixels and do not do any other preprocessing. We use
the publicly available vlfeat [48] library for LBP, with cell size parameter set
to 10, of dimension 9860 for a face image.
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Baseline Parameter. To set the dimension of the baseline projection matrix we
did preliminary experiments, with the standard protocol of LFW dataset, with
values in {16, 32, 64, 128} and found the performance (verification on LFW test
set) saturated for d greater than 32. Hence we fixed the projection dimension to 32.

Tree Parameters. We fixed the learned tree to be a binary tree and also fixed
the dimension of the projection at successive levels to differ by a multiplicative
factor of 2. Thus, the two parameters for the proposed hierarchical organization
are the tree depth and the starting projection dimension. We report experiments
with depths of 3 and 4, and with starting projection dimension of 128 and 256,
leading to leaf nodes with dimensions 32 (same as baseline) in two cases and 16
(half of baseline) in one case. We discuss further in the §4.2.

4.1 Qualitative Results

Fig. 2 shows some example images from the 16 nodes obtained with a tree of
depth 4. The clusters shown correspond to the ordering of the leaf nodes at
the bottom, i.e. every odd cluster and its next neighbor were grouped together
in the previous level in the tree and so on. We can note how similar faces are
grouped together successively in the different levels of the tree. Cluster 1–12
are predominantly male faces, cluster 13–16 are females. Cluster 15 seems to
specialize to females with bangs (hair over the forehead) and 14 on short hair
and smiling females. Cluster 2 seems to have bald (or with very little hair)
males who wear glasses while cluster 11 has males with smiling faces. With
such semantically interpretable visual qualitative results, we conclude that the
method seems to perform an attribute-based clustering.

4.2 Quantitative Results

Fig. 3 shows the performances of the baseline vs. the proposed method for three
different configurations of (i) starting projection dimension 128 with tree depth
3, denoted ‘128-d3’, (ii) starting projection dimension 128 with tree depth 4,
denoted ‘128-d4’, and (iii) starting projection dimension 256 with tree depth 4,
denoted ‘256-d4’.

We note that the different configurations of the proposed method give dif-
ferent time complexities. The 128-d3 and 256-d4 trees have leaf node projection
dimensions of 32 (same as baseline) with 4 and 8 leaf nodes respectively while the
128-d4 tree has a projection dimension of 16 with 8 nodes. The time complexity
for the proposed method depends on (i) projection and Euclidean distance com-
putation with two centroids at non-leaf nodes (repeated (h − 1) times, where h
is the height of the tree) and (ii) projection and Euclidean distance computation
with all the database vectors in leaf nodes. The leaf nodes have about the same
number of database vectors and hence a tree with same leaf node projection
dimension (of 32) as baseline but with 4 (8) nodes is expected to be 4× (8×)
faster than baseline as the bottleneck in large-scale scenario is the computation
of Euclidean distances with a large number of (compressed) database vectors.
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Fig. 2. Visualization the clustering obtained at leaf nodes for a tree of depth 4. The
clusters are ordered from left to right and top to bottom, i.e. top eight (bottom eight)
clusters together form the left (right) node at the first split. Images are randomly
selected.
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Fig. 3. The performance of the baseline method and that of the proposed method
for three different combinations of parameters (starting projection dimension and tree
depth) for different numbers of distractors (0, 100k, 500k and 1m) at different operating
points

We observe that as more and more distractors are added the proposed method
performs better. In the presence of large number of distractors, 100 nearest
neighbor are expected to lie in a smaller region around the query points and
hence an explanation for the better performance of the method could be that it
is better adapted to local neighborhood. In the zero distractor case, we observe
that the proposed method is better in the case of small n, i.e. it is able to
do relatively better retrieval when smaller neighborhoods are considered, while
the baseline performs better when n is large and hence larger neighborhoods
are considered. The success of the method in the presence of a large number of
disctractors underlines the need for locally adapted metrics for identity based
face retrieval, especially in a large scale scenario.

Time complexity. The proposed method is expected to be faster in the large
scale setting where the number of vectors in the database is greater than the
feature dimension. In that case the cost of projecting the query becomes negli-
gible compared to the cost of computing the nearest neighbors in the projected
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space. Assuming the database vectors uniformly occupy the leaf nodes, a tree
with N leaves is then expected to give an N fold speed-up. We carried out all
our experiments on a computer with Intel Xeon 2.8 GHz CPU running linux.
Empirically we obtain speedups of about 2.8×, 5.9× and 10.2× for trees with
4, 8 and 16 nodes respectively, with our unoptimized Python implementation for
the experiments with one million distractors, with all computations being timed
with data in RAM.

5 Conclusions

We presented a method for accurate and efficient identity based face retrieval,
which relies on a hierarchical organization of the face database. The method is
motivated by the recent works on local learning of discriminative decision bound-
aries and of metrics, and works based on attributes. We showed quantitatively
that organizing faces hierarchically, with automatically learned hierarchy, leads
to an attribute based clustering of faces. Further, we showed quantitatively that
the method is capable of better retrieval at a better time complexity compared
to the baseline method in large-scale setting.

References

1. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. PAMI 24(7), 971–987
(2002)

2. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE Transactions on Image Processing 19(6), 1635–
1650 (2010)

3. Sharma, G., ul Hussain, S., Jurie, F.: Local higher-order statistics (LHS) for texture
categorization and facial analysis. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VII. LNCS, vol. 7578, pp. 1–12.
Springer, Heidelberg (2012)

4. Hussain, S.U., Triggs, B.: Feature sets and dimensionality reduction for visual
object detection. In: BMVC (2010)
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Abstract. Still-to-video face recognition (FR) is an important function
in several video surveillance applications like watchlist screening, where
faces captured over a network of video cameras are matched against ref-
erence stills belonging to target individuals. Screening of faces against
a watchlist is a challenging problem due to variations in capturing con-
ditions (e.g., pose and illumination), to camera inter-operability, and
to the limited number of reference stills. In holistic approaches to FR,
Local Binary Pattern (LBP) descriptors are often considered to repre-
sent facial captures and reference stills. Despite their efficiency, LBP
descriptors are known as being sensitive to illumination changes. In this
paper, the performance of still-to-video FR is compared when differ-
ent passive illumination normalization techniques are applied prior to
LBP feature extraction. This study focuses on representative retinex,
self-quotient, diffusion, filtering, means de-noising, retina, wavelet and
frequency-based techniques that are suitable for fast and accurate face
screening. Experimental results obtained with videos from the Choke-
point dataset indicate that, although Multi-Scale Weberfaces and Tan
and Triggs techniques tend to outperform others, the benefits of these
techniques varies considerably according to the individual and illumina-
tion conditions. Results suggest that a combination of these techniques
should be selected dynamically based on changing capture conditions.

Keywords: Illumination normalization · Local binary patterns · Face
screening · Still-to-video face recognition · Video surveillance

1 Introduction

In watchlist screening applications, systems for still-to-video FR are increasingly
employed to automatically detect the presence of target individuals of interest
for enhanced public security. Accurate and timely responses are required to rec-
ognize faces captured under semi-controlled or uncontrolled conditions, as found
at various security checkpoint entries, inspection lanes, portals, etc. Under these
conditions, face captures incorporate variations due to ambient illumination,
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pose, expressions, occlusion, scale, resolution and blur [2,21], and the perfor-
mance of FR systems tend to deteriorate. Despite these challenges, it is generally
possible to exploit spatiotemporal information extracted from video streams to
improve system robustness and accuracy [4,11].

Recent developments in image analysis and recognition have shown that the
Local Binary Patterns (LBP) [14] provide a simple yet powerful approach to rep-
resent faces for human computer interaction, biometric recognition, surveillance
and security, etc. [1,16]. LBP is a gray-scale invariant texture operator which
labels each pixel of an image by thresholding its neighborhood pixels with the
intensity value of the center pixel. The resulting LBP labels can be regarded as
local primitives such as curved edges, spots, flat areas, etc. The histogram of
these labels over facial image can be then used as a face descriptor. Given its
discriminative power, tolerance to monotonic grey-scale changes, and computa-
tional efficiently, LBP has become a well-established technique in FR1, and has
inspired many recent extensions and new research on related methods.

However, it is well known that LBP and other variants are sensitive to severe
illumination changes. Variations in facial appearance caused by changes in ambi-
ent illumination conditions play an important role in the performance of any FR
system applied to video surveillance. It has been shown that face images of dif-
ferent individuals appear more similar than images of the same individual under
severe illumination variations [18].

Several techniques have been proposed in the literature for illumination
invariant FR [17]. Zou et al. [25] presented a survey of techniques to manage vari-
ations in face appearance due to illumination changes using passive and active
approaches. Passive approaches focus on the visible spectrum images, where face
appearance has been altered by illumination variations, while active ones employ
active imaging techniques to capture face images under consistent illumination
conditions, or images of illumination invariant modalities.

Among passive techniques, some are specialized at either the pre-processing,
the feature extraction, or the classification level [18]. At the pre-processing level,
normalization techniques seek to transform facial images such that facial varia-
tions induced by illumination are removed. These approaches can be adapted for
use with any FR algorithm. Techniques at the feature extraction level seek to
achieve illumination invariance by using features or representations that are sta-
ble under different illumination conditions. However, some empirical studies have
shown that no descriptor can ensure illumination invariant FR in the presence
of severe illumination changes. Finally, classification level techniques compen-
sate for the illumination based on the type of face model or classifier employed
for FR. Assumptions regarding the effects of illumination on the face model or
classifier are employed in counter measures to obtain illumination invariance.

In this study, the performance of several illumination normalization tech-
niques is compared for representation of face captures in still-to-video FR sys-
tems using LBP descriptors, as seen in many watchlist screening applications.
This empirical study focuses on passive techniques applied at the pre-processing
1 See LBP bibliography at http://www.cse.oulu.fi/MVG/LBP Bibliography
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level, and compares the performance of a basic FR system that uses representa-
tive retinex, self-quotient, diffusion, filtering, means de-noising, retina, wavelet
and frequency-based techniques in term of ROC and Precision Recall perfor-
mance. The benefits of these approaches are assessed using faces captured in the
Chokepoint video data set, with individuals walking through an array of cameras
located above different portals.

The rest of this paper is organized as follows. Section 2 describes the appli-
cation focus of this paper which is face screening in video surveillance. Then,
Section 3 gives an introduction to the popular LBP approach to face recogni-
tion. Section 4 discusses different methods for illumination normalization. The
experimental results are presented in Section 5 while a conclusion is given in
Section 6.

2 Face Screening in Video Surveillance

Watchlist screening is an important application for decision support in video
surveillance systems. It involves still-to-video FR according to the following
steps [3]. During enrollment to a watchlist, the segmentation process isolates
the regions of interest (ROIs) from reference still images (mugshots) that were
previously captured under controlled conditions. Features are extracted and
assembled into a discriminant and compact ROI patterns to design facial mod-
els2. These features are often image-based (e.g., LBP descriptors) or pattern
recognition-based (e.g., PCA projections).

During operations, a video stream is captured using some video surveillance
camera, and segmentation isolates the ROIs corresponding to faces captured in
successive frames. A tracker is often initialized when an emergent ROI is detected
far from other faces, and a track is defined to follow the movement or expression
of distinct faces across consecutive frames using appearance, position and motion
information. Features are extracted into ROI pattern for matching against the
facial models of individuals enrolled to the watchlist. A positive prediction is
produced if a matching score surpasses an individual-specific threshold. Finally,
the decision function combines the tracks and classification predictions in order
to recognize the most likely individuals in the scene.

Systems for still-to-video FR are typically modeled in terms of independent
detection problems, each one implemented using a template matcher or classifier.
These individual-specific detectors are designed with reference face samples from
target and non-target individuals (from a cohort or the background model). The
advantages of modular architectures with individual-specific detectors include
the ease with which face models may be added, updated and removed from the
systems, and the possibility of specializing pre-processing, feature extraction,
matching and decision thresholds to each specific individual [5,15].

2 A facial model of an individual is defined as a set of one or more reference ROI pat-
terns (used for a template matching system), or parameters estimated from reference
ROI patterns (for a classification system).
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The performance of state-of-the-art FR systems applied to video surveillance
is limited by the difficulty in recognizing facial regions from video streams under
semi-controlled and uncontrolled capture conditions (e.g., at inspection lanes,
portals and checkpoint entries, in cluttered free-flow scenes at airports or casi-
nos). In particular, performance is severely affected by the variations in ambient
illumination, pose, expression, occlusion, scale, resolution, blur and ageing. Still-
to-video FR is particularly challenging because very few reference samples are
typically available for enrollmentof a person to the system, and because of cam-
era inter-operability – ROIs captured with still cameras (during enrollment) have
different properties than those captured with video cameras (during operations).
In pattern recognition literature, the situation where only one reference sample is
available for system design are often referred to as a “single sample per person”
(SSPP) or “one sample training” problem. Techniques specialized for SSPP in
FR include multiple face representations, synthetic face generation, and enlarg-
ing the training set using an auxiliary set [7]. Note that the still-to-video FR
systems from the literature assume that the single face reference is consistent
and representative of individuals captures in operational conditions.

3 LBP-Based Face Recognition

The LBP texture analysis operator, introduced by Ojala et al. [14], is defined
as a gray-scale invariant texture measure, derived from a general definition of
texture in a local neighborhood. It is a powerful means of texture description
and among its properties in real-world applications are its discriminative power,
computational simplicity and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding
the 3×3 neighborhood of each pixel with the center value and considering the
result as a binary number. Fig. 1 shows an example of an LBP calculation.
The histogram of these 28 = 256 different labels can then be used as a texture
descriptor.

Fig. 1. The basic LBP operator

The operator has been extended to use neighborhoods of different sizes. Using
a circular neighborhood and bilinearly interpolating values at non-integer pixel
coordinates allow any radius and number of pixels in the neighborhood. The
notation (P,R) is generally used for pixel neighborhoods to refer to P sampling



On the Effects of Illumination Normalization 177

points on a circle of radius R. The calculation of the LBP codes can be easily
done in a single scan through the image. The value of the LBP code of a pixel
(xc, yc) is given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, (1)

where gc corresponds to the gray value of the center pixel (xc, yc), gp refers to
gray values of P equally spaced pixels on a circle of radius R, and s defines a
thresholding function as follows:

s(x) =
{

1, if x ≥ 0;
0, otherwise. (2)

Another extension to the original operator is the definition of so called uniform
patterns. This extension was inspired by the fact that some binary patterns occur
more commonly in texture images than others. A local binary pattern is called
uniform if the binary pattern contains at most two bitwise transitions from 0 to
1 or vice versa when the bit pattern is traversed circularly. In the computation
of the LBP labels, uniform patterns are used so that there is a separate label for
each uniform pattern and all the non-uniform patterns are labeled with a single
label. This yields to the following notation for the LBP operator: LBPu2

P,R. The
subscript represents using the operator in a (P,R) neighborhood. Superscript u2
stands for using only uniform patterns and labeling all remaining patterns with
a single label.

Each LBP label (or code) can be regarded as a micro-texton. Local primitives
which are codified by these labels include different types of curved edges, spots,
flat areas etc. The occurrences of the LBP codes in the image are collected
into a histogram. The classification is then performed by computing histogram
similarities. For an efficient representation, facial images are first divided into
several local regions from which LBP histograms are extracted and concatenated
into an enhanced feature histogram.

It is known that LBP is sensitive to severe illumination changes. As a con-
sequence, several attempts have been made to overcome this sensitivity. For
instance, Tan and Triggs [19] developed a very effective preprocessing chain for
compensating illumination variations in face images. It is composed of gamma
correction, difference of Gaussian (DoG) filtering, masking (optional) and equal-
ization of variation. This approach has been very successful in LBP-based face
recognition under varying illumination conditions. When using it for the original
LBP, the last step (i.e. equalization of variations) can be omitted due to LBPs
invariance to monotonic gray scale changes.

Aiming at reducing the sensitivity of the image descriptor to illumination
changes, a Bayesian LBP (BLBP) was developed by He et al.[6]. This opera-
tor is formulated in a Filtering, Labeling and Statistic framework for texture
descriptors. In the framework, the local labeling procedure, which is a part of
many popular descriptors such as LBP and SIFT, can be modeled as a proba-
bility and optimization process. This enables the use of more reliable prior and



178 I. Amara et al.

Table 1. Illumination normalization techniques studied in this paper
Family Specific Technique
Retinex Adaptive Single-Scale Retinex (ASSR), Large and Small-Scale Features (LSSF)

Self Quotient Multi-Scale Self Quotient (MSSQ)
Diffusion Isotropic Diffusion (ID), Modified Anisotropic Diffusion (MAD)

Filter Tan and Triggs (TT)
Gradient Multi-Scale Weberfaces (MSW)

Mean Denoising Adaptive Non Local Means (ANLM)
Retina Retina Modeling (RM)
Wavelet Wavelet Denoising (WD)

Frequency Homomorphic

likelihood information, and reduces the sensitivity to noise. The BLBP operator
pursues a label image, when given the filtered vector image, by maximizing the
joint probability of two images.

Liao et al.[9] noticed that adding a small offset value for comparison in LBP-
like methods is not invariant under scaling of intensity values. The intensity scale
invariant property of a local comparison operator is very important for example
in background modeling, because illumination variations, either global or local,
often cause sudden changes of gray scale intensities of neighboring pixels simulta-
neously, which would approximately be a scale transform with a constant factor.
Therefore, a Scale Invariant Local Ternary Pattern (SILTP) operator was devel-
oped for dealing with the gray scale intensity changes in complex background.
Assuming linear camera response, The SILTP feature is invariant if the illu-
mination is suddenly changed from darker to brighter or vice versa. Besides,
SILTP is robust when a soft shadow covers a background region, because the
soft cast shadow reserves the background texture information but tends to be
darker than the local background region with a scale factor. A downside of the
methods mentioned above using one or two thresholds is that the methods are
not strictly invariant to local monotonic gray level changes as the original LBP.
The feature vector lengths of these operators are also longer.

In order to deal with strong illumination variations, Li et al. developed an
active approach combining near-infrared (NIR) imaging with local binary pat-
tern features and AdaBoost learning [8]. The invariance of LBP with respect to
monotonic gray level changes makes the NIR images illumination invariant. For
instance, the method achieved a verification rate of a FAR=1% on their NIR
database with 870 subjects.

4 Illumination Normalization

Changes in ambient illumination, and the resulting variations to facial appear-
ance, are known to significantly deteriorate the performance of FR systems.
Accordingly, several techniques have been proposed for illumination invariant
FR [17]. Zou et al. [25] presented a survey of techniques according to pas-
sive and active approaches. Passive approaches focus on the visible spectrum
images where face appearance has been altered by illumination variations. They
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include illumination variation modelling, illumination invariant features, photo-
metric normalisation, and 3D morphable model techniques. In contrast, active
approaches employ active imaging techniques to obtain face images captured
under consistent illumination condition, or images of illumination invariant
modalities. Additional devices (optical filters, active illumination sources or
specific sensors) are usually involved to actively obtain different modalities of
face images that are insensitive to or independent of illumination change. Those
modalities include 3D face information and face images in those spectra other
than visible spectra, such as thermal infrared image and near-infrared hyperspa-
tial image.

Passive approaches fall under three main types of techniques to produce illu-
mination invariant facial images – those applied at the pre-processing, feature
extraction and classification levels [18]. Pre-processing techniques seek to pro-
duce (prior to feature extraction) facial images without facial variations caused
by illumination. They compensate for the illumination within any FR system,
since no prior assumptions influence feature extraction or classification proce-
dures. They may also be computationally simple, and effective at achieving illu-
mination invariant FR. Feature extraction techniques seek to compensate for
appearance variations in facial images using descriptors or representations that
are stable under different illumination conditions. However, different empirical
studies with LBP, Gabor wavelet-based features, and other descriptors have
shown that none of these can ensure illumination invariant FR given severe
illumination changes [10]. Classification-level techniques compensate for illumi-
nation changes according to the type of face model or classifier employed in
the FR system. First, some assumptions regarding the effects of illumination
on face models or classification procedure are made, and then based on these
assumptions, counter measures are undertaken to obtain illumination invariant
face models or illumination insensitive classification procedures. Managing the
effects of illumination at the feature extraction level is debatable, while classifica-
tion level techniques may impose difficult requirements on design data. Although
they may provide the more efficient approach to illumination invariant FR, large
training set must usually be acquired under a number of lighting conditions and
are, furthermore, also computationally expensive.

In this paper, we focus our empirical study on passive techniques for illumi-
nation normalization at the pre-processing level. Table 1 presents the specific
techniques from the literature that are considered in our study. A more detailed
description of these techniques may be found in [18]. They are selected because
they are the newer and more representative techniques from different families,
e.g., retinex, diffusion, wavelet, frequency-based techniques.

5 Experimental Analysis

5.1 Dataset and Experimental Protocol:

To compare the performance achieved by a still-to-video FR system using dif-
ferent illumination normalization techniques prior to LBP, Chokepoint video
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Fig. 2. Examples of face images obtained after illumination normalization is applied
to ROIs in stills and videos from individuals ID03 and ID04

dataset [24] has been employed. An array of three cameras is installed above
several portals (natural choke points for pedestrian traffic) to capture 25 indi-
viduals walking through in a natural way. Videos are challenging for still-to video
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FR since faces are captured under semi-controlled conditions, with changes in
illumination, pose, scale, blur and occlusion. All 48 video sequences from the
center camera, in both entering and leaving cases of Chokepoint have been con-
sidered. Cameras have a frame rate of 30 fps and the image resolution is 800 x
600 pixels.

Prior to each replication, 5 persons are randomly selected as target watchlist
individuals, where just one reference still image (high-quality neutral mug-shot)
is available to design each face model. These reference stills are used a priori to
design templates for this FR system. The remaining individuals are used in the
testing phase as non-target subjects. The enrollment of each target individual
involves isolating a ROI from the reference still image using the Viola-Jones face
detection algorithm, and converting the ROI into grey scale, and then cropping
it to a common size of 48x48 pixels to limit processing time. For each watch-
list individual, the 11 illumination normalization techniques selected for this
study (see Table 1) are used to represent the reference ROI using the INface
Toolbox3 [22,23]. At this level, 12 representations of one ROI are created in
which 11 represent the normalized ROI in terms of illumination and 1 represents
the original ROI (without application of illumination normalization techniques).
These representations are shown for individual ID03 and ID04 of Chokepoint in
Figure 2.

A division into 3x3 = 9 uniform non-overlapping patches of 16x16 pixels is
performed on each ROI representations after illumination normalization. With
patch-based methods, facial ROIs are divided into several overlapping or non-
overlapping regions called patches, and then features are extracted locally from
each patch for recognition purposes. Some specialized decision fusion techniques
have been introduced in [13,20] for patch-based FR. In this paper, a uniform
pattern of 59 LBP features is extracted from each patch, normalized to range
between 0 and 1, and assembled into a ROI pattern of 531 features for matching.
The latter are then stored as a template into a gallery. The enrollment phase
produces a template gallery with 12 different templates per watchlist person (the
original image plus 11 normalized images).

During the testing or operational phase, frames undergo the same process-
ing steps as for enrollment. For each normalization technique, an ROI pattern
extracted from a video frame is compared with the corresponding template of
the 5 watchlist individuals. Template matching is performed with the Euclidian
distance, and produces matching scores.

To assess the transaction-level performance, receiver operating characteristic
(ROC) space is considered. A ROC curve displays the proportion of target ROIs
that are correctly detected as individual of interest over the total number of
target ROIs in the sequence, the true positive rate (tpr), as a function of the
proportion of non-target (imposter) ROI detected as individual of interest over
the total number of non-target ROIs, the false positive rate (fpr). The area under
ROC curve (AUC) provides a global scalar measure that can be interpreted as
the probability of classification over the range of tpr and fpr. Due to imbalance
3 http://luks.fe.uni-lj.si/sl/osebje/vitomir/face tools/INFace/

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/
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Table 2. Average pAUC(5%) performance (with standard deviation) for each watchlist
individual with illumination normalization techniques

Illumination Normalisation
ID # of Watchlist Individuals

ID03 ID04 ID07 ID09 ID12 Average

Entering Videos
No Normalization 0.66±0.04 0.96±0.01 0.72±0.02 0.84±0.03 0.91±0.02 0.82±0.02
Adaptive Single Scale Retinex 0.65±0.04 0.90±0.01 0.54±0.02 0.76±0.05 0.90±0.01 0.75±0.02
Large and Small Scale Features 0.72±0.06 0.89±0.03 0.69±0.02 0.89±0.03 0.92±0.03 0.82±0.03
Multi Scale Self-Quotient 0.69±0.04 0.88±0.03 0.67±0.05 0.87±0.02 0.93±0.02 0.81±0.03
Isotropic Diffusion 0.69±0.06 0.86±0.03 0.70±0.01 0.90±0.01 0.97±0.01 0.82±0.02
Modified Anisotropic Diffusion 0.74±0.05 0.85±0.03 0.74±0.02 0.80±0.03 0.94±0.02 0.81±0.03
Tan & Triggs 0.74±0.03 0.86±0.03 0.71±0.02 0.88±0.04 0.92±0.03 0.82±0.03
Multi Scale Weberfaces 0.82±0.02 0.83±0.03 0.73±0.03 0.88±0.05 0.91±0.03 0.83±0.03
Adaptive Non-Local Means 0.71±0.02 0.89±0.02 0.66±0.03 0.69±0.04 0.84±0.03 0.76±0.02
Retina Modeling 0.73±0.05 0.85±0.03 0.69±0.02 0.90±0.03 0.91±0.05 0.82±0.03
Wavelet Denoising 0.66±0.03 0.89±0.02 0.54±0.03 0.83±0.02 0.87±0.01 0.76±0.02
Homomorphic 0.62±0.04 0.94±0.01 0.73±0.02 0.81±0.05 0.91±0.01 0.80±0.02

Leaving Videos
No Normalization 0.67±0.08 0.91±0.03 0.79±0.02 0.91±0.02 0.94±0.02 0.84±0.03
Adaptive Single Scale Retinex 0.73±0.03 0.89±0.02 0.66±0.01 0.89±0.02 0.92±0.01 0.82±0.01
Large and Small Scale Features 0.78±0.03 0.94±0.02 0.54±0.02 0.94±0.02 0.96±0.01 0.83±0.02
Multi Scale Self - Quotient 0.74±0.03 0.82±0.07 0.74±0.02 0.92±0.01 0.93±0.02 0.83±0.03
Isotropic Diffusion 0.82±0.03 0.83±0.05 0.75±0.02 0.91±0.02 0.95±0.01 0.85±0.02
Modified Anisotropic Diffusion 0.78±0.02 0.89±0.02 0.64±0.02 0.93±0.01 0.94±0.01 0.83±0.01
Tan & Triggs 0.80±0.03 0.93±0.01 0.61±0.03 0.97±0.01 0.96±0.01 0.85±0.01
Multi-Scale Weberfaces 0.85±0.03 0.92±0.01 0.73±0.02 0.95±0.01 0.95±0.01 0.88±0.01
Adaptive Non-Local Means 0.74±0.04 0.94±0.02 0.71±0.02 0.86±0.01 0.95±0.01 0.84±0.02
Retina Modeling 0.77±0.03 0.93±0.01 0.55±0.03 0.96±0.01 0.96±0.01 0.83±0.01
Wavelet Denoising 0.71±0.02 0.91±0.02 0.66±0.02 0.87±0.01 0.92±0.01 0.81±0.01
Homomorphic 0.65±0.03 0.90±0.02 0.78±0.01 0.87±0.02 0.91±0.01 0.82±0.01

between target and non-target ROI captures, the precision-recall (PROC) space
is also considered to measure the performance. Recall is the tpr and the precision
is the ratio of correctly detected target ROIs to all target ROIs. The AUPR
measures system performance based on targets ROI patterns given an imbalance
between target (minority) and non-targets (majority) proportions. In trajectory-
level analysis, a tracking module is employed to regroup ROIs captured for a
same person over successive frames and to accumulate positive decisions for each
person over time. Accumulated predictions are then compared to a detection
threshold for a final recognition score. In this paper, we show the matching
scores linked to ROI patterns of each person appearing in the scene w.r.t each
face model.

5.2 Results and Discussion

Results in Tables 2 and 3 present the average transaction-level performance
(pAUC(5%) and AUPR) for each watchlist individual obtained by applying the
11 illumination normalization techniques over all entering and leaving videos of
Chokepoint. Based on overall results, MSW and TT techniques tend to outper-
form the others with both entering and leaving videos.

It can however be observed that the results vary significantly according to
the watchlist individual and to capturing conditions (sequence and portals). For
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Table 3. Average AUPR performance (with standard deviation) for each watchlist
individual with illumination normalization techniques

Illumination Normalisation
ID # of Watchlist Individuals

ID03 ID04 ID07 ID09 ID12 Average

Entering Videos
Without Normalization 0.06±0.01 0.64±0.07 0.16±0.03 0.30±0.08 0.60±0.08 0.35±0.05
Adaptive Single Scale Retinex 0.09±0.03 0.28±0.03 0.06±0.08 0.17±0.04 0.46±0.07 0.21±0.05
Large and Small Scale features 0.18±0.06 0.40±0.04 0.14±0.03 0.51±0.08 0.63±0.01 0.37±0.04
Multi Scale Self-Quotient 0.12±0.05 0.45±0.07 0.15±0.02 0.31±0.04 0.57±0.09 0.32±0.05
Isotropic Diffusion 0.13±0.04 0.31±0.05 0.11±0.01 0.35±0.05 0.74±0.05 0.33±0.04
Modified Anisotropic Diffusion 0.13±0.04 0.34±0.07 0.17±0.02 0.28±0.06 0.68±0.09 0.32±0.05
Tan & Triggs 0.16±0.06 0.37±0.05 0.16±0.02 0.59±0.10 0.64±0.10 0.38±0.06
Multi-Scale Weberfaces 0.25±0.07 0.37±0.05 0.19±0.03 0.58±0.10 0.57±0.11 0.39±0.07
Adaptive Non-Local Means 0.11±0.04 0.51±0.06 0.14±0.02 0.07±0.01 0.53±0.07 0.27±0.04
Retina Modeling 0.22±0.07 0.32±0.05 0.16±0.02 0.63±0.09 0.66±0.10 0.40±0.06
Wavelet Denoising 0.08±0.02 0.37±0.05 0.06±0.01 0.14±0.02 0.32±0.06 0.19±0.03
Homomorphic 0.05±0.01 0.65±0.06 0.18±0.04 0.18±0.05 0.47±0.08 0.30±0.04

Leaving Videos
Without Normalization 0.19±0.06 0.43±0.07 0.23±0.03 0.57±0.08 0.66±0.07 0.42±0.06
Adaptive Single Scale Retinex 0.14±0.02 0.26±0.06 0.11±0.01 0.41±0.04 0.58±0.03 0.30±0.03
Large and Small Scale features 0.22±0.03 0.49±0.07 0.07±0.01 0.67±0.06 0.71±0.06 0.43±0.04
Multi Scale Self-Quotient 0.11±0.01 0.31±0.09 0.19±0.04 0.59±0.05 0.66±0.04 0.40±0.04
Isotropic Diffusion 0.26±0.05 0.27±0.07 0.21±0.03 0.58±0.06 0.65±0.07 0.40±0.05
Modified Anisotropic Diffusion 0.16±0.03 0.29±0.04 0.08±0.01 0.60±0.07 0.61±0.08 0.35±0.04
Tan & Triggs 0.29±0.05 0.35±0.05 0.10±0.01 0.81±0.04 0.78±0.05 0.47±0.04
Multi-Scale Weberfaces 0.39±0.05 0.34±0.05 0.18±0.03 0.79±0.04 0.78±0.05 0.50±0.04
Adaptive Non-Local Means 0.22±0.05 0.58±0.09 0.17±0.04 0.37±0.04 0.69±0.03 0.41±0.05
Retina Modeling 0.23±0.03 0.38±0.05 0.09±0.02 0.75±0.06 0.68±0.06 0.43±0.04
Wavelet Denoising 0.09±0.01 0.37±0.08 0.09±0.01 0.30±0.03 0.46±0.06 0.26±0.03
Homomorphic 0.10±0.02 0.41±0.08 0.18±0.02 0.44±0.07 0.54±0.08 0.33±0.05

instance, with individual ID04, applying illumination normalization decreases
system performance compared to the results without any normalization (see
Figure 3(c) and (d)). In contrast, with individual ID03, the pAUC(5%) and
AUPR are significantly higher when normalization are applied, specially with the
MSW technique (see Figure 3(a) and (b)). Figure 4 displays face representations
of individuals ID03 and ID04.

Figures 5 and 6 present an example of trajectory-level analysis with accu-
mulated scores from each target and non-target subject ROIs over time when
compared to the template for ID03 and ID04 individuals, respectively. They
show matching scores along with measures of brightness and sharpness [12] with
MSW and TT normalization associated with each ROI captures in Chokepoint
video P1E-S1-C2. In Figure 5, the performance of the FR system that uses MSW
normalization yields the best target vs non-target discrimination, although this
tends to vary along with brightness and sharpness measures. In Figure 6, the
scores are already very high for individual ID04, and normalization only improves
non-target scores. This reduced the target vs non-target discrimination, and the
overall ROC and Precision-Recall space performance. In this last case, there is
no benefit to applying a normalization technique.

In most cases, there is at least one normalization technique that provides
an improvement over the case without normalization. Given the diversity of
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(a) ROC curves, ID03 (b) Precision-Recall curves, ID03

(c) ROC curves, ID04 (d) Precision-Recall curves, ID04

Fig. 3. Transaction-level performance obtained with individuals ID03 and ID4 after
using different illumination techniques

approaches, results suggest that the scores obtained from a set of normalization
techniques could be combined through fusion to achieve a higher level of accu-
racy and robustness. Since there is a correlation between brightness and scores
achieved through normalization, a combination of these techniques should be
selected dynamically based on changing capture conditions.
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Fig. 4. Face representations of individuals ID03 and ID04. (a) The original ROIs of
ID03 (mug-shot and 3 from video captures). (b) LBP projection of the original ROI of
ID03. (c) Normalization of ROIs for ID03 using MSW. (d) LBP projection of the MSW
normalized images of ID03. (e) The original ROIs of ID03 (mug-shot and 3 from video
captures). (f) LBP projection of the original ROI of ID04. (g) Normalization of ROIs
for ID04 using MSW. (h) LBP projection of the MSW normalized images of ID04.

6 Conclusion

The popular LBP-based approach to face analysis is known to be sensitive to
severe illumination changes. Based on this observation, our study investigated
the effect on performance of representative passive illumination normalization
techniques for representation of face captures in watchlist screening with LBP.
Watch-list screening is an important application for decision support in video
surveillance systems.

Extensive experimental analysis on videos from the benchmark Chokepoint
dataset indicated that the benefit of different techniques varies considerably
according to the individual and illumination conditions. This suggests that a
combination of these techniques should be selected dynamically based on chang-
ing capture conditions. Overall, the Multi-Scale Weberfaces and Tan and Triggs
techniques tend to provide the most interesting results compared to other tech-
niques.

Techniques in this study compensate for illumination changes at the pre-
processing level, and may be computationally simple and effective at achieving
illumination invariant FR. However, a common challenges among all theses tech-
niques is that performance depends heavily on their implementation, and on the
suitable selection of their parameters that must be set empirically. In this study,
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Fig. 5. Trajectory-level analysis for individual ID03 – matching scores and brightness
and sharpness levels over time

Fig. 6. Trajectory-level analysis for individual ID04 – matching scores and brightness
and sharpness levels over time



On the Effects of Illumination Normalization 187

results were produced using default setting from the authors of respective tech-
niques.
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Abstract. The Visual Object Tracking challenge 2014, VOT2014, aims
at comparing short-term single-object visual trackers that do not apply
pre-learned models of object appearance. Results of 38 trackers are pre-
sented. The number of tested trackers makes VOT 2014 the largest
benchmark on short-term tracking to date. For each participating tracker,
a short description is provided in the appendix. Features of the VOT2014
challenge that go beyond its VOT2013 predecessor are introduced: (i) a
new VOT2014 dataset with full annotation of targets by rotated bound-
ing boxes and per-frame attribute, (ii) extensions of the VOT2013 eval-
uation methodology, (iii) a new unit for tracking speed assessment less
dependent on the hardware and (iv) the VOT2014 evaluation toolkit
that significantly speeds up execution of experiments. The dataset, the
evaluation kit as well as the results are publicly available at the challenge
website (http://votchallenge.net).

Keywords: Performance evaluation · Short-term single-object
trackers · VOT

1 Introduction

Visual tracking has received a significant attention over the last decade largely
due to the diversity of potential applications which makes it a highly attractive
research problem. The number of accepted motion and tracking papers in high
profile conferences, like ICCV, ECCV and CVPR, has been consistently high

http://votchallenge.net
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in recent years (∼40 papers annually). For example, the primary subject area
of twelve percent of papers accepted to ECCV2014 was motion and tracking.
The significant activity in the field is also reflected in the abundance of review
papers [22,23,29,40,43,44,65] summarizing the advances published in confer-
ences and journals over the last fifteen years.

The use of different datasets and inconsistent performance measures across
different papers, combined with the high annual publication rate, makes it dif-
ficult to follow the advances made in the field. Indeed, in computer vision fields
like segmentation [18,19], optical-flow computation [3], change detection [24],
the ubiquitous access to standard datasets and evaluation protocols has substan-
tially contributed to cross-paper comparison [56]. Despite the efforts invested in
proposing new trackers, the field suffers from a lack of established evaluation
methodology.

Several initiatives have been put forward in an attempt to establish a common
ground in tracking performance evaluation. Starting with PETS [66] as one of
most influential performance analysis efforts, frameworks have been presented
since with focus on surveillance systems and event detection, e.g., CAVIAR1,
i-LIDS 2, ETISEO3, change detection [24], sports analytics (e.g., CVBASE4),
faces, e.g. FERET [50] and [31], and the recent long-term tracking and detection
of general targets5 to list but a few.

This paper discusses the VOT2014 challenge organized in conjunction with the
ECCV2014 Visual object tracking workshop and the results obtained. The chal-
lenge considers single-camera, single-target, model-free, causal trackers, applied
to short-term tracking. The model-free property means that the only supervised
training example is provided by the bounding box in the first frame. The short-
term tracking means that the tracker does not perform re-detection after the tar-
get is lost. Drifting off the target is considered a failure. The causality means that
the tracker does not use any future frames, or frames prior to re-initialization, to
infer the object position in the current frame. In the following we overview the most
closely related work and then point out the contributions of VOT2014.

1.1 Related Work

Recently, several attempts have been made towards benchmarking the class of
trackers considered in this paper. Most notable are the online tracking bench-
mark (OTB) by Wu et al. [62] and the experimental survey based on Amsterdam
Library of Ordinary Videos (ALOV) by Smeulders et al. [53]. Both benchmarks
compare a number of recent trackers using the source code obtained from the orig-
inal authors. All trackers were integrated into their experimental environment by
1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
2 http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
3 http://www-sop.inria.fr/orion/ETISEO
4 http://vision.fe.uni-lj.si/cvbase06/
5 http://www.micc.unifi.it/LTDT2014/

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
http://www-sop.inria.fr/orion/ETISEO
http://vision.fe.uni-lj.si/cvbase06/
http://www.micc.unifi.it/LTDT2014/
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the benchmark authors themselves and both report carefully setting the parame-
ters. Nevertheless, it is difficult to guarantee equal quality of the parameter setting
since, for some trackers, the operation requires thorough understanding.

The OTB [62] contains a dataset containing 50 sequences and annotates each
sequence globally with eleven visual attributes. Sequences are not per-frame
annotated. For example, a sequence has the “occlusion” attribute if the target
is occluded anywhere in the sequence. The evaluation kit with pre-integrated
trackers is publicly available. However, in our experience, the integration of third-
party trackers into this kit is not straightforward due to a lack of standardization
of the input/output communication between the tracker and the evaluation kit.

The ALOV [53] benchmark provides an impressive dataset with 315 sequences
annotated with thirteen visual attributes. A drawback of this dataset is that
some sequences contain cuts and ambiguously defined targets such as fireworks.

OTB [62] evaluates trackers using two measures: precision score and suc-
cess score. Precision score represents the percentage of frames for which the
center-distance error (e.g., [33,51]) is below 20 pixels. However, this thresh-
old is strongly affected by the object size, which makes this particular measure
quite brittle. A normalized center error measured during successful tracks may
be used to alleviate the object size problem, however, the results in [53] show
that the trackers do not differ significantly under this measure which makes it
less appropriate for tracker comparison. The success plot represents the percent-
age of frames for which the overlap measure (e.g., [39,58]) exceeds a threshold,
with respect to different thresholds. The area under the success plot is taken as
an overall success measure. Čehovin et al. [58] have recently shown that this is
simply an average overlap computed over the sequence. Alternatively, F-score
based on Pascal overlap (threshold 0.5) is proposed in ALOV [53]. Note that the
F-score based measure was originally designed for object detection. The thresh-
old 0.5 is also rather high and there is no clear justification of why exactly this
threshold should be used to compare trackers [62]. The ALOV [53] proposes an
original approach to visualize tracking success. For each tracker, a performance
measure is calculated per-sequence. These values are ordered from highest to
lowest, thus obtaining a so-called survival curve and a test of statistical signifi-
cance of differences is introduced to compare these curves across trackers. Special
care has to be taken in interpreting the differences between these curves, as the
orderings differ between trackers.

Both, the OTB and ALOV initialize the trackers at the beginning of the
sequence and let them run until the end. While such a setup significantly sim-
plifies the evaluation kit, it is not necessarily appropriate for short-term tracker
evaluation, since short-term trackers are not required to perform re-detection.
Therefore, the values of performance measures become irrelevant after the point
of tracking failure, which significantly distorts the value of globally computed
performance measure. The results are reported with respect to visual attributes
in OTB and ALOV for in-depth analysis. However, most visual phenomena do
not usually last throughout the entire sequence. For example, consider a tracker
that performs poorly on a sequence with attribute occlusion according to a
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globally calculated performance measure. This might be interpreted as poor
performance under occlusion, but actual occlusion might occur at the end of
the sequence, while the poor performance is in fact due to some other effects
occurring at the beginning of the sequence.

Collecting the results from the existing publications is an alternative for
benchmarking trackers. Pang et al. [48] have proposed a page-rank-like approach
to data-mine the published results and compile unbiased ranked performance
lists. However, as the authors state in their paper, the proposed protocol is not
appropriate for creating ranks of the recently published trackers due to the lack
of sufficiently many publications that would compare these trackers.

The most closely related work is the recent visual object tracking challenge,
VOT2013 [36]. The authors of that challenge provide the evaluation kit, a fully
annotated dataset and an advanced performance evaluation methodology. In con-
trast to related benchmarks, the goal of VOT2013 was to have as many experi-
ments as possible performed by the original authors of trackers while the results
were analyzed by the VOT2013 committee. VOT2013 introduced several novelties
in benchmarking short-term trackers: The evaluation kit is cross-platform, allow-
ing easy integration with third-party trackers, the dataset is per-frame annotated
with visual attributes and a state-of-the-art performance evaluation methodology
was presented that accounts for statistical significance of the results on all mea-
sures. The results were published in a joint paper with over 50 co-authors [36],
while the evaluation kit, the dataset, the tracking outputs and the code to repro-
duce all the results are made freely-available from the VOT2013 homepage6.

1.2 The VOT2014 Challenge

The VOT2014 follows the VOT2013 challenge and considers the same class of
trackers. The organisers of VOT2014 provided an evaluation kit and a dataset
for automatic evaluation of the trackers. The evaluation kit records the output
bounding boxes from the tracker, and if it detects tracking failure, re-initializes
the tracker. The authors attending the challenge were required to integrate their
tracker into the VOT2014 evaluation kit, which automatically performed a stan-
dardized experiment. The results were analyzed by the VOT2014 evaluation
methodology.

Participants were expected to submit a single set of results per tracker. Par-
ticipants who have investigated several trackers submitted a single result per
tracker. Changes in the parameters did not constitute a different tracker. The
tracker was required to run with fixed parameters on all experiments. The track-
ing method itself was allowed to internally change specific parameters, but these
had to be set automatically by the tracker, e.g., from the image size and the
initial size of the bounding box, and were not to be set by detecting a specific
test sequence and then selecting the parameters that were hand-tuned to this
sequence. Further details are available from the challenge sequence7.
6 http://www.votchallenge.net/vot2013/
7 http://www.votchallenge.net/vot2014/participation.html

http://www.votchallenge.net/vot2013/
http://www.votchallenge.net/vot2014/participation.html
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The VOT2014 Improves on VOT2013 in Several Aspects:

– A new fully-annotated dataset is introduced. The dataset is per-frame anno-
tated with visual properties, while the objects are annotated with rotated
bounding boxes to more faithfully denote the target position.

– Unlike in VOT2013, trackers can predict the target position as a rotated
bounding box as well.

– A new evaluation system is introduced that incorporates direct communica-
tion with the tracker [59] and offers faster execution of experiments and is
backward compatible with VOT2013.

– The evaluation methodology from VOT2013 is extended to take into account
that while the difference in accuracy of pair of trackers may be statistically
significant, but negligibly small from perspective of ground truth ambiguity.

– A new unit for tracking speed is introduced that is less dependant on the
hardware used to perform experiments.

– All accepted trackers are required to outperform the reference NCC tracker
provided by the VOT2014 evaluation kit.

– A new web-based system for interactive exploration of the competition results
has been implemented.

The remainder of this paper is structured as follows. In Section 2, the new
dataset is introduced. The methodology is presented in Section 3, the main
results are discussed in Section 4 and conclusions are drawn in Section 5.

2 The VOT2014 Dataset

VOT2013 noted that a big dataset does not necessarily mean richness in visual
properties and introduced a dataset selection methodology to compile a dataset
that includes various real-life visual phenomena, while containing a small number
of sequences to keep the time for performing the experiments reasonably low.
We have followed the same methodology in compiling the VOT2014 dataset.
Since the evaluation kit for VOT2014 is significantly more advanced than that
of VOT2013, we were able to increase the number of sequences compared to
VOT2013, while still keeping the time for experiments reasonably low.

The dataset was prepared as follows. The initial pool included 394 sequences,
including sequences used by various authors in the tracking community, the
VOT2013 benchmark [36], the recently published ALOV dataset [53], the Online
Object Tracking Benchmark [62] and additional, so far unpublished, sequences.
The set was manually filtered by removing sequences shorter than 200 frames,
grayscale sequences, sequences containing poorly defined targets (e.g., fireworks)
and sequences containing cuts. Ten global attributes were automatically com-
puted for each of the 193 remaining sequences. In this way each sequence was
represented as a 10-dimensional feature vector. Sequences were clustered in an
unsupervised way using affinity propagation [21] into 12 clusters. From these, 25
sequences were manually selected such that the various visual phenomena like,
occlusion, were still represented well within the selection.
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The relevant objects in each sequence are manually annotated by bound-
ing boxes. Most sequences came with axis-aligned bounding boxes placed over
the target. For most frames, the axis-aligned bounding boxes approximated the
target well with large percentage of pixels within the bounding box (at least
> 60%) belonging to the target. Some sequences contained elongated, rotating
or deforming targets and these were re-annotated by rotated bounding boxes.

As in the VOT2013, we have manually or semi-manually labeled each frame
in each selected sequence with five visual attributes that reflect a particular
challenge in appearance attribute: (i) occlusion, (ii) illumination change, (iii)
motion change, (iv) size change, (v) camera motion. In case a particular frame
did not correspond to any of the five degradations, we denoted it as (vi) neutral.
In the following we will use the term attribute sequence to refer to a set of frames
with the same attribute pooled together from all sequences in the dataset.

3 Performance Measures and Evaluation Methodology

As in VOT2013, the following two weakly correlated performance measures are
used due to their high level of interpretability [58]: (i) accuracy and (ii) robust-
ness. The accuracy measures how well the bounding box predicted by the tracker
overlaps with the ground truth bounding box. On the other hand, the robust-
ness measures how many times the tracker loses the target (fails) during tracking.
A sfailure is indicated when the overlap measure becomes zero. To reduce the
bias in robustness measure, the tracker is re-initialized five frames after the fail-
ure and ten frames after re-initialization are ignored in computation to further
reduce the bias in accuracy measure [34]. Trackers are run 15 times on each
sequence to obtain a better statistics on performance measures. The per-frame
accuracy is obtained as an average over these runs. Averaging per-frame accura-
cies gives per-sequence accuracy, while per-sequence robustness is computed by
averaging failure rates over different runs.

Apart from accuracy and robustness, the tracking speed is also an important
property that indicates practical usefulness of trackers in particular applications.
While accuracy and robustness results can be made comparable across different
trackers by using the same experiments and dataset, the speed measurement
depends on the programming language, implementation skills and most impor-
tantly, the hardware used to perform the experiments. To reduce the influence of
hardware, the VOT2014 introduces a new unit for reporting the tracking speed.
When an experiment is conducted with the VOT2014 evaluation kit, the kit
benchmarks the machine by measuring the time required to perform a maxi-
mum pixel value filter on a grayscale image of size 600 × 600 with a 30 × 30
pixel window. The benchmark filter operation was coded in C by the VOT2014
committee. The VOT tracking speed is then reported by dividing the measured
tracking time with the time required for the filtering operation. Thus the speed is
reported in equivalent filter operations (EFO) which are defined by the VOT2014
evaluation kit.
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3.1 Evaluation Methodology

To address the unequal representation of the attributes in the sequences, the two
measures are calculated only on the subset of frames in the dataset that contain
that attribute (attribute subset). The trackers are ranked with respect to each
measure separately on each attribute. The VOT2013 recognized that subsets of
trackers might be performing equally well and this should be reflected in the
ranks. Therefore, for each i-th tracker a set of equivalent trackers is determined.
The corrected rank of the i-th tracker is obtained by averaging the ranks of
these trackers including the considered tracker. The final ranking is obtained by
averaging the ranks.

The equivalency of trackers is determined in VOT2013 by testing for the
statistical significance of difference in performance of pairs of trackers. Sepa-
rate statistical tests are applied for accuracy and robustness. The VOT2013
acknowledged that statistical significance of performance differences does not
directly imply a practical difference [16], but did not address that. The practical
difference is a level of difference that is considered negligibly small. This level can
come from the noise in annotation, the fact that multiple ground truth annota-
tions might be equally valid, or simply from the fact that very small differences
in trackers are negligible from a practical point of view.

The VOT2014 extends the methodology by introducing tests of practical
difference on tracking accuracy. In VOT2014, a pair of trackers is considered
to perform equally well in accuracy if their difference in performance is not
statistically significant or if it fails the practical difference test.

Testing for Practical Difference: Let φt(i) and φt(j) be the accuracies of
the i-th and the j-th tracker at the t-th frame and let μ(i) = 1

T

∑T
t=1 φt(i) and

μ(j) = 1
T

∑T
t=1 φt(j) be the average accuracies calculated over a sequence of

T frames. The trackers are said to perform differently if the difference of their
averages is greater than a predefined threshold γ, i.e., |μ(i) − μ(j)| > γ, or, by
defining dt(i, j) = φt(i) − φt(j), expanding the sums and pulling the threshold
into the summation, 1

T |∑T
t=1 dt(i, j)/γ| > 1. In VOT2014, the frames t = 1 : T

actually come from multiple sequences, and γ values may vary over frames.
Therefore, in VOT2014, a pair of trackers passes the test for practical difference
if the following relation holds

1
T

|
∑T

t=1
dt(i, j)/γt| > 1, (1)

where γt is the practical difference threshold corresponding to t-th frame.

Estimation of Practical Difference Threshold: The practical difference
strongly depends on the target as well as the number of free parameters in the
annotation model (i.e., in our case a rotated bounding box). Ideally a per-frame
estimate of γ would be required for each sequence, but that would present a
significant undertaking. On the other hand, using a single threshold for entire
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Fig. 1. Examples of diversity of bounding box annotations for different images

dataset is too restrictive as the properties of targets vary across the sequences. A
compromise can be taken in this case by computing one threshold per sequence.
We propose selecting M frames per sequence and have J expert annotators
place the bounding boxes carefully K times on each frame. In this way N =
K × J bounding boxes are obtained per frame. One of the bounding boxes
can be taken as a possible ground truth and N − 1 overlaps can be computed
with the remaining ones. Since all annotations are considered “correct”, any
two overlaps should be considered equivalent, therefore the difference between
these two overlaps is an example of negligibly small difference. By choosing each
of the bounding boxes as ground truth, M(N((N − 1)2 − N + 1))/2 samples
of differences are obtained per sequence. The practical difference threshold per
sequence is estimated as the average of these values.

4 Analysis and Results

4.1 Estimation of Practical Difference Thresholds

The per sequence practical difference thresholds were estimated by the following
experiment. For each sequence of the dataset, we identified four frames with axis-
aligned ground-truth bounding boxes. The annotators were presented with two
images side by side. The first image showed the first frame with overlaid ground-
truth bounding box. This image served as a guidance on which part of the object
should be annotated and was kept visible throughout the annotation of the
four frames from the same sequence. These frames were displayed in the second
image and the annotator was asked to place an axis-aligned bounding box on the
target in each one. The process of annotation was repeated by each annotator
three times. See Figure 1 In this setup a set of 15960 samples of differences was
obtained per sequence and used to compute the practical difference threshold as
discusses in Section 3.1.
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Fig. 2. Box plots of differences per sequence (left) and distribution of differences over
entire dataset (right)

Figure 2 shows boxplots of difference distributions w.r.t. sequences and a dis-
tribution over entire dataset. It is clear that the threshold on practical difference
varies over the sequences. For the sequences containing rigid objects, the practi-
cal difference threshold is small (e.g., ball) and becomes large for sequences with
deformable/articulated objects (e.g., bolt).

4.2 The VOT2014 Experiments

The VOT2014 challenge includes the following two experiments:

– Experiment 1: This experiment runs a tracker on all sequences in the
VOT2014 dataset by initializing it on the ground truth bounding boxes.

– Experiment 2: This experiment performs Experiment 1, but initializes with
a noisy bounding box. By a noisy bounding box, we mean a randomly per-
turbed bounding box, where the perturbation is in the order of ten percent
of the ground truth bounding box size.

In Experiment 2 there was a randomness in the initialization of the trackers.
The bounding boxes were randomly perturbed in position and size by drawing
perturbations uniformly from ±10% interval of the ground truth bounding box
size, while the rotation was perturbed by drawing uniformly from ±0.1 radi-
ans. All the experiments were automatically performed by the evaluation kit8.
A tracker was run on each sequence 15 times to obtain a better statistic on its
performance. Note that it does not make sense to perform Experiment 1 multiple
times for the deterministic trackers. In this case, the evaluation kit automati-
cally detects whether the tracker is deterministic and reduces the number of
repetitions accordingly.

4.3 Trackers Submitted

Together 33 entries have been submitted to the VOT2014 challenge. Each sub-
mission included the binaries/source code that was used by the VOT2014 com-
mittee for results verification. The VOT2014 committee additionally contributed
8 https://github.com/vicoslab/vot-toolkit

https://github.com/vicoslab/vot-toolkit
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5 baseline trackers. For these, the default parameters were selected, or, when not
available, were set to reasonable values. Thus in total 38 trackers were included
in the VOT2014 challenge. In the following we briefly overview the entries and
provide the references to original papers. For the methods that are not officially
published, we refer to the Appendix A instead.

Several tracker explicitly decomposed target into parts. These ranged from
key-point-based trackers CMT (A.32), IIVTv2 (A.6), Matrioska (A.11) and
its derivative MatFlow (A.13) to general part-based trackers LT-FLO (A.10),
PT+ (A.27), LGT (A.33), OGT (A.30), DGT (A.31), ABS (A.2), while
three trackers applied flock-of-trackers approaches FoT (A.22), BDF (A.12)
and FRT (A.34). Several approaches were applying global generative visual
models for target localization: a channel blurring approach EDFT (A.4) and
its derivative qwsEDFT (A.3), GMM-based VTDMG (A.7), scale-adaptive
mean shift eASMS (A.21), color and texture-based ACAT (A.20), HOG
correlation-based SAMF (A.9), NCC based tracker with motion model IMP-
NCC (A.15), two color-based particle filters SIR-PF (A.1) and IPRT (A.18),
a compressive tracker CT (A.35) and intensitiy-template-based pca tracker
IVT (A.36). Two trackers applied fusion of flock-of-trackers and mean shift,
HMM-TxD (A.23) and DynMS (A.26). Many trackers were based on dis-
criminative models, i.e., boosting-based particle filter MCT (A.8), multiple-
instance-learning-based tracker MIL (A.37), detection-based FSDT (A.29) while
several applied regression-based techniques, i.e., variations of online structured
SVM, Struck (A.16), aStruck (A.5), ThunderStruck (A.17), PLT 13 (A.14) and
PLT 14 (A.19), kernelized-correlation-filter-based KCF (A.28), kernelized-least-
squares-based ACT (A.24) and discriminative correlation-based DSST (A.25).

4.4 Results

The results are summarized in Table 1 and visualized by the AR rank plots
[36,58], which show each tracker as a point in the joint accuracy-robustness
rank space (Figure 3 and Figure 4). For more detailed rankings and plots please
see the VOT2014 results homepage. At the time of writing this paper, the VOT
committee was able to verify some of the submitted results by re-running parts
of the experiments using the binaries of the submitted trackers. The verified
trackers are denoted by * in Table 1. The AR rank plots for baseline experiment
(Experiment 1) and noise experiment (Experiment 2) are shown in Figure 3,
while per-visual-attribute ranking plots for the baseline experiment are shown
in Figure 4.

In terms of accuracy, the top performing trackers on both experiments, start-
ing with best performing, are DSST, SAMF and KCF (Figure 3). Averaging
together the accuracy and robustness, the improvement of DSST over the other
two is most apparent at size change and occlusion attributes (Figure 4). For
the noise experiment, these trackers remain the top performing, but the dif-
ference in accuracy is very small. In terms of robustness, the top performing
trackers on the baseline experiment are PLT 13, PLT 14, MatFlow and DGT.
These trackers come from two classes of trackers. The first two, PLT 13 and
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Fig. 3. The accuracy-robustness ranking plots with respect to the two experiments.
Tracker is better if it resides closer to the top-right corner of the plot.

Fig. 4. The accuracy-robustness ranking plots of Experiment 1 with respect to the six
sequence attributes. The tracker is better if it resides closer to the top-right corner of
the plot.
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PLT 14 are extensions of the Struck [25] tracker that apply histogram backpro-
jection as feature selection strategy in SVM training. The second two trackers
are part-based trackers that apply different types of parts. MatFlow is extension
of Matrioska [42] which applies a ORB/SURF keypoints and robust voting and
matching techniques. On, the other hand, DGT decomposes target into parts
by superpixels and applies graph-matching techniques to perform association
of parts across the frames. The DGT is generally well ranked with respect to
different visual properties, however, it significantly drops in performance dur-
ing illumination changes (Figure 3). In the second experiment with initialization
noise, MatFlow drops in ranks and the fourth-top tracker becomes the MCT
which applies a holistic discriminative model and a motion model with particle
filter. From Figure 4, we can see that a large majority of trackers, including NCC,
performed equally well on frames denoted as neutral in terms of robustness, but
differed quite significantly in accuracy.

The entries included several trackers from the same class. The top-performing
trackers in accuracy, DSST, SAMF and KCF, formulate tracking as a ridge
regression problem for correlation filter learning and apply HOG [13] in their
visual model. The DSST is an extension of the MOSSE [5] that uses grayscale
in addition to HOG, while SAMF and KCF seem to be extensions of [27] that
address scale change. The similarity in design is reflected in the AR-rank plots
as they form tight clusters in baseline as well as noise experiment. The PLT 13
and PLT 14 are also from the same class of trackers. The PLT 13 is the winner
of the VOT2013 challenge [36] which does not adapt the target size, while the
PLT 14 is an extension of PLT 13 that adapts the size as well. Interestingly,
the PLT 14 does improve in accuracy compared to PLT 13, but sacrifices the
robustness. In the noise experiment the PLT 14 is still outperforms the PLT 13
in accuracy, but the difference in robustness is reduced. MatFlow is an extension
of Matrioska that applies a flock-of-trackers variant BDF. At a comparable accu-
racy ranks, the MatFlow by far outperforms the original Matrioska in robustness.
The boost in robustness ranks might be attributed to addition of BDF, which is
supported by the fact that BDF alone outperforms in robustness the FoT and
trackers based on variations of FoT, i.e., aStruck, HMMTxD and dynMS. This
speaks of resiliency to outliers in flock selection in BDF. Two trackers combine
color-based mean shift with flow, i.e., dynMS and HMMTxD and obtain compa-
rable ranks in robustness, however, the HMMTxD achieves a significantly higher
accuracy rank, which might be due to considerably more sophisticated tracker
merging scheme in HMMTxD. Both methods are outperformed in robustness
by the scale-adaptive mean shift eASMS that applies motion prediction and
colour space selection. While this version of mean shift performs quite well over
a range of visual attributes, the performance drops in ranks drastically for occlu-
sion and illumination change. The entries contained the original Struck and two
variations, ThunderStruck and aStruck. ThunderStruck is a CUDA-speeded-up
Struck and performs quite similarly to the original Struck in baseline and noise
experiment. The aStruck applies the flock-of-trackers for scale adaptation in
Struck and improves in robustness on the baseline experiment, but is ranked
lower in the noise experiment.
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Table 1. Ranking results. The top, second and third lowest average ranks are shown
in red, blue and green respectively. The RΣ column displays a joined ranking for both
experiments, which were also used to order the trackers. The trackers that have been
verified by the VOT committee are denoted by the asterisk *.

baseline region noise

RA RR R RA RR R RΣ Speed Impl.

DSST* 5.41 11.93 8.67 5.40 12.33 8.86 8.77 7.66 Matlab & Mex

SAMF* 5.30 13.55 9.43 5.24 12.30 8.77 9.10 1.69 Matlab & Mex

KCF* 5.05 14.60 9.82 5.17 12.49 8.83 9.33 24.23 Matlab & Mex

DGT 10.76 9.13 9.95 8.31 9.73 9.02 9.48 0.23 C++

PLT 14* 13.88 6.19 10.03 13.12 4.85 8.99 9.51 62.68 C++

PLT 13 17.54 3.67 10.60 16.60 4.67 10.63 10.62 75.92 C++

eASMS* 13.48 13.33 13.40 10.88 13.70 12.29 12.85 13.08 C++

HMM-TxD* 9.43 19.94 14.69 9.12 18.83 13.98 14.33 2.08 C++

MCT 15.88 13.52 14.70 16.75 12.30 14.52 14.61 1.45 C, C++

ACAT 12.99 14.49 13.74 16.90 14.20 15.55 14.65 3.24 unknown

MatFlow 21.25 8.49 14.87 18.33 13.99 16.16 15.51 19.08 C++

ABS 19.72 17.88 18.80 14.63 14.65 14.64 16.72 0.62 Matlab & Mex

ACT 20.08 15.91 18.00 21.36 14.53 17.94 17.97 18.26 Matlab

qwsEDFT 16.65 18.53 17.59 18.07 20.24 19.15 18.37 3.88 Matlab

LGT* 28.12 11.22 19.67 25.25 9.08 17.17 18.42 1.23 Matlab & Mex

VTDMG 20.77 17.70 19.24 19.81 16.33 18.07 18.65 1.83 C++

BDF 22.42 17.12 19.77 20.91 17.29 19.10 19.44 46.82 C++

Struck 20.11 20.29 20.20 20.60 18.08 19.34 19.77 5.95 C++

DynMS* 21.54 18.75 20.14 20.76 18.84 19.80 19.97 3.21 Matlab & Mex

ThunderStruck 21.71 19.35 20.53 21.26 17.92 19.59 20.06 19.05 C++

aStruck* 21.41 18.40 19.90 19.98 21.19 20.59 20.24 3.58 C++

Matrioska 21.15 19.86 20.50 21.19 23.39 22.29 21.40 10.20 unknown

SIR-PF 23.62 20.09 21.86 21.58 21.74 21.66 21.76 2.55 Matlab & Mex

EDFT 19.43 23.80 21.61 21.39 23.37 22.38 22.00 4.18 Matlab

OGT 13.76 29.15 21.45 16.09 29.16 22.63 22.04 0.39 unknown

CMT* 18.93 24.61 21.77 21.26 24.13 22.69 22.23 2.51 Python, C++

FoT* 18.48 25.70 22.09 20.96 26.21 23.58 22.84 114.64 C++

LT-FLO 15.98 29.84 22.91 19.59 30.20 24.90 23.90 1.10 Matlab

IPRT 26.68 21.68 24.18 25.54 22.73 24.14 24.16 14.69 C, C++

IIVTv2 24.79 24.79 24.79 24.61 22.97 23.79 24.29 3.67 C++

PT+ 32.05 20.68 26.37 29.23 19.41 24.32 25.34 49.89 C++

FSDT 23.55 31.17 27.36 23.58 28.29 25.93 26.65 1.47 C++

IMPNCC 25.56 27.66 26.61 28.28 28.32 28.30 27.45 8.37 Matlab

IVT* 27.23 28.92 28.07 26.60 27.29 26.95 27.51 2.35 Matlab & Mex

FRT* 23.38 30.38 26.88 26.21 30.99 28.60 27.74 3.09 C++

NCC* 17.74 34.25 26.00 22.78 36.83 29.80 27.90 6.88 Matlab

CT* 31.51 27.79 29.65 29.66 26.94 28.30 28.98 6.29 C++

MIL* 33.95 24.22 29.09 34.61 24.87 29.74 29.41 1.94 C++
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Note that majority of the trackers submitted to VOT2014 are fairly compet-
itive trackers. This is supported by the fact that the trackers, that are often used
as baseline trackers, NCC, MIL, CT, FRT and IVT, occupy the bottom-left part
of the AR rank plots. Obviously these approaches vary in accuracy and robust-
ness and are thus spread perpendicularly to the bottom-left-to-upper-right diag-
onal of AR-rank plots. In both experiments, the NCC is the least robust tracker.
In summary, as in VOT2013 [36], the most robust tracker over individual visual
properties remains the PLT 13 (A.14). This tracker is surpassed by far in com-
bined accuracy-robustness rank by the trackers DSST (A.25), SAMF (A.9) and
KCF (A.28), of which the DSST (A.25) outperforms the other two in robust-
ness. According to the average ranks, the DSST (A.25) is thus the winner of
VOT2014.

The VOT2014 evaluation kit also measured the times required to perform a
repetition of each tracking run. For each tracker, the average tracking speed was
estimated from these measurements. Table 1 shows the tracking speed per frame
in the EFO units, introduced in Section 3. Note that the times for the Matlab
trackers included an overhead required to load the Matlab environment, which
depends mostly depends on hard drive reading speed which was measured during
the evaluation. Table 1 shows adjusted times that accounted for this overhead.
While one has to be careful with speed interpretation, we believe that these
measurements still give a good comparative estimate of the trackers practical
complexity. The trackers that stand out are the FoT and PLT 13, achieving
speeds in range of around 100 EFO units (C++ implementations). To put this
into perspective, a C++ implementation of a NCC tracker provided in the toolkit
processes the VOT2014 dataset with an average of 220 frames per second on a
laptop with an Intel Core i5 processor, which equals to approximately 80 EFO
units.

5 Conclusions

This paper reviewed the VOT2014 challenge and its results. The challenge con-
tains a annotated dataset of sequences in which targets are denoted by rotated
bounding boxes to aid a precise analysis of the tracking results. All the sequences
are labelled per-frame with attributes denoting various visual phenomena. The
challenge also introduces a new Matlab/Octave evaluation kit for fast execution
of experiments, proposes a new unit for measuring tracker speed, and extends the
VOT2013 performance evaluation methodology to account for practical equiva-
lence of tracker accuracy. The dataset, evaluation kit and VOT2014 results are
publicly available from the challenge webpage.

The results of VOT2014 indicate that a winner of the challenge according
to the average results is the DSST (A.25) tracker. The results also show that
trackers tend to specialize either for robustness or accuracy. None of the trackers
consistently outperformed the others by all measures at all sequence attributes.
One class of trackers that consistently appears at the top of ranks are large
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margin regression-based trackers which apply global visual models9, while the
other class of trackers is the part-based trackers in which the target is considered
as a set of parts or keypoints.

The main goal of VOT is establishing a community-based common plat-
form for discussion of tracking performance evaluation and contributing to the
tracking community with verified annotated datasets, performance measures and
evaluation toolkits. Following the very successful VOT2013, VOT2014 was the
second attempt towards this. Our future work will be focused on revising the
evaluation kit, dataset, performance measures, and possibly launching challenges
focused to narrow application domains, depending on the feedbacks and interest
expressed from the community.

Acknowledgments. This work was supported in part by the following research pro-
grams and projects: Slovenian research agency projects J24284, J23607 and J2-2221 and
European Union seventh framework programme under grant agreement no 257906. Jiri
Matas and Tomas Vojir were supported by CTU Project SGS13/142/OHK3/2T/13
and by the Technology Agency of the Czech Republic project TE01020415 (V3C –
Visual Computing Competence Center).

A Submitted Trackers

In this appendix we provide a short summary of all trackers that were considered in
the VOT2014 competition.

A.1 Sequential Importance Re-Sampling Particle Filter (SIR-PF)

D. Pangeršič (dp3698@student.uni-lj.si)
SIR-PF tracker makes Particle Filter approach more robust on sequences with

fast motion and illumination changes. To do that, the tracker changes RGB data into
YCbCr data and it generates a background model used by Comaniciu et al. [11]. The
tracking task is done by using a window adaptation approach and a reference histogram
adaptation to perform the matching between candidate objects.

A.2 Appearance-Based Shape-Filter (ABS)

H. Possegger, T. Mauthner, H. Bischof
({possegger, mauthner, bischof}@icg.tugraz.at)

ABS tracker relies on appearance and shape cues for tracking. In particular, a
histogram-based pixel-wise foreground is modelled to create a filter capturing discrim-
inative object areas. This model combined with colour gradient templates to capture
the object shape, allows to efficiently localize the object using mean shift tracking.
ABS employs graph cut segmentation based on the pixel-wise foreground probabilities
to adapt changes of object scales.

9 We consider the Structured SVM as regression from image intensities to image dis-
placements.
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A.3 Power Updated Weighted Comparison Enhanced Distribution
Field Tracker (qwsEDFT)

K. Öfjäll, M. Felsberg ({kristoffer.ofjall, michael.felsberg}@liu.se)
A model matching approach where the tracked model is represented by a channel

distribution field. Previous approaches such as DFT [52] and EDFT [20] do not exploit
the possibilities of the model representation. The qwsEDFT tracker features a power
update scheme and a standard deviation weighted comparison.

A.4 Enhanced Distribution Fields for Tracking (EDFT)

M. Felsberg (michael.felsberg@liu.se)
The EDFT is a novel variant of the DFT tracker as proposed in [52]. EDFT derives

an enhanced computational scheme by employing the theoretic connection between
averaged histograms and channel representations. For further details, the interested
reader is referred to [20].

A.5 Scale Adaptative Struck Tracker (aStruck)

A. Lukežič, L. Čehovin (alan.lukezic@gmail.com, luka.cehovin@fri.uni-lj.si)
aStruck is a combination of optical-flow-based tracker and the discriminative tracker

Struck [25]. aStruck uses low-level cues such as optical flow to handle significant scale
changes. Besides, a framework akin to the FoT [60] tracker is utilized to robustly
estimate the scale changes using the sparse Lucas-Kanade [41] pyramidal optical flow
at points placed at a regular grid.

A.6 Initialization Insensitive Visual Tracker Version 2 (IIVTv2)

K. Moo Yi, J. Y. Choi (kwang.yi@epfl.ch, jychoi@snu.ac.kr)
IIVTv2 is an implementation of the extended version of the initialization insensitive

tracker [63]. The change from the original version include motion prior calculated from
optical flow [54], normalization of the two proposed saliency weights in [63], inclusion
of recent features in the feature database, and location based initialization of SURF [4]
feature points.

A.7 Visual Tracking with Dual Modeling through Gaussian
Mixture Modeling (VTDMG)

K. M. Yi, J. Y. Choi (kwang.yi@epfl.ch, jychoi@snu.ac.kr)
VTDMG is an extended implementation of the method presented in [64]. Instead

of using simple Gaussian modelling, VTDMG uses mixture of Gaussians. Besides,
VTDMG models the target object and the background simultaneously and finds the
target object through maximizing the likelihood defined using both models.

A.8 Motion Context Tracker (MCT)

S. Duffner, C. Garcia ({stefan.duffner, christophe garcia}@liris.cnrs.fr)
The Motion Context Tracker (MCT) is a discriminative on-line learning classifier

based on Online Adaboost (OAB) which is integrated into the model collecting nega-
tive training examples for updating the classifier at each video frame. Instead of taking
negative examples only from the surroundings of the object region or from specific dis-
tracting objects, MCT samples the negatives from a contextual motion density function
in a stochastic manner.
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A.9 A Kernel Correlation Filter Tracker with Scale Adaptive and
Feature Integration (SAMF)

Y. Li, J. Zhu ({liyang89, jkzhu}@zju.edu.cn)
SAMF tracker is based on the idea of correlation filter-based trackers [5,15,26,27]

with aim to improve the overall tracking capability. To tackle the problem of the fixed
template size in kernel correlation filter tracker, an effective scale adaptive scheme is
proposed. Moreover, features like HoG and colour naming are integrated together to
further boost the overall tracking performance.

A.10 Long Term Featureless Object Tracker (LT-FLO)

K. Lebeda, S. Hadfield, J. Matas, R. Bowden
({k.lebeda, s.hadfield}@surrey.ac.uk, matas@cmp.felk.cvut.cz, r.bowden@surrey.ac.uk)

LT-FLO is designed to track texture-less objects. It significantly decreases reliance
on texture by using edge-points instead of point features. The tracker also has a mech-
anism to detect disappearance of the object, based on the stability of the gradient in
the area of projected edge-points. The reader is referred to [37] for details.

A.11 Matrioska

M. E. Maresca, A. Petrosino ({mariomaresca, petrosino}@uniparthenope.it)
Matrioska [42] decomposes tracking into two separate modules: detection and learn-

ing. The detection module can use multiple key point-based methods (ORB, FREAK,
BRISK, SURF, etc.) inside a fallback model, to correctly localize the object frame by
frame exploiting the strengths of each method. The learning module updates the object
model, with a growing and pruning approach, to account for changes in its appearance
and extracts negative samples to further improve the detector performance.

A.12 Best Displacement Flow (BDF)

M. E. Maresca, A. Petrosino ({mariomaresca, petrosino}@uniparthenope.it)
Best Displacement Flow is a new short-term tracking algorithm based on the same

idea of Flock of Trackers [60] in which a set of local tracker responses are robustly com-
bined to track the object. BDF presents two main contributions: (i) BDF performs a
clustering to identify the Best Displacement vector which is used to update the object’s
bounding box, and (ii) BDF performs a procedure named Consensus-Based Reinitial-
ization used to reinitialize candidates which were previously classified as outliers.

A.13 Matrioska Best Displacement Flow (MatFlow)

M. E. Maresca, A. Petrosino ({mariomaresca, petrosino}@uniparthenope.it)
MatFlow enhances the performance of the first version of Matrioska [42] with

response given by aforementioned new short-term tracker BDF (see A.12). By default,
MatFlow uses the trajectory given by Matrioska. In the case of a low confidence score
estimated by Matrioska, MatFlow corrects the trajectory with the response given by
BDF. Matrioska’s confidence score is based on the number of key points found inside
the object in the initialization.
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A.14 Single Scale Pixel Based LUT Tracker (2013) (PLT 13)

C. Heng, S. YueYing Lim, Z. Niu, B. Li
({hengcherkeng235, yueying53, niuzhiheng, libohit}@gmail.com)

PLT runs a classifier at a fixed single scale for each test image, to determine the top
scoring bounding box which is then the result of object detection. The classifier uses
a binary feature vector constructed from colour, greyscale and gradient information.
To select a small set of discriminative features, an online sparse structural SVM [25] is
used. For more details, the interested reader is referred to [36].

A.15 Improved Normalized Cross-Correlation Tracker (IMPNCC)

A. Dimitriev (ad7414@student.uni-lj.si)
This tracker improves the NCC tracker [7] in three ways: (i) by using a non-constant

adaptation, the template is updated with new information; (ii) scale changes are han-
dled by running an sliding window for the original image and two resized ones choosing
the maxima of them; (iii) a Kalman Filter [30] is also used to smooth the trajectory
and reduce drift. This improved tracker was based on the code of the original NCC
tracker supplied with the VOT 2013 toolkit [35].

A.16 Struck

S. Hare, A. Saffari, P. H. S. Torr
(sam@samhare.net, amir@ymer.org, philip.torr@eng.ox.ac.uk)

Struck [25] presents a framework for adaptive visual object tracking based on struc-
tured output prediction. By explicitly allowing the output space to express the needs
of the tracker, need for an intermediate classification step is avoided. The method uses
a kernelized structured output support vector machine (SVM), which is learned online
to provide adaptive tracking.

A.17 ThunderStruck

S. Hare, A. Saffari, S. Golodetz, V. Vineet, M. Cheng, P. H. S. Torr
(sam@samhare.net, amir@ymer.org, sgolodetz@gxstudios.net, vibhav.vineet@gmail.com,
cmm.thu@qq.com, philip.torr@eng.ox.ac.uk)

ThunderStruck is a CUDA-based implementation of the Struck tracker presented
by Hare et al. [25]. As with the original Struck, tracking is performed using a structured
output SVM. On receiving a new frame, the tracker predicts a bounding box for the
object in the new frame by sampling around the old object position and picking the
location that maximises the response of the current SVM. The SVM is then updated
using LaRank [6]. A support vector budget is used to prevent the unbounded growth
in the number of support vectors that would otherwise occur during tracking.

A.18 Iterative Particle Repropagation Tracker (IPRT)

J.-W. Choi (jwc@etri.re.kr)
IPRT is a particle filter based tracking method inspired by colour-based particle

filter [47,49] with the proposed iterative particle re-propagation. Multiple HSV colour
histograms with 6×6×6 bins are used as an observation model. In order to reduce the
chance of tracker drift, the states of particles are saved before propagation. If tracker
drift is detected, particles are restored and re-propagated. The tracker drift is detected
by a colour histogram similarity measure derived from the Bhattacharyya coefficient.
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A.19 Size-Adaptive Pixel Based LUT Tracker (2014) (PLT 14)

C. Heng, S. YueYing Lim, Z. Niu, B. Li
({hengcherkeng235, yueying53, niuzhiheng, libohit}@gmail.com)

PLT 14 tracker is an improved version of PLT tracker used in VOT 2013 [36], with
size adaptation for the tracked object. PLT 14 uses discriminative pixel features to
compute the scanning window score in a tracking-by-detection framework. The window
score is ‘back projected’ to its contributing pixels. For each pixel, the pixel score is
computed by summing the back projected scores of the windows that use this pixel.
This score contributes to estimate which pixel belongs to the object during tracking
and determine a best bounding box.

A.20 Augment Color Attributes Tracker (ACAT)

L. Qin, Y. Qi, Q.g Huang
(qinlei@ict.ac.cn, {yuankai.qi, qingming.huang}@vipl.ict.ac.cn)

Augment Color Attributes Tracker is based on the method of Colour Attributes
Tracker (CAT) [15]. Colour features used in CAT is just colour. CAT extends CSK
tracker [26] to multi-channel colour features and it also augments CAT by including
texture features and shape features.

A.21 Enhanced Scale Adaptive MeanShift (eASMS)

T. Voj́ır̃, J. Matas ({vojirtom, matas}@cmp.felk.cvut.cz )
eASMS tracker is a variation of the scale adaptive mean-shift [10–12]. It enhances

its performance by utilizing background subtraction and motion prediction to allow the
mean-shift procedure to converge in presence of high background clutter. The eASMS
tracker also incorporates automatic per-frame selection of colour space (from pool of
the available ones, e.g. HSV, Luv, RGB).

A.22 Flock of Trackers (FoT)

T. Voj́ır̃, J. Matas ({vojirtom, matas}@cmp.felk.cvut.cz )
The Flock of Trackers (FoT) [60] is a tracking framework where the object motion

is estimated from the displacements or using a number of local trackers covering the
object. Each local tracker is attached to a certain area specified in the object coordinate
frame. The FoT object motion estimate is robust due to the combination of local tracker
motions.

A.23 Hidden Markov Model Fusion of Tracking and
Detection (HMM-TxD)

T. Voj́ır̃, J. Matas ({vojirtom, matas}@cmp.felk.cvut.cz )
The HMM-TxD tracker is a novel method for fusing diverse trackers by utilizing a

hidden Markov model (HMM). The HMM estimates the changes in individual tracker
performance, its state corresponds to a binary vector predicting failure of individual
trackers. The proposed approach relies on a high-precision low-recall detector that
provides a source of independent information for a modified Baum-Welch algorithm
that updates the Markov model. Two trackers were used in the HMM-TxD: Flock of
Trackers [60] estimating similarity and scale adaptive mean-shift tracker [10–12].
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A.24 Adaptive Color Tracker (ACT)

M. Danelljan, F. S. Khan, M. Felsberg, J. van de Weijer
({fmartin.danelljan, fahad.khan, michael.felsberg}@liu.se, joost@cvc.uab.es)

The Adaptive Color Tracker (ACT) [15] extends the CSK tracker [26] with colour
information. ACT tracker contains three improvements to CSK tracker: (i) A tempo-
rally consistent scheme for updating the tracking model is applied instead of training
the classifier separately on single samples, (ii) colour attributes [61] are applied for
image representation, and (iii) ACT employs a dynamically adaptive scheme for select-
ing the most important combinations of colours for tracking.

A.25 Discriminative Scale Space Tracker (DSST)

M. Danelljan, G. Häger, F. S. Khan, M. Felsberg
(fmartin.danelljan@liu.se, hager.gustav@gmail.com,
{fahad.khan, michael.felsberg}@liu.se)

The Discriminative Scale Space Tracker (DSST) [14] extends the Minimum Output
Sum of Squared Errors (MOSSE) tracker [5] with robust scale estimation. The MOSSE
tracker works by training a discriminative correlation filter on a set of observed sample
grey scale patches. This correlation filter is then applied to estimate the target trans-
lation in the next frame. The DSST additionally learns a one-dimensional discrimi-
native scale filter, that is used to estimate the target size. For the translation filter,
the intensity features employed in the MOSSE tracker is combined with a pixel-dense
representation of HOG-features.

A.26 Dynamic Mean Shift (DynMS)

Franci Oven, Matej Kristan (frenk.oven@gmail.com, matej.kristan@fri.uni-lj.si)
DynMS is a Mean Shift tracker [9] with an isotropic kernel bootstrapped by a flock-

of-features (FoF) tracker. The FoF tracker computes a sparse Lucas Kanade flow [41]
and uses MLESAC [55] with similarity transform to predict the target position. The
estimated states of the target are merged by first moving to estimated location of FoF
and then using Mean Shift to find the object.

A.27 Pixeltrack+ (PT+)

S. Duffner, C. Garcia ({stefan.duffner, christophe garcia}@liris.cnrs.fr)
Pixeltrack+ is based on the Pixeltrack tracking algorithm [17]. The algorithm

uses two components: a detector that makes use of the generalised Hough transform
with pixel-based descriptors, and a probabilistic segmentation method based on global
models for foreground and background. The original Pixeltrack method [17] has been
improved to cope with varying scale by estimating the objects size based on the current
segmentation.

A.28 Kernelized Correlation Filter (KCF) Tracker (KCF)

J. F. Henriques, J. Batista ({henriques, batista}@isr.uc.pt)
This tracker is basically a Kernelized Correlation Filter [27] operating on sim-

ple HOG features. The KCF is equivalent to a Kernel Ridge Regression trained with
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thousands of sample patches around the object at different translations. The improve-
ments over the previous version [27] are multi-scale support, sub-cell peak estimation
and replacing the model update by linear interpolation with a more robust update
scheme [15].

A.29 Adaptive Feature Selection and Detection Based
Tracker (FSDT)

J. Li, W. Lin ({lijijia, wylin}@sjtu.edu.cn)
FSDT is a tracking-by detection method that exploits the detection results to

modify the tracker in the process of tracking. The detection part maintains a variable
features pool where features are added or deleted as frames are processed. The tracking
part implements a rough estimation of object tracked mainly by the velocity of objects.
Afterwards, detection results are used to modify the rough tracked object position and
to generate the final tracking result.

A.30 Online Graph-Based Tracking (OGT)

H. Nam, S. Hong, B. Han ({namhs09, maga33, bhhan}@postech.ac.kr)
OGT [45] is an online Orderless Model-Averaged tracking (OMA) [28]. OGT uses

an unconventional graphical model beyond chain models, where each node has a single
outgoing edge but may have multiple incoming edges. In this framework, the posterior
is estimated by propagating multiple previous posteriors to the current frame along the
identified graphical model, where the propagation is performed by a patch matching
technique [32] as in [28]. The propagated densities are aggregated by weighted Bayesian
model averaging, where the weights are determined by the tracking plausibility.

A.31 Dynamic Graph Based Tracker (DGT)

L. Wen, Z. Lei, S. Liao, S. Z. Li (lywen, zlei, scliao, szli}@nlpr.ia.ac.cn)
DGT is an improvement of the method proposed in [8]. The tracking problem is

formulated as a matching problem between the target graph G(V;E) and the candidate
graph G0(V0;E0). SLIC algorithm is used to oversegment the searching area into multi-
ple parts (superpixels), and exploit the Graph Cut approach to separate the foreground
superpixels from background superpixels. An affinity matrix based on motion, appear-
ance and geometric constraints is built to describe the reliability of the matchings.
The optimal matching from candidate superpixels is found from the affinity matrix
applying the spectral technique [38]. The location of the target is voted by a series of
the successfully matched parts according to their matching reliability.

A.32 Consensus-Based Matching and Tracking (CMT)

G. Nebehay, R. Pflugfelder ({Georg.Nebehay.fl, Roman.Pflugfelder}@ait.ac.at)
The CMT tracker [46] is a key point-based method in a combined matching-and-

tracking framework. To localise the object in every frame, each key point casts votes
for the object center. A consensus-based scheme is applied for outlier detection in the
voting behaviour. By transforming votes based on the current key point constellation,
changes of the object in scale and rotation are considered. The use of fast key point
detectors and binary descriptors allows the current implementation to run in real-time.
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A.33 Local-Global Tracking (LGT)

L. Čehovin, M. Kristan, A. Leonardis
({luka.cehovin, matej.kristan, ales.leonardis}@fri.uni-lj.si)

The core element of LGT is a coupled-layer visual model that combines the tar-
get global and local appearance by interlacing two layers. By this coupled constraint
paradigm between the adaptation of the global and the local layer, a more robust track-
ing through significant appearance changes is achieved. The reader is referred to [57]
for details.

A.34 Fragment Tracking (FRT)

VOT 2014 Technical Committee
The FRT tracker [1] represents the model of the object by multiple image fragments

or patches. The patches are arbitrary and are not based on an object model. Every
patch votes on the possible positions and scales of the object in the current frame,
by comparing its histogram with the corresponding image patch histogram. We then
minimize a robust statistic in order to combine the vote maps of the multiple patches.
The algorithm overcomes several difficulties which cannot be handled by traditional
histogram-based algorithms like partial occlusions or pose change.

A.35 Compressive Tracking (CT)

VOT 2014 Technical Committee
The CT tracker [67] uses an appearance model based on features extracted from the

multi-scale image feature space with data-independent basis. It employs non-adaptive
random projections that preserve the structure of the image feature space of objects.
A very sparse measurement matrix is adopted to efficiently extract the features for
the appearance model. Samples of foreground and background are compressed using
the same sparse measurement matrix. The tracking task is formulated as a binary
classification via a naive Bayes classifier with online update in the compressed domain.

A.36 Incremental Learning for Robust Visual Tracking (IVT)

VOT 2014 Technical Committee
The idea of the IVT tracker [51] is to incrementally learn a low-dimensional sub-

space representation, adapting online to changes in the appearance of the target.
The model update, based on incremental algorithms for principal component anal-
ysis, includes two features: a method for correctly updating the sample mean, and a
forgetting factor to ensure less modelling power is expended fitting older observations.

A.37 Multiple Instance Learning Tracking (MIL)

VOT 2014 Technical Committee
MIL [2] is a tracking-by-detection approach. MIL uses Multiple Instance Learning

instead of traditional supervised learning methods and shows improved robustness to
inaccuracies of the tracker and to incorrectly labeled training samples.
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Abstract. There are three major issues for visual object trackers: model
representation, search and model update. In this paper we address the
last two issues for a specific model representation, grid based distribution
models by means of channel-based distribution fields. Particularly we
address the comparison part of searching. Previous work in the area
has used standard methods for comparison and update, not exploiting
all the possibilities of the representation. In this work we propose two
comparison schemes and one update scheme adapted to the distribution
model. The proposed schemes significantly improve the accuracy and
robustness on the Visual Object Tracking (VOT) 2014 Challenge dataset.

1 Introduction and Related Work

For online appearance-based object tracking, there are three primary concerns:
how to represent the object to be tracked (model), how to find the object in
a new frame (search/comparison) and finally how to update the model given
the information obtained from the new frame (update). These are not indepen-
dent, choosing one component influences the choice of the other two. There are
other approaches to tracking, such as using a classifier for discriminating the
target object from the background, however, only template-based methods will
be considered here.

Several different categories of target models for representing the tracked
object have been proposed in literature. One obvious appearance-based rep-
resentation of the object is by means of an image patch cut out from the first
frame according to the bounding box defining the object to be tracked. The loca-
tions of the object in the following frames are estimated by finding patches best
corresponding to this target patch, employing some suitable distance function.
Letting this simple model be linearly updated after every frame leads to a first
order (weighted mean) model. A natural extension is a second order (Gaussian)
approximation, where also the variance of each pixel is estimated.

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-16181-5 15) contains supplementary material, which is available to
authorized users. Videos can also be accessed at http://www.springerimages.com/
videos/978-3-319-16180-8.
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Fig. 1. Target and target model representation at the end of the VOT2013 cup-
sequence. Left: found target patch. Middle: coherence of the target model (black: low,
white: high), see Sect. 4.2. Right: represented pixel value distributions for a selection
of points marked in left and middle images. Large coherence correspond to static pixel
values on the tracked object and narrow distributions (blue, magenta). Low coherence
correspond to background pixels (red, multimodal distribution) and varying pixels on
the target (green, single wide mode).

Another approach is to represent the full distribution of values within the tar-
get patch, illustrated in Fig. 1. Such a tracker, Distribution Field Tracking, DFT,
was proposed by Sevilla et al. [13] where histograms are used for representing
distributions. However, as was shown by Felsberg [4], replacing the histograms
with channel representations [6] increases tracker performance, resulting in the
Enhanced Distribution Field Tracker, EDFT.

In both cases, the model update is performed by a linear convex combination
and the comparison uses an L1 norm. However, the distribution view of the
channel representation allows for other types of comparisons and update schemes
compared to the direct pixel value representation. These possibilities were not
used in previously proposed trackers.

In this work we evaluate a novel update scheme and novel comparison meth-
ods, exploiting the potential of the channel representation. We restrict ourselves
to online methods implying: i) the tracking system should be causal, frames
are made available to the tracker sequentially one by one and tracking results
should be provided for one frame before the next frame is presented, and ii)
the computational demands of the tracker, per frame, should not increase with
sequence length. Further, the proposed trackers will be evaluated and compared
to the baseline tracker from which they originate. Thorough comparisons to other
state of the art trackers are available through the VOT 2014 Challenge1.

As the ideas of channel representations may not be generally known, a brief
introduction is presented in Sect. 2. The general tracker framework and target
model representation is presented in Sect. 3. These sections also serve the pur-
pose of introducing the notation used. The main contributions of the paper are
presented in Sections 4 and 5. In Sect. 6, the effect of using the proposed meth-

1 http://votchallenge.net/vot2014/.
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(a) (b)

Fig. 2. Illustration of a channel representation for orientation data. (a) the orientation
data (density in red) stems from two modes with different variance and probability
mass. The blue lines indicate the mode estimates as extracted from the channel rep-
resentation. (b) the channel representation of the distribution of orientation data. The
thin plots indicate the kernel functions (the channels) and the bold lines illustrate the
corresponding channel coefficients as weighted kernel functions.

ods in the tracker is evaluated. Sect. 7 concludes the paper. A video illustrating
the approach is available as supplementary material2.

2 Channel Representations

This section provides a brief introduction to channel representations at an intu-
itive level, since these methods will be required for our proposed contributions
in Sections 4 and 5. Readers unfamiliar with these methods are referred to more
comprehensive descriptions in literature [2,3,6] for details.

2.1 Channel Encoding

Channel representations have been proposed in 2000 [6]. The idea is to encode
image features (e.g. intensity, orientation) in a vector of soft quantization levels,
the channels. An example is given in Fig. 2, where orientation values are encoded.

Readers familiar with population codes [10,14], soft/averaged histograms [12],
or Parzen estimators will find similarities. The major difference is that channel
representations are very efficient to encode (because of the regular spacing of the
channels) and decode (by applying frame theory [5]).

This computational efficiency allows for computing channel representations
at each image pixel or for small image neighborhoods, as used in channel smooth-
ing [2] as a variant of bilateral filtering [8], and tracking using distribution
fields [4].

The kernel function, b(·), is defined to be non-negative, smooth and has com-
pact support. In this paper, cos2 kernels with bandwidth parameter h are used:

b(ξ) =
2
3

cos2(πξ/h) for |ξ| < h/2 and 0 otherwise. (1)

2 Also available at http://users.isy.liu.se/cvl/ofjall/vot2014.mp4.
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The components of the channel vector x = (x1, x2 . . . , xK)T are obtained by
shifting the kernel function K times with increments h/3. The range of the vari-
able to be binned, ξ, together with the spacing of bins, v, determine the number
of required kernel functions K = (max(ξ) − min(ξ))/v + 2. In most cases v � 1
such that K is of moderate size. The smooth kernel of the channel representation
reduces the quantization effect compared to histograms by a factor of up to 20
in practice [2]. This allows reduction of the computational load by using fewer
bins or to increase the accuracy for the same number of bins.

2.2 Robust Decoding

Using channel decoding [5], the modes of a channel representation can be obtained.
Decoding is not required for the operation of the tracker, however concepts from
the decoding are required for presenting the proposed coherence measure. Decod-
ing is used for visualization of the target model in the supplementary video. Since
cos2-channels establish a tight frame, the local maximum is obtained using three
orthogonal vectors [5] w1 ∝ (. . . , 0, 2,−1,−1, 0, . . .)T ,w2 ∝ (. . . , 0, 0, 1,
−1, 0, . . .)T ,w3 ∝ (. . . , 0, 1, 1, 1, 0, . . .)T and

r1 exp(i2πξ̂/h) = (w1 + iw2)Tx r2 = wT
3 x (2)

where i denotes the imaginary unit, ξ̂ is the estimate (modulo an integer shift
determined by the position of the three non-zero elements in wk, the decoding
window), and r1, r2 are two confidence measures. The decoding window is chosen
to maximize r2 when only one mode is decoded. In particular, when decoding
a channel representation with only one encoded value ξ, it can be shown that
ξ̂ = ξ if ξ is within the representable range of the channel representation [5].
For a sequence of single encoded values, the channel vector traces out a third of
a circle with radius r1 within each decoding window, however, a comprehensive
description of this geometrical interpretation is out of scope.

3 General Tracking Framework and Representation

The general tracker framework is not different from DFT [13] and EDFT [4] and
is briefly presented here, further details are available in [4,13]. In the first frame,
the given bounding box of the object to be tracked is cut from the image. The
intensity image patch of the target is channel encoded pixel wise using K = 15
channels, generating an I by J by K array denoted C, where I and J are the
height and width of the supplied bounding box. The 3D arrays generated from
two channel encoded images are illustrated in Fig. 3.

In the next frame, the target representation C is compared to channel encoded
patches (denoted Dmn) from the new frame, where m and n represent a shift of
the selected patch over the image. Gradient descent is used to find a minimum of
a given comparison function, d(C,Dmn), with respect to the shift (m,n). Finally,
the target representation is updated, C ← g(C,Dmn) and tracking continues in
the next frame.
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Fig. 3. Illustration of a pixel wise channel representation (with K = 7) of two images of
canals. The top planes show the grayscale images while the lower seven planes indicate
the activation of each channel (black: no activation, white: full activation). The lowest
plane represents low image values (dark) while the seventh plane represents high image
values (light).

Prior to comparison, i.e. calculation of d(C,Dmn), the channel planes of
C and Dmn are smoothed. This was shown to increase the size of the basin
of attraction for the correct solution [13]. Also, as in DFT and EDFT, a simple
motion model (constant velocity model in the image plane) is used for initializing
the gradient descent.

The main contribution of this work is a generalized model update function,
g(C,Dmn) and two proposals for the comparison function, d(C,Dmn). Earlier
work has used a linearly weighted update, g(C,Dmn) = (1 − γ)C+ γDmn, and
the IJK dimensional L1 norm for comparison. The function g is a 3D array
valued function of two 3D arrays. In this work, multiplication of a 3D array
with a scalar is taken to be multiplication of each element in the array with the
scalar, similar to regular matrix-scalar multiplication. Further, [·]ijk denotes the
element at index i, j, k and [·]ij denotes the channel vector (with K coefficients)
corresponding to pixel i, j in the bounding box.

4 Target Model Comparison

As previously mentioned, previous work has used the L1 norm extended to 3D
arrays for comparison. However, as is visualized in Fig. 1, the target model
representation contains (after a few frames) a representation of the distribution
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of values of each pixel within the bounding box. This should be exploited in the
comparison function.

Since objects to be tracked are rarely rectangular, background pixels will be
present in the bounding box. These pixels will generally vary more than the
pixels on the object and such background pixels may disturb the tracker. This
leads to a hypothesis that a weighted norm where the influence of inconsistent
pixels is reduced, will improve the tracking results. Further, there may be areas
of the tracked object which frequently change appearance, a weighted norm
should also put more emphasis on parts of the tracked object showing more
static appearance.

Two approaches will be presented. The first approach uses the reciprocals of
the standard deviations of the represented distributions, which can be obtained
directly from the channel coefficients. The second approach uses the coherence,
which will be defined later.

4.1 Moments of Channel Representations

It can be shown that the average of several channel vectors, encoding values
drawn from a specific distribution, tend to (up to scale) the probability den-
sity function convolved with the basis function, evaluated at channel centers3(a
sampled kernel density estimate) [5]. In this section, results based on a slightly
different view of the distribution representation are presented. Here, the channel
vector is assumed to represent a distribution, however, it is not necessarily the
distribution from which a set of encoded values are drawn.

Let bk(ξ) ≥ 0 ∀ ξ be a set of regularly spaced channel basis functions nor-
malized such that

∫ ∞
−∞ bk(ξ) dξ = 1, without loss of generality4, and let ak ≥ 0

be the channel coefficients representing the distribution, p(ξ), of a pixel,

p(ξ) =
K∑

k=1

akbk(ξ). (3)

Let the coefficients be normalized such that
∑K

k=1 ak = 1, from which p(ξ) ≥
0 ∀ ξ and

∫ ∞
−∞ p(ξ) dξ = 1 follow. Let the random variable X : P (X < z) =∫ z

−∞ p(ξ) dξ, then expectations of functions g(X) become scalar products with
the channel coefficient vector since

E [g(X)] =
∫ ∞

−∞
g(ξ)p(ξ) dξ =

K∑
k=1

ak

∫ ∞

−∞
g(ξ)bk(ξ) dξ =

K∑
k=1

akgbk (4)

with gbk =
∫ ∞

−∞ g(ξ)bk(ξ) dξ (note: independent of the channel coefficients ak).

3 Assuming symmetric channels and that the support of the density function is within
the representable range of the channel representation.

4 Conventionally, the basis functions and channel vectors are normalized differently,
however, rescaling of the basis functions is compensated by a scaling factor and the
channel vectors can be normalized beforehand.
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Let μ and σ2 denote the mean and variance of the represented distribution.
For the mean, g(X) = X and μ = E [X] =

∑K
k=1 akμbk with basis function

means μbk =
∫ ∞

−∞ ξbk(ξ) dξ, which for symmetric kernels coincide with channel
centers. For the variance, g(X) = (X − μ)2 and

σ2 = E
[
(X − μ)2

]
=

K∑
k=1

ak

∫ ∞

−∞

(
ξ2 − 2μξ + μ2

)
bk(ξ) dξ =

=
K∑

k=1

ak

⎛
⎜⎜⎜⎜⎝

∫ ∞

−∞
ξ2bk(ξ) dξ

︸ ︷︷ ︸
=σ2

b+μ2
bk

−2μ

∫ ∞

−∞
ξbk(ξ) dξ

︸ ︷︷ ︸
=μbk

+μ2

∫ ∞

−∞
bk(ξ) dξ

︸ ︷︷ ︸
=1

⎞
⎟⎟⎟⎟⎠

=

= σ2
b

K∑
k=1

ak

︸ ︷︷ ︸
=1

+
K∑

k=1

akμ2
bk

− 2μ

K∑
k=1

akμbk

︸ ︷︷ ︸
=μ

+μ2
K∑

k=1

ak

︸ ︷︷ ︸
=1

=

= σ2
b − μ2 +

K∑
k=1

akμ2
bk

(5)

where σ2
b =

∫ ∞
−∞(ξ − μbk)2bk(ξ) dξ ∀k. Hence the mean and variance (and thus

the standard deviation) of a channel represented distribution can be obtained
through scalar products of channel coefficients and weight vectors. Further, these
weight vectors only depend on the chosen channel basis functions and can be
calculated in advance. The weighted comparison function thus is

d(C, D) =
∑
i,j,k

1
σij

|[C]ijk − [D]ijk| (6)

where each σij is the estimated standard deviation of each channel vector [C]ij
in the target model. The sum is over all pixels in the bounding box and all
channel coefficients.

4.2 Coherence

For combinations of multiple channel encoded measurements of an entity, two
properties characterizing the combined channel vector are of interest. Here we
refer to them as evidence and coherence.

Evidence is what is referred to as r2 in Sect. 2.2, the L1 norm of the decoding
window. When combining channel vectors by addition, r2 is proportional to the
number of samples accumulated within the current decoding window.

Coherence, which we define as r21/r22, is a measure of the consistency of sam-
ples resulting in a mode, see Fig. 2, where the right mode has higher coherence
than the left mode. Coherence as just defined is a property related to a specific
decoding window, and we define the coherence of a full channel vector as the
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coherence of the strongest mode. The strongest mode is defined as the decoding
window with largest evidence [5].

Motivation of the Definition of Coherence. Several norms and properties of
channel encoded entities have been proposed and evaluated in the literature [5,7],
however, coherence has not previously been suggested, although it has been
suggested for the structure tensor [1]. For notational and conceptual clarity and
without loss of generality, basis functions are assumed to be centered at integer
positions in this section (h = 3).

As shown in [5] and indicated in Sect. 2.2, decoding of cos2 channel vectors
(determining estimates of ξ) are carried out according to

⎛
⎝

r1 cos( 2π
3 (ξ − l))

r1 sin(2π
3 (ξ − l))
r2

⎞
⎠ =

⎛
⎝

2 −1 −1
0

√
3 −√

3
1 1 1

⎞
⎠xl (7)

where l selects the decoding window and xl is the corresponding three elements
from the channel vector x to be decoded. It follows that when all elements in
xl are equal, r1 = 0 and decoding is ambiguous. When the values within the
decoding window are such that r1 is large, the estimate of ξ is less dependent
on small perturbations of the channel coefficients, however, the absolute value
of r1 varies with the scaling of the channel coefficients.

The proposed coherence measure, coh(·), can be expressed as

coh(xl) =
r21
r22

=
1

1TxlxT
l 1

xT
l

⎛
⎝

4 −2 −2
−2 4 −2
−2 −2 4

⎞
⎠xl (8)

with 1 = (1 1 1)T and where the last equality follows from (7). It can easily
be verified that coh(xl) = 0 when decoding is ambiguous and coh(xl) = 1 for a
single encoded value or for a combination of encodings of the same value. Further,
coh(αxl) is independent of scale (α > 0) and, coh(xl) decreases monotonically
with a wider distribution of the encoded values within the decoding window.
These results build upon properties of the cos2 kernel, namely that for any value ξ
within the representable range of a channel representation, the L1 and L2 norms
of the corresponding channel vector are constant [5] (and specifically independent
of the position of ξ with respect to channel centers). These properties do not
hold for Gaussian or B-spline kernels.

Using coherence weighting gives a proposed comparison function

d(C, D) =
∑
i,j,k

|[C]ijk − [D]ijk| (coh([C]ij) + κ) (9)

where [·]ijk denotes the element at index i, j, k and [·]ij denotes the channel
vector (with K coefficients) corresponding to pixel i, j in the bounding box. As
defined earlier, the coherence of a full channel vector is the coherence of the
decoding window corresponding to the strongest mode. κ ≥ 0 is a parameter
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representing the trust level of the coherence estimate. The sum is over all pixels
in the bounding box and all channel coefficients.

For single-mode distributions, the coherence is inversely related to the vari-
ance of the distribution where wide distributions generate low coherence and
vice versa. However, for multi-modal distributions, variance is generally large as
it is a global property of the distribution. On the contrary, coherence may still
be large (corresponding to low variance of the strongest mode) as it is a local
property of the individual mode.

5 Target Model q-Update

In this section, the proposed target model update is presented. Here, a discrete
time index t is used such that Ct is the target model obtained after applying
all updates up to and including frame t. Similarly, Dt is the encoded bounding
box found in frame t (the best match found by the tracking framework, hence
removing the translation subscripts m,n from Sect. 3).

Previous approaches to channel (or distribution field) tracking have used a
linear convex combination update

Ct = (1 − γ)Ct−1 + γDt (10)

with a learning rate parameter 0 < γ < 1. This parameter also determines the
forgetting factor (1−γ). This update rule is also applicable to image based target
representations, where Ct becomes a weighted mean of the target found in the
last frames. However, for the channel based target representation, non-linear
update rules are allowed as the update operates on channel coefficients and not
directly on intensity values. We propose a power update rule

Ct =
(
(1 − γ)Cq

t−1 + γDq
t

) 1
q (11)

where array exponentiation is to be taken element-wise. The power function
is strictly monotonic for positive arguments and thus the order of the channel
coefficients is not affected. This bears some resemblance to α-divergences of
distributions [11], however, the use is different.

All coefficients in Dt are non-negative and bounded by the maximum channel
activation, maxξ b(ξ). Also, from (11) follows that Ct ≤ max(Ct−1,Dt) (element
wise), ensuring that all elements will remain bounded.

Increasing q shifts the weight towards the larger of each two corresponding
elements in Ct−1 and Dt. If [Dt]ijk > [Ct−1]ijk, i.e. the current training sample
is dominating, increased q leads to faster adaptation to new information. On the
other hand, if [Dt]ijk < [Ct−1]ijk, increased q leads to slower forgetting. Increas-
ing γ on the other hand, leads to faster learning and faster forgetting. Using both q
and γ, learning rate and forgetting rate can be set independently. Letting q → ∞,
(11) becomesCt = max (Ct−1,Dt), i.e. learning is immediate and the model never
forgets. The linear update is a special case (q = 1).
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Note that for Ct to become true sampled kernel density estimates of the pixel
values, a few more conditions have to be fulfilled in addition to the normalization
requirements previously mentioned. In particular, a time dependent learning rate
γ = 1/t (ensuring equally weighted samples) and q = 1 is required. Using a fixed
learning rate, more emphasis is given to more recent samples, which usually is
beneficial in practice however, with processes not approximately stationary over
longer time periods.

6 Experiments

Trackers enhanced with the proposed update scheme and the weighted compari-
son functions are implemented (in MATLAB) and compared to previous trackers
on the VOT2014 challenge benchmark, according to the rules of, and using the
evaluation framework provided by the challenge [9].

In the following, DFT and EDFT refer to the previously published trackers by
Sevilla et al. [13], and Felsberg [4], respectively. NCC is an example normalized
cross correlation tracker distributed with the evaluation framework. Trackers
using the proposed q-update scheme are prefixed with a q, and followed by an
indication of the value of q. Infinite q is denoted by max, a special case as
the q-update tend to the max-operation for increasing q. Trackers using the
proposed coherence weighted comparison are prefixed with a w and trackers
using the proposed standard deviation weighted comparison are prefixed with
wσ. Unmarked trackers use the L1 norm comparison. For coherence weighting,
the parameter κ was set to 2. For all trackers, learning rate γ is set to 0.05 and
15 channels are used.

Three performance measures are available, these are briefly presented here.
For the comprehensive version, we refer to [9]. Accuracy is the ratio of the joint
area of tracker output and ground truth and the union of the two, averaged over
each sequence (larger is better). Robustness is the reset count, the evaluated
tracker is reset as soon as there is no overlap between tracker output and ground
truth (smaller is better). Speed is the average framerate of the tracker (larger is
better).

Two experiments are performed. In the first, denoted baseline, each tracker
is initialized using the ground truth bounding box of the first frame. In the
second experiment, region noise, each tracker is initialized with the ground truth
bounding box with a random offset. In the second experiment each sequence is
evaluated 15 times with different offsets and the mean is reported by the VOT
evaluation framework. The results for the baseline experiment are presented in
table 1, and the results for the region noise experiment are presented in table 2.
For each tracker, both the average and median score over all sequences are
presented.

For the baseline experiment (table 1), all channel-based trackers outperform
the tracker based on normalized cross correlation (NCC) in accuracy and robust-
ness. For evaluation of the proposed extensions, the trackers using these will
be compared to the baseline channel-based tracker (EDFT). Introducing the
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Table 1. Summarized results for the baseline experiment, comparison to competing
methods (best scores in boldface)

Mean Median
Method Accuracy Robustness Speed Accuracy Robustness Speed

NCC 0.467 2.960 14.8 0.423 2.0 11.5
DFT 0.531 2.200 6.3 0.534 2.0 6.9
EDFT 0.521 1.840 10.0 0.528 2.0 10.8
qEDFT (q=2) 0.525 2.000 10.6 0.534 2.0 10.8
qEDFT (q=3) 0.536 1.720 7.0 0.541 1.0 6.8
qEDFT (q=4) 0.547 1.720 7.1 0.553 1.0 7.0
qEDFT (q=5) 0.552 1.720 7.2 0.560 1.0 7.1
qEDFT (q=6) 0.540 1.920 6.6 0.553 1.0 6.4
wEDFT 0.523 2.040 6.8 0.536 2.0 6.5
qwEDFT (q=2) 0.544 1.560 7.1 0.535 1.0 7.1
qwEDFT (q=3) 0.547 1.600 5.5 0.539 1.0 5.4
qwEDFT (q=4) 0.550 1.560 5.6 0.565 1.0 5.5
qwEDFT (q=5) 0.554 1.640 5.1 0.561 1.0 5.2
qwEDFT (q=6) 0.558 1.920 5.4 0.561 1.0 5.4
qwEDFT (q=7) 0.558 1.640 5.4 0.560 1.0 5.5
maxwEDFT 0.545 1.960 6.4 0.538 2.0 6.0
qwσEDFT (q=2) 0.522 1.400 8.8 0.534 1.0 9.1
qwσEDFT (q=3) 0.522 1.440 6.7 0.533 1.0 7.0
qwσEDFT (q=4) 0.540 1.360 6.2 0.560 1.0 6.2
qwσEDFT (q=5) 0.545 1.520 6.5 0.549 1.0 6.6
qwσEDFT (q=6) 0.541 1.480 6.8 0.558 1.0 7.1
qwσEDFT (q=7) 0.545 1.600 6.9 0.555 1.0 7.2
maxwσEDFT 0.547 1.960 7.3 0.549 2.0 7.0

non-linear update (qEDFT) increases accuracy and slightly increases robustness
(decreasing failure rate) for increasing q up to q = 5. For q = 6, performance
decreases slightly. Only using the proposed weighted comparison (wEDFT),
robustness decreases slightly while accuracy stays similar to EDFT.

The best performance is achieved by combining the non-linear update with
the weighted comparison. Using non-linear update and coherence weighted com-
parison (qwEDFT with q = 4), mean accuracy increases more than 5% and mean
robustness is 15% better than EDFT. For larger q, accuracy increases further
while the robustness degrades. The corresponding standard deviation weighted
methods perform slightly inferior to the best methods (the coherence weighted)
in terms of mean accuracy. However, the best robustness is achieved by a stan-
dard deviation weighted method (qwσEDFT with q = 4). In general, accuracy
seem to improve with larger q while the best robustness is achieved for q close
to 4. For median accuracy, q = 4 gives the best performance for both coherence
weighted trackers and standard deviation weighted trackers, with better results
for coherence weighting.

For the region noise experiments (table 2), accuracy generally increases with
increasing q while the best robustness is achieved for q = 4 for the standard devi-
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Table 2. Summarized results for the region noise experiment, comparison to competing
methods (best scores in boldface)

Mean Median
Method Accuracy Robustness Speed Accuracy Robustness Speed

NCC 0.456 2.973 14.0 0.414 1.8 12.0
DFT 0.493 2.389 6.0 0.512 2.4 5.9
EDFT 0.486 1.973 10.1 0.486 1.9 10.5
qEDFT (q=2) 0.492 2.059 10.3 0.488 1.9 10.8
qEDFT (q=3) 0.497 2.000 6.9 0.518 1.8 6.8
qEDFT (q=4) 0.498 2.032 6.7 0.492 1.7 6.6
qEDFT (q=5) 0.502 2.008 6.7 0.512 1.3 6.7
qEDFT (q=6) 0.499 2.093 6.4 0.521 1.6 6.5
wEDFT 0.489 2.088 6.2 0.492 1.9 6.3
qwEDFT (q=2) 0.501 1.835 6.7 0.500 1.9 6.8
qwEDFT (q=3) 0.508 1.819 5.4 0.520 1.6 5.4
qwEDFT (q=4) 0.509 1.747 5.1 0.502 1.5 4.9
qwEDFT (q=5) 0.515 1.819 5.2 0.499 1.5 5.1
qwEDFT (q=6) 0.516 1.837 5.2 0.530 1.5 5.2
qwEDFT (q=7) 0.514 1.923 5.1 0.515 1.5 5.1
maxwEDFT 0.514 2.163 6.3 0.500 2.0 6.2
qwσEDFT (q=2) 0.500 2.029 8.6 0.520 1.5 8.8
qwσEDFT (q=3) 0.502 1.832 6.6 0.510 1.5 6.6
qwσEDFT (q=4) 0.521 1.893 7.1 0.534 1.6 6.7
qwσEDFT (q=5) 0.506 1.803 6.5 0.515 1.7 6.4
qwσEDFT (q=6) 0.510 1.787 6.8 0.517 1.7 6.7
qwσEDFT (q=7) 0.511 1.795 6.6 0.517 1.8 6.4
maxwσEDFT 0.516 2.109 7.9 0.529 2.0 7.8

ation weighted tracker and for q = 6 for the coherence weighted tracker. Con-
trary to the baseline experiments, in the region noise experiments the coherence
weighted methods perform best with respect to robustness while the standard
deviation weighted methods perform best with respect to accuracy.

In table 3, the results for each sequence for three trackers are presented.
A comprehensive description of the sequences themselves is available at the
VOT challenge site5. Both proposed trackers outperform the EDFT tracker with
respect to accuracy on 15 out of 25 sequences. On four sequences the EDFT
tracker outperforms the proposed trackers and in three cases, performance is
equal among the three trackers. With respect to robustness, all three trackers
perform equal on 18 out of 25 sequences. The improvement compared to EDFT
with respect to robustness is largest on the sequences where EDFT performs
worst. On the hand2 sequence, EDFT looses track of the object seven times
while the proposed qwσEDFT tracker looses track of the object three times.

No parameters have been changed from those used in the baseline trackers,
with the exception of the newly introduced parameter q. Since q and the learning

5 http://votchallenge.net/vot2014/dataset.html
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Table 3. Detailed baseline experiment results for three trackers. Best scores in bold.

EDFT qwσEDFT (q=4) qwEDFT (q=4)
accuracy robustness accuracy robustness accuracy robustness

ball 0.51 0 0.57 0 0.59 0

basketball 0.56 3 0.57 1 0.59 3

bicycle 0.44 0 0.43 0 0.43 0

bolt 0.51 3 0.56 3 0.56 3

car 0.53 1 0.53 1 0.53 1

david 0.68 0 0.71 0 0.72 0

diving 0.16 3 0.16 3 0.16 3

drunk 0.51 0 0.49 0 0.50 0

fernando 0.40 2 0.40 2 0.43 2

fish1 0.38 4 0.40 4 0.42 4

fish2 0.28 6 0.30 5 0.32 6

gymnastics 0.55 2 0.54 2 0.53 2

hand1 0.59 2 0.56 0 0.60 0

hand2 0.42 7 0.44 3 0.44 6

jogging 0.79 2 0.80 2 0.80 2

motocross 0.18 3 0.23 4 0.20 3

polarbear 0.53 0 0.58 0 0.59 0

skating 0.61 1 0.61 1 0.62 1

sphere 0.62 1 0.69 0 0.71 0

sunshade 0.65 3 0.70 1 0.71 1

surfing 0.85 0 0.89 0 0.90 0

torus 0.82 0 0.77 0 0.80 0

trellis 0.51 2 0.52 1 0.56 1

tunnel 0.31 0 0.31 0 0.31 0

woman 0.61 1 0.72 1 0.69 1

rate γ together determine the effective learning and forgetting rates of the final
tracker, a further increase in performance should be possible by jointly opti-
mizing these parameters. Also, by avoiding recomputation, primarily of weights
in the search phase, an increase in framerate should be possible. Currently the
proposed extensions slows down the tracker to the level of the DFT tracker.
Implementing the trackers in C++ should allow video rates on the sequences.

As a final remark, a selection of different comparison functions were eval-
uated such as L2, variance weighed L2 and Hellinger distance. However, these
performed inferior to the weighted L1 norms.

7 Conclusion

In the present work, we have addressed two significant parts of a tracking sys-
tem, comparison and model update. We have proposed a generalized update
rule (q-update) and two weighted comparison functions (coherence weighted and
reciprocal standard deviation weighted). The proposals aim to exploit the dis-
tribution representation of the target model. On the VOT challenge benchmark,
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trackers extended with these proposals showed significant increase in tracking
performance. We thus conclude that the proposed methods better utilize the
possibilities of the model representation since these proposed methods rely on
properties of the channel representation that do not hold for image representa-
tions or mean/variance (Gaussian approximation) representations.
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Abstract. In this paper, we propose an algorithm for on-line, real-time
tracking of arbitrary objects in videos from unconstrained environments.
The method is based on a particle filter framework using different visual
features and motion prediction models. We effectively integrate a dis-
criminative on-line learning classifier into the model and propose a new
method to collect negative training examples for updating the classifier
at each video frame. Instead of taking negative examples only from the
surroundings of the object region, or from specific distracting objects,
our algorithm samples the negatives from a contextual motion density
function. We experimentally show that this type of learning improves the
overall performance of the tracking algorithm. Finally, we present quan-
titative and qualitative results on four challenging public datasets that
show the robustness of the tracking algorithm with respect to appear-
ance and view changes, lighting variations, partial occlusions as well as
object deformations.

Keywords: Object tracking · Adaptive particle filter · Motion cues

1 Introduction

We consider the problem of automatically tracking a single arbitrary object in
a video, where the algorithm is initialised in the first frame from a bounding
box around the object to track. No prior knowledge about appearance, shape, or
motion of the objects or the environment is used. Also, we focus here on on-line
tracking, i.e.at each time step, only past and present but no future information
is used. Applications for on-line visual object tracking are numerous, including,
for example, video indexation, Human-Computer or Human-Robot Interaction,
video-surveillance, traffic monitoring, or autonomous driving.

In real-world scenarios, this problem is challenging as the object to track
may change considerably its appearance, shape, size, and pose in the image
(like the articulated human body for example). Furthermore, the object can be
partially occluded by itself, other objects, or the environment. The object may
also move abruptly or in unpredictable ways. Finally, the environment, i.e.the
image background, may change considerably and rapidly in videos from moving
cameras and be affected by varying illumination.

c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 232–243, 2015.
DOI: 10.1007/978-3-319-16181-5 16
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Recent works [1,2,7,9,13] propose to tackle this problem by a tracking-by-
detection framework, where a discriminative detector is trained with object and
background samples. At each frame of the video, this detector is applied in a
search window to estimate the current position of the object, and the model is
updated using this estimate. The advantage of this approach is that no specific
motion model needs to be designed and parameterised, and the output is deter-
ministic. Classical tracking algorithms are based on recursive Bayesian filters like
Kalman filters or particle filters [12,17,19]. These methods are able to estimate
the posterior state distribution of the tracked object and allow for maintain-
ing several state hypotheses. Usually, they explicitly integrate motion models
used to predict the next object state by defining a probabilistic transition func-
tion independent from the image observations. Some particle filter techniques
use some more advanced motion models, like [15], i.e.an optical flow-like dense
parametric motion estimator with an affine model to propose new state values,
as we propose in this paper. Also similar to this paper, parametric motion mod-
els have been used to estimate background (i.e.camera) motion [6] and segment
the object region from the background, e.g.[24].

Other recently proposed approaches have also included this type of contex-
tual motion information. For example, Yang et al.[23] introduced a method that,
throughout a video, continuously discovers objects that move in the same direc-
tion as the tracked object by performing a motion correlation analysis. These
auxiliary objects help to support and improve tracking by performing inference
in a star-structured graphical model that includes their state. Spatial context
has also been exploited by using supporters, i.e.other objects or feature points
around the target in the image. Grabner et al.[8], for example, extended the
well-known Implicit Shape Model by detecting feature points in the image that
have a correlated motion with the target. These supporters are matched from
frame to frame and their relative displacement vectors are updated on-line. Also,
Wen et al.[21] proposed a method that detects supporters (here called contribu-
tors), i.e.interest points within a local neighbourhood around the target, in order
to improve the tracking performance. Similarly, the approach proposed by Sun
et al.[18] tracks “helper” objects using an on-line Adaboost detector, initialised
manually at the first frame. Their relative position is learnt on-line and used to
predict the target object’s position. Finally, Dinh et al.[3] proposed a method
using supporters as well as distractors, which are objects with similar appear-
ance to the target. The distractors help to avoid confusion of the tracker with
other similar objects in the scene, and they can possibly be used to reason about
the objects’ mutual occlusion. Supporters are not used directly for the target’s
state estimation but only to disambiguate between the target and its distrac-
tors. Hong et al.[10] recently proposed an approach based on the L1 tracker [13]
that deals with distractors by automatically learning a metric not only between
positive and negative examples but also within the collected negative examples,
effectively replacing the originally proposed Euclidean distance.

The disadvantage with using supporting and distracting objects is that sev-
eral objects need to be detected and tracked, which can be computationally
expensive especially with a larger number of objects. Moreover, the success or
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failure of data association or, in some methods, matching local features points in
successive video frames, heavily depends on the type of object to track and the
surrounding background. This process can be error-prone and, in some situa-
tions, may rather harm the overall tracking performance. Finally, modelling the
spatial, temporal, or appearance-based pairwise relationships between objects
and/or interest points can lead to a combinatorial explosion and make the infer-
ence on the state space difficult.

To alleviate this problem, in this work, we propose a probabilistic method
that dynamically updates the foreground and background model depending on
distracting objects or image regions in the scene background. This contextual
appearance information is extracted from moving image regions and used to
train on-line a discriminative binary classifier that, in each video frame, detects
the image region corresponding to the object to track.

Traditionally, these discriminative on-line classifiers used in tracking-by-detec-
tion approaches learn negative examples extracted from the image region sur-
rounding the current target object region. This choice is motivated by the fact
that the object will move only slightly from one frame to the other w.r.t. the back-
ground or other objects, and by computational speed. In contrast, our method uses
a stochastic sampling process to extract negative examples from image regions
that move. We call these: contextual motion cues (see Fig. 1). In that way, regions
that correspond to possibly distracting objects are detected efficiently and early,
i.e.without them having to be inside a search window and without scanning the
whole image at each point in time. The contributions of this paper are the
following:

– a method for on-line learning of a discriminative classifier using stochastic
sampling of negative examples from contextual motion cues in videos,

– the integration of this incremental discriminative model in an efficient adap-
tive particle filter framework combining effectively several visual cues,

– a thorough evaluation on difficult public benchmarks experimentally showing
the performance increase from this type of online learning as well as an
improvement over state-of-the-art tracking methods.

2 Tracking Algorithm

Our tracking algorithm is based on a recursive Bayesian framework implemented
with a particle filter:

p(Xt|Y1:t) =
1
C

p(Yt|Xt) ×
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1) dXt−1 , (1)

where C is a normalisation constant, Y1:t are observations from time 1 to t, and
Xt denotes the state at time t. Before describing the main contribution of the
paper in section 3, for the sake of completeness, we will first describe the main
elements of this model.
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Fig. 1. Illustration of different sampling strategies of negative examples (blue). Left:
traditional sampling at fixed positions within a search window around the object (red).
Middle: the motion probability density function m (Eq. 11). Right: the proposed neg-
ative sampling from m.

2.1 Object State Representation and Inference

The state X = (x, y, vx, vy, s, e) ∈ R
6 of the object to track is described by an

upright bounding box defined by the object’s centre (x, y) in the image, its speed
(vx, vy), scale (s), and eccentricity (e), i.e.the ratio of height and width. The state
X0 is initialised manually (for each particle) by a bounding box around the object
in the first frame. Then, for each video frame, the particle filter performs its
classical steps of predicting particles X(i) sampled from the proposal distribution
q(Xt|Xt−1) and updating their weights according to the observation likelihood,
state dynamics and proposal (see Section 2.2): wi = p(Yt|Xt)

p(Xt|Xt−1)
q(Xt|Xt−1)

, for each
particle i ∈ 1..N . At the end of each iteration, the observation likelihood model
parameters are updated using the mean particle of the posterior distribution
p(Xx|Y1:t), and systematic resampling is performed.

2.2 State Dynamics and Proposal Function

The state dynamic model p(Xt|Xt−1) is defined for each individual component
of X. The position and speed components of the object are described by a
mixture of a first-order auto-regressive model with additive Gaussian noise and
a uniform distribution allowing for small “jumps” coming from the proposal
function (Eq. 2). A simple first order model is used for the scale and eccentricity
parameters, s and e.

In order to cope with fairly complex motion of arbitrary objects in videos from
a possibly moving camera, we use a proposal function composed of a mixture of
three distributions:

q(Xt|Xt−1) = βmp(Xt|Xt−1) + βfpf (Xt|Xt−1) + βdpd(Xt|Xt−1) , (2)

where βm, βf and βd define the mixture weights, and p(Xt|Xt−1) is the state
dynamics model. The function

pf (Xt|Xt−1) = N (Xt−1 + d; 0,Σf ) (3)

predicts the new state by performing a parametric robust motion estimation
of the image region defined by Xt like in [14]. The output of this multi-level
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estimation is the differential vector d which updates position and scale. The last
term:

pd(Xt|Xt−1) = N (Xd; 0,Σd) (4)

uses the output Xd of a detector (see Section 3) that has been trained on-line
and that is applied in the neighbourhood around Xt to predict the new object
position and scale (as in [16]). See Section 4 for a summary of parameter values.

2.3 Observation Likelihood

The observation likelihood function p(Y|X) is a geometric mean of three distri-
butions corresponding to different visual cues described in the following:

p(Yt|Xt) = (pH(Yt|Xt) pS(Yt|Xt) pT (Yt|Xt))
1/3

. (5)

Histogram Likelihood Ratio. The histogram likelihood function is defined
as a ratio of foreground and background likelihoods:

pH(Yt|Xt) =
pFG(Yt|Xt)
pBG(Yt|Xt)

, (6)

where

pFG(Yt|Xt) = exp

(
−λFG

9∑
r=1

(D2[h∗
t (r), h(r,Xt)])

)
, (7)

is the foreground likelihood defined over a grid of 3×3 regions r. D computes the
Bhattacharyya distance between the HSV histograms ht extracted from state Xt

and the respective reference histograms h∗
t initialised from the first frame, and

λFG is a constant. Similarly, the background likelihood:

pBG(Yt|Xt) = exp
(
−λBG(D2[ĥ∗

t , ĥ(Xt)])
)

, (8)

is computed over the image region surrounding the object’s bounding box.

Global Colour Segmentation Likelihood. In addition to the more local
colour models with one histogram per object part, we also use a global colour
histogram model based on a pixel-wise colour segmentation of foreground and
background. To this end, as above, HSV colour histograms with separate colour
and greyscale bins are extracted, one inside the current bounding box of the
object, and one around it. Then a probabilistic soft-segmentation is performed
computing the probability p(ci|zi) of each pixel i inside a search window belong-
ing to the foreground c = 1 or background c = 0 given its colour zi.

Then, the likelihood function is defined as:

pS(Yt|Xt) =
exp(−λSSFG(Xt)2)
exp(−λSSBG(Xt)2)

, (9)

where λS is a constant, SFG is the proportion of foreground pixels, i.e.for which
p(c = 1|z) > 0.5, inside the object’s bounding box and SBG is the proportion of
foreground pixels outside the bounding box.
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Texture Likelihood. The likelihood pT (Y|X) is based on the (greyscale) tex-
ture of the object to track. A discriminative classifier is trained at the first frame
using the object region as positive and the background regions as negative exam-
ples. Then, the classifier is updated at each iteration collecting positive and neg-
ative examples from the foreground and background respectively (see Section 3).
We use the On-line Adaboost classifier presented by Grabner et al.[7] that uses
Haar-like features, but any other on-line classifier could be used as well.

The likelihood is based on the detector’s confidence cD ∈ [0, 1] for the image
patch defined by Xt:

pD(Yt|Xt) = exp(−λD(1 − cD)2) . (10)

3 Model Adaptation with Contextual Cues

As mentioned earlier, in the particle filter, we use a binary discriminative clas-
sifier based on the On-line Adaboost (OAB) algorithm [7] for proposing new
particles (Eq. 4) as well as for evaluating the observation likelihood (Eq. 10).
The classifier is trained with the first video frame using the image patch inside
the object’s bounding box as a positive example and surrounding patches within
a search window as negative examples. Then, the authors propose to update
the classifier at each tracking iteration using the same strategy for extracting
positive and negative examples. We refer to [7] for details on the model.

3.1 Background Sampling

We propose to sample negative examples from image regions that contain motion
and thus likely correspond to moving objects (see Fig. 1). The idea is that
these regions may distract the tracker at some point in time. Therefore it is
preferable to learn these negative examples as early as possible, i.e.as soon as
they appear in the scene. To this end, we first compensate for camera motion
between two consecutive frames using a classical parametric motion estimation
approach [14]. We apply a three-parameter model to estimate the translation
and scale of the scene, and then compute the intensity differences for each pixel
with its corresponding pixel in the previous frame. This gives an image M(x, y)
approximating the amount of motion present at each position (x, y) of the current
frame of the video. We then transform this image into a probability density
function (PDF) m(x, y) over the 2-dimensional image space:

m(x, y) = Z−1
∑

(u,v)∈Ω(x,y)

M(u, v) , (11)

where Ω(x, y) defines an image region of the size of the bounding box of the
object being tracked, centred at (x, y), and Z is a constant normalising the
density function to sum up to 1. Thus, m(x, y) represents the relative amount
of motion inside the region centred at (x, y). Finally, N− image positions (x, y)
are sampled from this PDF corresponding to rectangles centred at (x, y), where,
statistically, regions with high amount of motion are sampled more often than
static image regions. This process is illustrated in Fig. 1.
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3.2 Classifier Update

The N− image patches corresponding to the sampled regions as well as the
positive example coming from the mean particle of the tracker are then used to
update the classifier. In this case, the OAB method needs a balanced number of
positives and negatives, thus the positive example is used N− times, alternating
positive and negative updates.

The advantage of sampling positions from these motion cues is that we
don’t need to care about explicitly detecting, initialising, tracking, and even-
tually removing a certain number of distracting objects at each point in time.
Note that, we could also sample regions of different scales but as scale does not
change rapidly in most videos the benefit of this would be relatively small. Note
also that the PDF could as well include appearance similarity with the tracked
target. However, this would considerably increase the computational complexity.

4 Experiments

4.1 Parameters

The following tracking parameters that have been used for all the experiments:

Σ̂ Σ̄ Σf/p βm βf βd λFG λBG λS λD

(7, 7) (0.001, 0.001) (1, 1, 10−4, 10−4) 0.7 0.2 0.1 120 36 0.1 10

The variances for x and y values are scaled by w
200 , w being the current width of

the bounding box. We should highlight that only 100 particles have been used
throughout all experiments. This turns out to be sufficient due to our effective
proposal and discriminative likelihood functions.

4.2 Datasets

We performed a quantitative evaluation on 4 challenging public tracking datasets:

Babenko1 [2] contains 8 videos of objects that undergo mostly rigid deforma-
tions and some rather large lighting variations and partial occlusions. Most of
the videos are in grey-scale format (except “David”, “Girl”, and “Face Occl. 1”).

Non-rigid objects2 is a more challenging dataset composed of 11 videos show-
ing moving objects that undergo considerable rigid and non-rigid deformations.

VOT20133 is the Visual Object Tracking (VOT) Benchmark 2013 [11] contain-
ing 16 videos that show a large variability in terms of camera motion, illumina-
tion change, occlusion, object size, and motion. Four of these sequences (David,
diving, face, jump) are also part of the first or second dataset.

VOT20143 contains 25 challenging videos including eight from VOT2013.
1 http://vision.ucsd.edu/∼bbabenko/project miltrack.shtml
2 http://lrs.icg.tugraz.at/research/houghtrack/
3 http://votchallenge.net/

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
http://lrs.icg.tugraz.at/research/houghtrack/
http://votchallenge.net/
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Table 1. Babenko sequences: percentage of correctly tracked frames with fixed negative
sampling, sampling from motion, combined fixed+random, and fixed+motion sampling

fixed fixed+rand. motion fixed+mot.

David 62.6 61.9 60.6 61.5
Sylvester 49.8 59.6 81.6 78.7
Girl 67.9 44.4 73.0 74.2
Face Occlusions 1 98.4 100.0 100.0 100.0
Face Occlusions 2 97.7 95.8 95.0 98.4
Coke 88.8 92.5 92.9 93.2
Tiger 1 60.3 58.9 59.7 59.7
Tiger 2 90.4 93.2 97.3 97.3

average 76.99 75.80 82.51 82.88

Table 2. Non-rigid object sequences: percentage of correctly tracked frames with fixed
negative sampling, sampling from motion, combined fixed+random, and fixed+motion
sampling

fixed fixed+rand. motion fixed+mot.

Cliff-dive 1 100.0 100.0 100.0 100.0
Motocross 1 75.9 84.7 94.1 99.1
Skiing 98.1 89.6 96.4 99.2
Mountain-bike 100.0 100.0 100.0 100.0
Cliff-dive 2 51.8 70.2 63.3 73.8
Volleyball 99.9 88.5 100.0 99.9
Motocross 2 100.0 100.0 100.0 100.0
Transformer 91.1 92.9 94.4 91.5
Diving 75.0 76.0 70.5 77.4
High Jump 52.5 59.8 69.7 66.6
Gymnastics 88.9 99.1 99.1 99.1

average 84.83 87.35 89.76 91.5

Note that long-term tracking datasets like LTDT2014 are not suitable for evalu-
ating our approach as these videos contain longer periods of full occlusion which
requires the algorithm to be able to re-detect the tracked object after occlusion.

4.3 Evaluation

We performed several experiments with different evaluation protocols. For the
first two datasets we evaluated the robustness of the proposed algorithm by mea-
suring the proportion of correctly tracked frames. A frame is counted as correct,
if the tracking accuracy A = RT ∩RGT

RT ∪RGT
is greater than a threshold, where RT is the

rectangle corresponding to the mean particle from the tracking algorithm, and
RGT is the ground truth rectangle surrounding the object. We set the threshold
to 0.1 in order not to penalise fixed-size, fixed-ratio trackers in our comparison.
For every experiment and video sequence, the proposed algorithm has been run
5 times and the average result is reported.

For the VOT datasets, we used the evaluation protocol of the VOT2013
benchmark, which measures accuracy and robustness. For evaluating the accu-
racy, the measure A, defined above, is used. The robustness is measured in terms
of number of tracking failures, where trackers are re-initialised after failures.
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Table 3. Results of the proposed algorithm on the VOT2013 dataset

accuracy robustness
baseline region-noise greyscale baseline region-noise greyscale

average 0.597 0.579 0.590 0.458 0.417 0.867

Table 4. Overall ranking result with the VOT2013 dataset. Only the first 6 out of 28
ranks are shown. The numbers represent the actual average ranking.

baseline region-noise greyscale

PLT 4.96 PLT 3.58 PLT 3.96
MCT 6.62 MCT 5.08 FoT [20] 4.75
FoT [20] 8.25 CCMS 8.33 MCT 6.25
EDFT [4] 9.5 FoT [20] 9.04 EDFT [4] 7.5
CCMS 9.54 LGT++ [22] 9.04 GSDT [5] 9.5
LGT++ [22] 10.2 EDFT [4] 9.08 LGT++ [22] 9.58

Table 5. Results of the proposed algorithm on the VOT2014 dataset

accuracy robustness
baseline region-noise baseline region-noise

ball 0.58 0.42 0.40 0.20
basketball 0.54 0.52 1.53 1.67
bicycle 0.54 0.52 0.00 0.00
bolt 0.58 0.62 0.60 1.13
car 0.66 0.62 0.00 0.00
david 0.70 0.65 0.00 0.00
diving 0.38 0.36 1.27 1.20
drunk 0.55 0.53 0.00 0.07
fernando 0.32 0.33 2.07 3.00
fish1 0.33 0.31 1.67 1.73
fish2 0.31 0.28 3.40 4.13
gymnastics 0.53 0.51 1.07 1.20
hand1 0.46 0.40 1.53 1.93
hand2 0.35 0.34 6.20 6.40
jogging 0.75 0.69 0.93 1.00
motocross 0.45 0.47 1.27 2.00
polarbear 0.70 0.64 0.00 0.00
skating 0.55 0.47 0.33 0.80
sphere 0.75 0.82 0.00 0.00
sunshade 0.63 0.58 0.00 0.00
surfing 0.71 0.71 0.00 0.00
torus 0.53 0.51 1.13 1.47
trellis 0.59 0.53 1.00 1.07
tunnel 0.35 0.41 0.33 0.53
woman 0.58 0.61 0.00 0.13

average 0.54 0.51 0.99 1.19

Every video sequence is evaluated 15 times and the average results are reported.
In addition to this “baseline” experiment, there are two other experiments using
the same data. In the “region-noise” experiment the initial bounding box is ran-
domly, slightly shifted for each run, and in the “greyscale” experiment, each
video is transformed into greyscale format. See [11] for more details.
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Fig. 2. Tracking results for PLT, FoT, Struck, and MCT on the sequences “David”,
“Bolt”, “Gymnastics”, and “Singer” (VOT2013/2014). Tracking is very robust to par-
tial occlusions, illumination changes, deformations, pose or other appearance changes.
The second last example shows some difficulties of MCT to adapt to different aspect
ratios. And the last example illustrates the problem of drastic size change for single-
scale trackers like Struck and PLT.

4.4 Results

In the first experiments, we evaluated four different strategies for the collection
of negative examples of the discriminative OAB classifier (c.f . section 3):

fixed: N− negatives are taken from fixed positions around the positive example
inside the search window, which is twice the size of the object’s bounding box.
fixed+random: N−/2 examples are taken from fixed position (as for “fixed“),
and N−/2 examples are sampled from random image positions.
motion: N− negative examples are sampled from the contextual motion distri-
bution m (Eq. 11).
fixed+motion: N−/2 examples are taken from fixed positions, and N−/2
examples are sampled from the contextual motion distribution.

In any case, the negative examples do not overlap more than 70% with the
positive ones in the image.

Table 1 and 2 show the results for the first two datasets in terms of the
percentage of correctly tracked frames.

In most cases, the sampling of negative examples from the contextual motion
PDF, i.e.“motion” and “fixed+motion”, improves the tracking performance. For
the Babenko sequences, the improvement is smaller because there are not many
other moving objects that can distract the tracker. On average, the best strategy
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is “fixed+motion”, with a relative improvement of around 7.5%. We use this
strategy for the following experiments and call the overall tracking algorithm
“Motion Context Tracker” (MCT).

We further evaluated MCT with the VOT2013 dataset using the protocol
of the VOT challenge and comparing it with 27 other state-of-the-art tracking
methods. Table 3 shows the average accuracy and robustness with the three
different experiments explained above: baseline, region-noise, and greyscale.

Table 4 lists the top 6 ranks for each experiment, combining accuracy and
robustness. The results of MCT are very competitive, being the second-best
method for baseline and region-noise and third-best for greyscale. Only, one
method, the Pixel-based LUT Tracker (PLT), is consistently outperforming
MCT on this dataset. It is an optimisation of the tracker called “Struck” [9],
currently unpublished but some explanation can be found in [11]. Note that,
PLT is a single-scale tracker and it uses different feature sets for greyscale and
colour video sequences.

Table 5 shows the accuracy and robustness results for the VOT2014 dataset.
Finally, Fig. 2 shows some qualitative tracking results on some of the video

sequences. One can see that the algorithm is very robust to changes in object
appearance, illumination, pose as well as complex motion, and partial occlusions.
The algorithm runs at around 4fps (or with a single-scale OAB detector: at
20fps) for a frame size of 320 × 240 on an Intel Xeon 3.4GHz not counting the
initialisation phase and screen display.

5 Conclusions

We presented a new efficient particle filter-based approach for tracking arbitrary
objects in videos. The method combines generative and discriminative models,
by effectively integrating an online learning classifier. We propose a new method
to train this classifier that samples the position of negative examples from con-
textual motion cues instead of a fixed region around the tracked object. Our
extensive experimental results show that this procedure improves the overall
tracking performance. Further, the proposed tracking algorithm gives state-of-
the-art results on four different challenging tracking datasets, effectively dealing
with large object shape and appearance changes, as well as complex motion,
varying illumination conditions and partial occlusions.
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Abstract. We present a new short-term tracking algorithm called Best
Displacement Flow (BDF). This approach is based on the idea of ‘Flock
of Trackers’ with two main contributions. The first contribution is the
adoption of an efficient clustering approach to identify what we term
the ‘Best Displacement’ vector, used to update the object’s bounding
box. This clustering procedure is more robust than the median filter to
high percentage of outliers. The second contribution is a procedure that
we term ‘Consensus-Based Reinitialization’ used to reinitialize trackers
that have previously been classified as outliers. For this reason we define
a new tracker state called ‘transition’ used to sample new trackers in
according to the current inlier trackers.

Keywords: Visual object tracking · Optical flow · Motion-based ·
Texture-less tracking

1 Introduction

The main challenge of an object tracking system is the difficulty to handle the
appearance changes of the target object. The appearance changes can be caused
by intrinsic changes such as pose, scale and shape variation and by extrinsic
changes such as illumination, camera motion, camera viewpoint, and occlusions.

For instance, our approach Matrioska [13], while ranking closely to one of the
best performing tracker EDFT [4] (see the Accuracy-Robustness plot shown in
Figure 1 for the trackers that joined the VOT2013 challenge [10]), was not able
to rank better due to failures on some sequences. Indeeed, as Figure 2 shows,
Matrioska fails on sequences such as hand and torus mainly due to two factors:
(i) texture-less objects and (ii) non-rigid transformations, resulting in low values
for the Accuracy and Robustness, as reported in Table 1.

To model such variability, various approaches have been proposed, such as:
updating a low dimensional subspace representation [15], MIL based [1] and
template or patch based. Other approaches are reported in recent surveys ([10],
[23] and [18]), and specifically [2–7,11,12,14,16,17,19,20,22,24–26].

In this paper we introduce a new short-term tracking algorithm named Best
Displacement Flow (BDF), that is aimed to avoid the Matrioska’s failure cases.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 244–253, 2015.
DOI: 10.1007/978-3-319-16181-5 17
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To achieve a better robustness over texture-less objects we adopt a different
visual representation: Matrioska is based on a sparse representation with the use
of point features, whereas BDF adopts a dense approach represented by local
trackers that cover the entire object.

BDF is inspired by the Flock of Features ([9], [20]) where a set of displace-
ments, estimated by local trackers, are robustly combined to localize the tar-
get object. We propose different contributions and we show how this approach
reaches state-of-the-art performance for sequences in which a re-detector module
is not required.

The main contributions, i.e. the clustering procedure and the consensus-based
reinitialization, are discussed in sections 2.2 and 2.3, respectively.

Fig. 1. The Accuracy-Robustness plot of VOT2013 challenge

Fig. 2. Snapshots of the hand and torus sequences showing typical Matrioska failure
cases: texture-less objects and non-rigid transformations
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Table 1. Matrioska’s results on hand, torus and diving sequences of the VOT2013
dataset

accuracy robustness speed (fps)

hand 0.37 7.00 24.81

torus 0.26 8.00 16.25

diving 0.32 4.00 14.00

iceskater 0.48 4.00 11.49

2 Best Displacement Flow (BDF)

In the following sections we will describe our tracking approach for short-term
sequences. A short-term tracker is an algorithm able to track an unknown object
for short sequences in which the target object is visible through the entire
sequence, and it usually does not have a re-detector module (if the object goes
out of the scene the tracker will drift).

Our approach called Best Displacement Flow is inspired by (in order of pub-
lication) Flock of Features [9], Median Flow [8] and Flock of Trackers ([20], [21])
where a set of displacements, estimated by local trackers, are robustly combined
to localize the target object. The name of our approach, BDF, remarks the most
important difference between our tracker and the other approaches: we apply
a clustering procedure over all local trackers estimates to filter outliers instead
of using the median filter. The biggest cluster identifies what we term the best
displacement vector used to update the position of the target bounding box.

The following sections describe in detail the main components of our system:
the multi-size initialization (section 2.1), the clustering procedure (section 2.2)
and the consensus-based reinitialization (section 2.3).

2.1 Multi-size Initialization

The initialization is the first step of our approach. Unlike other approaches,
which use the same patch size for each tracker (both MedianFlow [8] and Flock
of Trackers [20] use a single grid with a fixed cell size), we allow the initialization
of local trackers with different patch sizes, as Figure 3 shows. To estimate the
optical flow we use the Block Matching algorithm, i.e. each patch is used as a
template to find the displacement that optimizes a cost function in the following
frame.

For this reason the patch size becomes an important factor, hence the use of
patches with different sizes ensures a greater robustness. Note that we do not
constraint the trackers position inside a cell (i.e. the local trackers can freely
move inside the object bounding box).

2.2 Displacement Clustering

Each local tracker, after the initialization in the first frame, estimates the dis-
placement that optimizes a cost function (usually the SSD or the NCC) using
the block matching algorithm for the optical flow estimation.
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Fig. 3. The final trackers are obtained by superimposing grids with different patch
sizes. In this case two grids with a size of 7x7 and 13x13 pixel. Using patches with
different sizes ensure a greater robustness over different appearances of objects.

Once every tracker estimated its displacement vector (i.e. the optical flow)
we need to filter each possible outlier. The median filter is robust up to 50% of
outliers and this can represent a limitation in many challenging sequences. For
this reason we employ a clustering procedure that produces good results even
in presence of a greater percentage of outliers. The only exception to this rule
is represented by rotational motion of the object, only in this case the median
filter is better suited for inlier/outlier filtering.

Figure 4 shows this process: to efficiently cluster all displacements each
tracker votes its displacement in the accumulator space. After all votes have
been casted, the bucket with most votes identifies what we call the best displace-
ment vector β. Note that this process is equivalent to the hierarchical clustering
using the infinity norm ‖d‖∞ = max{|d1|, . . . , |dn|} and a cut-off threshold of 1
but it is much more efficient. In this illustrative scenario the median filter would
not produce a good results due to a high percentage of outliers (8 trackers out of
10 are outliers). Note that we use the infinity norm and not the Euclidean norm
because: (i) it is more efficient and (ii) the accumulator space is partitioned into
squares.

Furthermore, to improve the clustering process we assign a weight for every
tracker based on its past performances (i.e. the weight is increased each time the
tracker response agrees with the best displacement vector) that is used to cast
a weighted vote in the accumulator space. The best displacement β is used to
shift the center of the bounding box as follows: Obb

t+1 = Obb
t + βt+1 where Obb

represents the center of the bounding box.

2.3 Consensus-Based Reinitialization

After the clustering procedure, each tracker response Δi is compared to the best
displacement vector β. If their distance is greater than a threshold δs we set the
tracker state State(ti) to outlier as follows:
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Fig. 4. Each tracker votes its displacement in the accumulator space. The most voted
bucket identifies the best displacement vector used to update the bounding box.

State(ti) =

{
inlier if ‖Δi − β‖∞ < δs

outlier otherwise
(1)

where δs is equal to 7. Once a tracker state is outlier it will not be used in
the following frames to cast new displacement votes. For this reason we need a
procedure to reinitialize the trackers when the number of inliers falls under a
certain threshold δn (we set δn to 25% of the total number of trackers).

The consensus-based reinitialization, for every outlier tracker, performs two
steps: (i) reinitializes the default position of the tracker inside the current bound-
ing box and (ii) sets the state of the tracker to transition.

When a tracker state is equal to transition it will not contribute to the
clustering procedure. The transition state indicates that the tracker has been
reinitialized and it needs to be validated.

This validation is based on the consensus with the current inlier trackers,
i.e. a tracker whose state is transition can be promoted to inlier if its response
agrees (see equation 1) with the best displacement vector for at least δt frames
following its reinitialization (we set δt to 3 frames) otherwise it is classified again
as outlier.

Figure 5 shows the state diagram of this process, note that a tracker state,
at any given time, can be either inlier or outlier or transition.

In the first frame all trackers are initialized as inliers. When the distance
between a tracker displacement and the best displacement β is greater than a
threshold δs, the tracker state is set to outlier and it will not be used again
until the reinitialization. When the number of inliers falls under a threshold δn,
the consensus-based reinitialization sets the state to transition to every outlier
tracker. Only the transition trackers that agree for at least δt frames with the
current inliers are promoted to the inlier state.
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Fig. 5. The three tracker states, displayed in a state diagram

3 Quantitative Evaluation

In this section we evaluate our approach with benchmark sequences that are com-
monly used in the literature with the VOT2014 evaluation kit. The kit performs

Fig. 6. BDF on torus sequence
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Table 2. Results for tracker BDF

Baseline Region Noise

accuracy robustness speed (FPS) accuracy robustness FPS

ball 0.52 2.00 177.21 0.52 2.80 182.02

basketball 0.56 2.00 99.82 0.47 2.33 100.47

bicycle 0.46 1.00 157.77 0.48 1.00 171.23

bolt 0.47 5.00 86.87 0.40 5.20 88.79

car 0.41 1.00 106.23 0.42 1.00 132.56

david 0.70 0.00 94.95 0.66 0.00 105.12

diving 0.29 2.00 91.68 0.30 2.13 99.40

drunk 0.53 1.00 76.59 0.49 0.80 83.82

fernando 0.42 1.00 53.48 0.40 1.47 53.78

fish1 0.29 2.00 112.43 0.28 2.67 123.92

fish2 0.23 5.00 81.10 0.17 5.53 89.39

gymnastics 0.57 1.00 62.77 0.50 1.53 67.57

hand1 0.55 1.00 89.23 0.55 1.07 92.99

hand2 0.48 1.00 87.22 0.46 1.00 85.14

jogging 0.75 2.00 117.94 0.62 1.13 113.35

motocross 0.41 0.00 64.53 0.39 1.13 91.79

polarbear 0.53 0.00 62.58 0.52 0.00 67.95

skating 0.57 2.00 69.53 0.49 1.20 75.06

sphere 0.36 0.00 109.03 0.62 0.20 110.91

sunshade 0.75 0.00 108.44 0.69 0.00 110.73

surfing 0.49 0.00 181.57 0.43 0.13 185.70

torus 0.61 0.00 66.08 0.63 0.27 78.06

trellis 0.48 0.00 124.56 0.45 0.20 163.76

tunnel 0.29 0.00 56.89 0.28 0.33 68.15

woman 0.61 1.00 68.84 0.61 1.07 73.63

Average 0.49 1.20 96.29 0.47 1.37 104.6

two experiments: Experiment “Baseline” and Experiment “Region Noise”. Both
the experiments are evaluated with two metrics: (i) accuracy and (ii) failures.

Accuracy is the mean overlap computed only over the valid frames on multiple
trials. Failures indicate the number of times the algorithm drifted (i.e. the overlap
between the tracker bounding box and the ground truth bounding box is equal
to zero).

The overlap φi, given the ith frame, is defined as:

φi =
AT ∩ AGT

AT ∪ AGT

where AT and AGT represent the tracker bounding box and the ground truth
bounding box.

As show in Table 2 BDF is able to get accuracy values of 0.49 for Baseline
and 0.47 for Region Noise, while robustness values in average of 1.20 for Baseline
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and 1.37 for Region Noise. We tested our C++ implementation on an Intel i7-920
processor, getting FPS of 96.29 for Baseline and 104.6 for Region Noise.

As an example, Figure 6 illustrates the Best Displacement Flow tracking the
object in the torus sequence. In the first frame all trackers are initialized with
three different patch sizes. The clustering procedure, in the following frames,
identifies the best displacement vector that is used to: (i) update the bounding
box and (ii) filter inlier/outlier trackers. When the number of inlier trackers
(represented with red squares) falls under a threshold δn, the outlier trackers
are reinitialized in their default position with transition state (represented with
yellow squares). Only the trackers that agree with the current inliers, for at least
δt frames, are promoted to the inlier state.

Best Displacement Flow is an optical-flow based tracker, hence it fails when
the optical-flow estimation doesn’t return a good result. The failure cases include:
total occlusions and very large displacements between consecutive frames. The
failures of bicycle, basketball, car, fernando, fish2, jogging and woman are due to
total occlusions, whereas the failures of bolt, fish1, fish2, gymnastics and skating
are due to abrupt appearance changes between consecutive frames.

4 Conclusions

In this paper we introduced a new short-term tracking algorithm called Best
Displacement Flow (BDF) that tracks an object by robustly combining a set of
local tracker estimates. We introduced two main contributions: (i) a clustering
procedure to identify the best displacement vector and (ii) a consensus-based
reinitialization to sample new trackers in according to the current inliers using
a third state called transition.

Our approach reaches state-of-the-art performance and it is more robust than
the median filter-based approaches in challenging sequences. Regarding future
developments, it would be interesting to extend our approach by adding a re-
detector module for handling situations such as: total occlusion and object out
of the camera view.
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Abstract. Although the correlation filter-based trackers achieve the
competitive results both on accuracy and robustness, there is still a need
to improve the overall tracking capability. In this paper, we presented
a very appealing tracker based on the correlation filter framework. To
tackle the problem of the fixed template size in kernel correlation fil-
ter tracker, we suggest an effective scale adaptive scheme. Moreover,
the powerful features including HoG and color-naming are integrated
together to further boost the overall tracking performance. The extensive
empirical evaluations on the benchmark videos and VOT 2014 dataset
demonstrate that the proposed tracker is very promising for the vari-
ous challenging scenarios. Our method successfully tracked the targets
in about 72% videos and outperformed the state-of-the-art trackers on
the benchmark dataset with 51 sequences.

Keywords: Visual Tracking · Correlation Filter · Kernel Learning

1 Introduction

Visual tracking is one of the fundamental research problem in computer vision
community for its various applications in video surveillance, robotics, human
computer interaction and driverless vehicle. Although great progress has been
made in the past decade, the model-free tracking is still a tough problem due
to illumination changes, geometric deformations, partial occlusions, fast motions
and background clutters.

Recently, correlation filter is introduced into visual community, which has
already been applied in many applications [2] [10] [13] [27]. As described in Con-
volution Theorem, the correlation in time domain corresponds to an element-
wise multiplication in Fourier domain. Thus, the intrinsic idea of correlation
filter is that the correlation can be calculated in Fourier domain in order to
avoid the time-consuming convolution operation. Meanwhile, the correlation fil-
ter is treated as similarity measure between the two signals in signal processing,
which gives a reliable distance metric and explains the reason of the promising
performance achieved by the previous approaches. Bolme et al. [7] and Henriques
et al. [13] introduce the correlation filter into the tracking application. Although
achieved the appealing results both in accuracy and robustness, these correlation
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 254–265, 2015.
DOI: 10.1007/978-3-319-16181-5 18
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filter-based trackers employ the template with the fixed size, which is not able
to handle the scale changes of a target.

In this paper, we propose a novel scale adaptive kernelized correlation filter
tracker with multiple feature integration. The proposed approach overcomes the
limitations of the conventional correlation filter trackers by a multiple scales
searching strategy. To solve the scale change issue in object tracking, we sample
the target with different scales, and resize the samples into a fixed size to compare
with the leant model at each frame. Meanwhile, we adopt a multiple feature
integration scheme, which employs the raw pixel, Histogram of Gradient [9]
and color-naming [32] to further enhance the proposed tracker for dealing with
the more challenge scenarios. Our experimental evaluation demonstrates that
the proposed scale adaptive and multiple feature integration method achieves a
significant performance gain (over 10%) comparing the state-of-the-art approach.
Moreover, our method successfully tracks the targets in almost 72% sequences
in the benchmark [33] with 51 videos in total.

The main contributions of this paper can be summarized as follows. Firstly,
we extend the correlation filter-based tracker with the capability of handling
scale changes, which obtains an impressive performance gain in accuracy. Sec-
ondly, we conduct the extensive experiments to compare the previous studies of
the correlation filter-based trackers [14] [4] [12] with our proposed method that
includes multiple features integration, scale adaptive scheme and a full system.
These experiments reveals the underline clues on the importance of the different
components for a modern tracking-by-detection tracker. Finally, the proposed
tracker achieved a very appealing performance both in accuracy and robustness
against the state-of-the-art trackers.

2 Related Works

Tracking-by-detection trackers [11] [1] [16] [34] are very popular due to its high
performance and efficiency. As these methods usually employ the binary classifier
to distinguish the tracked object from the background, which are usually denoted
as the discriminative methods. Struck [11] is one the most representative discrim-
inative trackers, which employs the structured Support Vector Machine(SVM)
to directly link the target’s location space with the training samples. It achieves
the appealing result in the recent benchmark [33]. TLD [16] exploits a set of
structural constraints with a sampling strategy using boosting classifier. The re-
detection function makes the TLD method more robust in the challenge videos.
Inspired by the compressive sensing techniques, Zhang et al. [34] train a Naive
Bayes classifier with the compressive features projected from the original space.
MIL [1] explores the idea of a bag of positive samples with a boosting variant
algorithm to construct the tracker. Meanwhile, generative model-based track-
ers [22] [15] [21][29] [3] [30] [24] aim to build the metric model to search the
most similar patches for the tracked object. SCM [36] combines the discrimina-
tive classifier and generative model to achieve the high accuracy and robustness.
However, it involves with the heavy computational cost, which hinders its capa-
bility on real-time applications. Additionally, some trackers [5] [35] employ the



256 Y. Li and J. Zhu

structure information in the scene to enhance the tracking performance while
others [31] exploits the deep learning techniques in the object tracking task.

Our proposed approach is closely related to the correlation filter-based track-
ers [14] [4] [12] [7] [6], which adopt the correlation filter in traditional signal pro-
cessing technique into the tracking applications. CSK [12] is proposed to explore
the structure of the circulant patch to enhance the classifier by the augmenta-
tion of negative samples, which employs the kernel correlation filter to achieve
the high efficiency. Based on CSK [12], KCF [14] adopts the HoG feature [9]
instead of raw pixel to improve both the accuracy and robustness of the tracker.
To further boost the performance of CSK tracker, Danelljan et al. [4] adopt the
color-naming feature into the object tracking task, which is a powerful feature
for the color objects [17] [19] [18]. Meanwhile, MOSSE [7] formulates the problem
in the view of learning a filter .

3 The Tracker

In this section, we firstly review the kernelized correlation filter (KCF)
tracker [14], and then introduce the powerful features used in our approach.
Moreover, a scale adaptive scheme is presented to improve the correlation filter-
based trackers.

3.1 The KCF Tracker

Our approach is built on KCF tracker [14], which achieves very impressive results
onVisualTrackerBenchmark [33].Although the idea ofKCF tracker is very simple,
it achieves the fastest and highest performance among the recent top-performing
trackers. The key of KCF tracker is that the augmentation of negative samples
are employed to enhance the discriminative ability of the track-by-detector scheme
while exploring the structure of the circulant matrix for the high efficiency. In the
following, we briefly review the main idea of KCF tracker [14].

In KCF [14], Henriques et al. assume that the cyclic shifts version of base
sample is able to approximate the dense samples over the base sample. Suppose
that we have a one-dimensional data x = [x1, x2, ..., xn], a cyclic shift of x
is Px = [xn, x1, x2, ..., xn−1]. The experiments show that such assumption is
held reasonably in most of cases. Therefore, all the cyclic shift visual samples,
{Pux|u = 0...n − 1}, are concatenated to form the data matrix X = C(x). As
the data matrix is purely generated by the cyclic shifts of x, it is called circulant
matrix. It has an intriguing property [28] that all the circulant matrices can be
expressed as below:

X = FHdiag(Fx)F (1)

where F is known as the DFT matrix, which transforms the data into Fourier
domain, and FH is the Hermitian transpose of F. The decomposition of circu-
lant matrix can be employed to simplify the solution of linear regression. The
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objective function of linear ridge regression can be formulated as follows:

min
w

n∑
i

(f(xi) − yi)2 + λ||w|| (2)

where the function f can be written as the linear combination of basis samples:
f(x) = wTx. The ridge regression has the close-form solution, w = (XTX +
λI)−1XTy. Substituted by Eqn.1, we have the solution ŵ∗ = x̂∗�ŷ

x̂∗�x̂+λ , where
x̂ = Fx denotes the DFT of x, and x̂∗ denotes the complex-conjugate of x̂. Com-
pared with the prevalent method, this solution saves the computational cost of
both extracting patches explicitly and solving a general regression problem [14].
In the case of no-linear regression, kernel trick, f(z) = wT z =

∑n
i=1 αiK(z,xi),

is applied to allow more powerful classifier. For the most commonly used ker-
nel functions, the circulant matrix trick can also be used [14]. The dual space
coefficients α can be learnt as below

α̂∗ =
ŷ

k̂xx + λ
(3)

where kxx is defined as kernel correlation in [14]. Similar to the linear case, the
dual coefficients are learnt in Fourier domain. The inference is valid for the case
that kernel function treats each dimension of the data equally [14]. In this paper,
we adopt the Gaussian kernel which can be applied the circulant matrix trick as
below:

kxx′
= exp(− 1

σ2
(||x||2 + ||x′||2) − 2F−1(x̂ � x̂′∗)) (4)

As the algorithm only requires dot-product and DFT/IDFT, the computa-
tional cost is in O(n log n) time. The training label y is a Gaussian function,
which decays smoothly from the value of one for the centered target to zero for
other shifts. As zero means the negative sample, we need to enlarge the original
target bounding box to enclose the negative samples. In this paper, we employ
the window with the size of 2.5 times larger than its original target box for
training. Although the cyclic shift lost lots of information on the original frame,
the classifier obtains the dense samples to fit the model more precisely.

The circulant matrix trick can also be applied in detection to speed up the
whole process. The patch z at the same location in the next frame is treated as
the base sample to compute the response in Fourier domain,

f̂(z) = (k̂x̃z)∗ � α̂ (5)

where x̃ denotes the data to be learnt in the model. When we transform f̂(z)
back into the spatial domain, the translation with respect to the maximum
response is considered as the movement of the tracked target. The motion model
implied that the searching range is the window size for the base patch. Although
the whole model follows the tracking-by-detection scheme, there are only two
samples in the process, both at the same position sampled in the last frame and
current frame. Intuitively, it is more like a similarity metric in Fourier domain.
In addition, Bolme et al. [7] give another interpretation on the whole process.
For the more detailed formulation, please refer to [14] [7].
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3.2 Multiple Feature Integration

Since the kernel correlation function only needs to calculate the dot-product and
vector norm, multiple channels can be applied for the image features. Suppose
the multiple channels of the data representation are concatenated into a vector
x = [x1,x2, ...,xC ]. Eqn. 4 can be rewritten as follows:

kxx′
= exp

(
− 1

σ2
(||x||2 + ||x′||2) − 2F−1

(∑
C

x̂c � x̂′∗
c

))
(6)

which allows us to use the more strong features rather than the raw greyscale
pixels. Moreover, we can employ various powerful features to exploit the advan-
tages of feature fusion. There are three types of features used in our proposed
tracker. Besides the raw greyscale pixel of the original image, we adopt two
commonly used features in visual tasks.

Histogram of Gradient (HoG) is one of the most popular visual features in
vision community, since it is very effective in practical applications and can be
computed very efficiently. The feature extracts the gradient information from a
cell, which is a range of pixels. HoG counts the discrete orientation to form the
histogram. As in [9], we employ the 31 gradient orientation bins variant in our
method.

Color-naming or color attributes, is a perspective space, which is the linguistic
color label assigned by human to describe the color. Being better than the RGB
space, the distance in color label space is more similar to human sense. As
achieved the promising results in other visual tasks such as object recognition,
object detection and action recognition [17] [19] [18], we employ the mapping
method described in [32] to transform the RGB space into the color names
space, which is an 11 dimensional color representation. Color names provide the
perception of object color, which usually contains the important information on
the target.

The two features are complementary to each other. HoG puts emphasis on
the image gradient while color naming focuses on the color information. In
section 4.2, we will testify the efficacy of these features separately. Although
the idea is quite straightforward, the performance gain is very promising. Note
that the feature sizes do not consist with each other at first and alignment should
be applied for the features data for the correlation filter.

3.3 Multiple Scale Kernelized Correlation Filter

As described in Section 3.1, the whole process is straightforward. Moreover, KCF
is unable to deal with the scale changes in videos. To this end, we propose a scale
adaptive method to enable the naive correlation filter tracker to deal with the
scale variations.
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In Section 3.1, the searching strategy is implied in the kernel correlation
filter. We employ the bilinear interpolation to enlarge the image representation
space from the countable integer space into the uncountable float space. We fix
the template size as sT = (sx, sy), and define a scaling pool S = {t1, t2, ..., tk}.
Suppose that the target window size is st in the original image space. For the
current frame, we sample k sizes in {tist|ti ∈ S} to find the proper target. Note
that the dot-product in kernel correlation function needs the data with the fixed
size. In this paper, we employ bilinear-interpolation to resize the samples into
the fixed template size sT, and the final response is calculated by

arg maxF−1f̂(zti) (7)

where zti is the sample patch with the size of tist, which is resized to sT. Since
the response function obtains a vector, the max operation is employed to find its
maximum scalar. As the target movement is implied in the response map, the
final displacement needs to be tuned by t to get the real movement bias.

Note that all the templates are registered to the same size. Thus, the update
procedure is straightforward. There are two sets of coefficients should be updated.
One is the dual space coefficients α, and another is the base data template x̃. As
in [14], we linearly combine the new filter with the old one as below:

T̄ = θTnew + (1 − θ)T̄ (8)

where T = [αT , x̃T ]T is the template to be updated. With the scale adaptive
scheme, the proposed tracker is able to deal with the size changes. The overall
algorithm is summarized into Algorithm 1.

Algorithm 1. Overall algorithm of SAMF
Require:

The template for the tracked target, x̃;
The dual space coefficient, α;
The newly arrived observation, y;
The last frame position, pold;

Ensure:
The updated template for the tracked target, x̃;
The updated dual space coefficient, α;
The new position, pnew;

1: for every ti in S do
2: Sample the new patch zti based on size tist and resize it to sT with multiple

features.
3: calculate the response f̂(zti) with Equation 5 and 6.
4: end for
5: Get final position pnew and size tist according to Equation 7
6: Get x̃new based on new position pnew and size tist, and calculate αnew with

Equation 3.
7: Use Equation 8 to update x̃ and α with x̃new and αnew.
8: return updated x̃ and α;
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4 Experiments

We conduct three experiments to evaluate the efficacy of our proposed tracker.
Firstly, we implemented three trackers with various settings, including Multi-
ple Features tracker (MF), Scale Adaptive tracker (SA) and the proposed Scale
Adaptive with Multiple Features tracker (SAMF). We compare them with other
correlation filter-based trackers. Secondly, we evaluate our proposed tracker
against the state-of-the-art trackers to show the effectiveness of our proposed
SAMF tracker. Additionally, we report the detailed evaluation on VOT 2014
dataset.

4.1 Experimental Setup and Methodology

We implemented the proposed tracker by native Matlab without optimization.
All the experiments are conducted on an Intel i5-760 CPU (2.80 GHz) PC with
16 GB memory. Our proposed SAMF tracker runs at about 7 fps. The σ used in
Gaussian function is set to 0.5. The cell size of HoG is 4 × 4 and the orientation
bin number of HoG is 9. The learning rate θ is set to 0.01. We use the scaling
pool S = {0.985, 0.99, 0.995, 1.0, 1.005, 1.01, 1.015}. All parameters are same for
all following experiments.

In all the experiments, two evaluation criteria are used. The first one is mean
center location error (CLE). CLE is the difference between the center of tracked
results and the ground truth, where the smaller value means the more accurate
result. The second criteria is the Pascal VOC overlap ratio (VOR) [8]. It is
defined as V OR = Area(BT ∩BG)

Area(BT ∪BG) , where BT is the tracking bounding box, and
BG is the ground truth bounding box. The larger value means the more accurate
result.

To make comprehensive evaluation on the proposed approach, we employ
the whole 51 video sequence in the benchmark [33] for the first two experiments.
Moreover, we run the proposed tracker on VOT 2014 dataset containing 25
sequences. In VOT 2014 challenge, the accuracy is measured by the VOR score.
The robustness indicates the failing time for a tracker on the sequence.

4.2 Experiment 1: Comparison between Correlation Filter-based
Trackers

To evaluate the performance gain of our proposed scale adaptive scheme with
multiple features, we run six variants of trackers on the benchmark [33], including
SAMF, MF, SA, KCF, CN and CSK. All of these trackers takes advantage of the
circulant matrix or kernel correlation filter. Table 1 summarizes the difference for
these trackers. Figure 2 shows the CEL curves and VOR curves for those track-
ers. Although their ideas are very similar, the tracking performances are quite
different. This indicates that the visual features and search strategy are essen-
tially important to the visual tracking tasks. CSK only employs the raw pixel,
whose rank is the lowest one among the compared trackers. CN adopts both
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Table 1. The difference among six trackers

name Features Scale adaptive

SAMF raw pixel, HoG, Color label Yes

SA HoG Yes

MF raw pixel, HoG, Color label No

KCF [14] HoG No

CN [4] raw pixel, Color label No

CSK [12] raw pixel No

color names and raw pixel as features, and achieves a few improvement upon
CSK. MF outperforms the KCF by augmenting the features space with color
information and raw pixel. As shown in VOR curve, SA obtains a large improve-
ment in accuracy shows. However, the robustness is decayed in the CEL curve.
This demonstrates that expanding the search range will lead to the problem of
local maximum. By taking advantage of the fusion features and the proposed
scale adaptive scheme, SAMF tracker achieved the best performance in both
VOR and CEL metrics.

The results from our experiment shows that our proposed tracker is very
promising both in robustness and accuracy. The experiment also suggests that
the feature and search strategy play very important role in visual tracking. Com-
paring to KCF, the VOR performance gains of SA and MF are 3.8% and 2.7%
respectively while the SAMF gets a 10.6% improvement upon KCF. This indi-
cates that the SAMF is not just the simple combination of the MF and SA,
which can effectively capture the color information while accurately estimating
the size of object.

4.3 Experiment 2: Comparison with the State-of-art Trackers

Table 2 illustrates the overall performance for the six trackers compared with
the top two trackers reported in benchmark [33]. In the experiments, we observe
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Fig. 1. The benchmark overall plot of the six kernel correlation filter based trackers
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that the mean VOR score will be below 50% when the tracker loses the tar-
get in the sequence. Therefore, we define the successfully tracked sequence for
a given tracker when the mean overlap of the whole sequence is above 0.5. The
total number of the successfully tracked sequences can be viewed as a compre-
hensive metric of the tracker. The trackers with HoG feature achieved the very
appealing performance compared against SCM and Struck in all the methods.
SAMF achieves the best performance in terms of both mean CLE and mean
VOR. Impressively, our approach achieves 57.4% in mean VOR overall, which
is 10% improvement over the KCF tracker. In addition, the proposed tracker
successfully tracked 37 of 51 sequences in the benchmark. This demonstrates
that 72.5% of the sequences in the benchmark can be tracked, which is a big
improvement for the visual object trackers.

Figure 2 shows the detailed report of SAMF compared with the top rank
trackers, KCF [14], SCM [36], Struck [11], CN [4], TLD [16], ASLA [15], CXT [5],
VTS [20], DFT [29], CPF [26], LSK [23], LOT [25] and VTD [21] in the bench-
mark. SAMF ranks the first with a large margin comparing to other trackers.
Although the SAMF is not specially designed for occlusions, deformations and
out-of-plane rotations, surprisingly, the proposed tracker obtains very appeal-
ing performances on these challenging video sequences. These promising results

Table 2. Overall comprehensive evaluation

SAMF SA MF KCF CN CSK SCM Struck

mean CEL 30.09 39.91 34.55 35.49 64.68 88.78 54.13 50.57
mean VOR 0.574 0.539 0.533 0.519 0.448 0.401 0.505 0.478

Passed Num. 37 32 32 31 23 18 28 28
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Fig. 2. The plot curves for the proposed tracker compared with 9 state-of-art trackers
in the benchmark. (a)-(h) indicate the VOR and CEL of overall, deformation, occlusion
and out-of-plane rotation, respectively.
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Table 3. The results of VOT 2014

accuracy robustness

SAMF KCF NCC SAMFn KCFn NCCn SAMF KCF NCC SAMFn KCFn NCCn

ball 0.772 0.702 0.740 0.738 0.640 0.633 1 1 30 0.47 1 26.1
basketball 0.748 0.574 0.573 0.640 0.562 0.577 0 2 30 0 2 30.7
bicycle 0.613 0.454 0.717 0.659 0.516 0.678 0 1 9 0.13 0.4 9.93
bolt 0.562 0.522 0.206 0.555 0.510 0.447 2 3 33 1.93 2.6 32.7
car 0.508 0.421 0.708 0.521 0.402 0.646 0 0 6 0.07 0 6.07
david 0.817 0.746 0.691 0.763 0.691 0.623 0 0 16 0 0 14.9
diving 0.245 0.233 0.269 0.209 0.226 0.233 4 5 8 4.4 4.8 6.87
drunk 0.568 0.434 0.364 0.542 0.481 0.423 0 0 4 0 0.53 4.07
fernando 0.394 0.402 0.575 0.393 0.393 0.331 1 1 15 1 1.13 13.3
fish1 0.495 0.438 0.564 0.472 0.445 0.541 3 3 16 2.73 3.27 16.5
fish2 0.296 0.299 0.265 0.294 0.257 0.189 5 4 14 4.80 5.47 12.4
gymnastics 0.536 0.528 0.663 0.467 0.489 0.402 2 3 8 2.47 2.2 7.4
hand1 0.544 0.389 0.515 0.417 0.408 0.378 3 6 13 5.33 4.8 14.8
hand2 0.462 0.438 0.275 0.400 0.443 0.230 5 8 15 7.07 7.87 16.8
jogging 0.819 0.760 0.795 0.674 0.655 0.696 1 1 3 0.93 1.07 3.33
motocross 0.400 0.372 0.326 0.351 0.349 0.208 4 5 9 3.4 4 9.07
polarbear 0.708 0.662 0.750 0.672 0.649 0.620 0 0 3 0 0 2.6
skating 0.452 0.488 0.675 0.526 0.530 0.563 0 0 26 0.07 0.4 26.7
sphere 0.879 0.713 0.643 0.796 0.664 0.674 0 0 1 0 0 2.27
sunshade 0.758 0.761 0.775 0.684 0.718 0.723 0 0 5 0 0 5.33
surfing 0.800 0.797 0.889 0.728 0.738 0.793 0 0 0 0 0 0
torus 0.840 0.757 0.507 0.752 0.687 0.376 0 0 17 0.07 0.27 15.9
trellis 0.814 0.546 0.600 0.732 0.506 0.525 0 0 29 0 0 27.5
tunnel 0.545 0.318 0.719 0.494 0.292 0.639 0 0 10 0 0 9.33
woman 0.758 0.755 0.745 0.734 0.687 0.611 1 2 23 1 2.07 21.5

Mean 0.613 0.540 0.582 0.569 0.518 0.510 1.28 1.80 13.72 1.43 1.75 13.44

suggest that the effective features and proper search strategy are more effective
than the complicated models for deformations and occlusions.

4.4 Experiment 3: VOT 2014

Finally, we evaluate our proposed tracker on VOT 2014 dataset. The results are
summarized into Table 3. Compared against KCF [14] and the baseline NCC
tracker provided by the VOT organizer 1, SAMF achieves the higher performance
both in accuracy and robustness. NCC performs quite well in accuracy but poor
in the robustness. This is because NCC obtains more ground truth labels when
it fails to track the target. Benefited from the correlation filter, KCF achieves
an appealing score in robustness, however, it ranks at the last place in the
accuracy due to the template with the fixed size. The proposed SAMF achieves
the best results on both the accuracy and robustness. It can be seen that our
proposed SAMF tracker performs especially well in case of robustness meanwhile
it maintains the highest accuracy compared with other two trackers. This consists
with the experimental results illustrated in Section 4.3.
1 http://votchallenge.net/vot2014/index.html
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5 Conclusions

This paper presented a very effective tracker based on the framework of correla-
tion filter. We proposed the scale adaptive scheme to deal with the problem of
the fixed template size in the conventional kernel correlation filter tracker. More-
over, the powerful features including HoG and color naming are fused together
to further boost the overall performance for the proposed tracker. The extensive
empirical evaluations on the benchmark videos and VOT 2014 dataset demon-
strate that the proposed method is very promising for the various challenging
scenarios. Our method successfully tracked the targets in about 72% videos and
outperformed the state-of-the-art trackers on the benchmark dataset with 51
sequences.

Acknowledgments. The work was supported by National Natural Science Founda-
tion of China under Grants (61103105 and 91120302).
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Abstract. Event detection has advanced significantly in the past
decades relying on pixel- and feature-level representations of video-clips.
Although effective those representations have difficulty on incorporating
scene semantics. Ontology and description-based approaches can explic-
itly embed scene semantics, but their deterministic nature is suscepti-
ble to noise from underlying components of vision systems. We propose
a probabilistic framework to handle uncertainty on a constraint-based
ontology framework for event detection. This work focuses on elementary
event (scenario) uncertainty and proposes probabilistic constraints to
quantify the spatial relationship between person and contextual objects.
The uncertainty modeling framework is demonstrated on the detection
of activities of daily living of participants of an Alzheimer’s disease
study, monitored by a vision system using a RGB-D sensor (Kinect�,
Microsoft c©) as input. Two evaluations were carried out: the first, a
3-fold cross-validation focusing on elementary scenario detection (n:10
participants); and the second devoted for complex scenario detection
(semi-probabilistic approach, n:45). Results showed the uncertainty mod-
eling improves the detection of elementary scenarios in recall (e.g., In
zone phone: 84 to 100 %) and precision indices (e.g., In zone Reading:
54.5 to 85.7%), and the recall of Complex scenarios.

Keywords: Uncertainty Modeling · Ontology · Event Detection · Activ-
ities of Daily Living · Older People

1 Introduction

Event detection has been significantly advancing since the past decade within the
field of Computer vision giving birth to applications on a variety of domains like
safety and security (e.g., crime monitoring [9]), medical diagnosis and health
monitoring [23][5], and even as part of a new paradigm of human-machine
interface in gaming and entertainment (Microsoft c© Kinect�). Event detection
methods in computer vision may be categorized in (adapted from Lavee et al.
[11]): classification methods, probabilistic graphical models (PGM), and seman-
tic models; which are themselves based on at least one of the following data

c© Springer International Publishing Switzerland 2015
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abstraction level: pixel-based, feature-based, or event-based. Artificial Neural
Networks, Support-Vector Machines (SVM), and Independent Subspace Anal-
ysis (ISA) are examples of classification methods. For instance, Le et al.[12]
have presented an extension of the ISA algorithm for event detection, where
the algorithm learned invariant spatio-temporal features from unlabeled video
data. Wang et al. [21] have introduced new descriptors for dense trajectory esti-
mation as input for non-linear SVMs. Common examples of PGMs approaches
are Bayesian Network (BN), Conditional Random Fields, and Hidden Markov
Models (HMM). BNs have been evaluated at the detection of person interactions
(e.g., shaking hands) [16], left luggage [13], and traffic monitoring [9]. Kitani et
al. [8] has proposed a Hidden Variable Markov Model approach for event fore-
casting based on people trajectories and scene features. Despite the advances,
PGMs have difficulty at modeling the temporal dynamics of an event. Izadinia
and Shah [7] have proposed to detect complex events from by a graph represen-
tation of joint the relationship among elementary events and a discriminative
model for complex event detection.

Even though the two previous classes of methods have considerably increased
the performance of event detection in benchmark data sets, as they rely on pixel-
based and feature-based abstractions they have limitations in incorporating the
semantic and hierarchical nature of complex events. Semantic (or Description-
based) approaches use descriptive language and logical operators to build event
representations using domain expert knowledge. The hierarchical nature of these
models allow the explicit incorporation of event and scene semantic with much
less data than Classification and PGM methods.

Ceusters et al. [3] proposes the use of Ontological Realism to provide semantic
knowledge to high-level events detected by a multi-layer hierarchical and dynami-
cal graphical model in a semi-supervised fashion (human in the loop). Zaidenberg
et al. [22] have evaluated a constraint-based ontology language for group behav-
ior modeling and detection in airport, subways, and shopping center scenes. Cao
et al. [2] have proposed an ontology for event context modeling associated to a
rule-based engine for event detection in multimedia monitoring system. Similarly,
Zouba et al. [23] have evaluated a video monitoring system at the identification of
activities of daily living of older people using a hierarchical constraint-based app-
roach. Oltramari and Lebiere [15] presents a semantic infra-structure for a cogni-
tive system devoted for event detection in surveillance videos.

Although Semantic models advantage at incorporating domain expert knowl-
edge, the deterministic nature of their constraints makes them susceptible to
noise from underlying components - e.g., people detection and tracking com-
ponents in a pipeline of computer vision system - as they lack a convenient
mechanism to handle uncertainty. Probabilistic reasoning has been proposed to
overcome these limitations. Ryoo and Aggarwal [17] [18] have proposed halluci-
nation concept to handle uncertainty from low-level components in a context-free
grammar approach for complex event detection. Tran and Davis [19] have pro-
posed Markov logic networks (MLNs) for event detection in parking lots. Kwak
et al. [10] have proposed the detection of complex event by the combination
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of primitive events using constraint flows. Brendel et al [1] propose probabilis-
tic event logic to extend an interval-based framework for event detection; by
adopting a learned weight to penalize the violation of logic formulas.

We present a uncertainty modeling framework to extend the generic
constraint-based ontology language proposed by Vu et al. [20] by assessing the
probability of constraint satisfaction given the available evidence. By combining
both frameworks we allow domain expert to provide event models following a
deterministic process, while probabilistic reasoning is performed in second plan
to cope with the uncertainty in constraint satisfaction. In this paper we focus
on handling uncertainty of elementary events.

2 Uncertainty Modeling Framework

Uncertainty may come from different levels of the event modeling task; from
failures on the low-level components which provided input-data for the event
detection task (e.g., sudden change in person estimated dimension) to the model
expressiveness at capturing the real-world event. For instance, constraint viola-
tion may be due to person-to-person differences in performing an event (event
intra-class variation). In both cases it may be desirable that the event model be
still detected even with a smaller probability.

We propose here a framework to handle uncertainty on elementary events.
The framework may be decomposed on: event modeling, uncertainty model-
ing, and inference. In event modeling step domain experts use the constraint-
based video event ontology proposed in [20] to devise event models based on
attributes of tracked physical objects (e.g., a person) and scene semantics (con-
textual objects). In uncertainty modeling step we learn the conditional probabil-
ity distributions about the constraints using annotation on the events and the
event models provided by domain experts. The inference step is performed by
the temporal algorithm of Vu et al. [20] adapted to also compute event proba-
bility. The probability computation sub-step infers how likely a model is given
the available evidence based on pre-learned conditional probabilities about the
evaluated constraints.

2.1 Video Event Ontology

The constraint-based framework is composed of a temporal scenario (event)
recognition algorithm and a video event ontology for event modeling. The video
event ontology is based on natural terminology to allow end users (e.g., medical
experts) to easily add and change event models of a system. The models take into
account a priori knowledge of the experimental scene, and attributes of objects
(herein called Physical Objects, e.g., a person, a car, etc. ) detected and tracked
by the vision components. A priori knowledge consists of the decomposition
of a 3D projection of the scene floor plan into a set of spatial zones which
carry semantic information about the monitored scene (e.g., zones like “TV”,
“armchair”, “desk”, “coffee machine”). The temporal algorithm is responsible for
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the inference task, where it takes as input low-level data from underlying vision
components, and evaluates whether these objects (or their properties) satisfy
the constraints defined in the modeled events. An event model is composed of
(up to) five parts [20]:

– Physical Objects refer to real-world objects involved in the detection of the
modeled event. Examples of physical object types are: mobile objects (e.g.,
person, or vehicle in another application), contextual objects (equipment)
and contextual zones (chair zone).

– Components refer to sub-events of which the model is composed.
– Constraints are conditions that the physical objects and/or the components

should hold. These constraints could be logical, spatial and temporal.
– Alert define the level of importance of the event model, and
– Action is an optional clause which works in association with the Alert type

describes a specific course of action which should be performed in case the
event model is detected,(e.g., send a SMS to a caregiver responsible to check
a patient over a possible falling down).

The physical object types depend on the domain of application. Two disjoint
default types are presented, Mobile and Contextual Objects, with one exten-
sions each, respectively, Person and Contextual Zone. Mobile is a generic class
which defines the basic set of attributes for any moving object detected in the
scene (e.g., 3D position, width, height, depth). Person is an extension of Mobile
class whose attributes are body posture and appearance signature(s). Contextual
Object (CO) type refer to a priori knowledge of the scene. Contextual zone is an
extension of CO commonly used to define a set of vertices in the ground plane
which corresponds to a region with semantic information (e.g., eating table, tv,
desk) for an event model. Contextual objects may be defined at the deployment
of the system by the domain experts or by launching an object detection algo-
rithm for scene description at system installation, and specific times where object
displacement is identified. Physical object types can be expanded accordingly to
describe all types of objects in the scene.

Constraints define conditions that physical object properties and/or compo-
nents must satisfy. They can be non-temporal, such as spatial (person->position
in a contextual zone; or displacement(person1) >1 m) and appearance con-
straints (person1->AppearanceSignature = person2->ApperanceSignature); or
temporal to capture specific duration patterns or time ordering between a
model sub-events (components). Temporal relation are defined following Allen’s
interval algebra (e.g., before, and, meet, overlaps). Fig. 1 describes the model
Person changing from zone1 to zone 2; which is defined in terms of a tempo-
ral relationship between two sub-events: e.g., c1, Person in zone 1 before c2,
Person in zone 2.

The ontology hierarchically categorizes event models according to their com-
plexity as (in ascending order):

– Primitive State models property(ies) and/or relationship among physical
object(s) constant on a time interval (person posture, or person inside a
contextual zone).
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CompositeEvent(Person changing from zone1 to zone 2,

PhysicalObjects( (per:Person), (z1: Zone), (z2: Zone) )

Components (

(c1: PrimitiveState Person_in_zone_1 (p1,z1)

(c2: PrimitiveState Person_in_zone_2 (p1,z1)

)

Constraints( (c1 before c2) )

Alert( NOTURGENT )

)

Fig. 1. Person changing from zone 1 to zone 2

– Composite State refers to a composition of two or more primitive states.
– Primitive Event models a change in a value of physical object property

(e.g., person changes from sitting to standing posture), and
– Composite Event refers to the composition of two previous event models

which should hold a temporal relationship (person changes from sitting to
standing posture before person in corridor zone).

2.2 Uncertainty Modeling for Elementary Scenarios

For uncertainty modeling purposes we divided the constraint-based ontology
event models into two categories: elementary and composite scenarios. The term
scenario is used to differentiate the modeling and inference tasks. Elementary
Scenario have a direct correspondence to the primitive state type of the ontology,
and the Composite Scenario represents all other ontology event types (Primi-
tive Event, Composite States and Composite Events). This simplification is per-
formed since these ontology event categories were devised to help domain experts
at devising models in a modular fashion and then reduce model complexity and
increase its re-usability. But, none difference exists for the inference algorithm
while processing these event categories besides to the hierarchy depth of the
sub-events they define a relationship for.

The uncertainty modeling framework is based on the following concepts:

– Elementary Scenario(ES) is composed of physical objects and constraints.
This scenario constraints are only related to instantaneous values (e.g., cur-
rent frame) of physical object(s) attribute(s).

– Composite Scenario(CS) is composed of physical objects, sub-scenarios
(components) and constraints; where the latter generally refer to composition
and/or temporal relationships among model sub-scenarios.

– Constraint is a condition that physical object(s) or sub-scenarios must
satisfy, and refer to the constraint types presented on the constraint-based
ontology section.

– Attributes correspond to the properties (characteristics) of real world
objects measured by the underlying components of the event detection task
(e.g., vision system).
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– Observation corresponds to the amount of evidence on a constraint or a
scenario model.

– Instance refers to an individual detection of a given scenario.

Fig. 2 presents a description for the elementary scenario Person in zone Tea.
This scenario is based on the physical objects Person and the semantic zone
zoneTea. For instance, zoneTea would be polygon drawn on the floor - close or
around the table where the kitchen tools to prepare tea are commonly placed
- a priori defined by a domain expert during system installation or automati-
cally detected by the system. The model has two constraints: the logic constraint
that the target zone is zoneTea; and a spatial constraint called In which veri-
fies whether the person position lies inside the given zone. Fig. 3 illustrates an
example of a scene where semantic zones were manually drawn on the floor plane
where contextual objects are located.

ElementaryScenario(Person_in_zone_Tea,

PhysicalObjects( (per:Person), (zT: Zone) )

Constraints(

(per->Position In zT->Vertices)

(zT->name = "zoneTea")

(displacement(per->Position) < stopConstant)

)

)

Fig. 2. Elementary Scenario Person in zone Tea

2.3 Computation of Elementary Scenario Uncertainty

The uncertainty of an Elementary Scenario is formalized as function of the
framework confidence on the satisfaction of the Elementary Scenario constraints.
Equation 1 presents an formalization of Elementary Scenario Uncertainty using
Bayes Rule.

P (Ei|Ci) =
P (Ci|Ei) ∗ P (Ei)

P (Ci)
(1)

where,

– P (Ei|Ci): Conditional Probability of Event Ei given its observed constraints
Ci;

– P (Ci|Ei): Probability of constraints which intervene on Ei at the current
frame; and

– P (Ei): Prior Probability of Event.
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Fig. 3. Scene semantic zones

The conditional probability of event Ei given its set of observed constraints
Ci is given by the multiplication of the individual conditional probabilities of its
constraints. We assumed all constraints contribute equally to the event model
detection and are conditionally independent (see Equation 2).

P (Ci|Ei) =
Nj∏

ci,j∈Ci

P (ci,j |Ei) (2)

where Ci,j :

– Conditional probability of Constraint j of given event i.

To avoid computing P (Ci) which can become costly as the number of con-
straints increase, we opted to use the non-normalized probability of P (Ei|Ci) as
described in Equation 3.

P̃ (Ei|Ci) = P (Ei)
Nj∏

ci,j∈Ci

P (ci,j |Ei) (3)

In its final form the proposed formula for elementary scenario uncertainty
(Equation 3) addresses small violations of constraints from noise coming from
underlying components and due to event intra-class variations.

2.4 Probabilistic Constraints

The uncertainty of a scenario model or its conditional probability given the evi-
dence is addressed by associating each of its constraints to a Probability Density
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Function (PDF) responsible for quantifying how likely the constraint would be
satisfied given the available evidence. The use of PDFs provide a modular and
flexible way to model and change the uncertainty process that governs the condi-
tional probability distribution of a constraint given the available evidence - e.g.,
by modeling the variation of the low level data the constraint is conditioned on
during the targeted event execution - and allowing us to avoid the fully speci-
fication of the set of assignments of a conditional probability table. Moreover,
different constraints may use different PDFs according to the low-level data, and
the PDF may be easily changed without any other changes to the event model.

Besides to selecting the fitting PDF to a given constraint it is also important
to how we evaluate the constraint goal in a probabilistic fashion. In the case of
the spatial operator In its deterministic version is susceptible to different sources
of uncertainty: firstly, from the estimated position of the person which may be
influenced by noise from low-level computer vision components; and secondly,
from the semantic zone zoneTea - a priori defined by an expert - which may not
accommodate the complete floor surface where people may stand to prepare tea.
Its probabilistic counter-part should quantify how likely is the person position
to be inside the zone of interest given these sources of noise. We here propose
two probabilistic alternatives to the deterministic constraint In: the Center In
and the Border In.

– The Center In is fully based on a PDF with respect to the relative distance
between the centroid of the person - projected onto the floor - and the central
position of the given semantic zone.

– The Border In is a hybrid implementation which provides maximum prob-
ability (100 %) when the person is anywhere inside the semantic zone, and
a probability proportional to the distance of the person to the closest zone
edge otherwise.

To model the conditional probability distribution of the distances between
the person position and the semantic zone we have used Equation 4. Briefly, this
equation converts the observed distance among objects into the corresponding
value in an uniform Gaussian distribution using expected parameters pre-learned
per semantic object. The corresponding value is then applied to an exponential
function to obtain the probability of the constraint given the evidence, e.g., a
specific low-level data value for elementary scenario. The resulting PDF provides
a probability curve with maximum value around the mean parameter and a
monotonically decreasing behavior is observed as the observed value distances
from the mean.

P (Ci,j) = exp(
1
2

∗ (
observed value − x̄

s
)2) (4)

where, x̄ : learned mean of constraint value, and s: standard deviation of x̄

2.5 Learning Constraint Conditional Probabilities

The conditional probability distribution of the elementary constraints were
obtained by a learning step based on the event models provided by domain
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experts - using the constraint-based ontology - and annotated RGB-D record-
ings of the targeted events. The learning step was performed as follows: firstly,
an event detection process was performed using the deterministic event models.
Each time the deterministic In was evaluated the relative distance used by the
probabilistic counterparts was stored independent of whether the current con-
straint is satisfied. Secondly, using the event annotation we collect the distance
values frequently assumed by the In variants when elementary scenario annota-
tion is present for the given RGB-D recording. Thirdly and finally, we computed
statistics about the the collected values of the attribute the constraint was con-
ditioned on. By performing the learning step using event models combined with
event annotation (both provided by domain experts) we aim at capturing the
Conditional Probability Distribution (CPD) of the constraints according to the
event model semantics and maybe reduce the semantic gap between the event
model and the real-world event.

Elementary Scenarios are assumed to be equally probable as their evidence
is mainly related to a single time unit (e.g., a frame). The Temporal aspect of
scenario models such as instance filtering is currently performed by a thresh-
old method which removes low-probability events. The influence of previous
instances probabilities into the evaluated time unit will be evaluated in the
future in conjunction with uncertainty modeling at Composite Scenario level
(Composite Event).

3 Evaluation

The proposed framework has been evaluated at modeling the uncertainty of
activities of daily living of participants of a clinical protocol for Alzheimer’s
disease study. Two evaluations were performed, firstly on the detection of ele-
mentary scenarios, and secondly on the detection of complex events by using
uncertainty framework for elementary scenarios as basis for the deterministic
complex event models. The latter evaluation intends to assess the improvement
brought to the detection of high-level scenario by low-level uncertainty modeling.
For both evaluations contextual objects were defined a priori by domain experts
and mostly refer to static furniture in the scene.

Concerning the learning step necessary to obtain the parameters for the con-
straint conditional probabilities, in the first evaluation the parameters were com-
puted following the rules of the 3-fold cross-validation procedure. For the second
evaluation, the 10 videos involved in the 3-fold cross-validation procedure were
used for the learning procedure, and the complex detection performance was
evaluated on a set of recordings of 45 participants new to the system, which
were only annotated in terms of Composite Events.

3.1 Data Set

Participants aged 65 years and over were recruited by the Memory Center of Nice
Hospital. Inclusion criteria of the Alzheimer Disease (AD) group are: diagnosis



278 C.F. Crispim-Junior and F. Bremond

of AD according to NINCDS-ADRDA criteria and a Mini-Mental State Exam
(MMSE) score above 15. AD participants who have significant motor distur-
bances (per the Unified Parkinson’s Disease Rating Scale) are excluded. Control
participants are healthy in the sense of behavioral and cognitive disturbances.
Experimental recordings used a RGB-D camera (Kinect�, Microsoft c©).

The clinical protocol is divided into three tasks: directed tasks, semi-directed
tasks, and discussion with the clinician task. The directed tasks (10 minutes)
are divided on two sub-tasks: physical directed- and vocal directed-tasks. In
the semi-directed task (15 minutes) the participants are asked to undertake a
set of Instrumental Activities of Daily Living in a Hospital observation room
furnished with home appliances [6]. The participants enter the room alone with
a list of activities to perform and are advised to leave the room only feeling all
the required tasks are accomplished.

For this framework evaluation we have focused only on the semi-directed
task. The list of semi-directed activities is composed as follows:

– Read 1 article and answer three questions,
– Turn on the TV,
– Establish the account balance,
– Pay the phone bill (check writing),
– Answer the phone,
– Call the psychologist to confirm the appointment afterwards,
– Find on a bus map the line that takes you to the train station,
– Prepare the drug box for tomorrow according to the prescription,
– Water the plant,
– Prepare a hot tea.

3.2 RGB-D Monitoring System

The framework for uncertainty modeling was evaluated using a RGB-D sensor-
based monitoring system, built on the event detection framework proposed by
Vu et al. [20], and later evaluated on the detection of daily living activities of
older people by Crispim-Junior et al. [5] using a 2D-RGB camera as the input
sensor.

The evaluation monitoring system can be composed into three main steps:
people detection, people tracking, and event detection. People detection step
is performed by a depth-based algorithm proposed in Nghiem et al. [14], since
we have replaced the 2D-RGB camera by a RGB-D sensor. The depth-based
algorithm performs as follows: first, background subtraction is employed on the
depth image provided by the RGB-D camera to identify moving regions. Then,
region pixels are clustered in objects based on their depth and neighborhood
information. Finally, head and shoulder detectors are employed to detect people
amongst other types of detected objects.

The set of people detected by the previous algorithm is then evaluated by a
multi-feature tracking algorithm proposed in Chau et al. [4], which employs as
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features the 2D size, the 3D displacement, the color histogram, and the dominant
color to discriminate among tracked objects.

Event detection step has as input the set of tracked people generated in the
previous step and a priori knowledge of the scene provided by a domain expert.
This step was evaluated for two different components for comparison purposes:
the proposed framework for uncertainty modeling, and the deterministic event
modeling framework proposed by Vu et al. [20] and evaluated by Crispim-Junior
et al. [5]. Both components frameworks used the same underlying components.

3.3 Performance Measurement

The framework performance on event detection is evaluated using the indices of
Recall (Rec.) and Precision (Prec.) described in Equations 5 and 6, respectively
in comparison to ground-truth events annotated by domain experts.

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

where TP: True Positive rate, FP: False Positive rate and FN: False Negative
rate.

4 Results and Discussion

Table 1 presents the performance of the uncertainty modeling framework on
elementary scenario (primitive state) detection in a 3-fold cross-validation
scheme. The cross-validation scheme used 10 RGB-D recordings of participants
of the clinical protocol data set. “Deterministic” stands for the deterministic
constraint-based approach. Results are reported as the average performance on
the frameworks on the validation sets.

Table 1. Framework Performance on Elementary Scenario Detection on a 3-fold-cross-
validation scheme

Deterministic Border In Center In

IADL Rec. Prec. Rec. Prec. Rec. Prec.

In zone Pharmacy 100.0 71.4 100.0 100.0 100 83.3
In zone Phone 84.0 95.45 92.0 92.0 100.0 100.0
In zone Plant 100.0 81.8 100.0 34.6 100.0 81.8
In zone Tea 93.3 77.7 100.0 36.6 93.3 73.7
In zone Read 75.0 54.5 100.0 38.1 75.0 85.7

N : 10 participants; 15 min. each; Total : 150 min.

The proposed probabilistic constraints outperformed the deterministic app-
roach on the recall index and on precision index in a few cases such as “In
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zone reading” and “In zone Pharmacy” with Center In constraint. Border In
constraint presented the highest recall, but the lowest average precision.

Table 2 presents the results of the framework on Composite Event Detection.
Here an hybrid strategy is adopted where the uncertainty modeling is used on
elementary scenarios and the deterministic constraint-based framework is used
on composite event modeling.

Table 2. Framework Performance on Composite Event Detection Level

Deterministic Border In Center In

IADL Rec. Prec. Rec. Prec. Rec. Prec.

Talk on Phone 88.76 89.77 89.88 70.79 88.76 85.86
Preparing Tea/Coffee 81.42 73.07 95.71 40.36 92.85 55.08
Using Pharmacy Basket 87.75 97.72 89.79 95.65 89.79 97.77
Watering plant 78.57 84.61 100.0 23.14 100.0 28.86

N : 45 participants; 15 min. each; Total : 675min.

The results on complex event detection showed Center In and Border In had
similar performance on recall index outperforming the deterministic approach.
Center In outperformed Border In in the precision index for this test but was
still worse than the deterministic approach in most cases. The worse performance
in precision index may be attributed to other model constraints which did not
have their uncertainty addressed. Based on the results presented we select Center
In constraint as the probabilistic alternative for the deterministic In.

5 Conclusions

We have presented a uncertainty modeling framework to handle uncertainty
from low-level data in constraints of elementary scenarios (low-level events).
The framework improves the detection performance of elementary scenarios in
recall and precision and of composite scenarios in recall.

Further work will extend the framework to model composite scenarios and
the uncertainty related to composite and temporal relations among its sub-
components. Moreover, we will also investigate alternatives to allow small devi-
ations from the scenario constraint without the need of performing a supervised
learning step.
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Abstract. Semantic Content-Based Image Retrieval (SCBIR) allows
users to retrieve images via complex expressions of some ontological lan-
guage describing a domain of interest. SCBIR adds some flexibility to the
state-of-the-art methods for image retrieval, which support query either
by keywords or by image examples. The price for this additional flexi-
bility is the generation of a semantically rich description of the image
content reflecting the ontology constraints. Generating these semantic
interpretations is an open research problem. This paper contributes to
this research line by proposing an approach for SCBIR based on the
somehow natural idea that the interpretation of a picture is an (onto)
logical model of an ontology that describes the domain of the picture.
We implement this idea in an unsupervised method that jointly exploits
the ontological constraints and the low-level features of the image. The
preliminary evaluation, presented in the paper, shows promising results.

Keywords: Computer vision · Ontologies · Semantic image interpreta-
tion

1 Introduction

In recent years internet has seen a terrific increase of digital images. Thus the
need of searching for images on the basis of human understandable descrip-
tions, as in the case of textual documents, is emerging. For this reason, sites
as YouTube, Facebook, Flickr, Grooveshark allow the tagging of the media and
support searching by keywords and by examples. Tags associated to media con-
stitute a simple human understandable representation of the media content.
Tagging activity is very stressful and often is not well done by users. For this
reason, methods for automatically generate a description of the image content,
as in textual document understanding, become a real necessity. There are many
approaches to image understanding which try to generate a high level descrip-
tion of an image by analysing low-level information (or features), such as colours,
texture and contours, thus providing such a high level description in terms of
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semantic concepts. This would allow a person to search, for instance, for an image
containing “a man is riding an horse”. The difficulty to find the correspondence
between the low-level features and the human concepts is the main problem in
content-based image retrieval. It is the so-called semantic gap [17]. It’s widely
recognised that, to understand the content of an image, contextual information
(aka background knowledge) is necessary [21]. Background knowledge, relevant
to the context of an image, can be expressed in terms of logical languages in an
ontology [6]. Ontologies can play two main roles in image processing. First, they
allow to express a set of constraints on the possible interpretations of an image
and the satisfaction of such constraints can be checked via logical reasoning.
Second, the terminology introduced by the ontology can be used as formal lan-
guage to describe the image content. This will enable semantic image retrieval
using queries expressed in the language introduced by the ontology. These two
roles can be obtained by designing ontologies that formalize human understand-
able concepts (aka object types) and relations that can be found in the set of
considered pictures (e.g., rides, part-of, nearby, is-talking-to, etc.). Furthermore,
the background knowledge encoded in ontologies provides constraints on types
of objects and relations, e.g. a vehicle has at least two wheels or horses can be
ridden by men. The advantage of having the tags as concepts coming from a
background knowledge allows to reason over the image. For example the tag
“horse” enables to infer the presence of an animal.

In the present work we adopt the natural idea, envisaged in [19,23], that the
interpretation of an image, in the context of an ontology, is a (partial) model
of the ontology, which expresses the state of affairs of the world in the precise
moment in which the picture has been taken. We propose to formalize the notion
of image interpretation, w.r.t. an ontology, as a segmented image, whose segments
are associated with a set of objects of a partial model of the ontology. To cope with
the fact that a picture reports only partial information on the state of affairs we
use the notion of partial model of a logical theory [30]; to cope with the possibility
of having multiple alternative interpretations of a picture we introduce the notion
of most plausible partial model of an image. The most plausible partial model
for a picture is a partial model that maximizes a given scoring function, which
depends from the low-level features of the image.

To have a preliminary evaluation of the above idea, we implemented this
framework for a specific and limited case. We developed a fully unsupervised
method to generate image interpretations able to infer the presence of complex
objects from the parts present in the picture, thus inferring the relative “part-
whole” structure. The method jointly exploits the constraints on the part-whole
relation given by the ontology, and the low-level features of the objects available
in the image. This work should be considered preliminary. Nevertheless, the
evaluation shows promising results.

The paper is organized as follows. In Section 2, we present an overview on
semantic image interpretation (SII). Section 3 describes our formal framework for
SII. Section 4 shows how we adapt our general framework to the specific task of
interpreting part-whole relation. Finally Section 5 describes the preliminary
evaluation.
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2 Related Work

The pure logical approach to image interpretation considers the information
coming from a knowledge base for generating a semantic interpretation of an
image. It is the most popular and satisfactory method. The first work that
faced the problem in a logical approach is described in [23]. The authors pro-
pose a framework, based on first-order logic (FOL), for the depiction and inter-
pretation of images. They address the image interpretation problem as finding
the set of logical models of a knowledge base under the closed world assump-
tion (CWA). The framework is presented with the example of interpreting hand
drawn geographical maps, but it can be applied to other domains. The uncer-
tainty is treated adding assertions on the specific case. A possible drawback is
that an interpretation based on a total segmentation of the image using the
CWA is unreasonable. This critique was described in [26] where the authors fur-
ther explore the notion of logic-based approach to image interpretation. They
introduce the notion of partial model for finding an image interpretation. More-
over, they propose a DL language with a calculus system for computing such a
partial model. Uncertainty is not addressed. The growing interest in DL led to
the first DL framework for computer vision [18]. In this work the authors inves-
tigate reasoning about spatial information in order to understand objects in a
scene. The output are simple assertions on the objects and uncertainty is not
handled. Following the DL-based approach, the authors of [20] explore a frame-
work for the general high-level scene understanding task. The main interest of
the work is in the conceptual structure for describing the basic components of
a scene: the aggregates. An aggregate is a set of parts that compose a concept
in a scene with some constraints. For example, an aggregate can be the concept
of laying a table, its parts are physical objects as the table cover, actions as the
transport of a dish and temporal constraints: the tablecloth has to be put before
the dishes. Thus, the task of scene interpretation is the instantiation of aggre-
gates driven by the evidence. The output of the framework is a partial model
and uncertainty is not handled. This work has been extended in [19], where the
authors propose a DL framework for knowledge-based high-level scene under-
standing. The framework remarks the necessity of a partial model and, finally,
it introduces the notion of the most plausible partial model. Indeed, more inter-
pretations can arise, so the construction of a partial model has to be guided for
selecting the most probable one using a probabilistic approach. Uncertainty is
not addressed. Another approach for selecting the most plausible partial model,
or explanation, for a multimedia is given in [22]. Here the authors propose a DL
framework for the multimedia interpretation based on abduction. The abduc-
tive reasoning [13] infers a possible explanation from a set of facts, or evidence.
In this work, the evidence coming from the media analysis is the input for the
abduction process that computes a plausible high-level interpretation (a partial
model) of a knowledge base. The preferred explanation for the media is the one
that contains more evidence and less hypotheses. This method requires a set of
DL rules for defining what is abducible and uncertainty is not handled. A recent
method for performing abduction, for scene understanding problem, is given by
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the algebraic erosion over the concept lattice of a background knowledge [4]. A
survey on logical approaches to multimedia interpretation can be found in [9].

The above-mentioned works assume that the information coming from the
low-level image analysis is certain and without errors. But it is possible that
this information, such as the labels or the spatial relations between regions, can
be incomplete, vague and contradictory. We can have regions without labels, or
more weighted labels or even contradictory labels. Fuzzy DL [31] is an appro-
priate formalism to reason in presence of imprecision. Fuzzy DL can reduces the
semantic gap as in [14] where the authors propose a fuzzy DL ontology of spa-
tial relations. The goal is to recognize objects exploiting the spatial information
extracted from the image. A fuzzy DL framework for handling the vagueness
and the inconsistency of the semantic features is proposed in [7]. The presented
system enriches the image with new labels taken from an ontology.

Alternative approaches rely on Gestalt theory, attribute grammars and
machine learning techniques. In [32] a generic framework for scene understand-
ing that integrates domain knowledge with Gestalt theory [28] is proposed.
The framework exploits the Gestalt laws of grouping such as similarity, closure
and continuty with domain knowledge to perform the semantic segmentation
of images. The work described in [12] uses an attribute graph grammar and
a top-down/bottom-up inference algorithm for bulding the parse tree of man-
made scenes such as buildings, hallways, kitchens ect. The algorithm maximizes
a Bayesian posterior probability. In [29] the authors train a recursive neural net-
work for parsing natural scene images. They recover the intrinsic structure of
the natural scene by individualizing objects and capturing part-whole and prox-
imity relations among them. The work in [3] detects structured objects, building
façades, using a hierarchical approach based on layers. Every layer detects and
classifies structures in the image for the next layer that computes higher level
semantic structures. Every layer selects the best interpretation of the image
using an ad hoc similarity distance between graphs. Uncertainty is addressed
using this similarity distance. This method is generalized in [2] using a kernel
function for the graph similarity. The above methods perform the parsing of the
scene starting from low-level information of the image, but the structures they
build lack of a formal semantics as the logic approaches provide.

Probabilistic approaches are alternatives to fuzzy DL for handling the vague-
ness but also for driving the construction of the most plausible model. A well-
known formalism that combines FOL knowledge bases and probabilistic graphical
models in a unique representation is given by Markov Logic Networks [24]. Another
significant approach is given by combining FOL with kernel machines [8].

3 Problem Formulation

We start by introducing some assumptions and definitions which constitute the
basic elements of the proposed framework.
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Background knowledge. We suppose that background knowledge is contained in
a knowledge base expressed in a logic of the family of Description Logics (DLs)
[5]. In the following we briefly introduce DL formalism. Given three disjoint
sets of symbols Σ = ΣC � ΣR � ΣI , denoting concepts, relations (or roles) and
individuals respectively, a SHIQ concept is defined by the following grammar:

C,D := A | ¬C | C � D | C � D | ∃R.C | ∀R.C | (≥ n)R.C | (≤ n)R.C

where A ∈ ΣC , and R ∈ ΣR. Furthermore, we suppose that ΣR is closed under
inverse role, i.e., if R ∈ ΣR then R− (the inverse of R) is in ΣR. Axioms are
expressions of the following forms:

Axioms of the T-box Axioms of the A-box
C 
 D, concept inclusion axiom C(a), object class assertion
R 
 S, role inclusion axiom R(a, b), role assertion

An interpretation I of the signature Σ is a pair 〈ΔI , ·I〉, where ΔI is a non empty
set called the interpretation domain of I. The symbol ·I is a function from Σ
to the subsets, the relations and the elements of ΔI satisfying the following
constraints: ·I : ΣC −→ 2ΔI

, concept names are interpreted as subsets of the
domain; ·I : ΣR −→ 2ΔI×ΔI

, role names are interpreted as binary relations;
and ·I : ΣI −→ ΔI , individual names are interpreted as elements of the domain.
The function ·I can be extended to all the concept expressions as follows:

(¬C)I = ΔI \ CI (C � D)I = CI ∩ DI (C � D)I = CI ∪ DI

(∃R.C)I = {d ∈ ΔI | for some (d, d′) ∈ RI , d′ ∈ CI}
(∀R.C)I = {d ∈ ΔI | for all (d, d′) ∈ RI , d′ ∈ CI}

((≥ n)R.C)I = {d ∈ ΔI | #({d′ ∈ CI | (d, d′) ∈ RI}) ≥ n}
((≤ n)R.C)I = {d ∈ ΔI | #({d′ ∈ CI | (d, d′) ∈ RI}) ≤ n}

where #(A) is the cardinality of the set A. A knowledge base KB is a set of
axioms. I is a model of a knowledge base KB if it satisfies all the axioms in KB,
i.e. I |= φ for all φ ∈ KB, where the satisfiability relation is defined as follows:

Axioms of the T-box Axioms of the A-box
I |= C 
 D, iff CI ⊆ DI I |= C(a), iff aI ∈ CI

I |= R 
 S, iff RI ⊆ SI I |= R(a, b), iff (aI , bI) ∈ RI

An interpretation that satisfies KB, namely a model of KB, is a complete rep-
resentation (at a certain level of abstraction) of a possible state of affairs of
the real world. The knowledge base, by means of its axioms, imposes con-
straints on possible states. The states of affairs corresponding to interpretations
that do not satisfy KB are considered impossible. So, for instance, the axiom
House 
 ∃hasPart.Door imposes that the state of affairs where a house has no
door will never be the case.



288 I. Donadello and L. Serafini

Real World
formalized by−−−−−−−−−−−→ Model I of KB

partial view
�

⏐

⏐

�

⏐

⏐
⊆

Picture −−−−−−−−−−−→
formalized by

Partial Model Ip of KB

Fig. 1. The world is formalized by a model of KB and the partial view of the world
contained in the picture is formalized by a partial model

Partial models. An image is a partial view of the world. Therefore, a formal
representation of the content of an image should be a partial view of a model of
KB. This view can be considered as an interpretation of the language of KB, but
it does not necessarily satisfy all the axioms of KB. The intuition is represented
in Figure 1. For example, in a picture we can see a car with only two wheels, the
others could be not visible due to the perspective of the view. The claim that
a car has four wheels is not satisfied in the picture but it is satisfied in the real
world supposing to be in a normal situation. Thus, if we formalize the world as
a model of our knowledge base KB we formalize the picture with the notion of
partial model Ip. A partial model for a knowledge base KB is an interpretation
Ip = 〈ΔIp , ·Ip〉 of the knowledge base, such that there is a model I = 〈ΔI , ·I〉
of KB, called the completion of Ip such that:

1. ΔIp ⊆ ΔI

2. aIp = aI for all a ∈ ΣI

3. AIp = AI ∩ ΔIp for all A ∈ ΣC

4. RIp = RI ∩ ΔIp × ΔIp for all R ∈ ΣR.

Labelled picture. Our starting point is a segmented picture where every segment
is associated with a set of labels paired with a confidence level. Labels are symbols
taken from the alphabet of a knowledge base which is used to describe the real
world from which the picture is taken. Given the current states of image process-
ing software this seems a realistic assumption. We assume therefore that an image
is divided into regions where every region has a set of weighted labels. Labels
are taken from the signature Σ of the knowledge base. An example of labels and
weights of a region is {(Duck, 0.8), (DonaldDuck, 0.7), (isArguingWith, 0.4)}. We
now provide a formal definition of labelled segment with the notion of patch.

A labelled picture P is a finite set of labelled patches P = {p1, . . . , pn}. A
labelled patch p is a pair p = 〈P,L〉 where:

– P is a set of adjacent pixels (i, j) ∈ N
2 of the labelled image P. The pair

(i, j) is the coordinates of the pixel in the image.
– L is a set of weighted labels of the patch and it is defined as L ⊆ Σ × R.

The function Labels : P → Σ returns the set of labels (without weights). Namely
for every p = 〈P, {〈l1, w1〉 , . . . , 〈ln, wn〉}〉, Labels(p) = {l1, l2, ...ln}.
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Fig. 2. Alignment between a labelled picture and its semantic interpretation

Problem definition. Following the intuition about partial models we define the
semantic image interpretation as computing a partial model Ip = 〈ΔIp , ·Ip〉
of the knowledge base. Thus, the solution is to find a method for creating the
individuals (the nodes) of ΔIp , typing them and linking together (the arcs)
according to ·Ip , in order to create the structured information representing the
semantic content of the image. Having this graph describing the image content
is not enough. We need also the information about the segmentation, e.g. in
an information retrieval system it could be also necessary returning the single
patches. So, we need a link between the individuals of our partial model and their
corresponding segments, see Fig. 2. This consideration leads to the following
formal definition of the semantic interpretation task.

Definition 1 (Semantic interpretation of a labelled image). Given a
knowledge base KB with signature Σ and a labelled picture P, a semantic inter-
pretation of a labelled image is a couple (Ip, cf) where:

– Ip = 〈ΔIp , ·Ip〉 ⊆ I is a partial model for KB;
– cf : P → ΔIp is called conceptualization function from the set of patches P

to individuals, that is:

cf(p) = i ∈ ΔIp : ∃l ∈ Labels(p) :
i = lIp , with l ∈ ΣI ,

i ∈ lIp , with l ∈ ΣC ,

∃j ∈ ΔI : (i, j) ∈ lI , with l ∈ ΣR . (1)

Preference relation between (partial) models. In general there are many possible
explanations of the content of a picture. Formally this means that there are
many partial models. On the other hand the interpretation of a picture should
be unique, we have therefore to select one among a set of possible partial models.
To face this problem, we introduce a scoring function S that assigns a score to
a partial model based on its adherence to the image content, the highest the
adherence the highest the score. Our problem turns to construct a partial model
I∗

p that maximizes S. In symbols:
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I∗
p = argmax

Ip∈Mp

S(Ip) (2)

where Mp is the set of all possible partial models. This function can not be
addressed in a purely logical manner but in a statistical framework that mixes
low-level features with the logical constraints between concepts (the axioms of
the knowledge base). There will be the necessity of a dataset for learning the
correlation between objects and relations.

Issues in constructing an image interpretation. To construct the partial model
Ip we have to determine its elements ΔIp , their types, their relations, and to
search for a completion I ⊇ Ip which satisfies all the axioms of KB. There are
several problems to face. Decide which are the elements of ΔI and ΔIp that
correspond to the picture patches, for example two regions labelled with car can
be assigned to the same individual due to occlusions in the image. There can be
also elements in ΔIp which correspond to the composition of a set of patches.
For instance, an individual of type House corresponds to the region obtained by
joining the regions labelled with Window, Door, Roof, and Wall.

We also have to decide which are the types of the elements of ΔIp , this can
be done using the labels contained in the corresponding patch as well as the
axioms in the ontology. In general labels are not unique and weights need to be
taken into consideration.

Another problem is to decide which are the relations between the elements
of ΔIp . This can be achieved mixing visual and semantic features. For instance,
by clustering with respect to the position of the patches, we can instantiate
new individuals and linking them according to the part-whole relation. These
inferences strongly depends on the type of relation we are considering.

4 Recognizing Complex Objects from their Parts

In this section we apply our framework to a specific subtask of semantic image
interpretation: inferring the presence of complex objects from the presence of
their parts. We consider the simplified scenario of a segmented image where
patches can be labelled with at most one (non weighted) label. The background
knowledge (and constraints) about part-whole relation is described by a sim-
ple ontology. Preference relation between partial models is inspired by a general
principle of the mereology: the parts of the same object are topologically close in
the space. Thus, we will prefer models where close parts in the image are consid-
ered parts of the same complex object. But we have to consider that sometimes
close parts are not always parts of the same complex object. Therefore, to com-
pute this preference, we need to take into account low-level features, such as the
topological distance between patches, as well as semantic features, in order to
prefer models that group together parts close in the space belonging to the same
object. To compute the best partial model (i.e., the best grouping of parts in
wholes) we use clustering techniques.
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House � ∃hasParts.Door
� ∃hasParts.Window
� ∃hasParts.Roof
� ∃hasParts.Chimney
� ∃hasParts.Walls

Tree � ∃hasParts.Foliage
� ∃hasParts.TreeTrunk

Car � StreetVehicle
Motorbike � StreetVehicle
isPartOf ≡ hasParts−

Fig. 3. The image of our running example. Every segment has one label among
Foliage, TreeTrunk, Window, Walls, Door, and Roof. The labels are taken from a
simple ontology O. The right part shows an excerpt of it.

We explain our method via a running example. Suppose that we start from
the labelled image P of Figure 3. The set of patches of P and their labels
are highlighted by the segments in the figure, e.g. a patch of the image is
p = (P, (window, 1)). We have manually built a simple ontology O containing
part-whole axioms about houses and vehicles, as well as some concept inclusion
axioms. An excerpt of O is shown on the right side of Figure 3. Despite the
simplicity of this example, and the manual construction of O, we believe that
this can be highly automatized and scaled to a larger domain since there are
several knowledge bases describing objects from a mereological and taxonomical
point of view, e.g. Wordnet [10].

Partial Model Initialization. According to the approach described in Section
3, building a semantic image interpretation means to construct a partial model
Ip and the conceptualization function cf . To construct Ip we have to create the
set of individuals ΔIp corresponding to the patches of the picture, assign them
the correct concepts, and find relations between them. Finally, we have to check
if Ip is a partial model for O, i.e., if there is a completion of Ip that is a model for
O. This last task can be easily solved by the inference services provided by DL
reasoners, such as Racer [11] or Pellet [27]. Reasoners perform the completion
of an ABox: they search for a model satisfying the ontology and the statements
in the ABox. Moreover, they are able to infer new knowledge from the ABox
exploiting the axioms in the ontology. From this consideration it follows that
the main steps for the semantic interpretation of P are:

– for every patch p ∈ P create a new individual ip in the ABox of O;
– typing ip according to Labels(p);
– starting the reasoner for a possible completion of the ABox.

In the specific, given a patch p we instantiate a statement as Concept(ip)
in the ABox of O, where ip is a new individual and Concept ∈ Labels(p).
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This procedure links together two levels: the concrete level, i.e. the labelled
image showing a part of the reality, and an abstract level, i.e. the math-
ematical entity called partial model. The procedure not only creates the
partial domain ΔIp but also the conceptualization function cf . In the running
example the partial domain ΔIp is composed by the individuals foliage1,
foliage2, treeTrunk3, treeTrunk4, window5, window6, window7, window8,
walls9, door10, roof11. Furthermore, the typing of these individuals brings
to the following ABox assertions: Foliage(foliage1), Foliage(foliage2),
TreeTrunk(treeTrunk3), TreeTrunk(treeTrunk4), Window(window5),
Window(window6), Window(window7), Window(window8), Walls(walls9),
Door(door10), Roof(roof11). Now, if we run a reasoner on O with the ABox it
does not raise any inconsistency, this means that there exists a model extending
the ABox, thus the latter is a partial logical model of O.

Clustering Parts for Discovering New Complex Objects. The obtained
partial model is not so informative, it is necessary to fill it with part-whole rela-
tions between individuals. This means to guide the construction of a semantic
interpretation of P towards the most plausible partial model. Such a partial
model is obtained according to a general principle, the most plausible model is
the one relating together parts of the same object. The idea is to group together
the several parts of an object and then inferring a new individual correspond-
ing to that object. We clustered together the several parts of the same object,
so different clusters mean different objects. Then, with abductive reasoning, we
provide the best explanation for every cluster, that is, the whole object underly-
ing the presence of some parts in the cluster. This approach takes into account
geometrical features of the patches and semantic features in a clustering algo-
rithm. Indeed, we need both kind of features because some objects can be close
in the Euclidean space but far from a semantic point of view and we do not want
to group them together. For example, an house and a tree could be close in the
picture, but they are distant in the semantics so they cannot belong to the same
cluster. Moreover, two objects can have the same parts but they do not share
them. For example, two different houses have as parts some windows, but they
do not share them. This is the case where objects can be near in the semantics
but distant in the space.

The idea is to define a joint input space for a clustering algorithm. Such a
space has to embed low-level with semantic features and its elements are asso-
ciated to every patch. These elements are vectors representing the joint features
of the patch, specifically:

– the (x, y) coordinates of the centroids;
– the semantic distance between the concept expressed by the patch respect

to the concepts expressed by other patches.

There are many methods for calculating the semantic distance between concepts,
our method is based on the part-whole relations between concepts [16]. Given a
patch p ∈ P let L its label (the concept it expresses), (xp, yp) the coordinates of
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its centroid, {Li}n
i=1 ⊆ ΣC the set of concepts expressed by the other patches,

dPW (Lj , Lk) the semantic distance according part-whole relation between con-
cepts Lj , Lk, the input space function ISPW associating patches to their features
according to part-whole relation is:

ISPW : P → R
n+2

: p �→ 〈xp, yp, dPW (L, L1), ..., dPW (L, Ln)〉 (3)

Thus, our input space is the image of ISPW over P. In our example, an element
of the input space associated to a patch p labelled with door has the form:

p �→ 〈xp, yp, dPW (Door, Walls), dPW (Door, Foliage), dPW (Door, Roof), . . . 〉

With such an input space we aim at clustering together patches both close in the
Euclidean space and in the semantics. In this manner we guide the construction
of the partial model towards the most plausible one, i.e. the one that groups parts
belonging to the same object in the image. After the clustering we have a set
of clusters CL = {cl1, ..., clm}. In our running example the clustering algorithm
(see Section 5 for details) individualized 2 clusters:

cl1 = {foliage1, foliage2, treeTrunk3, treeTrunk4}
cl2 = {window5, window6, window7, window8, walls9, door10, roof11}.

For the sake of presentation clarity the clusters contain the individuals corre-
sponding to the patches and not the elements of the input space. The first cluster
should group only one foliage and a trunk, the reason is these parts are too close
in the Euclidean space and the unsupervised learning (as clustering) is not able
to distinguish between them, see Section 5 for details.

Inferring New Individuals from Clusters. The construction of the partial
model follows from the set of clusters containing parts belonging to the same
object. Indeed, we need to create a new individual in the ABox corresponding
to this object and typing it. Technically, we have to compute the least common
concept containing the types in the cluster. More generally, we have to find
the best explanation underlying a certain cluster. The reasoning that gives an
explanation to some evidence is called abductive reasoning. We present a method
for typing the most likely object given a cluster of its parts and an ontology.
The idea is to find, for every cluster, the ontology concept whose existential
concept restrictions maximize the concepts expressed by the cluster elements.
This procedure is a further step towards the construction of the partial model
that mostly adheres to the image.

This idea needs the following formalism to be expressed. Let us consider the
axioms of O with the form A 
 �

i ∃R.Bi, where Bi ⊆ ΣC and R ∈ ΣR. We call
Bi the set of types of the existential restrictions through R. Consequently, let
CFR : ΣC → 2ΣC , where R ∈ ΣR, the function that assigns to every concept
A ∈ ΣC the set of types of its existential restriction through R. For example,
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in our ontology CFhasParts(House) = {Door, Window, Roof, Chimney, Walls} and
CFhasParts(Tree) = {Foliage, TreeTrunk}. Our approach is to compare the clus-
ters with our ontology, thus we need to extract the concepts expressed by the
parts in the clusters and a similarity measure between set of concepts. Given a
cluster cl, the function CE extracts the concepts it expresses: CE : CL → ΣC .
In our running example, CE(cl1) = {Foliage, TreeTrunk}. With this formal-
ization it is simple to compare a cluster cl with each concept A by defining a
simple kernel set K based on the intersection between sets:

K(CE(cl), A) =
| CE(cl) ∩ CFhasParts(A) |

|CFhasParts(A)| . (4)

The abduction step now reduces to:

– perform the kernel set similarity between a given cluster and all the concepts
A ∈ ΣC , with CFhasParts(A) �= ∅;

– choose the concept that scores best;
– instantiate a new individual, in the ABox of O, with that concept as type.

Thus, given cluster cl, A ∈ ΣC such that CFhasParts(A) �= ∅, we formalize the
abductive step as instantiating a new individual newInd ∈ MIp in ΔIp , such that:

M = argmax
A∈ΣC

K(ce(cl), A). (5)

This new individual represents the whole object that best explains the several
parts/patches in the cluster. Moreover, the presence of this individual in ΔIp

improves the plausibility of the partial model. After its creation we instantiate
the hasParts relations with the individuals corresponding to its parts. In our
running example, the two new individuals after the abductive step are of type
Tree and House for cl1 and cl2 respectively.

Remarks. Some considerations are needed. Sometimes, there is not enough
semantic information (labels) to discriminate two objects, e.g. can we distinguish
a car from a motorbike knowing only the concepts of Bodywork and Wheel? In
this case the kernel could be the same. Objects in the real world are categorized
according to a taxonomy (isA relation) and a general principle exists: the more
general a concept is the less attributes it has. That is, more general concepts
have less types of existential restrictions and thus they have a bigger kernel. For
example, given the concepts of Bodywork and Wheel, the kernel with best score
will not return the concepts of Car or Motorbike, but the more general one of
StreetVehicle.

We have seen that clustering together semantic and low-level features allows
to discover objects far in space and semantics, close in space but far in the
semantics and vice-versa. But what about objects close in the space and in the
semantics? For example, a wheel of a car could be close to the bodywork of a
motorbike and the clustering algorithm clusters together the two objects. This
is a still open problem, a possible solution will be to exploit further low-level
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features. We have a partial solution. After the abduction process of creating new
individuals in the ABox we start the reasoner in order to: (i) infer knowledge
about the new individuals and (ii) to check the consistency of O with the new
assertions in the ABox. This second step allows us to discard wrong clusters. For
example, if there is an axiom where cars have only one bodywork and there is a
cluster with two of them with some wheels there will have inconsistency. Thus,
that cluster will be discarded with the generation of a new one.

5 Experimental Results

We evaluated the task of discovering part-whole relations by defining a gold
standard: given the single parts we want to discover the whole object underlying
such parts. This evaluation has been achieved by constructing a small dataset of
15 labelled images where every image has been labelled using the tool LabelMe
[25]; labels are taken from an ontology O similar to the one described in Section
4. We concentrated on two image domains: houses with trees and street vehicles,
but the method is general and can be easily extended to whatever domain. We
obtained our ground truth labelling the single parts composing an object, such
as foliages and tree trunks, and the object itself, the tree. Moreover, we also
linked the singles parts to the corresponding object according to the part-whole
relation. Parts are linked together using only one level of part-whole relation,
i.e. we do not have chains of parts connected by the relation.

The next step was to compare the ground truth with the output of our frame-
work: a partial model of O, i.e. a predicted ABox AP consistent with the axioms
of O. As described in the Section 4, AP contains the individuals correspond-
ing to the parts and to the whole objects, this process has been carried out
using clustering techniques. Specifically, the experiments were conducted using
the Java-ML library [1] with a clustering technique based on Kohonen’s Self-
Organizing Maps [15]. Such a technique was the one with better performance.

AP is a set of assumptions over O, so the goal is to compare such state-
ments with the ground truth. Thus, we converted every labelled image into an
ABox AGT with the corresponding part-whole relations instantiated. In both the
ABoxes we used the same identifiers for the individual names of the single parts,
while the whole objects have different individual names. This is obvious because
our goal is to predict the whole objects, so we cannot use the corresponding name
of the ground truth. The idea is to compare the two ABoxes by individualizing
groups of parts corresponding to the same object, i.e. in partOf relation with it.
We are not interested in the name of such an object but only on its parts. Thus,
for both the ABoxes we extracted pairs of individuals corresponding to parts of
the same object. For AP the set of these pairs is called positive prediction (P ),
the pairs coming from AGT are the ground truth (T ) and their intersection are
the true positives (TP ). Table 1 shows the performance of our framework, for
every image in the ground truth, in terms of precision, recall and F-measure.
The mean of these metrics are, respectively, 0.89, 0.87 and 0.84.

The results show a high F-measure, and for the 46.7% of the images we
generate a fully correct interpretation. Nonetheless, there are problematic cases.
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Table 1. Evaluation of the framework in terms of precision, recall and F-measure

Domain Image |P | |T | |TP | Precision Recall F-measure
Street Vehicles 1 18 18 18 1.00 1.00 1.00
Street Vehicles 2 42 36 26 0.62 0.72 0.67
Street Vehicles 3 14 22 14 1.00 0.64 0.78
Street Vehicles 4 8 8 8 1.00 1.00 1.00
Street Vehicles 12 32 32 32 1.00 1.00 1.00
Street Vehicles 13 4 4 4 1.00 1.00 1.00
Street Vehicles 14 4 12 4 1.00 0.33 0.50
Street Vehicles 15 12 12 12 1.00 1.00 1.00
Houses, Trees 5 242 122 122 0.50 1.00 0.67
Houses, Trees 6 62 62 62 1.00 1.00 1.00
Houses, Trees 7 56 24 24 0.43 1.00 0.60
Houses, Trees 8 54 46 46 0.85 1.00 0.92
Houses, Trees 9 40 110 40 1.00 0.36 0.53
Houses, Trees 10 68 60 60 0.88 1.00 0.94
Houses, Trees 11 12 12 12 1.00 1.00 1.00

This is due to the fact that the clustering algorithm cannot correctly group the
parts of an object. In the cases of low precision (e.g. image 7) the algorithm
generates less clusters w.r.t. the ground truth; in the cases of low recall (e.g.
image 14) the algorithm generates more clusters w.r.t. the ground truth.

6 Conclusions

In this work we addressed the semantic image interpretation as a procedure to
extract structured information from images using an ontology. A possible use
of such a structure is semantically querying images about their content. The
novelty of this work is a fully formalization of the problem in terms of partial
logical model of the ontology based on a simple intuition: as an image is a partial
view of the world it has to be formalized as a partial model. Moreover, we stated
that a partial model should adhere, as much as possible, to the image, so we need
a heuristic to guide its construction towards the most plausible partial model.
We applied the framework to a specific subtask: the extraction of part-whole
relations between objects in an image. The heuristic guiding the construction of
the partial model was based on a simple principle: the parts of an object are close
in the space. We implemented this idea with a clustering technique that exploits
both low-level and semantic features of the image. The method was tested on a
built dataset obtaining, in average, good results.

As future work we aim to find a more efficient method for discriminating
objects near in the space and in the semantics. In order to better evaluate the
soundness of our framework we want to extend the experiments to a larger
dataset. Furthermore, we want to generalize our method to patches with more
weighted labels, exploring, for example, fuzzy DL approaches. An important
open problem is finding heuristics guiding the construction of plausible partial
models for other relations. This can be address, for example, using supervised
learning techniques o probabilistic graphical models.
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Université de Lille 1, Lille, France

{adel.lablack,marius.bilasco}@lifl.fr

Abstract. In this paper,we propose the use of aVideo-surveillanceOntol-
ogy and a rule-based approach to detect an event. The scene is described
using the concepts presented in the ontology. Then, the blobs are extracted
from the video stream and are represented using the bounding boxes that
enclose them. Finally, a set of rules have been proposed and have been
applied to videos selected from PETS 2012 challenge that contain multi-
ple objects events (e.g. Group walking, Group splitting, etc.).

Keywords: Ontology · Video surveillance · Blobs · Rules

1 Introduction

Nowadays, a growing amount of videos are available. This large amount of data
that needs to be stored and indexed should be processed using efficient con-
tent based methods. Some of the existing works in video indexing use low-level
features like color or motion for indexing video clips [5,7]. Other approaches
have their indexing system based on high-level features such as human interpre-
tation using meta-data and keywords [15,20]. These latter systems suffer from
the exhaustive manual operations, and the semantic inconsistencies caused by
different subjective interpretations made by people.

The semantic gap that exists between the low-level and the high-level fea-
tures for an event could be solved by combining both levels using an ontology [8].
The use of ontologies for prior knowledge representation and scene understand-
ing of video data is popular in many applications [12,21,22]. Gruber [9] defines
the ontology as the representation of the semantic terms and their relation-
ships. It consists of the representation of the concepts, their properties, and the
relationship between concepts expressed in linguistic terms. The most important
property is the derivation of an implicit knowledge through automated inference.
It provides a formal framework to define domain knowledge [2].

We propose to use the concepts of a video surveillance ontology to derive rules
that allows events detection from video sequences. The Ontology Web Language
c© Springer International Publishing Switzerland 2015
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(OWL) [17] has been used to represent our ontology and the Semantic Web Rule
Language (SWRL) [13] to generate the inference rules.

The remainder of this paper is organized as follows. Section 2 reviews some
related work in the field of video processing using ontologies. In Section 3, we
describe the architecture of our ontology of the video surveillance domain. We
describe the methodology used to derive the rules based on the video surveillance
domain ontology in Section 4 using the PETS 2012 dataset as a case of study.
Finally, we give concluding remarks and potential future work in Section 5.

2 Related Work and Background

Several works based on an ontology have been proposed to overcome the semantic
gap between low-level and high-level features. Bagdanov et al. [1] present a
system to solve the semantic gap between the high-level concepts and the low-
level descriptors using a multimedia ontology. It contains visual prototypes that
represent each cluster and act as a bridge between the domain ontology and
the video structure ontology. Dasiopoulou et al. [8] have used color homogeneity
as descriptor. The visual objects have been included in the ontology and the
semantic concepts have been derived from color clustering and reasoning. Bertini
et al. [3] have used both generic and domain specific descriptors to identify visual
prototypes that represent elements of visual concepts. New instances of visual
concepts are then added to the ontology through an updating mechanism of the
existing concepts. Finally, the prototypes are used to classify the events and the
objects that are observed in video sequences.

In video surveillance applications, some specific events like abnormal events
have to be detected from streams provided generally by stationary cameras. An
ontology can be used to support the indexing process. Xue et al. [21] proposed
an ontology-based surveillance video archive and retrieval system. Lee et al. [10]
implement a framework called Video Ontology System (VOS) to classify and
index video surveillance streams. Snidaro et al. [18] have used a set of rules in
SWRL language for event detection in video surveillance domain. In order to
overcome the problem of the manual rules creation by human experts, Bertini
et al. [4] proposed an adaptation of the First Order Inductive Learner technique
(FOIL) for Semantic Web Rule Language (SWRL) named FOILS.

Most of the previous works in the surveillance domain have used the ontology
tool and demonstrate its efficiency to help and manage the indexing and retrieval
process. They consider events such as abandoned object, stolen object, a person
who is walking from right to left, an airplane that is flying, etc. SanMiguel et
al. [11] have proposed an ontology for representing the prior knowledge related
to a video event analysis. It is composed of two types of knowledge related to
the application domain and the analysis system. Domain knowledge involves all
the high level semantic concepts (objects, events, context, etc.) while system
knowledge involves the abilities of the analysis system (algorithms, reactions to
events, etc.). However, this ontology determines only the best visual analysis
framework (or processing scheme) without any inference reasoning for objects
tracking and events detection or analysis.
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In this paper, we propose to use an ontology based-approach to detect sin-
gle/multiple objects events through a set of SWRL rules. It allows the transition
from the blobs extracted using visual analysis module to the detection of an
event.

3 The Architecture of the Ontology

The ontology approach is an effective way to support various processes for events
detection in video surveillance domain. The scene is described using the concepts
presented in the ontology and a video analysis module extracts the blobs from
the streams using some low level property such as color, position, size, etc. The
ontology considers these blobs as an input through the bounding boxes that
enclose them and instantiate their features for creating the different DataType
Property in the ontology. Then, the reasoner of our ontology classifies, in the
first step, the different bounding boxes in their respective semantic meaning
(Group Of Person/ Person) using a set of SWRL rules [13] and associates, in
a second step, this video sequence, using another set of SWRL rules, to the
appropriate video event class regarding the behavior of its objects.

Fig. 1. Video Objects class hierarchy sample
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In order to have an efficient representation of the video surveillance domain,
we preserved the same organization proposed by SanMiguel et al. [11] and com-
plete it by adding new concepts. We organize our ontology in four categories,
ranging from high-level concepts to low-level features : Video Events (gather all
events that can happen in the video surveillance domain), Video Objects (repre-
sents a set of objects that can appear in a video sequence), Video Sequences (all
the video sequences that could be indexed by our Ontology) and Bounding boxes
(all the bounding boxes that enclose the blobs detected by the video analysis
module in a video sequence with their low level features). The Figure 1 depicts
a sample of the Video Objects class hierarchy.

4 The Rule Based Approach

In this section, we propose to use the PETS 2012 dataset as a case of study
to depicts our rule based approach that allows to handle a video surveillance
ontology for events detection in video streams.

4.1 PETS 2012 Dataset

A set of events selected from PETS 2012 challenge [6] are used to experiment the
efficiency of the proposed rules. This dataset contains different crowd activities
and the task is to provide a probabilistic estimation of some events and to identify
the start and the end of the events as well as transitions between them.

4.2 Scene Representation

In order to determine the best configuration of the processing schemes for detect-
ing the events, we describe the scene in terms of concepts of our ontology. The
Figure 2 shows an ideal and very precise segmentation of two scenes extracted
from PETS 2012 challenge. Although some automatic techniques might be use
for segmentation, we have started from a manual segmentation of the scene as the
scene contains static elements that will not change over time (building, grass,
electric pole, road, trees, car parks, restrictive roads). These elements have a
strong semantic meaning, that can enhance the reasoning process and interpret
the events resulting from other (volatile) elements (service car) that are subject
to movements within the scene setting. For instance, special attention should
be raised if moving objects are present in the Restrictive Road and deep anal-
ysis should be run to see if the moving objects are pedestrian or cars. Changes
in appearances of studied objects can also be relevant in extracting meaningful
events (a tree going reddish, might be a strong feature in detecting an abnormal
event). Although, we are more focusing on movement reasoning, both kinds of
changes (movement and appearance) result in the presence of regions yielding
similar characteristics in terms of appearance and/or motion commonly called
blobs.
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Fig. 2. Scene Representation from PETS 2012 challenge camera views

4.3 Blobs Extraction

We propose an event detection approach based on blob regions. Blobs have
proven to be a better feature cue than points, corners or edges as they usually
have a larger coverage area and total occlusion of the subject is more unlikely
to happen. So, we should identify all the major blobs in the scene. A major blob
is defined as a blob that shows potential area size to be considered [16,19]. This
is an essential step towards determining potential person/group.

In order to collect these blobs, several algorithms could be used. A back-
ground subtraction algorithm will classify the pixels of the input image into
foreground and background. Then the blobs are extracted by groping together
the foreground pixels belonging to a single connected component. We can also
use optical flow by extracting the characteristics of each pixel in each motion
image. These flows are then grouped into blobs that have coherent motion and
are modeled by a mixture of multivariate Gaussians. The optical flow is useful to
characterize each moving pixel according to certain features of the flow vector.

The Figure 3 highlights the bounding boxes that enclose the detected blobs
in different situations like Group walking, Group running, Group Splitting, etc.
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Fig. 3. Events from PETS 2012 challenge: Group walking, Group running, Group
merging and Group splitting

A pre-processing stage is often applied to select the major blobs. It is done
by applying some anthropomorphic assumptions and morphological operations.
The following morphological operations are performed:

– Closing: Morphological closing smoothness sections of contours, fuse together
narrow breaks and long gulfs.

– Fill holes: A flood-fill operation is performed to close up the remaining small
holes.

– Removal of motion at boundary: Pixels of the motion region that are located
along the boundary are eliminated to avoid ambiguity of the region belonging
to a possible moving object.

At this stage each blob can represent either an entire object, an object sub-
part or can be generated by noise. It is identified by a label and the surrounding
bounding box. These bounding boxes are then used as input for the rule stage.
The aim of this rules is to ensure the identification of semantically significant
objects by analysing detected blobs over consecutives frames.

By comparing the bounding boxes found in two consecutive frames, our rule
based approach is able to assess for each blob of the previous frame if it has been
found or if undergoes a split or takes part in a merger. It consists in establishing
the associations between the objects found in the previous frame and the blobs
just extracted and grouped within the bounding boxes. We describe now our
strategy according to the blobs that have been detected in the current frame:

- Straightforward tracking: this is the simplest case and it corresponds to two
blobs without neighboring ones which are detected approximately in the same
position in two successive frames and there are no splits nor merges (blob size is
preserved or slightly varies). The concept of approximately in the same position
is implemented trough the definition of a threshold on a distance measurement
between the blobs.
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- Splitting: a split is detected when a blob breaks in two distinct ones. We
validate every split as soon as it occurs, creating two new objects. However,
the original object identity is resumed if this fragmentation of the object into
two blobs is temporary which may be due, for example, to an error during the
detection phase.

- Merging: we detect a merging event when two objects having close past
trajectories and detected up to frame at time t-1 merge their bounding boxes
in the frame at time t. If these conditions are satisfied, the algorithm creates a
new object joining the trajectories of the two previous ones

Some events that could happen may introduce a confusion in this process
such as:

- Disappearance: an object detected in a frame at time t-1 is classified as lost
in the current frame if no blob is present in the neighbourhood of the expected
object position at time t. If an object is lost in proximity of an image border,
the algorithm assumes that the object has left the scene, else waits for the
appearance of the object in proximity of the place where it disappeared. Still,
we should ensure that no other blob belonging to another semantically significant
object was/is around, and takes the place of the previous.

- Occlusion: it is distinguished from merging/splitting events on the basis
of the direction of the past trajectories. When an occlusion occurs, we wait to
analyze the scene for a specific number of frames to find the correct association
between the objects found before and after the occlusion.

4.4 The Rules Construction

Different events from the PETS 2012 challenge could be used to depict the
efficiency of the proposed approach such as:

– Group running and walking events: it consists to estimate if the people form-
ing a group are walking or running. These events can be identified using the
motion magnitude in each image. High magnitude event means running while
a low magnitude means walking event. The detection is done either by defin-
ing an experimental threshold or using a classifier with feature such as the
average speed of movement.

– Group formation and splitting events: it consists in the detection and the
analysis of the position, the orientation and the speed of the groups.

We have used the Rule plugin of Protégé [14] to write the inference rules of
our engine in SWRL language. Our rules are divided into 3 categories:

– Distance rules: it consists on checking the distance between the detected
bounding boxes in the current frame. The bounding boxes that are close to
each other are grouped into a major bounding box.

– Tracking rules: it consists on tracking the major bounding boxes generated
by the previous category over the frames to detect the start/end position.

– Event rules: it consists in analyzing the behaviour of the groups identified
in the previous category in order to detect the appropriate event.
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The left side of the rule (before the arrow) is checked by the inference engine
and the reasoner infer or not the right side. The Figure 4 depicts the construction
of a distance rule. It checks if two bounding boxes could be grouped into a major
bounding box.

Fig. 4. A rule for grouping two bounding boxes into a major bounding box

This rule presented above is constructed as follow: (i) The reasonner checks in
the current frame if the positions of the two bounding box (BB1, BB2) are close
in the X and Y axis. The Bounding boxes are then tested as BBx → BB2 and
as BBy → BB1 using the following conditions: (i) Top Right Point Y BB1 �
Top Left Point Y ofBB2 � Bottom Right Point Y ofBB1, (ii)
Top Left Point XofBB2 � Top Right Point XofBB1 + 20 and
Top Right Point XofBB1 � Top Left Point XofBB2 + 20. In this case,
the reasoner will infer that both bounding boxes belong to the same Major
Bounding Box and updated it.
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A large set of rules is proposed to model all the situations that could happen
in the scene according to the events handled by our ontology. The output of each
category could be used as input for another one. Indeed, an event is detected
using a rule that took as input the information inferred by a tracking rule that
has been applied to major bounding boxes identified using distance rules.

The inherent difficulty of writing down rules in SWRL or equivalent language
is the fact that the events are spanning over various time intervals. Various time
windows can be applied to the same event detection. A split event can occur in
a very short time-frame, if the groups are evolving at high speed or it could take
a long time-frame if the groups are evolving at low speed. However, we are using
a fixed time-window in order to simplify writing rules.

5 Conclusion

Video Surveillance systems become popular in our daily life to ensure security
and safety and allows to study human behavior. In this paper, we have presented
our rule based approach that allows to handle a video surveillance ontology to
detect single or multiple objects events.

In our future work, we will extend our ontology to model new concepts and
improve our SWRL rules for handling different events that can occur in video
surveillance domain.
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14. Protégé. The protégé project (2012). http://protege.stanford.edu
15. Sanchez, J.M., Binefa, X., Vitria, J., Radeva, P.: Linking visual cues and seman-

tic terms under specific digital video domains. Journal of Visual Languages and
Computing 11(3), 253–271 (2000)

16. See, J., Wei, L.S., Hanmandlu, M.: Human motion detection using fuzzy rule-base
classification of moving blob regions. In: International Conference on Robotics,
Vision, Information and Signal Processing (ROVISP) (2005)

17. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language
guide. In: W3C Recommendation (2004). http://www.w3.org/TR/2004/
REC-owl-guide-20040210/

18. Snidaro, L., Belluz, M., Foresti, G.L.: Representing and recognizing complex events
in surveillance applications. In: 4th IEEE International Conference Advanced
Video and Signal based Surveillance (AVSS), pp. 493–498 (2007)

19. Di Stefano, L., Mola, M., Neri, G., Varani, E.: A rule-based tracking system for
video surveillance applications. In: International Conference on Knowledge-Based
Intelligent Information and Engineering Systems (KES) (2002)

20. Wu, Y., Zhuang, Y., Pan, Y.: Content-based video retrieval integrating human per-
ception. In: SPIE Storage and Retrieval for Media Databases, pp. 562–570 (2001)

21. Xue, M., Zheng, S., Zhang, C.: Ontology-based surveillance video archive and
retrieval system. In: 5th International Conference on Advanced Computational
Intelligence (ICACI) (2012)

22. Yusuf, J.C.M., Su’ ud, M.M., Boursier, P., Alam, M.: Extensive overview of an
ontology-based architecture for accessing multi-format information for disaster
management. In: International Conference on Information Retrieval and Knowl-
edge Management (CAMP), pp. 294–299 (2012)

http://protege.stanford.edu
http://www.w3.org/TR/2004/REC-owl-guide-20040210/
http://www.w3.org/TR/2004/REC-owl-guide-20040210/


Semantic-Analysis Object Recognition:
Automatic Training Set Generation Using

Textual Tags

Sami Abduljalil Abdulhak1(B), Walter Riviera1, Nicola Zeni2,
Matteo Cristani1, Roberta Ferrario2, and Marco Cristani1

1 Department of Computer Science, Cá Vignal 2, Verona, Italy
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Abstract. Training sets of images for object recognition are the pillars
on which classifiers base their performances. We have built a frame-
work to support the entire process of image and textual retrieval from
search engines, which, giving an input keyword, performs a statistical
and a semantic analysis and automatically builds a training set. We
have focused our attention on textual information and we have explored,
with several experiments, three different approaches to automatically dis-
criminate between positive and negative images: keyword position, tag
frequency and semantic analysis. We present the best results for each
approach.

Keywords: Training set · Semantic · Ontology · Semantic similarity ·
Image retrieval · Textual tags · Flickr · Object recognition

1 Introduction

The process of automatically building a training set of images for object recog-
nition given a class name is a recent challenge originated from the Semantic
Robot Vision Challenge [1]. The idea is to mine on-line repositories of images
and use them to support image classifiers in object recognition tasks [2]. Given
this strategy, the goal is to exploit search engines and retrieve images that can
be used to feed a training set for a specific class.

The problem falls under the topic of Image Retrieval (IR): given a certain
query in a form of a keyword or an image, the system should present images
related to the query. Two main strategies have been deployed to tackle such
problem: content-based image retrieval (CBIR) [3] and tag/keyword-based image
retrieval (TBIR)[4].

CBIR leverages on the concept of visual similarity between the querying
image and the retrieved ones using elementary visual features such as color and
shape, through a matching of their properties, while TBIR tries to overcome the
c© Springer International Publishing Switzerland 2015
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limitations presented by the CBIR system through the exploitation of the textual
information conveyed with images, applying document retrieval techniques to
boost the retrieval performances. Nevertheless TBIR performances are influenced
by the availability and quality of the textual information users supply with
images. In fact, while manually annotating images, users often misuse tags or
provide incomplete textual descriptions of the image content [5–7].

The use of the textual information conveyed with images in the process of
image retrieval or image classification is not a novel strategy, there have been
several works that explore how the textual information can be used, among
them [8–11]. Recent approaches explore the use of tags completion either by
mining extra textual information obtained from Internet or by using content
image analysis to fill the gap[6,12].

In the present work we propose a framework that helps to automate the
entire process of training data set construction. The main idea is to use textual
information that comes along with images on the web to fully automate the
training set generation. To achieve this, we assume that the user annotation
process is not always reliable since users are not experts and may annotate
images with different purposes. Even though users upload images in a social
context where other users can use collaborative tagging to annotate images, tags
are not validated and so the subjectivity elements are not removed. Moreover,
since users are non expert, they tend to use ambiguous and inappropriate tags
to describe images content. The main idea is to explore how statistical and
semantic analysis of textual information can help to fully automate the training
set construction. In particular, we employ statistical and semantic analysis to
filter the textual information, pruning noisy tags and retaining only those that
are highly correlated with the content of an image, thus discriminating positive
from negative images1. We use statistical measures such as frequency and tags
distribution, as well as WordNet and semantic distances between tags to evaluate
their correlation and explore their contribution in the discriminative process.
Our starting assumption is that, by incrementally injecting semantic techniques
into the analysis of textual annotation, performances rise and, to validate such
assumption, a set of experiments are presented.

The rest of the paper is structured as follows: Section 2 describes the chal-
lenges of the image retrieval task and provides an overview of works in the
area. The method we propose is introduced in Section 3. Sections 4 discusses
the experimental setup and evaluation method, while the evaluation results are
presented in Section 5. Finally, conclusions and directions for future work are
presented in Section 6.
1 We consider as positive those images in which the prominence of the object pre-

sented in the image indicates that the image fully represents it. On the contrary, we
consider as negative those images where the target object is absent or only partially
present/visible, as indicated in the list in section 4.
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2 Related Work

Annotation is a widely used technique to characterize objects portrayed in images
by adding textual tags. The textual tags associated with images have been shown
to be useful, improving the access to photo repositories both using temporal [13]
and geographical information [14]. One of the popular online tag-based photo
sharing repositories is Flickr, allowing users to freely assign one or more chosen
keywords for an image for personal organization or retrieval purposes. In other
words, it allows users to perform tagging, that is the act of adding words to
images, describing the semantics of the visual contents. Users are thus implic-
itly encouraged to add more keywords, creating relatively large amounts of rich
descriptions of objects presented in images. However, the textual tags associated
with images are often noisy and unreliable, posing a number of difficulties when
dealing with IR.

A number of approaches have been proposed to measure the reliability of the
textual tags accompanying images [15–17]. In [17], the authors present a Flickr
distance to measure the correlation between different concepts obtained from
Flickr. Given a pair of concepts (e.g., car-dog), the algorithm tries to compute the
semantic distance between them using square root of Jensen-Shennon divergence.
The authors rely on the scores by considering the higher score distance as an
indication of high relatedness of a pair of concepts. Related researches have been
also focused on investigating which objects people observe most in an image,
which they annotate or tag first, and what influence them in choosing words to
describe objects depicted in images.

Spain and Perona [15] study the idea of “importance” of objects in an image and
conclude that important objects are most likely to be tagged first by humans when
asked to describe the contents of an image. The authors develop a statistical model
validating the notion of dominant object in an image, demonstrating that one can
foresee a set of prominent keywords based on the visual cues through regression.
A work that is closely related to ours is presented by Hwang and Grauman [18].
They introduce an unsupervised learning method for IR that uncovers the implicit
information about the object importance in an image, exploiting a list of keyword
tags provided by humans. The proposed method is able to disclose the relationship
between human tendencies in tagging images (e.g., words order in the tag list) and
the relative importance of objects in an image.

Traditional techniques rely on features extracted from visual contents with
visual category models learnt directly from image repositories that require no
manual supervision [8–11]. The intuition behind the approach proposed in [9]
is to learn object categories from just a few training images in an incremental
manner, using a generative probabilistic model. Similarly, Li-Jia Li and Fei-Fei
Li [10] propose an incremental learning framework, capable of automatically col-
lecting large image datasets. The authors build a database from a sample of seed
images and use the database to filter out newly crawling images by eliminating
irrelevant examples.

Fergus et al. [11] introduce a method able to learn object categories by their
name, exploiting the raw images automatically downloaded from the Google
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image search engine. The introduced approach is able to incorporate spatial
information in translation and scale invariant style, possessing the ability to
tackle the high intra-category variability and isolate irrelevant images produced
by the search engine.

Vijayanarasimhan and Grauman [19] propose an unsupervised approach to
learn visual categories by their names using a collection of images pooled from
keyword-based search engines. The main goal underneath the proposed approach
is to harvest multiple images, by translating the query names into several lan-
guages and crawling the search engines for images using those translated queries.
The false positive categories are collected from random sample images found in
categories that have different names from the category of interest.

We are working on a challenge that is: given the textual tags provided by
humans and associated with images, we want to automatically build a good
training set by discriminating images as either related or unrelated to a targeted
object.

3 Method

In this paper our goal is to take advantage of the textual tags available with
images to automatically select the most representative of an object category for
training a classifier, without looking at the nature of the objects therein. To
do so, we exploit both semantic analysis and pure statistical approaches. These
considerations lead us to focus on three main features:

– keyword position, to capture an image as related or unrelated on the basis
of a keyword (i.e., object class name) position in a tag list;

– semantic analysis, to measure the semantic relatedness by means of seman-
tic distance measures;

– tag frequency, to count the frequency of usage of each tag from a list
describing the object class.

Figure 1 presents a schematic representation of our framework. A detailed
description of the procedure is provided in the subsequent subsections.

Fig. 1. A schematic representation of our framework.
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3.1 Keyword Position

The textual tags given in a tag list and associated with an image describing its
content could reasonably help us to derive important and valuable information
about the nature of the depicted objects. However, the order in which the textual
tags are placed in a tag list is most likely to be influenced by the objects position
and size in the visual content [20]. Therefore, it is reasonable to claim that the
first textual tags in the list are mostly representing the objects in the center of
an image. Taking this keypoint into account, we use this feature to develop 5
different strategies which follow the same algorithmic structure:

Algorithm 1. Keyword Position
Data: a Keyword (i.e.,the object class name) and

T = {ti| ∀ Image i ∈ Keyword, ∃ tag − list ti }
Result: A partition of the Images ∈ Keyword in:
Image-P = {ip|i ∈ Images which are usable to build a training dataset}
Image-N = {in|i ∈ Images which are outliers}

1 Initialization;
2 foreach i ∈ Images do
3 tags ← load ti;
4 clean(tags)tagsn ← extract the first n tags from tags;
5 if ”keyword” ∈ tagsn then
6 Image-P ← i;
7 else
8 Image-N ← i;

Algorithm 1 is designed to demonstrate the systematic workflow of the key-
word position feature. Given a tag list comprising a number of textual tags and
corresponding to a particular image, the algorithm tries to search for the key-
word through the list in the first n positions. The algorithm then labels the
image as positive (reliable) if it is related to the class name or negative (outlier)
otherwise. It is noteworthy that the clean operation provided in the algorithm
is used to remove words with less than three characters, empty strings and non-
alphabetic texts. It also splits long sentences into single words, when they are
separated by the “ ” symbol.

3.2 Semantic Analysis

To define the semantic relatedness or its inverse of the object class characterized
by a keyword to the textual tags being used, semantic distance must be mea-
sured. Therefore we propose to apply two different standard semantic distance
measures: WordNet and Jiang and Conrath [20]. First we adopt the WordNet
distance [21]. WordNet is a large-scale lexical database that organizes English
terms and their syntactic roles into synsets. Synsets are interlinked by means
of conceptual-semantic and a variety of lexical relations. We choose WordNet
due to the fact that it is the first attempt to organize a great amount of con-
cepts according to semantic relations and a hierarchy. Since WordNet provides
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a lexical relationship between concepts, it is beneficial to semantically measure
relatedness of the object class to its related tags by their lexical relationship,
such as meronymy (parthood, e.g. bus-wheels) or hypernym (generalization, e.g.
bus-vehicle) and so on.

Secondly, we apply the distance measure proposed by Jiang and Conrath
in [20]. They formulate their approach in the form of conditional probability of
reaching an item of a child synset given an item of one of its parent sysnsets.

We use this feature and run several experiments according to the following
algorithmic structure:

Algorithm 2. Semantic Analysis
Data: a Keyword (i.e., the object class name) and

T = {ti| ∀ Image i ∈ Keyword, ∃ tag − list ti }
Result: A partition of the Images ∈ Keyword in:
Image-P = {ip|i ∈ Images which are usable to build a training dataset}
Image-N = {in|i ∈ Images which are outliers}

1 Initialization;
2 foreach i ∈ Images do
3 tags ← load ti;
4 clean(tags);
5 scorei ← sum or mean of the distance values of the tags;
6 if if scorei ≥ a Threshold τ then
7 Image-P ← i;
8 else
9 Image-N ← i;

Algorithm 2 is developed to clearly illustrate how we apply the semantic
analysis feature to measure the semantic relatedness or its inverse of the object
class to its textual tags. As already mentioned above, we adopt two different
distance measures: WordNet and Jiang and Conrath. The algorithm takes the
object class (represented by a keyword) and each image’s tag list, then computes
the distance of the keyword to every single textual tag in the tag list, yielding a
score for each. If the algorithm finds no semantic distance between the keyword
and a textual tag, it discards the tag. The algorithm therefore labels an image
as positive (reliable) if its score is equal or above a threshold τ ; otherwise it
labels it as negative (outlier). The threshold value τ changes with respect to the
experiment (see Section 4).

3.3 Tag Frequency

To understand which are the most frequently used tags (words) that describe
images related to a certain object class, we compute the frequency values of
all the single tag(i,j) as their occurrences probability. The idea is to perform a
selection based on the utility of the words used to describe the object depicted
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in an image. The frequency value of a single tag(i,j) is computed as follows:

Feq(tag(i,j)) =
O − tag(i,j)∑Nimages

i=1 length(tagi)
,

where tag(i,j) is the jth tag of the tag list associated to image i, and O − tag(i,j)
is the total number of a tag(i,j) occurrences. In particular, if a given frequency
value of a single tag(i,j) is relatively high, it means that many images of the
considered object class require it into their descriptions. In other words, it is
natural to think that if we are looking at an image of a “car”, we highly expect
to observe higher frequency values for tags like “wheel” or “driver” than “pizza”
or “pencil”.

We use this feature to develop 12 different strategies which follow the same
algorithmic structure:

Algorithm 3. Tag Frequency
Data: a Keyword (i.e., the object class name) and

T = {ti| ∀ Image i ∈ Keyword, ∃ tag − list ti }
Result: A partition of the Images ∈ Keyword in:
Image-P = {ip|i ∈ Images which are usable to build a training dataset}
Image-N = {in|i ∈ Images which are outliers}

1 Initialization;
2 foreach i ∈ Images do
3 tags ← load ti;
4 clean(tags);
5 scorei ← sum or mean of the frequency values of the tags;
6 if if scorei ≥ a Threshold τ then
7 Image-P ← i;
8 else
9 Image-N ← i;

Algorithm 3 uses frequency values to determine if a given image is related
to the object class. To do this, it combines the frequency values of each tag(i,j)
to produce a score. Then, it labels an image i as positive (reliable) if its score
is equal or above a threshold τ ; otherwise it labels it as negative (outlier). The
threshold value τ changes with respect to the experiment (see Section 4).

4 Experiments

We devote this section to demonstrate the systematic workflow of our framework.
Firstly, we pool images for a set of 21 object classes taken from the standard
Caltech1012, using Flickr online photo sharing3. Each class contains 400 images
2 http://www.vision.caltech.edu/Image Datasets/Caltech101
3 https://www.flickr.com/

http://www.vision.caltech.edu/Image_Datasets/Caltech101
https://www.flickr.com/
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as well as their corresponding tag lists (tagi). For simplicity, the number of
crawled images has been defined in order to minimize the computational time
of downloading images and managing their tags during the experiments. The
effective number of classes have been normalized to 16, avoiding the classes
that are composed by a bi-gram (i.e., two words). The remaining classes are:
accordian, bonsai, euphonium, face, laptop, menorah, nautilus, pagoda, panda,
piano, pyramid, revolver, starfish, sunflower, umbrella, watch. Since there are
400 images and 400 tag lists per class, the dataset is composed of 6400 images
and 6400 tag lists.

To generate the ground-truth for our experiment in a more effective and
efficient way, we build a graphical user interface (GUI) that allows us to manually
label an image as positive or as negative with respect to the object class. For
reliable manual classification, some guidelines are defined and adopted. If the
following guidelines are satisfied, then an image is labeled as negative; otherwise
as positive:

– an image is completely unrelated with the object specified by the category
it belongs to;

– an image contains irrelevant parts of the object, that is, parts that alone are
not sufficient to make the category object identifiable;

– an image contains only internal parts of the category object (like a cockpit
of an airplane or an engine of a car);

– an image is a drawing or a caricature of the category object.

For each single feature we run several different experiments based on different
strategies. Each strategy differs from the others with regard to the method used
to compute the threshold. This produces different results in determining if a
given tag list is associated to a positive or negative image.

Referring to the algorithms described in the subsection 3.1, 3.2, 3.3, we give
a brief explanation of the strategies associated to the threshold which produces
the best discrimination results:

Feature 1: Based on experiments performances, we obtain the best result when
searching if a keyword is found in the first three positions in the tag list. Sur-
prisingly, this feature does not involve any cleaning mechanism of textual tags
in the tag list (it avoids the step number 4 of algorithm 1). However, the feature
takes the textual tags as they are provided by Flickr. At this point one may ask
why using contaminated textual tags in a tag list is, unexpectedly, producing
better results than the cleaned version. The answer lays in the “filtering” mecha-
nism of the textual tags. Cleaning the tag list tagi implies producing more single
words (tagj) since the tag sentences are split. This increases the probabilities
of finding the right match with the keyword, therefore a higher number of tags
labeled as positive. This has been confirmed by the number of false positives
generated using the other strategies, which is widely higher than the number
of false positives produced by the strategy just described. To provide a better
understanding of what happens if we do not perform any tag cleaning on the tag
list, we present the following example: given the tag list relative to a negative
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image of the panda class: “zoo atlanta”, “taishan”, “giant panda”, the keyword
would not be matched since the substring matching is not performed. Therefore,
the image is labeled as negative. This results change if we clean the tag list
by splitting the sentences into single words. The cleaned tag list becomes: zoo,
atlanta, taishan, giant, panda. In this case, the keyword would match with the
5th tag and therefore the image is now labeled as positive.

Feature 2: This feature uses two different measures: the standard semantic
distance provided by WordNet, and the distance proposed by Jiang and Conrath
in [20]. To select the one which produces the best results, we use both metrics to
run the 12 strategies. We used these two distances since they are widely adopted
in literature. The comparison results are shown in figure 2 .

Fig. 2. Summary results obtained by using WordNet and Jiang and Conrath dis-
tances in [20] in all the strategies. WordNet distance is outperforming in average in
all of the strategies. We compute the precision rate for each strategy (a, b, . . . , o) as:
#TruePositive/(#TruePositive + #FalsePositive).

Using WordNet distance as shown in figure 2, we observe constant increase in
the average performances of all strategies. Therefore, in the following description
we are mainly referring to the WordNet distance. The strategy based on the
WordNet distance, which gives the best results, uses the following criteria to
split the images set: defining the scoresi as the mean of the distances between
the considered tags and the keyword:

scoresi = mean(Distance(tag(i,j) − keyword))

Feat2(scoresi) =
{

positive if mean(scoresi) ≥ τ
negative otherwise

The best result is obtained using this strategy when the threshold is set to
τ = median(scoresI), where the scoresI is the vector of all the scoresi.



318 S.A. Abdulhak et al.

Feature 3: The strategy based on the tag frequency feature, which produces
the best results, compared with the other strategies, uses the following criteria
to split the images set: defines the scoresi as the sum of the frequency values of
the considered tags with respect to the keyword:

scoresi =
Nimages∑

i=1

Fq(tag(i,j))

Feat3(scoresi) =
{

positive if mean(scoresi) ≥ τ
negative Otherwise

We reach the best results when the threshold is set to τ = mean(scoresI),
where the scoresI is the vector of all the scoresi.

5 Performances Evaluations

To assess the reliability of the experimental performances of the features
described beforehand, we select n images labeled as positives from all the strate-
gies and from Flickr. Hence, we count the true positives and the false positives
that have been generated by the strategies and by Flickr (in this case, the false
positives are the ones we manually label as negatives). Since the main goal of
this framework is to generate a reliable dataset of images, for this reason, all of
our strategies tend to produce more negative than positive labels. This behavior
allows to minimize the number of the false positive labels generated during the
experiments. Since not all strategies produce the same number of positive labels,
to avoid the problem of getting some Null values, we fix n = min(P − labels)
of each feature. The selection of the n labels has been done randomly for Flickr,
while for our strategies the first n are considered. To ensure the consistency of
Flickr performances, we average the results produced after 10 random selections.

Table 1 displays the percentage values of the performances obtained using
Flickr and our best strategies. The column #P − labels contains the different n
values used for each class. The column GT − Positives presents the number of
true positives within the ground-truth.

To make the performances reported in the table more comparable, we recal-
culate the precision percentages by fixing n = 50 positive labels4 per class. Also
in this case, the selection of the 50 labels has been done randomly for Flickr,
while for our strategies it is referred to the first n. In figure 3, we provide the
average values of each strategy for all the classes with n = 50.

In this last case, an exception is done for the “euphonium” category, since it
is composed by just 9 positive images also in the ground-truth.

At this point, one may be skeptical about the reliability of our strategies, since
we are estimating their performances by considering only 50 images against the
400 downloaded. Therefore, if we observe how the performances change when we
consider all the available positive labels shown in table 1, we are more confident
4 This parameter has been set by considering the lowest common number of labels.
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Table 1. Precision results obtained using all the features for 16 classes. Flickr provides
the number of correct positive labels from the n images downloaded from the Flickr
repository. Feat is an abbreviation for feature, where Feat.1 refers to keyword position,
Feat.2 refers to semantic analysis, and Feat.3 refers to tag frequency.

Classes # P- labels GT-Positives Flickr Feat.1 Feat.2 Feat.3

watch 218 386 / 400 94.95 95.87 96.79 96.79

sunflower 178 379 / 400 93.26 97.19 96.63 96.63

bonsai 119 362 / 400 90.76 90.76 92.44 88.24

panda 182 359 / 400 89.56 90.11 32.31 97.25

laptop 171 359 / 400 88.30 92.98 93.57 87.72

pyramid 203 250 / 400 65.02 60.10 64.04 64.04

starfish 170 211 / 400 49.41 60.00 56.47 53.53

piano 50 105 / 400 37.50 58.33 37.50 70.83

umbrella 175 164 / 400 37.14 41.14 41.71 44.00

menorah 148 146 / 400 34.46 33.78 29.73 35.81

accordion 158 118 / 400 31.01 29.75 31.65 28.48

pagoda 167 114 / 400 29.94 32.34 34.13 38.32

face 135 120 / 400 28.15 31.11 25.19 27.41

revolver 127 110 / 400 26.77 38.58 42.52 31.50

nautilus 163 67 / 400 17.79 22.09 25.15 17.79

euphonium 8 9 / 400 0 62.5 0 0

Fig. 3. Summary of results of all the features by fixing n = 50. The highest precision
is given using feat.1 (i.e., keyword position).

on our results. Indeed, if we calculate the average of the positive labels consid-
ered in the last case, we can observe (see table 2) that the performances remain
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constant when setting n �= 50. The overall performance of our strategies still out-
performs Flickr. In particular, using keyword position, the average performance
obtained is encouragingly good (about 11% higher than Flickr). This informa-
tion is further enriched since it provides us with a more reliable percentage value
than the ones provided by the results of n = 50.

Table 2. The average performance of all the features when n = 50 and n �= 50

# P- labels Flickr Feat.1 Feat.2 Feat.3

�= 50 50.87 61.18 56.62 55.50

= 50 50.87 62.18 56.62 55.50

6 Conclusions

We have presented a framework to support the entire process of image and
textual retrieval from search engines that, given an input keyword, performs
a statistical and a semantic analysis and automatically builds a training set.
We have conducted several experiments to validate our assumptions about the
analysis of textual information and the evaluation that we have provided on
three investigated methods have shown that the position of tags, their order,
is relevant. We have investigated the semantic aspects by using semantic dis-
tance. Unfortunately, the results achieved show modest benefit for the adopted
semantic features. However, the methods suggested are currently under contin-
uous experimentation and need to bee further investigated. In particular, we
consider for future work to explore the use of different search engines such as
Google5, ImageNet6, InstaGram7 or Pinterest 8 to check if they are interchange-
able or can be combined to improve performances. We plan also to extend and
investigate other semantic features related to ontological relationships of textual
information and combine them with the aim of creating a waterfall model which
combines different strategies.
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Abstract. Where do the predicates in a game ontology come from?
We use RGBD vision to learn a) the spatial structure of a board, and
b) the number of parameters in a move or transition. These are used to
define state-transition predicates for a logical description of each game
state. Given a set of videos for a game, we use an improved 3D multi-
object tracking to obtain the positions of each piece in games such as 4-
peg solitaire or Towers of Hanoi. The spatial positions occupied by pieces
over the entire game is clustered, revealing the structure of the board.
Each frame is represented as a Semantic Graph with edges encoding
spatial relations between pieces. Changes in the graphs between game
states reveal the structure of a “move”. Knowledge from spatial structure
and semantic graphs is mapped to FOL descriptions of the moves and
used in an Inductive Logic framework to infer the valid moves and other
rules of the game. Discovered predicate structures and induced rules are
demonstrated for several games with varying board layouts and move
structures.

Keywords: Predicate discovery · Spatial structure discovery · Game
rule learning · Semantic graphs · Multi-object tracking · Vision-based
ontology discovery · Inductive logic programming · Kinect

1 Introduction

Any formal system is built on a base vocabulary of predicates, functions and
constants. These predicates may show much variability while representing the
same linguistic terms. In modeling games with moving pieces, predicates such as
move() or adjacent() may vary in argument patterns and semantics owing to
differences between games. Thus, in Tic-tac-toe, a move involves adding a piece,
whereas in Towers of Hanoi or Kalaha, many pieces may be moved at once.
Thus, the arity of move() varies across games. Similarly, adjacency relations
will change depending on the board layout (1-D, 2-D, mixed-vertical, triangle vs
grid, etc.). In order for an ontology to be induced for such games, it is crucial
that one start with the right predicates. In addition the range of constant values
that a variable can take (e.g. the set of valid positions) has to be specified. In
this paper, we look at single-person games involving pieces that move, and we
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ask if instead of introducing such knowledge implicitly in the background, can
we discover such structures by visually observing the game play?

Inductive Logic Programming and allied methods have shown immense advan-
tages in learning domain theories for a wide class of problems [6,18], but the
approach is still restricted by an inability to discover a suitable set of predicates,
which require grounding in sensorimotor data. Formal systems with polymor-
phism permit functions with varying arity, but these cannot be handled effi-
ciently is inductive logic situations. Thus, the background input for inductive
logic programming invariably involves predicates with fixed arities.

When a child is shown a game of Tic-tac-toe, that each move involves adding a
single piece is immediately obvious, whereas in Towers of Hanoi, it is clear that a
move may involve several pieces. Similarly, one glance at a chess board tells
a learner that it has 8×8 squares, and that the position of any piece can take
a value only from these 64 possibilities. This suggests that some aspects of the
vocabulary used in the background theory may be inferred by the learner - as
opposed to being programmed - thus providing greater flexibility for inducing
the domain theory.

Here, we build on recent work in semantic graph discovery from RGB-D
(depth data) images to learn structures of interactions between objects [2,25]
to explore the possibility of learning some aspects of predicate structures in
games involving moving pieces. Specifically, we attempt to discover a) the arity
and structure of base predicates such as move(), and b) the underlying spatial
structure that provides the set of constants that define admissible values for some
fluents like position. In the process, we also construct visual semantic interpreters
and generators for these predicates, in terms of the visual routines which result
in a discovered cluster.

The approach is demonstrated in three one-person games (or puzzles) involv-
ing spatial reconfiguration of pieces : Jumping frogs (1-D); Towers of Hanoi (1-D
with vertical) and 4×4 Peg Solitaire (2-D)(Fig. 1). Both Jumping frogs and Peg
solitaire have been modeled in simulation using the BlenSor RGBD simulation
system[11]; Towers of Hanoi has been tested both on real and simualted data.
The datasets and code used is being made available at http://www.cse.iitk.ac.
in/users/vision/debidatt/

(a) Jumping frogs puzzle (b) Towers of Hanoi (c) 4×4 Peg Solitaire

Fig. 1. Examples of Spatial Reconfiguration games handled. Board spatial layout and
predicate structures such as number of pieces involved in moves are inferred from the
visual structure. ILP then is able to infer aspects such as that higher disks must be
smaller in Towers of Hanoi.

http://www.cse.iitk.ac.in/users/vision/debidatt/
http://www.cse.iitk.ac.in/users/vision/debidatt/
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2 Related Work

Inductive logic programming (ILP) attempts to hypothesize the simplest hypoth-
esis explaining a set of (mostly) positive examples using background knowl-
edge [6,18]. More formally, given a set of observed examples Ei (propositions),
and the categories ci they belong to, ILP attempts to find the simplest model
H (a first-order-logic theory) s.t. for all training pairs 〈Ei, ci〉,H ∧ Ei ∧ B |= ci,
while ∀c′ �= ci,H ∧ Ei ∧ B �|= ci.

ILP approaches have been used in learning the rules for boardgames like
Tic-Tac-Toe and Hexapawn [3], dice-based games [23] and card games [12,16].
In each of these, the backghround knowledge already covers concepts like board
representation, adjacency / linearity tests, frame axioms, turns and opponents,
piece ownership and spatial predicates. Our objective is to start a bit further
back, and try to discover the structure for some these predicates.

However, hypotheses discovered by ILP (Progol) are restricted to essentially
single clause hypotheses in the refutation chain, and multi-clause induction is
highly inefficient [19,24]. One approach to multi-clause induction is to prioritize
the ordering of rules using a set of meta theoretic rules (“top theory”) that
enables multi-clause refutations [19]. This has been used in learning grammars
and also a strategy for the Nim game. Other attempts to extend the paradigm
include interleaving induction with abduction models to generate more compact
models for modeling event structures [9]. Systems attempting to learn game
strategy are better served by using models related to learning planns, which
often use a PDDL structure [10]. However, our objective here is at the vision-
logic interface, and not in the domain of logic per se, hence we restrict ourselves
to Progol for our testing.

2.1 Inducing Domain Theories for Games from Vision

Inducing rules of games using vision as input has been attracting increasing
attention in recent years [3,12,13], since they provide a key test for other gen-
eralizations that may be possible for real-world problems. In Barbu etal [3], the
learned rules are used impressively by a robot to manipulate the pieces onto a
wooden frame to actually play the game. They use ILP (Progol) to learn valid
moves of the game pieces and winning conditions in six games. The approach
proposed by Kaiser [13] is also inductive, requiring a few visual demonstrations
to learn rules for games such as Connect4 or Gomoku.

However, these systems needs to be provided with the predicate structure
implicitly via background knowledge. Thus [3,4,13] all assume a 2-D grid of
known size, and pre-define the set of possible moves and adjacency relations of
interest. The priors embedded in the background knowledge thus restrict the
generality of such systems. Also, the visual classifiers associated with each pred-
icate are hard-coded and game specific. We show that as part of ths semantic-
graph analysis, these visual routines, (and hence the argument structure) can be
discovered for predicates like move().
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2.2 Representing Scenes with Semantic Graphs

In a series of recent papers, Aksoy and co-workers [1,2] have mapped videos
to dynamic graphs with nodes representing objects and edges encoding seman-
tic relations such as contact. Related ideas for learning semantic relations by
tracking objects can be found in the semantic segmentation of scenes[7], affor-
dance modeling of objects[15] and manipulation planning[5]. Semantic graphs
can model manipulation actions[2][25] in terms of primitives like merging and
dividing and used to classify higher-order actions like making a sandwich, cutting
a cucumber, pouring liquids, etc. When a piece is moved in a game, manipula-
tions are relatively simpler, since the piece does not deform or merge into others.

A key requirement for our work is that objects must be tracked reliably across
visual frames. As in [25], we propose to use Kinect-based RGBD image inputs for
the tracking. Contact between pieces is important in some games (e.g. Towers of
Hanoi), and this is determined by analyzing four types of relationships between
each pair: touching, overlapping, non-touching and absent. A matrix encoding
all possible relation pairs is created and this is compressed to represent only the
change in relation pairs. The dynamic changes in graphs caused by manipulation
actions are compared by converting these relations into strings. Thus one may
define spatial and temporal similarity measures between different actions, and
cluster such actions, resulting in a template for game actions such as move().
Other candidates for edges in semantic graphs may be obtained by tracking the
hand in 3D videos [20].

In the attempt presented here, part of the structure is being learned via the
semantic graph in terms of contact and neighbourhood relations, and this is
used to identify the type of primitive predicates that would be used to describe
the system. These predicates are added to a sparse human-defined ontology of
background knowledge in order to learn rules for games and puzzles from the
RGBD videos.

We modify the semantic graph for situations specific to rigid piece motions
as in games. We are given a set of game videos as input, but are not told about
the spatial structure - whether it is being played on a grid or a line or a triangle
or other spatial layout. We also do not know the number of pieces involved in
each state-transition and their specific behaviours. In the next section, we see
how we do this starting with RGBD videos which enable improved 3D tracking
since camera-based depth data is available. For example. clustering all the 3D
positions of the pieces enable us to obtain the “cells” that a piece can occupy.
Grid layouts are identified using Principal Component Analysis; if the layout is
aligned to the dominant eigenvectors, it is a grid. Next, we identify if there is
direct contact (as in Towers of Hanoi), if so, contact is used as the edge relation
in our semantic graph. Else, we use adjacency relations defined on the board
discovered. This initial analysis also tells us the number of changes that occur
on different types of moves, and how these can be captured in terms of a “move”
or a “transition” predicate.

In our work we analyze the RGBD video of a game. If there are contact situa-
tions, we consider contact as a primitive for the Semantic graph analysis; else we
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use neighbourhoods on the discovered spatial structure. These relationships are
mapped to FOL predicates which are then used in an ILP framework to induce
rules for the game.

3 Semantic Graphs of Game Scenes from RGBD Video

In order to generate semantic graphs from images or point clouds, the first task
is to robustly segment and track each piece. Challenges include occlusion by the
hand or by other objects and altered appearance. Other changes come about
due to division or merging (e.g. a tower may be a single merged object in Towers
of Hanoi). The above problem is simpler in games because pieces are usually
rigid. However, many games have pieces that are identical in colour and shape,
throwing up other challenges.

3.1 Game Piece Segmentation

With 3D data, object segmentation can be performed to cluster points close to
each together based on Euclidean distance[22]. Algorithm 1 is a modified version
where we perform filtering based on the colour in the HSV space before the
clusters of points are discovered in the scene by doing Euclidean clustering based
on distance. This is done because sometimes game pieces of different colours
might be placed on top on another or in contact with each other like in the
Towers of Hanoi. So our objective is to extract clusters of points as game pieces.
These clusters should either have perceptually different colours or be separated
above a particular threshold in space as shown in Fig. 2.

Algorithm 1. Pipeline to extract objects from scene
1. Use a Pass Through filter to focus on the table-top.
2. Use RANSAC to filter out points of the table-top from the cloud.
3. Perform Colour-based filtering of the point cloud in HSV space.
4. Do euclidean clustering of the different colour clouds to give objects that are either
separated in space or have perceptually different colours.

Fig. 2. Game pieces found in a scene from the real Towers of Hanoi dataset
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3.2 Multi-object Tracking

In the multi-object tracking problem, a label associated with an object needs to
be linked with the same object in the next frame and this needs to be done with
all objects present in the scene. The problem is challenging owing to all pieces
being identical in many games, and further complicated due to occlusion by the
player’s hand or by other pieces. A model-based detection method cannot be
used here since many objects have the same shape and colour.

Aksoy et al.[2], extracted segments from the images using super-paramagnetic
clustering in a spin-lattice model[8]. Doing this allowed them to perform robust
markerless tracking of the segments. A number of other tracking algorithms[14,
25] attempt to handle objects that may break up (cutting with a knife) or join
together (pouring from one glass to another), etc. Since game pieces are usually
rigid our tracker can make the assumption that pieces do not break up or merge
significantly.

Our proposed method for tracking multiple-objects in a point cloud video
is based on the occupancy of voxels by an object in one frame and the next.
Multiple object tracking can be reduced to an assignment problem where the
objects detected in frame i need to matched with themselves in frame i + 1.

The assignment problem is a combinatorial optimization problem. It con-
sists of finding a maximum weight or minimum cost matching in a weighted
bipartite graph. In other words, there are two sets A = {a1, a2, .., an} and
B = {b1, b2, ..., bn}. There is a certain cost for matching a ai with a bj . The
assignment problem is to match each members of set A one member of set B
such that the total cost of the assignments is minimized. The Hungarian method
is used to solve the label assignment problem in polynomial time.

Using Euclidean distance between the centroids [5] may fail if there are mul-
tiple objects moving simultaneously. We use the octree overlap between point
clouds that is the amount of overlap between axis-oriented bounding boxes of the
objects. The hierarchical octree [17] method reduces complexity by downsam-
pling the point cloud. We build the octree representation of the objects found by
segmentation in two consecutive frames. If it moves, there is going to be a spa-
tial overlap between the same object in the two consecutive frames. This overlap
will be zero with the other objects present in the scene. We use this overlap in
space to track objects by maximizing the sum of all overlaps while assigning
labels from one frame to the next. There are two assumptions that make this
tracking algorithm work. Our objects of interest are non-planar and rigid. Planar
objects may have zero overlap with themselves in the next frame. The action
performed by the player is slow enough for the Kinect to record the movement
of the objects. If the frame-rate of recording the point clouds is slow there will
be no overlap. In our case, however, we recorded gameplay at the usual pace
a person plays and there was considerable overlap between the same objects in
consecutive frames at normal Kinect recording rates. We also suggest the use of
a Kalman filter to improve tracking under full occlusion.
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3.3 Semantic Graphs

A semantic graph of the scene encodes the relationships between the objects.
Building semantic graphs depends on choosing some primitive relations for the
edges, and this often depends on the task one is looking at. An intuitive primitive
is to consider contact, e.g. Yang et al.[25], but sometimes an object like a bar, may
be privileged [5]. In our situation, the table-top is a special object whose contacts
are not listed as predicates. Aksoy et al.[2] encode proximity relationships even if
they are not in contact. They also encoded the semantic relationship overlapping
which meant one segment is included in another.

(a) Frame 93 from Towers of Hanoi (simulation)
dataset

(b) Semantic Graph

Fig. 3. Example Semantic Graph

In most board games or puzzles the game state is altered by picking up a
piece and placing it somewhere else on the board, but sometimes an intermediate
piece or the piece at the target square, if of an opposing colour, may be removed.
In games such as the Towers of Hanoi, vertical contact occurs frequently, and
this needs to be represented.

In Fig. 3, there are four pieces from largest piece (1, yellow) to smallest (4,
blue) with red (2) and green (3) in between. The board is labeled B. Edges
reflect contact between pieces. Thus, the graph shows that a stack of 1,2 is on
the board, as well as 4, but the green piece (3) is not in contact with anything.
Changes in this semantic graph - e.g. 3 being placed on top of 2 - will represent
a move action.

We can now discover the states of the game by looking for configuration
changes of the game pieces on the board. Every time a player lifts up a piece, an
edge is broken. The moment the player places the piece back on the board or on
another piece, a new edge is formed. Hence, game states can easily be discovered
from the video by looking for states where the number of edges changes. Each
node in the graph also stores meta-information such as the coordinates of its
centroid, average colour of the object, number of visible points and the volume
occupied by the bounding box of the object in the current frame. After the states
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(a) Frame 4 with Semantic Graph (b) Frame 83 with Semantic Graph

(c) Frame 173 with Semantic Graph (d) Frame 251 with Semantic Graph

Fig. 4. Automatic detection of game states in the Towers of Hanoi Real dataset. Blocks
and their labels in the graph:(1,purple),(2,yellow),(3,green),(4,orange). For example,
comparing graphs (a) and (b), we find that the move consisted in taking the piece 2
from the stack 3,1,2 to the board.

have been detected, the change from one state to another can be found out by
looking for changes in the meta-information. In Fig. 4, some game states from
the Towers of Hanoi dataset, that were discovered automatically, are shown.

We observe that discovering game states is not a trivial problem. For example in
the 4×4 peg solitaire, after a piece has been moved, the intermediate, jumped-over
piece is removed. Here the system needs to be told that the intermediate stage does



Predicate Arity and Spatial Structure for Inductive Learning of Game Rules 331

not constitute a “game state”. This could also be learned via a heuristic looking at
pauses in the game, but as of now, this has not been implemented.

4 Learning Spatial States

Many logical systems start with an implicit assumption about the board on
which the game is being played. But this need not be the case. A human observ-
ing a game immediately notes the type of board on which the game is being
played. Thus, a game such as a 4×4 peg solitaire will have a 2-D structure in the
horizontal plane, whereas the Towers of Hanoi has essentially a 1-D structure
with vertical contacts. The distribution of spatial locations of the pieces during
an entire game can be used to infer the game board, using the following steps:

1. Discover intrinsic dimensionality of the game: The system does not
have any idea in the beginning whether the game is 1D or 2D or 3D. After
it has discovered the game states by using the methods described in the
previous section, it populates a list of the positions of all the game pieces
across all the game-state frames. These are data points where game pieces
have visited during the game play. By performing Singular Value Decompo-
sition(SVD) on these coordinates the intrinsic dimensionality of the game is
known. One-dimensional games have only one significant eigenvalue.

2. Transform from camera coordinates to board coordinates: Xb, Yb, Zb

are coordinates of the object in the frame of the board which will be used
to find the clusters. These co-ordinates are obtained by transforming the
camera coordinates Xc, Yc, Zc by using the cosines of the angles between
the axes. x̂b, ŷb and ẑb represent the unit vectors of the axes in the frame
of the board. ẑb is obtained as the average of normals of the points on the
board. x̂b and ŷb are obtained by SVD mentioned above. The eigenvector
corresponding to the largest eigenvalue gives x̂b if it doesn’t coincide with
ẑb. Similarly, In 2D games the second significant eigenvector gives ŷb. This
can also be found as a cross product of ẑb and x̂b. The above generalizations
don’t hold true when the game being played doesn’t conform to an usual
rectangular grid like triangular peg solitaire.

3. Discover discrete valid positions of game pieces: The next step is to
look for clusters in the positions occupied by game pieces in the game states.
While finding out the optimal number of clusters is an open problem, there
are statistical methods to estimate the optimum number of clusters in a
dataset like ours. One method will be to look for an elbow or a bend in the
sum of squared error(SSE) plot. The locations of the clusters are discovered
by performing k-means clustering using the value of k found by using the
elbow method. In Fig. 5(a) and Fig. 5(b) there are sixteen clusters and three
clusters respectively. Fig. 6 shows the elbow method being used to determine
the number of clusters in corresponding to the four holes in one dimension
in 4 × 4PegSolitaire.
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(a) 16 clusters in 4×4 Peg Solitaire (b) Three clusters in Towers of Hanoi

Fig. 5. Clusters formed in the significant dimension

Fig. 6. Elbow method to find number of clusters in one axis of 4×4 Peg Solitaire

4. Represent game state: For each game state, each game piece is assigned
to its nearest cluster. Doing so, allows us to generate a general representa-
tion of game states of any game. This might leave us with a cluster that
is unoccupied which can be represented as empty. We transfer these states
to a logic programming system which will be a better domain to induce
the rules of games. The first game state(Fig. 1(a)) in Four Frogs will be
[{a},{b},{},{c},{d}] where a, b, c and d are the labels given to the game
pieces. The third hole is unoccupied in the beginning which is represented
by the empty set. In Towers of Hanoi, the state shown in Fig. 1(b) will be
represented by [{a,b,c},{d},{}]. This representation is there to handle
games where pieces can be placed one on top another occupying the same
discrete cluster on the board. This can be extended to 2D games where a
matrix of characters will represent the game state.

4.1 From Semantic Graphs to Horn Clauses

We use meta-information contained in the nodes of the graphs and changes in that
from one game state to the next to generate logical clauses that will help us learn
the rules. We generate the background knowledge and positive examples (instances
seen in video) to come up with hypotheses regarding the rules of the game.

The ontology used to represent games and involves three kind of predicates:
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1. Attributes of game pieces derived from visual classifiers like size, colour,
shape, starting position etc.

2. Relationships between game pieces generated from the edges of the semantic
graphs like on, contact etc.

3. Movement of game pieces generated from changes in game states and seman-
tic graphs (move, transition, etc.).

Background Knowledge:We assume that game pieces are objects that
will need to be monitored. Attributes of the game pieces like color, shape and
size may constrain the possible moves it can make. First, we need to identify
the number of pieces. Thus, a 4-piece Towers of Hanoi, may have the following
initial declaration: piece(a). piece(b). piece(c). piece(d).

In 1-D games, location is described with one variable and in 2-D with two. In
the Towers of Hanoi, 3 clusters are discovered on the primary eigenvector. Each
cluster is also associated with a number which helps in comparing their position
with other clusters. They are declared as follows: x(l1). x(l2). x(l3).
project(l1,1). project(l2,2). project(l3,3). A set of colours are pre-
defined and associated with a HSV classifier. These are used to declare a colour
for each game piece:
colour(a,red). colour(b,green). colour(c,yellow). colour(d,blue).

Numerical features like size is obtained as the largest dimension of the bound-
ing box of the game piece, rounded off to an integer scale:
size(a,1). size(b,3). size(c,9). size(d,10).

We do not use shape classifiers in the present analysis since in the games
we consider all objects have the same shape. For each numerical feature there
is a meta-clause generator that compares their values. For example the clause
generated for size is shown below:
greatersize(A,B) :- piece(A),piece(B),size(A,NA),size(B,NB),NA>NB.

The function diff gives us the number of steps a game piece has been moved
and in what direction (positive is along the default axis). absDiff ignores the
direction. In the 4×4 peg-solitaire diff and absDiff operate on each dimension
separately. In the towers of hanoi we also use predicates for top and bottom in a
stack.
diff(X1,X2,Diff):- x(X1),x(X2),project(X1,N1),project(X2,N2),
Diff is N1-N2.
abs(X,X) :- X>=0.abs(X,Y) :- X<0, Y is -X.
absDiff(X1,X2,Diff) :- x(X1),x(X2),project(X1,N1),project(X2,N2),
Diff1 is X1-X2, abs(Diff1,Diff).
neighbour(X1,X2) :- absDiff(X1,X2,1).
top(A,[A]).top(A,[B|C]) :- top(A,C).
bottom(A,[A]).bottom(A,[B|C]) :- bottom(A,B).

Note that for 2D games, the diff is modified xDiff and yDiff and similarly for
absDiff.

Given a set of observations we can obtain Positive examples of board
play. A critical inference has to do with valid Moves of game pieces. A move
results in a transition from one spatial graph to another, which includes a piece
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move along with possible side effects (e.g. removal of the intermediate piece in
4×4 peg solitaire). The relationship transition encodes the active piece and the
states of clusters that undergo change from one game state to the next. It has
the following structure:
transition(<active pieces>,<initial states>,<final states)>.
The predicate shown below is from the Towers of Hanoi game and represents a
piece d being moved where the set of game pieces at the initial position l1 was
[a,b,c,d] and that at final position l2 after the move was [d]:
transition(d,[a,b,c,d],[],[a,b,c],[d]).
The arity of the transition predicate varies from game to game. In the 4× 4 Peg
Solitaire, the number of pieces involved in a move are two and the number of
positions where there is change from one game state to the next is three. Hence,
the transition relation example for the move where piece p1 in position l1 jumps
over piece p2 in l2 to land in l3 following which p2 is removed looks like this:
transition(p1,p2,[p1],[p2],[],[],[],[p1]).

Table 1. Games learnt with their respective modes of data generation

Game Nature of Dataset

Towers of Hanoi
Animated(generated in Blensor),

Real(recorded with a Kinect)

Four Frogs Animated(generated in Blensor)

4 × 4 Peg Solitaire Game traces of a simulation

5 Experiments and Results

5.1 Towers of Hanoi

In addition to one real game played, we used the RGBD simulator BlenSor[11] to
animate four differently sized blocks with Towers of Hanoi puzzle being solved.
There are 740 frames of 640 × 480 RGBD images recorded on an artificial Kinect
sensor in BlenSor. The real Kinect data with the Towers of Hanoi being by a
person has 1200 frames. The ILP system input includes the following:
colour(a,yellow).colour(b,red).colour(c,green).colour(d,blue).
size(a,10).size(b,8).size(c,4).size(d,2).
on(d,a).on(d,b).on(d,c).on(c,b).on(c,a).on(b,a).
from(d,[a,b,c,d],[d]).from(c,[a,b,c],[c]).from(d,[d],[c,d]).

The rules learnt by PROGOL are:
on(A,B) :- greatersize(B,A).
transition(A,B,C,D,E) :- top(A,C), top(A,E).

The first rule translates as “No disk may be placed on top of a smaller disk.”
The second rule says that piece A moves from the top of the stack C and to
the top of stack E. The system sees that all six on() relations have occurred
over the game, and no negations are given, so it infers that on(A,B) must hold
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whenever greatersize(B,A) which is not true but in inferred as time is not taken
into account.

5.2 Jumping Frogs puzzle

The animated dataset consists of 560 frames of 640 × 480 RGBD images. There
are five cylindrical holes in a row, two red pegs (which can only move right) and
two blue pegs (only move left)(Fig. 1(a)). Initially, the red pegs are placed in the
two left holes and the blue pegs are placed in the two right holes leaving a hole
in between that is empty. The goal of the game is to swap the positions of the
red pegs with the blue pegs. PROGOL generalizes the clause move and comes
up with four rules:
move(A,B,C) :- diff(B,C,-2), colour(A,blue).
move(A,B,C) :- diff(B,C,-1), colour(A,blue).
move(A,B,C) :- diff(B,C,1), colour(A,red).
move(A,B,C) :- diff(B,C,2), colour(A,red).

We learn that if there is an object that moves right its colour must be red and
if there is one which moves left then its colour must be blue. More interestingly,
the system discovers that there are two types of moves a piece is able to do that
is one step and one jump which implies moving two steps at the same time.

The colours of the pegs were then interchanged. The rules learnt by append-
ing the newer clauses with the older ones are:
move(A,B,C) :- diff(B,C,-2), startpos(A,l1).
move(A,B,C) :- diff(B,C,-2), startpos(A,l2).
move(A,B,C) :- diff(B,C,-1), startpos(A,l1).
move(A,B,C) :- diff(B,C,-1), startpos(A,l2).
move(A,B,C) :- diff(B,C,1), startpos(A,l4).
move(A,B,C) :- diff(B,C,1), startpos(A,l5).
move(A,B,C) :- diff(B,C,2), startpos(A,l4).
move(A,B,C) :- diff(B,C,2), startpos(A,l5).
Thus the colour dependence is replaced by a clause for the row where the pieces
start from. This highlights the fact how the rules learnt by induction learning
can undergo radical changes depending on the dataset.

5.3 4 × 4 Peg Solitaire

In the beginning, of this game there are 15 marbles arranged in form of a 4 ×
4 grid with one position empty(Fig. 1(c). The marbles can only move by jump-
ing to an empty position and by doing so the piece over which they jumped
is removed. The objective is to remove as many pieces as one can, preferably
reaching a single piece. We use game traces of a simulation of this game being
solved to test how good our system is in inducing the rules in case it has perfect
information regarding the game states. The rules learnt by ILP are:

move(A,B,C):- xabsdiff(B,C,2). move(A,B,C):- yabsdiff(B,C,2).
transition(A,B,C,D,E,E,E,C):-piece(A),piece(B),top(A,C),
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bottom(A,C),top(B,D),bottom(B,D),empty(E).

The two move rules have learned that the moves take place either horizon-
tal or vertical rows of three neighbouring cells. In the transition predicate, the
arguments are the pieces involved (here A,B), and the remaining 3+3 arguments
are the pieces at the three locations involved, before and after the move. Thus
the learned rule says that the state of loc1 and loc2 changes to E, which was the
initial state of loc3. The piece at loc3 becomes C which was initially at loc1 (i.e.
the piece A is moved to loc3). Thus, the rule infers that A moves from loc1 to
loc 3, and that the piece B is removed from the jumped-over position loc2. The
three locations are arranged in a horizontal or vertical row of the board.

5.4 Discussion

We observe that in all three cases, the spatial structure can be inferred at the
visual level, permitting a set of constants which the position attributes in move()
etc can be assigned to. Also the number of pieces and positions affected by
move are identified in the vision system. When the resulting game states and
transitions are introduced into the ILP system, we find that it is able to derive
the right rules, such as identifying that in ToH, the higher disks must be smaller,
or that in peg solitaire, adjacency relations (for move) are only row or colum-
wise. Similarly, in the peg solitaire, the fact that the jumped-over piece (also an
argument to move) is removed, is inferred.

6 Conclusion

One of the major challenges in inducing knowledge representations involves dis-
covering the right set of logical primitives to be used. Here we have presented a
framework that is able to analyze RGBD videos of game scenes using dynamic
semantic graphs, which permit generation of suitable Horn Clause structures. The
system uses an improved tracking based on the assumption that game pieces do not
change shape or visual attributes (like colour or shape). We then demonstrate its
application in learning the rules of game and puzzles. The system can successfully
induce the spatial description of boards for 1-D and 2-D games, and also induce
vertical contact situations and their ramifications for an otherwise 1-D game such
as Towers of Hanoi. The arity of predicates such as “move” varies in these games
and is captured via the pre-processing in the Semantic Graph step.

As of now, we have demonstrated this for only three simple games. A number
of loose ends remain in the present implementation. As of now, the end states
of a game are not being discovered, hence we are not able to generate a Game
Description Language(GDL) which will enable the system to start playing these
games. In most real situations, the learner often needs to be told about the start
and end configurations along with whether it was a winning or losing game, etc.
Our system can be enhanced with this start and goal state knowledge to generate
the suitable GDL for automatic game playing. Further, the system cannot handle
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multi-player games, which require event calculus representations. However, our
main focus has been to demonstrate the idea of obtaining descriptors with the
correct number of arguments, which would apply equally to event calculus or
other planning formalisms.

Also, for any system using vision, improvements are always possible in track-
ing. Recent research[14][21] on multi-object tracking has shown encouraging
results which may be helpful in tracking for games with more game pieces.

However, the main contribution of this work is at the level of the implicit
knowledge used in defining logical descriptors. This is a challenging problem for
knowledege representation in general that has not been adequately investigated,
and this work takes some initial steps in developing vision-based approaches
towards discovering this implicit structure.
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Abstract. We propose a commonsense theory of space and motion for
the high-level semantic interpretation of dynamic scenes. The theory
provides primitives for commonsense representation and reasoning with
qualitative spatial relations, depth profiles, and spatio-temporal change;
these may be combined with probabilistic methods for modelling and
hypothesising event and object relations. The proposed framework has
been implemented as a general activity abstraction and reasoning engine,
which we demonstrate by generating declaratively grounded visuo-spatial
narratives of perceptual input from vision and depth sensors for a bench-
mark scenario.

Our long-term goal is to provide general tools (integrating different
aspects of space, action, and change) necessary for tasks such as real-
time human activity interpretation and dynamic sensor control within
the purview of cognitive vision, interaction, and control.

1 Introduction

Systems that monitor and interact with an environment populated by humans
and other artefacts require a formal means for representing and reasoning about
spatio-temporal, event and action based phenomena that are grounded to real
public and private scenarios (e.g., logistical processes, activities of everyday liv-
ing) of the environment being modelled. A fundamental requirement within such
application domains is the need to explicitly represent and reason about dynamic
spatial configurations or scenes and, for real world problems, integrated reason-
ing about space, actions, and change [1]. With these modelling primitives, the
ability to perform predictive and explanatory analyses on the basis of sensory
data is crucial for creating a useful intelligent function within such environments.

Commonsense, Space, Change. Qualitative Spatial & Temporal Representa-
tion and Reasoning (QSTR) provide a commonsensical interface to abstract and
reason about quantitative spatial information [2]. Qualitative spatial / tempo-
ral calculi are relational-algebraic systems pertaining to one or more aspects of
space such as topology, orientation, direction, size [3].

The integration of qualitative spatial representation and reasoning techniques
within general commonsense reasoning frameworks in AI is an essential next-step

c© Springer International Publishing Switzerland 2015
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Fig. 1. Semantic Interpretation by Perceptual Narrativisation

for their applicability toward tasks such as spatial planning, spatio-temporal
diagnosis and abnormality detection, event recognition and behaviour interpre-
tation [4]. CLP(QS) [5] provides a framework for declarative spatial reasoning.

Perceptual Narratives [6] are declarative models of visual, auditory, haptic and
other observations in the real world that are obtained via artificial sensors and /
or human input. As an example, consider the smart meeting cinematography
domain, where perceptual narratives as in Fig. 1 are generated based on perceived
spatial change interpreted as interactions of humans in the environment. Such
narratives explaining the ongoing activities are needed to anticipate changes in
the environment, as well as to appropriately influence the real-time control of
the camera system.

We suggest that the semantic interpretation of activities from video, depth
(e.g., time-of-flight devices such as Kinect), and other forms of sensory input
requires the representational and inferential mediation of qualitative abstrac-
tions of space, action, and change [1]. Generation of perceptual narratives, and
their access via the declarative interface of logic programming facilitates the
integration of the overall framework in bigger projects concerned with cognitive
vision, robotics, hybrid-intelligent systems etc.

The particular focus and contributions of this paper are: (a) Space and
motion: declaratively reasoning about qualitative spatial relations (e.g., topol-
ogy, orientation), and motion in the context of everyday activities involving
humans and artefacts (b) Hybridisation: integrating the qualitative theory with
a probabilistic method for hypothesising object relations (c) Semantic charac-
terisation: as a result of (a) and (b), generation of declarative narratives of
perceptual RGB-D data that is obtained directly from people/object tracking
algorithms.

2 Related Work

The core emphasis in activity and behaviour recognition has been on supervised
learning algorithms requiring preprocessed (e.g., annotated) datasets from sen-
sory streams. Unsupervised methods have received recent attention, with hybrid
models integrating machine learning techniques with high-level structured repre-
sentation and reasoning gaining recent momentum. The literature review below
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Fig. 2. Activity Sequence: passing in-between people, corresponding RGB and Depth
profile data

concentrates on proposals concerned with the main aspects of the investigation
reported in the present paper, namely, the high-level interpretation of events
from the standpoint of Qualitative Spatial & Temporal Representation and Rea-
soning (QSTR). General reviews of work on activity and behaviour recognition
can be found in [7–9].

2.1 Scene Interpretation

Research on scene interpretation has been largely based on probabilistic meth-
ods, motivated by the need to deal with sensor noise and image uncertainty
[7], leaving aside the representation of general facts about the domain and the
interplay between this representation and the actual interpretation of the scenes.
Logic-based image interpretation, on the other hand, tackles the problem from
the viewpoint of effective representation of general facts about the domain, as
well as the generalisation of these facts to problems with infinite variables. Close
to the topic of this paper, dos Santos et al. [10] presents a formalism for inter-
preting events such as approaching, receding, or coalescing from pairs of subse-
quent images obtained by a mobile robot’s stereopair. Fernyhough et al. [11]
proposed a technique for generating event models automatically based on qual-
itative reasoning and a statistical analysis of video input. This line of work has
been further developed and has led to a range of related techniques broadly
within the umbrella of the field of cognitive vision [12–14]. Dee et al. [14] pro-
poses a method based on unsupervised clustering for building semantic scene
models from video data using observed motion. Dubba et al. [12] presents a
supervised learning framework to learn event models from large video datasets
using inductive logic programming. Tran and Davis [15], and Morariu and Davis
[16] present analogous results on the use of spatio-temporal relations within a
first-order probabilistic language for the analysis of video sequences obtained in
a parking lot. In a similar manner Song et al. [17] present a general framework
for recognizing events in RGB-D data using probabilistic first-order logic and use
it for tracking kitchen activities. Bohlken et al. [18] present work on a real-time
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activity monitoring system defining activity concepts in an ontology which can
be automatically transformed into a high-level scene interpretation system.

None of the works related to this paper, however, have considered a qual-
itative theory about space and motion as the basis to generate probabilistic
interpretations of events. The present paper fulfills this gap by extending the
qualitative theory proposed in [19] to account for the 3D space, while also com-
bining it with interpretations of events from RGB-D data.

2.2 Cognitive Vision

The field of cognitive vision [20,21] has developed as an approach to enhance
classical computer vision systems with cognitive abilities to obtain more robust
vision systems, that are able to adapt to unforeseen changes, make sense of
perceived data and show goal directed behavior. Vernon [20] defines a cognitive
vision system in terms of its capabilities as follows:

“A cognitive vision system should be able to engage in purposive goal-
directed behavior, it should be able to adapt robustly to unforeseen changes
of the visual environment, and it should be able to anticipate the occur-
rence of objects or events” Vernon [20]

There are multiple approaches towards the goal of developing a cognitive vision
system. A detailed research plan for the development of the field of cognitive
vision systems can be found in the technical report of the ECVision (European
Research Network for Cognitive Computer Vision Systems) [22]. Among others,
a symbolic approach to model knowledge about spatio-temporal phenomena has
gained attention [15,23–25]. Cohn et al. [26] present work towards a cognitive
vision system built on qualitative spatial and temporal abstractions to ground
high-level concepts in visually sensed data.

2.3 QSTR – Qualitative Spatial and Temporal Reasoning

Qualitative Spatial & Temporal Representation and Reasoning (QSTR) [27]
abstracts from an exact numerical representation by describing the relations
between objects using a finite number of symbols. Qualitative representations
use a set of relations that hold between objects to describe a scene. To represent
the continuity of spatial change, Freksa [28] introduced the conceptual neighbor-
hoods. Relations between two entities are conceptual neighbors if they can be
directly transformed from one relation into the other by continuous change of
the environment.

In the line of research about qualitative continuous spatial change, Galton
[29–31] investigated movement on the basis of an integrated theory of space, time,
objects, and position. Muller [32] defined continuous change using 4-dimensional
regions in space-time. Hazarika and Cohn [33] build on this work but used an
interval based approach to represent spatio-temporal primitives. In [34] Davis
discusses the use of transition graphs for reasoning about continuous spatial
change and applies them in physical reasoning problems.
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Table 1. Spatial Relations and the Corresponding Motion Relations

Σ Space
Topology

discrete(p, q, t), partially overlapping(p, q, t),

proper part(p, q, t), proper part inverse(p, q, t), equal(p, q, t)

Extrinsic Orientation (horizontal, vertical, and in depth)

left(p, q, t), overlaps left(p, q, t), along left(p, q, t), horizontally equal(p, q, t),

overlaps right(p, q, t), along right(p, q, t), right(p, q, t)

above(p, q, t), overlaps above(p, q, t), along above(p, q, t), vertically equal(p, q, t),

overlaps below(p, q, t), along below(p, q, t), below(p, q, t)

closer(p, q, t), overlaps closer(p, q, t), along closer(p, q, t), distance equal(p, q, t),

overlaps further(p, q, t), along further(p, q, t), further(p, q, t)

Σ Motion
Movement approaching(p, q, t) and receding(p, q, t)

Size Motion elongating(x, p, t) and shortening(x, p, t)

Rate of Size Motion same rate(x, y, t), faster(x, y, t),

Presence in the Scene appearing(p, t) and disappearing(p, t)

3 A Theory of Space, and Motion

We present a theory of space and motion to represent spatio-temporal phenom-
ena for activity interpretation. As basic entities of the theory we consider depth
profiles (see Fig. 2), which are regions of space, with a depth structure (dis-
tance from the sensor). These depth profiles are obtained by the projections
of detected individuals in the scene on the image plane, where each point of
the projected region has an associated depth value. Based on the depth pro-
file we make different abstractions to encounter different aspects of space, i.e.
regions, points (centroid), bounding cuboids, oriented points, lines (object axis)
etc. These relations are defined in terms of the following functions on the depth
profiles attributes:
depth: depth profile × time point → float, gives an depth profiles average
distance from the observer at a time instant;
depth front: depth profile×time point → float, gives an depth profiles minimal
distance from the observer at a time instant;
depth back: depth profile×time point → float, gives an depth profiles maximal
distance from the observer at a time instant;
centroid: depth profile× time point → (integer, integer, integer), gives the x,y,
and z coordinates of the depth profiles centre point
size: dimension × depth profile × time point → integer, maps a dimension, a
depth profile and a time point to the depth profile’s size in the given dimension;
dist: depth profile×bounding box×time point → float, maps two depth profiles
and a time point to the angular distance separating the depth profiles centroids
in that instant.
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in sight: depth profile× time point → boolean, maps a depth profile and a time
point to the presence of the depth profile. A depth profile is present at a time
point, as long as there is at least one pixel associated with the depth profile.

3.1 Σ Space – Qualitative Spatial Relations

The basic part of our spatial theory consists of spatial relations on pairs of depth
profiles, which includes relations on topology and extrinsic orientation in terms
of left, right, above, below relations and depth relations (distance of a depth
profile from the Observer).

Topological Relations. We represent the connectedness of pairs of depth pro-
files by the relations of the region connection calculus [35] for the 2D bounding
boxes, omitting the depth. We use the RCC5 [35] subset of the region connec-
tion calculus in a ternary version, which contains the relations discrete(p, q, t),
partially overlapping(p, q, t), proper part(p, q, t), proper part inverse(p, q, t),
and equal(p, q, t), where the third argument represents the time point when the
relation holds. As the topological relations are defined on the two dimensional
image plane, they do not represent the connection of two physical objects but
rather the connection of the projection of two physical objects [36]. Due to this
fact, the topological relations combined with the depth of the objects can be
used to model that one object occludes the other.

Extrinsic Orientation. We represent the extrinsic orientation (relative posi-
tion) of two depth profiles, with respect to the observer’s viewpoint, making dis-
tinctions on the 3D position and the size of the depth profiles. To this end, we
use the bounding cuboid of the perceived depth profile determined by its width,
height, and thickness, given as depth front and depth back. Given that we
have 3D objects, we end up with a set of relations that resemble Allen’s interval
algebra [37] for each dimension, i.e. horizontal, vertical, and depth. However, in
terms of depth perception, the interval relations that happen “instantaneously”
(namely, meets, starts, and finishes) are irrelevant.

closer(p, q, t) ↔ (1a)
(depth back(p, t) < depth front(q, t));

overlaps closer(p, q, t) ↔ (1b)
(depth front(p, t) < depth front(q, t))∧
(depth front(q, t) < depth back(p, t));

along closer(p, q, t) ↔ (1c)
(depth front(p, t) < depth front(q, t))∧
(depth front(q, t) < depth back(p, t))∧
(depth back(q, t) < depth back(p, t));

depth equal(p, q, t) ↔ (1d)
(|depth front(p, t) − depth front(q, t)| < 0)∧
(|depth back(p, t) − depth back(q, t)| < 0).
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(a) (b)

Fig. 3. Continuous Transitions between Spatial Relations on Topology and Extrinsic
Orientation: topological and positional changes due to movement and transformation
of the projected regions

Additionally we define the relations further(p, q, t), overlaps further(p, q, t),
and along further(p, q, t) as inverse of the relations above. Accordingly to these
relations on depth, we define the relations for the horizontal and the vertical
dimension as listed in Table 1. To account for small diviations in the depth
values, we apply a threshold μ represents the average error in the depth values.

3.2 Σ Motion – Qualitative Spatial Change

Spatial relations holding for perceived depth profiles change as an result of
motion of the individuals in the scene (see Fig. 3). To account for this, we define
motion relations by making qualitative distinctions of the changes in the depth
profiles parameters, i.e. the distance between two depth profiles and its size. In
each of the formulae presented below the timepoint t falls within the the open
time interval (t1, t2). In this work, such time intervals are assumed to be very
small; therefore, the predicates defined below are locally valid with respect to
the time point t. We assume that this constraint is respected in this work but do
not write it explicitly in the formulae for clarity. Further, we assume that there
is a static relation between all relations to represent the case that the distance
between two depth profiles stays the same, which is the case where the depth
profile does not change in size or relative position.

Relative Movement. The relative movement of pairs of depth profiles is repre-
sented in terms of changes in the distance between their centroids. We represent
these changes in terms of approaching and receding as defined below.

approaching(p, q, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ (dist(p, q, t2) < dist(p, q, t1)); (2a)

receding(p, q, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ (dist(p, q, t2) > dist(p, q, t1)). (2b)
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Size-Motion. To represent size-motion of a single depth profile, we consider
relations on changes in depth profiles width, height and thickness separately.
Changes on more than one of these parameters at the same time instant can be
represented by combinations of the relations below. In the relations below, the
variable x is defined on the set of depth profiles attributes x ∈ {width, height,
thickness}.

elongating(x, p, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ (size(x, p, t1) < size(x, p, t2)); (3a)

shortening(x, p, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ (size(x, p, t1) > size(x, p, t2)). (3b)

Ordering Relations on the Rate of Size-Motion. We need to define relations
that state the rate of relative changes in the width, height, and thickness param-
eters of a depth profile. The relations introduced to account for these issues are
defined below, where variables x and y are defined on the set of depth pro-
file attributes (x, y ∈ {width, height, thickness}), and Δ(x) and Δ(y) denote
the change in these parameters at the time point t which is defined on a short
interval [t1, t2] as described above.
same rate(x, y, t) represents the case when attribute x changes “at the same
rate” as y at a time point t (more formally, Δ(x)

Δ(y) = 0)

faster(x, y, t) represents the case when attribute x changes “faster” than
attribute y at a time point t (more formally, Δ(x) > Δ(y))

Presence of depth profiles in the scene. The relations appearing and disappear-
ing represent the events of an depth profile being present in the scene at time
t that was not present in the scene at the previous time point, resp. not being
present at time t but has been present at the previous time point.

appearing(p, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ ¬in sight(p, t1) ∧ in sight(p, t2); (4a)

disappearing(p, t) ↔ ∃t1t2(t1 < t) ∧ (t < t2) ∧ in sight(p, t1) ∧ ¬in sight(p, t2). (4b)

4 Spatial Change between Individuals in the Scene

To describe the observed scene in terms of spatio-temporal phenomena we com-
bine the different aspects of the theory about space and motion providing a
rich vocabulary about qualitative changes in the visual domain. This allows us
to describe the ongoing interactions and operations between the physical enti-
ties represented by the depth profiles as well as on conceptual objects in the
environment.

Individuals and objects in the scene. For the individuals and objects in the scene
we assume that they have certain properties, i.e. we assume detected individuals
to be rigid and non-opaque. Additionally we define abstract objects to represent
the observer and the field of view of the sensing device. These objects are assumed
to be non-moveable and for the field of view to have no physical object attached
to it.
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Visibility with Respect to the Observer. Topological relations of the depth pro-
file’s projection on the image plane, can be interpreted as visibility from the
observers point of view [36] given, that the represented individuals are rigid and
non-opaque. We use this fact to represent that one depth profile is occluded by
another depth profile.

partially occluded(p, q, t) ← further(p, q, t) ∧ partiall overlapping(p, q, t). (5a)

not occluded(p, q, t) ← discrete(p, q, t) ∨ (closer(p, q, t) ∧ partially overlapping(p, q, t)). (5b)

In the case of a full occlusion, the individual will not be detected any more,
so this relation can only be hypothesised in the case of the disappearance of the
individual.

Visibility relations changes as a result of motion, either of the individuals in
the scene or of the observer. As defined in [38] the space in the environment can
be divided into separate regions based on the visibility relations of an object
in these regions with respect to an occluding object and the observer. Which
results in the three zones, the Light Zone(LZ), the Twilight Zone(TZ), and the
Shadow Zone(SZ). To move from one zone to an other the object can only move
in a certain way. E.g. to get from the right Light Zone to the left Light Zone,
without passing in front of the occluding object, the object has to pass the right
Twilight Zone, the Shadow Zone, and the left Twilight Zone.

Movement Direction with Respect to the Observer. We represent relative move-
ment of a depth profile with respect to the observer by introducing distinct
objects for the observer as well as the borders of the cameras field of view.

moving closer(p, t) ← approaching(p, observer, t); (6a)

moving further away(p, t) ← receding(p, observer, t); (6b)

moving left(p, t) ← approaching(p, left border, t); (6c)

moving right(p, t) ← approaching(p, right border, t). (6d)

In this way we define the relations for: (1). moving closer : the depth profile
moves towards the observer; (2). moving further away : the depth profile moves
away from the observer; (3). moving left / right : the depth profile approaches
the left / right border of the field of view.

5 Human Interactions Grounded in Spatial Change

The abstractions of space and motion described in the previous section reflect
changes between individuals in the real world, that are consequences of interac-
tions conducted in the environment (or possible noise). However, in many cases
it is not possible to unambiguously map from the changes in the relations to
interactions of objects in the world, thus we associate the predicates on spatial
change with possible hypotheses on interactions. Towards this, interactions are
declaratively defined by there spatio-temporal appearance in the scene, using a
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3-layered hierarchical activity model grounded in the spatial change observed in
the environment. The activity model consists of the activity, interactions, and
operations.

– Activity defined by its goal and determined by the specific interaction
sequence performed towards this specific goal

– Interaction goal driven interactions between individuals in the scene deter-
mined by the observed spatial operations involved in the interaction

– Spatial Operation elemental parts of an interaction defined by spatial and
temporal relations on perceived individuals in the environment

We consider consecutive frames in which the same relation holds for a pair of
depth profiles or for a single depth profile as intervals of space and motion, in the
sense of Allen’s intervals [37]. An Interaction is then defined by spatial operations
carried out by individuals involved in the interaction. Spatial operations are the
basic elements of an interaction and determine, how an interaction is carried out
in the environment, in terms of perceivable change. Operations are defined based
on the observed intervals of space and motion using Allen’s interval algebra to
model temporal relations between these intervals. E.g. the interaction passing
behind is declaratively defined in logic programming as depicted in Eq. 7a-d.

interaction(passing behind, P, Q, I) : − (7a)
interaction(passing, P, Q, I1), observation(partially occluded, P, Q, I2),

discrete time(during, I1, I2), discrete time(equal, I, I2).

interaction(passing, P, Q, I) : − (7b)
operation(changing sides, P, Q, I1), operation(moves, P, I2),

discrete time(during, I1, I2), discrete time(equal, I, I1).

operation(changing sides, P, Q, interval(T2, T3)) : − (7c)
observation(horizontal(left), P, Q, interval(T1, T2)),

observation(horizontal(right), P, Q, interval(T3, T4)),

discrete time(meets, interval(T1, T2), interval(T3, T4)).

operation(moves, P, I) : −observation(moving( ), P, I). (7d)

5.1 Hypotheses on Perceived Spatial Change

Hypotheses on interactions in the real world are generated based on the per-
ceived spatial change represented by the qualitative abstractions of space and
motion and the background knowledge described in the previous section. To
make hypotheses on interactions in the environment, one has to take possible
noise and faulty observations into account, as well as consistency constraints
between concurrent interactions.

– Uncertainty due to limitations in the low-level sensing, or to occlusion by
other individuals in the scene. E.g. noise, missing observations, and occlusion.
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Fig. 4. Interaction taxonomy for the smart meeting domain

– Consistency in terms of concurrently performed interactions and the spatial
operations contained in these interactions.

Hypotheses on interactions are arranged in a sequence, in the way, that the
interactions and the corresponding spatial operations included in the interac-
tions, best explain the observed spatial change. The probability for a certain
interaction is then determined by the probability that the observation reflects
the ongoing interactions in the environment, and the evidence that an obser-
vation provides for a certain interaction. For the use-case scenario presented in
section 6 we use a causal network to evaluate the generated hypotheses given
their grounding in observations on spatial change in the environment.

5.2 Perceptual Narratives of Human Activities

Sequences of hypothesized interactions are interpreted as perceptual narratives
that describe the interactions performed in the environment with respect to
the perceived spatial change. These narratives serve as a basis for reasoning
in the sense of explanation, prediction, and planning for spatial control. As the
perceptual narratives are grounded in the spatial change observed by the sensors,
the narrative does not only reflect the performed interactions, but also states,
how these interactions are performed in terms of the involved spatial operations.

Thus the narrative can be used to reason about the activity, the interac-
tions within the activity, and the spatial change reflecting the interactions. And
thereby help to explain incomplete or inconsistent observations, to reason about
the most likely next steps towards the goal of the activity and thus predict
upcoming spatial change, and to plan (spatial) control actions based on the
aforementioned reasoning capabilities which is an important ability for dynamic
control in smart environments.
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Listing 1. Smart Meeting Cinematography
The smart meeting cinematography domain focusses on profes-
sional situations such as meetings and seminars. A basic task
is to automatically produce dynamic recordings of interactive
discussions, debates, presentations involving interacting people
who use more than one communication modality such as hand-
gestures (e.g., raising one’s hand for a question, applause), voice
and interruption, electronic apparatus (e.g., pressing of a but-
ton), movement (e.g., standing-up) and so forth. The scenario
consists of people-tracking, gesture identification closed under a
context-specific taxonomy, and also involves real-time dynamic
collaborative co-ordination and self-control of pan-tilt-zoom
(PTZ) cameras in a sensing-planning-acting loop. The long-
term vision is to benchmark with respect to the capabilities of
human-cinematographers, real-time video editors, surveillance
personnel to record and semantically annotate individual and
group activity (e.g., for summarisation, story-book format dig-
ital media and promo generation).

6 Use-Case: Smart Meeting Cinematography

We demonstrate the applicability of the theory of space and motion in the con-
text of the meeting scenario (Listing 1). In this context, the basic interactions
involved in the meeting process in Fig. 4 are considered. For the presented use-
case, we assume that the camera is fixed in its position and orientation. Thus the
changes observed in the relations are only due to object’s motion (or noise in the
sensor data).

Tracking and detection of Individuals. The particular hardware setup used in
the meeting scenario consists of pan-tilt-zoom (PTZ) cameras, and depth sensors
(Kinect), providing RGB-D data consisting of RGB images and corresponding
depth information. Open source vision libraries, i.e. OpenCV and OpenNI are
then used to detect and track individuals in the scene, which are perceived via
their projection on the image plane of the sensor and their depth information.
The thereby obtained depth profiles are 2.5 D regions of space, with a depth
structure which gives the distance between the sensor and each pixel of the
detected individuals.

Interactions in the smart meeting scenario. Interactions as performed in the
meeting environment are modeled based on the spatial and temporal appearance
of the interactions. For the meeting domain we take the interactions enter FoV,
leave FoV, passing behind, passing front, passing between, crossing, stand up, and
sit down into account. Fig. 4 illustrates the taxonomy of these interactions and
how they are defined based on the qualitative abstractions of space and motion.
To generate the hypotheses on interactions in the environment we included a
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Fig. 5. Perceptual Narratives of Space, and Motion.

simple model of noise occurring in the sensing process and, of the consistency of
concurrent interactions.

Resulting perceptual narrative. Using the described theory of space and motion
and the interactions defined in the interaction taxonomy, combined with a simple
naive bayes method for generating hypotheses, the system is able to generate the
following narrative for the exemplary scene in Fig. 5.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I1 ≡ interaction(stand up(P4, interval(t9, t13))).

spatial operations(I1) ≡ getting taller(P4, interval(t9, t13)).

I2 ≡ interaction(passing behind(P4, P3, interval(t49, t57))).

spatial operations(I2) ≡ changing sides(P4, P3, interval(t52, t53))∧
partially occluded(P4, P3, interval(t49, t57))∧
moving left(P4, interval(t45, t65))∧
stationary(P3, interval(t1, t66)).

.

.

.

I4 ≡ interaction(leave FoV (P4, interval(t66, t66))).

spatial operations(I4) ≡ moving towards(P4, left border, interval(t65, t65))∧
hiding behind(P4, left border, interval(t66, t66)).

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

Additionally to the interaction hypotheses, the narrative includes the spatial
operations performed as a part of the interaction, and thereby reflect how the
interactions are performed in the environment.

7 Conclusion and Outlook

Hypothesised object relations can be seen as building blocks to form complex
interactions that are semantically interpreted as activities in the context of the
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domain. As an example consider the sequence of observations in the meeting
environment depicted in Fig. 5.

Region P elongates vertically, region P approaches region Q from the right, region

P partially overlaps with region Q while P being further away from the observer

than Q, region P moves left, region P recedes from region Q at the left, region

P gets disconnected from region Q, region P disappears at the left border of the

field of view

These observations can be explained by the means of a percaptual narrative in
terms of interactions in the real world performed in the meeting situation.

Person P stands up, passes behind person Q while moving towards the exit and

leaves the room.

Toward the generation of (declaratively grounded) perceptual narratives [6] such
as the above, we developed and implemented a commonsense theory of qualita-
tive space and motion for abstracting and reasoning about dynamic scenes. We
defined combined relations capturing different spatial modalities in the context
of a benchmark domain, namely the smart meeting cinematography scenario of
the ROTUNDE initiative [39]. As a proof of concept, we integrated our proposed
theory with a basic probabilistic reasoning method to generate hypotheses on
interactions performed in the smart meeting scenario based on the combined
model of space and motion. The smart meeting cinematography scenario serves
as a challenging benchmark to investigate narrative based high-level cognitive
interpretation of everyday interactions. Work is in progress to release certain
aspects (pertaining to space, motion, real-time high-level control) emanating
from the narrative model via the interface of constraint logic programming (e.g.,
as a Prolog based library of space–motion). Perceptual narrative based scene
interpretation will be used for cognitive camera control consisting of interpret-
ing the observations, to identify important information, and plan control actions
based on the spatial requirements and constraints of scene. Work towards this
end includes the integration of multiple camera viewpoints, where the system has
to reason about perspective changes and visibility based on qualitative spatio-
temporal abstractions.
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Abstract. In this paper we introduce Multi-Entity Bayesian Networks
(MEBNs) as the means to combine first-order logic with probabilistic
inference and facilitate the semantic analysis of Intangible Cultural Her-
itage (ICH) content. First, we mention the need to capture and maintain
ICH manifestations for the safeguarding of cultural treasures. Second,
we present the MEBN models and stress their key features that can be
used as a powerful tool for the aforementioned cause. Third, we present
the methodology followed to build a MEBN model for the analysis of a
traditional dance. Finally, we compare the efficiency of our MEBN model
with that of a simple Bayesian network and demonstrate its superiority
in cases that demand for situation-specific treatment.

Keywords: Semantic analysis · Intangible cultural heritage · Multi-
entity bayesian networks

1 Introduction

By the age of six, humans recognize more than 104 semantic concepts [1] and
keep learning more throughout their life. Can a computer program learn how to
recognize semantic concepts in multimedia content the way a human does? In
addressing this question, divergent approaches have been proposed, relying either
on the use of explicit knowledge or the abundant availability of data. Advocating
the former, [2], [3] are two notable cases where a small number of examples
used during learning are able to provide models with sufficient generalization
ability. The authors rely on the hypothesis that once a few visual categories have
been learned with significant cost, some information may be abstracted from
the process to make learning further categories more efficient. Taking a different
perspective, the authors of [4] claim that with the availability of overwhelming
amounts of data many problems can be solved without the need for complex
parametric algorithms. The authors index a large dataset of 79 million images
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and using nearest neighbor matching for image annotation, they claim that given
the excessive volume of the indexed images it is reasonable to assume that almost
every “unseen” image will be close enough to a ‘’seen” image. These examples
demonstrate the debate around the mechanism of building perceptual models
and the discussion on how much of the knowledge should come in an explicit form
and how much can be obtained implicitly from the available training samples.
Although moving towards the one or the other extreme of the debate may still
produce non-trivial recognition models, higher levels of efficiency can only be
achieved if explicit and implicit knowledge are effectively combined.

The aim of this work is to verify the aforementioned statement in the special-
ized domain of Intangible Cultural Heritage (ICH). The term intangible cultural
heritage (ICH) (UNESCO, 2013) refers to valuable traditional art forms and
creative practices, such as singing, dancing, craftsmanship, etc. In this paper,
we advocate the use of Multi-Entity Bayesian Networks (MEBNs) [5] as an effi-
cient scheme to facilitate the analysis of ICH content, mainly due to their ability
in combining first-order logic with probability theory. The remaining of this
paper is organized as follows: Section 2 describes the particularities of the ICH
domain and motivates the use of MEBNs. In Section 4 we describe the most
important characteristics of MEBNs and argue about their appropriateness to
address the particularities of ICH domain. Section 5 offers some details about
the methodology adopted to implement and apply MEBNs for analyzing ICH
content. Finally, Section 6 explains the results of our preliminary experimental
study, while Section 7 summarizes our concluding remarks.

2 Semantic Analysis in the ICH Domain

The semantic analysis of digital heritage resources is considered a particularly
important prerequisite for their preservation. This is even more evident in the
domain of ICH. Indeed, given that during the preservation of intangible heritage
the significance of heritage artifacts is implied in their context, the scope of
digital preservation extends to the preservation of the background knowledge
that puts them in proper perspective. For example, Mangalacharan [6] is an
invocation dance in Indian Odissi dance form, which is specified in terms of
specific and predefined dance actions and it is accompanied by a specific kind
of music. The dance actions entail the movement of human body parts and
interaction with object and the accompanying music has features that fit to
the dance. Moreover, high-level concepts are manifested in the dance that are
composed of basic body actions, which are related to the music features. Thus,
the preservation of heritage resources requires a solution to the problem of: (a)
recognizing media patterns that correspond to elementary domain concepts like
objects, postures, actions, audio tempos, etc, and (b) consider these elementary
domain concepts as evidence to support a hypothesis stating that the analyzed
media item manifests a certain high-level concept.

A major difficulty in representing ICH knowledge is the inherent ambiguity
and uncertainty in concepts prevalent in this domain. In meeting this challenge,
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explicitly provided logic-based rules need to be combined with a probabilistic
inference framework in order to map low-level multimedia features to high-
level concepts. Initially, the domain concepts and their relations will have to
be expressed in a machine understandable format that should be also capable of
encoding different snapshots of the analysis environment (e.g., number of dance
steps). Then, low-level multimedia features that may incorporate visual, or other
types of signals will have to be analyzed to obtain elementary conceptual infor-
mation, acting as evidence. Finally, the framework used for probabilistic infer-
ence should inherit the logic-based rules encoded in the first step and evaluate
the extracted evidence in the context of the domain knowledge. Thus, at the core
of semantic multimedia analysis lies the development of a theory that will not
only manage to effectively combine logic-based rules with probabilistic inference,
but will also offer the necessary flexibility to cope with an un-predictable and
dynamically changing environment.

3 Related Work

A number of works have been presented in the literature that aim to represent
knowledge in a probabilistic manner. OOBN models [7] have been proposed as
an alternative to standard BN for overcoming the inherent inflexible structure of
BN. An OOBN object is a collection of domain attributes that extents regular
BN nodes, so as to become more flexible to situations that require customiza-
tion. Probabilistic relational models (PRMs) [8] extend Bayesian networks by
introducing the concept of properties, and relations between them. Like MEBNs,
PRMs provides a similar mechanism to built situation specific probabilistic mod-
els. However, OOBN and PRM expressivity is inferior to MEBN, mainly due to
the context limitations used to enforce logical constraints on the model variables.

Ontologies with probabilistic extensions have been also used for the seman-
tic analysis of ICH content. For example, in [6] the authors propose the use of
ontology-based mapping for linking cultural heritage content to ICH concepts.
More specifically, the ontology used in this framework includes the descriptions
of domain concepts that are formally given in terms of the related low-level
audio-visual features, appearing in the multimedia content. In this way, a con-
venient semantic interpretation of the multimedia data is enabled. In another
closely related work [9], a semi-automatic ontology construction methodology
is proposed for combining bayesian networks with probabilistic inference. The
goal of this work is to facilitate the semantic analysis of cultural Indian dances,
i.e. detection of specific dance styles and moves in multimedia with cultural con-
tent. Note however, that although the ontology is constructed using probabilistic
methods (i.e. as a BN of concepts and relations), the BN remains unchanged.
This is a serious modeling shortcoming that motivates the use of MEBNs.

Another approach for handling uncertainty relies on Fuzzy DLs which are
based on the fuzzy set theory and are capable of performing reasoning under
uncertain circumstances. This is in contrast to the probabilistic extension of
ontologies where uncertainty handling is based on probabilistic formalisms. One
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such example is presented in [10] where the use of fuzzy DLs semantics has been
proposed to interpret the output of the classifiers into a semantically consistent
interpretation. In this work the authors claim that the use of DLs allows to
formally capture the semantics underlying the concepts of interest, while the
fuzzy extensions provide the means to model the vagueness encompassed in the
extracted classification. The advantage of MEBNs compared to Fuzzy DLs is
their flexibility in learning the parameters of the model that can be done based
on samples, rather than by specifying ad hoc rules as required in Fuzzy DLs.
In the following, we advocate the use of MEBNs as a potential solution to the
problem of semantic analysis in the domain of ICH.

4 Multi-entity Bayesian Networks

MEBN logic is a formal system that unifies probability theory and classical first-
order logic (FOL). Thus, MEBNs are the outcome of the combination of BN with
FOL. From a Bayesian perspective, MEBNs are extended BNs by incorporat-
ing FOL. Their main advantage is in combining the capability of BN to model
uncertainty with the expressivity of FOL in representing knowledge. The key
feature of MEBNs is the ability to build situation specific BNs (SSBN) that
are customized according to the snapshot of the environment being modeled in
an arbitrary situation. In this way, MEBNs overcome the inflexibilty of BNs to
adapt to the volatile environment being model, since they have a fixed structure
and conditional probability for each node.

Technically, a MEBN is a collection of MEBN fragments (MFrags). An MFrag
includes (among others) resident node(s), for each of which a local conditional
distribution and a set of parent nodes (if any) are defined. The MFrag of a
resident node is called its home MFrag. Also, in an MFrag, there are input nodes
that are resident nodes in other MFrags. The parents of a resident node can be
either resident, input nodes or both. The resident nodes are, in a sense, templates
that are used to construct the nodes of the SSBN, i.e., the name of the nodes,
the dependencies with other nodes and the conditional probability distribution.
The local conditional distribution of a resident node in an MFrag is a function
that produces the conditional probabilities of the SSBN nodes produced by the
resident node. This function takes as input the structure of SSBN and produces
a conditional probability for the related node accordingly.

Another component of an MFrag is the logical variables, placed as arguments
in resident and input nodes, and logical constraint nodes, imposing constraints
on the logical variables participating in the MFrag. Logical variables and their
constraints are the manifestation of the FOL into MEBN modeling. The struc-
ture of an SSBN is determined by the logical variables and the admissible by
the constraints values to which they can be instantiated, according to the situ-
ation of the environment being modeled (e.g., number of nodes a resident node,
acting as a template, replicate). In other words, logical variables and their con-
straints drive the construction of the SSBNs based on the evidence collected by
the environment, translated as potential values of the logical variables.
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The ultimate goal of modeling with MEBN is inference, which provides us
with the ability to analyze the environment being modeled (e.g., a stochastic
process or a static snapshot of a closed system), based on evidence. Inference is
performed on the SSBN, which results based on evidence. There are two steps
in SSBN construction. In the first step, the logical variables are instantiated to
values determined by the environment and according to logical constraints. The
resulting nodes in the SSBN have a defined set of parent nodes and a conditional
distribution. In the second step, a subset of the SSBN random variables (i.e. the
observed variables) are considered known (observed) and instantiated to their
observed (measured) values. Then, Bayesian inference provides the posterior
probability distribution of the unknown random variables we want to estimate.

5 Applying MEBN Theory in the Domain of ICH

In order to validate our assumptions in a real world problem, we have used
MEBNs as a knowledge representation and analysis tool for recognizing the
different styles of a traditional greek dance. There are two main reasons moti-
vating the use of MEBNs for this specific task, namely, uncertainty modeling and
situation-specific analysis. Uncertainty in this case is manifested in two cases. In
the first, a dancer may unexpectedly deviate from the dance pattern (e.g., skips
a dance step). In the second, the step detector may fail to detect a step and/or
correctly recognize its features. MEBNs are capable to model both the volatility
of the step number and the uncertainty (randomness) aspects of each perfor-
mance. Also, the situation specific analysis capability is useful due to the fact
that, usually, the number of steps is not a priori known. SSBN can be proven
very beneficial for the dynamic modeling of such situations. In our work, the
role of the MEBN is to adapt in each performance and model in a probabilistic
Bayesian framework the uncertainty aspects of the dance. Based on that, the
ultimate goal is to detect the dance style through probabilistic inference.

The first step in employing MEBNs is to consult the experts in order to
elicit and formally encode the domain knowledge. Thus, a methodology for the
ontology specification and engineering will have to be employed. Subsequently,
the knowledge encoded in this ontology will act as the basis for constructing the
corresponding MFrags. Then, the observations extracted from the analysis of
sensor signals will be injected to the framework so as to generate the SSBN and
perform probabilistic inference. Finally, decisions about the different dance styles
can be made based on the posterior probability distribution of the network.

5.1 Ontology Specification and Engineering

Most state-of-the-art methodologies for ontology engineering incorporate the
requirements specification activity. The communication tool that is used during
this activity is a set of competency questions (CQs) that are posed to the experts.
The CQs are answered by the experts in natural language. The terms used in
these answers are subsequently analyzed with respect to their frequency and



360 G. Chantas et al.

semantic affinity, so as to extract the terminology (names, adjectives and verbs)
that will be formally represented in the ontology by means of concepts, attributes
and relations. In accordance with this practice, we have followed the methodology
of [11] in order to specify and engineer the ontology presented in Figure 1.

Fig. 1. Tsamiko ontology graph. Some nodes were colored for brevity of demonstration,
black: right foot steps, orange: left foot steps. The TsamikoSixStep and TsamikoTen-
Step are high-foot steps when the dance style is male. Also, grey areas illustrate the
’hasDouble(Right/Left)Step’ relation.

The style of Tsamiko dance is characterized as “double” or “single” and as
“male” or “female”. Thus, there are four different characterizations, and, hence,
Tsamiko dance styles: (single, male), (double, male), (single, female) and (dou-
ble, female). In distinguishing between the different styles, the most important
elementary concept has to do with the type of steps. A Tsamiko dance consists
of multiple dance cycles, each one consisting of ten distinct steps. Each step is
characterized and distinguished from the other steps by its four attributes (i.e.
left or right direction, left or right foot, single or double step and foot is in high or
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low position) and its place in the sequence (i.e. 1st, 2nd,...,10th). The attributes
of some steps depend on the particular style of the dance being performed, while
other step attributes remain the same for all styles. More specifically, among the
step attributes that do not depend on the dance style, we identify the movement
direction (i.e., left or right), as well as the body place (i.e., whether it is the
right or the left foot). Particularly, the first six steps have a “right” direction
and the rest have a “left” direction. Also, 1st, 3rd, 5th, 8th, 10th are performed
with the right foot and the rest with the left foot. Another important attribute
that now depends on whether the style is “male” or “female”, has to do with
the foot lifting movement, which essentially differentiates between a step that is
performed with the foot in high position, or in a position close to the floor. More
specifically, the foot is high at the 6th and 10th step in a “male” dance while
it is always low for “female” style. Also, in a dance of “double” style, the 2nd,
4th and 8th standard step of the dance cycle are characterized by the “double”
attribute. On the other hand , all steps have the “single” attribute when the
style is “single”. Finally, the ontology of Figure 1 reveals also the importance
of sequence among the undertaken steps that has to be performed in a rather
strict order. Thus, it is evident that the detection of each step along with its
attributes is crucial for our analysis framework.

5.2 Sensor Signal Analysis for Elementary Concept Detection

In order to capture the performance of the dancers, we have used markerless
motion capture based on depth sensing technology. Microsoft Kinect sensors
were employed, which are low-cost real-time depth sensing cameras that can
track the volume of a performer and produce skeletal data. Microsoft Kinect
SDK [12] has been used as a solution for skeletal tracking and acquisition. It
provides the ability to track the 3D positions of 20 predefined skeletal joints of a
human body at 30Hz rate. In order to solve occlusion and self-occlusion tracking
problems inherent in this type of motion capture and to increase the total area
of coverage, several Kinect sensors were placed in an array in front of the dancer
(Figure 2 Left). The captured data were combined following a fusion strategy
described in [13], leading to an increased robustness of skeletal tracking.

The elementary domain concepts, which are the steps and the way they
are executed, were extracted from the analysis of the joint position signals. The
analysis consists of two parts: segmentation and feature extraction. Segmentation
is performed on two levels of granularity. Initially, the dance periods are detected.
Tsamiko dance has a repeating pattern, with the dancer moving on a semi-circle
performing several steps to the right direction followed by several steps to the
left. This consists of a single period, which is easily detected by analyzing the
position of the waist of the dancer. Peak detection of a sub-sampled (to remove
noise) waist displacement along the horizontal axis reveals the time instants
when the dancer is at the end of the left/right movement (Figure 2 Right).
Subsequently, each period is further segmented into steps which we consider an
elementary domain concept. The detection of steps is based on the movement
of ankles along the horizontal axis relative to the movement of the root of the
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body. Once again, local maxima detection is employed for the detection of time
instants when the footstep is performed (when the foot touches the ground, the
relative horizontal displacement produces local maxima).

After the segmentation, each segment is analyzed to extract the features of
each step. The features extracted from each step are: the foot that is moving
(left foot or right foot), the direction of movement (left or right), raised foot and
double step. Those features are extracted from a rule based analysis of ankle and
knee joint position signals of the dancers’ legs. The double step is a sequence of
two small steps executed sequentially, which we consider as a single step during
the segmentation period, since the intermediate steps are small and executed
very quickly. The result of this analysis is a sequence of steps together with
properties assigned to each step which are used subsequently to infer the dance
style.

Fig. 2. (Left) Tsamiko performance captured by three depth cameras. Skeletal tracking
from each camera can be seen as well as the final fused skeleton tracking result. (Right)
Displacement of the waist of the dancer along the horizontal axis. Red and green dots
represent the peaks and valleys detected, segmenting the dance into periods.

5.3 MTheory and MFrags

Based on the ontology described in Section 5.1, we have developed the MEBN
of Figure 3. In this figure, a MEBN is presented consisting of two MFrags.
The TsamikoStepMFrag contains information about the step sequence for dif-
ferent dance styles, along with the style distinguishing characteristics of the
steps. The TsamikoStyleMFrag contains the style related MEBN nodes, “gender-
style” and “stepstyle” that can take the values male/female and single/double,
respectively. Each MFrag contains input nodes (colored in grey), resident nodes
(colored in yellow) and logical nodes (colored in green). The input nodes of
the TsamikoStepMFrag are resident nodes in the TsamikoStyleMFrag. The only
exception is the node “step”, which is used to model a recursive process as
described below.

The “step” input node in TsamikoStepMFrag (colored in grey) models the
step sequence that comprise a dance cycle. It is very important to understand
the concept of recursion in MEBNs, which is manifested in this case by making
the input (grey) node “step” the parent of the resident (yellow) node “step”
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(both having the same name but different logical variables (t1 and t2) as argu-
ments). These variables are logical variables that are used to model the aspect
of time sequence in the detected steps. For example, if t2 is instantiated as
timeStepi, then, based on the constraints dictated by the logical (green) nodes,
t1 is instantiated as timeStepi−1. In this way, t1 is always the previous time
step of t2 enforcing the desired recursive process. In our example of Figure 3,
the resident (yellow) node “step” has a range set of ten values, TsamikoStep1, ...,
TsamikoStep10, each value denoting one of the ten distinct steps in a Tsamiko
dance cycle. Thus, with the recursive definition of the node “step” (i.e. both as
an input and a resident node) we enable the modeling of a dance step sequence
execution. Note that the number of cycles and the starting and ending step are
arbitrary.

Besides “step”, there are four more resident nodes in the TsamikoStepM-
Frag as depicted in Figure 3: “hasDirection”, “foot”, “isFootHigh” and “isDou-
bleStep”, which are essentially the features that declare the execution method
of each step. The first node can take either the “leftDirection” or the “right-
Direction” value, while the second node can take the “leftFoot” or “rightFoot”
values. Both are not directly dependent to the dance style, as shown by the lack
of direct arrows between these nodes and the nodes “genderstyle” and “step-
style”. Instead, the impact of “hasDirection” and “foot” to the recognition of
the dance style goes through the “step” node that models the execution pattern
of the dance. On the other hand, the nodes “isFootHigh” and “isDoubleStep”
take boolean values and directly depend on the nodes “genderstyle” and “step-
style” that determine the dance style. These dependencies are better described
in the following paragraph that explains the TsamikoStyleMFrag.

According to the ontology presented in Section 5.1, the style of Tsamiko
dance can be characterized as male or female and as double or single. We have
decided to recognize the undertaken style on a per step-basis, meaning that
steps of the same sequence can be attributed to different styles. Nevertheless,
there is strong correlation between the style detected in stepi and the prob-
ability that stepi+1 will follow the same style. Thus, as in the case of steps,
there is an inherent requirement for modeling a recursive relation between the
variables determining the style characteristics. To this end, the TsamikoStyleM-
Frag consists of two variables “genderstyle” and “stylestep” that exist both as
resident and input nodes in the same MFrag, modeling the recursive relation
between the styles detected for each step. Similar to TsamikoStepMFrag, the
TsamikoStyleMFrag consists also of the exact same logical variables t1 and t2
that are instantiated to time steps and are used to enforce the desired recursive
process. Finally, we should note that “genderstyle” and “stepstyle” are also used
as input nodes in the TsamikoStepMFrag and act as direct parents of “isFootH-
igh” and “isDoubleStep”.

Figure 4 demonstrates the situation-specific bayesian network that results from
the aforementioned MEBN model, for a specific situation where the total perfor-
mance consists of five steps. This network is used to estimated the posterior proba-
bilities of the unknown variable (yellow nodes) based on the observations collected
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Fig. 3. MEBN developed to facilitate the analysis of greek tsamiko dance

for the known variables (cyan nodes). Finally, bayesian inference is applied to cal-
culate the posterior probabilities of the unknown variables by employing belief
propagation [14].

Fig. 4. The situation-specific bayesian network derived from the MEBN model of
Figure 3 using five steps

6 Preliminary Experimental Results

The goal of our experimental study is to verify the appropriateness of MEBNs
in recognizing the different dance styles based on the undertaken steps. Actu-
ally, our interest is not in just classifying a step sequence to one of the existing
dance styles, which would constitute a trivial problem. Instead, our goal is to
classify each step to one of the existing dance styles and at the same time assess
the proficiency level of the performer (i.e. an estimation of how accurately the
performer has executed the dance). In the first case we expect that the clas-
sification accuracy of the MEBN-based framework will outperform a baseline
approach that relies on BNs but does not make any use of the situation spe-
cific capability of MEBNs. In the second case, we expect that our MEBN-based
analysis framework will rank high the step sequences that have been performed
flawlessly and rank low the step sequences that contain one or more execution
errors.
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Table 1. Characteristics of the different performances used for the tsamiko dance

performance length attributes performance length attributes

A1 48 single/female A9 201 double/male
A2 153 single/female A10 190 double/female
A3 194 single/male A11 198 double/female
A4 196 single/female A12 189 double/female
A5 189 single/female A13 202 double/male
A6 200 single/male E1 190 single/male
A7 202 single/male E2 100 double/female
A8 195 single/female E3 191 double/male
A9 201 double/male - - -

6.1 Dataset and Evaluation Metrics

In our experiments we have used 16 recorded performances of Tsamiko dance,
with the sequence length ranging from 50 to 200 steps. Out of the 16 recorded
performances 3 were executed by professional dancers (E1-E3) while the rest
was obtained from apprentice level dancers (A1-A13). All performances were
executed with the same musical piece and every performance was annotated
with its dance style, as depicted in Table 1.

In order to assess the classification accuracy we apply a threshold on the con-
fidence score extracted for each step. More specifically, when we analyze a step
sequence that is annotated as “single” we consider as correctly classified all steps
that have caused the posterior probability (i.e. confidence degree) of the “step-
style” node to overcome the 0.5 threshold. Similar is the case when analyzing a
step sequence annotated with the other style types. Then, we divide this number
with the total number of steps so as to calculate the classification accuracy for
the entire performance. On the other hand, in order to assess the proficiency
level of each performance we use the average of the confidence degrees of all
steps in this performance. More specifically, the result of the analysis process
for each performnance is a two-dimensional table with its columns correspond-
ing to the different styles, its rows corresponding to the individual steps and its
values being the posterior probability of the SSBN random variables modeling
the dance style information. Thus, by performing column-wise averaging in this
table we obtain four scores (i.e. corresponding to the four dance styles) that
are suitable for assessing the proficiency level of the undertaken step sequence
(i.e. considering that the closer you get to a 100% score the closer you get to a
flawless performance).

6.2 Step Classification Accuracy

In order to verify the benefit of being able to adapt to the situation at hand, we
compare our MEBN-based model with a baseline approach that lacks this capabil-
ity. More specifically, given that one of the auxiliary features offered by the signal
analysis module is the total number of steps composing the step sequence, the
baseline approach was designed to totally neglect this situation specific informa-
tion. It is essentially implemented as a straightforward BN with a fixed number
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of nodes representing steps (we have used 10 steps which is the standard cycle
in a tsamiko dance) and without any provision for the recursive relation between
steps and dance cycles. Figure 5 demonstrates the classification accuracy of both
frameworks. We can see that the MEBN-based framework outperforms the base-
line approach in 28 out of the 32 cases. Given that both frameworks rely on prob-
abilistic inference and both frameworks have been designed based on the same
domain knowledge, it is reasonable to attribute the observed improvement in the
flexibility of the MEBN-based framework to adapt in the number of steps com-
posing each performance.

(a) single style (b) double style

(c) male style (d) female style

Fig. 5. The performance results are grouped based on the style. The bar diagrams
colored in black correspond to the MEBN-based framework, while the bar diagrams
colored in white correspond to the baseline.

6.3 Proficiency Level Assessment

Figure 6 shows the proficiency level results for the 16 performances, grouped
based on the dance style and distinguishing between apprentices and experts.
Moreover, apart from the average score the standard deviation is also depicted.
The obtained results verify our expectation that in the majority of the examined
cases our MEBN-based analysis framework is able to distinguish between an
apprentice and an expert. This is evident in the case of “female” style where the
performance level of the expert is higher than all apprentices. Similar conclusions
can be also extracted for the cases of “single” and “double” where despite the
fact that the proficiency level of the experts does not supersede all apprentices
their superiority is evident in terms of average numbers. Finally, in the case
of “male” style we notice that the proficiency level of the experts is lower by
approximately 1.5% than the average score of all apprentices. This outcome can
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(a) single style (b) double style

(c) male style (d) female style

Fig. 6. Proficiency level results for the 16 performances of our dataset, grouped based
on the dance style and distinguishing between apprentices and experts

be attributed to the low performance of our MEBN-based analysis framework
in effectively modeling one of the key-features characterizing the “male” style,
which is the detection of “isFootHigh”. Since the detection of this feature is
rather challenging for the signal analysis module, it seems that in this case
our MEBN-based model has failed to prevent the propagation of the first stage
analysis error to the final outcome. In our future work we plan to examine the
score of each step in correlation with the performance of the signal analysis
module so as to gain more insights.

7 Conclusions

In this paper we have shown how the theory of MEBNs can be used to com-
bine probabilistic analysis with first-order logic. The proposed framework was
employed for the semantic analysis of Tsamiko traditional dances. The purpose
of semantic analysis was to recognize the specific style of the tsamiko dance based
on the special characteristics of the dance steps. The latter were extracted by
a motion analysis module relying on the body movements. Experiments demon-
strated that the classification efficiency of the proposed model is significantly
better than the standard Bayesian network case. Also, the model was evaluated
in terms of the ability to discriminate between expert and apprentice dancers,
giving encouraging results. In the future, we plan to augment the MEBN model
with information obtained from other than visual based modalities, such as
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sound. Precisely, we expect that by exploiting the information from the musi-
cal piece accompanying the dance performances, we can improve the accuracy
of semantic analysis. However, the task of combining music and body movement
information is challenging, since it requires the identification of the musical fea-
tures that provide useful information (i.e., that have a semantic meaning for the
dance) and the detection of their dependency with the dance steps. Finally, we
should mention that although the experimental study of this work focuses in
just one dance (tsamiko dance) the step-wise approach that we have presented
can be easily adopted to analyze other types of dance that require the execution
of a pre-determined sequence of steps.
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Abstract. In image interpretation and computer vision, spatial rela-
tions between objects and spatial reasoning are of prime importance
for recognition and interpretation tasks. Quantitative representations of
spatial knowledge have been proposed in the literature. In the Artifi-
cial Intelligence community, logical formalisms such as ontologies have
also been proposed for spatial knowledge representation and reasoning,
and a challenging and open problem consists in bridging the gap between
these ontological representations and the quantitative ones used in image
interpretation. In this paper, we propose a new description logic, named
ALC(F), dedicated to spatial reasoning for image understanding. Our
logic relies on the family of description logics equipped with concrete
domains, a widely accepted way to integrate quantitative and qualita-
tive qualities of real world objects in the conceptual domain, in which
we have integrated mathematical morphological operators as predicates.
Merging description logics with mathematical morphology enables us
to provide new mechanisms to derive useful concrete representations of
spatial concepts and new qualitative and quantitative spatial reasoning
tools. It also enables imprecision and uncertainty of spatial knowledge
to be taken into account through the fuzzy representation of spatial
relations. We illustrate the benefits of our formalism on a model-guided
cerebral image interpretation task.

Keywords: Spatial reasoning · Ontology-based image understanding ·
Description logics

1 Introduction

In image interpretation and computer vision, spatial relations between objects
and spatial reasoning are of prime importance for recognition and interpretation
tasks [5,6], in particular when the objects are embedded in a complex environ-
ment. Indeed, spatial relations allow solving ambiguity between objects having
a similar appearance, and they are often more stable than characteristics of the
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objects themselves. This is typically the case of anatomical structures, as illus-
trated in Figure 1, where some structures, such as the internal grey nuclei (thala-
mus, putamen, caudate nuclei), may have similar grey levels and similar shapes,
and can be therefore easier distinguished for their individual recognition using
spatial relations [14,33]. Spatial relations also allow improving object and scene
recognition in images such as photographs [18,29], or satellite images [2,22,35].

Spatial reasoning can be defined as the domain of spatial knowledge represen-
tation, in particular spatial relations between spatial entities, and of reasoning
on these entities and relations. This field has been largely developed in Artifi-
cial Intelligence, in particular using qualitative representations based on logical
formalisms [1,36]. In image interpretation and computer vision, it is much less
developed and is mainly based on quantitative representations [9,23]. Bridging
the gap between the qualitative representations and the quantitative ones is a
challenging and open issue to make them operational for image interpretation.

Description logics (DL) equipped with concrete domains [27] are a widely
accepted way to integrate concrete and quantitative qualities of real world objects
with conceptual knowledge and as a consequence to combine qualitative and
quantitative reasoning useful for real-world applications. In this paper, we pro-
pose a new description logic, named ALC(F), dedicated to spatial reasoning for
image understanding. In this framework, the combination of a description logic
with concrete domains and mathematical morphology provides new mechanisms
to derive useful concrete representations of concepts and new reasoning tools,
as demonstrated in [20,21]. This paper builds upon these works by studying in
depth the formal properties of this framework and revisiting the tableau decision
algorithm. This framework also enables us to take into account imprecision to
model vagueness, inherent to many spatial relations and to gain in robustness in
the representations [9]. The rest of this paper is organized as follows. In Section 2,
we review some related work and we recall how mathematical morphology can be
used to derive fuzzy representations of spatial relations. In Section 3, we briefly
present the main concepts of a spatial relation ontology used to represent spa-
tial knowledge. We describe our new logic and its properties in Section 4. The
reasoning and inference components are detailed in Section 5, and we illustrate
the benefits of this framework for image interpretation tasks in Section 6, with
the example of brain structure recognition in 3D images.

2 Spatial Knowledge Representations

As mentioned in Section 1, spatial relations between objects of a scene are of
prime importance for semantic scene understanding. Several models for repre-
senting spatial relations have been proposed in the literature. These models can
be classified according to different viewpoints:

– The nature of the model: quantitative or semi-quantitative models versus
qualitative ones. In image interpretation and computer vision, many quan-
titative or semi-quantitative representations have been proposed. Many of
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them assimilate objects to basic entities such as centroid or bounding box [23]
and others are based on the notion of histograms [28,30]. On the contrary,
in the Artificial Intelligence field, many qualitative and ontological models
have been proposed (for instance, see [13] for a review).

– The type of the spatial relations: many authors have stressed the impor-
tance of topological relations and have proposed models for them [15,31]
but distances and directional relative positions [9,24] are also important, as
well as more complex relations such as “between”, “surround” or “along”
for instance.

– Their ability to model some important characteristics of spatial knowledge
and in particular its imprecision [9].

The choice of a representation also depends on the type of question raised and
the type of reasoning one wants to perform [10]: (1) which is the region of space
where a relation with respect to a reference object is satisfied ? (2) to which
degree is a relation between two objects satisfied?

In the following, we briefly present some fuzzy models of spatial relations
using mathematical morphology on which we build our logic.

We denote by S the spatial (image) domain, and by F the set of fuzzy
sets defined over S, defined via their membership functions, associating with
each point of space a membership value in [0, 1]. The usual partial ordering on
fuzzy sets is used, denoted by ≤F , and the associated infimum ∧ and supremum
∨. The empty set is denoted by ∅F and the fuzzy set with membership value
equal to 1 everywhere by 1F . For a t-norm t and its residual implication I,
(F ,≤F ,∧,∨, ∅F , 1F , t, I) is a residuated lattice of fuzzy sets defined over the
image space by S.

As shown in [10] and the references therein, mathematical morphology is
a powerful tool to model spatial relations in various settings (sets, fuzzy sets,
propositional logics, modal logics...). In the fuzzy set setting, the two main mor-
phological operators, dilation δ and erosion ε, are defined from a t-norm t and
its residual implication I as [12]:

∀x ∈ S, δν(μ)(x) = ∨y∈St(ν(x − y), μ(x)), (1)

∀x ∈ S, εν(μ)(x) = ∧y∈SI(ν(y − x), μ(x)). (2)

The idea for mathematical morphology based spatial reasoning is to define
the semantics of a spatial relation by a fuzzy structuring element ν in the spatial
domain, and to use morphological operations to compute the region of space
where the relation is satisfied with respect to a reference object. For instance, if
ν represents the relation “right of”, then δν(μ)(x) represents the degree to which
x is to the right of the fuzzy set μ (an example is illustrated in Figure 2). This
allows answering the first question above. As for the second question, histogram
based approaches can be adopted [30], or pattern matching approaches, applied
to the previous result and the fuzzy set representing the second object. A review
of fuzzy spatial relations can be found in [9].
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3 An Ontology of Spatial Relations

The semantic interpretation of images can benefit from representations of useful
concepts and the links between them as ontologies. We build on the work of [19]
which proposes an ontology of spatial relations with the aim of guiding image
interpretation using spatial knowledge. We briefly recall the main concepts of
this ontology using description logics (DLs) as a formal language and we rely on
the standard notations of DLs (see [3] for an introduction).

One important entity of this ontology, as proposed in [19], is the concept
SpatialObject (SpatialObject � 	). As mentioned in [26], the nature of spatial
relations is twofold: they are concepts with their own properties, but they are
also links between concepts and thus an important issue is related to the choice
of modeling spatial relations as concepts or as roles in DLs. In [19], a spatial
relation is not considered as a role (property) between two spatial objects but
as a concept on its own (SpatialRelation), enabling to address the two spatial
reasoning questions mentioned in Section 2.

– A SpatialRelation is subsumed by the general concept Relation . It is
defined according to a ReferenceSystem :
SpatialRelation �
Relation � � type.{Spatial} � ∃ hasReferenceSystem.ReferenceSystem

– The concept SpatialRelationWith refers to the set of spatial relations
which are defined according to at least one or more reference spatial objects
RO (hasRO):
SpatialRelationWith ≡
SpatialRelation � ∃ hasRO.SpatialObject � ≥ 1 hasRO

– We define the concept SpatiallyRelatedObject which refers to the set of
spatial objects which have at least one spatial relation (hasSR) with another
spatial object. This concept is useful to describe spatial configurations:
SpatiallyRelatedObject ≡
SpatialObject � ∃ hasSR.SpatialRelationWith � ≥ 1 hasSR

– At last, the concept DefinedSpatialRelation represents the set of spatial
relations for which target (hasTargetObject) and reference objects (hasRO)
are defined:
DefinedSpatialRelation ≡
SpatialRelation � ∃ hasRO.SpatialObject � ≥ 1 hasRO �
∃ hasTargetObject.SpatialObject � = 1 hasTargetObject

4 Proposed Logic for Spatial Reasoning: ALC(F)
In this section, we introduce mathematical morphology as a spatial reasoning
tool. In particular, mathematical morphology operators are integrated as predi-
cates of a spatial concrete domain. The main objective is to provide a foundation
to reason about qualitative and quantitative spatial relations. The proposed logic
is built on ALCRP(D) [16,17] with the spatial concrete domain F. We name it
ALC(F) in the rest of the paper.
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4.1 ALC(F) - Syntax and Semantics

Definition 1 (Spatial concrete domain). A spatial concrete domain is a
pair F = (ΔF,ΦF) where ΔF = (F ,≤F ,∧,∨, ∅F , 1F , t, I) is a residuated lattice
of fuzzy sets defined over the image space S, S being typically Z

2 or Z
3 for 2D or

3D images, with t a t-norm (fuzzy intersection) and I its residuated implication.
ΦF denotes a set of predicate names on ΔF which contains:

– The unary predicates ⊥S and 	S defined by ⊥F
S = ∅F and 	F

S = 1F .
– The name of the unary predicate μX defined by (μX)F ∈ F ((μX)F : S →

[0, 1]). The predicate associates to a spatial concept X a unique fuzzy set in
the concrete domain F. For each point x ∈ S, μF

X(x) represents the degree
to which x belongs to the spatial representation of the object X in the spatial
domain (the image in our illustrative example).

– The name of the unary predicate νR defined as νF
R ∈ F (νF

R : S → [0, 1]). The
predicate associates to a spatial relation R, the fuzzy structuring element νF

R

defined on S which represents the fuzzy relation R in the spatial domain.
– The name of the unary predicate δμX

νR
, defined by (δμX

νR
)F = δνF

R
(μF

X) ∈ F ,
with δ a fuzzy dilation defined as in Equation 1.

– The name of the unary predicate εμX
νR

, defined as (εμX
νR

)F = ενF
R
(μF

X) ∈ F ,
with ε a fuzzy erosion defined as in Equation 2.

– The names of two binary predicates �d,d: (μX1 �d μX2)
F = μF

X1
∧ μF

X2
and

(μX1 d μX2)
F = μF

X1
∨ μF

X2
, with ∧ and ∨ the infimum and the supremum

of F .
– The name of a binary predicate \d, defined as (μX1 \d μX2)

F = μF
X1

\ μF
X2

,
with \ the difference between fuzzy sets.

– The name of an unary predicate − which defines the substraction between
the membership function of a fuzzy set with a number into [0, 1].

– Names for composite predicates consisting of composition of elementary pred-
icates.

We now illustrate how these fuzzy concrete domain predicates are used to
represent spatial relations. As in [16,17], we assume that each abstract spa-
tial relation concept and each abstract spatial object concept is associated with
its fuzzy representation in the concrete domain by the concrete feature has-
ForFuzzyRepresentation, denoted hasFR (it is a concrete feature because each
abstract concept has only one fuzzy spatial representation in the image space).

– SpatialObject ≡ ∃ hasFR.	S . It defines a SpatialObject as a concept which
has a spatial existence in image represented by a spatial fuzzy set.

– In the same way, we have: SpatialRelation ≡ Relation �∃ hasFR.	S .

Then, the following constructors can be used to define the other concepts of
the ontology:

– ∃ hasFR.μX restricts the concrete region associated with the object X to the
specific spatial fuzzy set defined by the predicate μX ,
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– ∃ hasFR.νR restricts the concrete region associated with the relation R to
the specific fuzzy structuring element defined by the predicate νR,

– ∃ hasFR.δμX
νR

restricts the concrete region associated with the spatial relation
R to a referent object X, denoted R X, to the spatial fuzzy set obtained by
the dilation of μF

X by νF
R,

– each concept R X can then be defined by:
R X ≡ SpatialRelation �∃ hasRO.X � SpatialRelationWith and R X ≡ SpatialRelation

�∃ (hasFR,hasRO.hasFR).λ,
where λ is a binary predicate built with the mathematical fuzzy operators δ
and ε. For a relation R which has a referent object X, we write:

(hasFR,hasRO.hasFR).δ ≡ hasFR. δμX
νR ,

– C ≡ SpatialObject�hasSR.R X denotes the set of spatial objects which have a
spatial relation of type R with the referent object X and we have the following
axioms:

C � ∃relationTo.X and C � SpatiallyRelatedObject.

Examples for Distance Relations. This new formalism can be used to model
different types of spatial relations and to derive useful concrete representations
of these spatial relations. We illustrate our approach with distance relations. As
for other relations, distance relations can be defined using fuzzy structuring ele-
ments and fuzzy morphological operators [8]. For instance, the Close To relation
can be defined by the structuring element νClose To, which provides a representa-
tion of the relation in the spatial domain S. This representation can be learned
from examples. We can thus define the abstract spatial relation Close To as:
Close To ≡ DistanceRelation �∃hasFR.νClose To. Let X ≡ ∃ hasFR.μX , μF

X being
the spatial fuzzy set representing the spatial extent of the object X in the con-
crete domain (image space). Using the concept-forming predicate operator ∃f.P
(see [16]), we can define restrictions for the fuzzy representation of the abstract
spatial concept Close To X using the dilation operator δ. As a consequence, we
have: Close To X ≡ DistanceRelation �∃hasFR.δμX

νClose T o
. The value δ

μF
X

νF
Close T o

(x)
represents the degree to which a point x of S belongs to the fuzzy dilation of
the fuzzy spatial representation of X by the fuzzy structuring element νF

Close To.
This approach naturally extends to any distance relation expressed as a vague
interval.

4.2 Properties

Admissibility of F = (ΔF,ΦF). A concrete domain D is called admissible
if the set of its predicate names is closed under negation and contains a name
	D for ΔD, and the satisfiability problem for finite conjunctions of predicates is
decidable [27]. Let us prove that the concrete domain F = (ΔF,ΦF) is admissible
thanks to the algebraic setting of mathematical morphology and fuzzy sets.
Indeed, using the classical partial order on fuzzy sets ≤F , (F ,≤F ) is a complete
lattice.
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1. The name for ΔF is 	S .
2. ΦF is closed under negation:

– ¬	S = ⊥S ; ¬⊥S = 	S ;
– ∀μF

X ∈ F ,¬μF
X ∈ F (the negation is then a fuzzy complementation and

F is closed under complementation); ∀νF
R ∈ F ,¬νF

R ∈ F ;
– ∀(μ, ν) ∈ F2,¬δν(μ) = εν(¬μ) and ¬εν(μ) = δν(¬μ) (duality of erosion

and dilation), for dual connectives t and I [11].
3. For decidability of the satisfiability of finite conjunctions of predicates, the

same reasoning as in [16] can be applied, leading to the following algorithm:
– negated predicates can be replaced by other predicates (or disjunctions

of predicates), so that only non-negated predicates need to be considered;
– concrete representations of μX and νR are computed and considered as

variables;
– relations can be computed between the concrete representations of spa-

tial objects, using classical algorithms of mathematical morphology (here
we consider a discrete finite space, and these algorithms are tractable);

– then it can be directly checked whether a conjunction of predicates is
satisfied or not (this is performed in the concrete domain, i.e. a digital
finite space, and is therefore tractable).

Let us note that tractability is guaranteed by the fact that the computation
of dilations has a low computational complexity. If it is computed using a brute
force method, its complexity is in O(Nnse) where N is the size of the spatial
domain (i.e. number of pixels or voxels) and nse is the size of the support of
the structuring element (with nse � N in general). Moreover, fast propagation
algorithms exist for a number of relations (see e.g. [7] for directions). Addi-
tionally, most relations can be computed on sub-sampled images to reduce the
computational cost while keeping enough accuracy.

Moreover, several interesting properties for spatial reasoning can be derived
from properties of mathematical morphology (for properties of mathematical
morphology see [34] and [11,12] for the fuzzy case). We summarize here the
most important ones:

1. ∨-commutativity: δνF
R
(μF

X1
) ∨ δνF

R
(μF

X2
) = δνF

R
(μF

X1
∨ μF

X2
) and δνF

R1
(μF

X) ∨
δνF

R2
(μF

X) = δνF
R1∨νF

R2
(μF

X) and therefore we have the following rules:

Rule 1: R X1 R X2 ≡ R (X1 X2).
Rule 2: R1 X R2 X ≡ R12 X,

where R12 has for representation in the concrete domain νF
R1 ∨ νF

R2.
2. ∧-monotony: δνF

R
(μF

X1
∧ μF

X2
) ≤F δνF

R
(μF

X1
) ∧ δνF

R
(μF

X2
), leading to:

Rule 3: R (X1� X2) � R X1� R X2.
3. Increasingness: μF

X1
≤F μF

X2
⇒ ∀νF

R ∈ F , δνF
R
(μF

X1
) ≤F δνF

R
(μF

X2
) and

νF
R1

≤F νF
R2

⇒ ∀μF
X ∈ F , δνF

R1
(μF

X) ≤F δνF
R2

(μF
X) which implies:

Rule 4: X1 � X2 ⇒ ∀ R, R X1 � R X2.
Rule 5: R1 � R2 ⇒ ∀ X, R1 X � R2 X.
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4. Iterativity property: δνF
R1

(δνF
R2

(μF
X)) = δδ

νF
R1

(νF
R2

)(μF
X) hence:

Rule 6: R1 (R2 X) ≡ (R1 R2) X,
where R1 R2 is the relation having as fuzzy concrete representation
δνF

R1
(νF

R2
).

5. Extensivity: νF
R(O) = 1 ⇐⇒ ∀μF

X ∈ F , μF
X ≤F δνF

R
(μF

X), where O is the
origin of S hence:
Rule 7: X � R X for any relation defined by a dilation with a structuring

element containing the origin of S (with membership value 1).
6. Duality: ενF

R
(μF

X) = 1 − δνF
R
(1 − μF

X) for dual t and I, which induces
relations between some relations. For instance the fuzzy representation of
the mereotopological relation IntB X can be written as: μF

X \ (εμX
ν0

)F =
μF

X ∧(δ1−μX
ν0

)F = (δ1−μX
ν0

)F\(1−μX)F, where ν0 is an elementary structuring
element, hence:
Rule 8: IntB X ≡ ExtB ¬X.

These properties provide the basis for inference processes. Other examples use
simple operations, such as conjunction and disjunction of relations, in addition
to these properties, to derive useful spatial representations of potential areas
of target objects, based on knowledge about their relative positions to known
reference objects. This will be illustrated in Section 6 on a real example.

5 Reasoning and Inference Method

A knowledge base 〈T ,A〉 built with our description logic framework is composed
of two components: the terminology T (i.e. Tbox) and assertions about individu-
als A (i.e. Abox). Different kinds of reasoning can be performed using description
logics: basic ones, including concept consistency, subsumption, instance check-
ing, relation checking, knowledge base consistency, and non-standard ones [25].
In [3], it has been shown that basic inference services can be reduced to Abox
consistency checking. For instance, concept satisfiability, (i.e. C is satisfiable
with respect to T if there exists a model I of T such that CI is not empty) can
be reduced to verifying that the Abox A = {a : C} is consistent.

In description logics, this reasoning is often based on tableau algorithms, also
known as completion algorithms. A good overview on these algorithms can be
found in [4]. The principle of these algorithms is the following: starting from an
initial Abox A0 whose consistency is to be decided, the algorithm iteratively
applies completion rules to transform the given Abox into more descendent
Aboxes. The algorithm results in a tree of Aboxes (or a forest in the case of
Aboxes involving multiple individuals with arbitrary role relationships between
them). The algorithm stops either if the produced Abox is complete, i.e. no more
rules are applicable, or all leafs in the tree are contradictory (i.e. with clashes).
Tableau algorithms often assume that all the concept terms occurring in the
Abox are converted in their negation normal form.
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In our framework, to combine terminological with quantitative reasoning in
the concrete domain, the tableau calculus proposed in [17] is slightly modified.

First, the properties of description logics derived from properties of mathe-
matical morphology can be directly used to expand the knowledge base and to
facilitate the consistency checking. For instance, each disjunction of spatial rela-
tions is replaced according to the following equivalences: R X1 R X2 ≡ R (X1
X2) and R1 X R2 X ≡ R12 X.

Moreover, in our framework, we assume as an ontological commitment that
each instance of abstract concept is associated with its fuzzy spatial represen-
tation in the image space with the feature hasFR. As a consequence, each step
of the tableau calculus algorithm enables us to derive spatial constraints on the
fuzzy concrete representation using the properties of mathematical morphology.
Thus, we consider that an instance of a concept C describing an object having a
spatial relation R with the instance of another concept X (i.e. R X) is satisfiable
if and only if the fuzzy representation in the image domain of the instance of C
fits with the fuzzy representation of the instance of the relation R X with the
function fit : F × F → {0, 1} which verifies the strict inclusion between fuzzy
sets1:

fit(μF
X1

, μF
X2

) = 1 ⇔ μF
X1

≤F μF
X2

.

If it does not fit, a clash occurs in the Abox. More precisely, this clash occurs
when we have the following assertions in the Abox:

– s : X, (s, t) : hasSR, t : R Y, (s, μX) : hasFR, (t, λμY
νR

) : hasFR and, in the
spatial domain, fit(μF

X , (λμY
νR

)F) = 0 where λ is the fuzzy predicate enabling
the building of the fuzzy representation of the spatial relation R Y.

Other occuring clashes are:

– a : C ∈ A, a : ¬C ∈ A
– (a, x) : f ∈ A, (a, y) : f ∈ A with x �= y

As an example, let us detail some completion rules introduced in our frame-
work for spatial reasoning:

– Spatial Object Conjunction Rule (R�)
• Premise: (a : X � Y ) ∈ A, (a, μ) : hasFR, (a : X) /∈ A, (a : Y ) /∈ A.
• Consequence: A′

= A ∪ {a : X, a : Y } and we have the spatial con-
straint μ = μX �d μY .

This rule means that if a conjunction is included in A, then each part of
the conjunction should be included in A as well (this is what is meant by
“completion”). Here the novelty when using concrete domains is that the
constraint μ = μX �d μY is added as well.

– Spatial Relation 1 (R1RX
)

• Premise: (a : R X) ∈ A, ((a, μ) : hasFR) ∈ A, ¬∃r, (r : R) ∈ A,¬∃x, (x :
X) ∈ A.

1 Other functions could be used.
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• Consequence: A′
= A ∪ {r : R, (r, νR) : hasFR, x : X, (x, μX) :

hasFR, (a, x) : hasRO} and we have the spatial constraint μ = λμX
νR

.
This rule means that from a : R X (a ∈ (R X)I), we can deduce that
there must exist an individual r which is an instance of the relation
R having the fuzzy representation νR (i.e. the relation is well defined
in the abstract and the concrete domains) and an individual x which
is an instance of X (having the fuzzy representation μX), such that
(a, x) ∈ (hasRO)I and the binary predicate λμX

νR
holds in the concrete

domain. λ is the fuzzy predicate enabling the building of the fuzzy rep-
resentation of the spatial relation R X. Note that this rule is a shortcut
of the application of the conjunction rule, the exist restriction rule and
the complex role rule of [17] on the assertion a : R X where R X ≡
SpatialRelation �∃ (hasFR,hasRO.hasFR).λ.

– Spatial Relation 2 (R2RX
)

• Premise: (a : R X) ∈ A, ((a, μ) : hasFR) ∈ A, ∃r, (r : R) ∈
A and ((r, νR) : hasFR) ∈ A,∃x, x : X ∈ A and ((x, μX) : hasFR) ∈ A.

• Consequence: A′
= A ∪ {(a, x) : hasRO} and we have the spatial

constraint μ = λμX
νR

.
– In Spatial Relation (R∃hasSR)

• Premise: (a : ∃hasSR.R X) ∈ A, ((a, μ) : hasFR) ∈ A, ¬∃b, (b : R X) ∈
A and ((a, b) : hasSR) ∈ A.

• Consequence: A′
= A ∪ {b : R X, (a, b) : hasSR, (b, λμX

νR
) : hasFR} and

we have the spatial constraint fit(μF, (λμX
νR

)F) = 1.

6 An Illustration in the Domain of Medical Image
Interpretation

In this section, we illustrate on a simple but real example how our framework
can be used to support terminological and spatial reasoning in a cerebral image
interpretation application. In particular, our aim is to segment and recognize
anatomical structures progressively by using the spatial information between
the different structures. The recognition is performed in 3D magnetic resonance
images (MRI) obtained in routine clinical acquisitions. A slice of a typical 3D
MRI is shown in Figure 1.

6.1 Modeling and Reasoning

Anatomical knowledge, derived from anatomical textbooks [37] and from exist-
ing medical ontologies, such as the FMA [32], is converted in our formalism as
follows. We denote respectively LV, RLV and LLV the Lateral Ventricle, the Right
Lateral Ventricle and the Left Lateral Ventricle. The other anatomical structures
we consider are the Caudate Nucleus (denoted CN, RCN, LCN) which are grey
nuclei (denoted GN) of the brain. We have the following TBox (T ) describing
anatomical knowledge using our spatial logic ALC(F):
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putamen

thalamus

lateral ventricles

caudate nucleus

Fig. 1. An example of a slice of a 3D MRI of the brain, with a few anatomical structures
indicated

AnatomicalStructure � SpatialObject
GN � AnatomicalStructure
RLV ≡ AnatomicalStructure � ∃ hasFR.μRLV

LLV ≡ AnatomicalStructure � ∃ hasFR.μLLV

LV ≡ RLV � LLV
Right of ≡ DirectionalRelation � ∃ hasFR.νIN DIRECTION 0

Close To ≡ DistanceRelation � ∃ hasFR.νClose To

Right of RLV ≡ DirectionalRelation � ∃ hasRO.RLV � ∃ hasFR.δμRLV
νIN DIRECT ION 0

Close To RLV ≡ DistanceRelation � ∃ hasRO.RLV � ∃ hasFR.δμRLV
νClose T o

RCN ≡ GN �∃ hasSR.(Right of RLV � Close To RLV)
CN ≡ GN �∃ hasSR.(Close To LV)
CN ≡ RCN � LCN
The role forming predicate allows defining explicitly the dilation or erosion

as a role (for instance the dilation which leads to the definition of the region to
the right of the lateral ventricle):

dilate ≡ (hasFR,hasRO.hasFR).δ
Right of RLV ≡ Right of �∃ dilate.RLV

The situation in Figure 2(a) corresponds to the following Abox A:

c1: RLV , (c1,μS1): hasFR
r1: Right of, (r1,νIN DIRECTION 0): hasFR
r2: Close To, (r2,νClose To): hasFR

It means that we can observe an instance of the Right Lateral Ventricle (RLV)
on Figure 2(a) and that we know its spatial extent in the image domain (μS1).
Moreover, the spatial relations Right of and Close To have been defined in the
spatial domain by the learning their parameters from examples of the structuring
elements νIN DIRECTION 0 and νClose To.

First Scenario. In a first example, our aim is to find some spatial constraints
in the image domain on an instance c2 of the Right Caudate Nucleus (RCN)
given available knowledge, i.e. K = (T ,A). Our objective is to infer spatial
constraints on concrete domains to ensure the satisfiability of RCN given K.
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(a) (b) (c) (d)

Fig. 2. (a) The right ventricle corresponding to the image region S1 is superimposed
on one slice of the original image (3D MRI). (b) Fuzzy structuring element representing
the semantics of Right of in the image. (c) Fuzzy structuring element representing the
semantics of Close To in the image. (d) (δ

μS1
νIN DIRECT ION 0)

F ∧ (δ
μS1
νClose T o)

F.

Using the basics of description logics reasoning, it means that the Abox enriched
with {c2 : RCN, (c2, μS2) : hasFR} is consistent.

First, we replace the concept RCN by its definition in T :

A ∪ {c2 : GN � ∃hasSR.(Right of RLV � Close To RLV), (c2, μS2) : hasFR}.

Then, completion rules are used to transform the given Abox into more
descendent Aboxes and to derive constraints on the fuzzy representations of
concepts in the concrete domain (in our case, the image domain). For instance,
the completion rule adds the assertion:

c2 : GN, c2 : ∃hasSR.(Right of RLV � Close To RLV)

and we have an individual name c3 such that:

c3 : Right of RLV � Close To RLV, (c2, c3) : hasSR, (c3, μS3) : hasFR

In the spatial domain, it means that μF
S2

and μF
S3

must fit, i.e. fit(μF
S2

, μF
S3

) = 1.
As c3 is an instance of a conjunction of spatial objects, its fuzzy spatial

representation in the concrete domain is:

((μRight of RLV) �d (μClose To RLV))F

and we add the following assertions in the ABox:

c3 : Right of RLV, c3 : Close To RLV

The completion rule R2RX
is applied and we have:

μS3 = δ
μS1
νIN DIRECT ION 0 �d δ

μS1
νClose T o

and the following assertion in the ABox : (c3, c1) : hasRO.
The set of inferred spatial constraints is:

fit(μF
S2

, μF
S3

) = fit(μF
S2

, (δμS1
νIN DIRECT ION 0 �d δ

μS1
νClose T o)

F) = 1
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and the following constraint must be verified in the image domain:

(μS2)
F ≤F (δμS1

νIN DIRECT ION 0)
F ∧ (δμS1

νClose T o)
F.

The region corresponding to the the right-hand side of the inequality is illustrated
in Figure 2(d). No more completion rules can be applied so the concept RCN is
satisfiable given K if and only if this constraint is satisfied.

Second scenario. In this second example, illustrating disjunctions of relations,
we are interested in all the instances of Caudate Nuclei in the image. A caudate
nucleus is a grey nucleus which is either to the right or to the left of the lateral
ventricles. This information can be represented by the following axioms:

CN ≡ GN � ∃hasSR.(Right of LV  Left of LV)

Using Rule 2 introduced in Section 4.2, we obtain:

Right of LV  Left of LV ≡ SpatialRelation � ∃hasFR.δμLV
νRIGHT OF �dνLEF T OF

.

As a consequence, the search space for the caudate nuclei is computed
by: δνF

RIGHT OF ∨νF
LEF T OF

(μF
LV ), which is equivalent to δνF

RIGHT OF (μF
LV ) ∨

δνF
LEF T OF

(μF
LV ). The corresponding fuzzy region is represented in Figure 3(a).

(a) (b)

Fig. 3. (a) Fuzzy interpretation of the disjunction of the relations “to the left or to the
right of LV”. (b) One of the caudate nuclei is displayed.

7 Conclusions

In this paper, we extended the work described in [19] by the proposition of
a framework for spatial relationships and spatial reasoning under imprecision
based on description logics with fuzzy interpretations in concrete domains and
fuzzy mathematical morphology. The resulting framework enables us to integrate
qualitative and quantitative information and to derive appropriate representa-
tions of concepts and reasoning tools for an operational use in image interpreta-
tion. The benefits of our framework for image interpretation has been illustrated
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in the domain of medical image interpretation for the progressive segmentation
and recognition of brain anatomical structures. Future work aims at formalizing
the spatial reasoning in the concrete domain as a constraint satisfaction problem
and at further developing the brain imaging example.

References

1. Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logic.
Springer (2007)

2. Aksoy, S., Tusk, C., Koperski, K., Marchisio, G.: Scene modeling and image mining
with a visual grammar. In: Chen, C. (ed.) Frontiers of Remote Sensing Information
Processing, pp. 35–62. World Scientific (2003)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.)
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

4. Baader, F., Sattler, U.: Tableau algorithms for description logics. Studia Logica
69, 2001 (2000)

5. Bar, M.: Visual objects in context. Nature Reviews Neuroscience 5(8), 617–629
(2004)

6. Biederman, I.: Perceiving Real-World Scenes. Science 177, 77–80 (1972)
7. Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: a Morpho-

logical Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence
21(7), 657–664 (1999)

8. Bloch, I.: On Fuzzy Distances and their Use in Image Processing under Imprecision.
Pattern Recognition 32(11), 1873–1895 (1999)

9. Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A
Review. Image and Vision Computing 23(2), 89–110 (2005)

10. Bloch, I.: Spatial Reasoning under Imprecision using Fuzzy Set Theory, Formal
Logics and Mathematical Morphology. International Journal of Approximate Rea-
soning 41, 77–95 (2006)

11. Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General
Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867
(2009)

12. Bloch, I., Mâıtre, H.: Fuzzy Mathematical Morphologies: A Comparative Study.
Pattern Recognition 28(9), 1341–1387 (1995)

13. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An
overview. Fundamenta Informaticae 46(1–2), 1–29 (2001)

14. Colliot, O., Camara, O., Bloch, I.: Integration of Fuzzy Spatial Relations in
Deformable Models - Application to Brain MRI Segmentation. Pattern Recog-
nition 39, 1401–1414 (2006)

15. Freksa, C.: Spatial cognition: An AI perspective. In: de Mántaras, R.L., Saitta, L.
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29. Millet, C., Bloch, I., Hède, P., Moëllic, P.: Using relative spatial relationships to
improve individual region recognition. In: 2nd European Workshop on the Integra-
tion of Knowledge, Semantic and Digital Media Technologies, pp. 119–126 (2005)

30. Miyajima, K., Ralescu, A.: Spatial organization in 2D segmented images: Repre-
sentation and recognition of primitive spatial relations. Fuzzy Sets and Systems
65(2–3), 225–236 (1994)

31. Randell, D., Cui, Z., Cohn, A.: A Spatial Logic based on Regions and Connection.
In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation
and Reasoning KR’92, pp. 165–176. Kaufmann, San Mateo (1992)

32. Rosse, C., Mejino, J.L.V.: A Reference Ontology for Bioinformatics: The Founda-
tional Model of Anatomy. Journal of Biomedical Informatics 36, 478–500 (2003)

33. Scherrer, B., Dojat, M., Forbes, F., Garbay, C.: MRF Agent Based Segmentation:
Application to MRI Brain Scans. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.)
AIME 2007. LNCS (LNAI), vol. 4594, pp. 13–23. Springer, Heidelberg (2007)

34. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, New-
York (1982)

35. Vanegas, M.C., Bloch, I., Inglada, J.: Detection of aligned objects for high resolu-
tion image understanding. In: IEEE IGARSS 2010. Honolulu, Hawai, USA, July
2010

36. Vieu, L.: Spatial Representation and Reasoning in Artificial Intelligence. In: Stock,
O. (ed.) Spatial and Temporal Reasoning, pp. 5–41. Kluwer (1997)

37. Waxman, S.G.: Correlative Neuroanatomy, 24th edn. McGraw-Hill, New York
(2000)



SceneNet: A Perceptual Ontology for Scene
Understanding

Ilan Kadar(B) and Ohad Ben-Shahar

Ben-Gurion University of the Negev, Beer-Sheva, Israel
ilankad@cs.bgu.ac.il

Abstract. Scene recognition systems which attempt to deal with a
large number of scene categories currently lack proper knowledge about
the perceptual ontology of scene categories and would enjoy significant
advantage from a perceptually meaningful scene representation. In this
work we perform a large-scale human study to create “SceneNet”, an
online ontology database for scene understanding that organizes scene
categories according to their perceptual relationships. This perceptual
ontology suggests that perceptual relationships do not always conform
the semantic structure between categories, and it entails a lower
dimensional perceptual space with “perceptually meaningful” Euclidean
distance, where each embedded category is represented by a single pro-
totype. Using the SceneNet ontology and database we derive a compu-
tational scheme for learning non-linear mapping of scene images into
the perceptual space, where each scene image is closest to its category
prototype than to any other prototype by a large margin. Then, we
demonstrate how this approach facilitates improvements in large-scale
scene categorization over state-of-the-art methods and existing seman-
tic ontologies, and how it reveals novel perceptual findings about the
discriminative power of visual attributes and the typicality of scenes.

Keywords: Scene understanding · Scene gist recognition · Scene cate-
gories · Perceptual relations · Perceptual space

1 Introduction

Scene recognition is a challenging problem in high-level computational vision,
especially when the number of categories is large. While humans are able to learn
and process hundreds of scene categories, the performance of existing scene recog-
nition approaches drops dramatically as the number of categories increases [1].
In this paper we address two important limitations in the development of scene
recognition systems which deal with a large number of categories: (a) the lack
of proper knowledge about the ontology of scene categories; and (b) the absence
of meaningful scene representation. To address both points, we introduce a new
ontology database called “SceneNet” [2], a comprehensive ontology of scene cate-
gories that was derived directly from human vision via a large-scale human study.
The SceneNet ontology organizes scene categories according to their perceptual

c© Springer International Publishing Switzerland 2015
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relationships and provides lower dimensional scene representation with “percep-
tually meaningful” (Euclidean) distance measure, all of which facilitate large-
scale scene understanding operations.

While the concept of SceneNet is general, in this paper we report of SceneNet-
100, the current version which consists of 100 scene categories from the SUN
database [1], with the eventual goal of targeting all of its 908 categories. as we
demonstrate later, in addition to significantly better computational results on
various large-scale scene understanding operations, the SceneNet database pro-
vides important insights into human scene representation and organization and
may serve as a key element in better understanding of this important perceptual
capacity.

While traditional scene recognition approaches rarely consider the possibil-
ity of ontological organization of scene categories and indeed treat each category
separately and independently [1,3–5], learning and using ontologies of categories
is not new and has been explored in the context of object recognition in different
forms in the past [6–17]. For example, several approaches have been developed
for learning ontologies based on image features [6–10] to speed up classification
for a small cost of categorization performance. However, by construction these
approaches depend on the classifier and the selected features. The use of ontolo-
gies was recently promoted by exploiting WordNet [18] as a semantic relation-
ships database for object recognition [12,14–17,19]. For example, researchers
have shown the benefits of using WordNet for organizing images [16], reduc-
ing computational complexity [12], improving classification and search engine
results [14,17], and learning similarity functions for better image retrieval [19].
Indeed, semantic relationships can be extracted quite conveniently from Word-
Net. Still, as we will show later in Sec. 2, semantic relationships between cate-
gories do not necessarily agree with their perceptual relationships.

Arguing that a proper knowledge of the ontology of scene categories should be
based on perceptual criteria and inferred from human vision, our contributions
and course of action are summarized as follows:

– We perform a large-scale human study to create the SceneNet-100 database,
a publically available online ontology for scene understanding that organizes
scene categories according to their perceptual relationships.

– We embed scene categories along with their perceptual relationships in a
lower dimensional perceptual space with “perceptually meaningful” Euclidean
distance, where each category is represented by a single prototype.

– We extend the large margin taxonomy embedding algorithm [20] to kernels
for learning a non-linear mapping of scene images into the perceptual space,
where each scene image is closest to its category prototype than to any other
prototype by a large margin.

– We show how our approach leads to significant improvements in large-scale
scene categorization over state-of-the-art methods and existing semantic
ontologies.

– We exploit the proposed SceneNet database for novel perceptual findings about
the discriminative power of visual attributes and the typicality of scenes.
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2 SceneNet: An Online Database for Scene
Understanding

Establishing a comprehensive ontology of real-world scenes is critical for further
research in scene understanding. In this section we describe the construction of
our large-scale perceptual ontology derived directly from human vision. To this
end, we first perform a large-scale human study to determine the perceptual
relationships between scene categories using a large set of scene categories that
approximates the richness of the real world. Next, we embed the scene cate-
gories in a lower dimensional perceptual space which represents the perceptual
relationships between classes in a meaningful and usable manner.

2.1 The Scene Categorization Pair-Matching Task

In order to measure the perceptual relationships between scene categories, we
develop a crowd-source version of the “category discrimination task” recently
proposed by Kadar and Ben-Shahar [21]. In particular, we presented workers on
Amazon Mechanical Turk (AMT) with a Scene Categorization Pair-Matching
Game, where participants viewed a series of briefly presented pairs of scenes
and were asked to judge whether the two scenes belong to the same category or
not (i.e., same/different forced choice task). Given the short exposure times (see
below), this seems a rather challenging task. Still, evidence for parallel processing
in high level categorization of natural images has already been reported, showing
that humans are as fast in dual scene presentations as they are for single scene
presentations [22].

The dataset for our “game” consisted of 100 scene categories borrowed from
the SUN database [1]. The selection of scene categories was carefully done to
focus on categories that represent minimal semantic confusion and are maximally
diverse and representative of the space of scenes. Scene images were reduced to
monochrome and adapted in size to 256 × 256 pixels.

Each trial of the experiment began with a fixation cross, followed by the
simultaneous presentation of two images from our dataset for one of 3 different
presentation times (PTs): 50, 100, 200 ms (Note that PTs shorter than 50 ms
were excluded for inability to ensure small relative error in their value when
executed on unknown computer platform and display device via AMT). The
longest PT was introduced as control (i.e., “catch trials”) to verify participants’
awareness. High error rates in this PT would indicate unreliable participant
(see below). By design, 50% of trials in our experiment constitutes a pair of
images from the same category while the other 50% used images from different
categories. Chance level performance was therefore 50%. After presentation for
the selected PT, the two images were then masked by a pair of masks, each
selected at random from a pool of eight random masks having 1/f amplitude
spectrum. Participants pressed Same if they judged the two images to match in
category or Different if not.

In the beginning of each experiment participants were shown the instructions
while the system randomly selected 4 different categories out of the total 100.
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Participants then completed a category familiarity procedure using 24 images
(6 from each category) so that they could get acquainted with the scene category
labels. Then they ran 5 practice trials so they could become familiar with the
experimental procedure and task. The experiment itself followed all these steps
and consists of 50 trials. Including category familiarity and practice phases, the
entire experiment lasted around 5 minutes for each participant.

A total of 3262 workers from AMT (with better than 96% approval rate
and at least 500 approved HITs) performed the game to provide a large pool of
163,100 trials. Workers were compensated with $0.5 per HIT, plus $0.1 bonus to
high-scoring participants (> 85% average discrimination accuracy in the exper-
iment itself) to motivate them to do their best.

The primary difficulty of using a large, non-expert work-force is ensuring
that the collected data is reliable. We first analyzed participants response in
the catch trials with PT=200ms to confirm participants awareness. To exclude
unreliable participants, we set a threshold = 0.75% on average discrimination
accuracy (i.e., at the mid point between chance level and perfect discrimination)
in PT=200ms trials (and only these trials). Once unreliable participants were
filtered out, we were left with 2229 reliable participants over all PTs, whose
response data was then used for the analysis and construction of our database.

2.2 Building Perceptual Ontology

Having all (reliable) subjects’ response in the same/different discrimination task,
we then explored the perceptual relationships between all pairs of scene cate-
gories in our dataset by analyzing discrimination accuracy over all trials and
PTs. In particular, we calculated subjects’ probability to respond Different for
each pair of categories. Since this probability is expected to increase when such
judgment is easier, and since the latter case is expected when scenes become more
“perceptually different”, this probability is termed as the “perceptual distance”
(PD) between pair of visual scene categories [21]. But what are the benefits that
such information may provide? We compare the matrix of perceptual distance
(PD) with SUN’s human confusion matrix [1]. A visual depiction of the two
matrices is shown in Fig. 1. Both are organized according to the main semantic
classes of the SUN’s manually defined ontology [1] (Natural, Manmade Out-
door, and Indoor categories). Fig. 2 further illustrates the perceptual distance
with several examples.

Several conspicuous initial observations can be made upon inspection of
Fig. 1. First, while the vast majority of entries in the SUN confusion matrix are
zeros, the entries in the PD matrix varies between all pairs of scene categories in
our dataset to obtain a more informative matrix that can be used for building
ontology. Second, given the unlimited presentation time, the confusions in the
SUN confusion matrix are likely to be semantic-based rather than perceptual-
based (e.g., SUN workers confused between Canal-Urban and Canal-Natural
while perceptually they are far apart with PD=0.77; at the same time SUN
workers did not confuse Beach and Desert-Sand while perceptually they share
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(a) Perceptual Distance Matrix (b) SUN Matrix [1]

Fig. 1. (a) A visualization of the perceptual distance between all pairs of scene cate-
gories in our dataset. The elements in the diagonal represent the perceptual distance
within the category while all the other elements represent the perceptual distance
between their corresponding categories. (b) A visualization of the SUN’s “good work-
ers” classification confusions between all pairs of scene categories in our dataset. In
both cases, scene categories are organized to Natural (top left), Manmade Outdoor
(center) and Manmade Indoor (bottom right), separated by black dashed lines. To
avoid clutter only a subset of the scene category labels are presented.

similar perceptual properties, PD=0.42). Indeed, quite often the perceptual rela-
tionships are strongly inconsistent with their semantic counterparts. For exam-
ple, as illustrated in Fig. 2, the “Baseball Field” category is perceptually more
related to natural scene categories (e.g., “Desert-Sand”, “Beach” and “Field
Cultivated”) than to most of the manmade categories (e.g., “Castle”,“Doorway
Outdoor” and “Pagoda”), although semantically the opposite holds [18]. Sim-
ilarly, the “Harbor” category is perceptually more related to several natural
scene categories (e.g., “Lake”, “Islet”) than to many manmade scene categories
(e.g., “Street”, “Corridor”) while semantically the opposite holds again [18] (see
Fig. 2). It is this new information on scene categories that we wish to exploit for
better scene understanding representation and operations.

Fig. 2. Our perceptual distance metric for two scene categories examples “Baseball
Field” and “Harbor”. The other scene categories are labeled with their perceptual
distance to the two examples.
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2.3 Embedding Categories in Perceptual Space

Our next step is to embed the scene categories along with their perceptual
relationships into a possibly lower dimensional perceptual space Rc such that
their Euclidean distances are “perceptually meaningful”. One way to carry such
embedding is Multidimensional Scaling (MDS) – a technique from statistical
inference and data visualization to embed a set of objects in Euclidean space
while preserving their “distance” as much as possible [23]. In our case these “dis-
tances” are the perceptual distances obtained from human vision and although
the dimension c of Rc can be lower, in our analysis we select c = 58 in order
to preserve the perceptual distances as much as possible. This choice was man-
dated by the projection of the PD matrix onto the cone of positive semi-definite
matrices by forcing negative eigenvalues to zero.

Let P = [p1, ..., pc] ∈ Rc×c be a matrix whose columns consist of sought-
after scene category prototypes, where pα is the prototype that represents scene
category α. We aim to embed the category prototypes such that the distance
||pα−pβ ||2 reflects the perceptual distance specified in PD(α, β) (i.e., the percep-
tual distance between categories α and β). More formally, our problem becomes

PSceNet = arg min P
c∑

α,β=1

(||pα − pβ ||2 − PD(α, β))2 (1)

and it can be solved with metric multi-dimensional scaling [23]. Fig. 3 illustrates
the embedding of all the scene categories in our dataset into the first two dimen-
sions of the perceptual space. Interestingly, even with just two dimensions visu-
alized, the results reveal that perceptual relationships do not necessarily conform
to their semantic counterparts (e.g., see “Baseball Field”, “Gulf Course”,”Green
House Indoor”,”Phone Booth”,“Market Outdoor”, ”Shop Front”). As we demon-
strate later (see section 4), the use of this perceptual ontology and space
provides significant improvements in scene recognition over the SUN semantic
ontology [1], suggesting that the use of the perceptual space over the semantic
one should be prioritized in general. At the same time, in agreement with the
Spatial Envelope model [24], the first (and most dominant) perceptual dimension
appears to be related to the Naturalness and Openness attributes of the scene.
While this can be observed intuitively from the visualization of the obtained
perceptual space (see Fig. 3), these findings invite further analysis of the dis-
criminative power of visual attributes (see Sec. 5.1).

Indeed, what are the benefits that such a large-scale perceptual organization
may provide over previous perceptual studies that were at much smaller scale
with only 8 categories [21,24,25]? We argue (and later demonstrate in Sec. 4)
that the perceptual space just described is already highly useful in facilitating
significant improvements in large-scale scene recognition applications over state-
of-the-art methods and existing semantic ontologies. At the same time, since
its larger scale set of categories provides much better representation for rich-
ness of the real world, the perceptual structure offered by SceneNet could also
provide important insights into human scene organization and representation.



SceneNet: A Perceptual Ontology for Scene Understanding 391

Fig. 3. Visualization of the first two dimensions of the perceptual space. Note that
Natural, Manmade outdoor, and Manmade indoor scene categories are colored green,
blue, red, respectively. Several categories that are referenced in the text are shown in
bold face for faster localization.

In what follows we demonstrate this by exploiting our new perceptual ontology
for novel findings about visual attributes and in particular about their discrim-
inative power. For that, we combine SceneNet with the SUN attribute database
which was recently proposed by Patterson and Hays [26].

3 Large-Scale Scene Recognition with SceneNet

With the SceneNet Database established via experimental analysis as above, we
turn to discuss how it may be exploited for large-scale scene recognition. To do so
we extend the document taxonomy embedding by Weinberger and Chapelle [20]
to allow non-linear ontology embedding via kernels.

3.1 Scene Mapping with Regression

Let a scene image represented as feature vector xi ∈ Rd. Once we found a
suitable embedding P of the scene category prototypes into Rc, out next step is
to find an appropriate linear mapping W ∈ Rc×d that maps each input image
xi with category label yi as close as possible to its category prototype pyi

in the
perceptual space. We can find such a linear transformation zi = Wxi by setting

W = arg min W

n∑
i=1

||pyi
− Wxi||2 + λ||W ||2 (2)
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where n is the number of input images and λ determines the depth of regu-
larization on W, which is necessary to prevent potential overfitting due to the
high number of features. The minimization in Eq. 2 is an instance of linear ridge
regression whose closed-form solution is

W = PJXT (XXT + λId)−1 (3)

where Id ∈ Rd×d is the identity matrix, X = [x1, ..., xn], and J ∈ {0, 1}c×n,
with Jαi = 1 if and only if yi = α.

The above formulation can be easily extended to kernel ridge regression [27]
to use kernels in the following way

W = PJκ(x)(K + λIn)−1 (4)

where K ∈ Rn×n with elements Kij = φ(xi)T φ(xj), κ(x) ∈ Rn with elements
κi = φ(xi)T φ(x), and φ is the feature mapping function.

In order to categorize a new input xk, we first map it into the perceptual
space

zk = Wxk = PJκ(xk)(K + λIn)−1 . (5)

Then, we estimate its label ŷk as the category with the closet prototype pα, i.e.,
via direct nearest neighbor

ŷk = arg min α||pα − zk||2 (6)

3.2 Large Margin Scene Mapping

So far we have learned the scene category prototypes P based on the SceneNet-
100 ontology (i.e., directly from human vision and independent of the input
data X) and found a mapping W that maps each input scene closest to the
prototype of its category in the perceptual space. Still, a better and more robust
generalization would allow for the correct prototype pi to lie much closer to
zi than any other prototype pα by a large margin. Moreover, it would be also
preferable if perceptually dissimilar prototypes would be further separated by a
larger margin than those that are more perceptually related. In the following we
briefly describe the large margin formulation [20] to learn P and W jointly for
better generalization.

Following Eq. 4, let us define the following matrix A:

A = Jκ(x)(K + λIn)−1 . (7)

Eqs. 4 and 7 suggest that W = PA and that A is completely independent of P
and can be computed directly from the input data X. Scene category prototype
pα and query zi can now be rephrased as follows:

pα = Peα and zi = Px′
i (8)

where x′
i = Axi and eα = [0, ..., 1, ..., 0]T (i.e., vector with all zeros and a single 1

in the αth position). This allow us to reduce the problem to a single optimization
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problem to determine P while enforcing large margin constraints with respect
to the perceptual relationships between scene categories (i.e., PDyiα) and using
regularization with weight μ ∈ [0, 1] to ensure that P will be as similar as possible
to PSceNet (cf. Eq. 1). We hence define the following constrained optimization

arg min P (1 − μ)
∑
i,α

ξiα + μ||P − PSceNet||2 subject to

(1) ||P (eyi
− x′

i)||2 + PDyiα ≤ ||P (eα − x′
i)||2 + ξiα

(2) ξiα ≥ 0

(9)

where PDyiα now represents the (large) margin we wish to enforce on the correct
classification while the slack variables ξiα absorb the amount of violation of
prototype pα�=yi

into the margin of the correct prototype pyi
[20].

As is later demonstrated in Sec. 4, the use of regularization term in the
objective function is necessary to prevent overfitting due to the high number
of features, since while the training input data might differ from the test data,
the perceptual ontology remains the same. While the constraints in Eq. 9 are
quadratic with respect to P and the optimization is therefore not convex, we can
make Eq. 9 convex by defining Q = PT P and rewriting all distances in terms of
Q while requiring that Q is positive semi-definite. With

||P (eα − x′
i)||2 = (eα − x′

i)
T Q(eα − x′

i) = ||eα − x′
i||2Q (10)

we therefore rewrite the final convex optimization problem as follows:

arg min Q(1 − μ)
∑
i,α

ξiα + μ||Q − QSceNet||2 subject to

(1) ||(eyi − x′
i||2Q + PDyiα ≤ ||eα − x′

i||2Q + ξiα

(2) εiα ≥ 0
(3) Q ≥ 0

(11)

where QSceNet = PT
SceNetPSceNet. This optimization is a particular instance of

semi-definite program (SDP) [28] that can be solved very efficiently with special
purpose sub-gradient solvers [29]. Once the optimal solution Q∗ is found, one
can obtain P with svd Q∗ = PT P and the mapping W from W = PA.

4 Large-Scale Scene Categorization

While the goal of this paper and the SceneNet ontology and database is not
necessarily limited to improved scene categorization, in this section we demon-
strate how the use of the SceneNet-100 ontology embedding facilitates signifi-
cant improvements in this central and popular task. To do so, we compared our
approach, abbreviated here as SceNet-Ontem, to the one-vs-all Support Vec-
tor Machines (SVM 1/all) using publicly available code [1] with the descrip-
tor and kernel defined as above. Additionally, we show that this improvement
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Fig. 4. Scene Categorization: Performance of all discussed algorithms (SceNet-
Ontem,SUN-Ontem,SVM 1/all, I-Ontem, and Ontem) as the number of training
examples is increased. Left: The standard categorization rate that treats each mis-
classification equally. Right: The cost sensitive categorization rate that treats each
misclassification according to the perceptual distances between scene categories. Error
bars represent standard error of the means.

results from the very specific ontology represented by SceneNet-100 which was
inferred experimentally and reflects human perception. To do so, we also com-
pared SceNet-Ontem to I-Ontem, an instance of our ontology embedding where
the SceneNet ontology is ignored and P is set to be the identity matrix I ∈ R

c×c

such that all category prototypes are placed in constant distance from each
other in the perceptual space. Furthermore, we also compared SceNet-Ontem to
SUN-Ontem, an instance of our ontology embedding where the manually defined
sematic ontology from SUN is used [1]. Finally, we tested another control clas-
sifier, dubbed here as Ontem, where the regularization term in the SDP (which
is used to enforce similarity between P and PSceNet) is completely ignored by
setting μ = 0.

In all cases we randomly split each category to disjoint training and testing
sets, with ntraining = 5, 10, 20, 50 and ntest = 50. The same sets where then
used with the five algorithms (i.e., SceNet-Ontem,SUN-Ontem ,SVM 1/all, I-
Ontem,Ontem) and repeated 20 times (to control for the random selection of
samples). The GIST descriptor that was proposed specifically for scene recogni-
tion tasks [24] was used with an RBF kernel using the code available online [1].
We set the regularization weights to λ = 1 for the kernel ridge regression and
μ = 0.9 for the SDP. Preliminary experiments have shown that regularization
was important but the exact settings of the λ and μ had no crucial impact, except
for the need for μ to be closer to one than to zero to insure that P will be similar
enough to PSceNet. We evaluated the performance of two measures of catego-
rization accuracy (each measure treats the misclassification differently): (1) the
conventional categorization rate that weighs each misclassification equally; (2)
the cost sensitive categorization rate that weighs each misclassification accord-
ing to the perceptual distance between scene categories. The latter measure is
inspired by the observation that quite often the implications of confusing certain
classes is less critical than others. For example, it is easy to conceive an appli-
cation where it is significantly worse to misclassify a coastal scene as a kitchen
rather than a lake.
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A comparison of the five algorithms and two measures of performance is
provided in Fig. 4. As the results show, the use of the SceneNet ontology embed-
ding yields significant improvement over SVM 1/all in all training set sizes. The
graphs also show that the ontology used cannot be arbitrary but rather it must
reflect the true relations between scene categories. Indeed, when all scene cat-
egories have constant distance from each other (as in I-Ontem), or when P is
not required to be similar to PSceNet (as in Ontem), performance drops signif-
icantly. Finally, while using semantic ontology (cf. SUN-Ontem) may improve
performance compared to SVM 1/all, the use of the SceneNet ontology yields
significantly better performance in all training set sizes.

5 Perceptual Insights

Apart from significantly better computational results, the SceneNet database
could also provide important findings in human scene organization and repre-
sentation. In what follows we demonstrate this by exploiting our new perceptual
ontology for novel findings about the discriminative power visual attributes and
the typicality of scenes.

5.1 Discriminative Power of Visual Attributes

In their recent attempt to enable deeper understanding of scenes, Patterson and
Hays [26] proposed the SUN attribute database that spans over 700 categories
and 14,000 images with 102 discriminative attributes related to materials, surface
properties, lighting, functions/affordance, and spatial envelope properties. While
they reported that scene category can be predicted only from scene attributes,
using SceneNet we now attempt to determine which among these attributes are
the most discriminative, or more generally, to obtain insights about the discrim-
inative power of all attributes. Specifically, we argue that the more discrimina-
tive attributes account for most of the distance between scene categories in our
perceptual space while less discriminative attributes have only minor effect on
the perceptual distance between scene categories. In other words, exploring the
interaction between these two databases may reveal this new information very
explicitly.

Following the information in the SUN attribute database, let a scene image be
represented as attribute feature vector a ∈ R102. For each pair of scenes ai and
aj from two distinct scene categories α and β from SceneNet-100, we calculate
the vector dij ∈ R102 of their absolute pairwise differences. Since dij reflects
the attributes that distinguish scenes ai and aj , we refer to it as the attribute-
distance vector between scenes ai and aj . Next, we trained a support vector
regression (ε SVR) to map each attribute-distance vector dij to the perceptual
distance value between their corresponding categories α and β (i.e., PDαβ). With
the trained support vector regression we could now predict the discriminative
power of each visual attribute separately with the input ez = [0, ..., 1, ..., 0]T (i.e.,
vector with all zeros and a single 1 in the zth position for attribute z). Fig. 5
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plots these results for all visual attributes in the SUN attribute database, sorted
by discriminative power.

Fig. 5. The discriminative power of the visual attributes in the SUN attribute database.
Consistent with the spatial envelope model [24], the most discriminative attributes
are “Natural” and ”Openness” (i.e., enclosed area, open area). Here, however, with a
number of scene categories and attributes that is an order of magnitude larger than
that of [24], we provide a rigorous perceptual basis to support and validate this claim.

Consistent with the spatial envelope model [24], the most discriminative
attributes are “Natural” and ”Openness” (i.e., enclosed area, open area). Here,
however, with a number of scene categories and attributes that is an order of
magnitude larger than [24], we provide a rigorous perceptual basis to support
and validate this claim. More significantly, we provide a full evaluation of the dis-
criminative power for the most comprehensive list of visual attributes available
to-date, which enables deeper understanding of visual attributes and their rela-
tions to human perception, and could possibly facilitate better attribute-based
scene representation for scene recognition.

5.2 Typicality of Scenes

One of the most robust findings in categorization is that category membership
is graded and that humans seem to consistently identify typical and atypical
exemplars of a category [30,31]. More importantly, there is a large body of work
supporting the influence of typicality on categorization (see [32] for a detailed
review). For example, it has been found that observers response time is faster for
queries involving typical exemplars (e.g., “is a robin a bird”) than for atypical
exemplars (e.g., “is a chicken a bird”) [33], and that learning of category rep-
resentations is faster when typical rather than atypical exemplars are presented
earlier in the sequence [34]. Arguing that a proper scene representation should
take these findings into account and be consistent with them, we use our percep-
tual space scene representation to obtain a new perceptual typicality measure
that correlates highly with the typicality ranking of humans.
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The perceptual space scene representation (as opposed to discriminative
methods such as SVM) has the advantage of representing a soft decision about
the degree to which an image belongs to a category. We measure the image
typicality by computing the distance between scene images and their categori-
cal prototypes in perceptual space. Examples of the most typical and atypical
images by our approach are shown in Fig 6.

Most typical images Least typical images

Alley Alley Alley Alley

Beach Beach Beach Beach

Bedroom Bedroom Bedroom Bedroom

Classroom Classroom Classroom Classroom

Fig. 6. Examples of the most typical and atypical images by our approach.

Next, we conducted a psychophysical experiment to compare the typicality
measure based on the SceneNet perceptual space scene representation (SceneNet
typicality measure) with the typicality ranking of humans. In particular, we pre-
sented workers on Amazon Mechanical Turk (AMT) with the Image Typicality
Task, where participants were given the name of a scene category from the SUN-
100 database, a short definition of the scene category, and two images. Workers
were asked to select which of the two images best described the name and def-
inition (one of the two images was drawn from the 10 most typical images by
our approach and the other was drawn from the 10 most atypical images by our
approach). A total of 42 workers from AMT (with better than 97% approval
rate, at least 5000 approved HITs, and located in the United States) performed
the task to provide a large pool of 1000 trials. Workers were compensated with
$0.02 per HIT. An sample trial from the Image Typicality Task is shown in Fig 7.
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Fig. 7. An example of a trial in the Image Typicality Task. In each trial, participants
were given the name of a scene category from the SUN-100 database, a short definition
of the scene category, and two images. Workers were asked to select which of the two
images best described the name and definition (one of the two images was drawn from
the 10 most typical images by our approach and the other one was drawn from the 10
most atypical images by our approach)

Having all worker responses in the Image Typicality Task, we then assessed
the degree of agreement between the SceneNet typicality measure and the human
subjects’ typicality ranking. Our analysis revealed that scenes that humans rate
as more typical examples of their category are more likely to be close to their
categorical prototype in the perceptual space. Indeed, participants selected an
image from the most typical scene images by our approach in 84.38% of the
trials, indicating that the SceneNet perceptual space scene representation and
the SceneNet typicality measure are perceptually plausible.

6 Conclusion

In this paper we argue that in order to advance the field of scene understanding
a proper knowledge of the perceptual ontology of scene categories is required.
We have proposed such an ontology and provided SceneNet-100, an ontolog-
ical database of 100 scene categories that was derived directly from human
vision through a large-scale human study. The SceneNet ontology and database
organizes scene categories according to their perceptual relationships and pro-
vides a lower dimensional scene representation with “perceptually meaningful”
Euclidean distances. We show that the use of SceneNet facilitates significant
improvements in large-scale scene categorization and provides important insights
into human scene representation and organization for the benefit of future explo-
ration of scene understanding.
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1 Electronics Laboratory, Dehradun, India
agheleh.yaghoobi@ee.oulu.fi

2 Center for Machine Vision Research, Oulu, Finland
hamed.rezazadegan@ee.oulu.fi

3 Computer Science and Engineering Department, University of Oulu, Oulu, Finland
juha.roning@ee.oulu.fi

Abstract. This paper articulates the concept of affordances use as the
building block of an automated video surveillance system which learns
and evolves over time. It grounds its arguments on the basis of a visual
attention hardware and affordances.

Keywords: Surveillance · Attention modeling · Affordances

1 The Problem Scope

Video surveillance is an old demand influencing computer vision. Despite the
recent impressive progress, there is still a long way to achieve a fully automated
system and many of the prerequisites in this area require careful attention and
are somehow a challenge, e.g., background subtraction [2], anomaly detection [3],
and etc.

Traditionally successful commercial systems (e.g. SISTORE CX series from
Siemens [9]) perform a centralized scene analysis in which violation of a series
of predefined rules, which are usually imposed by an operator, trigger an alert.
While it seems to be a long way to achieve having automated surveillance system
which evolves and learns over time, the affordances theory [4] and visual attention
modeling [1,12] somehow promise to pave the way towards such an ultimate
aspiration.

In this context, an automated framework is constrained by limited computa-
tional resources, volatile conditions of the environment (e.g. amount of crowd),
the running site (e.g. a university campus or a factory), understanding the rela-
tion between the entities (i.e. scene understanding), and etc. Notwithstanding
the difficulties, probably, one can still achieve a degree of automation by utiliz-
ing new concepts adopted from cognitive studies. Thus, the research question is:
Can one utilize affordances to advance the surveillance to the next level?

2 Is Affordances a Solution?

The answer is not a straightforward affirmative phrase, neither a negative response.
Although it is not the sole solution, it can be an important part of the answer
c© Springer International Publishing Switzerland 2015
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by facilitating efficient scene processing. It possibly provides the necessities of an
ontological-based surveillance platform which evolves over time. The following
elaborates how one can implement such a system.

2.1 A Rough Sketch of the Design

A practical approach for implementing such a platform consists of a combina-
tion of hardware and software units. Contrarily to the commercially available
systems, the camera unit shall be updated to carry out part of the processing.
Thus, an array of way more intelligent cameras will feed images and extra infor-
mation, called meta-tags, to a central system. Meta-tags provide complementary
information about the elements of the scene, e.g., it is a moving element, how
contrasting the item is compared to its surrounding, and etc. These informa-
tion are extracted using bottom-up visual attention models or salience modeling
techniques, e.g. [6,8], which are embedded in hardware. Afterwards. the video
frame and the meta-tags are efficiently encoded [7] to be transferred to a central
processing unit.

In the central unit, each video frame is processed using a series of contextual
priors [10] and atomic or compositional rules imposed by predefined affordances.
Atomic rules are defined as properties of an element independent of its behavior,
e.g., move-abality defines if an element is able to move or not. On the other hand,
a compositional rule consists of several atomic affordances at the same time, e.g.,
aggressive movement can be identified by existence of fast movement towards the
site which requires identification of a moving element with particular movement
pattern and characteristic.

Contextual priors are also important. In essence, they define the operation
environment of the system, more accurately each camera unit. In such a system,
two kind of priors exists, 1) excitery priors and 2) inhibitory priors. The first
defines the existence of an element and its properties such as probable loca-
tion. For instance, if a camera shall expect human presence in its field of view
or vehicles and where should look for them. Contrarily, the inhibitory priors
ban occurrence or existence of an element. In a nutshell, contextual priors ease
the building process of an ontological tree [11] that helps understanding the
environment.

The ontology evolves either via user interaction or recognition modules which
identify the presence of elements and their interactions with the advent of affor-
dances. While a user can alter both domain and conceptualization of the system,
the recognition modules only affect changes in the domain (i.e. field of view of
each camera). The automatic ontology enrichment and evolving is possible via
graphical models in which a mapping between the ontology and an appropriate
Bayesian network is derived, e.g. [5].

In the end, the outcome will be a set of hardware and software that vigi-
lantly performs video surveillance, easily adapts to environment, and enhances
over time. Also, a series of new affordances defined in the context of the entities
of assigned task are expected. Eventually, a system, which integrates bottom-up
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visual attention techniques, contextual priors and affordances, will be imple-
mented to derive ontological scene understanding in a less general scenario. In
summary, the broad vision is a step toward convergence of cognitive sciences,
electrical engineering and computer vision.
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Abstract. The interaction of biological agents within the real world is
based on their abilities and the affordances of the environment. By con-
trast, the classical view of perception considers only sensory features,
as do most object recognition models. Only a few models make use of
the information provided by the integration of sensory information as
well as possible or executed actions. Neither the relations shaping such
an integration nor the methods for using this integrated information in
appropriate representations are yet entirely clear. We propose a proba-
bilistic model integrating the two information sources in one system. The
recognition process is equipped with an utility maximization principle to
obtain optimal interactions with the environment

Keywords: Affordance · Sensorimotor object recognition · Information
gain

1 Introduction

The ability of humans to reliably recognize objects in the environment is still
a largely unsolved problem for artificial systems. Usually, object recognition
is understood as a classification problem where a fixed mapping from feature
vectors to object classes is learned. This is in line with the classical view of
perception as the input from world to mind and of action as the output from mind
to world [6], which implies a dissociation between the capacities for perception
and action. However, there is strong evidence that object recognition cannot be
understood independently of the interaction of an agent with its environment
[8]. “Active perception” approaches [1,2] take this partially into account, but
actions are not merely means for acquiring new information, they also provide
evidence themselves for the recognition [5]. What an agent perceives is thus also
determined by what it does or what it is able to do [8].

Research in the direction of affordances by Gibson [3] also provides evidence
that affordances are key ingredients of the perceptual process. A variety of studies
regarding object recognition show that the visual information of a manipulable
c© Springer International Publishing Switzerland 2015
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object causes an activation of representations of actions which can typically be
executed on the object [4]. The advantageous interplay between sensory and
action information, which was also recognized by Neisser [7], should be consid-
ered in the recognition process.

The strong interrelation between motor actions and sensory perceptions is
basis for the concept of a sensorimotor representation [8,10]. Similarly to the
affordance point of view the processing stages for sensory and motor informa-
tion are not separated. The approach including the actions in the representation
gives the opportunity to choose the next action such that a specific objective
is pursued. Generally, the problem of action selection can be solved in numer-
ous ways, but as information gathering should be one major purpose of motor
actions it is appropriate to consider an information-theoretic utility function.
Prior research in this area often found that the principle of information gain is
well suited to select an appropriate next action.

In this paper, we propose a system for object recognition which incorpo-
rates both the information gain principle from sensorimotor systems and the
theoretical concept of affordances. Building upon the investigations in [11], we
developed a sensomotoric probabilistic reasoning system for affordance-based
object recognition. The design of our architecture is motivated by two main
goals: i) to provide a clear relation to Bayesian inference approaches, and ii) to
enable a comparison between the classic sensory approach and the sensorimotor,
affordance-oriented approach within one common probabilistic framework.

2 Object Recognition System

The system described in the following is a generic architecture (see Fig. 1). The
recognition loop starts out with a particular pose of an object which is perceived
by a sensor. The sensor passes its raw data to the sensory processing module.
After processing, the sensory data becomes part of a new sensorimotor feature,
which is then fed into the probabilistic reasoning module. The processed sensory
data are also used to obtain a set of possible interactions, i.e., the affordances
offered by the sensory data related to the abilities of the agent. The Bayesian
inference module calculates the new posterior distribution based on a previously-
learned sensorimotor representation. This representation contains the learned
perceptual consequences of an interaction in a given state for every object class.
The posterior distribution constitutes the current belief of the system. This belief
is used by the information gain strategy to choose an optimal next action from
the set of possible interactions. The selected interaction then also becomes part
of the sensorimotor feature and is subsequently executed by the agent. The whole
process results in a new state, which in turn delivers new raw sensory data to
enter the next cycle of the recognition loop.

More formally speaking, the system depends on an agent, which can be con-
trolled such that it perceives information about a specific aspect of the world.
In Fig. 1, the two arrows pointing from the states to the sensory processing
module correspond to the mapping A : U × X → R, where U is the space of all
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Fig. 1. Architecture of the object recognition system

interactions which are currently possible, X is the state space, and R is the raw
sensor data space.

The system has no explicit knowledge about the actual state, and the cur-
rently possible interactions U . The possible interactions are of course dependent
on the state but nevertheless both information must be obtained from the sen-
sor data. The sensoric dependency on the state is formalized by the mapping
U : X → P(ΩU ), where ΩU is the set of all possible interactions and P denotes
the power set. Note that U comprises the link from the state to the sensory
processing module and the following link to the set of possible interactions in
Fig. 1, i.e., the perceived affordances. Assuming that the output of the function
U is given, we write U instead of U(x), x ∈ X, for convenience. Considering the
state-agnostic behavior, the influence of the agent can be formally redefined to
Ax : U → R with Ax(u) := A(x, u) = r, x ∈ X, u ∈ U(x), r ∈ R. The only
time-dependent variables are the state x and the interaction u.

The raw sensor data r ∈ R is fed into the sensory processing (SP) which
mainly extracts the relevant features belonging to a feature space F , i.e., SP :
R → F . Subsequently, the quantization operation QS : F → S maps the features
to a specific feature class in the finite space S. The possible interactions are
mapped with QM : ΩU → M to the finite set of interactions M to yield a
manageable product space of sensory information and actions. The results of
these quantizations then become part of a sensorimotor feature (SMF ). The
single quantizations are represented in Fig. 1 by the arrows from the sensory
processing module and the interaction command to the sensorimotor feature
which is defined as the triple
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SMFi := (si−1,mi−1, si), (1)

where mi−1 := QM (ui−1) is the interaction between the sensor information si−1

and si at time step ti−1 and ti. The whole chain of operations to obtain the sensor
information at a time step ti can be described by si := (QS ◦ SP ◦ Ax)(ui−1).

The knowledge representation is comprised of the learned sensorimotor rep-
resentation (SMR), which is a full joint probability distribution of SMF s and
the classes represented by the discrete random variable Y . Every possible SMF
is generated on a set of known objects in a training phase. This means that,
from every possible state x, the sensory consequence of every possible action u
is perceived, resulting in

SMR := P (SMFi, Y ) = P (Si−1,Mi−1, Si, Y ). (2)

The probabilistic reasoning module consists of a Bayesian inference approach
accompanied by an information gain strategy. They rely on bottom-up sensory
data and top-down information from the knowledge representation. The infor-
mation gain strategy can choose an optimal next interaction for the agent, thus
improving the input of the following Bayesian inference step.

3 Model Implementation and Outlook

Based on the schematic outline presented above, we applied our system to object
recognition using a robotic arm interacting with objects in 3D space. We used a
discrete set of interactions M of a robotic arm with an object which comprise the
relative position/pose of the visual sensor to the object (ΩU = M , QM = Id).

In the learning phase, features are extracted from the training data (images
from every reachable state). GIST-features [9] are used to describe the sensory
input, i.e., defining SP . The quantization QS is then learned by performing a
k-means clustering on the extracted features. In order to build the individual
SMF s, features are extracted and the results are assigned to clusters with the
aid of the previously defined mapping QS . These labels are combined with the
corresponding interactions in a set of SMF s. Finally, all generated SMF s are
stored in a Laplace-smoothed SMR.

The probabilistic reasoning is comprised of a Bayesian inference module in
the form of a dynamic Bayesian network (BN) and a corresponding information
gain strategy. Two of these probabilistic reasoning modules were implemented to
examine the difference between sensor networks, which only take into account
sensory information (which also implies that no information gain strategy is
used), and affordance-based networks, which integrate sensory perceptions and
interactions. The object recognition in the sense of computer vision then takes
place by classification which is performed by choosing the class with the maxi-
mum posterior probability.

The representative of the sensor networks is Bayesian network 1 (BN1) (see
Fig. 2a), which resembles an extended naive Bayes model that additionally allows
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...

(a) BN1

...

information
gain

(b) BN2

Fig. 2. In Bayesian network BN1 (a) sensory information Sn is processed only to obtain
the object class Y . Bayesian network BN2 (b) is equipped with the information gain
startegy which takes also the action Mn into account.

for statistical dependencies between the preceding and the current sensor infor-
mation, si−1 and si, resulting in

P (y|s1:n) ∝ P (y)P (s1|y)
n∏

i=2

P (si|si−1, y), (3)

where s1:n is a short notation for the n-tuple (s1, . . . , sn).
Bayesian network 2 (BN2) (see Fig. 2b) uses the full information of the SMF

and therefore belongs to the affordance-based networks. The assumption that the
current sensory input si depends on the action mi−1 integrates sensory percep-
tions and actions in the recognition process and permits the application of the
information gain strategy to choose the next optimal interaction. Additionally,
it is assumed that the action mi−1 statistically depends on the preceding sensory
input si−1. The inference can then be conducted by

P (y|s1:n,m1:n−1) ∝ P (y)P (s1|y)
n∏

i=2

P (si|si−1,mi−1, y)P (mi−1|si−1). (4)

The strategy for action selection should satisfy two main properties: (i) The
strategy should adapt itself to the current belief state of the system and (ii) the
strategy should not make decisions in an heuristic fashion but tightly integrated
into the axiomatic framework used for reasoning. The information gain strategy
presented in this paper complies with both of these properties.

The information gain IG of a possible next action mn is defined as the
difference between the current entropy and the conditional entropy,

IG(mn) := H(Y |s1:n,m1:n−1) − H(Y |Sn+1,mn, s1:n,m1:n−1). (5)

This is equivalent to the mutual information of Y and (Sn+1,mn) for an arbitrary
mn. As the current entropy H(Y |s1:n,m1:n−1) is independent of the next action
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(a) Recognition performance (b) Mean entropies

Fig. 3. Results of the robotic arm evaluation (8 object classes, 10 objects per class,
30 discrete viewpoints). BN 1 and 2 -IG executed random movements while BN2 +IG
executed information-gain-guided movements.

mn the most promising action m∗ can be calculated by minimizing the expected
entropy with respect to Sn+1,

m∗
n = arg min

mn

( E
Sn+1

[H(Y |s1:n, Sn+1,m1:n)]). (6)

Because the sensory input sn+1 is not known prior to executing mn, the expected
value over all possible sensory inputs sn+1 is taken into account. The selected
action m∗ ∈ M is integrated into the next sensorimotor feature. The inverse
mapping of QM can then be used to obtain a top-down interaction command
u ∈ U , which is then executed by the agent.

Preliminary results are shown in Fig. 3. In the future, we plan to conduct a
more extensive evaluation of our approach (using different sensory features) by
comparing it to established object recognition approaches on a larger data set.
Furthermore we want to extend our approach by a saliency feature detector.
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8. Noë, A.: Action in Perception. MIT Press (2004)
9. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image

features in recognition. Progress in Brain Research 155, 23–36 (2006)
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Abstract. In this paper we propose an approach to distinguish affor-
dances on a fine-grained scale. We define an anthropomorphic agent
model and parameterized affordance models. The agent model is trans-
formed according to affordance parameters to detect affordances in the
input data. We present first results on distinguishing two closely related
affordances derived from sitting. The promising results support our con-
cept of fine-grained affordance detection.

Keywords: Affordances · Fine-grained affordances · Visual affordance
detection · Object classification

1 Introduction

We address the task of detecting affordances on a fine-grained scale in a home
environment. Affordances as defined by Gibson [3], [4] inherit the concept of
direct perception and the complementary nature of an agent and its environment.
Whether or not direct perception can be used in computer vision is still an open
debate as discussed e.g. by Şahin et al. [6] and Chemero et al. [2].

In the presented approach we exploit the complementary nature of an agent
and its environment. We propose to model the agent as an anthropomorphic
body and define a set of parameterized affordance models. A home or office envi-
ronment for humans must reflect human body characteristics. A system equipped
with these models is thus able to detect affordances in the environment.

We present first results on two closely related affordances: sitting without
backrest and sitting with backrest which stem e.g. from the objects stools and
chairs, respectively. Traditionally, these two affordances would be both sitting.
Our results suggest that objects used by humans in a home environment provide
distinct affordances on a fine-grained scale.

The remaining of this paper is structured as follows. A brief overview on
related work is given in Sect. 2 and a detailed explanation of our method is
provided in Sect. 3. Section 4 presents and Sect. 5 discusses the results that
we obtained from various test objects. Finally, Sect. 6 concludes this paper and
gives an outlook to our ongoing work.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 413–419, 2015.
DOI: 10.1007/978-3-319-16181-5 30
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2 Related Work

There have been many approaches to apply ideas coming from the theory of
affordances to robotics. We shortly review some approaches exploiting only visual
hints for affordance detection. Hinkle and Olson [5] propose a method that uses
physical simulation to extract an object descriptor. The simulation consists of
spheres falling onto an object from above. A feature vector is extracted from
each object depending on where the spheres come to rest. Subsequently, objects
are classified as cup-like, table-like or sitable.

A method for office furniture recognition is presented by Wünstel and Moratz
[7]. Object classes are modeled explicitly in a graph structure, where nodes repre-
sent the object’s parts and edges the spatial distances of those parts. Affordances
are used to derive the spatial arrangement of the object’s components.

Bar-Aviv and Rivlin [1] use an embodied agent to classify objects. The object
in question is moved to a virtual simulation environment where the compatibility
of different agent poses with the object is tested. The object is assigned the label
of the hypothesis with the highest score.

Similar as Wünstel and Moratz [7] we use a plane segmentation approach in
our method. However, we encode the spatial information needed for affordance
detection in an anthropomorphic agent model rather than creating explicit object
models. Contrary to Bar-Aviv and Rivlin [1] who also use an embodied agent, our
method operates directly on the data. We do not segmented and move the objects
to a simulation environment where they are tested to belong to different classes.
In our case, segmentation is a direct consequence of the detected affordances.

3 Model Definitions for Fine-Grained Affordance
Detection

In this section we describe our method of detecting fine-grained affordances with
an anthropomorphic agent model. Our approach is based solely on visual data.

3.1 Agent and Affordance Models

Our anthropomorphic body model is defined as a directed acyclic graph H
(Fig. 1). In this graph, nodes represent joints in a human body and edges rep-
resent parameterized spatial relations between these joints. The nodes contain
information on how the joints can be revolved without harming the human. The
environment E is a set of features. So far, we limit the features to arbitrarily
oriented planes that are segmented from the input data.

A fine-grained affordance is a property of an affordance that specializes the
relation of an agent and its environment. We take the sitting affordance as an
example. The affordance sitting is a generalization of more precise relations that
an agent and its environment form. In this paper, we demonstrate our ideas by
distinguishing between the fine-grained affordances sitting without backrest and
sitting with backrest.



Detecting Fine-Grained Affordances with an Anthropomorphic Agent Model 415

Fig. 1. The anthropomor-
phic agent model: nodes are
depicted in yellow, edges in
blue. A perspective view of
the model in a sitting pose is
shown on the left. This pose
serves as the initial body pose
for affordances derived from
sitting. Control areas (red)
that must be supported by
features as well as relevant
joint limits (green) for the sit-
ting with backrest affordance
are displayed on the right.

Fig. 2. The top row shows example objects from
our evaluation. Chairs and stools served for the two
fine-grained affordances. The bottom row presents
affordance detection results: the sitting with back-
rest affordance is shown in green, whereas the sitting
without backrest affordance is shown in blue.

3.2 Detecting Affordances

The algorithm used for affordance detection is outlined in Alg. 1. It operates on
single scene views from an RGB-D camera. The affordance models f1 and f2
denominate the sitting without backrest and sitting with backrest affordances,
respectively. First, plane segmentation on the input point cloud P is performed.
Then, all horizontal planes from the abstract view of the environment E are
tested to comply with the agent model H and the affordance model f1 as
described in Sec. 3.3. Every plane that affords sitting for the given agent is added
to the set S of sitable planes. Then, for each sitable plane s vertical planes in
close proximity are found. Each of the vertical planes is again tested to comply
with the agent and the affordance models. If the sitable plane s and the vertical
plane v together afford f2 for the given agent, both planes are added to the
output point cloud P2. Otherwise, the sitable plane s is added to the output
point cloud P1 which contains points for the affordance f1. Thus, the algorithm
additionally provides a segmentation of the found affordances. Please note that
in Fig. 2 the bounding box around s was extended to the ground plane and
all points inside this bounding box were added to P2 and P1 for visualization
purposes.

3.3 Checking Model Parameters

In Alg. 1 model checking is carried out in two cases. First, to assure that a plane
p is sitable and second to assure that a plane v can support the agent’s back
while it is seated on p.
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Algorithm 1 Fine-grained Affordance
Detection.
Require: Point cloud P, Affordance mod-

els f1, f2, Agent model H
Ensure: Point cloud with segmented affor-

dances P1 and P2

E ← segmentP lanes(P)
S ← ∅
for all horizontal planes p ∈ E do

if supportsModels(p, H, f1) then
5: S ← S ∪ p

end if
end for
for all s ∈ S do

V ← vertical planes ∈ E close to s
10: if supportsModels(v, H, f2) and v is

biggest plane ∈ V that supports the
models then

P2 ← P2 ∪ v
P2 ← P2 ∪ s

else
P1 ← P1 ∪ s

15: end if
end for

By varying the angle parameters
α and β in the sitting affordance with
the constraint that the agent’s feet
always touch the floor a valid range
for the height of the sitting plane is
found. Similarly, for the plane v the
angle γ is varied to check whether the
sitting agent can make use of it.

The dimensions for both planes
are directly derived from the agent
model. They are given by the body
width, the length of the thigh and
the height of the back, respectively.
Since the size of the planes does not
have to match the model proportions
exactly to allow sitting or back sup-
port, the size is considered valid if it is
between the Dmin and Dmax percent-
age parameters of the affordance. For
example, for a model width of 0.4 m
and Dmin = 0.7 and Dmax = 1.3, the
allowed plane sizes would be between
0.28 m and 0.52 m.

4 Experiments and Results

For our experiments we acquired data from 17 different chairs and 3 stools to
represent fine-grained affordances. From these data, we extracted 247 different
views of the chairs and 47 different views of the stools. Example views of these
objects are shown in Fig. 2. Additionally, negative data (i.e. data without the
two affordances) from 9 different furniture objects was obtained and 109 views of
these objects extracted. Negative data includes objects like a bed, desks, tables,
dressers and a heating element. The whole evaluation dataset contains 403 scene
views with 294 positive and 109 negative data examples.

The influence of the five parameters (the angle parameters α, β, γ and the
size range parameters Dmin, Dmax) was tested with 59 different parameter sets.
In the first round the parameters were varied systematically over a wide range
to obtain 35 different configurations for evaluation. For the second round we
inspected the best parameters from the first round and created 24 additional
configurations close to the best configurations from the first round. As Hinkle
and Olson [5] we included the F-measure, a harmonic mean between precision
and recall, in our evaluation. Precision, recall and F-measure for the second round
of experiments are shown in Fig. 3. Best results for both fine-grained affordances
are shown in Tab. 1, while the best parameter values are presented in Tab 2.
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Fig. 3. Illustration of the precision and recall for both fine-grained affordances over all
tested parameter sets in the second round of experiments.

Table 1. Best F-measure values for
both affordances. In each line also the
result of the other affordance is shown.

sit. w/o sit. with
backrest backrest

best w/o backr. 0.962 0.922

best with backr. 0.961 0.951

Table 2. Affordance model parameters
that result in highest F-measure values
for the detection of both fine-grained
affordances

α, β γ Dmin Dmax

30◦ 35◦-40◦ 0.5 1.4-1.6

5 Discussion

For the sitting without backrest affordance (in our test cases derived from the
stool objects) the quality of the results was best for α and β between 20◦ and
40◦. As is shown in Fig. 1 these parameters change the angles in the agent’s legs.
With the constraint that the agent’s feet always touch the ground for comfortable
sitting, α and β directly influence the allowed heights of the sitting planes.
We observed a drop of performance for values higher than 40◦. This is due to
numerous planes in the datasets that are of low height, but otherwise would
allow sitting. Also, if Dmin is chosen to be only little restrictive (below 0.5) too
many small planes and clutter are considered “big enough” for sitting, resulting
in a drop of precision. On the other hand, Dmax has only a moderate effect.

The sitting with backrest affordance is additionally influenced by the param-
eter γ for the inclination of the backrest. For γ, higher values than 40◦ cause
many false positives. The additional effect of Dmin and Dmax include the valid
dimensions for the size of the backrest that is compared with the agent’s back.
Again, Dmin has more significant effects on the results, while Dmax does not
seem to have any effect at all for values higher than 1.6.

The employed parameters influence the results in many different ways. How-
ever, as shown in Tab. 1 and Tab. 2 parameters exist that allow high detection
rates for both fine-grained affordances while at the same time limiting the num-
ber of false negative detections. These first results strongly support our approach
of fine-grained affordance detection.
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Fig. 4. Detection example of the fine-grained affordance sitting with backrest on a sofa
with parameters α = β = 30◦, γ = 35◦, Dmin = 0.5 and Dmax = 5. The original image
(left) and the detection result in green (right) are shown.

The presented approach of fine-grained affordance detection originally stems
from an algorithm to acquire hints to whether or not a stool or chair is present
in the input data. Thus, our approach is tailored to this use case. However,
the presented method needs to be further generalized to include the detection
of fine-grained affordances present on other sitting furniture like sofas. To this
point, to detect affordances on sofas, the model parameters need to be altered:
Dmax has to be set to higher values to support wider planes (Fig. 4).

6 Conclusion and Outlook

In this paper we presented an approach to detect affordances on a fine-grained
scale by applying an anthropomorphic agent model and affordance models. In
its current state our system is able to differentiate between two fine-grained
affordances. The high values of the F-measure of 0.956 supports our approach
of fine-grained affordance detection.

We continue our work in the two following aspects. First, our current algo-
rithm is feature-centered as we initially detect features (planes) to create an
abstract environment representation. However, we expect significant improve-
ment if the agent model is directly fitted into the data (agent-centered app-
roach). This would not only decrease the influence of the plane size parameters,
but also allow detecting fine-grained affordances on mixed objects (e.g. a stool
without backrest standing close to a wall that can support an agent’s back while
seated).

Second, we plan to evaluate our approach on a larger test set and include
more fine-grained affordances that can be detected with a sitting pose of the
agent (e.g. sitting with armrest and sitting in front of a table). An open question
is also how an anthropomorphic agent model can be exploited to detect more
fine-grained affordances from different body poses than sitting. As an example
for a lying body pose the fine-grained affordances lying flat and lying with pillow
can be distinguished. Fine-grained affordances without a body pose, but with
similar actions include knobs attached to drawers and doors that can be pulled
open or pulled open while rotating (about the hinge). We are currently looking
for more examples for both cases (with and without body poses) to generalize
and formalize our approach of fine-grained affordances.
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Abstract. We present a visual robot whose associated neural controller
develops a realistic perception of affordances. The controller uses known
insect brain principles; particularly the time stabilized sparse code com-
munication between the Antennal Lobe and the Mushroom Body. The
robot perceives the world through a webcam and canny border openCV
routines. Self-controlled neural agents process this massive raw data and
produce a time stabilized sparse version, where implicit time-space infor-
mation is encoded. Preprocessed information is relayed to a population
of neural agents specialized in cognitive activities and trained under self-
critical isolated conditions. Isolation induces an emergent behavior which
makes possible the invariant visual recognition of objects. This later
capacity is assembled into cognitive strings which incorporate time-elapse
learning resources activation. By using this assembled capacity during an
extended learning period the robot finally achieves perception of affor-
dances. The system has been tested in real time with real world elements.

Keywords: Affordance perception · Robotic vision · Cooperative neural
agents · Deep learning

1 Introduction

Affordance is a quality of an object or environment that allows (or suggests) an
individual to perform an action [3]. The term is used in various fields includ-
ing AI, cognition, perceptual psychology, industrial design, HCI, etc. Perceiving
affordances has been related to infants development [10] and has opened vig-
orous research movement in AI [8] , artificial vision [5] and robotics [6]. Affor-
dance demands the recognition of a class of objects (or environments) with no
clear-cut differences, with many diffuse characteristics, with arbitrary bound-
aries, sizes and designations [3]. It may also trigger in the individual a complex
response, such as moving toward the object and sitting on it. To initiate or not
a real action will depend in the mediation of others agents. The execution of
this excitation-response agreement, trivial for living creatures, combines diffi-
cult problems such as tracking and recognizing a moving object [1], the growth
of cognitive abilities [4] and the formation of agents societies [9]. In this work we
present a visual driven robot whose neural controller support expansible invari-
ant object recognition [2]. In order to extend the robots learning period this
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 420–426, 2015.
DOI: 10.1007/978-3-319-16181-5 31
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paper incorporates a self-controlled grow algorithm in which the robot’s avail-
able learning resources are distributed over an extended period of time. The
combination of a long educational experience and the gradual release of learning
capabilities finally develop in the robot a credible visual perception of affor-
dances. The controller has an implicit biological structure where cooperative
neural agents mimic two key insect brain elements: the antennal lobe (AL) and
the Mushroom Body (MB).

2 Previous Works

In previous works by Chang the following operative tools were established [2],[1]:

1) A neural artificial vision system which relies on the computer models of
the AL and MB of insects.

2) A flow of circulating information defined by time stabilized sparse code.
3) An expansible learning capacity based upon isolated tunable agents (ITAs).

In this paper we incorporate two new elements: 1) An operative unit called
”cognitive string”, formed by several ITAs ruled by a common time-released
learning mechanism. 2) A ”selective reward system” in which short-term learning
events are aimed at specific cognitive string.

3 The Robot and Its Multi-agent Neural Controller

The used robot has one moving eye and two final effectors (servomotors) which
handle the physical flags P and C. The robot watches the world through a two
axis moving webcam and takes as visual input different classes of untailored 2D
and 3D images (Fig 1). After training it develops affordance perception for some
specific object classes which activate the final effectors.

Fig. 1. Visual affordances perceiving robot. The robot observes the world through a
two axis moving webcam. Some images afford ”painting” and activate the effector P.
Some others afford ”cutting” and activate the effector C.
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The used neural controller utilizes two key insect brain agents: the antennal
lobe (AL) and the Mushroom Body (MB) (Fig 2). In the modeled AL primary
receptors are pixels in a 100x100 moving region of interest (ROI) image, captured
with a webcam and simplified with canny edge detection (a). These pixels feed
an ANN pre trained as a crosshair reticle tracker (b). This ANN participates in a
close loop feedback system (c) and becomes a generic tracking agent, producing
a continuous flow of space-time related unstable code (d). An averaging agent
(e) stabilizes this flow and passes a sparse version to the equivalent MB, formed
by a set of isolated tunable agents (ITAs) composed by small ANNs (f) special-
ized in learning, recognition and memory formation. Through OR like operators
ITAs’ output are grouped into cognitive strings (g) which finally activate the
physical effectors (h).

Fig. 2. The neural controller. A 100x100 canny image feeds a modeled Antennal Lobe
(AL) which generates time stabilized sparse code. This resource is passed to an artificial
Mushroom Body (MB) where isolated tunable agents (ITAs) carry out cognitive duties.
ITAs are assembled into cognitive strings which finally activate the effectors.

4 The Artificial AL and MB

In insects the AL converts crude sensors data to a special form of space-temporal
code essential for object recognition and relayed to the cognitive elements in the
MB [7]. In our AL a backpro trained ANN operates in a closed loop mechanism
where images from a video stream control image position [2]. This loop generates
a flow of space-time related data which is subsequently stabilized and sparsed.
The resulting time stabilized sparse code (TSSC) is relayed to cognitive agents
in the simulated MB. The insects’ MB serves as a large screen where objects can
be much more easily discriminated [7]. In our MB cognitive agents called ITAs
(Isolated Tunable Agents) are built with trainable three layers ANNs formed by
2500 inputs, 10 hidden and 5 outputs neurons. As in biology ITAs use as input
neurons the TSSC coming from the AL (2500 signals).
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5 Isolated Learning

When learning to recognize an object each ITA behaves as an auto-critical indi-
vidual who uses the following learning rules:

Rule 1 Look toward the outside world. See the object for a while and use
backpro to:

1a) learn to fire with the object.
1b) partially forget what you have learned somewhere else.

Rule 2 Look inside yourself. See your own noise source for a while. Use backpro
to:

2a) learn not to fire with noise.
2b) partially forget what you have learned somewhere else.

Using these rules a reward R is defined as a short term learning experience during
which one selected ITA receives 100 consecutive backpro cycles watching the
chosen object followed by 100 cycles watching white noise. Targets are properly
set so that ITA’s central output neuron learns to fire with the object and not to
fire with noise. At 50 frames/sec a reward lasts 4 seconds and about 5 rewards are
needed to memorize one object. Rewards shall not exceed a maximum number
or the affected ITA will be degraded (overexposure). When trained under the
above principles an ITA shows an emergent capacity to discriminate the learned
object from many others, while absorbing a finite quantity (roughly 20%) of
visual variances and white noise.

6 The Time-Released Learning Resources

Our next goal is to expand the number of ITAs dedicated to the learning of one
object so that class recognition is attained. To this end ITAs are assembled into
cognitive strings S1, S2,... Sn formed by m by consecutive ITAs numbered from 1
to m. To avoid overexposure a self-controlled time-released mechanism operates
in each string distributing the received rewards as: The firs active ITA is the
number 1. At any given time only the active ITA in the string receives rewards.
Every active ITA i, which receives 15 (or so) consecutive rewards freezes its
weight information and passes the active condition to the i+1 ITA. Once trained
and for recognition purposes the ITAs’ outputs in the same string are ”ored”
together. A selective reward Ri is now defined as a reward that only affects
the active ITA in the cognitive string Si. This selective norm make possible to
dedicate a whole string to the invariant recognition of one object thus expanding
object recognition into class recognition.
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7 Results

7.1 Experiment 1: The Emergence of Affordance Perception

In this experiment the robot develops perception of affordance for two classes of
objects: class P represented by brushes which afford ”painting” and class C rep-
resented by scissors which afford ”cutting”. These classes were chosen because
physical samples of them were readily available and because they both repre-
sent difficult to recognize items, very sensitive to rotational translation. Two
cognitive strings SP and SC in the MB are selected to develop affordances for
painting (brushes) and cutting (scissors) respectively. Once trained the robot
demonstrates its perceptions by activating its final effectors P and C. Each string
comprises 20 ITAs which cover the rotational image variances of one full rota-
tion per object. For training a human places objects (scissor or brushes) in the
robot field of view and sends selective rewards RP or RS aimed at the respective
strings. Since each trained ITA absorbs about 20 degrees of object rotation, 20
of them cover a full turn. In figure 3 (upper right) two trained ITAs process orig-
inal images turned into canny images and TSSC. Time stabilized sparse features
have been created in the ITAs’ hidden layer (weights of one hidden neuron are
shown). Using a Pentium Core i5 the learning time is about 8 minutes. Once
trained the robot visually scans the shown landscape (left) and after three min-
utes correctly perceives the eight existing affordances. Some image zooming is
tolerated and look alike objects such as pliers and relays are rejected.

Fig. 3. Affordance perception for multiple object visualization

7.2 Experiment 2: A Non-easily Distractible Eye

To test the consistency of its perception of affordance the above trained robot is
set to explore the whole Caltech 101 Object Categories data set. After examining
the 9146 images in 5 hours the robot reports the 9 mistaken, look-alike elements
shown in figure 4. It also recognizes 31 out of 39 true affordances in the “scissor”
category.
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Fig. 4. Searching for affordances in the 101 ObjectCategories Caltech dataset

8 Discussion

The robot shows a robust affordance perception capacity. For the whole Caltech
dataset the error is limited to 0.098 %. More ITAs per cognitive string can be
used as to cover full tilting and zooming for each desired affordance. A credible
perception of affordance appears only after a prolonged learning period, which
in turn requires a space-time distribution of learning resources prepacked in
cognitive strings. The used learning and feed forward mechanisms have a natural
parallel structure so high speed operation could be expected when using parallel
computing.

According to the false positives found in the Caltech 101 the neural controller
might be taken as a global shape descriptor. For an external observer, however,
this condition may be indistinguishable from true affordance perception. The
proposed method could be considered a form of deep learning in which the
features available to the ANN for learning are time stabilized space-time relations
created by the generic tracking agent in its dynamic pursue of image stability.

9 Conclusions

We have developed and tested a robotic vision system capable of showing clear
relations between affordances and perception-action under broad visual condi-
tions. The proposed neural controller uses cooperative neural agents organized
as the artificial versions of the AL and MB of living insects. In the proposed MB
basic cognitive agents called ITAs, sensitive to short term learning experiences,
are assembled into operative modules called cognitive strings. Inside the strings
orderly activated ITAs store time stabilized sparse features of selected objects.
The combination of a prolonged educational experience, time-elapse release of
learning resources and the time stabilized sparse feature extraction finally devel-
ops in the robot a credible form of visual affordance perception.

In extended images search the neural visual controller shows a good rejection
of false affordances. This may be relevant for constructing efficient, no easily
distractible robots. In principle the proposed techniques can expanded to higher
pixel resolution and many affordance perceptions.
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Abstract. Affordances, e.g., grasping possibilities, play a role in the
guidance of human attention. We report experiments on the integration
of affordance estimation with artificial visual attention in a prototypical
model. Furthermore, Growing Neural Gas is discussed as a potential
framework for future attention models that deeply integrate affordance,
saliency and further attentional mechanisms.

Keywords: Attention · Saliency · Affordance

1 Introduction

With the transition of robots from specialized automata performing predefined
tasks to general autonomous agents, the requirements to perceive, reason about,
and interact with their environment have drastically increased. A recent devel-
opment in robotics is to model aspects of environmental psychology, which deal
with the interaction between humans and their surroundings. A popular concept
is the affordance of objects, introduced by J. J. Gibson in 1977 [8]. In this holistic
view, objects possess certain affordances, i.e., objects or their parts can afford
certain actions. A common example is a mug, whose handle affords grasping.

This idea has been transferred to technical systems, not only to enhance
grasping actions, but also to benefit object recognition and semantic scene per-
ception (see e.g., [5,17,24]). In many cases, objects are better defined by actions
the object supports, than by visual attributes. Coming back to the example of
a mug, even though colors and shapes may differ widely, mugs in general afford
grasping (possibly by some kind of handle), containing liquid and drinking [4].
Therefore, recent research integrates affordance estimation with object recogni-
tion [4,9] and the semantic interpretation of scenes and objects [25,26].

Artificial visual attention is a concept inspired by cognitive psychology. The
main idea is to filter relevant from irrelevant information very early in process-
ing, and distribute processing resources accordingly. Attention can be guided
bottom-up by saliency (local feature contrasts) [11] or in a top-down manner by
incorporating knowledge, task demands [12] or the “gist of the scene” [13].

Findings from psychology suggest that affordances influence human visual
attention. This has been shown in reductions of reaction times when affordances
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were used to guide attention towards target locations [7] and effects on event
related signals in electrophysiological and brain imaging research [10].

This design paper is an update of the report we presented at the First Work-
shop on Affordances: Affordances in Vision for Cognitive Robotics [23]. The
remainder of the paper is organized as follows: Section 2 contains a compressed
report of the experiments conducted in [23]. In section 3 we discuss Growing
Neural Gas as a framework for artificial attention that we believe has the poten-
tial to integrate bottom-up saliency, affordance-based attention and top-down
mechanisms in a consistent architecture and improve on several disadvantages
of current region-based attention systems. Section 4 concludes the paper.

2 Change Detection Experiments on Saliency
and Affordance in Human Attention

In a previous study [21], we employed a “single-shot” change detection task
with natural images (see e.g., [19]) to measure the participants’ distribution
of attention towards salient or affording objects. The phenomenon of change
blindness due to short scene interruptions renders the detection of changes in
objects difficult. An observer’s performance depends on the allocation of atten-
tion towards the objects [15]. For the evaluation of psychologically inspired com-
puter vision systems, the change blindness paradigm has the great advantage
that images with natural scenes can be used, whereas many other psychophys-
ical tasks require the use of highly artificial synthetic stimuli. We found that
human observers performed better in reporting the changes that were made to
objects selected by an affordance-based model than when those selected by the
saliency model were changed.

The single-shot paradigm contains a single change from the original to the
altered image which are shown only briefly (usually between 100 and 500 ms)
and a blank screen is shown between the two images. The presentation usually
lasts for less than a second and participants respond afterwards, when the image
is already gone. Thus, there is only a single binary hit-or-miss measurement per
change. Furthermore, the same images cannot be repeated and therefore the
amount of trials is limited to the number of available images. Their creation
is quite an effort, due to editing in the changes (object removals in our case).
Because of the limited number of trials and the binomially distributed response,
a large number of subjects is required (40 – 80) to obtain reliable results.

Hence, in the first experiment described here, we tested the so called “flicker
paradigm” (see e.g., [15]): the presentation is similar as described above, but it
is repeated until the change is reported. Therefore, a more informative measure,
namely the time it takes the subject to detect the change, can be obtained. This
not only reduces the number of participants required, but may also allow to
relate the degree of affordance and saliency to the response time. Therefore, the
objective of this first experiment is, using the stimulus material from [21], to
investigate whether the effect that affordances are more important than saliency
in change detection can be replicated using the flicker paradigm. Furthermore, a
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first insight in the influence of the saliency and affordance values on the response
time is provided.

2.1 Experiment 1

Participants: Twelve volunteers (average age of 26.82, SD = 3.6) participated
in this experiment. All had normal or corrected-to-normal vision and not seen
the images before.

Stimuli: The stimulus material reported in [21] was used. This consisted of 28
natural scenes, mostly pictures of office environments that contained a number
of objects in the reachable action space and some in background areas which
would not be reachable by the observer of the scene. For every image, two
changed versions were created by locally altering the image (locally blending
in an identical image in which the object had been removed at that location). In
one altered image of the same scene, an object selected by the saliency model by
Itti et al. [11] had been removed, in the other altered image, one object selected
by an affordance-based prediction (density of grasping possibilities per image
area; this corresponds to the affordance stream described in see section 2.2) had
been removed. Refer to [21] for more details regarding the stimulus generation
and the actual pictures.

Design and Procedure: The experiment was conducted on a 12.1” touch-
screen laptop1. Participants were presented with every original image paired
with one of the possible changes. The number of times for which each changed
image appeared with the affordance or saliency change was balanced over all
subjects.

In contrast to the task used in [21], the images cycled back and forth between
the original and changed image until the change was reported by touching the
screen at the location of the change. If no response was made within one minute,
the current trial was aborted and the next trial started. The timing of the image
sequence was: “1000 ms initial blank”–“300 ms original image”–“300 ms blank”–
“100 ms changed image”–“300 ms blank”. For every trial, the response time was
recorded.

Results and Discussion: Figure 1 shows the average response time to saliency-
and affordance-based changes. Affordance-based changes are reported signifi-
cantly faster, t(11) = −5.03, p < 0.001, confirming our earlier results [21] from
the single shot hit-or-miss task. This provides further evidence for the impor-
tance of affordances in the deployment of attention. The one minute time limit
was reached only four times in the 336 changes presented over all subjects.
1 Note that the change blindness effect is very robust and does not require highly accu-

rate timing that can be only established with CRT monitors or specialized equip-
ment, which is the case for many other psychophysical paradigms.
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Fig. 1. Average response times for affordance-
and saliency-based changes (error bars show the
SEM; *** p < 0.001).

In [23] we show response time distributions over the different changes and
images. No long response times are found when saliency and affordance of a
change were high. Especially for the saliency-based changes, long response times
occur where the affordance is close to zero. Therefore, an attention model that
combines saliency and affordance could show a better performance than models
based on each individual component.

2.2 Experiment 2

This second experiment is based on predictions from a prototypical model that
combines affordance and saliency estimation. It is intended to investigate whether
predictions based on combined saliency and affordance better reflect human
attention than the individual components.

A Combined Model of Saliency and Affordance: The model is outline in
figure 2. The left image of a stereo image pair is segmented into homogeneously
colored regions 1 (see e.g., [3]). These regions can be considered proto-objects
at pre-attentional stages.

In the saliency stream, the regions are used to generate feature magnitude
maps for color, orientation, eccentricity, symmetry and size s2 . The feature
color is obtained as the average color of all pixels of a region. Orientation,
eccentricity and symmetry are calculated based on 2D central moments of the
spatial distribution of a region’s pixels. Size is the number of pixels in a region.

As a next step in this stream, saliency maps are calculated for each feature
dimension individually s3 . This is done by applying a voting style procedure,
where each region collects votes from its neighbors, regarding the dissimilarities
in every feature dimension (details for the feature and saliency computations
can be found in [1]).

In the affordance stream, the left image is used to generate 2D Texlets which
are small local texture patches a1 . Using stereo disparities a2 , the 2D Texlets are
transformed into 3D Texlets a3 . Small groups of neighboring Texlets are created
by applying a position-based k-means clustering. Planes are fitted through the
groups to form Surflings a4 , which are further grouped (when close to each
other and similarly oriented) to generate Surfaces a5 [14].

Grasping hypotheses in 3D space are generated by fitting a simulated gripper
(see figure 3a) to elements of the scene considering the surfaces generated in
the process outlined above a6 . Details of this process can be found in [14].
The result, which we make use of in this study, is the estimated contact points
of the gripper on the surfaces. Note that in the present study the simulated
gripper performs simple two-fingered grasping.
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Fig. 2. Structure of the pro-
posed model. The type and
flow of data is described in
the main text referring to
this figure.

The combined attention map is then obtained by integrating the individual
saliency maps s4 [1] and the contribution from the affordance stream using the
regions from the initial segmentation. While the saliency contribution is already
in region-form, the grasping hypotheses (contact points) have to be projected
into 2D first. All points which fall into a certain region a7 + 2 are summed and
normalized by the region size. Because the contact points can often be found on
the edges of objects (in their 2D projection), instead of considering a single point
in this process, each back-projected point is expanded to 5×5 points in a square
region surrounding the initial location, with their contribution decreasing with
distance from the original location. This can be seen in figure 3b. In this first
attempt to combine saliency and affordance in a technical model, we combine
both linearly with equal weights. More advanced strategies to combine different
feature channels in attention models are discussed in [11].

Fig. 3. a: A test scene. Inset: exemplary
grasps fitted to a sparse 3D represen-
tation. b: Grasp points projected
into 2D. White patterns represent
grasps towards reachable locations,
red patterns indicate locations out of
reach. “A” affordance, “S” saliency,
and “A+S” combined selection. c–e:
Underlying affordance (c), saliency (d),
and combined (e) maps.

Participants: Thirty volunteers (average age of 28.46, SD = 5.86) participated.

Stimuli, design and procedure: Stimulus material, experimental design and
procedure mostly correspond to the description of the first experiment in section
2.1. The only differences were the use of a new image set (see figure 4a) with an
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additional third possible change based on the combined prediction. Furthermore,
the saliency-based prediction was obtained with the region-based saliency model
[1], which constitutes the saliency channel in the combined model, in contrast
to the first experiment where the model by Itti and colleagues [11] was used.

Due to the fact that three predictions (affordance, saliency, combined) are
required for each image, and the images focus mainly on the action space where
saliency and affordance are both expected to be relatively high, sometimes the
same object was selected by two or all three predictions. In such a case, the scene
was slightly rearranged by unsystematically shifting objects or the camera, and
the scene was rerecorded, until three distinct predictions were obtained.

Fig. 4. a: Change locations marked in nine exemplary images (all 29 images are shown
in [23]). b: Average response times for the changes based on affordance, saliency (region-
based), and combined predictions (error bars show the SEM).

Results and Discussion: Figure 4b shows the average response times to
changes based on the (region-based) saliency, affordance, and combined pre-
dictions. According to an one-way repeated measures ANOVA, no effect of pre-
diction type was found, F (2, 29) = 0.63, p = 0.54. This is in contrast to the
result of our first experiment, where the responses to affordance-based changes
were significantly faster. Furthermore, the saliency conditions (from experiment
1 and experiment 2), as well as the affordance conditions (from each experiment),
differ significantly, t(40) = 5.82, p < 0.001 (affordance), t(40) = 4.3, p < 0.001
(saliency) according to Holm-Bonferroni corrected two-tailed t-tests.

The long response times in the second experiment indicate that the task was
more difficult than in the first experiment. Moreover, the scenes were arranged
to contain a large number of affording objects in the action space and thus also
the saliency-based selections were mainly such foreground objects, whereas the
stimulus material used in the first experiment contained saliency-based changes
which were frequently in the background. Inspection of the distribution of the
individual changes’ average response times (refer to [23]), hints that saliency-
based changes may benefit from increasing affordance, while the same seems not
to be the case for affordance-based changes.

Notably, the one minute limit was reached twelve times for affordance- and
nine times for saliency-based changes, and only once in the combined condition.

Hence, whether and how saliency and affordance enhance each other remains
unclear. In the prototypical model, affordance and saliency have been processed
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based on different representations (ECV [14] vs. region-based), normalized in dif-
ferent ways, and integrated eventually. Due to this process it becomes difficult
to assess the relative contributions of both channels and relate them to response
times (we attempted this to some degree in [23]). Furthermore, for future tech-
nical applications, calculating and maintaining two separate representations is
rather unpractical. Therefore, in the remainder of the paper Growing Neural
Gas as a potential structure for a fully integrated representation and attention
model is discussed.

3 Growing Neural Gas: An Architecture for Combining
Saliency, Top-Down Attention and Affordances?

In the long term, a fully integrated architecture for artificial attention is desir-
able. In such a framework, feedback loops, which are known to be highly impor-
tant in biological vision, can be established: results from higher levels of the
architecture, such as affordances or top-down information can be used to influ-
ence the generation or propagation of the scene representation from lower levels.
Furthermore, the integration of different dimensions, such as various saliency
dimensions, specific and gist-based top-down influences and object affordances
benefits from a common consistent representation which can preserve the rela-
tive strength of each dimension’s contribution (a prerequisite for more advanced
combination strategies as suggested in [11]).

We discuss Growing Neural Gas (GNG; e.g. [6]) as a pre-attentional structure
for a fully integrated approach. GNG has not been applied to artificial atten-
tion before but exhibits promising features. On the one hand, they can be seen
as related to the already mentioned region-based approaches [1,2,22] as pre-
attentional structures are employed. On the other hand, they implement a basic
perceptual learning in the sense that the current representation is updated with
new data instead of recalculating it entirely as in region-based artificial atten-
tion. We briefly describe the main concepts of GNG and discuss its potential
application to saliency, top-down and affordances calculations.

GNG constitutes an unsupervised learning technique. Nodes (neurons) may
be connected by edges and possess attributes representing properties of the state
space (e.g., x- and y-positions). Examples are presented to the algorithm and it
determines the closest node according to a distance measure on the respective
properties. For this node and, with a reduced strength its topological neighbors,
the properties are updated. Edges carry an age value, which is increased in every
update. A new edge is inserted between the closest node and the runner-up. If
such an edge already exists, its age is reset. Edges which are too old are deleted.
Furthermore, there is a domain-dependent error value for each node, which must
have the characteristic that it is reduced when a new node is inserted in prox-
imity. At fixed intervals, the node with the highest error value is determined, as
well as its neighbor with the highest error. A new node is inserted in between and
connected with these two nodes, replacing their original connection. The error
value is redistributed between all three nodes reducing the probability that the



434 J. Tünnermann et al.

next insertion is performed nearby, guiding the growth of the network. An addi-
tional utility term quantifies a node’s usefulness and may result in the deletion
of the node to avoid infinite growth of the network.

The algorithm is initialized with two connected nodes with random proper-
ties. The dynamically adapting set of nodes with changing neighborhoods can
form multiple independent graphs.

Pre-Attentional Structures and Saliency Based on GNG: GNG can
potentially be adapted to generate pre-attentional structures. Pixels of the image
are chosen uniformly at random and used as examples to train a GNG as
described above. Distances to the pixels (in a x-, y- and color-space) can be
calculated by using, e.g., a weighted euclidean distance. Figure 5a depicts the
result for a simple synthetic test image.

Fig. 5. a: Exemplary results using GNG-based pre-attentional structures. Node colors
reflect the represented object. b: The result of a saliency computation. Gray levels of
the nodes represent the orientation saliency of a graph (background graph removed in
calculation). c: The GNG may include useful candidates (two-node networks; white) for
estimating grasp affordances. Networks with more than two nodes are colored in gray.

For the resulting graphs, feature magnitudes and saliency can be calculated as
described for region-based saliency in [1].

The feature orientation is used as an example here. As in the aforementioned
paper, 2D central moments are calculated for each node n(x, y) in graph Gi:
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∑
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2
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where (x, y) denotes the center of Gi. The orientation φi is then computed as
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resulting in an orientation value φi between 0◦ and 180◦. The orientation saliency
sφi of every graph Gi is then obtained as

sφi =
∑

Gi,i�=j

|φi − φj |
90◦ . (3)

The result of this process is an orientation saliency map (saliency value associated
with every graph) and shown for an orientation pop-out stimulus in figure 5b.
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Applying Top-Down Information in GNG-Based Attention: As argued
above, mechanisms from region-based attention can be transferred to GNG struc-
tures. Therefore, templates could be used as described in [2,20] for region-based
attention.

Furthermore, as the transfer from pixels to the substantially smaller number
of neurons provides a simplified problem space, rough heuristics, such as for deter-
mining the gist of a scene, may also benefit from a GNG-based representation.

Including Object Affordances in GNG-Based Attention: Pre-attentional
structures obtained from GNG may prove sufficiently stable to apply appearance-
based affordance estimation in local and global contexts as proposed by [16].
Furthermore, GNG obtained with the described procedure may provide easily
identifiable candidates for graspable elements. Figure 5c shows GNG structures
obtained for a picture of a cooking pot extracted from Song et al. [16]’s figure
4b (the pink dot was removed). Highlighting only two-node networks in agree-
ment with the ground-truth for such handles (see Song et al. [16]’s figure 2a),
successfully detects the pot’s handle. Such rough heuristics could be directly
useful for generating local graspability estimates which can then be fused with
global estimates [16], or provide candidates for computationally more expensive
follow-up processing.

4 Conclusion

The results of our first experiment further support the idea that object affor-
dances are important for the spatial deployment of visual attention [22]. In
the second experiment we did not find additional enhancements by combin-
ing saliency and affordance. This is in line with another change blindness study
[18], where saliency did not further enhance the detection of changes in objects
which are shown in unusual contexts. Early attention appears to be strongly
influenced by the environment represented in the scene. The second experiment,
however, did also fail to replicate the advantage of the affordance-based pre-
dictions over the saliency-based predictions. This may arise from limitations of
the prototypical model (see section 2.2). Alternative possibilities are discussed
in [23].

Hence, an important next step in this line of research is a deeper integration
of affordance in attention systems. The fact that affordance-based advantages are
present in 2D images presented to humans, which depict foregrounds and back-
ground (experiment 1 and experiments reported in [21]), proves that binocular
cues are not necessary for the effect in biological vision. Thus, a 2D dimensional
retinotopical structure would provide a useful domain for such a fully integrated
approach. We discussed Growing Neural Gas as a framework for this in section 3.
These may allow to integrate appearance-based affordance estimation as suggested
by Song et al. [16] with bottom-up and top-down attention in future work to allow
more sensitive experiments and practical evaluation in a robot.
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7. Garrido-Vásquez, P., Schubö, A.: Modulation of Visual Attention by Object Affor-
dance. Frontiers in Psychology 5, 59 (2014)

8. Gibson, J.J.: The theory of affordances. In: Perceiving, Acting, and Knowing
9. Gijsberts, A., Tommasi, T., Metta, G., Caputo, B.: Object recognition using visuo-

affordance maps. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1572–1578 (2010)

10. Handy, T.C., Grafton, S.T., Shroff, N.M., Ketay, S., Gazzaniga, M.S.: Graspable
Objects Grab Attention When the Potential for Action is Recognized. Nature
Neuroscience 1, 1–7 (2003)

11. Itti, L., Koch, C.: Feature Combination Strategies for Saliency-Based Visual Atten-
tion Systems. Journal of Electronic Imaging 10(1), 161–169 (2001)

12. Navalpakkam, V., Itti, L.: A goal oriented attention guidance model. In: Bülthoff,
H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525,
pp. 453–461. Springer, Heidelberg (2002)

13. Oliva, A., Torralba, A.: Building the Gist of a Scene: The Role of Global Image
Features in Recognition. Progress in Brain Research 155, 23–36 (2006)
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Abstract. The neural circuits that control grasping and perform related
visual processing have been studied extensively in macaque monkeys. We
are developing a computational model of this system, in order to bet-
ter understand its function, and to explore applications to robotics. We
recently modelled the neural representation of three-dimensional object
shapes, and are currently extending the model to produce hand postures
so that it can be tested on a robot. To train the extended model, we are
developing a large database of object shapes and corresponding feasible
grasps. Finally, further extensions are needed to account for the influ-
ence of higher-level goals on hand posture. This is essential because often
the same object must be grasped in different ways for different purposes.
The present paper focuses on a method of incorporating such higher-level
goals. A proof-of-concept exhibits several important behaviours, such as
choosing from multiple approaches to the same goal. Finally, we discuss
a neural representation of objects that supports fast searching for anal-
ogous objects.

Keywords: Grasping · Affordances · Macaque · Robotics · AIP · F5

1 Introduction

The neurophysiology that underlies primate grasping has been studied most
extensively in macaque monkeys. In macaques, grasping is controlled by an
extensive brain network that includes many parts of the visual, parietal, and
frontal cortices. A network of dorsal visual and parietal areas detects affordances
and may partially parameterize multiple potential movements [1]. Ventral visual
and prefrontal areas help to select movements that are consistent with object
identities and goals [2]. Our general aim is to translate this rich neurophysiolog-
ical knowledge into a bio-plausible robotic grasp controller. Specifically, we want
to develop a system that uses a robotic hand to grasp a wide range of objects,
while reproducing many features of grasp-related neural activity recorded from
monkeys.
c© Springer International Publishing Switzerland 2015
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In pursuit of our goal, we recently developed a neural model [3] that repro-
duced a variety of electrophysiology data from the caudal and anterior intrapari-
etal areas (CIP and AIP, respectively). These areas encode three-dimensional
shape features, and are essential for accurate hand shaping. This model repro-
duced responses of visual-dominant object-responsive AIP neurons from the
macaque literature using a model of CIP activity as input. We parameterized
AIP responses using both superquadric parameters and the parameters of an
Isomap reduction of the depth map. We found that both the match with AIP
data and the performance of the CIP-AIP mapping were better with Isomap
parameters. However, it is not yet clear whether such parameters provide a good
basis for grasp planning. For example, in contrast to Isomap, superquadrics sup-
port a pose-invariant mapping to some gripper parameters.

To address this question, we have recently started to extend the model to
frontal area F5 (which encodes hand postures [4]) so that its applicability to
robotic grasp control can be tested. We plan to build a database of grasp exam-
ples in order to train and test this extended model. The models trained using
such a database will be tested with a real-world robot platform and real objects.
We will compare the performance of the neural model to a conventional kernel
regression machine, and to state-of-the-art robotics heuristics for grasp planning.
We hope to show that a neural model trained on large numbers of examples can
provide a practical grasp controller, and that its internal signals are consistent
with the literature on neural activity in monkey AIP and F5.

Finally, the main focus of the present paper is on how to further extend the
above models to account for how higher-level goals and intentions from prefrontal
areas can influence the decision of which affordances to attend to (and therefore
which hand shape to select). The following sections briefly present our approach
and a proof-of-concept model. A notable feature of this proof-of-concept is that
is expressed entirely in vector operations.

2 Methods

Often, different grips are appropriate for manipulating an object for different
purposes. For example, if one’s goal is to put a hammer in a toolbox, there are
many ways in which the hammer can be grasped. However, if the hammer is to
be used to hit nails there is essentially one way. To model such influences we are
forced to consider a much larger network that includes the prefrontal cortex.

The prefrontal cortex is less well understood than the visual cortex, so for
these areas the data-driven approach that we previously adopted to model CIP,
AIP, and F5 may be less practical. We are instead pursuing a top-down approach
based on two key methods. The first is the Neural Engineering Framework [5],
which provides a way to map systematically between high-level function and
neural activity. The second is Holographic Reduced Representations [6], which
are used in cognitive modelling. Recently, these two methods were used together
to develop a spiking neural model of the brain with complex cognitive abilities
[7]. The methods are described briefly below. For robotics applications, there



440 A. Kleinhans et al.

are various ways to run large models of this type in real time, e.g. surrogate
population models on FPGAs [8].

Neural Engineering Framework. An NEF model is specified in terms of
vector variables that are taken to be encoded by the activity of neuron popula-
tions, maps between these vectors, and physiological neuron properties (e.g. time
constants). The encoding of a vector by a neural activity is typically modelled
as

ri = G
[
eTi x + bi

]
, (1)

where ri is the spike rate of the ith neuron, x is the encoded vector, e is the
direction in the encoded space in which the neuron spikes fastest (the “preferred
direction”), bi is a static bias, and G is a physiological nonlinearity. The encoded
vector x can be approximately recovered, or “decoded” from the spike rates as

x̂ =
∑
i

diri, (2)

where di is called the neuron’s “decoding vector”, and is chosen to minimize
x− x̂. Furthermore, functions f(x) of the vector can also be decoded by choosing
different decoding weights that minimize f(x) − f̂(x). This is the basis of NEF
models of neural-network computation. Specifically, if one population encodes x
and a second population encodes y = f̂(x), the synaptic weights that produce
this mapping can be determined by substituting f̂(x) into (1). The result is that
the synaptic weight between the ith presynaptic and jth postsyaptic neuron is
wij = eTj di. Thus, a model can be developed systematically, beginning with a
high-level description of encoded variables and how they are transformed.

Holographic Reduced Representations. HRRs represent concepts as vec-
tors. They support operations that are useful for cognitive models including bind-
ing (associating concepts, e.g. associating “dog” with the role of “actor” in the
sentence “dog bites man”); unbinding (e.g. extracting the fact that the “actor” is
“dog”), and bundling (combining multiple bound and/or unbound concepts into
a single vector). HRRs use circular convolution for binding and unbinding, and
vector addition for bundling. HRR operations are lossy, e.g. “actor” bound to
“dog” has the same vector dimension as “actor” or “dog”. Eliasmith [9] showed
that HRRs can be encoded and manipulated using NEF neural models, and that
HRRs of a few hundred dimensions can store tens of thousands of concepts.

2.1 Proof-of-Concept Cognitive Model

As a first step in exploring the application of the NEF and HRRs to grasping,
we developed a simplified model that uses basic drives and knowledge of the
environment to choose a goal, and to influence hand posture in a manner con-
sistent with that goal. To simplify the prototype we used abstract HRR vectors
and sigmoidal units, given that the the NEF provides a systematic method to
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Fig. 1. Proof-of-concept model and its relationship to our other work. Dashed boxes
indicate HRR populations and a winner-take-all “actions” population. Also shown are
past work (black boxes) and other current work (solid gray box; see Introduction).

develop a spiking neural model from a vector model (this does not work with all
vector models, but experience with the NEF suggests that the present model is
a good candidate).

Grasping decisions were modelled in the space of the first two principal com-
ponents of gripper parameters. A grid of sigmoidal units corresponded to dif-
ferent postures in this space. Decisions were made using a diffusion-to-bound
mechanism [10], wherein each unit integrates its inputs until one unit’s activity
crosses a threshold, at which point the winning unit (corresponding to a single
posture) inhibits all others. (In future work, this model could be elaborated so
that decisions could are made through a distributed consensus across multiple
areas [11].) Each input to this network corresponded to the influence of a differ-
ent brain area on the posture decision, and consisted of a drive pattern across
the posture grid. Input from a ten-dimensional object-shape representation was
modelled as decoded functions [fij(s)], where s is the shape parameters and i
and j are grid indices. Desired actions were represented in a 200-dimensional
HRR. Different actions were nearly orthogonal in this space, so we used a simple
linear map,

[∑
k αijkakTa

]
, where a are action vectors and k is an index over

possible actions.
We modelled a scenario in which an agent wants a drink of water given two

potential sources: a bottle and a faucet. The agent must decide which source to
use and the appropriate hand posture for grasping it. While the scope of this
example is somewhat broader than grasp control, we wanted to verify that the
basic approach was suitable for such examples. The input to the model included
a basic “thirst” drive and a list of the objects in the environment (in a more
complete system we take it that these would be detected visually and stored
in working memory). We used HRR binding to associate water with both the
bottle and the faucet. Furthermore, we used several similar vectors to represent
different kinds of water, including cold spring water, warm spring water, and cold
tap water. We used linear maps between HRRs to cause a “thirst” concept in the



442 A. Kleinhans et al.

“drives” HRR to probe the “environment” HRR for cold spring water, resulting
in selection of the “bottle” concept. Further linear maps between HRRs led to
an “action” HRR encoding “grasp” while the “attended object” HRR encoded
“bottle”. A final linear map from the binding of these two concepts influenced
the posture network to choose a posture appropriate for grasping the bottle in
order to pour from it.

We also further explored HRR encoding of objects as structures of bound and
bundled concepts. Depending on their structure, the similarity between pairs of
such HRRs may resemble the degree to which humans consider the corresponding
items to be analogous or similar. Plate [6] showed this for both short sentences
and simple spatial arrangements of shapes. This is relevant to grasping, in that
humans often grasp objects that are functionally similar to known objects, but
not identical to them. Humans can also think about substitutes if the ideal object
for a certain purpose is not available. In a robotics application, analogies to a
given object could be searched for in a large HRR memory simply by multiplying
the object’s vector with all the vectors in memory, and sorting any products that
are above a threshold.

We encoded objects by bundling HRRs for their parts, shapes, structures (i.e.
relationships between parts), affordances, and related constraints on grasping.
As an example, we encoded a generic coffee mug as
〈

parts �
〈

inside + cup side + opening + bottom + rim + handle
〉

+ shape �
〈

cylinder like + curved handle
〉

+ structure

�
〈

inside opening + rim side + rim opening + bottom inside + handle side
〉

+ affordances �
〈

drink from + pick and place + fill + pour from + hang
〉

+ constraints� drink from� (do not cover� opening+ prefer grasp�handle)
〉

,

(3)

where most of the variables (e.g. parts, inside) are random base vectors, � is
binding (circular convolution), + is bundling (vector addition), and <> indicates
normalization of the vector inside the brackets. The terms that are bound to
structure correspond to physical relationships between parts, and themselves
contain further structures of random base vectors. For example,

inside opening =
〈
attached � (above � opening + below � inside)

〉
. (4)

This expresses the knowledge that the inside of a mug (where the liquid sits)
is connected with its opening (through which the liquid passes in and out).
There are many reasonable ways to encode information about a given object
in an HRR. However, a few variations on the above structure produced similar
results, suggesting that these results are not very sensitive to such differences.

Finally, we also examined the accuracy with which grasp constraints could
be extracted from such HRRs through unbinding. Specifically, we verified that
similarity with a correct constraint vector was well separated from similarity
with other vectors.



Modelling Primate Control of Grasping for Robotics Applications 443

3 Results

3.1 Grasp Selection Network

Figure 2 shows a snapshot of activity in the hand-posture network, prior to a
decision. The insets show two postures of the robot hand that correspond to two
potential grips. The one on the left is better suited for lifting the bottle in order
to pour from it, and is eventually selected. A different hand posture might be
selected if the goal were different (e.g. to put the bottle in a refrigerator) or if
the object itself was different.

Simulations of this proof-of-concept model demonstrated promising qualita-
tive properties. First, the model incorporated multiple influences into the selec-
tion of a single hand posture. We simulated two specific influences: compatibility
with object shape (from AIP); and compatibility with a specified action (from
frontal areas). These influences could be arbitrarily broad, narrow, multimodal,
etc. Second, the model maps from basic drives to a specific action plan given the
objects in the environment. This mapping is oversimplified, but it verifies that
such a mapping can be implemented using the NEF and HRRs. Third, the model
could choose between multiple routes to the same goal. When we hard-coded
the belief that the water bottle was cold, and searched for something similar
to cold spring water, attention focused on the bottle. Alternatively, when we
hard-coded the belief that the water bottle was warm, attention focused on the
faucet instead. We expect that the model could be expanded to include updates
based on sensory information.
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Fig. 2. Activation on a grid over the first two principal components of hand posture,
during a decision between postures
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3.2 Object Representation

Table 1 shows the similarities (inner products) between composite HRR encod-
ings of four objects, including the mug example given in the Methods. The mug
and cup are the most similar objects. The mug only differs from the cup in a few
respects, e.g. it has a handle, one can hang it by the handle, and it is normally
grasped by the handle for drinking. The spoon is not very similar to either the
mug, cup, or pot. However in this encoding, it is most similar to the pot.

Table 1. Similarities between various objects encoded as HRRs

cup mug pot spoon

cup 1.00 0.78 0.55 0.11

mug 0.78 1.00 0.55 0.14

pot 0.55 0.55 1.00 0.21

spoon 0.11 0.14 0.21 1.00

This kind of encoding makes it possible to query rich information directly
from the HRR using a series of unbinding and cleanup operations. For example,
we queried one of the grasp constraints for drinking from a cup as,

cup � constraint � drink from � do not cover, (5)

where � indicates unbinding. The result is passed through a cleanup memory
that replaces it with the most similar known vector, to obtain the result opening.
(This constraint corresponds to the fact that the opening of a cup should not be
covered by the hand when grasping to drink.) The intermediate results were not
passed through cleanup memory, so noise (due to non-zero similarity with other
parts of the cup HRR) was added at each deconvolution step, and the result
had a relatively low similarity with the vector opening in memory. However,
the resulting vector was still distinctly more similar to opening than to other
vectors in memory, provided the dimension of the HRR was large enough. Figure
3 shows a histogram of similarities of this serial deconvolution with the opening
vector and all the other vectors in memory with HRR dimension 4096. Target
and non-target vectors are well separated.

4 Discussion

Two motivations for this research are: curiosity about the primate visuo-motor
systems; and practical interest in robot controllers based on the same principles.
While similar in spirit to the models studied in robotics [12–18], our work aims
to implement affordances, a popular means of formalizing a robotic agent’s inter-
action with the world [19], via a computational model that is compatible with
the mechanisms that govern grasping in the primate brain (see [20] and [21] for
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Fig. 3. Similarity of multiple-deconvolution estimate of the do not cover constraint
for drinking from a cup, over 100 runs with random base vectors. Note that the target
similarity counts have been multiplied by five (i.e. scaled up vertically), so that they
can be seen more easily in the plot. The result of the unbinding has a higher similarity
with the correct answer (i.e. opening) than with the other vectors, and is therefore
reliably cleaned up.

models with similar goals). In other words, the key novelty is the use of a neuro-
logically plausible model that will nonetheless be implemented on a real robot.
Previous robotic implementations tend to at best be cast in connectionist terms
inspired by neuroscience (for a discussion, see [19,22]). Models of the relevant
brain areas similarly tend to be cast in connectionist terms [20,23,24] and anal-
ysed for behaviours that resemble that of actual neural circuits. By contrast, the
approaches discussed in the present paper can draw more directly from neuro-
physiological data. Although our work is still at an early stage, this gives us hope
that we can both achieve more biologically realistic control and contribute to
the understanding of biological control mechanisms in a more in-depth manner
than connectionist models can.

As an example, let us highlight that we have cast the model first and foremost
in terms of a cognitive architecture for which the NEF provides a systematic way
of deriving a neural model. As such, this imposes no a priori assumptions on the
type and function of neurons in AIP (or F5 for that matter), instead giving us
the freedom to investigate the functional contributions of the organisation of
these areas [25] directly in terms of a cognitive architecture.

HRRs are a key component of the Spaun model, which can perform a wide
variety of sophisticated tasks such as completing patterns from examples. We
take the success of this approach in Spaun to suggest that HRRs provide a
practical way to integrate a wide range of cognitive influences (such as verbal
instructions) into models of neural visuo-motor systems. Our proof-of-concept
model supports this view.
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Abstract. This paper presents the design and development of a system
intended for storing, querying and managing all required data related
to a fluent human-robot object handover process. Our system acts as a
bridge between visual perception and control systems in a robotic setup
intended to collaborate with human partners, while the perception mod-
ule provides information about the exchange environment. In order to
achieve these goals, a semantic-ontological approach has been selected
favouring system’s interoperability and extensibility, complemented with
a set of utilities developed ad-hoc for easing the knowledge inference,
query and management. As a result, the proposed knowledgebase pro-
vides a completeness level not previously reached in related state of the
art approaches.

Keywords: Ontologies · Knowledge representation · Handling affor-
dances · Semantic modelling · Assistive robotics

1 Introduction

The work described in this paper comprises the design and development of a
knowledgebase about the domain elements involved in the action of exchanging
common objects between humans and robotic agents. Our approach requires an
in-depth study of the state of the art, inputs from the perception system and
a clear definition of the outputs required by the robotic control architecture.
The main purpose of this knowledgebase is to model and transfer the acquired
knowledge from human-human object exchange experiments to a robotic system,
in order to achieve a fluent interaction between human and robotic agents.

The remainder of this paper is organized as follows. The next section (Section
2) introduces the theoretical concepts involved in our work. In Section 3, a cur-
rent state of the art analysis is performed. Section 4 describes the design and
development process of OBEliSK (Object Exchange applied Semantic Knowl-
edgebase). Finally, we present our conclusions in Section 5.

c© Springer International Publishing Switzerland 2015
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2 Theoretical Frame

Specific-domain knowledge is usually represented by means of ontological sys-
tems described by a computational model, composed by a set of entities cor-
responding to real world items, such as agents, objects or events connected by
domain-specific rules [1]. This kind of representation requires an approach far
from the ”classical” relational database [2], so in this case we have considered
using graph databases [3], [4]. The main advantage of such representation is
the flexibility that provides when linking related entities, attributes and prop-
erties. For representing knowledge through this approach, while extending its
usefulness, the Semantic Web [5], provides a common framework for sharing and
reusing data and defines a standardized set of technologies, arranged in a hier-
archical architecture. Additionally, the RDF (Resource Description Framework)
[6] was designed as a method for splitting knowledge into small pieces of data,
complemented with a set of rules defining the semantics of these individual frag-
ments of isolated information, relying on RDF/XML syntax for expressing (i.e.
serialize) a linked data graph as an XML document. Notation3 [7], Turtle [8] and
N-Triples [9] formats were defined in order to ease the reading of RDF documents
for humans. The Web Ontology Language (OWL) [10] was also selected in order
to represent the envisioned model. A key benefit of the semantic-ontological app-
roach is its reusability empowering, leading to knowledge representations that
might be re-used in the development of different systems addressing similar pur-
poses, while bringing interoperatibility between heterogeneous systems according
to a consensuated knowledge representation.

As an approach for improving the expressiveness of traditional propositional
logic, Description Logic (DL) languages were introduced as knowledge repre-
sentation methods providing a logical formalism for ontology design, useful for
concept representation and reasoning on the of domain-centred terminological
knowledge. An axiom, as fundamental modeling element of a DL, is defined by a
logical statement composed by a set of concepts, individuals and their relation-
ships. A terminological axiom is defined as

C
.= D | C � D

where C and D are concepts. A finite set of terminological axioms is known
as T-Box T and is defined using the following descriptions. Note that I |= C
stands for ”I models C”, where I is an interpretation function and C is a concept

I |= C � D ⇐⇒ CI ⊆ DI I |= T ⇐⇒ I |= Φ ∀ Φ ∈ T

An assertional axiom, representing concepts positively stated, is composed
by a set of statements representing basic knowledge about individuals classified
within the T-Box hierarchy. An A-Box A is stated according to these definitions:

I |= a : C ⇐⇒ aI ∈ CI I |= (a, b) : R ⇐⇒ (
aI , bI

) ∈ RI

I |= A ⇐⇒ I |= Φ ∀ Φ ∈ A
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where a and b are individuals and R is a particular role. Given these formal
definitions, a knowledgebase K is an ordered pair of T-Box and A-Box, defined
as follows:

K = (T, A) I |= K ⇐⇒ I = T ∧ I = A

3 State of the Art

Before starting with the design of a new ontology for the described problem, we
carried out a study and evaluation of several related approaches that could help
in the design of OBEliSK, including the following ones:

– DEXMART. This project’s [11] key objectives were, among others, i) the
development of original approaches for interpretation, learning and mod-
elling of human object manipulation actions, and ii) the design of novel
techniques for task planning for conferring the robotic system with self-
adapting capabilities.

– GRASP. This project [12] had the objective of designing a cognitive sys-
tem capable of grasping and handling objects in open environments where
unexpected events may occur.

– HANDLE. Its [13] aim was to understand and replicate human object
grasping and skilled hand movements using an anthropomorphic artificial
hand by means of object affordances characterization for learning and repli-
cating human handling tasks.

– RoboEarth. Designed as a cloud computing service, this robotic-oriented
database [14] is focused on making robots capable of learning new abilities
from other robots by easing their communication.

As summarized in Table 1, our approach tries to improve some of the short-
ages found in the previous state of the art study. The main advantage of our
knowledgebase design is that provides the required set of mechanisms that makes
it suitable for working together with both artificial vision and cognitive control
modules, providing the robot with the required skills for achieving a fluent object
exchange process.

4 Knowledgebase Design

Within the scope of the CogLaboration project, there is a need for modelling
the entities to be handled by the robotic system. Instead of using a traditional
relational database system, the decision of modelling the object taxonomy using
semantic web based technologies provides the ability of modifying and expanding
the knowledgebase in an easy and comprehensive way.
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Table 1. Comparative analysis of different capabilities of our approach versus other
representative projects introduced in Section 3

Functionality OBEliSK DEXMART GRASP HANDLE RoboEarth

Integrated perception ✓ ✗ ✓ ✗ ✓

Human-like handling ✓ ✓ ✗ ✓ ✗

Obstacle avoidance ✓ ✗ ✓ ✗ ✓

Multi-mode grasping ✓ ✓ ✓ ✓ ✓

Object handover ✓ ✗ ✗ ✗ ✗

Standarized data store ✓ ✗ ✓ ✗ ✓

Motion constraints mgt. ✓ ✓ ✗ ✗ ✗

Learning capabilities ✓ ✓ ✗ ✗ ✗

Data management tool ✓ ✗ ✗ ✗ ✗

4.1 Object Perception

The perception system captures a 3-D model of the object using a Kinect sensor.
Object models are processed and a set of partial views is extracted from the
whole model. These views are then employed for computing feature descriptors
to be used in the classification process. Taking into account that is impractical
to store these views (161 per object; 30 MB each) in a serialized form in the
knowledgebase, views’ file paths are stored instead. This is because transmission
and deserialization tasks are highly time-consuming and is unacceptable to be
used in i) the perception subsystem, intended for real-time operation, and ii) the
robotic cognitive control subsystem, conceived for executing a fluent interaction.

Fig. 1. Grasp strategy selection task flow, from the object’s perception to the robotic
physical motion execution

4.2 Object Handling

Exchange Properties. Besides the object visual properties representation, it
is also crucial to store and manage the set of features describing the way in which
each object can be handled during the handover phase of the exchange process.
Each object is associated to a set of grasp postures and delivery strategies, defin-
ing different ways the robot can handle it. Moreover, in order to ensure a proper
manipulation process for certain objects, we have introduced the concepts of
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Motion Constraint, standing for the restrictions to be applied to some objects
during their handling, and Symmetry Axis, representing the object’s axial sym-
metry, if there are any.

Object Affordances. We have also explored the concept of object affordances
[15] within the task of modelling the ontology [16]. The taken approach is related
to the concept of affordances and based on the idea of categorizing objects based
on how they are used. According to Gibson’s Theory of Affordances [17], affor-
dances can be seen as the sum of the properties of a situation, including agents,
environment and objects, especially those that describe how they can be used
to do something [18].

Grasping Phase. The set of grasps to be considered relies on the automatic
grasping capabilities provided by the IH2 Azzurra [19] robotic hand. These grasps
are based on the taxonomy developed by Cutkosky [20] and modelled under the
class GraspType. As far as the work developed by Cutkosky is the design of the
grasp taxonomy, the modelling process using OWL is made straight from that
one to our model, thanks to the hierarchical shape and the classification-oriented
vocabulary respectively. Each grasp instance, called named individual inside this
context, represents an object-specific grasping configuration.

Fig. 2. Grasp and Delivery model conceptualizations

Delivery Phase. We also considered the idea of improving the knowledgebase
value for the project by extending the initial conception of a grasping database
to a fully-featured handling knowledgebase, covering in this way the second half
of the object exchange process. The control system has to be provided with
relevant data about the object handover, being capable to deliver the previously
grabbed object to the recipient in a fluent and natural way.

4.3 Knowledgebase Data Management

Data processing and storage in this kind of databases is not trivial. Having a large
amount of information and a defined ontology, it is mandatory to fully respect the
relational integrity restrictions between entities and their properties. Semantic-
ontological data management is usually done through semantic-oriented tools,
such as Protégé [21]. With the aim of ease this task, a utility has been developed
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Table 2. Summary of grasp and delivery actions model concepts

Concept Grasping ph. Delivery ph.

Object involved in the action ✓ ✓

Grasp type, from taxonomy primitives ✓ ✗

Expected object orientation/receiver’s hand posture ✓ ✓

Grasp strategy previously executed ✗ ✓

Grasp force level to be reached by the fingers ✓ ✗

Object’s grab/release approach direction ✓ ✓

Robotic hand wrist pose ✓ ✓

Strategy selection preference (priority) ✓ ✓

focused on offering the simplest way to manage the knowledgebase contents. It
consists of a web-application acting as interface between the user and the triple
store where the ontology data is saved.

5 Conclusions

This paper introduced the design of a robotic handling knowledgebase by means
of semantic-ontological technologies, providing an interesting and innovative
approach. The developed system meets the expectations and overcomes them,
as we extended the initially proposed grasping model to a complete exchange
one due to the inclusion of object delivery concepts, improving the object han-
dling fluency of the robotic system, including its adaptability to each particular
situation in non-deterministic scenarios.

We are concerned with the interoperability needs of this task among the rest
of project’s developments, so we have dedicated a considerable amount of our
efforts to provide simple, understandable and comprehensive interfaces for both
inputs and outputs of this system.
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Abstract. In this paper we discuss the potential of Gibson’s affordance
concept in industrial robotics. Recent advances in robotics introduce
more and more robots to collaborate with human co-workers in indus-
trial environments, more ambitious development of using mobile manipu-
lators in industrial environments has also received widespread attentions.
We investigate how the conventional robotic affordance concept fits the
pragmatic industrial robotic applications with the focuses on flexibility,
re-purposing and safety.

1 Why Affordances

Majority of today’s industrial robots operating in factories are attached to a
fixed basement, operate on the various parts passing through a production line.
Although they can be reprogrammed with a teach pendant, in many applications
(particularly those in the automotive industry) they are programmed once and
then fixed behind metal fences, where they repeat that exact same task for years.
In recent years, however, collaborative robots have received more attention in
manufacturing industry as they can safely work together with human workers
in efficient new ways, e.g. to perform the task that requires a robot to do the
physical labor while a person does quality-control inspections. High complexity
and uncertainty of system caused by dealing with a large number of objects,
requirement of fast re-purposing and deployment for new or swapped tasks
and safety awareness are three major challenges that are consequent on the
utilization of collaborative robots in industry.

The concept of affordances has been coined by J.J. Gibson [1] in his seminal
work on the ecological approach to visual perception. Although there are several
attempts to formalize the theoretical concept (see [2] for an overview), the idea
of a relationship combining perception, action and outcome is innate to most
approaches and first formalized in [3]. Mapping the concept of affordance into
the domain of industrial robotics could

– reduce the uncertainty and complexity caused by a large number of objects
and objects in arbitrary positions/poses in human involved collaboration;
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Fig. 1. Schema of using affordances for industrial robotic applications: differing with
the traditional affordance-based robotic grasping applications which use one config-
uration of robot/end effector to handle various objects, we select the most suitable
robot/end effector according to the object and its affordable actions.

– increase the flexibility and fast re-purposing of tasks, since affordances natu-
rally rely on actors’ abilities and the grounded affordances of object provide
attached information about which tool/robot should be used to do various
actions;

– provide an alternative safety concept since affordances are always related to
actions, which can be assigned to different safety evaluations according to
the control parameters of these actions.

Therefore, we propose a new systematic schema, which mediates information of
perceived object (e.g. 2D/3D features, geometrical characters etc.) and safety
awareness data of actions that could be executed by different robots/end-
effectors, to produce perceived affordances that can be safely and effectively
used by industrial robots (Fig. 1).

2 How to Use Affordance for Industrial Robotics

While the state-of-the-art affordance-driven robotic grasping is focusing on the
solution to find the best grasp points of various objects, we in contrast use
affordance to help our industry partners to decide which robot/end effectors
are the most suitable for manipulating the specific object in their application
(Fig. 2). Also the affordance based evaluation of robot/end effector combinations
can provide customers both quantitative and qualitative measurements, thereby
facilitating the most suitable solution for trade off hardware cost and system
productivity.

For several industrial applications, particularly for the applications involving
large part manufacturing such as aerospace industry or shipbuilding industry,
large parts are worked on in a stationary production cell. In such a production
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Fig. 2. Various robots/end effectors designed by PROFACTOR GmbH, are picking
different objects, systems are designed according to the affordances (based on shape,
material, weight etc.) of the objects it faces on.

environment, specialized, stationary robotic systems are not economical and a
mobile manipulator is desirable [4]. These mobile manipulators with tool changer
can benefit from affordance-based end effector selection when cost of changing
tool and safety coefficient of actions are taken into account, i.e. use affordance
to evaluation the successful rate of executing one specific action with various
end effectors thereby deciding if the tool changing behavior is required at the
present time.

Modern vision-based algorithms for feature detection or character analysis
normally have quality estimation outputs as part of their results[5]. These qual-
ity estimation values can be used in a unified probabilistic framework to discover
a best holistic solution [6][7]. We plan to expand this probabilistic framework by
combining quality of object analysis/detections and safety estimation of using
various robots/end-effectors/tools to execute different action tasks. The maxi-
mization of the joint probability will find the safest and most reliable affordance
of object which can be manipulated with one specific robotic hardware config-
uration. Following the work of modeling affordances using Bayesian Network
[8], we further include the successful rate of using different tools/robots/end-
effectors for various execution tasks, to make the system able to decide whether
it requires to change the tool or not, as industrial robots usually are equipped
with many tools in order to perform various tasks. Future optimization of tool
change frequencies and workflow could also be developed based on this proba-
bilistic framework.
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Abstract. In thisworkwe introduce theAspectTransitionGraph (ATG),
an affordance-based model that is grounded in the robot’s own actions and
perceptions. An ATG summarizes how observations of an object or the
environment changes in the course of interaction. Through the Robonaut
2 simulator, we demonstrate that by exploiting these learned models the
robot can recognize objects and manipulate them to reach certain goal
state.

Keywords: Robotic perception · Object recognition · Belief-space plan-
ning

1 Introduction

The term affordance first introduced by Gibson [2] has many interpretations,
we prefer the definition of affordance as “the opportunities for action provided
by a particular object or environment.” Affordance can be used to explain how
the “value” or “meaning” of things in the environment is perceived. Our models
are based on this interactionist view of perception and action that focus on
learning relationships between objects and actions specific to the robot. Some
recent work [6] [8] [13] in computer vision and robotics extended this concept
of affordance and applied it to object classification and object manipulation.
Affordances can be associated with parts of an object as, for example in the work
done by Varadarajan [16] [15], where predefined base affordances are associated
with surface types. In our work, we build models that inform inference in an
extension of Gibson’s original ideas about direct perception [3] [5].

Affordances describe the interaction between an agent and an object (or envi-
ronment). For example [2], a chair that is “sittable” for a grown-up might not
be “sittable” for a child. In this work we introduce the Aspect Transition Graph
(ATG), an affordance-based model that is grounded in the robot’s own actions
and perceptions. Instead of defining object affordances from a human perspec-
tive, they are learned by direct interaction on the part of the robot. Using the
Robonaut 2 simulator [1], we demonstrate that by exploiting these learned mod-
els the robot can recognize objects and manipulate them to reach goal states.
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2 Aspect Transition Graph

Aspect Graphs were first introduced to represent shape [9] [4] in the field of com-
puter vision. An Aspect Graph contains distinctive views of an object captured
from a viewing sphere centered on the object. The Aspect Transition Graph
introduced in this paper is an extension of this concept. In addition to distinc-
tive views, the object model summarizes how actions change viewpoints or the
state of the object and thus, the observation. Besides visual sensors, extensions
to tactile, auditory and other sensors also become possible with this representa-
tion. The term Aspect Transition Graph was first used in [12] but redefined in
this work.

Fig. 1. An example of an incomplete aspect transition graph (ATG) of a cube. Each
aspect consists of an observation of two faces of the cube. The lower right figure shows
the coordinate frame of the actions and the aspect in the upper right is the “collection
node” representing all unknown aspects of the object that may be present. Each solid
edge represents a transition between aspects associated with a particular action. Each
dotted edge is a transition that may not yet have been observed.

An object in our framework is represented using a directed graph G = (X ,U),
composed of a set of aspect nodes X connected by a set of action edges U
that capture the probabilistic transition between the aspect nodes. Each aspect
x ∈ X represents the features of an object that are measurable given a set of
sensors and their relative geometry to the object. The ATG summarizes empirical
observations of aspect transitions in the course of interaction.

The ATG of an object is complete if it contains all possible aspect nodes
and node transitions. However, in practice, when ATGs are learned through
exploration they are almost always incomplete. In addition, an object might be
represented by multiple (incomplete) ATGs. A complete model is more informa-
tive but harder to learn autonomously. In this paper, we will focus on handling
incomplete object models. Each of our ATG models have a single collection node
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representing all unobserved aspects. Figure 1 shows an example of an incomplete
ATG on a cube object with a character on each face.

3 Modeling and Recognition

The robot memory M is defined as a set of ATGs that the robot created through
past interaction. Each ATG in the robot memory represents a single object
presented to the robot in the past. An ATG is added to the M only if the
presented object is judged to be novel. Although the robot might not have seen
all the objects or all the aspects of each object, to simplify this problem we make
this very limiting assumption that the robot knows that |O| objects exist in the
environment and each object has |G| aspects. If the robot assumes that there
are more objects in the environment or more aspects of an object then there
actually are, it will bias the judgment toward novelty.

Let ST−1 denote the set of objects that have been presented to the robot
in the first T − 1 trials. Given a sequence of observations z1:t and actions a1:t
during trial T , the probability that the object presented during trial T , OT , is
novel can be calculated;

p(OT /∈ ST−1|z1:t, a1:t,M)

=
∑

oi /∈ST−1

p(OT = oi|z1:t, a1:t,M)

=
∑

oi /∈ST−1

∑
xt∈Xi

p(xt|z1:t, a1:t). (1)

Where oi is an element of set O designating all of the objects in the environment.
Element xt of set Xi describes all the aspects comprising object oi. The condi-
tional probability p(xt|z1:t, a1:t) of observing an aspect can be inferred using a
Bayes filter. Object OT is classified as novel if p(OT /∈ ST−1|z1:t, a1:t,M) > 0.5.

If a particular object is judged to be a previously observed object, we asso-
ciate it with the ATG that is most likely to generate the same set of observations.
The posterior probability of object oi is calculated by summing the conditional
probability of observing aspect xt over all aspects comprising object oi,

p(OT = oi|z1:t, a1:t,M) =
∑

xt∈Xi

p(xt|z1:t, a1:t). (2)

The posterior probability of an aspect p(xt|z1:t, a1:t) is calculated after each
measurement and control update using the Bayes Filter Algorithm [14].

4 Action Selection Strategy

The challenge of integrating task-level planners with noisy and incomplete mod-
els requires that we confront the partial observability of the state while building
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plans. Since the true state of the system cannot be observed, it must be inferred
from the history of observations and actions. Our planner belongs to a set of
approaches (for example [7][10]) that select actions to reduce the uncertainty of
the state estimate maximally with respect to the task.

Object recognition can be viewed as one such task in which the uncertainty
over object identities (as quantified by the object entropy) is reduced with each
observation. Our task planner selects the action at that minimizes the expected
entropy of the distribution over elements of set OT representing the object iden-
tity [11];

argmin
at

E(H(OT |zt+1, at, z1:t, a1:t−1))

= argmin
at

∑
zt+1

H(OT |zt+1, at, z1:t, a1:t−1)×

p(zt+1|at, z1:t, a1:t−1). (3)

Once the object entropy is lower than a threshold, the robot has high cer-
tainty regarding the ATG in robot memory that represents the same object.
All aspect nodes in this ATG that are reachable from the current aspect node
represent the set of aspects that the robot can observe by executing a sequence
of actions. If a goal aspect is in one of these aspects, the actions on the shortest
path from the current aspect node to the goal aspect node represents an optimal
sequence of actions for achieving the goal state.

5 Experiments

We evaluated the capabilities of the proposed affordance models and planner
using the Robonaut 2 simulator shown in Figure 2. The simulation contains
100 unique objects called ARcubes that consist of a 28cm cube with unique
combinations of ARtags on the six faces; 12 different ARtag patterns are used in
this experiment. In an ATG for an ARcube, an aspect consists of ARtag features
observed on 2 faces. Each ATG has 24 unique aspects and each aspect has 132
different pattern combinations. For the sake of simplicity, we assume that an
object does not have two faces with the same ARtag. The robot can perform 3
different manipulation actions on the object: 1) flip the top face of the cube to
the front, 2) rotate the left face of the cube to the front, and 3) rotate the right
face of the cube to the front. We emphasize that our model is not restricted
to cube like structures and that every inference is based on the combination of
observation and action.

Table 1 shows the result of using the planner to recognize the object pre-
sented. Each test involves 100 trials and starts with an empty robot memory
M. In each trial, the task is to decide which ATG in memory the experiment
corresponds to or to declare it to be novel. For each trial, an object is chosen at
random and presented to the robot. The robot observes the object and executes
an action. This process is repeated 10 times. At the end of each trial the robot
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Fig. 2. The simulated Robonaut 2 interacting with an ARcube

determines the likelihood that the presented object is novel and the most likely
existing object in memory is identified.

The last row in Table 1 presents the results averaged over all the tests. The
success rate is the percentage of objects correctly classified, that is, correctly
identified in memory or declared as a novel object. The system correctly rec-
ognizes the object 90.7% of the time, and correctly determines if the presented
object is novel or not 81.6% of the time.

Table 1. The success rate of an information theoretic planner in recognizing the object
(10 actions per trial)

Test Correct Identification Correct Recognition Success Rate

1 80/100 20/21 79%

2 79/100 25/27 77%

3 87/100 21/25 83%

4 78/100 26/28 76%

5 84/100 24/27 81%

average 81.6% 90.7% 79.2%

We also tested the efficiency of the planner against a random policy. The
number of actions executed per trial were varied from 4 to 20. Figure 3 shows
how the success rate of a test varies with the number of actions executed per
trial. As is evident from the plots, the information theoretic planner outperforms
a random exploration policy for all cases except when the number of actions per
trial is low. Both algorithms perform equally poor when not enough information
is provided.

To demonstrate how ATGs can be used to reach certain goal state. We set
up an environment where 3 ARcubes are located in front of the simulated Robo-
naut 2 as shown in Figure 2. The goal is to rotate the cubes till certain faces are
observable. The robot starts with a robot memory learned through interacting
with 20 different ARcubes including the 3 ARcubes located in the test environ-
ment. To achieve the goal state, Robonaut 2 manipulates the object to condense
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Fig. 3. The plot shows the average success rate of 10 tests as the number of actions per
trial are increased. Selecting actions that minimize entropy leads to a higher success
rate then selecting actions at random.

belief over objects. Once the object entropy is lower than a threshold, Robo-
naut 2 tries to execute the sequence of actions that is on the shortest path from
the current aspect node to the goal aspect node in the corresponding ATG if
such goal aspect node exists. In this experiment, the simulated Robonaut 2 suc-
cessfully reaches the goal state by manipulating the cubes so that the observed
aspects match the given goal aspects.

6 Discussion

This paper introduces an affordance-based model and demonstrates that it can
be learned and used to support inference in a simulated environment with dis-
crete actions and observations. To apply this model to real world applications,
several challenges need to be addressed. First, in this work we assume that all
actions lead to aspect transitions for all objects. A more realistic assumption
will relate actions to new aspects probabilistically. Second, unlike ARcubes, real
objects do not have a set of unique aspects; metrics such as the deviation of a
new observation to past observations can be used to determine if a new aspect is
observed. For future work, we plan to address these difficulties and test the ATG
model in a more realistic environment. We are also exploring how to represent
interactions between multiple objects in the scene and extensions of the idea
that can incorporate multi-modal sensory features like tactile data.

Acknowledgments. This material is based upon work supported under Grant NASA-
GCT-NNX12AR16A and a NASA Space Technology Research Fellowship.
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Abstract. Many computer vision problems can be cast into optimiza-
tion problems over discrete graphical models also known as Markov or
conditional random fields. Standard methods are able to solve those prob-
lems quite efficiently. However, problems with huge label spaces and or
higher-order structure remain challenging or intractable even for approx-
imate methods.

We reconsider the work of Lempitsky et al. 2010 on fusion moves
and apply it to general discrete graphical models. We propose two alter-
natives for calculating fusion moves that outperform the standard in
several applications. Our generic software framework allows us to easily
use different proposal generators which spans a large class of inference
algorithms and thus makes exhaustive evaluation feasible.

Because these fusion algorithms can be applied to models with huge
label spaces and higher-order terms, they might stimulate and support
research of such models which may have not been possible so far due to
the lack of adequate inference methods.

1 Introduction

Many computer vision problems can be cast into optimization problems over
discrete graphical models also known as Markov or conditional random fields.
While standard methods are able to solve those problems quite efficiently, prob-
lems with huge label spaces and or higher-order structure are still challenging
and even approximate methods do not scale well.

Consequently, research has focused on models with moderate order and small
label spaces [7,19,33], models with huge but decomposable label spaces [12], or
higher-order models that can be reformulated into second order models with
additional auxiliary variables [6,21,22].

A more generic approach to deal with large label spaces has been suggested
by Lempitsky et al. [26]. Starting with an initial labeling, they generate an alter-
native proposal and search for a better labeling within the subspace of labeling
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spanned by the current and the proposed labeling. This step is called move,
since the current labeling is moved within the subspace without increasing the
energy. Except for some special cases, e.g. [25], finding the optimal move for a
given proposal is NP-hard. The common way to calculate a move exploits that
the problem is binary and QPBO is used to calculate a labeling with a persis-
tency certificate [4,31]. For all persistent variables we can change the current
label to the persistent one and do not increase the energy. This procedure has
been generalized to higher-oder problems by reducing the higher-order binary
subproblems two second-order ones and additional auxiliary variables [10,15,17].

A complementary part of fusion algorithms that need to be specified is the
generation of proposal. Proposal generators can be generic or problem specific.
As discussed in [26] a good proposal should have a high quality and the proposals
should be diverse among each other to allow various moves.

Except for fusion with simple α-proposals in [19], fusion moves have not been
considered in recent benchmarks [7,18,19]. This might be caused by the lack of
a publicly available implementations and the option to choose any generator.
Likewise, in many applications fusion moves with less generic problem specific
proposal generators have been used.

Contribution: (1) The first publicly available generic implementation of fusion
moves. It supports user defined proposal generators and is embedded into the
OpenGM-Library [1]. (2) Two novel methods for calculation fusion moves that
outperform QPBO in several settings. (3) We show how improved any-time
performance of state-of-the-art methods can be obtained by embedding them
into the fusion framework. (4) A detailed evaluation of proposal generators and
fusion algorithms on recent published and new benchmark datasets.

Outline: We start in Sec. 2 with the mathematical formulation of the prob-
lem and fusion moves and present in Sec. 3 novel and state-of-the-art methods
to calculate them. In Sec. 4 we present some generic proposal generators. In
the experimental section 5 we evaluate the performance of fusion-methods and
proposal generators on recent benchmark datasets and conclude in Sec. 6.

2 Problem Formulation

We assume that our discrete energy minimization problem is specified on a factor
graph G = (V, F,E), a bipartite graph with finite sets of variable nodes V and
factors F , and a set of edges E ⊂ V × F that defines the relation between
those [23,28]. The variable xa assigned to the variable node a ∈ V lives in a
discrete label-space Xa and notation XA, A ⊂ V , stands for a Cartesian product
⊗a∈AXa. Each factor f ∈ F has an associated function ϕf : Xne(f) → R, where
ne(f) := {v ∈ V : (v, f) ∈ E} defines the variable nodes connected to the
factor f . The functions ϕf will also be called potentials. We define the order of
a factor by its degree |ne(f)|, e.g. pairwise factors have order 2, and the order
of a model by the maximal degree among all factors. The energy function of the
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Algorithm 1. Fusion Based Algorithms
1: procedure Fusion-Based-Inference(GEN,FUSE,J,X)
2: x0 ← initial state form X
3: n ← 0 � Number of moves
4: m ← 0 � Number of moves without progress
5: while m < mmax and n < nmax do
6: n ← n + 1
7: x′ ← GEN(xn−1, J, X) � Generate proposal

8: if J(xn−1) ≤ J(x′) then

9: xn ← FUSE(xn−1, x′, J)
10: else
11: xn ← FUSE(x′, xn−1, J)
12: end if
13: if J(xn) ≤ J(xn−1) then
14: m ← 0 � Reset counter
15: else
16: m ← m + 1 � Increment counter
17: end if
18: end while
19: return xn

20: end procedure

discrete labeling problem is then given as

J(x) =
∑
f∈F

ϕf (xne(f)), (1)

where the assignment of the variable x is also known as the labeling. We consider
the problem to find a labeling with minimal energy, i.e.

x̂ ∈ arg minx∈XJ(x). (2)

This labeling is a maximum-a-posteriori (MAP) solution of a Gibbs distribu-
tion p(x) = exp{−J(x)}/Z defined by the energy J(x). Here, Z normalizes the
distribution.

To avoid the large labeling space X, fusion moves optimize only over the
subspace X ′ ⊂ X, which is defined as the set of labelings spanned by the current
xcur and proposed xpro labeling,

X ′(xcur, xpro) = {x ∈ X | ∀i : xi ∈ {xcur
i , xpro

i }} . (3)

The set of all feasible moves, i.e. that decrease the energy, is given by

XMOVE(xcur, xpro) = {x ∈ X ′ |J(x) ≤ J(xcur)} . (4)

Since finding the optimal move (optimal labeling in XMOVE) is NP-hard we
can not expect to find the optimal move in polynomial time. This is why we
define and consider fusion-operators FUSE(x, x′, J) which return an element of
XMOVE(x, x′).

Given a proposal generator GEN, a fusion-operator FUSE, an objective func-
tion J , and a state-space X we can define the class of Fusion-Algorithms, as
shown in Alg. 1. They all monotonically decrease the energy. As stopping con-
dition we will use the maximal number of moves nmax as well as the maximal
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Algorithm 2. Fusion Moves
Require: J(x) ≤ J(x′)
Ensure: J(x̂) ≤ J(x)

1: procedure FUSEQPBO(x, x′, J)
2: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x′

i}} � Build Boolean subspace of X
3: x̂ ← QPBO(J(·), X̄) � Solve relaxation for persistent states
4: x̂i ← xi ∀x̂i = 1

2 � Replace non-persistent states

5: return x̂
6: end procedure

7: procedure FUSELF2(x, x′, J)
8: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x′

i}} � Build Boolean subspace of X
9: LazyFlipper.setStartingPoint ← x � Set starting point
10: LazyFlipper.searchDepth ← 2 � Set search depth
11: x̂ ← LazyFlipper(J(·), X̄) � Lazy Flipper improves the current state
12: return x̂
13: end procedure

14: procedure FUSEILP(x, x′, J)
15: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x′

i}} � Build Boolean subspace of X
16: RILP.setStartingPoint ← x � Add the current best into the solution pool
17: x̂ ← RILP (J(·), X̄) � ILP improves the current state
18: return x̂
19: end procedure

20: procedure FUSEBASE(x, x′, J)
21: return argminx̄∈{x,x′}J(x̄)

22: end procedure

length of a sequence of non-improving moves mmax. Algorithms in this family
are distinguished by the fusion operation and the proposal generator that they
employ, which we will discuss in the next two sections.

3 Fusion Move Operators

As discussed in the previous section an elementary part of fusion-algorithms
is the fusion-operator FUSE. In this section we discuss different operators and
present two novel fusion-operators. The corresponding pseudo code is shown in
Alg. 2. The returned labeling is guaranteed to have an energy lower or equal to
the energy of the current labeling and the proposed labeling.

QPBO Fusion: The standard fusion-operator FUSEQPBO was proposed by
Lempitsky et al. [26] and generalized to the higher-order case by Ishikawa [15]
and Fix et al. [10], which reduce in a preprocessing step the higher-order sub-
problem into a second-order one. For the second-order problem the local polytope
relaxation is solved by QPBO [31] and persistency is used to improve the current
best labeling. While this can be done in polynomial time, there is in general no
guaranty that we obtain persistency for any variable. However, empirically this
fusion-operator works well and is therefore widely considered as state-of-the-art.

Lazy Flipping Fusion: An alternative ansatz is to improve the current labeling
by local flipping. In the case when only one variable is flipped at the same
time this boils down to ICM [3]. Lempitsky et al. [26] show that ICM-Fusion
does not work well. However, Andres et al. have suggested a generalization of



MAP-Inference on Large Scale Higher-Order Discrete Graphical Models 473

ICM to multi-variable flipping, called Lazy Flipper [2]. Lazy Flipper can handle
higher-order terms directly, hence order reduction is not required. In the present
work we use lazy flipping with search depth two defining the fusion-operator
FUSELF2 and initialize it with the current best labeling. The initial labeling is
sequentially improved by flips of less or equal than two variables until no further
improvement is possible. Obviously, the final labeling will not be worse than
the initial one. While Lazy Flipping does not require the existence of persistent
variables, it stops if improvements can only be obtained by flipping too many
variables simultaneously.

Optimal Fusion: Recently, Kappes et al. [20] have shown that many discrete
optimization problems in computer vision can be solved exactly by first reducing
the problem size by partial optimality and than solving the smaller remaining
problem by advanced methods like integer linear programming (ILP). In the case
that the remaining problem splits in several connected components, those can
be handled independently which gives additional speed up. The fusion-operator
FUSEILP is defined by using QPBO [31] with the reduction of Fix [10] for higher-
order models to obtain partial optimality and solving the connected components
of the remaining problem by the Cplex ILP-solver [14]. By adding the current
best solution in the solution pool of the ILP solver it is guaranteed that the final
solution will not be worse. Furthermore, this provides a good starting point and
an upper bound. Since the remaining ILPs can still be quite hard, we interrupted
the solver after 100 seconds and return the best labeling from the solution pool.
Consequently, in our experiments a move is optimal if it is calculated within 100
seconds.

Base Fusion: To determine the impact of fusion-operations, we also define a
naive operator FUSEBASE, which returns the better of the two labelings

x̄ = arg minx̄∈{x,x′}J(x̄). (5)

This fusion-operator does only profit from the proposal quality and not from
their diversity.

4 Generating Proposals

The second major component of a fusion-algorithm is the generation of pro-
posals. On the one hand, proposals should be of high quality with respect to
the energy function J(·). On the other hand, they should be also diverse among
each other and cheap to calculate. Proposal generators can be clustered into four
groups: (i) inference-based generators, (ii) randomized generators, (iii) determin-
istic generators, and (iv) application specific generators.

Pseudo-code for (i)–(iii) is given in Alg. 3. We do not consider application
specific generators in the present work because they are none generic and require
more data than just the objective function.

Inference-Based Generators: For the cartographic label placement problem
Lempitsky et al. [26] used the labelings that Loopy Belief Propagation (LBP)
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Algorithm 3. Proposal Generators
1: procedure RandomGen(x, J, X)
Require: ∀i ∈ V : Pi(xi) � Shared for all moves
2: for i ∈ V do
3: x̂i ∼Pi(xi) Xi

4: end for
5: return x̄
6: end procedure

7: procedure InfGen(x, J, X)
Require: INF ← INF (J, X) � Shared for all moves
8: INF.runOneStep
9: X̄ ← INF.getLabeling
10: return x̄
11: end procedure

12: procedure DeterministicGen(x, J, X)
Require: n ← 0 � Shared for all moves
13: X̄ ← gen(x, n, X)
14: n ← n + 1
15: return x̄
16: end procedure

generates after each iteration as proposals. They obtained a result superior to
state-of-the-art for this problem instance.

This result was not further generalized or tested for other problems in later
work. However, it is very appealing since methods based on linear programming
relaxations like TRWS [24], MPLP [11] or approximative message passing meth-
ods like LBP [8], BPS [24] provide after each iteration good proposals close to
the optimal one. The diversity is generated by the heuristic rounding procedure.
Fusion moves can profit from this diversity and overcome failures caused by
greedy rounding if this failures are not present in all iterations.

We use the visitor concept of OpenGM [1] and inject the fusion operation
after each algorithmic unit. This allows using any OpenGM-inference method as
proposal generator with a few lines of code. In the present work we show results
for TRWS, MPLP, BPS and LBP with different damping. MPLP and LBP can
also deal with higher-order problems.

Randomized Generators: A general way to generate diverse proposals is to
sample those from a distribution P . The disadvantage of such generators is
that the proposals usually have bad quality. One can try to alleviate this by
prior knowledge. We consider the following sampling distributions, which all
defined independently for each variable. For problems with arbitrary structure
we consider uniform random distributions (PU )

Pi(xi) =
1

|Xi| , (6)

and local marginal approximations (PL) which estimate for a given temperature
T first order marginals from unary terms f̄i by

Pi(xi) ∝ exp{−T · f̄i(xi)}. (7)
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For T → 0 the distribution becomes uniform and for T → ∞ all its mass
concentrated in the local mode. When local data terms a weak or misleading the
distribution is not helpful.

We also follow the idea used in [10,15], which blur the current labeling on the
image grid and sample proposals around the ”blurred labeling”. Of course this
is only useful if labels have the same meaning for all variables. Empirically we
observe no advantage by repeating the blurring in each iteration if the standard
variation of the Gaussian blur is large. We suggest to blur the unary terms
instead of the labeling, this is also more robust to missing unary terms and
uncertain information. Furthermore, blurring has to be done only once. For each
variable we obtain a Gaussian blurred unary term label-wise

f̄B
i (xi) = GaussianBlurσ(f̄(xi))i, (8)

x̄B
i = arg maxxi

f̄B
i (xi). (9)

As in [10,15] we sampling uniformly (PUB) from

Pi(xi) ∝
{

1 if even round or xi ∈ [x̄B
i − 1.5σ, x̄B

i + 1.5σ]
0 else (10)

Alternatively we can use the blurred unaries for a local blurred marginal approx-
imations (PLB) as in the non-blurred case

Pi(xi) ∝ exp{−T · f̄B
i (xi)}. (11)

Deterministic Generators: Deterministic generators provide very simple pro-
posals with low workload. The proposals depend on the current labeling x and
iteration n. For deterministic generators we determine the number of moves with
no improvements mmax for which immediate termination will have no effect on
the final solution. An example is the generalization of α-Expansion [5] where
mmax = maxi∈V |Xi|. The proposal x̂ in iteration n takes the label α(n) = n
mod mmax if possible, i.e.

x̂i =
{

α(n) if α(n) ∈ Xi

xi else (12)

Another example are αβ-Swaps [5] which can be generalized to arbitrary discrete
problems. Here in each step n variables that have the labels α(n) and β(n) are
changed to β(n) and α(n) if possible, respectively. Here mmax = 0.5·maxi∈V |Xi|·
(maxi∈V |Xi| − 1).

x̂i =

⎧⎨
⎩

α(n) if xi = β(n) and α(n) ∈ Xi

β(n) if xi = α(n) and β(n) ∈ Xi

xi else
(13)

5 Evaluation

We compare the combination of fusion operations and proposal generators for
different graphical models benchmarks [7,18,19] and the FoE-dataset [30]. All
this instances are or will be made publicly available in the OpenGM-format.
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Table 1. Overview of the used models and the number of variables (# variables),
number of labels (# labels), model order (order), number of instances (# instances)
and temperature used for determine local marginals

modelname # variables # labels order # instances used temperature

Field of Experts 38801 256 4 100 0.1
MRF Inpainting 65536 256 2 2 0.001
Protein Folding 1972 503 2 21 0.1
Protein Prediction 14441 2 3 8 1
DTF Inpainting 17856 2 2 100 0.1
Matching 21 21 2 4 0.1
Cell Tracking 41134 2 9 1 0.1

We run all combinations for 1000 iterations (nmax = 1000) and maximal 900
seconds on a Core i7-2600K with 3.40 GHz single-threaded. We stop after 50
moves without improvement (mmax = 50). Stopping condition of deterministic
methods are the deterministic default. Due lack of space we add the complete
results as supplementary material and show only selected combinations here.
The used temperature parameter for the sampling distributions and an overview
of the models is given in Tab. 1.

We report the energy value, averaged over all model instances, of the best
labeling after 10, 60 and 600 seconds as well as for the final labeling. Additionally
we report the mean runtime and the number of iterations or moves. The best
value among all fusion-algorithms in each time slot is marked green, and the
fusion-operation which give the best mean energy for a given proposal-generator
blue. Additionally, we add results of state-of-the-art-methods to the tables, if
those results were available. If the best of those beats all fusion algorithm it is
marked red.

Table 2. For field of experts instances FUSIONLF2 overall performs best

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

α-Exp-FUSIONILP 115331.95 112908.90 108011.80 105001.75 941.28 sec 27.30
α-Exp-FUSIONLF2 109604.69 76950.74 35553.15 34958.88 709.57 sec 999.88
α-Exp-FUSIONQPBO 113027.96 107330.34 56267.95 54571.25 900.91 sec 541.81

PUB-FUSIONILP 107585.42 105930.25 37603.67 35351.69 903.09 sec 220.24
PUB-FUSIONLF2 71918.21 38631.97 32925.36 32848.61 695.85 sec 1000.00
PUB-FUSIONQPBO 97796.97 47536.08 33481.48 33090.60 872.46 sec 899.96

PL-FUSIONILP 87010.93 41320.95 32779.26 32637.81 899.81 sec 806.71
PL-FUSIONLF2 54960.13 35583.31 32619.64 32586.99 701.58 sec 1000.00
PL-FUSIONQPBO 57337.32 35918.37 32646.95 32613.20 688.93 sec 1000.00

PU -FUSIONILP 81230.66 41289.75 32936.93 32779.52 806.42 sec 999.44
PU -FUSIONLF2 64828.40 38662.98 32882.46 32782.16 736.44 sec 996.45
PU -FUSIONQPBO 63305.54 38500.68 32871.21 32797.15 699.14 sec 1000.00

Field of Experts: Field of experts were introduced by Roth and Black [30],
which use higher-order terms to expressive image priors that capture the statis-
tics of natural scenes. Field of export models have become a standard benchmark
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Table 3. For the inpainting problems fusion-algorithms improve the performance of
TRWS. Random generators do not work well here.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS 26481554.50 26465539.50 26464769.50 26464759.00 632.40 sec 944.50
TRWS-LF2 ∞ ∞ ∞ 26463829.00 3009.52 sec −
PU -FUSIONBASE 420556187.50 420556187.50 420556187.50 420556187.50 2.40 sec 50.00
PU -FUSIONILP 60296247.50 38570409.50 34890334.50 34890334.50 196.09 sec 1000.00
PU -FUSIONLF2 100770607.50 45696051.50 35241978.50 34985385.50 501.38 sec 1000.00
PU -FUSIONQPBO 50696441.50 36367339.50 34904322.00 34904322.00 119.94 sec 1000.00

TRWS-FUSIONBASE 26481554.50 26465534.50 26465416.50 26465416.50 103.48 sec 163.00
TRWS-FUSIONILP 26476904.00 26464727.50 26464158.00 26464158.00 217.59 sec 318.50
TRWS-FUSIONLF2 26482403.50 26465290.00 26464904.50 26464904.50 206.98 sec 276.00
TRWS-FUSIONQPBO 26476820.00 26464728.50 26464158.00 26464158.00 214.05 sec 318.50

for fusion moves [10,15]. We follow the experimental setup used in [10,15] and
take the 100 test images from the BSD300 [27], downscale them by a factor
of two and add Gaussian noise with standard deviation σ = 20. The energy
function includes unary terms penalize the L1-distance of the 256 labels/colors
to the noisy pixel color and fourth order experts learned and kindly provided by
Roth and Black [30].

Classical QPBO-based fusion is clearly inferior to LazyFlipper-based, c.f.
Tab. 2 and Fig. 1(a). For the α-expansion generator QPBO-fusion does a bad
job as reported in [15]. When we switch to LazyFlipper-based fusion it is still
not best but comparable to other combinations. Using optimal moves does not
improve the results significantly. The moves are only marginal better but slower.
Overall best results are obtained when sampling from the distributions base on
non-blurred unary terms.

Inpainting: We consider the two inpainting problems from [33] which have
256 labels. For these instances TRWS followed by local search is currently the

Table 4. For the protein folding instances BPS-FUSION leads to better results and is
more than ten times faster than BPS

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

BPS −5958.72 −5958.72 −5958.72 −5958.72 25.34 sec 1000.00
LBP −5817.90 −5841.98 −5872.91 −5872.91 183.53 sec 1000.00
TRWS −5735.86 −5799.52 −5846.86 −5846.86 118.17 sec 675.48
CombiLP ∞ ∞ −5822.45 −5911.12 568.86 sec −
BPS-FUSIONBASE −5958.37 −5958.37 −5958.37 −5958.37 1.63 sec 57.24
BPS-FUSIONILP −5959.82 −5959.82 −5959.82 −5959.82 1.69 sec 57.05
BPS-FUSIONLF2 −5959.48 −5959.48 −5959.48 −5959.48 1.70 sec 57.05
BPS-FUSIONQPBO −5959.82 −5959.82 −5959.82 −5959.82 1.61 sec 57.05

LBP-0.5-FUSIONBASE −5926.10 −5944.87 −5944.87 −5944.87 16.95 sec 86.24
LBP-0.5-FUSIONILP −5928.60 −5946.35 −5946.35 −5946.35 16.19 sec 80.67
LBP-0.5-FUSIONLF2 −5926.10 −5944.87 −5944.87 −5944.87 16.99 sec 86.24
LBP-0.5-FUSIONQPBO −5928.60 −5945.28 −5945.28 −5945.28 16.11 sec 81.86
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Table 5. For the protein-prediction problems the FUSIONILP leads to better results
even with random proposals

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

LBP-0.5 53407.52 52974.98 52974.98 52974.98 60.97 sec 766.88
LBP-LF2 ∞ ∞ 52942.95 52942.95 69.86 sec −
LBP-0.5-FUSIONBASE 52971.53 52971.53 52971.53 52971.53 6.22 sec 110.50
LBP-0.5-FUSIONILP 52827.89 52821.38 52821.38 52821.38 9.64 sec 110.12
LBP-0.5-FUSIONLF2 52971.53 52971.53 52971.53 52971.53 6.22 sec 110.50
LBP-0.5-FUSIONQPBO 52826.64 52826.64 52826.64 52826.64 6.20 sec 124.12

PU -FUSIONBASE 97071.97 97071.97 97071.97 97071.97 0.76 sec 50.00
PU -FUSIONILP 95886.12 95787.15 55531.88 55509.32 380.11 sec 689.25
PU -FUSIONLF2 58622.95 58622.81 58622.81 58622.81 13.62 sec 87.25
PU -FUSIONQPBO 75582.10 66164.13 65933.02 65933.02 58.27 sec 955.00

leading method [19]. These methods make use of the convex regularizer and
apply distance transform [9] for good any time performance. Fusion algorithms
did not work well within 1000 iterations except TRWS is used as generator. This
agrees with the results reported in [33] where α-expansion also needed much
more iterations and has a simple explanation. The unaries and the regularizer
are based on squared differences. This make them very picky and selective. This
limits the set of improving moves for random proposals.

Protein Folding: The protein folding instances [34] have a moderate number of
variables, but are fully connected and have for some variables huge label spaces.
Recently it has been shown [18], that sequential Belief Propagation (BPS) gives
very good results near optimality. Using BPS as generator fusion obtain better

Table 6. For the DTF Chinese characters fusion based methods has not beaten LSA-
TR. However, we get quite close and improve standard methods. *Results was taken
from the original papers and not reproduced.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS −49512.31 −49514.04 −49514.06 −49514.06 112.37 sec 856.13
BPS-TAB −49536.02 −49537.63 −49538.16 −49538.16 78.65 sec 1000.00
LSA-TR* −49547.61 −49547.61 −49547.61 −49547.61 0.21 sec −−
MCBC-pct* −− −− −− −49550.10 2053.89 sec −−
α-Exp-FUSIONBASE −49434.39 −49434.39 −49434.39 −49434.39 0.01 sec 2.00
α-Exp-FUSIONILP −49434.39 −49434.39 −49527.97 −49528.00 273.90 sec 4.40
α-Exp-FUSIONLF2 −49495.76 −49496.83 −49496.83 −49496.83 13.39 sec 3.50
α-Exp-FUSIONQPBO −49499.09 −49501.69 −49501.69 −49501.69 7.63 sec 11.53

BPS-FUSIONBASE −49535.10 −49535.10 −49535.10 −49535.10 5.17 sec 81.73
BPS-FUSIONILP −49504.33 −49504.36 −49542.08 −49543.30 447.73 sec 40.79
BPS-FUSIONLF2 −49535.69 −49535.69 −49535.69 −49535.69 6.27 sec 75.30
BPS-FUSIONQPBO −49535.82 −49535.82 −49535.82 −49535.82 4.90 sec 74.58

TRWS-FUSIONBASE −49512.19 −49512.21 −49512.21 −49512.21 8.59 sec 71.63
TRWS-FUSIONILP −49476.91 −49482.33 −49535.98 −49537.55 543.30 sec 41.83
TRWS-FUSIONLF2 −49528.15 −49529.41 −49529.41 −49529.41 16.06 sec 63.29
TRWS-FUSIONQPBO −49531.64 −49532.29 −49532.29 −49532.29 17.03 sec 69.55
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Table 7. For matching problems results could only be marginally improved, since the
feasible move space is small in most iterations

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS 43.38 43.38 43.38 43.38 0.35 sec 253.00
MPLP-C 21.22 21.22 21.22 21.22 4.63 sec 145.25

LBP-0.5-FUSIONBASE 26.87 26.87 26.87 26.87 0.16 sec 77.25
LBP-0.5-FUSIONILP 24.56 24.56 24.56 24.56 0.19 sec 78.25
LBP-0.5-FUSIONLF2 26.87 26.87 26.87 26.87 0.16 sec 77.25
LBP-0.5-FUSIONQPBO 27.80 27.80 27.80 27.80 0.13 sec 66.00

PU -FUSIONILP 43.36 43.36 43.36 43.36 1.04 sec 243.00
PU -FUSIONLF2 55.22 55.22 55.22 55.22 0.30 sec 216.00
PU -FUSIONQPBO 50.78 50.78 50.78 50.78 0.03 sec 232.25

TRWS-FUSIONBASE 43.38 43.38 43.38 43.38 0.08 sec 59.25
TRWS-FUSIONILP 40.97 40.97 40.97 40.97 0.37 sec 67.75
TRWS-FUSIONLF2 42.00 42.00 42.00 42.00 0.13 sec 67.25
TRWS-FUSIONQPBO 40.97 40.97 40.97 40.97 0.09 sec 67.75

and faster results than BPS alone and advanced combinatorial methods like
CombiLP [32]. For other generators the results are worse but still comparable
with other methods and always improve the baseline significantly, c.f. Tab.4 and
Fig. 1(c).

Protein Prediction: The protein prediction instances [16] include sparse third-
order binary models. We beat the best performing method from the bench-
mark [18] which is LBP with damping 0.5 followed by Lazy Flipping of search
depth 2, by using damped LBP as generator and QPBO or ILP for fusion, c.f.
Tab.5 and Fig. 1(d).

Table 8. For the cell-tracking instance we obtain faster good results only marginally
worse than the optimum

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

LBP 107515639.76 107515319.56 107515319.56 107515319.56 80.70 sec 1000.00
ILP 45364196.24 7514421.21 7514421.21 7514421.21 13.78 sec 0.00

LBP-0.5-FUSIONBASE 7822517.15 7822517.15 7822517.15 7822517.15 10.00 sec 89.00
LBP-0.5-FUSIONILP 7518000.15 7514751.98 7514751.98 7514751.98 26.69 sec 234.00
LBP-0.5-FUSIONLF2 7822517.15 7822517.15 7822517.15 7822517.15 9.83 sec 89.00
LBP-0.5-FUSIONQPBO 10324281.39 10314354.13 10314354.13 10314354.13 24.96 sec 227.00

LBP-FUSIONBASE 7518099.53 7518099.53 7518099.53 7518099.53 11.83 sec 111.00
LBP-FUSIONILP 7515318.79 7515029.55 7515029.55 7515029.55 17.49 sec 145.00
LBP-FUSIONLF2 7518099.53 7518099.53 7518099.53 7518099.53 12.11 sec 111.00
LBP-FUSIONQPBO 7516031.12 7515029.55 7515029.55 7515029.55 15.96 sec 145.00

PU -FUSIONBASE 58794439.99 58794439.99 58794439.99 58794439.99 2.17 sec 50.00
PU -FUSIONILP 14033539.27 7791724.31 7531572.24 7531572.24 643.67 sec 304.00
PU -FUSIONLF2 9281131.45 9278699.79 9278699.79 9278699.79 18.91 sec 109.00
PU -FUSIONQPBO 11217379.70 9008429.54 8437145.94 8437145.94 156.95 sec 1000.00
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Fig. 1. Energy improvement for selected instances and methods over time (left) and
over iterations (right)
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DTF Chinese Characters: A challenging second-order binary problem is
using decision tree fields (DTF) for inpainting [19,29]. While advanced com-
binatorial solvers (MCBC) [20] give best performance [19], they are slow. The
best fast solver in [19] was sequential belief propagation (BPS). Recently, Gore-
lick et al. presented a fast and accurate alternative based on local submodular
approximations with trust region terms (LSA-TR) [13]. While we do not beat
LSA-TR we improve other methods significantly. This indicates that fusion algo-
rithms are also useful for hard problems – especially if ILP-Fusion is used – and
improve final solutions and any-time performance, c.f. Tab. 6 and Fig. 1(b).
Note that contrary to MCBC and LSA-TR, Fusion algorithms are not limited
to binary models.

Matching: We also consider the matching instances from [19] which are small
but very hard. In [19] it has been shown that α-expansion proposals are not an
adequate proposal choice. This is no longer true for other proposals including
random ones. However fusion moves often run into a labeling which is hard
to escape. If such a labeling is feasible, i.e. represents a one-to-one match, a
proposal has to support a cyclic swap of the labels in order to fulfill the one-to-one
matching constraint and improve the energy in order to escape. Consequently,
it is less likely to find global optimal solutions.

Cell-Tracking: The tracking model considered in [19] include binary variables
and terms of order up to 9. While ILP-solvers solves this instance to optimality
very efficiently one should not expect that this will hold for larger models. In
such scenarios relaxations would be an alternative but those suffer from the soft-
constraints and labelings generated by rounding might violate those. In such
situations Fusion can help a lot and provide early close-to-optimal solutions.

6 Conclusions

Fusion algorithms are very powerful and their performance on discrete graphical
models has been apparently underestimated in the past. We showed that the
performance of any inference method can be improved by embedding it as a
proposal generator into a fusion algorithm. This leads to better solutions as
well as to better any-time performance by compensating rounding artefacts, c.f.
Fig. 1. The additional computational costs are usually negligible.

Concerning proposal generators, inference based generators are overall supe-
rior, since the proposals are of high quality. However, for large scale or higher-
order models they are sometimes no longer applicable, e.g. for field of experts,
or much slower, e.g. for protein folding, than random or deterministic ones.
Here randomized generators work often reasonable. Application specific or more
advanced generators might be able to further close this gap with small additional
computational costs.

The quality of fusion algorithms can be also improved by fusion operators
different from QPBO-Fusion. We presented two powerful alternatives: Integer
linear programming solvers can be used to calculate the optimal moves in each
step.
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This can lead to much better results when the persistency of QPBO is small,
e.g. DTF or protein prediction. Lazy Flipping based fusion does also not suf-
fer from small persistency but requires that the global move can be obtained
by a sequence of local moves. When this is the case, as for the field of expert
instances, Lazy Flipping fusion gives the best trade-off between runtime and
energy improvement. Another interesting observation in this context is that
optimal moves are not always desirable. Contrary to non-optimal moves opti-
mal moves, can tend to run into ”dead ends” for which only a small number
of proposals generate moves which allow to escape. Such a proposal might not
be generated within mmax iterations and the algorithm stops too early. Further-
more, fusion is a greedy procedure and an optimal fusion move might not be
optimal in the long run. For example for some protein folding instances QPBO
fusion is sometimes marginal better than ILP fusion for the same number of iter-
ations. However, except for these outliers and on average optimal moves performs
better than QPBO-based moves – at least in the long run.

Finally we would like to remark that contrary to the standard QPBO-based
fusion-operator the presented alternatives can deal with more than one proposal.
Consequently the subproblems would be multi-label problems and X ′ larger,
which allows more powerful moves.
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by shrinking the combinatorial search area with convex relaxation. In: NIPS (2013)

33. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. IEEE PAMI 30(6), 1068–1080
(2008). http://dx.doi.org/10.1109/TPAMI.2007.70844

34. Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learning energy func-
tions for side-chain prediction. Journal of Computational Biology 15(7), 899–911
(2008)

http://dx.doi.org/10.1109/TPAMI.2007.70844


Feedback Loop Between High Level Semantics
and Low Level Vision

Varun K. Nagaraja(B), Vlad I. Morariu, and Larry S. Davis

University of Maryland, College Park, MD, USA
{varun,morariu,lsd}@umiacs.umd.edu

Abstract. High level semantic analysis typically involves constructing
a Markov network over detections from low level detectors to encode
context and model relationships between them. In complex higher order
networks (e.g. Markov Logic Networks), each detection can be part of
many factors and the network size grows rapidly as a function of the
number of detections. Hence to keep the network size small, a threshold
is applied on the confidence measures of the detections to discard the less
likely detections. A practical challenge is to decide what thresholds to
use to discard noisy detections. A high threshold will lead to a high false
dismissal rate. A low threshold can result in many detections including
mostly noisy ones which leads to a large network size and increased
computational requirements. We propose a feedback based incremental
technique to keep the network size small. We initialize the network with
detections above a high confidence threshold and then based on the high
level semantics in the initial network, we incrementally select the relevant
detections from the remaining ones that are below the threshold. We
show three different ways of selecting detections which are based on
three scoring functions that bound the increase in the optimal value of
the objective function of network, with varying degrees of accuracy and
computational cost. We perform experiments with an event recognition
task in one-on-one basketball videos that uses Markov Logic Networks.

1 Introduction

Computer vision systems are generally designed as feed-forward systems where
low level detectors are cascaded with high level semantic analysis. Low level
detectors for objects, tracks or short activities usually produce a confidence mea-
sure along with the detections. The confidence measures can sometimes be noisy
and hence a multitude of false detections are fed in to subsequent analysis stages.
To avoid these false detections, it is common practice to discard some detections
that are below a particular confidence threshold. Unfortunately, it is difficult to
reliably select a threshold a priori given a particular task. The threshold is gen-
erally selected to achieve a “reasonable” trade-off between detector precision and
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recall, since it is generally not possible to find all true detections (high recall)
without also hallucinating false alarms (low precision).

High level analysis integrates multiple low level detections together using
semantics to discard false detections rather than simply thresholding detector
scores. For example, in an event recognition system for basketball, the low level
detections like shot missed and rebound events are related by high level rules of
the game which say that a shot missed event is followed by a rebound event. The
analysis of high level interactions between detections can improve the confidence
in the detections.

High level analysis typically involves constructing a Markov network over the
detections, where contextual relationships corresponding to high level knowledge
about the image or video are encoded as factors over combinations of detections
[1,2,9,10,15]. A detection usually corresponds to one or more nodes in the net-
work and relationships between detections correspond to a factor. In Markov
networks of high order, each detection can be part of exponentially many instan-
tiations of a factor and the network size grows rapidly as a function of the num-
ber of detections. The problem is further exacerbated by the inference process,
whose computational cost is related exponentially to the network complexity.
When many detections are hypothesized at low precision, the size of the Markov
network becomes unnecessarily high since the inference process sets most of the
detections to false.

We tackle the problem of keeping the network size small by incrementally
adding only those detections that are most likely to be inferred as true while the
rest of them are kept false. We achieve this by adding a feedback loop between
the high level and low level stages, where the high level semantics guides the
selection of relevant low level detections. There are several advantages to this
feedback loop. First, it can locally adjust the thresholds for low level detectors
based on the neighboring context. Second, it keeps the network size small and
the inference procedure tractable. And third, we can potentially save computa-
tion by selectively running the low level procedures like feature extraction and
classification only when needed.

The goal of our feedback based incremental technique is to perform infer-
ence and obtain the optimal solution of the objective function corresponding
to the full network (the network obtained when we include all the detections)
by unclamping only the relevant detections. We start with detections above a
high confidence threshold and clamp the remaining detections to false based on
the closed world assumption, the assumption that what is not known to be true
is false. We then incrementally select from the remaining detections below the
threshold to add to the network. Our proposed feedback loop involves a prin-
cipled mechanism by which we identify the detections that are most likely to
improve the objective function. Motivated by cluster pursuit algorithms [13] for
inference, we derive three scoring functions that bound the increase in the objec-
tive function with varying degrees of accuracy and computational cost. The first
score function yields the exact increase in the objective function, but it requires
that the detector has been run everywhere and that inference can be performed
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exactly; the second bounds the change in the objective function, relaxing the
inference requirements; the third provides an even looser bound, but it is least
computationally intensive and does not require the low level detector to have
processed the candidate detections (which is why we call it the Blind Score).

We perform experiments on an event recognition task using one-on-one bas-
ketball videos. Morariu and Davis [10] used Markov Logic Networks (MLNs) on
this dataset to detect events like Shot Made, Shot Missed, Rebound etc. The
inputs are a set of event intervals hypothesized from low level detectors like the
tracks of objects. Using the feedback loop technique we show that we can suc-
cessfully select the most relevant event intervals that were earlier discarded due
to thresholding. The experiments show that our score functions can reach the
optimal value in fewer iterations with smaller network sizes when compared with
using just the low level confidence measures.

2 Related Work

High level context plays an important role in many vision systems like scene
segmentation [8], object detection in 2D [2,14] and 3D [9] and event recognition
[1,10,15]. Usually these systems hypothesize a set of candidate detections using
low level detectors and then feed them into the high level model which assigns a
label to the candidate detections based on the context. Since low level detectors
are not perfect, a multitude of false positives propagate from the low level to
the high level. So a high level system is faced with the choice of either dealing
with a large model size or having a threshold for the inputs so that model size
is contained, but only by discarding true detections that happen to have low
confidences.

While many inference techniques work in an incremental fashion to tackle
the complexity issues, they do not necessarily behave as a feedback loop and
hence do not present with the advantages mentioned earlier. We mention few
works here that iteratively add detections while performing inference. In a scene
segmentation task, Kumar and Koller [8] hypothesize a set of regions in an image
through multiple bottom-up over-segmentations and exploit the high level energy
function to iteratively select input regions that are relevant for the task. Zhu et
al. [16] use the greedy forward search technique of Desai et al. [3] for inference
in their event recognition system. The inference algorithm of Desai et al. first
sets the output label for the inputs to the background class. Each input is then
scored based on the change in the objective function if it were allowed to be
labelled as a non-background class. The top scoring inputs are then iteratively
added until convergence. Our feedback loop technique is based on the same idea
of greedily reaching the MAP value as quickly as possible but we provide a
principled mechanism to performing inference in higher order networks. Also we
do not use it just as an incremental technique, but extract more insight from the
high level semantics to save computation for the low level module. An interesting
characteristic of our feedback technique is that we can potentially run low level
processes only when required during the inference.



488 V.K. Nagaraja et al.

Apart from the advantages of keeping the inference tractable, a feedback loop
can also be useful in other ways. Sun et al. [14] apply a feedback loop for object
detection with geometrical context. They jointly infer about the location of an
object, the 3D layout of the scene and the geometrical relationships between the
object and the 3D layout. The speciality of their feedback loop is that the object
detector module adaptively improves its accuracy in the confidence measures of
detections based on the feedback from the scene layout.

The idea of incrementally building a network can be approached in principled
ways, including Cutting Plane Inference (CPI) and Cluster Pursuit Algorithms.
Many inference problems can be cast as an Integer Linear Program (ILP) which
is well suited for CPI. CPI employs an iterative process where the ILP is kept
small by adding only the most violated constraints. However, CPI cannot be used
for our feedback loop technique where we need to selectively set some detections
to false. Sontag et al. [13] propose a cluster pursuit algorithm, an alternative
formulation that incrementally adds cliques of variables (called clusters) and
optimizes the dual function, an objective function obtained through Lagrangian
relaxation that is an upper bound on the original (or primal) objective function.
Their score function for clusters is an approximation to the decrease in the dual
value of the objective function after adding a cluster, which is derived from the
message passing updates of Globerson and Jaakkola [4]. We use this idea of clus-
ter pursuit algorithm and derive a feedback technique for higher order Markov
networks. Our scoring functions use the dual value to calculate approximations
for the increase in the primal MAP value after adding a particular cluster.

3 Incremental Inference with Feedback Loop

We consider Markov networks defined over binary nodes x = {x1, . . . , xn} with
factors θc(xc) defined over cliques of nodes xc such that c1, . . . , ck ⊂ {1, . . . , n} .
The Maximum A Posteriori (MAP) problem is defined as finding an assignment
x∗ that maximizes the function

Φ(x;θ) =
∑
c∈C

θc(xc) (1)

The nodes xi are instantiated over candidate detections that are hypothesized
by low level detectors. For example, they can be object detections obtained from
running single-object detectors. The detector confidence scores output along with
the detections are used as unary factors for the nodes. The factors θc that involve
more than one detection represent the relationships between the detections. For
example, they can be spatial relationships like the placement of an object on top
of other objects. We obtain a MAP solution by performing inference, that will
ultimately label the hypothesized detections as true positives or false positives.

In Markov networks of high order, every newly added detection can become
combinatorially linked to other detections through the higher order factors.
When many detections are hypothesized at low precision, the size of the Markov
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network becomes exponentially large and the inference process becomes compu-
tationally expensive even though many of the detections are going to be inferred
as false.

The goal of our incremental approach for inference is to maximize the func-
tion in (1) while keeping the network size small. We achieve this by unclamping
only those detections that are most likely to be labeled as true by the inference.
The rest of the detections are clamped to false, and while they always participate
in the objective function over the iterations, they are excluded from the network
during inference. We first perform inference with an initial network constructed
from high confidence detections while the rest are clamped to false. We then
calculate scores for the remaining detections based on the initial network. The
scores measure the change in the MAP value after adding a detection to the cur-
rent network. These scores are equivalent to locally adding an offset to the low
level detector confidences, based on the feedback, so that the detections appear
above the threshold. Another way to interpret this is that the thresholds get
locally modified to select the detections that are below the threshold. We then
unclamp a selected number of top detections and the process is repeated. When
the incremental procedure is stopped, the MAP solution to the current network
provides the true/false labels to the active detections and the remaining set of
detections are labeled as false.

3.1 Clusters under Closed World Assumption

We show that incrementally unclamping detections is equivalent to adding clus-
ters of factors. First we partition the Markov network into three clusters as
shown in Figure (1). Let f be the set of active detections that are currently in to
the network and xf be the nodes that are instantiated over only the detections
from f . The factor θf is defined over just the nodes xf . Let g be the set of one
or more detections that is to be unclamped in a given iteration and xg be the
nodes instantiated over at least one detection from g and any other detections
from f . The factor θg is defined over nodes xg and other nodes from xf that it
shares with θf . Let h be the remaining set of detections and xh be the nodes
that are grounded over at least one detection from h and any other detections
from f ∪ g. The factor θh is defined over xh and the other shared nodes with θf
and θg. The overall objective function expressed as a sum of these clusters is

Φ(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (2)
+ θh(xh1, xg2, xf3, xf4)

Under the closed world assumption, any detection that is not included in
the Markov network due to thresholding is assumed to be false. To satisfy this
condition during the incremental process, we need to repartition the objective
function (2). During every iteration of the process, we have a Markov network
that includes a set f of active detections. The remaining detections from g and h
are not yet added and hence the nodes instantiated over these detections must be
clamped to false. The associated factors are projected on to the current network
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xf1

xg1

xh1
xf2xf3

xf4

xg2
θf

θg

θh

Fig. 1. The shared nodes between clusters in a partitioning of a Markov network. The
set f contains active detections that are currently in the network and xf are the nodes
that are instantiated over only the detections from f . The set of factors θf (xf ) is
defined over the nodes xf . Similarly, g is the set of detections to be unclamped at an
iteration and h is the set of detections that are still clamped to false.

after setting the nodes of the excluded detections to false. The resulting objective
function is

Φcur(xcur) = θf (xf1, xf2, xf3, xf4) + θg(xg1 = 0, xg2 = 0, xf2, xf3) (3)
+ θh(xh1 = 0, xg2 = 0, xf3, xf4)

To calculate a score for the set of detections in g, we need the objective
function to include these detections in the active set while all other remaining
detections from h are still clamped to false. This gives rise to the objective
function

Φ′(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (4)
+ θh(xh1 = 0, xg2, xf3, xf4)

Hence, the cluster of factors that need to be added to the current network during
an iteration is given by

Φnew(xnew) = Φ′ − Φcur(xcur) (5)
= θg(xg1, xg2, xf2, xf3) − θg(xg1 = 0, xg2 = 0, xf2, xf3) (6)

− θh(xh1 = 0, xg2 = 0, xf3, xf4) + θh(xh1 = 0, xg2, xf3, xf4)

We now propose three score functions that measure the change in the MAP
value after adding the cluster Φnew(xnew) to Φcur(xcur), with varying degrees of
accuracy and computational cost.

3.2 Detection Scoring Function

We define the score for a detection based on the change in the MAP value after
adding the detection to the current network. If we are adding the detection in
g, the score is given by

score(g)exact = ΔΦ = max [Φcur(xcur) + Φnew(xnew)] − max [Φcur(xcur)] (7)
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We also propose an upper bound to the exact score - score(g)upper, that is
derived based on the ideas of cluster pursuit algorithm of Sontag et al. [13].
We first obtain a dual of the MAP problem through Lagrangian relaxation.
The MAP problem is now equivalent to minimizing the dual objective function
since the dual value is an upper bound on the primal MAP value. We then
use the message passing algorithm of Globerson et al. [4] to obtain the message
update equations for the dual variables. Similar to Sontag et al. [13], we obtain
an approximation to the new dual value after adding a cluster to the current
network, by performing one iteration of message passing. Since the dual value is
an upper bound on the primal MAP value, the new decreased dual value gives
an upper bound for the exact score.

Proposition 1 (Upper Bound Score). An upper bound on the change in the
MAP value (7) after adding a cluster is given by

ΔΦ ≤ score(g)upper (8)

=
1
|s|

∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)
)

− max Φcur(xcur) (9)

where s is the set of nodes in the intersection of the sets xcur and xnew.

The proof can be found in the supplementary material. The first term in the
upper bound score is equivalent to averaging the MAP values obtained by enforc-
ing same assignment for one shared node at a time. The upper bound score can be
calculated efficiently using an inference algorithm that calculates max-marginals
with only a little computation overhead (eg. dynamic graph cuts [6]) and hence
can avoid performing repeated inference to calculate the exact score.

We derive another approximation to the score function called the Blind Score
since it is dependent only on the max-marginals of the current network and does
not involve the max-marginals of the new cluster to be added. It is obtained as
a lower bound to the upper bound score (not the exact score).

Proposition 2 (Blind Score). A lower bound to the upper bound score (9) is
given by

score(g)upper ≥ score(g)blind (10)

=
−1
|s|

∑
i∈s

∣∣∣∣ max
xi=0,xcur\i

Φcur(xcur) − max
xi=1,xcur\i

Φcur(xcur)
∣∣∣∣ (11)

where s is the set of nodes in the intersection of the sets xcur and xnew.

The proof can be found in the supplementary material. This score measures
the average of the difference in max-marginals of the shared nodes. It indicates
the susceptibility of the shared nodes in the current network to change their
values when a new cluster is added. The score is low if the absolute difference
in the max-marginals of the shared variables is high. This indicates that the
current network has low uncertainty (or strong belief) in the assigned values
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(a) A sequence of events which shows a shot being missed by Player1 and the
rebound received by Player2. When Player2 is clearing the ball, the track goes
missing for a while and hence the confidence measure for that clear event is low.

(b) Applying an initial threshold for Clear events does not include the highlighted
Clear event. However the corresponding Shot Missed event by Player1 is included
in the network. The absolute difference in the max-marginals represents certainty of
a node assignment and hence the negative of that difference represents uncertainty.
Here, darker colors indicate high uncertainty. When the Clear event is missing, the
network is highly uncertain right after the Shot Missed event.

(c) The node assignments become more certain after adding the missing Clear event.

Fig. 2. Visualization of the Feedback Loop

to the shared variables. Similarly the score is high if the absolute difference in
the max-marginals is low. This indicates that the network has high uncertainty
in the assignments to the shared variables and that is where we need more
evidence/observations.

Since the blind score is independent of max-marginals of the new cluster,
it does not need the confidence score of a detection which is usually used as a
unary potential in the new cluster. This can save computation for the low level
detectors by avoiding expensive procedures like feature extraction and classifi-
cation throughout an image/video and instead run them only when it is needed
by the inference. However, the blind score needs to know the shared variables
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Fig. 3. PR curves for the newly hypothesized events with continuous confidence mea-
sures. The red star shows the operating point of Morariu et al. [10] in their feed-forward
approach.

(s) between the new cluster and the current network. This corresponds to deter-
mining the locations where the detector would be run and these are usually easy
to obtain for sliding-window approaches. For example, to perform 3D object
detection, Lin et al. [9] first generate candidate cuboids without object class
information which fixes the structure of their network and hence tells us the
shared variables for any cluster. They then extract features for generating unary
potentials and use it in a contextual model to assign class labels to the hypoth-
esized cuboids. If we use the blind score during the inference, we can poten-
tially save computation by not extracting features for cuboids that are likely to
be labeled as false. Figure (2) illustrates our feedback loop technique using an
example from the basketball dataset of Morariu et al. [10].

4 Experiments

4.1 One-on-One Basketball Dataset

The one-on-one basketball dataset used by Morariu et al. [10] contains tracks of
players and ball along with court annotations for seven basketball videos. The
are eight events of interest: Check, Out Of Bounds, Shot Made, Shot Missed,
Rebound, Clear, Dribble and Steal. They use a Markov Logic Network (MLN)
[12] to represent high level rules of the game which interrelates the various events.
The inputs to the MLN are candidate events hypothesized by low level detectors
which use the tracks of players and the ball.
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Morariu et al. [10] Ours
P R F1 P R F1

Check 0.84 0.89 0.87 0.86 0.90 0.90
Clear 0.86 0.61 0.71 0.81 0.82 0.82
Dribble 0.81 0.75 0.78 0.79 0.82 0.80
OutOfBounds 0.88 0.66 0.75 0.80 0.62 0.70
Rebound 0.62 0.72 0.67 0.82 0.84 0.83
ShotMade 0.64 0.86 0.73 0.87 0.87 0.87
ShotMissed 0.67 0.79 0.72 0.81 0.85 0.83
Steal 0.08 0.50 0.13 0.25 0.25 0.12
Overall 0.72 0.75 0.74 0.81 0.83 0.82

Table 1. Comparison of MLN Recognition Performance using all the hypothesized
intervals without thresholding. We can see that the continuous confidence measures for
input events play a significant role in improving the performance.

4.2 Hypothesizing Candidate Events

In the MLN used by Morariu et al. [10], each event was hypothesized with
just two discrete confidence values. However, continuous confidence measures
are required for the events to better tie them to reality. We hypothesize a new
set of candidates with continuous confidence measures for the Shot Made, Shot
Missed, Rebound and Clear events and copied the other events (Check, Dribble,
Out Of Bounds, Steal) from their dataset. The confidences are obtained based
on observations like ball near a player, ball seen inside the hoop, player being
inside the two point area, etc. The PR curves of the event hypotheses is shown in
Figure (3). Since our modified observation model introduces higher uncertainty
in event interval endpoints, we also make few minor modifications to the original
MLN to make it robust to the overlapping endpoints of different event intervals.

We first test the importance of continuous confidences in the feed-forward
setting by feeding in all the hypothesized intervals to the MLN without thresh-
olding. The confidence measures are used as unary potentials for event predicates
in the MLN. Inference is then performed to obtain a MAP assignment for the
ground MLN, which labels the candidate events as true or false based on the high
level context of the game. The results are shown in Table (1). We see that the
confidence measures play a significant role in improving the event recognition
performance.

We have implemented our system as an extension of Alchemy [7], a software
package for probabilistic logic inference. The MAP problem for MLNs is framed
as an Integer Linear Program (ILP) [11] and we integrated our system with the
Gurobi ILP solver [5] for performing inference.

4.3 Incrementally Adding Events with Feedback Loop

We demonstrate the feedback loop technique by incrementally adding one type
of event, the Clear event. The confidence values for the Clear event are scaled
between 0.5 and 1. We initialize the network with all the event intervals except
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Fig. 4. Feedback based scores achieve better solutions with fewer detections; We apply
an initial threshold on the Clear events and incrementally add the remaining events
using the feedback based scores. We measure the exact MAP value of the Markov
network along with the f1 score corresponding to the ground truth. The plots start at
the same initial value for all the five scoring methods since the initial network contains
the same set of events. Our feedback based scores achieve better solutions with fewer
detections than the baselines - observation score and random score.
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Fig. 5. We apply threshold on both the Rebound and Clear events for initial network
and then incrementally add both events at every iteration. We still see that the exact
score and the upper bound score reach better solutions with fewer detections than the
observation score. However, the blind score falls slightly below the observation score
since it depends only on the current network and the context in the current network
is weak due to fewer events.
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for Clear which is thresholded at 0.75. We then run four iterations of the feed-
back loop and in each iteration, we add a certain number of top ranking Clear
events from the remaining set. There are five different kinds of scores that we
experiment with: score(g)exact, score(g)upper, score(g)blind, observation score
and random score. The observation and random scores are baseline approaches
to incrementally adding constants without using a feedback loop. The observa-
tion score is the confidence measure that comes from the low level detectors. By
adding constants based on their observation score, we are effectively reducing
the threshold uniformly throughout the video. The random score is basically
selecting a certain number of Clear events randomly and adding them without
looking at either the confidence measures or the context in the main network.

The results are shown in Figure (4). Among the seven videos from the dataset,
four of the them are large enough to add intervals in an iterative manner. We
show the plots of MAP value and also the f1 scores against the number of Clear
detections in the current network. The plots start at the same initial value for
all the five scoring methods since the initial network contains the same set of
detections. The goal of our feedback technique is to reach the final MAP value
in few iterations by adding only the relevant detections while keeping the rest
of them false. The MAP values increase faster with all of our three feedback
based score functions when compared to the observation score. The exact score
is the quickest followed by the upper bound score and then the blind score. The
plots of f1 scores also show that we can reach the best possible value with fewer
detections using feedback based score functions implying that they select the
most relevant events from the missing ones. We observe that the blind score
performs well when compared with the observation score. This indicates that
the context in the main network has a huge impact on what needs to be added
to improve the MAP value.

We also experiment with jointly thresholding the Rebound event along with
the Clear event. The Rebound events are scaled between -0.25 to 0.1 and we
choose a threshold of 0 for the initial network. The Clear events are scaled
between 0.5 to 1 and we choose a threshold of 0.75. We then proceed to iteratively
add the remaining Rebound and Clear events. The results in Figure (5) show
that the exact score and upper bound score can reach the best possible MAP
value and f1 score by adding fewer detections. However the plot for blind score
falls below that of the observation score. By increasing the threshold on the
Rebound event, the strength of context in the main network is weakened and
hence the blind score which is dependent on just the current network starts to
perform poorly.

4.4 Effect of Initial Threshold

To observe the effect of initial threshold, we experimented with four different
initial thresholds for the Rebound event. Like before, the Rebound events are
scaled between -0.25 to 0.1 and the Clear events are scaled between 0.5 to 1.
We choose a threshold of 0.75 for Clear events and vary the initial threshold
for Rebound events starting from the lowest, which is -0.25 (includes all the
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(a) First iteration of adding
Rebound and Clear events

(b) Second iteration of adding
Rebound and Clear events

Fig. 6. Effect of initial threshold for the Rebound event in video 4; The confidence
scores for the Clear events are scaled between 0.5 to 1 and the Rebound events between
-0.25 to 0.1. We fix the initial threshold for Clear event at 0.75 and vary the threshold
for Rebound from -0.25 to 0. We observe that a higher threshold for Rebound event
in the initial network decreases the MAP value that is achieved in the first iteration
of adding Rebound and Clear events to the initial network. The blind score continues
to perform poorly in later iterations at higher initial threshold due to weak context in
the initial network. However, the exact score and the upper bound score are still stable
with respect to the initial threshold.

Rebound events) and increase up to the value 0 which is high enough to weaken
the context. As the initial threshold is increased for the Rebound events, the
initial network becomes sparse weakening the context in the initial network.
Figure (6a) shows that a higher threshold decreases the MAP value achieved in
the first iteration of adding events to initial network. The blind score is affected
the most since it is dependent only on the current network. It continues to
perform poorly in later iterations (Figure (6b)) at higher initial threshold for
the Rebound event. Hence, it is important to select a reasonably high threshold
that allows enough number of events in the initial network without increasing
the network size.

5 Conclusion

We propose a computational framework for a feedback loop between high level
semantics and low level detectors in a computer vision system, where we use
the information in the high level model to select relevant detections from a
set of candidate hypotheses. We start with high confidence detections and then
iteratively add only those detections to the model that are most likely to be
labeled as true by the high level model. This helps us keep the model size small
especially in the presence of many noisy detections. We develop the framework
for higher order Markov networks and propose three feedback based scoring
functions to rank the detections. We show through our experiments on an event
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recognition system that the feedback loop can construct smaller networks with
fewer detections and still achieve the best possible performance.
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Abstract. Supervised topic models are important machine learning
tools which have been widely used in computer vision as well as in other
domains. However, there is a gap in the understanding of the supervision
impact on the model. In this paper, we present a thorough analysis on the
behaviour of supervised topic models using Supervised Latent Dirichlet
Allocation (SLDA) and propose two factorized supervised topic models,
which factorize the topics into signal and noise. Experimental results on
both synthetic data and real-world data for computer vision tasks show
that supervision need to be boosted to be effective and factorized topic
models are able to enhance the performance.

Keywords: Topic modeling · SLDA · LDA · Factorized supervised topic
models

1 Introduction

Topic modelling, as one of the most important machine learning tools, has been
successfully applied to in computer vision [5,8,11,15,22,24], as well as other
domains. It is a type of generative latent structure model that represent the
underlying structure of data as topics. Hence, it has advantages on handling
missing data and reasoning the data structure, which are desired properties in
many computer vision tasks.

In many applications, not least in computer vision, the learning task is often
to estimate a label from a piece of data. Hence, supervised topic models have
drawn a lot of attention. Although several supervised topic models have been
proposed [2,8,12,27], very little work has been done to study the impact of
supervision on the latent representation itself. In this paper, we will perform
such a study, analysing the behaviour of one type of supervised topic model,
Supervised Latent Dirichlet Allocation (SLDA) [2,22], and propose a number of
enhancements that could potentially improve the performance.

Supervised topic models are especially important for computer vision since
classification is one of the most common tasks in this domain. Popular supervised
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models include: the above mentioned SLDA [2,22], which models the joint likeli-
hood of the class label and the observed data in a principled Bayesian framework;
Labeled LDA (LLDA)1 [8], which optimizes the hyperparameter for each class,
but no direct dependence between the class label and the observed data is mod-
eled; Discriminative LDA (DiscLDA) [12], which models the conditional likeli-
hood of the data on the class label through matrix transformation; Max-Entropy
Discrimination LDA (MedLDA) [27,28], which utilizes max-margin principle to
learn the topic space using regularised Bayesian inference. Among these models,
SLDA is the most popular one, since it is the most principled and straightfor-
ward Bayesian framework. Hence, we will focus on SLDA based topic models in
this paper.

Very few studies have been done on understanding the behaviour of topic
models, although various new topic models have been proposed every year.
Semantic consistency of learned topics is studied [6] for classic unsupervised
topic models which are pLSI [10], LDA [3] and Correlated Topic Model (CTM)
[1]; and the behaviour of LDA with respect to the size of observed data (length
of documents and number of documents) has been studied recently [19]. How-
ever, there is still a big gap in the understanding of the behaviour of supervised
topic models. In computer vision, similar classification results have been achieved
using standard LDA with a separate SVM for classification, as with SLDA [15],
which raise the question of how effectively the topic space in an SLDA model is
adapted to the class labels. How much impact the supervision has in the model
has been discussed [18], but never been studied. In this paper, we will address this
question and present analysis on the behaviour using SLDA and an adaptation,
Power SLDA (P-SLDA), where the effect of the class label is boosted.

A latent representation that is able to capture the difference among data from
different classes is the key to achieve good classification performance. The goal
of using supervised topic models is to learn a better latent representation of the
data that is suitable for the given task. Intuitively, only part of the information
from the data is relevant for the classification task. For example, given the task
to classify mugs from books, the shape of the object is relevant, which is the
signal, and the pattern printed on the objects is not relevant, which is the noise.
Classic topic models model the entire data together. Hence, the performance
suffers when the data have low signal-noise ratio using classic topic models.
Several works for different applications have considered this problem and allow
the model to have different strategies to handle noise [11,16,21,25]. Three of
these, [11,16,21], are designed for specific (non-classification) tasks, while the
fourth, [25], is heuristic in the sense that it introduces an entropic regularizer.
In this paper, we propose two variations of SLDA which are probabilistically
principled framework. To explore a better way to supervise topic models, these
proposed models will be studied together with SLDA and P-SLDA on how they
can influence the learning of topics.

1 LLDA indicates the model from [8] which is deigned for natural scene classification.
The other popular model termed LLDA is from [17] and is designed for using multiple
tags rather than class label.
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We summarize our contributions as follows:

1. A thorough analysis of the supervision effect of SLDA compared to LDA are
presented.
Experimental results shows that the impact of supervision is limited on the
learning of the latent space compared to the LDA due to the imbalance of
the model.

2. Power SLDA (P-SLDA) which maps the class label to higher dimension to
boost supervision is contracted for further analysis on supervision behaviours.
Clear impact can be observed with boosted supervision, however, the benefit
of supervision with P-SLDA is data dependent.

3. Two novel factorized topic models are designed to learn better latent repre-
sentation for classification tasks and provide better interpretation of topics.
Experimental results show that these factorized models are able to factorize
topics into signal and noise and are more robust compared to SLDA and
P-SLDA.

The paper is organised as follows: all the models that are involved in the paper
are described in Section 2; experimental evaluation and analysis are presented
in Section 3; finally, we conclude the paper in Section 4.

2 Methods

In this section, we will firstly present all the models that are used in this paper.
Then, we will briefly present the inference algorithms and classification meth-
ods. The derivation of inference algorithms and implementation details will be
presented in the supplementary document.
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Fig. 1. Graphical representation of topic models studied in this paper. M indicates the
number of documents; Nj indicates the number of words in the document j; K indicates
the number of topics; α and β are hyper-parameters; w indicates the observed words;
y indicates the class label;θ ∼ Dir(α) is the topic distribution for each document;
z ∼ Mult(θ) is the topic assignment for each word; β ∼ Dir(η) indicates the topics
which are distributed over words.

2.1 Models

Topic models encode latent structure as topics, which assume that each piece of
information is composed of latent topics. LDA [3], shown in Figure 1(a), is the
cornerstone of topic models which was originally applied in information retrieval.
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LDA assumes a generative process where each document is modeled as a distri-
bution over topics, and each topic is modeled as a distribution over words. LDA
is the basic framework which has been evolved and applied for different tasks
and all these models are called topic models. They can be applied on different
types of data. For example, in computer vision, a document can be an image
and a word can be a visual word from the bag-of-words representation. In this
paper, we concentrate on supervised topic models that can be applied for classi-
fication tasks which is extremely important for computer vision applications. In
this section, we will present all the models in the evolutionary order. Supervision
is designed to be a part of the model for all the models but the first model, which
learn the topics and classification parameters in separate stages.

LDAC. LDA [3] is an unsupervised model. To perform classification tasks, the
simplest way is to use the topics that are learned from LDA and apply an addi-
tional classifier on the topics. We call it LDA for Classification (LDAC) in this
paper. Hence, LDAC is the same on modeling the topics as LDA. LDA/LDAC
can be present as:

p(w, z, θ, β|α, η, μ) = p(β|η)
M∏

j=1

(
p(θj |α)

N∏

n=1

(
p(wjn|zjn, β)p(zjn|θj)

))
. (1)

The graphical representation is shown in Figure 1 (a). A standard softmax regres-
sion is used for the classification tasks for a fair comparison in this paper. Note
that the training of LDA and the softmax regression are done in separate steps.
The label information is not involved in the learning of the topics.

SLDA. For classification tasks, a topic representation that leads to better sep-
aration between classes is preferred. Hence, a supervised model is preferred for
classification tasks. SLDA [2,22], shown in Figure 1 (b), is the most straight-
forward and the most commonly used supervised topic modelling framework.
Compared to LDA, the supervision is modelled as a response 2 to the topic
assignments of each document. Hence, the topics are used to generate both the
words and the label. SLDA models the words and the label jointly, which means
that the inference will optimize the joint likelihood of the words and the labels.
SLDA can be represented as:

p(w, z, θ, β, y|α, η, μ) = p(β|η)
M
∏

j=1

(

p(θj |α)p(yj |z1:N , μ)
N
∏

n=1

(

p(wjn|zjn, β)p(zjn|θj)
)

)

, (2)

where yj is a one-dimensional label and p(yj = l|zj , μ) =
exp(μT

l (z̄j))
∑C

c=1 exp(μT
c (z̄j))

, where z̄j =
(

1
N

∑N
n=1 zjn

)

, in which zjn is the vector representation of the topic assignment
indicator zjn.
2 The response can be any type with generalized linear model [2]. In this paper, we

mainly focus on the case when the response is the class label [22].
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P-SLDA. Topic assignments are used to explain both the words and the label
using SLDA. However, for a document, the words are Nj-dimensional and the
class label yj is one-dimensional. It is not balanced between these two views
due to different dimensionality. Hence, the supervision may not be sufficient in
the model. Power-SLDA (P-SLDA), shown in Figure 1 (c), is a model that we
construct to study the effectiveness of supervision with SLDA. It is a variation
of SLDA. Compared to SLDA, in which the response is drawn only once for each
document, P-SLDA draw the response Dj times. Hence, P-SLDA allows the label
to be mapped to Dj dimensional. By varying Dj , we can study how much the
supervision influence the learning of the topics. P-SLDA can be presented as:

p(w, z, θ, β, y|α, η, μ) = p(β|η)
M
∏

j=1

(

p(θj |α)p(yj |z1:N , μ)
Dj

N
∏

n=1

(

p(wjn|zjn, β)p(zjn|θj)
)

)

. (3)

Comparing to SLDA, the difference lies in the power index Dj on p(yj |z1:N , μ).
Since documents may have different length, we define Dj = Nj

s , where s is the
scaling parameter. When s = Nj , PSLDA becomes SLDA. When s = 1, the
label is mapped to the same dimension as the words Dj = Nj .

NUF-SLDA and P-NUF-SLDA. SLDA and P-SLDA model all the data
together as many other topic modelling framework based on SLDA. However,
the data are noisy, and the noise in the data may be inconsistent with the label
which will cause poor performance when the data has low signal-noise ratio. The
concept, which use factorized representation for information that can be shared
among different views and information that cannot be shared between different
views, has been applied to different frameworks with a long history [4,7,20].
We will adopt the same concept for supervised topic models. In NUF-SLDA, we
assume that only part of the topics should be shared between the observed words
and the label, which are used for generating the words and generating the label;
and the other part of the model is only used to model the rest of words which
are not relevant for the classification task. We call the shared topics as signal
topics and the ones not shared as noise topics. As the graphical representation of
the model shown in Figure 1 (d), we introduce a signal-noise indicator B in the
SLDA model which indicates whether the topic is used to model signal or noise,
where B ∼ Bern(e). Comparing to SLDA, the main difference is that the class
label y only respond to the topics which are indicated as signal (with Bk = 1).
NUFSLDA can be represented as:

p(w, z, θ, β, y|α, η, μ) = p(β|η)p(B|e)
M
∏

j=1

(

p(θj |α)p(yj |z1:N , μ, B)

N
∏

n=1

(

p(wjn|zjn, β)p(zjn|θj)
)

)

.

(4)

Differently from SLDA, the softmax regression in the NUF-SLDA is defined by3

p(yj = l|zj , B, μ) =
exp(μT

l (z̄j ⊗ B))
∑C

c=1 exp(μT
c (z̄j ⊗ B))

. (5)

3 “⊗” is used to indicate the element product.
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Similarly to P-SLDA, P-NUF-SLDA with boosted supervision can be constructed
as:

p(w, z, θ, β, y|α, η, μ) = p(β|η)p(B|e)
M
∏

j=1

(

p(θj |α)p(yj |z1:N , μ, B)
Dj

N
∏

n=1

(

p(wjn|zjn, β)p(zjn|θj)
)

)

.

(6)

NCF-SLDA and P-NCF-SLDA. The previous model, NUF-SLDA, factorizes
signal and noise. In this section, we adjust the model to constrain the noise to
be structured, which share the same assumption as in[25]. Compared to NUF-
SLDA, the key difference is that the noise part responds to a noise class. With
this constraint, all the noise has the same label, hence, it is the structured noise.
The graphic representation of NCF-SLDA is shown in Figure 1 (e). The noise
response variable o is introduced, which is marked cyan in Figure 1 (e). NCF-
SLDA can be represented as:

(7)

The additional noise response term is modeled as p(oj |z, B, ν)=
exp(

∑K
k=1 νkz̄jk(1−Bk))

exp(
∑K

k=1 νkz̄jk(1−Bk))+1
.

Similarly, P-NCF-SLDA can be presented as:

(8)

2.2 Inference

Variational inference and sampling based methods are the two main classes of
methods that are generally used in the inference of topic models. Variational
inference is known for its fast convergence and it is easy to adapt batch vari-
ational inference to an online setting [9,23,26]. In this work, we will use the
standard batch mean field variational inference for all the models in this paper.
Fully factorized variational distribution is used as [2,3,22]. Derivation details
of variational inference for NUF-SLDA and NCF-SLDA are presented in the
supplementary document.

2.3 Classification

For classification, we would like to estimate p(yj |zj , μ) or p(yj |zj , B, μ) for the
test document j. The estimated label is the one with highest probability. In this
case, the variational approximation for the true posterior is used. Hence, the
prediction rule for LDAC, SLDA and PSLDA is:

ŷj = argmaxl∈{1,...,C} E
q
[μ

T
l z̄] = argmaxl∈{1,...,C}μ

T
yj

(

( 1

N

N
∑

n=1

φjn

)

)

, (9)

and the prediction rule for both NUF-SLDA and NCF-SLDA is:
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ŷj = argmaxl∈{1,...,C} E
q
[μ

T
l (z̄ ⊗ B)] = argmaxl∈{1,...,C}μ

T
yj

(

( 1

N

N
∑

n=1

φjn

)⊗ f
)

. (10)

Note that μ is learned during the inference of the model and is able to affect the
learning of topic assignment for all models but LDAC. In LDAC, μ is learned as
a separate parameter where all the topics are learned using LDA.

3 Experiments

In this section, we will present our experimental results and discussion on these
results. The experiments are carried out on three datasets: synthetic dataset4,
KTH video dataset and natural scene image dataset. The synthetic dataset is
constructed to analysis the behaviour of the model in a controlled manner. The
other two datasets are real world datasets, among which KTH dataset present a
low signal- noise ratio case and the natural scene dataset present a high signal-
noise ratio case. For each dataset, experiments are performed to evaluate two
aspects: the effectiveness of the supervised topic models; and the performance of
factorized topic models . The experimental results are ordered by datasets and
the discussion will be presented in the end of this section.

3.1 Classification on Synthetic Dataset

We construct a synthetic dataset to study the behaviour of the models in a con-
trolled manner. Figure 2 shows how synthetic data is generated. In the exper-
iment, 200 documents for each class are generated for training and 40 documents

Signal Topics

Noise Topics

Generate Signal for each class

Class 1 Class 2 Class 3 Class 4 Class 5

Generate Noise for each document

. . .

Class 1 Class 2 Class 3 Class 4 Class 5

. . . . . . . . . . . . . . .

1 − τ

τ

Fig. 2. The generation of the synthetic data. Eight topics are set first where four of
them are defined as signal topics and the other four are defined as noise topics. Signal
for five classes which are convex combination of the signal topics are generated. Then
we add noise, which are random convex combination of noise topics, to generate the
dataset. For each document/image, the noise is generated independently. The noise
level is control by the parameter τ . The final document/image is generated by (1 −
τ) × Signal + τ × Noise. The noise level τ = 0.8 is used for the example documents
above.

4 The synthetic dataset and our implementation for all the novel models will be pub-
lished.
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(l) K = 20,τ = 0.7

Fig. 3. Performance Evaluation for LDAC, SLDA and P-SLDA with difference power
scale s under different number of topics K and different noise level τ . All experiments
are run 9 times over different random seeding. The mean is represented using solid line
and the standard deviation is represented using dashed line. The blue curve in these
plots shows the performance of P-SLDA with different label dimension D. The x axis is
the supervision power scale s which is plotted in the log scale ranging from 0.1 to 256,
which indicates that D range from 2560 to 1 from left to right. While s = N = 256,
P-SLDA becomes SLDA. The performance of SLDA is marked with green dot and the
performance of LDAC is plotted in red.

for each class are generated for testing, which yields 1000 training and 200 testing
documents in total.

Supervision Effectiveness. Firstly, we compare the classification performance
on synthetic datasets using LDAC, SLDA and P-SLDA with different power scales
s. Figure 3 shows the performance of these models with different number of top-
ics and different noise levels. Hyperparameters α = 0.5 and η = 0.1 are used in
these experiments. All experiments are run 9 times with different random seeds
for initialization. The mean and standard deviation are reported. LDAC and
SLDA have similar performance over all different settings, although better perfor-
mance is expected from SLDA over LDAC since the learning process is supervised.
By boosting the supervision using P-SLDA, clear change of performance can be
observed. This shows that the supervision is not effective using SLDA on learning
of the latent space. Figure 3(a) (e) (i) show the performance with K = 4 with
different noise levels. We can see that the improvement on classification results is
significant through all different noise levels when the number of topics is small.
Figure 3 (a) (b), (c), (d), show that the the performance can be clearly improved
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(a) LDA (b) SLDA (c) P-SLDA D=8 (d) P-SLDA D: 256

Fig. 4. The learned topics (β̂) from different models with number of topics K = 4 and
τ = 0.8. (a) The topics learned using LDA (b) The topics learned with SLDA (c) The
topics learned with PSLDA with power scale s = 32 which is D = 8 (d) The topics
learned with P-SLDA with power scale s = 1 which is D = N = 256

LDA:

SLDA:

PSLDA D:256

PSLDA D:2560

Fig. 5. The learned topics (β̂) from different models with number of topics K = 16
and τ = 0.8

with all different number of topics when the noise level is high (τ = 0.9). How-
ever, the lower-right plots in Figure 3 show different levels of drop in performance
where the number of topics are large and the data is less noisy.

To further understand the phenomenon in Figure 3, we visualize the topics
that are learned with different models. We present two typical cases using the
noise level τ = 0.8 to analyze the reason for the performance change. Figure 4
shows the topics learned with different models when K = 4, which corresponds to
Figure 3 (e). As expected, LDA/LDAC only learn the topics to represent noise,
since noise is dominant in the data. Topics learned using SLDA are almost the
same as the topics that is learned with LDA, which shows the way to model
the class label in SLDA is not effective to supervise the model to learn a better
representation for classification. This also explains that SLDA has similar per-
formance as LDAC, since the learned latent structures are similar. By mapping
the class label to D dimension using P-SLDA, we can observe that the learned
topics start to differ from LDA. As shown in Figure 4(c) and (d), the larger
the D is, the more impact the supervision has on the model. Since the topics
are used to explain both signal and noise in P-SLDA and there are limited top-
ics, the learned topics become mixed with signal and noise even with boosted
supervision. However, P-SLDA is still able to catch the signal compared to LDA,
hence, the performance is improved in this case.

Figure 5 shows the topics learned with different models when K = 16, which
correspond to Figure 3(g). Topics learned with SLDA and LDA appear to be the
same as in the previous case. However, both signal and noise are captured when
the topics space is large through all the models, which explains the good perfor-
mance by both SLDA and LDAC in Figure 3 (g). By boosting the supervision,
the learned topics start to change. However, the changes are minor compared to
the previous case when K = 4. When we boost the supervision in an extreme
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Fig. 6. Likelihood Analysis for supervision effectiveness. Legend: − ∗ − LP−SLDA ;
− ∗ − Eq[log p(w|z, β)]; − ∗ −Eq[log p(z|θ)];− ∗ − Eq[log p(θ|α)]; − ∗ − Eq[log p(y|z, μ)];
−o− Eq[log p(β|η)]; − ∗ − −Eq[log q(θ)];− ∗ − −Eq[log q(z)]; −o− Eq[log q(β)]
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Fig. 7. Learned topics by NUF-SLDA and NCF-SLDA with τ = 0.8. Eq[B] is marked
below each topic which indicates the confidence for the topic to be signal

case, D = 10N , the learned topics start to break into small fragments, which is
due to over-fitting and causes the performance drop.

To further study the supervision effectiveness, we observe the likelihood
behaviour during the learning process. Recall the Evidence Lower Bound (ELBO)
of SLDA is

LSLDA =E
q
[log p(w|z, β)] + E

q
[log p(z|θ)] + E

q
[log p(θ|α)] + E

q
[log p(β|η)]

+ E
q
[log p(y|z, μ)] − E

q
[log q(β)] − E

q
[log q(z)] − E

q
[log q(θ)].

(11)

The same form holds for P-SLDA. The difference lies in the dimension of y.
In SLDA, y is 1-dimensional, whereas in P-SLDA, y is D-dimensional. The value
of each item over each iteration is plotted in Figure 6 for different cases. It is
clear that Eq[log p(z|θ)] becomes higher and Eq[log q(z)] becomes lower while
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the supervision is boosted. Eq[log p(w|z, β)] drops slightly as well with boosted
supervision. The topic assignments z are used to explain both the words and
the label in a document. By boosting the supervision, the label will get better
explained by the topic assignments, however, the cost is that the words get
less well explained by the topic assignments, which is confirmed by the drop of
Eq[log p(w|z, β)]. The drop of the entropy term Eq[log q(z)] shows that the topic
assignment distribution becomes more sparse with boosted supervision. This
is caused by the fact that different topics are used to explain different classes
and topics become less shared among different classes. This shows the tradeoff
between the use of latent space to explain the words and the label, when data
are noisy.

3.2 Factorized Models

In this part, we evaluate factorized topic models NUF-SLDA, P-NUF-SLDA,
NCF- SLDA and P-NCF-SLDA. The same experimental setting is used as in the
previous section. Due to space limitation, we only show results with τ = 0.8 in
this part. Firstly, whether the factorized model is able to learn the correct factor-
ization is evaluated. Figure 7 shows the learned topics with K = 8 using NUF-
SLDA and NCF-LDA. Both models are able to correctly factorize the topics.

The performances of these factorized models compared with P-SLDA are
shown in Figure 8. e = 0.2 is used through all these experiments. We can see that
P-NUF-SLDA is more robust compared to P-SLDA and P-NCF-SLDA, when
there is sufficient amount of topics. P-SLDA could achieve better performance
when the number of topics is small.Because factorized model separate the topic
space to signal part and noise part. When the number of topics are not sufficient,
factorizing the model makes the number of topics describing the signal even
smaller.
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Fig. 8. Performance comparison of factorized topic models for synthtic dataset with
τ = 0.8

3.3 Video Action Classification

We use threes action classes: boxing, hand clapping and hand waving from KTH
action dataset [11,13] for the action classification experiment. Intuitively, only
the human movement is the signal and all the variances in the background and
video shooting settings are noise. Hence, this is a real world dataset where signal-
noise ratio is low. There are around 100 video clips for each action of which 80%
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are randomly selected for training and the remaining 20% are for testing. Bag-
of-STIP [13] is use to represente visual words in each video clip which is treated
as a document. α = 0.1, η = 0.1 are used through all the experiments using this
dataset.

Supervision Effectiveness. Figure 9 shows the performance of LDAC, SLDA
and P-SLDA with different power scale s, which are consistent with the one using
synthetic dataset. When the number of topics is small, boosting the supervision
can improve the performance significantly as in Figure 9 (a), (b), (c). When the
number of topics is more than sufficient, boosting the supervision may disturb the
classification performance. The result is not only interesting for understanding
the supervised effectiveness, it is also significant from a application perspective.
The number of topics is essential for computational complexity in the inference.
By boosting the supervision, using a small number of topics will be able to
achieve similar level of performance as using a large number of topics, but the
computation time will be significantly reduced.

Factorized Models. Performances of factorized models are evaluated and com-
pared in Figure 10. This dataset has low signal-noise ratio, hence e = 0.3 is used
through all the experiments in this part. We can see that P-NUF-SLDA is more
robust to the change of supervision level and it has potential to overperform
P-SLDA as in Figure 10 (c) (d). However, since it uses less topics to models the
signal. The performance maybe worse when the number of topics is not enough
to factorize. NCF-SLDA is in general not as robust with boosted supervision, we
believe that it is caused by that the structured noise assumption is too strong
and the boosting effect is doubled in P-NCF-SLDA with the additional noise
label.

3.4 Natural Scene Classification

Four classes of natural scene images are used in this experiment as [8,26]. Intu-
itively, all the information from natural scene is useful to judge the scene cat-
egory. Hence, this is a real world dataset where the signal-noise ratio is high.
There are more than 300 images per class of which 80% of the data are randomly
selected for training and the remaining 20% for testing. Bag-of-SIFT [14] is used
to represent visual words in each image which is treated as a document. α = 0.1,
η = 0.1 are used through all the experiments in this section.

Supervision Effectiveness. Figure 11 shows the performance of LDAC, SLDA
and P-SLDA with different power scale s for natural scene classification. LDAC
and SLDA have the same performance with different number of topics as pre-
vious experiments. Differently from the previous experiments, the classification
performance does not change as much by boosting the supervision. The perfor-
mance gets worse when the supervision is boosted too much, which is caused
by overfitting. This shows that when the signal-noise ratio is high, the optimum
for both unsupervised model and supervised model are similar, since the label is
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Fig. 9. Action classification performance. The x axis is the power scale s and the y
axis shows the classification performance. All the experiments are repeated 8 times
with different random seeds for initialization. The mean, solid line, and the standard
deviation, dashed line, are shown in the plot. P-SLDA with different power scale is
plotted with the blue curve. LDAC is marked with the green line and SLDA is marked
with the red line.
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Fig. 10. Performance comparison of factorized topic models
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Fig. 11. Scene classification performance. P-SLDA with different power scale is plotted
with the blue curve. LDAC is marked with the green line and SLDA is marked with
the red line.
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Fig. 12. Performance comparison of factorized topic models for natural scene classifi-
cation. The x axis is the power scale s (ranging from 100 to 103) and the y axis shows
the performance (ranging from 0 to 1).

consistent with the words. A little improvement can still be observed by boosting
the supervision as in Figure 11 (a), since the data is not ideal.

Factorized Models. Figure 12 shows the performance of factorized models on
the natural scene classification task. Consistent with the previous experiments,
the performance of P-NUF-SLDA is more robust with respect to the boosting
of the supervision and shows better performance when the label is mapped to
high dimension compared to P-SLDA. P-NUF-SLDA does not perform as good
as P-SLDA when the number of topics is small. Because with factorisation, only
around half of the topics are used to model the signal which is not enough when
the total number of the topics is small. P-NCF-SLDA perform on par with P-
SLDA. All the models are more robust with this dataset since the data has high
signal-noise ratio.

3.5 Discussion

To sum up the experiments with three different datasets, we will present a dis-
cussion in three points. Firstly, all the experiments above show that SLDA and
LDAC have similar performance through all different settings. Further analysis
with the synthetic data shows that the topics learned by SLDA and LDA are
similar. This confirms that supervision on LDA using SLDA is not effective on
learning of topics. Secondly, P-SLDA is able to boost the supervision, which
makes the supervision affect the learning of topics. Experiments on different
settings show that whether boosting the supervision can be beneficial is highly
dependent on the data and the parameter setting. When the data is noisy (low
signal-noise ratio), as in the first two experiments, boosting supervision is able to
increase the performance, especially when the number of topics is small. When
the data is informative (high signal-noise ratio), boosting the supervision is not
able to clearly affect the classification performance since the label and words
information are consistent. Over boosting the supervision can harm the perfor-
mance since it makes the model biased towards the label and causes overfitting.
Thirdly, factorized models are able to recognize the signal topics and noise top-
ics correctly, which improves the interpratation of the learned topics. They also
have more robust performance with the boosting of the supervision.
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4 Conclusions
In this paper, we have presented a thorough study on the behaviour of super-
vision on topic models, which fills the gap in the understanding of supervised
topic models; and we have proposed two types of alternative factorized super-
vised topic models which improve the interpretation of topics and enhance the
model performance. Variational inference has been used and fully derived for the
proposed models. All the models have been evaluated with both synthetic data
and real world data. We conclude in the study that: supervision is not effective
using SLDA on the learning of the topics; balancing the model using P-SLDA
can boost the supervision, which provide further improvements in case of noisy
data; factorized models can increase the performance robustness.

We will continue our research in two directions. Firstly, we will analyze and
compare a wider range of supervised topic models, such as DiscLDA [12] and
MedLDA [27,28], to have a deeper insight on the behaviours of all different
supervised topic models. Secondly, we will continue working on factorized topic
models, since most models can not deal with noise sufficiently well. We will both
apply the factorization on different supervised topic modeling framework and
use more effective factorization prior.
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Abstract. We present a method to capture sharp barcode images, using
a microlens-based light field camera. Relative to standard barcode read-
ers, which typically use fixed-focus cameras in order to reduce mechanical
complexity and shutter lag, employing a light field camera significantly
increases the scanner’s depth of field. However, the increased computa-
tional complexity that comes with software-based focusing is a major
limitation on these approaches. Whereas traditional light field render-
ing involves time-consuming steps intended to produce a focus stack in
which all objects appear sharply-focused, a scanner only needs to produce
an image of the barcode region that falls within the decoder’s inherent
robustness to defocus. With this in mind, we speed up image process-
ing by segmenting the barcode region before refocus is applied. We then
estimate the barcode’s depth directly from the raw sensor image, using a
lookup table characterizing a relationship between depth and the code’s
spatial frequency. Real image experiments with the Lytro camera illus-
trate that our system can produce a decodable image with a fraction of
the computational complexity.

Keywords: Light field camera · Barcode imaging · Spatial frequency

1 Introduction

A barcode is an optical machine-readable representation of data relating to the
object to which it is attached. Nowadays the ubiquitous barcodes found on prod-
uct packaging significantly improve the speed and accuracy of computer data
entry. A traditional 1D barcode scanner uses a line of photocells to detect the
reflected light from the barcode. These linear imagers need to be well aligned
with the barcode to produce accurate results and therefore the scanning process
is not fully automatic. More recent 2D imagers address the automation issue by
capturing the image of the entire barcode and then automatically orienting the
image for decoding.

2D scanners are fundamentally low-cost cameras, and capture is limited by
well-known tradeoffs between noise and blur: if the camera uses a small aperture
to acquire the barcode image, the result will be corrupted by noise; if it uses a
wide aperture, the result will be less noisy but the depth of field is reduced.
Active illumination is used in 2D scanners using small apertures, but strict
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 519–532, 2015.
DOI: 10.1007/978-3-319-16181-5 40
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price and power budgets typically limit this to low-power LEDs. When using
wide apertures, conventionally a user would need to manually move the barcode
towards or away from the scanner to ensure it is within the depth of field of
the scanner. Alternatively, the scanner can conduct a focal sweep and select the
proper focal slice to decode. However, implementing focal sweep requires adding
moving parts to the scanner, which reduces robustness to mechanical shock.
The overwhelming majority of purpose-built scanners are fixed focus for these
reasons.

In this paper, we present a novel barcode scanning system by using the
recent commercial light field camera. A light field camera such as Lytro and
Raytrix uses a microlens array to capture multiple views of the scene in a single
shot. The rich set of rays captured by the light field camera enables the user
to conduct post-capture refocusing, i.e., focal stack can be synthesized after the
capture. This reduces the mechanical complexity of moving parts in exchange
for increased computational complexity in the form of a refocusing algorithm.

The focal stack defines the extended depth of field of a light field camera. A
straightforward way to utilize a light field camera for barcode scanning would
be to simply apply barcode detection and decoding to images in the focal stack.
However, synthesizing the complete focal stack requires applying computation-
ally expensive light field rendering schemes. In order to reduce the time from
capture to decoding, we present a much simpler scheme based on the frequency
characteristics of barcodes. We speed up the process by first segmenting out the
barcode region, which we detect from a sub-sampled version of the raw sensor
image. Then, we directly estimate the depth of the barcode by analyzing the
variance of pixel intensities in the lenslet images formed behind each microlens.
Finally, we conduct refocusing only at the estimated depth.

Compared to 2D imagers, our system only involves two extra steps: depth
estimation and barcode image rendering. With little computational cost, we gain
a system with its range of depth of field nearly triples that of a conventional cam-
era. Comprehensive experiments demonstrate our new light-field based barcode
scanner system is fast, accurate and robust to barcode orientation, size variation,
and lighting.

2 Related Work

Barcode Imaging. Recently, there has been an emerging interest on barcode
reading using 2D imagers. Barcode reading consist of two distinct stages: local-
ization and decoding. Tremendous efforts have been made to enhance the per-
formance of both stages. Muniz et.al. [9] apply hough transform to the image to
locate the barcode and find its optimal orientation for further decoding. Zhang
et.al. [16] jointly analyze the texture and shape information to search for the bar-
code. Chai and Hock [1] improve the barcode localization by using morphological
operator to identify parallel line patterns at block level. Gallo and Manduchi
[5] employ a deformable template matching method and enforce global spatial
coherence to correctly read barcodes in difficult situations. Xu and McCloskey
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[14] describe a system for localizing and deblurring motion-blurred image using a
flutter shutter camera. In contrast to their methods, our system features a better
light efficiency and aims at reducing the defocus blur of the barcode image.

Light Field Photography and Depth Estimation. Integral or light field
photography captures a rich set of rays to describe the visual appearance of the
scene. A distinct advantage of light field photography is the ability to render an
image after exposure with a desired focal plane. Modern light field rendering is
introduced by Levoy and Hanrahan [8] and Gortler et.al. [7]. Early approaches
[12] utilize camera arrays to capture a light field with high spatial resolution.
However, the system tends to be bulky and impractical for daily use. Ng [10]
designs a hand-held light field camera where a microlens array is placed on top
of the sensor to optically sort the rays by direction onto the pixels underneath.
In addition to its refocusing capability, light field is also applicable to depth
estimation. Several methods [2,13] exploit the epipolar-plane image (EPI) to
extract the disparity map. Others use correspondences [4] or combined with
depth from defocus technique [11] to achieve similar result. In contrast to their
methods for general scenes which are geometrically complex, our work focuses
on barcode imaging and only extract the depth of barcode region based on its
unique frequency characteristics, thus largely reducing the computational cost.
Similarly, our rendering approach also prefer speed to quality. We utilize basic ray
tracing for rendering a correct image, without using other image enhancement
techniques such as [4] since they won’t benefit barcode decoding. In this paper,
we use Lytro camera to validate our algorithm, but note that our methods apply
to most microlens-based light field camera.

3 Frequency Characteristics

Conventional barcodes are composed of high contrast black and white bars or
patches, which facilitate the localization process. Several approaches have been
proposed and optimized to take advantage of the texture information for local-
ization. However, the imaging mechanism of light field camera will distort and
deteriorate these features, making existing approaches less effective, even unus-
able. The structure of light field camera is similar to a conventional camera,
except that it adds a microlens array in front of the sensor to further diverge
the rays based on their directions. Thus, the resultant raw light field image con-
sists of hundreds of thousands of lenslet images, as shown in Fig. 1. Directly
locating the barcode on the raw light field image would be extremely challeng-
ing: each lenslet image contains at most 10 × 10 pixels; and the high contrast
in the boundary region of each lenslet image will fail gradient based detection
algorithms.

3.1 Barcode Localization

In order to address these issues, we aim to first localize the barcode on a sub-
aperture image instead of the raw image. A sub-aperture image is a normal
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Fig. 1. Lenslet image pattern changes with the depth of the barcode

2D image composed by stitching together the same pixels underneath each
microlens. It can be thought of as an image taken by a virtual camera with
its center of projection in front of the main lens. In our case, we pre-calibrate
the center of each lenslet image and pick the center pixels to generate a central
sub-aperture image. Interpolation is required since the lenslet arrangement is
hexagonal.

Although the sub-aperture image is of low resolution (about 328 × 378 for
Lytro) which inhibits direct decoding, it is detailed enough for barcode local-
ization. We extend the method proposed in [5] by incorporating the barcode
orientation into the feature computation, and analyse the shape of the region
with high average feature responses for robust localization. For each angle θ ∈
{−90,−85, ..., 90}, feature response Iθ

e (p) = |Ixθ
(p)| − |Iyθ

(p)| is evaluated at
each pixel p, where Ixθ

(p) and Iyθ
(p) are the image gradient along orthogonal

directions xθ(cos θ, sin θ) and yθ(− sin θ, cos θ) respectively. A box filter is applied
to Iθ

e to get locally averaged feature response Īθ
e . The potential barcode region

is identified by a connected region of constantly high average response Īθ∗
e with

θ∗ maximizing the mean of Īθ
e (p)’s within the region. The shape of this region is

also required to be tightly bounded by an oriented rectangle. Within this rect-
angle, we compute the size of the candidate barcode as the distance between
the first and the last black bars. In order to eliminate the effects of illumination
variations, the input sub-aperture image is preprocessed using local histogram
equalization. Fig. 2 shows an example of our barcode localization algorithm.
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Fig. 2. A barcode localization example. An optimal rotation angle θ∗ is determined
maximizing the mean feature response of the potential barcode region.

Note that our localization method is designed for 1D barcode. We refer the
reader to [14] and other related work for 2D barcode localization. After we locate
the barcode in the sub-aperture image, we can continue to crop the corresponding
barcode region in the raw light field image and only process this region to speed
up our following ray tracing algorithm.

3.2 Spatial Frequency vs. Depth

We first study the correlation between the spatial frequency of the raw barcode
region and its depth. Here we assume that the barcode is approximately frontal
parallel to the camera so we only consider one depth value. As shown in Fig. 1,
barcodes positioned at different depth exhibits different lenslet image patterns.
In the first inset, each lenslet image shows uniform color, indicating the image
plane of the main lens coincides with the plane of the microlens array. As the
barcode moves nearer to the camera, increasing intensity variations are evident
in lenslet images. Therefore, our intuition is to use this statistical characteristics
of barcode for depth estimation.

To better illustrate our algorithm, we simplify the barcode as evenly dis-
tributed black and white bars. The spatial frequency of the barcode is defined as
the number of line pairs per unit length. Fig. 3 shows two cases of formation of
lenslet images. In the first case, the image plane of main lens falls in front of the
microlens array, where each lenslet image is a real image. On the contrary, when
the image plane is behind the microlens array, a virtual image will be observed.
Given the spatial frequency of the barcode X1, we apply thin lens equation to
compute the spatial frequency at the image plane of the main lens X2 as:

X2 =
a

b
· X1 =

a − F

F
· X1 (1)
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Fig. 3. Spatial frequencies of the barcode image at different image planes

where a is the object distance and F is the focal length of the main lens. We
repeat this process to obtain the spatial frequency of the barcode image at the
sensor plane X3 as:

X3 =
z − b

f
· X2 =

a(z − F ) − zF

Ff
· X1 (2)

when the main lens image plane is in front of the microlens and

X3 =
z − b

f
· X2 =

a(F − z) + zF

Ff
· X1 (3)

when the image plane is behind the microlens. Here z represents the distance
between the main lens and the microlens, b is the image distance and f is the
focal length of the microlens. In both cases a linear relationship between the
barcode’s spatial frequency at the sensor and its depth can be observed.

3.3 Variance vs. Depth

Although we can mathematically compute the sensor plane’s spatial frequency
X3, it is very challenging to robustly measure this frequency since each lenslet
image is only of size 10×10 pixels–i.e. a very small portion of the barcode, with its
boundary region corrupted by vignetting. In our experiments, we observe at most
two color transitions inside each lenslet image. Therefore, we instead use variance
to represent the spatial frequency of each lenslet image. Specifically, we define a
window around each lenslet center and measure the variance of pixel intensities
within the window. Our intuition is that the higher the spatial frequency, the
larger the chance to observe intensity transitions inside the window. We then
compute the overall variance as the spatial frequency measurement by averaging
the variances from the lenslet images inside the barcode region.

To formulate the correlation between variance and depth, we make following
assumptions based on observation that at most two intensity transitions appear
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Fig. 4. Lenslet images function as a sliding window across the barcode region

within each lenslet image. Next, we regard the light field camera as a relay
imaging system, which consist of mainlens and microlenses as pinhole cameras.
We first analyze the image captured by the microlens, then extend our analysis
to the whole system.

First we want to define variance σ2. Suppose our target is evenly distributed
black/white bars. Our pinhole camera has N pixels and the captured image
contains m white pixels and n black pixels. And we further denote the intensity
of the white pixel as 1 and that of black pixel as 0. Then we can get

μ =
m

m + n
(4)

σ2 =
1
N

N∑
i=1

(xi − μ)2 =
mn

(m + n)2
(5)

where μ is the mean value of the image and xi is the pixel value.
Next we only consider the lenslet image. As each lenslet image only observes a

very small portion of the barcode, its variance changes with its relative positions
with the bar. As shown in Fig. 4, we denote the bar width of the image as w, the
sensor size at the barcode image plane as l and the distance between the starting
point of the lenslet image and a intensity transition as s. Then we continue our
analysis in two cases:1) If l ≤ w, then

σ2 =

{
0, s ≤ w − l
−s2+(2w−l)s+lw−w2

l2 , w − l < s ≤ w
(6)

We only compute the variance σ2 as a function of s ranging from 0 to w because
it is a periodic function. Since the lenslets are hexagonally arranged, their images
can be considered as a sliding windows across the entire barcode image. From
the distribution of σ2, we can get the average variance σ̄2 as:

σ̄2 =

∫ w

0
σ2ds

w
=

1
w

(
∫ w−l

0

σ2ds +
∫ w

w−l

σ2ds) =
l

6w
(7)

It is evident that average variance σ̄2 is linearly relates to l. We can further map
l through the mainlens to the real barcode as L. By using similar triangles, we
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have L = al
b = A

Ff [(z − F )a − zF ]or A
Ff [(F − z)a + zF ] and l =

A(z− aF
a−F )

f , where
A is the size of the sensor and a, b, F, f, z are defined in last section. Therefore,
each lenslet image covers an area of l on the barcode image through mainlens,
and an area of L on the real barcode. Because l increases monotonically with
the increase of a, we can obtain a one-on-one mapping between the depth a and
average variance σ̄2.

2) if w < l ≤ 2w, we have

σ2 =

{−s2+(2w−l)s+lw−w2

l2 , 0 < s ≤ 2w − l
lw−w2

l2 , 2w − l < s ≤ w
(8)

Similarly, we compute its average variance σ̄2 as:

σ̄2 =

∫ w

0
σ2ds

w
=

1
w

(
∫ 2w−l

0

σ2ds +
∫ w

2w−l

σ2ds) =
w2

3
l−2 − 1

6w
l − wl−1 + 1 (9)

To prove σ̄2 monotonically increases with l, we compute its first and second
order derivative as (σ̄2)′ = − 2w2

3 l−3 − 1
6w + wl−2 and (σ̄2)′′ = 2w2 − 3wl. Since

w < l ≤ 2w, (σ̄2)′′ < 0. We further examine the value of (σ̄2)′ at l = w and
l = 2w, they are both larger than 0. Therefore, we can prove that (σ̄2)′ > 0, so
σ̄2 monotonically increases with l. Similar to the first case, we can also obtain a
one-to-one mapping between the depth and average variance.

4 Efficient Refocusing

Our analysis above reveals that we can quickly use the variance to determine the
depth of the barcode. This allows us to conduct refocusing with high efficiency.

4.1 Barcode Depth Estimation

To validate our use of variance as a depth cue, we measure the average variance of
several randomly selected UPC-A barcodes over a range of distances from the cam-
era. Fig. 5(a) shows the average results using different window sizes for variance
computation. Clearly we can see valley shaped curves with two approximately lin-
ear regions. The bottom of the curve indicates the main lens image plane falls on
the microlens, so the lenslet image gets uniform intensity which results in a min-
imum overall variance. Here one variance value may correspond to two different
depths. To resolve this two-fold ambiguity, we only use the left linear region in our
experiments, as barcodes of practical sizes at depths in the right linear side are reso-
lution limited even when properly focused. If necessary, the right linear side can be
used similarly to estimate another depth in the case that the depth from the left
side leads to a undecodable result. Note that due to defocus blur and resolution
limitation [6] in the lenslet image, the curve fluctuates in both ends, making these
regions unusable. For robustness reasons, we estimate three depth values indepen-
dently based on different window sizes 3 × 3, 5 × 5 and 7 × 7, and compute the
mean of the corresponding depths as the final estimation.
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Fig. 5. (a) The average variances of the barcode image using different window sizes vs.
its depth. (b) The depth of the barcode region is determined jointly by the variance
and the size of the detected barcode region.

The variance vs. depth curve in Fig. 5(a) is for standard 13 mil barcodes.
Scaling the size of the overall barcode will change the underlying spatial fre-
quency X1, and change the relationship between depth and variance. This is
inevitable since product manufacturers tend to adjust the size of the barcode
to suit the package. Our solution is first to build a look-up table indexed by
variances per barcode size. Then we jointly determine the final depth based on
both the variance and the size of the detected barcode region in the central sub-
aperture image. From projective geometry, we obtain the relationship between
the barcode image size s and the depth d as s ∝ S/d, where S is the original
size of the barcode. Fig. 5(b) illustrates our depth determination strategy. Given
a detected barcode size, the larger the barcode’s original size, the further its
distance. Given a measured variance, another size vs. depth curve is formed by
collecting depths from the look-up tables for corresponding barcode sizes. The
ground truth original barcode size and the depth are therefore indicated by the
intersection of these two lines/curves.

4.2 Refocusing

The final step in our light field barcode imaging system renders a focused image
of the barcode region, using the depth estimated from the variance and size of
this region. We set out to perform ray tracing to generate the in focus barcode
image. Ray tracing mimics the physical process of image formation. The intensity
of a point on the target image plane (virtual plane) is computed by integrating
all the rays of different directions passing through it.

As shown in Fig. 6(a), adopting two parallel plane parameterization (2PP) [8],
a ray can be indexed by (s,u), where s and u are the 2D intersections with the
target image plane Πs and the microlens plane Πu respectively. The formation
process of the target image I ′ can be summarized as:
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Fig. 6. (a)High quality barcode rendering by ray tracing. (b)Results from two imple-
mentations of refocusing algorithm.

I ′(s) =
∫

r(s,u)du, (10)

where r(s,u) is the irradiance of the corresponding ray and is recorded by the
sensor. As shown in the Fig. 6(a), the directions of the rays are discretized
through the lenslets. Let si denote the location of the optical center of lenslet
mi, a′ the distance from Πs to Πu and b′ the distance from Πu to the sensor
plane, Eq. 10 can be rewritten discretely as:

I ′(s) =
∑

i

I((si − s)
b′

a′ + si), (11)

where I is the raw image on the sensor.
In our experiments, we first adopt the method proposed by [3] and use pre-

loaded white images from Lytro camera to locate the lenslet centers si according
to the camera’s focal length setting. The target image plane is then determined
based on the estimated depth and is discretized into pixels. Next we conduct
ray tracing for each pixel s to gather the recorded irradiance of the rays and
apply bilinear interpolation to achieve a better approximation of the pixel value.
Note that there is a tradeoff between the resolution of the barcode image and
its computational cost. The ray tracing technique provides the flexibility to vary
the resolution by simply changing the sampling rate on the virtual plane. In our
experiments, we render a barcode image of approximately 200 × 200 pixels to
balance these two factors. Compared to the shift-and-add refocusing algorithm
in [10], which requires rectified light field images (lenslet images arranged on
grids), our method produces sharper rendering results as shown in Fig. 6(b).
The blur artifacts in the shift-and-add result is due to the interpolation opera-
tion conducted when generating the rectified light field image from Lytro data.
Generating images with even higher quality is still possible [13,15], but imprac-
tical due to its high computational cost.

5 Experiments

We use Lytro camera as our prototype light field camera. The raw images are
preprocessed according to the metadata from Lytro’s proprietary file format [3]
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Fig. 7. Barcode images captured at variant depths using different devices. Light field
camera largely extends the decodable range while keeping the noise level low.

and the vegnetting effects are removed using the pre-stored calibration images in
Lytro camera. Demosaicing is then applied to get the final raw light field image.
While capturing, we keep both the focal length and focal plane unchanged to
simulate a light field camera without active parts.

Depth of Field. Our first experiment is to determine the amount of extended
depth of field the light field camera has over a conventional camera. We collect
a set of images of the barcode positioned at 60 mm to 420 mm from the camera
with a incremental step of 6.9 mm. Using Lytro’s desktop application, we gen-
erate two groups of images using the same focal length and aperture size: 1) one
with focal plane coincides with the moving barcode and 2) the other one with a
fixed focal plane simulating the conventional scanner. We test the decodability
of the barcode images with a proprietary decoder. Results show that images
from conventional camera is only decodable within a range of 80 mm due to
the defocus blur. On the contrary, the images from light field camera features
extended depth of field, with a decodable region of 240 mm, which nearly triples
the range of conventional camera. Fig. 7 shows the comparison of the decodable
range of 2D scanner and the light field camera, as well as the sharpness of their
resultant images.

Depth Estimation and Image Rendering. Our subsequent experiments are
to validate our barcode localization and depth estimation algorithm. We set our
recognition target to be the standard 13 mil UPC-A barcode with 1.0x, 1.15x,
1.3x, 1.45x and 1.6x magnifications. Our variance vs. depth look up tables and
size vs. depth curves are calibrated based on training data of random UPC-A
codes. Barcodes with codes different from the training data are used for test.
Fig. 8 shows the comparison between the estimated depths and the ground truth
depths for barcodes of different sizes. The estimation errors are less than 50
mm which is within the decodable range. Fig. 9 shows our rendering results
for barcodes on real products. Note that our algorithm is robust to different
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Fig. 9. Rendering results of real barcodes using our scanning system. The full image on
the left of each barcode example is the in focus image at the ground truth depth. Our
rendering results are shown with orange boundary, while the ground truth are shown
with green boundary for comparison.

sizes, orientations and nonuniform lighting conditions. Although we assume the
barcode is approximately frontal parallel to the camera, our algorithm is tolerant
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Fig. 10. An example where our algorithm fails

of slight projective distortion as shown in the last example in Fig. 9. However
severe distortions result in failure cases as shown in Fig. 10. The main reason for
this failure case is that our barcode localization algorithm detects a rectangle
rather than a tight parallelogram only encloses the barcode. The non-barcode
region inside our rectangle pollutes the variance estimation for depth estimation.

Running Time. We compare the processing speed/time of our system and a
2D scanner. A 2D scanner directly locates and decodes the barcode after expo-
sure, while our system requires two extra steps: depth estimation and rendering
of the barcode region. In our C++ implementation, the extra steps take around
0.2s for each light field image. Note that the result is not fully optimized. With
application-specific integrated circuit (ASIC), as is implemented in most scan-
ners, the overall processing time can be further reduced.

6 Conclusions and Future Work

In this paper, we present a novel, extended depth of field barcode scanning sys-
tem based on a commercial light field camera. While a purpose-built light field
scanner would likely use a smaller aperture than the Lytro camera, our emphasis
has been on algorithmic improvements that would apply to such hardware. Our
efficient, high quality barcode image rendering technique first segments the bar-
code and then estimates its depth in order to render only the necessary focal slice.
The depth estimation is based on the spatial frequency and the size of barcode
region, and is implemented by employing calibrated look up tables. Real bar-
code imaging experiments demonstrate the effectiveness of our scanning system.
Depending on the size of the barcode in the image, and on the depth complexity
of the scene, these improvements can dramatically reduce the amount of time
needed to produce a decodable image. We will extend our system to 2D barcode
scanning for our future work.
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Abstract. Light-field cameras have now become available in both con-
sumer and industrial applications, and recent papers have demonstrated
practical algorithms for depth recovery from a passive single-shot cap-
ture. However, current light-field depth estimation methods are designed
for Lambertian objects and fail or degrade for glossy or specular sur-
faces. Because light-field cameras have an array of micro-lenses, the cap-
tured data allows modification of both focus and perspective viewpoints.
In this paper, we develop an iterative approach to use the benefits of
light-field data to estimate and remove the specular component, improv-
ing the depth estimation. The approach enables light-field data depth
estimation to support both specular and diffuse scenes. We present a
physically-based method that estimates one or multiple light source col-
ors. We show our method outperforms current state-of-the-art diffuse
and specular separation and depth estimation algorithms in multiple
real world scenarios.

1 Introduction

Light-fields [1,2] can be used to refocus images [3]. Cameras that can capture
such data are readily available in both consumer (e.g. Lytro) and industrial (e.g.
RayTrix) markets. Because of its micro-lens array, a light-field camera enables
effective passive and general depth estimation [4,5]. This makes light-field cam-
eras point-and-capture devices to recover shape. However, current depth estima-
tion algorithms support only Lambertian surfaces, making them ineffective for
glossy surfaces, which have both specular and diffuse reflections. In this paper,
we present the first light-field camera depth estimation algorithm for both diffuse
and specular surfaces using the consumer Lytro camera (Fig. 1).

We build on the dichromatic model introduced by Shafer [6]. Diffuse and
specular reflections behave differently in different viewpoints (Fig. 2). As shown
in Eqn. 2, the surface color contributes to the diffuse reflectance component,
while only light source color contributes to the specular component. Both diffuse
and specular color remain fixed for all views; only specular intensity changes.

We present a novel algorithm that uses light-field data to exploit the dichro-
matic model to estimate depth of scenes involving glossy objects, with both dif-
fuse and specular reflections and one or multiple light sources. We use the full
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 533–547, 2015.
DOI: 10.1007/978-3-319-16181-5 41
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Fig. 1. Iterative Depth Estimation for Glossy Surfaces. Our input is a light-field image
with both specular and diffuse reflections. Here we have an outdoor scene with glossy
metallic locks in the foreground and road reflectors in the background (a). In our
method, we iteratively exploit the light-field data to estimate depth (b); estimate the
light source color (c); and generate the specular-free image (d) and generate the remain-
ing components (e). Note: throughout this paper, we increased the contrast for the
specular component for readability. We show that this approach improves depth esti-
mation from (b) to our final depth estimation output (f). Darker represents farther
and lighter represents closer in depth maps.

extent of the light-field data by shearing the 4D epipolar image to refocus and
extract multiple viewpoints. In Fig. 3, we show that the rearrangement allows
the diffuse and specular dichromatic analysis. Because no additional correspon-
dence is needed, the analysis robustly estimates the light source color, extracting
the specular-free image and estimating depth.

The algorithm uses three core routines iteratively: first, we exploit the 4D
epipolar image (EPI) extracted from the light-field data to generate the specular-
free image and estimate depth [4]; second, to estimate the light source color, we
exploit the refocusing ability of the light-field data to extract multiple viewpoints
for color variance analysis as shown in Fig. 2; and finally, third, to extract the
specular-free image, we exploit the complete light-field angular information to
improve robustness, giving consistent high quality results in synthetic, controlled,
and natural real-world scenes.

We show that our algorithm works robustly across many different light-field
images captured using the Lytro light-field camera, with both diffuse and spec-
ular reflections. We compare our specular and diffuse separation against Mallick
et al. [7] and Yoon et al. [8], and our depth estimation against Tao et al. [4]. Our
main contributions are
1. Light-field depth estimation with glossy surfaces. This will be the first pub-
lished light-field depth estimation algorithm that supports both diffuse and
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Fig. 2. Diffuse vs. Glossy Surfaces. This simple three view example shows that a diffuse
surface will have minimal color changes. In a glossy surface, we can see color intensity
changes that are correlated to the light source position and color. We use this property
in this paper to estimate the light source color.

Fig. 3. The Light-Field Advantage. To perform the analysis as shown in Fig. 2, we
first refocus to the plane of interest and then extract multiple views. Both processes are
made possible by rearranging the light-field data. Because no additional correspondence
is needed, the analysis robustly estimates the light source color, improving diffuse-
specular separation and depth estimation.

glossy surfaces. Upon publication of this work, image datasets and code will
be released.
2. 4D EPI light source color estimation. We perform the multiple viewpoint light
source analysis by using and rearranging the light-field’s full 4D EPI to refocus
and extract multiple-viewpoints. Because of the light-field data’s small baseline,
shearing the light-field EPI gives us the refocusing ability. The framework dis-
tinguishes itself from the traditional approach of specular and diffuse estimation
for conventional images by providing better results and supporting multiple light
source colors.
3. Specular-free image. We use the light source color estimation to create a
specular-free image by using the full 4D EPI for robustness (Algorithm 1).
4. Iterative depth estimation. We develop an iterative framework that uses the
specular-free image to improve depth estimation.
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2 Previous Work

Estimating depth and separating diffuse-specular components have been studied
extensively. In our work, by using the full light-field data, we show that the two
can work hand-in-hand to improve each others’ results.

Defocus and correspondence depth estimation. Depth estimation has been
studied extensively through multiple methods. Depth from defocus requires mul-
tiple exposures [9,10]; stereo correspondence finds matching patches from one
viewpoint to another viewpoint(s) [11–13]. The methods are designed for Lam-
bertian objects and fail or degrade for glossy or specular surfaces, and also do
not take advantage of the full 4D light-field data.

Light-field depth estimation. More recent works have exploited the light-field
data by using the epipolar images [4,5,14]. Because all these methods assume
Lambertian surfaces, glossy or specular surfaces pose a large problem. In our
work, we use the full 4D light-field data to perform specular and diffuse separa-
tion and depth estimation. The iterative approach directly addresses the prob-
lems at specular regions. In our comparisons, we show that specularities cause
instabilities in the confidence maps computed in Tao et al. [4]. Specular regions
retain incorrect depth values with high confidence, often causing the regulariza-
tion step by Markov Random Fields (MRF) to fail or produce incorrect depth
in most places, even when specularities affect only a part of the image (Figs. 7
and 8).

Multi-view stereo with specularity. Exploiting the dichromatic surface prop-
erties in Fig. 2 has also been studied through multi-view stereo. Lin et al. [15]
propose a histogram based color analysis of surfaces. However, to achieve a simi-
lar surface analysis as Fig. 2, accurate correspondence and segmentation of spec-
ular reflections are needed. Noise and large specular reflections cause inaccurate
depth estimations. Jin et al. [16] propose a method using a radiance tensor field
approach to avoid such correspondence problems, but, as discussed in the paper,
real world scenes do not follow their tensor rank model. In our implementation,
we avoid the need of accurate correspondence of real scenes by exploiting the
refocusing and multi-viewpoint abilities in the light-field data as shown in Fig. 3.

Diffuse-specular separation and color constancy. Separating diffuse and spec-
ular components by transforming from the RGB color space to the SUV color
space such that the specular color is orthogonal to the light source color has been
effective; however, these methods require an accurate estimation of or known
light source color [7,17,18]. Without multiple viewpoints, most diffuse and spec-
ular separation methods assume the light source color is known [7,8,19–23]. As
noted by Artusi et al. [24], these methods are limited by the light source color,
prone to noise, and work well only in controlled or synthetic settings. To allevi-
ate the light source constraint, we use similar specularity analyses as proposed
by Sato and Ikeuchi and Nishino et al. [25,26]. However, prior to our work, the
methods require multiple captures and robustness is dependent on the number of
captures. With fewer images, the results become prone to noise. We avoid both
of these problems by using the complete 4D EPI of the light-field data to enable
a single capture that is robust against noise (Fig. 5). Estimating light source
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color (color constancy) exhibits the same limitations and does not exploit the
full light-field data [27,28]; however, these analyses are complementary to Eqn. 5.
Since we are using the full light-field data, we can also independently estimate
the light source color that each pixel is reflecting, enabling us to estimate more
than just one light source color (see supplementary).

3 Theory and Algorithm

In this section, we explain the relationship between the dichromatic reflectance
model and light-field data. The relationship enables us to estimate the light
source color(s). We will then describe our algorithm that uses the light source
color to improve depth estimation.

3.1 Background

Dichromatic reflection model. The basis of the algorithm revolves around dif-
fuse and specular properties where diffuse is independent of view angle changes
while specular is dependent. We use the dichromatic model for the bidirectional
reflectance distribution function (BRDF) [6]. The dichromatic BRDF surface
model, f , has the following expression,

f(λ,Θ) = gd(λ)fd + gsfs(Θ) (1)

where λ is the wavelength and Θ represents the camera viewing angle and incom-
ing light direction. gd is the spectral reflectance and fd and fs are the diffuse
and specular surface reflection multipliers respectively. Because we are dealing
with dielectric materials, gs is wavelength independent. The image captured by
the camera can then be rewritten as

Ik = (Dkfd + Skfs(Θ))n · l
Ik = (Dkfd + Lkf̄s(Θ))n · l (2)

n and l are the surface normal and light source direction with k as the color
channel. D is the diffuse color multiplied by the light source color, while S is
proportional to the light source color. The top equation rewrites the dichro-
matic surface model (Eqn. 1) in terms of the surface normal and light direction.
Skfs(Θ) can be rewritten as Lkf̄s(Θ), where f̄s = gs · fs(Θ) and L is the light
source color. Note that the diffuse component only depends on surface normal
and light source direction. However, the specular component depends on Θ, or
the camera viewpoint, making the color intensity view angle dependent. We will
exploit the two properties through the following steps of our algorithm. We drop
the n · l term for simplicity because the term acts as a modulator, and does not
affect the color, on which our separation algorithm is based.

Light-field data and the dichromatic model. The light-field image encodes both
spatial and angular information of the scene. The light-field image is represented
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Fig. 4. Micro-lens With Diffuse and Specular Surfaces. In a scene with both specular
and diffuse surfaces (a), the light-field image consists of different micro-lens behavior
for specular and diffuse. For diffuse surfaces, the micro-lenses have consistent pixels (b).
For specular surfaces, the lenses consist of different pixels that are influenced by the
specular reflection term (c). This is consistent with our proposed analysis in Fig. 3,
which we use to estimate the light source color.

by x, y, u, v, where x, y and u, v represent the spatial and angular domains respec-
tively. With a light-field image, rearranging the pixels enables refocusing while
extracting pixels from the micro-lens array gives multiple-views [3], described in
Eqn. 3.

Rearranging the pixels to refocus allows us to perform the analysis in Fig. 3, 4.
When the light-field is rearranged to focus to a certain point, the viewing direc-
tions all converge to that point. In such cases, diffuse surfaces will be registered
the same from all viewpoints because the diffuse component is independent of Θ
in Eqn. 2. In specular cases, since Θ is changed with the viewpoint, we estimate
L by analyzing the color differences. The goal of our algorithm is to estimate L
by exploiting this property of the light-field data. This differentiates our work
from previous works of estimating L because we avoid the use of accurate cor-
respondence and have pixel-based light source support, enabling estimation of
multiple light source colors.

3.2 Algorithm

Our algorithm consists of three steps (Algorithm 1). The input is the light-
field image captured by the Lytro camera, I. The first step (line 7) estimates
depth, Depth, from the light-field image. The second step (line 8) estimates
the light source color, L, for each pixel by using the refocusing and multi-
perspective viewpoint with the depth estimation from the first step. The third
step (line 9) separates the specular-free image, ID, from the original light-field
image input. Because depth estimation is reliable with Lambertian diffuse sur-
faces, the specular-free estimation improves depth estimation. We iteratively use
the result from the separation to re-perform the computations of steps 1 to 3
(lines 7-9). The estimations of ID, Depth, and L show improvements over the
iterations (see supplementary). We then regularize the depth estimation with a
MRF technique (line 14) presented by Janoch et al. [29].
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Algorithm 1. Specular-Diffuse Separation for Depth
1: procedure Separation(I)
2: initialize ID, Lp

3: ID = I � Diffuse as input LF image
4: Lp = 1√

3
[1, 1, 1] � [R,G,B]; Light source is white

5: LΔ = ∞
6: while Lthres < LΔ do
7: Depth = DepthEstimation(ID)
8: L, MI , MD = LightSourceEstimation(I, Depth)
9: ID = SpecularFree(I, L, MI , MD)

10: LΔ = |L − Lp|
11: Lp = L
12: end while
13: return ID, Depth, L
14: end procedure

In the beginning of the algorithm, we initialize the diffuse buffer, ID, as the
original light-field input, I; the estimated light source color, Lp as 1√

3
[1, 1, 1] in

[R,G,B] vector form (we normalize the L color vector as explained in Eqn. 6);
and LΔ as ∞. The iterations stop when the current L estimation has a root
mean squared difference from the previous iteration, Lp, that is less than a
threshold, LΔ.

Depth estimation for refocusing (Line 7). Before we can estimate L at each given
pixel, refocusing to each of the pixels in the scene is required to perform the
analysis as shown in Fig. 2. We use the recent algorithm by Tao et al. [4], which
is one of the first published depth estimation methods for the Lytro camera, and
combines defocus and correspondence. However, other approaches such as Kim
et al. [14] could also be used as we are using ID, the specular-free estimation, as
input. After the depth is computed, at each pixel, we have an approximation of
where to refocus the image. Depth(x, y) registers the depth of each image pixel.

Exploiting refocus and multiple views for light source color estimation (Line 8).
To estimate L, we will use the depth map that was generated to refocus and
create multiple views. L(x, y) is the estimate of the light source color at each
pixel.

For each depth, we have the light-field input image, I(x, y, u, v), where x, y
and u, v represent the spatial and angular domains respectively. As explained
by Ng et al. [3], we remap the light-field input image given the desired depth as
follows,

Iα(x, y, u, v) = I

(
x + u(1 − 1

α
), y + v(1 − 1

α
), u, v

)
(3)

α = 0.2 + 0.007 × Depth, where Depth ranges from 1 to 256. The α and range
are scene dependent; however, we found these parameters to work for most of
our examples.
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For each depth value, we compute the color intensity changes within u, v of
each x, y to perform the analysis shown in Fig. 2. Within u, v, we cluster them
into specular-free (diffuse only) pixels, and specular pixels. By looking at the
difference in centroids between the clusters (the specular intensity may vary at
different views, but the color remains consistent), we classify two sets of pixels: n
pixels with both diffuse and specular, Dfd+Lf̄s, and m pixels with just specular-
free, Dfd. The number of angular pixels u, v in each x, y equals to n + m. We
perform a k-means clustering across the u, v pixels of each x, y to estimate the
two. For simplicity, the two centroids of the two clusters will be denoted as (〈.〉
denotes the expected value),

MI(x, y) = 〈Dfd + Lf̄s〉(x, y, n)
MD(x, y) = 〈Dfd〉(x, y,m)

(4)

In our implementation, the k-means uses 10 iterations. To compute Lf̄s, we
subtract the two centroids

Lf̄s(x, y) = MI(x, y) − MD(x, y) (5)

The MD characterizes the specular-free term, and, if specular variations occur,
MI − MD characterizes the specular term. The specular term is proportional
to the light source color intensity. Because Lf̄s represents the light source color
with a multiplier, we will normalize each channel, k, of Lf̄s(x, y) to find Lk(x, y),

Lk(x, y) =
Lkf̄s(x, y)
||Lf̄s(x, y)|| (6)

For pixels without the specular term, |MI(x, y)−MD(x, y)| ≈ 0 because Lkf̄s is
close to zero, while pixels with the specular term or occlusions will not be zero.
To differentiate between specular and occlusion areas in the light source color
estimation, we want higher confidence in regions where the brightness of MI and
the distance between the two centroids are high. We characterize the confidence
value for each L(x, y) as follows,

CL(x, y) = e−β0/|MI(x,y)|−β1/|MI(x,y)−MD(x,y)|+β2/R (7)

where R is the average intra-cluster distance, β0 is a constant parameter that
changes the exponential fall off for the brightness term, β1 is the fall off parameter
for the centroid distance term, and β2 for the robustness of the clustering. In
our implementation, we used 0.5 for both β0 and β1 and 1 for β2.

We can now separate the light source color at each pixel. However, for greater
consistency, we perform a weighted average. For a scene with one light source,
we average the light source estimation buffer, L, with the confidence map:

Light Source Color = 〈CL(x, y)L(x, y)〉 (8)

where the expected value is normalized by the sum of CL(x, y).



Depth Estimation for Glossy Surfaces with Light-Field Cameras 541

For more than one light source, we perform a k-means cluster to the number
of light sources. For each cluster, we perform the same weighted average to
compute the light source colors. In our supplementary, we show two examples
of two different light sources. The left shows an example with two highly glossy
cans lit by two different light sources. The right shows a scene with two semi-
glossy crayons lit by the same two light sources. In both cases, our algorithm
estimates both light source colors accurately.

Discussion We find the correct light source color, but as with most similar
bilinear problems involving a product of illumination and reflectance, we do not
recover the actual intensity of the light source. If the specularity component
is saturated throughout all (u, v), MD does not represent specular-free color,
causing the metric to fail. When fs is small or the specular term is not present,
the metric is unreliable. In both of these cases, the confidence level, CL, is low.
These pixels are shown as zero (see supplementary). However, the pixels with
high confidence suffice to estimate one or more light source colors, and create
the specular-free image and depth map.

Generating the specular-free image (Line 9). Using the L buffer from the pre-
vious step, we can compute a specularity-free image by using the full light-field
data. For each pixel, x, y, u, v, of the light-field image, we subtract the specular
term Lf̄s, which is represented by MI − MD. For robustness, we search through
a small neighborhood around x, y, u, v and compute an average of the specular
term. Since not all pixels in the image contain Lf̄s, we weight the subtracted
specular value by favoring higher confidence of the light source estimation, CL,
and smaller difference between the pixel color, I(x, y, u, v), and the neighbor’s
MI (which represents Dfd +Lf̄s). We use the following equation to compute the
specular-free image:

Dfd(x, y, u, v) = I(x, y, u, v) − 〈W × (MI(x′, y′) − MD(x′, y′))〉
W = e−γ/(CL(x′,y′)×|I(x,y,u,v)−MI(x

′,y′)|) (9)

where x′, y′ are within the search window around x, y, u, v. We normalize the
value by the sum of the weights. In our implementation, we use a 15× 15 search
window and γ = 0.5.

4 Results

We verified our results with synthetic images, where we have ground truth for
the light source, and diffuse and specular components. For all real images in the
paper, we used the Lytro camera. We tested the algorithms across images with
multiple camera parameters, such as exposure, ISO, and focal length, and in
controlled and natural scenes.

Quantitative validation. In Figs. 5 and 6, we generated a scene using PBRT [30]
with a matte material red wood textured background and a similarly textured
sphere with Kd as the texture, Ks of color value, [1, 1, 1], and roughness of 0.01.
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Fig. 5. Quantitative Synthetic Results. We use synthetic light-field inputs to verify our
light source estimation, specular-free image, and depth estimation. We added Gaussian
noise with zero mean and variance as the variable parameter. We compute the RMSE
of our results against the ground truth light source color, diffuse image, and depth map.
In the left, the light source estimation error is linear with the Gaussian noise variance,
while yielding low error. In the middle, because we use the complete 4D-EPI to remove
specularity, our specular-free result RMSE is very low. In the right, the RMSE for
depth estimation also performs favorably to increased noise. At variance of 0.02, the
input image exhibits high noise throughout the image, but our method performs well,
even qualitatively (Fig. 6).

Fig. 6. Qualitative Synthetic Results. Using the zero noise and a high Gaussian noise
with a variance of 0.02 as inputs, we can see that our specular-free image is very close
to the ground truth, showing our algorithm’s robustness against noise and successfully
removing the six specular reflections on the sphere.

We have six point light sources scattered throughout the scene behind the camera
with the same normalized color of [0.03, 0.63, 0.78]. We added Gaussian noise to
the input image with mean of 0 and variance between 0 and 0.02. Our light
source estimation, diffuse, and depth estimation errors increase linearly with
noise variance (Fig. 5). Qualitatively, our algorithm is still robust with high
noisy inputs (Fig. 6).
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Fig. 7. Depth Map Comparisons. We compare our results against Tao et al. [4]. On
the top left, the butterfly is placed perpendicular to the camera direction. Our depth
estimation shows more consistent depth registration. Tao et al. shows spikes and insta-
bilities in glossy regions. On the top right, we have a glossy plant, where our result
still produces consistent results and Tao et al. show inconsistent depth registrations.
On the bottom two, we have two different complex sculptures with different specular
properties. The glossy surface creates instabilities in Tao et al.’s algorithm, which fails
to estimate both depth and confidence correctly. Even in this complex glossy scene,
our algorithm produces reasonable results that far outperform Tao et al.

To measure the accuracy of our L color estimation, we took two examples of
controlled scenes. Both contain two light sources: one with highly glossy cans and
the other with semi-glossy crayons. The light source estimations are consistent
with the ground truth colors (see supplementary). Pixels that are indicated as
black have low confidence values, CL. We used a complex scene with multiple
colors and materials with one known light source color (see supplementary).
The light source estimation converges to the ground truth light source color. We
tested the result by using a far-off initial light source estimate, [0, 0, 1]. After 15
iterations, the light source estimation is [0.62, 0.59, 0.52], which converges to the
ground truth value of [0.60, 0.61, 0.52].

Depth map comparisons. To qualitatively assess depth improvement, we com-
pare our work against Tao et al. [4]. We also compare against Wanner et al. [5],
and Sun et al. [31] in our supplementary. We tested our algorithm through mul-
tiple scenarios involving specular highlights and reflections. In Fig. 7, the top
left shows an example of a glossy butterfly. Our result is not thrown off by the
specular surfaces. Tao et al. shows inconsistent depth registrations at specular
surfaces because these regions have incorrect depths with high confidence values,
which is also apparent in Fig. 8. The top right is an example of a glossy plant.
Our algorithm generates a much more reasonable depth map while Tao et al.
fails due to instability in confidence and depth estimation in glossy regions. In
both sculpture examples, we have sculptures with different specular properties
and complex shapes under low light. Our method is able to recover the surfaces.
In Fig. 8, our method correctly estimates the shape of the dinosaur in a complex
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Fig. 8. Specular-Free Comparison. We compare our separation results against Mallick
et al. [7] and Yoon et al. [8] and depth results against Tao et al. [4]. Our outputs are
highlighted in yellow. Our method uses the depth maps to estimate L, which provides a
significant benefit in generating our specular-free image. In the dinosaur example, our
method’s diffuse result shows reduced reflections on the very glossy teeth and semi-
glossy cloth and scales of the dinosaur while the other methods result in artifacts.
Because of the glossiness of the whole scene, Tao et al. fail dramatically due to the
MRF instability in glossy surfaces, where confidence is high and depth is inaccurate.
In the bottom, we have a natural outdoor scene with locks and street reflectors in the
background. Both the metallic areas of the lock and the street reflector are correctly
removed, but the other methods show hole artifacts. Both Mallick et al. and Yoon et
al. exhibit noisy artifacts in the results, and incorrectly estimate the light source color
as close to white. Note: our result does not completely remove saturated highlights,
which is discussed in limitations and discussion. The results are best seen electronically
and in our supplementary materials.
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scene where both the dinosaur and cloth have glossy surfaces; the locks example
also benefited from our specular separation. In both cases, we outperform Tao
et al.’s depth maps.

Specular-free image comparisons. We verified specular reflection separation
improvements over iterations (see supplementary). The specular color, after mul-
tiple iterations, is close to the light source color. We also compare our work
against Mallick et al. [7] and Yoon et al. [8]. In Fig. 8, we tested the algorithms
on two difficult cases. In the dinosaur example, we chose a glossy cloth for the
background, and a glossy dinosaur with highly glossy teeth. Our result removes
the reflections correctly while the other methods produce heavy artifacts and
fail to remove most of the cloth’s glossiness. In the locks example, our method
correctly removes the glossiness from the metallic locks and road reflectors in the
background. The other methods result in heavy artifacts. This is clearly shown
in the specular components of the other methods. Both Mallick et al. and Yoon
et al. bias the specular estimation close to white; while in real world scenarios,
light sources are not always white.

Limitations and Discussion. Because of the small-baseline nature of light-field
data, the light source cannot be too close to the reflective surface. In these
situations, the light source cannot be easily detected as it will not move too
much with respect to the viewpoint change. Saturated highlights also cannot
be completely removed. As explained in Eqn. 5, in these cases, MD(x, y) does
not represent the specular-free color, making the estimation hard. However, our
confidence measure prevents this from affecting results and is further alleviated
through our window search as described in our specular-free image generation.
As with most specular-diffuse separation methods, our method does not perform
well with mirrors and other highly specular surfaces. By using the dichromatic
model described in Eqn. 1, our algorithm supports dielectric materials only, and
will not work as well for metallic or highly specular surfaces, where highlights
also take on the material color.

5 Conclusion and Future Work

In this paper, we present an iterative approach that uses light-field data to
estimate and remove the specular component, improving the depth estimation.
The method is the first to exploit light-field data depth estimation to support
both specular and diffuse scenes. Our light-field analysis uses a physically-based
method that estimates one or multiple light source colors. Upon publication,
image datasets and source code will be released. The source code will allow
ordinary users to acquire depth maps using a $400 consumer Lytro camera, in
a point-and-shoot passive single-shot capture, including of specular and glossy
materials. For future work, we will expand our analysis to more general reflection
models to separate specular components for dielectric materials and incorporate
shading information to improve robustness of the depth map regularization.
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Abstract. In this paper we propose a post-processing pipeline to recover
accurately the views (light-field) from the raw data of a plenoptic camera
such as Lytro and to estimate disparity maps in a novel way from such
a light-field. First, the microlens centers are estimated and then the raw
image is demultiplexed without demosaicking it beforehand. Then, we
present a new block-matching algorithm to estimate disparities for the
mosaicked plenoptic views. Our algorithm exploits at best the configu-
ration given by the plenoptic camera: (i) the views are horizontally and
vertically rectified and have the same baseline, and therefore (ii) at each
point, the vertical and horizontal disparities are the same. Our strat-
egy of demultiplexing without demosaicking avoids image artifacts due
to view cross-talk and helps estimating more accurate disparity maps.
Finally, we compare our results with state-of-the-art methods.

Keywords: Plenoptic camera · Raw-data conversion · Disparity esti-
mation

1 Introduction

Plenoptic cameras are gaining a lot of popularity in the field of computational
photography because of the additional information they capture compared to
traditional cameras. Indeed, they are able to measure the amount of light trav-
eling along each ray bundle that intersects the sensor, thanks to a microlens
array placed between the main lens and the sensor. As a result, such cam-
eras have novel post-capture processing capabilities (e.g., depth estimation and
refocusing). There are several optical designs for plenoptic cameras depending
on the distance between the microlens array and the sensor. If this distance is
equal to the microlenses focal length it is called a type 1.0 plenoptic camera
[17]; and type 2.0 (or focused) plenoptic camera [16] otherwise. In the first case
the number of pixels per rendered view1 is equal to the number of microlenses
(only one pixel per microlens is rendered on each view). In the second case, the
rendered views have a higher spatial resolution, but that comes at the cost of
decreasing the angular resolution. Depending on the application, one camera or
another would be preferred. In this paper we focus on type 1.0 plenoptic cameras.
1 The terms view and sub-aperture image are equally used in the literature.
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Fig. 1. Pipeline of our method. For visualization purposes only a part of the subimages
and the views are shown. The LF is obtained by demultiplexing mosaicked data using
the center subimage positions. Then the accurate disparity map for a reference view is
estimated from the LF.

The concept of integral photography, which is the underlying technology in
plenoptic cameras was introduced in [15] and then brought up to computer vision
in [3], but it has recently become practical with the hand-held cameras that
Lytro2 and Raytrix3 have put on the market for the mass market and professio-
nals respectively. Since then, the scientific community has taken an interest in
the LF (Light-Field) technology. Recent studies in the field address the bottle-
neck of the plenoptic cameras, namely the resolution problem ([10], [5], [18] and
[24]). Besides super-resolution, depth estimation has also been investigated as a
natural application of plenoptic images ([5], [24] and [22]). Indeed, the intrinsic
information of the LF has the advantage to allow disparity computation without
the image calibration and rectification steps required in classic binocular stereo
or multi-view algorithms, making it an enormous advantage for 3D applications.
However, the last cited works consider the sampled LF (the set of demultiplexed
views) as input for their disparity estimation methods, meaning that they do not
study the process that converts the raw data acquired by the plenoptic camera
into the set of demultiplexed views. In this paper we show that such processing,
called demultiplexing, is of paramount importance for depth estimation.

The contributions of this paper are twofold. First, we model the demulti-
plexing process of images acquired with a Lytro camera and then we present a
novel algorithm for disparity estimation specially designed for the singular qual-
ities of plenoptic data. In particular, we show that estimating disparities from
mosaicked views is preferred to using views obtained through conventional lin-
ear demosaicking on the raw data. Therefore, for the sake of accurate disparity
estimation, demosaicking is not performed in our method (see our pipeline in
Fig. 1). To the best of our knowledge this approach has never been proposed
before.

2 Related Work

The closest works to our demultiplexing method have been published recently.
In [7] a demultiplexing algorithm followed by a rectification step where lens
2 http://www.lytro.com
3 http://www.raytrix.de

http://www.lytro.com
http://www.raytrix.de
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distortions are corrected using a 15-parameter camera model is proposed. In [6],
the authors also proposed a demultiplexing algorithm for the Lytro camera and
studied several interpolation methods to superresolve the reconstructed images.
On the contrary, [9] recovers the refocused Lytro images via splatting without
demultiplexing the views.

Considering disparity estimation for plenoptic images, several works have
proposed a variational method ([24], [4], [5] , [13] and [23]). In particular, [24]
uses the epipolar plane image (EPI), [4] and [5] propose an antialiasing filter-
ing to avoid cross-talk image artifacts and [13] combines the idea of Active
Wavefront Sampling (AWS) with the LF technique. In fact, variational methods
better deal with the noise in the images but they are computationally expensive.
Given the large number of views on the LF, such approaches are not suitable
for many of applications. In addition to variational approaches, other meth-
ods have been proposed for disparity estimation. [14] estimates disparity maps
from high spatio-angular LF with a fine-to-coarse algorithm where disparities
around object boundaries are first estimated using an EPI-based method and
then propagated. [22] proposes an interesting approach that combines defocus
and correspondence to estimate the scene depth. Finally, [25] presents a Line-
Assisted Graph-Cut method in which line segments with known disparities are
used as hard constraints in the graph-cut algorithm.

In each section we shall discuss the differences between our method and the
most related works on demultiplexing and disparity estimation methods on Lytro
data. While demosaicking is not the goal of this paper, note that [10] already
pointed out artifacts due to raw plenoptic data demosaicking and that a practical
solution was proposed by [26] for type 2.0 plenoptic data.

3 Demultiplexing RAW Data

Demultiplexing (also called ”decoding” [7] or ”calibration and decoding” [6]) is
data conversion from the 2D raw image to the 4D LF, usually represented by the
two-plane parametrization [12]. In particular, demultiplexing consists in reorga-
nizing the pixels of the raw image4 in such a way that all pixels capturing the
light rays with a certain angle of incidence are stored in the same image creat-
ing the so-called views. Each view is a projection of the scene under a different
angle. The set of views create a block matrix where the central view stores the
pixels capturing the light rays perpendicular to the sensor. In fact, in plenoptic
type 1.0, the angular information of the light rays is given by the relative pixel
positions in the subimages5 with respect to the subimage centers. After demulti-
plexing, the number of restored views (entries of the block matrix) corresponds
to the number of pixels covered by one microlens and each restored view has as
many pixels as the number of microlenses.

Estimating Subimage Centers: In a plenoptic camera such as Lytro the
microlens centers are not necessarily well aligned with the pixels of the sensor.
4 We use the tool in [1] to access the raw data from Lytro.
5 The image that is formed under a microlens and on the sensor is called a subimage.
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Fig. 2. (a) Microlenses projected on the sensor plane in a hexagonal arrangement.
The green and blue axes represent the two CSs. There is a rotational offset θ and a
translational offset O −o. (b) Mask used to locally estimate subimage center positions.
(c) Lytro raw image of a white scene. (d) Estimated center positions. They coincide
when estimated from one color channel only or from all the pixels in the raw image
(gray).

There is a rotation offset between the sensor and the microlens plane. Also,
the microlens diameter does not cover an integer number of pixels. Finally, the
microlenses are arranged on a hexagonal grid to efficiently sample the space.
Thus, in order to robustly estimate the microlens centers, we estimate the trans-
formation between two coordinate systems (CS), the Cartesian CS given by the
sensor pixels and K, the microlens center CS. K is defined as follows: the origin
is the center of the topmost and leftmost microlens and the basis vectors are
the two vectors from the origin to the adjacent microlens centers (see Fig.2-(a)).
Formally, if x and k are respectively the coordinates on the sensor and microlens
CSs, then, we estimate the system transformation matrix T and the offset vector
between the origins c such that x = Tk + c , and

T =
(

1 1/2
0

√
3/2

) (
dh 0
0 dv

) (
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (1)

where the first matrix accounts for the orthogonal to hexagonal grid conversion
due to the microlens arrangement, the second matrix deals with the vertical and
horizontal shears and the third matrix is the rotation matrix. Thus, estimating
the microlens model parameters {c, dh, dv, θ} gives the microlenses center posi-
tions.

In practice, the subimage centers are computed from a white image depicted
in Fig. 2-(c), that is an image taken through a white Lambertian diffuser. Actu-
ally, the subimage centers xi of the i-th microlens in the raw image are computed
as the local maximum positions of the convolution between the white image and
the mask shown in Fig. 2-(b). Then, given xi and the integer positions ki in the
K CS, the model parameters (and consequently T and c) are estimated as the
solution of a least square error problem from the equations xi = Tki+c. Thus, in
this paper, the final center positions used in the demultiplexing step are the pixel
positions given by ci := round(Tki + c). However, more advanced approaches
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Fig. 3. (a) Demultiplexing. Pixels with the same relative position w.r.t. the subimage
centers are stored in the same view. Only two views are illustrated for visualization.
Color corresponds to sensor color on original Bayer pattern, and is carried over to
assembled raw views. (b) Color patterns of three consecutive mosaicked views (even,
odd and even positions of a line of the matrix of views) for a Lytro camera (∼10×10
pix. per microlens). Color patterns from the views at even positions are very similar
while the color pattern at the odd position is significantly different although there are
horizontal color stripes too. White (empty) pixels are left to avoid aliasing.

can take into account the sub-pixel accuracy of the estimated centers and re-grid
the data on integer spatial coordinates of the Cartesian CS. Fig. 2-(d) shows the
subimage center estimation obtained with the method described above. Since
the raw white image has a Bayer pattern, we have verified that the center posi-
tions estimated by considering only red, green or blue channel, or alternatively
considering all color channels, are essentially the same. Indeed, demosaicking the
raw white image does not create image cross-talk since the three color channels
are the same for all pixels in the center of the subimages.

Reordering Pixels: In the following, we assume that the raw image has been
divided pixel-wise by the white image. This division considerably corrects the
vignetting 6 which is enough for our purposes. We refer to [7] for a precise
vignetting modeling in plenoptic images. Now, in order to recover the different
views, pixels are organized as illustrated in Fig. 3-(a). In order to preserve the
pixel arrangement in the raw image (hexagonal pixel grid), empty spaces are
left between pixels on the views as shown in Fig. 3-(b). Respecting the sampling
grid avoids creating aliasing on the views. Notice that, since the raw image
has not been demosaicked, the views inherit new color patterns. Because of the
shift and rotation of the microlenses w.r.t. the sensor, the microlens centers (as
well as other relative positions) do not always correspond to the same color. As a
consequence, each view has its own color pattern (mainly horizontal monochrome
lines in Lytro).

After demultiplexing, the views could be demosaicked without risking to fuse
pixel information from different angular light rays. However, classic demosaick-
ing algorithms are not well adapted to these new color patterns, specially on

6 Light rays hitting the sensor at an oblique angle produce a weaker signal than other
light rays.
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(a) (b) (c) (d)

Fig. 4. (a) Lytro image (for visualization purposes). (b) One mosaicked view.
(c) Zoomed red rectangle in view (b). (d) Same zoom with horizontal interpolation
of empty (black) pixels, when possible. This simple interpolation does not create arti-
facts since all the pixels in a view contain same angular information.

high frequencies. For the sake of disparity estimation, we simply fill the empty
pixels in a color chanel (white pixels in Fig. 3) when the neighboring pixels have
the color information for this chanel (see Fig. 4). For example, if an empty pixel
of the raw data has a green pixel on the right and on the left, then the empty
pixel is filled with a green value by interpolation (1D Piecewise Cubic Hermite
interpolation). Other empty pixels are left as such.

Differences with State-of-the-Art: The main difference with the demulti-
plexing method in [7] is the fact that in their method the raw data of a scene is
demosaicked before being demultiplexed. This approach mixes information from
different views and, as we will show in the next section, it has dramatic con-
sequences on the disparity estimation. Besides, the method in [7] estimates the
microlenses centers similarly to us but it does not force the center positions to
be integer as we do in our optimization step. Instead, the raw image is interpo-
lated to satisfy this constraint. Even if theoretically this solution should provide
a more accurate LF, interpolating the raw data implies again mixing informa-
tion from different views which creates image cross-talk artifacts. The method
for estimating the center positions in [6] differs considerably from ours since the
centers are found via local maxima estimation in the frequency domain. First,
the raw image is demosaicked and converted to gray and the final center posi-
tions are the result of fitting the local estimation on a Delaunay triangular grid.
Moreover, the second step to render the views is coupled with super-resolution
providing views of size 1080 × 1080 (instead of 328 × 328, which is the number
of microlenses).

The goal of this paper is to estimate accurately the disparity on plenoptic
images, but we have observed that the processing needed before doing that is of
foremost importance. So, even if the works in [7] and [6] are an important step
forward for LF processing, we propose an alternative processing of the views
which is better suited to subsequent disparity estimation.

4 Disparity Estimation

In this section, we present a new block-matching disparity estimation algorithm
adapted to plenoptic images. We assume that a matrix of views is available
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(obtained as explained in the previous section) such that the views are horizon-
tally and vertically rectified, i.e., satisfying the epipolar constraint. Therefore,
given a pixel in a reference view, its corresponding pixels from the same row
of the matrix are only shifted horizontally. Similar reasoning is valid for the
vertical pixel shifts among views from the same column of the matrix. Fur-
thermore, consecutive views have always the same baseline a (horizontally and
vertically). As a consequence, for each point, its horizontal and vertical dispari-
ties with respect to nearest views are equal provided the point is not occluded.
In other words, given a point in the reference view, the corresponding point in
its consecutive right view is displaced horizontally by the same distance than
the corresponding point in its consecutive bottom view is displaced vertically.
By construction, the plenoptic camera provides a matrix of views with small
baselines, which means that the possible occlusions are small. In fact, each point
of the scene is seen from different points of views (even if it is occluded for some
of them). Thus, the horizontal and vertical disparity equality is true for almost
all the points of the scene. To the best of our knowledge, this particular property
of plenoptic data has not been exploited before.

Since the available views have color patterns as in Fig. 3, we propose a block
matching method in which only pixels in the block having the same color infor-
mation are compared. We propose to use a similarity measure between blocks
based on the ZSSD (Zero-Mean Sum of Squared Differences). Formally, let Ip be
a reference view of the matrix of views and Iq be a view belonging to the same
matrix row as Ip. Let ap,q be the respective baseline (a multiple of a). Then,
the cost function between Ip and Iq at the center (x0, y0) of a block B0 in Ip is
defined as a function of the disparity d:

CF p,q
0 (d) =

1
∑

(x,y)∈B0

W (x, x′, y)

∑

(x,y)∈B0

W (x, x′, y)
(

Ip(x, y) − Ip
0 − Iq(x′, y) + Iq

0

)2

,

(2)

where x′ := x + ap,q d, Ip
0 and Iq

0 are the average values of Ip and Iq over the
block centered at (x0, y0) and (x0 + ap,q d, y0) respectively and W is the window
function

W (x, x′, y) = G0(x, y) · S(x, x′, y) ,

where G0 is a Gaussian function centered at (x0, y0) and supported in B0 and S
is the characteristic function controlling that only pixels in the block with same
color information are compared in the cost function: S(x, x′, y) = 1 if Ip(x, y)
and Iq(x′, y) have the same color information, and 0 otherwise. Note that the
cost function is similarly defined when Ip and Iq are views from the same matrix
column. In practice, we consider blocks of size 13 × 13.

Now, our algorithm takes advantage of the multitude of views given by the
LF and estimates the disparity through all the rows and columns of the matrix.
Let Θ be the set of index-view pairs such that the disparity can be computed
horizontally or vertically w.r.t. the reference view Ip. In other words, Θ is the
set of index-view pairs of the form (Ip, Iq), where Iq is from the same row
or the same column as Ip. In fact, consecutive views are not considered in Θ
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Fig. 5. On the left: LF (matrix of views). Views in the center get more radiance than
views of the border of the matrix (pixels coming from the border of the microlenses).
The 6×6 central views among the 10×10 are used. On the right: 6 central views from the
same row of the matrix. Odd and even views have different color patterns between them
(but very similar patterns between odd views and even views). This is represented with
a red circle and a blue triangle. The index-view pairs in Θ corresponding to this matrix
row are represented with the red and blue arrows.

since consecutive color patterns are essentially different because of the sampling
period of sensor’s Bayer pattern. Besides, views on the borders of the matrix are
strongly degraded by the vignetting effect of the main lens. So, it is reasonable to
only consider the 8×8 or 6×6 matrix of views placed in the center for the Lytro
camera. Fig. 5 depicts the pairs of considered images for disparity estimation
in a matrix row. Finally, given a reference view Ip, the disparity at (x0, y0) is
given by

d(x0, y0) = Med(p,q)∈Θ

{
arg min

d
CF p,q

B0
(d)

}
, (3)

where Med stands for the 1D median filter. This median filter is used to remove
outliers that may appear on a disparity map computed for a single pair of views,
specially in low-textured areas. It should be noted that through this median fil-
tering, all the horizontally and vertically estimated disparities are considered to
select a robust estimation of disparity which is possible thanks to the horizontal
and vertical disparity equality mentioned beforehand.

Removing Outliers: Block-matching methods tend to provide noisy disparity
maps when there is a matching ambiguity, e.g., for repeated structures in the
images or on poorly textured areas. Inspired by the well-known cross-checking in
binocular stereovision [20] (i.e., comparing left-to-right and right-to-left dispa-
rity maps), our method can also remove unreliable estimations comparing all
possible estimations. Since a large amount of views are available from a LF,
it is straightforward to rule out inconsistent disparities. More precisely, points
(x0, y0) are considered unreliable if

Std(p,q)∈Θ

{
arg min

d
CF p,q

x0,y0
(d)

}
> ε , (4)

where Std stands for standard deviation and ε is the accuracy in pixels. In prac-
tice, we consider an accuracy of an eight of a pixel, ε = 1

8 .
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Fig. 6. (a) Lytro Image of the scene. (b) Disparity estimation without raw image
demosaicking. (c) Disparity estimation with raw image demosaicking. The cost function
is the same but the characteristic function is equal to one for all the points since the
views are in full RGB. For the sake of accurate analysis no sub-pixel refinement has
been performed. Errors due to image cross-talk artifacts are tremendous on disparity
maps.

Sub-Pixel Disparity Estimation: By construction, the baseline between the
views is small, specially between views with close positions in the matrix. So the
disparity estimation for plenoptic images must achieve sub-pixel accuracy. Such
precision can be achieved in two different ways: either by upsampling the views
or by interpolating the cost function. Usually the first method achieves better
accuracy but at a higher computational burden, unless GPU implementations
are used [8]. For this reason, the second method (cost function interpolation) is
usually used. However, it has been proved [19] that block-matching algorithms
with a quadratic cost function as in Eq. (2) achieve the best trade-off between
complexity and accuracy only by first upsampling the images by a factor of 2
and then interpolating the cost function. We follow this rule in our disparity
estimation algorithm.

Differences with State-of-the-Art: The closest disparity estimation
method for plenoptic images compared to ours is the method presented in [5] but
there are several differences between both methods. First, our method properly
demultiplexes the views before estimating the disparity, whereas the method in
[5] considers full RGB views and proposes an antialiasing filter to cope with the
weak prefilter in plenoptic type 2.0. Then, the energy defined in [5] (compare
Eq. 3 of this paper with Eq. 3 in [5]) considers all the possible pairs of views
even if in practice, for complexity reasons, only a subset of view pairs can be
considered. In [5], no criteria is given to define such subset of view pairs while a
reasonable subset is given with respect to the color pattern in our views. Finally,
the proposed energy in [5] considers a regularization term in addition to the data
term and the energy is minimized iteratively using conjugate gradients. In ano-
ther state-of-the-art method, [22] combines spatial correspondence with defocus.
More precisely, the algorithm uses the 4D EPI and estimates correspondence cues
by computing angular variance, and defocus cues by computing spatial variance
after angular integration. Both cues are combined in an MRF global optimization
process. Nevertheless, their disparity estimation method does not take care of
the demultiplexing step accurately. Their algorithm not only demosaicks the raw



Accurate Disparity Estimation for Plenoptic Images 557

image, but it stores it using JPEG compression. So, the resulting LF is affected
by image cross-talk artifacts and compression artifacts. In next section, we shall
compare our results with this method. Unfortunately, a qualitative comparison
with [5] is not possible since the authors work with different data: mosaicked
views from a focused or type 2.0 plenoptic camera.

5 Experimental Results

In this section we show the results obtained with our algorithm. First of all,
we have compared the disparity maps obtained with and without demosaicking
the raw image. Intuitively one can think that demosaicking the raw image will
get better results since more information is available on the views. However this
intuition is rejected in practice (see for instance Fig. 6). Therefore, we claim that
accurate disparity estimation should consider only the raw data on the views.
Unfortunately, experimental evaluation with available benchmarks with ground-
truth [24] as in [13] is not possible because all LF in the benchmark are already
demosaicked.

Fig. 7 compares our disparity maps from Lytro using [2] and the disparity
map from [22] using the code provided by the authors and the correspond-
ing microlenses center positions for each experiment. The algorithms have been
tested with images from [22] and images obtained with our Lytro camera. The
poor results from [22] with our data show a strong sensitivity to parameters of
their algorithm. Also, their algorithm demosaicks and compresses (JPEG) the
raw image before depth is estimated. On the other hand, Lytro disparity maps
are more robust but they are strongly quantized which may not be sufficiently
accurate for some applications. All in all, our method has been tested on a large
number of images from Lytro with different conditions and it provides robust
and accurate results compared to state-of-the-art disparity estimation method
for plenoptic images.

Obviously, other approaches could be considered for disparity estimation. For
instance, our cost function can be regarded as the data term in a global energy
minimization approach as in [25]. However, for the sake of computational speed
we have preferred a local method. Specially, because a multitude of disparity
estimations can be performed at each pixel. Moreover, other approaches using
EPI’s as in [24] could be used but we have observed that EPI’s from Lytro are
highly noisy and only disparities on object edges are reliable (EPI from Lytro is
only ∼ 10 pixels width).

In this paper we propose to not perform demosaicking on the raw image
to avoid artifacts but full RGB images are needed for some applications (i.e.,
refocusing). In that case we suggest to recover the lacking colors by bringing
the color information from all the corresponding points in all views using the
estimated disparity information as in [21]. Indeed, one point in the reference view
seen with one color channel is seen in the other views with another color. Fig. 8
shows disparity-guided demosaicking results. We show that our approach avoids
color artifacts compared with the method in [22] that demosaicks raw images. So,
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Fig. 7. (a) Original data. The three last images are published in [22]. (b) Our disparity
map results. (c) Results from [22]. The authors have found a good set of parameters
for their data but we have found poor results using their algorithm with our data. (d)
Depth map used by Lytro, obtained with a third party toolbox [2].
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Fig. 8. Comparison of RGB views. Left: Our result. Right: Result of demosaicking the
raw data as in [22]. Besides of a different dynamic range certainly due to a different
color balance, notice the reddish and greenish bands on the right flower (best seen on
PDF).

our demultiplexing mosaicked data strategy not only avoids artifacts on disparity
maps but also on full RGB view rendering.

It shall be pointed out that we assume the Lytro camera to be a plenoptic type
1.0. Although not much is officially available about its internal structure, our
observation of the captured data and the study in [11] support this assumption.
However, the assumption on the camera type only changes the pixel reordering
in the demultiplexing step, and the proposed method can be easily generalized
to the case of plenoptic type 2.0.

Finally, even if our method only considers central views of the matrix of views,
we have observed slightly bigger errors on the borders of the image. Pushing
further the correction of vignetting and of other chromatic aberrations could be
profitable to accurate disparity estimation. This is one of our perspectives for
future work.

6 Conclusion

Plenoptic cameras are promising tools to expand the capabilities of conventional
cameras, for they capture the 4D LF of a scene. However, specific image process-
ing algorithms should be developed to make the most of this new technology.
There has been tremendous effort on disparity estimation for binocular stereo-
vision [20], but very little has been done for the case of plenoptic data. In this
paper, we have addressed the disparity estimation problem in plenoptic data and
we have seen that it should be studied together with demultiplexing. In fact, the
proposed demultiplexing step on mosaicked data is a simple pre-processing that
has clear benefits for disparity estimation and full RGB view rendering since
they do not suffer from view cross-talk artifacts.
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Abstract. SocialSync is a sub-frame synchronization protocol for cap-
turing images simultaneously using a smartphone camera network. By
synchronizing image captures to within a frame period, multiple smart-
phone cameras, which are often in use in social settings, can be used for
a variety of applications including light field capture, depth estimation,
and free viewpoint television. Currently, smartphone camera networks
are limited to capturing static scenes due to motion artifacts caused by
frame misalignment. Because frame misalignment in smartphones cam-
era networks is caused by variability in the camera system, we char-
acterize frame capture on mobile devices by analyzing the statistics of
camera setup latency and frame delivery within an Android app. Next,
we develop the SocialSync protocol to achieve sub-frame synchronization
between devices by estimating frame capture timestamps to within mil-
lisecond accuracy. Finally, we demonstrate the effectiveness of SocialSync
on mobile devices by reducing motion-induced artifacts when recovering
the light field.

Keywords: Multiple viewpoints · Camera array · Camera network ·
Synchronization · Smartphone · Mobile device

1 Introduction

Smartphones, and by extension smartphone cameras, have been predicted to app-
roach 1 billion units in annual sales by the end of 2014 [9]. The rapid rise of readily
available cameras has drastically increased the number of pictures that are taken
each day, while the advent of social media and image sharing websites (e.g., Face-
book, Flickr, and Picasa) allows for easier image dissemination than ever before.

While sharing images has become a common activity in social interactions –
Facebook sees an average of 350 million images uploaded to its servers daily [7] –
capturing images remains an individual activity. Despite collectively viewing,
sharing, and commenting on images, photographers remain as islands; each tak-
ing pictures independently and ignoring the resources of other nearby smart-
phone cameras. Our goal is to synchronize image captures using mobile devices
during social image acquisition, whereby users can collaboratively capture images
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1007/978-3-319-16181-5 43) contains supplementary material, which is available to
authorized users.
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(a) Present day: Individual imag-
ing for social sharing

(b) Future: Illustration
of SocialSync for social
imaging

Fig. 1. (a) While the flood of mobile devices has become ubiquitous during major
historical events, as seen during the election of Pope Francis, each user effectively
operates independently. Image credit: Michael Sohn Associated Press; (b) Synchroniz-
ing the image capture times across mobile phones, a group of people working together
will be able to capture rich information of an event, even with dynamic motion present
in the scene.

which, when taken together, are of greater value than the collection of individual
photographs.

1.1 Why Social Image Acquisition?

It is common to see many smartphones hoisted aloft capturing images at public
events. For example, Fig. 1(a) shows St. Peter’s square in the Vatican as the
election of Pope Francis was announced. Mobile devices are ubiquitous through-
out the square, as people take pictures and video. The sheer number of cameras
at such events presents an opportunity to recover rich data about the scene, far
exceeding what is available with a single camera. Applications include captur-
ing light fields for post-capture processing, free viewpoint video, and computing
depth maps for scene reconstruction and modeling.

1.2 Problem Definition

Efforts such as Photo Tourism from Snavely et al. [20] (later commercialized by
Microsoft into PhotoSynth1) and its extension by Agarwal et al. [1] use images
taken from many cameras to reconstruct a 3D model of a target. A reasonable
facsimile of public objects and scenes can be rendered by scouring image aggre-
gation and sharing sites, such as Flickr, and by using geometric constraints pro-
vided from the disparate viewpoints. Users can zoom into an object, fly around
buildings, and remotely tour faraway locales. The limitation is that the scene
must be static, since the images have been taken at different times. Such an

1 www.photosynth.net

www.photosynth.net
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approach works well with buildings, natural monuments, and landscapes, but
not so well for fast moving scenes, such as sports venues or concerts. Capturing
a dynamic scene requires that cameras be synchronized to an accuracy that is a
fraction of the duration of a frame.

Synchronizing consumer cameras is a challenging task, even more so for
smartphone cameras. Mobile phones do not accept external hardware trigger
signals and software triggers do not offer tight enough bounds to capture images
simultaneously. In order for picture taking to become a communal experience, as
illustrated in Fig. 1(b), a protocol for synchronizing smartphone cameras must
overcome the variability caused by the camera system when triggering frame
capture and delivery.

1.3 Contributions

We demonstrate a protocol and highlight the necessity for highly accurate syn-
chronization of frames across mobile devices both for indoor and outdoor dynamic
scenes. To address the temporal challenges present when using mobile devices for
single snapshot social image acquisition, we use the HTC One (M7) and Nexus
5 to:

1. Characterize the variables associated with relative latency that cause tem-
poral differences between frames captured from different mobile devices. We
identify the setup latency of the camera service as the main cause of vari-
ability when synchronizing frame capture.

2. Develop SocialSync, a sub-frame synchronization protocol, using additional
measurements of frame rate and frame delivery to estimate the timestamp of
a frame captured with millisecond accuracy. Compared to a naive synchro-
nization implementation, where frames are aligned to the duration of a frame,
our implementation achieves sub-frame alignment by requiring a duration of
time to achieve synchronization before the frame capture request.

3. Demonstrate our ability to reduce motion artifacts using SocialSync when
recovering the light field from a smartphone camera network. Compared
to a naive synchronization implementation, SocialSync considerably reduces
visible artifacts in the fused light field.

2 Background

2.1 Related Work

Multiple camera image capture: Many imaging tasks can be performed eas-
ily using multiple cameras, whether the cameras are arranged in a calibrated
array or arranged randomly. For example, camera arrays can be used to cap-
ture the light field of a scene [10,23,25,26], record high speed video [18,19,24],
and improve image resolution [19], while distributed cameras have been used
to construct virtual cities from online photo repositories [1,20] and synthesize 3
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(a) Reference image (b) Unsynchronized phones (c) Synchronized phones

Fig. 2. Motion artifacts manifest when aligning unsynchronized frame sequences. (a) A
grayscale image of a planar resolution chart moving to the right taken from Fig. 3.
Grayscale images from three (b) unsynchronized and (c) synchronized cameras are
warped using homographies to the true depth of the moving resolution chart. The
aligned images are shown as an RGB image where misaligned edges present as color
artifacts. Notice that without synchronization (b) the bars in the resolution chart are
misaligned by 10 pixels while the synchronized images have errors of at most 1 pixel.

dimensional models of buildings [6]. State-of-the-art snapshot light-field acqui-
sition methods which may be used in smartphones require specialized hardware
[10,14,23]. Furthermore, mask-based systems [14] reduce light throughput while
camera arrays such as the PiCam [23] require hardware synchronization to ensure
each element of the array captures images simultaneously. Fig. 2 highlights the
need for synchronization in dynamic scenes. A planar resolution chart translates
to the right in front of unsynchronized and synchronized cameras (Fig. 2(b)
and Fig. 2(c) respectively). Aligning images using homographies shows that the
unsynchronized images have motion artifacts of approximately 10 pixels while
the synchronized cameras have error less than 1 pixel.

Using multiple cameras to capture a scene enables many benefits over single
viewpoint imaging. Applications include:
Light field: Light field cameras, such as Lytro [8] and Raytrix2, can be used
for digital refocusing, but sacrifice spatial resolution. Compared to single camera
techniques, various works have demonstrated light field recovery using camera
arrays [5,26].
Free Viewpoint Television: Free-viewpoint television uses multiple cameras
for viewing a 3D scene by changing viewpoints [21]. In addition, an array of
smartphones could be used for a variety of special effects such as bullet time [25].
3D and Depth: Camera arrays are also useful when recovering 3D and depth
from a scene [17,22].

2.2 Android Camera Library

The android camera library provides access to camera functions, such as locking
exposure, focus, zoom, and capturing images or video on demand. By abstracting
the camera utilities for the developer, the camera library hides the details of
binding to the Android camera service and operating the sensor hardware. An
application activates the camera by calling startPreview() to begin streaming a

2 http://www.raytrix.de/

http://www.raytrix.de/
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Fig. 3. Computing depth maps to register 4 cameras to a reference view. Depth esti-
mation with unsynchronized images (top center) is challenging as the images are never
truly aligned (see Fig. 2(b)). Depth estimation is more accurate when using our Social-
Sync protocol (top right). Outset show the average of the 4 registered images using
timestamps to synchronize (middle row) and SocialSync (bottom row).

sequence of image frames. A developer can specify a callback function to trigger
when a preview frame is available, either for processing or for saving to disk.
Both the Nexus 5 and HTC One support a variety of preview sizes. In our setup
we set both devices to capture 1920×1080 pixel images.

2.3 Time Synchronization Protocols

Due to manufacturing differences, each smartphone’s system clock will drift at
slightly different rates, creating misalignment between recorded timestamps. An
important and well studied problem, clock synchronization achieves a consistent
global time across all devices in the network. Our solution uses the Network
Time Protocol (NTP) [15,16] to perform clock synchronization among devices.
The maximum clock synchronization error is bounded by the round-trip time
of the network. Because our WiFi access point is capable of round-trip times
(RTTs) of less than 2 ms to our time server, NTP permits clocks synchronization
to be within 1 ms.
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2.4 Latency

A camera network’s response to a request for an image capture is limited by two
sources of latency:
Network Latency: Events sent between devices incur an end-to-end network
latency. Our measurements demonstrated two devices sharing the same WiFi
access point had a mean round trip latency of around 3 ms as well as an outlier
RTT of 75 ms.
Camera I/O Latency: There is a non-deterministic latency from the time
the software issues a command to take a picture and the time the hardware
captures a frame due to the variables in mobile OS resource management. In
our measurements, we found that the average camera I/O latency is specific
to particular device models. Fig. 3 shows the necessity of compensating for I/O
latency when estimating depth from independent smartphone cameras with syn-
chronized clocks. Notice that the depth map for the unsynchronized cameras
contains errors for the dynamic scene elements while the SocialSync cameras
give an accurate depth map.

3 Camera Characterization

We reduce the problem of synchronizing frame capture to that of the I/O camera
latency associated with triggering frame capture and delivery. Our implemen-
tation uses network clock synchronization to devices clocks and requires that
requests for frame capture reach each mobile device before the capture event.

3.1 Camera Timestamps

To characterize the latency through the system, we define the following:

– Frame Capture TC(i): The time image exposure ends for the ith frame.
– Frame Delivery TD(i): The time the application receives the ith frame.
– Camera Setup Latency TC(0): The setup time to capture the 0th frame.
– Frame Rate (TC(i)−TC(i-1))−1: The rate of capturing consecutive frames.
– Frame Delay TD(i) − TC(i): System delay when delivering the ith frame.

We use the mobile system timestamp on the preview callback to obtain TD(i),
since preview frames in Android do not contain EXIF millisecond meta data
timestamps. As the capture timestamp is not accessible through the mobile
operating system, we build a characterization setup to measure TC(i).

3.2 Camera Characterization Setup

We capture the frame latency with an experimental setup in order to recover
the frame capture timestamps precisely. For further details regarding our smart-
phone app implementation and rolling shutter measurements, we direct the inter-
ested reader to our supplementary material [12].
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Characterization Smartphone App: The camera object runs on a dedicated
background thread to prevent resource conflicts with the foreground activity.
Auto exposure and white balance are locked, putting the camera system in a
mode that enables rapid capture. To streamline memory allocation, the applica-
tion pre-allocates preview frames into a circular buffer queue. The focus of each
camera is fixed at infinity.
Image Timestamp from Visible Clock: To obtain a timestamp of a frame
capture TC(i), we use a camera scene that includes a visible clock. For accuracy,
we built an 8×8 array of LEDs, sequentially triggered at precise time intervals
by a Raspberry Pi (RPi). The RPi sequentially lights each column of LEDs on
the array for 1 ms. When the camera takes an image of the LED clock, the posi-
tion of the illuminated LEDs on the image serve as a timestamp for the image.
Because rows of pixels are read out at different times due to the rolling shut-
ter, TC(i) indicates the time when reading the 1st row from the image sensor.
Further details regarding our measurement setup for calculating rolling shutter
speed and TC(i) are described in [12].
Timing Precision of the Visible Clock: The RPi acts as a global refer-
ence clock. It is synchronized via a wired GPS clock to minimize clock drift.
loopstats in the NTP protocol reports the resulting clock jitter of the RPi as
5µ. The pre-synchronization clock drifts for the smartphones were small enough
for characterization purposes, drifting less than 60µ after 1 second of elapsed
time. The smartphones wirelessly synchronizes their clocks with the RPi, repeat-
ing synchronization attempts until the RTT is less than 2 ms and clock error is
less than 1 ms.

3.3 Characterization Measurements

We characterize the camera setup latency, frame rate, and delay when delivering
preview frames for a Nexus 5 and HTC One.
Camera Setup Latency TC(0): On Android, before capturing an image, the
camera must first be activated by starting the preview image sequence. The
variability in setting up the camera service, sensor, and preview sequence limits
the ability to synchronize frames. By measuring the latency from launching the
preview sequence to the capture of the first frame TC(0), we see launching the
camera preview sequence at the same time is insufficient to achieve accurate
synchronization because of the randomness in the latency. The camera setup
time for a Nexus 5 has a sample mean of μ = 283.3 ms and may deviate with
a standard deviation of σ = 9.4 ms. The distribution shown in Fig. 4 (left) is
representative of the variability in setting up image capture on a mobile device.3

Frame Rate (TC(i) − TC(i-1))−1: Although the capture time of a frame is
stochastic, the time between frames is deterministic. By knowing the time inter-
val between image capture timestamps, all frame capture timestamps can be
determined as long as one timestamp is known. The difference between subse-
quent capture timestamps is inversely proportional to the frame rate of the image

3 TC(0) will vary between devices.
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Fig. 4. (Left) Camera Setup: Android phones require an activated preview image
sequence prior to capturing a photo. Therefore, frame synchronization between devices
is based on the offset between setting up the camera and capture the first frame TC(0).
We show that for Nexus 5 camera, simultaneous launches of the camera have a setup
time with a mean of μ = 283 ms and a standard deviation of σ = 9.4 ms; (Right) The
delivery time TD of a frame to an application is highly correlated with its capture time
TC . The relationship between delivery time and capture time provides the basis for
estimating TC(0).

sequence. Because Android devices provide various ranges for setting frame rates,
in our setup we locked the frame rate to a valid range supported by the Android
devices and then measured the frame rate using our LED clock. Upon locking
the auto exposure, the frame rate became constant at f = 29.8497 ± 0.0001 fps
for a Nexus 5 and f = 24.1513 ± 0.0002 fps for an HTC One.
Frame Delay TD(i) − TC(i): For a fixed frame rate image sequence, TC(i) is
highly correlated with TD(i), the time for delivering a frame to the application as
shown in Fig. 4(b). By measuring latency between capturing a frame and deliv-
ering a frame, we will be able to build a model for estimating TC(i). The frame
delay can be represented as a stationary stochastic variable with a normal dis-
tribution NF whose mean μF = 36.83 ms and standard deviation σF = 4.68 ms
for an HTC One and μF = 66.67 ms and σF = 4.48 ms for a Nexus 5.4 The large
difference between the two data sets is because the Nexus 5 passes two frames
before delivering the captured frame, while the HTC One delivers the captured
frame after only one frame has passed.

4 SocialSync Protocol

SocialSync achieves highly accurate synchronization across a diverse range of
Android devices in a network by (1) estimating capture timestamps based on

4 Assumption of normal distribution is valid because σF � μF .
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the delivery timestamps of previously delivered frames and (2) using repeated
attempts at launching the preview image sequence until a set of frames is
obtained for which the computed timestamps align (frames are in sync).5

4.1 Capture Timestamp Estimation

In single camera tasks, frames recorded by the camera are sequential and evenly
spaced, specified by the frame rate. In multi-camera tasks, knowing the exact
capture timestamp is required to align frames from different cameras, as the rel-
ative position of a frame from one camera is unknown with respect to the frame
from a second camera. If the camera frame rates are known, then the calibration
task is simplified by providing a common time origin and measuring the offset
to each camera’s first frame. Therefore, the precision in estimating the capture
timestamp of a frame is based strictly on the estimation of TC(0), the setup
capture timestamp.

For a fixed frame rate f , the time the ith frame is captured is related to the
camera setup latency TC(0) according to

TC(i) = TC(0) + (1/f) · i. (1)

Let TN be a random variable representing the frame delay following the
normal distribution NF . TC(i) = TD(i) − TN (i), where TD(i) provides a sample
for estimating TC(0). Therefore, TC(0) can be expressed as Gaussian random
variable with a distribution NF such that

TC(0) ≈ TD(i) − 1/f · i − TN (i). (2)

Camera setup latency TC(0) is estimated by taking multiple measurements
of TD(i), determining the distribution of the frame delay, and calculating the
average. The timestamp of TC(0) is the center of the Gaussian frame delay dis-
tribution. A standard error calculation of TC(0) provides a method for estimating
the sample mean within a desired confidence interval. Therefore, to obtain a 95%
confidence interval of less than δ ms with the number of samples frames n is

σF√
n

· 1.96 ≤ δ. (3)

Therefore, an estimate of TC(0) at a 95% confidence interval, and all sub-
sequent capture timestamps, to within 2 ms requires the delivery of at least 22
preview frames and to within 1 ms requires the delivery of at least 85 frames for
both an HTC One and Nexus 5.

4.2 Frame Synchronization Upper Bound

Camera I/O latency ΔTC(i) is the delay between a request for a frame capture
and the execution of the event at TC(i). Because each frame’s capture timestamp
5 In the protocol, we assume a global reference clock, such as one obtained using NTP.
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can be estimated precisely using the results of Sec. 4.1, a mobile app can deliver
the most recently captured frame TC(i) for each request. Because a periodic
sequence of images has a fixed frame rate f , a captured frame TC(i) closest to
the time of an arbitrary request will result in ΔTC(i) being uniformly distributed
between 0 and τ = 1/f seconds. Therefore, the upper bound synchronization
error between frames from multiple devices is the frame sequence with the longest
interval τ , i.e. the inverse of the lowest frame rate.

4.3 Obtaining Sub-Frame Synchronization

By estimating capture timestamps, the SocialSync protocol achieves sub-frame
image capture through launching the smartphone preview image sequence stream
repeatedly until frame sequences are aligned6. Under the hood, synchronization
is achieved by estimating capture timestamps to successfully predict the image
sequence frame setup time, thereby capturing a frame at a desired request time
within a specified tolerance.

Suppose a user requires that the camera I/O latency ΔTC(i) for frame cap-
ture is within the range (0, t), where t ≤ τ . The probability the phone will fail
(pf ) to capture a frame at a time within the range (0, t) is pf = 1 − t/τ .

Repeated attempts at starting the image sequence would improve the odds
of starting within the desired synchronization range. Using our capture time-
stamp estimation technique described in Sec. 4.1, we can determine whether an
image sequence is in the desired synchronization range. By successfully estimat-
ing whether a given image sequence will succeed or fail, sub-frame synchroniza-
tion is based on following equations:
Single Camera Sync Probability: The probability that a single phone will
start the continuous image sequence in the range (0, t) after k attempts is Pk =
1 − (pf )k.
Multiple Cameras Sync Probability: The probability that n phones will
start the continuous image sequence in the range (0, t) after k attempts is (Pk)n.
Expected Number of Sync Cameras: The expected number of phones to
start the continuous image sequence in the range (0, t) after k attempts of n
phones is nPk.

5 Evaluation

To demonstrate the advantages of the SocialSync sub-frame synchronization
protocol, we capture images of dynamic scenes and demonstrate improvements
in recovering the light field by reducing motion artifacts. To reduce errors not
associated with synchronization misalignment, we constrain our evaluation to
a structured camera array consisting of Nexus 5 devices shown in Fig. 5. The
cameras are calibrated using the Caltech calibration toolbox [2] and further
refined using bundle adjustment [13].
6 With a large number of smartphones a subset of synchronized cameras could be used

without the need to restart the preview streams.
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NaiveSync SocialSync

4 Cameras 23ms 5ms
8 Cameras 35ms 6ms

Maximum difference in capture times for
synchronized smartphone cameras

Fig. 5. Camera array setup used for evaluation. (Left) Up to 9 cameras are placed in
an rigid array to minimize errors not associated with scene motion. (Right) Camera
synchronization timings measured in evaluation for NaiveSync (i.e. timestamp compar-
ison) and SocialSync. SocialSync offers tighter synchronization than NaiveSync.

Reference View Depth Map

(a) NaiveSync

Reference View Depth Map

(b) SocialSync

Fig. 6. Eight cameras capture a dynamic indoor scene. A drinking bird provides angular
motion while a toy truck translates across the scene. (a) Depth estimates of scene using
the NaiveSync protocol exhibit artifacts for dynamic scene elements. (b) SocialSync
achieves accurate depth map recovery including dynamic regions such as the truck
window and drinking bird.

5.1 Recovering the Light Field

We use the SocialSync protocol to synchronize cameras within 6 milliseconds
(shown in Fig. 5). We compare our results against a naive frame synchronization
implementation (called NaiveSync), which only saves the frame with the closest
delivery timestamp. We collect indoor and outdoor datasets using 8- and 4-
camera arrays respectively. Depth maps recovered from the disparate views allow
for post-capture refocusing. Point correspondences are computed using a plane
sweep algorithm and a window-based normalized cross correlation cost function.
We use the graph cuts implementation of [3,4,11] to impose a smoothness penalty
between neighboring pixels and recover our depth estimates.

Indoor Scene with an 8-Camera Array: In the scene shown in Fig. 6,
dynamic scene elements (the angular motion of the drinking bird and transla-
tion motion of the truck) require image synchronization to compute accurate
depth maps. Using NaiveSync, which saves the frames with the closest delivery
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(a) All in focus (b) Far Focus (c) Mid Focus (d) Near Focus

Fig. 7. Post-capture refocusing using the accurate depth map of Fig. 6(b) captured
using SocialSync. (a) The captured image is refocused in the (b) far, (c) middle, and
(d) near ground of the scene post-capture. Please view digitally to see details.

(a) Reference (b) Depth
from NaiveSync

(c) Depth
from SocialSync

(d) Refocus
with NaiveSync

(e) Refocus
with SocialSync

Fig. 8. SocialSync provides advantages in dynamic outdoor scenes. Seven phones are
divided into two groups of 4 phones with one overlapping phone. One group uses our
SocialSync protocol and the other group uses with NaiveSync. (a) Reference view of
two people tossing a stuffed toy. (b) The depth recovered using NaiveSync has motion
artifacts not present when (c) computing the depth using SocialSync. (d) Proper post-
capture refocusing cannot be achieved with NaiveSync. Notice that the thrower’s face
and shorts are incorrectly blurred when focusing on the thrower’s body. (e) SocialSync
allows for accurate blurring for the thrower’s entire body.

timestamps, results in synchronization of 35 ms while our SocialSync protocol
reduces the error to 6 ms. The two data sets are captured independently. Note
that the depth map recovered when using SocialSync, Fig. 6(b), is free of the
artifacts present when using NaiveSync, Fig. 6(a). In particular, dynamic scene
elements such as the drinking bird and the truck’s wheels and window remain
blurred when using NaiveSync.

The accurate depth map provided by using SocialSync in Fig. 6(b) allows
users greater artistic license when viewing captured images. Fig. 7 shows the
indoor scene refocused post-capture on the near, middle, and far planes.
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Outdoor Scene with a 4-Camera Array: Figure 8 shows a scene taken
outdoors of two people throwing a toy bird. Seven cameras captured the scene
with one chosen as a reference camera. Four cameras were synchronized using
SocialSync (including the reference) while the remaining three are unsynchro-
nized with respect to each other and the reference. The four SocialSync cam-
eras are synchronized to within 5 ms while the four NaiveSync cameras have a
23 ms spread. Note that the depth map recovered from the SocialSync cameras
(Fig. 8(c)) accurately captures the depth of the scene while the depth computed
using the NaiveSync cameras (Fig. 8(b)) has many artifacts. Fig. 8(d) highlights
the inability to refocus on the thrower properly when using the NaiveSync depth
map, while refocusing using SocialSync (Fig. 8(e)) has no such limitation.

6 Conclusions

Our work highlights and addresses the sub-frame synchronization challenge when
using smartphones for multi-viewpoint light field recovery. Without sub-frame
synchronization between mobile devices, light field acquisition is limited to static
scenes due to motion artifacts caused by frame misalignment. As the first step
towards multi-viewpoint image capture of dynamic scenes using smartphone
camera networks, we characterized the camera setup, frame rate, and frame
delay on an HTC One and Nexus 5. Next, we introduced SocialSync, a sub-frame
synchronization protocol, based on an estimation of frame capture timestamps.
Finally, we evaluated the benefit of using SocialSync by comparing it to the
best existing smartphone camera synchronization method and demonstrating
improvements in depth map estimation and digital refocusing.

As a limitation, sub-frame synchronization of smartphone cameras is only
effective for capturing a single snapshot or a few frames, due to variability in
frame rates caused by clock drift and manufacturing quality. Furthermore, due
to the stochastic nature of synchronization, increasing the number of devices
requires more synchronization attempts. Therefore, as future work to address
scalability issues with large social events, we would explore methods for grouping
subsets of smartphones, which would be naturally synchronized within the group.
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Abstract. In recent years, research for recovering depth blur and
motion blur in images has been making a significant progress. In partic-
ular, the progress in computational photography enabled us to generate
all-in-focus images and control depth of field in images. However, the
simultaneous recovery of depth and motion blurs is still a big problem,
and recoverable motion blurs are limited.

In this paper, we show that by moving a camera during the exposure,
the PSF of the whole image becomes invariant, and motion deblurring
and all-in-focus imaging can be achieved simultaneously. In particular,
motion blurs caused by arbitrary multiple motions can be recovered. The
validity and the advantages of the proposed method are shown by real
image experiments and synthetic image experiments.

Keywords: Coded imaging · PSF · Deblur · Motion Blur · All-in-Focus

1 Introduction

Deblurring depth and motion blurs is very important in many applications.
In order to deblur depth blur and motion blur, various methods have been stud-
ied in recent years. Many methods use specific models of PSF (Point Spread
Function) for representing the blur. By using the PSF, blurred images can be
represented by convolution of the PSF and the sharp (all-in-focus) images. Thus,
deblurring of the image can be achieved by deconvolution of the PSF. However,
the PSF is in general not unique for a whole image, since the PSF depends on
the depth of objects. In order to suppress the variation of PSFs, some methods
based on the light field computation were proposed[1,4] in recent years. Although
these methods can deblur observed images with various depth, we need to obtain
multiple images which are captured under different blurring conditions.

The image deblurring has also been studied in computational photography in
recent years[8,9]. Veeraraghavan et al.[9] proposed the coded aperture for image
deblurring. They focused on the zero-cross in the frequency characteristics of
PSF in coded aperture, and optimized the coded aperture by decreasing the
zero-cross. Nagahara et al.[6] proposed focus sweep imaging for expanding the
depth of field. In their method, the image sensor (image plane) in a camera
moves during exposure. By this movement, the PSF on an image plane becomes
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 576–587, 2015.
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approximately invariant under change in depth. Thus, we can deblur observed
images easily by using a single PSF all over the image. However, we need to
move the image sensor in a camera device quickly, and thus it is not easy to
implement by using ordinary camera systems.

The motion blur occurred by relative motions between cameras and objects
has also been studied. Raskar et al.[7] proposed coded exposure for deblurring
the motion blur accurately. They proposed a method for controlling a shutter
during exposure, i.e. coded exposure. By using the coded exposure, the quality of
deblurred images can be improved. However, the obtained images become darker,
since the exposure time becomes a half of the original exposure time, and the
S/N ratio of obtained image becomes worse. Furthermore, we have to obtain the
image motion beforehand in order to optimize the coded exposure. Levin et al.[5]
showed that the PSF of motion blur becomes invariant under image motions,
if the camera moves along with a parabolic orbit. Although the method works
well when we know the orientation of the object motions, arbitrary unknown
motions cannot be deblurred. Cho et al.[3] proposed an imaging technique which
enables us to obtain invariant motion blurs under arbitrary 2D image motions
and deblur them. However, we need to obtain two different images moving the
camera with parabolic motions in two orthogonal directions. Bando et al.[2]
proposed a method for estimating motion blur by using circular motion of image
sensor. Although we can estimate PSF of motion blur by using this method, the
method cannot be applied when we have complex motions in the scene.

In this paper, we propose a method for deblurring depth and motion blurs
simultaneously. In particular we propose a method for deblurring motion blurs
caused by complex multiple motions of objects. In this research, we use the
focus sweep technique proposed by Nagahara et al.[6], and show that we can
recover not only depth blurs but also motion blurs simultaneously by using the
focus sweep technique. We also show that it enables us to deblur not only a single
motion in images, but also arbitrary multiple motions in images simultaneously.
Furthermore, we clarify the condition of deblurring the mixture of depth and
motion blurs in images, which is very useful for designing the imaging systems.
The method is tested by using real images and synthetic images generated by a
lens simulator.

2 Lens Model

In this paper, we first consider a bilateral telecentric lens in order to simplify
the explanation of our method, and then generalize it to ordinary perspective
lens systems.

We first explain the characteristics of a bilateral telecentric lens, which is
shown in Fig. 1. The focal lengths of lens 1 and lens 2 are f1 and f2, and
these lenses are placed at their respective focal distances from the aperture to
form a bilateral telecentric lens system. Let a be the diameter of aperture, p be
the distance between the image sensor and Lens 2, u be the distance between
the object and Lens 1. Then, all the incident lights are concentrated at point A,
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Fig. 1. Bilateral telecentric lens

whose distance is v1 from Lens 1, and u2 from Lens 2, and are finally concentrated
at a point whose distance is v2 from Lens 2 as shown in Fig. 1. Then, the following
equations hold for these lenses.

1
f1

=
1
u

+
1
v1

(1)

1
f2

= − 1
u2

+
1
v2

(2)

By using these equations and geometric relationships shown in Fig. 1, we have
the following equation, which shows the diameter of a blurred circle b introduced
by the lens system.

b = a

∣∣∣∣
f2u

f2
1

+
p

f2
− f2

f1
− 1

∣∣∣∣ (3)

3 IPSF

By using the telecentric lens model shown in the previous section, we next con-
sider the PSF of an image under focus sweep imaging. In this method, image
plane moves along with light axis during exposure, and thus, observed PSF can
be described by the integration of PSF which changes according to the image
plane motion. In this paper, we call the integrated PSF as IPSF following [6].

Let us consider the case where a 3D point X is projected to m in the image. If
we have image blur, the point in the image is spread, and the observed intensity
at x = [x, y]� can be described by the pill box function as follows:

P (r, u, p) =
4

πb2
Π

(r

b

)
(4)

where r is the distance between x and m, and b denotes the radius of the image
blur. Note, the radius b is determined by u and p, which are the distance between
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the lens and the object, and the distance between the lens and the image sensor,
as shown in Eq.(3). The function Π(w) is a pill box function, which is described
as follows:

Π(w) =
{

1, |w| < 1
2

0, otherwise (5)

The Eq.(4) indicates that observed PSF depends on the distance u, and thus,
the PSF is not unique for whole image because the depth u changes pixel by
pixel in general scene.

Now, let us consider the case where the distance u or p changes linearly
during image exposure. Let us denotes the distance u at time t as u(t), and p at
time t as p(t). Then, the integrated PSF (IPSF) can be described as follows:

IP (r) =
∫ T2

T1

P (r, u(t), p(t))dt (6)

where T1 denotes shutter opened time and T2 denotes shutter closed time, and
thus the exposure time is T = T2 − T1.

For example, if the camera translates along with light axis with a uniform
speed su, then the changes of distance u can be described as follows:

u(t) = u0 + sut (7)

where u0 indicate a distance from the camera to the object at t = 0. In this
case, the change in size of blur is constant, and thus Eq.(3) can be rewritten as
follows:

b(t) = |2sbt| (8)

where, sb denotes the speed of the change in radius of blur.

4 Invariance of IPSF Under 3D Motions

We next show that IPSF under focus sweep imaging is invariant against speed,
direction and depth if some conditions are satisfied. In this section, we analyze
the characteristics of IPSF and derive the conditions in which the IPSF becomes
invariant.

Let us consider the case where a moving 3D point is projected onto the image
plane. The 3D point at t is denoted by X(t) and the projected point is denoted
by m(t) = [u, v]�. In this case the PSF of a projected point at t can be described
as follows:

P (x, u, p) =
4

πb(t)2
Π

( ||x − m(t)||
b(t)

)
(9)

In this equation, we described the PSF by using the observed point x and the
center of blur m(t), since the center of blur m(t) also moves in time. From the
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Fig. 2. The relationship between IPSF and the speed ratio µ

integration of this function with respect to t, the IPSF can be computed as
follows:

IP (x) =
∫ T2

T1

4
πb(t)2

Π
( ||x − m(t)||

b(t)

)
dt (10)

Suppose the motion of the projected point m(t) can be described linearly by
using its speed sm and direction v on the image sensor. Then, the motion of the
point m(t) can be described as follows:

m(t) = smtv (11)

Now, if the camera moves linearly with a speed su along with the light axis, the
size of blur changes linearly as shown in Eq.(8). Thus, the IPSF can be computed
from Eq.(8), Eq.(11) and Eq.(10) as follows:

IP (x) =
1

πs2b

{
λ0

(
1

|t0| − 2
T

)
+ λ1

(
1

|t1| − 2
T

)}
(12)

where t0 and t1(|t1| > |t0|) are the solutions of a quadratic equation |x−smtv|2 =
s2bt

2, and λ0 and λ1 are variables which are described as follows:

t0,1 =
−smx · v ±√

s2m(x · v)2 + |x|2(s2b − s2m)
s2b − s2m

(13)

λ0 =
{

1, |t0| < T
2

0, otherwise (14)

λ1 =

⎧⎨
⎩

1, (|t1| < T
2 ) ∧ (t0t1 < 0)

−1, (|t1| < T
2 ) ∧ (t0t1 > 0)

0, otherwise
(15)

If the exposure time of camera is sufficiently small, arbitrary motions can be
approximated by linear motions. Thus, Eq.(12) covers all the motions.

By using the IPSF model described in Eq.(12), we next consider the rela-
tionship between the IPSF and a speed ratio μ. The speed ratio μ is defined as
follows:

μ =
∣∣∣∣
sm
sb

∣∣∣∣ (16)
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Fig. 3. Changes in PSF (µ = 0.8) Fig. 4. Changes in PSF (µ = 1.4)

and it represents the relative speed between the speed of projected point sm and
the speed of the change in radius of blur sb.

Fig. 2 shows the relationship between the speed ratio μ and the change in
IPSF, that is the difference between the IPSF of a static object and the IPSF of a
moving object. Fig. 2 shows that the IPSF is almost unchanged when μ is smaller
than 1, although it changes drastically when μ is larger than 1. Furthermore, the
IPSF is almost isotropic when μ is smaller than 1, while it is unisotropic when
μ is larger than 1. Thus, we find that the IPSF can be considered as invariant
when the following condition holds:

μ ≤ 1 (17)

Thus, if this condition holds, we can deblur image blurs caused by arbitrary
motions just by deblurring with a uniform IPSF all over the image.

Let us consider the reason why invariance breaks when the speed ratio μ
becomes larger than 1. The weight of PSF at each time in IPSF is not equivalent
in general. For example, the value of P (x, u, p) becomes extremely large when the
target object is at the focus position. On the other hand, the value of P (x, u, p)
becomes very small when the target object is far from the focus position. Thus,
the IPSF heavily depends on the PSF at focus position. When object speed
sm is smaller than the speed of blur sb, the changes in PSF (which is pill box
function) can be described as shown in Fig. 3. In this case, the time axis t (which
is the center of blur) is in a cone which represents the PSF, and thus, the center
of blur is always in the PSF during the motion. Thus, IPSF is approximately
invariant, even if the motions are different. However, if sm becomes larger than
sb, the time axis t is out of the PSF cone as shown in Fig. 3. Thus, the IPSF
changes drastically depending on the motions. As a result, Eq.(17) is the critical
condition for the invariance of IPSF.

5 Invariant IPSF By Using Ordinary Lens

We next generalize our analysis into ordinary perspective lens from bilateral
telecentric lens. When we use ordinary lenses for image projection, the position
of projected points depends on not only horizontal and vertical positions of
object, but also the depth u of object. Therefore, if the image plane or the whole
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camera moves along with the light axis, projected points also moves even if the
3D point is static.

However, the motion of a projected point by using the ordinary lens can be
regarded as a radial motion of target object under telecentric lens. Thus, the
IPSF becomes invariant, if the radial motion satisfies the condition described in
the previous section.

Let us describe the image motion of the projected point caused by the change
in depth u by using the direction u and the speed sz. Then, the motion of the
projected point can be described by the summation of the motion szu caused by
the change in depth and the motion smv caused by the object motion as follows:

saw = smv + szu (18)

where, w denotes the direction of the combined motion, and sa denotes the speed
of the combined motion.

Now, we define the speed ratio μ as follows:

μ =
∣∣∣∣
sa
sb

∣∣∣∣ (19)

Then, the focus point is always in the blur circle, when the following condition
holds:

μ ≤ 1 (20)

Thus, we find that the IPSF is invariant under ordinary perspective lens systems,
when Eq.(20) is satisfied, and we can deblur images by using a uniform IPSF,
even if we have arbitrary multiple motions in the scene.

6 Experimental Result Using Synthesized Images

In this section, we evaluate the proposed method by using synthetic images. We
made a lens simulator which can simulate arbitrary lens systems, and generated
synthetic images of objects under the focus sweep. The object is a planar surface,
and some characters are printed on this plane. For comparison, images taken by
the method proposed by Levin et al.[5] were also synthesized. The synthesized
images are shown in Fig. 5 and Fig. 6. These images were synthesized under var-
ious motions of object surface, i.e. (a) static, (b) horizontal motion, (c) vertical
motion, (d) diagonal motion, (e) rotational motion and (f) zoom. In the pro-
posed method, the camera moved 11mm during exposure. The telecentric lens
was used and its focus lengths are f1 = 60 mm and f2 = 60 mm respectively.
The size of aperture was a = 10 mm. In Levin’s method, the camera moved in
horizontal parabolic orbit. The Gaussian noises with the std of σ = 0.1 were
added to each image intensity. The maximum value of the speed ratio μ was
(a) 0, (b) 0.45, (c) 0.46, (d) 0.65, (e) 0.98 and (f) 0.86, thus all of them satisfied
the proposed condition. Wienner filter was used for deconvolution in both meth-
ods. The PSNR of deblurred images were computed and they are represented
under the each result.
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(a) None ( 53.6 dB)

(b) Horizontal ( 21.8 dB)

(c) Vertical ( 12.0 dB)

(d) Diagonal ( 8.9 dB)

(e) Rotation ( 10.6 dB)

(f) Zoom ( 10.3 dB)

Fig. 5. Images deblurred by Levin’s
method: IPSF (left), observed images
(center) and deblurred results (right)

(a) None ( 34.7 dB)

(b) Horizontal ( 28.9 dB)

(c) Vertical ( 29.1 dB)

(d) Diagonal ( 25.6 dB)

(e) Rotation ( 28.0 dB)

(f) Zoom ( 25.5 dB)

Fig. 6. Image deblurred by the proposed
method: IPSF (left), observed images (cen-
ter) and deblurred result

As shown in Fig. 5, although Levin’s method provides us good results in
horizontal motion, it does not work well in other motions. This is because the
horizontal parabola was used in Levin’s method, and it cannot deblur images
under other motions. In contrast, the proposed method provides us very good
results under all the motions as shown in Fig. 6. In particular, change of scale
and rotation, which cannot be deblurred properly by the ordinary deblurring
methods can be deblurred properly by our method. From these results, we find
that the proposed method can deblur arbitrary unknown motions when the
condition described in Eq.(20) holds.

We next evaluate the robustness of the proposed method against changes in
object speed. In this experiment, the speed ratio μ was changed from 0 to 2.0,
and observed images were deblurred by the proposed method. Fig. 7 shows the
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(a) µ=0 (b) µ=0.5 (c) µ=0.9 (d) µ=1.1 (e) µ=1.5 (f) µ=2.0

Fig. 7. Image deblurring results under various speed ratio µ. When µ is smaller than
1.0, images can be deblurred properly.
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Fig. 8. Relationship between speed ratio and PSNR/SSIM of deblurred images

deblurred images under each speed ratio μ. As shown in Fig. 7, the image blur
was recovered properly in (a), (b) and (c), while it was not recovered properly in
(d), (e) and (f). This is because the speed ratios of (d), (e) and (f) are over 1.0,
and they do not satisfy the condition for image deblurring. These results show
that the deblurring condition derived in this paper is valid.

Fig. 8 shows the relationship between the speed ratio μ and the accuracy
of deblurring. In this figure, the vertical axis shows the PSNR and SSIM[10] of
deblurred images. This figure shows that the quality of image deblurring depends
on the speed ratio. In particular, SSIM of deblurred images changes drastically
at around μ = 1.0, and thus, we find that the limitation of μ exists at around
1.0.

7 Experimental Results by Using Real Devices

We next show experimental results from real camera systems. We first show
results when we used telecentric lens for the camera system. The camera system
and a target object were fixed on a translation/rotation stage as shown in Fig. 9.
The target object was moved horizontally, vertically and rotationally. The cam-
era system was moved in the proposed method, and the speed of the motion was
su = 300 mm/sec. The exposure time of the camera was 0.5 sec. For comparison,
the camera was moved according to Levin’s method and took images. The zoom
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Fig. 9. The camera system for obtaining images

(a) No motion (b) With motion (c) Levin’s method (d) IPSF image (e) Deblurred image

Fig. 10. Experimental results by using a real camera system: Target objects were
moved horizontally (top row), vertically (middle row) and rotationally (bottom row)

of the telecentric lens was 0.17, W.D = 113 mm, depth of field is 11 mm and
F=4.0. The size of CCD of the camera was 1/2”.

Fig. 10 shows the observed images and the deblurred images. (a) shows the
observed images from fixed cameras and fixed objects, (b) shows the images
of a moving objects taken from a fixed camera, (c) shows the deblurred result
by Levin’s method, (d) shows the IPSF images taken by a moving camera and
(e) shows the deblurred result by the proposed method. Note, the depth of the
target object is larger than 11 mm, which is the depth of field of the camera,
and thus, some pixels have depth blur even if the target object is static. In
the results of Levin’s method shown in (c), although the horizontal motion blur
could be recovered, the depth blur remains in the image. In addition, vertical
and rotational motion blur could not be recovered. In contrast, the proposed
method could deblur properly in any motion blurs as long as the blur satisfies the
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(a) Experimental system (b) IPSF image (c) Deblurred image (d) Normal imaging

Fig. 11. Experimental results by using the ordinary perspective lens. (a) shows trans-
lation stage used for obtaining images, (b) is the observed IPSF image, (c) is the
deblurred image derived from the proposed method and (d) is the image taken by the
ordinary camera system.

condition. Furthermore, the depth blur could also be recovered by the proposed
method.

We next show deblurring results when we used an ordinary perspective lens
for a camera system. In this case, our method can deblur image when Eq.(20) is
satisfied. In this experiment, the camera system was moved by using a translation
stage as shown in Fig.11 (a), and the IPSF images were obtained by using the
moving camera system. The example of the observed image is shown in Fig. 11
(b) and the deblurred result is shown in (c). For comparison, the normal exposure
image is shown in Fig. 11. As shown in this image, the proposed method can
deblur images, even if they include many different motion blurs. The result
indicates that our proposed method can deblur arbitrary motion blurs as long
as the blur satisfies the condition Eq.(20).

8 Conclusion

In this paper, we proposed a method for obtaining invariant IPSF image by
using camera motion during exposure. By using the method, the IPSF of the
image becomes uniform, and thus, we can deblur whole image by using a single
IPSF. Furthermore, we analyze properties of the IPSF and derived the condition
for obtaining invariant IPSF image. The method can apply not only a camera
with a telecentric lens, but also an ordinary perspective lens. The experimental
results show that the proposed method can deblur not only arbitrary motion
blur but also depth blur.
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Abstract. Self-luminous light sources in the real world often have non-
negligible sizes and radiate light inhomogeneously. Acquiring the model
of such a light source is highly important for accurate image synthesis
and understanding. In this paper, we propose a method for measuring 4D
light fields of self-luminous extended light sources by using a liquid crys-
tal (LC) panel, i.e. a programmable filter and a diffuse-reflection board.
The proposed method recovers the 4D light field from the images of the
board illuminated by the light radiated from a light source and passing
through the LC panel. We make use of the feature that the transmittance
of the LC panel can be controlled both spatially and temporally. The
proposed method enables us to utilize multiplexed sensing, and there-
fore is able to acquire 4D light fields more efficiently and densely than
the straightforward method. We implemented the prototype setup, and
confirmed through a number of experiments that the proposed method
is effective for modeling self-luminous extended light sources in the real
world.

Keywords: Self-luminous light source · Extended light source · 4D light
field · Programmable filter · Multiplexed sensing

1 Introduction

The appearance of an object depends not only on the geometric and photomet-
ric properties of the object but also on light sources illuminating the object.
Therefore, acquiring the models of self-luminous light sources is highly impor-
tant in the fields of computer graphics and computer vision, in particular for
photorealistic image synthesis and accurate image-based modeling.

Conventionally, in the field of computer vision, ideal light sources such as
directional light sources (point light sources at infinity) and isotropic point light
sources are mostly assumed for photometric image analysis. Unfortunately, how-
ever, this is not the case; an object of interest is illuminated by nearby light
sources, and more importantly, self-luminous light sources in the real world often
have nonnegligible sizes, i.e. they are considered to be extended light sources
and radiate light inhomogeneously. This means that the illumination distribu-
tion seen from a point on an object surface varies over the surface. Therefore,
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 588–599, 2015.
DOI: 10.1007/978-3-319-16181-5 45
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self-luminous extended light source

LC panel

diffuse-reflection board
at position 1

diffuse-reflection board
at position 2

camera

camera

diffuse-reflection
board

LC panel
17-inch

Fig. 1. Our proposed setup consisting of an LC panel and a diffuse-reflection board
(left) and the sketch of its cross section (right)

in order to analyze the shading observed on an object surface under real-world
extended light sources, we need to acquire the radiant intensity distributions of
the light sources.

The difficulty in acquiring the radiant intensity distribution of an extended
light source, which is described by a 4D light field [1], is that we need to measure
a wide range of the light field. Note that consumer light field cameras are not
suitable for such a purpose because their measurement ranges are limited. To
cope with this problem, Goesele et al. [4] propose a setup consisting of a static
optical filter and a diffuse-reflection board, and demonstrate the effectiveness of
the setup for modeling extended light sources.

In this paper, we propose a method for acquiring the radiant intensity dis-
tribution of a self-luminous extended light source in the real world by using an
LC panel, i.e. a programmable filter and a diffuse-reflection board as shown in
Fig. 1. The key idea of the proposed method is to make use of the feature that
the transmittance of the LC panel can be controlled both spatially and tem-
porally. Specifically, the proposed method changes the transmittance patterns
of the LC panel dynamically, and recovers the 4D light field from the images
of the board illuminated by the light radiated from a light source and passing
through the LC panel. In particular, the proposed method utilizes multiplexed
sensing [10,11,15], which is a well-known technique for increasing signal-to-noise
ratio (SNR) without increasing measurement time, and acquires 4D light fields
more efficiently and densely than the straightforward method.

We implemented the prototype setup, and confirmed through a number of
experiments that the proposed method can increase the SNR of the acquired
images from which the 4D light field of a self-luminous extended light source
is computed. In other words, the proposed method can acquire the models of
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self-luminous light sources in the real world more efficiently and densely than the
straightforward method. The main contribution of this paper is to demonstrate
that the proposed method using a programmable filter is effective for modeling
self-luminous extended light sources in the real world.

The rest of this paper is organized as follows. We briefly summarize related
work in Section 2. A method for acquiring 4D light fields of self-luminous exten-
ded light sources by using a programmable filter and a diffuse-reflection board
is proposed in Section 3. We report the experimental results in Section 4 and
present concluding remarks in Section 5.

2 Related Work

Existing techniques can be classified into 3 categories; (i) techniques for acquiring
2D radiant intensity distributions of self-luminous point light sources, (ii) tech-
niques for acquiring 4D light fields of self-luminous extended light sources, and
(iii) techniques for acquiring 4D light fields of general scenes. In this section, we
briefly explain the existing techniques in each category, and then describe the
relationship between those techniques and our proposed method.

2D radiant intensity distributions of self-luminous point light sources
Since the size of a point light source is negligible, the radiant intensity dis-

tribution of a self-luminous point light source is described by a 2D function, i.e.
a function with respect to the direction seen from the center of the point light
source. Verbeck and Greenberg [14] propose a basic method for measuring the
2D radiant intensity distributions of anisotropic point light sources by using a
goniophotometer. Their method can directly sample the radiant intensity distri-
bution of a light source by moving a sensor around the light source. However,
their method requires a large amount of measurement time because it samples
the radiant intensity distribution only at a single direction at a time.

To cope with this problem, image-based techniques, which can sample the
radiant intensity distribution at a large number of directions simultaneously, are
proposed. Rykowski and Kostal [9] propose an efficient method for measuring
2D radiant intensity distributions of LEDs by using the imaging sphere. They
make use of the combination of a hemispherical chamber with diffuse coating and
a hemispherical mirror, and capture the radiant intensity distribution with 2π
steradian field of view at a time. Tan and Ng [12] use a diffuse translucent sheet
and a flatbed scanner, and Moreno and Sun [5] use a diffuse translucent screen
and a camera for efficiently capturing the 2D radiant intensity distributions of
LEDs.

It is demonstrated that the above methods are useful for modeling real-world
point light sources, in particular for inspecting LEDs. Unfortunately, however,
we cannot use them for acquiring the 4D light fields of self-luminous extended
light sources because they assume point light sources, i.e. light sources with
negligible sizes.
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4D light fields of self-luminous extended light sources
As mentioned in the introduction, the radiant intensity distributions of self-

luminous extended light sources are described by 4D light fields. In a similar
manner to Verbeck and Greenberg [14], Ashdown [3] proposes a basic method
for measuring the 4D light field of a self-luminous light source by using a gonio-
photometer. However, his method requires a huge amount of measurement time
because it samples the 4D distribution only at a single point in the 4D space at
a time.

To cope with this problem, image-based techniques are proposed also for
measuring 4D light fields. Goesele et al. [4] propose a method for measuring 4D
light fields of self-luminous light sources by using an optical filter and a diffuse-
reflection board. Their method recovers the 4D light field from the images of the
board illuminated by the light radiated from an extended light source and passing
through the optical filter. Although their method is suitable for measuring a wide
range of a 4D light field and works well with an optimally-designed optical filter,
it is not easy to acquire a 4D light field efficiently and densely because the optical
filter is static and one has to slide the position of the light source (or the optical
filter) manually during the measurement.

Aoto et al. [2] propose a method for recovering the 4D light field of a self-
luminous light source from the images of a diffuse-reflection board moving in
front of the light source. Their method is unique in the sense that it does not
require any static or dynamic filters but use only a diffuse-reflection board.
However, it would be difficult to stably recover the high-frequency components
of the 4D light field from the images of the diffuse-reflection board because diffuse
reflectance behaves like a low-pass filter [8].

4D light fields of general scenes
Other than the above techniques specialized for measuring the 4D light fields

of self-luminous extended light sources, there are a number of techniques for
acquiring 4D light fields of general scenes. Since it is impossible to cover all
the existing techniques due to limited space, we briefly mention the advantages
and limitations of some of representative approaches when they are used for
measuring the 4D light fields of self-luminous extended light sources.

One approach to general 4D light field acquisition is to use a spherical mirror
array [13] and a camera array [16]. Those methods have the advantage that they
can measure the wide range of the 4D light field of a self-luminous extended
light source. However, they are not suited for densely measuring the 4D light
field because it is not easy to place spherical mirrors and cameras densely.

Another approach to general 4D light field acquisition is to use a single
camera with a micro-lens array [6] and a coded aperture [7]. Those methods
have the advantage that they can measure the 4D light field of a self-luminous
extended light source densely. However, they are not suited for measuring the
wide range of the 4D light field because their measurement ranges are limited.
Note that the objective of our study is not to acquire the incoming intensity
distribution to a small area in a scene but to acquire the outgoing intensity
distribution from an extended light source. In general, light field cameras are
suited for the former purpose but are not suited for the latter purpose.
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3 Proposed Method

3.1 Light Source Model

Fig. 1 shows the cross section of our proposed setup which consists of a pair of an
LC panel and a diffuse-reflection board. Actually, we place the light source close
to the LC panel as much as possible so that we can acquire a wider range of the
light field. Our proposed method acquires the description of the light passing
through a point x on the LC panel toward a direction l by using the images of
the diffuse-reflection board illuminated by the transmitted light. For the reason
described below, we move the diffuse-reflection board and observe the reflection
of the transmitted light on the board twice at the positions 1 and 2. Note that
we assume that a light source radiates unpolarized light since the transmittance
of an LC panel depends on polarization state1.

We assume that a self-luminous extended light source is approximately repre-
sented by a set of anisotropic point light sources, and therefore the light passing
through x toward l comes from an unknown anisotropic point light source c.
We denote the surface normal and distance of the board at the first position by
n1 and r1, and those at the second position by n2 and r2. We assume that the
geometry of the setup is calibrated in advance, i.e. we assume that those surface
normals and distances are known. On the other hand, there are two unknowns;
one is the distance d between x and the point light source c, and the other is
the radiant intensity k of the light source toward the direction l. Our proposed
method estimates those two parameters for each (x, l) by using two radiances
observed on the diffuse-reflection board at the positions 1 and 2.

When the diffuse-reflection board is placed at the first position, the radiance
i1 of the reflected light is given by2

i1 = k
(−l)�n1

(d + r1)2
, (1)

assuming the Lambertian model and the attenuation according to the inverse-
square law3. Similarly, when the board is placed at the second position, the
radiance i2 is given by

i2 = k
(−l)�n2

(d + r2)2
. (2)

Taking the ratio of eq.(1) and eq.(2), we can derive

(d + r1)2

(d + r2)2
=

i2
i1

(−l)�n1

(−l)�n2
≡ α. (3)

1 One could use a depolarizing filter in front of the LC panel.
2 In general, the transmittance of an LC panel depends on the direction of incident

light. Since we used an LC display with a wide viewing angle of 165◦ in our experi-
ments, we do not take the angle-dependency into consideration.

3 This description is more complicated than that of the 4D light field because we take
the distance from an anisotropic point light source into consideration.
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Fig. 2. The filters for the straightforward measurement (top) and the multiplexed
measurement (bottom). Here, n = 15 for display purpose.

Thus, we can estimate one of the unknowns d as

d =
√

αr2 − r1
1 − √

α
. (4)

Substituting eq.(4) into eq.(1) and/or eq.(2), we can estimate the other
unknown k.

3.2 Straightforward Measurement

The straightforward method for measuring the light field of a self-luminous
extended light source is to capture the images of the diffuse-reflection board
at the first and second positions by using a set of single filters shown in the top
of Fig. 2. Specifically, we divide an area of interest of the LC panel into n square
patches, and then set the transmittance of a single patch to 1 and those of the
other patches to 0 at a time in turn. The advantage of using a programmable
filter, i.e. an LC panel in our case, is that we can control the transmittance both
spatially and temporally without direct manual manipulation.

Unfortunately, however, such a straightforward measurement has limitations.
In order to acquire light fields more densely, we need to make the size of each
patch smaller. Since the transmittance of only a single patch is 1 in the straight-
forward measurement, the smaller the size of each patch is, the smaller the amo-
unt of light passing through the LC panel and reflected on the diffuse-reflection
board is. Therefore, if we make the size of each patch smaller while keeping the
measurement time constant, the SNRs of the captured images decrease and then
the accuracy of the recovered light field is also degraded. On the other hand, if
we make the size of each patch smaller while keeping the SNRs of the captured
images constant, we need a longer exposure time for each image and then we
need longer total measurement time. Hence, the straightforward measurement
has a tradeoff between its accuracy and efficiency.
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3.3 Multiplexed Measurement

To cope with the limitations of the straightforward measurement, our proposed
method makes more use of the feature that the transmittance of the LC panel
can be controlled both spatially and temporally. Our method utilizes multiplexed
sensing [10,11,15], which is a well-known technique for increasing SNR without
increasing measurement time, and acquires 4D light fields more efficiently and
densely than the straightforward method.

Specifically, we use the multiplexed filters in which the transmittances of
about half of the patches are 1 and those of the other patches are 0 as shown
in the bottom of Fig. 2, and capture the images of the diffuse-reflection board
illuminated by the transmitted light. We can obtain those n multiplexed filters
by applying the so-called S-matrix, which is constructed on the basis of the
Hadamard matrix of order (n + 1), for n individual filters. In an opposite man-
ner, we can obtain the single filters by applying the inverse matrix S−1 to the
multiplexed filters. Therefore, by applying S−1 to the captured images of the
diffuse-reflection board under the multiplexed filters, we can obtain the decoded
images under the single filters. It is known that S−1 can be computed analyti-
cally: S−1 = 2(2S� −1n)/(n+1), where 1n is an n×n matrix whose all elements
are 1. See Sloane et al. [11] for more detail.

It is known that the ratio of the SNR of multiplexed sensing SNRmulti and
that of single sensing SNRsingle is at most

SNRmulti

SNRsingle
�

√
n

2
, (5)

when n, i.e. the number of the patches in our case, is large enough. Therefore,
the proposed method based on multiplexed sensing can acquire light fields more
efficiently and densely than the straightforward method while keeping the SNR
constant.

4 Experiments

4.1 Multiplexed Sensing

To demonstrate the effectiveness of multiplexed sensing, we compared the images
of the diffuse-reflection board captured and decoded by multiplexed sensing with
those captured by single sensing. We used a fluorescent light located nearby the
LC panel and set the number of patches n to 63. Because a small amount of
light passes through the LC panel even though the transmittance is set to 0, we
captured an image when all the transmittances are set to 0 and then subtracted
this image from all the images captured under the single and multiplexed filters.

Fig. 3 shows the example images of the diffuse-reflection board under a cer-
tain single filter taken with a fixed exposure time. We consider the average of
1000 images taken under the same condition as the ground truth (left). We
can see that the image captured by single sensing (middle) is grained due to
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ground truth single sensing multiplexed sensing

Fig. 3. The example images of the diffuse-reflection board under a single filter; the
ground truth computed by averaging, the captured image by single sensing, and the
captured and decoded image by multiplexed sensing from left to right. Pixel values are
scaled for display purpose.
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images captured under single filters (from 1st to 63rd).

Fig. 4. The RMS errors of the images of the diffuse-reflection board under the single
filters; captured by the straightforward measurement (dotted line) and captured and
decoded by the multiplexed measurement (solid line)

noise. On the other hand, we can see that the image captured and decoded
by multiplexed sensing is similar to the ground truth. This result qualitatively
demonstrates that our proposed method based on multiplexed sensing works
better than the straightforward method based on single sensing.

In addition, we conducted quantitative evaluation. Fig. 4 shows the RMS
errors of the images of the diffuse-reflection board under all the single filters.
We can see that the RMS errors of the captured and decoded images by mul-
tiplexed sensing (solid line) are always smaller than those of captured images
by single sensing (dotted line) although the gain of multiplexed sensing, i.e.
SNRmulti/SNRsingle � 0.40/0.19 � 2.1 is smaller than the theoretical upper
limit

√
n/2 � 4.0. This result quantitatively demonstrates that the proposed

method based on multiplexed sensing works better than the straightforward
method based on single sensing.

4.2 Image Reconstruction

To demonstrate the effectiveness of the proposed method, we acquired the 4D
light fields of three light sources and used them for image reconstruction. In
this experiment, as described in Section 3, we acquired the light fields from
the images of the diffuse-reflection board at the positions 1 and 2 by using the
straightforward method based on single sensing and the proposed method based
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position 1 position 2

Fig. 5. The images of the diffuse-reflection board placed at the positions 1 (left) and
2 (right) for measurement under two projectors

ground truth reconstructed
(single sensing)

reconstructed
(multiplexed sensing)

Fig. 6. The reconstruction results on the two projectors. The closeup images of the
diffuse-reflection board at the positions 3 (top) and 4 (bottom); the ground truth image
(left) and the reconstructed images by using single sensing (middle) and multiplexed
sensing (right).

on multiplexed sensing. Then, we reconstructed the images of the board at two
positions different from those for measurement, say positions 3 and 4, when the
transmittances of all the patches are set to 1 by using the acquired light fields.
Specifically, the intensity of each pixel in the reconstructed image is computed
by assuming that the corresponding surface point is illuminated by n anisotropic
point light sources whose intensities and distances are estimated as described in
Section 3.1.

The first light source is two projectors. Fig. 5 shows the images of the diffuse-
reflection board placed at the positions 1 (left) and 2 (right) for measurement.
The transmittances of all the patches are set to 1 for display purpose. We can see
that the characters of “Light” radiated from one projector cross the characters
of “Field” radiated from another projector.

Fig. 6 shows the closeup images of the diffuse-reflection board at the positions
3 (top) and 4 (bottom); the ground truth images and the reconstructed images
by using single sensing and multiplexed sensing from left to right. Here, the
number of patches n is 255. We can see that both the straightforward method
and the proposed method can capture how the characters radiated from the
two projectors cross according to the distance from the projectors. Furthermore,
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position 1 position 2

Fig. 7. The images of the diffuse-reflection board placed at the positions 1 (left) and
2 (right) for measurement under a single projector

ground truth reconstructed
(single sensing)

reconstructed
(multiplexed sensing)

Fig. 8. The reconstruction results on the single projector. The closeup images of the
diffuse-reflection board at the positions 3 (top) and 4 (bottom); the ground truth image
(left) and the reconstructed images by using single sensing (middle) and multiplexed
sensing (right).

we can see that the images reconstructed by using the proposed method based
on multiplexed sensing are less noisy than the images reconstructed by using the
straightforward method based on single sensing. Although some artifacts due to
the discretization (the number of patches n = 255 is not necessarily large enough)
and errors in geometric calibration are still visible, this result demonstrates that
the proposed method works better than the straightforward method.

The second light source is a single projector. Fig. 7 shows the images of the
diffuse-reflection board placed at the positions 1 (left) and 2 (right) for measure-
ment. We can see that the characters of “Light” radiated from the projector is
in focus and out of focus depending on the distance from the projector.

Fig. 8 shows the closeup images of the diffuse-reflection board at the positions
3 (top) and 4 (bottom); the ground truth images and the reconstructed images by
using single sensing and multiplexed sensing from left to right. Here, the number
of patches n is 255. We can see that both the straightforward method and the
proposed method can capture how the characters radiated from the projector
blur according to the distance from the projector. Similar to the above, we can
see that the images reconstructed by using the proposed method are less noisy
than the images reconstructed by using the straightforward method.

The third light source is an electric torch which consists of three LEDs. Fig. 9
shows the images of the diffuse-reflection board placed at the positions 1 (left)
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position 1 position 2

Fig. 9. The images of the diffuse-reflection board placed at the positions 1 (left) and
2 (right) for measurement under an electric torch

ground truth reconstructed
(single sensing)

reconstructed
(multiplexed sensing)

Fig. 10. The reconstruction results on the electric torch. The closeup images of the
diffuse-reflection board at the positions 3 (top) and 4 (bottom); the ground truth image
(left) and the reconstructed images by using single sensing (middle) and multiplexed
sensing (right).

and 2 (right) for measurement. We can see that the lights radiated from the
three LEDs cross each other depending on the distance from the torch.

Fig. 10 shows the closeup images of the diffuse-reflection board at the posi-
tions 3 (top) and 4 (bottom); the ground truth images and the reconstructed
images by using single sensing and multiplexed sensing from left to right. Here,
the number of patches n is 255. We can see that both the straightforward method
and the proposed method can capture how the lights radiated from the three
LEDs cross each other according to the distance from the torch. Similar to
the above, we can see that the images reconstructed by using the proposed
method are less noisy than the images reconstructed by using the straightfor-
ward method.

5 Conclusions and Future Work

In this paper, we proposed a method for measuring 4D light fields of self-luminous
extended light sources by using an LC panel, i.e. a programmable filter and a
diffuse-reflection board. Our proposed method recovers the 4D light field from
the images of the board illuminated by the light radiated from an extended
light source and passing through the LC panel. Our method makes use of the
feature that the transmittance of the LC panel can be controlled both spatially
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and temporally, and recovers 4D light fields efficiently and densely on the basis
of multiplexed sensing. We implemented the prototype setup, and confirmed
through a number of experiments that the proposed method works better than
the straightforward measurement.

One direction of future study is to use more sophisticated filters, e.g. filters
for adaptive sampling and compressive sensing. Another direction of future study
is the applications of the acquired light fields to computer vision problems such
as image-based modeling.
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No. 24650077.
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Abstract. In this work, we introduce a light field acquisition approach
for standard smartphones. The smartphone is manually translated along
a horizontal rail, while recording synchronized video with front and rear
camera. The front camera captures a control pattern, mounted parallel to
the direction of translation to determine the smartphones current posi-
tion. This information is used during a postprocessing step to identify
an equally spaced subset of recorded frames from the rear camera, which
captures the actual scene. From this data we assemble a light field rep-
resentation of the scene. For subsequent disparity estimation, we apply
a structure tensor approach in the epipolar plane images.

We evaluate our method by comparing the light fields resulting from
manual translation of the smartphone against those recorded with a con-
stantly moving translation stage.

Keywords: Computer vision · Light field imaging · Video processing

1 Introduction

While processing capabilities and hardware specifications of todays smartphones
approach those of classical desktop computers, they are additionally equipped
with a wide set of various sensors.

Besides multiple processing units and high amounts of memory, the latest
smartphones are typically provided with GPS, IMUs, compass, (stereo) cameras,
and other sensors.

Currently ongoing research within the domain of depth sensing technolo-
gies [6,10] including new camera systems such as [5,8,9,22] will most likely
introduce an additional set of sensors for smartphones in the near future.

Besides this research and development of future devices, most of todays pro-
duced smartphones are typically equipped with at least one rear camera at the
backside, as well as a front camera, which faces towards the user. Setting up on
this hardware configuration, we aim to perform light field acquisition in an easy
and end-user friendly manner.

We therefore introduce a new acquisition approach for light fields exploiting
the availability of front and rear cameras of todays smartphones (Figure 1). In
this context, different methods to precisely localize the smartphone during the
light field acquisition are evaluated and discussed.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 600–610, 2015.
DOI: 10.1007/978-3-319-16181-5 46
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(a)

1

2

3

4 (b)

(c) (d)

Fig. 1. (a) We manually translate a smartphone along a horizontal rail (1) while
recording synchronized video with front (2) and rear camera (3). The front camera
captures a control pattern (4) allowing the identification of the smartphones position
while the main camera captures the actual light field data (b) of the scene (c). The
resulting depth-map is shown in (d).

2 Related Work

A light field can be represented by the plenoptic function, introduced by Adelson
and Bergen [1], Levoy and Hanrahan [12] and McMillan et al. [15].

The plenoptic function gives the fundamental understanding of representing
and acquiring light fields e.g as 2D light field representation called Lumigraph,
introduced by Gortler et al. [7]. Since then different methods have been estab-
lished to exploit all information a light field provides.

Veeraraghavan et al. [21] introduce a light field acquisition camera using
aperture masks. This masks attenuates the incident light rays without refracting
them. Purpose of these masks is the modulation of the captured images. The
light field is achieve by applying a Fourier transform based image demodulation.

An alternative approach also using aperture masks is called programmable
aperture. Lian et al. [13] applying mask based multiplexing exploiting the fast
multiple-exposures of cameras to generate the light field datasets.

In contrast to digital approaches, Levoy and Hanrahan [12] acquire light field
data using a single moving camera. This is the simplest method and utilizes
a computer controlled 3D translation stage called Gantry to capture suitable
images for light field image processing.

A very similar approach is structure from motion introduced by Bolles
et al. [2], having a straight-line camera motion system to capture a dense sequence
of images. In their paper, they also introduce the exploitation of the epipo-
lar plane images to obtain information about the three-dimensional position of
objects and its usability.

Aside single moving cameras also large camera arrays as introduced by
Wilburn et al. [25] are a possibility to capture light field datasets. While camera
arrays for light field acquisition mostly have the constraint to be mounted on a
planar grid with equidistant spacings between the cameras, Snavely et al. [19]
introduces a method to reconstruct 3D object having a unstructured collection
of images of the same object. The introduced system automatically computed
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(a) (b) (c)

Fig. 2. (a) shows a part of the repetitive control pattern, which was used to locate
the smartphones position during the horizontal translation (b). The captured video
stream of this camera results in a set of video frames (c), which was used to localize
the smartphones position.

the view point of each camera and generates a sparse 3D model of the scene and
image, while the images can be captured in a random way.

Similar to that Davis et al. [3] present a system to interactively acquire light
fields using a hand-held commodity camera. The system has real-time feedback
to the photographer to obtain a dense light field of the captured object for the
3D reconstruction. An other possibility to capture wide angle light fields is been
introduced by Taguchi et al. [20]. In this paper a spherical catadioptric cameras
is modeled, using mirror balls mounted on a common plane. For the capturing,
an aligned camera to the mirror set is been used to obtain the light field data.

While the above introduced methods are based on customary perspective
cameras Adelson and Bergen [1] and Ng et al. [16,17] introduce so called plenop-
tic cameras having a micro lens array in front of the image sensor to obtain
beside spacial information also angular information of the scene. Unfortunately,
the obtained angular information is always combined with a reduction of spacial
resolution. Thus Lumsdaine and Georgiev [4,14] and Perwass et al. [18] intro-
duce focused plenoptic cameras. Difference to the already introduced plenoptic
cameras is the changed focus position of the main lens. Thus a higher resolution
in the resulting light field images is obtained, but also the computational effort
is much higher.

The work of Levoy [11] provides a smartphone application, which allows the
generation of computational images with a narrow depth of field. While the
application is characterized by its good usability, a generation of disparity maps
of the scene is not performed.

3 Method

Assuming to be provided with a smartphone, the required hardware setup was
chosen to allow for a low-cost and end-user friendly light field acquisition. The
presented approach is ready to be used with any state-of-the-art smartphone,
which is able to capture dual video with its main (=rear) and sub (=front)
camera as shown in Figure 1(a).

In this work, we used a smartphone, which records synchronized dual video
with 24fps and a resolution of 640 × 360 pixel per video stream. Neglecting
the additional setup for evaluation as detailed in Section 4, further necessary
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equipment is limited to a rail allowing for horizontal sliding of the phone, as well
as a control pattern provided as a simple printout on a paper sheet.

The control pattern as pictured in Figure 2(a) is horizontally subdivided into
multiple binary patterns of different frequencies. This periodicity allows for an
easy determination of the relative camera position, while excluding any absolute
positioning of the camera towards the pattern. We achieved with the given layout
an easy and fast processing leading to sufficient positioning results.

The actual capturing of the light field is shortly demonstrated in the sup-
plementary video material and consists in the manual shift of the smartphone
along the horizontally mounted rail.

The recording was done at a relatively low translation velocity (≤ 3cm/s) to
allow for a dense sampling of the scene through the video frames and to avoid a
degradation of the recorded data through motion blur or influence of the rolling
shutter.

3.1 Key Frame Extraction

Being provided with the dual video stream of synchronized front and rear camera,
we now aim to describe the captured light field information with a sparse subset
of video frames to make it available for subsequent light field processing. To
do so, we need to identify a set of equally spaced frames within the main video
sequence.

Having the simultaneously recorded video stream of the front camera at hand,
a wide variety of approaches is applicable to perform this task, which consists in
the analysis of a two-dimensional space with a spatial and a temporal dimension
as indicated in Figure 2(c).

In this work, we confine ourselves to evaluate the following methods:

Spacial Intensity Change Around a Fixed Key Position (SIC). When
applying this approach, each frame of the front video stream is considered
independently to retrieve information about the smartphones relative position
towards the control pattern. The intensity gradient in the direction of translation
is thereby computed at a preselected position as shown in Figure 3(a).

As soon as the calculated gradient exceeds a given threshold τg, indicating
the passage of an intensity border within the binary control pattern, the corre-
sponding video frame of the rear-camera is added to the light field representation.
The value of τg was hereby identified as one third of the difference between the
reference values for black and white intensity.

τg =
1
3

· iwhite − iblack

2
+ iblack. (1)

Being provided with those preselected keypoints, this approach allows an
online detection of relevant frames while the video-capturing is still in progress.
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(a)

refw
refb

refw
refb

τg

τg

(b)

Fig. 3. (a) and (b) show two exemplary frames of the control pattern, captured by the
front camera. A keypoint with accompanying evaluation window is indicated by the
topmost orange mark. The two marks below are used to extract corresponding intensity
values for white (refw) and black color (refb). Gradients of the intensity values for the
two frames are assessed within the evaluation window (center) leading to a keyframe
detection for frame (b).

Temporal Intensity Change on Fixed Key Position (TIC). For this app-
roach, we choose keypoints within the video stream of the front camera in the
same manner as for the SIC approach (See Figure 3). However, the introduced
evaluation window as not used, but the intensity values at those keypoint posi-
tions were extracted for all frames of the video. To identify equidistant frames
for light field parametrization, we then detected the edges of the binary control
pattern at the chosen keypoints by comparing intensity values between current
and proceeding frame. Whenever the difference of those intensities exceeded a
given threshold τ the corresponding frame of the rear-camera was marked to be
part of the light field.

The threshold τ was hereby computed in two different ways within this work:
Assuming the overall intensity maximum imax and minimum imin to be given,
we calculated a static threshold τs as average in a straight-forward manner by

τs =
(imax + imin)

2
. (2)

While this threshold is easily determined during a postprocessing step, a tem-
porally dynamic threshold τd is obtained by smoothing the intensity distribution
with a Gaussian function. For frame i we obtain through discrete convolution of
the intensity function fint with the Gaussian distribution g:

τd(i) = (fint ∗ g)(i) =
∑
m

fint[m]g[i − m] (3)

Equidistant Frames in Time-Domain. To allow for a comparison of the
presented methods for key frame extraction (SIC and TIC), we applied a further
approach for keyframe extraction which is independent from the recorded video
stream of the front camera (control pattern).
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We used this method exclusively in conjunction with the translation stage
and extracted a subset of frames by identifying every nth frame of the rear
camera, while assuming constant translation velocity.

3.2 Light Field Processing

The captured keyframes of the main camera were rectified using the calibration
approach of Vogiatzis et al. [23] and can be represented as three dimensional light
field volume, utilizing the two plane parametrization as introduced by Gortler [7]
called lumigraph. Thus we define the Π-plane containing the focal points s ∈ Π
of all cameras and the Ω-plane which denotes the image coordinates (x, y) ∈ Ω.
The resulting three dimensional light field volume becomes

L : Ω × Π → R (s, x, y) �→ L(s, x, y), (4)

where L(s, x, y) defines the color in each point.
In the resulting light field data is an epipolar plane image obtained by slicing

through the light field volume. To achieve this the parameter y is set to a constant
value y∗. The resulting epipolar plane image is then defined by the function

Sy∗ : Σy∗ → R (5)
(x, s) �→ Sy∗(x, s) := L(s, x, y∗). (6)

An epipolar plane image contains information about the scene depth in terms of
depth dependent orientations, see Figure 4.

To analyze these orientations, we use the structure tensor

J = ξ ∗

⎛
⎜⎝

(
∂Ŝ
∂x

)2
∂Ŝ
∂x · ∂Ŝ

∂s

∂Ŝ
∂s · ∂Ŝ

∂x

(
∂Ŝ
∂s

)2

⎞
⎟⎠ =:

(
Jxx Jxs

Jxs Jss

)
(7)

with the abbreviation
Ŝ := σ ∗ Sy∗ , (8)

where σ and ξ define a Gaussian smoothing. The resulting scene disparity infor-
mation can now be computed as given in [24] using the equation

d = tan
(

1
2

arctan
(

2Jxs

Jxx − Jss

))
, (9)

where only the structure tensor components are used to compute the underlying
orientations.

4 Evaluation and Results

To evaluate the proposed approach we exploit the dual capturing mode of a state-
of-the-art smartphone for parallel video acquisition of front and rear camera.
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Fig. 4. Example of an Epipolar Plane Image (EPI) assembled from 31 images

Fig. 5. (a) On site capturing setup: A tripod-mounted and battery-powered translation
stage allows for horizontal camera shifts with welldefined velocities as well as for manual
operation

Besides a manual translation of the smartphone along a rail (Figure 1(a)),
also a translation stage as shown in Figure 5 was used to capture light field data
of different scenes. This stage provides a translation range of more than 25cm
and operates highly accurate regarding the precision of velocity and positioning.

While the shifting velocity during manual operation could not be measured
precisely, the velocity of the translation stage was set to a constant value of
7 mm/s during the acquisition process.

We evaluated besides the office scene (Figure 1) two outdoor scenes, while
applying manual and automatic translation techniques. Figures 6 and 7 provide
an overview of the obtained results, while the performance of the introduced
keyframe detection approaches is discussed below.

Spacial Intensity Change Around a Fixed Key Position (SIC). Since
all frames in this approach are evaluated independently from each other, it can-
not be avoided that directly consecutive frames are detected as keyframes for
the light field: While the gradient detection implies the evaluation of the key-
points neighborhood, it occurs, that consecutive frames are selected as key frames
(e.g. for the 2.5mm pattern in Figure 7(c)), especially at low translation speeds
of the camera and high recording frequencies.

Temporal Intensity Change on Fixed Key Position (TIC). This app-
roach uses the two previously introduced thresholds τs and τd. For large parts of
the evaluated scenarios, both approaches deliver very similar results (Figures 6
and 7)
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Fig. 6. (a) On site acquisition setup. (b) Exemplary frame captured by the smart-
phones rear camera. (c) Temporal intensity distribution for different keypositions in
the front camera stream with an overview of extracted keyframes for different extraction
methods (automatic translation). Resulting disparity maps for automatic translation
(d), using the equidistant extraction approach and for the TIC extraction approach
(e), using the 5mm control pattern. (f) Extracted keyframes using manual translation.
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Fig. 7. (a) On site acquisition setup. (b) Exemplary frame captured by the smart-
phones rear camera. (c) Temporal intensity distribution for different keypositions in
the front camera stream with an overview of extracted keyframes for different extraction
methods (automatic translation). Resulting disparity maps for automatic translation
(d), using the equidistant extraction approach and for the TIC extraction approach (e),
using the 2.5mm control pattern. (f) Extracted keyframes using manual translation.
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Since the acquisition of the light fields requires constant illumination con-
ditions, the property of the dynamically calculated threshold τd to adopt to
possible illumination changes within the scene is obsolete. Additionally tends
this technique to deliver unreliable results at the start and end points of the
recorded video streams. For the generation of disparity maps, resulting from
the TIC approach, we therefore used exclusively the simpler static thresholding
technique basing on τs.

Equidistant Frames in Time-Domain. This approach for keyframe extrac-
tion relies on constant translation velocity of the smartphone and was applied
for evaluation purposes exclusively in conjunction with the translation stage.
Since this method does not exploit any information from the control pattern, we
used it to assess the results of the TIC and SIC approch (Figure 6 and 7).

5 Discussion

While providing in this work a conceptual overview over the proposed light field
acquisition approach, we observed a variety of aspects, which currently prevent
further improvement of results.

The recording with two independently managed (front and rear) camera sys-
tems complicates a full parameter control. Both cameras were checked to capture
frames synchronously, while further camera parameters such as focus, white-
balance or ISO-values remain uncorrelated. Establishing a strongly coupled cam-
era pair, which assures the named parameters to be mutually controlled would
allow to exploit especially prepared control pattern for global white-balancing.

During the evaluating of manually captured scenes, we furthermore noticed
a high sensitivity of the light field processing methods against camera shakes,
which require the user for careful acquisition. Image registration techniques as
part of the postprocessing could possibly reduce this demand.

6 Conclusion

In this work, we introduced a light field acquisition approach for standard smart-
phones exploiting synchronized dual video capturing of front and rear camera.
We evaluated the proposed method for different scenes and achieved comparable
results for the proposed TIC keyframe extraction approach and the equidistant
frame extraction method, relying on the capturings with the translation stage.
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Abstract. Paper-by-paper results make it easy to miss the forest for
the trees. We analyse the remarkable progress of the last decade by dis-
cussing the main ideas explored in the 40+ detectors currently present
in the Caltech pedestrian detection benchmark. We observe that there
exist three families of approaches, all currently reaching similar detec-
tion quality. Based on our analysis, we study the complementarity of the
most promising ideas by combining multiple published strategies. This
new decision forest detector achieves the current best known performance
on the challenging Caltech-USA dataset.

1 Introduction
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Fig. 1. The last decade has shown tremendous
progress on pedestrian detection. What have we
learned out of the 40+ proposed methods?

Pedestrian detection is a
canonical instance of object
detection. Because of its direct
applications in car safety,
surveillance, and robotics, it
has attracted much attention
in the last years. Importantly,
it is a well defined prob-
lem with established bench-
marks and evaluation metrics.
As such, it has served as a
playground to explore differ-
ent ideas for object detec-
tion. The main paradigms
for object detection “Viola&Jones variants”, HOG+SVM rigid templates,
deformable part detectors (DPM), and convolutional neural networks (Con-
vNets) have all been explored for this task.

The aim of this paper is to review progress over the last decade of pedes-
trian detection (40+ methods), identify the main ideas explored, and try to
quantify which ideas had the most impact on final detection quality. In the
next sections we review existing datasets (section 2), provide a discussion of the
different approaches (section 3), and experiments reproducing/quantifying the
recent years’ progress (section 4, presenting experiments over ∼ 20 newly trained

c© Springer International Publishing Switzerland 2015
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(a) INRIA test set (b) Caltech-USA test set (c) KITTI test set

Fig. 2. Example detections of a top performing method (SquaresChnFtrs)

detector models). Although we do not aim to introduce a novel technique, by
putting together existing methods we report the best known detection results
on the challenging Caltech-USA dataset.

2 Datasets

Multiple public pedestrian datasets have been collected over the years; INRIA
[1], ETH [2], TUD-Brussels [3], Daimler [4] (Daimler stereo [5]), Caltech-USA [6],
and KITTI [7] are the most commonly used ones. They all have different char-
acteristics, weaknesses, and strengths.

INRIA is amongst the oldest and as such has comparatively few images. It
benefits however from high quality annotations of pedestrians in diverse settings
(city, beach, mountains, etc.), which is why it is commonly selected for training
(see also §4.4). ETH and TUD-Brussels are mid-sized video datasets. Daimler is
not considered by all methods because it lacks colour channels. Daimler stereo,
ETH, and KITTI provide stereo information. All datasets but INRIA are obtained
from video, and thus enable the use of optical flow as an additional cue.

Today, Caltech-USA and KITTI are the predominant benchmarks for pedes-
trian detection. Both are comparatively large and challenging. Caltech-USA
stands out for the large number of methods that have been evaluated side-
by-side. KITTI stands out because its test set is slightly more diverse, but is
not yet used as frequently. For a more detailed discussion of the datasets please
consult [7,8]. INRIA, ETH (monocular), TUD-Brussels, Daimler (monocular),
and Caltech-USA are available under a unified evaluation toolbox; KITTI uses
its own separate one with unpublished test data. Both toolboxes maintain an
online ranking where published methods can be compared side by side.

In this paper we use primarily Caltech-USA for comparing methods, INRIA
and KITTI secondarily. See figure 2 for example images. Caltech-USA and
INRIA results are measured in log-average miss-rate (MR, lower is better), while
KITTI uses area under the precision-recall curve (AUC, higher is better).

Value of Benchmarks. Individual papers usually only show a narrow view
over the state of the art on a dataset. Having an official benchmark that collects
detections from all methods greatly eases the author’s effort to put their curve
into context, and provides reviewers easy access to the state of the art results.
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Table 1. Listing of methods considered on Caltech-USA, sorted by log-average miss-
rate (lower is better). Consult sections 3.1 to 3.9 for details of each column. See also
matching figure 3. “HOG” indicates HOG-like [1]. Ticks indicate salient aspects of each
method.
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VJ [9] 94.73% DF � � Haar I
Shapelet [10] 91.37% - � Gradients I
PoseInv [11] 86.32% - � HOG I+

LatSvm-V1 [12] 79.78% DPM � HOG P
ConvNet [13] 77.20% DN � Pixels I
FtrMine [14] 74.42% DF � HOG+Color I
HikSvm [15] 73.39% - � HOG I

HOG [1] 68.46% - � � HOG I
MultiFtr [16] 68.26% DF � � HOG+Haar I

HogLbp [17] 67.77% - � HOG+LBP I
AFS+Geo [18] 66.76% - � Custom I

AFS [18] 65.38% - Custom I
LatSvm-V2 [19] 63.26% DPM � � HOG I

Pls [20] 62.10% - � � Custom I
MLS [21] 61.03% DF � HOG I

MultiFtr+CSS [22] 60.89% DF � Many T
FeatSynth [23] 60.16% - � � Custom I
pAUCBoost [24] 59.66% DF � � HOG+COV I

FPDW [25] 57.40% DF HOG+LUV I
ChnFtrs [26] 56.34% DF � � HOG+LUV I

CrossTalk [27] 53.88% DF � HOG+LUV I
DBN−Isol [28] 53.14% DN � HOG I

ACF [29] 51.36% DF � HOG+LUV I
RandForest [30] 51.17% DF � HOG+LBP I&C

MultiFtr+Motion [22] 50.88% DF � � Many+Flow T
SquaresChnFtrs [31] 50.17% DF � HOG+LUV I

Franken [32] 48.68% DF � HOG+LUV I
MultiResC [33] 48.45% DPM � � � HOG C

Roerei [31] 48.35% DF � � HOG+LUV I
DBN−Mut [34] 48.22% DN � � HOG C

MF+Motion+2Ped [35] 46.44% DF � � Many+Flow I+
MOCO [36] 45.53% - � � HOG+LBP C

MultiSDP [37] 45.39% DN � � � HOG+CSS C
ACF-Caltech [29] 44.22% DF � HOG+LUV C

MultiResC+2Ped [35] 43.42% DPM � � � HOG C+
WordChannels [38] 42.30% DF � Many C

MT-DPM [39] 40.54% DPM � � HOG C
JointDeep [40] 39.32% DN � Color+Gradient C

SDN [41] 37.87% DN � � Pixels C
MT-DPM+Context [39] 37.64% DPM � � � HOG C+

ACF+SDt [42] 37.34% DF � � ACF+Flow C+
SquaresChnFtrs [31] 34.81% DF � HOG+LUV C

InformedHaar [43] 34.60% DF � HOG+LUV C
Katamari-v1 22.49% DF � � � HOG+Flow C+
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The collection of results enable retrospective analyses such as the one presented
in the next section.

3 Main Approaches to Improve Pedestrian Detection

Figure 3 and table 1 together provide a quantitative and qualitative overview
over 40+ methods whose results are published on the Caltech pedestrian detec-
tion benchmark (July 2014). Methods marked in italic are our newly trained
models (described in section 4). We refer to all methods using their Caltech
benchmark shorthand. Instead of discussing the methods’ individual particular-
ities, we identify the key aspects that distinguish each method (ticks of table 1)
and group them accordingly. We discuss these aspects in the next subsections.

SquaresChnFtrs

SquaresChnFtrs

Katamari-v1

Fig. 3. Caltech-USA detection results

Brief Chronology. In
2003, Viola and Jones applied
their VJ detector [44] to the
task of pedestrian detec-
tion. In 2005 Dalal and
Triggs introduced the land-
mark HOG [1] detector,
which later served in 2008
as a building block for
the now classic deformable
part model DPM (named
LatSvm here) by Felzen-
swalb et al. [12]. In 2009 the
Caltech pedestrian detec-
tion benchmark was intro-
duced, comparing seven
pedestrian detectors [6]. At
this point in time, the
evaluation metrics changed
from per-window (FPPW)
to per-image (FPPI), once
the flaws of the per-window
evaluation were identified
[8]. Under this new eval-
uation metric some of the
early detectors turned out
to under-perform.

About one third of the methods considered here were published during 2013,
reflecting a renewed interest on the problem. Similarly, half of the KITTI results
for pedestrian detection were submitted in 2014.
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3.1 Training Data

Figure 3 shows that differences in detection performance are, not surprisingly,
dominated by the choice of training data. Methods trained on Caltech-USA sys-
tematically perform better than methods that generalise from INRIA. Table 1
gives additional details on the training data used1. High performing meth-
ods with “other training” use extended versions of Caltech-USA. For instance
MultiResC+2Ped uses Caltech-USA plus an extended set of annotations over
INRIA, MT-DPM+Context uses an external training set for cars, and ACF+SDt
employs additional frames from the original Caltech-USA videos.

3.2 Solution Families

Overall we notice that out of the 40+ methods we can discern three families: 1)
DPM variants (MultiResC [33], MT-DPM [39], etc.), 2) Deep networks (JointDeep
[40], ConvNet [13], etc.), and 3) Decision forests (ChnFtrs, Roerei, etc.). On
table 1 we identify these families as DPM, DN, and DF respectively.

Based on raw numbers alone boosted decision trees (DF) seem particularly
suited for pedestrian detection, reaching top performance on both the “train
on INRIA, test on Caltech”, and “train on Caltech, test on Caltech” tasks. It
is unclear however what gives them an edge. The deep networks explored also
show interesting properties and fast progress in detection quality.
Conclusion Overall, at present, DPM variants, deep networks, and (boosted)
decision forests all reach top performance in pedestrian detection (around 37%
MR on Caltech-USA, see figure 3).

3.3 Better Classifiers

Since the original proposal of HOG+SVM [1], linear and non-linear kernels have been
considered. HikSvm [15] considered fast approximations of non-linear kernels. This
method obtains improvements when using the flawed FPPW evaluation metric
(see section 3), but fails to perform well under the proper evaluation (FPPI). In
the work on MultiFtrs [16], it was argued that, given enough features, Adaboost
and linear SVM perform roughly the same for pedestrian detection.

Recently, more and more components of the detector are optimized jointly
with the “decision component” (e.g. pooling regions in ChnFtrs [26], filters in
JointDeep [40]). As a result the distinction between features and classifiers is
not clear-cut anymore (see also sections 3.8 and 3.9).

Conclusion There is no conclusive empirical evidence indicating that whether
non-linear kernels provide meaningful gains over linear kernels (for pedestrian
detection, when using non-trivial features). Similarly, it is unclear whether one
particular type of classifier (e.g. SVM or decision forests) is better suited for
pedestrian detection than another.
1 “Training” data column: I→INRIA, C→Caltech, I+/C+ →INRIA/Caltech and

additional data, P→Pascal, T→TUD-Motion, I&C→both INRIA and Caltech.
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3.4 Additional Data

The core problem of pedestrian detection focuses on individual monocular colour
image frames. Some methods explore leveraging additional information at train-
ing and test time to improve detections. They consider stereo images [45], optical
flow (using previous frames, e.g. MultiFtr+Motion [22] and ACF+SDt [42]), track-
ing [46], or data from other sensors (such as lidar [47] or radar).

For monocular methods it is still unclear how much tracking can improve
per-frame detection itself. As seen in figure 4 exploiting optical flow provides a
non-trivial improvement over the baselines. Curiously, the current best results
(ACF-SDt [42]) are obtained using coarse rather than high quality flow. In section
4.2 we inspect the complementarity of flow with other ingredients. Good success
exploiting flow and stereo on the Daimler dataset has been reported [48], but
similar results have yet to be seen on newer datasets such as KITTI.
Conclusion Using additional data provides meaningful improvements, albeit on
modern dataset stereo and flow cues have yet to be fully exploited. As of now,
methods based merely on single monocular image frames have been able to keep
up with the performance improvement introduced by additional information.

3.5 Exploiting Context

Sliding window detectors score potential detection windows using the content
inside that window. Drawing on the context of the detection window, i.e.
image content surrounding the window, can improve detection performance.
Strategies for exploiting context include: ground plane constraints (MultiResC
[33], RandForest [30]), variants of auto-context [49] (MOCO [36]), other category
detectors (MT-DPM+Context [39]), and person-to-person patterns (DBN−Mut [34],
+2Ped [35], JointDeep [40]).
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Relative improvement on Caltech-USA reasonable set

More data
Context

Fig. 4. Caltech-USA detection improvements
for different method types. Improvement rel-
ative to each method’s relevant baseline
(“method vs baseline”).

Figure 4 shows the performance
improvement for methods incor-
porating context. Overall, we see
improvements of 3 ∼ 7 MR per-
cent points. (The negative impact
of AFS+Geo is due to a change
in evaluation, see section 3.) Inter-
estingly, +2Ped [35] obtains a con-
sistent 2 ∼ 5 MR percent point
improvement over existing meth-
ods, even top performing ones (see
section 4.2).
Conclusion Context provides con-
sistent improvements for pedestrian
detection, although the scale of
improvement is lower compared to additional test data (§3.4) and deep architec-
tures (§3.8). The bulk of detection quality must come from other sources.
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3.6 Deformable Parts

The DPM detector [19] was originally motivated for pedestrian detection. It is
an idea that has become very popular and dozens of variants have been explored.

For pedestrian detection the results are competitive, but not salient (LatSvm
[12,50], MultiResC [33], MT-DPM [39]). More interesting results have been obtained
when modelling parts and their deformations inside a deep architecture (e.g.DBN−-
Mut [34], JointDeep [40]).

DPM and its variants are systematically outmatched by methods using a sin-
gle component and no parts (Roerei [31], SquaresChnFtrs see section 4.1),
casting doubt on the need for parts. Recent work has explored ways to capture
deformations entirely without parts [51,52].

Conclusion For pedestrian detection there is still no clear evidence for the neces-
sity of components and parts, beyond the case of occlusion handling.

3.7 Multi-scale Models

Typically for detection, both high and low resolution candidate windows are
resampled to a common size before extracting features. It has recently been
noticed that training different models for different resolutions systematically
improve performance by 1 ∼ 2 MR percent points [31,33,39], since the detector
has access to the full information available at each window size. This technique
does not impact computational cost at detection time [53], although training
time increases.
Conclusion Multi-scale models provide a simple and generic extension to exist-
ing detectors. Despite consistent improvements, their contribution to the final
quality is rather minor.

3.8 Deep Architectures

Large amounts of training data and increased computing power have lead to
recent successes of deep architectures (typically convolutional neural networks)
on diverse computer vision tasks (large scale classification and detection [54,
55], semantic labelling [56]). These results have inspired the application of deep
architectures to the pedestrian task.

ConvNet [13] uses a mix of unsupervised and supervised training to create a
convolutional neural network trained on INRIA. This method obtains fair results
on INRIA, ETH, and TUD-Brussels, however fails to generalise to the Caltech
setup. This method learns to extract features directly from raw pixel values.

Another line of work focuses on using deep architectures to jointly model
parts and occlusions (DBN−Isol [28], DBN−Mut [34], JointDeep [40], and SDN
[41]). The performance improvement such integration varies between 1.5 to 14
MR percent points. Note that these works use edge and colour features [28,34,
40], or initialise network weights to edge-sensitive filters, rather than discovering
features from raw pixel values as usually done in deep architectures. No results
have yet been reported using features pre-trained on ImageNet [54,57].
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Conclusion Despite the common narrative there is still no clear evidence that
deep networks are good at learning features for pedestrian detection (when using
pedestrian detection training data). Most successful methods use such archi-
tectures to model higher level aspects of parts, occlusions, and context. The
obtained results are on par with DPM and decision forest approaches, making
the advantage of using such involved architectures yet unclear.

3.9 Better Features

The most popular approach (about 30% of the considered methods) for improv-
ing detection quality is to increase/diversify the features computed over the
input image. By having richer and higher dimensional representations, the clas-
sification task becomes somewhat easier, enabling improved results. A large set
of feature types have been explored: edge information [1,26,41,58], colour infor-
mation [22,26], texture information [17], local shape information [38], covariance
features [24], amongst others. More and more diverse features have been shown
to systematically improve performance.

While various decision forest methods use 10 feature channels (ChnFtrs,
ACF, Roerei, SquaresChnFtrs, etc.), some papers have considered up to an
order of magnitude more channels [16,24,30,38,58]. Despite the improvements
by adding many channels, top performance is still reached with only 10 channels
(6 gradient orientations, 1 gradient magnitude, and 3 colour channels, we name
these HOG+LUV); see table 1 and figure 3. In section 4.1 we study in more
detail different feature combinations.

From all what we see, from VJ (95% MR) to ChnFtrs (56.34% MR, by adding
HOG and LUV channels), to SquaresChnFtrs-Inria (50.17% MR, by exhaus-
tive search over pooling sizes, see section 4), improved features drive progress.
Switching training sets (section 3.1) enables SquaresChnFtrs-Caltech to reach
state of the art performance on the Caltech-USA dataset; improving over signif-
icantly more sophisticated methods. InformedHaar [43] obtains top results by
using a set of Haar-like features manually designed for the pedestrian detection
task. In contrast SquaresChnFtrs-Caltech obtains similar results without using
such hand-crafted features and being data driven instead.

Upcoming studies show that using more (and better features) yields further
improvements [59,60]. It should be noted that better features for pedestrian
detection have not yet been obtained via deep learning approaches (see caveat
on ImageNet features in section 3.8).

Conclusion In the last decade improved features have been a constant driver for
detection quality improvement, and it seems that it will remain so in the years
to come. Most of this improvement has been obtained by extensive trial and
error. The next scientific step will be to develop a more profound understanding
of the what makes good features good, and how to design even better ones2.
2 This question echoes with the current state of the art in deep learning, too.
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Fig. 5. Effect of features on detection
performance. Caltech-USA reasonable test
set.
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4 Experiments

Based on our analysis in the previous section, three aspects seem to be the most
promising in terms of impact on detection quality: better features (§3.9), addi-
tional data (§3.4), and context information (§3.5). We thus conduct experiments
on the complementarity of these aspects.

Among the three solution families discussed (section 3.2), we choose the
Integral Channels Features framework [26] (a decision forest) for conducting our
experiments. Methods from this family have shown good performance, train in
minutes∼hours, and lend themselves to the analyses we aim.

In particular, we use the (open source) SquaresChnFtrs baseline described in
[31]: 2048 level-2 decision trees (3 threshold comparisons per tree) over HOG+LUV
channels (10 channels), composing one 64 × 128 pixels template learned via
vanilla AdaBoost and few bootstrapping rounds of hard negative mining.

4.1 Reviewing the Effect of Features

In this section, we evaluate the impact of increasing feature complexity. We tune
all methods on the INRIA test set, and demonstrate results on the Caltech-USA
test set (see figure 5). Results on INRIA as well as implementation details can
be found in the supplementary material.

The first series of experiments aims at mimicking landmark detection tech-
niques, such as VJ [44], HOG+linear SVM [1], and ChnFtrs [26]. VJLike uses only
the luminance colour channel, emulating the Haar wavelet like features from the
original [44] using level 2 decision trees. HOGLike-L1/L2 use 8× 8 pixel pooling
regions, 1 gradient magnitude and 6 oriented gradient channels, as well as level
1/2 decision trees. We also report results when adding the LUV colour chan-
nels HOGLike+LUV (10 feature channels total). SquaresChnFtrs is the baseline
described in the beginning of section 4, which is similar to HOGLike+LUV to but
with square pooling regions of any size.
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Fig. 7. Some of the top quality detection meth-
ods for Caltech-USA. See section 4.2.
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Fig. 8. Pedestrian detection on the
KITTI dataset

Inspired by [60], we also expand the 10 HOG+LUV channels into 40 channels
by convolving each channel with three DCT (discrete cosine transform) basis
functions (of 7 × 7 pixels), and storing the absolute value of the filter responses
as additional feature channels. We name this variant SquaresChnFtrs+DCT.

Conclusion Much of the progress since VJ can by explained by the use of better
features, based on oriented gradients and colour information. Simple tweaks to
these well known features (e.g. projection onto the DCT basis) can still yield
noticeable improvements.

4.2 Complementarity of Approaches

After revisiting the effect of single frame features in section 4.1 we now consider
the complementary of better features (HOG+LUV+DCT), additional data (via
optical flow), and context (via person-to-person interactions).

We encode the optical flow using the same SDt features from ACF+SDt [33]
(image difference between current frame T and coarsely aligned T-4 and T-
8). The context information is injected using the +2Ped re-weighting strategy
[35] (the detection scores are combined with the scores of a “2 person” DPM
detector). In all experiments both DCT and SDt features are pooled over 8 × 8
regions (as in [33]), instead of “all square sizes” for the HOG+LUV features.

The combination SquaresChnFtrs+DCT+SDt+2Ped is called Katamari-v1.
Unsurprisingly, Katamari-v1 reaches the best known result on the Caltech-USA
dataset. In figure 7 we show it together with the best performing method for each
training set and solution family (see table 1). The supplementary material contains
results of all combinations between the ingredients.
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Conclusion Our experiments show that adding extra features, flow, and context
information are largely complementary (12% gain, instead of 3+ 7+ 5%), even
when starting from a strong detector.
It remains to be seen if future progress in detection quality will be obtained by
further insights of the “core” algorithm (thus further diminishing the relative
improvement of add-ons), or by extending the diversity of techniques employed
inside a system.

4.3 How Much Model Capacity Is Needed?

The main task of detection is to generalise from training to test set. Before
we analyse the generalisation capability (section 4.4), we consider a necessary
condition for high quality detection: is the learned model performing well on the
training set?

In figure 6 we see the detection quality of the models considered in section
4.1, when evaluated over their training set. None of these methods performs
perfectly on the training set. In fact, the trend is very similar to performance on
the test set (see figure 5) and we do not observe yet symptoms of over-fitting.

Conclusion Our results indicate that research on increasing the discriminative
power of detectors is likely to further improve detection quality. More discrim-
inative power can originate from more and better features or more complex
classifiers.

4.4 Generalisation Across Datasets

Table 2. Effect of training set over the detection
quality. Bold indicates second best training set for
each test set, except for ETH where bold indicates
the best training set.

Test
set

Training
set

INRIA Caltech-USA KITTI

INRIA 17 .42 % 60.50% 55.83%
Caltech-USA 50.17% 34 .81 % 61.19%

KITTI 38.61% 28.65% 44 .42 %
ETH 56.27% 76.11% 61.19%

For real world application
beyond a specific benchmark,
the generalisation capability of
a model is key. In that sense
results of models trained on
INRIA and tested on Caltech-
USA are more relevant than
the ones trained (and tested)
on Caltech-USA.

Table 2 shows the per-
formance of SquaresChnFtrs
over Caltech-USA when using
different training sets (MR for
INRIA/Caltech/ETH, AUC for KITTI). These experiments indicate that train-
ing on Caltech or KITTI provides little generalisation capability towards INRIA,
while the converse is not true. Surprisingly, despite the visual similarity between
KITTI and Caltech, INRIA is the second best training set choice for KITTI
and Caltech. This shows that Caltech-USA pedestrians are of “their own kind”,
and that the INRIA dataset is effective due to its diversity. In other words few
diverse pedestrians (INRIA) is better than many similar ones (Caltech/KITTI).
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The good news is that the best methods seem to perform well both across
datasets and when trained on the respective training data. Figure 8 shows
methods trained and tested on KITTI, we see that SquaresChnFtrs (named
SquaresICF in KITTI) is better than vanilla DPM and on par with the best
known DPM variant. The currently best method on KITTI, pAUC [59], is a vari-
ant of ChnFtrs using 250 feature channels (see the KITTI website for details
on the methods). These two observations are consistent with our discussions in
sections 3.9 and 4.1.

Conclusion While detectors learned on one dataset may not necessarily transfer
well to others, their ranking is stable across datasets, suggesting that insights
can be learned from well-performing methods regardless of the benchmark.

5 Conclusion

Our experiments show that most of the progress in the last decade of pedestrian
detection can be attributed to the improvement in features alone. Evidence sug-
gests that this trend will continue. Although some of these features might be
driven by learning, they are mainly hand-crafted via trial and error.

Our experiment combining the detector ingredients that our retrospective
analysis found to work well (better features, optical flow, and context) shows
that these ingredients are mostly complementary. Their combination produces
best published detection performance on Caltech-USA.

While the three big families of pedestrian detectors (deformable part models,
decision forests, deep networks) are based on different learning techniques, their
state-of-the-art results are surprisingly close.

The main challenge ahead seems to develop a deeper understanding of what
makes good features good, so as to enable the design of even better ones.
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Abstract. Efficient and fast object detection from continuously stre-
amed 3-D point clouds has a major impact in many related research
tasks, such as autonomous driving, self localization and mapping and
understanding large scale environment. This paper presents a LIDAR-
based framework, which provides fast detection of 3-D urban objects
from point cloud sequences of a Velodyne HDL-64E terrestrial LIDAR
scanner installed on a moving platform. The pipeline of our framework
receives raw streams of 3-D data, and produces distinct groups of points
which belong to different urban objects. In the proposed framework we
present a simple, yet efficient hierarchical grid data structure and corre-
sponding algorithms that significantly improve the processing speed of
the object detection task. Furthermore, we show that this approach con-
fidently handles streaming data, and provides a speedup of two orders
of magnitude, with increased detection accuracy compared to a baseline
connected component analysis algorithm.

Keywords: LIDAR · Urban object detection · 3-D point clouds · Dynamic
processing

1 Introduction

1.1 Problem Statement

The reliable perception of the surrounding environment is an important task in
outdoor robotics. Robustly detecting and identifying various urban objects are
key problems for autonomous driving, and driving assistance systems. Future
mobile vision systems promise a number of benefits for the society, including
prevention of road accidents by constantly monitoring the surrounding vehicles
or ensuring more comfort and convenience for the drivers. Vision systems with
capability of handling continuously streamed sensor data have become impor-
tant tools for robot perception [13]. Laser range sensors are particularly efficient
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for these tasks since in contrast to conventional camera systems they are highly
robust against illumination changes or weather conditions, and they may pro-
vide a larger field of view. Moreover, LIDAR mapping systems are able to rapidly
acquire large-scale 3-D point cloud data for real-time vision, with jointly provid-
ing accurate 3-D geometrical information of the scene, and additional features
about the reflection properties and compactness of the surfaces. The detection of
urban objects is a fundamental problem in any perception motivated point cloud
processing task [15]. Although it is a challenging problem itself, it can be helpful
for several robot vision tasks, such as object recognition, localization or feature
extraction. We focus here on the object detection problem relying on large-scale
terrestrial urban point clouds, more specifically, we use point set data obtained
by a Velodyne HDL-64 S2 laser acquisition system. The problem of detecting
objects on streaming point clouds is challenging for various reasons. First, the
raw sensor measurements are noisy. Second, the point density is uneven: [2] typ-
ically in terrestrial LIDAR point clouds the point densities dominate from the
direction the measurement is taken, causing strongly corrupted geometric prop-
erties of the objects such as missing object parts or deformed shapes. The object
detection process is further complicated when the data is continuously streamed
from a laser sensor on a moving platform or a mobile robot. In this case we are
forced to complete a complex task within a very limited time frame.

1.2 Related Works

A number of approaches are available in the literature for solving 3-D object
detection and recognition problems in outdoor laser scans. The used data struc-
ture are essential part all of the existing techniques, and they can be coarsely
divided into two categories.

In the first category, traditional pre-computed tree-based data structures can
be used, such as Kd-tree, Octree, range tree [3],[14]. These structures are efficient
for performing range search, although there is a large processing overhead at ini-
tialization, and their performance rapidly degrades as updated data inserted
after calling for reconstruction the tree structure [11]. Recent approaches apply
different region growing techniques over tree-based structures to obtain coherent
objects. The authors of [1] present an octree based occupancy grid representa-
tion to model the dynamic environment surrounding the vehicle and to detect
moving objects based on inconsistencies between scans. However, the run-time
and detection performance of the algorithm is not discussed here.

The second category of the methods focus on grid-based data structures
and efficient dynamic processing techniques for fast detection or recognition of
objects from streaming 3-D data. In [7] the authors propose a fast segmentation
of point clouds into objects, which is accomplished by a standard connected
component algorithm in a 2-D occupancy grid, and object classification is done
on the raw point cloud segments with 3-D shape descriptors and a SVM classifier.
Different voxel grid structures are also widely used to complete various scene
understanding tasks, including segmentation, detection and recognition [11]. The
data is stored here in cubic voxels for efficient retrieval of the 3-D points.
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Efficient range search from streaming data is an essential component of any
object detection problem, and can be used for retrieval of all points which fall
within a certain distance of a given point. For this task, a scrolling voxel grid data
structure was proposed by [11]. The data is quantized here into small voxels of a
prespecified resolution, then the indices of the voxels are shifted using a circular
buffer according to the robot motion. To handle querying a large subvolume of
space in sparse data, a sparse global grid was proposed by [8], when all streamed
measurements were stored in a voxel-based global map. All of the approaches
mentioned above provide convincing object detection results in large scale 3-D
environment but they have some important limitations. Firstly, standard con-
nected component solutions over tree-based data structures give very precise
detection results, but they are not fast enough to serve real-time vision systems.
Although, there exist efficient data structures for modifying minimum spanning
trees which have sublinear complexity for each online update [4], this solution is
impractical with streaming 3-D data [8]. Secondly, recent studies which suggest
voxel, 2-D, scrolling, octree -grid based data structures for detection or recogni-
tion tasks do not propose optimal grid parameter settings (e.g. grid resolution or
grid cell size) in order to minimize execution time, and maximize detection accu-
racy. Instead, they choose one certain grid resolution heuristically, and evaluate
the performance of their detection method on this predefined grid resolution.

2 Proposed Approach

We propose a new data structure and a corresponding algorithm which is a
basis of an efficient range search technique and a connected component analy-
sis approach for fast object detection. In addition an optimal parameter setting
strategy is proposed for enhancing the accuracy, which leads to the same or bet-
ter detection performance than the tree-based approaches. More specifically, the
following four main improvements have been implemented:

� Novel 2-D hierarchical grid structure for fast range search in 3-D: a multi-
level 2-D grid structure is presented with two different grid resolution levels (low
and high). This structure is specifically designed for object detection i.e. con-
nected component analysis tasks. We use these different grid levels to provide
efficient and fast retrieval of 3-D point cloud features for the object detector
module of our framework even in cases of strongly inhomogeneous point cloud
density. We have experienced that standard 2-D grid structures [7] may give a
decent result for region segmentation tasks e.g. ground detection, but they are
not accurate enough near to the object boundaries, and they do not perform
well in case of nearby urban objects. On one hand, using a large cell size mul-
tiple objects can occur within a given cell, resulting in several objects merged
to the same extracted component. On the other hand a too dense grid structure
(i.e. small cell size) may yield cells containing only a few points, which case does
not enable us to calculate discriminative point cloud features for reliable classi-
fication. In Section 3 we introduce the proposed grid structure in details.
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Fig. 1. Overview of the proposed object detection workflow [Note: color codes in Fig.
(b): brown = walls, grey=ground, blue=other street objects]

� Connected Component Algorithm for streaming data: a simple, yet efficient
connected component analysis method is proposed in the hierarchical grid data
structure, which provides reliable detection results in urban environment with
real-time performance. In contrast to previous works [6],[14] this module of our
framework queries local 3-D point cloud features from the hierarchical grid, and
decides which 3-D points belong to the same urban object. The algorithm relies
on different merging criteria to fulfill this task. See Section 3.2 for the details.

� Optimal grid resolution in urban environment: In case of grid-based detec-
tion tasks, one of the biggest challenges is to find decent trade-off with respect to
speed and accuracy. The major factor which can influence these properties is the
grid resolution i.e. the size of a grid cell. It is crucial to select optimal grid res-
olution to keep the detection accuracy high, and the processing time low. In [7]
the grid size has been selected manually without justification. Other approaches
measure the entropies of the misclassification rate within the grid cell compared
to different cell sizes. As a compromise to balance efficiency and accuracy they
choose a certain grid resolution [8]. In contrast to above solutions, we propose
a novel statistical metrics for approximation of the optimal grid resolution in
terms of object detection.

� Publishing a new large dataset of hand-labeled 3-D point clouds: We imple-
mented a 3-D point cloud annotation tool for two reasons: First, we intend to
provide a free annotated dataset to the research community. Second, using the
Ground Truth (GT) we can evaluate the performance of our algorithm quanti-
tatively, and we can compare it to earlier solutions.

The detailed description of the proposed object detection framework is struc-
tured as follows. In Section 3 we present a data structure that will allow us to
perform fast retrieval of 3-D point cloud features for segmentation and detection
purposes. In Section 3.1 we describe our point cloud segmentation algorithm
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(see Fig. 1 b)). The point cloud is classified into large semantic regions such as
ground, walls, street objects to prepare the data for object detection, which is
presented in Section 3.2 (see Fig. 1 c)). We discuss the parameter sensitivity and
the performance evaluation of the proposed grid model in Section 4 and 5.

3 Data Structures

In this section, we introduce the grid based data structures used in the proposed
system. First, we construct a Simple Grid Model [9] which will be used for initial
point cloud segmentation, i.e. separating regions of roads, walls and short street
objects. Second, we present a novel Hierarchical Grid Model which will be used
for robust 3-D object detection from the strongly inhomogeneous density point
clouds in challenging dense urban environments where several nearby object may
be located close to each other.

Fig. 2. Visualization of our hierarchical grid model data structure - (bottom) the coarse
grid level: the 3-D space coarsely quantized into 2-D grid cells, (top) the dense grid
level: each grid cell on the coarse level subdivided into smaller cells

� Simple Grid Model: We fit a regular 2-D grid S with WS rectangle side
length onto the Pz=0 plane (using the Velodyne sensor’s vertical axis as the z
direction and the sensor height as a reference coordinate), where s ∈ S denotes
a single cell. We assign each p ∈ P point of the point cloud to the corre-
sponding cell sp, which contains the projection of p to Pz=0. Let us denote
by Ps = {p ∈ P : s = sp} the point set projected to cell s. Moreover, we store
the height coordinate and different height properties such as, maximum zmax(s),
minimum zmin(s) and average ẑ(s) of the elevation values within cell s, which
quantities will be used later in point cloud segmentation.

� Hierarchical Grid Model: Our key idea is to create an extended grid based
approach (see Fig. 2) called hierarchical grid model which uses a coarse and dense
grid resolution. The cell s of the coarse grid level is subdivided into smaller cells
s′
d|d ∈ {1, 2, . . . , ξ2}, with cell side length Ws′

d
= Ws/ξ, where ξ is a scaling
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factor (used ξ = 3). We store each 3-D point in the coarse and dense grid level
as well. We use this data construction to perform object detection, as detailed
in Section 3.2.

3.1 Point Cloud Segmentation Using a Simple Grid Model

In our system, point cloud segmentation is achieved by a simple grid based app-
roach. Our goal is to discriminate regions of ground, walls and short street objects
in the input cloud. For ground segmentation we apply a locally adaptive terrain
modeling approach similarly to [9], which is able to accurately extract the road
regions, even if their surfaces are not perfectly planar.

Fig. 3. The refinement of the point cloud segmentation result with probabilistic Hough
transformation - (left) the misclassified cloud regions denoted by green circles. (right)
Point cloud segmentation after Hough-based wall fitting step.

We use point height information for assigning each grid cell to the corre-
sponding cell class. Before that, we detect and remove grid cells that belong to
clutter regions, thus we will not visit these cells later and save processing time.
We classify any cell to clutter, which contains less points than a predefined
threshold (typically 4-8 points). After clutter removal all the points in a cell are
classified as ground, if the difference of the minimal and maximal point eleva-
tions in the cell is smaller than a threshold (used 25cm), moreover the average
of the elevations in neighboring cells does not exceeds an allowed height range.
A cell belongs to the class of tall structure objects (e.g. traffic signs, building
walls, lamp post etc.), if either the maximal point height within the cell is larger
than a predefined value (used 140cm), or the observed point height difference
is larger than a threshold (used 310cm). The rest of the points in the cloud
are assigned to class short street object belonging to vehicles, pedestrians, mail
boxes, billboards etc. Due to the limited vertical view angle of the Velodyne
LIDAR (+2◦ up to -24.8◦ down), the defined elevation criteria may fail near to
the sensor position. In narrow streets where road sides located closely to the
measurement position, several nearby grid cells can be misclassified regularly
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e.g. some parts of the walls and the building facades are classified to short street
object cell class instead of tall object cell class (see Fig. 3a)). Our aim is to filter
out all of the tall objects, facades and wall structures from the scene, and use
only the short object class labels for object detection. For this purpose we pro-
posed a probabilistic Hough transformation based segmentation refinement. The
grid cells with class labels tall object and short street object were projected into
a pixel lattice (i.e. an image), and a probabilistic Hough transformation [12] was
used to detect long - elongated structures, which belong to facades or walls in
the original point cloud, thereafter the detected lines were back projected into
a cloud. The class labels of the grid cells are updated from short street object
to tall object if 1): the grid cell position fits the detected Hough-lines, and 2):
the class label of the grid cell was short street object before the Hough based
refinement step (see Fig. 3b)).

3.2 Urban Object Detection with a Hierarchical Grid Model

In this section we present the object detection step of our framework. Our aim
is to find distinct groups of points which belong to different urban objects on
the scene. We used the initial segmentation from Section 3.1, with considering
the short object cell class as foreground, while we label the other classes as back-
ground. For object detection we use the hierarchical grid model : On one hand,
the coarse grid resolution is appropriate for a rough estimation of the 3-D blobs
in the scene, in this way we can also roughly estimate the size and the loca-
tion of possible object candidates. In addition, we optimize the grid resolution
parameter with a statistical approach (see Section 4), instead of setting the cell
size parameters by hand similarly to [7], [8]. On the other hand, using a dense
grid resolution beside a coarse grid level, is efficient for calculating point cloud
features from a smaller subvolume of space, therefore we can refine the detection
result derived from the coarse grid resolution. The proposed object detection
algorithm consists of three main steps: First, we visit every cell of the coarse
grid and for each cell s we consider the cells in its 3 × 3 neighborhood. We visit
the neighbor cells one after the other in order to calculate two different point
cloud features: (i) the maximal elevation value Zmax(s) within a coarse grid cell
and (ii) the point cloud density (i.e. point cardinality) of a dense grid cell. Second
our intention is to find connected 3-D blobs within the foreground regions, by
merging the coarse level grid cells together. We use an elevation-based cell merg-
ing criterion to perform this step. ψ(s, sr) = |Zmax(s) − Zmax(sr)| is a merging
indicator, which measures the difference between the maximal point elevation
within cell s and its neighboring cell sr. If the ψ indicator is smaller than a pre-
defined value, we assume that s and sr belong to the same 3-D object. Third, we
perform a detection refinement step on the dense grid level. The elevation based
cell merging criterion on the coarse grid level often yields that nearby and self-
occluded objects are merged into a same blob. We handle this issue by measuring
the point density in each sub-cell s′

d at the dense grid level. Our assumption is
here that the nearby objects, which were erroneously merged at the coarse level,
could be appropriately separated at the fine level, as the examples in Fig. 4
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show. Note that using our Velodyne Lidar camera, the density of the recorded
point cloud strongly decreases as a function of the distance from the sensor. We
had to compensate this effect by a sensor distance based weighting of the cells
during the density based merging step. After the weighting step, we expect by an
order of magnitude similar point density in each sub-cell s′

d which belongs to the
object candidates. On the other hand, if we observe several empty or low-density
sub-cells on the border of two neighboring super-cells, or in the center line of a
large cell we can assume that the blob extracted at the coarse level should be
divided into two objects. Let us present three typical urban scenarios when the
simple coarse grid model merges the close objects to the same extracted compo-
nent, while using a hierarchical grid model with coarse and dense grid level, the
objects can be appropriately separated. We consider two neighboring super-cell
pairs -marked by red - in Fig. 4a) and Fig. 4b), respectively. In both cases the
cells contain points from different objects, which fact cannot be justified at the
coarse cell level. However, at the dense level, we can identify connected regions of
near-empty sub-cells (denoted by gray), which separate the two objects. Fig. 4c)
demonstrates a third configuration, where a super-cell intersects two objects,
but at the sub-cell level, we can find a separator line.

Fig. 4. Separation of close objects at the dense grid level [color codes: green lines
=coarse grid level, black lines=dense grid level, grey cells= examined regions for object
separation]

4 Data Charasteristic Analysis and Parameter Sensitivity

Data Characteristic Analysis:
By using a terrestrial laser scanner, such as the Velodyne LIDAR the data

density decreases significantly as function of measurement distance from the
sensor. This inhomogeneous point density makes the cell-merging based object
detection task challenging. In order to compensate these artifacts for our sensor,
we analyzed 1600 relevant frames from three different urban scenarios containing
main roads, narrow streets and intersections. We create rings around the sensor
position, thereafter we set the width of each ring to 1m, and we shift the disjunct
rings from 1 to 80 meter from the sensor. Finally we measure the distribution of
the point density in every ring normalized by the ring area as shown in Fig. 5a).
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(a) (b)

Fig. 5. (a) Point density vs. measurement distance from the sensor. (b) Grid cell
weights vs. measurement distance from the sensor. [Note: color codes of Fig. (b): blue
= derived weight function, red= sixth-degree polynomial fit of the weight function]

We derive a weight distribution by normalizing the point density function with
the maximal point density, and use this function for create weights for the coarse
and dense grid cells of the hierarchical grid model. Near to the sensor the weight
distribution does not modify the point density of the cell, while far from the sen-
sor where the grid cells might contain less points, we enrich the point density by
the sixth-degree polynomial fit to the weight distribution, as shown in Fig. 5b).

Parameter Sensitivity:

(a) (b)

Fig. 6. (a) The distribution of the proposed cell fitness value for estimating optimal
grid resolution. (b) The F-rate values (harmonic mean of precision and recall) of the
detection step as a function of cell size.

In case of a grid based detection task one of the major factors, which affect
the accuracy and the speed of the algorithm is the grid resolution (i.e. cell size).
In order to approximate the optimal range of grid resolution, we propose a statis-
tical metric called cell fitness value, which measures the ratio of dense (d), sparse
(s) and empty (e) grid cells in different grid resolutions. We call a grid cell dense
if it is contains more point than a minimal threshold t(min). We experienced
that our initial point cloud segmentation method needs at least 20 points in a
cell for appropriate results, therefore we choose t(min) = 20. Finally we derived
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the cell fitness value f ∈ [0, 1] as follows: f = #d
(#d+#s)−#e , where # denotes the

number of the cells on the screen (see Fig. 6a)), in order to maximize the relative
frequency of the dense grid cells. Moreover, the distribution of the cell fitness
value f clearly has a maximum range as a function of grid resolution, therefore
we choose an optimal grid resolution corresponds to this maximum range (used
60 cm).

Table 1. Numerical comparison of the detection results obtained by the Connected
Component Analysis [14] and the proposed Hierarchal Grid Model. The number of
objects (NO) are listed for each data set, also and in aggregate.

Point Cloud Dataset NO

Conn. Comp. Analysis [14] Prop. Hierarchical Grid

F-rate(%)
Avg. Processing
Speed (fps)

F-rate(%)
Avg. Processing
Speed (fps)

Budapest Dataset #1 669 77 0.38 89 29

Budapest Dataset #2 429 64 0.22 79 25

KITTI Dataset [5] 496 75 0.46 82 29

Overall 1594 72 0.35 83 28

5 Performance Evaluation and Conclusion

We evaluated our method in three urban LIDAR sequences, concerning differ-
ent urban scenarios, such as main roads, narrow streets and intersections. Two
scenarios recorded in the streets of Budapest, one scenario has been selected
from the KITTI Vision Benchmark Suite [5]. The data flows have been recorded
by a Velodyne HDL-64E S2 camera with a 10Hz rotation speed. We have com-
pared our hierarchical grid model to a connected component analysis which uses
kd-tree based solution for range search [14]. Qualitative results on four sample
frames are shown in Fig. 7 and in Fig. 8.1 For Ground Truth (GT) generation, we
have developed a 3-D annotation tool, which enables labeling the urban objects
manually as object or background. We manually annotated 1594 urban objects.
To enable fully automated evaluation, we need to make first a non-ambiguous
assignment between the detected objects and ground truth (GT) object sam-
ples. We use Hungarian algorithm [10] to find maximum matching. Thereafter,
we counting the Missing Objects (MO), and the Falsely detected Objects (FO).
These values are compared to the Number of real Objects (NO), and the F-rate
of the detection (harmonic mean of precision and recall) is also calculated. We
have also measured the processing speed in frames per seconds (fps). The numer-
ical performance analysis is given in Table 1. The results confirms that proposed
model surpasses the Connected Component Analysis technique in F-rate for all
the scenes. Moreover, the proposed Hierarchical Grid Model significantly faster
on streaming data, and less influenced by the inhomogeneous density of the point
1 Demonstration videos and GT data are also available at the following url:

http://web.eee.sztaki.hu/∼borcs/demos.html

http://web.eee.sztaki.hu/~borcs/demos.html
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cloud. In urban point clouds we measure 0.35 fps average average processing with
Connected Component Analysis [14] and 28 fps with the proposed Hierarchical
Grid Model.

Fig. 7. Object separation for a case of nearby objects. Comparison of the Simple Grid
Model Fig. a), c) and the Hierarchical Grid Model Fig. b), d).

Fig. 8. Object detection results on different urban scenarios

As a conclusion, we have proposed a novel data structure, called Hierarchical
Grid Model and corresponding connected component analysis algorithm to find
distinct groups of 3-D points which belong to different urban objects in LIDAR
point clouds. We propose a statistical metric for approximation of optimal grid
resolution in terms of object detection. The model has been quantitatively vali-
dated based on Ground Truth data, and the advantages of the proposed solution
versus a baseline technique have been demonstrated.
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7. Himmelsbach, M., Müller, A., Lüttel, T., Wünsche, H.J.: LIDAR-based 3D Object
Perception. In: Proceedings of 1st International Workshop on Cognition for Tech-
nical Systems. München, October 2008

8. Hu, H., Munoz, D., Bagnell, J.A., Hebert, M.: Efficient 3-D scene analysis from
streaming data. In: IEEE International Conference on Robotics and Automation
(ICRA) (2013)
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Abstract. This paper presents a novel approach for the extrinsic param-
eter estimation of omnidirectional cameras with respect to a 3D Lidar
coordinate frame. The method works without specific setup and cali-
bration targets, using only a pair of 2D-3D data. Pose estimation is
formulated as a 2D-3D nonlinear shape registration task which is solved
without point correspondences or complex similarity metrics. It relies on
a set of corresponding regions, and pose parameters are obtained by solv-
ing a small system of nonlinear equations. The efficiency and robustness
of the proposed method was confirmed on both synthetic and real data
in urban environment.

Keywords: Omnidirectional camera · Lidar · Pose estimation · Fusion

1 Introduction

There is a considerable research effort invested in autonomous car driving projects
both at academic and industrial levels. While for special scenarios, such as high-
ways, there are a number of successful applications, there is still no general solu-
tion for complex environments such as urban areas [5,11]. Recent developments
in autonomous driving in urban environment rely on a great variety of close-to-
market visual sensors, which requires the fusion of the visual information provided
by these sensors [4].

One of the most challenging issues is the fusion of 2D RGB imagery with
other 3D range sensing modalities (e.g. Lidar) which can also be formulated as a
camera calibration task. Internal calibration refers to the self parameters of the
camera, while external parameters describe the pose of the camera with respect
to a world coordinate frame. The problem becomes more difficult, when the
RGB image is recorded with a non-conventional camera, such as central cata-
dioptric or dioptric (e.g. fish-eye) panoramic cameras. Although such lenses have
a more complex geometric model, their calibration also involves internal param-
eters and external pose. Recently, the geometric formulation of omnidirectional
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 640–651, 2015.
DOI: 10.1007/978-3-319-16181-5 49
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systems were extensively studied [1,6,14,17,24,25]. The internal calibration of
such cameras depends on these geometric models. Although different calibration
methods and toolboxes exist [10,12,24] this problem is by far not trivial and is
still in focus [25].

While internal calibration can be solved in a controlled environment, using
special calibration patterns, pose estimation must rely on the actual images
taken in a real environment. There are popular methods dealing with point cor-
respondence estimation such as [24] or other fiducial marker images suggested
in [10], which may be cumbersome to use in real life situations. This is especially
true in a multimodal setting, when omnidirectional images need to be combined
with other non-conventional sensors like lidar scans providing only range data.
The Lidar-omnidirectional camera calibration problem was analyzed from differ-
ent perspectives: in [22], the calibration is performed in natural scenes, however
the point correspondences between the 2D-3D images are selected in a semi-
supervised manner. [15] tackles calibration as an observability problem using a
(planar) fiducial marker as calibration pattern. In [19], a fully automatic method
is proposed based on mutual information (MI) between the intensity information
from the depth sensor and the omnidirectional camera. Also based on MI, [28]
performs the calibration using particle filtering. However, these methods require
a range data with recorded intensity values, which is not always possible and
often challenged by real-life lighting conditions.

This paper introduces a novel region based calibration framework for non-
conventional 2D cameras and 3D lidar. Instead of establishing point matches
or relying on artificial markers or recorded intensity values, we propose a pose
estimation algorithm which works on segmented planar patches. Since segmen-
tation is required anyway in many real-life image analysis tasks, such regions
may be available or straightforward to detect. The main advantage of the pro-
posed method is the use of regions instead of point correspondence and a generic
problem formulation which allows to treat several types of cameras in the same
framework. We reformulate pose estimation as a shape alignment problem, which
is accomplished by solving a system of nonlinear equations based on the idea
of [2]. However, the equations are constructed in a different way here due to the
different dimensionality of the lidar and camera coordinate frames as well as the
different camera model used for omnidirectional sensors. The method has been
quantitatively evaluated on a large synthetic dataset and it proved to be robust
and efficient in real-life situations.

2 Omnidirectional Camera Model

A unified model for central omnidirectional cameras was proposed by Geyer
and Daniilidis [6], which represents central panoramic cameras as a projection
onto the surface of a unit sphere. This formalism has been adopted and models
for the internal projection function have been proposed by Micusik [13,14] and
subsequently by Scaramuzza [23] who derived a general polynomial form of the
internal projection valid for any type of omnidirectional camera. In this work,
we will use the latter representation.
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Fig. 1. Omnidirectional camera model

Let us first see the relationship between a point x in the omnidirectional
image I and its representation on the unit sphere S (see Fig. 1). Note that
only the half sphere on the image plane side is actually used, as the other half
is not visible from image points. Following [23,24], we assume that the camera
coordinate system is in S, the origin (which is also the center of the sphere)
is the projection center of the camera and the z axis is the optical axis of the
camera which intersects the image plane in the principal point. To represent the
nonlinear (but symmetric) distortion of central omnidirectional optics, [23,24]
places a surface g between the image plane and the unit sphere S, which is
rotationally symmetric around z. The details of the derivation of g can be found
in [23,24]. Herein, as suggested by [24], we will use a fourth order polynomial
g(‖x‖) = a0 + a2‖x‖2 + a3‖x‖3 + a4‖x‖4 which has 4 parameters representing
the internal parameters (a0, a2, a3, a4) of the camera (only 4 parameters as a1

is always 0 [24]). The bijective mapping Φ : I → S is composed of 1) lifting the
image point x ∈ I onto the g surface by an orthographic projection

xg =
[

x
a0 + a2‖x‖2 + a3‖x‖3 + a4‖x‖4

]
(1)

and then 2) centrally projecting the lifted point xg onto the surface of the unit
sphere S:

xS = Φ(x) =
xg

‖xg‖ (2)

Thus the omnidirectional camera projection is fully described by means of unit
vectors xS in the half space of R3.

Let us see now how a 3D world point X ∈ R
3 is projected onto S. This is

basically a traditional central projection onto S taking into account the extrin-
sic pose parameters, rotation R and translation t, acting between the camera
(represented by S) and world coordinate system. Thus for a world point X and
its image x in the omnidirectional camera, the following holds on the surface
of S:

Φ(x) = xS = Ψ(X) =
RX + t

‖RX + t‖ (3)
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3 Pose Estimation

Consider a Lidar camera with a 3D coordinate system having its origin in the
center of laser sensor rotation, x and y axes pointing to the right and down,
respectively, while z is pointing away from the sensor. Setting the world coordi-
nate system to the Lidar’s coordinate system, we can relate a 3D Lidar point X
with its image x in the omnidirectional camera using (3). In practical applica-
tions, like robot navigation or data fusion, the omnidirectional camera is usually
calibrated (i.e. its intrinsic parameters (a0, a2, a3, a4) are known) and the rel-
ative pose (R, t) has to be estimated. Inspired by [3], [26] we will reformulate
pose estimation as a 2D-3D shape alignment problem. Our solution is based on
the correspondence-less 2D shape registration approach of Domokos et al. [2],
where non-linear shape deformations are recovered via the solution of a nonlin-
ear system of equations. This method was successfully applied for a number of
registration problems in different domains such as volume [21] or medical [16]
image registration. In our case, however, the registration has to be done on
the spherical surface S, which requires a completely different way to construct
equations.

Any corresponding (X,x) Lidar-omni point pair satisfies (3). Thus a classi-
cal solution of the pose estimation problem is to establish a set of such point
matches using e.g. a special calibration target or, if lidar points contain also the
laser reflectivity value, by standard intensity-based point matching, and solve
for (R, t). However, we are interested in a solution without a calibration target
or correspondences because in many practical applications (e.g. infield mobile
robot, autonomous driving systems), it is not possible to use a calibration target
and most lidar sensors will only record depth information. Furthermore, lidar
and camera images might be taken at different times and they need to be fused
later based solely on the image content.

We will show that by identifying a single planar region both in the lidar and
omni camera image, the extrinsic calibration can be solved. Since point corre-
spondences are not available, (3) cannot be used directly. However, individual
point matches can be integrated out yielding the following integral equation on
the sphere S: ∫∫

DS

xS dDS =
∫∫

FS

zS dFS (4)

DS and FS denote the surface patches on S corresponding to the omni and
lidar planar regions D and F , respectively. The above equation corresponds to
a system of 2 equations, because a point on the surface S has only 2 indepen-
dent components. However, we have 6 pose parameters (3 rotation angles and
3 translation components). To construct a new set of equations, we adopt the
general mechanism from [2] and apply a function ω : R3 → R to both sides of
the equation, yielding

∫∫

DS

ω(xS) dDS =
∫∫

FS

ω(zS) dFS (5)
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To get an explicit formula for the above integrals, the surface patches DS and FS
can be naturally parameterized via Φ and Ψ over the planar regions D and F .
Without loss of generality, we can assume that the third coordinate of X ∈ F
is 0, hence D ⊂ R

2, F ⊂ R
2; and ∀xS ∈ DS : xS = Φ(x),x ∈ D as well as

∀zS ∈ FS : zS = Ψ(X),X ∈ F yielding the following form of (5):

∫∫

D
ω(Φ(x))

∥∥∥∥
∂Φ
∂x1

× ∂Φ
∂x2

∥∥∥∥ dx1 dx2 =

∫∫

F
ω(Ψ(X))

∥∥∥∥
∂Ψ
∂X1

× ∂Ψ
∂X2

∥∥∥∥ dX1 dX2 (6)

where the magnitude of the cross product of the partial derivatives is known as
the surface element. Adopting a set of nonlinear functions {ωi}�

i=1, each ωi gen-
erates a new equation yielding a system of � independent equations. Although
arbitrary ωi functions could be used, power functions are computationally favor-
able [2] as these can be computed in a recursive manner:

ωi(xS) = xli
1 xmi

2 xni
3 , with 0 ≤ li,mi, ni ≤ 2 and li + mi + ni ≤ 3 (7)

Algorithm 1. The proposed calibration algorithm.
Input: 3D point cloud and 2D omnidirectional binary image representing the same

region, and the g coefficients
Output: External Parameters of the camera as R and t
1: Back-project the 2D image onto the unit sphere.
2: Back-project the 3D template onto the unit sphere.
3: Initialize the rotation matrix R from the centroids of the shapes on the sphere.
4: Initialize the translation t by translating F in the direction of its centroid until the

area of FS and DS on the unit sphere are approximately equal.
5: Construct the system of equations of (4) with the polynomial ωi functions.
6: Solve the set of nonlinear system of equations in (6) using the LM algorithm

Hence we are able to construct an overdetermined system of 15 equations,
which can be solved in the least squares sense via a standard Levenberg-Marquardt
algorithm. The solution directly provides the pose parameters of the omni cam-
era. To guarantee an optimal solution, initialization is also important. In our
case, a good initialization ensures that the surface patches DS and FS overlap
as much as possible. This is achieved by computing the centroids of the sur-
face patches DS and FS respectively, and initializing R as the rotation between
them. Translation of the planar region F will cause a scaling of FS on the spher-
ical surface. Hence an initial t is determined by translating F along the axis
going through the centroid of FS such that the area of FS becomes approxi-
mately equal to that of DS . The summary of the proposed algorithm with the
projection on the unit sphere is presented in Algorithm 1.
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Noise: 0% 8% 15% 10% 20%

δ: 2.4% 4.1% 5.5% 2.9% 3.7%

Fig. 2. Examples of various amount of simulated segmentation errors. First column
contains a result without such errors, the next two show segmentation errors on the
omnidirectional image, while the last two on the 3D planar region. The second row
shows the δ error and the backprojected shapes overlayed in green and red colors(best
viewed in color).

4 Evaluation on Synthetic Data

For the quantitative evaluation of the proposed method, we generated a bench-
mark set using 30 different shapes as 3D planar regions and their omnidirectional
images taken by a virtual camera, a total of 150 2D-3D data pairs. The syn-
thetic omni images were generated by a virtual camera being randomly rotated
in the range of (−40◦ · · · 40◦) and randomly translated in the range of (0 · · · 200).
Assuming that the planar shape on the 800 × 800 template image represents a
5m × 5m planar patch in 3D space, the (0 · · · 200) translation is equivalent to
(0 · · · 1.25) meter in metric coordinates.

In practice, the planar regions used for calibration are segmented out from
the lidar and omni images. In either case, we cannot produce perfect shapes,
therefore robustness against segmentation errors was also evaluated on simulated
data (see samples in Fig. 2): we randomly added or removed squares uniformly
around the boundary of the shapes, both in the omni images and on the 3D
planar regions, yielding a segmentation error of 5%–20% of the original shape.

The algorithm was implemented in Matlab and all experiments were run
on a standard quad-core PC. Quantitative comparisons in terms of the various
error plots are shown in Fig. 3, Fig. 4, and Fig. 5 (each test case is sorted
independently in a best-to-worst sense). Calibration errors were characterized in
terms of the percentage of non-overlapping area of the reference 3D shape and
the backprojected omni image (denoted by δ in Fig. 5), as well as the error in
each of the estimated pose parameters given in degrees in Fig. 4 and in cm in
Fig. 3. Note that our method is quite robust against segmentation errors up to
15% error level.
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Fig. 3. Translation errors in cm along the x, y, and z axis. m denotes median error,
Omni noise and Lidar noise stand for segmentation error on the omni and 3D regions,
respectively (best viewed in color).

5 Experimental Validation

For the experimental validation of the proposed algorithm, two different omnidi-
rectional camera setups are shown. In order to fuse the omnidirectional camera
data and the lidar scan both the internal and external parameters are needed.
The internal parameters of the omnidirectional camera were determined using
the toolbox of [24]. Note that this internal calibration needs to be performed
only once for a camera. The external parameters are then computed using the
proposed algorithm.

5.1 Region Segmentation

In order to make the pose estimation user friendly, the region selection both in
2D and 3D was automated with efficient segmentation algorithms.

There are several automated or semi-automated 2D segmentation algorithms
in the literature including clustering, histogram thresholding, energy based or
region growing variants [29]. In this work we used a simple region growing algo-
rithm which proved to be robust enough in urban environment [20].

For the 3D segmentation a number of point cloud segmentation methods
are available, including robust segmentation [18] or difference of normals based
segmentation[8]. Like in 2D, region growing gave stable results in our test cases
thus it was suitable for the fusion algorithm as to extract planar input regions.
This segmentation algorithm is based on a set composition principle, i.e. an
initial starting point (seed) is selected from the original point cloud, and iter-
atively the set is completed with neighbor points which have similar normal
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Fig. 4. Rotation errors in degrees along the x, y, and z axis. m denotes median error,
Omni noise and Lidar noise stand for segmentation error on the omni and 3D regions,
respectively (best viewed in color).

(within a certain threshold limit cθ), or their curvature is less than a specified
curvature threshold ct.

Considering the correspondence establishment between the segmented 2D and
3D regions as minimal one-click user intervention, this aspect represents the only
human interaction in the current procedure. After the first 2D-3D region pair
establishment, further ones can easily be added by searching with a sample con-
sensus approach for the neighbor plain patches. We remark, that a fully automatic
region correspondence could be implemented by detecting and extracting win-
dows [7] (see e.g. Fig. 7) which are typically planar and present in urban scenes.
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Fig. 5. Backprojection (δ) errors (best viewed in color)

5.2 Urban Data Fusion Results

The input data with the segmented regions as well as the results are shown
in Fig. 6 and Fig. 7 for a catadioptric-lidar and dioptric-lidar camera pairs
respectively. The omnidirectional images were captured with a commercial SLR
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camera with a catadioptric lens (Fig. 6) and a fish-eye (Fig. 7) respectively. For
the 3D range data, a custom lidar was used in Fig. 6 to acquire data similar
to the one described in [27] with an angular resolution up to half degree and a
depth accuracy of 1cm. In Fig. 7, the 3D point cloud was recorded by a Velodyne
Lidar mounted on a moving car [9].

After the raw data acquisition, the segmentation was performed in both
domains. For the 3D data, segmentation yields a parametric equation and bound-
aries of the selected planar region. This was then uniformly sampled to get a
dense homogeneous set of points (i.e. we do not rely on the Lidar resolution
after segmentation), which was subsequently transformed with a rigid motion
(R0, t0) into the Z = 0 plane yielding appropriate point coordinates X used
in the right hand side of (6). The x points of the left hand side of (6) are fed
with the pixel coordinates of the segmented omnidirectional image.

Fig. 6. Catadioptric and lidar images with segmented area marked in yellow, and the
fused images after pose estimation (best viewed in color)

Once the output (R, t) is obtained from Algorithm 1, the final transformation
acting between the lidar and omni camera can then be computed as a composite
rigid transformation of (R0, t0) and (R, t). The final computed transformation
was used to fuse the depth and RGB data by reprojecting the point cloud on
the image plane using the internal and external camera parameters, and thus
obtaining the color for each point of the 3D point cloud. The method proved to
be robust against segmentation errors, but a sufficiently large overlap between
the regions is required for better results.
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Fig. 7. Dioptric (fisheye) and lidar images with segmented area marked in yellow, and
the fused images after pose estimation (best viewed in color)

6 Conclusions

In this paper a new method for pose estimation of non-conventional cameras
is proposed. The method is based on a point correspondence-less registration
technique, which allows reliable estimation of extrinsic camera parameters. The
algorithm was quantitatively evaluated on a large synthetic data set and proved
to be robust on real data fusion as well.
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Abstract. An open issue in multiple view geometry and structure from
motion, applied to real life scenarios, is the sparsity of the matched key-
points and of the reconstructed point cloud. We present an approach that
can significantly improve the density of measured displacement vectors
in a sparse matching or tracking setting, exploiting the partial infor-
mation of the motion field provided by linear oriented image patches
(edgels). Our approach assumes that the epipolar geometry of an image
pair already has been computed, either in an earlier feature-based match-
ing step, or by a robustified differential tracker. We exploit key-points
of a lower order, edgels, which cannot provide a unique 2D matching,
but can be employed if a constraint on the motion is already given. We
present a method to extract edgels, which can be effectively tracked given
a known camera motion scenario, and show how a constrained version
of the Lucas-Kanade tracking procedure can efficiently exploit epipolar
geometry to reduce the classical KLT optimization to a 1D search prob-
lem. The potential of the proposed methods is shown by experiments
performed on real driving sequences.

Keywords: Densification · Tracking · Epipolar geometry · Lucas-Kanade ·
Feature extraction · Edgels · Edges

1 Introduction

Most methods for finding image-to-image correspondences by tracking or match-
ing are applied on selected key-points, i.e., image locations which are unique in
appearance and can easily be re-identified. While providing a coarse outline of
the motion structure in a scene, a drawback of this approach is that the feature
points are distributed sparsely, and cannot produce a dense 3D point cloud.

A natural next step is to consider a scenario where the relative motion
between the camera and the scene/object already has been determined with
high accuracy, e.g., by means of sparse feature matching and windowed bun-
dle adjustment, and is represented by the epipolar structure. After this step, it
is possible to increase the density of the motion field, aiming for a dense 3D
reconstruction. This can be done by stereo matching on rectified image pairs,
c© Springer International Publishing Switzerland 2015
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Fig. 1. Close up of an image patch showing a situation where the GETT keypoints
strongly outnumber GFTT. Left: GFTT. Right: GETT.

and gives generally very good results in the case of sideways camera motion and
relatively small rotations, but it is not a feasible approach for a general motion,
such as forward/backward camera motion combined with significant rotations.

As an alternative, we instead extract edge pixels that are likely to track well
given a known epipolar geometry, and perform a local search for the correspon-
dence only on the physically plausible segment of the epipolar line. To do this,
we modify the Kanade-Lucas-Tomasi (KLT) tracker to only operate along the
epipolar line, thus allowing to also track several edge points (Fig. 1). Relevant
applications of this method include:

– densification of the partial reconstruction for object detection in the context
of autonomous robots.

– increase of the density of the reconstructed 3D point cloud as a final step of
a multi-view structure from motion.

To summarize, this paper presents two novel contributions:

– We extract edgels that are likely to track well under the given relative motion.
These edge points are called Good Edgels To Track (GETT).

– We densify the motion field by tracking these new edgel features, using a
modified version of the KLT tracker that can deal with the aperture problem,
given that the epipolar geometry is known.

2 Related Work

Many applications in computer vision, e.g., structure from motion and visual
odometry, have as an initial step the computation of optical flow. This can be
done in two ways: computing a global optical flow for the whole image plane
[7,13] or by sparsely computing the displacement of a limited number of (fea-
ture) points in the image. The first approach provides a dense flow field, but has
a high computational complexity. The sparse approach is more computationally
efficient, but the sparsity of the motion field can be a limiting factor when a
dense reconstruction is desired. The sparsity is a consequence of applying these



654 T. Piccini et al.

methods only on selected feature points, with a structure in their surroundings
that allows them to be re-identified in subsequent images [1,10,22,24]. Such fea-
ture points can be found on a second image, depicting a slightly modified version
of the same scene, either by matching or by tracking procedures. Matching pro-
cedures extract feature points in both images, and try to match the most similar
pairs using a specifically designed descriptor [3,6,17,18,21]. Tracking is instead
implemented generally as a search, in the second image, for a point that mini-
mizes a cost function which measures the difference between small patches of the
image surrounding the two points. The most common approach to tracking is
based on the Lucas-Kanade tracker [19], which approximately minimizes a cost
function calculated as the sum of the squared differences in the intensities of
the pixels belonging to the patches. The KLT tracker has been shown to work
reliably only on “corner points”, known as Good Features to Track (GFTT),
and although efforts have been made to improve the performance of the tracker
on said points [2,8,23], not many papers in the literature deal with the spar-
sity of such features. GFTT-points can be identified by a structure tensor with
large values for both its eigenvalues [22]. The 2D motion of these points can be
identified, in both directions, with a gradient descent method on the matching
criterion (e.g. the SSD). A natural next step would be to track points having only
one large eigenvalue for their structure tensor. Intuitively, these points lie mainly
on linear edges. At these points, however, a local analysis can only provide the
motion component in a direction perpendicular to the edge, corresponding to
the eigenvector for the largest eigenvalue of the structure tensor. This is the
well-known aperture problem.

A framework for matching edgels is proposed in [16], and is shown to outper-
form matching based on, e.g., SIFT or SURF, when a planar object is tracked.
The limitation to planar objects restricts, however, the application of this app-
roach. Another attempt to solve the aperture problem is made in [4], by jointly
tracking edge points and nearby corner points with a method that combines
the KLT tracker and the global Horn-Schunck method. In this framework, the
motion of corner points helps in solving for the second degree of freedom of
nearby edge points thanks to a regularization term inserted in the optimization
process.
A similar, but more generalized approach is taken in [26] where a semi-global
matching method is adapted to work exclusively on fractions of the epipolar line.
Also in this case, a regularization term is included in the optimization process
to allow the matching of weaker points (edgels or even pixels lying on planar,
textureless areas). The optimization problem is, however, NP-hard and non par-
allelizable so the dynamic programming approach used to solve it takes several
seconds to compute.
In [15] the authors propose a method to obtain a dense optical flow which does
not include a regularization term allowing each point to be treated individually.
In this approach a Delaunay triangulation is performed over the motion field gen-
erated by a sparse matching framework to produce a prior on the motion field
for all the points in the convex hull of the sparse features. This information is
then used in combination with the estimated epipolar geometry and the trifocal
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tensor to steer a maximum-a-posteriori estimate for the best matching candi-
date for each pixel while also cutting down the number of possible candidates
significantly

In our work, a different approach is taken. Corner points are often sufficient
in number to produce a useful inter-frame motion estimate, which can be made
even more accurate by the means of a global or local bundle adjustment, but
are just too sparse to produce a dense reconstruction. Hence, there is no need
to include edgels at this early stage. In most cases, including them at this stage
would just make the egomotion estimate more computationally complex without
a significant gain in accuracy and robustness. Instead, if we are only interested
in making the motion flow in an image pair denser, the corresponding epipolar
geometry is already available to a high degree of accuracy, and it is possible
to formulate the KLT tracker as a 1-dimensional problem by constraining its
optimization procedure exclusively on an epipolar line. Thus, edgels that are
not parallel to the corresponding epipolar line can be tracked. We refer to this
modified version of the KLT tracker as Epipolar KLT.

The idea of epipolar KLT has recently been proposed by Trummer et al [25],
applied to the scenario of a camera mounted on a robotic arm for which the
motion parameters are known. That work, however, does not fully exploit this
tool for the tracking of specifically extracted edgels and, in fact, they reject the
idea of completely constraining the tracker to the epipolar lines due to pos-
sible uncertainty in the epipolar geometry. Instead, they formulate a biased
2-dimensional tracker that favors steps in the direction of the epipolar line
and reduces the freedom in the perpendicular direction with empirically cho-
sen weights. Not completely trusting the epipolar geometry can be reasonable in
high precision applications, but there is no reason to ignore already established
camera poses when just aiming at making the motion field denser.

3 Methods

3.1 Background

The KLT tracker The classical KLT tracker has been repeatedly derived in
literature, and we will only present parts of the derivation which are of interest
for our modifications. For a complete derivation, see [2,5,19] among others. Let
W ′

J be a small window in the second image around a feature point, I(x) and
J (x), respectively intensity value of the first and second images at position x. In
the simplest case, the change in the position of a point from I to J consists in a
2D translation, represented by the 2 values of the translation vector v. Also, in
practice, the inverse warping function is often used since it makes the procedure
computationally more efficient.
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Fig. 2. Schematics of some geometric entities involved in two view geometry

The expression for the cost function is:

G(Δv) :=
∑

x′
i∈W ′

J

(I(x′
i − (v + Δv) − J (x′

i))
2 (1)

to be minimized w.r.t. Δv. To solve the equation, a first order Taylor expansion
is needed. Let xi = x′

i − (v+ Δv), setting, then, the first order derivative of the
cost function to zero to find the stationary point we obtain:

∑
x′
i∈W ′

J

∇I(xi) ∇I(xi)TΔv =
∑

x′
i∈W ′

J

(I(xi) − J (x′
i))∇I(xi) (2)

In matrix form we can write it as A Δv = b. Solving for Δv, the update rule
for the iteration scheme is v = v + Δv, and x′

i = xi + v. The procedure is
repeated until convergence or until some breaking criterion is met (for example,
when the displacement is smaller than a threshold).

Epipolar Geometry This section contains a short review of the geometrical
entities involved in epipolar geometry which are necessary to derive our algo-
rithms. A more complete presentation is made, e.g., in [11]. With reference to
Figure 2, for a given image pair I and J produced by two cameras, or the
same camera in two different positions, having their center of projection in CoP
and CoP′ respectively, we can make the following observations (assuming lens
distortion is absent or the images are rectified):

1. The projection of CoP in the image plane of J is the epipole ep.
2. For every 3D point Pk observed by both the cameras, the projection of the

Pk in J , p′
k, must lie on a line in J , given as the projection of the optic ray

through pk in I, i.e., the 3D line connecting CoP and pk, onto J . This line
is the epipolar line generated by pk in J .

3. All the epipolar lines on an image plane, for a certain camera pair, meet in
the corresponding epipole, ep.
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Given the images I and J , the corresponding epipolar geometry is represented
by the fundamental matrix F The epipolar line in J corresponding to a point of
pixel coordinates x in I is given by ẽ = Fx̃ =

[
e1 e2 e3

]�
, where x̃ is the column

vector of the homogeneous pixel coordinates of the point x and ẽ is the dual
homogeneous coordinates of the epipolar line. The 2-dimensional unity vector
representing the direction of the epipolar line is then ê =

[
e2 −e1

]T
/
√

e21 + e22.

Epipolar KLT We now have all the tools to derive the Epipolar KLT. Given
an initialization on the epipolar line for the translation vector (i.e. v such that
x+v lies on ẽ), we can substitute ê in (1) to obtain a 1-dimensional cost function

G(α) :=
∑

x′
i∈W ′

J

(I(x′
i − (v + αê)) − J (x′

i))
2 (3)

to be minimized w.r.t. the scalar value α.
After the first order Taylor expansion and solving for the stationary point, we

obtain the following expression to be iteratively minimized to converge toward
the solution:

α
∑

x′
i∈W ′

J

∇I(xi) ∇I(xi)T ê =
∑

x′
i∈W ′

J

(I(xi) − J (x′
i))∇I(xi). (4)

In matrix form we can write the last expression as

αA ê = b, (5)

which is an over-determined 2 equation system. By pre-multiplying both sides
by êT (i.e. projecting the 2D problem on the direction of the epipolar line), we
project the system into one dimension: αêTAê = êTb. Solving for α, the update
rule for the iteration scheme is v = v+αê and x′

i = xi +v. The procedure is
repeated until convergence or until some breaking criterion is met (for example,
when the displacement is smaller than a threshold).

3.2 Good Edgels to Track

As already mentioned, assuming a static scene and a reliable estimate of the
relative camera motion between two frames, we can track two different kinds of
features:

– Corner features
– Edge features non parallel to the motion

Similarly to the case of corner features, edge features are identified from the
eigenvalues of their structure tensor: they are associated with a structure tensor
with at least one eigenvalue over a certain threshold. However, not all edge
features are useful for our method: edges parallel to the their own epipolar line
cannot be tracked reliably.
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Let ∇Iu(x) and ∇Iv(x) be the horizontal and vertical gradient of the image
calculated in x respectively. The structure tensor T (x) for the point x is:

T (x) =
[ ∇Iu(x)2 ∇Iu(x)∇Iv(x)

∇Iu(x)∇Iv(x) ∇Iv(x)2

]
. (6)

Given a pixel x, its structure tensor T and its corresponding epipolar line ẽ in
the matching image, its score in the GETT sense is

score(x) = êTT (x) ê, (7)

where ê is the unit vector representing the direction of the epipolar line in J
for x. Note that the value of the score is bounded by the larger and smaller
eigenvalues of the structure tensor and corresponds, intuitively, to measuring
the structure tensor along the direction of the optimization process.

3.3 Epipolar KLT Initialization

To assure convergence to a reasonable solution it is critical to initialize the
tracker on the epipolar line. In our tests we assume that no prior information on
the depth of the points is available. We therefore assume that every point has
an infinite depth, in this case we can find a starting point on the epipolar line
that is also a hard limit for our procedure as only one of the 2 segments of the
epipolar line defined by this point is physically reasonable.

Let K be the intrinsic parameter matrix for the camera and R the inter-
camera rotation between the 2 views. For a point x̃ ∈ I in homogeneous coordi-
nates, its infinity projection on J is given by

start(x̃) = KRK−1x̃. (8)

We refer to this initialization procedure as initialization at infinity.
Depending on the scene structure and the camera motion, this initializa-

tion can fail, in particular if the scene has large variation in depth and the
translational motion component is significant relatively to the rotational com-
ponent. This is the case for most driving sequences, such as those offered by
the KITTI dataset [9], where this initialization is sensitive to repeating patterns
and large displacements. This simple initialization, however, works in practice
for the majority of the points. To increase the number of good matches, we do
however perform an initialization in multiple steps as outlined in Algorithm 2.
The details are given below.

4 Experiments

We tested our algorithm against the OpenCV 1 standard KLT implementation.
For a fair comparison, the epipolar constraint has been imposed to the output
1 http://opencv.org

http://opencv.org
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Fig. 3. Sample tracking output image from Sequence 1. Top: Tracking performed on
GFTT with the standard KLT procedure. Bottom: Tracking performed on GETT
with the epipolar KLT.

Algorithm 1. Testing pseudocode for standard KLT procedure
1: procedure TrackGoodFeaturesToTrack(I, J, K, R, t)
2: p ← extractGoodFeaturesToTrack(I)
3: q ← standardKLT(I, J, p)
4: r ← standardKLT(J, I, q)
5: corr ← {(pi, qi)|‖pi − ri‖ < τ}
6: corr ← epipolarFilter(corr, F)
7: return corr
8: end procedure

of the standard tracker to reduce outliers. Both trackers have been fed with the
same parameters in term of windows size (5×5), pyramid level (2nd level) and
termination criteria (maximum 10 iterations, minimum displacement length of
0.1 pixels ). The two testing schemes are outlined in Algorithms 1 and 2.

4.1 Implementation Details

In this subsection we go into the details of the testing scheme outlined in Algo-
rithm 2.

Extraction of corners and edges We extract the corner and edge keypoints
respectively according to the classical GFTT scheme and the hereby presented
GETT scheme. The procedure works in the following way:

1. Extract the structure tensor for each pixel in the image.
2. Calculate the GFTT and GETT score for each pixel. The following steps are

computed independently for GFTT and GETT points.
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Algorithm 2. Testing pseudocode for our approach
1: procedure TrackMixedFeatures(I, J, K, R, t)
2: F ← K−T [t]xRK−1

3: p ← extractCornersEdges(I, F)
4: startp ← KRK−1p
5: q ← epipolarKLT(I, J, p, startp, F)
6: startq ← KRTK−1q
7: r ← epipolarKLT(J, I, q, startq, F

T)
8: corr ← {(pi, qi)|‖pi − ri‖ < τ}
9: clusters ← clusterize(p)

10: cMEAN ← clustermeans(clusters, corr)
11: startp ← moveStartingPoints(startp, cMEAN)
12: q ← epipolarKLT(I, J, p, startp, F)
13: corr ← {(pi, qi)}
14: cMEAN ← clustermeans(clusters, corr)
15: corr ← filterOutliers(corr, cMEAN)
16: return corr
17: end procedure

3. An Non-Maximum Suppression (NMS) filter is applied to the score images
to obtain a better distribution of the keypoints. A sliding window is applied
to each score image suppressing all the points which are not a local maximum.
The window size is set at the same size of the tracking window at the lowest
pyramid level.

4. A threshold τ is computed as a fraction of the highest score found in the
image and the points with a score > τ are used as keypoints.

Tracker initialization The first initialization is given by the initialization at
infinity presented in Section 3.3.

Tracking The tracking is done with the Epipolar KLT in Section 3.1, including
a pyramidal coarse-to-fine scheme similar to the one presented in [5]. At the end
of the tracking procedure, features presenting a large error (see [8]) or that moved
on the wrong segment of the epipolar line are rejected as outliers.

Backtracking As suggested in [12] , a backtracking step is performed to further
remove outliers. Features are tracked backwards from image J to image I and
when the procedure converges to a point different from the original feature, the
feature is considered an outlier. Note that this step is proven particularly useful
in the case of repeating patterns due to the naivety of the initialization.

Clusterization and tracker reinitialization The tracks surviving the first
two steps are in general of good quality, but are not dense due to the naive
initialization step performed. Therefore, we compute a new initialization based
on region-wise local mean displacement for the available tracks. The image is
subdivided in macro-regions (in our tests we use a 3×7 grid to determine the
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Method Sequence 1 Sequence 2 Sequence 3 Total

GETT + EpiKLT 3542 ± 464 4439 ± 848 4603 ± 484 4196 ± 779

GFTT + KLT 2537 ± 425 3593 ± 881 3908 ± 551 3347 ± 874

Table 1. Average number of features extracted over the 3 sequences ± standard devi-
ation

Method Sequence 1 Sequence 2 Sequence 3 Total

GETT + EpiKLT 1700 ± 324 1656 ± 470 2121 ± 373 1818 ± 448

GFTT + KLT 509 ± 250 412 ± 238 909 ± 337 610 ± 352

Table 2. Average number of features tracked over the 3 sequences ± standard deviation

regions) and the mean displacement along the epipolar line is robustly computed
for each region, based on the available data of the surviving tracks belonging to
the region. The displacement mean for each cluster of the image is robustly com-
puted using the algorithm presented in [14]. This method works on 1-dimensional
data, it orders the data and determines the mean giving the maximum amount
of inliers, using a sliding window. The region-wise mean so computed is then
used to reinitialize the tracker by moving the starting position of the tracker,
away from the infinity projection of the feature, along the epipolar line.

Outlier removal The last tracking step has proven to provide a much higher
inlier ratio than the initialization at infinity, making a new backtracking step
unnecessary. To remove the remaining outliers, we perform a filtering based on a
re-computed region based mean, and remove points that do not behave according
to the majority of the points in the region ( we assume a Gaussian distribution
and set the filter threshold at twice the standard deviation for the region).

Note that this complicated procedure is only necessary when no prior infor-
mation on the depth structure of the scene is known. For image sequences, fea-
tures can in general be tracked more than once, thus providing a depth estimate
and a better initialization of the tracker. For new features, even accounting for
reasonable depth discontinuities, the initialization can be performed by using
the already available depth information of similar nearby points.

4.2 Results

We tested our method on sequences extracted from the KITTI dataset [9], con-
sisting of driving scenes recorded by a calibrated stereo setup. Each of the
extracted sequences consists of 199 image pairs and present different settings:

– Sequence 1 shows an urban scenario: mainly buildings on the sides of the
road.

– Sequence 2 is set in a suburban scenario. Mostly trees surround the road
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Fig. 4. Distribution of extracted GFTT (top-left) and GETT (bottom-left:). Dis-
tribution of successfully tracked GFTT (top-right) and GETT (bottom-right).

– Sequence 3 also has a suburban setting and shows a variety of buildings,
vegetation and parked cars on the side of the road.

In our tests, we disregard the stereo information, focusing on a monocular sce-
nario and making use of the given camera calibration. To show the robustness of
the method, we do not use the ground truth egomotion provided with the KITTI
dataset, we take instead the estimates produced by an implementation of [20].
The approach consists in a matching procedure performed on FAST keypoints
[24] and BRIEF descriptors [6], the epipolar geometry estimation is made robust
with RANSAC, and stabilized with a windowed bundle adjustment.

Tables 1 and 2 show, as expected, the higher density of GETT compared
to GFTT which, combined with a better inlier ratio granted by the proposed
tracking procedure, allows to sensibly increase density of the motion field. Notice
that, as shown in Figure 4 and 3 the increase in density is particularly evident
in areas of the image closer to the camera and on the road plane. This is a
very desirable feature for many applications since closeby objects are generally
of more interest and can be measured more precisely.

5 Conclusions

In this work we presented a complete framework for the extraction and tracking
of edge elements in an image pair. Such edge elements would normally suffer
from the aperture problem and cannot be tracked successfully. By exploiting a
known estimate of the epipolar geometry of the scene, our algorithm allows to
extract and successfully track specific edgels that are likely to behave well with
the given egomotion. We have shown that such keypoints (GETT ) consistently
outnumber the standard GFTT in different settings, have a higher inlier ratio
when tracked with the procedure we presented and are also more uniformly
spread on the image plane. These are all very desirable qualities that allow to
produce a much denser point cloud in any structure from motion application.
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Abstract. Automatic extraction of soft biometric characteristics from
face images is a very prolific field of research. Among these soft bio-
metrics, age estimation can be very useful for several applications, such
as advanced video surveillance [5,12], demographic statistics collection,
business intelligence and customer profiling, and search optimization in
large databases. However, estimating age from uncontrollable environ-
ments, with insufficient and incomplete training data, dealing with strong
person-specificity, and high within-range variance, can be very challeng-
ing. These difficulties have been addressed in the past with complex
and strongly hand-crafted descriptors, which make it difficult to repli-
cate and compare the validity of posterior classification schemes. This
paper presents a simple yet effective approach which fuses and exploits
texture- and local appearance-based descriptors to achieve faster and
more accurate results. A series of local descriptors and their combina-
tions have been evaluated under a diversity of settings, and the extensive
experiments carried out on two large databases (MORPH and FRGC)
demonstrate state-of-the-art results over previous work.

Keywords: Age estimation · CCA · HOG · LBP · SURF

1 Introduction

The problem of age estimation from images has historically been one of the
most challenging within the field of facial analysis. Some of the reasons are the
uncontrollable nature of the aging process, the strong specificity to the personal
traits of each individual [24], high variance of observations within the same age
range, and the fact that it is very hard to gather complete and sufficient data to
train accurate models [7].

This process can be made easier by having available large and representative
collections of age-annotated images. However, in the past the available databases
were often very limited and strongly skewed. This is especially disadvantageous
for applications like video surveillance and forensics, which need to work correctly
when facing unknown subjects and a lack of any additional cues. Fortunately,
the recent availability of large databases like MORPH [21] and FRGC [20] offers
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 667–681, 2015.
DOI: 10.1007/978-3-319-16181-5 51
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a great opportunity to make advances in the field. Keeping in mind that any
training data set which is representative of the whole population cannot exist, the
only viable option is to develop methods that are able to exploit large databases
in order to gain substantial generalization capabilities.

The inherent difficulties in the facial age estimation problem, such as limited
imagery, challenging subject variability, and subtle visual age patterns, have
derived research in the field into building particularly complex feature extraction
schemes. The most typical ones consist of either hand-tuned multi-level filter
banks, that intend to emulate the behavior of primary visual cortex cells, or fine-
grained facial meshes to accomplish precise alignment through dozens of facial
landmarks. In any case, the resulting extraction schemes are difficult to replicate,
and the high-dimensional visual descriptors in many cases take considerable time
to be extracted and processed.

On the other hand, during the last decade, several fields within image clas-
sification and object recognition have proposed different families of very fast
and descriptive feature extraction schemes, which have become well-known for
being especially invariant to rotation, scale, illumination, and alignment. Such
histogram-based descriptors, which typically capture local intensity variations
or local neighborhood patterns from spatial grids, are nowadays a fundamental
tool to deal with highly adverse and unconstrained environments for a variety
of applications.

In this paper we conduct a thorough evaluation of a series of common local
visual descriptors, in order to investigate their utility towards the automatic
facial age estimation problem. The contributions are as follows:

– We review some of the most efficient and effective local visual descriptors
from image classification, and explore their suitability to extract age-related
discriminative patterns.

– We demonstrate that the fusion of textural and local appearance-based
descriptors achieves state-of-the-art results, improving over complex feature
extraction schemes that were previously proposed.

– Candidate descriptors are exhaustively evaluated regarding optimal param-
eters and regularization, in terms of mean average errors and cumulative
score curves over two large databases.

The paper is structured as follows: next section gathers and comments on
previous related work on facial age estimation. The candidate descriptors to
be evaluated are reviewed in Section 3, along with the selected classification
scheme. Evaluation is presented out in Section 4, by first describing available
large databases with age annotations, and subsequently analyzing the exten-
sive experiments carried out over the combinations of local descriptors. Finally,
Section 5 summarizes the results and draws some conclusions.
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2 Related Work

After an initial interest on automatic age estimation from images dated back in
the early 2000s [13–15], research in the field has experienced a renewed interest
from 2006 on, since the availability of large databases like MORPH-Album 2 [21],
which increased by 55× the amount of real age-annotated data with respect to
traditional age databases. Therefore, this database has deeply been employed in
recent works by applying over it different descriptors and classification schemes.

Feature extraction scheme. Regarding visual features, flexible shape and
appearance models such as ASM (Active Shape Model) and AAM (Active Appear-
ance Model) have been some of the primary cues used to model aging patterns
[2,7,8,13]. Such statistical models capture the main modes of variation in shape
and intensity observed in a set of faces, and allow face signatures based on such
characterizations to be encoded.

Bio-Inspired Features (BIF) [22] and its derivations have consistently been
used for age estimation in the last years [7,12]. These feed-forward models con-
sist of a number of layers intertwining convolutionally and pooling processes.
First, an input image is mapped to a higher-dimensional space by convolving it
with a bank of multi-scale and multi-orientation Gabor filters. Later, a pooling
step downscales the results with a non-linear reduction, typically a MAX or STD
operation, progressively encoding the results into a vector signature. In [17], the
authors carefully design a two-layer simplification of this model for age estima-
tion by manually setting the number of bands and orientations for convolution
and pooling. Such features are also used in their posterior works [9–11].

Features extracted from local neighborhoods have very rarely been used for
the purpose of age estimation. In [24], LBP histogram features are combined
with principal components of BIF, shape and textural features of AAM, and
PCA projection of the original image pixels. HOG features have independently
been used for age estimation in [4].

Classification scheme.With regards to the learning algorithm, several approac-
hes have been proposed, including, among others, Support Vector Machines (SVM)
/ Support Vector Regressors (SVR) [2,12,17,24], neural networks [13] and their
variant of Conditional Probability Neural Network (CPNN) [7], Random Forests
(RF) [16], and projection techniques such as Partial Least Squares (PLS) and
Canonical Correlation Analysis (CCA), along with their regularized and kernel-
ized versions [9–11]. An extensive comparison of these classification schemes for
age estimation has been reported in our previous paper [4], and in particular the
advantageousness of CCA was demonstrated over the others, both regarding accu-
racy and efficiency.

Specific attention must be given to the CCA technique, which is the main
focus of this paper from the classification perspective. The PLS and CCA sub-
space learning algorithms were originally conceived to model the compatibility
between two multidimensional variables. PLS uses latent variables to learn a
new space in which such variables have maximum correlation, whereas CCA
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finds basis vectors such that the projections of the two variables using these vec-
tors are maximally correlated to each other. Both techniques have been adapted
for label regression. To the best of our knowledge, the best current result over
MORPH is achieved by combining BIF features with kernel CCA [10], although
in that case the size of training folds is limited to 10K samples due to computa-
tional limitations.

The main contribution of this paper is the proposal of a novel combination
of well-known local descriptors capturing texture and contour cues for the pur-
pose of facial age estimation. The orthogonal nature of these features allows the
exploitation of the benefits of each of them, bringing to performance which are
superior than in the case of them applied separately. To the best of our knowl-
edge, this approach has never been employed before for age estimation, and our
experiments demonstrate comparable performance with respect to state-of-the-
art results provided by complex and fine-tuned feature extraction schemes such
as BIF [11]. Moreover, for the sake of simplicity and efficiency, a simple eye align-
ment operation is carried out through similarity transformation, as opposed to
precise alignment approaches typically fitting active shape and appearance mod-
els with tens of facial landmarks.

3 Methodology

Preprocessing. In general, existing works tackle the problem of age estimation
with visual features that are either complex and fine-tuned (e.g., BIF), or require
precise statistical models involving tens of facial landmarks for accurate align-
ment (e.g., ASM and AAM). As opposed to them, we do not rely on precisely
aligned appearance models; instead, our experiments will be evaluated using a
simple alignment through the fiducial landmarks of the detected eye regions.

The facial region of each image has been detected with the face detector
described in [19]. The relative alignment invariance of local descriptors based on
concatenated cell histograms allows us to work with simple eye-aligned images.
The fiducial markers corresponding to the eye centers have been obtained using
the convolutional neural network for face alignment presented in [23]. The aligned
version of each detected face is obtained by a non-reflective similarity image
transformation that yields an optimal least-square correspondence between the
eye centers and the target locations, that have been symmetrically placed at 25%
and 75% of the alignment template. Unlike previous works like [10], which use
input images of 60×60 pixels, our aligned image are resized to only 50×50 pixels.

Descriptors. The choice of visual features to be extracted from aligned images
and sent to the classification scheme plays a fundamental role on the result-
ing estimation accuracy. In this paper, we have selected a number of significant
local invariant descriptors that have been useful for image matching and object
recognition in the past due to their expressiveness, fast computation, compact-
ness, and invariance to misalignment and monotonic illumination changes. They
include local appearance descriptors as HOG and texture descriptors as LBP
and SURF.
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Histograms of Oriented Gradients (HOG) [3] have largely been used as
robust visual descriptors in many computer vision applications related to object
detection and recognition. The horizontal and vertical gradients of the input
image are computed, and the image region is divided into Cx × Cy grid cells. A
histogram of orientations is assigned to each cell, in which every bin accounts
for an evenly split sector of either the [0, π] or [−π, π] domain (for unsigned and
signed versions, respectively). At each pixel location, the gradient magnitude
and orientation is computed, and that pixel increments the assigned orienta-
tion bin of its correspondent cell by its gradient magnitude. Cell histograms are
concatenated to provide the final descriptor. We use HOGC,B to denote C×C
square grids and B orientation bins.

Local Binary Patterns (LBP) [18] have been long used as a textural descrip-
tor for image classification, and more recently, variations of the original proposal
have provided state-of-the-art results in fields like face and object recognition.
The original operator describes every pixel in the image by thresholding its sur-
rounding 3×3-neighborhood with its intensity value, and concatenating the 8
boolean tests as a binary number. A common extension considers generic pixel
neighborhoods formed by P sampled pixel values at radius R from the central
pixel. To build an LBP compact descriptor, a histogram is computed over the
filtered result, in which each bin corresponds to a LBP code. Another typi-
cal extension reduces the dimensionality of the descriptor by assigning all non-
uniform codes to a single bin, whereas uniform codes are defined as those having
not more than 2 bitwise transitions from 0 to 1 or vice versa (e.g., 00111000,
versus non-uniform 01001101). An LBP descriptor of generic neighborhood size
and radius using uniform patterns is referred as LBPu2

P,R, e.g. LBPu2
8,2.

Speeded-Up Robust Features (SURF) [1] is an interest point detector and
descriptor that is particularly invariant to scale and rotation. It has commonly
been used in image matching and object recognition as a faster and comparable
alternative to SIFT. In our case, we concentrate on the descriptor component
of the upright version of the technique (U-SURF). The square image region
to describe is partitioned into 4×4 subregions. Horizontal and vertical wavelet
responses dx and dy are computed and weighted with a Gaussian. The sum of
these responses and their absolute values are stored, generating a 4-dimensional
vector (

∑
dx,

∑
dy,

∑ |dx|,∑ |dy|) for each subregion, and these are concate-
nated to form the final 64-dimensional descriptor of the image region, SURF64.
A common extension consists of doubling the number of features, by separately
computing the sums of dx and |dx| for dy < 0 and dy ≥ 0, and equally for dy
given the sign of dx, thus yielding SURF128.

As gradient information is typically a very relevant cue to describe image
content for many image descriptors, we have included raw magnitude gradient
images (GRAD) as a baseline in our experiments for the evaluation of the pro-
posed descriptors.
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Classification. From the wide variety of learning schemes presented in the
literature on facial age estimation, Canonical Correlation Analysis (CCA)
and its derivations have recently obtained state-of-the-art results in challenging
large databases such as MORPH [11]. This projection technique involves low
computational effort and unprecedented accuracy in the field, for which we use
it as our chosen regression learning algorithm. CCA is posed as the problem of
relating data X to labels Y by finding basis vectors wx and wy, such that the
projections of the two variables on their respective basis vectors maximize the
correlation coefficient

ρ =
wx

TXYTwy√
(wx

TXXTwx)(wy
TYYTwy)

, (1)

or, equivalently, finding maxwx,wy
wx

TXYTwy subject to the scaling wx
TXXT

wx=1 and wy
TYYTwy=1. For age estimation, labels in Y are unidimensional,

so a least squares fitting suffices to relate these labels to the projected data fea-
tures. Thus, only wx is computed, by solving the following generalized eigenvalue
problem:

XYT
(
YYT +y I

)−1

YXTwx = λ
(
XXT + I

)
wx (2)

When projecting through the solution wx, the dimensionality of data features
is reduced to one dimension per output (a single numerical value in our case),
so the aforementioned label fitting simply consists on finding the scalar value
that optimally adapts the projected values to the ground truth age, in the least-
squares sense. The described procedure can be stabilized through regularization,
by modifying the eigenvalue problem in the following manner:

XYT
(
(1 − γy)YYT + γyI

)−1

YXTwx = λ
(
(1 − γx)XXT + γxI

)
wx (3)

Regularization terms γx, γy ∈ [0, 1] have been included in Eq. 3 to prevent over-
fitting. Although CCA also admits extension to a kernelized version, in that case
covariance matrices become computationally intractable with over 10K samples.
In practice, regularized CCA works comparably to KCCA [10], it is much less
computationally demanding, and will allow us to reproduce the same exact val-
idation schemes over large databases.

4 Experimental Results

Age databases. Due to the nature of the age estimation problem, there is a
restricted number of publicly available databases providing a substantial number
of face images labeled with accurate age information. Table 1 shows the summary
of the existing databases with main reference, number of samples, number of
subjects, and comments.

From the information in Table 1, we see that PAL and FG-NET are compar-
atively negligible to the rest in terms of number of samples. Additionally, age
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Table 1. Description of the existing databases for age estimation

Database Samples Subjects Comments

PAL [15] 580 580 Limited number of samples
FG-NET [14] 1,002 82 Limited number of samples and subjects
GROUPS [6] 28,231 28,231 Ages discretized into seven age intervals
FRGC v2.0 [20] 44,278 568 Large database; many samples per subjects
MORPH II [21] 55,134 13,618 Large database; high diversity

PAL GROUPS FRGC MORPH
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Fig. 1. Age distribution and density per database. In the left graphic (Age distribution)
different ages are represented by the intensity. In the right graphic (Desity per age)
the intensity represent the density (white color more density). PAL and FG-NET are
relatively negligible compared to others, and GROUPS only provides age intervals, so
we focus on MORPH II and FGRC. Age samples are mainly skewed towards 20–30
and 50 year old.

annotations in GROUPS are discretized into seven age intervals, which makes it
unsuitable for training accurate age estimation models. Moreover, FG-NET con-
tains only 82 subjects, so a leave-one-person-out validation scheme is employed
by convention, to avoid optimistic biasing by identity replication. Given such
limitations, and the recent tendency to use MORPH as a standard for age esti-
mation, we concentrate on this database and on FRGC to provide experimental
evaluations. Although the FRGC database is comparable to MORPH regarding
number of samples, image quality and age range coverage, we have only found
one previous publication on age estimation including FRGC as part of their
experiments [4]. Figure 1 offers a graphical visualization and comparison of the
analyzed databases, by number of samples and density of age ranges.

Metrics. To evaluate the accuracy of the age estimators, the conventional met-
rics are the Mean Average Error (MAE) and the Cumulative Score (CS). MAE
computes the average age deviation error in absolute terms, MAE =

∑M
i=1 |âi −

ai|/M , with âi the estimated age of the i-th sample, ai its real age and M the
total of samples. CS is defined as the percentage of images for which the error
e is no higher than a given number of years l, as CS(l) = Me≤l/M [2,12,24] .
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Fig. 2. Results for HOGC,B feature for a single scale with image size 50×50 at varying
grid size C (rows) and number of bins B (columns). The bordered cell shows the best
value.

Related publications typically supply either an eleven-point curve for age devia-
tions [0 − 10], or simply the value CS(5).

All through the rest of this paper, the optimal parameters are searched so
as to minimize the MAE score over MORPH, using 5-fold cross-validation in
all cases. In particular, the division into training and validation sets is made
so that all the instances of the same subject are contained in one single fold
at a time; this applies to all the presented experiments. Descriptors are always
directly extracted from the aligned version of detected faces.

Parameter analysis. In order to evaluate in depth the performance of the ana-
lyzed features for age estimation, we have conducted an analysis of the different
parameters for the compared feature detectors. In the case of HOGC,B , the opti-
mal parameters for grid size C×C and number of bins B have been obtained
through exhaustive logarithmic grid search and 5-fold cross-validation, for single
and multiple scales. Our implementation of HOG incorporates 50% cell overlap-
ping for smoothness and global L2 normalization, instead of per-cell. Multiscale
variations are achieved by concatenating the feature vectors obtained by the
descriptor at different scales. In order to have a fair comparison with the results
reported in [11], images have been processed at 50×50 (similar to the 60×60
size used in that paper). However, we also evaluate the effect of different image
sizes on the final performance in Fig. 4, where images of size 100×100 were used.
In summary, Figs. 2, 3 and 4 report the individual analysis of HOG descriptors
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Fig. 3. Results for HOG×3
C,B feature for 3 scales concatenating descriptors over 50×50,

25×25, and 13×13 images, at varying grid size C (rows) and number of bins B
(columns). The bordered cell shows the best value.

Fig. 4. Results for HOGC,B feature for a single scale with size image 100×100 at
varying grid size C (rows) and number of bins B (columns). The bordered cell shows
the best value.

for a single scale at 50×50 pixels; for 3-scales at {50×50, 25×25, 13×13}; and
for a single scale at 100×100, respectively. Fig. 4 shows that 100×100 images
provide even better scores than the traditional sizes in the literature, although
we conduct the rest of experiments for 50×50 pixels for fair comparison. Single
scale HOG performed better than multiscale.

A similar grid search procedure has been chosen to optimize the parameters
of LBP and SURF descriptors. In the case of LBPu2

P,R the analysis has been
carried out by searching the optimal number of sampled neighbors P and radius
R, for one and three scales, constraining the number of neighbors to either 8 or
16, see Table 2. In the case of SURF, multiple scales have been tested for both
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Table 2. MAE for the single-scale descriptor LBPu2
P,R at 50×50 pixels, and for the

3-scale LBPu2×3
P,R concatenating 50×50, 25×25, and 13×13. Neighborhoods of 8 and 16

are shown.

(Size)
Radius R

2 3 4 5 6 7 8 9 10

LBPu2
8,R (59) 7.17 7.12 7.15 7.30 7.55 7.82 8.04 8.11 8.08

LBPu2
16,R (243) 6.88 6.70 6.66 6.76 7.06 7.25 7.40 7.51 7.81

LBPu2×3
8,R (177) 6.48 6.49 6.66 6.82 10.75 - - - -

LBPu2×3
16,R (729) 6.18 6.13 12.41 11.32 12.26 - - - -

Table 3. MAE results for SURF at one and multiple scale combinations. Size in
brackets.

Scale SURF64 SURF128 Multiscale SURF×S
64 SURF×S

128

1.6 6.09 (320) 5.72 (640) {1.6, 2} 5.73 (640) 5.39 (1280)
1.8 6.21 (320) 5.77 (640) {1.6, 2.4} 5.71 (640) 5.41 (1280)
2.0 6.24 (320) 5.81 (640) {2, 3} 5.95 (640) 5.60 (1280)
2.4 6.65 (320) 6.24 (640) {1.6, 1.8, 2} 5.67 (960) 5.34 (1920)
3.0 6.93 (320) 6.59 (640) {1.6, 2, 2.4} 5.59 (960) 5.30 (1920)
4.0 7.46 (320) 7.12 (640) {1.6, 2.4, 3} 5.60 (960) 5.33 (1920)
5.0 7.52 (320) 7.26 (640) {2, 2.4, 3} 5.84 (960) 5.53 (1920)

the original and extended descriptor (SURF64 and SURF128) over the keypoints,
which are the five fiducial points previously used for the alignment, as shown in
Table 3.

The optimal regularization cost γ∗, as defined in Section 3, differs for each
computed feature and parameter. For this reason, initially the above-mentioned
grid search has been performed without regularization (γ = 0). Once the best
parameters for the feature detectors have been identified, the optimal regular-
ization cost has been searched by looking for the optimal (minimum) MAE.
Additionally, we impose γx = γy. However, our experiments suggest that no
significant changes can be noticed when incorporating regularization because of
the relative size of the database to the descriptor, as shown in Fig. 5. As the
number of database examples M increases well over the dimensionality of the
feature N , i.e. M�N , the optimal regularization cost γ∗ tends to zero.

In order to improve the accuracy of the estimation, and taking advantage of
the orthogonal nature of different descriptors, a thorough analysis of fusion com-
binations among feature candidates has been carried out. Although more com-
binations have been tested, Table 4 shows the most significant ones: single-scale
HOG8,9 and HOG15,13; 3-scale LBPu2×3

16,3 ; the raw gradient magnitude GRAD;
and the 3-scale SURF×3

64 and SURF×3
128 with scales 1.6, 2, and 2.4. Feature com-

binations have been obtained by concatenating the descriptors and exploiting
the best parameters obtained previously.
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Fig. 5. The need for regularization depends strongly on the ratio between training
examples M and feature dimensionality N . This figure shows 5-fold cross-validation
results using 576-dimensional HOG8,9 and CCA, through different values of γ and
increasing examples from 100 to 50K. As M increases the optimal γ∗ decays, dropping
to zero for M�N .

As observed from the results summarized in Table 4, SURF×3
128 reduces its

MAE when fused with other features (from 5.30 years down to 4.33 when com-
bined with HOG15,13 and LBPu2×3

16,3 ), and performs worse than SURF64 under
the same combination. The best result is obtained when combining HOG15,13,
LBPu2×3

16,3 and SURF×3
64 . This combination has the advantage of fusing texture

and local appearance-based descriptors. Another noticeable remark is the so-
called curse of dimensionality: the addition of further descriptors into higher
dimensional features not always enhances the result.

The specific size of the most accurate descriptors does not seem to be corre-
lated to their accuracy either, at least not after proper regularization has been
applied. The HOG family of descriptors behaves particularly well for the dif-
ferent granularities that were tested, HOG8,9 and HOG15,13, of 576 and 2925
dimensions respectively. This suggests that local appearance information is par-
ticularly useful and quite sufficient for capturing age patterns. The size of the
descriptor deserves important consideration in the case of CCA, as it strongly
affects the computational efficiency of the training process, and plays an impor-
tant role in the stability of the solution: higher M

N ratios result in more stable
pseudo-inverse matrices when searching for the CCA projection matrix.

Table 5 shows the effect of regularization on the features that yielded best
MAE scores in our experiments, over the MORPH database and using the reg-
ularized CCA regression technique. The optimal regularization costs are pro-
vided. We have also included the best results (to the best of our knowledge)
achieved using the BIF descriptor, which is very commonly used in age estima-
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Table 4. MAE results for the fusion of different descriptors that yielded best results.
HOG8,9 and HOG15,13 have a single scale. LBPu2×3

16,3 is computed at the original, half
and quarter image size. GRAD is formed concatenating all gradient magnitude values.
SURF×3

64 and SURF×3
128 are aggregated SURF descriptors with scales {1.6, 2, 2.4}. The

best result is achieved by combining HOG15,13, LBPu2×3
16,3 , and SURF×3

64 .

HOG8,9 HOG15,13 LBPu2×3
16,3 GRAD SURF×3

64 SURF×3
128 (Size) MAE

• (576) 4.84
• (2925) 4.38

• (729) 6.13
• (2500) 5.58

• (960) 5.59
• (1920) 5.30

HOG8,9 HOG15,13 LBPu2×3
16,3 GRAD SURF×3

64 SURF×3
128 (Size) MAE

• • (1305) 4.66
• • • (3805) 4.53
• • • (2265) 4.42
• • • (3225) 4.61
• • • • (4765) 4.51
• • • • (5725) 4.72

• • (3654) 4.33
• • (5420) 4.33
• • • (6154) 4.30
• • (3885) 4.30
• • (4845) 4.33
• • • (4614) 4.27
• • • (5574) 4.33
• • • • (7114) 4.31
• • • • (8074) 4.34

• • (3229) 5.07
• • (1689) 5.31
• • (2649) 6.45

Table 5. Results for non-regularized CCA (γ = 0) and for CCA with the regularization
cost γ∗ yielding the best MAE, for each descriptor

HOG15,13 GRAD LBPu2×3
16,3 SURF×3

128 BIF [11] Fusion

(Size) (2925) (2500) (729) (1920) (4376) (4614)
MAE (γ = 0) 4.38 5.58 6.13 5.30 5.37 4.27
MAE (best γ∗) 4.34 5.49 6.13 5.29 4.42 4.25

(γ∗=0.001) (γ∗=0.002) (γ∗→0) (γ∗→0) (γ∗=0.05) (γ∗→0)

tion and provides the lowest MAE for MORPH in the literature [11]. The size of
BIF after dimensionality reduction (4376) is very similar to the proposed fusion
without any further processing (4614). Nonetheless, our proposed fusion of local
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Table 6. MAE and CS(5) scores for MORPH and FRGC. Each descriptor has optimal
parameters.

MAE CS(5)
HOG GRAD LBP SURF Fusion HOG GRAD LBP SURF Fusion

MORPH–5CV 4.34 5.49 6.13 5.29 4.25 69.5% 57.6% 52.1% 60.2% 71.2%
FRGC–5CV 4.19 4.38 4.45 4.44 4.17 76.0% 77.9% 77.4% 77.5% 76.2%
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Fig. 6. 5-fold cross-validation (5CV) Cumulative Score curves of the Feature descriptor
techniques evaluated in: (a) MORPH and (b) FRGC databases

descriptors improves over the best registered result in this database, reducing
it from 4.42 down to 4.25. It is noteworthy to see how differently regulariza-
tion contributes to each descriptor. For instance, it does not affect LBP, but it
improves BIF by 18%.

Finally, these results have been obtained for FRGC as well. Table 6 contains
global MAE errors and CS(5) values for MORPH and FRGC, whereas Figure 6
shows the complete cumulative score curves for error levels between 0 and 10.
From Figure 6(a) it can be seen that for the MORPH database, the fusion of
descriptors consistently improves over individual features, even for their optimal
configuration of parameters and regularization. On the other hand, the FRGC
curves are practically identical. As stated at the beginning of this section, this
may be due to the lack of variability in the images of this database, in which
every individual averages 80 images, and all very alike. In terms of MAE, the
fusion of descriptors always obtains the best score.

5 Conclusions

We have provided a thorough evaluation on the effectiveness of local invariant
descriptors, both individually and combined, towards the automatic estimation
of apparent age from facial images, using a standard classification technique.
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In our experiments, the early fusion of HOG, LBP and SURF descriptors over
eye-aligned images provides state-of-the-art results over two large databases,
MORPH and FGRC. Concretely, the proposed fusion of descriptors at 50×50
pixel images improves over the best MAE score reported using the CCA tech-
nique, resulting in 4.25 years compared to the 4.38 of BIF at 60×60 pixels. Our
experiments also show that this distance can be further increased when using
larger images and a single HOG descriptor (MAE 4.16).

Our approach requires few feature tuning; it does not involve statistical face
models requiring precise annotation of tens of facial landmarks; and it does
not require additional cues. We have explored the robustness of the descriptors
in terms of parameter settings and in the presence and lack of regularization.
Finally, we have demonstrated that local appearance information is sufficient
for capturing age information from faces, although it is further improved with
textural cues. Canonical Correlation Analysis has proved to be a very effective
and efficient technique for age estimation, working consistently for an ample
variety of descriptors.

Acknowledgments. This work has been partially supported by the Spanish Ministry
of Science and Innovation (MICINN) through the Torres-Quevedo funding program
(PTQ-11-04401).
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Abstract. We consider the problem of perturbing a face image in such
a way that it cannot be used to ascertain soft biometric attributes such
as age, gender and race, but can be used for automatic face recognition.
Such an exercise is useful for extending different levels of privacy to a face
image in a central database. In this work, we focus on masking the gender
information in a face image with respect to an automated gender esti-
mation scheme, while retaining its ability to be used by a face matcher.
To facilitate this privacy-enhancing technique, the input face image is
combined with another face image via a morphing scheme resulting in
a mixed image. The mixing process can be used to progressively modify
the input image such that its gender information is progressively sup-
pressed; however, the modified images can still be used for recognition
purposes if necessary. Preliminary experiments on the MUCT database
suggest the potential of the scheme in imparting “differential privacy”
to face images.

1 Introduction

Most operational face recognition systems store the original face image of a sub-
ject in the database along with the extracted feature set (template). Storing the
original image would allow the system to extract new feature sets and recompute
templates if the feature extractor and matching modules are changed. However,
face images offer additional information about an individual which can be auto-
matically deduced. For instance, it has been shown that automated schemes can
be used to extract soft biometric attributes such as age [4], gender [10], and race
[8] from a face image. This can be viewed as privacy leakage since an entity can
learn additional information about a person (or population) from the stored data,
without receiving authorization from the person for such a disclosure. Therefore,
it is necessary to ensure that face images stored in a system are used only for the
intended purpose and not for purposes that may result in a “function creep” [21].

In this work, we investigate the possibility of suppressing the soft biometric
attribute of a face (e.g., gender) while simultaneously preserving the ability of
the face matcher to recognize the individual (see Figure 1). Such a capability
will ensure that the stored biometric data is not used for purposes beyond what
was expressed during the time of data collection. However, at the same time, it is
necessary that any such perturbation does not drastically impact the recognition
accuracy of the automated face matcher.
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 682–696, 2015.
DOI: 10.1007/978-3-319-16181-5 52
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Fig. 1. An illustration of progressively suppressing the gender of an input image while
retaining identity with respect to an automated face matcher.

In this paper, a mixing approach is used to transform an input face image
into a look-alike face image (i.e., similar facial features and may be appearance)
while suppressing a specific soft biometric attribute, viz., gender. The degree of
suppression is assessed by an automated gender classifier since the goal of this
work is to disallow automated algorithms from extracting information beyond
what was intended at the time of data collection1. A typical gender classifier
outputs a label indicating the gender of a face image along with a confidence
value of this determination. If the proposed method is successful, then either
the confidence values associated with the transformed images will decrease (i.e.,
gender suppression) or their output label will change (i.e., gender conversion).

1.1 Related Work

Biometrics Privacy: In the context of biometrics, privacy refers to the assurance
that the biometric data collected from an individual is not used to deduce any
type of information about the individual. i.e., it should be used only for matching
purposes.

Extensive work on preserving personal information has been done in the data
mining community [1]. Their goal is to enable researchers and organizations to
learn statistical properties of an underlying population2 as a whole, while pro-
tecting sensitive information of the individuals in the population against “linkage
attacks” [12]. Approaches such as k-anonymity [19], l-diversity [9], t-closeness [7],
and differential privacy [2] have been proposed to preserve privacy of the per-
sonal data in statistical databases. These approaches employ techniques such as
data perturbation and sub-sampling [19] (i.e., non-interactive privacy model),
or provide an interface through which users may query about the data and get
possibly noisy answers (i.e., interactive privacy model) [2]. In the context of bio-
metrics, Newton et al. [13] and Gross et al. [5] introduced a face anonymization
algorithm that minimized the chances of performing automatic face recognition
on surveillance images while preserving details of the face such as expression,
1 It is also possible to suppress soft biometric information from a human vision per-

spective - however, the work here does not explore the cognitive-psychological aspects
of the transformed image.

2 This population can be represented as statistical database.
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gender and age. However, the identities of original face images are irrevocably
lost, thereby undermining the use of such techniques in biometric databases.

In related literature [16], to protect the privacy of stored biometric data
(e.g., face images) in a central database, template protection approaches have
been proposed. Most of these template protection approaches replace the stored
feature set in the central database with a transformed feature set or a cryp-
tographic key that has been generated from the feature set or bound with it.
These approaches, such as fuzzy vault cryptosystems, invariably result in loss of
matching accuracy as demonstrated in the literature [16]. Further, when the fea-
ture extraction scheme is changed, the cryptosystem has to be changed. Some
researchers have addressed the challenge of protecting biometric data at the
image-level [15][22][6][3][14], but their goal was to perturb identity. Our method-
ology, on the other hand, only perturbs soft biometric attributes at the image
level, while retaining identity, to prevent any gender profiling on an individual3.

Face fusion for gender conversion: Fusing face images in order to change a
perceived soft biometric (such as age, gender, and/or race) has been researched
in both computer vision and graphics literature due to its many interesting
applications. Regarding gender conversion while preserving face identity, there
are two methods: a prototype-based approach [17] and a component-based app-
roach [18]. In the prototype-based approach [17], prototypes for the two gender
groups (male and female) are computed to describe the typical characteristics of
males and females, respectively, and the difference between these two prototypes
is used to modify the gender appearance of an input face image. A component-
based approach was proposed by Suo et al. [18] as an alternative approach to
gender conversion. Their approach starts by decomposing a source face image
into several facial components. Next, these facial components are replaced with
templates taken from the opposite gender group and the resulting mosaic is
assembled using seamless image editing techniques. The identity of the source
image is preserved by selecting replacement templates that are similar to that
of the source components and penalizing large alterations in the image editing
step. However, the goal of the gender conversion approaches described above
is to generate a single face image that preserves the identity but modifies the
gender. In this paper, our main objective is different. The input face image has
to be transformed to multiple images that are similar to it but with the gender
information suppressed at different levels. In other words, some of the generated
images will be perceived to be of the same gender but with less confidence values,
while other images will be perceived to be of the opposite gender with different
confidence values.

1.2 Proposed Method

To generate a face image with aforementioned properties, the principle of face
morphing is used. Consider two face images F1 and F2. The morphing algo-
rithm generates intermediate images along the continuum from F1 to F2, and
3 Population privacy is enhanced because an adversary cannot draw any conclusion

about the gender of face database users.
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their positions on this continuum are specified by the morphing parameters. The
parameters, described later, are used to determine the rate of warping and color
blending. So, as the morphing proceeds along the continuum from F1 to F2, the
first image (F1) is gradually distorted and is faded out, while the second image
(F2) is faded in (see Figure 4).

The key contributions of this paper are summarized as follows.

– Progressively suppressing the gender attribute of a face while preserving its
identity from the face matcher’s perspective. To the best of our knowledge,
this paper is the first to present the potential of imparting differential privacy
to face images via a simple face morphing technique.

– The degree of suppression has been systematically quantified by utilizing an
automated gender classifier. The proposed method is expected to be applica-
ble across different gender classifiers since it has not been particularly tuned
to a specific one.

The rest of the paper is organized as follows. Section 2 discusses the face morph-
ing technique to perturb gender attributes. Section 3 reports the experimental
results and Section 4 concludes the paper.

2 Face Morphing

Figure 2 shows the three distinct phases in the generation of a mixed face image
(MF ) : facial feature extraction, image warping and cross-dissolving.

Fig. 2. Proposed approach for suppressing gender while retaining identity. Here, the
gender of F1 is perturbed by mixing it with F2 resulting in image MF . However, an
automated face matcher can successfully match MF with F1.

2.1 Facial Feature Extraction

Morphing two face images to generate an intermediate face image involves the
nontrivial task of locating facial features. For both face images, F1 and F2, the
prominent facial features are characterized by a pre-defined set of control points.
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Both sets of control points, X1 and X2, associated with the two face images (see
Figure 2), are stored in a vector format. This representation does not include
any information about the connection between the control points:

Xj = [x1j , x2j , x3j , . . . , xnj , y1j , y2j , y3j , . . . ynj ]T , (1)

where j ∈ {1, 2} and n = 76 is the number of control points. Errors in landmark
annotation can cause a ghost-like effect on the subsequently generated image.
Since extracting control points automatically is not the focus of this work, a
pre-annotated face image database was used (see Section 3). This minimizes the
ghost-like effect.

2.2 Image Warping

Once the corresponding control points between the two face images are known,
the next step is to perform image warping by mapping each facial feature (e.g.,
mouth, nose and eyes) in the individual face images to its corresponding feature
in the mixed image. A triangulation-based warping scheme is used to deform
the face images [20]. First, the intermediate control points set (which defines
the shape of the facial features of the mixed face image) is determined. From
the control point sets X1 and X2 of the face images F1 and F2, respectively,
the intermediate control point set (Xm) is obtained by linear interpolation as
follows:

Xm = (1 − α) · X1 + α · X2, (2)

where α ∈ [0, 1] is the warping factor that determines how the individual
shapes of the two face images are integrated into the shape of the mixed face.
Next, the face region of each face image is dissected into a suitable set of triangles
by utilizing the control points as the vertices of the triangles. Generating an
optimal triangulation has to be guaranteed in order to avoid skinny triangles
and, therefore, Delaunay triangulation was utilized to construct a triangular
mesh for each face image. An example of face images tessellated into triangular
regions according to the annotated control points is shown in Figure 2.

Finally, the affine transformation that relates each triangular region in the
original face image (F1 or F2) to the corresponding triangle in the intermediate
image is computed. Suppose that T1 = [P1, P2, P3]T (T2 = [R1, R2, R3]T ) is
a triangular region in X1 (X2) and Tm = [Q1, Q2, Q3]T is the corresponding
triangular region in Xm (see Figure 3). A1 (A2) is the affine transformation that
maps all points in T1 (T2) onto Tm.

Tm = AjTj , (3)

where j ∈ {1, 2}. Together, T1’s (T2’s) vertices and Tm’s vertices are used in (3)
to compute the parameters of the affine transformation A1 (A2).

As shown in Figure 2, this results in two warped face images F ′
1 and F ′

2 such
that F ′

1 and F ′
2 have similar shapes.
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Fig. 3. Generating the corresponding triangle, Tm, in the intermediate image based
on the triangles T1 and T2 in the original images

2.3 Image Cross-dissolving

The final step to obtain the mixed face image, is simply a cross-dissolving process
of the two warped images. If F ′

1 and F ′
2 are the warped images, the mixed face

image is obtained by linearly interpolating their pixel intensities, such that

MF = (1 − β) · F ′
1 + β · F ′

2, (4)

where β ∈ [0, 1] is the color-dissolving factor that determines the relative
influence of the appearance of the two face images on the mixed face image MF .
Figure 4 shows different examples of mixed face images along the continuum
from F1 to F2 by varying the warping factor (α) and the cross-dissolving factor
(β).

Fig. 4. Mixed face images along the continuum from F1 to F2 where α = β = (a) 0.1,
(b) 0.2, (c) 0.3, (d) 0.5, (e) 0.7, (f) 0.8 and (g) 0.9

3 Experiments and Discussion

The purpose of the following experiments is to systematically investigate if mix-
ing an input face image with different face images from the opposite gender
group will (1) suppress the gender attribute of the input face image to different
degrees, and (2) preserve the identity of the input image with respect to a face
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matcher. To generate a mixed face image from two face images; i.e., a male face
image Fm and a female face image Ff , the morphing technique described earlier
is utilized and the mixed face image can be anywhere along the continuum from
Fm to Ff . But where on this continuous continuum should the mixed face image
be? The position of the mixed face on this continuum is specified by the mor-
phing parameters, i.e., α and β. Although the two parameters can be different,
the best visually appealing mixed face image along this continuum is observed
when α = β. Also, if α = β < 0.5, the gender of the source image will not be
suppressed effectively. Contrarily, if α = β > 0.5, the identity of the source will
be suppressed and the mixed image will not be similar to it. Thus, we select
α = β = 0.5.

3.1 Performance Metrics

The notion of similarity/dissimilarity between face images is assessed using the
match scores generated by a Verilook4 face matcher. In the context of identifi-
cation, a higher rank-1 accuracy would imply a higher similarity; in the context
of verification, a lower Equal Error Rate (EER) would imply higher similarity.
So we use rank-1 accuracy and EER to characterize notions of similarity and
dissimilarity.

The gender of a face image (male or female) is assessed using a VeriLook
gender classifier 5, which also outputs classification confidence values (C

′
) along

with the gender label. These confidence values are in the [0, 100] interval. A
confidence value of 0 indicates that the image is in the boundary of the male
and female class6. However, the software labels the image as female when the
confidence value is 0. Here, we mapped the resultant confidence values as follows:

C =
{

C
′
/100 if class = male;

−C
′
/100 if class = female,

where male and female are the labels computed by the gender classifier. This
mapping results in a gender axis with two ends: 1 (i.e., male with a confidence
value = 100%) and -1 (i.e., female with a confidence value = 100%). This gender
axis will be used to quantify as well as visualize the degree to which gender is
suppressed in the forthcoming experiments.

3.2 Database and Baseline Performance

The performance of the proposed approach was tested using a dataset from
the MUCT database [11]. MUCT database consists of 3755 face images of 276
subjects. We selected the first 2 samples captured by camera “a” (usually the

4 http://www.neurotechnology.com
5 Since the proposed method is not particularly tuned to the specific gender classifier

used, it is expected to work as well on other types of gender classifiers.
6 This assertion has been confirmed by consulting the technical support at Neurotech-

nology.
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frontal face) of each subject 7. For each subject, one sample was added to the
probe set and the other sample was added to the gallery set resulting in a probe
set P and gallery set G each containing 276 face images. The images in P were
matched against those in G. This resulted in a rank-1 accuracy of 95% and
an Equal Error Rate (EER) of 3.5%. This dataset was used since the facial
landmarks (control points) of individual images were annotated and available
online, and also because it contains a comparable number of males and females
(i.e., 131 males and 145 females). The ground truth for gender was obtained from
the filename (“m” for male and “f” for female). The Verilook gender classifier
was used to classify the face images in the gallery set G. Figure 5 shows examples
of face images from G along the gender axis based on the predicted gender and
confidence values. There are only 5 images from G that were misclassified (see
Figure 5). Therefore, from the perspective of this automated gender classifier,
the gallery set will be divided into a male dataset Gm consisting of 132 males
and a female dataset Gf consisting of 144 females.

Fig. 5. Examples of frontal face images from the gallery set G shown on the gender
axis. The gender axis is based on the gender as estimated by the classifier along with
the confidence value, C. Misclassified images are depicted below the axis.

3.3 Degrees of Gender Suppression

In this experiment, the possibility of generating images with different gender sup-
pression levels is tested. Every face image in the male gallery set Gm is mixed
with every face image in the female gallery set Gf . This results in 19,008 mixed
face images. For every male face image, there are 144 corresponding mixed face
images. For every female face image, there are 132 corresponding mixed face
images. Figure 6 shows the distribution of confidence values (C) of the mixed

7 Camera “a” was the only camera that was directly in front of the subject’s face.
Images captured by other cameras exhibited some pose variations. In this paper, we
used only frontal images to examine viability of the proposed approach. There are
two or three images per subject captured by camera “a” and we selected two samples
in order to have the same number of samples for all subjects.



690 A. Othman and A. Ross

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Confidence values

F
re

qu
en

cy

Distribution of gender confidence values

 

 

Males in G
m

Mixed faces
Females in G

f

Fig. 6. Distribution of confidence values of the male, female and mixed images.

images as well as the original male and female images. This graph clearly suggests
the potential of suppressing gender attributes using the proposed method. How-
ever, the objective is not just to suppress the gender attribute. We are looking
to generate images that reveal different levels of gender. Another way of look-
ing at this is as follows: if a male face image Fm is fused with different female
face images Ff s, the resulting face images (MF s) should have confidence values
(Cmf s) that vary from -1 to the confidence value of the original male image, Cm.
To determine the degree of gender suppression, the male suppression-level of
a mixed image is computed as follows:

Sm =
Cm − Cmf

Cm + 1
. (5)

If Sm = 0, this indicates that the mixed image has the same confidence value
as the original male image (Fm) and the gender is not suppressed. If Sm = 1,
this indicates that the mixed image has been classified as female with Cmf = −1
and the gender of the original male image is completely suppressed. On the other
hand, if the source is a female image which has been mixed with a set of male
images, the goal would be to generate mixed images with suppression-levels that
start from Cmf = Cf and end at Cmf = 1. Therefore, if the input image is
female, the female suppression-level can be computed as follows:

Sf =
|Cf | + Cmf

|Cf | + 1
. (6)

Note that in this particular database Sm and Sf ∈ [0, 1] because, as shown
in Figure 6, the confidence value of a mixed face image (Cmf ) is always less than
the confidence values of the original male subjects (Cm) and greater than the
confidence values of the original female subjects (Cf ), i.e., Cf ≤ Cmf ≤ Cm.
Figures 7 and 8 show Sm and Sf , respectively, for all mixed images (i.e., the
19,008 face images). These graphs suggest the possibility of having different
levels of gender suppression. This can be observed by viewing the range of colors
in each row or each column.
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Fig. 7. Plot of male suppression-levels of the mixed images where points along the
horizontal axis is the id # of female subjects and points along the vertical axis is the id
# of male subjects. Male suppression-levels after mixing male subjects #18 and #44
are highlighted. Additionally, the male-suppression level when female subject #70 is
used is also highlighted. See text for explanation as to why these three subjects are
highlighted.

Fig. 8. Plot of female suppression-levels of the mixed images where points along the
horizontal axis is the id # of male subjects and points along the vertical axis is the id
# of female subjects. Female suppression-levels after mixing female subjects #14 and
#90 are highlighted. Additionally, the female-suppression level when male subject #70
is used is also highlighted. See text for explanation as to why these three subjects are
highlighted.

Figure 9 show two male images and the results of mixing them with different
females images along with gender confidence values. Figure 11(a) show Sm for
all mixed images generated by these two male subjects. Note that, the male
suppression-levels (Sm) of mixed images generated by male subject #18 tend
to be closer to the original gender confidence value (i.e., Sm tends to be closer
to 0). On the other hand, the mixed images of male subject #44 tend to be
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classified as females and are closer to the target (i.e., Cmf � −1). A similar
effect on female subject #18 and #44, can be seen in Figure 10. Figure 11(b)
shows the female suppression-levels (Sf ) for all mixed images generated by these
two female subjects. We also observed that some female images when mixed with
input male images cause most of the mixed images to have male suppression-
levels that are closer to 1 (i.e., Cmf are closer to -1). For example, as shown in
Figures 7 and 9, female subject #70 strongly suppressed the gender of most male
images. Similarly, as shown in Figures 8 and 10, male subject #70 has strongly
affected most of the female suppression-levels of the mixed face images.

(a) (b)

Fig. 9. Examples of mixed face images after mixing the face images of male subjects
(a)# 18 and (b)#44 with different female face images, along with the confidence value
(C) of each image. The blue (red) color indicates that the image is labeled as a male
(female).

(a) (b)

Fig. 10. Examples of mixed face images after mixing the face images of female subjects
(a) # 14 and (b) #90 with different male face images, along with the confidence value
(C) of each image

These results prove that we can generate different versions of an input face
image with different levels of gender suppression. Note that the confidence val-
ues associated with the original images play an important role. As shown in
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(a) Male suppression-levels (b) Female suppression-levels

Fig. 11. Plot of sorted suppression-levels corresponding to the mixed images generated
for (a) male subjects #18 & #44, and (b) female subjects #14 & #90

Figure 9(a), the facial appearance of the input face image has also a role. Hence,
the facial hair of the male subject #18, i.e., the mustache, results in mixed
images with more maleness, although the original male image has a low gender
confidence value.

3.4 Similarity to the Original Face Images

After suppressing or modifying the gender of the face image by mixing, the iden-
tity information should be preserved effectively in the resultant images. There-
fore, in this experiment, the similarity between the mixed face image and original
face images (i.e., male and female face images) was evaluated. To this end, the
mixed face images generated in Experiment 1 (i.e., 19,008 face images) were
matched against the original images in the probe set P (see Figure 12). Here,
a genuine score is generated when the mixed face image is matched with either
of the original face images (i.e., the images that were mixed) and the rest are
impostor scores.

The resultant rank-1 accuracy of matching mixed images against original
images in P was 95% (and the EER was 5%). These results indicate that the
original images are reasonably similar to the mixed images. Hence, the identities
of the originals have been preserved in the mixed faces, which is our objective.

4 Summary and Future Work

In this work, we explored the possibility of generating mixed face images that
suppress the gender of a face image to different degrees. In this regard, we mixed
an input face image with different face images from the opposite gender and
determined if the mixed images suppress the gender while bearing sufficient
similarity to the input face image in terms of a face matcher. We utilized a
gender classifier along with the resultant confidence value to assess the gender
information. To mix two face images, a face morphing technique was adopted
in this work. Experiments on the MUCT dataset indicate that (a) the mixed
face suppresses the gender of original face images to different degrees, and (b)
the mixed face exhibits similarity with the original image and so identity with
respect to a face matcher is retained. Figure 13 shows that the distribution of
male and female suppression-levels are not uniform distributions. While it is
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Fig. 12. Examples of mixing the face images of a male subject with different female
face images, along with the confidence value (C) of each image. Match scores generated
by matching the input probe against the mixed images and the gallery image of the
male subject are shown below the confidence values of the gallery and mixed images.
These scores are similarity scores and in the [0,180] interval.
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Fig. 13. Distributions of male (Sm) and female (Sf ) suppression-levels of all mixed
images (i.e., 19,800 face images). These distributions suggest that it is possible to
suppress gender to different degrees.

possible to suppress a face image to different degrees, these degrees may not
form a continuous or complete continuum8. Therefore, further work is needed
to test this approach on a larger database having subjects with large variation
in their gender confidence values. Other morphing approaches based on radial
basis functions and multi-level free-form deformation [20] could be explored.
The technique could potentially be extended to suppress different soft biometric
attributes simultaneously (to different degrees) thereby supporting a differential
privacy framework. Note that mixing more than two images is possible, but this
may suppress individual identities and the mixed image is likely to be less similar
to the originals. Future work will also investigate the possibility of utilizing the
proposed approach as a privacy-enhancing technique by mixing faces of different
subjects in order to hide the original identities.
8 This continuum should start from the gender confidence value of the input face image

and end at the maximum confidence value of the opposite gender (i.e., +1 or -1).



Privacy of Facial Soft Biometrics 695

Acknowledgments. The authors are grateful to Cunjian Chen for his assistance with
the gender prediction experiments.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM Sigmod. Record
29(2), 439–450 (2000)

2. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
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Abstract. Human faces demonstrate clear Sexual Dimorphism (SD) for
recognizing the gender. Different faces, even of the same gender, convey
different magnitude of sexual dimorphism. However, in gender classifica-
tion, gender has been interpreted discretely as either male or female. The
exact magnitude of the sexual dimorphism in each gender is ignored. In
this paper, we propose to evaluate the SD magnitude, using the ratio
of votes from the Random Forest algorithm performed on 3D geometric
features related to the face morphology. Then, faces are separated into
a Low-SD group and a High-SD group. In the Intra-group experiments,
when the training is performed with scans of similar SD magnitude than
the testing scan, the classification accuracy improves. In Inter-group
experiments, the scans with low magnitude of SD demonstrate higher
gender discrimination power than the ones with high SD magnitude.
With a decision-level fusion method, our method achieves 97.46 % gen-
der classification rate on the 466 earliest 3D scans of FRGCv2 (mainly
neutral), and 97.18 % on the whole FRGCv2 dataset (with expressions).

Keywords: 3D face · Gender classification · Sexual dimorphism · Ran-
dom forest

1 Introduction

Human faces exhibit clear sexual dimorphism (SD), in terms of masculinity and
femininity [29], for recognizing their gender. In several anthropometry studies,
researchers have concluded that male faces usually possess more prominent fea-
tures than female faces [6,18,36,41]. Automated gender classification has gradu-
ally developed as an active research area, sine 1990s. Abundant works have been
published, concerning (i) different face modalities (2D texture images or 3D
scans), (ii) different face descriptions (2D pixels, 3D point cloud, or more com-
plex features like LBP, AAM, wavelets, etc.), and (iii) different classifiers (Ran-
dom Forest, SVM, Adaboost, etc.). Earlier gender classification works mainly
focused on 2D texture of faces. Recently, 3D face-based gender classification has
been investigated in several studies [11,12,25,33,37,38] and has demonstrated
its benefits compared to 2D face-based approaches. Compared to 2D face images,
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 697–710, 2015.
DOI: 10.1007/978-3-319-16181-5 53
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the 3D scans have better robustness to illumination and pose changes. Also, the
3D face scans are able to capture complete information of the facial shape.

The first work of 3D-based gender classification is proposed by Liu and
Palmer in [25]. Considering the human faces are approximately symmetric, they
extract features from the height and orientation differences on symmetric facial
points from 101 full 3D face models. Using LDA outputs, they achieve 91.16%
and 96.22% gender recognition rate considering the height and orientation dif-
ferences, respectively. In [12], Vignali et al. use the 3D coordinates of 436 face
landmark points as features, and achieve 95% classification rate on 120 3D scans
with LDA classifier. Considering the statistical differences shown in facial fea-
tures between male and female, such as in the hairline, forehead, eyebrows, eyes,
cheeks, nose, mouth, chin, jaw, neck, skin, beard regions [10], Han et al. extract
geometric features with the volume and area information of faces regions [13].
They achieve 82.56% classification rate on 61 frontal 3D face meshes of GavabDB
database, with the RBF-SVM classifier in 5-fold cross validation. In [15], Hu et
al. divide each face into four regions in feature extraction, and find that the
upper face is the most discriminating for gender. The classification rate reported
is 94.3% with SVM classifier, on 945 3D neutral face scans. In [2], Ballihi et al.
extract radial and iso-level curves and use a Riemannian shape analysis app-
roach to compute lengths of geodesics between facial curves from a given face to
the Male and Female templates computed using the Karcher Mean algorithm.
With a selected subset of facial curves, they obtain 86.05% gender classifica-
tion rate with Adaboost, in 10-fold cross-validation on the 466 earliest scans of
FRGCv2 dataset. In [33], Toderici et al. obtain features with the wavelets and the
MDS (Multi Dimensional Scaling). Experiments are carried out on the FRGCv2
dataset in 10-fold subject-independent cross validation. With polynomial ker-
nel SVM, they achieved 93% gender classification rate with the unsupervised
MDS approach, and 94% classification rate with the wavelets-based approach.
In [11], Gilani et al. automatically detect the biologically significant facial land-
marks and calculate the euclidean and geodesic distances between them as facial
features. The minimal-Redundancy-Maximal-Relevance (mRMR) algorithm is
performed for feature selection. In a 10-fold cross-validation with a LDA classi-
fier, they achieve 96.12% gender classification rate on the FRGCv2 dataset, and
97.05% on the 466 earliest scans. Combining shape and texture, in [26], Lu et al.
fuse the posterior probabilities generated from range and intensity images using
SVM. In [19], Huynh et al. fuse the Gradient-LBP from range image and the
Uniform LBP features from the gray image. In [34], Wang et al. fuse the results
of gender classification from 8 facial regions, and achieve 93.7% gender classifi-
cation rate on the FRGCv2 dataset, using both the range and texture data. In
[35], Wu et al. combine shape and texture implicitly with needle maps recovered
from intensity images. More recently, in [17], Huang et al. propose to use both
boosted local texture and shape features for gender and ethnicity classification.
The local circular patterns (LCP) are used to compute the facial features. Then
a boosting strategy is employed to highlight the most discriminating gender- and
race-related features. Their method achieve 95.5% correct gender classification
rate on a subset of FRGCv2 dataset using 10-fold cross validation.
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In subjective experiments conducted in [16], the authors reported that human
observers perform better on gender recognition with 3D scans than with 2D
images. The study presented in [14] also confirms that, for gender classifica-
tion, the usage of 2D images is limited to frontal views, while the 3D scans are
adaptable to non-frontal facial poses. Despite the achievements of 3D face-based
gender classification, the majority of related works have interpreted gender dis-
cretely as either male or female. To our knowledge, no work gives consideration
to the fact that, even faces with the same gender can have different magnitude
of sexual dimorphism. Thus, other than viewing faces equally as definitely male
or female, we propose to evaluate the magnitude of sexual dimorphism first, and
then explore the usage of this magnitude for gender classification. The rest of
this paper is organized as following: in section 2, we present the adopted feature
extraction procedure for 3D faces and emphasize our contribution; in section 3,
we detail our gender classification method, including the Random Forest clas-
sifier and the evaluation protocols; experimental results and discussions are in
section 4; section 5 makes the conclusions.

2 Methodology and Contributions

In face perception, researchers have revealed that facial sexual dimorphism relates
closely with the anthropometric cues, such as the facial distinctiveness (the con-
verse to averageness) [3], and the bilateral asymmetry [23]. The averageness
of the face and its symmetry serve as covariants in judging the perceived health
of potential mates in sexual selection [24,28,30], and also the attractiveness of
face [20,22]. As stated earlier, the male faces usuallye Statistics on head and
face of American and Chinese adults reported in [9,39,40] have also confirmed
this point. Concerning the face symmetry, in [23], Little et al. reveal that the
symmetry and sexual dimorphism from faces are related in humans, and suggest
that they are biologically linked during face development. In [32], Steven et al.
find that the masculinization of the face significantly covaries with the fluctu-
ating asymmetry in men’s face and body. In addition to facial averageness and
symmetry, the global spatiality and local gradient relates closely with sex-
ual dimorphism in the face. As demonstrated in [39,40], the sexual dimorphism
exhibits inequally in magnitude in different spatial parts of the face. Also, sex-
ual dimprphism demonstrates the developmental stability [24] in faces. It relates
closely to the shape gradient which represents the local face consistency. Thus,
considering sexual dimorphism is closely related to these morphological cues of
the face, we explore the use of four descriptions based on the recently-developed
Dense Scalar Field (DSF) [4,8]. Our facial descriptions quantify and reflect the
averageness (3D-avg.), the bilateral symmetry (3D-sym.), the local changes (3D-
grad.), and the global structural changes (3D-spat.) of the 3D face. Recall that
the extraction of the DSFs features is based on a Riemannian shape analysis
of elastic radial facial curves. They are designed to capture densely the shape
deformation, in a vertex-level. They were first proposed in [4,8] for facial expres-
sion recognition from dynamic facial sequences. The extraction of the proposed
descriptors is detailed in the following.
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2.1 Feature Extraction Methodology

At first, the 3D scans are pre-processed to define the facial surface (remove
noise, fill holes, etc.) and limit the facial region (remove hair, etc.). Then, a
set of radial curves stemming from the automatically detected nose-tip of each
scan are extracted with equal angular interpolation, α ∈ [0, 2π]. The radial
curve that makes an clockwise angle of α with the middle-up radial curve which
passes through the center of the nose and the forehead is denoted as βα. Given
a facial surface S, it results in S ≈ ∪αβα. Then, with the Square-Root Velocity
Function (SRVF) representation introduced in [31], an elastic shape analysis of
these curves is performed.

Fig. 1: Illustrations of different features on 3D shape of the preprocessed face. (a)
the 3D-avg. description: the DSF from radial curve in a preprocessed face to the
radial curve in face template with the same index; (b) the 3D-sym. description:
the DSF from symmetrical radial curves. (c) the 3D-grad. description: DSF
from a pair of neighboring radial curves. (d) the 3D-spat. description: DSF
from each radial curve to the middle-up radial curve which passes through the
middle of the nose and the forehead.

More formally, considering a given facial curve as a continuous parametrized
function β(t) ∈ R

3, t ∈ [0, 1]. β is represented by its Square-Root Velocity Func-
tion SRVF, q, according to :

q(t) = β̇(t)/
√

‖β̇(t)‖, t ∈ [0, 1]. (1)

Then with its L
2-norm ‖q(t)‖ scaled to 1, the space of such functions: C =

{q : [0, 1] → R
3, ‖q‖ = 1} becomes a Riemannian manifold and has a spherical
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structure in the Hilbert space L
2([0, 1],R3). Given two curves β1 and β2 repre-

sented as q1 and q2 on the manifold, the geodesic path between q1, q2 is given
by the minor arc of the great circle connecting them on the Hypersphere [7].
To capture densely the shape deformation between the curves q1 and q2, the
shooting vector Vq1 �→q2 (tangent vector to C on q1, and also an element of the
tangent space on q1 to the manifold C, Tq1(C)), is used. This vector represent
the shooting direction along the geodesic connecting q1 and q2. Knowing that,
the covariant derivative of the tangent vector field on geodesic path is equal to
0 (i.e. a geodesic corresponds to a constant velocity path on the manifold), this
shooting vector characterizes the geodesic path. Here again, due to the spherical
structure of C, the shooting vector Vq1 �→q2 is given by:

Vq1 �→q2 =
θ

sin(θ)
(q∗

2 − cos(θ)q1), Vq1 �→q2 ∈ Tq1(C). (2)

where q∗
2 ∈ [q2] (element of the orbit of the shape q2) denote the closest

shape in [q2] to q1 with respect to the metric dC . The shape q∗
2 is given by

q∗
2 =

√
γ̇∗O∗q2(γ∗), where γ∗ is the optimal reparametrization that achieved

the best matching between q1 and q2 and O∗ gives the optimal rotation to align
them. The angle θ = cos−1 〈q1, q∗

2〉, denotes the angle between q1 and q∗
2 (we

refer the reader to [7] for further details on elastic shape analysis of facial radial
curves). Recall that, shapes correspondence is an essential ingredient in shape
analysis to find the efficient way to deform one shape into another. The elastic
shape analysis framework used here achieves accurate dense correspondence and
returns the optimal deformation from one shape into another.

With the magnitude of Vq1 �→q2 computed at N indexed points of q1 and q2,
the Dense Scalar Field (DSF), DSF = {‖V

(k)
α ‖, k = 1, 2, 3, .., N}) is built. It

quantifies the shape difference between two curves at each point. Using this
geometric deformation between pairwise curves on the face, we derive four dif-
ferent facial descriptions which reflect different morphological cues, as described
earlier, which are the face averageness, symmetry, local shape changes (termed
gradient) and the global spatial changes (termed spatial). The extracted DSF
features are illustrated in Fig. 1. In each sub-figure of Fig. 1, the left part illus-
trates the extracted radial curves and the curve comparison strategy, the right
part shows the DSF features as color-map on the face. On each face point, the
warmer the color, the lower the deformation magnitude. The 3D-avg. descrip-
tion shown in Fig. 1 (a) compares a pair of curves with the same angle from a
preprocessed face and an template face. The average face template (presented in
Fig. 1 (a)) is defined as the middle point of geodesic from a representative male
face to a representative female face. The 3D-sym. description shown in Fig.
1 (b) captures densely the deformation between bilateral symmetrical curves.
This description allows to study the facial changes in terms of bilateral sym-
metry. The 3D-grad. description shown in Fig. 1 (c) captures the deformation
between pairwise neighboring curves. The idea behind is to approximate a local
derivation or the gradient. The 3D-spat. description shown in Fig. 1 (d) cap-
tures the deformation of a curve to the middle-up curve, emanating from the
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nose tip and passing vertically through the nose and the forehead. As the middle-
up curve locates at the most rigid part of the face, this description captures the
spatial changes from the most rigid facial part in the face. We emphasize that,
although all these descriptions are based on the same mathematical background,
they relate to significantly different morphology cues of face shape.

2.2 Contributions

With the designed facial descriptions, we perform gender classification experi-
ments with the Random Forest classifier. We propose to first evaluate the mag-
nitude of sexual dimorphism of a face, then explore this magnitude in gender
classification. In summary, we have made the following contributions:

– First, rather than taking a face as definitely male or female, we propose
to evaluate its magnitude of sexual dimorphism using the ratio of votes
from effective random forest based gender classification approach. To our
knowledge, this is the first time in the literature of gender classification that
gives consideration to the sexual dimorphism difference.

– Second, according to the magnitude of sexual dimorphism, we separate the
instances into High-SD and Low-SD groups. With the Intra-group gender
classification experiments performed within each group, we find out that the
gender of instances are more accurately classified with the training instances
which have similar sexual dimorphism.

– Third, in the Inter-group experiments, we demonstrate that the gender clas-
sification algorithm trained on Low-SD instances has good generalization
ability on the High-SD instances, while the inverse is not true. It means
that the instances with low magnitude of sexual dimorphism tell more accu-
rately the discriminating cues of gender. When training only on the Low-
SD instances, the classification results are even better than training on all
instances.

– Last, with a decision-level fusion method performed on the results from four
descriptions, we achieve 97.46% gender classification rate on the 466 earliest
3D scans of FRGCv2, and 97.18% on the whole FRGCv2 dataset.

In the next, we detail the experiments conducted for gender classification.

3 Gender Classification Experiments

We use Random Forest classifier on the DSFs features for Gender classification.
The Random Forest is an ensemble learning method that grows many decision
trees t ∈ {t1, .., tT } for an attribute [5]. In growing of each tree, a number of
N instances are sampled randomly with replacement from the data pool. Then
a constant number of variables are randomly selected at each node of the tree,
with which the node makes further splitting. This process goes on until the
new nodes are totally purified in label. To classify a new instance, each tree
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gives a prediction and the forest makes the overall decision by majority voting.
Thus, associated to each forest decision, there is always a score in the range of
[50%,100%], which indicates the ratio of trees voting for this decision. This ratio
shows the confidence of the decision.

Our experiments are carried out on the Face Recognition Grand Challenge
2.0 (FRGCv2) dataset [27], which contains 4007 3D near-frontal face scans of
466 subjects. There are 1848 scans of 203 female subjects, and 2159 scans of
265 male subjects. Following the literature [2,11,34,37,38], we conducted two
experiments: the Expression-Dependent experiment uses the 466 earliest scans
of each subject in FRGCv2, for which the majority have neutral expression. The
Expression-Independent experiments use the whole scans of FRGCv2 dataset,
for which about 40% are expressive. These settings are designed to test the
effectiveness of gender recognition algorithm, and its robustness against facial
expressions. Under the Expression-Dependent setting, we use directly our DSFs
features. Whereas, under the Expression-Independent setting, we first reduce
the original DSF features into a salient subset using the Correlation-based Fea-
ture Selection (CFS)algorithm [1], to make feasible the evaluation on the whole
dataset. The CFS belongs to the the filters, which select features with heuristics
based on general characteristics of features. They are independent of learning
algorithm and are generally much faster [21], compared with another school of
feature selection methods, the wrappers. After Feature selection, we retain only
200-400 features for each description.

3.1 Leave-One-Person-Out (LOPO) Gender Classification

First, for both the Expression-Dependent and the Expression-Independent set-
tings, we follow the Leave-One-Person-Out (LOPO) cross-validation with 100-
tree Random Forest with each type of DSFs descriptions. Under the LOPO
protocol, each time one subject is used for testing, with the remaining subjects
used for training. No subject appears both in traning and in testing in the same
round. The experimental results are reported in Table 1. For each DSF descrip-
tion, under the Expression-Dependent setting, the gender classification rate is
always > 84%. With the selected DSFs features in the Expression-Independent
setting, the gender classification rate is always > 85%. Generally speaking, these
results demonstrate the relevance of using the 3D geometry (shape) of the face,
in particular the morphological cues, for the gender classification task. The best
classification rates is achieved by the 3D-avg. description, which quantifies the
shape divergence to a face template.

Despite the effectiveness of the previous descriptions, the gender of the train-
ing and testing instances had been interpreted discretely as either male or female
during the experiments. Labeling a male or female only represents the dominant
tendency of facial sexual dimorphism, which is masculinity or femininity. The
varying magnitude of facial sexual dimorphism, especially in the same gender
class, is ignored. Different male faces can have different magnitude of masculin-
ity. Also, different female faces can have different magnitude of femininity. Thus,
in our work, we propose to evaluate the magnitude of facial sexual dimorphism in
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Table 1: Expression-Dependent Gender classification Results

Experiment/Description 3D-avg. 3D-sym. 3D-grad. 3D-spat. # of Scans

Expression-Dependent 89.06% 87.77% 85.62% 84.12% 466

Expression-Independent 91.21% 90.49% 85.29% 87.79% 4005

gender classification, using the ratio of votes from Random Forest in the LOPO
experiments. Recall that, in the Random Forest, the overall decision is made by
majority voting of its decision trees. The ratio of votes signifies the confidence of
the forest decision. In our case, the ratio of votes actually is interpreted as the
magnitude of sexual dimorphism, in a statistical way. As in the forest, each tree
is acting as an evaluator of the sexual dimorphism in the testing instance. The
ratio of votes thus represents the statistical evaluation of the testing instance
of the whole forest. Moreover, since the results shown in Table. 1 have demon-
strated the effectiveness of the forests in gender classification, which means that
the ratio of votes signifies well the sexual dimorphism. This is similar to human
based gender evaluation. When a group of people are evaluating the same face,
the more people voting for a gender (male or female), the higher the magnitude of
sexual dimorphism exhibiting in the evaluated face (masculinity or femininity).
The only underlying pre-condition is that, human observers have good accuracy
in gender classification. Similarly, the only requirement of using the ratio of votes
in random forest as evaluation of sexual dimorphism is that, the trees should be
relevant to gender discrimination. This has already been justified by the effective
results in Table. 1. Thus, we use the ratio of votes to indicate the magnitude of
the dominant sexual dimorphism in a face. For example, if a scan is classified as
male (or female) with 70% trees voting for it, we note it as having a magnitude of
0.7 in masculinity (or femininity). In our case, the ratio of votes, which signifies
the magnitude of sexual dimorphism, is always in the range of [0.5, 1.0].

In Fig. 2, we show the relationship between gender classification accuracy
and the magnitude of sexual dimorphism in testing scans for both Expression-
Dependent and Expression-Independent experiments. The magnitude of sexual
dimorphism is divided into five equally spaced groups, and shown in the x-axis
of each subplot of Fig. 2. The corresponding recognition rates in each description
are shown as color-bars in y-axis. As shown in Fig. 2 (A), under the Expression-
Dependent setting, the higher the magnitude of sexual dimorphism in testing
scans, the higher the gender classification accuracy in each description. When
the SD magnitude is as low as [0.5,0.6], the classification rate is only about
60%. The rate increases to 72%-75% when SD magnitude is within (0.6,0.7].
The classification rate reaches 79%-92% when the SD magnitude is (0.7,0.8].
Finally, when the SD magnitude is > 0.8, the accuracy reaches 97%-100%. The
results under the Expression-Independent setting, shown in Fig. 2 (B), confirms
these observations that the higher the SD magnitude in scans, the higher the
gender classification accuracy in each description. The gender classification rate
is very low when the SD magnitude is < 0.6. When the SD magnitude increases
to > 0.8, the classification rate reaches as high as > 90%. The observation from
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Fig. 2: Gender classification rates with different magnitude of sexual dimorphism

Fig. 2 under both settings matches the simple intuition that the lower the sexual
dimorphism in a face, the harder for classifying its gender.

3.2 Intra-group and Inter-group Experiments

Results from Fig. 2 also show that the gender classification algorithm trained on
general scans performs poorly when the testing scans have very low magnitude of
sexual dimorphism. Thus, for both the experimental settings, we propose to sep-
arate the scans into a High-SD group and a Low-SD group in each description,
according to the magnitude of sexual dimorphism evaluated in the corresponding
LOPO experiments with the concerning description. The High-SD group com-
prises of instances with the magnitude of sexual dimorphism evaluated higher
than 0.8. The Low-SD group is formed by instances with the magnitude of sexual
dimorphism evaluated ≤ 0.8. With Fig. 2, it is clear that the accuracy differs
in the two groups of each description. After this, we design two types of exper-
iments, the Intra-group experiments and the Inter-group experiments. In the
Intra-group experiments, we perform LOPO experiments on each group of each
description. This type of experiments are designed to reveal that, for a testing
scan, whether using scans with similar sexual dimprphism magnitude in training
can determine more accurately its gender. In the Inter-group experiments, we
train and test with different groups. Each group is used twice, once as training
and once as testing. This type of experiments are aiming at testing the cross
group ability of the gender classification algorithm trained on a specific group.

In Table 2 - 5, we show the results under the Intra-group and the Inter-group
experiments with the Expression-Dependent settings, for each face description.
In each table, the first row shows the testing data, and the first column indicates
the experimental setting. For each group, the number of scans is shown in the last
row of the table. Results from the previous LOPO experiments on the 466 scans
are also presented in each table, labeled as LOPO-ED. In Table 2 - 5, we observe
that, First, the results from the Intra-group experiments always outperform the
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results from LOPO experiments, further it outperforms the results from the
Inter-group experiments. It reveals that faces with similar magnitude of sexual
dimorphism can determine more accurately the gender of each other. It is a
better gender classification strategy to train and test within scans of similar
sexual dimorphism magnitude. Second, when training with the Low-SD group,
the testing results on the High-SD group are always effective (> 90%), but
the inverse is not true. The algorithm trained on the Low-SD instances has
good generalization ability on the High-SD instances. It means that the Low-
SD instances contains more discriminating cues of the gender. Taking the first
two diagonal elements of each table, we can generate also the results for each
description when training with only the Low-SD instances. Following this, our
approach achieved 86.48% with the 3D-avg. description, 89.06% using the 3D-
sym. description, 88.41% based the 3D-grad. description, and 87.18% with the
3D-spat. description. Except the 3D-avg. description, these results outperform
significantly the corresponding LOPO experiments and are comparable to the
Intra-group experiment results shown in Table 3 - 5. It means that with only
the Low-SD instances in training, we can achieve better results than with all
the scans in training. The Low-SD instances should have higher priority to be
selected for training, than the High-SD ones.

Table 2: Results of 3D-avg

Low-SD High-SD All

Intra-Group 75.32% 98.70% 90.77%

Inter-Group 60.76% 92.21% 81.54%

LOPO-ED 70.25% 98.70% 89.06%

# of scans 158 308 466

Table 3: Results of 3D-sym

Low-SD High-SD All

Intra-Group 77.78% 98.13% 89.48%

Inter-Group 70.71% 97.39% 86.05%

LOPO-ED 73.23% 98.51% 87.77%

# of scans 198 268 466

Table 4: Results of 3D-grad
Low-SD High-SD All

Intra-Group 80.60% 99.49% 88.62%

Inter-Group 69.03% 98.99% 81.76%

LOPO-ED 75.75% 98.99% 85.62%

# of scans 268 198 466

Table 5: Results of 3D-spat
Low-SD High-SD All

Intra-Group 81.96% 97.95% 86.70%

Inter-Group 71.56% 98.63% 80.04%

LOPO-ED 77.50% 98.63% 84.12%

# of scans 320 146 466

In parallel, we also performed the Intra-group experiments and the Inter-
group experiments under the Expression-Independent setting on the whole
FRGCv2 dataset. The results are shown in Tables 6 - 9. Similarly, the results
from LOPO experiments on the 4005 scans are also shown in each table, labeled
as LOPO-EI. They show, again, that the Intra-group experiments always out-
perform the results from LOPO experiments on the whole FRGCv2, further
outperform the results from the Inter-group experiments. It confirms that faces
with similar magnitude of sexual dimorphism can determine more accurately the
gender of each other, and it is better gender classification strategy to train and
test within scans of similar sexual dimorphism magnitude. When training with
the Low-SD group, the testing results on the High-SD group are again always
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effective (> 95%) in each description, but the inverse is not. It confirms the
previous finding that the algorithm trained on the Low-SD instances has very
generalization ability on the High-SD instances, and the Low-SD instances con-
tain more accurately the discriminating cues of gender. When taking only the
Low-SD instances in training, we achieve 92.78% in the 3D-avg. description,
90.29% in the 3D-sym. description, 88.07% in the 3D-grad. description, and
87.32% in the 3D-spat. description. These results are very close to the Intra-
group experiment results, and most of them outperform the corresponding LOPO
experiments, as shown in Table 6 - 9. It confirms that, with the Low-SD instances
in training, we can achieve better results than with all the scans in training.

Table 6: Results of 3D-avg

Low-SD High-SD All

Intra-Group 79.03% 98.31% 92.96%

Inter-Group 68.05% 98.06% 89.74%

LOPO-EI 72.55% 98.38% 91.21%

# of scans 1111 2894 4005

Table 7: Results of 3D-sym

Low-SD High-SD All

Intra-Group 75.89% 97.43% 90.76%

Inter-Group 70.16% 96.75% 88.51%

LOPO-EI 75.00% 97.43% 90.49%

# of scans 1240 2765 4005

Table 8: Results of 3D-grad
Low-SD High-SD All

Intra-Group 79.04% 97.38% 86.72%

Inter-Group 69.07% 97.20% 80.85%

LOPO-EI 76.50% 97.50% 85.29%

# of scans 2014 1991 4005

Table 9: Results of 3D-spat
Low-SD High-SD All

Intra-Group 79.39% 98.24% 88.76%

Inter-Group 73.63% 97.74% 85.62%

LOPO-EI 77.46% 98.24% 87.79%

# of scans 2328 1687 4005

3.3 Decision-level Fusion for Gender Classification

As noted before, the four face descriptions reflect different perspectives for sex-
ual dimorphism. All of them have demonstrated good competence in face gender
classification. Thus, we explore in this section their fusion in gender classifica-
tion. Following the idea that the higher the magnitude of sexual dimorphism,
the higher the accuracy in gender classification, we propose to take the pre-
dicted label with the highest magnitude of sexual dimorphism given by the four
descriptions in the Intra-Group experiments. In practice, this is equal to take
the label which is associated with the highest ratio of votes among the predicted
labeled given by each of the four description with the Random Forest classifier.
With this fusion strategy, our method achieved 97.42% gender classification rate
on the 466 earliest scans, and 97.18% gender classification rate on the whole
FRGCv2 dataset. The details of these fusion results are shown in Fig. 3.

In each subplot of Fig. 3, the x-axis shows magnitude of sexual dimorphism.
The blue bars show the gender classification rate (corresponds to the left-side
y-axis), and the red line shows the number of instances (corresponds to the right-
side y-axis). As shown in Fig. 3 (A), under the Expression-Dependent setting,
the magnitude of sexual dimorphism for more than 60% instances (296 in 466)
is greater than 0.9 in the fusion. The corresponding gender classification rate
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Fig. 3: Fusion details concerning different magnitude of sexual dimorphism

reaches 99.67%. Under the Expression-Independent setting, as shown in Fig. 3
(B), the magnitude of sexual dimorphism for more than 70% instances (2861 in
4005) is greater than 0.9 in the fusion. The corresponding gender classification
rate reaches 99.2%. These results explain largely for the improvements of results
in fusion. Also, the fusion significantly improves the classification accuracy in
the instances with low sexual dimorphism magnitude under both experimen-
tal settings, especially when the instances are evaluated as (0.6,0.8] in sexual
dimorphism magnitude in fusion.

4 Conlusion

In this work, we have proposed to use the ratio of votes from Random Forest to
evaluate the sexual dimorphism of face instances. Four facial description designed
to capture different perspectives of the facial morphology are built based on an
elastic shape analysis of facial curves. We have discovered that instances with sim-
ilar sexual dimorphism magnitude can determine more accurately the gender of
each other in gender classification. Moreover, we reveal that the face instances
with low magnitude of sexual dimorphism can tell more accurately the discrimi-
nating cues of gender. The gender classification algorithm trained with these insta-
nces have good generalization ability for gender classification of instances with
high magnitude of sexual dimorphism, while the inverse is not. When training only
on the instances with low magnitude of sexual dimorphism, better results can be
achieved than training generally on all the instances. We also propose a decision-
level fusion method, with which we achieve 97.46% gender classification rate on
the 466 earliest scans of FRGCv2, and 97.18% on the whole FRGCv2 dataset.
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Abstract. This paper studies ways to detect good users for biomet-
ric recognition based on keystroke dynamics. Keystroke dynamics is an
active research field for the biometric scientific community. Despite the
great efforts made during the last decades, the performance of keystroke
dynamics recognition systems is far from the performance achieved by
traditional hard biometrics. This is very pronounced for some users, who
generate many recognition errors even with the most sophisticate recog-
nition algorithms. On the other hand, previous works have demonstrated
that some other users behave particularly well even with the simplest
recognition algorithms. Our purpose here is to study ways to distin-
guish such classes of users using only the genuine enrollment data. The
experiments comprise a public database and two popular recognition
algorithms. The results show the effectiveness of the Kullback-Leibler
divergence as a quality measure to categorize users in comparison with
other four statistical measures.

Keywords: Keystroke · Typing patterns · Biometric · Authentication ·
Quality · Performance prediction

1 Introduction

Keystroke dynamics is a well-known biometric recognition technology which has
attracted the interest of industry and researchers during the last decade [1][2].
The proliferation of web applications (e. g. e-banking or e-commerce) and the
necessity of accurate and secure recognition methods has increased the inter-
est in biometrics related with the user activity with the computer. Keystroke
dynamics plays an important role in this context and its complementarity with
other biometric modalities such as mouse dynamics has renovated the interest
in these approaches [3]. The identification of people using their typing patterns
can be applied to several scenarios including high security password authentica-
tion [1], text-independent authentication [4] and continuous authentication [5].
In summary, keystroke dynamics is an active research area with both scientific
and industrial possibilities (e. g. DARPA, Active Authentication Program).
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However, the accuracy of keystroke dynamics recognition systems is far from
the performance achieved by the most competitive biometric traits and the error
rates requested by international biometric standards (e. g. EN-50133-1). In terms
of performance, keystroke dynamics can be considered halfway between hard and
soft biometrics. As a behavioral biometric, it is highly user-dependent and it is
difficult to generalize the performance among all population and scenarios. Previ-
ous works demonstrate the large user-variability of the error rates even with the
most competitive recognition algorithms [6]. There are users with performances
twenty times worst than others and therefore it is difficult to ascertain the over-
all accuracy. Predicting the performance of the users during the enrollment is a
key to improve further recognition steps or the enrollment itself.

The performance of biometric recognition systems is strongly related with the
quality of the samples [7]. Quality assessments have been studied for different
biometrics traits such as fingerprint [8] or face [9] among others. Despite its well-
known utility, the quality of keystroke dynamics has been scarcely studied [10].
The main reasons for this apparent disinterest could be found in the difficulties
to establish a quality assessment of a behavioral biometric based only in timing
between key events. It is not trivial defining the meaning of quality in keystroke
dynamics technologies.

The term quality in the biometric literature have several meanings and appli-
cations. It is possible to distinguish between quality of biometric samples, quality
of sensors and quality of the users among others. This paper focuses on quality
of the users as a measure of their individual performance in terms of recognition
accuracy. Low quality users imply users with low performances or high error
rates while high quality users will be those users with high performances or low
errors.

This paper studies different statistical measures for a reliable prediction of
the quality of users for keystroke dynamics authentication. The purpose here is to
analyze different ways to distinguish between users with well marked differences
in terms of performance. The study assumes a scenario in which only the genuine
enrollment data is used for both predicting the quality and enrolling the user.
The experiments include a public benchmark dataset and two popular matchers
for keystroke dynamics. The results suggest that it is possible to define a quality
measure to categorize users correlated with their recognition performance.

The paper is organized as follows. Section 2 introduces the quality framework
and proposes the Kullback-Leibler divergence as a feasible measure to establish
the quality of the users of keystroke dynamics authentication systems. Section 3
presents the experimental protocol and results while Section 4 summarizes the
main conclusions.

2 Quality Assessment for Keystroke Dynamics

Quality of biometric samples has become an important concern for the biometric
community [7][11]. It is well known that the degradation of quality strongly
affects the performance of biometric recognition systems and dealing with such
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degradation is still an open challenge in many biometric traits. The quality of
biometric samples is affected by many factors and it is difficult to generalize
among all biometric technologies and sensors. The standard ISO/IEC 29794-1
has established normalizations and three main concepts related with the quality
on biometric systems:

– Character: indicates the distinctiveness capability of the source.
– Fidelity: indicates the degree of similarity between the sample and its

source.
– Utility: indicates the impact of a sample on the overall performance of the

biometric system.

The quality measure of a biometric sample can be used for different purposes
including: image enhancement [12], improving the matching algorithms [8] or
optimized fusion strategies [13][11][14], see Fig. 1. Noteworthy, the quality is
not exclusively related to a standalone sample and it is possible to measure the
quality of a user or its enrollment set [14]. This quality evaluation of the users
can be employed to improve the enrollment, the combination with other systems
and the confidence on the authentication. The performance of the biometric
recognition system is strongly influenced by the quality of the enrollment data
and the evaluation of its utility is crucial in real applications [15].

Concerning keystroke dynamics, among the several factors that affect the
quality of the biometric sample it is important to highlight:

– Behavioral factors: related with human emotional states, cooperativity or
distractions. These factors also comprise the intrinsic characteristics of each
user which include users particularly vulnerable to impersonation or users
difficult to match, among others. The literature refer to this as biometric
zoo [16] or menagerie [17].

– Sensor factors: related with the sensor, human-machine interactions, ease of
use or maintenance. The proliferation of new portable devices and the neces-
sity of interoperable schemes are important factors which affect the quality of
the samples.

While the factors related with the sensor can be mitigated with hardware
maintenance, the factors related with human behavior have more unpredictable
consequences. How can we detect behavioral factors such as cooperativity or dis-
traction from keystroke dynamic features? The features employed in keystroke
dynamics are generally based on timing between key events [1][2] and the qual-
ity evaluation of these features arises several problems. In [10] the researchers
analyzed six factors to explain different keystroke dynamics error rates (in order
of relevance): algorithms, training amount, updating, typist-to-typist variation,
feature set and impostor practice.

The quality evaluation of the keystroke dynamics has attracted scarce atten-
tion in the literature. The related works are focused mostly on outliers removal
[18][19] and features improvement [20][21]. The outliers can be defined as sam-
ples with an unusual pattern in comparison with the available data from a
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Fig. 1. Block diagram of multimodal biometric recognition/identification systems

specific user. The methodology used to discard these samples is traditionally
based on statistical features (mean, variance, standard deviation) related with
the distribution of the genuine data [18][19]. The inclusion of artificial rhythms
and cues was proposed in [20] to improve the quality of data in terms of distinc-
tive ability. In [21], the researchers established a quality classification in terms
of uniqueness, inconsistency, and discriminability of the keystroke patterns. The
main disadvantage of this classification is that all three measures need both gen-
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uine and impostor data. Depending of the application, the impostor data may
not be available (e. g. applications where the password is chosen by the user).

2.1 Measuring the Quality with the Kullback-Leibler Divergence

The entropy is a measure of the uncertainty in a random variable and it is related
with the information present in any signal. Some researchers have studied the
relationship between the performance of biometric recognition algorithms based
on online signature and the entropy of the dynamic signals [22]. The researchers
observed that high values of entropy implied higher error rates and low entropy
values implied lower error rates. The reason of such behavior was explained with
the stability of the genuine samples, which is greater for low entropy samples.

The Kullback-Leibler divergence (also called relative entropy or K-L diver-
gence) is another information measure which have been proposed for biometric
quality assessment [9]. The K-L divergence measures the difference between two
probability distributions A and B in terms of the information needed to approx-
imate A to B. In this paper we measure the K-L divergence from a feature
vector vQ = [vQ1 , vQ2 , ..., vQN ] (Query sample with N features) and the enrollment
data mean µ = [µ1, µ2, ..., µN ] (generated with the enrollment data). The K-L
divergence DKL(vQ||µ) can then be defined as:

DKL(vQ||µ) =
N∑

n=1

vQn log
vQn
µn

(1)

where µ is the enrollment data mean of the user obtained as:

µ =
1
M

M∑
m=1

vE
m (2)

where each vE
m is one out of the M enrollment samples (with N features each).

Assuming N = 31 features and M = 200 enrollment samples, the Fig. 2 shows
some examples of mean vectors (from the CMU benchmark dataset detailed in
Section 3) as well as the DKL(vQ||µ) obtained for each of the 50 query samples
vQ of the same users.

It can be seen that there are slight differences between the user enrollment
data mean (note that the password was unique for all users). However, the K-L
divergence between query samples and user background models shows different
behavior and it is possible to find users with low stability (Fig. 2-Right black line)
or users with very stable K-L divergence values (Fig. 2-Right grey lines). Next
sections will analyze the correlation between K-L divergence and the performance
of keystroke dynamics systems.

3 Experiments

The experiments are conducted to analyze: i) the quality dependence of key-
stroke dynamics and; ii) the utility of the K-L divergence for predicting the
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Fig. 2. The mean vectors of 3 different users (left) and the K-L divergence from 50
samples (feature vectors) of the same 3 users (right). N = 31 features and M = 200
enrollment samples.

performance of individual users. The experiments assume a scenario in which
only genuine enrollment data is available (imposter data are not employed to
model the users).

3.1 Database: the CMU Benchmark Dataset

The CMU benchmark dataset [19] comprises 51 subjects and 8 sessions with 50
repetitions per session. The time lapse between sessions is more than one day
and the 400 typing samples were collected with an accuracy of 200 microsec-
onds. The password was the same for all users and it consists of a ten charac-
ters typical strong password which includes uppercase, lowercase and symbols:
.tie5Roanl. The feature data for each sample includes: hold time for each key
(i.e. time between press and release); the keydown-keydown time between two
keys (i.e. time between the press of the key 1 and the press of key 2); the keyup-
keydown time between two keys (i.e. time between the release of key 1 and the
press of key 2); the Enter key is included as a part of the password. The total
number of features per samples is 31 (11 hold times, 10 keydown-keydown times
and 10 keyup-keydown times).

The most attractive characteristics of the CMU benchmark dataset for this
work can be summarized as: i) large number of samples per subject which allows
an accurate modeling of the individual behavior; ii) publicly available bench-
marks with several feature extraction and classification techniques [19].

3.2 Baseline Systems

The experimental protocol is the same as employed in popular benchmarks
[18][19]. The 200 samples from the first 4 sessions are used as gallery/enrollment
set. The genuine scores are obtained from the 200 samples corresponding to the
last 4 sessions while the impostors are obtained from the first 50 samples of each
subject in the database. The performance is evaluated in terms of Equal Error
Rate (EER) for each of the 51 subjects in the database.
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In this paper we evaluate two popular recognition algorithms for keystroke
dynamics [18][19]. Both approaches have achieved the most competitive perfor-
mances reported for the CMU benchmark dataset among more than 14 different
systems. Both systems include training/modeling stages based exclusively on
genuine data and other promising systems were discarded because they include
impostor data during the training phase [23]. The approaches used in the exper-
imental evaluation made in this paper are:

– System A - Modified Manhattan distance with Nearest Neighbor classifier
[18]: this system is based on a combination of the Manhattan and the Maha-
lanobis distances. The method can be summarized as (see [18] for details):
i) the feature vectors are normalized according principles inspired by the
Mahalanobis distance (using the covariance matrix) and; ii) the normalized
feature vectors are matched with the enrollment data using the Manhattan
distance and a Nearest Neighbor classifier.

– System B - Scaled Manhattan distance [19]: this system is based on the
simplicity of the Manhattan distance and its usefulness for decomposing
into contributions made by each feature (see [19] for details). The distance
is normalized by the average absolute deviation from the enrollment data.

Outlier removal is common in keystroke dynamics and it is a feasible method
to improve the enrollment set. An outlier is a sample beyond the typical user
variability and its inclusion in the enrollment set to model the user usually
have a negative impact in the performance. The K-L divergence can be used to
evaluate the stability of the enrollment set. Fig. 3 shows the mean K-L divergence
for all the subjects in the CMU database for the different sessions available. The
K-L divergence is estimated separately for each subject (there is one µ for each
subject which is calculated using all the samples available from the same user
as it is described in section 2.1) and the results are averaged. Note that the
users were not habituated to type the password (.tie5Roanl) and they needed a
learning period in which they stabilized their typing patterns.

Fig. 3 clearly shows large differences between K-L divergences values from
first and last sessions. The samples from the first session can be considered
outliers. Table 1 shows how excluding such samples can improve the overall
performance of the baseline systems. However, the improvement is slight (around
10% improvement of the average EER) and it is important to note that 150-200
enrollment samples could be considered excessive depending of the application.

3.3 Performance Evaluation

The standard ISO/IEC 29794 includes in the definition of the purpose of quality
algorithms the next requirement: “Quality algorithms shall produce quality scores
that predict performance metrics such as either false match or false non-match”.

The quality is related with several factors including the acquisition, the fea-
tures and the personal characteristics of the subjects among others. The perfor-
mance of keystroke dynamics is highly user-dependent and it means that there
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Fig. 3. Mean Kullback-Leibler divergence for each session on the CMU benchmark
dataset

Table 1. Performance (EER in %) for different enrollment sets employed

are users who exhibit an EER below 1% and others with EER greater than 20%,
see Fig. 4.

Fig. 4 shows that different users present large variations in terms of perfor-
mance. The reasons of such different performances vary with users who are easy
to be recognized (Fig. 4c and Fig. 4d) and others are difficult to be recognized
(Fig. 4a and Fig. 4b). The researchers analyzed and defined these classes of users
as the biometric menagerie [17] or biometric zoo [16].

These performance evaluations are obtained a posteriori when the test data
is compared with the enrollment data. Is it possible to predict the performance
of each user based exclusively in her enrollment data? To answer this question
it is necessary to determine if the enrollment data provided by the user contains
enough information to ascertain the performance during the subsequent test
phase.

Inspired by the methodology employed in [17], we divided the population in
three groups according to their performance (obtained following the experimen-
tal protocol explained in Section 3.2) as Good (33% of users with lowest EER),
Ugly (33% of users with highest EER) and Bad (the remaining 33% of users).
This is not an ideal classification but allows us to group users with similar per-
formances. See Table 2 for the resulting performance of the baseline systems in
these three groups.

Fig. 5 shows the ROC curves for each of the performance groups of the two
keystroke dynamics recognition algorithms employed in this work. The curves
evidence the different performances for both recognition algorithms and the three
groups considered.
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Table 2. Performance (EER in %) according to the performance groups

(a) (b)

(c) (d)

Fig. 4. False Acceptance and False Rejection curves for user 1 (a), user 2 (b), user 3
(c) and user 31 (d) from CMU benchmark dataset using the System A

3.4 Predicting the Quality

This paper analyzes five different measures for estimating the performance of
keystroke dynamics users based exclusively on the enrollment data. Assum-
ing that vQ = [vQ1 , vQ2 , ..., vQN ] is the feature vector of the Query sample, N
is the number of features (N = 31 for the CMU benchmark database) and µ =
[µ1, µ2, ..., µN ] the enrollment data mean of the user (detailed in Section 2.1),
the measures evaluated in this paper are defined as:

– Variance: the variance measures the stability of the data available for each
user. A small variance indicates small differences between the query sample
and the enrollment mean. A high variance indicates that the feature distri-
bution is spread out around the mean. The variance is a valuable measure
to characterize the stability of the data provided by the user. The variance
is defined as:

Variance =
1
N

N∑
n=1

(
vQn − µn

)2
(3)
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Fig. 5. ROC curves for different performance groups obtained using the System A (left)
and System B (right)

– Structural Content: this is a popular quality measure for image analysis
[24]. For a one-dimensional vector it is defined as the relative difference
between the information of the query sample and the enrollment mean. The
structural content is defined as:

Structural Content =
∑N

n=1

(
vQn

)2
∑N

n=1 (µn)2
(4)

– Entropy: the entropy quantifies the expected value of the information con-
tained in a sequence. The entropy value is defined as:

Entropy = −
N∑

n=1

vQn log vQn (5)

– Kullback-Leibler Divergence: as described in Eq. (1). The K-L diver-
gence measures the amount of information needed to approximate two dis-
tributions.

– Genuine scores: it is possible to estimate the genuine score distribution of
the enrollment data. From the 4 sessions available as enrollment, we used
three sessions for training and the other one for validation. The protocol is
repeated for all 4 sessions for a total number of genuine scores equal to 200.

The experiments conducted try to ascertain the capability of the proposed
measures to predict the performance of each user in a keystroke dynamics system
(using only its enrollment data). The protocol used to ascertain the prediction
capability can be summarized in the following steps:

– Based on the performance obtained with each of the systems (performance
reported in Table 2), we assign a quality value between 2 and 0, QA

i and QB
i ,

for each subject i (Good=2, Bad=1, Ugly=0, i = 1, ..., 51). Therefore there
are two different quality values assigned for each user (one for each system).
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Table 3. Distances between a posteriori user quality estimations Q̂M
i and a priori

quality prediction QA
i based on individual statistical measures from the enrollment

data (Baseline System A)

Table 4. Distances between a posteriori user quality estimations Q̂M
i and a priori

quality prediction QB
i based on individual statistical measures from the enrollment

data (Baseline System B)

– The five statistical measures are computed using the enrollment data. The
average values across the 200 enrollment samples are computed for each
subject i.

– For each average measure M ={Variance, Structural Content, Entropy, K-
L Divergence, Genuine Scores}, the estimated quality Q̂M

i of each user i is
assigned as Good (33% of best M values), Ugly (33% of worst M values) and
Bad (the remaining 33% of M values). The term best depends of the measure
employed being the lowest values in case of {Variance, Entropy, Structural
Content and K-L Divergence} and highest values in case of {Genuine Scores}.

– The mean distance between the real quality groups obtained with the test
data, QA

i and QB
i , and the different estimated qualities Q̂M

i is evaluated.

Tables 3 and 4 show the distances between real quality groups obtained with
test samples and the predictions obtained with the enrollment data. Note that
the quality, as employed in this section, depends of the performance of a specific
matcher. The tables also show the number of large prediction errors, i. e. the
number of good users estimated as ugly or vice versa.

As can be seen in Tables 3 and 4, the genuine scores obtained from the enroll-
ment data are less competitive than other measures. The reason is that genuine
scores are very sensitive to those users especially vulnerable to impersonation.
The K-L divergence shows the most competitive performance with only 3 large
errors (out of 51 subjects) and a mean estimation error around 0.5. Fig. 6 shows
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Fig. 6. ROC curves for different predicted qualities using the K-L divergence with
Systems A (left) and B (right)

the ROC curves (averaged) of users classified by their predicted quality (using
the K-L divergence).

The results show how the K-L divergence can be used to classify users apri-
ori which will result in different performances groups in testing. The difference
between classes is evident and the results suggest that the proposed measure is
useful to predict the performance of keystroke dynamics using only the enroll-
ment data.

4 Conclusions

This paper studied the feasibility of user quality prediction for biometric recog-
nition based on keystroke dynamics. The usefulness of quality measures in bio-
metrics is well-known and the scarce study on keystroke dynamics represents
an open challenge for the scientific community. The performance of keystroke
dynamics is highly user-dependent and it is usual to find large performance
deviations among users even with the most competitive recognition algorithms.
This paper analyzed five statistical measures for predicting the quality of users
and the K-L divergence showed the most accurate results. The results showed
that it is possible to ascertain the performance of users using exclusively the
genuine enrollment data and encourage to further research in this area.

The work presented in this paper is focused on a limited dataset (i. e. same
password and large amount of data per user) and future work includes other
scenarios and databases. The prediction of performances when the password is
different for each subject as well as text-independent keystroke dynamics are
challenging scenarios to be studied.
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Abstract. Human face images acquired using conventional 2D cameras
may have inherent restrictions that hinder the inference of some specific
information in the face. The low-cost depth sensors such as Microsoft
Kinect introduced in late 2010 allow extracting directly 3D information,
together with RGB color images. This provides new opportunities for com-
puter vision and face analysis research. Although more accurate sensors
for detailed facial image analysis are expected to be available soon (e.g.
Kinect 2), this paper investigates the usefulness of the depth images pro-
vided by the current Microsoft Kinect sensors in different face analysis
tasks. We conduct an in-depth study comparing the performance of the
depth images provided by Microsoft Kinect sensors against RGB counter-
part images in three face analysis tasks, namely identity, gender and eth-
nicity. Four local feature extraction methods are investigated for both face
texture and shape description. Moreover, the two modalities (i.e. depth
and RGB) are fused to gain insight into their complementarity. The exper-
imental analysis conducted on two publicly available kinect face data-
bases, EurecomKinect and Curtinfaces, yields into interesting results.

1 Introduction

Human face is involved in an impressive variety of different activities. It houses
the majority of our sensory apparatus - eyes, ears, mouth, and nose - allowing
the bearer to see, hear, taste, and smell. Apart from these biological functions,
it also provides a number of signals about our health, emotional state, identity,
age, gender etc. Machine analysis of faces (i.e. automatic face analysis) plays also
a key role in many emerging applications of computer vision, including biomet-
ric recognition systems, human-computer interfaces, smart environments, visual
surveillance, and content-based retrieval of images from multimedia databases.
Due to its many potential applications, automatic face analysis which includes,
e.g., face detection, face recognition, gender classification, age estimation and
facial expression recognition, has become one of the most active topics in com-
puter vision research [1].
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 725–736, 2015.
DOI: 10.1007/978-3-319-16181-5 55
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Face analysis problems have been mainly extensively studied using conven-
tional RGB cameras at visible light. However, this makes some face analysis
tasks a challenging problem. Furthermore, face images acquired using such con-
ventional sensors may have inherent restrictions that hinder the inference of
some specific information in the face. For instance, illumination changes are still
challenges in face recognition while near infrared imaging is shown to be less
prone to this problem; face spoofing (e.g. detecting sign of liveness) is a threat
in face recognition using RGB images while thermal cameras can easily solve
this problem; analysing faces under pose variations from 2D images is a complex
task which can be better handled in 3D. So, face sensing using new technologies
and beyond the visible light is needed.

The recent introduction of low-cost depth cameras (such as Microsoft Kinect)
provides exciting new opportunities for computer vision and face analysis research.
Kinect sensors allow extracting directly depth information, together with RGB
color images. This is a potential alternative to classical 3D scanners which are usu-
ally slow, expensive and large-sized, making them inconvenient for many practical
applications. Consequently, low-cost depth sensing has recently attracted a signif-
icant attention in the research community [2,3].

Among the major drawbacks of the facial depth images provided by Microsoft
Kinect are the low-resolution and noisy nature of the images. This can be due,
for instance, to missing data (holes) in some parts of the face, inaccurate depth
value computation and limited distance coverage from the sensor (2 to 4 meters).
More accurate sensors (e.g. Kinect 2) for more detailed facial image analysis are
expected to be available soon. Despite of the aforementioned limitations, Kinect
depth images (after efficient pre-processing) have already been successfully used
in some facial analysis tasks such as head pose estimation [4] and gender clas-
sification [5]. Of significant importance when dealing with Kinect depth images
is also the use of effective face descriptions. Local features are usually shown
to perform better than global features due to their ability to cope with local
changes.

The intriguing question is how much information Kinect depth data can
reveal about faces? To answer this question and to gain insights into the useful-
ness of the depth images in different face analysis tasks, this work provides the
first comprehensive analysis comparing the performance of the depth images ver-
sus RGB counterparts in three face analysis tasks, namely identity, gender and
ethnicity. Four local feature extraction methods are considered for encoding face
texture and shape: Local Binary Patterns (LBP) [6], Local Phase Quantization
(LPQ) [7], Histogram of Oriented Gradients (HOG) [8] and Binarized Statistical
Image Features (BSIF) [9]. Moreover, the complementarity of the two sources
of information (i.e. depth and RGB) is also studied through experiments fusing
the two modalities. Extensive experiments are conducted on two recent publicly
available benchmark databases namely EurecomKinect [5] and Curtinfaces [10]
face databases. The obtained results point out interesting findings.

The remainder of this paper is organized as follows. Section 2 reviews some
works related to the use of Kinect depth images. Then, Section 3 presents our
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methodology for studying the usefulness of Kinect depth images in different face
analysis tasks. In Section 4, we describe the extensive experiments and discuss
the obtained results. Section 5 draws some conclusions and highlights future
perspectives.

2 Related Work

It is well-known that illumination and pose variations can be better tackled using
3D scans of faces than 2D images. However, 3D scanners are usually expen-
sive, bulky and slow, and this limits their use in practical applications. The
recent introduction of low-cost depth cameras (such as Microsoft Kinect) pro-
vides exciting new opportunities for computer vision and face analysis research.
Kinect sensor allows extracting directly depth information, together with RGB
color images of the scene at video rates. The sensor is based on time-of-flight
technology and is initially introduced as a peripheral of Microsoft Xbox games
console. Since its introduction in late 2010, it is widely adopted by the computer
vision research community in various applications [2].

Among the attempts to use Kinect sensors for face analysis is the work of
Li et al. [10] who aimed at tackling the problem of face recognition under pose,
illumination, expression and disguise using Kinect. The authors proposed a pre-
processing chain that generates canonical frontal views for both depth map and
texture of the face regardless of its initial position. To this end, Iterative Closest
Point (ICP) is used for registering a given face to a reference model. Then,
facial symmetry is employed to recover missing face parts, fill holes and smooth
the face depth data. Finally, sparse representation classifier (SRC) is used for
both depth and texture separately. Experimental results on the CurtinFaces
dataset [10] yields in a recognition rate of 88.7% using depth data only and
96.7% when face texture and depth are fused.

Similarly, Goswami et al. [11] used images obtained from Kinect for face
recognition. The proposed method computes the HOG descriptor on the entropy
of RGB-D faces and the saliency features from a 2D face. The probe RGB-D
descriptor is used as input to a random decision forest classifier to establish
the identity. Experimental results on a private database comprising 106 subjects
with multiple RGB-D images of each subject indicated that the RGB-D infor-
mation obtained by Kinect can be used to enhance face recognition performance
compared to 2D and 3D approaches.

In another work, Min el al. [12] explored the use of Kinect sensor for real-
time 3D face identification. Instead of registering a probe to all instances in the
database, the authors proposed to only register it with several intermediate ref-
erences (i.e. canonical faces) randomly selected from the gallery, thus reducing
the processing time without significantly affecting the recognition performance.
Moreover, ICP was implemented on a GPU. Good identification results were
reported on a dataset of 20 subjects with an average speed ranging from 0.04
seconds to 0.38 seconds, depending on the number of canonical faces. It is worth
noting, however, that the proposed approach was tested only under limited vari-
ations of head pose, expression and illumination.
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More recently, Pamplona Segundo et al. [13] addressed continuous face authen-
tication problem using 3D faces acquired with Kinect. Faces are first detected and
normalized using ICP. Each face is then registered according to its pose and clas-
sified into frontal, left profile or right profile. HOG features are then extracted
from the region of interest and matched to the corresponding region. The approach
was evaluated on four 40 minutes long videos with variations in facial expression,
occlusion and pose. An equal error rate (EER) of 0.8% was reported.

Inspired by 3DLBP [14], (a variant of LBP based on the statistics of range
image differences), Huynh et al. [5] proposed a novel descriptor, called Gradient-
LBP, and applied it to the problem of gender classification from Kinect depth
images. Gradient-LBP encodes the facial depth difference as well as its sign. The
depth differences are computed from different orientations yielding in a separate
depth difference image per each orientation. Hence, the depth difference at each
pixel for all the orientations is encoded. Experiments were carried out on both
high quality 3D range images (obtained by a 3D scanner) and images of lower
quality obtained from Kinect (EURECOM Kinect Face Dataset). The reported
results pointed out the usefulness of facial depth information when used together
with RGB images for gender classification.

It appears that most of the few attempts on using Kinect in face analysis are
mainly devoted to the face recognition problem hence overlooking and ignoring
other face analysis tasks such as gender recognition, age estimation and ethnicity
classification. Moreover, most of the proposed works focused on the fusion of
Kinect depth information and RGB images but did not explicitly explore how
much information Kinect facial depth data alone can reveal about the faces. Some
of the results are also reported on size-limited and/or private Kinect databases.
Finally, most of the existing works used only basic features with the depth data
and RGB images.

To tackle these drawbacks, this present work provides the first comprehensive
analysis comparing the performance of the Kinect depth images versus RGB
counterparts in three different face analysis tasks (identity, gender and ethnicity)
and using four local feature extraction methods (LBP [6], LPQ [7], BSIF [9] and
HOG [8]). Extensive experiments are carried out on two recent publicly available
Kinect benchmark databases (EurecomKinect [5] and Curtinfaces [10]).

3 Methodology

3.1 Preprocessing

Since depth images provided by Kinect sensor are usually noisy and of low qual-
ity, a preprocessing is needed and crucial before further analysis. The noise in the
depth images can be originated from the unknown distance between the sensor
and the face. The depth maps usually contain many holes that should be filled.
On the other side, 3D information is useful for assisting 2D analysis under severe
pose variation by registration to a common face model using ICP algorithm.

Firstly, we transform the depth maps provided by Kinect into real world 3D
coordinates. Thus, each pixel is represented by six values: x, y and z coordinates
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Fig. 1. Examples of 2D (left) and 3D (right) cropped face images obtained with the
Microsoft Kinect sensor after preprocessing

and the three RGB values. We translate the resulting cloud of points so that
the nose tip is located at the origin by subtracting the nose coordinates. The
nose has indeed been shown to be the most reliable point to crop the face region
from the depth images [15]. Thus, we extract the face region using an ellipsoid
centered at the nose tip. Therefore, the points located outside the ellipsoid are
discarded. Then, we smooth and re-sample the face point cloud to a grid of
128×96. Examples of cropped 2D and 3D face images are shown in Fig. 1. Finally,
for the 3D face, we drop the x and y coordinates hence keeping only the z
coordinates describing the face shape.

3.2 Feature Extraction

After preprocessing, facial descriptors are computed from the depth and RGB
images. The function of the descriptors is to convert the pixel-level information
into a form, which captures the most important facial properties but is insensitive
to irrelevant aspects caused by e.g. blur, noise and illumination changes. In
contrast to global face descriptors which compute features directly from the
entire face image, local face descriptors representing the features in small local
image patches have proved to be more effective in real world conditions. Hence,
we adopted four state-of-the-art local descriptors which are briefly described
below.

Local Binary Patterns (LBP) [6] is defined as a gray-scale invariant texture
measure, derived from a general definition of texture in a local neighborhood. The
discriminative power, computational simplicity and tolerance against monotonic
gray-scale changes are behind the great success of LBP in many computer vision
problems. In LBP, a pixel code is computed by thresholding its value with the
neighborhood. The signs of the differences are coded as a binary string which
is converted to a decimal number representing the pixel code. The occurrences
of the LBP codes in a given face image can be collected into a histogram. The
classification can then be performed by computing histogram similarities.
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Fig. 2. Applying the four descriptors on a face texture and depth images. From left
to right : the original face image (top: texture image and bottom: its corresponding
depth image) and the resulting images after the application of LBP, LPQ, HOG and
BSIF descriptors, respectively.

Local Phase Quantization (LPQ) [7] is shown to be robust for texture
analysis [16] and face recognition [7] from blurred images. In LPQ, an image is
described using the phase information of short-term Fourier transform (STFT)
locally computed on a rectangular window at each pixel. The phase informa-
tion of four Fourier coefficients are coded by examining the signs of the real and
imaginary parts of each component. For a given image, each pixel is labeled with
a blur invariant LPQ code. Similarly to LBP, the occurrences of the LPQ codes
are collected into a histogram for classification.

Histogram of Oriented Gradients (HOG) [8] describes local object appear-
ance and shape within an image by the distribution of intensity gradients or edge
directions. The magnitudes of the gradient at each pixel are accumulated into
a histogram according to the gradient direction. The image is first divided into
small connected regions from which histograms of gradient directions or edge ori-
entations of the pixels are extracted. The combination of these histograms yields
in the HOG descriptor. The method was initially developed for human detection
but later extended and applied to other computer vision problems including face
analysis.

Binarized Statistical Image Features (BSIF) approach [9] was recently
proposed for face recognition and texture classification. Inspired by LBP and
LPQ, the idea behind BSIF is to automatically learn a fixed set of filters from a
small set of natural images, instead of using hand-crafted filters such as in LBP
and LPQ. The set of filters are learnt based on statistics of training images [9].
The training images, which are normalized to zero mean and unit variance, are
randomly sampled into small patches. The mean of each patch is subtracted and
PCA is applied to reduce the dimension and whiten the data. Finally, the filters
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are estimated as the independent components obtained by ICA algorithm. An
image is represented by the quantization of the filters responses.

Figure 2 shows the results of applying the four descriptors on a face texture
and depth images of a subject from the FRGC database [17]. In the case of the
BSIF descriptor, we extended the method to handle depth images as follows.
We learnt the filters using facial depth images from the FRGC database. These
filters are then used to compute BSIF features on Kinect depth images. We found
this new learning to perform better than the original filters. To the best of our
knowledge this is the first work that uses BSIF features for describing depth
images.

For each descriptor (LBP, LPQ, HOG and BSIF), the RGB and depth
images are first divided into several local regions from which local histograms
are extracted and then concatenated into an enhanced feature histogram used
for classification.

3.3 Classification

Once the face descriptors are extracted from both RGB and depth face images,
we use the well-known support vector machine classifier (SVM) with an RBF ker-
nel for the three face analysis problems. The libsvm1 implementation is employed
in our experiments. The face features are fed to the SVM classifier and the aver-
age classification accuracy is reported.

4 Experimental Analysis

For extensive experimental evaluation, we analyzed the performance of the four
local descriptors (LBP [6], LPQ [7], BSIF [9] and HOG [8]) presented in Section
3.2 on two publicly available Kinect face databases, EurecomKinect [5] and Curt-
infaces [10], containing both RGB and depth facial images. We report the results
in three different face classification problems: face identification, gender recogni-
tion and ethnicity classification. We describe below the experimental data, the
setup and the obtained results.

4.1 Experimental Data

The EurecomKinect face database [5] contains both RGB and depth facial
images of 52 subjects acquired using Kinect sensor. There are 14 females and
38 males in the database. The people in the database belong to six different
ethnicity groups (Asian , Black, Hispanics, Indian, Middle East and White).
The data is captured in two sessions separated by two weeks. In each session,
the facial images of each person are captured under 9 different facial variations
(neutral, smile, open mouth, strong light, eyes occlusion, mouth occlusion, paper
occlusion, left profile and right profile. Face image samples from this database
are shown in Fig. 3.
1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Fig. 3. Face samples from the EurecomKinect database. Top: RGB faces, middle: the
corresponding raw depth maps and bottom: depth cropped face.

The CurtinFaces Kinect database [10] contains over 5000 images of 52 sub-
jects in both RGB and depth maps obtained by Kinect sensor. The participants
consist of 10 females and 42 males. Three ethnic groups (Caucasians, Chinese
and Indians) are included. The facial images have various variations in pose, illu-
mination, facial expression as well as sunglasses and hand disguise. The faces of
each subject are provided with many combinations of these challenges. For each
subject, there are 49 images under 7 poses and 7 facial expressions, 35 images
under 5 illuminations and 7 expressions, and 5 images under disguise (sunglasses
and hand). The full set for each person consists of 97 images. Face samples from
this database are shown in Fig. 4.

4.2 Experimental Protocol and Setup

We considered experimental scenarios including face images under pose, illu-
mination and expression variations. For fair evaluation, we divided each of the
two databases into two subsets: development (Dev) and evaluation (Eval). In
the case of EurecomKinect database, we used the images of the first session for
training and those of the second session for tests. For CurtinFaces, we selected 18
and 69 images per person for training and test, respectively, so that both parts
include pose, illumination and expression variations. In all the experiments, we
tuned the optimal parameters of the methods on the development subset, and
utilized these parameters to report the classification accuracy on the evaluation
subset.

4.3 Experimental Results

Tables 1 and 2 summarize the classification performance of the four local descrip-
tors on the two Kinect face databases for face identification, gender recognition
and ethnicity classification. These results point out several findings:

– As expected, the overall classification rates indicate better performance on
the EurecomKinect database (Table 1) compared to the CurtinFaces data-



How Much Information Kinect Facial Depth Data Can Reveal 733

Fig. 4. Samples from the CurtinFaces database face images. Top: RGB faces, middle:
their corresponding raw depth maps and bottom: depth cropped face.

Table 1. Classification rates (%) using texture (RGB), depth for facial identity, gender
and ethnicity classification on EurecomKinect database

Method
Classification Rates (%)

Identity Gender Ethnicity
RGB Depth RGB Depth RGB Depth

LBP [6] 100 94.2 94.2 96.1 97.1 81.7

LPQ [7] 99.0 91.3 99.0 88.4 98.0 78.8

HOG [8] 100 95.1 98.0 95.1 97.1 85.5

BSIF [9] 98.0 92.3 96.1 93.2 98.0 81.7

Table 2. Classification rates (%) using texture (RGB) and depth for facial identity,
gender and ethnicity classification on CurtinFaces database

Method
Classification Rates (%)

Identity Gender Ethnicity
RGB Depth RGB Depth RGB Depth

LBP [6] 85.6 76.7 93.2 90.0 78.0 76.5

LPQ [7] 89.6 82.6 94.2 92.7 83.5 79.8

HOG [8] 81.3 82.6 92.7 91.5 74.9 76.7

BSIF [9] 93.2 80.8 95.0 92.9 84.9 84.7

base (Table 2). CurtinFaces database is indeed more challenging in terms of
variations of pose, expression and illumination.

– In overall, the RGB images yield in better performances compared to the
depth images. Nevertheless, the results of the depth images alone are still
good and actually much better than our expectations based on the human
perception. It is indeed quite hard to visually distinguish the subjects using
only the depth images.

– Regarding the best performing methods, the four different descriptors per-
form comparably on the RGB images under controlled conditions. On the
depth images, HOG yields in the best classification rates under controlled
environments followed by LBP and BSIF while LPQ seems to suffer the
most. Under pose, expression and illumination variations, BSIF shows the
highest robustness for both RGB and depth images followed by LPQ.

– A close look at the results in Table 1 and 2 indicates that gender clas-
sification is the least challenging task compared to face identification and
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Fig. 5. Results (%) for (a) identity , (b) gender and (c) ethnicity classification using
LBP, LPQ, HOG and BSIF methods on texture (RGB) and depth images and their
feature level fusion (RGB+Depth) on CurtinFaces dataset. The results indicate a slight
but a clear performance improvement in most cases when combining the two modalities,
hence pointing out the usefulness of depth data when used together with RGB images.

ethnicity classification. This holds for both RGB and depth images and is in
concordance with the findings of previous studies.

– The depth images provided by Kinect sensor are usually of low quality and
noisy thus requiring a crucial preprocessing before analysis. The outcomes
on such images are highly depending on the preprocessing step and hence
cannot be easily generalized or compared to previously reported results if a
different preprocessing is applied.

In another set of experiments, we analyzed the results of combining the RGB
images with the depth information. We considered a simple feature level fusion
strategy by concatenating the features extracted from RGB and depth images. As
shown in figure 5, the obtained results indicated a slight but a clear performance
improvement in all cases when combining the two modalities. This is also in
agreement with the results of previous studies pointing out the usefulness of
depth data when used together with RGB images [11].

5 Conclusion

We presented the first comprehensive study in the literature exploring the use-
fulness of the depth information acquired by the low-cost depth sensor, Microsoft
Kinect, in different face analysis tasks including face identification, gender recog-
nition and ethnicity classification. We experimented with four state-of-the-art
local face descriptors on two publicly available Kinect face databases.

While it is difficult to visually distinguish the subjects using only the depth
images, the obtained results showed that the depth information alone provides
promising classification results beyond the expectations based on the human
perception. This is a very interesting finding. With more accurate low-cost depth
sensors for detailed facial image analysis which are expected to be available soon
(e.g. Kinect 2), many face analysis problems will be much more feasible to solve.

The experiments also confirmed some findings of previous studies showing
that (1) gender classification is the least challenging task compared to face iden-
tification and ethnicity classification, (2) combining the RGB images with the
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depth information does provide performance enhancement and (3) the perfor-
mance of Kinect depth images highly depends on the preprocessing step which
is a very crucial step before further analysis.

Regarding the best performing methods, the introduced BSIF features derived
from a new set of filters provide promising results for both RGB and depth images
under different variations of pose, expression and illumination. This should be
further investigated especially with the expected Kinect 2.

As a future work, it is of interest to extend the work to other face analysis
related tasks including age estimation and kinship verification combining RGB
and depth facial information.

Finally, it is worth mentioning that the findings of our work should be further
confirmed with larger Kinect databases and under more challenging settings in
terms of illumination and pose variations. Toward this goal, we plan to record a
large Kinect face database and make it publicly available to the research com-
munity along with well-defined evaluation protocol and baseline results in order
to follow the progress on using low-cost depth data in face analysis.
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Abstract. The FG-NET aging database was released in 2004 in an
attempt to support research activities related to facial aging. Since then a
number of researchers used the database for carrying out research in var-
ious disciplines related to facial aging. Based on the analysis of published
work where the FG-NET aging database was used, conclusions related to
the type of research carried out in relation to the impact of the dataset in
shaping up the research topic of facial aging, are presented. In particular
we focus our attention on the topic of age estimation that proved to be
the most popular among users of the FG-NET aging database. Through
the review of key papers in age estimation and the presentation of bench-
mark results the main approaches/directions in facial aging are outlined
and future trends, requirements and research directions are drafted.

Keywords: Facial age estimation · Aging databases · FG-NET aging
database

1 Introduction

The availability of public databases can play a crucial role in the development
of a research field as it enables researchers to get engaged in research activities
quickly and at the same time it promotes the idea of comparative evaluation.
Especially in cases where the data collection process demands a lengthy pro-
cedure, the availability of public datasets can have a substantial impact on a
field. In the research area of soft biometrics a typical example where the gener-
ation of suitable databases is, by nature, a lengthy process involves face aging
datasets displaying age-separated face images of the same individual. Due to
the non-availability of face aging databases, up to 2004 only a small number of
researchers considered the problem of facial aging, mainly based on small in-
house face datasets containing age-separated face images [37] [34] [22] [27] [26].
Back in 2004 two face aging datasets were made publicly available: The MORPH
[36] and the FG-NET Aging Dataset (FG-NET-AD) [23] . When MORPH was
first released it contained a large number of images but only about three instances
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of the same person. On the other hand the FG-NET-AD contained a small num-
ber of images and subjects, but included about 12 age-separated images per
subject. Despite the fact that none of the two datasets was ideal, both datasets
played an instrumental role in initiating research activities in the area of facial
aging. The availability of public aging databases promoted the topic of facial age
estimation among the most extensively researched topics in soft biometrics.

Detailed coverage of the topics of facial aging can be found in related survey
papers [35], [11] and books [9]. In [32] a technical report on the performance
of age estimation algorithms is presented with emphasis given on the analy-
sis of the results obtained rather than the adopted methodologies. Unlike the
aforementioned survey papers, in this paper we concentrate our attention on the
use of the FG-NET-AD. As part of this effort an analysis related to research
publications reporting work where the FG-NET-AD was utilized is presented.
In particular an analysis related to thematic areas of published papers over the
years, an overview of the most representative papers reported in the literature
and a collection of benchmark results are presented. The analysis of research
outcomes related to the FG-NET-AD can be used for formulating trends and
directions adopted in facial aging analysis and most importantly for shaping
future directions in this area. In particular we focus our attention on research
related to facial age estimation that attracted the interest of the majority of
researchers working in facial aging.

The remainder of the paper is structured as follows. In section 2 information
about the FG-NET-AD and statistics related to the dataset usage are presented.
An overview of key papers in facial age estimation that report experimental
results using the FG-NET-AD and a summary of comparative results are pre-
sented in sections 3 and 4. In Section 5 a discussion related to future research
directions and needs for additional aging datasets are described, followed by
concluding comments.

2 Database Description

2.1 FG-NET Project

The FG-NET-AD was generated as part of the Project FG-NET (Face and Ges-
ture Recognition Network) [10]. FG-NET was funded by the European Union as
part of the 5th Framework Programme, Information Society Technologies in the
category of initiative Support Measures Networks of Excellence and Working
Groups. The project consortium was comprised of the University of Manchester
(UK) (project coordinator), Technological University of Munich (Germany),
INRIA (France), Aalborg University (Denmark), Cyprus College (Cyprus) and
IDIAP (Switzerland). One of the major aims of the project was to encourage
research technology development in the area of face and gesture recognition by
specifying and supplying image sets to support activities in face and gesture
recognition. Within this context, among other datasets, the FG-NET-AD was
generated.
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2.2 Database Contents

The FG-NET-AD contains 1002 images from 82 different subjects with ages
ranging between newborns to 69 years old subjects. However, ages between zero
to 40 years are the most populated in the database. With the exception of
images showing individuals at more recent ages, for which digital images were
available, in most cases FG-NET-AD images were collected by scanning pho-
tographs of subjects found in personal collections. As a consequence the quality
of images depends on the photographic skills of the photographer, the quality of
the imaging equipment used, the quality of photographic paper and printing and
the condition of photographs. As a result face images in the FG-NET-AD dis-
play considerable variability in resolution, quality, illumination, viewpoint and
expression. Occlusions in the form of spectacles, facial hair and hats are also
present in a number of images. Each image in the dataset was annotated with
68 landmark points located at key positions and also a semantic description
of each image was recorded. In particular, information about the age, gender,
expression, pose, image quality and appearance of occlusions (i.e. moustaches,
beards, hats or spectacles) was recorded.

2.3 Analysis of Database Usage

So far the FG-NET-AD has been distributed to more than 4000 researchers, sup-
porting in that way wide-spread aging-related research activities. In this section
we present key facts related to the FG-NET-AD usage, based on a survey of
the literature referencing the FG-NET-AD in articles listed at Google Scholar.
Within this context the Google Scholar engine was used to search and identify
the academic literature from 2005 until early 2014 that references the FG-NET-
AD. A total number of 358 publications originated from 167 different institutions
from 37 countries from all six continents were located. The distribution of the
publications over the past 10 years is shown in Figure 1. Between 2005 to 2011
a steady increase in articles referencing the FG-NET-AD is observed, reflecting
the gradual but steadily increasing interest of the research community in topics
related to facial aging. The decrease from 2012 till 2014 is mainly attributed to
scientific publications of the corresponding years, not indexed yet by the Google
Scholar Engine.

Published papers describing research work using the FG-NET-AD were clas-
sified into the main research thematic areas of age estimation, face recognition,
age progression/modeling, feature extraction/location, gender classification, bio-
metrics, face modeling, face detection and pose estimation. Publications that
were found to cover work extending across more than one thematic area were
placed in all appropriate thematic areas. A significant number of other diverse
thematic areas such as race classification, makeup detection, sketch matching,
psychology related and perception related papers have been found in smaller
numbers and have been grouped under the Other category. The distribution of
papers into the main thematic areas over the years is shown in Figure 2. It is
worth pointing out that although the primary scope of the dataset was to support
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Fig. 1. Number of papers where images from the FG-NET-AD were used, per year

research in age progression, according to the findings in Figure 2, the highest
share of papers are related with facial age estimation indicating the increased
interest of the research community into soft biometrics.

Fig. 2. Number of papers in different thematic areas per year

3 Research on Age Estimation Using the FG-NET-AD

According to the data presented in Figure 2, the topic of age estimation domi-
nates research efforts in facial aging. The main reasons for this trend are:
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i) Potential applications: Machine-based age estimation methods could figure
in a wide range of applications involving man-machine interfaces such as age-
adaptive interfaces and the enforcement of age-based access restrictions both to
physical and electronic sites.

ii) Humans are not perfect in the task of age estimation; hence automated
age estimates could complement/aid the task of human operators.

iii) The problem of age estimation, bears similarities with other standard face
interpretation/pattern recognition tasks (i.e. face recognition, expression recog-
nition etc.) hence the overall problem domain is more accessible to researchers.

iv) Accurate age estimates are usually required for other facial aging related
applications (i.e. age invariant face recognition and age progression) hence the
starting point in dealing with facial aging is usually the task of age estimation.

v) For age estimation there are concrete ways to test the performance of
different algorithms allowing in that way the efficient comparative evaluation of
different algorithms.

The output of an age estimation algorithm can be an estimate of the exact
age of a person or the age group of a person. For exact age estimation the perfor-
mance of an age estimation algorithm is usually based on the mean average error
(MAE) between real and estimated ages over a test set and plots of Cumulative
Score (CS) that shows the number of test cases which have an absolute error
smaller than a given threshold. In the case of age-group age estimation errors
usually refer to the percentage of correct classifications.

Researchers who carried out research in facial age estimation investigated
the use of both standard pattern recognition/regression approaches and tech-
niques adapted to the facial aging problem. In general most researchers conclude
that the aging variability encountered in face images requires the use of dedi-
cated techniques. The main trends of research activities are focused on determin-
ing suitable feature vectors that better reflect aging information in conjunction
with efforts in customizing classification algorithms to take into account certain
characteristics of the problem of age classification such as the problem of data
sparseness i.e. the fact that for a given individual it is impossible to have training
samples covering all the ages in the range of interest. A number of researchers
deal with this problem by capitalizing on the observation that samples belong-
ing to neighboring age groups display aging-related similarity even though they
belong to different subjects.

Geng et al [13] generate aging patterns for each person in a dataset consisting
of face images showing each subject at different ages. In this case the problem of
data sparseness is addressed by filling in missing samples using the Expectation
Maximization algorithm. Given a previously unseen face, the face is substituted
at different positions in a pattern and the position that minimizes the recon-
struction error indicates the age of the subject. Experimental results prove that
this method outperformed previous approaches reported in the literature and
also performed better than widely used classification methods.

A common trend in age estimation is the use of regression based on face
subspace representations. Along this line Guo et al [16] propose a discriminative
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subspace learning based on manifold criterion for low-dimensional representa-
tions of the aging manifold. Regression is applied on the aging manifold patterns
in order to learn the relationship between coded face representations and age. A
key aspect of the work described in [16] is the use of a global SVR for obtaining a
rough age estimate, followed by refined age estimation using a local SVR trained
using only ages within a small interval around the initial age estimate. Luu et al
[31] project faces in an AAM [7] subspace and then adopt a two-stage hierarchi-
cal age estimation approach. The first stage involves the initial classification of
faces into young and old followed by the use of an SVM regressor trained using
images from the chosen age range, in order to get the final age estimate.

Instead of projecting faces in low dimensional subspaces, a number of
researchers experimented with the use of different types of Biologically Inspired
(bio-inspired) features derived from the facial area. For example Guo et al [18]
propose a model that contains alternating layers called Simple and Complex cell
units that resemble object recognition models of the human visual system. Fea-
tures for the simple layer (S) are extracted based on Gabor filters with different
scales, standard deviations and orientations. The C layer involves the use of a stan-
dard deviation function for pooling S-layer features at different bands, scales and
orientations. The dimensionality of the feature vector is reduced using Principal
Component Analysis and a support vector regressor is used for obtaining age esti-
mates. The overall framework of using bio-inspired features [18], has been studied
extensively both in the area of age estimation and age invariant face recognition
[40]. In a more recent approach, El Dib et al [8] extract bio-inspired facial fea-
tures at a fine level and information from the forehead is also utilized resulting
in an error rate of 3.17 years. The trend of dealing with facial features at dif-
ferent levels was also adopted by Suo et al [38] who propose an age estimation
algorithm based on a hierarchical face model. The model represents human faces
at three levels that include the global appearance, facial components and skin
zones. An age estimator is trained from the feature vectors and their correspond-
ing age labels. Han et al [19] adopt a hierarchical approach where bio-inspired
features are extracted from individual facial components. Facial components are
then classified into one of four age groups and then within an age group an SVM
regressor is trained to predict the age. It was found that the best performance was
attained from a fusion of the best performing features, i.e. holistic bio-inspired
features, shape and eye region bio-inspired features. Han et al [19] also ran an
experiment involving human-based age estimation of images from the FG-NET-
AD, using crowd-sourcing and the results were compared to the proposed auto-
mated method. For the FG-NET-AD, the human age estimation experiment gen-
erated a MAE of 4.7. Hong et al [20] introduce the so called biologically inspired
active appearance model where instead of using pixel intensities, shape-free faces
are represented by bio-inspired features Guo et al [18] during the process of AAM
training. A regression-based age estimator is then used for estimating the age of
samples based on the coded representations of faces.

As part of the efforts of using features related to the aging process Zhou
et al [51] describe an age classification method based on the Radon transform.



An Overview of Research Activities in Facial Age Estimation 743

Difference of Gaussians filtering is applied on the face image to extract perceptual
features, which are processed using the Radon transform. An entropy-based SVM
classification algorithm is then used to select features. The algorithm is tested
regarding the accuracy of classifying a face as over twenty or under twenty years
old. Choi et al [5] propose an age estimation method based on extracting features
directly related to aging. Within this context authors propose the extraction of
wrinkles using a set of region specific Gabor filters, each of which is designed
based on the regional direction of wrinkles. Li et al [28] also attempt to provide a
generalized framework for selecting Gabor features that preserve both global and
local aging information and at the same time minimize the redundancy between
features. The method was tested both on age group classification and exact age
estimation.

In order to deal with the problem of data sparseness a number of researchers
focused their attention on assigning age labels to different ages in a way that
optimizes the training process. A method based on the relative ranking of age
labels is proposed in [1]. The proposed ordinary hyperplane ranking algorithm is
based on using relative ranking information and a cost-sensitive property to opti-
mize the age estimation process. Within this context the age estimation problem
is decomposed into a number of binary decisions that classify a given face into a
class of faces with age greater or smaller than a given age. The combination of
the results of all individual classifiers yields the final age estimation result. Chao
et al [2] propose the label-sensitive concept in an attempt to take advantage of
correlations that exist between different classes in age estimation. As part of
this effort the learning process of samples belonging to a certain age, takes also
into account weighted samples belonging to neighboring ages. The proposed for-
mulation is used in conjunction with a customized age-oriented local regression
algorithm that performs the age classification task in a hierarchical fashion. The
problem of class similarity between adjacent ages is also addressed in [12] where
the concept of using label distributions is introduced. Along these lines during
the training process samples belonging to a certain age category contribute to
the training process of the class they belong to and also to the training of adja-
cent classes. The proposed label distribution method was used in conjunction
with the proposed IIS-LLD and CPNN label distribution learning algorithms.

The use of Neural Network-based techniques for age estimation was also
investigated. Zheng et al [50] use a back propagation neural network, where the
inputs are geometrical features and local binary patterns, in order to classify
faces into juveniles and adults. Yin and Geng [47] use a Conditional Probability
Neural Network where the inputs are a facial descriptor and an age estimate
and the output is the probability that the face descriptor is extracted from a
face showing the given age. Based on this methodology the training process for
a certain age takes into account faces showing the exact age and also samples
with other ages enlarging in that way the training set. As a result the learning
process is more efficient.

The majority of age estimation methods reported in the literature are based
on texture-based features. In contrast Thukral et al [39] use face shape landmarks
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information in a hierarchical approach where the test image is first classified into
an age group using several classifiers fused using the majority rule. Then the Rel-
evance Vector Machine regression model of that age group is used to estimate
the age. Wu et al [41] rely on facial shapes represented by point-coordinates
on a Grassmann manifold. Based on this framework, the so called aging sig-
nature is extracted for each sample, by considering the tangent vectors of the
deformation needed to deform a given face shape to the average face shape. A
regressor-based age estimator that relates aging signatures to age is used during
the age estimation process. This framework was also tested in the task of face
verification.

4 Age Estimation FG-NET-AD Benchmark Results

In Table 1 we present a summary of age estimation results reported in the
literature, in relation to experiments using images from the FG-NET-AD. The
summary of the results presented can act as a benchmark for new age estimation
experiments involving the FG-NET-AD. Most researchers reporting results using
the FG-NET-AD adopted the Leave One Person Out (LOPO) approach where
for each of the 82 subjects in the database, an age estimator is trained using
images of the remaining 81 subjects and the results are averaged over the 82
trials. Given the small number of images available in the FG-NET-AD this is the
optimum and recommended approach. The current benchmark for age estimation
is the work of El Dib et al [8] where a mean average error of 3.17 is recorded
when the LOPO approach is used. It is worth quoting that within three years
of the publication of the first standardized age estimation results based on the
LOPO method [13] reported MAE were almost halved [8], indicating in this way
the benefits of standardised comparative evaluation. In the case of human-age
estimation the recorded benchmark is 4.7 when all images from the FG-NET-AD
were processed through crowd-sourcing by 10 volunteers [19]. Geng et al [12] also
report a human age estimation MAE of 6.23 derived based on the observations of
29 volunteers using a sub-sample of 51 FG-NET-AD images. Clearly a number
of reported algorithms match and even better the indicative performance of
humans as recorded in [19] and [12].

In general two main trends seem to form the current directions in age esti-
mation: The first is the use of bio-inspired features [18], [8], [20] and the second
is the exploitation of age label distributions and ranking [2], [1], [12]. In addition
efforts in investigating feature extraction from facial areas that contain increased
age related information [19] also show promise.

5 Discussion

The availability of two publicly available aging databases (MORPH and FG-
NET-AD) played an important role in initiating an increased interest in research
related to facial aging among the computer vision community. According to the
analysis of published work, the topic of facial age estimation has been the most
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Table 1. A summary of Age Estimation Results using Images from the FG-NET-AD

Reference Method Train-Test Result

Images (MAE)

Ni2009 [33] Multi-Instance Regression 600 train 402 test 9.49

Zhou2005 [52] Regression using Boosting 800 train 202 test 5.81

Xiao2009 [42] Regression with distance metric 300 train 702 test 5.04

Luu2009 [31] 2 stage SVR in AAM subspace 802 train 200 test 4.37

Han2013 [19] Human age estimation Entire FG-NET-AD 4.7

Geng2013 [12] Human age estimation 51 images 6.23

Geng2007 [13] Aging Pattern Subspace LOPO 6.22

Thukral2012 [39] Fused classifiers using shape LOPO 6.2

Gunay2013[15] Radon Features LOPO 6.18

Wu2012 [41] Grassmann manifold LOPO 5.89

Yan2007 [45] Regressor with uncertain labels LOPO 5.78

Yan2007 [44] Ranking with uncertain labels LOPO 5.33

Yan2009 [43] Submanifold Embedding LOPO 5.21

Ylioinas2013[48] Binary Pattern Density Estimate LOPO 5.09

Guo2008 [16] Manifold Learning and Regressor LOPO 5.07

Kilinc2013[21] Geometric and Gabor Binary Pattern LOPO 5.05

Guo2008 [17] Probabilistic Fusion Approach LOPO 4.97

Liang2014[29] Multi-feature ordinal ranking LOPO 4.97

Yan2008 [46] Regression from patch kernel LOPO 4.95

Zhang2013 [49] Hierarchical Model LOPO 4.89

Li2012 [28] Ordinal Discriminative Features LOPO 4.82

Guo2009 [18] Bio-inspired features (BIF) LOPO 4.77

Yin2012 [47] Probability Neural Network LOPO 4.76

Geng2013 [12] Learning Label Distribution LOPO 4.76

Chen2013 [3] Cumulative Attribute SVR LOPO 4.67
Han2013 [19] Component and holistic BIF LOPO 4.6

Chen2013[4] Pairwise Age Ranking LOPO 4.56

Chang2011 [1] Ordinal hyperplanes ranker LOPO 4.48

Chao2013 [2] Label-sensitive regression LOPO 4.38

Hong2013 [20] Bio-Inspired AAM LOPO 4.18

El Dib2010 [8] Enhanced Bio-Inspired features LOPO 3.17
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popular among researchers active in the area of facial aging. The increased inter-
est in this area resulted in the development of robust age estimation algorithms
capable of providing age estimates that can be used in most applications requir-
ing user age information. It is anticipated that future research directions in age
estimation will focus on the following issues:

i) Dealing with unconstraint face images: Developing age estimation
algorithms that can deal with images captured under completely unconstraint
conditions such as the ones captured by surveillance cameras. The ability of
performing age estimation using unconstraint images will extend the range of
possible applications where age estimation systems can be used.

ii) Age estimation based on video sequences: Currently almost all research
efforts in age estimation deal with static images. However, temporal information
that includes both face movements and expressions can also provide important
age-related clues. A similar scenario was encountered in expression recognition
that gradually moved away from dealing with static images as it became obvious
that facial movements are also important for interpreting expressions [6].

iii) Multi-modal age estimation: Apart from the face, aging also affects other
parts of the body [25] hence information fusion from different modalities could
lead to more accurate age estimation systems. Although Some attempts of devel-
oping age estimation based on individual biometric modalities, such as gait [30],
head movements [24] and fingerprints [14] were reported in the literature. It is
anticipated that the topic of multi-modal biometric age estimation will attract
substantial research interest in the near future.

iv) Age estimation results have reached error levels that make them suitable
for several applications. However, there is still room for further improvements
in age estimation tasks involving ages traditionally used as age thresholds (i.e
age of 12, 15 and 18). For these particular ages additional research is required
in order to further minimize age estimation errors.

In order to support the scenarios stated above, there is a clear need for
developing new aging datasets that contain unconstraint images, video sequences
and multi-modal biometric samples.

6 Conclusions

The FG-NET-AD was released back in 2004 in an attempt to encourage and
promote research in the new (at that time) research topic of facial aging. It was
fortunate that the release of the FG-NET-AD coincided with the release of the
MORPH aging database [36] that provided different type of data and as a result
supported complementary experimental investigations. Based on the analysis
of published work, review of several key age estimation papers and analysis of
the results reported, it is evident that the scopes that lead to the generation
and distribution of the FG-NET-AD are fulfilled. A large number of researchers
have benefited from using the database and as a result the topic of facial age
estimation is now an established and well studied research area in computer
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vision and the emerging field of soft biometrics in particular. Although the FG-
NET-AD can still be used for supporting research related to facial aging, it is
imperative that new aging databases are made available in order to support new
types of experimentations that will further advance research in age estimation.
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Project FG-NET, 5th FP. We would like to thank Mr E. Elefteriou who collected
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Abstract. This paper is concerned in analyzing iris texture in order
to determine “soft biometric”, attributes of a person, rather than iden-
tity. In particular, this paper is concerned with predicting the gender
of a person based on analysis of features of the iris texture. Previous
researchers have explored various approaches for predicting the gender
of a person based on iris texture. We explore using different implemen-
tations of Local Binary Patterns from the iris image using the masked
information. Uniform LBP with concatenated histograms significantly
improves accuracy of gender prediction relative to using the whole iris
image. Using a subject-disjoint test set, we are able to achieve over 91 %
correct gender prediction using the texture of the iris. To our knowledge,
this is the highest accuracy yet achieved for predicting gender from iris
texture.
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1 Introduction

Whenever people log onto computers, access an ATM, pass through airport
security, use credit cards, or enter high-security areas, they need to verify their
identities [1]. Thus, there is tremendous interest in improved methods for reliable
and secure identification of people. Gender classification based on iris images is
currently one of the most challenging problems in image analysis research [2,3].
In a biometric recognition framework, gender classification can help by requiring
a search of only half of the subjects in the database [4].

One active area of “soft biometric” research involves classifying the gender of
the person from the biometric sample. Most work done on gender classification
has involved the analysis of face images and uses Local Binary Patterns (LBP)
to increase the accuracy of the identification task [5]. Various types of classifiers
have been used in gender classification after feature extraction and selection.
Gender recognition is a fundamental task for human beings, as many social
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functions critically depend on the correct gender perception. Automatic gen-
der classification has many important applications, for example, intelligent user
interface, visual surveillance, collecting demographic statistics for marketing, etc.
Human faces provides important visual information for gender classification.

Gender classification from face images has received much research interest
in the last two decades. Moghaddam and Yang [6] were the first to report the
SVM with the Radial Basic Function kernel (SVM+RBF) as the best gender
classifier. More recently, Makinen and Raisano [7] compared the performance of
SVM with other classifiers including neural networks and Adaboost. According
to their published results, SVM achieved the highest performance. In [4,8] was
reported the extension of the use of feature selection based on mutual information
and features fusion to improve gender classification of face images. The authors
compare the results of fusing 3 groups of features, 3 spatial scales and 4 differ-
ent mutual information measures to select features. They also showed improved
results by fusion of LBP features with different radii and spatial scales, and the
selection of features using mutual information.

Gender classification using iris information is a rather new topic, with only
a few papers published [2,3,9]. Most gender classification methods reported in
the literature use all iris texture features for classification or periocular images
[10,11] and using LBP for identification. As a result, gender-irrelevant informa-
tion might be fed into the classifier which may result in poor generalization,
especially when the training set is small. It has been shown both theoretically
and empirically that reducing the number of irrelevant or redundant features
increases the learning efficiency of the classifier [12].

Thomas et al. [3] were the first to explore gender-from-iris, using images
acquired with an LG 2200 sensor. They segmented the iris region, created a
normalized iris image, and then a log-Gabor filtered version of the normalized
image. In addition to the log-Gabor texture features, they used seven geometric
features of the pupil and iris, and were able to reach a gender-prediction accuracy
close to 80%.

Lagree et al. [2] experimented with iris images acquired using an LG 4000
sensor. Their work differs from Thomas [3] in several ways. They computed
texture features separately for eight five-pixel horizontal bands, running from
the pupil-iris boundary out to the iris sclera boundary, and ten twenty-four-pixel
vertical bands from a 40x240 image. The normalized image is not processed by
the log-Gabor filters that are used by IrisBEE software [13] to create the “iris
code” for recognition purpose and no geometrics features are used. This approach
reached an accuracy close to 62% for gender and close to 80% for ethnicity.

Bansal et al. [9] experimented with iris images acquired with a Cross Match
SCAN-2 dual-iris camera. A statistical feature extraction technique based on cor-
relation between adjacent pixels was combined with a 2D wavelet tree based on
feature extraction techniques to extract significant features from the iris image.
This approach reached an accuracy of 83.06% for gender classification. Neverthe-
less, the database used in this experiment was very small (300 images) compared
to other studies published in the literature.



Gender Classification from Iris Images Using Fusion 753

Actually numerous variants of LBP descriptors have been proposed in the
last years [14–17]. Several works only utilized the uniform patterns but combin-
ing uniform patterns with a few non-uniform patterns was shown to improve
performance [18,19].

In this paper we propose a new method to extract information from the iris
image to improve gender classification. We first extract texture information in
details using small windows and then concatenate the histogram information.
Results indicate that each window contains useful information for gender clas-
sification. We also consider using overlapping windows, in order to obtaining a
more representative histogram. Results indicate that using a subset of the iris
region gives greater accuracy than using only the whole iris region. We then
explore different implementations using traditional LBP, uniform histogram and
concatenated histogram of overlapped windows. We are able to achieve over 91%
correct gender classification with the Uniform LBP(8,1).

2 Methods

The iris feature extraction process involves the following steps. First, a camera
acquires an image of the eye. All commercial iris recognition systems use near-
infrared illumination, to be able to image iris texture of both “dark” and “light”
eyes. Next, the iris region is located within the image. The annular region of the
iris is transformed from raw image coordinates to normalized polar coordinates.
This results in what is sometimes called an “unwrapped” or “rectangular” iris
image. A texture filter is applied at a grid of locations on this unwrapped iris
image, and the filter responses are quantized to yield a binary iris code [1]. Iris
recognition systems operating on these principles are widely used in a variety of
applications around the world.

The radial resolution (r) and angular resolution (θ) used during the nor-
malization or “unwrapping” stage determine the size of the rectangular iris
image, and can significantly influence the iris recognition rate. This unwrapping
is referred to as using Daugman’s rubber sheet model [20]. In this work we use
a rectangular image of 20 (r) x 240 (θ), created using IrisBEE implementation,
as illustrated in Figure 1.

The implementation also creates a segmentation mask of the same size as
the rectangular image, masked by default 25% of fragile bits [21]. When using
fragile bit masking, we mask a significant amount of information because it is not
“stable”. Rather than completely ignoring all of the fragile bits of information,
we would like to find a different way of use those bits. We know that the values
(zero/one) of those bits are not stable. However, the physical locations of those
bits should be stable and might be used to improve our gender classification
performance.

The segmentation mask indicates the portions of the normalized iris image
that are not valid due to occlusion by eyelids, eyelashes or specular reflections
(See, Figure 2.)
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Fig. 1. Transformation of Cartesian coordinates (x, y) to Polar coordinate (r, θ) for
generating the Unwrapper image

For the encoding stage, the output of the Gabor filters is transformed into the
binary iris code by quantizing the phase information into four levels, for each pos-
sible quadrant in the complex plane. In coding only the phase information, the iris
code keep only the most stable information of the iris, while discarding redundant
or noisy information, which is represented by the amplitude component [20].

The points at which the filter is applied can be viewed as sampling at incre-
ments along the radial distance between the pupil-iris boundary and the iris-
sclera boundary and at increments of angular distance around the iris. At each
point that the filter is applied, a complex-valued result is obtained. The real part
and the imaginary part of each result are each quantized to 0/1, giving two bits
of iris code for each texture filter result.

Liu et al. [13] have collected a large data set of iris images, intentionally
sampling a range of quality broader than that used by current commercial iris
recognition systems. The author re- implemented the Daugman-like iris recogni-
tion algorithm developed by Masek [22] and also developed and implemented an
improved iris segmentation and eyelid detection stage of the algorithm called

Polar Images

Fig. 2. Representation of polar image from the segmented iris region. The iris region is
“unwrapped” to a rectangular image. The segmented areas of iris occlusion are shown
in yellow.
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IrisBEE, and experimentally verified the improvement in recognition perfor-
mance using the collected dataset. Compared to Masek’ s original segmentation
approach, this improved segmentation algorithm leads to an increase of over 6%
in the rank-one recognition rate.

Figure 3 shows examples of the original image for a female eye with the
corresponding segmentation and unwrapped image.

Female - eye Unwrapped image

ID:Segmented 05406d206 Normalized 05406d206
(a)

ID:Segmented 5601d153 Normalized 5601d153
(b)

ID:Segmented 05968d13 Normalized 05968d13
(c)

Fig. 3. Original images from a female subject with eyelids and eyelashes detection
using IrisBEE implementation. The Images (a), (b) and (c) represent segmented and
normalized image.
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In this research, iris images were divided into 48 sub-regions, using win-
dows size of 10x10 without overlapping and 59 bins for the LBP histogram. The
LBP (8, 1.u2) operator was adopted to extract LBP features.

The aim of this work is to find the best way for describing a given tex-
ture using a local binary pattern (LBP). First, several different approaches are
compared, then the best fusion approach is tested and compared with several
approaches proposed in the literature.

An SVM classifier with Gaussian kernel was trained using a LIBSVM imple-
mentation [23] with ten fold cross-validation procedure.

2.1 Local Binary Patterns (LBP)

LBP is a gray-scale texture operator which characterizes the spatial structure
of the local image texture. Given a central pixel in the image, a binary pattern
number is computed by comparing its value with those of its neighbors. The
original operator used a 3x3 windows size. LBP features were computed from
relative pixels intensities in a neighborhood.

LBPP,R(x, y) =
⋃

(x′,y′)∈N(x,y)

h(I(x, y), I(x′, y′)) (1)

where N(x, y) is vicinity around (x, y),∪ is the concatenation operator, P is
number of neighbors and R is the radius of the neighborhood.

LBP was first introduced in [14] showing high discriminative power in dis-
tinguishing texture features, and is widely used for face analysis. As the neigh-
borhood consists of 8 pixels, a total of 28 = 256 different labels can be obtained
depending on the relative gray values of the center and the pixels in the neigh-
borhood (See, Figure 4.)

Later, in [17] the uniform local binary pattern (ULBP) was introduced,
extending the original LBP operator to circular neighborhood with a different
radius size and a small subset of LBP patterns selected. A uniformity measure of
a pattern is used: U (“pattern”) is the number of bitwise transitions from 0 to 1
or vice versa when the bit pattern is considered circular. A local binary pattern
is called uniform if its uniformity measure is at most 2. For example, the patterns
00000000 (0 transitions), 01110000 (2 transitions) and 11001111 (2 transitions)
are uniform whereas the patterns 11001001 (4 transitions) and 01010011 (5 tran-
sitions) are not. In uniform LBP mapping there is a separate output label for
each uniform pattern and all the non-uniform patterns are assigned to a single
label. Thus, the number of different output labels for mapping for patterns of
P bits is P (P − 1) + 3. For instance, the uniform mapping produces 59 output
labels for neighborhoods of 8 sampling points, and 243 labels for neighborhoods
of 16 sampling points.

The reasons for omitting the non-uniform patterns are twofold. First, most
of the local binary patterns in natural images are uniform. It was noticed exper-
imentally in [14] that uniform patterns account for a bit less than 90% of all
patterns when using the (8, 1) neighborhood. In experiments with facial images,
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it was found that 90.6% of the patterns in the (8, 1) neighborhood and 85.2%
of the patterns in the (8, 2) neighborhood are uniform. The second reason for
considering uniform patterns is the statistical robustness. Using uniform pat-
terns instead of all the possible patterns has produced better recognition results
in many applications [4,19]. On one hand, there are indications that uniform
patterns themselves are more stable, i.e. less prone to noise and on the other
hand, considering only uniform patterns makes the number of possible LBP
labels significantly lower and reliable estimation of their distribution requires
fewer samples.

Rotation invariant patterns have been explored in [16], where patterns that
represent 80% of all the patterns in training data are used. The uniform pat-
terns allows to see the LBP method as a unifying approach to the traditionally
divergent statistical and structural models of texture analysis.

In [17], was proposed CLBP using both the sign and magnitude information
in the difference d between the central pixel, qc, and some pixel in its neighbor-
hood qp.

In conventional LBP operator only the sign component of d is utilized. If
dp = qp − qc its sign h is as we see above in Eq. (1), h(dp) = 1 if dp ≥ 0,
otherwise 0. CLBP utilizes the magnitude mp of dp, where mp = ‖dp‖, for
additional discriminant power. CLBP also considers the intensity of the central
pixel, qc. Thus, three operators are defined in CLBP:

CLBP S, which considers the sign component of the difference, CLBP M,
which considers the magnitude component of the difference, and CLBP C, which
considers the intensity of the central pixel.

CLBP S is the conventional LBP sign operator h(x).
CLBP M is defined as follows:

CLBPMP,R
=

P−1∑
p=0

t(mp, c)2P (2)

Where t(x) = 1 if x ≥ 0, otherwise 0, and c is the mean value of absolute
value of the differences between a pixel and one neighbor.

CLB C is defined as follow:

CLBPCP,R
= t(qp − τ1) (3)

where t(x) is defined as in Eq.(2) and τ1is the average gray level of entire image.
These three codes are then combined to form CLBP feature map of the original
image.

In [15] was proposed Local Binary Pattern Histogram Fourier features (LBP-
HF), a novel rotation invariant image descriptor computed from discrete Fourier
transforms of local binary pattern (LBP) histograms. Unlike most other his-
togram based invariant texture descriptors which normalize rotation locally, the
proposed invariants are constructed globally for the whole region to be described.
In addition to being rotation invariant, the LBP-HF features retain the highly
discriminative nature of LBP histograms.
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2.2 Dataset

The images used in this paper were taken with an LG 4000 sensor. The
LG 4000 uses near-infrared illumination and acquires a 480x640, 8-bit/pixel
image. Example LG 4000 iris images appear in Figures 5. We used the UND
iris database to train and test a gender classifier. The image dataset for this
work consists of one left eye image and one right eye image for each of 750
males and 750 females, for a total of 3,000 images. This dataset is available to
other researcher. Additional details and the release agreement are available at:
http://www3.nd.edu/˜cvrl/CVRL/Data Sets.html.

For each subject, one left eye image was selected at random from their set of
left eye images, and one right eye image was selected at random from their right
eye images.

A training portion of the dataset was created by randomly selecting 80% of
the males and 80% of the females, and the images for the remaining 20% of
males and 20% of females was set aside as the test portion.

In this paper, experiments are conducted separately for the left eye and the
right eye. This reflects the fact that historically many iris recognition applications
use an image from only one eye rather than from both eyes. Because the left eye
image and the right eye image for a given subject were generally not acquired in
the same session, there may be differences in illumination, eyelid occlusion, or pose
between the left and right eye images of a person. (For example, see Figure 5.)

2.3 Experiments

In this paper, we present different experiments for gender classification from
the iris image. A significant limitation of the original LBP operator is its small
spatial support area. Features calculated in a local 3x3 neighborhood cannot
capture large-scale structures that may be the dominant features of some tex-
tures. A straightforward way of enlarging the spatial support area is to combine
the information provided by N LBP operators with varying windows size. This
way, each pixel in an image gets N different LBP codes. The most accurate
information would be obtained by using the joint distribution of these codes.

The first approach that we explore is based on histogram of LBP features
(LBPH) using uniform features ULBP (8, 1), where we use 48 windows with
size of 10x10 pixels. This represents two vertical regions each with 24 horizontal
regions without overlap between regions and concatenated histograms. This app-
roach results in the feature vector for an image having 2,582 values (2 vertical
regions x 24 horizontal regions x 59 bins=2,582).

In the second approach, we use the same size of windows but using over-
lapping of 50%. This way more sub-windows over iris images could be obtained
from each image (4 vertical regions x 48 horizontal region x 59 bins=11,328).
Each pixel is labeled with the code of the texture primitive that best matches
the local neighborhood. Thus each LBP code can be regarded as a micro-texton.
Local primitives detected by the LBP include spots, flat areas, edges, edge ends,
curves.
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3 Results

Table 1 shows the gender classification rate (and standard deviation) obtained
using different LBP implementations with the set of the left iris images. The
first columns identifies the LBP implementation. The second columns lists the
classification rate, which is also broken down by gender in columns 3 and 4.

The top row of Table 1 shows the gender classification accuracy obtained
using the intensity values of the whole polar image (20x240), without any texture
features extracted. The accuracy is 78.52% +/- 1.70.

The second row of Table 1 shows the classification accuracy using the tradi-
tional uniform LBP over the entire image, without overlapping and windows. The
accuracy actually decreases substantially compared to using no feature extrac-
tion. Accuracy using LBP from this feature extraction method reaches about
71.33% +/- 0.80.

The third row of Table 1 shows the classification accuracy achieved using the
Complete LBP using only the magnitude, over the entire image. The accuracy
in this case decreases over that ULBP, reaching only 65.33% +/- 0.90.

The fourth row of Table 1 shows the classification accuracy achieved using
the Complete LBP using only the sign, over the entire image. The accuracy in
this case decreases over that ULBP and CLBP-Mag, reaching only 60.33% +/-
0.80.

The fifth and sixth rows of Table 1 show the classification accuracy achieved
using the Complete uniform LBP using the magnitude and sign respectively,
over the entire image. The accuracy in this case increases over that previous
implementation, reaching 81.33% +/- 0.50 and 77.33% +/- 0.50 respectively.

The seventh row of Table 1 shows the classification accuracy achieved using
the LBP-fourier (8,1), over the entire image. The accuracy in this case reach
only 68.33% +/- 0.70.

The eighth row of Table 1 shows the classification accuracy achieved using
the LBP-fourier (16,2), over the entire image. The accuracy in this case reach
only 62.33% +/- 0.67.

The best results were obtained for the Uniform LBP (8,1) using windows of
size 10x10 pixels without overlapping and Uniform LBP (8,1) with overlapping
of the 50% reaching 90.33% +/- 0.35 and 91.33% +/- 0.40 respectively. These
result are better than previously published.

It is important to notice that the highest gender classification rates were
reached using the overlapping histograms. It may be that small windows con-
tain more specific information for gender classification, or it may be that the
information extracted from those windows is more exact due to segmentation
accuracies and fusion of histograms.

For the best results in Table 1, using the ULBPh ov(8,1) selection, the correct
classification rate is substantially better for males than for females. For the left
eye, the correct classification rate is 96.67% for males, versus 86% for females.
This represents 145 correct male images out of 150, and 129 correct female images
out of 150. For the second best method ULBPh(8,1), the correct classification
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Normalized Image

Example LBP(8,1)

Example LBP(8,2)

Example LBP(16,2)

Fig. 4. Normalized iris image from segmentation stage and different LBP examples

Fig. 5. Sample images showing right and left eye images. The image belong to the
same person and shows the different illumination level for each eye.
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Table 1. Gender Classification rate using different LBP implementation. In the first
columns see the implementation methods and the second columns the classification
rate for the left iris. Columns 3rd and 4 rd show the results by gender.

Implementation Left eye (%) Male (%) Female (%)

Raw Image 78.52 +/- 1.70 77.50 79.53

LBP(8,1) 71.33 +/- 0.80 70.00 73.16

C-LBP-Mag(8,1) 65.33 +/- 0.90 68.25 62.35

C-LBP-Sign (8,1) 60.33 +/- 0.80 58.30 62.33

C-ULBP-Mag(8,1) 81.33 +/- 0.50 84.00 80.00

C-ULBP-Sign (8,1) 77.33 +/- 0.50 76.13 78.66

LBP-Fourier(8,1) 68.33 +/- 0.67 69.50 67.10

LBP-Fourier(16,2) 62.33 +/- 0.35 59.00 65,66

ULBPh(8,1) 90.33 +/- 0.35 92.67 88.00

ULBPh ov(8,1) 91.33 +/- 0.40 96.67 86.00

rate for males is 92.67% versus 88% for females. This represents 139 correct male
images out of 150, and 132 correct female images out of 150.

4 Conclusions

This paper is the first to explore uniform LBP using fusion of histograms for
predicting gender from the iris image using the polar representation.

The combination of the structural and statistical approaches stems from the
fact that the distribution of micro-textons can be seen as statistical placement
rules. The LBP distribution therefore has both of the properties of a structural
analysis method: texture primitives and placement rules. On the other hand, the
distribution is just a statistic of a non-linearly filtered image, clearly making the
method a statistical one. For these reasons, the LBP distribution can be success-
fully used in gender classification using a wide variety of different textures, to
which statistical and structural methods have normally been applied separately.

We found very large variations in accuracy based on using different imple-
mentations of LBP. The previous results motivate exploring more LBP imple-
mentation with different windows size and radii. Of the alternatives considered
here, we found that using overlapping windows for histogram LBP(8,1) gave the
best accuracy, obtaining 91.33%. This level of accuracy exceeds that of any other
publication that we are aware of.

Several steps can be pursued to obtain even better accuracy in gender pre-
diction from iris. We used the IrisBEE implementation in this work, and it is
known to have as accurate of iris region segmentation as some other available
implementations. Improving the accuracy of the iris region segmentation should
naturally improve the accuracy of gender prediction. In this preliminary paper,
we have presented results for only the left iris, we are still working on the results
of the right iris and the fusion of the information from both irises. Older iris
scanners (e.g., the LG 2200) and applications typically used just one iris, either
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the left or right. But more modern sensors (e.g., the LG 4000) acquire both
iris images, and so it makes sense to consider gender prediction based on the
combination of left and right polar images.
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Abstract. Gender is an important demographic attribute. In the con-
text of biometrics, gender information can be used to index databases or
enhance the recognition accuracy of primary biometric traits. A number
of studies have demonstrated that gender can be automatically deduced
from face images. However, few studies have explored the possibility
of automatically estimating gender information from fingerprint images.
Consequently, there is a limited understanding in this topic. Finger-
print being a widely adopted biometrics, gender cues from the finger-
print image will significantly aid in commercial applications and forensic
investigations. This study explores the use of classical texture descrip-
tors - Local Binary Pattern (LBP), Local Phase Quantization (LPQ),
Binarized Statistical Image Features (BSIF) and Local Ternary Pattern
(LTP) - to estimate gender from fingerprint images. The robustness of
these descriptors to various types of image degradations is evaluated.
Experiments conducted on the WVU fingerprint dataset suggest the effi-
cacy of LBP descriptor in encoding gender information from good quality
fingerprints. The BSIF descriptor is observed to be robust to partial fin-
gerprints, while LPQ is observed to work well on blurred fingerprints.
However, the gender estimation accuracy in the case of fingerprints is
much lower than that of face, thereby suggesting that more work is nec-
essary on this topic.

Keywords: Soft biometrics · Fingerprints · Gender estimation · LBP ·
LPQ · BSIF · LTP

1 Introduction

Gender1 classification is a fundamental task for human beings, as many social
interactions are gender-based [1]. The problem of gender classification has been
investigated from both psychological [2] and computational perspectives [3].

1 The more accurate term would be sex rather than gender in the context of this paper.
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It plays an important role in many applications such as human-computer inter-
action, surveillance, context-based indexing and searching, demographic studies
and biometrics [1,4]. In the context of biometrics, gender can be viewed as a soft
biometric trait that can be used to index databases or enhance the recognition
accuracy of primary biometric traits.

The problem of automated gender estimation is typically treated as a two-
class classification problem in which features extracted from a set of images
corresponding to male and female subjects are used to train a two-class classifier.
The output of the gender estimator is the classification of a test image as a
male or female subject [1,4–6]. A number of studies suggest that gender can be
robustly estimated from face images with relatively high accuracies [7,8].

However, only a limited number of studies have investigated the estimation
of gender information from fingerprint images [9–12]. In most of these stud-
ies [9–11], gender estimation using fingerprints was based on the observation
that females exhibit a higher ridge density due to finer epidermal ridge details
compared to males. In [13], a method for gender classification based on Dis-
crete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) was
proposed. Recently, in [14], quality-based features extracted from the frequency
domain using Fourier Transform Analysis (FTA) and texture-based features cap-
tured by the Local Binary Pattern (LBP) and Local Phase Quantization (LPQ)
descriptors, were used for gender estimation. These studies suggested that gender
can be deduced from fingerprint images with an accuracy of about 82% [13,14].
However, these studies do not clearly indicate if the subjects in the training and
test sets are non-overlapping - an important requirement for evaluating gen-
der classifiers. The local texture information of a fingerprint should offer gender
cues [13,14] because it can encode the ridge density structure that varies between
males and females [9]. Deducing gender from fingerprints can be useful in foren-
sic investigations and security applications where additional intelligence may be
obtained from the fingerprint of a person. Further, gender information can also
be used to enhance the recognition accuracy of a fingerprint matcher in commer-
cial applications. However, there is a limited understanding of this topic which
is partially due to the superficial nature of existing studies.

In this work, we investigate several aspects of gender estimation from fin-
gerprint images. Firstly, we evaluate the ability of four commonly used texture
descriptors to extract gender information from fingerprints. Secondly, we analyze
if a gender estimator developed for one finger (e.g., left index) can be used to
predict the gender of fingerprints originating from a different finger (e.g., right
index). In previous studies, experiments were conducted by either training and
testing the gender estimator on each finger individually [13] or by analyzing the
differences in fingerprint ridge density between males and females over all the
fingers and reporting aggregate statistics [9–11]. Thirdly, we evaluate the effect of
degraded and partial fingerprint images on the performance of the gender estima-
tor. To facilitate this analysis, we simulate noisy, blurred and partial fingerprint
images. Finally, we investigate if the texture descriptors used for fingerprints can
be used in the context of gender estimation from face images.
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In summary, the contributions of this work are as follows:

– Exploring multiple textural descriptors to encode gender information from
fingerprints.

– Evaluating the interoperability of the gender estimator across different fin-
gers.

– Evaluating the performance of gender estimator on degraded fingerprint
images.

– Utilizing the same set of texture descriptors for encoding gender information
in both face and fingerprint images.

Experiments are conducted on the WVU multimodal face and fingerprint
database [15].

This paper is organized as follows: Section 2 explains the textural descriptors
used to encode gender information from fingerprint images. Section 3 presents
the experimental investigations and results. Conclusions are drawn in section 4.

2 Texture Descriptors Used for Encoding Gender
Information

The textural descriptors used to extract gender information from fingerprint
images are summarized below.

1. Local Binary Pattern (LBP). It is a textural descriptor that assigns a
label to every pixel of an image by thresholding the neighborhood of each
pixel based on the center pixel value and converting the resultant binary
number to a decimal value. Then histograms are computed from tessellated
blocks and concatenated to form a descriptor [16]. The LBP operator can
be extended with neighborhoods of different sizes. Using a circular neighbor-
hood and bilinear interpolation at non-integer pixel coordinates allows for
any radius and number of pixels in the neighborhood. The notation (P,R)
will be used to denote a pixel neighborhood consisting of P points on a
circular neighborhood of radius R. The LBP code of a pixel gc is given by:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, (1)

s(x) =
{

1 if x ≥ 0;
0 otherwise. (2)

Here, gc and gp denote the center pixel and neighboring pixels, respectively.
Further, LBPu2

P,R represents uniform rotation invariant LBP which can be
used to reduce the number of codes, and hence the length of the feature
vector[16].
In our work, each image is tessellated into non-overlapping blocks of size
18 × 25 and each block is represented with a feature vector which is a con-
catenation of histograms corresponding to LBPu2

8,1, LBPu2
16,2 and LBPu2

24,3.
The feature vectors of all block are concatenated to obtain the final feature
descriptor.



Evaluation of Texture Descriptors for Automated Gender Estimation 767

2. Local Phase Quantization (LPQ). It is based on the quantization of
Fourier transform phase in local neighborhoods [17]. Short Time Fourier
Transform (STFT) is computed over a M × M neighborhood, Nx, at each
pixel position x of the image f(x) as follows:

Fu,x =
∑

y∈Nx

f(x − y)e−j2πuT y = wT
u fx. (3)

Here, wu is the basis vector of the 2-D DFT at frequency u, and fx is a
vector containing all M2 image pixels from Nx. We used a window size of
5 × 5 to extract LPQ features. Then, a LPQ histogram was computed for
each tessellated block of size 18 × 25 from an image.

3. Binary Statistical Image Features (BSIF). This method computes a
binary code for each pixel by linearly projecting local image patches onto a
subspace, whose basis vectors are learnt from natural images via indepen-
dent component analysis, and by binarizing the coordinates in this basis via
thresholding. The length of the binary code string is determined by the num-
ber of basis vectors. Image blocks are represented by histograms of binary
codes. This method is different from other descriptors which produce binary
codes, such as LBP and LPQ, in the sense that the proposed approach is
based on statistics of natural images and this improves its modeling capacity
[18]. We extracted BSIF features using a predefined filter of size 7× 7 learnt
from natural images and a 12-bit string.

4. Local Ternary Pattern (LTP). This is a texture descriptor that creates
a ternary code for every pixel based on its neighborhood as follows [19].

s′(gp, gc, t) =

⎧⎪⎨
⎪⎩

1 gp ≥ gc + t

0 |gp − gc| < t

−1 gp ≤ gc − t

(4)

Here, gp is the neighborhood pixels, gc is the center pixel and t is the thresh-
old value. As stated in [19], LTP is less sensitive to noise since the threshold
is not purely based on the center pixel, unlike LBP. A 59-bin histogram is
extracted from each block of size 18 × 21.

To extract these textural features, a fingerprint image is first tessellated into
non-overlapping blocks, and then textural histograms are computed from each
block. The histograms of all the blocks are concatenated to obtain a final feature
descriptor. The extracted feature vectors from a set of training images corre-
sponding to male and female subjects are used to train a gender estimator based
on two-class linear SVM [8]. Figure 1 illustrates the steps involved in gender
estimation from a fingerprint image.

3 Gender Estimation from Fingerprints

In this section, we will describe the dataset used, the experiments conducted
and the obtained results.



768 A. Rattani et al.

Feature 
Extraction 

Female 

Male 

Input Image Descriptor Features Classification Decision 

Fig. 1. The steps involved in gender estimation from a fingerprint image

3.1 WVU Multimodal Dataset

We utilized the WVU multimodal dataset consisting of face and fingerprint
images of 166 male subjects and 71 female subjects. For every subject, five sam-
ples from each of four fingers (left index (L1), left middle (L2), right index (R1)
and right middle (R2)) and five face samples were obtained. Sample images from
this dataset are shown in Figure 2. Eye regions of the face have been masked to
preserve the privacy of the subjects.

(a) Male Subjects (b) Female Subjects

Fig. 2. Sample images from the WVU multimodal dataset. Each subject has both face
and fingerprint samples. The eye regions have been masked in order to preserve the
privacy of users.

The images corresponding to 50 male and 50 female subjects were used to
extract the histograms (LBP, LPQ, BSIF, LTP) and to train a two-class SVM
based gender estimator. The remaining 111 male and 21 female subjects were
used to evaluate the performance of the gender estimator. In order to perform
cross-validation, this random partitioning into training and test sets was done
20 times. Each fingerprint image is 248 × 292 and the dimensionality of the
obtained feature vectors are 7776, 36864, 4096, 14160 for LBP, LPQ, BSIF and



Evaluation of Texture Descriptors for Automated Gender Estimation 769

LTP, respectively. The performance of the gender estimator was evaluated using
the correct overall classification rate (COCR), correct male classification rate
(CMCR) and correct female classification rate (CFCR). Correct overall classifi-
cation rate (COCR) is the percentage of test images whose gender was correctly
estimated. Correct male (female) classification rate (CMCR and CFCR) is the
percentage of images corresponding to males (females) correctly classified as
males (females).

3.2 Evaluation of the Textural Descriptors to Encode Gender
Information

First, we tested the performance of LBP, LPQ, BSIF and LTP based textural
descriptors in extracting gender information from fingerprint images. Table 1
tabulates the COCR of the LBP, LPQ, BSIF and LTP based descriptors in
estimating gender information from fingerprint images. These results are sum-
marized over 20 test runs (as μ ± σ2) and shown for the four fingers i.e., left
index (indicated as L1), left middle (indicated as L2), right index (indicated as
R1) and right middle (indicated as R2), individually. It can be seen that LBP
performs marginally better than other textural descriptors in encoding gender
information from fingerprint images (COCR is 71.7%). The second best perfor-
mance is obtained by BSIF (COCR is 71.0%). The average COCR over all the
four descriptors and fingers is 70.0%.

Table 1. Correct overall classification rate (COCR) of the LBP, LPQ, BSIF and LTP
based textural descriptors in encoding gender information from fingerprint images

Methods COCR [%]
L1 L2 R1 R2 Average

LBP+SVM 70.8 ± 2.1 72.4 ± 3.4 70.2 ± 3.6 73.4 ± 2.5 71.7 ± 2.9

LPQ+SVM 66.6 ± 3.3 66.2 ± 3.6 64.7 ± 3.2 65.7 ± 3.5 65.8 ± 3.4

BSIF+SVM 70.1 ± 2.7 72.2 ± 3.7 70.4 ± 2.9 70.5 ± 3.7 71.0 ± 3.3

LTP+SVM 70.9 ± 3.2 72.1 ± 2.9 69.1 ± 3.3 70.2 ± 2.5 70.0 ± 2.9

Further, Table 2 tabulates the correct male and female classification rates of
the LBP, LPQ, BSIF and LTP based descriptors for the four fingers. The LBP
based descriptor obtained the best correct male (71.2%) and female (74.6%) clas-
sification rates. The average correct male and female classification rates (CMCR
and CFCR) over all four descriptors and four fingers are 69.5% and 72.9%,
respectively.

Next, we evaluated the performance when fusing the outputs of the gender
estimators corresponding to the four fingers of a subject. The majority rule was
used for fusion. Table 3 tabulates the correct male, female and overall classifi-
cation rates of LBP, LPQ, BSIF and LTP. In case of ties, a label was randomly
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Table 2. Correct male classification rate (CMCR) and correct female classification
rate (CFCR) of the LBP, LPQ, BSIF and LTP based textural descriptors

Methods CMCR [%] CFCR [%]
L1 L2 R1 R2 L1 L2 R1 R2

LBP+SVM 69.7 ± 2.4 72.1 ± 4.6 70.1 ± 4.2 72.9 ± 3.2 76.8 ± 6.6 74.3 ± 2.4 70.7 ± 8.9 76.6 ± 6.2

LPQ+SVM 66.2 ± 3.8 65.9 ± 4.5 64.2 ± 4.1 65.3 ± 3.6 68.7 ± 5.3 68.1 ± 7.4 67.9 ± 6.5 68.7 ± 9.8

BSIF+SVM 69.9 ± 3.7 71.7 ± 4.6 69.7 ± 3.7 70.1 ± 4.3 71.0 ± 7.5 74.9 ± 5.8 73.6 ± 7.4 73.4 ± 7.5

LTP+SVM 70.5 ± 4.4 73.9 ± 4.5 69.4 ± 3.9 69.7 ± 3.2 72.9 ± 7.6 74.7 ± 6.1 68.4 ± 7.7 72.9 ± 6.8

assigned. It can be seen that fusion of gender cues from multiple fingerprints
enhanced the accuracy of the gender estimator. For instance, COCR of the LBP
based descriptor increased from 71.7% (see Table 1) to 80.4%. Similar observa-
tions can be made for other descriptors as well.

Table 3. Correct male classification rate (CMCR), correct female classification rate
(CFCR) and correct overall classification rate (COCR) of the LBP, LPQ, BSIF and
LTP based textural descriptors when outputs from the left index, left middle, right
index and right middle fingerprints were fused using the majority rule

Methods CMCR [%] CFCR [%] COCR [%]

LBP+SVM 82.2 ± 3.1 70.7 ± 8.4 80.4 ± 2.7

LPQ+SVM 80.3 ± 2.2 77.5 ± 1.8 77.5 ± 1.8

BSIF+SVM 83.7 ± 3.6 68.6 ± 7.3 81.4 ± 2.9

LTP+SVM 84.5 ± 2.7 67.3 ± 8.3 80.1 ± 2.5

3.3 Interoperability of the Gender Estimator Across Fingers

In this section, we evaluate the interoperability of the gender estimator across
different fingers. The aim is to analyze if the gender can be estimated from the
fingers different from those used for training the gender estimator.

Table 4 tabulates the COCR of the gender estimator trained using one finger
(say left index) and tested on all others (say left middle, right index and right
middle). It can be seen that performance of all the descriptors dropped across
fingers. For instance, COCR of the LBP dropped from 71.7% (see Table 1) to
66.4%, and BSIF dropped from 71.0% (see Table 1) to 63.2%. However, LBP
performed better than other descriptors in this case as well. Lowest average
COCR was observed for LTP. Table 5 shows the CMCR and CFCR of these
descriptors when evaluated across fingers.



Evaluation of Texture Descriptors for Automated Gender Estimation 771

Table 4. Correct overall classification rate (COCR) of the LBP, LPQ, BSIF and LTP
based gender estimators across fingers

Training Testing LBP LPQ BSIF LTP

L1 [L2 R1 R2] 72.9 ± 7.4 59.4 ± 10.9 66.2 ± 5.5 49.6 ± 6.8

L2 [L1 R1 R2] 63.8 ± 13.5 62.0 ± 9.5 64.2 ± 4.9 70.4 ± 5.1

R1 [L1 L2 R2] 78 ± 6.1 66.1 ± 10 69.4 ± 4.9 54.2 ± 6.0

R2 [L1 L2 R1] 50.8 ± 9.1 55.3 ± 10.1 52.8 ± 8.6 63.7 ± 4.9

Average 66.4 ± 9.1 60.7 ± 10.1 63.2 ± 5.9 59.4 ± 5.7

3.4 Performance of the Gender Estimator on Degraded and Partial
Fingerprint Images

In this section, we evaluate the performance of the gender estimator when tested
on degraded and partial fingerprint images. We simulated fingerprint degrada-
tions such as noise and blur. These type of fingerprint degradations are more
likely to be encountered in some operational scenarios and forensic investiga-
tions. The process of lifting latent print by dusting the surface with fingerprint
powder (black granular, aluminum flake, black magnetic, etc.) followed by pho-
tographing and lifting with clear adhesive tape also introduces noise and blur
effect in the fingerprints. For this study, the gender estimator was always trained
on the original (without degradations) fingerprints. Next, we evaluate the impact
of degraded and partial prints on the gender estimator.

Table 5. Correct male classification rate (CMCR) and correct female classification
rate (CFCR) of the LBP, LPQ, BSIF and LTP based gender estimators across fingers

Training Testing LBP LPQ BSIF LTP
CMCR [%] CFCR [%] CMCR [%] CFCR [%] CMCR [%] CFCR [%] CMCR [%] CFCR [%]

L1 [L2 R1 R2] 77.2 ± 9.2 48.2 ± 13.2 60.9 ± 16.1 50.6 ± 11.2 49.6 ± 6.8 55.8 ± 13.4 79.6 ± 6.8 44.2 ± 13.4

L2 [L1 R1 R2] 62.8 ± 18.6 69.3 ± 18.6 61.9 ± 13.5 62.1 ± 13.5 62.0 ± 9.5 69.8 ± 9.1 73.4 ± 4.1 53.6 ± 11.1

R1 [L1 L2 R2] 84.6 ± 8.9 39.3 ± 12.2 69.9 ± 15.1 44.7 ± 22.3 66.1 ± 10 55.9 ± 12.9 69.3 ± 7.4 51.5 ± 10.7

R2 [L1 L2 R1] 82.1 ± 9.1 43.2 ± 17.5 53.4 ± 14.5 54.2 ± 8.9 77.56 ± 5.7 55.3 ± 10.1 63.7 ± 4.9 60.8 ± 10.0

When Fingerprint Images are Noisy. We simulated noisy fingerprint images
by applying a Gaussian noise with a mean value of 0.07. The variance varies from
0.04 to 0.07, with a step size of 0.01. An example of applying Gaussian noise to
a fingerprint image is shown in Figure 3.

Table 6 shows the COCR of the LBP based gender estimator when test fin-
gerprint images are noisy. The performance is evaluated for four noise levels
(column 1). It can be seen that performance of the gender estimator drops sig-
nificantly from 71.7% (see Table 1) to 33.1% (averaged over all the four noise
levels and four fingers). The performance drops are obvious because LBP-based
textural descriptors are not robust to noise [20].

Further, Table 7 shows the COCR of the BSIF based gender estimator when
test fingerprint images are noisy. It can be seen that performance of the BSIF
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Fig. 3. An illustration of applying Gaussian noise to a fingerprint image. From left to
right, the noise level increases with the variance.

Table 6. Correct overall classification rate (COCR) of the LBP based gender estima-
tor when test fingerprint images are noisy. Noisy fingerprint images are simulated by
applying a Gaussian noise with a mean value of 0.07. The variance varies from 0.04 to
0.07, with a step size of 0.01 (shown in column 1).

Noise level L1 L2 R1 R2 Average

(μ = 0.07, σ2 = 0.04) 32.9 ± 5.7 56.1 ± 3.8 28.6 ± 7.6 27.7 ± 8.8 36.3 ± 6.4

(μ = 0.07, σ2 = 0.05) 31.5 ± 6.2 42.7 ± 3.7 37.4 ± 5.6 26.2 ± 4.8 34.5 ± 5.2

(μ = 0.07, σ2 = 0.06) 31.4 ± 7.9 44.2 ± 4.5 20.9 ± 4.9 24.5 ± 5.3 30.3 ± 5.6

(μ = 0.07, σ2 = 0.07) 30.1 ± 5.6 45.7 ± 6.4 18.2 ± 7.4 31.6 ± 9.7 31.4 ± 7.2

based gender estimator also dropped from 71.0% (Table 1) to 52.6% (averaged
over all four noise levels and four fingers). However, BSIF (COCR is 52.6%)
performed better than LBP (COCR is 33.1%) on noisy fingerprint images. COCR
of LPQ and LTP are 50.5% and 45.6%, respectively, over all the four fingers.

Table 7. Correct overall classification rate (COCR) of the BSIF based gender esti-
mator when test fingerprint images are noisy. Noisy fingerprint images are simulated
by applying a Gaussian noise with a mean value of 0.07. The variance varies from 0.04
to 0.07, with a step size of 0.01 (shown in column 1).

Noise level L1 L2 R1 R2 Average

(μ = 0.07, σ2 = 0.04) 50.1 ± 9.7 44.5 ± 8.0 66.2 ± 5.8 52.9 ± 9.2 53.4 ± 8.2

(μ = 0.07, σ2 = 0.05) 50.5 ± 9.1 42.6 ± 9.9 62.3 ± 6.1 54.5 ± 9.7 52.5 ± 8.7

(μ = 0.07, σ2 = 0.06) 51.8 ± 9.5 42.1 ± 9.1 63.4 ± 6.1 51.4 ± 9.2 52.2 ± 8.4

(μ = 0.07, σ2 = 0.07) 50.8 ± 9.4 42.3 ± 9.5 64.4 ± 5.1 52.5 ± 9.7 52.5 ± 8.4

When Fingerprint Images are Blurred. We simulated blurred fingerprint
images by applying a Gaussian low pass filter using a window size of 15×15. The
variance varies from 3.0 to 24.0, with a step size of 6.0. An example of applying
Gaussian blur to a fingerprint image is shown in Figure 4.
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Fig. 4. An illustration of applying Gaussian low pass filter with a window size of 15×15
to a fingerprint image. From left to right, the blurring effect increases with the variance.

Table 8 shows the COCR of the LPQ-based gender estimator when test
fingerprint images are blurred. The performance is evaluated at four different
blur levels (column 1). It can be seen that the LPQ-based gender estimator is
quite robust to blur (COCR is 68.4%). This is because the LPQ descriptor itself
is resilient to blur [17].

Table 8. Correct overall classification rate (COCR) of the LPQ based gender estimator
when test fingerprint images are blurred. Blurred fingerprint images are simulated by
applying Gaussian low pass filter using a window size of 15 × 15. The variance varies
from 3.0 to 24.0, with a step size of 6.0. (shown in column 1). The gender estimator
was trained on original non-blurred fingerprint images.

Noise level L1 L2 R1 R2 Average

(block = 15, σ2 = 3) 66.5 ± 9.6 67.7 ± 9.5 74.7 ± 9.1 56.4 ± 9.5 66.3 ± 9.4

(block = 15, σ2 = 9) 66.4 ± 9.2 74.5 ± 8.5 74.1 ± 9.3 66.2 ± 7.5 70.3 ± 8.6

(block = 15, σ2 = 15) 69.1 ± 7.3 71.7 ± 8.2 68.5 ± 6.5 63.8 ± 7.7 68.3 ± 7.4

(block = 15, σ2 = 24) 69.2 ± 9.5 71.8 ± 8.4 70.9 ± 9.7 63.8 ± 9.6 68.9 ± 9.3

Further, Table 9 shows the COCR of the LTP based gender estimator when
test fingerprint images are blurred. It can be seen that performance of the LTP
based gender estimator drops from 70.0% (see Table 1) to 61.6% (averaged over
all four blur levels and four fingers). COCR of LBP and BSIF are 31.4% and
54.3%, respectively. LPQ (COCR is 68.4%) performs better than other descrip-
tors on blurred fingerprint images.

When Fingerprint Images are Partial. Partial prints were generated by
using half and one-fourth portion of the original fingerprint image as shown in
Figure 5. The gender estimator was trained on full fingerprints.

It can be seen in Table 10 that COCR of LBP, BSIF, LPQ and LTP (averaged
over all the four fingers) on partial prints generated using half of the original
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Table 9. Correct overall classification rate (COCR) of the LTP based gender estimator
when test fingerprint images are blurred. Blurred fingerprint images are simulated by
applying Gaussian low pass filter with a window size of 15 × 15. The variance varies
from 3.0 to 24.0, with a step size of 6.0. (shown in column 1). The gender estimator
was trained on original non-blurred fingerprint images.

Noise level L1 L2 R1 R2 Average

(block = 15, σ2 = 3) 62.1 ± 9.3 66.6 ± 5.6 67.2 ± 7.5 56.3 ± 6.3 63.0 ± 7.2

(block = 15, σ2 = 9) 67.1 ± 6.3 58.3 ± 4.3 62.3 ± 6.4 54.1 ± 7.1 60.4 ± 6.1

(block = 15, σ2 = 15) 65.8 ± 6.1 63.4 ± 7.2 55.4 ± 5.6 59.8 ± 7.6 61.1 ± 6.6

(block = 15, σ2 = 24) 65.6 ± 8.8 59.7 ± 9.7 65.9 ± 8.6 57.7 ± 7.5 62.2 ± 8.6

Fig. 5. An illustration of (a) Original print (b) One-half of original print and (c) One-
fourth of original print (from left to right)

prints are 59.1%,71.7%, 65.4% and 64.2%, respectively. Further, COCR of these
descriptors on partial prints generated using one-fourth of the original prints are
54.5%, 70.5%, 62.9% and 54.0%, respectively. BSIF is fairly robust to partial
fingerprints compared to other descriptors. In fact, the COCR of the BSIF on
partial prints is almost equal to those obtained on original fingerprints (see
Table1). This clearly conveys the importance of the BSIF operator in estimating
gender from fingerprint images.

These experimental results suggest that the performance of all four descrip-
tors dropped when encountering degraded or partial fingerprints. However, BSIF
performed better than LBP, LPQ and LTP on noisy and partial fingerprint
images and LPQ performed better than LBP, BSIF and LTP on blurred finger-
print images.

3.5 Common Textural Descriptors to Encode Gender Information
from Face and Fingerprints

Next we investigate if the same textural descriptors used for encoding gender
information in fingerprint images can be used on face images. In this regard,
we tested the performance of the LBP, LPQ, BSIF and LTP based textural
descriptors on face images. The size of each cropped face image was 150 × 130
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Table 10. Correct overall classification rate (COCR) of the LBP, BSIF, LPQ and
LTP based gender estimator when tested on partial fingerprint images (generated using
half and one-fourth portion of the original fingerprint). These gender estimators were
trained on full fingerprint images.

Finger LBP BSIF LPQ LTP
Half One-fourth Half One-fourth Half One-fourth Half One-fourth

L1 60.1 ± 7.7 60.6 ± 9.2 70.8 ± 2.7 71.5 ± 4.4 68.8 ± 3.8 67.7 ± 3.6 67.4 ± 5.8 45.7 ± 8.4

L2 65.2 ± 9.1 62.3 ± 9.8 70.7 ± 8.4 75.2 ± 9.1 62.6 ± 9.2 58.5 ± 10.6 62.6 ± 4.1 65.6 ± 9.4

R1 53.4 ± 6.7 52.4 ± 6.5 72.4 ± 6.2 69.1 ± 7.6 69.8 ± 9.8 70.4 ± 8.7 64.5 ± 3.9 55.6 ± 6.2

R2 57.7 ± 8.7 43.5 ± 4.7 73.3 ± 9.3 67.2 ± 8.4 60.5 ± 5.4 65.6 ± 4.2 62.1 ± 5.2 47.6 ± 8.3

Average 59.1 ± 8.1 54.5 ± 7.5 71.7 ± 6.6 70.5 ± 7.4 65.4 ± 7.1 62.9 ± 6.7 64.2 ± 4.7 54.0 ± 8

(block size was 18 × 21) and the dimensions of the obtained feature vectors
were 2160, 12288, 4096 and 7434 for LBP, LPQ, BSIF and LTP, respectively.
Further, to better understand the performance of these texture descriptors on
face images, a state-of-the-art gender classifier named Intraface2 was utilized for
comparison.

Table 11 tabulates the CMCR, CFCR and COCR of the LBP, LPQ, BSIF
and LTP based gender estimators from face images. It can be seen that LTP
outperforms the other textural descriptors (LBP, LPQ and BSIF) in encoding
gender information from face images. Further, the performance difference of LTP
over Intraface is only 4.2%. The second best performance is obtained by LPQ.
These results suggest that these textural descriptors can potentially be used for
encoding gender cues from both face and fingerprint images.

Table 11. CMCR, CFCR and COCR rates of the LBP, LPQ, BSIF and LTP based
textural descriptors for gender estimation from face images

Methods CMCR [%] CFCR [%] COCR [%]

LBP+SVM 85.8 ± 3.27 85.3 ± 5.02 85.7 ± 2.65

LPQ+SVM 92.4 ± 2.36 93.6 ± 4.53 92.6 ± 1.91

BSIF+SVM 88.0 ± 3.11 91.4 ± 4.40 88.5 ± 2.39

LTP+SVM 92.5 ± 1.99 93.1 ± 4.04 92.6 ± 1.47

Intraface 98.4 ± 0.61 88.5 ± 5.32 96.8 ± 0.95

However, gender can be deduced from face images with relatively high accu-
racy than fingerprints. The COCR of the gender estimator based on face images
is 89.8% (averaged over all the four descriptors), while the COCR of the gender
estimator based on fingerprint is 71.7% (averaged over all the four descriptors
(see Table 1)).

Further, the performance of individual texture descriptors varies across
modalities. For instance, LBP outperformed LPQ, BSIF and LTP in encoding
2 Intraface: http://www.humansensing.cs.cmu.edu/intraface/

http://www.humansensing.cs.cmu.edu/intraface/
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gender information from fingerprint image. However, LTP outperformed LBP,
BSIF and LTP in encoding gender information from face images. The possible
reason is the radically different nature of the information used for sex determi-
nation from face and fingerprint images. Facial features play a dominant role
in gender determination from face images [1,4], while studies suggest that ridge
density reflects gender information in fingerprint images [9–12].

4 Conclusion and Discussion

This study evaluates the performance of four texture descriptors - LBP, LPQ,
BSIF and LTP - for the task of gender estimation from fingerprint images. Fur-
ther, the performance of the estimators is evaluated on degraded fingerprints
that are noisy and blurred, as well as partial prints. Experimental results sug-
gest that

– LBP descriptor is efficient in encoding gender information from high quality
fingerprint images in comparison to LPQ, BSIF and LTP.

– The performance of all four gender estimators drops, when training is done
using one set of fingers (e.g., left index) and testing is done on a different set
of fingers (e.g., right index). LBP exhibited the least drop in performance.

– The performance of the gender estimator degrades when noisy and blurred
fingerprint images are observed. BSIF performs much better than other
descriptors on noisy and partial fingerprints. The reason could be that BSIF
uses predefined filters learned from a set of natural images and this improves
its modeling capacity. LPQ performs better than other descriptors on blurred
images. This is because it is resilient to blur.

– Finally, the texture descriptors that were used to encode gender information
in fingerprint images could also be used to encode face images. However,
the performance of these descriptors varies depending on the modality used.
This is because face and fingerprint contain different type of information
used for gender determination.

As a part of future work, more robust features will be investigated for gender
estimation from fingerprint images; experiments will be repeated on large scale
multi-modal face and fingerprint datasets; and results will be compared against
existing schemes for gender estimation from fingerprints. We will consider ways
to fuse the outputs of the four descriptors in a systematic way. We will also
investigate fusion of the gender estimators based on face and fingerprints at the
feature, score and decision levels.

Acknowledgments. This work was funded by NSF Award 1066197 (CITeR).
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Abstract. It is well known that some facial attributes –like soft bio-
metric traits– can increase the performance of traditional biometric sys-
tems and help recognition based on human descriptions. In addition,
other facial attributes –like facial expressions– can be used in human–
computer interfaces, image retrieval, talking heads and human emotion
analysis. This paper addresses the problem of automated recognition
of facial attributes by proposing a new general approach called Adap-
tive Sparse Representation of Random Patches (ASR+). In the learning
stage, random patches are extracted from representative face images of
each class (e.g., in gender recognition –a two-class problem–, images of
females/males) in order to construct representative dictionaries. In the
testing stage, random test patches of the query image are extracted, and
for each test patch a dictionary is built concatenating the ‘best’ repre-
sentative dictionary of each class. Using this adapted dictionary, each
test patch is classified following the Sparse Representation Classification
(SRC) methodology. Finally, the query image is classified by patch vot-
ing. Thus, our approach is able to learn a model for each recognition
task dealing with a larger degree of variability in ambient lighting, pose,
expression, occlusion, face size and distance from the camera. Experi-
ments were carried out on seven face databases in order to recognize
facial expression, gender, race and disguise. Results show that ASR+
deals well with unconstrained conditions, outperforming various repre-
sentative methods in the literature in many complex scenarios.

Keywords: Sparse representation · Soft biometrics · Gender recogni-
tion · Race recognition · Facial expression recognition

1 Introduction

Automated recognition of facial attributes has been a relevant area in computer
vision, making many important contributions since the 1990s (see for exam-
ple [19]). The relevance of this research field is twofold: First, the use of facial
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 778–792, 2015.
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attributes, like soft biometric traits (e.g., gender [23], race [8], age [9], etc.), can
increase the performance of traditional biometric systems [25] and help recogni-
tion based on human descriptions [27]. Second, other facial attributes, like facial
expressions, can be used in human–computer interfaces, image retrieval, talking
heads and human emotion analysis [35].

Usually, each single facial attribute has been recognized by a specific algo-
rithm. Some examples are the following: a) Gender is identified using a SVM
classifier with Gaussian RBF kernel [21], a Real AdaBoost classifier with tex-
ture features [34], an AdaBoost classifier with a low resolution image [3], and a
SVM classifier of PCA representations [16]. b) Facial expressions are classified
using a new feature called ‘supervised locally linear embedding’ [14], a decom-
position into multiple two-class classification problems with ‘salient feature vec-
tors’ [13], local binary patterns [28], a boosted deep belief network [15], active
facial patches [36], and Gabor features [4]. c) Race is recognized using biologi-
cally inspired features [11], an ensemble framework with LDA [17], a probabilistic
graphical model [22] and local binary patterns with wavelets features [26].

There are few approaches to estimate age, gender and race together (see for
example [12]), however, to the best knowledge of the authors, there has been no
reported approach, that can be used to recognize facial attributes in general. We
believe that algorithms based on sparse representations can be used for this task
because in many computer vision applications, under assumption that natural
images can be represented using sparse decomposition, state-of-the-art results
have been significantly improved [30]. Algorithms based on Sparse Representa-
tion Classification (SRC) [32] have been widely used in face recognition. In the
sparse representation approach, a dictionary is built from the gallery images,
and matching is done by reconstructing the query image using a sparse linear
combination of the dictionary. The identity of the query image is assigned to
the class with the minimal reconstruction error. Several variations of this app-
roach were recently proposed. In [33], a sparse representation in two phases is
proposed. In [7], sparse representations of patches distributed in a grid manner
are used. These variations improve recognition performance as they are able to
model various corruptions in face images, such as misalignment and occlusion.

Reflecting on the problems confronting recognition of facial attributes, we
believe that there are some key ideas that should be present in new proposed
solutions. First, it is clear that certain parts of the face are not providing any
information about the class to be recognized. For this reason, such parts should
be detected and should not be considered by the recognition algorithm. Second,
in recognizing any class, there are parts of the face that are more relevant than
other parts (for example the mouth when recognizing an expression like happi-
ness). For this reason, relevant parts should be class-dependent, and could be
found using unsupervised learning. Third, in the real-world environment, and
given that face images are not perfectly aligned and the distance between cam-
era and subject can vary from capture to capture, analysis of fixed sub-windows
can lead to misclassification. For this reason, feature extraction should not be
in fixed positions, and can be in several random positions, and use a selection
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criterion that enables selection of the best regions. Fourth, the expression that
is present in a query face image can be subdivided into ‘sub-expressions’, for
different parts of the face (e.g., eyebrows, nose, mouth). For this reason, when
searching for images of the same class it would be helpful to search for image
parts in all images of the gallery instead of similar gallery images.

Inspired by these key ideas, we propose a new general method for recognition
of facial attributes.

Three main contributions of our approach are: 1) A new general algorithm
that is able to recognize a wide range of facial attributes: it has been evaluated
in the recognition of expressions, gender, race and disguise obtaining a perfor-
mance at least comparable with that achieved by state-of-art techniques. 2) A
new representation for the classes to be recognized: this is based on representa-
tive dictionaries learned for each class of the gallery images, which correspond to
a rich collection of representations of selected relevant parts that are particular to
a specific class. 3) A new representation for the query face image: this is based
on i) a discriminative criterion that selects the ?best? test patches extracted
randomly from the query image and ii) and an ‘adaptive’ sparse representation
of the selected patches computed from the ‘best’ representative dictionary of
each class. Using these new representations, the proposed method (ASR+) can
achieve high recognition performance under many complex conditions, as shown
in our extensive experiments.

The rest of the paper is organized as follows: in Section 2, the proposed
method is explained in further detail. In Section 3, the experiments and results
are presented. Finally, in Section 4, concluding remarks are given.

2 Proposed Method

According to the motivation of our work, we believe that facial attributes can be
recognized using a patch-based approach. Thus, following a sparse representation
methodology, in a learning stage a number of random patches can be extracted
from each training image, and a dictionary can be built for each class by con-
catenating its patches (stacking in columns). In the testing stage, several patches
can be extracted and each of them can be classified using its sparse representa-
tion. The final decision can be made by majority vote. This baseline approach,
however, shows four important disadvantages: i) The location information of
the patch is not considered, i.e., a patch of one part of the face could be erro-
neously represented by a patch of a different part of the face. This first problem
can be solved by considering the (x, y) location of the patch in its description.
ii) The method requires a huge dictionary for reliable performance, i.e., each
sparse representation process would be very time consuming. This second prob-
lem can be remedied by using only a part of the dictionary adapted to each patch.
Thus, the whole dictionary of a class can be subdivided into sub-dictionaries,
and only the ‘best’ ones can be used to compute the sparse representation of a
patch. iii) Not all query patches are relevant, i.e., some patches of the face do
not provide any discriminative information of the class (e.g., sunglasses when
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identifying gender). This third problem can be addressed by selecting the query
patches according to a score value. iv) It is likely that many images of different
classes has common patches, such as similar skin textures when identifying gen-
der, which occur in most faces of all classes and are therefore not discriminating
for a particular class. This fourth issue can be addressed using a text retrieval
approach including a visual vocabulary and a stop list to reject those common
words [29].

In this section we describe our approach taking into account the four men-
tioned improvements. As illustrated in Fig. 1, in the learning stage, for each class
of the gallery, several random small patches are extracted and described from
their images (using both intensity and location features). However, only those
patches that are not filtered out by the stop list are considered to build represen-
tative dictionaries. In the testing stage, random test patches of the query image
are extracted and described. A patch that belongs to the stop list is not con-
sidered. For each (considered) test patch a dictionary is built concatenating the
‘best’ representative dictionary of each class. Using this adapted dictionary, each
test patch is classified in accordance with the Sparse Representation Classifica-
tion (SRC) methodology [32]. Afterwards, the patches are selected according to
a discriminative criterion. Finally, the query image is classified by voting for the
selected patches. Both stages will be explained in this section in further detail.

2.1 Learning

In the training stage, a set of n face images of k classes is available, where Iij
denotes image j of class i (for i = 1 . . . k and j = 1 . . . n). In each image Iij , m
patches are randomly extracted. In this work, the description of a patch P is
defined as vector:

y = f(P) = [ z ; αx ; αy ] ∈ Rd+2 (1)

where z = g(P) ∈ Rd is a descriptor of patch P; (x, y) are the image coordinates
of the center of patch P; and α is a weighting factor between description and
location1. Using (1) all extracted patches are described as yi

jp = f(Pi
jp) =

[ zijp ; αxi
jp ; αyi

jp ] , for p = 1 . . . m.
In order to eliminate non-discriminative patches, a stop list is computed

from a visual vocabulary. The visual vocabulary is built using all descriptors
Z = {zijp} ∈ Rd×knm, for i = 1 . . . k, for j = 1 . . . n and for p = 1 . . . m. Array Z
is clustered using a k-means algorithm in Nv clusters. Thus, a visual vocabulary
V containing Nv visual words is obtained. In order to construct the stop list, the
term frequency ‘tf’ is computed: tf(d, v) is defined as the number of occurrences
of word v in document d, for d = 1 . . . K, v = 1 . . . Nv. In our case, a document
corresponds to a face image, and K = kn is the number of faces in the gallery.
Afterwards, the document frequency ‘df’ is computed: df(v) =

∑
d{tf(d, v) > 0},

1 In our experiments, the size of the patch is w×w. The descriptor z corresponds to the
intensity values of the patch subsampled by 2 in both directions, i.e., d = (w ×w)/4
given by stacking its columns normalized to unit length in order to deal with different
illumination conditions; (x, y) are normalized coordinates (values between 0 and 1).
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i.e., the number of faces in the gallery that contain a word v, for v = 1 . . . Nv.
The stop list is built using words with highest and smallest df values: On one
hand, visual words with highest df values are not discriminative because they
occur in almost all images. On the other hand, visual words with smallest df are
so unusual that they correspond in most of the cases to noise. Usually, the top
5% and bottom 10% are stopped [29]. Those patches of Z that belong to the
stopped clusters are not considered in the following steps of our algorithm.

Now, for class i an array with the description of all (non stopped) patches
yi
jp is defined as Yi. The description Yi of class i is clustered using a k-means

algorithm in Q clusters that will be referred to as parent clusters:

ciq = kmeans(Yi, Q) (2)

for q = 1 . . . Q, where ciq ∈ R(d+2) is the centroid of parent cluster q of class i.
We define Yi

q as the array with all samples yi
jp that belong to the parent cluster

Fig. 1. Overview of the proposed method. The figure illustrates the recognition of
disguise. The shown classes are three: sunglasses, scarf and no-disguise. The stop list
is used to filter out patches that are not discriminating for these classes. The stopped
patches are not considered in the dictionaries of each class and in the testing stage.
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with centroid ciq. In order to select a reduced number of samples, each parent
cluster is clustered again in R child clusters2

ciqr = kmeans(Yi
q, R) (3)

for r = 1 . . . R, where ciqr ∈ R(d+2) is the centroid of child cluster r of parent
cluster q of class i. All centroids of child clusters of class i are arranged in an
array Di, and specifically for parent cluster q are arranged in a matrix:

Āi
q = [ciq1 . . . ciqr . . . ciqR]T ∈ R(d+2)×R (4)

Thus, this arrangement contains R representative samples of parent cluster q of
class i as illustrated in Fig. 2. The set of all centroids of child clusters of class
i (Di), represents Q representative dictionaries with R descriptions {ciqr} for
q = 1 . . . Q, r = 1 . . . R.

Fig. 2. Adaptive dictionary A of patch y. In this example there are k = 4 classes in
the gallery. For this patch only k′ = 3 classes are selected. Dictionary A is built from
those classes by selecting all child clusters (of a parent cluster -see blue rectangles-)
which have a child with the smallest distance to the patch (see green squares). In this
example, class 2 does not have child clusters that are similar enough to patch y, i.e.,
h2(y, q̂2) > θ.

2.2 Testing

In the testing stage, the task is to determine the class of the query image It

given the model learned in the previous section. From the test image, s selected
test patches Pt

p of size w × w pixels are extracted and described using (1) as
yt
p = f(Pt

p) = [ ztp; αxt
p; αyt

p ] (for p = 1 . . . s). The selection criterion of a test
patch will be explained later in this section. For each selected test patch with
description y = yt

p, a distance to each parent cluster q of each class i of the
gallery is measured:

hi(y, q) = distance(y, Āi
q). (5)

2 If ni
q, the number of samples of Yi

q, is less than R, ciqr is built by taking the R first
samples of a replicated version of the samples [Yi

q Yi
q . . . ]. This dictionary with R

words is equivalent to have a dictionary of ni
q words only.
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We tested with several distance metrics. The best performance, however, was
obtained by hi(y, q) = minr||y−ciqr||, which is the smallest distance to centroids
of child clusters of parent cluster q as illustrated in Fig. 2. Normalizing y and
ciqr to have unit �2 norm, (5) can be rewritten as:

hi(y, q) = 1 − max < y, ciqr > for r = 1 . . . R (6)

where the term < • > corresponds to scalar product that provides a similarity
(cosine of angle) between vectors y and ciqr. The parent cluster that has the
minimal distance is searched:

q̂i = argmin
q

hi(y, q), (7)

which minimal distance is hi(y, q̂i). For patch y, we select those gallery classes
that have a minimal distance less than a threshold θ in order to ensure a simi-
larity between the test patch and representative class patches. If k′ classes fulfill
the condition hi(y, q̂i) < θ for i = 1 . . . k, with k′ ≤ k, we can build a new index
vi′ that indicates the index of the i′-th selected class for i′ = 1 . . . k′. For instance
in a gallery with k = 4 classes, if k′ = 3 classes are selected (e.g., classes 1, 3
and 4), then the indices are v1 = 1, v2 = 3 and v3 = 4 as illustrated in Fig. 2.
The selected class i′ for patch y has its dictionary Dvi′ , and the corresponding
parent cluster is ui′ = q̂vi′ , in which child clusters are stored in row ui′ of Dvi′ ,
i.e., in Ai′ := Āvi′

ui′ .
Therefore, a dictionary for patch y is built using the best representative

patches as follows (see Fig. 2):

A(y) = [ A1 . . .Ai′ . . .Ak′
] ∈ R(d+2)×Rk′

(8)

With this adaptive dictionary A, built for patch y, we can use SRC method-
ology [32]. That is, we look for a sparse representation of y using the �1-
minimization approach:

x̂ = argmin||x||1 subject to Ax = y (9)

The residuals are calculated for the reconstruction for the selected classes i′ =
1 . . . k′:

ri′(y) = ||y − Aδi′(x̂)|| (10)

where δi′(x̂) is a vector of the same size as x̂ whose only nonzero entries are the
entries in x̂ corresponding to class v(i′) = vi′ . Thus, the class of selected test
patch y will be the class that has the minimal residual, that is it will be

î(y) = v(î′) (11)
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where î′ = argmini′ ri′(y). Finally, the identity of the query class will be the
majority vote of the classes assigned to the s selected test patches yt

p, for p =
1 . . . s:

identity(It) = mode(̂i(yt
1), . . . î(y

t
p), . . . î(y

t
s)) (12)

The selection of s patches of query image is as follows:
i) From query image It, mt patches are randomly extracted and described
using (1): yt

j , for j = 1 . . . mt, with mt ≥ s.
ii) Those patches yt

j that belong to the stopped clusters of our visual vocabulary
V are not considered.
iii) Each remaining patch yt

j is represented by x̂t
j using (9).

iv) The sparsity concentration index (SCI) of each patch is computed in order
to evaluate how spread are its sparse coefficients [32]. SCI is defined by

Sj := SCI(yt
j) =

k max(||δi′(x̂t
j)||1)/||x̂t

j ||1 − 1
k − 1

(13)

If a patch is discriminative enough it is expected that its SCI is large. Note that
we use k instead of k′ because the concentration of the coefficients related to k
classes must be measured.
iv) Array {S}mj=1 is sorted into a descended order of SCI value. The first s
patches in this sorted list in which SCI values are greater than a τ threshold are
then selected. If only s′ patches are selected, with s′ < s, then the majority vote
decision in (12) will be taken with the first s′ patches.

3 Experimental Results

ASR+ was evaluated in the recognition of several facial attributes: facial expres-
sions (Section 3.1), gender (Section 3.2), race (Section 3.3) and disguise
(Section 3.4). Experiments were carried out on seven databases under vary-
ing conditions. We demonstrate the performance of our ASR+ approach with
a combination of two types of experiments: 1) When it is possible, we compare
performance of ASR+ against recent published performance results of a variety
of algorithms using the database and similar experimental protocol used in the
paper about each algorithm. 2) We compare performance of ASR+ to perfor-
mance of five ‘baseline methods’. They are re-implemented versions of five well-
known general recognition algorithms that have been used in face recognition
problems. In this case, the methods are the following: i) NBNN [6] using inten-
sity features normalized to the unit length in 6 × 6 partitions, ii), NBNN using
LBP-based features [1] with 6 × 6 partitions, iii) SRC [32] where the images
were sub-sampled to 22 × 18 pixels building features of dimension d = 396,
iv) TPTSR based on a two-phase test sample sparse representation approach [33],
and v) LAD [7] based on locally adaptive sparse representation of patches dis-
tributed in a grid. We coded these methods in Matlab according to the specifi-
cations given by the authors in their papers.
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The used protocol –when evaluating our proposed approach and the baseline
methods– is the following: In the databases, there were face images from k classes
(e.g., in gender recognition k = 2, for female and male) and more than n images
per class. All face images were resized to 110 × 90 pixels and converted to a
grayscale image if necessary. From each class, n images were randomly chosen
for training and one for testing. In order to obtain a better confidence level in
the accuracy, the test was repeated N times by randomly selecting n + 1 faces
images per class each time. The reported accuracy η in all of our experiments
is the average calculated over the N tests. In order to report the number of
training images and runs of each experiment, we use the notation ‘[n|N ]’.

In addition, we report other parameters of our method that depend on
the alignment of the face images, the number of training images and the size
of the local information of the face that is used in the recognition task. They
are the number of parent and child clusters (Q and R), the number of patches
extracted in each training image (m), the weighting factor for location coordi-
nates (α), the size of patches (w) and the size of the visual vocabulary (Nv). We
use the notation ‘{Q,R,m,α,w,Nv}’.

3.1 Facial Expression

The performance of our method was evaluated on three databases: i) JAFFE
database [20]: It contains 7 expressions (‘neutral’ and six basic emotions: ‘anger’,
‘disgust’, ‘fear’, ‘happiness’, ‘sadness’ and ‘surprise’) captured from 10 Japanese
women. For each subject, there are 3–4 face images for the non-neutral and one
for the neutral expressions, i.e., the database consists of 213 images. Results are
summarized in Tab. 1. In our case, we used [n = 29|N = 50] and {Q = 100, R =
80,m = 250, α = 3, w = 40, Nv = 400}. ii) CK+ database [18]: It consists of 8
expressions (‘contempt’ was added to the six basic emotions) captured from 100
subjects as sequences (starting with a neutral face and ending with the peak of
a facial expression). In order to compare our method with other methods fairly,
a common experimental protocol was followed: The first frame of the sequence
(neutral face) and the three last frames (emotion faces) were used. Experiments
were carried out to recognize the 6 basic emotions using a leave-one out strat-
egy. Results are summarized in Tab. 1. In our case, we used [n = 74|N = 50]
and {Q = 100, R = 80,m = 120, α = 0.25, w = 18, Nv = 400}. iii) SmileFlick
(own database): In this experiment, the idea was to detect smiling faces. For this
end, 52 face images with smile and 57 face images with neutral expression were
collected manually from frontal portraits published in Flickr including subjects
from different age, race, gender and illumination. The faces were detected auto-
matically using Computer Vision Toolbox of Matlab3. In our experiments, we
used [n = 49|N = 60] and {Q = 80, R = 50,m = 300, α = 3, w = 40, Nv = 400}.
The results of our method compared with the baseline methods are summarized
in Tab. 1.

3 http://www.mathworks.com/products/computer-vision/

http://www.mathworks.com/products/computer-vision/
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Table 1. Recognition of Expressions

Database Method Ref η [%]
JAFFE SLLE [14] 86.8+

SFRCS [13] 86.0+

7 Ada+SVM(RBF) [28] 81.0+

classes BDBNJ [15] 91.8+

BDBN∗
J+C [15] 93.0+

ASR+ (ours) 94.3
CK+ CSPL [36] 89.9+

CPL [36] 88.4+

6 AdaGabor [4] 93.3+

classes LBPSVM [28] 95.1+

BDBN [15] 96.7+

ASR+ (ours) 97.5
SmileFlick NBNN [6] 73.1

LBP [1] 87.5
2 SRC [32] 96.8

classes TPTSR [33] 91.2
LAD [7] 97.5
ASR+ (ours) 97.5

(*): It was improved using CK+ database.
(+): Result from cited paper.

Table 2. Recognition of Gender

Database Method Ref η [%]
FERET SVM-RBF [21] 96.6+

Real AdaBoost [34] 93.8+

2 AdaBoost [3] 94.4+

classes 2DPCA-SVM [16] 94.8+

ASR+ (ours) 95.0
GROUPS NBNN [6] 84.2

LBP [1] 83.3
2 SRC [32] 86.9

classes TPTSR [33] 85.8
LAD [7] 87.5
ASR+ (ours) 93.3

(+): Result from cited paper. Evaluation protocols
are not exactly the same (see text).

3.2 Gender

The performance of our method was evaluated on two databases: i) FERET
database [24]: It contains more than 3,500 face images from women and men
(with different races such as African, Asian and Caucasian) involving different
expressions and illumination conditions. We used a subset of 1,050 images (602
male and 448 female) where each subject has only one image. We used [n =
440|N = 200] and {Q = 160, R = 80,m = 120, α = 3, w = 36, Nv = 200}.
Results are summarized in Table 2. In order to compare the performance of
our approach, Table 2 shows the results obtained by other state-of-art methods,
however, the evaluation protocols are not exactly the same. In [21], 1,044 males
and 711 females were tested and the accuracy was estimated using a five-fold
cross validation strategy. In [34], 3,529 images were used and the accuracy was
estimated using a five-fold cross validation strategy. In [3], 2,409 images were
used and 80% was used for training and 20% for testing ensuring that images
of a particular individual appear only in the training set or test set. In [16], 400
males and 400 females were used and the accuracy was estimated using a five-
fold cross validation strategy4. ii) GROUPS database [10]: It consists of 28,231
face images collected from Flickr images. It is a real–world database containing
several facial expressions, face poses, illumination conditions and races. We used
the labeled data contained in ‘MATLAB DATA’ file with 1978 face images (946
males and 1032 females). We used in this case [n = 700|N = 100] and {Q =

4 There are other experiments on FERET database reported in the literature that are
not included in Tab. 2 because the testing protocols are significantly different: In [3],
there is an experiment where a subject may appear in both train and test set (in this
case, the accuracy is 97.1%). Additionally, in [2], only 304 images (152 males and
152 females) were used for training and 107 images (60 males and 47 females) for
testing (in this case, the reported accuracy is 99.1%).
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Table 3. Recognition of Race

Database Method Ref η [%]
WebRace NBNN [6] 61.3

LBP [1] 63.0
5 SRC [32] 62.0

classes TPTSR [33] 65.3
LAD [7] 85.7
ASR+ (ours) 87.1

Table 4. Recognition of Disguise

Database Method Ref η [%]
AR NBNN [6] 97.8

LBP [1] 96.1
3 SRC [32] 98.3

classes TPTSR [33] 97.8
LAD [7] 96.7
ASR+ (ours) 97.8

80, R = 50,m = 80, α = 3, w = 16, Nv = 200}. Results are summarized in
Tab. 2. Our method is compared with the basis methods5.

3.3 Race

For human beings it is very difficult to distinguish a race, because it depends on
how people self identify6, however, in our paper, the term ‘race’ –as in [8]– refers
to a person’s physical appearance rather than sociological and cultural concepts
like ethnicity. For this end, we manually built a database from frontal portraits
from the web. The images were subjectively collected and categorized in five very
different ‘races’. The collected races and the number of images per class are the
following: ‘Asian’ (80), ‘Black’ (89), ‘Hispanic’ (85), ‘Indian’ (84) and ‘White’
(90). We call this database WebRace. The faces were detected automatically
using Computer Vision Toolbox of Matlab3. In this case, we used [n = 79|N =
60] and {Q = 90, R = 90,m = 700, α = 3, w = 48, Nv = 500}. The results of our
method compared with the baseline methods are summarized in Tab. 3.

3.4 Disguise

In this experiment, the idea was to distinguish faces with certain kind of occlu-
sion. For this purpose, the database AR [20] was used. The images of this
database were taken from 100 subjects (50 women and 50 men) with differ-
ent facial expressions, illumination conditions, and occlusions with sun glasses
and scarf (we used the cropped version). The number of images per subject is 26.
We divided the database into three groups: images with scarf (600), images with
sunglasses (600) and the rest (1400). In this case, we used [n = 19|N = 60] and
{Q = 80, R = 50,m = 400, α = 2, w = 16, Nv = 200}. The results of our method
compared with the baseline methods are summarized in Tab. 4.

5 There is another experiment on GROUPS database reported in [5], in which all
28,231 images were used (in this case, the reported accuracy is 76.0%). Since the
evaluation protocol is very different, it is not included in Tab. 2.

6 See for example the educational game ‘Guess my race’ which aims to show bias
tendencies by presenting that race is the result of complex cultural and historical
constructions (http://www.gamesforchange.org/play/guess-my-race/).

http://www.gamesforchange.org/play/guess-my-race/
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3.5 Smile Detection

3.6 Implementation Details

In the implementation of ASR+, we used open source libraries like VLFeat [31]
for k-means and SPAMS for sparse representation7. Additional to the parameters
{Q,R,m,α,w,Nv} given in each experiment, the other parameters were (for
all experiments): Number of testing patches mt = 800. Threshold for minimal
distance between the test patch and child cluster: θ = 0.05. Threshold for SCI
τ = 0.1. Number of selected patches s = 300. Additionally, the number of words
(‘atoms’) selected from the dictionary in (9) is 20 k′/k, where k′ is the number
of selected classes for the adaptive sparse representation, and k is the number
of classes in the gallery. The time computing depends on the number of classes
and the size of the dictionary, however, in order to present a reference, the
testing results for the recognition of race were obtained after 0.8s per subject
on a Mac Mini Server OS X 10.9.3, processor 2.6 GHz Intel Core i7 with 4
cores and memory of 16GB RAM 1600 MHz DDR3. The remaining algorithms
were implemented in MATLAB. The code of the MATLAB implementation is
available on our webpage8.

4 Conclusions

In this paper, we have presented ASR+, a new general algorithm that is able
to recognize facial attributes automatically in cases with less constrained condi-
tions, including some variability in ambient lighting, pose, expression, size of the
face and distance from the camera. The main contribution of our paper is that
the same algorithm can be used in all recognition tasks obtaining a performance
at least comparable with that achieved by state-or-art techniques. The robust-
ness of our algorithm is due to three reasons: i) the dictionaries learned for each
class in the learning stage corresponded to a rich collection of representations of
relevant parts which were selected and clustered; ii) the testing stage was based
on ‘adaptive’ sparse representations of several patches using the dictionaries esti-
mated in the previous stage which provided the best match with the patches,
and iii) a visual vocabulary and a stop list used to reject non-discriminative
patches in both learning and testing stage.

It is worth mentioning that our extensive empirical evaluation has been per-
formed in two directions: i) Other representative methods from the literature
have been re-implemented and compared against using our methodology; and
ii) our algorithm has been evaluated using the methodology of other papers to
get a result that can be compared to their published result(s) on the selected
datasets. In both scenarios, ASR+ can deal with the unconstrained conditions
extremely well, achieving a high recognition performance in many complex con-
ditions and obtaining similar or better performance.

7 SPArse Modeling Software available on http://spams-devel.gforge.inria.fr
8 See http://dmery.ing.puc.cl/index.php/material/.

http://spams-devel.gforge.inria.fr
http://dmery.ing.puc.cl/index.php/material/
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We believe that ASR+ can be used to solve other kinds of recognition prob-
lems (e.g., recognition of faces with glasses, mustaches or beards and estimation
of age). Preliminary results have shown that ASR+ can be used to recognize
specific individuals as well. The proposed model is very flexible and obviously it
can be used with other descriptors.
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Abstract. Automatic person identification using un-obtrusive methods
are of immense importance in the area of computer vision. Anthropo-
metric approaches are robust to external factors including environmental
illumination and obstructions due to hair, spectacles, hats or any other
wearable. Recently, there have been efforts made on people identification
using walking pattern of the skeleton data obtained from Kinect. In this
paper we investigate the possibility of identification using static postures
namely sitting and standing. Existing gait based identifications, mostly
rely on the dynamics of the joints of the skeleton data. In case of static
postures the motion information is not available, hence the identifica-
tion mainly relies on the static distance information between the joints.
Moreover, the variation of pose in a particular posture makes the identifi-
cation more challenging. The proposed methodology, initially sub-divides
the body-parts into static, dynamic and noisy parts followed by a combi-
natorial element responsible for selectively extracting features for each of
those parts. Finally a radial basis function support vector machine clas-
sifier is used to perform the training and testing for the identification.
Results indicate an identification accuracy of more than 97 % in terms
of F-score for 10 people using a dataset created with various poses of
natural sitting and standing posture.

Keywords: Person identification · Natural static posture · Skeleton
joints · Kinect

1 Introduction

Human brain can discriminate between people based on their unique physical as
well as behavioural characteristics [1]. Everyday the importance of non-intrusive
person identification has been increasing as the technology that can serve sev-
eral critical applications like video surveillance, people counting, server-room
or datacenter authentication, audience measurement etc. Several modalities of
person identification (PI) in terms of biometrics already exist in the current lit-
erature on computer vision. A few of them include behavioural characteristics
like lip movement, typing pattern etc. or physiological signatures like speech,

c© Springer International Publishing Switzerland 2015
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face, iris, fingerprint etc. Unfortunately, these modalities are intrusive in nature,
thus require direct human interaction for the authentication. Moreover extrac-
tion of fingerprint, iris or audio related biometric information (at recognizable
form) from a large distance is definitely a challenging job. However, when other
cues are not robust enough in discriminating between people, soft-biometrics
like global shape [2] can be used to do the person identification. Global shape
based approaches mainly utilize physical build of a person like body dimen-
sions, height, length of limbs etc. for identifying a person. This type of systems
is comparatively advantageous because it is very difficult to hide and conceal.
In addition, global shape traits can also be extracted without making any user
interaction, so it is non-intrusive in nature. They can be obtained either by using
RGB-D images or by analysing skeleton joint co-ordinates of a particular subject.
Fortunately, the Microsoft motion sensing device named Kinect directly provides
RGB-D information and 3D co-ordinates of 20 skeleton joints like head, shoulder-
center etc. In this paper, instead of storing image/video, we analyse structural
build characteristics of a subject using only skeleton data which is more robust
to illumination conditions. Skeleton joints can be obtained even if the face of
the person is obstructed by hair, if person wear spectacles, hats or any other
wearable. However, the skeleton joints obtained from Kinect is somewhat noisy
only if the person wears black clothes which is mainly due to infrared sensor.

Several works have already been done on skeleton information based person
identification using Kinect. Preis et al. [3] and Sinha et al. [4] did the same from
side walking pattern using static as well as dynamic nature of gait features like
length of arms, legs, velocity etc. Naresh et al. [5] had proposed a PI system
from arbitrary unconstrained walking pattern. Though they [5] obtained 90%
identification accuracy for 20 subjects, but the paths of the subjects were prede-
fined (a front walking pattern with Kinect as the reference point) during training
phase. Sinha et al. [6] investigated an interesting pose and subpose based concept
for modeling arbitrary gait pattern using only skeleton data. They [6] employed
unsupervised learning algorithm i.e., K-Means clustering, for identifying 3 poses
and 8 subposes. Their method was able to achieve 94% recognition accuracy
for 20 subjects. But, all of these skeleton based approaches aimed at identify-
ing an individual based on only movement-pattern rather than static posture.
Chakravarty et al. [7] proposed a PI system in static posture. Though they [7] got
96% identification accuracy for 10 subjects, but their method is mainly focused
on frontal standing posture, rather than unconstrained natural static ones. In
addition, they had carried out performance evaluation using training and testing
at a fixed predefined position and posture. However as the subject is not very
robotic and can assume variety of poses, their method performs very poorly in
real-life. Identifying the person using global shape information obtained from
RGB-D is quite easy compared to skeleton but it is quite challenging using
skeleton data. For example, if two people are of same height and assume limb
lengths are of similar size, still they can be easily discriminated from the width
of hands, legs or body from RGB-D as it gives these additional clues. However,
skeleton joints are single points we cannot get these crucial information like the
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3D structure of person which is very unique. Therefore, identifying the persons
of similar structures is quite challenging using skeleton data. Keeping all those
problems in mind, we have developed a robust person identification system in
static postures mainly sitting and/or standing using only global shape based
features. In this work, we have defined sitting, standing, bending etc. as posture
where a posture may have many poses. A pose is described as the attitude (e.g.
orientation with respect to a reference point) of the body, or the position of
the limbs (arms and legs) in a particular posture. While developing the robust
PI system using skeleton data, we have explored physical build characteristics
of a person in two phases where in the first phase we have explored feature
sets related to constrained sitting and standing postures (method 1) and then,
based on the drawback-analysis of method 1 in real-life scenario, method 2 is
proposed in phase 2. The method 2 does not require any user cooperation and
performs well in constrained as well natural sitting and standing postures. The
contribution of this paper is mainly 4 folds

1. PI task is carried out in natural unconstrained static postures in real time
using only skeleton data obtained from Kinect. The system is invariant to
lighting condition and also ensures user’s privacy.

2. Benefits and drawbacks of different feature sets are investigated for identi-
fying an individual in natural and constrained static postures.

3. For robust PI, the pose invariant optimal feature vector is selected from
different body-parts after examining combinatorial study on different feature
sets.

4. Density based clustering approach is used for dividing entire skeleton struc-
ture based on static, dynamic and noisy nature of joints.

We have also evaluated performance of method 2 with respect to the state-of-
the-art systems [6] [7] and it is shown that our method outperforms the existing
systems in natural static postures.

Rest of the paper is organized as follows: Section 2 gives the brief explana-
tion of posture and poses along with the details of database creation for static
postures. Two phase implementation of our proposed PI system is presented in
two sections Section 3 and Section 4 where Section 3 gives the performance anal-
ysis of different global shape based features on different datasets and Section 4
presents the proposed robust person identification system based on joint analysis
of different body-parts. Conclusion of this paper is laid out in the final section.

2 Experimental Database

In this work, we have developed a person identification system using only skele-
ton information obtained from Kinect [8]. Here we are focusing on the PI task,
only in static postures like sitting and standing. For this we have analyzed phys-
ical build characteristics in terms of skeleton data. Methods in [6] [4] [9] [3]
[5] did the PI by analyzing the movement patterns in terms of spatio-temporal
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(a) 20 skeleton joints with labels (b) Representation of postures using angles

Fig. 1. Representation of skeleton structure and postures

variation of skeleton joint co-ordinates. But, unfortunately no standard pub-
lic database exists for person identification in static postures (specially sit-
ting and standing) using skeleton data. Therefore, we have carefully designed
our own database that suits to real-time scenario. In this study, we have used
Kinect sensor which is placed at 6-10 ft distance from the subject to collect the
skeleton data from sitting and standing posture. It mainly records {x, y, z} co-
ordinates (in meters) of different skeleton joints for a particular subject. The 20
skeleton joints namely Hip Center(A), Spine(B), Shoulder Center(C), Head(D),
Shoulder Left(E), Elbow Left(F), Wrist Left(G), Hand Left(H), Shoulder Right
(I), Elbow Right(J), Wrist Right(K), Hand Right(L), Hip Left(M), Knee Left(N),
Ankle Left(O), Foot Left(P), Hip Right(Q), Knee Right(R), Ankle Right(S),
Foot Right(T) obtained from the Kinect are shown in Fig. 1a. The data is
collected from the sitting and standing postures in two modes - 1) constrained
static postures - frontal sitting and standing pose, and 2) unconstrained static
postures - natural sitting and standing pose. In both the modes, datasets are cre-
ated from 10 people (3 female and 7 male). We have presented a brief discussion
on posture and pose followed by the details on the corpus creation.

Overview of Posture and Pose
Before going into discussion about database creation on sitting and standing pos-
tures with different poses, we want to clarify the difference between posture and
pose. Posture is viewed at macroscopic level whereas single posture can have
multiple poses. The orientation of the posture with respect to some reference
point is treated as pose. Therefore, pose can be viewed as containing micro-
scopic level information. For example, the postures can be like sitting, standing,
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sleeping, bending, leaning etc. Any particular posture is independent of person’s
orientation in the space. However, pose should be defined with respect to some
reference point. In our case, if we consider Kinect as the reference, then the
orientation of person with respect to Kinect is treated as pose. If the subject
is straight towards camera i.e., perpendicular it is treated as straight pose or
frontal pose. Else we consider pose (with some angle with respect to Kinect) as
natural one. Not only that in natural poses, the subject may vary position of
his/her limbs. The skeleton joints extracted from Kinect are represented by 3D
world co-ordinates (x,y,z) where ‘x ’ represents the left/right variation, ‘y ’ rep-
resents up/down variation and ‘z ’ represents to/from variation of subject with
respect to Kinect. Scientifically, the angles formed by some joints with respect
to Kinect in X-Y (coronal) and/or Z-Y (sagittal) plane can differentiate the pos-
ture. Once posture is fixed, the orientation of subject with respect to Kinect in
Z-X (transverse) plane can differentiate poses within the posture. As shown in
Fig. 1b, postures like leaning, sitting, bending are defined using the angle infor-
mation which is obtained from the joints like A and B (Fig. 1a) with respect
to Kinect(marked as V). However, the posture standing is discriminated from
other postures using additional angle information made by the joints M and N
or Q and R (Fig. 1a).

Dataset #1
This is created from the respective 10 people in the constrained static postures
specifically frontal sitting and standing one. In this case, we have asked the sub-
jects to view straight towards the Kinect. From each subject, we have collected
1 set of data for training and 3 sets of data for testing. Each set consists of 1
minute of data with approximately 30 frames per second. The training set is
frontal one where legs are kept perpendicular to Kinect and hands are lied on
both the legs at different locations which are varied from Knee to near Hip loca-
tion. One set of test data is similar to the training set whereas for other two test
sets we have requested the subjects to remain in the frontal standing or sitting
pose but asked to produce small variations of dynamic joints like leg and hand
positions (without crossing legs and folding hands).

Dataset #2
This is also created from the same 10 people of dataset #1 but in unconstrained
static poses i.e., natural standing and sitting poses. From each subject, we have
collected 2 sets of data, where one set is used for training and other set is for
testing. In the training phase, we have asked the subject to sit and stand in
some particular predefined poses (one example shown in Fig. 2) but in testing
phase we have not restricted the subject in viewing Kinect. Instead the subject
is encouraged to sit and stand with some angle to the Kinect. In fact, we have
requested the subject to give arbitrary sitting and standing posture by making
large variations of dynamic joints. While designing dataset #2 we have empha-
sized the fact that in real life, during testing, a subject may give totally different
static pose that is not present in the training corpus.
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Fig. 2. Representation of different poses of sitting posture

3 Person Identification in Static Postures: Method 1

We have developed a person identification (PI) system from sitting and stand-
ing postures in two phases. In the first phase (method 1), the PI system is
implemented in two steps (i) feature extraction (ii) decision making and
performance analysis. The method 2 is proposed based on the performance
analysis of method 1. In other words, we have critically analysed drawbacks of
method 1 and proposed a robust PI system in phase 2 (method 2). It needs to
be mentioned that the performance of method 1 & 2 is evaluated using both the
datasets #1 & #2. The implementation details of method 1 are presented in the
following subsections.

3.1 Feature Extraction

The feature extraction module generates different sets of features for identifying
the person in sitting and standing posture. Therefore, identifying appropriate
salient features from the 3D world co-ordinates of 20 joints, which can discrimi-
nate the individual characteristics, is a very crucial step for any high performance
system. The details of features for PI are as follows:

In static postures, meaningful information about identity or uniqueness of any
individual can be obtained by extracting the features related to the structural or
physical build of the subject (e.g. height, length of limbs etc.). So keeping this fact
in mind, we have used differences of 3D world co-ordinates between every pair
of joints (physically connected and unconnected) as a candidate feature vector
(F cu) and F cu is extracted at frame level. The feature set F cu contains all the
necessary and unique information about the physical build of a subject whereas,
differences of co-ordinate ‘x ’, ‘y ’ and ‘z ’ for every joint-pair capture the width,
height and depth information, respectively. From Fig. 1a it is observed that there
are 20 joints with 19 physically connected pairs, where the differences of co-
ordinates ‘y ’ inherently give the information about length of limbs. The features
F c and F y represent the differences of 3D world co-ordinates and differences of
‘y ’ co-ordinate between every ‘connected ’ pair of joints, respectively. In the first
phase of our implementation, the candidate features such as F c and F y (F y,
F c ⊂ F cu) are extracted from each frame for analysing how they affect PI in
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different posing conditions. F cu, F c and F y are formulated using equations (1),
(2) and (3) where J is the total number of joints in D dimensional co-ordinate
system and CP represents number of physically connected joint-pairs.

F cu = abs((xj , yj , zj) − (xk, yk, zk)) ∀ j = [1, 20], k = [1, 20], j �= k,

F cu ∈ R(D×JC2),where D=3 and J=20
(1)

F c = abs((xj , yj , zj) − (xk, yk, zk)) ∀ j, k = {1, . . . , 20|j, k connected},
F c ∈ R(D×CP) and F c ⊂ F cu,where D=3 and CP=19

(2)

F y = abs((yj) − (yk)), ∀ j, k = {1, . . . , 20|j, k connected},
F y ∈ RCP and F y ⊂ F cu,where CP=19

(3)

3.2 Decision Making and Performance Analysis

The decision making task is carried out using a supervised learning algorithm
with feature sets F cu, F c and F y separately. A classification algorithm is used
to map feature vectors to a particular object class representing a person. We
have realized the classifier using multi-class support vector machine (SVM) with
Radial Basis Function (RBF) as kernel [10] [11]. SVM classification is an exam-
ple of supervised learning. SVMs are useful due to their wide applicability for
classification tasks in many applications [12]- [18]. The main goal of SVM for
classification problem is to produce a model which predicts target class label
of data instances in the testing set, given only the attributes. The intuition to
use RBF kernel function is due to its universal approximation properties. Also,
it offers good generalization as well as good performance in solving practical
problems [15] [16].

In this study, the statistical measure F-score [6], which is defined as the
harmonic mean of precision and recall is used for performance evaluation. For
N subjects F-Score is defined by the equation (4).

F-scorei =
2 ∗ precisioni ∗ recalli
(precisioni + recalli)

∀i, 1 ≤ i ≤ N (4)

For method 1, various types of experiments are then carried out on the datasets
explained in the section 2. These are described as follows:

(A) Trained and Tested at Frontal Static Posture.
As an initial step of our experimentation, we have used only dataset #1 for PI in
frontal static posture. The identification accuracy in the form of confusion matrix
for test set 1 using feature vector F cu is given in Table 1. Table 2 represents
the average F-scores of the PI system using feature vectors F cu, F c and F y

separately on all the 3 test sets.

Analysis: The average performance of PI system shown in the diagonal of Table
1 indicates that almost all persons are well classified. But it is also observed from
Table 2 that for all the features, performance of method 1 is better on test set
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Table 1. Confusion matrix for 10 subjects trained and tested at frontal sitting posture
using feature vector Fcu. Entries in table indicate F-scores in (%)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 1.85 98.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
P5 0.00 0.00 0.00 0.00 97.23 2.01 0.76 0.00 0.00 0.00
P6 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
P8 0.00 0.65 0.00 0.00 0.00 0.00 0.00 99.35 0.00 0.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
P10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Table 2. Average F-scores(%) of PI system for frontal training and testing

Test on dataset #1
Sitting Standing

F cu F c F y F cu F c F y

Set 1 99.47 98.61 97.79 100.00 99.42 98.18
Set 2 92.10 96.78 94.56 91.27 95.65 92.18
Set 3 87.45 90.19 89.20 90.13 92.90 92.14

Table 3. Average F-score(%) of PI system for frontal training and natural testing

Test on dataset #2 F cu F c F y

Natural Sit 54.60 62.17 58.19
Natural Stand 63.22 68.98 65.37

1 compared to test sets 2 and 3. This is mainly because the test set 1 and the
training set have similar poses for the postures. However, if the subject even
slightly varies his/her frontal sitting or standing pose (dataset #1–> test sets
2 & 3) like keeping the arm and leg positions different from that of training
model, the performance of this implementation degrades (F-scores for set 2 and
set 3 in Table 2). Moreover, as F cu includes differences of 3D co-ordinates for
both connected and unconnected pairs, it is obvious that F c and F y perform
relatively better on test sets 2 & 3 than F cu. Therefore, slight variation in legs
and arm positions in testing phase largely affects feature vectors related to the
unconnected joint-pairs which is present F cu.

(B) Trained at Frontal and Tested Using Unconstrained Static Posture.
To make our PI system more realistic, we have used frontal sitting and standing
data from dataset #1 for training and unconstrained (natural) pose data from
dataset #2 for testing. The average F-scores for all feature vectors are compared
in Table 3.
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Analysis: Table 3 clearly tells us that the results are more worse compared to
Table 2. Our analysis suggests that the system performs poorly because of lack
of pose variation information in the training data.

(C) Trained and tested at natural static posture
Next, both the training and testing data are taken from dataset #2. The diagonal
entries in Table 4 show the average PI performance for 10 subjects using feature
vector F cu. We have also compared the performance using feature vectors F cu,
F c and F y in Table 5.

Table 4. Confusion matrix for 10 subjects trained and tested at natural sitting posture
using the feature vector Fcu. Entries in table indicate F-scores in (%)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 62.07 13.12 0.00 0.00 0.00 14.81 0.00 4.48 0.00 5.52
P2 6.35 91.29 0.00 0.05 2.31 0.00 0.00 0.00 0.00 0.00
P3 21.48 0.00 52.10 6.36 0.00 0.00 0.00 5.62 13.18 1.26
P4 1.83 0.00 6.67 89.58 0.00 0.00 1.92 0.00 0.00 0.00
P5 20.40 0.00 0.00 0.00 61.16 0.00 3.60 0.00 14.84 0.00
P6 0.00 2.62 20.10 0.00 0.00 75.23 0.00 0.00 2.05 0.00
P7 0.00 0.00 45.17 0.00 0.00 0.00 54.83 0.00 0.00 0.00
P8 0.00 9.22 2.67 16.46 0.00 0.00 0.00 71.65 0.00 0.00
P9 0.00 0.06 28.70 0.00 0.00 2.80 0.85 0.00 67.59 0.00
P10 0.00 0.00 2.63 0.98 15.28 0.06 0.00 0.08 0.00 80.97

Table 5. Average F-score(%) of PI system for natural training and testing

Test on dataset #2 F cu F c F y

Natural Sit 70.65 69.80 65.57
Natural Stand 79.12 73.29 69.65

Analysis: From Tables 4 and 5, it is observed that the average performance of
method 1 is slightly improved compared to the previous approach. However, the
performance of PI is still not satisfactory and we have got maximum 70.65% and
79.12% PI accuracies in natural sitting and standing postures, respectively. Our
analysis suggests that even the subject maintains different pose but may not
have good control on hands and leg positions due to flexibility of more dynamic
nature of joints in natural scenario. It is also seen that some of the joints exhibit
noise in some viewing angles due to occlusion and thus make the PI system more
erroneous. From the above analysis, we conclude that different features perform
better in different conditions for method 1. Hence, if we can carefully select the
features based on the orientation of joints, it will definitely improve the system
performance. This gives us the motivation to develop more robust PI system by
modifying method 1. The following section 4 describes our modified approach.
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4 Person Identification in Static Postures: Method 2

We always keep in mind that we have to design a PI system in natural static
posture so that it perfectly matches any real-life scenario. Therefore we have
developed method 2 by modifying method 1 to overcome the above limitations
(described in the section 3). In method 2, we have analyzed joints belong to
different body-parts, extracted relevant features and then finally evaluated the
performance. The frame-work of method 2 contains 5 modules (i) Data Acqui-
sition (DA), (ii) Skeleton Divider (SD), (iii) Feature Generator (FG),
(iv) Combinatorics Engine (CE) and (v) Model Generator (MG) in its
functional architecture which is shown in Fig. 3.

Fig. 3. Functional architecture of method 2

The DA module captures co-ordinates of 20 skeleton-joints using Kinect and
forwards these 20 joints to SD module. In SD module, entire skeleton structure
is divided into different body-parts based on the static upper, dynamic lower,
dynamic upper and noisy middle nature of joints (labeled with different colors in
Fig. 1a). FG module extracts the candidate features F cu, F c and F y (explained
in the section 3) from the skeleton joints. Once the feature generation is done,
CE module explores all possible combination of features extracted from differ-
ent body-parts and finally, all these combinations are feeded to MG module to
generate the training models. In method 2, the training and testing are done
only on dataset #2 where predefined poses are used for training but testing is
carried out with unconstrained natural static postures. The key contribution of
this approach is mainly dividing 20 skeleton joints into different body-parts and
automatic selection of optimal features from the respective body-parts. In addi-
tion to this we have also analyzed the influence of certain angles in capturing the
pose related information. The details of the proposed methodology and influence
of the angles on the proposed system are presented in the following subsections.

4.1 Methodology

In the static posture like sitting or standing, a person can be oriented in any
direction with respect to Kinect exhibiting natural pose. However, for a given
posture a person can not move some of the joints flexibly irrespective of poses.
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For example, upper body joints like Spine, Hip Center etc. are fixed for any pose
in a particular posture. We define those joints as static one. On the contrary,
in a single pose, a subject can move his joints like Knee Left, Wrist Left, Foot
Left etc. very flexibly. Therefore, we name them as dynamic joints. It is also
noticed that some of the joints are more prone to noise due to occlusion effect.
For example, in most of the poses of sitting posture, Hip Left and Hip Right are
occluded with Knee Left and Knee Right, respectively. These types of joints are
considered as noisy joints. This is also verified by grouping the co-ordinates of
different joints from upper and lower body-parts using density based clustering
algorithm DBSCAN [19]. The results of DBSCAN for some joints (Left portion
of the body) for both the postures are illustrated in Table 6. Right portion of
the body joints also exhibited the similar trend. Table 6 indicates that for sitting
posture(s) DBSCAN identifies 6 clusters whereas for standing posture(s) it forms
only 2 clusters. It can also be noticed from the results that in both postures,
certain joints of upper body like Shoulder Center, Shoulder Left, Spine etc. form
one cluster (static cluster) and Elbow Left, Wrist Left, Knee Left, Ankle Left
form another cluster (dynamic cluster). The joints which are varying over frames
mainly belong to dynamic cluster and the joints which are static over frames form
the static cluster. However, Table 6 also captures an interesting fact that for Hip
portion joints like Hip Left, Hip Center, the frames are not clearly separable as
pure static or dynamic ones because Hip portion joints are occluded by Knee
portion joints while sitting, this causes the noisy nature of Hip joints. 35.02%
and 16.09% of HipLeft frames (Table 6) are moved to dynamic cluster in sitting
and standing posture. This is mainly because in sitting, the occlusion is more
compared to standing. The dynamic joints are further divided into two portions
namely dynamic upper and dynamic lower. So, based on the above observation,
entire skeleton structure is divided into four parts:

1. Static Upper Body (SUB): The joints B, C, D, E and I representing the main
body portion (color coded in dark blue in Fig. 1a) are more static in nature
during any pose for a particular posture.

2. Dynamic Upper Limbs (DUL): Based on the subject’s flexibility of changing
the arm positions in natural static postures, the joints F, G, H, J, K and L
are considered as dynamic upper limbs (color coded in green in Fig. 1a).

3. Dynamic Lower Limbs (DLL): Based on the subject’s flexibility of changing
leg positions in natural static postures, we have considered the joints N, O,
P, R, S and T as dynamic lower limbs (color coded in sky blue in Fig. 1a).

4. Noisy Middle Hip (NMH): It is also noticed that if the person varies his/her
pose in a particular posture, some joints are reliable and some are noisy. It
is mainly due to occlusion of some body portions. This effect is very much
vivid in middle hip portion. Therefore, we name the joints A, M and Q as
noisy middle hip joints (color coded in deep red in Fig. 1a).

When the body-part segmentation is done, we have explored all the possible
combination of features (F cu, F c and F y) extracted from those body-parts
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Table 6. Division of body parts using clustering of joints where Cl.=Cluster

Sitting
Joint

Standing
Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 1 Cl. 2

29.96 0.67 64.66 0.67 0.00 4.04 HipCenter 18.15 77.85
4.71 0.54 93.67 0.40 0.00 0.67 Spine 13.00 87.00
3.10 0.27 95.69 0.40 0.13 0.40 ShoulderCenter 13.34 86.66
12.11 0.00 87.08 0.40 0.13 0.27 ShoulderLeft 4.26 95.74
88.83 2.56 3.90 0.67 0.67 3.36 ElbowLeft 91.20 8.80
97.98 0.40 0.40 0.00 0.27 0.94 WristLeft 91.20 8.80
94.75 0.54 2.83 1.21 0.13 0.54 KneeLeft 89.96 10.04
99.33 0.13 0.13 0.00 0.27 0.13 AnkleLeft 88.72 11.28
35.02 1.08 60.94 0.27 0.54 2.15 HipLeft 16.09 83.91

(SUB, DUL, DLL and NMH). This is carried out by CE module and it gener-

ates total number of combinations =
TP∑
k=1

pk × (
TP
k

)
, where TP= total number

of body-parts and p = total number of features. With 3 type of features and 4
body parts, different features extracted from single body part result to 12 com-
binations (31 × (

4
1

)
). For example, if 3 feature vectors is extracted from single

body part at a time and no features are extracted from other body parts, it can
be done in three ways. In the same way, three feature vectors extracted from rest
of the body parts can be done in 9 ways. Therefore, features extracted from sin-
gle body part scheme results to total 12 combinations. Similarly, feature vectors
extracted from two body parts at a time while maintaining other two body-
parts features none can result 54 combinations (32 × (

4
2

)
). Three feature vector

combinations for 3 different body parts and no features from left body part will
result 108 combinations (33 ×(

4
3

)
). Finally, different feature vector combinations

including all the body parts result 81 (34 × (
4
4

)
). Thus the system has result to

255 combinations in total. Then all these combinations are feeded to multi-class
SVM to generate different models. Now to do the evaluation, we have done 5
fold cross-validation using the training corpus from dataset #2. The average of
top 10 PI F-scores are listed in Table 7 for both sitting and standing postures. In
Table 7, ‘NOT’ indicates that none of the feature vectors are employed for that
particular body-part. It is found that among all the 255 models, the combination
(F best

sit )– F cu for SUB, F c for DUL, F y for DLL and ‘NOT’ for NMH produces
the best F-Score in sitting posture. Similarly for standing posture, we compute
the same i.e. F best

stand. To test the robustness of method 2, these combinations are
applied on the test data of dataset #2 and we able to achieve average 93.00%
& 95.33% identification accuracy in sitting and standing, respectively. Table 8
shows the confusion matrix in natural sitting posture for the combination F best

sit .
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Table 7. Top 10 F-scores(%) of method 2 using combination of features and bodyparts
(Cross-validation performance)

Sl. No.
Sitting Standing

SUB DUL DLL NMH F-score (%) SUB DUL DLL NMH F-score(%)

1 F cu F c F y NOT 95.51 F cu F c F y F cu 96.02

2 F cu NOT F y NOT 94.98 F cu NOT F c NOT 95.73

3 F cu NOT F y F cu 93.01 F cu F c F y NOT 94.56

4 F cu F y F y NOT 91.71 F cu NOT F y F cu 94.05

5 F cu F y F y F cu 91.27 F cu NOT F y NOT 93.72

6 F cu F c F c F y 90.86 F cu F c F y F y 91.00

7 F cu F c NOT F cu 89.98 F cu F y F c F cu 90.72

8 F c NOT F c F y 89.45 F cu F c F c F y 90.57

9 F cu F c NOT NOT 89.38 F cu F c F c NOT 90.57

10 F cu F c F c F cu 89.29 F cu F y F y F cu 90.36

Table 8. Confusion matrix for 10 subjects using F best
sit on test-set of dataset #2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 94.21 0.00 1.21 2.43 0.00 2.15 0.00 0.00 0.00 0.00
P2 0.00 89.79 0.00 6.14 2.00 0.00 0.00 2.07 0.00 0.00
P3 3.33 0.00 90.18 0.00 3.16 0.00 0.00 0.00 0.00 3.33
P4 0.00 0.00 0.00 96.67 0.00 0.00 0.00 3.33 0.00 0.00
P5 0.00 6.66 3.33 0.00 88.02 0.00 0.00 0.00 1.99 0.00
P6 2.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00 0.00 0.00
P7 0.00 0.00 0.00 0.00 5.02 0.00 92.50 0.00 0.38 2.10
P8 0.00 0.00 0.00 5.33 0.00 0.00 0.00 94.67 0.00 0.00
P9 1.50 0.00 0.00 6.67 0.00 4.02 0.00 0.00 87.41 0.40
P10 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 98.50

Analysis: The top 10 results indicate that in many cases if the features extracted
from the body-part NMH are not considered then the performance is better. Even
best PI accuracy in sitting posture is obtained without using NMH joints (Row
1 Table 7). It is observed in Table 7 that ’NOT’ for NMH joints appeared four
times. However, it is observed from the results of 255 combinations this effect is
less in standing posture due to less occlusion of NMH joints. Due to space con-
straint we have not given all 255 combinations. In some cases, it is also seen that
if we do not use features from DUL and DLL, method 2 provides good results.
This analysis helps us to conclude that the joints belong to NMH are more noisy
than the others. Moreover, some joints of DUL and DLL produce noise when the
person sits or stands with some orientation other than frontal pose. It is mainly
because of occlusion of joints by other body-parts. Therefore, some frames get
misclassified which results in slightly reduced performance. Table 7 also empha-
sizes that in all top 10 results most of the times, DLL and DUL use features F y
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and F c but not F cu. It is because, the features related to connected joint pairs
are sufficient enough to capture the dynamic nature of joints specially arms and
legs. Similarly, F cu captures all the information related to static nature of upper
main body portion. As the joints belonging to the SUB part are more static in
nature, the body segment is proved to be most stable one across all poses in any
postures. Not only that, we also explore different angles made by SUB-joints to
capture the variation of poses in any natural static posture.

4.2 Influence of Angles

If the person sits or stands in natural pose, the orientation of main body is very
crucial for defining a pose. It can be easily captured by computing angles formed
by the joints C, E and I from shoulder portion and A, M and Q from hip portion
(with respect to Kinect (V)) in Z-X plane. Table 9 shows the effect of these four
angles namely ∠VCE, ∠VCI, ∠VAM and ∠VAQ on PI system.

Table 9. F-scores(%) of method 2 without and with angles and F-scores(%) with the
methods proposed in [6] & [7]. In sitting F best = F best

sit & in standing F best = F best
stand,

and V is Kinect position

Posture F best F best, ∠VCE, ∠VCI, F best, ∠VCE and ∠VCI [6] [7]
∠VAM and ∠VAQ

Sitting 93.00 89.63 96.81 11.16 15.29
Standing 95.33 93.61 97.65 31.28 20.73

Analysis: Table 9 clearly shows that in both static postures, the performance
of method 2 is degraded with the inclusion of these four angles along with the
optimal combination F best

sit & F best
stand (shown in italics column 3 in Table 9). This

is mainly due to the inclusion of angles formed by more noisy joints like A, M and
Q. However the degradation in performance is less in standing posture compared
to sitting one as the occlusion of hip portion is less in natural standing. After
removal of these angles (∠VAM and ∠VAQ), it is observed that the performance
of method 2 is enhanced further compared to previous one (shown in column
2 and 4 in Table 9). From this we infer that angles formed by the shoulder
joints are the key contributors in capturing the variation of pose information in
the natural unconstrained static postures. In this study, we have done the step-
by-step analysis for making the PI system in static postures more robust and
realistic. It needs to be mentioned that using method 2, the feature set F best,
∠VCE and ∠VCI is able to achieve average 96.81% and 97.65% identification
accuracy, in sitting and standing postures, respectively.
For the sake of completion of the analysis, we compare with the features proposed
earlier for walking pattern in [6]. Sinha et al. had done the pose and subpose
based modeling using static and dynamic gait features in [6]. We have also tested
their approach on our dataset #2. But their performance on our dataset is not
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very satisfactory. It is mainly because their proposed features related to poses
and subposes [6] fail to model pose variations in static postures. In addition, we
have explored the method mentioned by Chakravarty et al. [7] on dataset #2. As
the feature vector used in [7], is strictly focused on constrained frontal standing
pose, their system fails to identify most of the subjects in natural sitting and
standing poses. The performance comparison of method 2 with the state-of-the-
art systems [6] & [7] is presented in the last 2 columns of Table 9. As expected
the features for walking or constrained standing posture are not good for the
unconstrained natural static scenario.

5 Conclusions

In this work, we have proposed a PI system in 2 phases. In the first phase,
different sets of global shape based features which represent the identity of the
person are explored. These features are then extracted from constrained and
unconstrained datasets of sitting and standing postures. Based on the analy-
sis and drawbacks of certain features for different body-parts in different poses,
robust PI system is proposed in phase 2. In phase 2, clustering algorithm is used
to identify static, dynamic and noisy joints. From that analysis, entire skeleton
body is divided into four segments and we have explored all possible combi-
nations of features from these segments. It greatly improves PI accuracy from
70.65% to 93% in sitting and 79.12% to 95.33% in standing posture. The effect
of angle information from shoulder and hip portions is also analysed and it is
found that inclusion of angles from hip portion degrades the system performance
whereas angles extracted from shoulder portion enhances PI accuracy to 96.81%
and 97.65% for both sitting and standing postures, respectively. Performance
evaluation matrices also portray the significant improvement of identification
accuracy in static postures over the contemporary systems. In future, we like to
incorporate more static postures in our proposed system. We have also like to
improve the system performance accuracy use angle information obtained from
different joints i.e, transforming all poses to frontal pose using angle informa-
tion and then extracted the features. Moreover we have a plan to combine our
approach with other soft-biometric traits like gait, skin color etc. to build a
multimodal PI system.
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Abstract. In this paper, we propose an activity-based human identifica-
tion approach using discriminative sparse projections (DSP) and orthog-
onal ensemble metric learning (OEML). Unlike gait recognition which
recognizes person only from his/her walking activity, this study aims to
identify people from more general types of human activities such as eat-
ing, drinking, running, and so on. That is because people may not always
walk in the scene and gait recognition fails to work in this scenario. Given
an activity video, human body mask in each frame is first extracted by
background substraction. Then, we propose a DSP method to map these
body masks into a low-dimensional subspace and cluster them into a
number of clusters to form a dictionary, simultaneously. Subsequently,
each video clip is pooled as a histogram feature for activity representa-
tion. Lastly, we propose an OEML method to learn a similarity distance
metric to exploit discriminative information for recognition. Experimen-
tal results show the effectiveness of our proposed approach and better
recognition rate is achieved than state-of-the-art methods.

Keywords: Human identification · Activity analysis · Subspace learn-
ing · Sparse coding · Metric learning

1 Introduction

Over the past two decades, gait recognition has attracted much attention in
computer vision [11], [36], [9], [28], [1], [18], [31], [12], [17], [16], [13], [35], [20],
[23] because human gait provides a noninvasive way to human identification at
a distance. One key shortcoming of gait recognition is that only the walking
activity is exploited for human identification and these gait recognition systems
are likely to fail to work when people perform other activities such as eating,
drinking, and running rather than walking. In many real-world applications,
people may not always walk in the scene and it is very likely that they are
performing other activities besides walking in the scene. Since gait can provide
enough discriminative information for human identification, a natural question
c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 809–824, 2015.
DOI: 10.1007/978-3-319-16181-5 61
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arises: is it possible to identify people from different types of activities rather than
gait since gait can be considered as a special case of general human activities? If
so, how to effectively explore discriminative features of these activities to achieve
this goal? In this paper, we provide a positive answer to these two questions.

Intuitively, the manner with which humans perform different activities can
provide some distinctive information for human identification because human
body information is generally distinct for different persons. Moreover, differ-
ent dynamic information observed in other activities are also discriminative.
Similar to gait recognition, people may perform the same activity in different
manners. While gait recognition [11], [36], [9], [28], [1], [31], [35] has been exten-
sively studied over the past decade, there has been extremely few attempts on
using other activities rather than gait for human identification. In this paper, we
present a new approach to activity-based human identification. For each activity
video, human body mask in each frame is extracted by background substraction.
Then, we project these body masks into a low-dimensional subspace and cluster
them into a number of clusters, simultaneously. Subsequently, each video clip
is pooled as a histogram feature for activity representation. Finally, we propose
an OEML method to learn a discriminative distance metric for discriminative
feature extraction. Experimental results show the effectiveness of our proposed
approach.

2 Related Work

Human Activity Analysis: In computer vision, a large number of activity
recognition methods have been proposed in recent years [38], [24], [34], [27],
[33], [25], [8], [30]. Unlike activity recognition which aims to recognize the type
of human activity from videos, activity-based human identification is a rela-
tively new research topic, and there has been only a few seminal studies in
recent years [4], [7], [14]. To our best knowledge, Gkalelis et al. [4] was the first
attempt to formally address the problem of activity-based human identification
by using fuzzy c-means (FCM) and linear discriminant analysis (LDA). Their
method was further evaluated on more activity datasets and encouraging results
were achieved to show the feasibility of human identification using activities [7].
More recently, Lu et al. [14] presented a sparse coding method for activity-based
human identification. Since the the quantization error is reduced, their method
achieved better performance than [4]. However, both FCM and sparse coding are
not discriminative enough since they are generative methods. Moreover, these
methods performed feature quantization in the original feature space, which may
not be effective enough because some irrelevant and redundancy information are
contained in this space. To address these shortcomings, we propose a discrimi-
native sparse projections (DSP) method to learn a low-dimensional subspace for
feature quantization, so that the irrelevant information of human body masks is
discarded in the learned subspace and a discriminative codebook can be obtained
for feature encoding.
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MetricLearning:Metric learninghasbeenproven tobe an effective tool for visual
analysis and many such algorithms have been presented over the past decade [5],
[37], [2], [26], [19], [15], [22], [21], [39]. While these methods have achieved reason-
ably good performance in many computer vision applications, these methods usu-
ally suffer from high-dimensional feature representations. To address this, PCA is
usually applied to reduce the feature dimensionality before metric learning. How-
ever, such a preprocessing may lose some discriminative information. In this paper,
we propose a newOEMLmethod to learnmultiple projections from randomly sam-
pled subsets of training samples, and orthogonalize these projections and com-
bine them into a distance metric. Hence, no PCA preprocessing is required in our
method. Moreover, the basic vectors of our learned distance metric are orthogonal
to each other such that they are more compact than those of most existing metric
learning methods [5], [37], [2], [26], [15].

3 Proposed Approach

Our key objective of this work is to learn discriminative identity information
from activities for person recognition. Such information can be exploited at two
levels: the single frame level and the whole video level. To extract discriminative
information at the single frame level, we propose simultaneously learning a low-
dimensional subspace and a discriminative dictionary, so that the irrelevant and
redundancy information of body masks are discarded in the learned subspace
and discriminative information can be exploited in the learned dictionary. To
extract discriminative information at the whole video level, we propose OEML
to learn a discriminative distance metric to enhance their separability. We will
detail the proposed approach in the following subsections.

3.1 Body Mask Extraction

For each activity video, we first extract human body silhouette in each frame by
background subtraction by using the method in [28]. Then, we align each body
mask into 64×48 in each frame to make all body masks in different frames are
of the same size. Fig. 1 shows several extracted body masks from different types
of activities.

3.2 Discriminative Sparse Projections

Let Y = [y1, y2, · · · , yN ] ∈ Rd×N be a training set of binary masks, where yi ∈ Rd

is the ith sample, d is the feature dimension of each yi, and N is the number
of training samples. The aim of DSP is to learn a low-dimensional subspace
P ∈ Rl×d and a codebook U ∈ Rl×K , under which each sample yi is encoded as
vi ∈ RK so that

1. Each sample yi is sparsely reconstructed by vi over U ;
2. The intraclass and interclass variations of each yi are minimized and maxi-

mized, simultaneously.
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jack    jump   pjump    run     side    skip     walk   wave1   wave2 

Fig. 1. Extracted and aligned body masks from different activities in the Weizmann
dataset

We present the following optimization objective function to achieve the above
goals:

min
P,U,V

‖PY − UV ‖2F + α‖Y − PT PY ‖2F

+β(
N∑
ij

‖vi − vj‖2W c
ij −

N∑
ij

‖vi − vj‖2W p
ij)

subject to PPT = I, ‖vi‖0 ≤ T0, and‖ui‖2F ≤ 1,∀i. (1)

where I ∈ Rl×l is the identity matrix, α and β are non-negative constants and
they were empirically set as 1.0 and 1.0 in our experiments, P is the learned
low-dimensional subspace, and rows of P are enforced to be orthogonal and
normalized to unit norm. U is the dictionary learned in the low-dimensional
subspace, ‖ui‖2F ≤ 1 is to constrain the scale of ui, V is the sparse representation
of Y over U , and T0 is the sparsity level, W c and W p are two affinity matrices to
characterize the geometrical structure of the samples in the training set, which
are defined as [40]:

W c
ij =

{
1 if xi ∈ N+

k1
(xj) or xj ∈ N+

k1
(xi)

0 otherwise
(2)

and

W p
ij =

{
1 if xi ∈ N−

k2
(xj) or xj ∈ N−

k2
(xi)

0 otherwise
(3)

where N+
k1

(x) and N−
k1

(x) denote the k1-intra-class and k2-inter-class nearest
neighbors of x, respectively, and k1 and k2 are two empirically pre-specified
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parameters to define the sizes of the local neighborhoods. With some algebraic
deduction, the third term of Eq. (1) can be simplified as

N∑
ij

‖vi − vj‖2W c
ij −

N∑
ij

‖vi − vj‖2W p
ij

= tr(V T LcV ) − tr(V T LP V ) (4)

where Lc = Dc − W c and Lp = Dp − W p are two Laplacian matrices, Dc
ii =∑

j W c
ij and Dp

ii =
∑

j W p
ij are two diagonal matrices to reflect the degree of the

ith sample, respectively.
In Eq. (1), the first term aims to seek sparse signals in the low-dimensional

subspace, the second term preserves the energy of the samples in the learned
subspace as much as possible, the third term aims to maximize the between-
class margin in a local neighborhood.

While the objective function in Eq. (1) is not convex over P , U and V , it is
convex to one of them when the other two are fixed. Following the work [10], we
iteratively optimize P , U and V using the following three-stage method:

Step 1: Solve P with fixed U and V : when U and V are fixed, Eq. (1) can
be rewritten as

min
P

‖PY − UV ‖2F + α‖Y − PT PY ‖2F
subject to PPT = I. (5)

Let Q = UV Y −1. Eq. (5) can be formulated as

min
P

‖P − Q‖2F + α‖I − PT P‖2F
subject to PPT = I. (6)

We construct a Lagrange function as follows

L(P, μ) = ‖P − Q‖2F + α‖I − PT P‖2F − μ(PPT − I) (7)

Let ∂L(P,μ)
∂P = 0 and ∂L(P,μ)

∂μ = 0, we have

∂L(P, μ)
∂P

= (1 − α − μ)P − 2Q = 0 (8)

∂L(P, μ)
∂μ

= PPT − I = 0 (9)

According to Eqs. (8) and (9), P can be obtained as

P =
UV Y −1

2‖UV Y −1‖2F
(10)
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Input: Training set Y = [y1, y2, · · · , yN ] ∈ Rd×N , affinity matrices W c and W p,
parameters α, β, T0, iteration number R, convergence error ε.

Output: Projection matrix P , dictionary U , and sparse coefficient matrix V .
Step 1 (Initialization):

Compute the initiations: P 0, U0 and V 0.
Step 2 (Local optimization):

For r = 1, 2, · · · , R, repeat
2.1. Solve P with fixed U and V via Eq. (10).
2.2. Solve U with fixed P and V via Eq. (11).
2.3. Solve V with fixed P and U via Eq. (13).
2.3. If r > 2 and |Ur − Ur−1| < ε, go to Step 3.

Step 3 (Output):
Output P r, Ur, and V r.

Algorithm 1. DSP

Step 2: Solve U with fixed P and V : when P and V are fixed, Eq. (1) can
be rewritten as

min
U

‖PY − UV ‖2F
subject to ‖ui‖2F ≤ 1,∀i. (11)

Eq. (11) is a least square problem with quadratic constraints. There are many
possible methods to solve this problem. Following [10], we use the conjugate
gradient decent method to learn the dictionary U .

Step 3: Solve V with fixed P and U : when P and U are fixed, Eq. (1) can
be rewritten as

min
V

‖PY − UV ‖2F + β(tr(V T LcV ) − tr(V T LP V ))

subject to ‖vi‖0 ≤ T0,∀i. (12)

Following the work in [10], we optimize each vi individually by fixing other
coefficients vj (j �= i). We rewrite Eq. (12) as

min
vi

‖PY − Uvi‖2F + βG(vi)

subject to ‖vi‖0 ≤ T0,∀i. (13)

where

G(vi) = (viV Lc
i + (V Lc

i )
T vi − viL

c
iivi) − (viV Lp

i + (V Lp
i )

T vi − viL
p
iivi)(14)

We apply the feature sign search algorithm [10] to solve each vi.
Now, we discuss how to set the initiations of our proposed DSP method.

According to the second term of Eq. (1), the objective of P is to preserve the
energy of the samples in the learned subspace as much as possible. Hence, we
first learn a PCA subspace on Y as the initiation of P 0. Then, we apply P0 to
map Y into a low-dimensional subspace Y1. Lastly, we employ the conventional
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sparse coding method [41] on Y1 to learn U0 and V 0 as the initiations of U and
V . The proposed DSP method is summarized in Algorithm 1.

Having obtained V = [v1, v2, · · · , vM ] for a set of human body masks extracted
from one activity video clip, we represent it as S = [s1, s2, · · · , sK ] by a pre-
defined pooling function:

s = F(V ) (15)

where

sj = max{|v1j |, |v2j |, · · · , |vMj |} (16)

sj is the jth element of s, j = 1, · · · ,K, K is the size of the codebook U , which
is empirically set as 200 in our implementations.

3.3 Orthogonal Ensemble Metric Learning

Let S = [s1, s2, · · · , sn] be the training set of C different persons, where si ∈
RK is the feature of the ith sample and n is the number of activity video clips,
L = [l1, l2, · · · , ln] be the labels of the training samples, where li ∈ [1, 2, · · · , C].
OEML aims to seek a distance metric M which pushes si and sj (li = lj) as close
as possible, and pull si and sj (li �= lj) as far as possible, simultaneously, where

dM (si, sj) =
√

(si − sj)T M(si − sj) (17)

where M is a K × K square matrix, and 1 ≤ i, j ≤ n. Since M is a distance
metric, it should be symmetric and positive semi-definite. hence, we can seek a
non-square matrix Q of size K × K ′, where K ′ ≤ K, such that

M = QQT (18)

Then, Eq. (17) can be rewritten as

dM (si, sj) =
√

(si − sj)T M(si − sj)

=
√

(si − sj)T QQT (si − sj)

=
√

(ti − tj)T (ti − tj) (19)

where ti = QT si and tj = QT sj .
Different from most existing distance metric learning methods [5], [37], [2],

[26] which learn the distance metric over the whole training samples, we ran-
domly sample two groups of samples from the training set and consider them as
positive and negative samples for SVM learning. Assume there are C persons in
the training set, we generate one group by randomly sampling F (F ≤ C

2 ) classes
from the whole training samples as positive samples. Then, we generate another
group by randomly sampling F classes from the remaining training samples as
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Fig. 2. Learning different projection vectors by SVM from different subsets of the
training samples, where q1 are learned from G1 and G2, and q2 are learned from G3

and G4, respectively

Input: Training set: S = [s1, s2, · · · , sn], label vector L = [l1, l2, · · · , ln],
parameter K′.

Output: Projection matrix Q.
Step 1 (Learning projection vectors with SVM):

For k = 1, 2, · · · , K′, repeat
1.1. Sampling two groups of samples from S.
1.2. Obtain zk with SVM.

Step 2 (Orthogonazation):
Orthogonalize Z to obtain Q.

Step 3 (Output projection matrix):
Output projection matrix Q.

Algorithm 2. OEML

negative samples. Hence, these two groups don’t share any the same-class sample
because we need to learn a projection vector to distinguish them.

Then, we learn a linear SVM on these two groups of samples and seek a
projection vector pi = (wi − bi)T to maximize the margin of these two groups of
samples, where wi and bi are the normal vector and bias of the SVM model. We
randomly iterate this procedure K ′ times and have multiple projection vectors
Z = [z1, z2, · · · , zK′ ]. Fig 2 illustrates the basic idea of the learning procedure.
In our experiments, we empirically set K ′ as 200.

Since the projection vectors are learned from the randomly sampled samples,
they are not orthogonal. To reduce the redundancy of these projection vectors,
we orthogonalize them to make more succinct feature extraction as follows.

Assume Q = [q1, q2, · · · , qK′ ] be the orthogonal basis vectors of Z. Let q1 =
p1. The ith projection vector qi can be computed as follows:

qi = zi −
i−1∑
j=1

(qj)T zi

(qj)T qj
qj (20)

Algorithm 2 summarizes the proposed OEML method.
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4 Experimental Results

In this section, we conduct experiments on five different activity databases
including the Weizmann [6], AIIA-MOBISERV [7], KTH [29], MSR [35] and
TUM [32] databases to evaluate the performance of our proposed approach.

4.1 Datasets and Settings

The Weizmann dataset [6] contains 9 persons and each person performed 10 dif-
ferent activities including bending, jumping-jack, jumping-forward-on-two-legs,
jumping in place-on-two-legs, running, galloping-sideways, skipping, walking,
waving-one-hand, and waving-two-hands, respectively. There are 93 video clips
in this database. Since some videos contain two or more cycles of a specific action
performed by some subjects, we break up these videos into several single period
activity videos. Hence, we obtain a database of 216 videos in total. For each per-
son, we randomly selected 5 activities for training and the remaining 5 activities
were used for testing.

The AIIA-MOBISERV dataset [7] was specifically designed for the activity-
based human identification task. It contains 12 persons and each person per-
formed eating and drinking activities with two different clothing in four different
days. There are totally 96 videos in this database. Since some videos contain two
or more cycles of a specific activity performed by some subjects, these sequences
were segmented into several single-period activities. Following the settings in
[7], we consider drinking with a cup and eating with a fork for human identifi-
cation, where 776 video clips in total were selected. We use the eating activity
for training and the drinking activity for testing.

The KTH dataset [29] contains 25 persons, and each person performed 6 dif-
ferent activities, including boxing, handclapping, handwaving, jogging, running,
and walking, respectively. For each activity, it is captured at 4 different scenarios
such as outdoor, indoor, outdoor with a scale variation, and outdoor with dif-
ferent clothes, respectively. In our experiments, we randomly chose 3 activities
as training examples for each scenario and the remaining 3 activities as testing
examples.

The MSR dataset [35] was captured by a Kinect device. There are 10 subjects
in this dataset. For each subject, there are 16 activities: drinking, eating, reading
a book, calling a cellphone, writing on a paper, using a laptop, using a vacuum
cleaner, cheering up, sitting still, tossing paper, playing game, lying down on
sofa, walking, playing guitar, standing up, and sitting, respectively. Each subject
performed each activity twice: one in standing position and the other one in
sitting position. For each person, both color and depth videos are captured.
Hence, there are 320 videos in total. In our experiments, we only use the color
videos to evaluate the performance of our approach. We randomly selected 8
activities for each person as training examples and the remaining 8 activities as
testing examples.
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The TUM dataset [32] is a collection of activity sequences recorded in a kitchen
environment equipped with multiple complementary sensors. The recorded data
consists of 4 subjects who naturally performed manipulation tasks in a kitchen
environment with different manners. Different from previous activity datasets,
this dataset offers more natural activities for evaluating activity recognition and
motion tracking. There are multiple sensors used to capture human activities such
as web camera, RFID and Magnetic (reed) sensors. In our experiments, we only
use the video data for human identification. For each person, we selected 4 video
sequences captured from 4 synchronized cameras which were installed at 4 dif-
ferent viewpoints. We randomly selected videos from two viewpoints as training
examples and the remaining two viewpoints as testing examples.

We also construct a hybrid dataset which combines the Weizmann, AIIA-
MOBISERV, KTH, MSR, and TUM databases into a larger dataset to evaluate
the performance of our approach. Intuitively, this hybrid dataset is more chal-
lenging because there are 50 persons and different persons may perform differ-
ent types of activities in the hybrid dataset. We followed the above experimental
protocol for different datasets to construct the training and test datasets. Specif-
ically, all training sets from each dataset which used in the above experiments
were used for training and the remaining videos were used for testing.

We conducted experiments 10 times with different randomly selected training
and testing samples, and the final result was shown as the mean of the correct
identification rate1. In our experiments, the nearest neighbor classifier is used
for classification. Since the advantage of our proposed approach results from two
different stages: DSP feature encoding and OEML metric learning, we evaluate
the performance where only one is applied to reveal their respective effects,
respectively.

4.2 Results and Analysis

Comparison with Existing Feature Encoding Methods: We compare our
proposed DSP method with different feature encoding methods including the K-
means (KM), FCM, sparse coding (SC) [41], Laplacian sparse coding (LSC) [3]
on the activity-based human identification task. For the SC and LSC meth-
ods, the maximal pooling was also used. The codebook size was set as 300 and
the nearest neighbor (NN) classifier with the Euclidian distance was used for
identification. Table 1 shows the rank-one identification rate of different feature
encoding methods. We can see that our DSP performs better than the other
four compared methods. This is because the other compared feature encoding
methods are unsupervised and our DSP method is supervised, such that more
discriminative information can be exploited in our method. Moreover, our DSP
method performs feature encoding in the low-dimensional subspace, which can
remove the noisy and irrelevant information in the learned codebook.
1 The AIIA-MOBISERV dataset was not repeated 10 times because the training and

testing sets are fixed in this dataset.
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Table 1. Rank-1 identification rate (%) of different feature encoding methods on dif-
ferent datasets

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

KM 64.5 55.4 20.5 24.7 41.7 40.0
FCM 68.3 57.6 24.5 28.6 50.0 43.0
SC 72.1 59.3 27.5 30.6 50.0 45.5
LSC 73.4 61.3 30.4 32.5 58.3 48.8
DSP 78.5 64.5 32.7 35.6 66.7 51.3

Table 2. Rank-1 identification rate (%) of different metric learning methods on differ-
ent datasets

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

LMNN 75.5 59.5 22.5 27.8 58.3 45.0
NCA 74.3 58.3 21.8 26.9 50.0 44.5
ITML 74.6 58.0 21.6 27.3 50.0 44.0
CSML 76.3 60.5 25.7 30.4 66.7 47.5
NRML 77.5 61.7 28.6 33.5 66.7 49.0
OEML 80.2 65.1 32.5 36.2 75.0 52.5

Comparison with Existing Metric Learning Methods: To investigate the
effectiveness of the proposed OEML method in the activity-based human iden-
tification task, we compare it with five state-of-the-art metric learning methods
including large margin nearest neighbor (LMNN) [37], neighborhood compo-
nent analysis (NCA) [5], information theoretic metric learning [2], cosine simi-
larity metric learning (CSML) [26], and neighborhood repulsed metric learning
(NRML) [15]. For the first four compared methods, we empirically set the num-
ber of the nearest neighbors as 5. For the NRML method, two neighborhood sizes
were set as 5 and 20, respectively. We also applied principal component analysis
(PCA) to reduce each encoded histogram feature learned into 100 dimensions for
these five metric learning methods. For the proposed OEML method, we learned
the distance metric directly from the original feature space. The FCM method
was used for feature encoding. Table 2 compares the rank-1 identification rate
of different metric learning methods. We can clearly see from this table that our
OEML performs better than the other five compared metric learning. The reason
is that the other compared metric learning methods learn the distance metric in
the PCA reduced subspace and some discriminative information may be removed
in the subspace because the objectives of PCA and these metric learning meth-
ods are usually not consistent. However, our OEML method learns the distance
metric in the original high-dimensional feature space, which can exploit more
discriminative information in the high-dimensional feature space directly.

Comparison with State-of-the-Art Activity-Based human identifica-
tion Methods: we compare our approach with the state-of-the-art activity-
based human identification methods in [4], [7] and [14]. We implemented the
three compared methods [4], [7], [14] ourselves. For a fair comparison, the num-
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Table 3. Rank-1 identification rate (%) of different activity-based human identification
methods on different datasets

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

Method in [4] 70.4 58.6 25.8 29.4 50.0 44.9
Method in [7] 74.3 60.3 27.6 32.3 50.0 48.5
Method in [14] 75.4 62.5 31.4 35.7 66.7 50.2
Ours 83.3 67.5 35.8 40.3 83.3 54.9

Table 4. Rank-1 identification rate (%) of different combinations of feature encoding
and metric learning methods on different datasets

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

Baseline 76.1 61.3 24.9 31.2 66.7 50.6
Baseline+DSP 78.5 64.5 32.7 35.6 66.7 52.2
Baseline+OEML 81.3 65.8 33.9 37.5 75.0 52.6
DSP+OEML 83.3 67.5 35.8 40.3 83.3 54.9

ber of clusters is set as 300 in our implementations for all methods. Table 3 com-
pares the rank-1 identification rate of different methods. As can be seen from
this table, our approach significantly outperforms the compared activity-based
human identification methods because our approach adopts supervised feature
encoding and high-dimensional metric learning, such that more discriminative
information can be extracted for recognition.

Performance Analysis of Different Stages in Our Approach: We conduct
experiments to analyze our approach when different modules are used. We create
the baseline method which performs dictionary learning in the original feature
space and uses NN for recognition without metric learning. Then, we include dif-
ferent modules in our approach. Table 4 compares the rank-1 identification rate

300 400 500 600 700 800 900 1000
48

50

52

54

56

58

Codebook size

R
ec

og
ni

tio
n 

ra
te

 (
%

)

Fig. 3. Rank-1 identification rate (%) of our approach versus different codebook sizes
on the hybrid dataset
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Fig. 4. Rank-1 identification rate versus different number of iterations of DSP on the
hybrid dataset

of different combinations of feature encoding and metric learning methods. We
see that all modules including low-dimensional subspace, discriminative dictio-
nary learning, and discriminative metric learning contribute the final recognition
rate of our approach.

Parameter Analysis: We first evaluate the effect of the codebook sizes of our
approach on the hybrid dataset. Fig. 3 shows the rank-1 identification rate of
our approach versus different codebook sizes on the hybrid dataset. We see that
the performance of our approach continues to increase as the increasing of the
codebook size. However, the improvement is marginal, which indicates that the
performance of our approach is not sensitive to the codebook size.
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Fig. 5. Rank-1 identification rate (%) of our approach versus different number of fea-
ture dimensions on the hybrid dataset
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Fig. 4 shows the rank-1 identification rate versus different number of itera-
tions on the hybrid database. We see that the recognition performance of our
proposed DSP method can converge to a local optimal peak in a few iterations.

Lastly, we investigated the effect of the parameter K ′ in OEML. Fig. 5 shows
the rank-1 identification rate versus different number of feature dimensions on
the hybrid database. We see that our OEML can reach stable performance when
the number of K ′ is above 100.

5 Conclusion

This paper presented a new activity-based human identification approach by
using discriminative sparse projections and orthogonal ensemble metric learn-
ing (OEML). Experimental results demonstrate the effectiveness of the proposed
approach. How to apply our proposed approach to other visual recognition appli-
cations such as face identification, object recognition, and visual tracking to
further demonstrate its effectiveness seems an interesting future work.
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Abstract. In this work, we have explored several subspace reconstruc-
tion methods for facial ethnic appearance synthesis (FEAS). In our exper-
iments, our proposed dual subspace modeling using the Fukunaga Koontz
transform (FKT) yields much better facial ethnic synthesis results than
the �1 minimization, the �2 minimization and the principal component
analysis (PCA) reconstruction method. With that, we are able to auto-
matically and efficiently synthesize different facial ethnic appearance and
alter the facial ethnic appearance of the query image to any other ethnic
appearance as desired. Our technique well preserves the facial struc-
ture of the query image and simultaneously synthesize the skin tone and
ethnic features that best matches target ethnicity group. Facial ethnic
appearance synthesis can be applied to synthesizing facial images of a
particular ethnicity group for unbalanced database, and can be used to
train ethnicity invariant classifiers by generating multiple ethnic appear-
ances of the same subject in the training stage.

Keywords: Soft biometrics · Ethnicity · Face synthesis · Fukunaga
Koontz transform

1 Introduction

Within this decade, soft biometrics identification has gained more and more
attention as an aid for the traditional face recognition in the biometrics world.
Different from traditional hard biometrics such as iris, fingerprints, palmprints,
and face [10–19,31] that are difficult to change with the time and living behaviors
and have high confidence in identifying subjects, the soft biometrics [8,20,25,28–
30,34], on the other hand, focuses more on the physical and behavioral traits
that are more prone to change with time and life style, and is less confident in
subject identification if used alone. For example, the shape of the eyebrows, the
presence of the beard and moustache, skin color, skin texture, color of the pupil,
facial marks, gait patterns [9], and so forth, can all be considered as traits of
soft biometrics. With the correct identification of these soft biometrics traits,
we can infer the age, gender and the ethnicity of the subject. By doing so, we
can dramatically narrow down the search space in the scenario of identifying or
verifying the subject against a huge gallery database.

c© Springer International Publishing Switzerland 2015
L. Agapito et al. (Eds.): ECCV 2014 Workshops, Part II, LNCS 8926, pp. 825–840, 2015.
DOI: 10.1007/978-3-319-16181-5 62
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For ethnicity classification [1,5,7,26,33,35], it is crucial that the researchers
obtain a balanced database with subjects from all ethnic groups1 equally
presented for both genders. This is one of the priorities before any learning algo-
rithms are applied for ethnicity classification. Moreover, subjects in the database
should be uniquely presented. In this way, the learning machine learns an ethnic-
ity classifier instead of subject-dependent classifier. But unfortunately, database
collection with high quality images covering all the ethnic group for both genders
is pretty hard to accomplish2. That is why in this paper, we will be focusing on
solving one of the biggest problems concerning the database creation for eth-
nicity classification by the synthesis of facial ethnic appearance. In this way, we
can automatically and efficiently achieve the balance in the database while also
keeping the subject uniqueness in the synthesized database.

The rest of this paper is organized as follows: in Section 2, we will describe our
database with which the ethnicity-specific subspaces are built. Section 3 details
the facial ethnic appearance synthesis using single subspace modeling methods
such as the �2 minimization, principal components analysis reconstruction and
the �1 minimization. Section 4 details the facial ethnic appearance synthesis
using dual subspace modeling with Fukunaga Koontz transform. Experimental
setup and results are discussed and analyzed in Section 5. Finally we present
some conclusions of our work in Section 6.

2 Database

2.1 Database Collection

We have collected a database with a total of 6849 frontal mugshot-like images
from 4 different ethnic groups: east asian, south asian, white and black. The
statistics of our database is shown in Table 1.

Table 1. Statistics of our FEAS database

Female Male Total

East Asian 559 477 1036
South Asian 86 138 224

White 2284 2256 4540
Black 482 567 1049

Total 3411 3438 6849

As can be seen from Table 1, the database is not balanced, the majority of
the subjects are white people and there are very few south asians. Because of
1 As is commonly adopted in the literature, the classification of ethnicity boils down to

the 3-class case (asian, black and white), or the 4-class case (east asian, south asian,
black and white). In this work, we consider the 4-class case, where we specifically
separate south asians from east asians.

2 White people dominates most of the ethnicity database publicly available, followed
by black people. There are fewer east asian people and south asians are the rarest.
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this limitation, the reconstruction performs worse if the target ethnic group is
set to be south asian since there are not sufficient images to learn from. Our
database also has a bias in age distribution. The majority of the subjects in the
database are young adults from 20 to 30 years old. This bias tends to jeopardize
the synthesis of the facial ethnic appearance when the query image is an aged
subject. Figure 1 shows the mean faces from each of the ethnic group in our
database for both genders.

2.2 Preprocessing

We localize and center the eye of each facial image using the modified active
shape model (MASM) [32] and crop the rectified full image to be size of 84×68.
The original size of the face in the image varies, and the reason we crop the face
using this dimension is two-fold. First, this is a reasonable size to compute with
using the reconstruction methods to be discussed. Second, some images in the
database have low resolution and our cropping dimension of choice suppresses
the artifacts and errors caused by up-sampling.

If high resolution synthesis is indeed desired in some applications, we can
easily port the algorithms to GPUs using CUDA.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Mean faces from our database. (a) Female black, (b) female east asian, (c)
female south asian, (d) female white, (e) male black, (f) male east asian, (g) male
south asian, and (h) male white.

3 Single Subspace Modeling for Facial Ethnic Appearance
Synthesis

In this section, we show the use of single subspace for the synthesis of facial ethnic
appearance. We construct a subspace using images from the target ethnic group.
This ensures that any reconstruction obtained using components of this subspace
has rich ethnic features of this particular ethnic group. We then reconstruct a
given query face from the source ethnic group using this target subspace in order
to synthesize the ethnic appearance.

Following this procedure, the synthesized facial image is supposed to preserve
the subject identity as well as appear closer to the target ethnic group.

We first detail 3 well-established subspace methods using single subspace,
namely the �2 minimization, principal component analysis reconstruction, and
the �1 minimization and then show some results obtained by each of the methods,
followed by analysis and discussion.
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3.1 �2 Minimization

Here, we discuss the reconstruction of the given query face in the target subspace
using the �2 minimization. We first build a subspace of faces with target ethnicity
and find the linear combination of basis vectors from this subspace that matches
the query image the closest. The weight vector w for the images spanning the
subspace is found by minimizing the �2-norm.

Let R be a matrix of dimensions d × n where d is the number of pixels in
each face image and n is the number of images spanning the subspace. In other
words, each column of R is a vectorized image of a face from the target ethnic
group. Let x be an incoming query image which is resized to the same size as the
face images in the subspace and vectorized. Let x∗ be the reconstructed image
using the subspace R. Let w∗ be the n × 1 array of optimal weights for each
image in the subspace. The equations used in reconstruction are shown below:

w∗ = arg min
w

‖x − Rw‖22 = (R�R)−1R�x (1)

x∗ = Rw∗ (2)

3.2 Principal Component Analysis

In this part, we outline a PCA based synthesis of a facial image from the target
ethnic group. The subspace is built using the same samples as in the �2 minimiza-
tion method. PCA is applied to the data and the eigenvectors obtained from the
subspace are used for projection and reconstruction. The matrix R, with which
the PCA subspace is built is of dimension d × n where d is the number of pixels
in each image and n is the number of images used to construct the subspace. As
before, each column of R is a vectorized image of the images from target set.
Let V be the matrix of eigenvectors generated after performing PCA on R and
μ be the mean of the images in R. The following equations show the projection
and reconstruction of a query facial image x using this PCA subspace:

w = (x − μ)� V (3)

x∗ = Vw� + μ (4)

3.3 �1 Minimization

In this subsection, we discuss the application of the �1 minimization to the prob-
lem posed above to obtain a better reconstruction. It is done by using the basis
pursuit or the basis pursuit de-noising (BPDN) [2,4,6,22–24,27] and provides a
sparse set of weights. This indicates that we use a relatively sparse set of images
from the given training set while trying to reconstruct the image with target
ethnicity that is closest in an �2 sense to the query image. In other words, we
use the same optimization function as for the �2 minimization case but add a
regularization term which regularizes the �1-norm of the weights. Let w be the
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optimal set of sparse weights for images in the subspace and let R be the matrix
containing images in the subspace. The modified optimization function is shown
below:

minimize ‖w‖1 subject to ‖x − Rw‖22 ≤ ε (5)

The above optimization can be rewritten using Lagrange multiplier λ as shown
below:

w∗ = arg min
w

‖x − Rw‖22 + λ‖w‖1 (6)

For this approach to perform well, we need a large number of examples span-
ning our subspace since sparse reconstruction typically generalizes well when
the dictionary is over-complete. In both the previous approaches, the lack of a
constraint on x distributes the energy of w across a large number of its elements
which results in a lot of artifacts left behind primarily from the boundaries of the
face where there is a sharp change in intensity. The reconstruction is also more
blurred. The �1 minimization is expected to perform better than the �2 mini-
mization and the PCA reconstruction since it avoids these artifacts left behind
and also produces a smoother reconstruction than the �2 minimization and PCA
reconstruction.

4 Dual Subspace Modeling for Facial Ethnic Appearance
Synthesis Using Fukunaga Koontz Transform

Ever since Fukunaga Koontz transform (FKT) came along in 1970 [3], it has
been widely used for feature selection especially for general pattern recognition
and image processing problems. Unlike traditional principal component analysis
(Karhunen-Loève transform), the FKT incorporates data form both positive and
negative classes and using eigen decomposition on the joint covariance matrix,
in order to find the optimal basis vectors that very well represent one class
while have least representation power on the other class. The intrinsic nature of
the FKT formulation makes it a very good feature selection tool for two-class
problems. More recently, Li et al. [21] managed to generalize the FKT to be
applied to multi-class problems. We start with the basics of the FKT and We
will take a further step in the FKT analysis to explore some very nice properties
of the dual subspace modeling which may not be found in other literatures.

Let X ∈ Rd×m be the data set containing the source ethnic facial images, with
each column a vectorized image with dimension d. Let Y ∈ Rd×n be the data set
containing all the target ethnic facial images. Both X and Y are mean removed.
The covariance Σ of both the source and target images are the summation of the
covariance for each set ΣX and ΣY. The total covariance matrix Σ is symmetric
and can be diagonalized using eigen-decomposition as:

Σ = ΣX + ΣY = ΦΛΦ� (7)

where Φ contains the entire span of eigenvectors of Σ and Λ houses the corre-
sponding eigenvalues of Σ on its diagonal.
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Next, a pre-whitening step is applied in the FKT. Both the source and target
data are transformed by a pre-whitening matrix P = ΦΛ− 1

2 . So the transformed
data X̂ and Ŷ becomes:

X̂ = P�X and Ŷ = P�Y (8)

Therefore, the covariance matrices of the transformed source data X̂ and
target data Ŷ become:

Σ
̂X = X̂X̂� = P�XX�P = P�ΣXP (9)

Σ
̂Y = ŶŶ� = P�YY�P = P�ΣYP (10)

The transformed covariance matrix for both source and target data becomes:

Σ̂ = Σ
̂X + Σ

̂Y = P�ΣXP + P�ΣYP (11)

= P�(ΣX + ΣY)P = P�ΣP = I (12)

So, the new covariance matrix is actually an identify matrix. This is because
we have performed a global pre-whitening transformation instead of a class-
specific pre-whitening transformation to de-correlate the data.

Here, we again perform an eigen-decomposition on the source covariance Σ
̂X,

which yields:
Σ
̂Xw = λw (13)

From Equation 12 we can obtain the following by multiplying w on both
sides:

Σ
̂Xw + Σ

̂Yw = w (14)

With Equation 12 and 14, we have:

Σ
̂Yw = w − Σ

̂Xw = w − λw = (1 − λ)w (15)

This effectively means that the covariance matrix from two classes share the
same eigenvectors w and the eigenvalue of one class is exactly the complement of
the eigenvalue of the other class. Because of the complementary property of the
eigenvalues, the eigenvectors that are the most dominant in one class, is the least
dominant in the other class. So in the traditional FKT method as applied to any
two-class problem, a discriminative subspace is created by selecting a few of the
most dominant eigenvectors for one class and the least dominant ones for the
other class. By ignoring the eigenvectors in the middle range, the subspace we
obtain contains basis that are very discriminative and will yield discriminative
feature selection after projection as shown in Figure 2.

4.1 Dual Subspace Modeling

The aforementioned case is only true for the ideal scenario where the covariance
matrices Σ

̂X and Σ
̂Y are full rank and have non-zero eigenvalues. But in the
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W =

⎡
⎢⎢⎢⎢⎣
ŵ1 ŵ2 ŵ3 · · · ŵm−1 ŵm

⎤
⎥⎥⎥⎥⎦

ˆ

Fig. 2. (left) The most and least dominant vectors for one class are used for better
classifying two classes; (right) complementary property of the eigenvalues, where they
sum up to 1

real application, this is seldom the case. When the covariance matrix is not full
rank, there will be k least dominant eigenvectors in class 1 that all have 0 eigen-
values. According to the FKT, there will be k most dominant eigenvectors with
eigenvalues being 1. That means, in the eigenvector w, there are 2k eigenvectors
that are not properly ranked, and thus the complementary paring of eigenvalues
and the sharing of eigenvectors is no longer valid.

In this case, instead of decomposing the covariance of only one class, we pro-
pose to decompose both the covariance matrices Σ

̂X and Σ
̂Y, and instead of

modeling both covariance matrices using the same eigenvector w, we propose a
dual subspace model using class-specific eigenvectors wx and wy for decompo-
sition:

Σ
̂Xwx = λxwx (16)

Σ
̂Ywy = λywy (17)

The complementary relationship now becomes:

Σ
̂Y = wx − Σ

̂X = wx − λxwx = (1 − λx)wx (18)
Σ
̂X = wy − Σ

̂Y = wy − λywy = (1 − λy)wy (19)

Here, the most dominant eigenvector in wx and the least dominant eigen-
vectors in wy are not necessarily the same. Instead of keeping the first and the
last tier of eigenvectors from w for subspace modeling, we now take the most
dominant eigenvectors from wx as well as from wy to create the subspace. In
this way, we essentially remove the eigenvectors corresponding to 0 eigenvalues,
while still keeping high discriminative power.

5 Experiments

In this section, we first describe the experimental setup for the aforementioned
facial ethnic appearance synthesis techniques: (1) the �2 minimization, (2) PCA
reconstruction, (3) the �1 minimization, and (4) the dual subspace modeling
using FKT. Second, we show and analyze the experimental results using all four
synthesis techniques.
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5.1 Experimental Setup

For the single subspace reconstruction methods (the �2 minimization, PCA
reconstruction, and the �1 minimization), only the subspace obtained from the
target ethnic group is needed in the reconstruction process. The query image
from the source ethnic group is reconstructed and synthesized to best match the
target ethnic group.

In the dual subspace reconstruction method using FKT, two subspaces from
both the source and target ethnic group are acquired. By linearly combining the
two subspaces using α blending, the query image from the source ethnic group
is gradually transformed to the target ethnic group.

All the color images are in the RGB format, so the facial ethnic appearance
synthesis is done by reconstructing each color channel individually and finally
combined together to display the color synthesis images.

One important characteristic of our proposed facial ethnic appearance syn-
thesis is that the subject identity is very well preserved during the synthesis,
and at the same time, the subject’s facial ethnic features such as skin tone and
eye contours are altered to best match the target ethnic group. In this way, we
can transform people from one ethnic group to another, by keeping their own
uniqueness. This is very good in the application of synthesizing new subjects
from particular ethnic groups that are unique.

5.2 Experimental Results

We have trained our optimal projection coefficient w∗ for each of the single
subspace methods using the images only from the target ethnic group, and syn-
thesize the facial appearance of the query image that best matches the target
group.

Figure 3 and 4 show the synthesis using the �2 minimization. In this experi-
ment, we pick query images of celebrities from the Internet and synthesize them
to another ethnic group in terms of: (a) black to east asian, (b) black to south
asian, (c) white to east asian, and (d) white to south asian, for both genders.

As can be seen, the reconstruction is of bad quality with many artifacts. This
is partially due to the fact that the number of images in the target set is limited
and when an unseen query image looks quite different from the images in the
target set, the reconstruction would be jeopardized.

Figure 5 and 6 show the synthesis using PCA reconstruction. The same query
images are selected as in the �2 minimization case to show the comparisons.
The reconstruction, still not satisfactory. The results using PCA look similar
to the ones using the �2 minimization because the way PCA finds the optimal
projecting directions (principal components) is actually minimizing the variance:
Var(w�x), and both PCA and �2 minimization is dealing with second-order
statistics of the data. Thus their optimal results are similar.

Figure 7 and 8 show the synthesis using the �1 minimization. The same query
images and target ethnic groups are used. We can see that the reconstruction still
is not as good as we have expected. Many of the synthesized faces are bluish.
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(a) (b) (c) (d)

Fig. 3. Facial ethnic appearance synthesis using �2 minimization on female subjects.
(a) Black to east asian, (b) black to south asian, (c) white to east asian, and (d) white
to south asian. In each subfigure, the input is on the left and the reconstructed image
is on the right.

(a) (b) (c) (d)

Fig. 4. Facial ethnic appearance synthesis using �2 minimization on male subjects. (a)
Black to east asian, (b) black to south asian, (c) white to east asian, and (d) white to
south asian. In each subfigure, the input is on the left and the reconstructed image is
on the right.

This is because the �1 minimization gives a sparse solution, and since we are
dealing each color channel individually, the R and G channel are overwhelmed
by the B channel. Moreover, some target ethnic set does not have enough images
to create an over-complete dictionary so the reconstruction quality using the �1
minimization is still questionable.

By applying our proposed dual subspace modeling using FKT, the facial eth-
nic appearance synthesis results are much better than the previously discussed
single subspace methods. Figure 9 and 10 show the synthesis. The query images
are on the far left and the following five images are reconstructed using the dual
subspaces (one subspace is built using target ethnic group, and the other sub-

(a) (b) (c) (d)

Fig. 5. Facial ethnic appearance synthesis using PCA reconstruction on female sub-
jects. (a) Black to east asian, (b) black to south asian, (c) white to east asian, and (d)
white to south asian. In each subfigure, the input is on the left and the reconstructed
image is on the right.
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(a) (b) (c) (d)

Fig. 6. Facial ethnic appearance synthesis using PCA reconstruction on male subjects.
(a) Black to east asian, (b) black to south asian, (c) white to east asian, and (d) white
to south asian. In each subfigure, the input is on the left and the reconstructed image
is on the right.

(a) (b) (c) (d)

Fig. 7. Facial ethnic appearance synthesis using �1 minimization on female subjects.
(a) Black to east asian, (b) black to south asian, (c) white to east asian, and (d) white
to south asian. In each subfigure, the input is on the left and the reconstructed image
is on the right.

(a) (b) (c) (d)

Fig. 8. Facial ethnic appearance synthesis using �1 minimization on male subjects. (a)
Black to east asian, (b) black to south asian, (c) white to east asian, and (d) white to
south asian. In each subfigure, the input is on the left and the reconstructed image is
on the right.
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input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(a)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(b)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(c)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(d)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(e)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(f)

Fig. 9. Facial ethnic appearance synthesis using FKT with dual subspace modeling on
female subjects. (a) Black to east asian, (b) black to south asian, (c) black to white, (d)
south asian to east asian, (e) white to east asian, and (f) white to south asian. In each
subfigure, the input is on the far left and the following five images are the synthesis
with α blending of the dual subspaces.
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input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(a)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(b)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(c)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(d)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(e)

input alpha=1 alpha=0.75 alpha=0.5 alpha=0.25 alpha=0

(f)

Fig. 10. Facial ethnic appearance synthesis using FKT with dual subspace modeling
on male subjects. (a) Black to east asian, (b) black to south asian, (c) black to white,
(d) south asian to east asian, (e) white to east asian, and (f) white to south asian.
In each subfigure, the input is on the far left and the following five images are the
synthesis with α blending of the dual subspaces.
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space is built using the source ethnic group, the same as the query image to be
ethnically altered). The α blending coefficient is shown in the 2 figures. When
α = 1, pure source group subspace is utilized and when α = 0, pure target group
subspace is used. By changing α from 1 to 0, a gradual transformation from the
source ethnic group to the target ethnic group can be shown. The synthesis
quality of FKT dual subspace modeling is much better than the single subspace
method with no identifiable artifacts at all.

The query image is transformed to the target ethnic group while keeping his
or her identity to the largest extent, meaning the distinctive identity features
are well preserved. As are shown in Figure 9 and 10, the photometric features of
the query images are also well kelp. For example, the highlights on the forehead
and the shadow on the cheek and so forth are still well preserved in the ethnic
appearance synthesized image.

From the mean faces of our database as shown earlier in Figure 1, the eye
region is the best registered region on the faces. Compared with eye region, the
mouth region is not as well aligned. This is due to the fact that images in our
database may have different expression and the mouth region are not perfectly
aligned and registered. Therefore, we should expect a better synthesis quality
around the eye region and less around the mouth region. Even with that, we are
still able to achieve a much better ethnic appearance synthesis than the single
subspace techniques such as the �2 minimization, PCA and the �1 minimization.

In our experiments with the FKT dual subspace modeling, we apply our
facial ethnic appearance synthesis to unseen facial images from the web. These
celebrity images are actually very different from the images in our source and
target database. The skin is usually highly polished due to makeups and photo
re-touching. So, the synthesis results is not as genuine as the query images that
are actually from the source data set. We cannot disclose the query images from
our database in this paper, but the supplementary material available to the
reviewers actually show more genuine results.

6 Conclusions

In this work, we have explored several subspace reconstruction methods for facial
ethnic appearance synthesis (FEAS). In our experiments, our proposed dual sub-
space modeling using the Fukunaga Koontz transform (FKT) yields much better
facial ethnic synthesis results than the �1 minimization, the �2 minimization and
the principal component analysis (PCA) reconstruction method. With that, we
are able to automatically and efficiently synthesize different facial ethnic appear-
ance and alter the facial ethnic appearance of the query image to any other ethnic
appearance as desired. Our technique well preserves the facial structure of the
query image and simultaneously synthesize the skin tone and ethnic features
that best matches target ethnicity group. Facial ethnic appearance synthesis
can be applied to synthesizing facial images of a particular ethnicity group for
unbalanced database, and can be used to train ethnicity invariant classifiers by
generating multiple ethnic appearances of the same subject in the training stage.
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