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Abstract Natural hazards, such as big earthquakes, affect the lives of thousands
of people at all levels. Extreme-value analysis is an area of statistical analysis
particularly concerned with the systematic study of extremes, providing an useful
insight to fields where extreme values are probable to occur. The characterization
of the extreme seismic activity is a fundamental basis for risk investigation and
safety evaluation. Here we study large earthquakes in the scope of the Extreme
Value Theory. We focus on the tails of the seismic moment distributions and we
propose to estimate relevant parameters, like the tail index and high order quantiles
using the geometric-type estimators.

In this work we combine two approaches, namely an exploratory oriented
analysis and an inferential study. The validity of the assumptions required are
verified, and both geometric-type and Hill estimators are applied for the tail index
and quantile estimation. A comparison between the estimators is performed, and
their application to the considered problem is illustrated and discussed in the
corresponding context.

1 Introduction

Earthquakes are a worldwide and ever present menace, threatening to occur at
any second. A severe earthquake is one of the most frightening and destructive
phenomena of nature. Experiencing an earthquake is a terrible experience, the lived
moments are reported as full of panic, terror, and death. For survivors, the terrible
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images remain in their memory and become part of their daily lives, as well as the
constant fear of the possibility of the next big earthquake which may take lives and
separate families forever. It is estimated that there are about one million earthquakes
per year. However, the vast majority occurs in the midst of oceans or in sparsely
populated regions, and they pass relatively unnoticed by the population. There are
annually about 20 earthquakes that cause significant damage. On average, only one
catastrophic earthquake occurs every year, and a highly catastrophic one every 5
years.

Since the underlying phenomena responsible for the occurrence of an earthquake
are still very far from being completely understood, it is rather important to collect as
much data as possible and categorize it in order to be able to provide some insight on
how to diminish their negative impacts, in particular, in what concerns the reduction
of number of deaths and economic losses. This is an important challenge requiring
a large multidisciplinary effort. In this work, we perform a statistical analysis taking
into account specific features of big earthquakes. When we are dealing with extreme
events, the classical statistical models are inappropriate for the statistical modeling
of earthquake size. Hence, we are particularly interested in the study of the tail
distribution of the data.

The Extreme Value Theory (EVT) is one field of statistics that has been devised
to study these extreme events using only a limited amount of data (see e.g. [1], and
references therein). In the study of earthquakes, the EVT is a relevant tool, providing
important information, such as the estimation of the probability of occurring a large
earthquake over a long period of time or high quantiles (see e.g. [22]).

In the present work we consider the seismic activity in Philippines and Vanuatu
Islands. The data sets are taken from the Harvard Seismic Catalog and the tail
behavior of the distributions of large earthquakes seismic moments is characterized
using EVT techniques. In order to apply these methods, a preliminary data analysis
is performed to investigate the validity of the usual underlying assumptions. The
geometric-type and the Hill estimator, as well as its bias corrected versions,
are considered for the estimation of the tail index and are employed for the
quantile estimation. A comparison between the estimators is carried out and their
performance is discussed carefully.

All the analysis is supported by graphical tools that show, in a clear way, the
features of the data that are regarded as most relevant to the study being addressed.

The paper is organized as follows. Some important concepts and results about
EVT and earthquakes are briefly presented in Sect. 2. The investigation, in order
to verify the validity of the usual assumptions and the analysis of the seismic
moments, are performed in Sect. 3. Some final comments about the study, including
an interpretation of the results in terms of the frequencies of seismic moment
exceedances, are provided in Sect. 4.
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2 Essential Notions of EVT and Earthquakes

2.1 Extreme Value Theory

The Extreme Value Theory is a powerful and fairly robust framework to study the
tail behavior of a distribution, since it encompasses a set of probabilistic results
that allow characterizing and modeling the extreme values behavior. In this way, the
EVT is very useful in making statistical inferences about rare events in several areas
of knowledge (e.g. meteorology, hydrology, insurance, environment, etc.), and its
use may enable the implementation of appropriate prevention procedures.

More concretely, through this theory, extreme values may be modeled using the
limiting distribution of the maxima of the random variables or of its excesses over
a threshold. Thus, the statistical basis for applications of EVT is constituted by the
following two main limit theorems.

Theorem 1 (Fisher-Tippett-Gnedenko Theorem) Let X1; X2; : : : ; Xn be indepen-
dent and identically distributed (i.i.d.) random variables (r.v.) with distribution
function (d.f.) F and Mn D max.X1; X2; : : : ; Xn/ denote the maximum of the n
observations. If a sequence of real numbers an > 0 and bn exists such that

lim
n!1 P

�
Mn � bn

an
� x

�
D lim

n!1 Fn .anx C bn/ D G .x/ ;

then if G is a non degenerate d.f., it belongs to one of the following types

Type I .Gumbel/ W � .x/ D expf�exp .�x/g; x 2 RI

Type II .FrKechet/ W ˚˛ .x/ D
�

0; x � 0;

exp
��x�1=�

�
; x > 0I

Type III .Weibull/ W �˛ .x/ D
�

expf� .�x/1=� g; x > 0;

1; x � 0I

for all continuity points of G.

If a d.f. F satisfies the conditions of the theorem, it is said that F belongs to the
domain of attraction of G

�
F 2 DA.G/

�
.

These three types of distributions may be combined into the single d.f.

G� .x/ D
(

exp
�
� .1 C �x/�1=�

�
; for 1 C �x > 0; � ¤ 0;

exp .�exp .�x// ; for x 2 R; � D 0;
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where � is the shape parameter, known as tail index, determining the weight of the
right tail of the underlying d.f. F. This distribution is known as the Generalized
Extreme Value (GEV) distribution.

Theorem 2 (Pickands-Balkema-de Haan Theorem) Let X1; X2; : : : ; Xn be a sam-
ple of n i.i.d. r.v. with d.f. F, xF the right endpoint of F and FX�ujX>u.x/ D
P fX � u � x j X > ug the excess d.f. over a (high) threshold u. Then,

F 2 DA.G� / iff lim
u!xF

sup
0�x<xF�u

ˇ̌
FX�ujX>u.x/ � H�;�u.x/

ˇ̌ D 0;

where H�;�u .x/ represents the Generalised Pareto Distribution, given by:

H�;�u.x/ D
(

1 � �
1 C � x�u

�u

��1=�
; for 1 C � x�u

�u
> 0; � ¤ 0;

1 � exp.� x�u
�u

/; for x � u; � D 0;

where � , u, �u > 0 are the shape, location, and scale parameter depending on
threshold u, respectively.

Similarly with GEV, using another parameterization, the GPD is separated into
three families depending on the value of the shape parameter:

• Type I (Exponential): H.x/ D 1 � exp.�x/, if � D 0,
• Type II (Pareto): H.x/ D 1 � x�1=� , if � > 0,
• Type III (Beta): H.x/ D 1 � .�x/�1=� , if � < 0.

These two theorems state that, under their conditions, the limit distribution of the
normalized maximum is the GEV distribution, and that the limit of the excess d.f. is
the GPD. Hence, they are fundamental to make possible real-world applications.

In order to perform a correct inference about extreme events from the accessible
data, it is necessary to properly select the extreme observations following some
criterion. There are two primary methods to define such extreme observations which
arise from the two main results of the classical EVT: the Block Maxima method, also
known as Gumbel’s approach, and the Peaks Over Threshold method.

The Block Maxima (BM) method consists in dividing the data in equal sized
blocks, taking the maximum observation in each block and studying its asymptotic
distribution. In the Peaks Over Threshold (POT) method one considers a certain
high threshold and then studies the asymptotic distribution of the excesses over this
high threshold.

Accordingly, as with the data set under study, one must be aware to consider
both methods’ disadvantages when applying them. One major drawback of the BM
method is that only one observation in a block is used, resulting in a final sample
of small size. On other hand, this method is more robust with respect to eventual
dependence between the observations.
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Since our interest is centered in the frequencies of exceedances of certain critical
values, here we adopt the POT approach that picks up all relevant high observations
and seems to make better use of the available information.

In modeling the extreme value distribution, the main issue to be solved is the
parameter estimation. The shape parameter � is of great interest in the analysis of
the tails, since it characterizes the behavior of extremes. This parameter indicates the
heaviness of the tail distribution, the tail being heavier for larger values � . It also
plays a crucial role in the estimation of other extreme events’ parameters, namely in
high quantiles estimation. In practice, the tail index is associated to the frequency
with which extreme events occur and the high order quantiles are levels that are
exceeded with a small probability. The adequate estimation of these quantities is the
most important problem.

We assume that X1; X2; : : : ; Xn is a sample of i.i.d. r.v. with d.f. F and denote by
X.1;n/ � X.2;n/ � � � � � X.n;n/ the corresponding order statistics (o.s.). The estimation
of � is based on the k top o.s., where k D kn is an intermediate sequence of positive
integers .1 � k < n/, that is,

k ! 1;
k

n
! 0 as n ! 1: (1)

Several estimators have been proposed for the estimation of � (see e.g. [6, 10, 18,
20]). Here we consider the following estimator for � > 0, the geometric-type (GT)
estimator

cGT .k/ D

vuuuut
M.2/

n �
h
M.1/

n

i2

1
k

Pk
iD1 log2.n=i/ �

�
1
k

Pk
iD1 log.n=i/

�2
(2)

where

M.j/
n .k/ D 1

k

kX
iD1

�
log X.n�iC1;n/ � log X.n�k;n/

�j
: (3)

We also consider the commonly used Hill estimator (see [18]) defined by

OH .k/ D 1

k

kX
iD1

log X.n�iC1;n/ � log X.n�k;n/: (4)

The asymptotic properties of these aforementioned estimators were investigated
and, under certain conditions, they share some common desirable properties, such
as consistency and asymptotic normality (cf. [2, 9, 17]).

The problem of estimating high order quantiles has received increased attention
as a useful tool in data modeling, which has been performed in a wide variety
of problems in many different scientific areas. This field addresses interesting



44 M. Brito et al.

questions such as the size of some extreme event that will only occur with a given
small probability, or the expected time until the realization of an extreme event.

The classical quantile estimator was proposed by [23],

O�W
1�p

D X.n�k;n/

�
k

np

� O�
;

where O� is a consistent estimator of � .
Using general quantile techniques and the POT methodology, the well known

POT estimator for high quantiles above the threshold X.n�k;n/ arises naturally and is
given by

O�P
1�p

D
�

k
np

� O� � 1

O� � X.n�k;n/M
.1/
n C X.n�k;n/; p <

k

n
; (5)

where O� , X.n�k;n/M
.1/
n and u D X.n�k;n/ are, respectively, suitable estimators of the

shape, scale and location parameters of the Generalized Pareto Distribution.
In the present work both the cGT .k/ and OH .k/ are used to estimate � . The high

quantiles are estimated considering (5) and using cGT .k/ and OH .k/ as estimators
of � . The asymptotic behavior of these quantile estimators was studied and their
asymptotic normality was proved (cf. [3, 8, 10]).

The problem of reducing the bias of these tail index estimators was addressed in
[3], where were proposed the following two asymptotic equivalent geometric-type
bias corrected estimators

cGT .k/ D cGT .k/

 
1 � ˇ

�
n
k

��
.1 � �/2

!
;

and

cGT .k/ D cGT .k/ exp

�
� ˇ

.1 � �/2

�n

k

��
	

:

Hill bias corrected estimators may be found in [4], namely

OH .k/ D OH .k/

 
1 � ˇ

�
n
k

��
1 � �

!

and

OH .k/ D OH .k/ exp

�
� ˇ

1 � �

�n

k

��
	

;

where � and ˇ are the shape and scale parameters.
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Here, in order to get bias corrected high quantiles estimators, we also consider
the form (5), based on the above bias corrected estimators.

The accurate estimation of the tail index is very important, also because of its
great influence on the estimation of other relevant parameters of rare events, such as
the right endpoint of the underlying d.f. F. Since the impact of its influence can be
considerable, the appropriate estimation of � is fundamental in obtaining a suitable
quantile estimator with a good performance.

2.2 Earthquakes

In general, everything in nature tends to an equilibrium. Due to the thermodynamic
equilibrium, the constituents of the Earth’s interior are in constant motion. Boosted
by this movement, which causes friction with its bottom, the tectonic plates
move and interchange slowly, thereby contributing to the constant evolution of the
terrestrial relief.

The earthquakes mainly arise due to forces, within the earth’s crust, tending to
displace one mass of rock relative to another. Each time the plates interact with
each other, a large amount of energy is accumulated in its rocks. When its elasticity
limit is reached, they will fracture and instantly release all the energy that had been
accumulated during the elastic deformation. That causes vibrations, called seismic
waves, which travel outwards in all directions from the fault and give rise to violent
motions at the earth’s surface, unleashing an earthquake.

Therefore, earthquakes are natural shocks that occur as a result of this sudden
release of huge amounts of the energy that has been slowly-accumulated over
many years. If the earthquake is large enough, the seismic waves are recorded on
seismographs around the world, and can cause the ground to quake strongly.

Earthquakes do not occur at random, but are distributed according to a well-
defined pattern. About 90 % of earthquake activity is associated with plate-boundary
processes, so the global seismicity patterns reveals a strong correlation between
plate boundaries and the presence of intercontinental fault zones, indicating that
earthquakes often occur at tectonic plate boundaries. We can say, without commit-
ting a gross error, that the alignments of earthquakes indicate the boundaries of
tectonic plates.

After the initial fracture, a number of secondary ruptures, corresponding to the
progressive adjustment of fractured rocks, may occur, causing successive lower
intensity earthquakes called aftershocks. If these vibrations occur at the sea floor,
they can produce a long and smooth waving that in shallow water becomes authentic
water columns known as tidal waves or tsunamis.

Therefore, earthquakes represent one of the most energetic and rapid manifesta-
tions of the planet’s internal dynamics.

The scientific analysis of earthquakes requires means of measurement, and the
size of an earthquake has been measured in several ways. The early methods used
a kind of numerical scale based on a synthesis of observed effects, called the
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intensity scales. Some attempts to relate intensity to the amplitude of ground motion
led to a quantity called magnitude, based on the records of ground amplitudes,
normalized for their variation with regard to the distance from the earthquake
epicenter. However, the known magnitudes present a saturation point which does
not allow for a correct estimation of the true earthquake size for larger earthquakes,
underestimating it. Moreover, it turns out that larger earthquakes, which have larger
rupture surfaces, systematically radiate more long-period energy. Nowadays, the
measurement that is adopted preferably for scientific studies is the seismic moment
of the displaced ground (see e.g. [7, 19]). This measurement avoids the saturation
problem, since it does not have an intrinsic upper bound, and describes the size of
an earthquake as an essential combination of physical quantities.

The seismic moment, M, provides more accurate measures of the energy released
from an earthquake, taking into account the rock properties, such as its rigidity, �,
the area of the fault plane that actually moves, A, and the amount of movement on
the fault, D, combining these three factors in the following form

M D �AD:

Because many people do not really know the meaning of this measure, and given
that the magnitude scale has been used for a very long time, the need to convert
it into some kind of magnitude scale came about. These factors have resulted in
the definition of a new magnitude scale, the moment magnitude, mw, based on the
seismic moment

mw D 2

3
.log M � 16:1/ ; (6)

where M is in units of dyne-cm.
The seismic moment, based on classical mechanics, provides, in this way, a

uniform scale of earthquake size, and is considered the most consistent measure
for accurate quantification of the energy released from an earthquake.

3 Extreme Value Modeling of Earthquake Data

In this section, we analyze the tail behavior of the distribution of the seismic
moments, following the POT approach. We begin by describing the data considered
for this study. We perform an exploratory data analysis, where we discuss which
type of distribution may model the large seismic moments as well as the properties
of stationarity and independence of the data. Then we proceed to the estimation of
the tail parameters of the seismic moment distribution.
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3.1 Description of the Earthquake Data

We consider the earthquake data obtained from the Harvard Seismic Catalog, avail-
able at the Global Centroid-Moment-Tensor (CMT) web page (cf. e.g. [11, 12, 14]).
Here, we restrict the area of study to earthquakes occurring within the Philippines
and Vanuatu Islands, and the analysis was performed in a similar way for both
regions. In particular, we extract and analyze the information on their seismic
moments covering the period 01.01.1976–31.12.2010. The original data sets contain
1255 events for Philippines Islands, and 1012 events for Vanuatu Islands. However,
in order to apply the POT method we selected an adequate and large enough level
u D 1024 dyne-cm, that corresponds to a moment magnitude mw � 5:27, the
same value considered in related works such as in [21]. The observations under
this threshold were removed. Since we detect a failure in the data acquisition of
the Vanuatu Islands until 01-01-1980, we shall consider only the Vanuatu Islands
data subsequent to this date. So, the final data sets, on which the following analysis
is based, consider 821 cases for Philippines Islands and 647 cases for Vanuatu
Islands. We did not exclude aftershocks because, besides excluding a great fraction
of the range of seismic moments considered, the removal would introduce a bias in
the parameters estimation (cf. e.g. [21]). Since the considered region has a lot of
deep earthquakes, they were not excluded as well. In Fig. 1 the seismic moments of
Philippines and Vanuatu Islands over the above mentioned period are plotted.

3.2 Preliminary Data Analysis

Before considering the problem of estimating the tail parameter � , it is important
to discuss if the Pareto-type model provides a plausible fit to the seismic moment

1976 1980 1984 1988 1992 1996 2000 2004 2008

1.0e+24

2.2e+27

4.3e+27

6.5e+27

8.6e+27
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Philippines Islands

1976 1980 1984 1988 1992 1996 2000 2004 2008

1.0e+24

2.2e+27
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1.1e+28

Vanuatu Islands

Fig. 1 Seismic moments of Philippines (left) and Vanuatu (right) Islands
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Fig. 2 Pareto QQ plot for Philippines (left) and Vanuatu (right) Islands seismic moment data

distributions of the data under study. This can be achieved graphically through
quantile-quantile (QQ) plots, which constitute a very informative and powerful tool
to graphically evaluate how close two distributions are from each other.

Usually, as in this case, the most convenient comparison is between the empirical
quantiles and the quantiles of the assumed parametric distribution. If the sample
data and the reference distribution are derived from populations with a common
distribution, the QQ plot should have a linear form.

Since we believe our data is heavy tailed, we present the Pareto QQ plots of our
data sets in Fig. 2.

In the case Y
DD log X, where X and Y are Pareto and Exponential distributed

r.v., respectively, then the usual Pareto QQ plots are Exponential QQ plots of the
log-transformed data.

In the resulting scatterplot, a linear pattern is evident, which is indicative of the
good agreement between observed values and the values predicted by the model. If
we analyze the behavior of the QQ plots, we may remark that, with the exception of
the extreme upper points, which are based on a small number of extreme values, the
plots are approximately linear. Hence, the visual impressions based on the Pareto
QQ plots suggest that the Vanuatu and Philippines Islands earthquake data sets do
seem to exhibit heavy tails (� > 0).

We analyse the stationarity of the data under study. More precisely, in the line
of the study of Corral [5], we investigate if the mean value defined for any property
of the earthquake occurrence process is approximately the same for different time
windows. We plot the normalized cumulative number of earthquakes versus time.

The linear behavior that we can observe in Fig. 3 indicates that the mean seismic
rate is approximately constant, and so, the data may be considered homogeneous in
time.

For the application of the EVT we must analyse the independence of the data.
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Fig. 3 Cumulative number of earthquakes normalized by the total number in the period considered
as a function of time, for seismicity of Philippines (left) and Vanuatu (right) Islands with M � 1024

In our case, the goal is to investigate the existence of dependence between
consecutive seismic moments, i.e, verify how the seismic moment of one event,
Mi�1, influences the seismic moment of the next, Mi. For that, let us consider the
conditional probability density determined by

P
�
	 � Mi < 	 C 
	 j Mi�1 � M0

c

�

	

;

where M0
c is the threshold considered on the previous magnitude when this condition

is imposed. Here we denote the initial threshold, u, as Mc, and the condition M � Mc

is always satisfied (see e.g. [5]).
The conditional probability density of a seismic moment is then defined as the

probability of the seismic moments are within a small interval of values, divided
by the length of the small interval, 
	, tending to zero, considering only the cases
in which the seismic moment of the immediately previous event is bigger than a
threshold M0

c.
If the seismic moment Mi is independent of Mi�1, then, as it is well known,

the conditional distribution of Mi given that Mi�1 � M0
c, M0

c � Mc , is identical
to the unconditional distribution of Mi. Note that the case Mc D M0

c gives the
unconditional distribution of the considered data.

We observe in Fig. 4 that, in general, the different empirical densities, using
different thresholds M0

c, share the same properties, which suggest the independence
of seismic moments Mi with regards to their history. The small oscillations between
the densities may be caused by the errors associated to the finite sample and the
eventual dependence is apparently too weak to lead to major differences in the
distributions.
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Fig. 4 Conditional probability densities of earthquake seismic moments, for seismicity of Philip-
pines (left) and Vanuatu (right) Islands, evaluated using different thresholds M0

c and with a constant
Mc D 1024 (
	 D 1025)

3.3 Estimation of Tail Parameters

In this section we formalize our main objective of investigating the extremal
behavior of large earthquakes and how the proposed estimators behave with this
type of data.

Then, we discuss the estimation of the tail parameters through the POT approach.
The GT and the Hill estimators are considered for the estimation of the tail index
and are employed on POT estimator for the quantile estimation.

Some graphical plots illustrate the tail parameters of large earthquake data, as a
function of k.

From the presented bias corrected estimators, we can easily note that the bias
dominant components are dependent on second order parameters, shape � and scale
ˇ. To illustrate the behavior of the corrected estimators we consider the suitable
estimators of the parameter � proposed by [13]

O�.�/
n .k/ D �

ˇ̌
ˇ̌
ˇ
3
�
T.�/

n .k/ � 1
�

T.�/
n .k/ � 3

ˇ̌
ˇ̌
ˇ ; (7)
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where

T.�/
n .k/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

�
M

.1/
n .k/

�� �
�

M
.2/
n .k/=2

��=2

�
M

.2/
n .k/=2

��=2�
�

M
.3/
n .k/=6

��=3 ; if � > 0

log
�

M
.1/
n .k/

�
� 1

2 log
�

M
.2/
n .k/=2

�
1
2 log

�
M

.2/
n .k/=2

�
� 1

3 log
�

M
.3/
n .k/=6

� ; if � D 0;

with Mj
n as in (3), and the ˇ estimator obtained in [15]

Ǒ O� .k/ D
�

k

n

� O�
�

1
k

kP
iD1

�
i
k

�� O�
�

1
k

kP
iD1

Ui � 1
k

kP
iD1

�
i
k

�� O�
Ui

�
1
k

kP
iD1

�
i
k

�� O�
�

1
k

kP
iD1

�
i
k

�� O�
Ui � 1

k

kP
iD1

�
i
k

��2 O�
Ui

; (8)

where

Ui D i

�
log

X.n�iC1;n/

X.n�i;n/

�
;

with 1 � i � k < n.
It is known that the external estimation of � and ˇ at a larger k value than the

one used for � -estimation has clear advantages, allowing bias reduction without
increasing the asymptotic variance (see e.g. [4]). In line with other studies, and
among some suggestions (see e.g. [16]), the level that seemed most appropriate to
consider in illustrations is

kh D 

n1��

˘
; for some � > 0 small; (9)

where bxc denotes the integer part of x.
We remark that the class of estimators of � presented above, and consequently

also the ˇ estimators, is dependent on a tuning parameter � � 0. Then, firstly we
need to choose the tuning parameter � , in which we will support the estimation of
the second order parameters � and ˇ.

For this use, we consider in (9), � D 0:005 and � D 0:001, i.e, we use the
following kh levels:

kh1 D 

n0:995

˘
and kh2 D 


n0:999
˘

: (10)

As usual, the means whereby we do this choice, passes by portraying the sample
paths of O�� .k/ in (7) for the values � 2 f0; 0:5; 1g, as functions of k, in order
to analyze the variations that it causes in their behavior, and use the following
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Fig. 5 Estimates of the second order parameters � (left) and ˇ (right) for seismicity of Philippines
Islands

algorithm as a stability criterion for large values of k:

1. Consider O�� .k/, � 2 f0; 0:5; 1g, for the integer values k 2 .



n0:995
˘

;


n0:999

˘
/ and

compute their median, denoted by �� ;
2. Choose the tuning parameter �� D arg min�

P
k. O�� .k/ � �� /2;

3. Compute the � estimates O���.kh1/ and O��� .kh2/, and the ˇ estimates Ǒ
���

.kh1/.kh1/

and Ǒ
���

.kh2/.kh2/, with kh1 and kh2 given by (10).

The Figs. 5 and 6 show the sample paths of the second order parameter estima-
tors, O� and Ǒ, based on the Philippines and Vanuatu seismic moment observations,
respectively.

We can see that the sample paths of O�, for the three different values of � , have
very similar behavior. It is however apparent that the behavior of O� is slightly better
when considering � D 0, especially for data concerning the Vanuatu Islands. Since
in both cases the algorithm described above also points to the choice of � D 0, we
choose this value of � to estimate �.

Thus, for Philippines Islands, we have kh1 D 

8210:995

˘ D 793 and kh2 D

8210:999

˘ D 815, that is, the corresponding estimates of � are O�0.793/ � �0:25

and O�0.815/ � �0:32 and the corresponding estimates of ˇ are Ǒ O�0.793/.793/ �
0:19 and Ǒ O�0.815/.815/ � 0:15, represented both graphically through straight lines.
Doing the same procedure to Vanuatu Islands, we have kh1 D 


6470:995
˘ D 626

and kh2 D 

6470:999

˘ D 642, that is, the corresponding estimates of � are
O�0.626/ � �0:20 and O�0.642/ � �0:25 and the corresponding estimates of ˇ

are Ǒ O�0.626/.626/ � 0:51 and Ǒ O�0.642/.642/ � 0:44.
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Fig. 6 Estimates of the second order parameters � (left) and ˇ (right) for seismicity of Vanuatu
Islands

Since from the Ǒ sample paths, there are no readily apparent significant
differences between the use of kh1 or kh2, and due to the fact that the tail index
estimation is more affected by the � fluctuations than the ˇ ones, we use both levels
in the rest of the study.

Moreover, here we also present a possible optimal level k0 of top observations
to consider when the geometric-type estimator is used to estimate � , through the
minimization of the asymptotic mean square error (AMSE) of the geometric-type
estimator. Considering the following distributional representation of the geometric-
type estimator (see [3, Theorem 2.2]).

cGT .k/
DD � C �

2
p

k
Qn � �p

k
Pn C A

�
n
k

�
.1 � �/2

C op

�
A
�n

k

��
C Op

 
log2 k

k

!
;

we get what we need to calculate the AMSE.cGT/ and provide for their minimization

@

@k

h
AMSE
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�i

D 0 ” @

@k

�
V
�cGT

�
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�

Bias
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��2
�
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Fig. 7 Plot for the GT estimator, cGT, and for the Hill estimator, OH, of � , for seismicity of
Philippines (left) and Vanuatu (right) Islands

Solving the equation in order to k and denoting the result as kbGT
0 , we obtain

kbGT

0 D
�

.1 � �/2

�2�ˇ2

�1=.1�2�/

n�2�=.1�2�/:

Although this is not the optimal value for the bias corrected estimators, the value
of the tail index and quantiles calculated with the geometric-type estimator at the

kbGT

0 level is represented in some illustrations for comparison.
As a first step, we estimate the tail index, � , using the GT and Hill’s estimators.
Concerning the shape parameter � , Fig. 7 displays the estimated values of the

GT and Hill estimators, as a function of k, for Philippines and Vanuatu Islands data.
As can be observed, for Philippines Islands data both estimators stabilize around
the same value of � , which is 1:6, with identical scatter plots for moderate and
high values of k, although it is worth to give emphasis to the smoothness that the
geometric-type estimator displays.

For the Vanuatu Islands data, though not so explicit as to the Philippines data, the
behavior of GT tends to stabilize around the value of 1:64 as k increases. The same
is true for the Hill estimator around the value of 1:78, although in a slightly more
erratic way.

The GT estimator presents the best performance specially for Philippines Islands
data, displaying almost a straight line around 1:58 for k-values larger than 300.

In Fig. 8 it is possible to compare the behavior of the GT estimator with its

corrected versions, cGT and cGT. We note that the corrected estimators maintain
the good behavior; that is, they have less variation in the initial values of k, and
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Fig. 8 Plot for the GT estimator, cGT, and for the corresponding GT bias corrected estimators, cGT

and cGT , of � , for seismicity of Philippines (left) and Vanuatu (right) Islands

stabilize at slightly lower values than the uncorrected estimator. Depending on the
unknown value of the tail index parameter that we seek, this type of behavior seems
to be indicative of a better performance of the corrected estimators. Particularly
for Vanuatu Islands data, this improvement seems to be evident since the corrected
estimators begin to stabilize sooner than the non corrected ones, showing a very
satisfactory behavior, to the right from the initial values of k.

In order to make the comparison between the bias corrected GT estimators and
the Hill ones, we draw the sample paths of one against the other.

We might see from Fig. 9 that the estimates provided by the corrected Hill
estimators are around the same values of the estimates given by the corrected GT
estimators. However, it is quite clear that the Hill estimators hold a rather irregular
behavior compared to the GT estimators, especially for smaller values of k.

It is suggestive that the value of � that best describes the seismic moment of the
Philippines Islands is a little below 1:5, and that of the Vanuatu Islands is slightly
above 1.

As in most of the applications, the main interest lays not on the tail index but in
the quantiles of the extreme distributions, which are more stable and robust. Now we
analyze the sample paths of the quantiles estimators. We estimate the values of POT
high quantiles estimator, in (5), based on the GT and Hill estimators, as a function
of k, for Philippines and Vanuatu Islands data, considering the percentile 99 %. Each
tail index estimator leads to a different estimation of large quantiles, which is also
dependent on k. The straight dashed line represents the estimate of the empirical
99 % quantile. When more than one straight line is present, the empirical quantile is
represented by the inferior one.
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Fig. 9 Plot for the GT bias corrected estimators, cGT and cGT, and for the Hill ones, OH and OH, of
� , for seismicity of Philippines (left) and Vanuatu (right) Islands
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Fig. 10 Plot for the 99-quantile estimators based on the GT estimator, O�bGT , and on the Hill
estimator, O� OH , of �0:99, for seismicity of Philippines (left) and Vanuatu (right) Islands (empirical
quantiles �0:99 D 9:29 � 1026 and �0:99 D 7:37 � 1026, for Philippines and Vanuatu Islands,
respectively)

We might see from Fig. 10 that, for the Philippines Islands, both estimates do
not present values close to the empirical quantile. For values of k larger than 300,
the estimates tend to stabilize, and it is apparent that this stabilization process
is significantly more regular for the GT based quantiles estimator. The uneven
performance that the Hill quantile plot shows make it extremely hard to decide upon
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Fig. 11 Plot for the 99-quantile estimators based on the GT estimator, O�bGT , and on the correspond-

ing geometric-type bias corrected estimators, O�bGT and O�bGT , of �0:99, for seismicity of Philippines
(left) and Vanuatu (right) Islands (empirical quantiles �0:99 D 9:29�1026 and �0:99 D 7:37�1026 ,
for Philippines and Vanuatu Islands, respectively)

a specific value for k. For the Vanuatu Islands the behavior of both estimators is
not the best, but the Hill based quantiles estimator presents a much more irregular
behavior.

Now comparing the GT based quantiles estimator with its corrected versions,
we can observe in Fig. 11 that the improvement caused by the correction is quite
remarkable. It is also worth noting that considering the kh2 level to estimate the
second order parameters, the performance seems to be a little better. Also in
Fig. 11, and for the Philippines Islands data, it can be seen that the quantile value

calculated using the geometric-type estimator at its optimal levels kbGT
0 , represented

by the superior straight lines, almost coincides with the value of the quantiles
estimator based on the geometric-type estimation for k-values larger than 200, which
highlights the fairly stable behavior of this quantiles estimator in this range of
values.

In Fig. 12, we can observe that the bias corrected Hill quantiles estimators present
estimate values very similar to the ones presented by the bias corrected GT quantiles
estimators. Although the corrected Hill quantiles estimators, using the kh2 level
to compute the second order parameters, appear to have values more close to the
empirical quantile than the corresponding corrected GT quantiles estimators, in case
of Philippines Islands only for k-values greater that 300, their erratic and much less
stable behavior may be a factor of considerable disadvantage.
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Fig. 12 Plot for the 99-quantile estimators based on the geometric-type bias corrected estimators,

O�bGT and O�bGT , and on the Hill bias corrected estimators, O� OH and O� OH , of �0:99, for seismicity of
Philippines (left) and Vanuatu (right) Islands (empirical quantiles �0:99 D 9:29 � 1026 and �0:99 D
7:37 � 1026, for Philippines and Vanuatu Islands, respectively)

4 Final Considerations

In this study we consider the seismic moments of the Philippines and Vanuatu
Islands larger than the level 1024 recorded during 35 years. We begin by analyzing
the data in order to investigate the presence of heavy tails, the stationarity and the
independence of the observations. In this way, we verify that the exceedances can
be modeled by heavy tailed distributions. We use the geometric-type estimator and
its bias corrected versions for estimating the tail index and high quantiles. For the
sake of comparison we also consider the corresponding Hill estimators.

The geometric-type estimator shows a better performance when compared to the
Hill estimator, namely it is worth emphasizing the contrast between the smoothed
behavior of the geometric-type estimator and the irregular behavior exhibited by the
Hill estimator.

It is well known that the considerable bias that appears in several estimators
reveals a difficult problem that goes well beyond the application. In order to deal
with this problem we also study and apply corrected versions of the geometric-type
estimator. As expected, its performance is improved. We may emphasize that in
some situations the Hill’s bias corrected estimators present an erratic and less stable
behavior. This is a real disadvantage for example in choosing a specific value for k.

In general, it is possible to conclude that the smoother behavior is a common
quality shared by the estimates obtained for the GT tail index estimators, as by GT-
based quantiles estimates, which show a very small variability, reflecting the more
regular behavior of the GT estimators.
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Regarding the case of Philippines Islands, and when considering the geometric-
type estimator, we obtain an estimate for the seismic moment 0.99-quantile of
1:51 � 1027. In a more practical way, we may say that it is expected that one out of a
hundred earthquakes has a seismic moment larger than 1:51�1027. Since in average
there are 23:43 earthquakes per year, we may say that an earthquake exceeding
a seismic moment of 1:51 � 1027 is expected to happen in Philippines Islands
once in every 4:35 years. Moreover, we may also conclude that the probability of
occurring an earthquake with seismic moment larger than 1:51 � 1027 next year is
approximately 1 � 0:9923:43, that is, 21%.

As one knows, the performance of the estimators depends on the distribution of
the data, and there is not an uniformly agreed best estimator. Nevertheless, from
results of practical example conducted here, one could say that, for this type of data,
the GT estimator turns out to be the best choice for tail index estimator, and the POT
estimator when used for high quantiles.

On the whole, the application of the EVT to the problem under study seems quite
promising since it provides reasonable estimates of the tails of the seismic moment
distribution.
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