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Foreword

Alberto Adrego Pinto, the president of the Centro International de Matemática
(CIM), has asked me to write a few words on the International Conference Planet
Earth, Mathematics of Energy and Climate Change, MPE 2013. I am very happy to
do so since I had a chance to participate in this extremely important event. I became
a member of the CIM Scientific Council in 2009. Two years later Alberto Adrego
Pinto took office as the new president and he started with a lot of enthusiasm and
energy. The executive committee decided that the CIM should become a partner
in the global program Mathematics of Planet Earth (MPE 2013). In addition it
was decided to organize two conferences in 2013 with accompanying Advanced
Schools. The present proceedings are the outcome of the conference MECC 2013,
the International Conference and Advanced School Planet Earth, Mathematics of
Energy and Climate Change, held between March 21 and 28. Clearly these two
chosen topics fit extremely well to the problems our planet is currently facing.
In addition one needs complex mathematical models to understand the processes.
I was very much looking forward to being part of this event in Lisbon and to
learning from the excellent plenary speakers about how mathematics can be used
to understand energy issues and the climate. It was a great idea to actually do
several video lectures. This not only allowed us to get the best speakers from remote
locations, like Rio de Janeiro or Berkeley to name a few, but with this approach
the conference also demonstrated how to save energy and reduce the production
of CO2. Alberto Adrego Pinto had two further excellent ideas. About a third of
all plenary speakers volunteered to present two further lectures on the topic in
the associated “Advanced School.” For example there was the public lecture by
David Zilberman, who spoke on “Technology and the Future Bioeconomy.” He then
also spoke on the “Economic Foundations of Climate Smart Agriculture” and “The
Economics of Payment for Ecosystem Services.” These talks were supplemented by
the plenaries, the “Advanced Schools” and seventeen “Thematic Sessions,” so that
altogether it was a very intensive time. Thanks to the famous Calouste Gulbenkian
Foundation, which hosted the event at their excellent conference facilities, all
participants enjoyed the friendly and constructive atmosphere. I think it was actually
a very good idea to hold the plenary lectures in an auditorium, which allowed
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vi Foreword

the delegates to participate in discussions. Finally I was extremely impressed by
the contributions of our Portuguese colleagues, who organized nearly all of the
Thematic Sessions. There is a large community of applied mathematicians who
work on research concerning the mathematics of planet earth. Finally I would like
to thank Alberto Adrego Pinto for organizing the conference and for his unbridled
enthusiasm, which allowed him to motivate so many participants.

Zürich, Switzerland Rolf Jeltsch
28 November 2014



Foreword

The stress placed on the dynamical system we call Planet Earth, owing to the
activities of mankind, threatens mankind itself. It calls for an unprecedented
response. This begins with an understanding of the problem. The shear complexity
of the system, and the consequential ease with which an unexpected consequence
or an unanticipated bifurcation can occur, or an unjustified cause-and-effect relation
can be inferred, calls for a careful mathematical analysis. Understanding is essential,
but also creative solutions are urgently needed. Here again, mathematical theory will
play an important role.

These papers comprise a snapshot of current mathematical work devoted to
these problems. The topics coincide with the major themes of the International
Conference and Advanced School.

An understanding of the problem begins a careful overall study of the energy
flow to the earth. This includes work on the difficult-to-predict role, also in weather
prediction, of clouds (Santos, chapter “The Role of Clouds, Aerosols and Galactic
Cosmic Rays in Climate Change”), and climate and the ecology of polar regions
(Xavier, Hill, Belchier, Bracegirdle, Murphy, and Lopes Dias, chapter “From Ice
to Penguins: The Role of Mathematics in Antarctic Research”). Pereira’s article
(chapter “Mathematics of Energy and Climate Change: From the Solar Radiation to
the Impacts of Regional Projections”), encompassing all aspects of the energy flow
to the earth, from the Stefan-Boltzmann law to the statistical treatment of fires to
recommendations for future rain gutter sizes is a tour de force of climate change. It
will be required reading for future mathematical climatologists.

A particular consequence of climate change is the increased frequency of rare,
sometimes disastrous, events. Fundamental work on the mathematical theory of
extreme values is needed, such as the theory of max-stability distributions (Fraga
Alves, chapter “Max-Stability at Work (or Not): Estimating Return Levels for Daily
Rainfall Data”), and resampling methodologies (Gomes, Henriques-Rodrigues, and
Figueiredo, chapter “Resampling-Based Methodologies in Statistics of Extremes:
Environmental and Financial Applications”), and methods to reveal additive outliers
in time series (Eduarda Silva and Pereira, chapter “Detection of Additive Outliers
in Poisson INAR(1) Time Series”). Application of these and related methods to
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the occurrence of extremal earthquakes is presented by Brito, Cavalcante, and
Moreira Freitas (chapter “Modeling of Extremal Earthquakes”). Manuela Neves’
overview of geostatistical methods (chapter “Geostatistical Analysis in Extremes:
An Overview”) contains also a brief but useful historical perspective.

Solutions to problems of climate change and its effect on human populations may
involve optimal control theory. This is useful in physical systems (Grilo, Gama, and
Lobo Pereira, chapter “On the Optimal Control of Flow Driven Dynamic Systems”)
and also in epidemiology (Aweke and Kassa, chapter “Impacts of Vaccination
and Behavior Change in the Optimal Intervention Strategy for Controlling the
Transmission of Tuberculosis”).

The chemical physics of climate change involves especially the careful study
of the chemical kinetics of environmental processes. This is known to be a
challenging problem, and improvement of the associated mathematical theories
is needed. The state-of-the-art is here presented by Carvalho, Silva, and Soares
(chapter “Detonation Wave Solutions and Linear Stability in a Four Component
Gas with Bimolecular Chemical Reaction”), da Costa (chapter “Mathematical
Aspects of Coagulation-Fragmentation Equations”), and Sasportes (chapter “Long
Time Behaviour and Self-similarity in an Addition Model with Slow Input of
Monomers”). Silva and Rodrigues (chapter “Modelling the Fixed Bed Adsorption
Dynamics of CO2 =CH4 in 13X Zeolite for Biogas Upgrading and CO2 Sequestra-
tion”) analyze a possible solution: the use of zeolites to catalyze the sequestration
of CO2.

Human communication will be an inextricable consequence of climate change,
particularly in the context of such major potential societal disruptions as the shifting
of populations to the north. Salvador, Nogueira, and Rocha (chapter “Multiscale
Internet Statistics: Unveiling the Hidden Behavior”) analyze the statistics of internet
traffic.

Implementation of solutions will inevitably involve policy decisions, which in
turn drive a politico-economic dynamical system. The politico-economics of ethanol
production is treated by Moss, Schmitz, and Schmitz (chapter “The Economics of
Ethanol: Use of Indirect Policy Instruments”).

The authors in this volume have made a tremendous effort to explain the overall
context of their work, which makes these diverse presentations approachable for a
broad scientific audience. This approachability speaks to the unity and universality
of mathematics in the sciences, and underlies its essential value in approaching the
pressing problems facing Planet Earth.

On behalf of the participants and authors, I would warmly like to thank Alberto
Adrego Pinto. Conference participants were never more inspired, nor treated more
warmly than by Alberto in the context of the magnificent venue of the Calouste
Gulbenkian Foundation. The Fado was truly delightful.

Minneapolis, MN, USA Richard D. James
17 March 2015



Preface

As the International Center for Mathematics (CIM) celebrated its 20th anniversary
on the 3rd of December 2013, it is the perfect opportunity to look back on this past
year, which has undoubtedly been one of the most ambitious and eventful ones in its
history. With the support of our associates from 13 leading Portuguese universities,
our partners at the University of Macau, and member institutions such as the
Portuguese Mathematical Society, in 2013 the CIM showed yet again the importance
of a forum such as this for bringing together leading Portuguese-speaking scientists
and researchers from around the world.

The hallmark project of the year was the UNESCO-backed International Program
Mathematics of Planet Earth (MPE) 2013, which the CIM participated in as a
partner institution. This ambitious and global program was tasked with exploring
the dynamic processes underpinning our planet’s climate and man-made societies,
and with laying the groundwork for the kind of mathematical and interdisciplinary
collaborations that will be pivotal to addressing the myriad issues and challenges
facing our planet now and in the future. The CIM heeded the MPE’s call to action
by organizing two headline conferences in March and September of 2013: the
“Mathematics of Energy and Climate Change” conference in Lisbon in the spring,
and the conference “Dynamics, Games, and Science II” in the fall. Both were held at
the world-renowned Calouste Gulbenkian Foundation in Lisbon, one of more than
15 respected Portuguese foundations and organizations that enthusiastically sup-
ported the CIM conferences. As well as the conferences themselves, well attended
“advanced schools” were held before and after each event: at the Universidade de
Lisboa in the spring, and at the Universidade Técnica de Lisboa in the fall.

These conferences succeeded in bringing together some of the most accom-
plished mathematical and scientific minds from across the Portuguese-speaking
world and beyond, while also serving as a launch pad for one of the CIM’s most
exciting endeavors in years: the new CIM Series in Mathematical Sciences, which
will include lecture notes and research monographs and be published by Springer-
Verlag. “The collaboration with Springer will bring mathematics developed in
Portugal to a global audience,” CIM President Alberto Adrego Pinto said at the time
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x Preface

of the announcement, “and will help strengthen our contacts with the international
mathematics community.”

These first two volumes in the series, consisting of review articles selected
from work presented at the “Mathematics of Energy and Climate Change” and
“Dynamics, Games, and Science” conferences, reflect the CIM’s international
reach and standing. Firstly, they are characterized by an impressive roster of
mathematicians and researchers from across the United States, Brazil, Portugal, and
several other countries whose work will be included in the volumes.

The authors are complemented by the editorial board responsible for this first
installment, a world-renowned “quartet” consisting of: president of the European
Research Council Jean-Pierre Bourguignon from the École Polytechnique; former
Société Mathématiques Suisse and European Mathematical Society president Rolf
Jeltsch from the ETH Zurich; current Sociedade Brasileira de Matemática president
Marcelo Viana from Brazil’s Instituto Nacional de Matemática Pura e Aplicada; and
CIM president Alberto Adrego Pinto from the Universidade do Porto.

While the MPE program was a major focus of the CIM’s activities in 2013,
the center also organized a number of further events aimed at fostering closer ties
and collaboration between mathematicians and other scientists, mainly in Portugal
and other Portuguese-speaking countries. In this context the CIM held the 92nd
European Study Group with Industry meeting, part of a vital series held throughout
Europe to encourage and strengthen the connections between mathematics and
industry. As the MPE program made clear, humanity faces all manner of challenges,
both man-made and natural, and though industry is attempting to overcome them,
in many cases mathematics and science are far better suited to the task. Yet it is
often industry that delivers the kinds of innovative ideas that will launch the next
great scientific and technological revolutions, and which academia must adapt to.
The potential for dialogue and cooperation between academia and industry is in fact
so great that I have now made it one of the core initiatives in my presidency of the
US-based Society for Industrial and Applied Mathematics (SIAM).

As we look back at the successful year the CIM had in 2013, we should also
bear in mind the dramatic changes currently taking place in the world, changes that
above all the mathematical sciences—including statistics, operational research, and
computer science—will be called upon to address. Foremost among them is the
rise of Big Data, especially as it relates to national security, finance, medicine, and
the Internet (among other fields), which has come to dominate research in many
scientific sectors and requires new analytical tools, which mathematics can provide.
This new landscape will require an unparalleled level of partnership between science
and industry, and is what prompted the European Commission to recently announce
its Europe 2020 Growth Strategy, which calls for investment in groundbreaking
research, innovation in industry, and the cultivation of a new generation of scientists.
It is no coincidence that these three pillars are at the core of the CIM’s own mission,
and the CIM series in Mathematical Sciences will provide the ideal platform for
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communicating and broadening the impact of the CIM’s activities with regard to
these global challenges.

President of CIM Scientific Council Irene Fonseca
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Max-Stability at Work (or Not): Estimating
Return Levels for Daily Rainfall Data

Maria Isabel Fraga Alves

Abstract When we are dealing with meteorological data, usually one is interested
in the analysis of maximal observations and records over time, since these entail
negative consequences—risk events. Extreme Value Theory has proved to be a
powerful and useful tool to describe situations that may have a significant impact in
many application areas, where knowledge of the behavior of the tail of a distribution
is of main interest. The classical Gnedenko theorem establishes that there are three
type of possible limit max-stable distributions for maxima of blocks of independent
and identically distributed (iid) observations. However, for the types of data to which
extreme value models are commonly applied, temporal independence is usually
an unrealistic assumption and one could ask about the appropriateness of max-
stable models. Luckily, stationary and weekly dependent series follow the same
distributional limit laws as those of independent series, although with parameters
affected by dependence. For rainfall data, we will play with these results, analyzing
max-stability at work for rare events estimation and the real impact of “neglecting”
iid property.

1 Introduction

When we are dealing with meteorological data there are two situations that matter
to differentiate: the case of data concentrated around the average, with no disastrous
consequences for the society; on the other hand, the case of data away from
the center of the distribution, that can have a very negative impact and which
is important to quantify. Typically, one is interested in the analysis of maximal
observations and records over time, since these entail negative consequences. The
rainfall is a good example of this: the engineering structures associated with
extremal precipitation levels, need to be constructed to withstand the extremal
behavior of this process; for example, a reservoir must be able to store the amount
of rain expected to fall in some specific location.

M.I. Fraga Alves (�)
DEIO and CEAUL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
e-mail: mialves@fc.ul.pt

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Mathematics of Energy and Climate Change,
CIM Series in Mathematical Sciences 2, DOI 10.1007/978-3-319-16121-1_1
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2 M.I. Fraga Alves

Extreme Value Theory (EVT) is the theory of modeling and measuring events
which occur with very small probability, which has proved to be a powerful and
useful tool to describe atypical situations that may have a significant impact in many
application areas, where knowledge of the behavior of the tail of a distribution is of
main interest. The classical result is Gnedenko’s theorem [2]. It establishes that there
are three types of possible limiting distributions (max-stable) for maxima of blocks
of observations, which are unified in a single representation—the Generalized
Extreme Value (GEV) distribution.

For rainfall data in Barcelos, we will play with max-stability and some statistical
parametric model approaches to estimate p-return levels associated with T D 1=p-
year return periods, for p small.

2 Preliminaries

In this section some preliminary concepts are presented. Denote by F the distribu-
tion function (DF) underlying the data under study and F its generalized inverse,
defined as F .y/ WD inffx W F.x/ � yg. Typical design values are:

Definition 1 (T-year Return Level: uT) A value which is exceeded once in a year
with a probability 1=T

uT D F .1 � 1=T/ : (1)

Definition 2 (uT-Return Period: T) Average number of years between occur-
rences of an event of magnitude greater than a predefined high level uT

T D 1

PŒX > uT �
: (2)

If in (1) the value 1=T DW p is very small, say p < 1=n, with n denoting the available
sample size, then we are dealing with high or extreme quantiles and it is crucial to
model rare events.

We cannot simply assume that these atypical values are impossible. Design levels
correspond to return periods of 100 years or more and the empirical cumulative
distribution function (ECDF) is not enough for making statistical inference!

2.1 Daily Rainfall in Barcelos 1932–2008

Daily Rainfall in Barcelos 1932–2008 The following data is freely available
from www.snirh.pt and has also been analyzed in [4, 5], including high quantiles
estimation for monthly maxima (Fig. 1). The data analysis here and along the text
was done using R package (see [6]).

www.snirh.pt
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Fig. 1 Daily rainfall in Barcelos 1932–2008

Fig. 2 ECDF and ‘zoom’ of ECDF for daily rainfall in Barcelos; qT denotes qT WD 1 � pT D
1� 1

365�T

If we make ‘zoom’ of the ECDF for daily rainfall in Barcelos (see Fig. 2), and aim
to estimate the 100-year return level, the best we can do with the ECDF is giving
the sample maximum, and the same applies to any T-year return level, with T > 75.
Consequently, extrapolation is required.

3 “Annual” Maxima Approach or Gumbel Method

EVT provides limit laws for an extrapolation beyond the sample. The classical
result is Gnedenko’s theorem (see [2]), which establishes that there are three types
of possible limiting max-stable distributions for maxima, Mn, of blocks of n iid
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observations with common DF F, which are unified in a single representation—the
GEV distribution

G� .x/ D exp
n
� Œ1C �x��1=�C

o
; � 2 R: (3)

[notation: xC WD max.0; x/]. That is, if there are sequences an > 0 e bn, such that

P
h

Mn�bn
an

� x
i

�! G.x/, as n ! 1, for some non-degenerated DF G, then G is of

the same type of G� .x/ and we say that F belongs to the max-domain of attraction
of G� [notation:F 2 D.G� / ].

A property associated with the limit distribution is the max-stability.

Definition 3 (Max-Stability) A DF G is max-stable if there are real constants
Ak > 0 e Bk such that

Gk.x/ D G.Akx C Bk/; for all k :

It is important to note that if there is a limit distribution for the linearly normalized
maximum, then that limit distribution must be max-stable. This means that if G
corresponds to the GEV DF for some location/scale parameters �=ı, G.�/ �
G� .�I�; ı/, then Gk is also a GEV distribution with the same shape � and for some
other location/scale associated parameters �k=ık, Gk.�/ � G� .�I�k; ık/. In other
words, taking powers of G results only in a change of location and scale. In fact,
suppose that � ¤ 0,

Gk.x/ D
 

exp

(
�
�
1C �

�
x � �

ı

���1=�)!k

D exp

(
�k

�
1C �

�
x � �

ı

���1=�)

D exp

(
�
�
1C �

�
x � �k

ık

���1=�)
;

where

�k WD � � ı

�
.1 � k� / and ık WD ı k� :

The case Gumbel, � D 0, is similar.
Consider the available data—daily rainfall in Barcelos 1932–2008—divided in

m blocks, usually years, and pick up the maximum in each block (Fig. 3).
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Fig. 3 Blocks of years, daily data and annual maxima (left); annual maxima (right)

With real � and positive ı standing for location and scale parameters, fit
G� .xI�; ı/ WD G� ..x � �/=ı/ to the annual maximum Y WD max.X1;X2; � � � ;Xn/,
with an available sample of m annual maxima Y1;Y2; � � � ;Ym, considered iid, and
proceed with � estimation and also location of location and scale parameters .�; ı/.
Afterwards, input . O�; O�; Oı/ for rare events estimation, associated to GEV fit for Y in
the:

• Return period for level u, Tu D 1

1 � G� .uI�; ı/ ,
• T-year return level, u � uT D G �

�
1 � 1

T I�; ı�.
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4 Weak Dependence in Stationary Sequences

Extreme value models were obtained through mathematical arguments that assume
an underlying process consisting of a sequence of independent random variables.
However, and as Coles refers in [1], for many types of data to which extreme value
models are commonly applied, temporal independence is usually an unrealistic
assumption and one could ask about the appropriateness of max-stable models.
Stationarity, which is a more realistic assumption for many physical processes,
corresponds to a series whose variables may be mutually dependent, but whose
stochastic properties are homogeneous through time. It is usual to assume a
condition that limits the extent of long-range dependence at extreme levels, so that
the events Xi > u and Xj > u are approximately independent, provided u is high
enough, and time points i and j have a large separation. Loosely speaking, extreme
events are close to independent at times that are far enough apart. Many stationary
series satisfy this property and it is a property that is often plausible for physical
processes. For example, knowledge that it rained heavily today might influence the
probability of extreme rainfall in one or two days, but not for a specified day in, for
instance, three months time (see [1]).

What about the suitability of max-stable models in his case? Provided a series
has limited long-range dependence at extreme levels, maxima of stationary series
follow the same distributional limit laws as those of independent series. However,
the parameters of the limit distribution are affected by the dependence in the series.

Let X1;X2; � � � be a stationary process and X�1 ;X�2 ; � � � be a sequence of indepen-
dent variables with the same marginal distribution. Denote Mn D maxfX1; : : : ;Xng
and M�n D maxfX�1 ; : : : ;X�n g.

Under suitable regularity conditions, P
h

M�

n �bn

an
� x

i
�! G1.x/, as n ! 1,

for some non-degenerated DF G1, with real sequences an > 0 e bn, if and only if

P
h

Mn�bn
an

� x
i

�! G2.x/, where

G2.x/ D G�
1.x/; for a constant � 2 .0; 1� :

The constant � is designated as extremal index and the independence case corre-
sponds to � D 1. Notice that if G1 is a GEV distribution, so is G2, by max-stability.
Moreover, if G1 is GEV with shape � and location/scale �=ı then G2 is GEV with
the same shape � and location and scale �� WD � � ı

�
.1 � �� / and ı� WD ı �� .

The Barcelos Rain Case Study In Fig. 4 it is represented the autocorrelation
function (ACF) for daily and annual maxima of daily rainfall records, which
highlights the absence of a significative dependence for the latter. We should
also mention that the tendency is not significative, which was concluded from a
preliminary statistical test study.

In Fig. 5 (right) it is represented the autocorrelation function (ACF) for very
high daily rainfall records, exceeding u D 42mm (left), which corresponds to the
minimum of annual maxima; this seems to reveal that the events Xi > u and Xj > u
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Fig. 4 ACF for daily rainfall (left) and for annual maxima (center) [R-package]; annual maxima
(right)

Fig. 5 Daily rainfall exceeding u D 42mm (left) and respective ACF (right) [R-package]

are approximately independent, provided u is high enough, and instants i and j are
far apart.

5 TOP Annual Approach: Ten Largest Observations per
Year

Consider now the ten largest observations per year (see Fig. 6). The TOP annual
approach relies on a convenient parametric model underlying the sample of the r
largest observations, picked up for the m years.

Consider the limit joint model for r top order statistics (o.s.), r fixed, with joint
limit density function

g1;��� ;r.w1; � � � ;wr/ WD G� .wr/

rY
iD1

g�.wi/

G� .wi/
; for w1 > � � � > wr ; (4)
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Fig. 6 Blocks of years, daily data and ten top observations per year

Table 1 Parameters estimated by GEV fit to annual maximum, by TO approach, with r D 1

(Gumbel method), r D 5 and r D 10 and 100-year return level estimates

# TO O� O� Oı rl 100-year

r D 1 �0.030 65.19 16.00 133.867

r D 5 0.013 66.38 15.60 140.265

r D 10 0.005 66.95 15.04 136.880

[R-library(ismev)]

with g� .w/ WD @G�
@w .w/. In statistical inference for rare events, a possible approach

is to model the top observations (TO) available from the sample with that joint
structure. More precisely, F 2 D.G/ for an > 0 and bn if the r-vector

�
XnWn � bn

an
; � � � ; Xn�rC1Wn � bn

an

�

has joint limit density function given in (4). In Table 1 the parameters and 100-year
return level Maximum Likelihood (ML) estimates are summarized.

6 Return Levels vs. Return Periods: Empirical
and Max-Stability

Inspired in [3], a graphical representation for the empirical Return Levels vs. Return
Periods for both data (days/years), on a compatible scale, is given. It allows dealing
with point-in-time and extreme-value distributions at the same time. Consider an
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empirical graphical representation of .T; uT/,

T D 1

1 � FY.uT/
; with Y annual maximum;

with the DF FY replaced by its counterpart, ECDF:

• black dots—correspond to . OTY
rescaled; yiWny/, with

OTY
rescaled D n

1 � Fny.yiWny/
;

the rescaled empirical return period, in days, where:

– Fny.yiWny/ D i
nyC1 ; i D 1; : : : ; ny

is the ECDF for the annual maxima sample of size ny, fyigny

iD1,
– ny D 75 is the number of year-periods available
– Rescaled according to n D 365, the number of days in one year-period.

• grey dots—correspond to . OTd; xjWnd /, with X the daily rainfall, where

OTd D 1

1� Fnd.xjWnd /
;

is the empirical return period, in days, where:

– Fnd.xjWnd / D j
ndC1 ; j D 1; : : : ; nd

is the ECDF for the daily rainfall sample of size nd, fxjgnd
jD1,

– nd D 27;570 is the number of days for the available rainfall data.

Mínguez et al. provide in [3] a similar graphical representation to plot both
distributions on a compatible scale of hours/years. In the Fig. 7 it is depicted the
referred graphical representation, adapted to the present case of scale days/years.
Note that the true abscissas axis units are days, where the ticks have been rescaled
to years.

Consider now a random variable Y WD maxi Xi, with fXign
iD1 an iid sample of X

with DF F. Then the DF of Y, FY , is identified with FY D Fn. Supported by EVT,
we fit the GEV(� I�; ı) to Y, which means that the following approximation holds,

Fn.x/ � G� .xI�; ı/ D exp

"
�
�
1C �

x � �
ı

��1=�
C

#
:

On the other hand, by max-stability it is possible to approximate the DF of X by a

GEV model, F.x/ � �
G� .xI�; ı/�1=n � G� .xI�d; ıd/, with different location/scale
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Fig. 7 Scatter plot of . OTY
rescaled; yiWny/, ny D 75, and . OTd ; xjWnd/, nd D 27;570

parameters, .�d; ıd/. That is,

F.x/ � exp

"
�
�
1C �

x � �d

ıd

��1=�
C

#
; with

(
�d WD � � ı

�
.1 � n�� /

ıd WD ın��
:

(5)
Consequently, the respective return periods will be approximated as

TY WD 1

1 � FY.x/
,! TY � 1

1� G� .xI�; ı/ ;

Td WD 1

1 � F.x/
,! Td � 1

1 � G� .xI�d; ıd/
;

and the rescaled return period, for compatible scale representation, is

TY
rescaled WD n

1 � FY.x/
,! TY

rescaled � n

1 � G� .xI�; ı/ :
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Fig. 8 r D 1: approximations for TD 100-years and TD 100-months return levels, supported by
annual-maxima fit [above the straight line] and by max-stability [below straight line]; the solid
line corresponds to annual-maxima fit and the dashed line to fit by max-stability

In Fig. 8, and for the Gumbel method approach (r D 1), approximations are
plotted for:

• T D 100-years return level,

uT � G O�
�
1 � 1

100
I O�; Oı

	
D 133:87 [annual-maxima fit]

uT � G O�
�
1 � 1

100�365 I O�d; Oıd

	
D 133:94 [max-stability]

• T D 100-months return level,

uT � G O�
�
1 � 1

.100=12/
I O�; Oı

	
D 97:09 [annual-maxima fit]

uT � G O�
�
1 � 1

100�30 I O�d; Oıd

	
D 97:83 [max-stability]

Figure 9 is similar to Fig. 8 for top observations approach, with r D 5 and r D 10.
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Fig. 9 Approximations for TD 100-years and TD 100-months return levels, supported by
annual-maxima fit [above the straight line] and by max-stability [below straight line]; the solid line
corresponds to annual-maxima fit and the dashed line to fit by max-stability, by top observations
approach with r D 5 [up] and r D 10 [down]
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It looks like as, for large return levels, the graphics of approximations of Td and
TY

rescaled, respectively, QTd (dashed line) and QTY
rescaled (solid line) are similar; that is,

1

1� G� .xI�d; ıd/
� n

1 � G� .xI�; ı/ ; as x ! xF; xF WD right endpoint of F:

This is easily supported by the following: from max-stability

G� .xI�d; ıd/ D 

G� .xI�; ı/�1=n I

consequently,

log G� .xI�d; ıd/ D 1

n
log G� .xI�; ı/

and, as x ! xF ,

n D log G� .xI�; ı/
log G� .xI�d; ıd/

D logŒ1 � .1 � G� .xI�; ı//�
logŒ1 � .1 � G� .xI�d; ıd//�

� 1 � G� .xI�; ı/
1 � G� .xI�d; ıd/

;

where the last approximation comes from log.1 � z/ � z for z ! 0.
All in all, we conclude that, for large return levels,

1

1 � G� .xI�d; ıd/
� n

1 � G� .xI�; ı/ ;

that is,

QTd � QTY
rescaled as x ! xF :

It is also worth mentioning that for small return levels the dashed line of QTd is not
far from its empirical counterpart OTd, the best approximation obtained with r D 10

top observations fit.

7 Final Comments

The article deals with the estimation of return levels for daily rainfall data together
with the impact of neglecting the usual assumed hypothesis of independence and
identical distribution of the observed data. Moreover, although studied by other
authors, the Barcelos data set is used here for comparing procedures of analysis
in extreme value theory, mainly investigating how the property of max-stability
really works in practice. In this respect, it should be emphasized the closeness of
the dashed lines of Figs. 8 and 9, built on results of Eq. (5) and arising from the
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property max-stability, to the grey daily scatter plots of empirical return periods; in
a certain sense, and in this example, it seems that max-stability is at work.
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Impacts of Vaccination and Behavior Change
in the Optimal Intervention Strategy
for Controlling the Transmission of Tuberculosis

Temesgen Debas Aweke and Semu Mitiku Kassa

Abstract A dynamical model of TB for two age groups that incorporate vaccina-
tion of children at birth, behavior change in adult population, treatment of infectious
children and adults is formulated and analyzed. Three types of control measures
(vaccination, behavior change and anti-TB treatment strategies) are applied with
separate rate for children and adults to analyze the solution of the controlled system
by using the concept of optimal control theory. It is indicated that vaccination at
birth and treatment for both age groups have impact in reducing the value of the
reproduction number (Ro) whereas behavior modification does not have any impact
on Ro. Pontryagin’s Minimum Principle has been used to characterize the optimal
level of controls applied on the model. It is shown that the optimal combination
strategy of vaccination, behavior change and treatment for the two age groups can
help to reduce the disease epidemic with minimum cost of interventions, in shorter
possible time.

1 Introduction

Tuberculosis (TB) is an air born bacterial infectious disease caused mainly by
Mycobacterium Tuberculosis which frequently affects the lungs (pulmonary TB)
in addition to other organs of the body. The infection of tuberculosis begins when
a person inhales infected bacilli that are released from the lungs of an infected
person. Two to three weeks after infection the immune system forms tubercles
that contains the mycobacteria. Ninety percent of the infections stop here and lay
dormant (for an indefinite period of time) possibly never going on to be a detectable
active disease[15]. But, some people may develop the disease soon after infection
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if they have weak immune system (infants and people who have other disease
such as HIV/AIDS). If the bacteria do not lay dormant, the bacteria continue to
grow until the tubercles invade other portions of the lung and active tuberculosis
begins. Mortality rate can be reduced by taking different anti-TB drugs (such as
Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and Streptomycin [20]) either
in combination or independently after the diagnosis tests such as; microscopic
examination of sputum smears, TB skin test, chest x-ray and others. Vaccinating
infants and educating susceptible individuals to bring behavior change will help
from contracting the disease.

Despite the availability of highly efficacious treatment for decades, TB remains a
major global health problem. In 2011, there were an estimated 8.7 million incident
cases of TB globally, equivalent to 125 cases per 100,000 population [1]. Due to
difficulty of TB diagnosis in children, estimating the burden of TB in children is
difficult. Of the 8.7 million incident cases, an estimated 0.5 million were children[1].
The best estimate for the same year is 0.9 million deaths and out of which 64,000
were children [1]. In 2011, there were an estimated 0.22 million incident cases of
TB in Ethiopia, which is equivalent to 258 cases per 100,000 population [3, 6]. The
best estimate for mortality were 0.15 million among HIV-positive people.

Even if there are big debates concerning efficacy of the vaccine, there is still a
vaccine for TB. In line with this, various models have been formulated to assess
the impact of vaccination in preventing the spread of TB. Lietman and Blower [13],
studied two tuberculosis models to predict the impact of pre-exposure and post-
exposure vaccines. Their result stated that pre-exposure vaccine are necessary to
prevent a substantial increase in new infections and may be effective in disease erad-
ication compared to post-exposure vaccines. Bekele [2] indicated that vaccination
at birth plays a great role in reducing children new incidence cases and the number
of deaths caused by TB. He also indicated that waning effect of the vaccine and
its effectiveness are the determinant factors in the dynamics. Gaff and Schaefer [8]
also analyzed the impacts of vaccination to control the transmission of infectious
disease. They formulated an optimal control problem that incorporates vaccination
and treatment as an intervention mechanism. They concluded that vaccination is
an important mechanism in the presence of treatment to eradicate an epidemic.
All these authors didn’t analyze the role of individuals behavior change about the
general happening of the disease to control an epidemic.

People of developing countries like Ethiopia have a chance to be exposed to
infectious diseases such as TB in more crowded areas such as public transportation,
prisons and refugee camps. In addition to this, large family members in rural areas
in which one of the members is infected with TB bacteria may be considered
as risky environment. From such risky environment Mycobacterium tuberculosis
(MTB) has a chance to be transmitted from infectious to susceptible people through
coughing or sneezing as well as from a contact with sputum of a TB patient. But
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to minimize the chance of getting TB bacteria the following measures or actions
may be taken as control interventions: opening windows of public transportation
vehicles while in use; if there is a family member or a friend in a refugee camp who
has been coughing for the last two weeks should be advised to go to a health center
for diagnosis; if one of their family member is infectious, then separate his/her
nutritional materials and use gloves to handle his/her sputum; and wearing mask
is also another self-protective mechanism that can help individuals from contracting
disease. Most individuals of the population are not well informed or convinced about
transmission and control mechanisms of TB. If most individuals get a qualified
information about the disease in the above risk environments, then they may protect
themselves from infection by applying the above self-protective mechanisms. Some
individuals in the population start applying self-protective measures once they have
a first hand experience of the disease. Some other individuals try to apply self-
initiated measures based on concrete information they got from different sources
such as radio and television programs, from written materials and Internet, from
expertise and from people that have infection experience. The mechanism from
media depends on the quality of the campaign or public effort to bring more
impact and expenditure in the dissemination of the information. Since the behavior
of individuals may not change easily, preventive measures with behavior change
require a huge effort and investment from health sectors, from government and non-
governmental organizations in preventing the disease.

Many existing models are based on the assumption that the behavior of indi-
viduals to protect themselves against an infectious disease remains constant or
unchanged in the course of the outbreak. But in practice, if individuals have got
concrete or qualified information about transmission and control methods of the
disease, they will start to apply any of the existing self-protective measures. This
will help susceptible individuals to reduce the average number of contacts with
infectious individuals. This decreases the incidence rate of the disease. Therefore,
analyzing the role of behavior modification for controlling the transmission of
infectious disease like TB is very important. Kassa and Ouhinou [11] formulated
a mathematical model of infectious disease epidemic that incorporates behavior
change and treatment. They have shown that their mathematical model can portray
the way how the population reacts to an increase in prevalence in the course of an
outbreak and how one can plan medical treatment to control disease epidemics. In
their analysis, they indicated that behavior modification by society plays an impor-
tant role in controlling an epidemic, even when some pharmaceutical treatments
are being given to the infected ones. If children get BCG vaccine at birth, the
probability of getting the disease is lower than non-vaccinated children. Therefore,
including these compartments or class of population provide a great significance in
the dynamics. In addition to this, some sectors of the population such as children
may not be able to learn and hence change their behavior. Therefore, it is necessary
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to classify the population into children and adults. But these authors didn’t include
vaccination into their mathematical model to analyze its role and also they didn’t
classify the population according to their age.

To analyze the role of public health measures and to plan effective control
mechanisms for eradication of TB epidemic, it is very important to explore the
contribution of vaccination at birth and behavior modification of adults against TB.
Therefore, in this paper we incorporate vaccination at birth, behavior modification
for susceptible adults as well as treatment of infectious individuals for the two age
groups into a dynamical model of TB. Using this model we investigate the dynamics
of an epidemic and also apply optimal control theory to propose cost effective public
health intervention strategy to control the spread of TB disease.

The paper is organized as follows, in Sect. 2 we describe and formulate the
mathematical model consisting of a system of ordinary differential equations that
describe the impact of vaccination, behavior change modification when treatment
is also considered as a possible intervention mechanism for two age groups. The
mathematical analysis of the model is discussed in Sect. 3. Formulation of optimal
control problems in the presence of four control parameters is discussed in Sect. 4.
In this section the existence of optimal control solutions is also analyzed. Section 5
is about numerical simulation and results. We conclude the paper with a discussion
in the last section.

2 Mathematical Models with Vaccination, Behavior Change
and Treatment

Since TB dynamics in different age groups vary irrespective of the setting, age
consideration may be taken into account when modeling biological systems and
diseases such as tuberculosis (TB). Due to this, we classify the total population
into children whose age is less than 15 years old and adults whose age is greater
than or equal to 15 years old. We represent total birth rate by � , natural rate of
mortality for children and adults by �c; �a respectively whereas dc; da represent the
tuberculosis induced death rates of children and adults per capita. Bacillus Calmette-
Guerin (BCG) vaccination at birth may not protect the infection 100% due to the
quality of the vaccine and improper usage[2]. The failure of the vaccine may lead
children to join latently infected class of children. However, after a certain number
of years mostly 10–15 years, the vaccine is assumed to wane and we will have
susceptible adults [2]. If we add an educated compartment (E) into age dependent
model, it is possible to observe that individuals in educated class are exposed to
the infection with a rate smaller than other susceptible individuals. But recruitment
rate into educated class varies through time with respect to the lethality of the
disease. This recruitment function describes the learning effect of population which
can be measured indirectly by observing individuals behavior modification towards
exposedness to the disease [10, 11]. The total variable population N.t/ of children
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and adults age groups are subdivided into the following compartments: Vaccinated
children (Vc), non-vaccinated Susceptible children (Sc), Latently infected children
(Lc), Infectious children (Ic), Treated children (Tc), Susceptible adults (Sa), Educated
adults (E), Latently infected adults (La), Infectious adults (Ia) and Treated adults
(Ta). Vaccinated children become susceptible due to waning at the rate wc. We are
considering that a proportion r of new births per unit of time join the vaccinated
children population and the remaining (1-r) proportion per unit of time join the
susceptible children class who are not vaccinated. After exposure a proportion qc

shows slow progression to the latent stage while the remaining (1-qc) proportion
will join the infectious class of children. Due to improper usage and quality of
the vaccine used, we assume that the vaccine efficacy varies. Thus, if " measures
efficacy of the vaccine then, .1 � "/ measures the inefficacy of the vaccine in
preventing infection with 0 � " � 1. If a proportion qa of the infected adults
remain in the latent cohort while the remaining (1-qa) will join the infectious class
directly. The behavior function (e.t/) is described as a function of the prevalence
p.t/ of the disease as is used in [10]. At the beginning of the outbreak, people
understand very little about the disease and the reaction could be almost inexistent
and at high prevalence, susceptible individuals will apply any of the available self
protective measures and change their behavior. This implies that e. p D 0%/ D 0

and e. p D 100%/ D 1. Therefore,

e. p/ D pn

pn� C pn
or equivalently e.t/ D .Ic C Ia/

n

Nnpn� C .Ic C Ia/n
;

where p� is the prevalence producing half of the maximum behavioral change value,
with p D IcCIa

N , n is a hill coefficient that portrays the rate of reaction by the
population [10]. If we denote by ˛ the mean rate at which susceptible individuals
get persuaded and recruited into the educated class per unit of time, ˛e will give
us the actual recruitment rate to the cohort of educated class from the susceptible
class. However, every protective measure may not be absolutely effective due to the
choice of different measures taken by the population with varying coefficients of
effectiveness. If we denote the average effectiveness of all existing self-protective
measures for the disease by � , then 1 � � will measure the average failure of
self-protective actions. Latently infected children may progress to actively infected
children class through endogenous reactivation with rate bc or reinfection with rate
kc. Similarly latently infected adults may progress to actively infected adult class
through reactivation with rate ba or reinfection with a rate ka. Recruitment for
children from infectious class to treatment class is assumed to be ı and treatment
rate for adults or rate of recruitment for adults from infectious class to treatment
group is assumed to be � . After the end of effective treatment it is assumed that,
treated children will join the latent class of children at the rate of 	 and treated
adults will join latent class of adult at the rate of 
 .
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Thus, the dynamics of the TB model can be described by the following
deterministic system of nonlinear ODE:

PVc D r� � .1 � "/�Vc � A1Vc
PSc D .1 � r/� C wcVc � .A2 C �/Sc
PLc D .1 � "/�Vc � .A3 C kc�/Lc C qc�Sc C 	Tc
PIc D .1 � qc/�Sc C .bc C kc�/Lc � .A7 C ı/Ic
PTc D ıIc � .A2 C 	/Tc
PSa D f1Vc C f1Sc � ˛eSa � .�a C �/Sa
PE D ˛eSa � �aE � .1 � �/�E

PLa D f1Lc C qa�Sa C .1 � �/�E � .A5 C ka�/La C 
Ta
PIa D f1Ic C .1 � qa/�Sa C .ba C ka�/La � .A8 C �/Ia
PTa D �Ia C f1Tc � .�a C 
/Ta

; (1)

where

Px.t/ D dx
dt ;

A1 D f1 C wc C �c; A2 D f1 C �c; A3 D bc C f1 C �c;

A4 D f1 C �c C dc C ı; A5 D ba C �a; A6 D �a C da C �;

A7 D f1 C �c C dc; A8 D �a C da; A9 D f1 C �c C 	

N.t/ D Vc.t/C Sc.t/C Lc.t/C Ic.t/C Tc.t/C Sa.t/C E.t/C La.t/C Ia.t/C Ta.t/
PN.t/ D � � �cNc � �aNa � Icdc � Iada

(2)

To prove boundedness, from (2) the rate of total population can be expressed as:

PN D PVc C PSc C PLc C PIc C PTc C PSa C PE C PLa C PIa C PTa

PN D � � �c.Vc C Sc C Lc C Ic C Tc/ � �a.Sa C E C La C Ia C Ta/

�Icdc � Iada

PN D � � �cNc � �aNa � .Icdc C Iada/ ) PN � � � �cNc � �aNa

PN � � � �.Nc C Na/ ) PN � � � �N where � D minf�c; �ag
Therefore, PN � � � �N:

;

(3)
when we solve this first order linear differential equation, we get

N.t/ � �
�

C e��t.N.0/� �
�
/: Since e��t � 1; for t � 0:

If N.0/ � �
�
; then N.t/ � �

�
for t � 0:
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Thus, the total population is bounded above by �
�

. By assuming that infectious
classes have the same level of infectivity, the force of infection is given by � D
cˇ
N .Ic C Ia/. Thus the system in (1) is biologically feasible in the region

˝ D
�
.Vc; Sc;Lc; Ic;Tc; Sa;E;La; Ia;Ta/ 2 R10

C
W Vc C Sc C Lc

CIc C Tc C Sa C E C La C Ia C Ta � �

�


:

3 Mathematical Analysis

3.1 Equilibrium Points

Solving system (1) simultaneously when the time derivatives are equal to zero gives
an expression of the equilibrium points.

� PVc D r� � .1 � "/�Vc � A1Vc D 0 ) V�c D r�
A1C.1�"/��

� PSc D .1� r/� C wcVc � .A2 C �/Sc D 0

) S�c D 1
A2C��

Œ.1 � r/� C wcV�c � D .1�r/�.A1C.1�"/��/Cwcr�
.A1C.1�"/��/.A2C��/

� PLc D .1 � "/�Vc C qc�Sc � .A3 C kc�/Lc C 	Tc D 0

) L�c D 1
A3Ckc��

Œ.1 � "/��V�c C qc�
�S�c C 	T�c �

� PIc D .1 � qc/�Sc C .bc C kc�/Lc � .A7 C ı/Ic D 0

) I�c D 1
.A7Cı/ Œ.1 � qc/�

�S�c C .bc C kc�
�/L�c �

� PTc D ıIc � .A2 C 	/Tc D 0 ) T�c D ı
.A2C	/ I

�
c

� PSa D f1Vc C f1Sc � ˛eSa � .�a C �/Sa D 0

) S�a D 1
˛eC�aC��

Œ f1V�c C f1S�c � Since e D �n

�n
0C�n

then S�a D . f1V
�
c C f1S

�
c /Œ.�0/

n C .��/n�
˛.��/nC .�a C ��/Œ.�0/n C .��/n� :

� PE D ˛eSa � .�a C .1 � �/�/E D 0 ) E� D 1
�aC.1��/��

˛eS�a
) E� D ˛.��/nS�

a

.�a C .1 � �/��/Œ.�0/n C .��/n�
� PIa D f1Ic C .1 � �/�E C .ba C ka�/La C .1 � qa/�Sa � .A8 C �/Ia D 0

) I�a D 1
.A8C�/ Œ f1I

�
c C .1 � �/.1 � �/��E� C .1 � qa/�

�S�a C .ba C ka�
�/L�a �

� PLa D f1Lc C .1 � �/�E C qa�Sa � .A5 C ka�/La C 
Ta D 0

) L�a D 1
A5Cka��

Œ f1L�c C �.1� �/��E� C qa�
�S�a C 
T�a �

� PTa D �Ia C f1Tc � .�a C 
/Ta D 0 ) T�a D 1
�aC
 Œ�I�a C f1T�c �:

Let the population in each class at the steady state be denoted by V�c ; S�c ;
L�c ; I�C , T�c ; S�a , E�;L�a ; I�a and T�a . Then the corresponding force of infection is
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any of the non-negative roots, �� D cˇ
N�
.I�c C I�a / of the above system. Since the

mathematical model we have considered have ten compartments and the transitions
from one compartment to other compartments are nonlinear, it is difficult to get
an explicit expression of the components of the endemic equilibrium point. If
we set �� D 0 in the system, we will get the disease free equilibrium point
E0 D .VD

c ; S
D
c ;L

D
c ; I

D
C ;T

D
c ; S

D
a ;E

D;LD
a ; I

D
a ;T

D
a /, where VD

c D 1
A1

r� , SD
c D 1

A1A2
Œ.1 �

r/�A1 C wcr��, LD
c D 0, ID

c D 0, TD
c D 0, ED D 0, ID

a D 0, LD
a D 0, TD

a D 0,
SD

a D � f1
A1A2�a

Œr.A2 C wc/C A1.1 � r/�.

3.1.1 Reproduction Number

Definition 1 The basic reproduction number, basic reproduction ratio or basic
reproductive rate is defined as the average number of secondary infections that occur
when one infective is introduced into a completely susceptible host population [14].

We calculate the basic reproduction ratio (number), R0, using the van den
Driessche and Watmough next generation matrix approach from [16] to get

R0 D RVc C RSc C RSa ; (4)

where

RVc D Œ
A5bc. f1 C .A8 C �//C f1ba.A7 C ı/

A3A5.A7 C ı/.A8 C �/
�
.1 � "/cˇ

N0

VD
C ;

RSc D f
ŒbcA5. f1 C .A8 C �//C f1ba.A7 C ı/�qc

C.A3A5. f1 C A8 C �//.1 � qc/

A3A5.A7 C ı/.A8 C �/
g cˇ

N0

SD
c (5)

RSa D .
baqa C A5.1 � qa/

A5.A8 C �/
/

cˇ

N0

SD
a ;

where N0 D VD
c CSD

c CLD
c CID

c CTD
c CSD

a CED CID
a CLD

a CTD
a , and RVc ;RSc , RSa

are the contributions from vaccinated children, susceptible children, and susceptible
adults respectively.

3.2 Stability of Disease Free Equilibrium

To analyze local stability of disease free equilibrium, let us consider the following
points from [16] by writing our system of Eq. (1) as Pxi D fi.x/ D Fi.x/�Vi.x/; i D
1; 2; 3; : : : ; 10, where x D .x1; x2; x3; : : : ; xn/ with each xi � 0, representing the
number of individuals in each compartment. For clarity we sort the compartments
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so that the first m compartments correspond to infected individuals. Vi D V �i �
V Ci with the assumption that Fi.x/ is the rate of appearance of new infections in
compartment i, V Ci .x/ is the rate of transfer of individuals into compartment i by all
other means, and V �i .x/ is the rate of transfer of individuals out of compartment i.

A1. Since each function Fi;V
�

i , and V Ci represents the transfer of individuals,
they are all non-negative. This implies that if x � 0, then Fi;V

�
i ;V

C
i � 0 for

i D 1; 2; 3; : : : ; 10.
A2. If a compartment is empty, then there can be no transfer of individuals out

of the compartment by death, infection, or any other means. Thus, if xi D 0 then
V �i D 0.

A3. The incidence of infection for uninfected compartments is zero. Thus,
Fi D 0 for i > m D 4.

A4. The disease free subspace is invariant. If x 2 Xs then Fi D 0 and V Ci D 0

for i D 1; 2; 3; 4, where Xs is the set of all disease free states i.e., Xs D fx �
0jxi D 0; i D 1; 2; : : : ;mg, for our system m D 4 since we have four infectious
classes.

A5. Disease free equilibrium (DFE) is stable in the absence of new infections.
That is, if Fi.x/ is set to be zero, then all eigenvalues of Df .E0/ have negative
real parts. From the calculation for Fi.x/ D 0, the eigenvalues of Df .E0/ are
�A1;�A2;�A3;�A5;�.A7 C ı/;�.A8 C �/;�.A2 C 	/;��a;�.�a C 
/ and
�.˛e C �a/ such that all of them are negative.

Therefore, we have the following theorem,

Theorem 1 Suppose the disease transmission model is given by (1) where f .x/
[right hand side of (1)] satisfy conditions (A1)–(A5). If E0 is a DFE of the model,
then E0 is locally asymptotically stable if R0 < 1 and unstable otherwise, where R0

is the reproduction number defined in (4).

Proof This is an immediate consequence of Theorem 2 in [16].

4 Formulation of the Control

The possible interventions for TB disease can be categorized as prevention with
vaccination, preventive education and treatment to the infected individuals. In this
paper we consider these interventions as control parameters.

(a) Vaccination: Increase the rate of vaccinating children at birth. Let the current
rate of vaccinating children at birth be r0 per unit of time for some r0 > 0

to protect children from infection and let also assume that the control function
u1.t/ measures the additional rate of recruitment of children for vaccination
per unit of time. The cost of vaccinating children becomes expensive as the
proportion of non-vaccinated children gets smaller. So, we can add a term
. Vc

Nc/
m as a coefficient for u21.t/ where Vc represents vaccinated children, Nc total
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population of children and m > 1 is any positive constant integer. Numerical
investigations suggested to take m D 10 for the best fit [8]. Therefore, we took
m D 10. Then its application in the dynamics is modeled by simply replacing
the term r in (1) by .r0Cu1.t//. Due to limitation of resources u1.t/ is restricted
to its maximum vaccination rate rmax > 0 or rmax is the maximum attainable
value of u1 at time t, where 0 � r0 C u1.t/ � 1.

(b) Preventive Education: Preventive mechanisms, here, are self-protective actions
an individual may apply due to the information he/she got from different
sources. By applying self-initiated protective measures an individual can reduce
the risk of contracting the disease. Let the current level of preventive education
campaigns by various agents have convinced up to 100 	 .˛0 	 e/% (for
some ˛0 > 0/ of population per unit of time to effectively participate in the
self protective schemes available to them. If more options of self-protective
measures are offered to the population, more individuals may decide to choose
and use at least one of the mechanisms. This is an effort made to keep
susceptible individuals from getting infection. On the other hand, we can
also educate infectious individuals who didn’t take part in any of the self-
protective actions about the disease to take the medicine properly until the end
of the specified time given by the health workers. (This will have an indirect
gain to the susceptible once; so we did not include this effect in the model.)
Assume that the control function u2.t/ measures the rate at which additional
susceptible individuals are convinced to take part in behavior modification.
Then its application in the dynamics is modeled by simply replacing the term
˛ in Eq. (1) by .˛0 C u2.t//. However, the cost of the effort in convincing the
population for behavior modification becomes expensive as the proportion of
the non-convinced susceptible individuals gets smaller [11]. So we can again
include the term . E

Na
/m as part of the coefficient for u22.t/ in the objective

function (8), where Na represents the total number of population of adults, and
E number of adult population in educated class. Because of practicality and
economic limitations on the maximum rate behavior modification, we assume
that ˛max > 0 is the maximum rate and 0 � ˛0 C u1.t/ � 1.

(c) Treatment of infected children and adults: Infectious children and adults can
be effectively treated within an average treatment period of 6 months [2],
provided they take the treatment properly. Assume that the control function
u3.t/ measures the rate at which additional infectious children are recruited
to treated class at any time t and u4.t/ measures the rate at which additional
infectious adults are recruited to treated class at any time t. If the current
percentage of treatment per unit of time for children is ı0 and �0 for adults,
this control will be seen in the dynamics as .ı0 C u3.t//Ic.t/ by replacing ıIc.t/
and .�0 C u4.t//Ia.t/ by replacing �Ia.t/ in (1). Due to economical and logistic
reasons, there are limitations on the maximum rate at which individuals are
recruited to get treatment at each time period. Thus, the constant ımax and �max

represent the maximum rate of recruitment for treatment of infected children
and adults respectively as well as 0 � ı0 C u1.t/ � 1 and 0 � �0 C u1.t/ � 1.
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When we include the above controls into our model, we will get the following
system of equations.

PVc D .r0 C u1.t//� � .1 � "/�Vc � A1Vc
PSc D .1 � r0 � u1.t//� C wcVc � .A2 C �/Sc
PLc D .1 � "/�Vc � .A3 C kc�/Lc C qc�Sc C 	Tc
PIc D .1 � qc/�Sc C .bc C kc�/Lc � A7Ic � .ı0 C u3.t//Ic
PTc D .ı0 C u3.t//Ic � A9Tc
PSa D f1Vc C f1Sc � .˛0 C u2.t//eSa � .�a C �/Sa
PE D .˛0 C u2.t//eSa � �aE � .1 � �/�E
PLa D f1Lc C qa�Sa C .1� �/�E � .A5 C ka�/La C 
Ta
PIa D f1Ic C .1 � qa/�Sa C .ba C ka�/La � A8Ia � .�0 C u4.t//Ia
PTa D .�0 C u4.t//Ia C f1Tc � .�a C 
/Ta;

(6)

where � D cˇ
N .Ic C Ia/;�r0 � u1.t/ � 1� r0;�˛0 � u2.t/ � 1�˛0;�ı0 � u3.t/ �

1 � ı0;��0 � u4.t/ � 1 � �0 for all t 2 Œ0; tf �.

4.1 Reproduction Number with Controls

By using the same technique as in Sect. 3.1.1, it is possible to calculate the basic
reproduction number from Eq. (6) in the presence of controls using the next
generation matrix. Hence,

R0.u/ D Rvc.u/C Rsc.u/C Rsa.u/; (7)

where

RVc.u/ D Œ
ba f1.ı0 C u3 C A7/C bcA5. f1 C A8 � .�0 C u4//

A3A5A8.A7 C ı0 C u3/
�
.1 � "/cˇ

N0

VD
c ;

RSc.u/ D f Œba f1.A7 C ı0 C u3/C bcA5. f1 C A8 C .�0 C u4//�qc

A3A5A8.A7 C ı0 C u3/

CA3A5. f1 C A8 � .�0 C u4//.1� qc/

A3A5A8.A7 C ı0 C u3/
g cˇ

N0

SD
c ;

RSa.u/ D .
baqa C A5.1 � qa/

A5A8
/

cˇ

N0

SD
a ;

which shows that vaccination and treatment have visible impact on the value of Ro.
With (6) and given initial population size of each compartment, our main goal is

to find or propose the best strategy in terms of either in combination or independent
efforts of vaccination, education and treatment that will minimize the costs of
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interventions. If we know the initial value population size and the control trajectory,
i.e., the values of u.t/ over the whole time interval 0 < t < T, then we can integrate
(6) to get the state trajectory over the same time interval. We want to choose the
control trajectory so that the state and control trajectories minimize the objective
function:

J.u1; u2; u3; u4/ D
Z tf

0

ŒC1Ic.t/C C2Ia.t/C B1
2
.

Vc

Nc
/mu21.t/C B2

2
.

E

Na
/mu22.t/

CB3
2

u23.t/C B4
2

u24.t/� dt (8)

where the constants C1, C2 and Bi; i D 1; 2; 3; 4 can be considered as values
that indicate the importance of one type of intervention over the other. C1Ic

and C2Ia represent the number of infectious children and adults respectively,
whereas the terms B1

2
. Vc

Nc
/mu21,

B2
2
. E

Na
/mu22,

B3
2

u23, and B4
2

u24 represent the costs of
vaccine, education and treatment for children and adults respectively. Since the
implementation of any public health intervention has increasing costs when a higher
fraction of the population is reached, we take a non-linear cost function like the
quadratic. So, we seek to find optimal controls u�1 ; u�2 ; u�3 ; u�4 such that

J.u�1 ; u�2 ; u�3 ; u�4 / D min
U

J.u1; u2; u3; u4/; (9)

where U D f.u1.t/; u2.t/; u3.t/; u3.t/; u4.t//ju1.t/; u2.t/; u3.t/; u4.t/g is the set of
Lebesgue integrable functions, with u1.t/ 2 Œ�r0; 1 � r0�, u2.t/ 2 Œ�˛0; 1 � ˛0�,
u3.t/ 2 Œ�ı0; 1 � ı0�, u4.t/ 2 Œ��0; 1 � �0�

4.1.1 Existence and Characterization of Optimal Control Solution

The first task will be to examine conditions that can assure the existence of a solution
to our optimal control problem.

Theorem 2 (Existence of Optimal Control Solution) There exists an optimal
control u�1 .t/, u�2 .t/, u�3 .t/, u�4 .t/ and corresponding solutions V�c , S�c , L�c , I�c , T�c ,
S�a , E�, L�a , I�a , T�a to the state initial value problem (6) and (9) that minimizes
J.u1; u2; u3; u4/ over U.

Proof The non trivial requirements on the set of admissible controls U and on the
set of endpoint conditions are verified from Fleming and Rishel’s Theorem [7].

A. The set of all solutions to system (6) with corresponding control functions in U
is non-empty.

B. The state system can be written as a linear function of the control variables with
coefficients dependent on time and the state variables.

C. The integrand L in (8) from the objective function with L D C1Ic.t/ C
C2Ia.t/C B1

2
. Vc

Nc
/mu21.t/C B2

2
. E

Na
/mu22.t/C B3

2
u23.t/C B4

2
u24.t/ is convex on U and
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additionally it satisfies L .x;u; t/ � ı1 j .u1; u2; u3; u4/ jˇ �ı2, where ı1 > 0

and ˇ > 1.

In order to establish condition A, we refer to Picard-Lindelöf’s theorem from
[5, 9]. If the solutions to the state equations are bounded and if the state equations
are Lipschitz in the state variables, then there is a unique solution corresponding
to every admissible control u. From (3) it is indicated that the total population is
bounded from below by a positive spermium N0 and bounded above by �

�
as well

as each of the state variables are bounded. With the bounds established above, it
follows that the state system is continuous and bounded. It is equally direct to show
the boundedness of the partial derivatives with respect to the state variables in the
state system, which establishes that the system is Lipschitz with respect to the state
variables (see [4]). This completes the proof that condition A holds.

Condition B is verified by observing the linear dependence of the state equations
on controls u1; u2; u3 and u4. Finally, to verify condition C, since linear combination
of convex functions are also convex the integrand L .x;u; t/ is convex on U. To
prove the boundedness of L we note that by the definition of U, we have

B4u
2
4 � B4: Since u4 2 Œ0; 1�; B4

2
u24 � B4

2
) B4

2
u24 � B4

2
� 0:

L .x; u; t/ D C1Ic.t/C C2Ia.t/C B1
2

u21.t/.
Vc

Nc
/m C B2

2
.

E

Na
/mu22.t/C B3

2
u23.t/

CB4
2

u24

� B1
2

u21.t/.
Vc

Nc
/m C B2

2
.

E

Na
/mu22.t/C B3

2
u23.t/C B4

2
u24.t/ � B4

2

) L .x;u; t/ � min
�B1
2
.

Vc

Nc
/m;

B2
2
.

E

Na
/m;

B3
2
;

B4
2

�
.u21 C u22 C u23 C u24/� B4

2
:

) L .x;u; t/ � min
�B1
2
.

Vc

Nc
/m;

B2
2
.

E

Na
/m;

B3
2
;

B4
2

�j.u1; u2; u3; u4/j2 � B4
2
:

Therefore L .x;u; t/ � ı1j.u1; u2; u3; u4/jˇ � ı2
where ı1 D min

�B1
2
.

Vc

Nc
/m;

B2
2
.

E

Na
/m;

B3
2
;

B4
2

�
; ı2 D B4

2
and ˇ D 2:ut

The necessary conditions arise from Pontryagin’s minimum principle (PMP). To
apply this principle we convert (6)–(9) into a problem of minimizing a hamiltonian,
H with respect to u1; u2; u3; u4. Then the hamiltonian is given by

H.x;u; h; t/ D C1Ic.t/C C2Ia.t/C B1
2

u21.t/.
Vc
Nc
/m C B2

2
. E

Na
/mu22.t/

B3
2

u23.t/

C B4
2

u24.t/CP10
iD1 hifi
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) H.x;u; h; t/ D ŒC1Ic.t/C C2Ia.t/C B1
2

u21.t/.
Vc
Nc
/m C B2

2
. E

Na
/mu22.t/

C B3
2

u23.t/C B4
2

u24.t/�

Ch1Œ.r0 C u1.t//� � .1 � "/�Vc � A1Vc�

Ch2Œ.1 � r0 � u1.t//� C wcVc � .A2 C �/Sc�

Ch3Œ.1 � "/�Vc � .A3 C kc�/Lc C qc�Sc C 	Tc�

Ch4Œ.1 � qc/�Sc C .bc C kc�/Lc � A7Ic � .ı0 C u3.t//Ic�

Ch5Œ.ı0 C u3.t//Ic � A9Tc�

Ch6Œ f1Vc C f1Sc � .˛0 C u2.t//eSa � .�a C �/Sa�

Ch7Œ.˛0 C u2.t//eSa � �aE � .1 � �/�/E�

Ch8Œ f1Lc C qa�Sa C .1 � ˛0 � u2.t//E � .A5 C ka�/La C 
Ta�

Ch9Œ f1Ic C .1 � qa/�Sa C .ba C ka�/La � A8Ia � .�0 C u4.t//Ia�

Ch10Œ.�0 C u4.t//Ia C f1Tc � .�a C 
/Ta�

;

(10)

where each fi is the right hand side of the differential equation of the ith state
variable of (6), x D .Vc; Sc;Lc; Ic;Tc; Sa;E;La; Ia;Ta/, u D .u1; u2; u3; u4/, h D
.h1; h2; h3, h4; h5, h6; h7; h8; h9; h10/. If .u�1 ; u�2 ; u�3 ; u�4 / is an optimal control yet to
be determined, then from Pontryagin’s Minimum Principle we have:

(a) The minimum conditions in the interior of the control region:

@H
@ui

D 0; i D 1; 2; 3; 4

� @H
@u1

D 0 ) B1.
Vc
Nc
/mu1.t/C h1� � h2� D 0

Therefore, u1.t/ D �
B1
. Vc

Nc
/�m.h2 � h1/

� @H
@u2

D 0 ) B2.
E
N /

mu2.t/ � h6eSa C h7eSa � h8E D 0

Therefore, u2.t/ D 1
B2
. E

Na
/�mŒh8E C .h6 � h7/eSa�

� @H
@u3

D 0 ) B3u3.t/ � h4Ic C h5Ic D 0

Therefore, u3.t/ D 1
B3
.h4 � h5/Ic

� @H
@u4

D 0 ) B4u4.t/ � h9Ia C h10Ia D 0

Therefore, u4.t/ D 1
B4
.h9 � h10/Ia

(11)

(b) The transversality conditions: hi.tf / D 0; i D 1; 2; 3; : : : ; 10. Moreover, from
the conditions that u1.t/ 2 Œ�r0; 1� r0�, u2.t/ 2 Œ�˛0; 1�˛0�, u3.t/ 2 Œ�ı0; 1�
ı0�, u4.t/ 2 Œ��0; 1 � �0� for all t 2 Œ0; tf � we arrive at:

u�1 D min
n
1 � r0;max

n
�r0; �B1 .

Vc
Nc
/�m.h2 � h1/

oo

u�2 D min
n
1 � ˛0;max

n
�˛0; 1B2 . E

N /
�mŒh8E C .h6 � h7/eSa�

oo

u�3 D min
n
1 � ı0;max

n
�ı0; 1B3 .h4 � h5/Ic

oo

u�4 D min
n
1 � �0;max

n
��0; 1B4 .h9 � h10/Ia
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(12)
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5 Numerical Simulation and Results

We simulate the result by using fourth order Runge-Kutta method. The process
begins with an initial guess on the control variable. Then, the state equations
are simultaneously solved forward in time and the adjoint equations are solved
backward in time. The control is updated by inserting the new values of state
and adjoint variables into its characterization, and the process is repeated until
convergence occurs (Fig. 1).

The initial conditions for the state variables are estimated as follows. According
to the World Bank [18] estimation of the population size of Ethiopia for 2010 and
2011, the percentage of children is 41%. From a total 84;734;000 population in
2011, there were a total of 34;740;940 children and 49;993;060 adult population. In
each age group, we assume that initially 80% are susceptible and 20% are infected.
We subtract the number of infectious children and adults from these 20% to get the
number of latently infected individuals in each age class. We took total birth to be
equal to the average of 9 years births and obtained 2;747;945 per year. With regard
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Fig. 1 C1 D 3, C2 D 2, B1 D 8 � 105 , B2 D 4 � 105, B3 D 6 � 104, B4 D 3 � 104 . (a) The
graph of the number of infectious children when all controls applied. (b) The graph of the number
of infectious adults when all controls applied. (c) The graph of controls. (d) The graph of marginal
cost of interventions. (e) The graph of prevalence
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Table 1 Value and source of parameters

Parameters Symbol Value Source

Current rate of vaccinating children at birth r0 0:54 [17]

Efficacy of the vaccine " 0:8 [12]

Effective number of contacts c 7 Assumed

Transmission probability ˇ 0:12 Assumed

Endogenous reactivation rates for children bc 0:001 [2]

Endogenous reactivation rates for adults ba 0:003 [2]

Reinfection rates for children kc 0:015 [2]

Reinfection rates for adults ka 0:02 [2]

Natural mortality rate for children �c 0:0133 [19]

Natural mortality rate for adults �a 0:01768 [2]

Tuberculosis induced death rates of children dc 0:06 Assumed

Tuberculosis induced death rates of adults da 0:03 Assumed

Proportion of slow rout to the latent stage in children qc 0:8 Assumed

Proportion of slow rout to the latent stage in adults qa 0:9 [2]

Cure rate for children 	 0:75 Assumed

Cure rate for adults 
 0:85 Assumed

Treatment rate for actively infected children ı0 0:2 Assumed

Treatment rate for actively infected adults �0 0:06 Assumed

The rate at which the BCG vaccine wanes wc 0:6667 [2]

Per capita ageing functions f1 0:6667 [2]

to vaccination at birth, the vaccination coverage of Ethiopia in 2011 were 54% per
year as indicated in [17]. This implies that the total number of vaccinated children
in 2011 were 1;418;447. We assumed that 20% of the susceptible adult population
are convinced or well informed about the transmission, prevention and treatment
of the disease. Since most of Ethiopian people live in areas which are far away
from hospitals or health centers, it is not possible to vaccinate every child at birth.
Therefore, we assumed that maximum attainable percentage of vaccinating children
to be 80% per year. Similarly we expect to convince up to 75% of susceptible
individuals per year to change their behavior about the disease as well as the
maximum rate of recruitment for treatment is 90% per year (other parameter values
are given in Table 1).

The result can be summarized by observing the role of various interventions
from the graph of prevalence (Fig. 2a) and from the graph of cost (Fig. 2b). In
the simulation, we first used all controls (u1, u2, u3 and u4) to optimize the objective
function J, in the second phase we set all controls to zero and optimized the objective
function, in the third phase we set the controls u2 and u3 to zero and optimize
the objective function over the controls u1 and u4, then we used u2 and u3 only
by setting u1 and u4 to zero in order to optimize the objective function, finally
we set the controls u1 and u3 to zero in order to optimize the objective function
over the controls u2 and u4. When we apply all interventions simultaneously, we
got the lowest prevalence (see Fig. 2a) with minimum cost of intervention (see
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Fig. 2 (a) The graph of the prevalence in various cases of the controls; (b) the graph of the
marginal cost of the interventions (per year) in various cases of controls

Fig. 2b). On other hand, the values of the prevalence and the marginal cost increase
if we optimize the objective function in the absence of any intervention. We can
also observe that only implementation of treatment for children and self-protective
measures in the absence of vaccination and treatment for adults are not sufficient
to decrease the prevalence like implementation of all controls (see Figs. 2a, b and
3). In the strategy where all the controls are being used, it is optimal to apply all
existing resources to each of the control measures at the beginning. Since our aim
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Fig. 3 B1 D 4�105, B2 D 6�105, B3 D 8�104 and B4 D 6�104. When we decrease the weight
of vaccination by half and increase the weight of other interventions, the graph of marginal cost of
interventions is greater than 1�105 dollar per year. Similarly the graph of prevalence decrease until
it approaches to 0:04%. When we observe the graph of controls, efforts of recruiting children for
treatment starts to decrease before other efforts start to decrease and never increase beyond 70%.
Unlike the graph of efforts for vaccination in Fig. 1c, the graph for efforts of vaccinating children
goes to its maximum rate. (a) Marginal cost of interventions; (b) prevalence; (c) controls

is to minimize the cost function, the graph of some state variables may rise-up. For
example, during minimizing the objective function the number of infectious children
increases for a moment and then it decreases down (see Fig. 1a).

When we minimize the cost of vaccination by half, and when we increase other
costs, the result from Fig. 4b indicates that there will be no significant difference
on the graph of prevalence but as we can observe from the graph of controls (see
Fig. 4d) efforts of treatment for children never increase beyond 70% and efforts of
vaccination starts to fall starting from fourth year of intervention period.

Generally, to get the best result the effort of vaccinating children at birth and edu-
cating the population on existing self-preventive mechanisms should be given more
emphasis at the next level in priority. With all the controls employed simultaneously
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Fig. 4 In the absence of disease induced deaths of children and adults by keeping other
parameters. When we ignore disease induced deaths, efforts of convincing adults to take part in
behavior modification decreases its rate to 0:4. In addition to these it requires huge effort of treating
children. (a) Marginal cost of interventions; (b) prevalence; (c) infectious children; (d) controls

in an optimal way, the prevalence can possibly drop to less than 0:04% within 10
years of intervention period. In the absence of interventions/controls the prevalence
increases (Figs. 5 and 6).

6 Discussion and Conclusion

In this paper, we analyzed a dynamical model of tuberculosis (TB) classified
into two age groups that takes vaccination at birth and behavior modification of
the population into account. Since organized data about burden of the disease
for children and adults is not available, we used data from WHO global report
about Ethiopia. Even, in the WHO report specific data about children is missing.
Therefore, we have estimated and used some assumptions in taking values for some
of the parameters for numerical purposes. Numerical simulations of the resulting
optimality system showed that, vaccination as well as behavior modification by
the society have a great impact in controlling the epidemic. In the presence of
all interventions, the prevalence could decrease below 0:04% within 10 years
(see Fig. 2a). In the absence of any intervention, the prevalence increases. It was
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Fig. 5 C1 D 1, C2 D 1, when we put the weight for infectious children and adults equal to
unity, the marginal cost of interventions decreases and reaches to 0:5�105 dollars per year. Efforts
of vaccinating children, convincing adults for behavior modification and treatment of children
doesn’t go beyond the rate 0:5. But the number of infectious children starts to increase up after
small decrease. (a) Marginal cost of interventions; (b) infectious children; (c) controls

also indicated from Fig. 2b that, inclusion of all controls resulted in minimum
cost of intervention. Therefore, increase the effort of vaccinating children at birth
and educate the adult society about the disease to bring behavior change in
addition to treating the infected once with anti-TB drugs will help to decrease the
prevalence significantly. Optimal control theory is used to explain dominance of
the vaccination and behavioral change interventions as compared to treatment. The
optimality system also proposes the cost effective way of controlling the disease
when vaccination, behavior change as well as treatment of children and treatment
of adults are being implemented on the population at the same time. Based on the
result obtained from numerical simulation, we recommend the following points: to
eradicate the disease from the country, TB patients should take medicines prescribed
by their doctors properly until the end of the treatment period, because failure of
the treatment may lead to an increase in the prevalence; since primary source of
infection for children is from close contacts with adults, educating the society to
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Fig. 6 C1 D 1, C2 D 2, when we double the weight for infectious adults, the marginal cost of
intervention increases as compared to graph of the cost in Fig. 5a. But there is no significant
difference on the graph of other values. (a) Marginal cost of interventions; (b) prevalence;
(c) controls

modify their behavior is very important and this also helps children not to get the
infection from adults. In general, if health policy makers consider to use all these
interventions optimally, it is possible to decrease the prevalence of the disease in a
resource limited areas.
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Modeling of Extremal Earthquakes

Margarida Brito, Laura Cavalcante, and Ana Cristina Moreira Freitas

Abstract Natural hazards, such as big earthquakes, affect the lives of thousands
of people at all levels. Extreme-value analysis is an area of statistical analysis
particularly concerned with the systematic study of extremes, providing an useful
insight to fields where extreme values are probable to occur. The characterization
of the extreme seismic activity is a fundamental basis for risk investigation and
safety evaluation. Here we study large earthquakes in the scope of the Extreme
Value Theory. We focus on the tails of the seismic moment distributions and we
propose to estimate relevant parameters, like the tail index and high order quantiles
using the geometric-type estimators.

In this work we combine two approaches, namely an exploratory oriented
analysis and an inferential study. The validity of the assumptions required are
verified, and both geometric-type and Hill estimators are applied for the tail index
and quantile estimation. A comparison between the estimators is performed, and
their application to the considered problem is illustrated and discussed in the
corresponding context.

1 Introduction

Earthquakes are a worldwide and ever present menace, threatening to occur at
any second. A severe earthquake is one of the most frightening and destructive
phenomena of nature. Experiencing an earthquake is a terrible experience, the lived
moments are reported as full of panic, terror, and death. For survivors, the terrible
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images remain in their memory and become part of their daily lives, as well as the
constant fear of the possibility of the next big earthquake which may take lives and
separate families forever. It is estimated that there are about one million earthquakes
per year. However, the vast majority occurs in the midst of oceans or in sparsely
populated regions, and they pass relatively unnoticed by the population. There are
annually about 20 earthquakes that cause significant damage. On average, only one
catastrophic earthquake occurs every year, and a highly catastrophic one every 5
years.

Since the underlying phenomena responsible for the occurrence of an earthquake
are still very far from being completely understood, it is rather important to collect as
much data as possible and categorize it in order to be able to provide some insight on
how to diminish their negative impacts, in particular, in what concerns the reduction
of number of deaths and economic losses. This is an important challenge requiring
a large multidisciplinary effort. In this work, we perform a statistical analysis taking
into account specific features of big earthquakes. When we are dealing with extreme
events, the classical statistical models are inappropriate for the statistical modeling
of earthquake size. Hence, we are particularly interested in the study of the tail
distribution of the data.

The Extreme Value Theory (EVT) is one field of statistics that has been devised
to study these extreme events using only a limited amount of data (see e.g. [1], and
references therein). In the study of earthquakes, the EVT is a relevant tool, providing
important information, such as the estimation of the probability of occurring a large
earthquake over a long period of time or high quantiles (see e.g. [22]).

In the present work we consider the seismic activity in Philippines and Vanuatu
Islands. The data sets are taken from the Harvard Seismic Catalog and the tail
behavior of the distributions of large earthquakes seismic moments is characterized
using EVT techniques. In order to apply these methods, a preliminary data analysis
is performed to investigate the validity of the usual underlying assumptions. The
geometric-type and the Hill estimator, as well as its bias corrected versions,
are considered for the estimation of the tail index and are employed for the
quantile estimation. A comparison between the estimators is carried out and their
performance is discussed carefully.

All the analysis is supported by graphical tools that show, in a clear way, the
features of the data that are regarded as most relevant to the study being addressed.

The paper is organized as follows. Some important concepts and results about
EVT and earthquakes are briefly presented in Sect. 2. The investigation, in order
to verify the validity of the usual assumptions and the analysis of the seismic
moments, are performed in Sect. 3. Some final comments about the study, including
an interpretation of the results in terms of the frequencies of seismic moment
exceedances, are provided in Sect. 4.
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2 Essential Notions of EVT and Earthquakes

2.1 Extreme Value Theory

The Extreme Value Theory is a powerful and fairly robust framework to study the
tail behavior of a distribution, since it encompasses a set of probabilistic results
that allow characterizing and modeling the extreme values behavior. In this way, the
EVT is very useful in making statistical inferences about rare events in several areas
of knowledge (e.g. meteorology, hydrology, insurance, environment, etc.), and its
use may enable the implementation of appropriate prevention procedures.

More concretely, through this theory, extreme values may be modeled using the
limiting distribution of the maxima of the random variables or of its excesses over
a threshold. Thus, the statistical basis for applications of EVT is constituted by the
following two main limit theorems.

Theorem 1 (Fisher-Tippett-Gnedenko Theorem) Let X1;X2; : : : ;Xn be indepen-
dent and identically distributed (i.i.d.) random variables (r.v.) with distribution
function (d.f.) F and Mn D max.X1;X2; : : : ;Xn/ denote the maximum of the n
observations. If a sequence of real numbers an > 0 and bn exists such that

lim
n!1P

�
Mn � bn

an
� x

�
D lim

n!1Fn .anx C bn/ D G .x/ ;

then if G is a non degenerate d.f., it belongs to one of the following types

Type I .Gumbel/ W �.x/ D expf�exp .�x/g; x 2 RI

Type II .FrKechet/ W ˚˛ .x/ D
�
0; x � 0;

exp
��x�1=�

�
; x > 0I

Type III .Weibull/ W �˛ .x/ D
�

expf� .�x/1=� g; x > 0;
1; x � 0I

for all continuity points of G.

If a d.f. F satisfies the conditions of the theorem, it is said that F belongs to the
domain of attraction of G

�
F 2 DA.G/

�
.

These three types of distributions may be combined into the single d.f.

G� .x/ D
(

exp
�
� .1C �x/�1=�

	
; for 1C �x > 0; � ¤ 0;

exp .�exp .�x// ; for x 2 R; � D 0;
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where � is the shape parameter, known as tail index, determining the weight of the
right tail of the underlying d.f. F. This distribution is known as the Generalized
Extreme Value (GEV) distribution.

Theorem 2 (Pickands-Balkema-de Haan Theorem) Let X1;X2; : : : ;Xn be a sam-
ple of n i.i.d. r.v. with d.f. F, xF the right endpoint of F and FX�ujX>u.x/ D
P fX � u � x j X > ug the excess d.f. over a (high) threshold u. Then,

F 2 DA.G� / iff lim
u!xF

sup
0�x<xF�u

ˇ̌
FX�ujX>u.x/� H�;�u.x/

ˇ̌ D 0;

where H�;�u.x/ represents the Generalised Pareto Distribution, given by:

H�;�u.x/ D
(
1� �

1C � x�u
�u

��1=�
; for 1C � x�u

�u
> 0; � ¤ 0;

1� exp.� x�u
�u
/; for x � u; � D 0;

where � , u, �u > 0 are the shape, location, and scale parameter depending on
threshold u, respectively.

Similarly with GEV, using another parameterization, the GPD is separated into
three families depending on the value of the shape parameter:

• Type I (Exponential): H.x/ D 1 � exp.�x/, if � D 0,
• Type II (Pareto): H.x/ D 1 � x�1=� , if � > 0,
• Type III (Beta): H.x/ D 1 � .�x/�1=� , if � < 0.

These two theorems state that, under their conditions, the limit distribution of the
normalized maximum is the GEV distribution, and that the limit of the excess d.f. is
the GPD. Hence, they are fundamental to make possible real-world applications.

In order to perform a correct inference about extreme events from the accessible
data, it is necessary to properly select the extreme observations following some
criterion. There are two primary methods to define such extreme observations which
arise from the two main results of the classical EVT: the Block Maxima method, also
known as Gumbel’s approach, and the Peaks Over Threshold method.

The Block Maxima (BM) method consists in dividing the data in equal sized
blocks, taking the maximum observation in each block and studying its asymptotic
distribution. In the Peaks Over Threshold (POT) method one considers a certain
high threshold and then studies the asymptotic distribution of the excesses over this
high threshold.

Accordingly, as with the data set under study, one must be aware to consider
both methods’ disadvantages when applying them. One major drawback of the BM
method is that only one observation in a block is used, resulting in a final sample
of small size. On other hand, this method is more robust with respect to eventual
dependence between the observations.
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Since our interest is centered in the frequencies of exceedances of certain critical
values, here we adopt the POT approach that picks up all relevant high observations
and seems to make better use of the available information.

In modeling the extreme value distribution, the main issue to be solved is the
parameter estimation. The shape parameter � is of great interest in the analysis of
the tails, since it characterizes the behavior of extremes. This parameter indicates the
heaviness of the tail distribution, the tail being heavier for larger values � . It also
plays a crucial role in the estimation of other extreme events’ parameters, namely in
high quantiles estimation. In practice, the tail index is associated to the frequency
with which extreme events occur and the high order quantiles are levels that are
exceeded with a small probability. The adequate estimation of these quantities is the
most important problem.

We assume that X1;X2; : : : ;Xn is a sample of i.i.d. r.v. with d.f. F and denote by
X.1;n/ � X.2;n/ � � � � � X.n;n/ the corresponding order statistics (o.s.). The estimation
of � is based on the k top o.s., where k D kn is an intermediate sequence of positive
integers .1 � k < n/, that is,

k ! 1;
k

n
! 0 as n ! 1: (1)

Several estimators have been proposed for the estimation of � (see e.g. [6, 10, 18,
20]). Here we consider the following estimator for � > 0, the geometric-type (GT)
estimator

cGT .k/ D

vuuuut
M.2/

n �
h
M.1/

n

i2

1
k

Pk
iD1 log2.n=i/�

�
1
k

Pk
iD1 log.n=i/

	2 (2)

where

M.j/
n .k/ D 1

k

kX
iD1

�
log X.n�iC1;n/ � log X.n�k;n/

�j
: (3)

We also consider the commonly used Hill estimator (see [18]) defined by

OH .k/ D 1

k

kX
iD1

log X.n�iC1;n/ � log X.n�k;n/: (4)

The asymptotic properties of these aforementioned estimators were investigated
and, under certain conditions, they share some common desirable properties, such
as consistency and asymptotic normality (cf. [2, 9, 17]).

The problem of estimating high order quantiles has received increased attention
as a useful tool in data modeling, which has been performed in a wide variety
of problems in many different scientific areas. This field addresses interesting
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questions such as the size of some extreme event that will only occur with a given
small probability, or the expected time until the realization of an extreme event.

The classical quantile estimator was proposed by [23],

OW
1�p

D X.n�k;n/

�
k

np

� O�
;

where O� is a consistent estimator of � .
Using general quantile techniques and the POT methodology, the well known

POT estimator for high quantiles above the threshold X.n�k;n/ arises naturally and is
given by

OP
1�p

D
�

k
np

	 O� � 1
O� � X.n�k;n/M

.1/
n C X.n�k;n/; p <

k

n
; (5)

where O� , X.n�k;n/M
.1/
n and u D X.n�k;n/ are, respectively, suitable estimators of the

shape, scale and location parameters of the Generalized Pareto Distribution.
In the present work both the cGT .k/ and OH .k/ are used to estimate � . The high

quantiles are estimated considering (5) and using cGT .k/ and OH .k/ as estimators
of � . The asymptotic behavior of these quantile estimators was studied and their
asymptotic normality was proved (cf. [3, 8, 10]).

The problem of reducing the bias of these tail index estimators was addressed in
[3], where were proposed the following two asymptotic equivalent geometric-type
bias corrected estimators

cGT .k/ D cGT .k/

 
1 � ˇ

�
n
k

��
.1 � �/2

!
;

and

cGT .k/ D cGT .k/ exp

�
� ˇ

.1 � �/2
�n

k

	�
:

Hill bias corrected estimators may be found in [4], namely

OH .k/ D OH .k/
 
1� ˇ

�
n
k

��
1 � �

!

and

OH .k/ D OH .k/ exp

�
� ˇ

1 � �

�n

k

	�
;

where � and ˇ are the shape and scale parameters.
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Here, in order to get bias corrected high quantiles estimators, we also consider
the form (5), based on the above bias corrected estimators.

The accurate estimation of the tail index is very important, also because of its
great influence on the estimation of other relevant parameters of rare events, such as
the right endpoint of the underlying d.f. F. Since the impact of its influence can be
considerable, the appropriate estimation of � is fundamental in obtaining a suitable
quantile estimator with a good performance.

2.2 Earthquakes

In general, everything in nature tends to an equilibrium. Due to the thermodynamic
equilibrium, the constituents of the Earth’s interior are in constant motion. Boosted
by this movement, which causes friction with its bottom, the tectonic plates
move and interchange slowly, thereby contributing to the constant evolution of the
terrestrial relief.

The earthquakes mainly arise due to forces, within the earth’s crust, tending to
displace one mass of rock relative to another. Each time the plates interact with
each other, a large amount of energy is accumulated in its rocks. When its elasticity
limit is reached, they will fracture and instantly release all the energy that had been
accumulated during the elastic deformation. That causes vibrations, called seismic
waves, which travel outwards in all directions from the fault and give rise to violent
motions at the earth’s surface, unleashing an earthquake.

Therefore, earthquakes are natural shocks that occur as a result of this sudden
release of huge amounts of the energy that has been slowly-accumulated over
many years. If the earthquake is large enough, the seismic waves are recorded on
seismographs around the world, and can cause the ground to quake strongly.

Earthquakes do not occur at random, but are distributed according to a well-
defined pattern. About 90 % of earthquake activity is associated with plate-boundary
processes, so the global seismicity patterns reveals a strong correlation between
plate boundaries and the presence of intercontinental fault zones, indicating that
earthquakes often occur at tectonic plate boundaries. We can say, without commit-
ting a gross error, that the alignments of earthquakes indicate the boundaries of
tectonic plates.

After the initial fracture, a number of secondary ruptures, corresponding to the
progressive adjustment of fractured rocks, may occur, causing successive lower
intensity earthquakes called aftershocks. If these vibrations occur at the sea floor,
they can produce a long and smooth waving that in shallow water becomes authentic
water columns known as tidal waves or tsunamis.

Therefore, earthquakes represent one of the most energetic and rapid manifesta-
tions of the planet’s internal dynamics.

The scientific analysis of earthquakes requires means of measurement, and the
size of an earthquake has been measured in several ways. The early methods used
a kind of numerical scale based on a synthesis of observed effects, called the
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intensity scales. Some attempts to relate intensity to the amplitude of ground motion
led to a quantity called magnitude, based on the records of ground amplitudes,
normalized for their variation with regard to the distance from the earthquake
epicenter. However, the known magnitudes present a saturation point which does
not allow for a correct estimation of the true earthquake size for larger earthquakes,
underestimating it. Moreover, it turns out that larger earthquakes, which have larger
rupture surfaces, systematically radiate more long-period energy. Nowadays, the
measurement that is adopted preferably for scientific studies is the seismic moment
of the displaced ground (see e.g. [7, 19]). This measurement avoids the saturation
problem, since it does not have an intrinsic upper bound, and describes the size of
an earthquake as an essential combination of physical quantities.

The seismic moment, M, provides more accurate measures of the energy released
from an earthquake, taking into account the rock properties, such as its rigidity, �,
the area of the fault plane that actually moves, A, and the amount of movement on
the fault, D, combining these three factors in the following form

M D �AD:

Because many people do not really know the meaning of this measure, and given
that the magnitude scale has been used for a very long time, the need to convert
it into some kind of magnitude scale came about. These factors have resulted in
the definition of a new magnitude scale, the moment magnitude, mw, based on the
seismic moment

mw D 2

3
.log M � 16:1/ ; (6)

where M is in units of dyne-cm.
The seismic moment, based on classical mechanics, provides, in this way, a

uniform scale of earthquake size, and is considered the most consistent measure
for accurate quantification of the energy released from an earthquake.

3 Extreme Value Modeling of Earthquake Data

In this section, we analyze the tail behavior of the distribution of the seismic
moments, following the POT approach. We begin by describing the data considered
for this study. We perform an exploratory data analysis, where we discuss which
type of distribution may model the large seismic moments as well as the properties
of stationarity and independence of the data. Then we proceed to the estimation of
the tail parameters of the seismic moment distribution.
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3.1 Description of the Earthquake Data

We consider the earthquake data obtained from the Harvard Seismic Catalog, avail-
able at the Global Centroid-Moment-Tensor (CMT) web page (cf. e.g. [11, 12, 14]).
Here, we restrict the area of study to earthquakes occurring within the Philippines
and Vanuatu Islands, and the analysis was performed in a similar way for both
regions. In particular, we extract and analyze the information on their seismic
moments covering the period 01.01.1976–31.12.2010. The original data sets contain
1255 events for Philippines Islands, and 1012 events for Vanuatu Islands. However,
in order to apply the POT method we selected an adequate and large enough level
u D 1024 dyne-cm, that corresponds to a moment magnitude mw � 5:27, the
same value considered in related works such as in [21]. The observations under
this threshold were removed. Since we detect a failure in the data acquisition of
the Vanuatu Islands until 01-01-1980, we shall consider only the Vanuatu Islands
data subsequent to this date. So, the final data sets, on which the following analysis
is based, consider 821 cases for Philippines Islands and 647 cases for Vanuatu
Islands. We did not exclude aftershocks because, besides excluding a great fraction
of the range of seismic moments considered, the removal would introduce a bias in
the parameters estimation (cf. e.g. [21]). Since the considered region has a lot of
deep earthquakes, they were not excluded as well. In Fig. 1 the seismic moments of
Philippines and Vanuatu Islands over the above mentioned period are plotted.

3.2 Preliminary Data Analysis

Before considering the problem of estimating the tail parameter � , it is important
to discuss if the Pareto-type model provides a plausible fit to the seismic moment

1976 1980 1984 1988 1992 1996 2000 2004 2008
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Fig. 1 Seismic moments of Philippines (left) and Vanuatu (right) Islands
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Fig. 2 Pareto QQ plot for Philippines (left) and Vanuatu (right) Islands seismic moment data

distributions of the data under study. This can be achieved graphically through
quantile-quantile (QQ) plots, which constitute a very informative and powerful tool
to graphically evaluate how close two distributions are from each other.

Usually, as in this case, the most convenient comparison is between the empirical
quantiles and the quantiles of the assumed parametric distribution. If the sample
data and the reference distribution are derived from populations with a common
distribution, the QQ plot should have a linear form.

Since we believe our data is heavy tailed, we present the Pareto QQ plots of our
data sets in Fig. 2.

In the case Y
DD log X, where X and Y are Pareto and Exponential distributed

r.v., respectively, then the usual Pareto QQ plots are Exponential QQ plots of the
log-transformed data.

In the resulting scatterplot, a linear pattern is evident, which is indicative of the
good agreement between observed values and the values predicted by the model. If
we analyze the behavior of the QQ plots, we may remark that, with the exception of
the extreme upper points, which are based on a small number of extreme values, the
plots are approximately linear. Hence, the visual impressions based on the Pareto
QQ plots suggest that the Vanuatu and Philippines Islands earthquake data sets do
seem to exhibit heavy tails (� > 0).

We analyse the stationarity of the data under study. More precisely, in the line
of the study of Corral [5], we investigate if the mean value defined for any property
of the earthquake occurrence process is approximately the same for different time
windows. We plot the normalized cumulative number of earthquakes versus time.

The linear behavior that we can observe in Fig. 3 indicates that the mean seismic
rate is approximately constant, and so, the data may be considered homogeneous in
time.

For the application of the EVT we must analyse the independence of the data.
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Fig. 3 Cumulative number of earthquakes normalized by the total number in the period considered
as a function of time, for seismicity of Philippines (left) and Vanuatu (right) Islands with M � 1024

In our case, the goal is to investigate the existence of dependence between
consecutive seismic moments, i.e, verify how the seismic moment of one event,
Mi�1, influences the seismic moment of the next, Mi. For that, let us consider the
conditional probability density determined by

P
�
	 � Mi < 	C�	 j Mi�1 � M0c

�

�	

;

where M0c is the threshold considered on the previous magnitude when this condition
is imposed. Here we denote the initial threshold, u, as Mc, and the condition M � Mc

is always satisfied (see e.g. [5]).
The conditional probability density of a seismic moment is then defined as the

probability of the seismic moments are within a small interval of values, divided
by the length of the small interval, �	, tending to zero, considering only the cases
in which the seismic moment of the immediately previous event is bigger than a
threshold M0c.

If the seismic moment Mi is independent of Mi�1, then, as it is well known,
the conditional distribution of Mi given that Mi�1 � M0c, M0c � Mc , is identical
to the unconditional distribution of Mi. Note that the case Mc D M0c gives the
unconditional distribution of the considered data.

We observe in Fig. 4 that, in general, the different empirical densities, using
different thresholds M0c, share the same properties, which suggest the independence
of seismic moments Mi with regards to their history. The small oscillations between
the densities may be caused by the errors associated to the finite sample and the
eventual dependence is apparently too weak to lead to major differences in the
distributions.
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Fig. 4 Conditional probability densities of earthquake seismic moments, for seismicity of Philip-
pines (left) and Vanuatu (right) Islands, evaluated using different thresholds M0

c and with a constant
Mc D 1024 (�	 D 1025)

3.3 Estimation of Tail Parameters

In this section we formalize our main objective of investigating the extremal
behavior of large earthquakes and how the proposed estimators behave with this
type of data.

Then, we discuss the estimation of the tail parameters through the POT approach.
The GT and the Hill estimators are considered for the estimation of the tail index
and are employed on POT estimator for the quantile estimation.

Some graphical plots illustrate the tail parameters of large earthquake data, as a
function of k.

From the presented bias corrected estimators, we can easily note that the bias
dominant components are dependent on second order parameters, shape � and scale
ˇ. To illustrate the behavior of the corrected estimators we consider the suitable
estimators of the parameter � proposed by [13]

O�.
/n .k/ D �
ˇ̌
ˇ̌
ˇ
3
�
T.
/n .k/ � 1

�

T.
/n .k/� 3

ˇ̌
ˇ̌
ˇ ; (7)
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where
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with Mj
n as in (3), and the ˇ estimator obtained in [15]
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Ui

; (8)

where

Ui D i

�
log

X.n�iC1;n/
X.n�i;n/

�
;

with 1 � i � k < n.
It is known that the external estimation of � and ˇ at a larger k value than the

one used for � -estimation has clear advantages, allowing bias reduction without
increasing the asymptotic variance (see e.g. [4]). In line with other studies, and
among some suggestions (see e.g. [16]), the level that seemed most appropriate to
consider in illustrations is

kh D �
n1��

˘
; for some � > 0 small; (9)

where bxc denotes the integer part of x.
We remark that the class of estimators of � presented above, and consequently

also the ˇ estimators, is dependent on a tuning parameter 
 � 0. Then, firstly we
need to choose the tuning parameter 
 , in which we will support the estimation of
the second order parameters � and ˇ.

For this use, we consider in (9), � D 0:005 and � D 0:001, i.e, we use the
following kh levels:

kh1 D �
n0:995

˘
and kh2 D �

n0:999
˘
: (10)

As usual, the means whereby we do this choice, passes by portraying the sample
paths of O�
 .k/ in (7) for the values 
 2 f0; 0:5; 1g, as functions of k, in order
to analyze the variations that it causes in their behavior, and use the following
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Fig. 5 Estimates of the second order parameters � (left) and ˇ (right) for seismicity of Philippines
Islands

algorithm as a stability criterion for large values of k:

1. Consider O�
 .k/, 
 2 f0; 0:5; 1g, for the integer values k 2 .�n0:995
˘
;
�
n0:999

˘
/ and

compute their median, denoted by 
 ;
2. Choose the tuning parameter 
� D arg min


P
k. O�
 .k/ � 
 /2;

3. Compute the � estimates O�
�.kh1/ and O�
� .kh2/, and the ˇ estimates Ǒ
�
� .kh1/.kh1/

and Ǒ
�
� .kh2/.kh2/, with kh1 and kh2 given by (10).

The Figs. 5 and 6 show the sample paths of the second order parameter estima-
tors, O� and Ǒ, based on the Philippines and Vanuatu seismic moment observations,
respectively.

We can see that the sample paths of O�, for the three different values of 
 , have
very similar behavior. It is however apparent that the behavior of O� is slightly better
when considering 
 D 0, especially for data concerning the Vanuatu Islands. Since
in both cases the algorithm described above also points to the choice of 
 D 0, we
choose this value of 
 to estimate �.

Thus, for Philippines Islands, we have kh1 D �
8210:995

˘ D 793 and kh2 D�
8210:999

˘ D 815, that is, the corresponding estimates of � are O�0.793/ � �0:25
and O�0.815/ � �0:32 and the corresponding estimates of ˇ are Ǒ O�0.793/.793/ �
0:19 and Ǒ O�0.815/.815/ � 0:15, represented both graphically through straight lines.
Doing the same procedure to Vanuatu Islands, we have kh1 D �

6470:995
˘ D 626

and kh2 D �
6470:999

˘ D 642, that is, the corresponding estimates of � are
O�0.626/ � �0:20 and O�0.642/ � �0:25 and the corresponding estimates of ˇ
are Ǒ O�0.626/.626/ � 0:51 and Ǒ O�0.642/.642/ � 0:44.
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Fig. 6 Estimates of the second order parameters � (left) and ˇ (right) for seismicity of Vanuatu
Islands

Since from the Ǒ sample paths, there are no readily apparent significant
differences between the use of kh1 or kh2, and due to the fact that the tail index
estimation is more affected by the � fluctuations than the ˇ ones, we use both levels
in the rest of the study.

Moreover, here we also present a possible optimal level k0 of top observations
to consider when the geometric-type estimator is used to estimate � , through the
minimization of the asymptotic mean square error (AMSE) of the geometric-type
estimator. Considering the following distributional representation of the geometric-
type estimator (see [3, Theorem 2.2]).

cGT .k/
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2
p

k
Qn � �p

k
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�
n
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�
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log2 k
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!
;
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Fig. 7 Plot for the GT estimator, cGT, and for the Hill estimator, OH, of � , for seismicity of
Philippines (left) and Vanuatu (right) Islands

Solving the equation in order to k and denoting the result as kbGT
0 , we obtain

kbGT

0 D
�
.1� �/2

�2�ˇ2
�1=.1�2�/

n�2�=.1�2�/:

Although this is not the optimal value for the bias corrected estimators, the value
of the tail index and quantiles calculated with the geometric-type estimator at the

kbGT

0 level is represented in some illustrations for comparison.
As a first step, we estimate the tail index, � , using the GT and Hill’s estimators.
Concerning the shape parameter � , Fig. 7 displays the estimated values of the

GT and Hill estimators, as a function of k, for Philippines and Vanuatu Islands data.
As can be observed, for Philippines Islands data both estimators stabilize around
the same value of � , which is 1:6, with identical scatter plots for moderate and
high values of k, although it is worth to give emphasis to the smoothness that the
geometric-type estimator displays.

For the Vanuatu Islands data, though not so explicit as to the Philippines data, the
behavior of GT tends to stabilize around the value of 1:64 as k increases. The same
is true for the Hill estimator around the value of 1:78, although in a slightly more
erratic way.

The GT estimator presents the best performance specially for Philippines Islands
data, displaying almost a straight line around 1:58 for k-values larger than 300.

In Fig. 8 it is possible to compare the behavior of the GT estimator with its

corrected versions, cGT and cGT. We note that the corrected estimators maintain
the good behavior; that is, they have less variation in the initial values of k, and



Modeling of Extremal Earthquakes 55

GT GT( (kh1), (kh1))
GT( (kh1), (kh1))

GT( (kh2), (kh2))
GT( (kh2), (kh2))

k

GT(k0( (kh1), (kh1))) = 1.58

GT(k0( (kh2), (kh2))) = 1.58

0 100 200 300 400 500 600 700 800

0.9

1.1

1.3

1.5

1.7

k

GT(k0( (kh1), (kh1))) = 1.17

GT(k0( (kh2), (kh2))) = 1.25

0 100 200 300 400 500 600

0.9

1.1

1.3

1.5

1.7

E
st

im
at

es
 o

f

E
st

im
at

es
 o

f

Fig. 8 Plot for the GT estimator, cGT, and for the corresponding GT bias corrected estimators, cGT

and cGT , of � , for seismicity of Philippines (left) and Vanuatu (right) Islands

stabilize at slightly lower values than the uncorrected estimator. Depending on the
unknown value of the tail index parameter that we seek, this type of behavior seems
to be indicative of a better performance of the corrected estimators. Particularly
for Vanuatu Islands data, this improvement seems to be evident since the corrected
estimators begin to stabilize sooner than the non corrected ones, showing a very
satisfactory behavior, to the right from the initial values of k.

In order to make the comparison between the bias corrected GT estimators and
the Hill ones, we draw the sample paths of one against the other.

We might see from Fig. 9 that the estimates provided by the corrected Hill
estimators are around the same values of the estimates given by the corrected GT
estimators. However, it is quite clear that the Hill estimators hold a rather irregular
behavior compared to the GT estimators, especially for smaller values of k.

It is suggestive that the value of � that best describes the seismic moment of the
Philippines Islands is a little below 1:5, and that of the Vanuatu Islands is slightly
above 1.

As in most of the applications, the main interest lays not on the tail index but in
the quantiles of the extreme distributions, which are more stable and robust. Now we
analyze the sample paths of the quantiles estimators. We estimate the values of POT
high quantiles estimator, in (5), based on the GT and Hill estimators, as a function
of k, for Philippines and Vanuatu Islands data, considering the percentile 99 %. Each
tail index estimator leads to a different estimation of large quantiles, which is also
dependent on k. The straight dashed line represents the estimate of the empirical
99 % quantile. When more than one straight line is present, the empirical quantile is
represented by the inferior one.
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Fig. 9 Plot for the GT bias corrected estimators, cGT and cGT, and for the Hill ones, OH and OH, of
� , for seismicity of Philippines (left) and Vanuatu (right) Islands
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Fig. 10 Plot for the 99-quantile estimators based on the GT estimator, ObGT , and on the Hill
estimator, O OH , of 0:99, for seismicity of Philippines (left) and Vanuatu (right) Islands (empirical
quantiles 0:99 D 9:29 � 1026 and 0:99 D 7:37 � 1026, for Philippines and Vanuatu Islands,
respectively)

We might see from Fig. 10 that, for the Philippines Islands, both estimates do
not present values close to the empirical quantile. For values of k larger than 300,
the estimates tend to stabilize, and it is apparent that this stabilization process
is significantly more regular for the GT based quantiles estimator. The uneven
performance that the Hill quantile plot shows make it extremely hard to decide upon
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Fig. 11 Plot for the 99-quantile estimators based on the GT estimator, ObGT , and on the correspond-

ing geometric-type bias corrected estimators, ObGT and ObGT , of 0:99, for seismicity of Philippines
(left) and Vanuatu (right) Islands (empirical quantiles 0:99 D 9:29�1026 and 0:99 D 7:37�1026 ,
for Philippines and Vanuatu Islands, respectively)

a specific value for k. For the Vanuatu Islands the behavior of both estimators is
not the best, but the Hill based quantiles estimator presents a much more irregular
behavior.

Now comparing the GT based quantiles estimator with its corrected versions,
we can observe in Fig. 11 that the improvement caused by the correction is quite
remarkable. It is also worth noting that considering the kh2 level to estimate the
second order parameters, the performance seems to be a little better. Also in
Fig. 11, and for the Philippines Islands data, it can be seen that the quantile value

calculated using the geometric-type estimator at its optimal levels kbGT
0 , represented

by the superior straight lines, almost coincides with the value of the quantiles
estimator based on the geometric-type estimation for k-values larger than 200, which
highlights the fairly stable behavior of this quantiles estimator in this range of
values.

In Fig. 12, we can observe that the bias corrected Hill quantiles estimators present
estimate values very similar to the ones presented by the bias corrected GT quantiles
estimators. Although the corrected Hill quantiles estimators, using the kh2 level
to compute the second order parameters, appear to have values more close to the
empirical quantile than the corresponding corrected GT quantiles estimators, in case
of Philippines Islands only for k-values greater that 300, their erratic and much less
stable behavior may be a factor of considerable disadvantage.
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Fig. 12 Plot for the 99-quantile estimators based on the geometric-type bias corrected estimators,

ObGT and ObGT , and on the Hill bias corrected estimators, O OH and O OH , of 0:99, for seismicity of
Philippines (left) and Vanuatu (right) Islands (empirical quantiles 0:99 D 9:29� 1026 and 0:99 D
7:37 � 1026, for Philippines and Vanuatu Islands, respectively)

4 Final Considerations

In this study we consider the seismic moments of the Philippines and Vanuatu
Islands larger than the level 1024 recorded during 35 years. We begin by analyzing
the data in order to investigate the presence of heavy tails, the stationarity and the
independence of the observations. In this way, we verify that the exceedances can
be modeled by heavy tailed distributions. We use the geometric-type estimator and
its bias corrected versions for estimating the tail index and high quantiles. For the
sake of comparison we also consider the corresponding Hill estimators.

The geometric-type estimator shows a better performance when compared to the
Hill estimator, namely it is worth emphasizing the contrast between the smoothed
behavior of the geometric-type estimator and the irregular behavior exhibited by the
Hill estimator.

It is well known that the considerable bias that appears in several estimators
reveals a difficult problem that goes well beyond the application. In order to deal
with this problem we also study and apply corrected versions of the geometric-type
estimator. As expected, its performance is improved. We may emphasize that in
some situations the Hill’s bias corrected estimators present an erratic and less stable
behavior. This is a real disadvantage for example in choosing a specific value for k.

In general, it is possible to conclude that the smoother behavior is a common
quality shared by the estimates obtained for the GT tail index estimators, as by GT-
based quantiles estimates, which show a very small variability, reflecting the more
regular behavior of the GT estimators.
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Regarding the case of Philippines Islands, and when considering the geometric-
type estimator, we obtain an estimate for the seismic moment 0.99-quantile of
1:51	 1027. In a more practical way, we may say that it is expected that one out of a
hundred earthquakes has a seismic moment larger than 1:51	1027. Since in average
there are 23:43 earthquakes per year, we may say that an earthquake exceeding
a seismic moment of 1:51 	 1027 is expected to happen in Philippines Islands
once in every 4:35 years. Moreover, we may also conclude that the probability of
occurring an earthquake with seismic moment larger than 1:51 	 1027 next year is
approximately 1 � 0:9923:43, that is, 21%.

As one knows, the performance of the estimators depends on the distribution of
the data, and there is not an uniformly agreed best estimator. Nevertheless, from
results of practical example conducted here, one could say that, for this type of data,
the GT estimator turns out to be the best choice for tail index estimator, and the POT
estimator when used for high quantiles.

On the whole, the application of the EVT to the problem under study seems quite
promising since it provides reasonable estimates of the tails of the seismic moment
distribution.
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Detonation Wave Solutions and Linear Stability
in a Four Component Gas with Bimolecular
Chemical Reaction

F. Carvalho, A.W. Silva, and A.J. Soares

Abstract We consider a four component gas undergoing a bimolecular chemical
reaction of type A1C A2 • A3C A4, described by the Boltzmann equation (BE) for
chemically reactive mixtures. We adopt hard-spheres elastic cross sections and mod-
ified line-of-centers reactive cross sections depending on both the activation energy
and geometry of the reactive collisions. Then we consider the hydrodynamic limit
specified by the reactive Euler equations, in an earlier stage of the chemical reaction,
when the gas is far from equilibrium (slow chemical reaction). In particular, the rate
of the chemical reaction obtained in this limit shows an explicit dependence on the
reaction heat and on the activation energy. Starting from this kinetic setting, we
study the dynamics of planar detonation waves for the considered reactive gas and
characterize the structure of the steady detonation solution. Then, the problem of the
hydrodynamic linear stability of the detonation solution is treated, investigating the
response of the steady solution to small rear boundary perturbations. A numerical
shooting technique is used to determine the unstable modes in a pertinent parametric
space for the considered problem. Numerical simulations are performed for the
Hydrogen-Oxygen system and some representative results are presented, regarding
the steady detonation wave solution and linear stability.
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1 Introduction

In a recent paper, Carvalho and Soares [1] consider a model for a two component
reacting gas mixture in the framework of the Boltzmann equation and develop a
detailed analysis of the dynamics and linear stability of steady detonation wave.
This analysis refers to a theoretical detonating mixture of constituents A and B
undergoing a generic reversible reaction of type A C A • B C B. The mathematical
treatment of the linear stability of steady detonation waves developed in [1] is
rather satisfactory and the numerical technique proposed there can be viewed as
an efficient procedure to study the stability problem. Paper [1] also includes an
extensive investigation of the stability problem and the results obtained numerically
show a rather good qualitative agreement with other results known in literature.
However, paper [1] does not explore the study of concrete detonation examples
neither the validation of the proposed numerical procedure with respect to the
available experimental data. This can be an interesting improvement of the results
presented in paper [1].

On the other hand, there exists an increasing interest in detonation physics,
from both the experimental and numerical point of view, due to the related engi-
neering applications, and safety and military issues. Experimental observations and
numerical studies [2–5] indicate that the detonation, especially in gases, tends to be
unstable. Therefore, the stability analysis of detonation waves remains an interesting
topic that has been quite investigated in recent years due to the computational
advances.

Motivated by all these aspects, in the present paper we apply the numerical
procedure proposed in paper [1] to a different chemically reactive system and
investigate the stability of detonation waves in a concrete explosive Hydrogen-
Oxygen system. This kinetic formulation refers to a four component gas and adopts
a more realistic model of reactive cross sections which modifies the standard line-
of-centers model by introducing the dependence on the geometry of the reactive
collision. Then we study the dynamics and hydrodynamic linear stability of steady
detonation wave solutions, described by the reactive Euler equations obtained in the
hydrodynamic limit proper of the initial stage of the chemical reaction.

Numerical simulations are performed for the Hydrogen-Oxygen system and
some representative results are presented, regarding the steady detonation wave
solution and linear stability.

The present paper constitutes the first part of a work in progress and the numerical
results presented here are still limited. We intend to develop a more detailed
numerical analysis of the stability problem and, at the same time, to compare our
results with other numerical and experimental results available in literature. We
expect that such comparisons can be used to reinforce the validity of the numerical
procedure presented in paper [1] and consolidate the robustness of the kinetic model
proposed in paper [6].
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2 The Reactive System Modelling

The model adopted in this paper for the reacting gaseous mixture is the one proposed
in paper [6] for a four component mixture of constituents A1, A2, A3 and A4
undergoing the reversible bimolecular chemical reaction

A1 C A2 • A3 C A4: (1)

Here we include the principal features of the model, with more emphasis on those
aspects necessary for our analysis. For a detailed description of the model, see paper
[6] and also paper [7] for the foundational aspects of the theory.

2.1 Modelling Aspects

The constituents of the gas have molecular masses m1, m2, m3 and m4, molecular
diameters d1, d2, d3 and d4, and binding energies E1, E2, E3 and E4, respectively.
The heat of the chemical reaction is specified by the balance of the binding energies
as QR D E3CE4�E1�E2. Molecular masses are such that m1Cm2 D m3Cm4, as
prescribed by the chemical law. The molecules collide among themselves through
binary elastic scattering, and reactive encounters according to the chemical law (1).
For elastic scattering, the differential cross sections �˛ˇ are assumed to correspond
to a hard-sphere potential,

�˛ˇ D d2˛ˇ; with d˛ˇ D 1

2
.d˛ C dˇ/: (2)

For reactive encounters, the differential cross sections are assumed with activation
energy and dependent on the geometry of the collision, given by

�?12 D
(
0 for �12 < "

?
f ;

sf d212

h
1 � 2"f

�12.g12�k12/2
i

for �12 � "?f ;
(3)

�?34 D
(
0 for �34 < "

?
r ;

srd234

h
1 � 2"r

�34.g34�k34/2
i

for �34 � "?r ;
(4)

where �12 and �34 are reduced masses, �12 and �34 relative translational energies
in the direction of the line joining the centers of the colliding molecules, "f and
"r forward and reverse activation energies, sf and sr are the corresponding steric
factors, k12 and k34 unit collision vectors joining the centers of the two colliding
molecules pointing from the center of the A2 and A4-particle to the center of A1 and
A3-particle. Moreover, g12 is the pre-collisional asymptotic relative velocity of the
constituents A1 and A2, and g34 is the pre-collisional asymptotic relative velocity of
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A3 and A4. These kinetic parameters are given by

�12 D m1m2

m1 C m2

; �34 D m3m4

m3 C m4

;

�12 D �12 .g12 � k12/
2

2kT
; �34 D �34 .g34 � k34/

2

2kT
;

"?f D "f

kT
; "?r D "r

kT
; Q?

R D QR

kT
with "?r � "?f � Q?

R;

where k represents the Boltzmann constant and T the mixture temperature. De-
finitions (3) and (4) mean that a reactive collision occurs only when the relative
translational energy in the direction of the line joining the centers of the molecules
is larger than the activation energy.

Assuming that relativistic and quantum effects are absent, elastic collisions obey
the classical laws of mechanics. Therefore, elastic collisions between A˛ and Aˇ
molecules, with asymptotic pre-collisional velocities c˛ and cˇ and asymptotic post-
collisional velocities c0̨ and c0̌ , respect the following conservation laws of linear
momentum and total energy,

m˛c˛ C mˇcˇ D m˛c0̨ C mˇc0̌ ; (5)

1

2
m˛c2˛ C 1

2
mˇc2ˇ D 1

2
m˛c02˛ C 1

2
mˇc02ˇ : (6)

Furthermore, reactive collisions respect the following conservation laws of linear
momentum and total energy (kinetic plus chemical link energy)

m1c1 C m2c2 D m3c3 C m4c4; (7)

1

2
m1c21 C 1

2
m2c22 D 1

2
m3c23 C 1

2
m4c24 C QR: (8)

2.2 The Model Equations

The state of a reacting gaseous mixture in the phase space (spanned by the
positions x and velocities c˛) is characterized, at the mesoscopic level, by the set
of distribution functions f˛ � f .x; c˛; t/, with ˛ D 1; : : : ; 4, in such a way that the
number of molecules of the contituent A˛ in the volume element dxdc˛ around the
position x and velocity c˛ , at time t, is given by f˛dxdc˛.

The reactive Boltzmann equation that describes the phase space evolution of
the distribution functions f˛ , if we consider no external forces and neglect internal
degrees of freedom, is given by

@f˛
@t

C
3X

iD1
c˛i
@f˛
@xi

D QE
˛ C QR

˛ : (9)
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Above, QE
˛ and QR

˛ represent the elastic and the reactive collision terms, respec-
tively, and might be defined as follows

QE
˛ D

4X
ˇD1

QE
˛ˇ; with QE

˛ˇD
Z �

f 0̨ f 0̌ � f˛fˇ
	

d2˛ˇ
�
gˇ˛ � kˇ˛

�
dkˇ˛dcˇ; (10)

QR
1.2/ D

Z "
f3f4

�
m1m2

m3m4

�3
� f1f2

#
�?12 .g12 � k12/ dk12dc2.1/; (11)

QR
3.4/ D

Z "
f1f2

�
m3m4

m1m2

�3
� f3f4

#
�?34 .g34 � k34/ dk34dc4.3/: (12)

The elastic terms QE
˛ incorporate the mixture effects whereas the reactive terms

QR
˛ include all other effects associated to the chemical reaction, in particular a

redistribution of mass and transfer of energy.

2.3 The Consistency of the Model

Some properties are very important in order to show the mathematical and physical
consistency of the model. One of these properties states that elastic collisions do not
modify the number of molecules of each constituent. This result is ensured by the
following statement about the elastic terms defined in (10),

Z

R3

QE
˛ dc˛ D 0; ˛ D 1; 2; 3; 4: (13)

On the other hand, the reactive encounters imply that the variation of the number of
molecules of constituents A1 and A2 is the same and, at the same time, it is opposite
to the variation of the number of molecules of constituents A3 and A4. This result is
stated by the following property on the reactive terms defined in (11) and (12),

Z

R3

QR
1 dc1 D

Z

R3

QR
2 dc2 D �

Z

R3

QR
3 dc3 D �

Z

R3

QR
4 dc4: (14)

There are some known physical collisional invariants, that is, macroscopic quan-
tities that do not chance during an elastic collision or reactive encounter. As a
consequence, a good and consistent model must reflect this situation. From the
mathematical point of view, a function  D . 1;  2;  3;  4/ is a collisional
invariant for the considered model (9)–(12) if the following conditions hold

4X
˛D1

Z

R3

 ˛
�
QE
˛ C QR

˛

�
dc˛ D 0: (15)
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The present modelling ensures the conservation of the partial number densities of
certain pairs of constituents, namely one reactant and one product. This is a conse-
quence of properties (13) and (14) and reproduces the correct balance of chemical
exchange rates. The corresponding collision invariants can be chosen as suitable
functions  D . 1;  2;  3;  4/, defined by . 1;  2;  3;  4/ D .1;�1; 0; 0/,
. 1;  2;  3;  4/ D .0; 1; 1; 0/, . 1;  2;  3;  4/ D .0; 1; 0; 1/. Moreover, the
molecular conservation laws (5)–(8) imply the conservation of the linear momentum
components and total energy of the mixture. The corresponding collision invariants
can be assumed as functions  D . 1;  2;  3;  4/ such that  ˛ D m˛c˛1 ,  ˛ D
m˛c˛2 , ˛ D m˛c˛3 , for the linear momentum components, and ˛ D E˛C 1

2
c2˛m˛ for

the total energy. In the present model, the set of all collisional invariants constitute
a 7-dimensional linear space.

The consistency of the model based on the properties stated in this subsection
allow to derive the macroscopic picture of the kinetic modelling in terms of certain
macroscopic variables and balance equations specifying the evolution of such
variables. In particular, the macroscopic variables are defined as average quantities
taken over the distribution functions f˛ by integrating with respect to the velocities
c˛ (see paper [6] for the definitions). The balance equations, in turn, are obtained
as a set of seven conservation equations associated to the collisional invariants
introduced above, together with the rate equation of the model specifying the
evolution of the progress variable of the chemical reaction.

For sake of brevity, these equations are omitted here in their general formulation.
For the analysis developed in the present paper, it is enough to consider the one-
dimensional version of these equations, formulated in its hydrodynamic limit of
Euler level, and this will be the main subject of Sect. 3.

2.4 Thermodynamical Equilibrium

The reactive mixture is in thermodynamical equilibrium when the elastic and
reactive collisional terms are such that

QE
˛ C QR

˛ D 0; ˛ D 1; : : : ; 4: (16)

In particular, for the present model, condition (16) implies the vanishing of the
elastic collisional terms, that is

QE
˛ D 0; ˛ D 1; : : : ; 4; (17)

and therefore condition (17) defines a state known in literature as a state of
mechanical equilibrium. When all constituents are at the same temperature T, the
mixture reaches a state of mechanical equilibrium if and only if the distribution
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functions f˛ are Maxwellians, defined by

f M
˛ D n˛

� m˛

2�kT

	3
2

exp

�
�m˛.c˛ � v/2

2kT

�
; ˛ D 1; : : : ; 4; (18)

where n˛ is the number density of constituent A˛ , and v is the mean velocity of
the whole mixture, (see paper [6] for the definitions). The above Maxwellians (18)
do not ensure, in general, the vanishing of the reactive collisional operators and
thus do not define a state of thermodynamical equilibrium for the reactive mixture.
The only distribution function that ensures the thermodynamical equilibrium is the
thermodynamical Maxwellian distribution given by

M˛ D neq
˛

� m˛

2�kT

	3
2

exp

�
�m˛.c˛ � v/2

2kT

�
; ˛ D 1; : : : ; 4; (19)

where neq
˛ , for ˛ D 1; : : : ; 4, represent number densities constrained to the law of

mass action for the considered model, namely

ln

"
neq
1 neq

2

neq
3 neq

4

�
�34

�12

�3
2

#
D Q?

R; (20)

which represents the chemical equilibrium condition of the model. Distribution
functions (19) define the unique equilibrium solutions of Eq. (9).

3 The Reactive Euler Equations in the Hydrodynamic Limit

The reactive Euler equations of the model can be derived from the Boltzmann
equations (9), when an approximate solution of Eq. (9) has been obtained for a
prescribed chemical regime.

3.1 Approximate Solution of the Boltzmann Equation

In the present study, we assume that the chemical reaction is in its initial stage
corresponding to consider a slow reaction for which the gas mixture is far from
chemical equilibrium. In this regime, the elastic collisions are more frequent than
reactive encounters. Using the Chapman-Enskog methodology, which is rather
common in kinetic theory [8], it is possible to obtain an approximate solution of
Eq. (9) consistent with the prescribed chemical regime.

In paper [6], starting from the appropriate scaling of the Eq. (9), the Chapman-
Enskog methodology has been combined with second-order Sonine expansions of



68 F. Carvalho et al.

the distribution functions f˛ around the Maxwellians f M
˛ defined in Eq. (18), and the

authors obtained the following approximate solution,

f˛ D f M
˛

�
1C a˛

�
15

8
� 5m˛.c˛ � v/2

4kT
C m2

˛.c˛ � v/4
8k2T2

��
; ˛ D 1; 2; 3; 4;

(21)
where the coefficients a˛ are determined by the following equations
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D
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10m2

˛ C 8m˛mˇ C 13m2
ˇ

m˛ C mˇ

a˛ � 15�˛ˇaˇ

)

for ˛ D 1; 2;

n
1 � 4"?f C 3"?f E."?f /e

"?f � 4Q?
R

h
1C Q?

R � "?f E."?f /e
"?f .3 � Q?

R/
io

(23)

	 .1 � e�A ?
/sf d212e

�"?f �534n1n2
8m2

˛�
7=2
12

D
4X

ˇD1

n˛nˇ
p
�˛ˇ

.m˛ C mˇ/2
d2˛ˇ

(
10m2

˛ C 8m˛mˇ C 13m2
ˇ

m˛ C mˇ

a˛ � 15�˛ˇaˇ

)

for ˛ D 3; 4:

Above, A ? is the affinity of the chemical reaction [8], and E."?f / represents the

exponential integral E."?f / D R C1
"?f

e�ydy
y . In the present paper, we omit the details

of the methodology, they are given in paper [6].
The approximate solution (21) with coefficients specified by expressions (22)

and (23) includes the non-equilibrium effects induced by the chemical reaction.

3.2 Reactive Euler Equations

The reactive Euler equations of the model are obtained from the balance equations,
here omitted for sake of brevity, when all macroscopic quantities are expressed in
terms of the approximate solution (21)–(23). They have the form

@

@t
n2 C

3X
iD1

@

@xi
.n2vi/ D 
2; (24)
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@
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#
D 0;

where vi, n, � and p are spatial components of the mean velocity, number density,
mass density and pressure of the mixture. The production term 
2 in Eq. (24) is the
reaction rate which specifies the progress of the chemical reaction, given by


2 D n3n4
r � n1n2
f ; (30)

where 
f and 
r are forward and backward reaction rates given by
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with 
.0/ being the forward reaction rate coefficient given by
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Equations (24)–(29) are the reactive Euler equations of the considered model in the
adopted chemical regime. They define a closed system and constitute the governing
equations of the model. Formally, such equations are similar to the corresponding
ones obtained from a phenomenological theory in fluid dynamics. The interesting
feature of such equations is that the reaction rate 
2 has been constructed from a
kinetic approach and then has an explicit representation completely justified by the
microscopic kinetic model.

4 Steady Detonation Wave Solutions

In this section we use the model of Sects. 2 and 3 to study the problem of
the propagation of steady detonation waves in an explosive quaternary mixture,
following the qualitative description of the Zeldovich, von Neumann and Doering
(ZND) theory [2, 3].

4.1 The ZND Model of Detonation

The well known ZND theory proposes a very simple physical model of detonation
with finite chemical reaction zone. The ZND configuration of the detonation
solution is represented in Fig. 1. The solution consists of a strong planar, non-
reactive, shock front propagating with constant velocity D, greater or equal to its
minimum allowed value which is called the Chapman-Jouguet velocity, towards a
quiescent gas mixture ahead of the wave. The shock front compresses the mixture,
renders the pressure to very high values so that the ignition process takes place. An
exothermic chemical reaction initiates and takes place in the finite reaction zone

Fig. 1 ZND profile of a one
dimensional steady
detonation wave
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following the shock wave until the equilibrium is reached. The initial state of the
quiescent mixture, ahead of the shock wave, is denoted by I. The von Neumann
state, just ahead of the shock, represents the state with very high pressure where the
chemical reaction initiates. The chemical reaction proceeds in the reaction zone of
finite length attached to the shock front, until the equilibrium final state denoted by
F. The entire ZND configuration is steady with respect to the shock wave front.

The ZND theory gives a simplified but recognized description of a steady
detonation wave. It is commonly used in literature as the first step in understanding
and explaining the complex dynamics of real detonations in gases.

4.2 The Mathematical Approach

From the mathematical point of view, the ZND detonation solution is described by
the reactive Euler equations (24)–(29), formulated in the one dimensional form and
referred to the steady normalized frame attached to the shock wave. The governing
equations for the detonation problem become

d

dx

h
.v � D/ n2

i
D Dtc
2; (34)

d

dx

h
.v � D/ .n1 � n2/

i
D 0; (35)
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dx

h
.v � D/ .n2 C n3/

i
D 0; (36)

d

dx

h
.v � D/ .n2 C n4/

i
D 0; (37)

d

dx

h
.v � D/ %v C nkT

i
D 0; (38)
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2
nkT C %v2
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C

4X
˛D1

E˛n˛

!
C nkTv

#
D 0; (39)

where D is the constant shock wave velocity, xs D x�Dt
Dtc

the normalized steady

variable, tc D 1

4nCd212

q
M

�kTC
a characteristic time, where M D m1 C m2 is the total

mass of the reactants and the superscript C refers to the initial state I. For sake of
simplicity, the steady variable xs will still be denoted by the plain symbol x.

The steady detonation wave problem is solved in two different steps. In the first
step, we solve the shock problem to characterize the von Neumann state. This is a
pure algebraic problem associated to the Rankine-Hugoniot (RH) jump conditions,
and no chemistry is involved. In the second step, we characterize all states within
the reaction zone. This is a differential problem associated to the rate law of the
chemical reaction and the chemistry plays a relevant role.
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Von Neumann State Since no chemistry is involved in the shock problem, the rate
equation (34) becomes of conservative type. The integration of the resulting system
(34)–(39) between the initial state I and the von Neumann state N leads to the RH
jump conditions in the form

n˛ .v � D/ D �nC̨D; ˛ D 1; 2; 3; 4; (40)

%v .v � D/C nkT D nCkTC; (41)
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2
nkT C %v2

2
C

4X
˛D1

E˛n˛

!
.v � D/C nkTv (42)

D �
 
3

2
nCkTC C

4X
˛D1

E˛nC̨
!

D:

For each value of the shock velocity D, the RH conditions (40)–(42) characterize
the von Neumann state .n1; n2; n3; n4; v;T/ behind the shock wave, when the initial
state .nC1 ; n

C
2 ; n

C
3 ; n

C
4 ; 0;T

C/ is assigned.

States in the Reaction Zone The intermediate states within the reaction zone
describe sequential states of the chemical process and are characterized by integrat-
ing the rate equation (34) with initial conditions at the von Neumann state. Using
the RH conditions (40) for ˛ D 1; 3; 4 together with (41) and (42), we can write the
rate equation in the form

d

dx
n2 D Dtc
2

v � D C n2 dv
dn2

: (43)

For each value of the shock velocity D, and starting from the von Neumann state
characterized in the previous step, Eq. (43) together with RH conditions (40) for
˛ D 1; 3; 4 as well as (41) and (42) completely characterizes all states in the
reaction zone. In particular, the final state of chemical equilibrium is obtained when
the reaction rate 
2 vanishes.

The mathematical approach and the solution procedure just described allow to
obtain the reaction zone profiles for pressure, mean velocity, temperature, mass
density and also the calculation of the wave thickness and other relevant properties
in the detonation mechanism.

4.3 Numerical Results for Detonation Waves in the H2-O2

System

In this section we perform some numerical simulations for one dimensional steady
detonation waves propagating in the hydrogen-oxygen mixture. We are particularly
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interested in the elementary chemical reaction

OH C H2 • H C H2O (44)

that is involved in the realistic multi-step detonation mechanism of the hydrogen-
oxygen mixture.

The initial state of the fresh quiescent mixture and the reference input data for
the reaction heat QR and forward activation energy "f are chosen as follows

nOH D 0:1mol=l; nH2 D 0:2mol=l; nH D 0:03mol=l; nH2O D 0:02mol=l;

v D 0ms�1; T D 298:15K; (45)

QR D �63:3 kJ=mol; "f D 13:8 kJ=mol:

Since QR < 0, the forward chemical reaction is exothermic. Our representation
of the detonation wave structure is determined using the mathematical modelling
described in Sects. 4.1 and 4.2. We obtain some detonation profiles for different
values of the detonation wave velocity, namely

D D 3120ms�1; D D 3130ms�1; D D 4400ms�1; D D 4500ms�1: (46)

Figures 2, 3 and 4 show the reaction zone profiles for pressure, temperature and
mean velocity, when D D 3120ms�1 and D D 3130ms�1. Figures 5, 6 and 7
show the corresponding profiles when D D 4400ms�1 and D D 4500ms�1. These
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Fig. 2 Pressure profile in the reaction zone for two different wave velocities, D D 3120ms�1

(solid line) and DD 3130ms�1 (dashed line)
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Fig. 3 Temperature profile in the reaction zone for two different wave velocities, D D 3120ms�1

(solid line) and DD 3130ms�1 (dashed line)
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Fig. 4 Mean velocity profile in the reaction zone for two different wave velocities, D D
3120ms�1 (solid line) and D D 3130ms�1 (dashed line)

figures reproduce the typical ZND configuration for the diagrammed macroscopic
variables. In particular, the pictures reveal that, as expected, the width of the reaction
zone, that is the wave thickness, decreases with increasing values of the detonation
velocity D.

To be more precise, the wave thickness is the spatial distance from the shock
front to the equilibrium final state, reached when the reaction rate 
2 vanishes and
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Fig. 5 Pressure profile in the reaction zone for two different wave velocities, D D 4400ms�1

(solid line) and DD 4500ms�1 (dashed line)
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Fig. 6 Temperature profile in the reaction zone for two different wave velocities, D D 4400ms�1

(solid line) and DD 4500ms�1 (dashed line)

n2 becomes constant, see Eq. (43). Thus, considering that the mixture reaches the
chemical equilibrium when d

dx n2 < 10�6, the wave thickness can be determined for
the detonation velocities defined in (46). The results are given in Table 1.
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Fig. 7 Mean velocity profile in the reaction zone for two different wave velocities, D D
4400ms�1 (solid line) and D D 4500ms�1 (dashed line)

Table 1 Wave thickness for different values of the detonation velocity D

D 3120ms�1 3130ms�1 4400ms�1 4500ms�1

Wave thickness 1.340 1.327 0.156 0.142

5 Linear Stability Analysis

Experimental and numerical studies show that detonations tend to be structurally
unstable, particularly in gases, see [2, 3]. The reaction zone is extremely sensi-
tive to small perturbations and the detonation wave typically exhibits oscillating
instabilities, which become more pronounced when the shock front propagates
with velocity close to its minimum value. The evolution of such instabilities and
a systematic analysis about the unstable modes, neutral stability boundaries and
growth rates of the instabilities can be of crucial importance in the interpretation
of the complex detonation mechanism. From the mathematical point of view,
this stability analysis can be developed using a normal-mode linear approach of
the steady planar detonation solution. This linear approach is valid when one
investigates the effects induced by small perturbations and assumes that the steady
structure of the detonation wave is not significantly modified.

In this section we formulate the linear stability problem for the steady detonation
solution characterized in Sect. 4, then we describe the numerical technique used in
the simulations and, finally, we present some results about the detonation instability.
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5.1 Stability Problem

The problem is formulated assuming that a small perturbation is instantaneously
assigned at the rear boundary and a distortion on the shock wave position occurs.
As a result, the shock distortion affects the steady character of the reaction zone
and the objective is to investigate the dynamics of the perturbations induced on the
macroscopic variables representing the steady detonation wave in the reaction zone.

First, the one-dimensional closed governing Eqs. (34)–(39) are transformed to
the coordinate frame attached to the perturbed wave. A new wave coordinate is
introduced, x, which measures the distance from the perturbed shock,

x D x` �  .t/; with  .t/ D Dt C Q .t/; (47)

where x` is the laboratory coordinate,  .t/ the position of the perturbed wave in
the laboratory frame, and Q .t/ the spatial displacement of the perturbed shock with
respect to its unperturbed position. The shock position in the new frame is x D
0 and the shock velocity is D.t/ D D C Q 0.t/. Then, to describe the oscillatory
behaviour of the instabilities, we perform a normal mode expansion of the steady
state variables and perturbed shock position, in the form

z.x; t/ D z�.x/C eat z.x/ and  .t/ D  eat; with a;  2 C;

(48)

where we have used the vectorial notation for the state fields, zD Œn1 n2 n3 n4 v p�T .
Here, z�.x/ represents the state vector of the steady solution, z.x/ the vector of the
spatial disturbances of the steady state fields,  the disturbance amplitude parame-
ter, and a is a perturbation parameter such that Re a and Im a are the perturbation
growth rate and frequency, respectively.

We linearize Eqs. (34)–(39) by means of expansions (48) and normalize the state
variables with respect to the complex amplitude parameter . For sake of simplicity,
we keep the original notation z for the normalized variables. The resulting equations
constitute the stability equations of the present problem and have the form

Dan2C
�
v��D

� d

dx
n2C.v�a/

d

dx
n�2Cn2

d

dx
v�Cn�2

d

dx
vD
2; (49)

Da.n1 � n2/C �
v� � D

� d

dx
.n1 � n2/C .v � a/

d

dx
.n�1 � n�2 / (50)

C.n1 � n2/
d

dx
v� C .n�1 � n�2 /

d

dx
v D 0;

Da.n2 C n3/C �
v� � D

� d

dx
.n2 C n3/C .v � a/

d

dx
.n�2 C n�3 / (51)

C.n2 C n3/
d

dx
v� C .n�2 C n�3 /

d

dx
v D 0;
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Da.n2 C n4/C �
v� � D

� d

dx
.n2 C n4/C .v � a/

d

dx
.n�2 C n�4 / (52)

C.n2 C n4/
d

dx
v� C .n�2 C n�4 /

d

dx
v D 0;

%�DtcavC d

dx
p C %�.v � a/

d

dx
v� C .%

d

dx
v� C %�

d

dx
v/
�
v��D

�D 0; (53)

DtcapC 5

3

�
p�

d

dx
vCp

d

dx
v�
�

C�v��D
� d

dx
pC.v�a/

d

dx
p�D 2Q?

R
2

3
; (54)

where 
2 is the linearized representation of the reaction rate, given by


2 D .n�3n4 C n�4n3/

�
r C .n�1n2 C n�2n1/


�
f : (55)

We also linearize the Rankine-Hugoniot conditions (40)–(42) using the normal
mode expansions (48), obtaining

n˛.0/ D
�
n�̨ � nC̨

�
a � n�̨v.0/

v� � D
; ˛ D 1; 2; 3; 4; (56)

v.0/ D 3%Cv�2 C 3
2

�
p� � pC

� � 3
2
D%Cv� CP4

˛D1 E˛n˛

�%� .v� � D/2 C 5
2
p�

a; (57)

p.0/ D �%Cav� � �
v� � D

�
%�v.0/: (58)

From the linearization procedure, we obtain twelve real first-order homogeneous
ODE’s, Eqs. (49)–(54), to be considered in the reaction zone from x D 0 at the
von Neumann state to x D xF at the equilibrium final state, with twelve real
initial conditions given by Eqs. (56)–(58). The equations involve twelve unknowns
specified by the real and imaginary parts of n1, n2, n3, n4, v, p. Since the equations
involve the complex perturbation parameter a, the ODE system is not closed, and an
additional closure condition is needed. We assign the following boundary condition,
at x D xF , initially proposed and justified by Buckmaster and Ludford in [9],

v.xF/C a D �1
�%�eqc�eq

p.xF/; (59)

where � is the ratio of specific heats, and c�eq and %�eq are the isentropic sound speed
and mixture mass density at x D xF .

The stability problem just formulated will be numerically solved as described in
the next subsection.
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5.2 Numerical Technique

The numerical technique used in this paper to treat the stability problem is based
on an iterative shooting algorithm proposed in [1]. The algorithm combines the
numerical approach developed by Lee and Stewart in paper [10] with the original
ideas advanced by Erpenbeck in paper [11].

Broadly speaking, the technique consists in choosing, first, a trial value for the
perturbation parameter a, then solving the ODE’s (49)–(54) with initial conditions
(56)–(58) and, finally, verifying if the solution previously obtained satisfies the
boundary condition (59). If the boundary condition is satisfied, the corresponding
solution of (49)–(54) and (56)–(58) represents a stability solution, that is a solution
of the stability problem.

After finding a solution of the stability problem, for a trial value of a, the last
step is straightforward. In fact, it only requires to determine if the solution of the
stability problem produces a stable or an unstable mode of propagation, and this
is as follows: If Re a > 0, then the parameter a results in an unstable mode; if
Re a < 0, then it results in a stable mode.

The conclusion of the stability analysis is the following. The steady detonation
solution is stable when all solutions of the stability problem result in stable modes
of propagation. Conversely, it is unstable when at least one solution of the stability
problem results in an unstable mode.

The main numerical difficulty of the stability analysis is to find solutions of the
stability problem. In fact, an arbitrary trial value of a does not satisfy, in general, the
boundary condition (59). This difficulty has been solved by Carvalho and Soares in
paper [1], using a numerical technique that combines ideas and methodologies of
previous works, as mentioned above.

Accordingly, we introduce the residual function H in a fixed domain R 
 C,

H .a/ D v.xF/C a C 1

�%�eqc�eq

p.xF/ ; a 2 R 
 C; (60)

and notice that the zeros of H satisfy the boundary condition (59). Thus, resorting
to the argument principle, first used by Erpenbeck in [11], and taking into account
that the function H has no poles in R, we count the number Z of zeros of H by
means of the expression

Z D 1

2�i

Z `

k

H 0.�.t//
H .�.t//

k � 0.t/ k dt; (61)

where � W Œk; `� ! C is a path smooth by parts, describing the contour of R in the
positive sense.

Starting from these ideas, the numerical procedure used to solve the stability
problem consists in nine steps described below.
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1. Choose the domain R in the complex plane where we intend to look for
eigenvalues of the stability problem.

2. Define a path � describing the contour of R in the positive sense.
3. Select a great number of trial values aj in the contour of R.
4. Introduce further trial values bj defined by bj D aj C 10�6.
5. Solve the stability governing Eqs. (49)–(54) with initial conditions (56)–(58) for

each trial value aj and bj for the perturbation parameter a.
6. Evaluate the residual function H at each point aj and bj.
7. Estimate the derivative H 0.aj/ by the quotient .H .bj/� H .aj//=.bj � aj/.

8. Estimate the mean value � of the function H 0.�.t//
H .�.t// k � 0.t/ k using a suitable

sample and a 99% confidence interval.
9. Count the number of zeros of the residual function H , approximating the

expression on the right hand-side of Eq. (61) by Z D 1
2� i .k � `/�.

The details of the numerical procedure and a rather complete discussion on the
technique can be found in [1].

5.3 Results and Discussion

Using the numerical procedure described in the previous subsection, we were able
to obtain some results on the stability behaviour of the steady detonation solution
described in Sect. 4. Considering the reference input data indicated in (45) and
the values of the detonation wave velocity D referred in (46), we obtain some
estimations for the number of unstable modes in the region R defined by

0:001 < Re a < 0:1 and 0:001 < Im a < 0:1 :

The estimations are presented in Table 2 and represent very preliminary results on
the stability behaviour of the steady detonation solution described in Sect. 4.

Table 2 Estimations for the unstable modes in the region R, for fixed values of the reaction heat
Q�

R and activation energy ��

f , and for different values of the detonation velocity D

D (ms�1) Number of unstable modes

3120 12 to 334

3130 158 to 684

4400 0

4500 0
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The determination of instability solutions is a very complex task and a time
consuming problem. In Table 2 we present some estimations for the number of
instability modes obtained for different values of the detonation velocity. These
results are still rough approximations and should be improved. In fact, it is known
that the number of instability modes grows as the detonation velocity approaches
its minimum value, see for example [2, 10]. The results presented in Table 2
show that unstable modes exist for lower values of the detonation velocity, as it
is expected from the literature. However, since the confidence intervals obtained for
D D 3120ms�1 and D D 3130ms�1 show a significant overlap, we are not able to
compare the number of instability modes for these two detonation velocities.

The results obtained in the present paper are still very limited and should be
improved. This will be addressed in a work in progress, where more accurate
simulations will be conducted and further detailed results will be included. Among
several interesting topics, we intend to investigate the following two issues: the
limit detonation velocity characterizing stable solutions for other detonating of
Hydrogen-Oxygen mixtures defined in terms of different constituent concentrations;
the relation between the detonation wave velocity and the number of instability
modes. Moreover other simulations will be performed oriented to compare our
results with others available in literature, obtained from numerical studies and
experimental works.
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Mathematical Aspects
of Coagulation-Fragmentation Equations

F.P. da Costa

Abstract We give an overview of the mathematical literature on the coagulation-
like equations, from an analytic deterministic perspective. In Sect. 1 we present
the coagulation type equations more commonly encountered in the scientific and
mathematical literature and provide a brief historical overview of relevant works. In
Sect. 2 we present results about existence and uniqueness of solutions in some of
those systems, namely the discrete Smoluchowski and coagulation-fragmentation:
we start by a brief description of the function spaces, and then review the results
on existence of solutions with a brief description of the main ideas of the proofs.
This part closes with the consideration of uniqueness results. In Sects. 3 and 4
we are concerned with several aspects of the solutions behaviour. We pay special
attention to the long time convergence to equilibria, self-similar behaviour, and
density conservation or lack thereof.

1 Introduction: Some Processes and Models

Coagulation (coalescence, agglomeration, aggregation) and fragmentation phenom-
ena are ubiquitous in many scientific disciplines, such as: Physical [41, 73, 83],
Astronomical [194], Chemical [227], Atmospheric [188, 196], Biological [6, 174],
Environmental [96, 151], as well as in several technological processes [24, 86, 97].

Their quantitative modelling can be achieved by several mathematical approa-
ches, such as those using stochastic processes, computer simulations, or by the
mathematical or numerical analysis of certain types of differential equations,
generally called coagulation-fragmentation equations. We will centre most of our
attention in a class of these equations, the discrete coagulation-fragmentation
equations, but will also refer to the so called continuous case. Our goal is to review
the most important Mathematical Analysis results about existence, uniqueness and
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several properties of the solutions, with special attention to dynamical aspects, in
a way that is accessible to anyone with a background in differential equations but
with no previous contact with these equations. To this end, we shall try to present the
results, the ideas of the proofs, and some of their details, in the most reader friendly
way we can, often detailing simpler situations more deeply and just glossing over
more technically demanding proofs, or even just referring the result and calling the
reader’s attention to the original articles. This, we think, will help the reader to gain
a feel for the subject without getting too much bogged down in the technicalities, at
the same time that will show him/her directions for a deeper study of the issues.

In order to provide an overview as broad as possible of the field, in this
introductory part, in addition to those systems that will be the focus of out attention
later on, we will present a number of coagulation-fragmentation equations that have
been studied in the mathematical literature, although we will not enter into much
detail, and, in several cases, will not refer to them again afterwards.

The mathematical literature on this type of equations has had a huge growth in the
last two decades, so much so that a comprehensive review of the field is no longer
possible in a work such as this. And this is not only true about the mathematical
literature, but even more so about the mathematical modelling literature, as well
as the extremely rich and variegated contributions coming from Physics and other
scientific and technological areas. This scientific literature is also a seemingly
inexhaustible fountain of interesting and difficult mathematical problems, and so
every mathematician must spend as much (if not more) time being acquainted with
it than he/she will spend with the mathematical literature. This feature is also reflect
in the list of references of the present work.

Although the Mathematical Analysis of the coagulation-fragmentation equations
is a relatively recent research area, there exists already a number of reviews that
are useful to whoever wants to obtain an overview of the problems, methods, and
existing results. Two of the most recent reviews [133, 219], have important overlaps
with topics we deal with in this work. Another recent review, largely (but not
exclusively) centered on the study of coagulation-fragmentation-diffusion systems
using duality arguments and entropy and entropy-dissipation methods is [68]. A
very interesting introduction to some of the classical models in this field, including
a discussion of the physical ideas involved, is [43]. Another interesting reference,
although somewhat outdated, is [74]. Drake [72] was the first review article about
mathematical modelling of these problems and although very few of its content is
mathematically rigorous it is still an interesting source for the literature before the
1970s. Finally, although somewhat outside the scope of our work, it is important
to point out the review article of Aldous [2] that seems to had a tremendous
importance in calling the attention of probabilists to this area of research which
resulted in the contemporaneous explosion of works using a stochastic approach to
the coagulation and fragmentation processes (see, for instance, [21] and references
therein). Similarly to what happens with the studies using a stochastic approach,
those on numerical analysis (see, e.g., [88, 118, 119, 141, 142, 189, 226]) are outside
the scope of this work; a natural consequence of space limitations and also of my
lack of expertise in those fields.
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Fig. 1 Scheme of the
coagulation process of an
x-cluster and a y-cluster

(x)

(y)

(x + y)

1.1 Coagulation and Fragmentation Processes

By coagulation (or coalescence, or agglomeration, or aggregation) one means a
class of phenomena by means of which there is an increase in the size (or mass)
of particles through their collision with other similar, smaller, particles. In the
overwhelming majority of cases simultaneous collision of more than two particles
are extremely rare and are not considered.

In Fig. 1 we present a schematic coagulation event between a particle of size (or
mass) x, called x-cluster, and another of size (or mass) y, y-cluster. As will be pointed
out below there are modelling situation in which particle sizes vary continuously (in
RC) and others for which the size is assumed discrete, indexed in NC.

The reciprocal process of spontaneous fragmentation is, as the name implies, that
by which a given particle breaks up and originates two, or more than two, smaller
particles, and is schematically presented in Fig. 2.

A different type of fragmentation that is sometimes considered in the literature is
the collision induced fragmentation, also known as non-linear fragmentation: we
can consider this process as made of two consecutive steps: a coagulation step
forming an extremely unstable cluster that (in the time scale of the full process)
instantaneously breaks into two or more smaller aggregates, as schematically
illustrated in Fig. 3.

The differential equations of coagulation-fragmentation type are one of the
attempts at the mathematical modelling of the processes schematically represented
in Figs. 1, 2, and 3. All these equations can be considered as equations of structured
population dynamics, as they model the dynamics of systems of particles with some
kind of internal structure (due to size, mass, or some other characteristic). Indeed,
there are cases where standard equations of biological population dynamics pop up
in the study of coagulation systems, although not in a direct and obvious way (e.g.:
see [53, 60]), but the fact remains that, due to the special structure of the coagulation-
fragmentation, the general methods of structured population dynamics (as in, e.g.,
[221]) are usually not relevant (however, see Sect. 1.10.4). A much more important
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(x)

(y < x)

Fig. 2 Scheme of the spontaneous (or linear) multiple fragmentation process of an x-cluster into
several smaller y-clusters

(x)

(y)

(z < x + y)

Fig. 3 Scheme of the collisional (or non-linear) fragmentation process
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connection, as far as mathematical methods are concerned, is with kinetic theory,
as is made plain in some of the most recent studies on the long time behaviour of
solutions and self-similarity we shall refer to below.

In the following parts of the present section we briefly present some of the
coagulation and fragmentation models that have been more widely studied from
the mathematical point of view.

1.2 Smoluchowski’s Coagulation Equations

The coagulation differential equation was originally proposed in 1916 by the
physicist von Smoluchowski as a model for the kinetics of colloid formation
[204, 205], and in spite of the fact that it is at present one of the best studied, there
are still has a number of important open mathematical problems about it.

Let us represent the coagulation process of Fig. 1 in the following notation, usual
in chemical kinetics:

.x/C .y/
a.x;y/�! .x C y/ ;

where a.x; y/ is the rate of the coagulation reaction among an x-cluster and a y-
cluster, usually called the coagulation coefficient or coagulation kernel. Often these
coefficients depend only on the mass of the clusters, but there are cases where
it is important to consider dependencies on some other characteristic (cf. cases
in Sects. 1.9 and 1.10) or upon time [212, 223]. The only general mathematical
property imposed by all physical situations is the symmetry and non-negativity of
the coagulation kernel: a.x; y/ D a.y; x/ � 0.

When the cluster masses assume only discrete values, multiples of a smaller
quantity considered as unity (the mass of the 1-cluster, or monomer), the usual
notation for a.x; y/ is ax;y; and the usual letters to denote cluster sizes are i; j; k; : : : ;
instead of x; y; : : :.

In Table 1 we collected some coagulation kernels occurring in the literature (see
references cited in [49, 72, 133]).

Let us start by considering the case of discrete masses, which was also the one
considered by Smoluchowski. Assuming the system is spatially homogeneous, we
represent the concentration (or density) at time t of the j-cluster by cj D cj.t/, and
denote by c D .cj/ the vector of concentrations of all clusters. Assuming valid
the mass action law of chemical kinetics the rate of chance of cj is given by the
differential equation

Pcj D Qc.c/. j/ (1)

where Pcj denotes the time derivative cj and Qc.c/. j/ is the mathematical function
that represents the coagulation (hence the subscript c) reaction terms affecting the j
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Table 1 Some coagulation kernels a.x; y/ occurring in the literature

a.x; y/ Comments

1 Approximately Brownian coagulation

Linear chain polymerization

xC y Polymerization of branched chains of ARBf �1 type ( f 	 1)

Limit case of gravitation coagulation

x�2=3 C y�2=3 Diffusional growth of supported metal crystalites

xy Polymerization of branched chains of RAf type ( f 	 1)

x˛yˇ C xˇy˛ A general case including e.g. Golovin, Stockmayer, etc

.x1=3 C y1=3/.x�1=3 C y�1=3/ Brownian coagulation (continuum regimen)

.x1=3 C y1=3/2.x�1 C y�1/1=2 Brownian coagulation (free molecular regimen)

.x1=3 C y1=3/3 Tangential coagulation (linear velocity profiles)

.x1=3 C y1=3/7 Tangential coagulation (non-linear velocity profiles)

.x1=3 C y1=3/2
ˇ̌
x1=3 � y1=3

ˇ̌
Gravitational deposition (particles bigger than
 50�m)

.x˛ C y˛/ˇ jx� � y� j Ballistic coagulation (˛; ˇ; � � 0; ˛ˇC � � 1)

component of the concentration vector c. There are two contributions to this reaction
term:

1. the creation of j-clusters due to the reactions of smaller clusters with appropriate
masses, . j � k/ C .k/ ! . j/; with k D 1; : : : ; j � 1; and j � 2; to which
corresponds the term

Q1.c/. j/ WD 1

2

j�1X
kD1

aj�k;kcj�kck ; (2)

and defining Q1.c/.1/ WD 0I
2. the destruction of j-clusters due to the coagulation reactions of a j-cluster and any

other present in the system, . j/C.k/ ! . jCk/; with k D 1; 2; : : :. Not imposing
an a priori upper bound on the size of the clusters, to this process corresponds
the term

Q2.c/. j/ WD cj

1X
kD1

aj;kck : (3)

Hence, the right-hand side of (1) is

Qc.c/. j/ WD Q1.c/. j/� Q2.c/. j/

D 1

2

j�1X
kD1

aj�k;kcj�kck � cj

1X
kD1

aj;kck ; j 2 N: (4)
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The discrete Smoluchowski system is the system of a countable number of ordinary
differential equations (1) with the right-hand side given by (4).

In several cases it is preferable to consider the version of Smoluchowski
equations for which the cluster masses can be any positive real number. This
continuous version, first considered by Müller in 1928 [72, 164], can be written
as the following integro-differential equation

@tc.t; x/ D Qc.c/.t; x/ (5)

with c.t; x/ the concentration (or density) of x-clusters at time t, and

Qc.c/.t; x/ WD Q1.c/.t; x/ � Q2.c/.t; x/

WD 1

2

Z x

0

a.x � y; y/c.t; x � y/c.t; y/dy�c.t; x/
Z 1
0

a.x; y/c.t; y/dy: (6)

The first mathematical works about (1) seem to have been the papers by McLeod
[154, 155]. On the continuous version (5) the first mathematical papers are those by
Morgenstern [163] and Melzak [158] (this last one also including fragmentation,
see Sect. 1.5). In the last two decades there has been a huge progress in our
understanding of several questions about existence, uniqueness, regularity, and
asymptotic behaviour of solutions to these equations, and part of these results will
be presented below.

1.3 Oort-Hulst-Safronov Coagulation Equations

Another coagulation equation that has received some attention is the Oort-Hulst-
Safronov equation [65, 177], [194, Chapter 8], that was first proposed to model
astronomy phenomena. This equation has also the general form (5) but differs in the
way Q1.c/.t; x/ and Q2.c/.t; x/ are defined:

1. the x-clusters creation rate depend on a kind of mean value size of the clusters,
namely:

Q1.c/.t; x/ WD �@x

�
c.t; x/

Z x

0

ya.x; y/c.t; y/dy

�
I (7)

2. the destruction of x-clusters due to the coagulation with other existing clusters
only occurs through the reaction with higher masses, i.e., through a kind of
sedimentation of smaller clusters onto larger ones:

Q2.c/.t; x/ WD c.t; x/
Z 1

x
a.x; y/c.t; y/dy : (8)
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As a consequence, some solution properties are distinct from the corresponding
ones in the Smoluchowski’s system, the most notable of them is the finite speed
of propagation of the support of solutions [75], which contrasts strongly to
what happens in Smoluchowski’s (see, for instance, [46] for the discrete case).
Notwithstanding these differences in behaviour, both these equations are related and
can be seen as limit cases of one-parameter families of cluster equations [75, 120].

1.4 Fragmentation Equations

The first references to fragmentation processes took place in the context of chemical
studies on polymer degradation (see, e.g., [197]). The first reference to the mathe-
matical modelling of the spontaneous fragmentation process seems to have been
done, using probabilistic methods, by Kolmogorov [112], who also suggested and
supervised the later study [89] by Filippov. The first non-probabilistic mathematical
reference to these processes is included in Melzak work [158] about the continuous
coagulation-fragmentation system. For the discrete version the first reference seems
to be the paper [206] by Spouge. As the spontaneous fragmentation process can be
modelled by a linear equation (see below), the modern approach to these problems
is intimately connected with tools and methods from Linear Functional Analysis,
and an excellent introduction to them can be seen in [7, Chapters 8 and 9].

In this section we will consider the spontaneous fragmentation case; other
processes, such as collisional fragmentation or volumetric dispersion, which are
also related with coagulation processes will be presented later on in Sect. 1.7.

We can represent the fragmentation process of Fig. 2 by1

.x/
B.x/�! .y1/C .y2/C : : : ;

where B.x/ is the rate of fragmentation of x-clusters. Let  .x; y/ be the average
number of y-clusters produced by the fragmentation of an x-cluster. In the case of
discrete masses, denoted by i; j; k; : : :, we use the traditional notation Bj and  j;k,
instead of B. j/ and  . j; k/.

Mass conservation in each simple fragmentation reaction implies that the total
mass of daughter particles must be equal to the mass of the original particle, namely

Z x

0

y .x; y/dy D x or
j�1X
kD1

k j;k D j; (9)

for the continuous and for the discrete cases, respectively.

1The notation is not very good since it suggests there can be at most a countable number of daughter
particles .yk/: in fact, there is no a priori reason preventing the distribution to be continuous.
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For definiteness, let us consider the discrete case. Assuming the mass action law
the rate of change of cj due to spontaneous fragmentation processes is given by the
differential equation

Pcj D Qf .c/. j/ ; (10)

where Qf .c/. j/ encodes the fragmentation reaction contributions (hence the sub-
script f ) to the evolution of the j-cluster concentration, that can be expressed by

Qf .c/. j/ WD �Q3.c/. j/C Q4.c/. j/; j 2 N; (11)

where

1. the destruction of j-clusters due to the fragmentation . j/ ! .k/ C : : : ; is given
by

Q3.c/. j/ WD Bjcj and Q3.c/.1/ WD 0 I (12)

2. the creation of j-clusters due to fragmentation of bigger clusters is modelled by

Q4.c/. j/ WD
1X

kD1
BjCk jCk;jcjCk : (13)

A frequent assumption, valid, for instance, in the degradation of polymers [227],
is that of binary fragmentation, i.e., each fragmenting cluster produces only two
daughter particles, and thus, by the symmetry of the physical process,  i;j D  i;i�j.
Hence, (9) implies

Pj�1
kD1  j;k D 2, which has the obvious interpretation that the

average number of daughter particles in each fragmentation is equal to two.2

In this case, denoting by bj;k the rate constant for the binary fragmentation
reaction . j C k/ ! . j/ C .k/; i.e., bj;k WD BjCk jCk;k; we conclude that Bj D
1
2

Pj�1
kD1 bj�k;k and thus the right-hand side of the binary fragmentation reaction is

Qf .c/. j/ WD �1
2

j�1X
kD1

bj�k;kcj C
1X

kD1
bj;kcjCk: (14)

As with the case of Smoluchowski’s equations, the continuous versions of the
fragmentation equations consist in integro-differential equations obtained formally
by substituting the sums by integrals.

The fragmentation mechanism is mathematically encoded in the functions B.x/;
 .x; y/ and b.x; y/ and the only general property these functions must obey,
on physical grounds, is non-negativity. Furthermore, the binary fragmentation
coefficients must be symmetric: b.x; y/ D b.y; x/.

2As it should, in a binary fragmentation. . .
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In the mathematical literature it is common to assume growth conditions such
as b.x; y/ � .x C y/� , or b.x; y/ � x� C y� , or b.x; y/ � .x C y/� ; etc., or other
conditions, such as the strong fragmentation [34, 45], and the weak fragmentation
[29, 30, 36, 48]. In models of some specific phenomena particular fragmentation
kernels need to be considered (e.g.: see [103]).

An assumption that is particularly important from the physical viewpoint,
corresponding to the occurrence of microscopic reversibility, is called the detailed
balance condition. This presupposes the simultaneous existence of coagulation and
fragmentation processes (cf. next section) and, informally, it says that it must exist
an equilibrium (i.e., time independent) solution to each of the individual reactions

. j/C .k/ • . j C k/:

The detailed balance condition is the following: there exists a positive sequence
.Mj/, with M1 D 1; such that

aj;kMjMk D bj;kMjCk: (15)

The sequence .Mj/ is physically interpreted as the system’s partition function [13,
36].

1.5 Coagulation-Fragmentation Equations

The coagulation-fragmentation equations are the system that describes phenomena
where coagulation and fragmentation processes are simultaneously present. As
such, it has the form

Pcj.t/ D Qc.c.t//. j/C Qf .c.t//. j/ ; (16)

or

@tc.t; x/ D Qc.c/.t; x/C Qf .c/.t; x/ ; (17)

in the discrete and in the continuous case, respectively.
Possibly the first explicit reference to this system in the literature is in [23]

treating phenomena of polymerization and de-polymerization in chemistry. The
authors consider the discrete version of the equations, binary fragmentation, and
reaction kernels independent of the cluster sizes, aj;k � a; bj;k � b.

The first mathematical study about the existence of solutions is Melzak’s
1957 paper cited in the last section [158], that considers the continuous system
with bounded kernels. The extension to unbounded kernels started more than
three decades latter in Stewart’s papers [210, 211]. For the discrete system the
first existence result was published by Spouge [206] in 1984, valid for bounded
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fragmentation coefficients. More general results were obtained by Ball and Carr
[12], by Laurençot [126], by the author [45], among many others. Analogous
existence results where obtained for similar equations modelling an Ising spin
system with Glauber dynamics by Kreer [116].

Long time behaviour of solutions to coagulation-fragmentation systems is a
rather difficult problem, not yet completely understood. The first significant contri-
bution was by Aizenman and Bak in 1979, for the continuous system with constant
coefficients [1]. In the last couple of decades a number of important papers have
greatly advanced our understanding of the dynamic behaviour of solutions of both
the discrete and the continuous coagulation-fragmentation equations. Some of these
contributions will be analysed below.

The vast majority of the mathematical studies have considered binary fragmen-
tation, but some other types of fragmentation processes have also been considered
[84–86, 139, 215] and we shall briefly refer to them in Sect. 1.7.

1.6 Becker-Döring Equations

The original Becker-Döring model was proposed in 1935 in the context of nucle-
ation studies [17] (formation of liquid droplets in a supersaturated vapour) in which
the concentrations of large clusters are so small that one assumes the only relevant
reactions are those of coagulation between a cluster and a monomeric particle, and
the fragmentation of a cluster by shedding off a single monomeric particle at a time,
as schematically illustrated in Fig. 4.

Even at very low densities it is not physically reasonable to expect the Becker-
Döring to be a good approximation [182]. However, the rich (and difficult)
mathematics of the Becker-Döring system, together with the fact that some of its
properties are believed to also hold in more general systems whose mathematical

aj

bj+1

( j)

(1)

(j + 1)

Fig. 4 Scheme of the Becker-Döring processes
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study is considerably more complex, have turned the Becker-Döring system into
a paradigmatic model in coagulation-fragmentation studies whose importance and
contribution to the understanding of the issues involved can hardly be overstated
[202]. Even from the physical and mathematical modelling points of view, Becker-
Döring like systems continue to this day to be proposed and studied [73, 107].

In the original version of the Becker-Döring system the monomer concentration
was assumed to be time independent. It was Burton [28] and Penrose and Lebowitz
[182] who first considered the current version of the equations, in which the mass of
the system is formally constant and thus the monomer concentration has to change
with time, and by this turning them into a non-linear system of the differential
equations that is a particular case of the coagulation-fragmentation system with the
rate kernels satisfying the restriction3

aj;k D bj;k D 0 if j ^ k > 1: (18)

Due to historical reasons, the notation used in Becker-Döring system is slightly
different from the one that would be obtained by substituting (18) into (4),(14)
and the result into (16). For j > 1 let us define aj WD aj;1 and bjC1 WD bjC1;1.
let a1 D 1

2
a1;1; b2 D 1

2
b2;1; and remember that the rate coefficients aj;k e bj;k are

invariant under permutation of the subscripts. Thus, the Becker-Döring system is
usually written as

8
ˆ̂̂
<
ˆ̂̂
:

Pc1 D �J1.c/�
1X

jD1
Jj.c/;

Pcj D Jj�1.c/� Jj.c/; j � 2;

(19)

where Jj.c/ WD ajc1cj � bjC1cjC1.

1.7 Equations with Non-linear Fragmentation

As pointed out in Sect. 1.1 there is a fragmentation mechanism that is quiet
different from the spontaneous fragmentation considered in Sects. 1.4–1.6, and
that mathematically originates non-linear contributions to the equations. There are
some situations in astrophysics and atmospheric sciences where this non-linear

3In this work we shall use the notation x^ y D minfx; yg and x_ y D maxfx; yg and analogously
for the comparison of more than two numbers.
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fragmentation model has been used [194, 208, 209] and also in the mathematics
literature there has been some interest (see, for example [42, 76, 213, 222]).

Considering the discrete case, assume that the collision between a k-cluster and a
. j�k/-cluster can give rise to a j-cluster with probability wj�k;k, or, with probability
1 � wj�k;k, to a variable number of daughter particles with total mass equal to j.
Observe that, in contradistinction to spontaneous fragmentation, in this collisional
fragmentation process some of the daughter particles can be larger than any of the
original clusters.

As usual, the equations are of the type

Pci D Qd.c/.i/ (20)

where the reaction term has the following additive contributions:

1. formation of i-clusters by coagulation of smaller clusters of appropriate size, say
i � j and j, with probability wi�j;j; to which corresponds the term

1

2

i�1X
jD1

wi�j;jai�j;jci�jcj I (21)

2. destruction of i-clusters by their collision with any other cluster, independently
of the final result be a coagulation or a fragmentation, which corresponds to a
contribution Q2.c/.i/ given by (3);

3. the formation of an i-cluster as the result of a collision followed by instantaneous
fragmentation, with probability complementary to the one above, whose term
reads as

1

2

1X
jDiC1

j�1X
kD1

� i
j�k;k.1 � wj�k;k/aj�k;kcj�kck; (22)

where � i
j�k;k gives the distribution of size i fragments produced by collisional

fragmentation of j � k and k-clusters. Thus, this function is analogous to the
function  in the spontaneous fragmentation models (cf. Sect. 1.4). Observe that
� has to satisfy the identity � i

j;k D � i
k;j, and, considering that each reaction

conserves mass, also

jCk�1X
iD1

i� i
j;k D j C k:
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Hence, the general coagulation-fragmentation system with collisional fragmentation
(20) is

Pci D 1

2

i�1X
jD1

wi�j;jai�j;jci�jcj � ci

1X
jD1

ai;jcj C

C1

2

1X
jDiC1

j�1X
kD1

� i
j�k;k.1 � wj�k;k/aj�k;kcj�kck:

Naturally, to the right-hand side of this system one can add the spontaneous
fragmentation term Qf .c/.i/ given by (11).

The specification of the functions � i
j;k, wj;k and aj;k allows the modelling of

particular cases of interest such as, for example, that considered in [209] where
collisional fragmentation always produces only monomers.

The first mathematical study of these equations is due to Laurençot and Wrzosek
[139]. An analogous (continuous) system, with the imposition of a maximum
cluster size was proposed by Fasano and co-workers in the context of liquid-
liquid dispersions in chemical engineering [84–86] (see also [215]). Another
similar system was considered in studies of polymerization reactions with catalysed
fragmentation [111].

1.8 Diffusive Coagulation-Fragmentation Equations

The previous approaches to coagulation-fragmentation processes assumed spatially
homogeneous systems and so the cluster densities are independent of the spacial
location. However, the spacial dependence of the cluster densities, and in particular
the consideration of diffusive effects, has been recognized important is several
situations [22, 71, 178].

The discrete version of these systems can be written as

Pcj D rz.djrzcj/C Qc.c/. j/C Qf .c/. j/ ; in ˝ 	 RC � Rn 	 RC (23)

where the diffusion coefficients dj D dj.z; c/ are non-negative functions, and
adequate conditions are imposed to cj D cj.z; t/ on the boundary @˝ , or to their
decay at infinity.

The first mathematical study about these systems seems to be by Slemrod
[199], but the first general existence and uniqueness result (without fragmentation,
Qf .c/. j/ � 0) is [19] by Bénilan and Wrzosek. In the last decade a growing
number of papers have been published about systems like (23), or its continuous
analogue, dealing with existence, uniqueness, and behaviour of solutions. In this
context the contributions by Amann, Laurençot, Mischler, Wrzosek, among others,
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are extremely important (see, for example, [3–5, 68, 79, 121, 129, 132, 137, 138,
224, 225]). In the present chapter we shall not further consider these works.

1.9 Equations with Kinetic and Transport Terms

Another type of space dependence in these cluster equations is the introduction of
transport terms, first considered in meteorological studies, in particular in models
of cloud formation [20, 143]. The goal is to model the convection of clusters due to
a given velocity field. We shall exemplify with the case studied in [74, Chapters 10
and 11]. Let z 2 ˝ � R3 denote the space variable, v.z; t; x/ 2 R3 the velocity of
the x-cluster at time t and position z, and let r.z; t; x/ 2 R be the rate of change of
the concentration c.z; t; x/ by condensation or evaporation of droplets of size x in
the space-time location .z; t/. The equation, first proposed by Levin and Sedunov,
and by Berry, is

@tc.z; t; x/C @x.r.z; t; x/c.z; t; x// C rz.v.z; t; x/c.z; t; x// D Qc.c/.t; x/; (24)

where Qc.c/ is defined by (6), with the concentrations also dependent of the z
variable, but the coagulation kernel only dependent on the masses.

In this model the velocity field is an “exterior” field where the clusters are
embedded. In particular, the coagulation reactions are not influenced by the velocity
field v. A different possibility is to consider the coagulation process depending on
the local velocity, that is, considering the velocity field not as some field carrying
the clusters, but essential as the field that describes the local velocity of each
cluster. This more detailed model, analogous to the viewpoint used in kinetic theory,
was first considered in the context of discrete velocity models by Slemrod and
co-workers [201, 203], and, more recently, in the general case, among others by
Escobedo et al. in [81] where they proved results on global existence of weak
solutions and their convergence as t ! 1.

Let c.z; t; x; p/ be the concentration of x-clusters with linear momentum p, and
located at z at time t. The system studied in [81] is

@tc C v � rzc D Qc.c/; (25)

where v D p=x; and the coagulation term Qc D Q1 � Q2 is defined by

Q1.c/ WD 1

2

Z

R3

Z x

0

a.y0; y � y0/c.�; �; y0/c.�; �; y � y0/dx0dp0

Q2.c/ WD
Z

R3

Z x

0

a.y; y0/c.�; �; y/c.�; �; y0/dx0dp0

where y WD .x; p/ 2 RC 	 R3, etc.
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A similar model, without the space dependence, was considered before by
Baranger in [15] and by Roquejoffre and Villedieu in [193]. Still another model was
studied by Fournier and Mischler [94, 95], in which, although there is also no spacial
dependence, there are, additionally to the binary collisions resulting in coagulating
events, other binary elastic collisions (modelled by Boltzmann collision operator)
and inelastic collisions (modelled by a granular collision operator).

Naturally, the analysis of this type of equations makes use of methods closely
related to those used in studies of Boltzmann’s and related kinetic equations. In this
chapter we will not consider these works further.

1.10 Other Models

Other models have been considered in the literature. We shall now describe some of
them.

1.10.1 Multi-Index Cluster Models

In the systems of previous sections clusters were characterized by a single “internal”
quantity, their mass or volume, and, in some cases, by some “external” ones,
such as the spacial position or velocity. However, for some applications one needs
to characterize the existing clusters by additional variables identifying relevant
physical quantities.

One obvious case is in co-polymerization reactions when there are two mono-
meric species, A and B say, and it is important to keep track of the way a given
cluster is made, not only by the total number of monomeric particles, but accounting
for how many of each monomeric species a given cluster is formed. Thus, in
the simplest situation a cluster has to be described by a vector subscript .iA; iB/
informing that the cluster is made by iA units of the monomeric species A and by
iB units of B. This approach was used in kinetic studies of micelles and vesicle
formation (cf. e.g. [64]) where the following two component Becker-Döring like
system was proposed:

d

dt
ci;j D JA

i�1;j.c/� JA
i;j.c/C JB

i;j�1.c/� JB
i;j.c/; i; j 2 NC n f1g;

with the terms of microscopic balance for monomer A given by JA
i;j.c/ WD ai;jc1;0ci;j�

biC1;jciC1;j and those for B by JB
i;j.c/ WD ˛i;jc0;1ci;j �ˇi;jC1ci;jC1; with the meaning of

the symbols analogous to that in the usual Becker-Döring equation (19).
A similar case occurs when the clusters are made of two phases of the same

substance and one needs to keep track of the quantities of each of them. An example
is presented in [186], where it is considered that each particle has a continuously
varying mass x, of which ˛ � x is the mass of one of the phases (ice or liquid
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c15;9 c15;7

γ

Fig. 5 An example of an internal geometric rearrangement “reaction” of a .15; 9/-cluster to a
.15; 7/-cluster, at a rate �c15;9

water). Using a notation analogous to that in Sect. 1.2, the coagulation operator
correspondent to (6) is now

Qc.c/.x; ˛/ D 1

2

Z x

0

Z ˛

0

a.x � y; ˛ � ˇI y; ˇ/c.�; x � y; ˛ � ˇ/c.�; y; ˇ/dydˇ �

D �c.�; x; ˛/
Z 1
0

Z 1
0

a.x; ˇI y; ˇ/c.�; y; ˇ/dydˇ:

Other model requiring a multi-index is considered in [220], where each cluster
is characterized by its mass j and also by another subscript k � j describing
its shape in the sense that it reflects its diameter. In this case a cluster can not
only be subject to coagulation and fragmentation reactions, but also to internal
rearrangement “reactions” that are a mere change in its geometry, as Fig. 5 attempts
to exemplify.

A further model of this type was used in the study of surface capping in cell-
antibody interactions [37, 63]. In this case a j-cluster can be represented by a graph
for which each of the j nodes stands for a monomeric unit in the cluster. All nodes
are potentially of maximum degree three but not all of them have this valency at a
given particular time. The k < j nodes with degree one (the leaves of the graph) are
particularly important in this model and so the clusters are characterized by the pair
. j; k/ and their dynamic was studied using an adapted version of the Becker-Döring
system.

Finally, another case with an associated graph (in this case a tree) was studied in
[56], motivated by the study of self-organized criticality in [99]. The model consists
in a coagulation system for the evolution of clusters described by a pair .p; q/,
where p is the “order” and q its mass, and where the reactions are schematically
represented by

.i; j/C .k;m/ ! ._.i; k; .i ^ k/C 1/; j C m/:

This means that the mass satisfies the usual additivity, and the order satisfy the
Horton-Strahler rules. Each cluster is represented by an edge of a tree and a reaction
between two clusters corresponds to the respective edges concurring in a node (cf.
Fig. 6). In [56] a coagulation system for the time evolution of the concentrations
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Fig. 6 Illustration of the
Horton-Strahler rules in the
orders of the edges of a tree

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

11

1

11
1

1
1

1

1

2
2

2
2

2

2

2

2

2

2
2

2

2

2

2

3 3

3

3
3

4

4

4

4

5

ci;j of the .i; j/-clusters is studied, as well as the evolution of some mesoscopic
quantities, like the total number of clusters of a given order.

1.10.2 Annihilation Models

We now briefly consider a class of systems in which clusters are also made up of
two monomer species but merit a reference outside Sect. 1.10.1 because part of the
physical processes involved are significantly different from the usual coagulation
in that cluster can annihilate each other. The two-species coagulation-annihilation
system describe the time evolution of the concentration of clusters of two different
particle species (A and B, say) in which the A-particle clusters [resp., B-particle
clusters] undergo coagulation between themselves, symbolically

A� C A�
Ka�! A�C� Œresp:; B� C B�

Kb�! B�C��;

but when an A-particle cluster and a B-particle cluster come together, they annihilate
each other, and in the simplest such model the annihilation is complete, i.e., for all
� and �,

A� C B�
L�! ;;

where ; represents a physically inert species. In the physics literature these
processes have been approached through a variety of techniques. Using a mass
action approach as in coagulation studies, one of the first works seems to be
Ben-Naim and Krapivsky [18] where, for the case of discrete cluster sizes, it is
assumed that reactions rates are independent of the cluster sizes and all have the
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same value, Ka.�; �/ D Kb.�; �/ D L.�; �/ D 2. In that work, the authors
investigated the time evolution of the system and the existence, or non-existence, of
a universal similarity behaviour of the solutions. More recently, Laurençot and van
Roessel [135] considered these same issues in the case of continuous cluster sizes
with reaction rates still independent of the cluster sizes but with the coagulation
rates Ka.�; �/ D Kb.�; �/ D k possibly different from the annihilation kernel
L.�; �/ D L, a case that had already been considered by Krapivsky in [115] for the
discrete case with k D 2. Still within the context of rate coefficients independent of
cluster sizes, in [60] da Costa et al. extended [135] by considering the possibility
of the coagulation rates of A-clusters and of B-clusters to be different from each
other, i.e., Ka.�; �/ D Ka; Kb.�; �/ D Kb; and L.�; �/ D L, where Ka;Kb;L are
positive constants, otherwise unrestricted. A slightly more general process has also
been proposed consisting in an incomplete annihilation between A and B-particles
(see, e.g., [115]), which means that the A and B species still annihilate each other
but only to the extent corresponding to their respective sizes, which is represented
schematically by

A� C B� �!
8
<
:

A��� if � > �
; if � D �

B��� if � < �
:

Coagulation-annihilation with incomplete annihilation are hard to analyse math-
ematically and the method used for the complete annihilation case, based on
Laplace transform techniques, do not seem to work. This difficulty has led to
the consideration of some toy models that still show some interesting behaviour.
One such model was first introduced by Redner et al. in [191] and a similar but
more general one was introduced in [108]. These toy models retain the incomplete
annihilation process but get rid of both, the two different monomeric species, and
the coagulation reactions. The process is schematically represented by

Aj C Ak
aj;k�! Ajj�kj;

where A0 WD ;. Still assuming that there is no destruction of mass in each individual
reaction, it now makes more sense to think of j as the size of the cluster “active part”,
being the difference between j C k and jj � kj the size of the resulting cluster that
has become inactive after the reaction. One illustration of this is in Fig. 7.

The dynamics of this cluster system is governed by the following equations,
called the RBK cluster system in [59],

Pcj D
1X

kD1
ajCk;kcjCkck �

1X
kD1

aj;kcjck; j D 1; 2; : : : ; (26)
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j k | j − k |

Fig. 7 Schematic reaction in the RBK coagulation-annihilation model

whose mathematical study started only recently [59, 61]. It is worth noticing the sim-
ilarities, and also the differences between the RBK system (26) and Smoluchowski’s
coagulation equations.

1.10.3 Coagulation of Intervals in the Real Line

The models considered in this section are toy models for maturation and ageing
processes in physical systems far from equilibrium and have been considered
extensively in the Physics literature. Below we shall concentrate exclusively on
mathematical works. It is also interesting to remark that some of these models can
be seen as a kind of “dual” processes to the RBK system with mono-disperse initial
data [108].

The first of these models was studied in 1992 by Carr and Pego [39]. Their
motivation was the studies of metastability in solutions to reaction-diffusion systems
of Chafee-Infante type ut D "2uxx C u � u3 in the bounded interval .0; 1/
with homogeneous Neumann conditions at the boundary, and very small diffusion
coefficient ". This rather interesting behaviour had been discovered and studied by
the same authors and by Fusco and Jack Hale in a series of remarkable papers (cf.
[38, 98] for an introduction to those results). It consists in the fact that a typical
solution rapidly approaches functions that, in spite of not being equilibria (and being
far from one) are practically time independent for an extraordinarily large interval
of time (of the order e1="). The graph of these functions are essentially constant but
for what happens in the neighbourhood of a finite number N of points of .0; 1/,
where very sharp transitions take place. When, due to the extra slow dynamics,
two of these transition layers finally come close to one another, the dynamics has
a markedly increase in its speed in such a way that the transition layers suddenly
collapse and disappear, after which the dynamics returns to its exponentially slow
pace.

The mean field coagulation like model [39, 100] for this behaviour was first
derived by [165] and is the following: consider N � 1 points arbitrarily chosen
in the interval .0; 1/ (these points represent the location of the transition layers
in the solution to the reaction-diffusion equation); assume the following process
with discrete time: in each time unit look for the shortest interval in the partition
of .0; 1/ defined by the N chosen points and eliminate the two points that are its
boundary, thus producing the fusion of that interval with its nearest neighbours (this
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tk

tk+1 > tk

Fig. 8 A schematic interval’s coagulation process

corresponds to the quick collapse of the transition layers) and having as a result the
reduction of the number of points to N �2 in the next time unit (cf. Fig. 8). Denoting
by f .x; t/ the density, at time t, of the distribution of the number of intervals by unit
length, the total number of intervals by unit length is

N.t/ D
Z 1
0

f .x; t/dx:

Let L .t/ be the smallest interval at time t. The time evolution of f due to the process
described above has the following two contributions:

1. formation of an interval with length x by coalescence of an interval of length
L .t/ with two intervals of lengths y and x � y � L .t/;

2. disappearance of an interval of length x by coalescence with any other interval.

The differential equation for f is

@tf .x; t/ D f .L .t/; t/ PL
N2.t/

�Z 1
0

f .y; t/f .x � y � L .t/; t/dy � 2f .x; t/N.t/

�
;

(27)

where f .x; t/ D 0 if x < L .t/. In [39] the time scale was chosen so that the expected
number of coagulation events per unit time is f .L .t/; t/ dL

dt D 1. In [100] the time
was parametrized by the smallest interval size, i.e., L .t/ D t; and the system was
written for the probability density �t.x/ WD f .x; t/=N.t/, instead of f .

A more general model, also studied by Carr and Pego [40], is a generalization
of previous models by Derrida et al. [67] and by Pesz and Rodgers [185]. The
difference relative to the previous model is that now, in each unit of time, the
smallest interval is divided in ˛�1 parts according to a probability density d�.˛/ and
these parts are randomly redistributed by the remaining intervals in the partition.

Let X.t/ be the size of the smallest interval at time t, '.x; t/ be the expected
number of intervals with length larger than or equal to x at time t normalize by the
initial number of intervals, and let N.t/ be the normalized total number of intervals
at time t. Then, the dynamics is determined by the equation

@t'.x; t/ D �
PN.t/
N.t/

Z 1
0

�
'.x � ˛X.t/; t/ � '.x; t/

	
˛�1d�.˛/
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subject to

N.t/ D '.x; t/; for � 1 < x � X.t/:

Another model was proposed and rigorously studied by Menon et al. [162]. The
corresponding process is the following: at each time step choose an integer k � 1 at
random with probability pk; and merge the smallest interval with k randomly chosen
intervals.

With �?k
t denoting the k-fold self convolution of �t; and the remaining variables

as above, the dynamics is described by the equation

@t f .x; t/ D f .L .t/; t/ PL
1X

kD1
pk

�
�?k

t .x � L /� k�t.x/
	
; with x > L .t/:

In [162] the time scale was taken as t D N.t/�1; and the analysis was based on the
method of Gallay and Mielke [100].

1.10.4 Proliferation Models in Population Dynamics

The mathematical studies about proliferation processes in biological populations,
being them of individuals, cells, or biochemical molecules, have resulted in an
appreciable diversity of differential equation used as models [184].

One of these equations, to model the time evolution of a cell population
undergoing mitosis, by which a cell of size x is broken into two of sizes x=2 at a
rate B.x/; is the following [184, Chapter 4]

@tn.x; t/C @xn.x; t/ D �B.x/n.x; t/C 4B.2x/n.2x; t/;

where n.x; t/ is the density of cells of size x at time t. It is possible to generalize this
process by assuming that a cell can be broken into ˛ equal daughter cells with sizes
x=˛ [55]. On the other hand, if the fragmentation process allows the two daughter
cells to have distinct sizes, the differential equation for the density n.x; t/ has the
typical form of a fragmentation equation with mass transport [184] (cf. Sects. 1.4
and 1.9 above):

@tn.x; t/C @xn.x; t/ D �B.x/n.x; t/C
Z 1

x
b.x; y/n.y; t/dy:

In order to model more specific situations, the mathematical models can become
correspondingly more complex. As an example that has recently received some
attention, we can point to models of growth and proliferation of prions (i.e., of
proteins with transmissible pathological conformations) responsible for the Bovine
Spongiform Encephalopathy (“Mad Cow Disease”) [102, 187] and several math-
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ematical models have already been object of a rigorous analysis [136, 198, 216].
According to the contemporary biological understanding, there are two basic prion
forms, a normal, non-infectious, monomeric one (denoted by PrPC in the literature)
and an infectious polymeric form (PrPSc) formed by the polymerization of the
monomeric form. Above a certain critical size n, the PrPSc seems to be have the
strong tendency to rapidly bond with the monomers. The PrPSc has also break up
into polymers below the critical size that are quickly degraded into PrPC monomers.
Denoting by y0.t/ the PrPC concentration and by yi the concentration of PrPSc

polymeric chains made up of i monomers, the differential equation model is the
following [102, 187]

Py0 D � � dy0 � y0

1X
iDn

ˇiyi C 2

n�1X
jD1

1X
iDnCj

jbiyi C 2

n�1X
jD1

nCj�1X
iDn

ibiyi

Pyi D ˇi�1y0yi�1 � ˇiy0yi � aiyi � .i � 1/biyi C 2

1X
jDiC1

bjyj;

where ai; bi; ˇi; � e n are positive constants. Continuous mass versions of these
equations were also considered in the literature [102, 136, 198, 216].

1.11 Other Problems About Coagulation and Fragmentation
Models: Relation with Particle Models

To finish this introductory part, we will refer to a different type of mathematical
studies of coagulation and fragmentation equations. So far, the mathematical
works that we have referred to were those that, starting with a given differential
equation, have as goal the study of (some) properties of its solutions (say: existence,
uniqueness, regularity, mass conservation, long time behaviour, self-similarity). In
the following sections of this chapter this is also the theme we will be interested
in, but in the present section we consider another important class of problems that
have attracted some attention: starting from more fundamental non-equilibrium
Statistical Physics assumptions in terms of stochastic processes, to obtain the
coagulation equations as some kind of thermodynamic limit of these processes. Here
we will just present, in a brief way adapted from [192], the kind of approach used,
and direct the interested reader to the works of, among others, Guiaş [105], Norris
[175], Großkinsky and co-workers [104], Kolokoltsov [114], Rezakhanlou [192],
and Fournier and co-workers [66, 92].

In the microscopic model one initially considers a collection of N � 1 particles
randomly distributed in points xi 2 Rd, with d � 2 and i 2 I D f1; 2; : : : ;Ng. Each
particle have an integer mass mi 2 NC and is animated with a Brownian motion with
diffusion constant 2d.mi/. When two particles of masses mi and mj are at a distance
from one another equal to kxi � xjk D " > 0 they can coagulate to made a particle
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of mass mi C mj, randomly located in any of the positions xi or xj, with probability
dependent of the masses of the original particles4; Due to this coagulation process
the number of particles in the system diminishes with time and so the indexing set
is time dependent , Iq.t/ 
 I. One assumes that the dynamics of this particle system
q.t/ WD ˚

.xi.t/;mi.t//ji 2 Iq.t/
�

is a Markov process with infinitesimal generator
L D A dif C A "

c, where Adif is the contribution of the Brownian motion between
collisions, and A "

c is the coagulation term. For this microscopic process one defines
the empirical measure

gn.dx; t/ D 1

K"

X
i

ıxi.t/.dx/1.mi.t/ D n/:

Being K"
"!0�! 1 an appropriate scaling factor and Z a constant (the total

macroscopic density), one can prove that in the thermodynamic limit, i.e., when
N ! 1 keeping N=K" D Z, the measure gn.dx; t/ converges to a measure cn.x; t/dx
in the following sense

lim
N!1EN

ˇ̌
ˇ̌
Z

Rd
J.x; t/.gn.dx; t/ � cn.x; t/dx/

ˇ̌
ˇ̌ D 0;

for all test functions J bounded and continuous in Rd 	 Œ0;1/. The density cn.x; t/
of the limit measure solves the coagulation equation with diffusive terms (23).

2 Existence and Uniqueness of Solutions to Discrete
Coagulation-Fragmentation Systems

In this section we shall review results about existence and uniqueness of solutions
to coagulation-fragmentation systems, with special emphasis to the discrete case.
Note, however, that most of the results in one case have equivalent in the other,
and a rigorous relation between the two can be established [131]. We start with the
special case of Smoluchowski’s coagulation equation because of its importance,
historically and conceptually. Most of the section will be devoted to existence
results. Uniqueness will be treated in the last part.

We start by briefly presenting the most relevant spaces needed afterwards.

4In other versions of this coagulation process of stochastic particles it is assumed the resulting

particle is located at the centre of mass
ximiCxjmj

miCmj
[176], in still others coagulation can happen

within a whole interval of distances between the particles and not only at the distance " [104]
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2.1 Finite Density Spaces

With the notation introduced in Sect. 1.2, let cj.t/ be the concentration of j-clusters
at time t and, without loss of generality, assume the mass of a j-cluster is j. Thus,
the quantity �.t/ WD P1

jD1 jcj.t/ can be interpreted as the total density of the system
(total mass, assuming the volume is constant) and it is reasonable to impose that
solutions to (16) must have finite density, which means that, for all t � 0, the
solution must be an element of the Banach space X1 
 `1 of finite density solutions
defined by

X1 WD
n
c D .cj/ 2 RNC W kck1 WD

1X
jD1

jjcjj < 1
o
: (28)

In many situations it is important to consider other Banach spaces, namely

X˛ WD
n
c D .cj/ 2 RNC W kck˛ WD

1X
jD1

j˛jcjj < 1
o
; ˛ � 0: (29)

Some of these spaces have also physical meaning, for example, the norm in X0 D
`1 is a quantity proportional to the total number of clusters. Due to the physical
meaning associated to the coagulation and fragmentation equations we will consider
only non-negative solutions, i.e., those remaining in the non-negative cone of the
relevant space X˛,

XC̨ WD
n
c 2 X˛ W cj � 0;8j

o
: (30)

It is not hard to prove [44, Theorem 1.2.1] that the spaces X˛ with the norms k�k˛
constitute a compact and normal scale of Banach spaces, which means that, for all
ˇ > ˛ � 0, Xˇ 
 X˛ with the inclusions being continuous, dense, and compact, and
for all c 2 Xˇ it holds that kck˛ � kckˇ; and the following interpolation inequality
is also valid

80 � ˛ < ˇ < �; 8c 2 X� ; kck��˛ˇ � kck��ˇ˛ kckˇ�˛� :

This scale is also regular, meaning that the norm of the dual spaces X 0̨ is a
logarithmically convex function of the parameter ˛; but this result in not needed
in what follows.

For the continuous version of the coagulation-fragmentation equations (17),
where the cluster masses are in RC D .0;1/; one defines the relevant spaces in
an analogous way, but with the difference that the need to control what happens to
very small clusters, and the non-existence of an inclusion relation in the Lp.RC/
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spaces similar to what exists in the `p; leads to the following finite density space

Y1 WD L1.RC; .1C y/dy/ D L1.RC; dy/\ L1.RC; ydy/;

where dy is the Lebesgue measure on R. The norm in this space is

k � kY1 WD k � kL1.RC;dy/ C k � kL1.RC;ydy/:

2.2 Discrete Smoluchowski Equations

Let us consider the Cauchy problem for Smoluchowski’s coagulation system (1)–
(4),

Pcj D 1

2

j�1X
kD1

aj�k;kcj�kck � cj

1X
kD1

aj;kck;

cj.0/ D cj0;

(31)

The approach to questions of existence to (31) that have been most fruitful so far
consists in its approximation by finite n-dimensional truncations for which one can
prove that their solutions cn.t/ approach, in an adequate sense, a function c.t/ which
can be proved to be a solution of the infinite dimensional system (31). This approach
was used from the very first mathematical works, in the coagulation system by
McLeod [154], in the coagulation-fragmentation systems by Spouge [206] and in
the Becker-Döring, by Ball et al. [13].

A different approach that has been occasionally used in continuous coagulation-
fragmentation systems consists in the use of fixed point theorems and operator semi-
group theory, techniques that were pioneered by Melzak [158] and by Aizenman
and Bak [1]. The approach using semi-group theory has been very successful in the
study of (linear) fragmentation systems (cf., for example, [14, 153]).

In the present chapter we will only use the approach based on truncation. There
are essentially two finite n-dimensional truncations used in the literature: the n-
maximal truncation and the n-minimal truncation, in the designation introduced in
[49]. The first one corresponds to the following system of n ordinary differential
equations for the phase space vector .c1; c2; : : : ; cn/:

Pcj D 1

2

j�1X
kD1

aj�k;kcj�kck � cj

n�jX
kD1

aj;kcjck; j 2 f1; : : : ; ng: (32)
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The second corresponds to the system

Pcj D 1

2

j�1X
kD1

aj�k;kcj�kck �
nX

kD1
aj;kcjck; j 2 f1; : : : ; ng (33)

for the same phase space vector. A 2n-dimensional truncation analogous to the n-
minimal truncation, for which the 2n-dimensional vector is .c1; c2; : : : ; c2n/, is the
following [123]:

Pcj D 1

2

j�1X
kD1

aj�k;kcj�kck �
nX

kD1
aj;kcjck; j 2 f1; : : : ; ng

Pcj D 1

2

nX
kDj�n

aj�k;kcj�kck; j 2 fn C 1; : : : ; 2ng:
(34)

The starting point of the analysis consists in considering an appropriate and
rigorous version of the formal identity, which is a weak version of the coagulation
equation:

1X
jD1

gjcj.t/ �
1X

jD1
gjcj.
/ D 1

2

Z t




1X
jD1

1X
kD1
.gjCk � gj � gk/aj;kcj.s/ck.s/ds; (35)

where one assumes that 0 � 
 � t, and .gj/ is a non-negative test sequence.
From this equality (or for a rigorous version of it) one extracts the a priori

estimates needed for the proofs. For instance, from (35) one can infer that the only a
priori estimate expected to hold in XC1 is the boundedness of density (corresponding
to the test sequence gj D j ), and also that the stronger the growth rate of the
coefficients, the harder to get the estimates one needs and the more likely it is to
expect the need of some control via assumptions on the higher moments Mp.c/ WDP1

jD1 jpcj.t/; p > 1. (Note that for non-negative sequences Mp.c/ D kckp.)
Before proceeding it is necessary to be precise about what is meant by a solution

[12, 123]:

Definition 1 Let T 2 .0;C1� and c0 D �
cj0
� 2 Œ0;C1/N

C

. A solution c D .cj/ of
(31) in Œ0;T/ is a sequence of non-negative continuous functions satisfying 8j � 1

and 8t 2 .0;T/;
(i) cj 2 C.Œ0;T//

(ii)
1X

jD1
aj;kcj 2 L1.0; t/

(iii) cj.t/ D cj0 C
Z t

0

�1
2

j�1X
kD1

aj�k;kcj�k.s/ck.s/ �
1X

kD1
aj;kcj.s/ck.s/

	
ds
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A problem that immediately arises is to know if solutions with non-negative
[resp. positive] initial data remain non-negative [resp. positive] for all later times.
This problem was first studied in the Becker-Döring case [13], and afterwards in the
coagulation-fragmentation in [34, 36]. For the Smoluchowski coagulation system
the following result was proved in [46]:

Theorem 1 ([46]) Let aj;k > 0 for all j; k. Take any c0 2 XC1 and let c be a solution
of (31) in Œ0;T/ 
 Œ0;C1/. For each t 2 Œ0;T/; let J .t/ be the set of subscripts
j for which cj.t/ > 0. Then J .t/ � J is independent of t and is given by J D
spanN0 .J .0// WD

n
j D P

i nipi W pi 2 J .0/; ni 2 N0;maxi ni > 0
o
.

It is easy to conclude from this result that if, for some subscript p; we have
cp.0/ > 0 then it is always true that cp.t/ > 0 for all t > 0. On the other hand,
the proof of the result implies that if cp.0/ D 0 then, either cp.t/ D 0;8t > 0 (if
p 62 spanN0 .J .0//), or it will be always positive (if p 2 spanN0 .J .0//.)

The proof of the theorem uses in a fundamental way the following way to write
Smoluchowski’s equation:

cj.t/Ej.t/ D c
Ej.
/C
Z t




Ej.s/Rj.s/ds (36)

where

Ej.t/ WD exp

 1X
kD1

aj;kck.t/

!
; Rj.t/ WD 1

2

j�1X
kD1

aj�k;kcj�k.t/ck.t/;

and R1.t/ � 0.
These positivity results are also relevant for the coagulation-fragmentation

systems, for which this method (with the obvious modification in the definitions
of Ej and Rj) was first used in [34, 36], where it was also used to prove that, for all
t > 0; all components j of .cj.t// are strictly positive (i.e., J � N) provided that,
for all natural numbers k; the coefficients a1;k and b1;k are positive.

Naturally, the existence results depend on the hypothesis on the coagulation
coefficients aj;k. It is interesting to observe that not only the growth but also the
structure of the coefficients is crucial for the existence of solution, as it is clear in the
following results. Let us start by considering the following coagulation coefficients,
that will be called multiplicative type coefficients:

(H1) There exists non-negative sequences .rj/ and .˛j;k/ such that

aj;k D rjrk C ˛j;k; (37)

and one of the two conditions is satisfied:

lim
j!1

rj

j
D 0; lim

j!1
˛j;k

j
D 0; 8k � 1; (38)
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or

inf
j�1

rj

j
D R > 0; ˛j;k � Krjrk; 8j; k � 1; (39)

for non-negative constants R and K.

For this kind of coefficients we have the following result due to Laurençot [123],
and Leyvraz and Tschudi [148],

Theorem 2 Assuming (H1) and being c0 2 XC1 ; there exists at least one solution c
of (31) in Œ0;C1/ such that, for all t 2 Œ0;C1/; it holds true that c.t/ 2 XC1 and
kc.t/k1 � kc0k1.
Sketch of proof The basic idea of the proof is, by taking limits as n ! 1 in the
sequence of solutions of n-truncated systems, to obtain a non-negative continuous
function and to prove that this function is, in fact, a solution to the Cauchy problem
for Smoluchowski’s equation (31).

Being a bit more precise, assume the coagulation coefficients satisfy (38). Then,
the existence of a function c D .cj/ that is limit of the sequence of solution .cN

j /

of the truncated systems [for instance, using (32)] is a consequence of the Ascoli-

Arzela theorem, due to the compact inclusion of X1 in X.r/ WD
n
c D .cj/ 2 RNCW

kck.r/ < 1
o
, where kck.r/ WD P1

jD1 rjjcjj; and the equiboundedness and uniform

equicontinuity of the sequence of solutions to the truncated systems. Another way to
prove the existence of a limit as N ! 1 of the sequence of truncated solutions .cN

j /

is due to Ball and Carr [12] and consists in the application of Helly’s theorem [113,
pp. 370–371] to an equibounded sequence of uniformly bounded variation functions
built from the solutions .cN

j /.
By (38), the a priori uniform boundedness of the density of .cN

j / is sufficiently
strong to conclude the following estimate (uniform in Nk)

NkX
iDM

ric
Nk
i � sup

i�M

ri

i

NkX
iDM

icNk
i � kc0k1 sup

i�M

ri

i
; (40)

which allows us to control the infinite sum in the right-hand side of (32) and to
obtain the pointwise limit

lim
k!1

ˇ̌
ˇ̌
ˇ̌

NkX
jD1

ai;jc
Nk
j �

1X
jD1

ai;jcj

ˇ̌
ˇ̌
ˇ̌ D 0: (41)

By the dominated convergence theorem, implies that we can take limits as N ! 1
and prove that c is a solution of (31).

If the coagulation coefficients satisfy (39) instead of (38) the problem is harder
and the argument has to be modified. The difficulty of this case arises from the fact



112 F.P. da Costa

that the uniform bound on the density of .cN
j / is not strong enough to control the

terms in the second sum of the right-hand side of the truncated system. A way to
overcome this problem, due to Laurençot [123], uses truncation (34).

The first part of the proof consists in getting the existence of a function c that
is limit of the solutions .cN

j / of the truncated systems. This is a consequence of the
compact injection of H1.0;T/ in C.0;T/. We start by pointing out that the version
of (35) for the solutions .cN

j / of (34) is

2NX
jD1

gjc
N
j .t/ �

2NX
jD1

gjc
N
j .
/ D 1

2

Z t




NX
jD1

NX
kD1
.gjCk � gj � gk/aj;kcN

j .s/c
N
k .s/ds;

(42)

and the needed estimates are concluded by exploiting this g-moment propagation
equation. Choosing in (42) gj D j 1f1;:::;Ng, gj D 1, and gj D j1=21f1;:::;Ng, one gets

NX
jD1

jcN
j .t/ �

NX
jD1

jcN
j .
/ �

NX
jD1

jcj0 (43)

2NX
jD1

cN
j .t/C 1

2

Z t

0

ˇ̌
ˇ

NX
jD1

rjc
N
j .s/

ˇ̌
ˇ
2

ds �
2NX
jD1

cj0 (44)

Z t




ˇ̌
ˇ

NX
jDM

rjc
N
j .s/

ˇ̌
ˇ
2

ds � 4
� NX

jD1
j1=2cN

j .
/
	

M�1=2: (45)

These a priori estimates imply that, for every T 2 .0;C1/ and N � j, cN
j .t/ �

kc0k0 in Œ0;T� and

�����
dcN

j

dt

�����
L2.0;T/

� T1=2
 

j�1X
iD1

ai;j�i

!
kc0k20 C p

2.1C K/rjkc0k3=20 : (46)

Hence, .cN
j / is bounded in H1.0;T/ and thus is relatively compact in C.0;T/. Using

a diagonalization argument, one can conclude the existence of a subsequence .cNk
j /

converging in C.0;T/ to some function c D .cj/ as Nk ! 1.
This convergence, together with the estimates (43) and (45) imply the version of

(41) for the present case,

lim
k!1

������
NkX

jD1
ai;jc

Nk
j �

1X
jD1

ai;jcj

������
L2.0;T/

D 0; (47)

which is the main ingredient to pass to the limit in the ith equation of (34), thus
concluding the proof that c is a solution of (31). �
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Let us now consider additive coagulation coefficients, i.e., those satisfying the
condition

(H2) There exist non-negative sequences .rj/ and .˛j;k/ such that

aj;k D rj C rk C ˛j;k; (48)

and also 0 � ˛j;k � K. j C k/, for some constant K � 0.

If the sequences .rj/ and ˛j;k are sublinear and satisfy (38) the argument of
Leyvraz and Tschudy presented above can be adapted to obtain an existence proof
also in this case. When rj � .const./j it is necessary to modify those arguments: it
is still possible to use Helly’s theorem to prove the convergence of a subsequence
of the sequence of solutions to truncated systems but the remaining proof needs
to be changed using an identity like (35) for the evolution of the partial sumsPN

jDm gjcN
j .t/. This approach, due to Ball and Carr [12], is also applicable to the

coagulation-fragmentation system, and so we leave a more detailed presentation to
the next section. The result that is proved is the following:

Theorem 3 Let K > 0 be a constant and assume aj;k � K. j C k/. Let c0 2 XC1 .
Then, there exists at least one solution c of (31) in Œ0;C1/ such that c.t/ 2 XC1 e
kc.t/k1 � kc0k1; for all t 2 Œ0;C1/.

An important distinction between systems with multiplicative and additive
coefficients is that, in the last case, there are no solutions to the Cauchy problems
(31) when the coefficients grow superlinearly, which certainly contrasts with what
happen in the multiplicative case, as seen in Theorem 2.

This somewhat surprising non-existence result is a consequence of the following
two theorems, to which we shall return in Sect. 4 on density conservation:

Theorem 4 ([12]) Assume (H2) and let c0 2 XC1 . Then, for every T > 0; all
solution c of (31) in Œ0;T/ conserve density, kc.t/k1 D kc0k1.
Theorem 5 ([35, 69]) Let T 2 .0;C1�; and let CL;CU > 0 and ˇ � ˛ > 1 be
constants such that CL. j˛ C k˛/ � aj;k � CU. jk/ˇ. Let c0 ¤ 0 be an arbitrary
element of XC1 . Then, there are no solutions c of (31) in Œ0;T/ that conserve density
in Œ0; 
/, 8
 � T.

Clearly, one can multiply the number of existence results indefinitely by making
assumptions about the coefficients different from (H1) or (H2), but for these studies
to be of any relevance it is necessary that the assumptions are either inordinately
general, or of special interest for the applications. The case of the Becker-Döring
type coefficients falls into this last class (cf. Sect. 1.6):

aj;k D 0 if j ^ k > N;

where N � 1 is a fixed constant. The classic case corresponds to N D 1 [182] and is
the only important one for the applications (cf., e.g., [16]). This means that the only
non-zero coefficients are aj;1 (D a1;j) and the coagulation system is sometimes called
the “addition model” (cf. [124]). The Cauchy problem (31) for these models with
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c0 2 XC1 has density conserving solutions in every interval Œ0;T/ when aj;1  O. j/
[13], and, by arguments similar to those used with assumption (H2), do not have any
solution in whatever non degenerate time interval if aj;1 is superlinear (satisfying
somewhat technical but not very restrictive conditions) [124]. We shall return to
these addition systems later in the chapter.

2.3 Discrete Coagulation-Fragmentation Equations

Let us now turn our attention to the problem of existence of solutions to the initial
value problem for discrete coagulation-fragmentation equations (16), that we now
write as follows:

Pcj D 1

2

j�1X
kD1

Wj�k;k.c/�
1X

kD1
Wj;k.c/;

cj.0/ D cj0;

(49)

where Wj;k.c/ WD aj;kcjck � bj;kcjCk.
The approximation of these systems by finite dimensional truncations works as

in the previous section. The systems are analogous to those then considered, (32)–
(34), the main difference being the substitution of ap;qcpcq by Wp;q.c/. With this
minor change, and with the additional condition

P1
jD1 bj;kcj 2 L1.0; t/, we obtain

a definition of solution for coagulation-fragmentation systems of the same type as
Definition 1.

As pointed out in Sect. 1.5, the first mathematical work on these equations was
due to Spouge [206], who considered sublinear coagulation coefficients aj;k � rjrk

with rj  O. j/ as j ! 1, and somewhat restrictive conditions on the fragmentation
coefficients.

More recent results, valid for much more general coefficients were proved by
Ball and Carr [12], da Costa [45], Laurençot [126], and others, and it is to these
that we will now turn our attention. The fundamental technique of these works is, as
in the coagulation system considered in the previous section, the exploitation of the
evolution of appropriate g-moments of the solutions .cN/ of the N-truncated systems
as a way to obtain a priori estimates useful for taking limits as N ! 1.

The version of (35) for solutions .cN
j / of the N-truncated maximal system that is

useful in this study is

NX
jDm

gjc
N
j .t/ �

NX
jDm

gjc
N
j .
/ D

Z t




�
1

2

X

T1m;N

.gjCk � gj � gk/Wj;k.c/C

C1

2

X

T2m;N

gjCkWj;k.c/C
X

T3m;N

.gjCk � gk/Wj;k.c/

�
ds;

(50)
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where Tp
m;N are the following subsets of N 	 N W T1m;N WD fj; k � m; j C k � Ng;

T2m;N WD fj; k � m �1;m � j C k � Ng; and T3m;N WD fj � m �1; k � m; j C k � Ng;
with the sum defined to be zero if the corresponding set is empty.

Let us start with the case where the coagulation coefficients are of the type aj;k �
K. j C k/, for some positive constant K. This condition includes the case aj;k �
(const.). jk/1=2, but not other important cases such as aj;k � (const.)jk; that will be

considered afterwards.

Theorem 6 ([12, 126]) Let aj;k � K. j C k/; where K is an arbitrary positive
constant. Let c0 be any element of XC1 . Then, there exists at least one solution c
of (31) defined on Œ0;C1/ and satisfying kc.t/k1 D kc0k1.
The original proof of this theorem is due to Ball and Carr [12, Theorems 2.4
and 2.5]. In what follows we present a simpler version by Laurençot [126]
that is based on the adaptation and generalization of a classical result of de la
Vallée Poussin [190, Theorem I.1.2-2] which, grosso modo, guarantees that every
integrable function has an higher integrability property (cf. Lemma 1 below). It is
this additional integrability that allows the deduction of an a priori estimate to pass
to the limit N ! 1 in the sequence .cN/

A noteworthy aspect of these proofs is that no assumptions are made on the
binary fragmentation coefficients (apart from the general ones of positivity and
symmetry). The result of [126] is even applicable to equations with multiple
fragmentation (10)–(11), but here we will particularize for the case of binary
fragmentation (49) .

Sketch of proof To get a function c as limit of solutions .cN/ to the truncated systems
we proceed as in the proof of Theorem 2, applying Helly’s theorem to an auxiliary
sequence [12]. The fundamental problem is to prove that the limit function is a
solution to the Cauchy problem. It is on this problem that we will centre our
attention.

Let K1 be the subset of C1.Œ0;C1//\ W2;1
loc .0;C1/ whose elements are non-

negative convex functions U such that U.0/ D 0; U0.0/ � 0; and U0 is concave. Let
K1;1 
 K1 be the set of those functions that, additionally, satisfy

lim
x!C1U0.x/ D lim

x!C1
U.x/

x
D C1: (51)

The following lemma is an extension of a result of de la Vallée Poussin that is
useful in what follows:

Lemma 1 ([122, 140]) Let .˝;B; �/ be a measure space, and let w 2
L1.˝;B; �/. Then, there exists a function U 2 K1;1 such that U.jwj/ 2
L1.˝;B; �/.

In applying this lemma to our case ˝ D N, B D 2N, and, for I 2 B; define
�.I/ WD P

i2I c0j; where c0 2 XC is the initial condition of the Cauchy problem
(31). Since c0 2 XC we have .x 7! x/ 2 L1.˝;B; �/ and, by Lemma 1, there exists
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a function U0 2 K1;1 such that .x 7! U0.x// 2 L1.˝;B; �/, and so

1X
iD1

U0.i/c0i < 1: (52)

Observe that, in the sense of (51), U0 grows faster at infinity than the identity
and thus (52) provides a stronger decay of the initial condition c0. As with the
coagulation equations, the equation for the evolution of the U-moments of solutions
.cN/ to the truncated systems is essential to obtain the needed estimates. For that we
need to know that, for every U 2 K1, there exists a positive constant mU such that
.i C j/.U.i C j/ � U.i/ � U. j// � mU.iU. j/C jU.i//; for all i; j 2 N. Using this
inequality in (50) with m D 1 e g D U0 we obtain, for every 0 � t � T < C1,

NX
jD1

U0. j/cN
j .t/ � C.T/; (53)

0 �
Z T

0

N�1X
iD1

i
NX

jDiC1

�U0. j/

j
� U0.i/

i

	
bi;j�ic

N
j .s/ds � C.T/; (54)

where by C.T/ we denote constants depending on T; and also of K, c0 and U0.
The same estimates are valid if in (53) we sum only up to i � M and in (54) only

up to i � M � 1 and j � M, with M � N � 1. Taking limits, first N ! C1; and
then M ! 1; we conclude that

1X
jD1

U0. j/cj.t/ � C.T/; (55)

0 �
Z T

0

1X
iD1

i
1X

jDiC1

�U0. j/

j
� U0.i/

i

	
bi;j�icj.s/ds � C.T/; (56)

and from this it follows that
P1

jD1 ai;jcj 2 L1.0;T/; and
P1

jDiC1 bi;j�icj 2 L1.0;T/.
From (53) we deduce the following estimate, similar to (40),

N�iX
jDM

ai;jc
N
j � 2iK sup

j�M

j

U0. j/

N�iX
jDM

U0. j/cN
i � C.i;T/ sup

j�M

j

U0. j/
; (57)

which, together with the analogous one obtained from (55) and with Lebesgue dom-
inated convergence theorem, allow us to control the tails of the series corresponding
to the coagulation terms and get

lim
N!1

������
N�iX
jD1

ai;jc
N
i cN

j �
1X

jD1
ai;jcicj

������
L1.0;T/

D 0: (58)
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The corresponding limit for the fragmentation terms, namely

lim
N!1

������
NX

jDiC1
bi;j�ic

N
j �

1X
jDiC1

bi;j�icj

������
L1.0;T/

D 0; (59)

results from (54), (56) and the dominated convergence theorem.
This concludes the proof that the function c obtained as the limit of the

truncations .cN/ when N ! 1, is a solution of (49). To prove that the norm of
c is equal to the norm of the initial condition we again use (53) and (55) in order to
write, with N � M � 1 � 2 arbitrary,

ˇ̌
ˇkc.t/k1 � kc0k1

ˇ̌
ˇ �

M�1X
jD1

jjcN
j .t/ � cj.t/j C

1X
jDNC1

jc0j C
NX

jDM

jcN
j .t/C

1X
jDM

jcj.t/

�
M�1X
jD1

jjcN
j .t/ � cj.t/j C

1X
jDNC1

jc0j C 2C.T/ sup
j�M

j

U0. j/
; (60)

which, by the arbitrariness of M and N, implies that kc.t/k1 D kc0k1. �

If the coagulation coefficients do not satisfy the bound aj;k � K. j C k/, but only
the weaker condition aj;k � K. jk/˛ , with ˛ 2 Œ0; 1�; there are also several existence
theorems for which it is also necessary to impose, in addition to the growth condition
on the coefficients, some conditions on their structure, as well as restrictions upon
the fragmentation coefficients. As we pointed out in page 114 a first result of this
type, by Spouge [206], is the following (written with the hypothesis of binary
fragmentation).

Theorem 7 ([206]) Let aj;k � O. j/O.k/; as j; k ! C1 where K is an arbitrary
positive constant, and let bj;k satisfy

Pj�1
kD1 bj;k � Q and bj;k � O.k/ when k ! C1;

for j fixed, where Q > 0 is a constant. Let c0 ¤ 0 be an arbitrary sequence in XC1 .
Then, there exists at least one solution c of (49) defined in Œ0;C1/.

The proof of this result, like the one of Theorem 2, uses Helly’s and Ascoli-
Arzela theorems in order to obtain a solution of the Cauchy problem (49) by taking
the limit N ! 1 in the sequence of solutions to truncated systems [206].

Another existence result, obtained in [45] with a so called strong fragmentation
condition on the fragmentation coefficients, is the following:

Theorem 8 ([45]) Let aj;k � Ka. jk/˛; with constants Ka > 0 and ˛ � 1. Let

bj;k be such that
Pb r�1

2 c
jD1 j�bj;r�j � Kf .�/r�C�, where �; � and Kf .�/ are non-

negative constants, and � > ˛. Take any element c0 2 XC1 . Then, there exists at
least one solution c of (49) defined on Œ0;C1/. The solutions of (49) obtained as
limits of solutions of maximally truncated systems are unique and satisfy kc.t/k1 D
kc0k1;8t � 0.
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Observe that the strong fragmentation condition used in this theorem is satisfied
by fragmentation coefficients of the type

bj;k  . j C k/ˇ or bj;k  . jk/ˇ; with ˇ > �1: (61)

Sketch of proof The basic ingredient of the proof is the regularizing effect the strong
fragmentation condition has on some higher moments, a fact that allows us to
obtain the needed a priori estimates. This regularization result consists in the local
integrability of moments kc.�/k1C��"; 8"; of functions c that are obtained as weak-
� limits of sequences of solutions to truncated systems. This idea had already been
used by Carr [34] in the study of the asymptotic behaviour of solutions when the
coagulation coefficients satisfy the conditions of Theorem 6. The main difference
between the tools used in [34] and in [45] is that the differential inequality for the
evolution of higher moments of solutions cN to truncated systems is now

d

dt
kcNk� � C0 C C1kcNk˛1� � C2kcNk˛2� ; (62)

where� � 1C˛; ˛1 D 1C 2˛�1
��1 ; ˛2 D 1C �

��1 and Cj positive constants dependent
only on ˛; �; � and kc0k. In [34], the inequality akin to (62) has the right-hand side
of the Bernoulli equation and thus can be explicitly solved by a standard change of
variable. In the case of (62) the analysis is less direct but one can prove that kcNk�
satisfies the inequality

kcNk� � Œ.� � 1/At��
1

��1 ; (63)

for every constant � 2 .1; ˛2/, and for constants A D A.�; ˛1; ˛2;C0;C1;C2/ > 0

appropriately chosen. By taking the limit N ! 1 in (63) we obtain the local
integrability of the �-moments (� < 1 C � ) of functions obtained as weak-�
limits of solutions cN . It is this local integrability of .1 C � � "/-moments that
is the a priori estimate which, together with the dominated convergence theorem
and Fatou’s lemma, allows taking limits in the truncated equations, both in the
coagulation and in the fragmentation terms. �

To finish this section it is worth observing that the results hereby presented do
not cover all possible conditions on the coefficients or definitions of solution. In
particular, note that if the fragmentation coefficients decay more rapidly that what
is determined by the estimates (61) the above results are not applicable to the case
aj;k  O. jk/ [Theorem 7, due to Spouge, requires aj;k  O. j/O.k/]. The existence
of solution in a case close to this critical growth case, where the coefficients have
the structure aj;k D j˛k C k˛j; with ˛ 2 .0; 1/; was obtained in [78] for continuous
coagulation-fragmentation systems, as a consequence of estimates proved for the
study of the gelation problem. The analysis presented in that paper can also be
applied to discrete equations and will be analysed later in Sect. 4.
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2.4 On the Uniqueness of Solutions

As in the case of existence studies, the results about uniqueness have been obtained
under several different assumptions about the rate coefficients. The approach used
by these studies consists, essentially, in assuming the existence of two distinct
solutions c and d to the Cauchy problem (31) or (49), and then proving that some
moment of the function jxj WD jc�dj satisfies a differential inequality which implies
x � 0 (cf. e.g. [12, 13, 45, 126]).

In order to get the needed differential inequalities one needs to control the
evolution of certain moments, which requires the imposition of restrictions, either
on the class of solutions under consideration, or on the coefficients, that are usually
more stringent than those required in order to prove existence. As an illustration
we present the case, studied in [12], where all coagulation coefficients are bounded,
which already contains the main ingredients used in more general cases:

Theorem 9 ([12]) Let aj;k � K where K > 0 is a constant. Take as initial condition
any c0 2 XC1 . Then, there exists one and only one solution c to (49) defined in
Œ0;C1/ and satisfying kc.t/k1 D kc0k1 for all t � 0.

Sketch of proof Assuming there are two solutions of the initial value problem (49),
c and d; define x WD c � d and consider the function  1.t/ WD kx.t/k1. The version
of (35) with gj D j1. j � n/ and c substituted by jxj gives

nX
jD1

jjxj.t/j D
Z t

0

�
Un.s/C Vn.s/

	
ds; (64)

where

Un WD 1

2

X

T11;n

. fjCk � fj � fk/.Wj;k.c/� Wj;k.d//; Vn WD �
X

T41;n

fj.Wj;k.c/� Wj;k.d//;

with fj WD j sgn.xj/, T41;n WD f1 � j � n; j C k � n C 1g and T11;n was previously
defined in page 115. Noting that Wj;k.c/ � Wj;k.d/ D .cjxk C dkxj/aj;k � bj;kxjCk;

and using aj;k � K; we get
P

T11;n
. fjCk � fj � fk/.cjxk C dkxj/aj;k � const. ; and

thus, because �. fjCk � fj � fk/xjCk � �.. j C k/ � j � k/jxjCkj D 0; we haveZ t

0

Un.s/ds � (const.) .t/. The limit
Z t

0

Vn.s/ds ! 0 as n ! 1 is obtained

using the condition on the coefficients and the hypothesis that c and d are density
conserving, which is natural since these last conditions are equivalent to

nX
jD1

jcj.t/ �
nX

jD1
jcj 0 D �

Z t

0

X

T41;n

jWj;k.c.s//ds
n!1�! 0; (65)

and similarly for d.
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With these estimates we can write

 1.t/ � (const.)
Z t

0

 1.s/ds; (66)

and hence, by Gronwall’s inequality,  1 � 0, implying uniqueness of density
conserving solutions. �

Observe that Theorem 9 imposes a very strong boundedness condition on the
coagulation coefficients but none on the fragmentation ones (apart from the basic
ones of non-negativity and symmetry used to prove existence). Observe also that the
theorem establishes uniqueness just in the family of density conserving solutions.

This type of restrictions occur also in other cases. In [45] it is proved that, under
the hypothesis of Theorem 8, density conserving solutions are unique. The proof
uses the same ideas as presented before but the estimates for Un and Vn are now
obtained using the following integrability result kc.�/k1C˛ 2 L1.0; t/; 8t < 1; of
solutions c to (49). This additional regularity, similar to what was used in the proof
of Theorem 8, has to be established for all solutions of (49), not only for those
obtained by taking limits of solutions to truncated problems, and this is achieved
by a kind of step-by-step argument first used by Carr in [34]. The estimates finally
result in the following inequality, similar to (66),

 1.t/ � const.
Z t

0

'.s/ 1.s/ds; (67)

where '.s/ D Kakc.s/k1C˛ C Kakd.s/k1C˛ .
Another uniqueness result, similar to the one in Theorem 9, is proved in [126] and

complements the existence result whose proof was presented in Theorem 6. Under
the condition aj;k � Aj C Ak; where Ai � Kai; it is shown, by a proof like the one
above, that uniqueness holds in the class of density conserving solutions satisfying

the integrability condition
1X

jD1
jAjcj 2 L1.0; t/; for each t < 1. There is a natural

problem that immediately comes to mind, which is the existence of solutions with
this additional regularity, or, better still, to know what are the additional conditions
(if any) that need to be imposed at t D 0 that ensure this extra regularity at later
times. The answer to this problem was given by Laurençot in [126] and generalizes
previous similar results by Carr and da Costa [36]. Before presenting the result we
need to introduce the following notation: we say that a function U is an element of
K2 if it is non-negative, convex, belongs to C2.Œ0;C1//; satisfies U.0/ D U0.0/ D
0; its derivative is a convex function and there exists a positive constant KU such
that U0.2x/ � KUU0.x/ for all x � 0. (The functions x 7! xm are in K2 if m � 2.)

Proposition 1 ([126]) Let aj;k � K. j C k/; where K > 0 is a constant. Let c0 2 XC1

be such that there exists U 2 K1 [ K2 with
1X

jD1
U. j/cj0 < 1. Then, there exists at
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least one solution c of (31) defined in Œ0;C1/, satisfying kc.t/k1 D kc0k1 and, for
each t < 1,

sup
s2Œ0;t�

1X
jD1

U. j/cj.s/ < 1:

This type of results, usually called “propagation of moments”, are very useful for
the study of the long time behaviour of solutions and we shall return to them in the
next section.

Imposing growth restrictions on the kinetic coefficients it is possible to prove
uniqueness without further regularity restrictions on the initial data. An example,
due to Ball and Carr [12], is the following:

Theorem 10 ([12]) Let K > 0 and ˛ 2 

0; 1

2

�
be constants such that, for all

natural numbers j; k; n0, it holds aj;k � K. jk/˛,
Pb.kC1/=2c

jD1 j1�˛bk�j;j � Kk1�˛ andPb.rC1/=2c
jDn0

j1br�j;j � Kr; for r � 2n0. Let c0 2 XC1 be arbitrary. Then, there exists
only one solution c of (49) defined on Œ0;T/.

Note that, due to . jk/˛ � . jk/1=2 � 1
2
. j C k/; Theorem 6 can be applied to this

case and this means that, under these conditions, solutions to (49) are unique and
conserve density. However, note that the present result is not a uniqueness theorem
in the class of density conserving solutions (as in the result of [46] cited above) but in
the universe of all solutions to the Cauchy problem (49) in the sense of Definition 1.
The proof of this theorem uses the method presented above for Theorem 9. The only
relevant difference is that now is more convenient to get estimates on  1�˛.t/ WD
kx.t/k1�˛ instead of 1.t/ D kx.t/k1. The final result, from which uniqueness easily
follows, is the inequality (66) with  1 substituted by  1�˛ .

A natural question at this point is to know to what extent the cases not covered
by these uniqueness theorems correspond to real cases of non-uniqueness. Clearly,
the complete elucidation of this problem means a complete characterization of
uniqueness, something not yet achieved at present. However, there are examples
of non-uniqueness that seem to provide evidence that this problem is not simple. To
conclude we present one of these examples, due to Ball and Carr [12]. Note that it
is an example about the linear fragmentation system.

Example 1 ([12]) Let aj;k D 0 and bj;k D 1. Then, cj.t/ D e�. j�1/t=2 �1 � e�t=2
�2

is
a solution of (49) with initial condition c0 � 0.

Observe that the assumptions in Example 1 are included in those considered in
Theorem 9. Hence, we know that density conserving solutions are unique. As a
solution of (49) with c0 � 0 is the identically zero solution, the above example
implies that we have non-uniqueness. Due to the linearity of the system, we can
obtain analogous non-uniqueness results for other initial conditions. For further
discussion on these issues see [7].
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3 Long-Time Behaviour of Solutions
to Coagulation-Fragmentation Systems

We shall now review some of the most important mathematical aspects of the long
time behaviour of solutions. The large number of results in the literature forces us
to make some choices about the results we will cover. We will keep the approach at
the level used in the previous section so as to give the reader not only a guide to the
literature but also to the ideas and some details of the proofs of the existing results.

3.1 Convergence to Equilibria and Phase Transitions

In this section we consider results about the convergence to equilibria of solutions
to the discrete coagulation-fragmentation systems.

Since, as was pointed out in the Introduction, these equations can be seen as a
mathematical model of an isolated chemical system, it is natural to expect solutions
to converge to some equilibrium as t ! C1. In fact, in the usual chemical kinetics
models this is exactly what normally happens. We shall see that in the infinite
dimensional coagulation-fragmentation systems the asymptotic behaviour is much
more interesting, even surprising, and a behaviour that is physically interpreted as a
dynamical phase transition can take place under appropriate conditions.

3.1.1 Strong Fragmentation Systems

Let us start with the strong fragmentation case. This case was studied by Carr
[34] and by Fournier and Mischler [93] and these conditions on the fragmentation
coefficients were also considered by da Costa in [45] for the study of existence
of solutions discussed above (cf. Theorem 8). The technique used in [34, 93] is
based on the fact, pointed out in the discussion of the proof of Theorem 8, that this
assumption on the fragmentation coefficients imply the boundedness of some higher
moments, which implies the solution is pre-compact in XC1 for the norm topology.
The existence of a Lyapunov function and the application of LaSalle’s invariance
principle were the tools that allowed Carr to prove the convergence of the solution
to a unique equilibrium. Estimates based on the regularity of higher order moments
were essential to obtain the exponential convergence to equilibria by Fournier and
Mischler, valid for sufficiently small initial data. The result of [34] is the following:

Theorem 11 ([34]) Let K;Kf > 0, ˛ 2 Œ0; 1� and � > ˛ be constants such that,
for all natural numbers j; k; the following holds aj;k � K. j˛ C k˛/; a1;k; b1;k > 0

and
Pb r�1

2 c
jD1 j�bj;r�j � Kf .�/r�C�. Assume that the detailed balance condition

(15) is satisfied and that, for some q � 1; the partition function .Mj/ satisfies
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lim inf
j!1 M1=jq

j > 0: Let � � 0 be arbitrary. Then, there exists a time-independent

solution c� of the coagulation-fragmentation equations, with density �, such that,
for all initial data c0 2 XC1 with density kc0k D �; the unique solution c.�/ of (49)

with constant density satisfies kc.t/ � c�km
t!1�! 0; for all m � 1.

Sketch of proof With these assumptions on the coefficients the moments of solu-
tions cN to the truncated systems satisfy the following differential inequality,
analogous to (62),

d

dt
kcNk� � C0kcNk� � C1kcNk˛2� ; (68)

where� > 1; ˛2 D 1C �

m�1 , C0; and C1 are positive constants. The standard change
of variables used to solve the Bernoulli ordinary differential equations, kcNk� 7!
u WD kcNk1�˛2� ; can be used to solve explicitly this differential inequality and taking
N ! 1 we conclude the solutions of (49) that are obtained as limits of truncated
system satisfy

kck� � A
�
1 � e�Bt

�� ��1
� ; (69)

where � > 1; A and B are positive constants.
The strong fragmentation condition also implies that the .1 C � � "/-moments

of every density conserving solution to (49) are integrable, as stated above (cf.
page 120), and this implies the uniqueness of density conserving solutions. This fact
means that there exists a semi-group of operators T.�/ defined by T.�/c0 WD c, where
c is the unique density conserving solutions of (49). The inequality (69) implies
that, for each � > 1 and 
 > 0, [t�
T.t/c0 is a bounded set of X�; and so, by the
compact inclusion among the spaces X˛ (cf. page 107) it is a pre-compact subset
of XC1 . Hence, for each initial condition c0 2 XC1 ; the solution T.t/c0 has a non-
empty invariant !-limit set !.c0/ 
 X�; for all � � 1. What remains to be proved
it that #!.c0/ D 1 and its single element is an equilibrium, i.e., a time independent
solution with density � D kc0k; and that this equilibrium is independent of the
initial condition, provided its density is �. It is at this point that the detailed balance
condition is used, and the existence of a Lyapunov functions plays a central role.

For every d1 � 0 define the sequence d D .dj/ by

dj WD Mj .d1/
j : (70)

Clearly, the detailed balance condition implies that

Wj;k.d/ D aj;kdjdk � bj;kdjCk D aj;kMjMk .d1/
jCk � bj;kMjCk .d1/

jCk D 0;

and so d is a stationary solution of (49) with c0 D d if and only if d 2 XC1 . The
positivity is obvious from (70), but the fact that d has finite density requires a little
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more care. In order to study the density of d D .dj/ D �
Mj.d1/j

�
it is natural to

consider the function z 7! F.z/ W Œ0;C1/ ! Œ0;C1� defined by

F.z/ WD
1X

jD1
jMjz

j: (71)

Let zs 2 Œ0;C1� be the convergence radius of this series, and let �s WD
supz2Œ0;zs/

F.z/. Clearly, there are three distinct cases for zs: if z0 D 0 then �s D 0 and
the only equilibrium solution is the zero solution; if zs D C1 then �s D C1 and
for each � � 0 there exists a unique equilibrium (70) with density kdk1 D F.d1/I
finally, if zs 2 .0;C1/; it can happen either �s D C1 or �s < C1, and in this
last case there are no equilibria with densities � > �s. This case will be important in
the next section but under the strong fragmentation conditions that we are currently
considering it is possible to prove that �s D C1; and so, for every � > 0 there exists
an equilibrium given by (70) with density � [34]. We will denote this equilibrium
by c�.

The discovery of Lyapunov functions for coagulation-fragmentation systems,
related with the free energy, or with the entropy, of the physical system, was
first made by Aizenman and Bak [1] for continuous systems with constant rate
coefficients. For more general systems, the existence of a Lyapunov function seems
to have been first identified, at a formal level, by Buhagiar in the Becker-Döring
system (cf. ref. cit. [13]) and was first used in a mathematically rigorous way by
Ball et al. in [13]. Our presentation will follow this paper closely, although the
boundedness of higher moments due to our present strong fragmentation condition
greatly simplifies it.

Let c 2 XC1 and consider the function

V.c/ WD
1X

jD1
cj

�
log

cj

Mj
� 1

�
; (72)

where the term in the sum is defined to be zero if the corresponding cj is zero. The
continuity and minimization properties of this functional were established in [13]
and will be presented next: let V.c/ D G.c/� Fm.c/; with

G.c/ D
1X

jD1
cj.log cj � 1/; Fm.c/ D

1X
jD1

jmcj log M1=jm

j : (73)

It is not hard to prove that G is finite and sequentially weak-� continuous in XC1 . As

the radius of convergence of the series (71) is positive, lim supj!1M1=j
j < 1; and

we conclude that V is bounded below in

XC1;� WD ˚
c 2 XC1 W kck1 D �

�
; (74)
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c� is the only minimizer of V in XC1;�; and every minimizing sequence
�
c. j/
�

of V in

XC1;� converges to c� strongly in X1. If lim infj!1M1=jq

j > 0; for some q � 1; then

V is bounded above in Xm \ XC1;� and is continuous in this set if m � q.
For solutions .cn/ of the Cauchy problem for the maximally truncated

coagulation-fragmentation system, the following holds:

V.cn.t//C
Z t




Dn.c
n.s//ds D V.cn.
// (75)

where

DN.c
n/ WD 1

2

X
jCk�N

Hj;k.c
n/ (76)

and

Hj;k.c/ WD .aj;kcjck � bj;kcjCk/.log.MjCkcjck/� log.MjMkcjCk// (77)

D .aj;kcjck � bj;kcjCk/.log.aj;kcjck/� log.bj;kcjCk// � 0;

where the second equality comes the detailed balance condition (15), and the
positivity from the fact that solutions have all their components positive (cf.
page 110) and 8x; y > 0; .x � y/.log x � log y/ � 0.

Since for every m � 1 we have cn ! c strongly in XCm , by the continuity of V we
conclude that V.cn.t// ! V.c.t//, for every t � 
 > 0. Fixing a positive integer N
we have Dn.cn/ � DN.cn/ for n � N, and thus,

lim inf
n!1

Z t




Dn.c
n.s//ds �

Z t




DN.c.s//ds

which, letting N ! 1, gives

V.c.t//C
Z t




D.c.s//ds � V.c.
//; (78)

with

D.c/ WD 1

2

X
j;k�1

Hj;k.c/: (79)

This concludes the proof that V is a Lyapunov function for (49).
With these ingredients is now easy to prove the existence of one, and only one,

equilibrium c� with density � [which has necessarily the form (70)], and to get the
characterization of !.c0/: since this set must consist of solutions along which the
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Lyapunov function is constant, this implies, by (78) and density conservation, that
!.c0/ D fc�g; with � D kc0k; as we wanted to prove. �

As the main ingredient of the above proof is, as already pointed out, the finiteness
of higher order moments, Theorem 11 can be adapted, without further difficulties, to
the conditions considered in [45], with the condition on the coagulation coefficients
changed to aj;k � K. jk/˛; with ˛ � 1 [50].

To finish this section it is interesting to observe that the detailed balance condition
is not a necessary condition to get convergence to equilibria. In fact, in [93], Fournier
and Mischler proved that, if aj;k � K. jk/˛ and L. j C k/� � bj;k � Kf . j C k/s; with
˛ 2 Œ0; 1�; � > �2.1 � ˛/ and s; � 2 .�1;1/; then, for all � D kc0k sufficiently
small,5 the solution T.t/c0 satisfies

kT.t/c0 � Ock2 � Ke��t; 8t � 1; (80)

where the constants K; � > 0 depend only on ˛; �; Kc; L; and �; and Oc is the
only equilibrium of the system with density �. Note that this result establishes an
exponential rate of convergence to equilibria.

The proof of this result is also based on the finiteness of higher order moments,
which comes from the lower bound on the fragmentation coefficients. More specif-
ically, under the stated conditions one proves the following contraction property:
there exists a T� such that, for all t � T�; and all solutions c and d of the
coagulation-fragmentation system with initial data c0 and d0, respectively, both with
density �, the following inequality holds

d

dt
kc.t/ � d.t/k2 � ��kc.t/ � d.t/k2: (81)

This differential inequality is obtained from

d

dt
kc � dk2 �

�
2Kkc C dk3 � L

16

�
kc � dk2;

and from an estimate on the third moment of c C d proving that one can estimate its
value uniformly in time by a quantity smaller than the absolute value of the negative
term, provided the density � of the initial condition (and hence of the solutions at
later times, since they conserve density) is sufficiently small. It is likely that this

5The precise technical condition used in [94], possibly not necessary, is that � satisfies the
inequality

128
Kc�

L
C 2

�
32Kc�

L

�2C 1C2˛
�C2.1�˛/

< 1:
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restriction on the initial density can be improved, but so far this nice result is the
best one available on rates of convergence with strong fragmentation conditions.

3.1.2 Weak-Fragmentation Systems

When fragmentation is weak (in a sense to be made precise soon) an extraordinarily
interesting phenomenon occurs which is physically interpreted as corresponding to
the existence of a dynamic phase transition in the system being modelled by (49).
The phenomenon is the following: there exists a critical density �s 2 .0;1/ such
that

(i) if the initial condition c0 has density � > �s, then the solution c to (49)
converges weak-�, but not strongly, to the only equilibrium c�s with density
�s (supercritical case),

(ii) if the initial condition c0 has density � � �s, then the solution c to (49) con-
verges strongly in XC1 to the unique equilibrium c� with density � (subcritical
case).

Note that in case (i) the density of the !-limit solution, c�s ; is strictly smaller than
the density of the solution to (49) in every time instant t < 1, whereas in case (ii)
the density is also conserved in the limit.

Before going through a brief history of this result and analysing its proof, it is
interesting to attend to a possible phase transition interpretation of this behaviour.

If we consider that each component cj of the solution c D .cj/ represents the
concentration of a microscopic j-cluster in a certain physical state, a gas say, and
that � is the vapour density, the quantity �s can be interpreted as the saturation
density of the system. Thus, if the system is in a supersaturated state (i.e., a state
with � > �s;) there is no vapour equilibrium state with that density and the system
will evolve to an equilibrium with density exactly equal to the saturated density. The
excess density � � �s disappears from the gaseous system via condensation, which
corresponds to the formation of another physical phase not modelled by none of the
variables cj but, heuristically, corresponding to a cluster incommensurably bigger
than j, for every j.

If the system is in a saturated or in a sub-saturated state, with density � � �s;

then its evolution proceeds to the unique equilibrium with that density, the density
being conserved along the process and in the limit state.

The behaviour described above was first observed in the context of the Becker-
Döring equations by Ball et al. in [13]. The (weak-�) convergence to an equilibrium
is proved using a Lyapunov function, as in the case of strong fragmentation
described earlier (cf. page 124), however in the present case the finiteness of higher
order moments is not valid, fact that increases the difficulty of the proof of orbit
pre-compacity and the identification of the limit density in the subcritical case. In
order to obtain these results, in [13] there was the need to impose the following extra
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decay condition on the initial data (typically, an exponential decay [13, Eq.(5.10)]):

1X
jD1

c0j

Mjz
j
s

< 1; where zs is the only solution of F.zs/ D �s; (82)

which provided the seeked for control on the tail of the solution .cj.t//. This
restriction was later eliminated in [11] by noting that, for the variables xn WDP1

jDn jcj; it is possible to construct a supersolution independently of the decay
behaviour of the initial condition x0, and this implies pre-compacity of the orbit
in XC1 and thus strong convergence in X1, which has as consequence that the limit
equilibrium has the same density of the solution at finite times.

The extension of this result to coagulation-fragmentation systems (49) more
general than the Becker-Döring was marred with several difficulties and was only
truly achieved two decades later, with the work of Cañizo [30]. A first attempt was
made by Carr and da Costa in [36] where, in order to prove strong convergence in
the subcritical case, the following generalized Becker-Döring assumption was used:

aj;k D bj;k D 0 if j ^ k > N; (83)

where N is a fixed positive integer. In the classic Becker-Döring case N D 1 [cf.
(18)]. With this assumption, with the restriction (82) on the initial data, and with
some technical assumptions on the kinetic coefficients, like the ones used in [13],
it was possible to rigorously prove the behaviour described in (i) and (ii) above. A
subsequent attempt to overcome the restrictions about the regularity of the initial
condition was made by da Costa in [48] but was only partially successful: the result
obtained, inspired in the method of [11], only allows to draw conclusions for initial
data in XC1 that, although has no extra decay requirement, needs to have its density
� bounded above by a bound like �N  O.N�1/ when N ! 1. This certainly
seems to point to the fact that the method is not only insufficient to deal with
the generalized Becker-Döring, but it really is totally inadequate for the general
coagulation-fragmentation (that corresponds, formally, to take N ! 1).

Notwithstanding these failures, the idea to construct supersolutions, introduced in
[11], was a good one and could finally be carefully exploited by Cañizo in [29] to get
rid of the restriction on the initial density imposed in [48]. With the assumptions on
the coefficients used in previous works [36, 48], Cañizo used an argument similar to
the one of Ball and Carr and proved [29, Proposition 3.3] that, if z < zs; � 2 .1; zs

z /;

and if .�j/ is a decreasing sequence such that

�j�1 � �j

�j � �jC1
< �;

then, when the initial condition (in the xn variables introduced above) satisfy xn.0/ �
�n for all n, then there exist positive constants C and n0 such that xn.t/ � C�n for all
n � n0 and t > 0. The proof of this pre-compacity result is based on the following
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differential inequality for Hj.�/ WD .xj.�/� C�j/
C; where uC D u _ 0;

d

dt

1X
jDn0

Hj � (const.)
1X

jDn0

Hj;

and on the application of Gronwall’s lemma.
In the remaining of this section we shall present a more general result, also

due to Cañizo [30], that overcomes the need to impose (83) and proves the phase
transition behaviour for the general coagulation-fragmentation system and, in a
sense, completes the work started by Ball, Carr and Penrose in 1986 with the Becker-
Döring system. Cañizo work [30] imposes an additional decay to the initial data
c0 2 XC1 but it is typically the existence of a moment of order smaller than two,
and not an exponential decay, as in [13, 36]. This very mild restriction is more
than compensated by the fact that the result is valid for the general coagulation-
fragmentation equations, and not only to the restrictive Becker-Döring versions. At
present it is not clear if this restriction is essential. The hypotheses considered in
[30] are the following:

(H3) There exists constants K > 0; � 2 R and � 2 Œ0; 1/ such that

aj;k; bj;k � K
�

j� C k�
�

(84)

i�1X
jD1

bj;i�j � Ki� ; 8i � 1: (85)

(H4) There exists a positive sequence .Mj/ satisfying (15).

(H5) lim M1=j
j D z�1s 2 .0;1/ and �s WD F.zs/ 2 .0;1�; where F is given by

(71).
(H6) The sequence .Mjz j

s/ is monotone decreasing.
(H7) There exists a constant K1 > 0 such that

aj;1 � K1j
�; 8j � 1 (86)

(H8) The initial data are c0 2 XC� ; with � WD maxf2 � �; 1C �; 1C �g.

The main result, extending to coagulation-fragmentation the result of [13], is the
following:

Theorem 12 ([30]) Assume (H3)–(H8). Let c be a solution of (49) with (constant)
density � D kck1 D kc0k1. The following holds:

(i) If � > �s; then c.t/
�
*
�
Mjz j

s

�
when t ! C1.

(ii) If � � �s; then c.t/ ! ceq strongly in X1; when t ! C1, where ceq is the only
equilibrium solution with density �.
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Sketch of proof The general strategy to prove this result was already used in [13]
and in [29, 36] and consists of proving that, if a solution converges weak-� to
an equilibrium with density strictly smaller than the critical one �s, then the
convergence is actually strong in the norm topology of X1 and thus the limit density
is equal to the initial one.

That all solutions of (49) converge weak-� to equilibria had already been proved

in [36]: assuming (H3)–(H8), solutions c to (49) satisfy c.t/
�
* c� when t ! 1;

for some � � minfkc0k; �sg; where c� is the only equilibrium solution with density
�. As in the case of strong fragmentation presented earlier, the proof of this result of
weak-� convergence to equilibria is based on the existence of a Lyapunov function.
The proof in [30] is based on the Lyapunov function, on the control of the density by
the .2� �/-moment, and in an estimate that implies that the growth of this moment
is at most linear in t.

Cañizo also proved a result on the rate of convergence to equilibria using a
slightly different Lyapunov function introduced by Jabin and Niethammer in the
study of the rate of convergence to equilibria in Becker-Döring systems [109]: for
c 2 XC1 ; let V be defined by (72) and, for z 2 .0; zs�; define the energy of c relative
to the equilibrium

�
Mjzj

�
by the expression

Vz.c/ WD V.c/� .log z/
1X

jD1
jcj C

1X
jD1

Mjz
j: (87)

Observe that, if �s < 1 and if we choose z so that ceq D �
Mjzj

�
satisfies kceqk D

kck; then, it is easy to conclude that Vz.c/ D V.c/�V.ceq/;which justifies the name
given to Vz.c/.

The fundamental inequality used in the proof of Theorem 12, relating the density
of a positive sequence c D .cj/ with its .2 � �/-moment, is

kck �
1X

jD1
jMjc

j
1 � C

p
D
p

kck2��; (88)

where C is a positive constant and D WD D.c/ is given by

D.c/ WD
1X

jD1
ajMj

�
c1cj

Mj
� cjC1

MjC1

��
log

c1cj

Mj
� log

cjC1
MjC1

�
; (89)

where aj D aj;1 if j � 2; and a1 D 1
2
a1;1. The inequality is valid under the

assumptions (H3)–(H7) and provided c1 2 .0; zs/ and c 2 X2��. The function D
is called the Becker-Döring free energy dissipation rate in [30], which is a natural
designation since it was proved in [13] that the time evolution of the Lyapunov
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function V along solutions c.t/ of the Becker-Döring system satisfies

V.c.t// D V.c.0//�
Z t

0

D.c.s//ds:

Observe that, as pointed out before, 8x; y > 0; .x � y/.log x � log y/ � 0; and so the
function D.c/ is non-negative.

Its should be noted that (88) is a purely algebraic relation valid for certain
sequences c and has nothing to do with these sequences being solutions of some
differential equation. It is merely a consequence of the following estimate about the
tail of the series

P
j jMjc

j
1; which is valid under the same assumptions,

1X
iDjC1

iMic
i
1 � jMjC1cjC1

1 :

Under the hypotheses of Theorem 12, taking a solution c D c.t/ of (49) with
initial condition c0 2 X2��; and using the approximation of c by solutions to the
truncated systems, we can prove that kc.t/k2�� satisfies the differential inequality
d
dt kc.t/k2�� � (const.)�2; and thus, for some constant C independent of t, it holds
that

kc.t/k2�� � C.1C t/ (90)

As stated above the idea of the proof consists in showing that if a solution with
initial density �0 converges weak-� to an equilibrium with density � < �s, then it
converges strongly in X1 and thus � D �0.

Let us assume that c.t/
�
* ceq when t ! C1; where ceq D �

Mjzj
�

and z < zs.
Thus c1.t/ ! z < zs and c1.t/ � zCzs

2
< zs, for all times t > t0; where t0 is

sufficiently large. Using (88) and (90) we know that � � �1.t/ � C
p

D
p
1C t; for

t � t0; where �1.t/ D ���Mjc1.t/j
���
1
; and C is a constant. By continuity of (71) in

the interior of its interval of convergence, �1.t/ ! �z WD kceqk; as t ! 1.
Now, either � � �1.t/ > 0 after some t1; or there exists a sequence tn ! 1 such

that �� �1.tn/ � 0. Let us start by the first possibility: if �� �1.t/ > 0 for all t > t1
the previous inequality gives the estimate D.c.t// � .���1.t//2

1Ct C�2 and the evolution
of V along solutions satisfies

V.t/ D V.t1/ �
Z t

t1

DCF.c.s//ds (91)

� V.t1/ �
Z t

t1

D.c.s//ds (92)

� V.t1/ � C�2
Z t

t1

.� � �1.s//2

1C s
ds; (93)
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where DCF is the coagulation-fragmentation free energy dissipation rate defined by

DCF.c/ WD 1

2

1X
i;jD1

ai;jMiMj

�
cicj

MiMj
� ciCj

MiCj

��
log

cicj

MiMj
� log

ciCj

MiCj

�
: (94)

It is worth calling the reader attention to the fact that, although the formal
derivation of the evolution equation (91) is trivial, it rigorous proof is far from
being simple [36, Theorem 5.2]. The inequality (92) is due to the obvious fact that
DCF.c/ � D.c/ > 0. The Lyapunov function V is bounded from below along
solutions; using this result the integral in the right-hand side of (93) has to be
bounded from above and, since �1.t/ ! �z; we conclude that �z D �. But then,

since c.t/
�
* ceq and kc.t/k D � D �z D kceqk; [13, Lemma 3.3] implies that

c.t/ ! ceq strongly in X1.
It remains to consider the possibility of existence of a sequence tn ! 1 such

that � � �1.tn/ � 0. In this case we would have � � �1.tn/ ! �z and thus � � �z.
By the lower semicontinuity of the norm of X1 with respect to weak-� convergence,
we have �z � � and thus �z D �. This concludes the proof. �

Once the long-time limit of solutions in Theorem 12 has been proved, a natural
problem to consider is to clarify the way the limit equilibrium solution is approached
as t ! 1. Recall that in the strong fragmentation case solutions converge to the
limit equilibrium exponentially fast, at least for sufficiently small initial data (cf.
page 126). Note that, for that type of coefficients, the critical density is infinite and
so all solutions are subcritical.

Under weak fragmentation conditions the long-time behaviour of solutions is
expected to be richer, and the cases of supercritical and subcritical densities are
thought to exhibit distinct behaviours. However, at present, rigorous results about
these aspects are restricted to the Becker-Döring case, and we shall briefly review
them next.

For the Becker-Döring equations with subcritical initial density a recent paper
by Cañizo and Lods [31] improved previous results by Jabin and Niethammer [109]
and prove that, under appropriate assumptions that include exponentially decaying
initial conditions, subcritical solutions converge exponentially fast to the limit
equilibrium, and give an estimate for the convergence rate. The precise statement
of the result requires the introduction of some hypotheses:

(H9) On the coagulation coefficients:

aj D O. j/ as j ! 1; lim
j!1

ajC1
aj

D 1; inf
j

aj > 0:

(H10) On the fragmentation coefficients: bj D O. j/ as j ! 1.

(H11) On the partition function: lim
j!1

Mj

MjC1
DW zs 2 .0;C1/



Mathematical Aspects of Coagulation-Fragmentation Equations 133

Under these conditions the following was proved:

Theorem 13 ([31]) Assume (H9)–(H11). Let c be a solution of (19) with initial
condition M WD P1

jD1 e�jcj.0/ < C1; for some � > 0; and let z > 0 be the
monomer density of the corresponding limit equilibrium ceq D �

Mjzj
�
. Then, there

exists N� 2 .0; �/ and �? > 0; such that, for every 	 2 .0; N�/; there is C > 0,
depending only on �; 	;M; and

P1
jD1 e	 jMjzj; such that the following holds for all

t � 0;

1X
jD1

e	j
ˇ̌
cj.t/ � Mjz

j
ˇ̌ � C e��?t;

where, if limj!1 aj D C1; we can take ��1? D supk

�P1
jDkC1 Mjzj

	�Pk
jD1 1

ajMjzj

	
.

The proof of this theorem is rather lengthy and involved and we will not delve with
it here: the interested reader should consult the original paper [31]. We just point
out that the main tool is an appropriate linearisation of the Becker-Döring equations
around the equilibrium ceq and the proof of an appropriate spectral gap in suitable
sequence spaces.

Let us now briefly consider the case of supercritical solutions to the Becker-
Döring system. As stated in Theorem 12(i), solutions (all of them conserve initial
density � in finite times) converge to the limit equilibrium with critical density �s <

�. That, in general, this convergence can be a complicated dynamical process has
been shown by Penrose in [180], where he proved that, for certain nonequilibrium
initial conditions, each component of the solution of (19) remain exponentially close
to the initial condition for a time that is exponentially long in .���s/

�1; after which
it converges to the critical equilibrium. This is a metastability behaviour that, in
some sense, agrees with the physical fact that nucleation processes in supersaturated
mixtures are exceedingly slow processes.

The occurrence of metastability behaviour is an interesting feature of the Becker-
Döring system. Another very interesting and challenging problem is to know what
happens to the solution for times so large that all possible metastability regimes have
elapsed. So, the problem is to understand how do the excess density � � �s spreads
to larger and larger clusters once the solution “starts to move”. This problem of
evolution of large clusters has been studied, in the small excess density regime,
by several authors [130, 166–168] striving to get rigorous proofs to the pioneering
work Penrose and collaborators [181, 183] who established the relation of the large
time asymptotic of small excess density solutions with solutions to the Lipschitz-
Slyozov-Wagner equation of Oswald ripening [149, 214]. The detailed presentation
of the existing rigorous results on this very interesting hydrodynamic limit of the
Becker-Döring (as yet with no parallel in more general coagulation-fragmentation
models) would take too long. In what follows we will just attempt to give an
heuristic idea of the approach.



134 F.P. da Costa

A very crude formal computation suggests a possible connection: if one considers
extremely large clusters sizes j; then j�1 and j are extremely close to each other and,
considering j as a continuous real variable, the right-hand side of the equation for the
j-cluster in the Becker-Döring system is roughly equal to �@jJ, so the equation itself
is @tc C@jJ D 0I the assumptions about the reaction coefficients aj and bj determine
the way the flux J depends on c.t; j/; and the monomer dynamics is determined
by density conservation. To make more precise this idea, let us take the following
situation, considered in Penrose’s approach to the modelling of first-order phase
transitions:

(i) aj D j˛; for some ˛ 2 Œ0; 1/.
(ii) bj D aj

�
zs C qj��

�
; for constants zs; q > 0; and � 2 .0; 1/.

The more precise heuristic argument is roughly the following [166, 180, 202]: since
we are considering large times, consider a new time scale 
 WD "1C��˛t, with a small
positive parameter " ! 0. Adequately choosing a separation j� D j�."/ ! C1
between small and large clusters, we consider the large cluster sizes j > j� as a
continuous variable x D "j and introduce the rescaled functions �.
; x/; �.
; x/; and
u.
/; such that cj.t/ D "2�.
; x/; Jj.c/ D "2C˛���.
; x/, and c1 D zs C "�u.
/,
respectively. The equation for large cluster sizes becomes, in the limit " ! 0,

@
� C @x

�
x˛
�
u � qx��

�
�
	

D O.1/: (95)

In the other hand, density conservation and a judicious choice of j� lead to, in the
limit " ! 0,

Z 1
0

x�.
; x/dx D � � �s C O.1/;

which is equivalent to

u.
/ D
q
Z 1
0

x˛�� �.
; x/dx
Z 1
0

x˛�.
; x/dx
;

at least for some relation between ˛ and � [166].
System (95)–(96) is the classic Lipschitz-Slyozov-Wagner model. We direct the

interested reader to the references above for the precise statement and proof of this
result.
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3.2 Self-Similar Behaviour of Solutions

Contrasting to what happens with the coagulation-fragmentation system, in Smolu-
chowski’s coagulation equations it is easy to prove that the identically zero sequence
is the only non-negative equilibrium, and the proof that every solutions converges,
in the weak-� sense, to this equilibrium as t ! 1 is also elementary (cf. below, and
Sect. 3.2.1).

The zero sequence has density equal to zero and, being this density value the
largest for which there is an equilibrium, it can be considered the critical density
of the system and so, in a sense, all non-zero solutions are supercritical. So, the
problem considered in the closing part of last subsection, namely how does the
excess density is spread to larger and larger cluster sizes as t ! 1, is also relevant
in the Smoluchowski’s equation setting, where its concretization has taken the form
of the investigation of self-similar behaviour of solutions, i.e., the existence of a
function (or family of functions) for which, after an appropriate rescaling of the
variables, all solutions converge when t ! 1. This problem, of clear scientific
importance, has received a good deal of attention in the mathematical modelling
community (cf., e.g. [70, 72, 96, 145–147, 150, 217] and ref. cit.) but important
progresses in its rigorous analysis are much more recent. In what follows we will
review some of these.

3.2.1 Similarity Behaviour in Smoluchowski’s Coagulation Equations

Let us start by justifying the sentence above about the triviality of the convergence
to equilibria in the Smoluchowski system:

Theorem 14 ([36]) Let aj;j > 0 for all j. Let c be a solution of (31) in Œ0;1/ with

c0 2 XC1 . Then c.t/
�
* 0 as t ! C1.

Sketch of proof The heuristic idea is clear enough: since the coagulation process
entails the increase of the clusters’ mean size (cf. Sect. 1.2) we expect the total
density of clusters with sizes below any arbitrarily fixed value to decrease with time.
The convergence proof is based in this monotonicity property.

Let c be a solution of (31) and, for each n 2 N; let us consider

pn.t/ WD
nX

jD1
jcj.t/: (96)

This function measures the total density at time t of clusters with size not larger than
n. By (96) and the definition of solution we get, for all t; 
 � 0;

pn.t C 
/ � pn.t/ D �
Z tC


t

X

T41;n

jaj;kcj.s/ck.s/ds � 0; (97)
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where T41;n was defined in page 119. As cn.t/ and pn.t/ are non-negative functions,
there exists a non-decreasing positive sequence .Npn/ such that pn.t/ ! Npn when
t ! C1. Since cn.t/ D pn.t/�pn�1.t/

n , these functions cn.t/ also converge to some

constants, Ncn WD Npn�Npn�1

n � 0; as t ! C1. By induction in the coagulation equation
integrated in Œt; t C 
� the conclusion that Ncn � 0 is easily reached [36]. �

We are now interested in knowing whether or not solutions to (31) converge to
the zero solution in a self-similar way. In a slightly more precise manner: under what
conditions there exists a function ˚ such that, for a large class of initial conditions,
the corresponding solutions to (31) satisfy

cj.t/ � &.t/�a˚. j&.t/�b/; as t ! C1 and j ! C1; (98)

where &.�/ is a positive increasing function, and a and b are positive constants?
Not much is rigorously known about the problem in this general setting. What we

present next are answers for certain particular coefficients aj;k (constant, additive,
product) for which rigorous and fairly complete answers have been obtained, and
then point to very recent rigorous analysis for systems with more general classes of
rate coefficients.

We start by the constant coefficient case,6 aj;k D 2. This case was studied by
Kreer and Penrose [117] and by da Costa [47] using an idea first introduced by
Lushnikov [150] which is based in exploiting the generating function

'.z; t/ WD
1X

jD1
cj.t/z

j; jzj � 1: (99)

Observe that (99) is the discrete Laplace transform
P1

jD1 cj.t/e�jw; ( Re.w/ � 0),
of the solution c of (31). It is easy to prove that ' is solution of the initial value
problem

(
dkck0

dt D �kck20
@'

@t D '2 � 2kck0' (100)

with kc.0/k0 D N0 WD kc0k0 and '.z; 0/ D �.z/ WD P1
jD1 c0 jzj; from which we

immediately conclude that

'.z; t/ D t�2
1

N0 C t�1
�.z/

N0 C t�1 � �.z/ : (101)

6The value of the constant is irrelevant for the result since it can always be transformed into another
value by a time rescaling. The choice we make simplifies the computations a bit.
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Since '.�; t/ is an analytic function on the unit open ball B1 
 C, we use Cauchy’s
integral formula to write

t2cj.t/ D 1

2�i

1

N0 C t�1

I

�0

1

zjC1
�.z/

N0 C t�1 � �.z/
dz; (102)

where �0 D fz 2 C W jzj D r0 < 1g. In order to conclude something about the long-
time behaviour of the right-hand side of (102) we need to know the behaviour of the
zeros of F.z; 
/ WD N0 C 
 � �.z/ as 
 ! 0. With the additional hypothesis of an
exponentially decaying initial condition c0 j � A.1C�/�j, for some constants A � 0

and� 2 .0; 1/; it can be proved that, for all sufficiently small 
 there exists q simple
zeros of F.z; 
/, zk.
/; satisfying jzk.
/j > 1 and zk.
/ D !k

q

�
1C 1

kc0k1 
 C O.
2/
�
;

when 
 ! 0; where !q is the qth root of unity, e2� i=q; all the remaining roots of
F.z; 
/ are in the exterior of B1 and keep a distance uniformly positive from B1
when 
 ! 0. The positive integer constant q is given by q D gcdJ .0/, where
J .0/ is the set of subscripts j for which c0 j > 0 (cf. statement of Theorem 1).
With this result and the representation formula (101) it is not difficult to prove the
following:

Theorem 15 ([47, 117]) Let aj;k � 2 and consider a non-negative exponentially
decreasing initial condition c0 2 XC1 . Let q and J .0/ be as above. Thus, the
solution c of (31) has the following self-similar behaviour:

lim
j; t!C1
� D j=t fixed

j 2 spanN0
J .0/

t2cj.t/ D q

kc0k1 e��=kc0k1 : (103)

A version of this result valid for the continuous Smoluchowski’s equations, was
also proved by Kreer and Penrose in [117], also for exponentially decaying initial
data. The same behaviour occurs with the obvious changes of notation:

lim
j; t!C1
� D j=t fixed

t2c.x; t/ D 1

kc.x; 0/k1 e��=kc.x;0/k1 : (104)

If the coefficients aj;k [or a.x; y/] are not constants, or if the initial condition
does not decay exponentially, the above technique is not applicable. In these cases,
only recently the rigorous analysis of the self-similar behaviour of solutions was
achieved, in a number of notable papers by Menon and Pego [159–161] (see also
[179]). These works use a more general notion of solution, in terms of measures,
allowing for the simultaneous consideration of the discrete and the continuous cases
of the Smoluchowski’s equation. Using the modified Laplace transform '.z; t/ WDR1
0
.1 � e�zx/�t.dx/; where �t.dx/ D c.x; t/dx is the finite measure on .0;1/ that
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describes the cluster size distribution, Menon and Pego proved the following:

Theorem 16 ([179]) Let a.x; y/ � 2, and t0 D 1 and consider initial data
satisfying

R1
0
�1.dx/ D 1. Let �t.dx/; be a finite measure solution of (5)–(6), and let

Ft be the probability distribution function

Ft.x/ WD
R x
0
�t.dy/R1

0 �t.dy/
D t

Z x

0

c.t; y/dy: (105)

1. Suppose there exists a �.t/ ! 1 and a probability distribution F� such that
F�.x/ < 1 for some x > 0; and

Ft.�.t/x/ ! F�.x/; as t ! 1; (106)

in its points of continuity. Then

Z x

0

y�1.dy/  x1��L.x/; as x ! 1, (107)

for some constant � 2 .0; 1� and some function L slowly varying at infinity [87,
pp. 275–9].

2. Reciprocally, suppose (107) is true. Then (106) holds, with

F�.x/ WD F�.x/ D
1X

kD1

.�1/kC1x�k

� .1C �k/
; (108)

being a Mittag-Leffler distribution [87, page 453], whose Laplace transform isR1
0

e�zxF�.dx/ D 1
1Cq� .

Observe that Theorem 16 provides a classification of all possible self-similar
solutions of the Smoluchowski’s equation with constant coefficients, which are
solutions of the type

c.t; x/ D t�1�1=�n�
�
t�1=�x

�
; � 2 .0; 1�; (109)

where n�.�/ D F0�.�/ is the Mittag-Leffler distribution density (108).
Using the Laplace transform, the self-similar ansatz like (98) for the transform,

and separation of variables, it is easy to check that the functions (109) are in fact
solutions to (5)–(6).

It is interesting to observe that if �1.dx/ has finite density, then � D 1 and
F1.x/ D 1 � e�x; corresponding to the solution c.t; x/ D 1

t2
e�x=t. Compare this

with (104).
This result is similar to the Central Limit Theorem. The distributions F� with

� 2 .0; 1/ have infinite density and correspond to Lévy’s stable distributions.
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Menon and Pego also proved that the convergence to the self-similar limit is
uniform in the similarity variable x

t :

Theorem 17 ([160]) Let c.1; x/ > 0; be an initial condition satisfyingR1
0

c.1; x/dx D R1
0

xc.1; x/dx D 1. Suppose the Fourier transform of xc.1; x/
is integrable. Then

lim
t!C1 sup

x
t >0

x

t

ˇ̌
t2c.t; x/ � e�x=t

ˇ̌ D 0:

An improved version, establishing convergence in a stronger topology and providing
an upper bound Kt�ı for the rate of this convergence to zero was obtained by Cañizo
et al. on [33]. The result of this theorem is also valid, mutatis mutandis, for the
solutions of the discrete system (cf. [160, Theorem 2.2]).

Results similar to those above were also proved by Menon and Pego [159] for the
two solvable types of coefficients (additive a.x; y/ D xCy; and product a.x; y/ D xy)
for which they also obtained a complete characterization of the self-similar attractor
[161]. For these kernels the rate of the convergence stated in the theorem was proved
to be exponential by Srinivasan [207] also using methods based on the Laplace
transform in an approach that is analogous, in spirit, to the Berry-Esséen theorem
when one considers the result in theorems 16 and 17 as a Central Limit Theorem for
the clusters distributions.

The first rigorous proofs of existence of self-similar solutions for non-solvable
kernels are by Fournier and Laurençot [90] and Escobedo and collaborators [82],
who proved the existence of (but not the convergence to) self-similar solutions to the
continuous system (5)–(6). Their approach is different from those presented above,
not resorting to Laplace transforms, and returning to an idea commonly used in the
mathematical modelling and physics literatures [72, 145], which is to use the ansatz
(98) directly in (5)–(6) in order to obtain an integro-differential equation for the self-
similar profile ˚.�/; and to prove that, for certain types of coefficients, this equation
has a non identically zero weak solution. This is an extremely natural approach from
a mathematical perspective and was certainly attempted before; the fact that only in
[82, 90] this idea could have been set on a firm basis attests to the very demanding
technical difficulties its concretization involves. We will now present a very brief
description of the result and approach of [90].

Write

c.t; x/ D &.t/�2˚.&.t/�1x/ (110)

and assume the coagulation coefficients satisfy the homogeneity condition

a.ux; uy/ D u�a.x; y/; 8u; x; y 2 RC; (111)

for some real constant �.
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Substituting (110) into (5)–(6) and using (111) the following equation arises

�
d

dx

�
x2˚.x/

�C xQc.˚/.x/ D 0 (112)

Z 1
0

x˚.x/dx D �; (113)

for the unknown function ˚ and the real positive unknowns .�; �/.
It is easy to conclude that, if .˚; �; �/ is a solution of (112)–(113), then each

of the elements of the two parameter family
�
a˚.bx/; a�b�1�� ; a�b�2

�
is also a

solution of (112)–(113). This means that, without loss of generality, we can consider
� D 1

1�� ; � D 1.
A non-negative function ˚ 2 L1.0;1; xdx/ is a weak solution of (112) if ˚ 2

L1.0;1; x2dx/; if .x; y/ 7! xya.x; y/˚.x/˚.y/ 2 L1.RC 	 RC/; and if

�z2˚.z/ D
Z z

0

Z 1
z�x

a.x; y/x˚.x/˚.y/dydx; (114)

for almost all z 2 RC. Thus, if ˚ is a weak solution of (112) we have, for every
� 2 C1

b.Œ0;1//;

�

Z 1
0

x2˚.x/�0.x/dx D
Z 1
0

Z 1
0

xa.x; y/.�.x C y/ � �.x//˚.x/˚.y/dydx:

(115)

From a technical viewpoint, it is more suitable to consider the unknown function
Q̊ .x/ D x˚.x/ instead of ˚.x/; and, instead of (115), to write the weak version of

(112) as

�

Z 1
0

x Q̊ .x/�0.x/dx D
Z 1
0

Z 1
0

a.x; y/

y
.�.xCy/��.x// Q̊ .x/ Q̊ .y/dydx: (116)

The main result of [90] is the following:

Theorem 18 ([90]) Consider coagulation coefficients satisfying any one of the
following conditions:

(i) a.x; y/ D .x˛ C y˛/.x�ˇ C y�ˇ/; ˛ 2 Œ0; 1/; ˇ 2 RC; � D ˛ � ˇ 2 .�1; 1/

(ii) a.x; y/ D .x˛ C y˛/ˇ; ˛ 2 Œ0;1/; ˇ 2 RC; � D ˛ˇ 2 Œ0; 1/
(iii) a.x; y/ D x˛yˇ C xˇy˛; ˛ 2 .0; 1/; ˇ 2 .0; 1/; � D ˛ C ˇ 2 .0; 1/
Let � D 1

1�� ; � D 1. Then, there exists a positive weak solution ˚ of (112)–(113)
and the function cs.x; t/ WD t�2�˚.xt�� /; with x; t > 0, is a (self-similar) weak
solution of (5)–(6) with unit density for all t > 0.
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The proof by Fournier and Laurençot starts by the following discretization of
(116),

��
n

�
i11�i�n2�1 fiC1 � .i � 1/fi

� D
i�1X
jD1

1

j
a
� i � j

n
;

j

n

	
fi�j fj �

n2�iX
jD1

1

j
a
� i

n
;

j

n

	
fi fj:

Considering the solutions of this system of n2 equations as the stationary
solutions of an appropriate system of ordinary differential equations, one concludes
the existence of a non-negative solution f D Qf n satisfying

n2X
iD1

Qf n
j D 1; 8n:

Using the solutions Qf n; the following sequence of probability measures indexed by
n is constructed

Q̊ n.dx/ D
n2X

iD1
Qf n
i ıi=n.dx/; (117)

and the a priori estimate

sup
n�1

Z 1
0

x� Q̊ n.dx/ < 1; (118)

is proved, where the domain of the parameter � depend of the type of coefficient,
(i), (ii) or (iii), considered. From (117) and (118) one deduces the tightness of the
sequence

� Q̊ n.dx/
�

and thus the existence of a probability measure Q̊ .dx/ and a
subsequence

� Q̊ nk.dx/
�

such that, for all functions � 2 C1
b.Œ0;1//; it holds that

lim
k!1

Z 1
0

�.x/ Q̊ nk .dx/ D
Z 1
0

�.x/ Q̊ .dx/:

The last step in the proof is to establish that Q̊ is a weak solution of (116) and thus

˚.x/ D Q̊.x/
x is a weak solution of (112)–(113).

The problem of self-similar dynamic behaviour in (5)–(6), i.e., the convergence
of a “generic” solution of (5)–(6) to the self-similar ones, whose existence was
proved in Theorem 18, is still largely open.

A natural approach to study this stability problem would be to consider a
transformation like the following one, more general than (110),

c.t; x/ D &.t/�2'.log &.t/; &.t/�1x/;
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and, substituting in (5)–(6), to obtain an evolution equation for ' that would allow
to prove that, for an appropriate notion of convergence, '.log &.t/; �/ �! ˚.�/;
when t ! C1. This idea was successfully implemented, in the framework of weak
convergence in L1, in the case of constant coefficients a.x; y/ � 1; using Lyapunov
functions whose construction were strongly dependent of the known form of the
limit ˚ [134], which turns the potentially promising method useless if the form of
˚ is not known. The idea was also applied with success in the prove of existence and
stability of self-similar solutions in the Oort-Hulst-Safronov equations with constant
[127], with additive [9], and with multiplicative [128] coefficients.

A number of recent studies have greatly enhanced our understanding of the self-
similar behaviour of Smoluchowski’s equation with non-solvable kernels. It was
established by Fournier and Laurençot in [91] that, for sum type kernels a.x; y/ D
x� C y�; with � 2 .0; 1/; the self-similar profile 	 7! ˚.	/ proved to exist in
[82, 90] is continuously differentiable in RC decay exponentially fast as 	 ! 1
and is singular at 	 ! 0. Further improved results on the behaviour of the profile
˚.	/ when 	 ! 0 were obtained in [32, 170] and when 	 ! 1 in [173]. A very
interesting, albeit formal, study of the behaviour of the density conserving self-
similar profiles in the limit 	 ! 0 was published in [157].

The regularity of self-similar profiles in [91] was greatly improved by Cañizo
and Mishler [32] who proved that, if a.x; y/ D x˛yˇ C xˇy˛; with �1 < ˛ � ˇ < 1

and ˛Cˇ 2 .�1; 1/, then the profiles are C1.RC/. Some results on the uniqueness
of self-similar profiles have also been established [32, 172].

The existence of self-similar fat tail solutions (i.e., non-exponentially decaying
profiles, as exists for solvable kernel equations) has been proved by Niethammer
and Velázquez for diagonal kernels, in [169], and more recently, in [171], for
homogeneous kernels satisfying a.x; y/ � C.x� C y�/; with � 2 Œ0; 1/.

Most of these papers use an ansatz like (110) in order to get an equation for the
profile ˚ that is then exploited recurring to a variety of means, comprising among
other tools, rather delicate estimates and adequately carved fixed point theorems.
We direct the reader to the original papers for the statement of the results and to
fully appreciate the beauty and difficulty of their proofs.

With the exception of the exact case a.x; y/ D xy, studied by Menon and
Pego [159, 161] and Srinivasan [207], all the above results correspond to systems
for which solutions conserve density. The general problem of conservation, or non-
conservation, of density will be treated in Sect. 4. Here we just briefly refer to
a recent work by Breschi and Fontelos [25] which is the first rigorous proof of
existence of self-similar solutions for a non-exact kernel for which solutions do not
conserve density for all times, namely a.x; y/ D .xy/1�"; with " � 1. With these
coefficients there exists a time Tg before which all solutions conserve density, but
density decrease afterwards (cf. Theorem 21 in Sect. 4). In [25] the authors study
the existence of self-similar solutions for t < Tg; in particular they prove, among
other things, that, with these coefficients, the Laplace transform of Smoluchowski
equation results in a nonlocal Burgers’ equation !.�; t/ D 1

2
@�
�
D�"� !.�; t/

�2
;

where !.�; t/ WD � R1
0
.e��x � 1/xc.x; t/dx; and D�"� is a nonlocal operator.
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If one proves that this Burgers’ equation has self-similar solutions of the form
!.�; t/ D .Tg � t/˛ .�/ ; where � WD �.Tg � t/�ˇ; one can use the inverse Laplace
transform to prove that the original Smoluchowski equation has a corresponding
self-similar solution ˚.	/ D 1

2� i
1
	2

R i1
�i1 e�	 0.�/d�. The equation satisfied by  is

the following ordinary differential equation

�..1 � 2"/ˇ � 1/ .�/C ˇ� 0.�/ D 1

2

d

d�

�
D�"�  .�/

	2
;

the (rather non-trivial) analysis of which, using perturbative functional analytic
techniques, is one of the accomplishments of [25].

3.2.2 Similarity Behaviour in Addition Models with Input of Monomers

Another system for which the self-similar behaviour of solutions has been studied is
the “addition model”, referred to in page 113, with input of monomers. Its kinetics
consists of the Smoluchowski’s coagulation equation where the only coefficients
that are eventually non-zero are those corresponding to reactions between clusters
and monomers: aj;k D 0 if j ^ k > 1. This kind of models are extensively used in
studies of the early stages of submonolayer epitaxial growth, where a thin layer of
a material is built on the surface of a crystal by bombarding it with monomers (see,
for example, [10, 16, 101]). This is an extremely important technological process
and has been theoretically modelled by a variety of techniques.

Using the notation adopted for the Becker-Döring system (cf. page 94) the mean
field approach to these processes by coagulation equations consists in the following
addition model

8
<̂
:̂

Pc1 D J1.t/ � a1c21 � c1

1X
jD1

ajcj

Pcj D aj�1c1cj�1 � ajc1cj; j � 2;

(119)

where J1.t/ is a function describing the input rate of monomers.
The first rigorous studies of the self-similar behaviour of solutions to systems

like (119) are relatively recent [54, 57, 58, 62, 195] and only for the case of constant
rate coefficients aj � 1; and for monomer input rate of polynomial-like type J1.t/ D
.1C".t//˛t!;where ˛ > 0 and ! are real constants and ".�/ is a continuous function
converging to zero at infinity. The methods used in these works are distinct from
those presented above and are based, in an essential way, in the fact that by defining
the auxiliary variable

c0 WD
1X

jD1
cj; (120)
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the Eq. (119) can be written as

8
<
:

Pc0 D .1C ".t//˛t! � c0c1;
Pc1 D .1C ".t//˛t! � c0c1 � c21;
Pcj D c1cj�1 � c1cj; j � 2:

(121)

The essential observation is that (121) can be studied by decoupling the system
with the first two equations, for the variables .c0; c1/; from the remaining infinite
dimensional system for the variables cj.t/ with j � 2. Furthermore, considering in
this last system the change of time scale defining by t 7! &.t/ WD R t

t0
c1.s/ds; the

infinite system is transformed in the lower triangular linear system

Qcj
0 D Qcj�1 � Qcj; j � 2; (122)

where Qcj.&/ WD cj.t.&//. Clearly, (122) can be explicitly solved by the variation of
constants formula to get

Qcj.&/ D e�&
jX

kD2

& j�k

. j � k/Š
ck.0/C 1

. j � 2/Š
Z &

0

Qc1.& � s/sj�2e�sds: (123)

Hence, to study the self-similar behaviour of solutions to (119) we can exploit the
representation formula (123) if the needed information about the behaviour of the
component Qc1.&/ of the solution is known, and this can in principle be obtained from
the study of the long-time behaviour of solutions to the two-dimensional system

� Pc0 D .1C ".t//˛t! � c0c1
Pc1 D .1C ".t//˛t! � c0c1 � c21:

(124)

The result obtained in [54, 58] using this approach is the following:

Theorem 19 ([54, 58]) Let aj � 1 and J1.t/ D .1C".t//˛t! , with ˛ > 0; ! > � 1
2
,

and ".t/ a continuous function such that ".t/ ! 0 when t ! C1. For r0 WD 1�!
2C! ;

define Q0.!/ WD
�

3
.1C2!/˛

	 1
2C! � 2C!

3

�r0 . Let .cj/ be a solution to (119) with initial

condition cj.0/ 2 X0; and let &.t/ and Qcj.&/ be as above. Then

(i) lim
j; & !C1
	 D j=& fixed

	¤ 1

Q0.!/&
r0 Qcj.&/ D ˚1;!.	/ WD

�
.1 � 	/�r0 ; if 0 < 	 < 1
0; if 	 > 1;
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η

ω = 1

ω > 1

ω < 1

1

1 ω = 0:99

ω = −0:342

1

2

2−2−4−6 ξ4

Fig. 9 Graphs of the similarity limits in Theorem 19. On the left: ˚1;! for values of ! below and
above 1 in steps of 0:1; On the right: ˚2;! with ! from �0:342 to 0:99 in steps of 0:148

(ii) Furthermore, if cj.0/ D 0 when j � 2, then

lim
j; & !C1
� D j�&

p

&
fixed

� 2 R

��
2

	 1
2
Q0.!/ &

1
2 r0 Qcj.&/ D ˚2;!.�/

WD e�
1
2 �
2

Z C1
0

y1�2r0e��y2� 12 y4dy:

In Fig. 9 we present the graphs of some similarity profiles ˚1;! and ˚2;! for
several values of the parameter !. It is interesting to observe that the functions˚2;!
can be thought of as something like an inner expansion for the jump discontinuity
that exists in the functions ˚1;! at 	 D 1 when ! � 1.

Sketch of proof In order to use (123) to get the seeked for conclusions we need to
know not only the limit of Qc1.&/ when & ! C1; but also its rate of convergence.
In order to obtain this information a detailed study of the long-time behaviour of
the solutions of (124) is needed. In the autonomous case (! D 0 and ".t/ �
0), this study can be done using invariant regions for the dynamics of (124), a
change of variables suggested by Poincaré’s compactification and the use of central
manifolds techniques [57], or else using only elementary (but somewhat more
elaborate) arguments based on invariant regions and monotonicity [52]. For the non-
autonomous case all of these approaches do not seem to be applicable and the study
uses an ansatz for a non-autonomous change of variables that is suggested by Wattis
in [218]. In the new variables system (124) takes the form

(
x0 D .1C ".
/� xy/� A
� 12 x2 C B
�1x
y0 D .1C ".
/� xy/�A
� 12 � A2
�1y ;

(125)
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where 
 is the new time, related with the variable t used in (124) by d

dt D�

3˛2

1C2!
	1=3

t
1C2!
3 ; the constants A and B are defined by A WD �

1C2!
4C2!

� 1
2 ; and

B WD 1�!
4C2! , respectively, and the vector .x; y/ is obtained from .c1; c0/ by the same

non-autonomous change of variables. Exploiting some differential inequalities, the
behaviour of the auxiliary functions h WD xy and b WD y � A
� 12 x along solutions,
and methods from the qualitative theory of ordinary differential equations, leads to
the following [54, 58]:

�
3

˛.1C 2!/

� 1
3

t
1�!
3 c1.t/

t!C1�! 1: (126)

Using (126) and the change of variables t 7! & we conclude that

Q0.!/&
r0 Qc1.&/ &!C1�! 1; (127)

and using this result and appropriate estimates for the sum and the integral of (123)
we obtain the similarity limits stated in the theorem. �

What happens if the monomers input rate is slower than the stated in Theorem 19
is studied by Sasportes in [195], where he concludes that if ! D � 1

2
there exists a

self-similar profile for the variable 	, correspondent to (i) in Theorem 19, and the
limit:

lim
j; & !C1
	D j=& fixed

	¤ 1

.1=2/1=3.3=˛/2=3&.log &/2=3 Qcj.&/ D ˚1;�1=2.	/:

However, the limit in (ii), for that similarity variable, does not exist.
The kind of self-similar behaviour presented in Theorem 19(i) seems to be valid

also when aj D jp with p < 1. Although a rigorous proof is lacking, non-rigorous
formal computations [51] seem to suggest that, for certain functions Qp.!/ and

A.!; p/; for rp D 1�!.1�p/
.2C!/.1�p/ ; and for the time scale 
 D

�
.3�2p/A.!;p/

2C!
	 1
1�p

t
2C!
3�2p ; it

could be true that

lim
j; & !C1
	 D j=& fixed

	¤ 1

Qp.!/&
rp Qcj.&/ D ˚1;!;p.	/ WD

�
	�p

�
1 � 	1�p

��rp
; if 	 < 1

0; if 	 > 1:

An important feature of many physical systems that is definitely not considered in
the simple model (119) is the existence of a critical cluster size below which clusters
are very unstable and do not exist. The first rigorous approach to the modelling of
this phenomenon in the framework we are considering was proposed recently by
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Costin and co-workers in [62], where the following system, analogous to (119) but
with constant input of monomers, constant reaction rates, and a critical cluster size
n > 2; was considered:

8
ˆ̂̂<
ˆ̂̂:

Pc1 D ˛ � ncn
1 � c1

1X
jDn

cj

Pcn D cn
1 � c1cn

Pcj D c1cj�1 � c1cj; j > n:

(128)

Again, as in (119), the definition of an auxiliary variable X.t/ WD P1
jDn cj.t/ allows

for the decoupling of (128) into a two-dimensional and an infinite dimensional
that can be solved recursively. The qualitative methods used in [52, 57] for the
determination of the exact long-time convergence rates of solutions of (119) do
not seem to work in this case. However, a careful rigorous asymptotic analysis was
possible to implement fully and the following self-similar behaviour was obtained
in [62]:

lim
j; & !C1
	 D j=& fixed

	¤ 1

.n=˛/.n�1/=n&.n�1/=n Qcj.&/ D
�
.1 � 	/�.n�1/=n ; if 0 < 	 < 1
0; if 	 > 1:

Observe that if n D 2 the result of Theorem 19(i) is recovered.

4 Density Conservation and Gelation

More than once in this chapter we referred to problems and results related to the
conservation, or non conservation, of the solution density through time evolution.
The problem of characterizing the rate coefficients and the initial data for which
there is conservation of density, or lack thereof, has been one of the main open
problems in the mathematics of coagulation-fragmentation for many decades. Only
from the late 1990s was real significant progress made, first by Jeon [110], using
probabilistic methods, and afterwards by Escobedo et al. [78] and by these authors
together with Laurençot [80], using purely analytic methods.

Seeing the coagulation-fragmentation equations as a model from chemical
kinetics it is all too natural to expect the density of solutions to be a time invariant,
due to mass conservation in each elementary reaction. In fact, proceeding in a formal
way, if we substitute (4), (14) and (16) into

P1
jD1 jPcj we obtain

P1
jD1 jPcj D 0; with

an analogous formal result being valid for the continuous version of the equations.
The attempts to turn these formal computations rigorous were faced, from the

beginning, with mathematical difficulties, perhaps unexpected, which resulted in
that, for many years, the results available in the literature were formal studies (cf.
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e.g. [77, 83, 106, 228]), rigorous studies of particular cases [26, 27], and examples
of solutions that did not conserve density [144, 148]. All these studies were for
Smoluchowski’s equation with product type coagulation kernels growing fast with
the cluster size. We will start by a brief review of the first mathematically rigorous
studies.

The first results on the existence of solution to Smoluchowski’s coagulation
system, proved by McLeod in the beginning of the 1960s [154–156] considered
coagulation coefficients aj;k D rjrk and an initial condition c0 j D ıj;1. The condition
considered in those studies on the finiteness of the solutions’ second moment
kc.t/k2 < 1 implied that, when rj D j; the maximal interval of existence is
Œ0; 1/; when rj � j it contains Œ0; e�1�; and when rj D jqj; with qj ! C1; there
is no solution in any non degenerate time interval. Observe that, when aj;k � jk;
the requirement of finite second moment easily implies density conservation of the
solution [cf. (65)] and, in fact, waving this condition Leyvraz and Tschudi proved
[148] that for rj D j McLeod’s solution can be continued for t > 1, using to that end
the generating function

G.t; z/ WD
1X

jD1
'j.t/z

j; where 'j.t/ WD jcj.t/e
j
R t
0 kc.s/k1ds:

This generating function is a solution of the equation

@G

@t
D zG

@G

@z
; z 2 .0; 1/; t > 0;

with G.0; z/ D z. As this problem can be integrated by the method of characteristics
to obtain an explicit expression for G, from which we then obtain 'j and hence cj.
The final result is Leyvraz-Tschudi’s solution:

cj.t/ D

8̂
ˆ̂̂
<
ˆ̂̂
:̂

j j�2

jŠ
t j�1e�jt; if 0 � t � 1

jj�2e�j

jŠ

1

t
; if t > 1;

(129)

for which an easy computation results in

kc.t/k1 D
�
1; if 0 � t � 1

t�1; if t > 1:

Thus, Leyvraz-Tschudi’s solution does not conserve density for t > 1. This
same result was later re-derived by Slemrod [200] without recourse to generating
functions.
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It is very interesting to observe that the nonconservation of density happens
at a finite time (in Leyvraz-Tschudi’s solution, at t D 1) and not at the long-
time limit, t ! C1; as in the Becker-Döring and the coagulation-fragmentation
equations with weak fragmentation. The physical interpretation is analogous: the
missing density kc.0/k1 � kc.t/k1 corresponds to the runaway of part of the density
to entities whose sizes are not described by subscripts j 2 N (or x 2 RC in the
continuous version), which means that they are, from the physical point of view,
incommensurably larger than every j. This “infinite cluster” is interpreted in the
physics literature as a different macroscopic phase, called a gel, and its occurrence
is called the sol-gel transition or gelification. The smallest time Tg � 0 after which
density conservation no longer holds is called the geling time.7

The above interpretation for the finite time break down of density conservation
also suggests that such a phenomenon occurs when the coagulation coefficients
grow fast with the cluster sizes. In fact, Leyvraz showed in [144] that, if rj D j˛;
with ˛ > 1

2
; then there exists a solution of (31) with a specially chosen initial

condition, for which Tg D 0. This result, as well as those above are examples of
non density conserving solutions with very particular initial data; nevertheless they
are historically important because for many years they were essentially the only
rigorous examples known of solutions exhibiting a behaviour that was generally
believed to hold for all non zero solutions to (31) when aj;k � . jk/˛ with ˛ > 1

2
.

The case ˛ > 1 was first studied by van Dongen [69] and rigorously proved by
Carr and da Costa [35]:

Theorem 20 ([35]) Let CL. j˛ C k˛/ � aj;k � CU. jk/ˇ; with constants CL; CU > 0

and ˇ > ˛ > 1. Let c be a solution of (31) in Œ0;T/ with c0 ¤ 0. Then, c does not
conserve density in any time interval Œ0; t1/; 8t1 � T.

Sketch of proof The basic idea of the proof is an argument by contradiction using
higher moments: assuming that c is a density conserving solution in an interval
Œ0; t1/ and using the lower bound for the coefficients it is possible to prove that, for
all p > 1,

1X
jDm

jpcj.t/ � kc0k1
1X

jDm

jp�1e�CLkc0k1j1�˛."�t/=2; (130)

where 0 < t < " < t1 and m is sufficiently large.
Obviously (130) implies that all moments kc.t/kp are finite in .0; t1/ and this is

the result that is at the centre of the contradiction because the lower bound on the
coefficients, the hypothesis of density conservation, and Hölder’s inequality imply

7There is an analogous behaviour of loss of mass in the pure fragmentation system, called
“shattering” and interpreted as a loss of mass to infinitesimal clusters. We shall not consider this
behaviour here, directing the interested reader to the literature, e.g., [7, 89, 152].
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that, 8ı; t; 
 2 .0; t1/ with ı < t � 
;

kc.t/kp � kc.ı/kp � pCLkc0k1� ˛�1
p�1

Z t

ı

kc.s/k1C
˛�1
p�1

p ds;

from which we get a blowing up time for kc.t/kp; T.p/; with limp!C1 T.p/ � ı. �

For many decades the only rigorous results for the case ˛ 2 �
1
2
; 1
�

were the
particular solutions in [144, 148], already referred to. An attempt by da Costa [49]
to prove that the same behaviour would occur for all solutions, based in a dynamical
systems approach, resulted in the identification of a larger family of gelling solutions
but did not solve the problem, although it had some use in the numerical analysis of
the gelling phenomenon [8]. For the continuous system Laurençot [125] considered
a.x; y/ D r.x/r.y/ C ˛.x; y/ with ˛.x; y/ � Ar.x/r.y/ and r.x/ � Rx; and proved
that all solution exhibit gelation and obtained some results about the density decay
and the gelification time.

In other works fragmentation was also included. Recall that, in [46] it was
proved that, with coagulation coefficients for which gelation was expected to occur,
a sufficiently strong fragmentation prevents that to happen at least for solutions
obtained as limits of truncated systems (cf. Theorem 8). This is also in line with
the interpretation of gelation as a loss of density to an infinite size entity, because
it is natural to expect that a high rate of fragmentation of big clusters inhibits the
accumulation of density in larger and larger clusters, thus preventing the runaway
phenomenon causing the emergence of gelation

The rigorous analytic elucidation of gelation was achieved in 2002 by Escobedo
et al. in [78], and in 2003 by the same authors with Laurençot in [80]. In what
follows we briefly describe those results.

Let us start by observing that the results in [78, 80] are proved for the continuous
version of the coagulation-fragmentation equations but, naturally, they are also valid
for the discrete case. We shall concentrate our attention in the coagulation equation:

Theorem 21 ([78]) Let a.x; y/ D 1
2

�
x˛yˇ C xˇy˛

�
; with 0 � ˛ � ˇ � 1

and � WD ˛ C ˇ > 1. Let c be an arbitrary weak solution of (5)–(6) with a
non zero initial condition8 c0 2 Y1. Then, there exists a positive constant C� D
C�.M1.0/;M0.0/; �/ such that, for all t � 0; it holds

M1.t/ � C�
.1C t/1=�

(131)

and so the geling time is finite and satisfies the upper bound

Tg � T� WD
�

C�
M1.0/

��
: (132)

8The Banach space Y1 was defined in page 108.
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In this statement the notation Mk.t/ WD kc.t; �/kL1.RC;ykdy/ was used.

Sketch of proof The proof is based on some estimates for the weak solutions using
carefully constructed test functions, from which it is possible to conclude that, for
all 
 � 0;

Z 1



M1.t/
2dt � C�M0.0/

��1M1.
/
2��; (133)

from which we obviously see that the density cannot be constant and, with a bit more
extra work, obtain (131). Let us look at this argument in more detail. The definition
of weak solution of (5)–(6) is like the one in the discrete case: it is any function
c 2 C.Œ0;1/I L1/\ L1.0;TI Y1/; 8T > 0; satisfying M1.t/ � M1.0/; 8t � 0; such
that, for all t � 
 � 0 and g 2 L1.0;1/; the following holds

Z 1
0

g.x/c.t; x/dx �
Z 1
0

g.x/c.
; x/dx D

D 1

2

Z t




Z Z

RC�RC

.g.x C y/� g.x/� g.y//a.x; y/c.s; x/c.s; y/dxdyds: (134)

Let c be a weak solution of (5)–(6) and in (134) consider the test function g.x/ D
gA.x/ WD x ^ A 2 L1.0;1/. As gA.x C y/ � gA.x/ � gA.y/ � 0 in RC 	 RC it is
possible to estimate the right-hand side of (134) keeping only the contribution due
to the integration on ŒA;1/2; which immediately results in

Z t




�Z 1
A

y�=2c.s; x/dx

�2
ds � 2M1.
/

A
: (135)

Consider now a function ˚ W Œ0;1/ ! Œ0;1/ which is monotonic increasing,
differentiable a.e., with ˚.0/ D 0, and C˚ WD k˚ 0kL1.RC;y�1=2dy/ < 1. Writing
˚.x/ D R x

0
˚ 0.A/dA; using Fubini’s theorem, Cauchy-Schwarz inequality and (135)

we concluded that

Z t




�Z 1
0

x�=2˚.x/c.s; x/dx

�2
ds � 2C2

˚M1.
/:

Taking limits as t ! 1 and considering ˚.x/ WD �
x1��=2 � .R=2/1��=2

�C
; where

R > 0 is an arbitrary constant, we conclude that

Z 1



�Z 1
R

xc.s; x/dx

�2
ds � CR1��M1.
/: (136)
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Finally, (133) is obtained by using M1.t/2 � 2
�R R
0

xc.t; x/dx
�2 C 2

�R1
R xc.t; x/dx

�2
;

and
�R R
0

xc.t; x/dx
�2 � R2��M�=2.
/

2; applying (136) and (134) with the test
function g � 1; and taking R D M1.
/=M0.
/. �

Escobedo et al. [78] also contains an extensive study of several properties of the
density of weak solutions of (5)–(6), including the behaviour of the solutions at
geling time Tg.

The same method was used in [78, 80] for the continuous system with fragmen-
tation, establishing the following result:

Theorem 22 ([78, 80]) Let a.x; y/ D 1
2

�
x˛yˇ C xˇy˛

�
; with 0 � ˛ � ˇ � 1 and

� WD ˛ C ˇ. Let b.x; y/ D .1C x C y/� ; with � 2 R. Then, the following hold:

(i) if � � 1 or if � > � � 2; there exists a density conserving weak solution (17)
(ii) if � > 1 and � < � � 2, there exists a critical density �� > 0 such that, when

c0 2 Y1 satisfies kc0kL1.RC;ydy/ > ��; every weak solution of (17) with initial
condition c0 exhibits gelation.

Note that when the condition on � is (i) the behaviour of solutions is the same
that occurred for the discrete system in the strong fragmentation case (cf. page 117),
that is: even with conditions on the coagulation coefficients for which solutions
to the purely coagulating dynamics have break down of density conservation, a
sufficiently strong fragmentation forces density to remain constant through time
evolution.

Case (ii) leaves unanswered what happens for sufficiently small densities. Formal
arguments presented in [80] lead to the conjecture that, if � 2 ..� � 3/=2; � � 2/;

there are weak solutions, with low density initial conditions, for which density is
conserved, whereas if � < .� � 3/=2; all non zero solutions have gelation.

As stated above, Theorems 21 and 22 are fundamental contributions to the
problem of density conservation in coagulation-fragmentation systems, although,
as stated in [78, 80], several relevant problems still wait for a proof.
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Resampling-Based Methodologies in Statistics
of Extremes: Environmental and Financial
Applications

M. Ivette Gomes, Lígia Henriques-Rodrigues, and Fernanda Figueiredo

Abstract Resampling computer intensive methodologies, like the jackknife and the
bootstrap are important tools for a reliable semi-parametric estimation of parameters
of extreme or even rare events. Among these parameters we mention the extreme
value index, �, the primary parameter in statistics of extremes. Most of the semi-
parametric estimators of this parameter show the same type of behaviour: nice
asymptotic properties, but a high variance for small k, the number of upper order
statistics used in the estimation, a high bias for large k, and the need for an adequate
choice of k. After a brief reference to some estimators of the aforementioned
parameter and their asymptotic properties we present an algorithm that deals with
an adaptive reliable estimation of �. Applications of these methodologies to the
analysis of environmental and financial data sets are undertaken.

1 A Brief Introduction

Let us assume that we have access to a sample .X1; : : : ;Xn/ of independent,
identically distributed (i.i.d.), or even stationary and weakly dependent, random
variables (r.v.’s) from an underlying model F, and let us denote by .X1Wn � � � � �
XnWn/ the sample of associated ascending order statistics (o.s.’s). Let us further
assume that it is possible to normalize the sequence of maximum values, fXnWngn�1
so that we get a non-degenerate limit. Then (Gnedenko [16]), that limiting r.v. has
a distribution function (d.f.) of the type of the general extreme value (GEV) d.f.,
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Fig. 1 Probability density function (p.d.f.) g� .x/ D dG� .x/=dx, for � D �0:5, � D 0 and � D 2,

together with the normal p.d.f., '.x/ D exp.�x2=2/=
p
2�; x 2 R

given by

G�.x/ D
�

exp
��.1C �x/�1=�

�
; 1C �x > 0; if � 6D 0;

exp.� exp.�x//; x 2 R; if � D 0;
(1)

and � is the so-called extreme value index (EVI), the primary parameter in statistics
of univariate extremes (SUE). We then say that F is in the max-domain of attraction
of G� , in (1), and use the notation F 2 DM

�
G�

�
.

The extreme value index � measures essentially the weight of the right tail-
function F WD 1 � F, as illustrated in Fig. 1.

• If � < 0, the right tail is light, and F has a finite right endpoint, i.e. xF WD supfx W
F.x/ < 1g < C1;

• If � > 0, the right tail is heavy, of a negative polynomial type, and F has an
infinite right endpoint;

• If � D 0, the right tail is of an exponential type. The right endpoint can then be
either finite or infinite.

Slightly more restrictively than the full max-domain of attraction of the GEV
d.f., we now consider a positive EVI, i.e. we work with heavy-tailed models F in
DM

�
G�

�
�>0

DW DCM . As usual, we shall further use the notations, F for the
generalized inverse function of F, i.e. F .y/ WD inf fx W F.x/ � yg ; and Ra for the
class of regularly varying functions at infinity with an index of regular variation a,
i.e. positive Borel measurable functions g.�/ such that g.tx/=g.t/ ! xa, as t ! 1,
for all x > 0. Let us further use the notation

U.t/ WD
�

1

1 � F

� 
.t/ D F 

�
1 � 1=t

�
;

for the tail quantile function, defined for t > 1.
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Equivalently to say that F 2 DCM , we can say (Gnedenko [16]) that the tail
function

F WD 1 � F

belongs to R�1=� or that U 2 R� (de Haan [6]), i.e. for heavy-tailed models we have
the validity of the so-called first-order conditions,

F 2 DCM ” F 2 R�1=� ” U 2 R� : (2)

For these heavy-tailed models, and given a sample Xn D .X1; : : : ;Xn/, the clas-
sical EVI-estimators are Hill estimators (Hill [34]), with the functional expression

Hk;n � H.kI Xn/ WD 1

k

kX
iD1

Vik;

Vik WD ln Xn�iC1Wn � ln Xn�kWn; 1 � i � k < n: (3)

The Hill EVI-estimators are thus the average of the k log-excesses above a random
level Xn�kWn, that compulsory needs to be an intermediate o.s., i.e.

k D kn ! 1 and k=n ! 0; as n ! 1; (4)

so that we have consistent EVI-estimation in the whole DCM .
Under adequate second-order conditions that rule the rate of convergence in any

of the first-order conditions in (2), Hill estimators, Hk;n, in (3), have usually a high
asymptotic bias, i.e.,

p
k .Hk;n � �/ is asymptotically normal with variance �2 and

a non-null mean value for the moderate k-values that lead to minimal mean square
error (MSE), as sketched in Sect. 2.2. This non-null asymptotic bias and a rate of
convergence of the order of 1=

p
k lead to sample paths with a high variance for

small k, a high bias for large k, and a very peaked MSE pattern. Recently, several
authors have considered different ways of reducing bias in the area of SUE (see
the overviews in Gomes et al. [24], Chap. 6 of Reiss and Thomas [36]; Gomes
et al. [25]; Beirlant et al. [3]). A simple class of minimum-variance reduced-bias
(MVRB) EVI-estimators is the class studied in Caeiro et al. [4], to be introduced in
Sect. 2.1. These MVRB EVI-estimators depend on the estimation of second-order
parameters, and their asymptotic behaviour is presented in Sect. 2.2. Both the Hill
and the MVRB EVI-estimators are invariant to changes in scale, but they are not
invariant to changes in location. And particularly the Hill EVI-estimators can suffer
drastic changes when we induce an arbitrary shift in the data. This was one of the
reasons that led Araújo Santos et al. [1] to introduce the so-called peaks over random
threshold (PORT) methodology, to be sketched in Sect. 2.3.
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Resampling methodologies, introduced in Sect. 3, have recently revealed to be
quite fruitful in the field of SUE. We mention the importance of the generalized
jackknife (GJ), detailed in Gray and Schucany [33], in the reduction of bias, revisited
recently in the field of extremes by Gomes et al. [32]. We further refer the relevance
of the bootstrap (Efron [11]) in the estimation of a crucial tuning parameter in the
area, the number k of top order statistics involved in the estimation of the tails.
Together, these two resampling procedures enable the obtention of reliable semi-
parametric estimates of any parameter of extreme or even rare events, like a high
quantile, the expected shortfall, the return period of a high level or the two primary
parameters of extreme events, the extreme value index (EVI) and the extremal index,
related to the degree of local dependence in the extremes of a stationary sequence.
In order to illustrate such topics, we essentially consider the GJ EVI-estimators
in Gomes et al. [32], associated with the simplest class of MVRB estimators of a
positive EVI introduced and studied in Caeiro et al. [4].

In Sect. 4, an application of these methodologies to the analysis of an environ-
mental data set, related to the number of hectares, exceeding 100 ha, burnt during
wildfires recorded in Portugal during 14 years (1990–2003), is undertaken. To
enhance the relevance of the PORT methodology, we further consider an application
to financial data.

2 Second-Order Reduced-Bias (SORB), MVRB and PORT
EVI-Estimators

As mentioned above, for consistent semi-parametric EVI-estimation, in the whole
DCM , we merely need to work with adequate functionals, dependent on an inter-
mediate tuning parameter k, the number of top o.s.’s involved in the estimation,
i.e. (4) should hold. To obtain full information on the non-degenerate asymptotic
behaviour of semi-parametric EVI-estimators, we need further assuming a second-
order condition, ruling the rate of convergence in the first-order condition, or even a
third or fourth-order condition. Whenever dealing with reduced-bias estimators of
parameters of extreme events, like the EVI, and essentially due to technical reasons,
we slightly restrict the domain of attraction, DCM , and consider a Pareto-type class
of models, assuming that, with C > 0; � > 0, � < 0, and ˇ 6D 0,

U.t/ D Ct�
�
1C A.t/=�C o.t�/

	
; A.t/ WD �ˇt�; (5)

as t ! 1, i.e. we assume that the slowly varying function LU .t/ D t��U.t/
tends to a finite non-null constant. To obtain information on the bias of MVRB
EVI-estimators it is even common to slightly restrict our class of models, further
assuming the following third-order condition,

U.t/ D Ct�
�
1C A.t/=�C ˇ0t2� C o.t2�/

	
; (6)
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as t ! 1, with ˇ0 6D 0. And if we deal with GJ-MVRB EVI-estimators, to be
detailed in Sect. 3.2, and also want to obtain full information on their asymptotic
bias, we can further assume, in the lines of Taylor series, that

U.t/ D Ct�
�
1C A.t/=�C ˇ0t2� C ˇ00t3� C o.t3�/

	
; (7)

as t ! 1, with ˇ00 6D 0.
More generally than (5), it is often assumed that there exists a function A.�/, such

that

lim
t!1

ln U.tx/� ln U.t/ � � ln x

A.t/
D  �.x/ WD

�
.x� � 1/=�; if � ¤ 0;

ln x; if � D 0:
(8)

Then, we compulsory have jAj 2 R�. Moreover, if the limit in the left hand-side
of (8) exists, it is compulsory equal to the above defined  �.�/ function (Geluk and
de Haan [15]). Further note that the validity of (8) with � < 0 is equivalent to (5).
Additional details on second and higher-order conditions can be found in de Haan
and Ferreira [7].

As mentioned above, and provided that (4) and (8) hold, Hill EVI-estimators,
Hk;n, have usually a high asymptotic bias. The adequate accommodation of this bias
has recently been extensively addressed. We mention the pioneering papers by Peng
[35], Beirlant et al. [2], Feuerverger and Hall [12], and Gomes et al. [20], among
others. In these papers, authors are led to SORB EVI-estimators, with asymptotic
variances larger than or equal to .� .1 � �/=�/2, where �.< 0/ is the aforementioned
‘shape’ second-order parameter, ruling the rate of convergence of the distribution of
the normalized sequence of maximum values towards the limiting law G� , in (1).

2.1 MVRB EVI-Estimation

Recently, Caeiro et al. [4] and Gomes et al. [23, 27] have been able to reduce the
bias without increasing the asymptotic variance, kept at �2, just as happens with
the Hill EVI-estimators. Those estimators, called MVRB EVI-estimators, are all
based on an adequate ‘external’ and a bit more than consistent estimation of the
pair of second-order parameters, .ˇ; �/ 2 .R;R�/, in (5), done through adequate
estimators denoted by . Ǒ; O�/, and outperform the classical estimators for all k.
Different algorithms for the estimation of .ˇ; �/ can be found in Gomes and Pestana
[19], among others.

Among the most common MVRB EVI-estimators, we now consider the class
in Caeiro et al. [4], used for Value-at-Risk (VaR) estimation in the aforementioned
seminal paper by Gomes and Pestana [19]. Such a class, denoted by H � Hk;n, has
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the functional form

Hk;n � H Ǒ; O�.kI Xn/ WD Hk;n

�
1 � Ǒ.n=k/ O�=.1� O�/

	
; (9)

where . Ǒ; O�/ is an adequate consistent estimator of .ˇ; �/, with Ǒ and O� based on a
number of top o.s.’s k1 usually of a higher order than the number of top o.s.’s k used
in the EVI-estimation. Further details on such estimation are given in Sect. 3.3.

2.2 A Brief Asymptotic Comparison of Classical and MVRB
EVI-Estimators

The Hill estimators reveal usually a high asymptotic bias. Indeed, from the results
of de Haan and Peng [8], and with N�;�2 denoting a normal r.v. with mean value �
and variance �2,

p
k .Hk;n � �/

dD N0;�2 C bH

p
kA.n=k/C op

�p
kA.n=k/

�
; (10)

where the bias bH

p
kA.n=k/ can be very large, moderate or small (i.e. go to 1,

constant or 0) as n ! 1. Under the same conditions as before,
p

k
�
Hk;n � �� is

asymptotically normal with variance also equal to �2 but with a null mean value.
Indeed, under the validity of the aforementioned third-order condition in (6), related
to Pareto-type class of models, we can then adequately estimate the vector of
second-order parameters, .ˇ; �/ so that Hk;n outperforms Hk;n for all k. Indeed, we
can write (Caeiro et al. [5])

p
k
�
Hk;n � �

� dD N0;�2 C b
H

p
kA2.n=k/C op

�p
kA2.n=k/

�
: (11)

And when we try answering the question whether it is still possible to improve
the performance of these MVRB EVI-estimators through the use of resampling
methods, we are led to a positive answer, as provided in Sect. 3.2.

2.3 PORT EVI-Estimation

The estimators in (3) and (9) are scale invariant but not location invariant. In order to
achieve location invariance, Araújo Santos et al. [1] introduced the so-called PORT
EVI-estimators, functionals of a sample of excesses over a random level XnqWn, nq WD
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bnqc C 1, with bxc denoting the integer part of x, i.e. functionals of the sample,

X.q/
n WD �

XnWn � XnqWn; : : : ;XnqC1Wn � XnqWn
�
: (12)

Generally, we can have 0 < q < 1, for any F 2 DCM (the random level is an
empirical quantile). If the underlying model F has a finite left endpoint, xF WD inffx W
F.x/ � 0g, we can also use q D 0 (the random level can then be the minimum).

If we think, for instance, on Hill EVI-estimators, in (3), the new classes of PORT-
Hill EVI-estimators, theoretically studied in Araújo Santos et al. [1], and for finite
samples in Gomes et al. [26], are given by

H.q/
k;n WD H.kI X.q/

n /

D 1

k

kX
iD1

n
ln

Xn�iC1Wn � XnqWn
Xn�kWn � XnqWn

o
; 0 � q < 1: (13)

Similarly, if we think on the MVRB EVI-estimators, in (9), the new classes of
PORT-MVRB EVI-estimators, studied for finite samples in Gomes et al. [28, 31],
are given by

H
.q/
k;n WD H Ǒq; O�q

.kI X.q/
n /

D H.q/
k;n

�
1� Ǒ.nq=k/ O�=.1 � O�/

	
; 0 � q < 1; (14)

with H.q/
k;n in (13), and Ǒ � Ǒ

q WD Ǒ.X.q/
n /; O� � O�q WD O�.X.q/

n / any adequate

estimator of .ˇ; �/ based on the sample X.q/
n , in (12).

These PORT EVI-estimators are thus dependent on a tuning parameter q, 0 �
q < 1, that makes them highly flexible. Moreover, they are invariant to changes in
both location and scale. We shall further use the notation XnC1Wn � 0, and work with

0 � q � 1, so that with H and H
.q/

, given in (9) and (14), respectively, we can

consider that H D H
.q/

for q D 1 (n1 D n C 1; Ǒ
1 D Ǒ; O�1 D O�).

We get to know that the second-order MVRB EVI-estimators in (9) are not loca-
tion invariant, but they are approximately location invariant. Almost equivalent to
the PORT-MVRB EVI-estimators in (14), we can consider, in the lines of Figueiredo
et al. [13], quasi-PORT-MVRB EVI-estimators, with a functional expression similar
to the one in (14) but where for all 0 � q < 1, . Ǒ; O�/ D . Ǒ

1; O�1/ are the .ˇ; �/-
estimators based on the original sample, i.e.

H
.q/

k;n WD H.q/
k;nHk;n=Hk;n D H.q/

k;n

�
1 � Ǒ.n=k/ O�=.1� O�/

	
; (15)

with Hk;n, Hk;n and H.q/
k;n given in (3), (9) and (13), respectively.
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3 Resampling Methodologies in SUE

The use of resampling methodologies (Efron [11]) has revealed to be promising
in the estimation of the nuisance parameter k, or equivalently, in the estimation of
the optimal sample fraction (OSF), k=n, as well as in the reduction of bias of any
estimator of a parameter of extreme events. If we ask how to choose the tuning

parameter k in the EVI-estimation, either through Hk;n or H
.q/
k;n or H

.q/

k;n, 0 � q � 1,
generally denoted Ek;n, we usually consider the estimation of

k0jE.n/ WD arg min
k

MSE.Ek;n/: (16)

3.1 OSF-Estimation and the Bootstrap Methodology

To obtain estimates of k0jE.n/, in (16), one can use a double-bootstrap method
applied to an adequate auxiliary statistic like

Tk;n � Tk;njE WD Ebk=2c;n � Ek;n; k D 2; : : : ; n � 1; (17)

which tends to the well-known value zero and has an asymptotic behaviour similar
to the one of Ek;n (see Gomes and Oliveira [18], among others, for the estimation
through Hk;n and Gomes et al. [30], for the estimation through MVRB EVI-
estimators). See also Sect. 3.3 of this article. At such optimal levels, we have a
non-null asymptotic bias, and if we still want to remove such a bias, we can then
make use of the GJ methodology.

3.2 The GJ Methodology and Bias Reduction

The main objectives of the jackknife methodology are:

1. Bias and variance estimation of a certain statistic, only through manipulation of
observed data x.

2. The building of estimators with bias and MSE smaller than those of an initial set
of estimators.

The jackknife or the GJ are resampling methodologies, which usually give a positive
answer to the question: ‘May the combination of information improve the quality
of estimators of a certain parameter or functional?’ The pioneering SORB EVI-
estimators are, in a certain sense, generalized jackknife estimators, i.e., affine
combinations of well-known estimators of �.
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The generalized jackknife statistic was introduced by Gray and Shucany [33],
and the main objective of the method is related to bias reduction. Let E.1/n and E.2/n

be two biased estimators of �, with similar bias properties, i.e.,

Bias.E.i/n / D �.�/di.n/; i D 1; 2:

Then, and trivially, if

p D pn D d1.n/=d2.n/ 6D 1;

the affine combination

EGJ
n WD �

E.1/n � pE.2/n

�
=.1 � p/

is an unbiased estimator of �.

3.2.1 GJ-MVRB EVI-Estimation

Given H, in (9), the most natural GJ r.v. is the one associated with the random pair�
Hk;n;Hb�kc;n

�
, 0 < � < 1, i.e.

H
GJ.p;�/
k;n WD Hk;n � p Hb�kc;n

1 � p
; 0 < � < 1;

with

p D pn D Bias1ŒHk;n�

Bias1ŒHb�kc;n/�
D A2.n=k/

A2.n=b�kc/ �!
n=k!1 �

2�:

It is thus sensible to consider p D �2�, � D 1=2 (see Gomes et al. [21], for further
details on the choice of �), and, with O� a consistent estimator of �, the GJ-MVRB
EVI-estimators,

Hk;n � H
GJ
k;n WD 22 O� Hk;n � Hbk=2c;n

22 O� � 1
: (18)

Then, and provided that O� � � D op.1/,

p
k
�

Hk;n � �
	

dD N0;�2
GJ

C op
�p

kA2.n=k/
�
;

with

�2
GJ

D �2
�
1C 1=.2�2� � 1/2

�
;
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just as proved in Gomes et al. [32]. More precisely, and under the fourth-order
framework in (7), we can write

p
k
�

Hk;n � �
	

dD N0;�2GJ
C bGJ

p
kA3.n=k/C op

�p
kA3.n=k/

�
: (19)

We have thus again a trade-off between variance and bias. The bias decreases, but
the variance increases. Anyway, we are able to reach a better performance at optimal
levels, as desired.

Consequently, even if

p
k A.n=k/ ! 1; with

p
k A2.n=k/ ! �A ; finite;

the type of levels k where the MSE of Hk;n is minimized,

p
k
�
Hk;n � �

� d�!
n!1 N�A b

H
;�2

H
and

p
k
�

Hk;n � �
	

d�!
n!1 N0;�2

GJ
:

p
k
�

Hk;n � �
	

d�!
n!1 N�A bGJ ;�

2
GJ
:

If
p

k A3.n=k/ ! �A , finite, the type of levels where the MSE of Hk;n � H
GJ
k;n is

minimized.
Let E denote either H or H or H � H

GJ
. We then get, on the basis of (10), (11)

and (19),

kAjE.n/ WD arg min
k

AMSE
�
Ek;n

�

D arg min
k

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

�2E=k C b2
E

A2.n=k/; if E D H;

�2E=k C b2
E

A4.n=k/; if E D H;

�2E=k C b2
E

A6.n=k/; if E D H

D k0jE.n/.1C o.1//;

with k0jE.n/ defined in (16). See Theorem 1 of Draisma et al. [9], for a proof

of this result, in the case of H. The proof is similar for the cases of H and H.
Things work more intricately for the PORT-MVRB and quasi-PORT-MVRB EVI-
estimators, and we shall consider an algorithm similar to the one devised for the Hill

EVI-estimators in case we are working with either H
.q/

or H
.q/

, 0 � q < 1, since
only for specific values of q will these estimators be second-order reduced-bias.
The bootstrap methodology enables us to estimate the OSF, k0jE.n/=n, on the basis
of a consistent estimator of k0jE.n/, in (16), in a way similar to the one used for the
classical EVI-estimators, now through the use of an auxiliary statistic like the one
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in (17), a method detailed in Gomes et al. [29, 30] for the MVRB EVI-estimation.
Indeed, under the above-mentioned fourth-order framework in (7), we get

TE
k;n

dD � PE
kp
k

C

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

bE.2
� � 1/ A.n=k/.1C op.1//; if E D H;

bE.2
2� � 1/ A2.n=k/.1C op.1//; if E D H;

bE.2
3� � 1/ A3.n=k/.1C op.1//; if E D H;

with PE
k asymptotically standard normal.

Consequently, denoting k0jT.n/ WD arg mink MSE.Tk;n/; we have

k0jE.n/ D k0jT .n/ 	

8̂
<̂
ˆ̂:

.1 � 2�/
2

1�2� .1C o.1//; if E D H;�
1 � 22�� 2

1�4� .1C o.1//; if E D H;�
1 � 23�� 2

1�6� .1C o.1//; if E D H:

3.3 Adaptive EVI-Estimation

In the following Algorithm, and with the notation XnC1Wn D 0, we consider that

H � H
.q/
k;n � H

.q/

k;n, for q D 1, i.e. we include the MVRB EVI-estimators in the
overall selection. Moreover, whenever dealing with 0 � q < 1 replace n by n � nq,
nq D bnqc C 1.

3.3.1 Algorithm: Adaptive Bootstrap Estimation of �

1. Given the sample .x1; : : : ; xn/, compute for the tuning parameters 
 D 0 and

 D 1, the observed values of O�
 .k/, the most simple class of estimators in
Fraga Alves et al. [14]. Such estimators have the functional form

O�
 .k/ WD �ˇ̌3.W.
/
k;n � 1/=.W.
/

k;n � 3/ˇ̌;

dependent on the statistics

W.
/
k;n WD

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

�
M
.1/
k;n

	
�
�

M
.2/
k;n=2

	
=2
�

M
.2/
k;n=2

	
=2�
�

M
.3/
k;n=6

	
=3 ; if 
 ¤ 0;

ln M
.1/
k;n�ln

�
M
.2/
k;n=2

	
=2

ln
�

M
.2/
k;n=2

	
=2�ln

�
M
.3/
k;n=6

	
=3
; if 
 D 0;
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where

M.j/
k;n WD 1

k

kX
iD1

�
ln Xn�iC1Wn � ln Xn�kWn

	j
; j D 1; 2; 3:

2. Consider K D �bn0:995c; bn0:999c�. Compute the median of f O�
 .k/gk2K ,
denoted 
 , and compute I
 WD P

k2K . O�
 .k/ � 
 /2, 
 D 0; 1. Next choose
the tuning parameter 
� D 0 if I0 � I1; otherwise, choose 
� D 1.

3. Work with O� � O�
� D O�
�.k1/ and Ǒ � Ǒ

� WD Ǒ O�
�

.k1/, with k1 D bn0:999c,

being Ǒ O�.k/ the estimator in Gomes and Martins [17], given by

Ǒ O�.k/ WD
�

k

n

� O� dk. O�/ Dk.0/� Dk. O�/
dk. O�/ Dk. O�/� Dk.2 O�/ ;

dependent on the estimator O� D O�
�.k1/, and where, for any ˛ � 0,

dk.˛/ WD 1

k

kX
iD1

.i=k/�˛ and Dk.˛/ WD 1

k

kX
iD1

.i=k/�˛ Ui;

with Ui D i
�

ln Xn�iC1Wn � ln Xn�iWn
�
; 1 � i � k < n; the scaled log-spacings.

4. For k D 1; 2; : : : , compute the observed values of Hk;n, Hk;n and Hk;n � H
GJ
k;n,

in (3), (9) and (18), respectively.
5. For q D 0.0:1/0:9, execute steps 1., 2. and 3. for the observed value of the

sample of excesses in (12), and compute the observed values of H
.q/
k;n, in (14),

�
or alternatively H

.q/

k;n, in (15)
�
, for all admissible k.

6. Consider sub-sample sizes m1 D o.n/ and m2 D bm2
1=ncC1, having n the same

meaning as n � bnqc � 1 if 0 � q < 1.
7. For l from 1 until B D 250, independently generate from the empirical d.f.

associated with the underlying sample .x1; x2; : : : ; xn/, B bootstrap samples

.x�1 ; : : : ; x�m2 / and .x�1 ; : : : ; x�m2 ; x
�
m2C1; : : : ; x

�
m1
/;

with sizes m2 and m1, respectively.
8. Again generally denoting Ek;n any of the aforementioned EVI-estimators, let us

denote by T�k;njE the bootstrap counterpart of the auxiliary statistic in (17), and
obtain t�k;m1;ljE; 1 < k < m1; t�k;m2;ljE; 1 < k < m2, 1 � l � B, the observed
values of the statistics T�k;mijE; i D 1; 2, and compute

MSE�E.mi; k/ D 1

B

BX
lD1

�
t�k;mi;ljE

�2
; k D 1; 2; : : : ;mi � 1; i D 1; 2:
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9. Obtain Ok�
0jE
.mi/ WD arg min1�k�mi�1 MSE�E.mi; k/, i D 1; 2.

10. Compute

Ok
0jE WD min

0
@n � 1;

6664c O�
�Ok�

0jE
.m1/

�2
Ok�
0jE
.m2/

7775C 1

1
A ;

with

c� D

8̂
<̂
ˆ̂:

.1 � 2�/
2

1�2� ; if E D H or H
.q/
; 0 � q < 1;�

1 � 22�� 2
1�4� ; if E D H;�

1 � 23�� 2
1�6� ; if E D H;

and the OSF’s estimates, Ok
0jE=n.

11. Obtain H� D HOk
0jH ;n

, H
� D H Ok

0jH
;n, H

� D H Ok
0jH
;n and H

�.q/
n;m1

WD H
.q/

Ok.q/0 ;n
, with

Ok.q/0 WD Ok
0jH.q/

.

12. With B�q .mi; k/ D 1
B

BP
lD1

t�
k;mi;ljH.q/ ; k D 1; 2; : : : ;mi � 1; i D 1; 2, consider

2AMSE.kI q/ WD
�
H
�.q/
n;m1

�2
k

C
 �

B�q .m1; k/
�2

�
2� � 1

�
B�q .m2; k/

!2
; q ¤ 1;

with the previously obtained values O� D O�q, and H
�.q/
n;m1 .

13. Compute Oq WD arg minq2AMSE.Ok.q/0 I q/.
14. Obtain the final adaptive EVI-estimate,

H
�� � H

��jOq � H
�.Oq/
n;m1 WD H

.Oq/
Ok.Oq/0 ;n

:

Remark 1 An analogue procedure can be used for any other parameter of extreme
events.

Remark 2 A few practical questions may be again raised under the set-up
developedW How does the asymptotic method work for moderate sample sizes?
What is the type of the sample path of the new estimator for different values of m1?
What is the dependence of the method on the choice of m1? What is the sensitivity
of the method with respect to the choice of �-estimators? Although aware of the
need of m1 D o.n/, what happens if we choose m1 D n? Answers to these questions
were given in Gomes and Oliveira [18] for the estimation of � through the Hill
EVI-estimators, can be addressed here, but are beyond the scope of this article.
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Remark 3 Note that bootstrap confidence intervals associated with the adaptive
EVI-estimates are easily computed on the basis of the replication of the Algorithm
R times, for an adequate R.

4 Applications to Real Data

4.1 An Environmental Application

The first set of data, already considered in Gomes et al. [30], is related to the number
of hectares, exceeding 100 ha, burnt during wildfires recorded in Portugal during 14
years (1990–2003). Most of the wildfires are extinguished within a short period
of time, with almost negligible effects. However, some wildfires go out of control,
burning hectares of land and causing significant and negative environmental and
economical impacts. The data (a sample of size n D 2627) do not seem to have a
significant temporal structure, and we have used it as a whole. A box-and-whiskers
plot of the data provides evidence on the heaviness of the right tail, as can be seen
in Fig. 2.

Let us have a look at the behaviour of the adaptive EVI-estimators under
consideration for this data set. We have been led to the �-estimate, O� � O�0 D
�0:388, obtained at the level k1 D bn0:9990 c D 2606. The associated ˇ-estimate is
Ǒ � Ǒ

0 D 0:470. Note that the sample paths of the �-estimates associated with

 D 0 and 
 D 1 lead us indeed to choose, on the basis of any stability criterion for

0 10000 30000 50000

Fig. 2 Box-and-whiskers plot associated with the burnt areas in Portugal, above 100 ha, in the
period 1990–2003
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Fig. 3 EVI-estimates for the
burned areas
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large k, the estimate associated with 
 D 0. The aforementioned double-bootstrap
algorithm (until Step 11., and with q D 1, so that we are working with H only,

among the H
.q/

EVI-estimators) depends very weakly on the choice of a subsample
size m1 D o.n/ (see Gomes et al. [30]). For m1 D bn0:955c D 1843, and B=250
bootstrap replications, we have got

• OkH
0 D 157 (OkH

0 =n D 0:060) and the Hill EVI-estimate, H� D 0:73,
• OkH

0 D 1319 (OkH
0 =n D 0:502) and the MVRB EVI-estimate, H

� D 0:66,

• OkH
GJ

0 D 2296 (OkH
GJ

0 =n D 0:874) and the GJ-MVRB EVI-estimate, H
� D 0:65,

the values presented in Fig. 3, together with sample paths of the EVI-estimates under
consideration.

For the PORT-MVRB EVI-estimation, illustrated in Fig. 4, and with the exclu-
sion of the value q D 1, we have been led to the choice q D 0, Ok.0/0 D 242

(Ok.0/0 =n0 D 0:092, n0 D n � 1) and H
��j0 D 0:670. With the inclusion of q D 1

in the algorithm, we have been led to H, as expected, due to the data characteristics
(positive values only). For this type of data we have thus no particular gain in terms
of efficiency when we use the PORT methodology.

4.2 An Application in the Area of Finances

To enhance the importance of the PORT-MVRB EVI-estimation, we shall further
consider an application to the analysis of the log-returns associated with one of the
four sets of finance data considered in Gomes and Pestana [19]. Such data, collected
over the period from January 4, 1999, until November 17, 2005, and with a size
n D 1762, were the daily closing values of the Microsoft Corp. (MSFT). Note that
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Fig. 4 PORT-MVRB
EVI-estimation for burned
areas
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these MSFT data have also been analysed in Gomes et al. [29, 31], through the use
of different algorithms. Although there is some increasing trend in the volatility of
all these log-returns, stationarity and weak dependence is often assumed, under the
same considerations as in Drees [10].

The underlying model has heavy left and right tails. We have thus eliminated the
estimators associated with q D 0, due to their inconsistency (see Gomes et al. [26],
for details). The number of positive elements in the available sample of MSFT log-
returns is n0 D 882. We have been led to the �-estimate O� � O�0 D �0:72, obtained
at the level k1 D bn0:9990 c D 876. The associated ˇ-estimate is Ǒ � Ǒ

0 D 1:02. Just
as above, the sample paths of the �-estimates associated with 
 D 0 and 
 D 1 lead
us indeed to choose, on the basis of any stability criterion for large k, the estimate
associated with 
 D 0.

In Fig. 5, we present the adaptive and non-adaptive estimates of �, provided by

H, H
.q/

, q D 0:1, 0.3 and 1 (H
.1/ D H), with H and H

.q/
given in (3) and (14),

respectively. Note that the Hill estimators Hk;n, in (3), are unbiased for the EVI
estimation only when the underlying model is a strict Pareto model. Otherwise,
i.e. when we have only Pareto-like tails, as surely happens here and can be seen
from Fig. 5 (as well as from Figs. 3 and 4), it exhibits a quite relevant bias. The

PORT-MVRB estimators, H
.q/

, in (14), which are expected to be ‘asymptotically
unbiased’ for adequate values of q, have a smaller bias, exhibit more stable sample
paths as functions of k, and enable us to take a decision upon the estimate of � and
other parameters of extreme events to be used, even with the help of any heuristic
stability criterion, like the ‘largest run’ method suggested in Gomes et al. [22], and
the ones provided in Gomes et al. [31], among others.

The Algorithm in Sect. 3.3, for 0 < q � 1, led us to the choice Oq D 0:1,
Ok.0:1/0 D 449 (Ok.0:1/0 =1585 D 0:283, n.0:1/ D 1585), and H

�� � H
��j0:1 D 0:241,
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Fig. 5 Adaptive and
non-adaptive EVI-estimates
for the MSFT data set

0.1

0.2

0.3

0.4

0.5

0 600 1200
k

H H

H** | 0.1= 0.241

449

H(0.1)

H (0.3)

as shown in Fig. 5. Indeed, the MVRB EVI-estimators, despite of ‘asymptotically
unbiased’ reveal a relevant bias for models like the Student-t, one of the most
common candidates in a parametric estimation of log-returns. The PORT-MVRB
EVI-estimates are then serious candidates to a reliable EVI-estimation.

5 Some Overall Conclusions

• The double-bootstrap algorithm, despite of computationally intensive, is quite
reliable for the estimation of OSFs.

• The most attractive features of the GJ EVI-estimators are their stable sample
paths (for a wide region of k or k=n values).

• The GJ-MVRB EVI-estimate is quite close to the MVRB EVI-estimate, but with
a higher OSF-estimate.

• Due to stability reasons we advise for positive data sets the use of the GJ-MVRB
or the MVRB EVI-estimators rather than the PORT-MVRB EVI-estimators.

• For the MSFT data set, or for any data set with negative values, we advise the use
of the PORT-MVRB EVI-estimators, due to their stable sample paths as functions
of k or k=n for an adequate q. Moreover, note that these estimates are more
reliable since they involve a larger number of top o.s.’s due to the increase of
the positive elements in the sample from n0 to n � bnqc � 1.
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On the Optimal Control of Flow Driven
Dynamic Systems

Teresa Grilo, Sílvio M.A. Gama, and Fernando Lobo Pereira

Abstract The objective of this work is to develop a mathematical framework for the
modeling, control and optimization of dynamic control systems whose state variable
is driven by interacting ODE’s (ordinary differential equations) and solutions of
PDE’s (partial differential equations). The ultimate goal is to provide a sound basis
for the design and control of new advanced engineering systems arising in many
important classes of applications, some of which may encompass, for example,
underwater gliders and mechanical fishes. For now, the research effort has been
focused in gaining insight by applying necessary conditions of optimality for shear
flow driven dynamic control systems which can be easily reduced to problems with
ODE dynamics. In this article we present and discuss the problem of minimum time
control of a particle advected in a Couette and Poiseuille flows, and solve it by using
the maximum principle.

1 Introduction

The development a mathematical framework for the modeling, control and opti-
mization of dynamic control systems whose state variable is driven by interacting
ODE’s and PDE’s is still a significant challenge. In [5], it is presented some earlier
work aiming at the development of a theory of optimal control of dynamic systems,
[4, 6], whose state evolves due to the interaction of ordinary differential equations
with partial differential equations in which the later part is replaced by some known
particular solution. Underwater gliders and robotic fishes, Fig. 1, are two examples
of the class of applications whose currently available models we intend to improve.

An underwater glider is a winged autonomous underwater vehicle (AUV) that
moves by modulating its buoyancy and attitude in the velocity vector fields of
its environment. This vehicles are used for long-term, large-scale oceanographic
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Fig. 1 Underwater glider (left), robotic fish (right)

monitoring, undersea surveillance and other applications. The kinetic and dynamic
equations that described the vehicle motion can be found in [8, 9]. In [7], the motion
of the robotic fish is approximated by a model featuring several components. The
key advantage of this model is the fact that, instead of being considered a rigid body,
the structure of the fish is composed of three parts: head, body and tail.

While the optimal control of systems with dynamics given by ordinary differen-
tial equations only has been making great strides in the twentieth and twenty-first
centuries (see, among others, [1, 3, 10]), such a theory for hybrid—in the sense
that the controlled dynamics involve ordinary and partial differential equations—
systems is still at its infancy.

Here, we formulate and solve two optimal control problems, where linear and
parabolic velocity profiles are considered. Each one of these velocity profiles
corresponds to a particular solution of the incompressible two-dimensional Navier-
Stokes equation, respectively, the Couette and Poiseuille steady flows.

The Couette flow is the steady laminar unidirectional and two dimensional flow
due to the relative motion of two infinite horizontal and parallel rigid plates [2]. The
liquid between these two plates is driven by the viscous drag force originated by the
uniform motion of the upper plate which moves in the x-direction with velocity v0
(the lower plate is at rest). In this case, the velocity of such a flow has a linear profile
and is given by

v.x; y/ D .my; 0/ ; x 2 R; y 2 Œ0;L�

with m D v0=L; the plates being L distance units apart (Fig. 2, left).
The Poiseuille flow is the steady flow due to the presence of a pressure gradient

between two fixed (i.e., with zero relative velocity) rigid plates, [2]. In this case, a
parabolic velocity profile is of the form

v.x; y/ D
�

a � a

L2
y2; 0

	
; x 2 R; y 2 Œ�L;L� ;

where, now, L is half the distance between the upper and lower plates (Fig. 2, right).
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Fig. 2 Linear (left) and quadratic velocity field (right)

2 Minimum Time Control Problem

Let us consider a particle placed in a flow, contained in a channel of width L, with a
given velocity field. .0; b/ is the initial position of the particle, with 0 � b � L.

Our problem consists in moving the particle in minimum time along a path in
the channel connecting a given initial position to a given end point .xf ; c/, with
0 � c � L. Since the particle is subject to the flow field, we must determine the
value of the control function u.�/ D .ux.�/; uy.�// to be applied so that the conditions
of the proposed control problem are satisfied. Let X.t/ D .x.t/; y.t// be the position
of the particle at time t, the control problem can be formulated as follows:

8
ˆ̂̂̂
ˆ̂̂
<
ˆ̂̂̂
ˆ̂̂
:

Minimize T
subject to PX.t/ D F.X.t/; u.t//

X.0/ D .0; b/
X.T/ D .xf ; c/
y.t/ 2 Œ0;L�
ku.t/k1 � 1

;8t 2 Œ0;T�: (1)

Remark From now on, for simplicity of notation, we will not indicate de time t
as an independent variable of the others variables, although this is the case we are
considering.

The maximum principle, [10], allows us to determine the optimal con-
trol u� D .u�x ; u�y / by using the maximization of the Pontryagin’s func-
tion H.X;P; u/, where P D .px; py/ is the adjoint variable satisfying
� PP D rXH.X;P; u/, being rX the gradient of H with respect to X, almost
everywhere with respect to the Lebesgue measure (from here onwards, functions are
specified in this sense), together with the satisfaction of the appropriate boundary
conditions.
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2.1 Couette Flow

Consider the case of linear flow, with slope m D v0=L > 0, whose velocity field is
given by v.x; y/ D . y

m ; 0/. So, the dynamics of this control system is

F.X; u/ D .
y

m
C ux; uy/

and the position of the particle at time t is given by

8
ˆ̂<
ˆ̂:

x.t/ D b
m t C

Z t

0

ux.
/ d
 C 1

m

Z t

0

.t � 
/uy.
/ d


y.t/ D b C
Z t

0

uy.
/ d
 :

So, the Pontryagin’s function is given by

H.X;P; u/ D px.
y

m
C ux/C .py C �/uy ;

where � is a certain function which reflects the activity of the state constraints of
the variable y, it follows from the maximum principle that

� �Ppx D 0

�Ppy D px
m

,
�

px D Kx

py D Ky � Kx
m t

for some constants Kx;Ky > 0.
By taking into account the position of the particle at each instant t, we conclude

by the maximization of the Pontryagin’s function that u�x .t/ D 1 (Fig. 2) and u�y
depends the final position of the particle, X.T/.

If xf � 2.L � b/ the state constraint of the variable y remains inactive and

u�y .t/ D
(

1; t 2 Œ0; c�bCt�

2
Œ

�1; t 2� c�bCt�

2
; t��

:

By substituting in the equations of the particle’s position, we conclude that the
optimum time for (1) is given by

t� D
q
.c C b C 2m/2 C .c � b/2 C 4mxf � .c C b C 2m/ :

For the case of xf > 2.L � b/ the state constraint of variable y is active and

u�y .t/ D
8
<
:

1; t 2 Œ0; t1Œ
0; t 2�t1; t� � t2Œ

�1; t 2�t� � t2; t��
;
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where t1 D
p
.b C m/2 C 2m.L � b/ � .b C m/ is the time when the particle is on

the boundary of the channel, and t2 D
p
.c C m/2 C 2m.L � c/ � .c C m/ is the

time when the particle leaves the boundary. Now the minimum time is

t� D
p
.b C m/2 C 2m.L � b/�.bCm/C .c C m/2 C m.b � c/C mxfp

.b C m/2 C 2m.L � b/
�.cCm/A ;

where A D
q

.cCm/2C2m.L�c/

.bCm/2C2m.L�b/
.

2.2 Poiseuille Flow

Let us consider a flow with a parabolic velocity vector field, with vertex at .a; 0/. In

this case the velocity field is given by v.x; y/ D .a � a

L2
y2; 0/. Then, the dynamics

of the control system is

F.X; u/ D .a � a

L2
y2 C ux; uy/

and the Pontryagin’s function is given by

H.X;P; u/ D px.a � a

L2
y2 C ux/C .py C �/uy :

It follows from the maximum principle that

� �Ppx D 0

�Ppy D � 2a
L2

pxy
,

8
<
:

px D Kx

py D Ky C 2aKx
L2

Z t

0

y.
/ d


We remark that there is symmetry with respect to the axis y D 0 and, that the state
constraint will be inactive along the optimal trajectory. By using these observations
in the application of the maximum principle, as well as the fact that the position of
the particle is given by

8̂
<̂
ˆ̂:

x.t/ D at � a
L2

Z t

0

y2.
/ d
 C
Z t

0

ux.
/ d


y.t/ D b C
Z t

0

uy.
/ d
;
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we conclude that u�x .t/ D 1 (Fig. 2), and that u�y is defined by

u�y .t/ D
(

�1; t 2 Œ0; b�cCt�

2
Œ

1; t 2� b�cCt�

2
; t��

;

if xf � 2b, being, in this case, the minimum time t� a root of the polynomial

t�3 � 3.b C c/t�2 C 3

�
.c C b/2 � 4L2.1C 1

a
/

�
t� C 3A D 0 ; (2)

with A D b3 � b2c � bc2 C c3 C 4L2

a
xf .

In the case of xf > 2b we have

u�y .t/ D
8
<
:

�1; t 2 Œ0; t1Œ
0; t 2�t1; t� � t2Œ
1; t 2�t� � t2; t��

;

being the optimal time given by

t� D a.2t31 � 3b.t21 C t22/C 3t1t22 � t32/� 3L2xf

3a.b � t1/2 � 3aL2 � 3L2
;

where t1 and t2 is a half of the value of the t� obtained in (2) with xf D 2b and
xf D 2c, respectively.

3 Conclusions and Future Work

The cases we have presented and discussed here were introduced for the first
time in [5]. These two examples are very simple and differ only in the profile of
the fluid velocity field. Not only the dynamics of the control system are defined
by a set of ODE’s, but also the conditions resulting from the application of the
maximum principle can be easily solved in an explicit way. The next step consists
in deriving optimality conditions in the form of a maximum principle leading
to the computation of the solution to optimal control problems for which the
above simplifications can not be exploited. This study suggests that the optimality
conditions to be developed will require an adjoint variable satisfying a mixed
system with ODE’s and PDE’s, so that the optimal control can be obtained
by maximizing an appropriated Pontryagin’s function, coupled with appropriate
boundary conditions.
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An Overview of Network Bifurcations in the
Functionalized Cahn-Hilliard Free Energy

Noa Kraitzman and Keith Promislow

Abstract The functionalized Cahn-Hilliard (FCH) free energy models interfa-
cial energy in amphiphilic phase-separated mixtures. Its minimizers and quasi-
minimizers encompass rich classes of network morphologies with detailed inner
layers incorporating bilayers, pore, pearled pore, and micelle type structures. We
present an overview of the stability of the network morphologies as well as the
competitive evolution of bilayer and pore morphologies under a gradient flow in
three space-dimensions.

1 Amphiphilic Materials

Traditionally, an amphiphilic molecule is one which finds its energetically favorable
interaction at the interface of two disparate fluids, such as soap in oily water.
Indeed, early studies of amphiphilic materials concerned emulsions formed from
two immiscible fluids combined with an amphiphilic surfactant. Lipids, formed
of a hydrophilic head group and a hydrophobic tail also belong to the class of
amphiphilic molecules. More recently, developments in synthetic chemistry, such as
atom transfer radical polymerization, have simplified the process of attaching charge
groups to polymers, greatly expanding the possible classes of amphiphilic polymers
that can be readily synthesized, see [4, 18]. Amphiphilic blends typically phase sepa-
rate, however the propensity of the amphiphilic molecules to form monolayers leads
to an energetic preference for thin interfaces. As a result the interfaces are often co-
dimension one bilayers, or co-dimension two pore structures—morphologies that
are often referred to collectively as networks. And these networks have significant
value: they self-assemble at the nano-scale, yielding huge densities of solvent-
accessible surface area and are often charge-lined, which renders them effective
as selective ionic conductors. Due to these traits, amphiphilic materials have found
use in many types of energy conversion devices, forming the ionomer membranes in
fuel cells, the photo-active collecting matrix in bulk-heterojunction solar cells, and
the separator membrane in Lithium ion batteries.
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The casting of blends of amphiphilic mixtures and di-block polymers presents a
rich array of distinct morphologies, however control of the end-state morphology
is experimentally challenging due to the delicate roles played by solvent type,
salt concentration and counter-ion type, di-block composition and polydispersity,
temperature, and pH. It has been shown [8], that changing the concentration
of water in a water-dioxane solvent blend induces bifurcations in amphiphilic
di-blocks yielding micelle, micelle-pore, pore, pore-vesicle, and vesicle network
morphologies. Similar bifurcation were obtained in PEO-PB amphiphilic di-blocks
by changing the density of charge groups in the hydrophilic portion [15], or by
varying the length of the hydrophobic portion of the di-block [21]. Morphological
reconfigurations can also be achieved through varying temperature [12, 25], and
concentrations of counter-ions [29].

We pay particular attention to the experimental investigation in [2, 28] of the
division of primitive lipid membranes, for which a particularly simple method was
devised to induce the bilayer to micelle bifurcations discussed above. Szostak’s
group formed a suspension of spherical vesicles of 10 % phospholipid and found that
increasing the concentration of free oleo-lipids dispersed in the bulk solvent induced
a fingering instability in spherical phospholipid vesicles, depicted in the three
horizontally arranged panels on the left side of Fig. 1. The end state consisted of
long, co-dimension two pore morphologies. In a subsequent experiment, the charge
density of cylindrical pores was suddenly increased through a photo-oxidation
process; the jump in charge density induced a pearling bifurcation causing the

Fig. 1 Szostak’s mechanism for division of primitive cell membrane: (left) raising the background
concentration of lipids induces the vesicle to grow worm-like (co-dimension two) protrusions
over a 74 ns time period [2], (right) changing the density of charged groups on the surface via
a photochemically induced redox reaction incites the pore to pearl and break into micelles [28].
Reprint permission grunted by Proceedings of National Academy of Science
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pore structures to break into individual micelles, as depicted in the three vertically
arranged panels on the right side of Fig. 1. The goal of this overview is to present
an analysis of related bifurcations within the context of the Functionalized Cahn-
Hilliard free energy.

2 The Functionalized Cahn-Hilliard Free Energy

The Cahn-Hilliard free energy [3], describes the spinodal decomposition of a binary
mixture. For a fixed domain, ˝ 
 R3, a phase function u 2 H1.˝/ describes the
volume fraction of one component of the binary mixture, and the free energy is
modeled by a function of the density u weakly perturbed by the spatially isotropic
gradients

E .u/ D
Z

˝

f .u; "2jruj2; "2�u/ dx: (1)

Expanding the free energy in orders of " and truncating at O."4/, yields an
expression of the form

E .u/ D
Z

˝

f .u; 0; 0/C "2A.u/jruj2 C "2B.u/�u dx: (2)

To obtain a generic normal form for the free energy, Cahn and Hilliard integrated by
parts on the B.u/ term, set the resulting coefficient of jruj2 to 1

2
, and renamed the

potential f .u; 0; 0/ to W.u/. The result is the Cahn-Hilliard free energy

E .u/ D
Z

˝

"2

2
jruj2 C W.u/ dx: (3)

The corresponding H�1 gradient flow, the Cahn-Hilliard equation, takes the form

ut D �
ıE

ıu
D �.�"2�u C W 0.u//: (4)

Subject to traceless boundary conditions the Cahn-Hilliard equation preserves the
total mass

d

dt

Z

˝

u.x; t/ dx D 0; (5)

and dissipates the Cahn-Hilliard free energy

d

dt
E .u/ D

�
ut;
ıE

ıu

�

L2
D �

����r ıE
ıu

����
2

L2
� 0: (6)
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To model amphiphilic mixtures, such as emulsions formed by adding a minority
fraction of an oil and soap mixture to water, Teubner and Strey [24] and Gompper
and Schick [13] were motivated by small-angle X-ray scattering (SAXS) data to
include a higher-order term in the usual Cahn-Hilliard expansion,

F .u/ WD
Z

˝

f .u; 0; 0/C "2A.u/jruj2 C "2B.u/�u C
�0‚…„ƒ

C.u/ ."2�u/2 dx: (7)

The full form of this system supports too many possible regimes to permit a
systematic study. It is important to find the simplest mathematical framework that
supports the network morphologies typical of amphiphilic mixtures; we need new
normal form. With this goal we first shift all the differential terms to powers of
Laplacians; specifically, letting A denote the primitive of A, we replace A.u/ru with
rA.u/ and integrate by parts on the term rA � ru to obtain

F .u/ D
Z

˝

f .u; 0; 0/C .B.u/� A.u//"2�u C C.u/."2�u/2 dx: (8)

The energy density is a quadratic polynomial in "2�u, which suggests that we
complete the square

F .u/ D
Z

˝

C.u/

 
"2�u � A � B

2C

!2
C f .u; 0; 0/� .A � B/2

4C.u/
dx: (9)

For simplicity we replace C.u/ with 1
2
, and relabel the potential within and outside

the squared term by W 0.u/ and P.u/; respectively. The key point is that the first
term is the square of the variational derivative of a Cahn-Hilliard type free energy,
consequently the case P � 0, when the energy is a perfect square, has the
special property that its global minimizers are precisely the critical points of the
corresponding Cahn-Hilliard energy. Indeed, a variant of this case was proposed as
a target for � -convergence analysis by De Giorgi, see [22]. The normal form of the
network is obtained by unfolding the perfect square via a scaled perturbation

F .u/ D
Z

˝

1

2

�
"2�u � W 0.u/

�2 C ıP.u/ dx; (10)

where ı � 1. The function W.u/ is assumed to be a double-well potential with two
minima at u D b˙ whose unequal depths are normalized so that W.b�/ D 0 >

W.bC/. Typically b� D 0; however it is helpful to give this value a specific name.
Thus u D b� is associated to a bulk solvent phase, while the size of u � b� >

0 is proportional to the density of the amphiphilic phase. The parameter " � 1

determines the interfacial width and corresponds to the ratio of the typical length of
an amphiphilic molecule to the domain size.
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The Functionalized Cahn-Hilliard free energy is a class of two distinguished
limits and a particular choice for p,

FCH.u/ WD
Z

˝

1

2

�
"2�u � W 0.uI 
/�2 � "p

�
"2	1

2
jruj2 C 	2W.u/

�
dx: (11)

The functionalization terms, parameterized by 	1 > 0 and 	2 2 R, are analogous
to the surface and volume energies typical of models of charged solutes in confined
domains, see [23] and particularly equation (67) of [1]. The minus sign in front of
	1 is of considerable significance—it incorporates the propensity of the amphiphilic
surfactant phase to drive the creation of interface. Indeed, experimental tuning
of solvent quality shows that morphological instability in amphiphilic mixtures
is associated to (small) negative values of surface tension [26, 27]. In the FCH
energy the gradient term, �	1jruj2 < 0, is localized on interfaces, associated to
single-layers of surfactant molecules, whose growth lowers overall system energy—
however the effect is perturbative and unrestricted growth is arrested by the penalty
nature of the square term which keeps u close to the critical points of ECH. The
two distinguished limits correspond to difference choices for the exponent p in the
functionalization terms. In the Strong Functionalization, p D 1, the functional terms
dominate the Willmore corrections from the squared variational term. The Weak
Functionalization, corresponding to p D 2, is the natural scaling for the � -limit
as the curvature-type Willmore terms appear at the same asymptotic order as the
functional terms.

The well-posedness of the minimization problem for the FCH, including the
existence of global minimizers for fixed values of " > 0 was established in [20]
for a more general functional form over various natural function spaces. Depending
upon the application, the volume-type 	2 functionalization perturbation incorporates
the impact of counter-ion entropy (PEM fuel cells), capillary pressure, or entropic
effects from constraint of tail groups (lipid bilayers) [11]. The form 	2W.u/ is
chosen primarily for convenience, as integrals of W.u/ evaluated at critical points
of ECH grow increasingly negative with increasing interfacial co-dimension. We
remark that the surface term 	1jruj2 is equivalent to an 	1uW 0.u/ functional-form
since an integration by parts on �	1jruj2 yields 	1u�u which can be absorbed into
the squared variation with a perturbed form of W.

The goal of this survey is to present an overview of the stability and dynamics of
classes of quasi-minimizer network morphologiesN ofFCH , which we define to be
functions u 2 H2.˝/ which have an asymptotically small minority of amphiphilic
phase, satisfy assigned boundary conditions, and render the free energy sufficiently
small. Specifically for each fixed C > 0 we define the set of quasi-minimizing
network morphologies

NC WD
�

u 2 H2.˝/
ˇ̌
ˇ
Z

˝

ju � b�j dx � C" and FCH.u/ � C"pC1

; (12)

where the value of FCH.u/ can be negative.
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3 Critical Points of the Functionalized Cahn-Hilliard
Free Energy

For simplicity, we focus on the strong FCH, whose critical points, subject to a total
mass constraint, are the solutions of the associated Euler-Lagrange equation

ıF

ıu
WD �

"2� � W 00.u/
� �
"2�u � W 0.u/

�� " ��"2	1�u C 	2W
0.u/

� D �; (13)

where � 2 R is the Lagrange multiplier. Intuitively, solutions of the critical point
equation which are close to global minima of the FCH should also be close to critical
points of the Cahn-Hilliard free energy, solving

ıE

ıu
WD �"2�u C W 0.u/ D O."/: (14)

This observation further suggests that the Lagrange multiplier should scale with ",
that is � D " O�; and we may rewrite the critical point equation as two, coupled
second order systems

"2�u � W 0.u/ D "v;

�
"2� � W 00.u/

�
v D ��"2	1�u C 	2W

0.u/
�C O�:

(15)

The singularly perturbed nature of the Euler-Lagrange system makes it amenable
to dimensional reduction, yielding localized solutions build upon immersions in
R
3 of different co-dimensions, see Fig. 2. We first consider co-dimension one

immersions, which we dress into bilayer morphologies which are quasi-minimizer
ofFCH . The first step in the dressing process is to produce a local coordinate system.
More specifically, given a smooth, closed two-dimensional manifold �b embedded

Fig. 2 Depiction of bilayer (left, source: academic.brooklyn.cuny.edu), pore (center), and micelle
(right) morphologies of lipids. The co-dimension associated to the morphology is the difference
between the space dimension and the number of tangent directions of the minimal manifold whose
normal bundle locally foliates the morphology. In R

3 bilayers are co-dimension one, pores are
co-dimension two, and micelles are co-dimensional three

academic.brooklyn.cuny.edu
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in˝ 
 R
3, the “whiskered” coordinate system is defined in a tubular neighborhood

of �b via the mapping

x D �.s; z/ WD �b.s/C "�.s/z; (16)

where �b W S 7! R
3 is a local parameterization of �b and �.s/ is the outward

unit normal to �: The variable z is often called the "-scaled, signed distance to
� , while the variables s D .s1; s2/ parameterize the tangential directions of � . In
general it is the number of normal directions, the co-dimension, of the manifold
which determines the stability properties of the associated dressing. We define an
admissible class of co-dimension one interfaces, whose dressings will be quasi-
minimizer of FCH :

Definition 1 ([14]) For fixed K; ` > 0 the family, GK;`, of “admissible interfaces”
is comprised of closed (compact and without boundary), oriented two dimensional
manifolds � embedded in R

3, which are far from self-intersection and with a
smooth second fundamental form. More precisely,

(i) The W4;1.S/ norm of the second fundamental form of � and its principal
curvatures are bounded by K.

(ii) The whiskers of length 3` < 1=K, in the unscaled distance, defined for
each s0 2 S by, ws0 WD fx W s.x/ D s0; jz.x/j < 3`="g, neither intersect
each-other nor @˝ (except when considering periodic boundary conditions).

(iii) The surface area, j� j, of � is bounded by K.

We will denote an admissible co-dimension one manifold by �b, the ‘b’ is for
bilayer. The associated change of variables x ! �.s; z/ is a C4 diffeomorphism on
the “reach”,

� `
b WD

n
�.s; z/ 2 R

d
ˇ̌
ˇs 2 S;�`=" � z � `="

o

 ˝; (17)

of �b. The white region in Fig. 3 (right) depicts the reach of the associated
immersion �b:

In the whiskered coordinates the Cartesian Laplacian takes the form

"2�x D @2z C "@zJ=."J/@z C "2J�1
2X

i;jD1

@

@si
GijJ

@

@sj
D @2z C "H.s; z/@z C "2�G;

(18)

where J is the Jacobian of the change of variables, H D @zJ=."J/ is the extended
curvature, and G D Gij is the metric tensor, see Sect. 6 of [14] for details tailored to
the context of the FCH free energy. In particular, at leader order H.s; z/ D H0.s/C
O."z/ where H0 is the mean curvature of �b at �.s; 0/ and�G D �s C O."z/ where
�s is the usual Laplace-Beltrami operator on �b.
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Ω−

Ω+

Ω−

Ω+

Fig. 3 Single layer and Bilayer solutions of the Euler-Lagrange equation associated to the
interface � . For the single layer solution � separates regions u D b� from u D bC, while
the bilayer solution corresponds to u D b� on either side of the bilayer, with a brief excursion
u > b� near �

In the whiskered coordinates the first equation of (15) reduces, at leading order
to a second-order ODE in z, for the one-dimension profile �.z/,

@2z�.z/ D W 0.�/; (19)

defined for jzj � `=": Since the double-well W is assumed to have unequal depth
wells 0 D W.b�/ > W.bC/, a simple phase-plane analysis shows that this equation
supports a unique solution �b which is homoclinic to b�, that is �b.z/ ! b� as z !
˙1, see [16] for a detailed analysis of the existence and linear analysis stability
for homoclinic waves. We define the leading-order structure of the bilayer critical
point, ub D ub.xI�b/ as the bilayer “dressing” of �b with �b,

ub.x/ WD �b.z.x//C O."/; (20)

for x 2 � `
b and smoothly extend ub to equal b� off of � `

b , see Fig. 3. We remark
that if g D g.z/ decays exponentially to zero in z then g 2 L2.R/ and g has an
extension Qg 2 L2.˝/ defined by Qg.x/ D g.z.x// on the reach of �b and smoothly
extended to zero off the reach. By abuse of notation, we use g to denote both the
original function and its extension, in particular using both kgkL2.R/ and kgkL2.˝/

where the meaning is made clear by choice of inner product.
The O."/ correction, ub;1 to ub also plays a fundamental role, it is straight forward

to see that it should solve

L0ub;1 D L�10
�
�	1�00b C 	2W

0.�b/C O�
	

C H0.s/�
0
b; (21)

where we introduce the Sturm-Liouville operator

L0 WD @2z � W 00.�b/; (22)
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which is the linearization of (19) about �b. However there is a complication, whose
resolution requires an understanding of the spectral properties of L0 acting on an
“infinite” whisker, that is on L2.R/: The translational invariance of the critical point
equation (19) forces L0�0b D 0, and since �b is homoclinic its derivative has a zero at
z D 0. By the Sturm-Liouville theory, 1 WD �0b is the first excited state (eigenmode)
of L0 acting on L2.R/ with eigenvalue �1 D 0, and there exists a ground state
eigenmode 0 with no zeros, and eigenvalue �0 > 0: The remainder of the spectrum
of L0 is strictly negative. It is easy to see that the terms acted upon by L�10 in (21)
are L2.R/ orthogonal to  1, and hence lie in the range of L0. However for each fixed
value of s, the term H0.s/�0b is not orthogonal to  1. Nevertheless, in [9] it is shown
that exact critical points can be constructed for flat interfaces, where H0 � 0 and for
constant curvature interfaces if � is appropriately tuned. However we may construct
quasi-minimizers of FCH by dropping the curvature term in the construction of
ub. It will be accounted for later as a driving force for the geometric evolution of
the underlying co-dimension one immersion �b. Proceeding, we drop the curvature
term, invert L0 and decompose ub;1 into a local term �b;1 which decays exponentially
to zero in z, and is smoothly extended to be zero off of � `

b , and a constant term

�1 D
O�
˛2�
; (23)

where we introduce the far-field well coercivity ˛� WD W 00.b�/ > 0: Consequently
ub admits the quasi-steady expansion

ub.x/ D �b.z/C " .�1 C �b;1.z//C O."2/: (24)

The local term �b;1 corrects the structure of �b within the reach, while the spatial
constant �1 adjusts the far-field behavior of ub, which is now b WD b�C"�1CO."2/.
It is �1 that plays a key role in the evolution and bifurcation of the quasi-steady
interfaces. Indeed this is the parameter Szostak tweaked when adding oleo-lipids to
the bulk solvent phase.

Momentarily setting aside the mass constraint, there are two classes of free
parameters in our construction of ub, the spatially constant background correction,
�1, and the interface shape �b. It is instructive to examine the value of the FCH
energy over the associated families of bilayer dressings, ub, in particular the relation
between the interface size and the total mass of available lipid. We first evaluate the
free energy, which takes the form

F .ub/ D
Z

˝

1

2

�
"2�ub � W 0.ub/

�2 � "

�
"2	1

2
jrubj2 C 	2W.ub/

�
dx; (25)
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and break the integral over the near-field � `
b and far-field Q�` WD ˝n� `

b : Denoting
the near-field integral by F`.ub/ we change to local coordinates

F`.ub/ D
Z

� `b

1

2

�
"2�ub � W 0.ub/

�2 � "

�
"2	1

2
jrubj2 C 	2W.ub/

�
dx;

D
Z

�b

Z `="

�`="
1

2

�
@2z�b � W 0.�b/C "H0.s/@z�b

�2

�"
�	1
2

j@z�bj2 C 	2W.�b/
	

J.s; z/ dz ds; (26)

where the Jacobian takes the form J D " C "2zH0.s/ C O."3z2/. Expanding the
Jacobian and keeping only leading order terms we find

F`.ub/ D "

Z

�b

Z `="

�`="
"2

2

�
L0.�1 C �b;1/C H0.s/�

0
b

�2

�"
�	1
2

j�0bj2 C 	2W.�b.z//
	

dz ds: (27)

The localized functions in the squared term will yield O."3/ integrals which are
negligible. Moreover integrating (19) we see that .�0b/2 D 2W.�b/. Together these
two observations allow us to rewrite the localized component of the free energy as,

F`.ub/ D "2j�bj
�
`�21 ˛

2� � 	1 C 	2

2
�b

�
; (28)

where we introduced the bilayer ‘surface tension’ �b WD k�0bk2
L2.R/

: In the far-field
region ub takes the spatially constant value

ub.x/ D b WD b� C "�1 C O."2/; x 2 Q�`; (29)

for which value W 0.b/ D "˛��1 C O."2/, and W.b/ D O."2/. The far-field
contribution to the energy thus reduces to the leading order expression,

QF`.ub/ D "2.j˝j � 2`j� j/1
2
�21 ˛

2� C O."3/: (30)

Combining the near- and far-field expressions, the total energy takes the form

F .ub/ D "2
�
˛2�j˝j
2

�21 � j�bj	1 C 	2

2
�b

�
: (31)



Network Bifurcations in the Functionalized Cahn-Hilliard Free Energy 201

A similar decomposition of the integrals shows that the total mass of amphiphilic
material is

M W D
Z

˝

ub.x/� b� dx D
Z
Q�b;`

"
�1

˛2�
dx C

Z

�b

Z `="

�`="
.Ub C "

�1

˛2�
/Jb dz ds

D "j˝j�1
˛2�

C "j�bjmb; (32)

where mb WD R
R
�b.z/ � b� dz > 0; is the mass of amphiphilic material per unit

length of bilayer. Typically the amphiphilic component is scarce within the bulk,
so that M D " OM (don’t put too much soap in the washing machine!), and since
�b is admissible its interfacial area j�bj is O.1/. These assumptions render ub a
quasi-minimizer of FCH , moreover a prescribed value of OM and �1 determines the
area j�bj of the bilayer interface. Consequently, the minimization of F .ub/ over
�b and �1, subject to the mass constraint reduces to the optimization of a quadratic
polynomial in �1 which yields the optimal value

��b D �	1 C 	2

2

�b

mb˛2�
; (33)

of amphiphilic material in the bulk region. For the strong functionalization only the
area of an admissible co-dimension one interface, and not its curvature, enter into
the leading-order determination of the free energy of its bilayer dressing. Moreover
bilayers prefer an optimal far-field value of lipid, ��b which is independent of
the scaled mass constraint OM and hence the area of the bilayer—it is a universal
property of the system as determined by the shape of the well W throughout mb,
�b, and ˛� and through the functionalization parameters 	1 and 	2. For the weak
functionalization the Willmore term, the integral of the square of the mean curvature
over �b, enters into the free energy at leading order, and the optimization is more
subtle.

There are critical points of F for which � is O.1/, in particular the single-
layer solutions, which correspond to heteroclinic orbits of (19) that connect two
equilibrium values, see Fig. 3 (left). For the Cahn-Hilliard free energy single-layers
form the dominant global minimizers, however they are generically saddle points
of the FCH, and are susceptible to meander instabilities in the gradient flow, as
discussed below. It is important to emphasize that single-layers and bilayers are
distinct morphologies—single-layers separate phase A from phase B while bilayers
separate phase A into two regions by a thin layer of phase B, see Fig. 3. In particular
bilayers can rupture, re-uniting the two regions of phase A, as when a lipid bilayer
opens a pore, or tears. In addition, the interfacial component is a conserved quantity
for bilayers, and when the bilayer is stretched the interface must thin, which
naturally increases its free energy as it deforms from its equilibrium profile �b—
bilayers can support non-zero tangential stresses.
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Fig. 4 Level sets u D 0:4 (green) and u D 0:45 (blue) of quasi-minimizers of the Functionalized
Cahn-Hilliard free energy obtained from the mass preserving gradient flow (63) from identical
initial data. The parameter values are " D 0:03, b

˙
D ˙1, the well satisfies W.�1/ D 0 >

W.1/ D �0:3, 	1 D 5 and 	2 D �2; 1; and 5 in the panels from left to right, yielding micelles—
pore, pore, and bilayer dominate networks respectively. Images courtesy of Andrew Christlieb and
Jaylan Jones

The FCH critical point equation also possesses co-dimension two solutions in
R
3, see Fig. 4. These are based upon a foliation of a neighborhood of a smooth,

closed, non-self intersecting one dimensional manifold�p immersed in˝ . The local
coordinate system takes the form

x D �p.s; z1; z2/ D �p.s/C " .z1N1.s/C z2N2.s// ; (34)

where N1 and N2 are orthogonal unit vectors which are also orthogonal to the tangent
vector � 0p.s/. Within the reach � `

p of �p the Laplacian admits the local form

�s D �R C "�.s; z/ � rz C "2D2
s ; (35)

where�R is the usual cylindrical Laplacian in .R; �/which correspond to the scaled
normal distances z D .z1; z2/; � D .�1; �2/

T are the two curvatures of �p at �p.s/,
and D2

s reduces to the line diffusion operator on �p when z D 0; see [7] for details.
Assuming axial symmetry, the leading order pore profile associated to the critical
point equation (13) satisfies co-dimension two critical point equation

@2R�p C 1

R
@R�p D W 0.�p/; (36)

subject to @R�p.0/ D 0 and �p ! b D b� C "�1 C O."2/ as R ! 1. The
leading order form for the pore quasi-minimizer network arises from the pore profile
dressing of a co-dimension two interface �p,

up.x/ WD �p.R.x//C "
�
�1 C �p;1.R/

�C O."2/; (37)

It is also possible to combine bilayer and pore quasi-minimizer, so long as the
associated manifolds have non-intersecting reaches, and the far-field constant �1
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n (g/mol) 2500±40 5850±204

bilayer 8.7±1:2 15:8±2:8

pore 14:3±1:6 25:4±3:3

micelle (nm) 18:4±2:6 38:8±10:2

Fig. 5 (Left) a comparison of co-dimension ˛ D 1; 2; and 3 profiles computed from (19), (36),
and (38) respectively. The profile is most sensitive to the difference in depths of the two wells:
W.b�/�W.bC/ > 0. (Right) a table of experimental data, from [15], indicating radii of bilayer,
pore, and micelle morphologies obtained by varying the hydrophilic length of polymer in PEO-PB
amphiphilic di-blocks with fixed hydrophobic (core) molecule weight, Mcore

n , as indicated

takes a common value. Indeed, the quasi-steady evolution between co-existing
co-dimension one and co-dimension two interfaces is driven by the competition
between this common far-field value b. If the optimal far-field values associated to
distinct co-dimensional morphologies differ, then the morphologies will not coexist
over long time periods; one will grow on a slow time scale at the expense of the
other, as described in Sect. 5.

Micelle, or co-dimension three solutions of the critical point equation reduce, in
R
3, to solutions of the usual spherical Laplacian. Assuming rotational symmetry,

the leading order micelle profile is the unique solution of

@2R�m C 2

R
@R�m D W 0.�m/; (38)

subject to @R�m.0/ D 0 and �m ! b as R ! 1. A key prediction of the FCH free
energy is that bilayers must be thinner than pores, which in turn are thinner than
micelles. This observation is born out by experimental data, Fig. 5 (right).

4 Network Bifurcation in the FCH

The quasi-minimizer network morphologies developed in Sect. 3 are, at leading
order, critical points of the Cahn-Hilliard, however these structures are not close
to local minima but are rather quasi-saddle points of the CH free energy. An
essential feature of the functional form of the FCH is its facility to build local
minima out of the saddle points of the simpler CH free energy. This process is best
understood by examining the second variational derivative of the FCH free energy at
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Fig. 6 The structure of the real spectrum of �Lb plotted verses Laplace-Beltrami wavenumber n.
(Left) the Sturm-Liouville operator L0, defined in (22), has one positive ground state eigenvalue,
�0 > 0 and a one dimensional kernel, denoted �1. (Center) the extension of L0 to L D L0 C
"2�s adds side-bands in n, the Laplace-Beltrami index which bend back negatively at the rate
�.�0 � "2ˇk/

2. (Right) the spectrum of the operator �L D �L 2 C O."/, (minus sign chosen to
preserve orientation of images) is, to O."/, the negative square of the spectrum of L . The side-
band associated to �0 has a quadratic tangency at leading order, which may be raised or lowered
by the functional terms, 	1 and 	2, the crossing of this spectrum through zero is the mechanism of
the pearling instability

a smooth critical point, uc, of the Cahn-Hilliard free energy. For traceless boundary
conditions, such as periodic boundary conditions, see [20] for a detailed discussion
of appropriate boundary conditions, the second variation takes the form

Luc WD ı2F

ıu2
.uc/ D �

"2� � W 00.uc/
�2 � "p

�
	1"

2�C 	2W
00.ub/

�
: (39)

For the bilayer quasi-minimizer, ub, associated to an admissible, co-dimension one
interface �b, the second variational derivative Lb WD Lub , takes a simplified form
when acting on functions u 2 H4.˝/ whose support lies within the reach, � `

b , of
�b. On this subspace the operator admits the asymptotic expansion

Lb D �
L0 C "H@z C "2�s

�2 � "p
�
	1@

2
z C 	2W

00.�b/
�C O."pC1/; (40)

and the leading order structure of Lb is controlled by L 2 where L WD L0 C "2�s is
the dominant part of the second variation of E at ub. The remaining parts of Lb are
relatively bounded and asymptotically small in comparison to L 2.

The spectrum of the operator Lb can be built from the spectrum of its
constituents L0 and �s. The spectral properties of L0 are described in Sect. 3
and depicted in Fig. 6 (left). The Laplace-Beltrami operator �s is self-adjoint
over L2.�b/ where, for each admissible interface �b, the inner product is defined by

hf ; giL2.� / WD
Z

�

f .s/g.s/J0.s/ ds; (41)

where J0 D p
g is the square root of the determinant of the first fundamental form

of �b: The eigenvalues fˇng1nD0 of ��s may be enumerated in increasing size with
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ˇ0 D 0 and ˇ1 > 0: The associated Laplace-Beltrami eigenmodes f�ng1nD0 are
orthonormal in the L2.� / norm.

Theorem 1 (Weyl Asymptotics [5]) Let �b be an admissible co-dimension one
interface immersed in R

d, and let N.x/ denote the number of eigenvalues of ��s,
counted according to multiplicity, that are smaller than x, then

N.x/  Cx
d�1
2 : (42)

In particular, ˇn  QCn
2

d�1 .

Indeed, in [14] it was shown that for each admissible class, Gk;`, of co-dimension
one interfaces there exists U > 0, which may be chosen independent of " > 0 such
that the eigenfunctions associated to Lb with corresponding eigenvalues � < U
comprise two sets, the pearling eigenmodes f�0;ngN2

nDN1
and the meander eigenmodes

f�1;ngN3
nD0 and moreover these eigenmodes admit the asymptotic form

�j;n D  j.z/�n.s/C O."/; (43)

for j D 0; 1 and n running over the corresponding indices. For j D 0; 1 we introduce
˙j, the set of indices n for which Lb acting on  j�n is small, i.e.,

˙j WD fn j .�j � "2ˇn/  O.
p
"/g: (44)

From Weyl’s asymptotic formula we deduce that j˙0j  O."3=2�d/ � 1. For
the strong functionalization, p D 1, we look for an expression of the pearling
eigenvalues in order to determine a condition for pearling stability. For �b an
admissible co-dimension one interface we consider the eigenvalue problem

Lb�0;n D �0;n�0;n; (45)

associated to the second variation of FCH about the bilayer dressing ub. The
spectrum of Lb cannot be localized by a regular perturbation expansion since the
eigenvalues are asymptotically close together. We need bounds on the spectrum that
are uniform in " � 1. To this end we introduce the L2.˝/ orthogonal projection˘
onto the space

Xb WD spanf j.z/�n.s/
ˇ̌
j D 0; 1; and n 2 ˙j respectivelyg; (46)

which approximates the eigenspaces of Lb corresponding to pearling .j D 0/ and
meander .j D 1/ eigenmodes. Functionally,˘ , acts on f 2 L2.˝/ by

˘ f WD
X
k2˙0

hf ;  0�kiL2.˝/ 0�k C
X
k2˙1

hf ;  1�kiL2.˝/ 1�k; (47)
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with its complementary projection denoted Q̆ WD I � ˘ . We decompose the
operator Lb into a 2 	 2 block form using the projections

QLb WD
"
˘Lb˘ ˘Lb Q̆
Q̆ Lb˘ Q̆ Lb Q̆

#
: (48)

The upper-left element ˘Lb˘ can be written as a matrix M 2 R
N�N where N �

"3=2�d has entries

Mj;k WD ˝
Lb 0�j;  0�k

˛
L2.˝/ : (49)

The off-diagonal terms are small, in norm, and the spectrum of the fully infinite
dimensional piece, Q̆ Lb Q̆ , is bounded from below by the aforementioned U > 0.
We will show that the spectrum of Lb sufficiently below U is controlled by the
spectrum of the matrix M which we characterize.

The matrix M has large dimension and hence care must be taken to distinguish
between the size of the entries of M and the size of M as an operator. Indeed, the
norm of a matrix as an operator from l2.RN/ to l2.RN/ generically scales like

p
N

times the l1 norm of its entries. However uniform norm bounds are possible, via a
convolution style argument, if the off-diagonal elements decay sufficiently quickly.

Lemma 1 ([17]) Fix c > 0 and assume that the entries of A 2 R
N�N satisfy the

bound

jAj;kj � c

1C .k � j/2
: (50)

Then the matrix A is uniformly bounded from l2.RN/ to l2.RN/ independent of N.

Our goal is to show that the matrix M admits an asymptotic decomposition

M D M0 C "q QM: (51)

For values of q > 1
4

C d
2
, if the entries of QM are uniformly bounded then there exists

a constant C > 0, independent of " such that "qk QMkL2 � ". That is, it is sufficient to
uniformly bound the entries of QM to see that "q QM acts as a lower-order perturbation
on the eigenvalues of M. We will handle the matrix M0 using Lemma 1, so long
as the interface �b is sufficiently smooth, as is guaranteed by its admissibility. For
simplicity we focus only on the pearling modes j D 0, neglecting the meander terms
associated to j D 1. Using the expansion (40) of Lb and recasting the inner product
in (49) in terms of the whiskered coordinates, the diagonal terms of the matrix M0,
at leading order, take the form

M0
k;k D .�0 � "2ˇk/

2 � ".�1˛
2�S C �0.	1 � 	2/k 0k22/; (52)
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where the sign of the “shape factor”

S WD
Z

R

W 000.�b/ 
2
0 .z/L

�1
0 1 dz; (53)

determines if the pearling bifurcation absorbs amphiphilic material from the bulk
or releases it. For k 2 ˙0, the quadratic term is bounded by O."/ but becomes
dominant as k approaches the boundary of the set ˙0 of pearling indices. The off-
diagonal terms of M0 are formally lower order, admitting the expansion

M0
j;k D �"2

Z

�

.�bH2
0 C S1H1/�k�jJ0.s/ ds; (54)

where the coefficient S1 WD R
R

W 000.�b/�
0
b 

2
0 z dz and H1 D k21 C k22 is the sum of

the squares of the curvatures of �b. However they form a lower order operator on
l2.RN/ only if we can apply Lemma 1. To characterize the diagonal terms of M0 we
apply the following theorem

Theorem 2 ([17]) Let � 
 Rd be an admissible interface, with curvatures k D
.k1; � � � ; kd�1/ in W4;1.�b/ and f W Rd�1 ! R a smooth function. Then there exist
constants c1; c2; c > 0 such that for every k; j 2 N; k ¤ j,

ˇ̌
ˇ̌
Z

�

f .k/�k�j J0ds

ˇ̌
ˇ̌ � 1

ˇk C ˇj

�
c1 C c2

Z

�

ˇ̌
��1s .rs�krs�j/

ˇ̌
J0ds

�

� c

1C jk � jj2 : (55)

As a consequence, the matrix M0 can be written as

M0 D D C "2A; (56)

where D is a diagonal matrix with entries

Dk;k D .�0 � "2ˇk/
2 � ".�1˛2�S C �0.	1 � 	2/jj 0jj22/; (57)

and A is uniformly bounded as an operator on l2.RN/: Since "q QM is also lower order
as an operator, the eigenvalues of M take the form

�0;n D .�0 � "2ˇn/
2 � ".�1˛2�S C �0.	1 � 	2/k 0k22/C o."2/: (58)

Weyl asymptotics imply that the separation between Laplace-Beltrami eigenvalues
scales like O.

p
"/ for ˇn � "� 12 , hence �0 � "2ˇk can be made as small as O."/.

This shows that the squared term is lower order near the turning point of the pearling
spectrum, see Fig. 6 (right). Assuming that the shape factor S < 0, which is true for
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a genetic class of double-wells, W, see Sect. 5 of [9], the spectrum of M will contain
negative eigenvalues if and only if �1 satisfies the pearling condition

P� WD ��0.	1 � 	2/k 0k2L2
˛2�S

> �1: (59)

To connect the spectrum of M to that of Lb, we must bound the interaction
between the projection ˘ and the operator Lb. If ˘ where a spectral projection
associated to Lb then the two operators would commute, and since ˘ Q̆ D 0,
the off-diagonal terms would be zero. However Xb only approximates a spectral
subset of Lb, and the estimates k˘Lb Q̆ kL2.˝/ D k Q̆ Lb˘kL2.˝/ � C", are sharp.
However the restricted operator Q̆ Lb Q̆ is uniformly coercive on L2 and its spectrum
is bounded from below by U > 0 which may be chosen independent of sufficiently
small " > 0. In this case, for any � < U we introduce B WD ˘Lb Q̆ and
C WD Q̆ Lb Q̆ and reduce the 2 	 2 representation of the eigenvalue problem

"
M B

BT C

#�
v1

v2

�
D �

�
v1

v2

�
(60)

to a finite dimensional system for the component v1, which solves

.M � �/v1 D �B.C � �/�1BTv1: (61)

In particular, taking the l2 norm of both sides and using the estimates on B, BT , and
the distance of � to �.C/ to estimate the norm of the resolvent, we have

k.M � �/v1kl2 � c"2

jU � �jkv1kl2 : (62)

For � an order of one distance from U this estimate implies that dist.�; �.M// D
O."2/, so that the spectrum of Lb below U lies within O."2/ of the spectrum of M. In
particular, if the spectrum of M is bounded from below by a positive O."/ quantity,
then so is the spectrum of Lb. Conversely, since Mk;k D hLb 0�k;  0�kiL2.˝/ it
follows from the variational characterization of the spectrum of Lb that the smallest
eigenvalue of �.Lb/ is smaller (more negative) than the smallest diagonal element
of M. We deduce from these calculations that the pearling condition (59) applies
to Lb: Moreover, this is in agreement with Szostak’s experiment, the photo-induced
increase in charge on the lipid heads induced a pearling bifurcation and drove pores
to micelles. The increase in charge corresponds, within the FCH, to an instantaneous
increase in 	1; a sufficiently large increase, for a fix value of �1, will trigger the
pearling condition (59). Figure 7 depicts the pearling of a co-dimension one sphere.
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Fig. 7 Time evolution of a circular, co-dimension one bilayer under the FCH gradient flow (63)
for values " D 0:1 and 	1 D 	2 D 2. The times depicted correspond to t D 0; t D 114; and
t D 804 and show the onset of the pearling bifurcation

5 Competitive Geometric Evolution of Bilayers and Pores

The over damped dynamics of amphiphilic polymer suspensions can be received
from the Functionalized Cahn-Hilliard free energy via its gradient flows whose
evolution preserves the volume fraction of the constituent species and lowers the
free energy. Similar to the Cahn-Hilliard gradient flow given in (4), the simplest
mass preserving gradient flow of the FCH is generated by the H�1 gradient,

ut D �
ıF

ıu
D �


��"2�C W 00.u/� "	1
� ��"2�u C W 0.u/

�C ".	1 � 	2/W
0.u/

�
:

(63)

The quasi-minimizer network morphologies constructed in Sect. 3 are not stationary
solutions of the FCH gradient flow, but generate slow dynamics which may be
locally parameterized by the interfacial sub-manifolds of bilayers and pores, respec-
tively �b and �p. Indeed, when the pearling condition does not hold, then meander
eigenvalues associated to the bilayer morphologies span the tangent plane to the
manifold of bilayer configurations, parameterized by the admissible interfaces. The
flow of the underlying interfacial structure can be obtained by projecting the residual
ıF
ıu .ub/ of the critical point equation (13) onto this tangent plane. The method of

matched asymptotic expansion provides a more accessible, but formal method to
derive the interfacial motion. For a bilayer morphology, the ansatz (24) for ub is
augmented by taking the signed distance z to the interface �b and the background
state �1 to be functions of the slow scaled time t1 D t=", and the gradient flow
is solved by matching fluxes, particularly across the interfacial layers. For single
layer morphologies, under the Cahn-Hilliard gradient flow this results in a Mullins-
Sekerka flow for the interface, see [19]. For the FCH gradient flow (63) reduces, at
leading order, to

"�0b.z/
@z

@t1
C "

d�1
dt1

D �
ıF

ıu
.ub/ D "�H0.s/�

0
b.z/C O."2/: (64)
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The leading order residual arises from the mean-curvature term which was neglected
in the construction of the bilayer, ub. This term now becomes a driving force for the
evolution of the interface �b through the change in the signed distance function.
Indeed, the quantity

Vb.s/ WD � @z

@t1
; (65)

is the normal velocity of the interface �b. The asymptotic reduction does lead
to a Mullins-Sekerka problem for the far-field chemical potential, however its
driving force is given by the interfacial mean curvature times the derivative of the
bilayer profile at the interface, H0.s/�0b.0/. Since the bilayer is symmetric across
the interface its derivative is zero, �0b.0/ D 0, and the Mullins-Sekerka problem
is trivial. The outer chemical potential reduces to a spatial constant, and the far-
field is characterized by amphiphilic density, �1.t1/, whose value in determined
by conservation of total mass, see [6] for details for bilayers under the weak
functionalization. For the strong functionalization the resulting system takes the
form

Vb D �b.�1 � ��b /H0;

d�1
dt1

D ��bmb.�1 � ��b /
Z

�b

H2
0 dS;

(66)

where �b WD mbR
R
.�b�b�/2 dz

> 0 and ��b is the optimal far-field amphiphilic density

derived by the optimization process in (33). The H�1 gradient flow drives pure
bilayer interfaces by a quenched mean-curvature flow. While the flow drives �1 to its
optimal value ��b , the sign of the difference �1 � ��b is consequential. Indeed, in two
space dimension, modulo reparamerization of the evolving interface, the curvature
driven flow can be recast as an evolution equation of the single curvature H0,

@H0

@t1
D �.@2s C H2

0/Vb D ��b.�1 � ��b /.@2s C H2
0/H0; (67)

see Sect. 3.3 of [10] for details. If �1 > �b�, that is if the bulk value of amphiphilic
material is in excess then the curvature driven flow is a backwards-heat equation
in the curvatures. This is the nature of the fingering instability induced in [2] when
oleo-lipids were added to the bulk of the spherical bilayer suspension. The fingering
instability corresponds to a backward heat flow in the curvature. The resulting
singularity is associated to the development of the pore type growth from the bilayer
surface. Moreover, in [9] the condition �1 > ��b was identified as the point of
bifurcation to linear instability of the meander eigenvalues associated to spherical
bilayers. For �1 < ��b the curvature driven flow is locally well-posed but is subject
to finite-time blow-up due to the cubic driving force, H3

0 . This is the familiar finite-
type extinction of droplets under curvature driven flow. However, for the quenched
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flow (66), the relaxation of �1 to its equilibrium value precludes the blow-up if the
initial curvatures are not too large.

A similar reduction can be performed for co-dimension two pore structures,
parametrized by the one-dimensional immersion�p. The result is a similar quenched
curvature driven flow for the vector valued normal velocity Vp D �. @z1

@t1
; @z2
@t1
/T ;

Vp D �p.�1 � ��p /�.s/;
d�1
dt1

D �"mp.�1 � ��p /
Z

�p

j�j2 ds;
(68)

where �p WD mp

�
R

1

0 .�0

p/
2R dR

> 0, � is the vector curvature of �p, mp WD 2�
R1
0
.�p �

b�/R dR is the mass of amphiphilic material per unit length of pore structure and
the equilibrium value

��p WD � 	1

˛2�

R1
0
.�0p/2R dRR1

0
.�p � b�/2R dR

; (69)

is again independent of �p. Most intriguingly, initial data corresponding to spatially
separated pores and bilayers yields a competitive evolution that can be understood
as a fight for surfactant, mediated through the common value of the bulk amphiphilic
density �1, whose evolution is determined to impose the conservation of total mass,

Vn D �b.�1 � ��b /H;

Vp D �p.�1 � ��p /�;

d�1
dt1

D ��bmb.�1 � �b/

Z

�b

H2
0dS � "�pmp.�1 � ��p /

Z

�p

j�j2 ds:

(70)

The competitive evolution of the bilayers and pores couples through curvature-
weighted surface area. However, generically, the two morphologies seek differing
equilibria values, which typically satisfy ��b > ��p , making coexistence of bilayers
and pores impossible under the strong functionalization, unless one of the structures
is flat, since zero curvature interfaces are at equilibrium independent of bulk value
of amphiphile. For curved interfaces, the range �1 2 Œ��p ; ��b � is invariant under
the flow, and once �1 enters this range the bilayers will shrink, while the pore
morphologies will grow. Moreover, if the pearling threshold P� lies within the
invariant range Œ��p ; ��b � then the value of �1 may transiently decrease through the
pearling threshold for bilayers (59), causing the bilayers to pearl as they shrink.
Various realizations of this transient interaction are depicted in Fig. 8, for double
wells W with increasing well tilt.
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Fig. 8 Competition for the amphiphilic phase between a spherical bilayer (beach ball) and circular
solid pore (hula hoop) as a function of the well tilt W.b�/ �W.bC/. The image shows t D 100

end states of the FCH gradient flow (63) from identical initial data but with increasing values of
the well tilt. Small tilt prefers bilayers, larger tilt prefers pores by increasing ��

b and the pearling
threshold, P�, which drives bilayers to pearl. Images courtesy of Andrew Christlieb and Jaylan
Jones

6 Conclusion

The Functionalized Cahn-Hilliard free energy provides a compact description of the
energy landscape driving morphological selection in amphiphilic mixtures, such as
lipid bilayers. We have shown that the strength of the interactions of the hydrophilic
units with the solvent phase, parameterized by 	1 > 0, the packing entropy of the
hydrophobic tails, parameterized by 	2, and the pressure jump between amphiphilic
and hydrophobic phases, characterized by the difference in self energies, W.b˙/ of
the amphiphilic and bulk phases, can trigger a range of bifurcations. Specifically the
fingering and pearling instabilities observed experimentally in [2, 28] by adjusting
the bulk values of lipids and the charge density of the lipids, respectively, can be
induced in the FCH framework by varying the corresponding control parameters.
There are however many avenues to explore, for example the pearling bifurcation
induces a periodic dimpling of a bilayer surface which can lead to perforation.
Within the biological context of cell membranes, it is of particular interest to
understand the energy required to open a single hole. Can a local adjustment of
parameter values, such as a spatial variation in 	1, induce the opening of isolated
holes in the membrane?
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The Economics of Ethanol: Use of Indirect
Policy Instruments

Charles B. Moss, Andrew Schmitz, and Troy G. Schmitz

Abstract General equilibrium models typically ignore environmental goods
because it is assumed that they have zero price. In the United States the Renewable
Fuel Standard was introduced to offset the carbon emissions from by burning
ethanol. The model in this study extends the standard general equilibrium approach
to consider both positive and negative externalities. The negative externality is
due to gasoline consumption while the positive externality is from substitution of
ethanol for gasoline.

1 Introduction

Policy in the twenty-first century is complicated by a variety of factors including
the complexity of transactions in the modern economy and the collaboration across
sometimes diverse support groups to generate political support. In the United States
there is continued support for the Renewable Fuel Standards (RFS) as part of the
Energy Independence and Security Act (EISA) of 2007. Further, the RFS is a policy
that was created to meet an array of policy goals including fuel security and carbon
recycling. These policy goals are met indirectly—the policy does not increase
the price of either fuel security or carbon recycling. Instead it operates through
secondary markets—the market for gasoline and ethanol. This paper examines the
effect of indirect policy instruments on the level of non-priced environmental goods.
It develops a general equilibrium model to analyze the use of indirect policies to
affect changes in the levels of environmental goods. The general equilibrium model
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demonstrates how policy instruments in the fuel or ethanol market changes the level
of environmental goods (i.e., affects the either the positive or negative externality).

The diversity of policy goals can be seen in the five major goals of the
National Institute of Food and Agriculture (NIFA) (the United States Department
of Agriculture’s competitive funding program):

• Food Security and Hunger—NIFA supports science to boost domestic agricul-
tural production, improve capacity to meet the growing food demand, and foster
innovation in fighting hunger and food insecurity in vulnerable populations.

• Climate Change—NIFA funded projects help producers adapt to changing
weather patterns and sustain economic vitality while also reducing greenhouse
gas emissions and increasing carbon sequestration in agricultural and forest
production.

• Sustainable Energy—NIFA contributes to the President’s goal of energy inde-
pendence with a portfolio of grant programs to develop optimum biomass,
forests, and crops for bioenergy production; and produce value-added, bio-based
industrial products.

• Childhood Obesity—NIFA supported programs ensure that nutritious foods are
affordable and available and that individuals and families are able to make
informed, science-based decisions about their health and well-being.

• Food Safety—NIFA food safety programs work to provide a safer food supply
and reduce the incidence of food-borne illness by addressing the causes of micro-
bial contamination and anti-microbial resistance, educating consumer and food
safety professionals, and developing enhanced food processing technologies [8].

Many of these goals are conflicting. For example, the sustainable energy goal
implies using some of the U.S.’s agricultural potential to increase biofuels. This
implicitly reduces the amount of farmland used to produce food crops. Hence, sus-
tainable energy conflicts with food security. Other policy goals such as sustainable
energy and climate change may be weakly complementary.

The second section of this paper develops an unconstrained general equilibrium
model including both priced and unpriced (i.e., environmental goods). The fol-
lowing section changes the formulation slightly by introducing taxes on gasoline
and subsidies on ethanol production. These variables (i.e., the tax on gasoline
and subsidy on ethanal) are the policy variables used to change the level of the
environmental good. The fourth section of the paper then considers a more complex
set of environmental objectives. Finally, we offer conclusions about the implications
of the general equilibrium framework.
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2 Unconstrained and Policy Constrained General
Equilibrium

As a starting point, we consider the general equilibrium solution for prices and
quantities in an economy based on four traded goods. The equilibrium prices and
quantities are determined by that set of prices where all the excess demands (�l .:/)
are less than or equal to zero

�i .p;w/ D yD
i .p;w; k/ � yS

i .p;w; k/ � 0 for i D 1; 2; 3; 4

�j .p;w/ D kD
j .p;w; k/ � kj � 08 j

(1)

where p is the vector of output (consumption) prices, w is a vector of input (factor)
prices, yD

i .:/ is the amount of output i demanded (as a function of input prices
and income as determined by each household’s factor endowments [km] and the
equilibrium prices for those factors [wm]), yS

j .:/ is the supply of output i offered to
the market as a function of input and output prices, kD

j .:/ is the derived demand for
factors of production and kj is the factor endowment for each factor of production
(kj D P

m kjm where m households are initially endowed with the factors of
production). In this equilibrium the amount of output consumed by each household
is determined by the household’s utility maximization

max
y

Um .y1; y2; y3; y4/

y1p1 C y2p2 C y3p3 C y4p4 � P
j kjmwj

)

)
�

yD
im .p;w; km/ ; i D 1; 2; 3; 4

yD
i .p;w; k/ D P

m yD
im .p;w; km/ ; i D 1; 2; 3; 4

:

(2)

Similarly, the output supply and input demands are determined by the optimizing
behavior of the firms

max
x;y

y1p1 C y2p2 C y3p3 C y4p4 � w0k

fx; y; kg 2 T

)
)
(

yS
i .p;w; k/ ; i D 1; 2; 3; 4

kD
j .p;w; k/ 8 j

(3)

where fx; y; kg 2 T denotes a convex technology set.
Under the standard Arrow-Debreu formulation, a vector of prices p exists so

that the conditions in Eq. (1) are satisfied given a normalization condition. In
this analysis, we use the normalization condition p1 D 1 so that p2, p3, p4,
and wj (all non-negative) are prices relative to the first consumption good [1, 7].
For subsequent discussions, we note that these prices follow the complementary
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slackness conditions

�i .p;w/ pi D 

yD

i .p;w; k/ � yS
i .p;w; k/

�
pi D 0; i D 1; 2; 3; 4

�j .p;w/wj D
h
kD

j .p;w; k/ � kj

i
wj D 0; 8j

: (4)

Hence, by choice of the numeraire good, we assume that yD
1 .p;w; k/�yS

1 .p;w; k/ D
0 (so that p�1 D 1 � 0). We denote the vector of input prices that solves Eq. (4) as
p� D �

1; p�2 ; p�3 ; p�4
�

and the vector of input prices that solves Eq. (4) as w�.
We assume that good 1 is a general consumption good, good 2 is gasoline, good

3 is ethanol, and good 4 is an environmental good affected by the combination
of gasoline and ethanol produced and consumed. At this stage, we allow for a
fairly flexible definition of this environmental good.1 The benefits to bioenergy have
been rather loosely defined to include fuel security and carbon reduction.2 For our
purpose, we simply define good 4 as environmental goods.

In the general equilibrium formulation, given a functioning market for each good,
the price vector generates a Pareto best solution. Specifically, no change in resource
use or consumption allocation can be made to make one individual better off without
making another worse off. However, certain difficulties associated with environmen-
tal goods distort this solution. For example, non-exclusivity of consumption causes
difficulties in the specification of demand for many environmental goods. Given the
failure of price signals in the market for good 4 the consumer’s decision in Eq. (2)
is rewritten as

max
y

Um .y1; y2; y3; y4/

y1 Qp1 C y2 Qp2 C y3 Qp3 � P
j kjm Qwj

)
)

�
yD

im .Qp; Qw; km/ ; i D 1; 2; 3

yD
i .Qp; Qw; k/ D P

m yD
im .Qp; Qw; km/ ; i D 1; 2; 3

(5)

where Qp D .1; Qp2; Qp3/ and the vector of new input prices becomes Qw (again
normalizing on the vector of prices on the first consumption good). Similarly, the
producer’s choice in Eq. (3) is rewritten as

max
x;y

y1 Qp1 C y2 Qp2 C y3 Qp3 � Qw0k
fx; y; kg 2 T

)
)
(

yS
i .Qp; Qw; k/ ; i D 1; 2; 3

kD
j .Qp; Qw; k/ 8 j

: (6)

1The definition of environmental goods tends to be rather all encompassing. For example,
Wikipedia states that Environmental goods are a sub-category of public goods which includes—
clean air, clean water, landscape, scenic towns, green transportation infrastructure (footpaths,
cycleways, greenways, etc.), a diverse flora, a diverse fauna, public parks, town squares, urban
parks, rivers, mountains, forests, and beaches.
2Early studies such as Hill [2] suggested that ethanol could have significant benefits, later studies
focus primarily on the potential for cellulosic ethanol.
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Finally, equilibrium prices are determined by the first three (i D 1; 2; 3) excess
demand curves in Eq. (4).

Does the introduction of environmental goods associated with negative or
positive externalities distort the market? To examine this question, we focus on the
fourth excess demand equation for consumption. If the excess demand at the market
clearing price (p�;w�) is less than zero

�4
�
p�;w�

� D yD
4

�
p�;w�; k

� � yS
i

�
p�;w�; k

� � 0 (7)

the general equilibrium conditions for the environmental goods are met—the
environmental goods are being optimally produced. However, under standard
assumptions the original market clearing price yields a positive excess demand for
environmental goods

�4
�
p�;w�

� D yD
4

�
p�;w�; k

� � yS
i

�
p�;w�; k

� � 0 (8)

so that the economy is producing a level of environmental quality less than the
optimal. In the most general terms

Um
�
yD
1m .Qp; Qw; km/ ; yD

2m .Qp; Qw; km/ ; yD
3m .Qp; Qw; km/ ; yD

4m .Qp; Qw; km/
�

� Um
�
yD
1m .p

�;w�; km/ ; yD
2m .p

�;w�; km/ ; yD
3m .p

�;w�; km/ ; yD
4m .p

�;w�; km/
�
(9)

for some collection of consumers (m 2 M)—at least some consumers are made
worse off by the failure to price environmental outputs.

3 Policy Response

Given the failure of the market to price environmental quality, we consider three
different policy scenarios: pricing the environmental quality through a tax, placing
a tax on other goods that affect environmental quality (i.e., the Volumetric Ethanol
Excise Tax Credit [VEETC]), and imposing regulatory mandates on the production
of other goods (i.e., the Renewable Fuels Standard [RFS]). In order to simplify
the mathematics, we express the general equilibrium formulation in the preceding
section using a volume index

Ny .p;w/ D y1 C y2p2 C y3p3 (10)

where we normalized the output prices on the price of general consumption goods
in the general equilibrium formulation (i.e., we divide the prices by p1—we make
the first consumption good the numeraire good).
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Fig. 1 Effect of non-priced
environmental good
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As depicted in Fig. 1, the tradeoff between consumption goods and environmen-
tal quality produces a concave production surface (y4 Ny) similar to the unrestricted
production possibility frontier in the two output case. The difference is that each
point on the surface may imply different relative prices among the consumption
goods in Eq. (10) (as relative prices change in the restricted general equilibrium
model). The aggregate output of the priced goods (Ny) assumes that the appropriate
(general equilibrium) combinations of y1, y2, and y3 are selected by the economy
for a given level of y4 (assumed in Fig. 1 to be initially zero). Next, we restrict
the new level of y4 to be higher than the original value y04 � y4 D 0. Given
this restriction, we can solve for a new set of equilibrium price p0 D 1; p02; p03
and quantities y0 D y01; y02; y03. If the production of y4 is binding (i.e., y4 is scarce)
the new level of the aggregated good from Eq. (10) will be less than the original
level Ny0 .p0;w0/ � Ny .p;w/. Thus, the tradeoff between the aggregate good and the
environmental good is downward sloping. In addition, given that the solution is
an interior point (i.e., not on either boundary—there exists a point such that both
y4 > 0 and Ny > 0), the surface is concave. Put slightly differently, the combination
of optimal volume indices and environmental quantities resembles the traditional
production possibilities frontier.

The dashed line curves in Fig. 1 represent the scenario where the original excess
demand for environmental quality is less than zero. Under this scenario, the original
equilibrium is Pareto optimal—environmental quality has a zero price in the general
equilibrium solution. The solid frontier represents the scenario where the original
excess demand curve for the environmental good is greater than zero. Under this
scenario the original equilibrium is not Pareto optimal. Reallocating resources to
increase environmental quality would shift the utility outward from U .Ny; y4/ to
U0 .Ny; y4/—improving the utility of at least one consumer. The possibility of shifting
to a Pareto improving position raises questions concerning the magnitude of the
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Fig. 2 Market price for
non-priced good
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production shift and the allocation of the changes across producers and consumers.
Figure 2 depicts the scenario where a market price for environmental quality could
be established. Under this scenario, production occurs where the production surface
is tangent to the negative of the price ratio (�Np=p4; the dotted line in Fig. 2). This
price ratio yields an optimal price ratio for the other consumption goods in Eq. (10).

We now consider two difficulties with the market equilibrium conditions. First, as
discussed above, there is a market failure in the demand for environmental quality.
Second, environmental quality is hypothesized to be a byproduct of other production
activities

F W fy2; y3g ! y4 (11)

so that the choice of both gasoline and ethanol production and consumption
determines the level of environmental quality observed. Figure 3 presents a graph-
ical depiction of the physical relationship in Eq. (11). Environmental quality is a
decreasing function of the quantity of gasoline (y2) produced and consumed and
an increasing function of the quantity of ethanol (y3) produced and consumed. One
intuitive justification for this relationship is to consider y4 as atmospheric carbon.
As the quantity of gasoline consumed increases, the level of atmospheric carbon
increases. While it may be somewhat controversial, we assume that generating
fuel using ethanol reduces the level of carbon through the production of corn.
Thus, as the required blend of ethanol to gasoline increases, the overall level of
environmental quality increases.
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Fig. 3 Technological
tradeoff between gasoline,
environmental quality, and
ethanol 4y
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Integrating the production relationship for environmental quality into the produc-
tion problem yields

max
x;y

y1 Qp1 C y2 .Qp2 C 
2/C y3 .Qp3 C 
3/ � Qw0k
fx; y; kg 2 T

F W fy2; y3g ! y4

9
>=
>;

)
8
<
:

yS
i .Qp; 
; Qw; k/ ; i D 1; 2; 3

y4
�
yS
2 .Qp; 
; Qw; k/ ; yS

2 .Qp; 
; Qw; k/�
kD

j .Qp; Qw; k/ 8 j

(12)

where 
2 is a subsidy (tax if 
2 < 0) on gasoline production and 
3 is a subsidy
on ethanol production. Hence, the VEETC was designed to increase the quantity of
environmental good produced (i.e, enhance carbon recycling), but does not directly
introduce a price for environmental quality. In Fig. 4, the VEETC as a subsidy
for the production of ethanol that increases the environmental quality. But the
tradeoff between environmental quality and other goods is determined by Eq. (11).
Mathematically, consider the case where 
2 D 0 and policy makers attempt to
increase the quality of the environmental good by increasing the subsidy on ethanol.
The tradeoff between the environmental and consumption good becomes

dy4=dNy
d
3

�
@F
@y2

dy2
d
3

C @F
@y3

dy3
d
3

dy1
d
3

C @y2
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d
3
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d
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C @y3
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d
3

C dy3
d
3
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Fig. 4 Using ethanol tax
credit to increase
environmental quality
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(14)

If society’s marginal tradeoff between consumption goods and environmental
benefits is known along with the tradeoff between environmental quality and fuels
(gasoline and ethanol), we can derive an optimal subsidy on ethanol that maximizes
social welfare (i.e., the point (Ny0, y04) in Fig. 4).

Figure 4 presents the scenario where the original equilibrium provides some
environmental (i.e., the solution

�Ny00; y004
�

depicts the scenario where some level of
environmental quality is being produced in the original equilibrium). For example,
we assume that y3 > 0 in the original equilibrium so that some level of ethanol
is being produced and used. However, this original equilibrium does not allow for
the effect of ethanol production on the unpriced environmental quality variable. The
point

�Ny0; y04
�

denotes the optimal point—the point where the marginal utility of the
environmental good is equal to the marginal disutility of lost consumption goods.
This equilibrium solution is generated by a specific ethanol subsidy determined in
Eq. (14).

The partial equilibrium equivalent of Eqs. (13) and (14) are presented in Fig. 5.
Panel (a) of Fig. 5 depicts the market for gasoline while Panel (b) of Fig. 5 presents
the market for ethanol. We start by assuming that the ethanol market is subsidized by

4 D p0E�p00E. The result is a classical deadweight loss of fgh. The additional quantity
of ethanol consumed shifts the demand curve for gasoline back from DG to D0G. The
price of gasoline declines from p0G to p0G while the quantity of gasoline consumed
falls from q0G to q0G. Consumers in the gasoline market lose abcd. Producers lose a
surplus of p0Gbep0G.
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Fig. 5 Partial equilibrium model of ethanol subsidy. (a) Gasoline; (b) ethanol; (c) environment

Panel c of Fig. 5 presents the changes in benefits from the environmental goods.
It is not a market in a classical sense because it does not represent an exchange of
goods for money. While we have denoted the vertical axes as a price, it is probably
better conceptualized as a willingness to pay for environmental services. Thus, in
the original equilibrium q04 units of an environmental index are being produced and
consumed. Based on this production, consumers would be willing to pay a price of
Op04 for these services. If the quantity of ethanol used in the economy is expanded
from q0E to q0E, the quantity of environmental services produced increases from q04 to
q04. Associated with this increase, there is a reduction in the consumer’s willingness
to pay for these environmental services from Op04 to p04. The shift from gasoline to
ethanol produces an increase in the consumer surplus from environmental quality
(as depicted in Eq. (11)) measured as ijq04q04 . The net gain in welfare is then

ijq04q04 � fgh � �
p0Gbep0G C abcd

�
: (15)

The graphical depiction allows us to determine that the overall improvement in
environmental quality is downward sloping. Specifically, note that as the amount of
the subsidy increases from 
4 to 
 04 the area of the triangular deadweight loss (fgh)
increases at an increasing rate while the producer loss in the gasoline market (ijq04q04)
increases at a decreasing rate. The real cause of the relative rate of change is that the
gain in the environmental market increases at a decreasing rate, eventually becoming
zero at some point (i.e., where the demand curve reaches zero—the additional unit
of environmental good has zero value). Intuitively, there is a point where the increase
in ethanol subsidy yields no net social benefit (i.e., the result of Eq. (15) is zero).

Previous studies have estimated the economic costs of the ethanol tax credit in
the fuel and food market. Schmitz et al. [5] a net gain from ethanol of 1,281 million
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dollars, but a large portion of this gain was due to the reduction in government
payments to agriculture of 4,084 million dollars. They did not attempt to value the
environmental benefits of substituting ethanol for gasoline. Partially as a result of the
growth in ethanol demand, corn prices from 2008 through 2010 largely eliminated
price supports for corn. Moss and Schmitz [3] evaluated the economic cost of
ethanol subsidies using a computable general equilibrium model focusing on the
effects of the VEETC on the food and fuel markets. In general, they found a small
but negative cost to ethanol subsidies.

While Schmitz et al. [5] found a net benefit to the ethanol subsidy, the economic
gains resulted from the reduction in the distortion from agricultural policies. This
study takes a slightly different approach. Instead of the benefits resulting from the
reduction in the distortion of agricultural policies, we consider economic benefits
resulting from increased environmental quality. However, it is important to note that
estimates of the value of improved environmental quality are subject to considerable
difficulties. For example, Schmitz et al. [6] evaluate the economic benefits and cost
to removing sugar land from production on the environmental quality of Florida’s
everglades. In general, they show that “. . . the benefit-cost ratios form the proposed
U.S. Sugar land buyout are very low by any standards regardless of the supply
price elasticities used. . . ” (p. 81). Hence, as an alternative to traditional cost-benefit
analysis Schmitz et al. [6] propose an Environmental Equivalent as that amount or
value that “. . . accrue to society that would bring the net benefit of this buyout to at
least a breakeven point. . . ” (p. 82). This environmental equivalent is related to the
value of the non-priced environmental good presented in Fig. 4 (p4

�
y04 � y004

�
). Moss

and Schmitz [4] apply the environmental equivalent approach to demonstrate how
biofuel mandates can be used to generate values of environmental goods within a
general equilibrium model.

4 Complex Environmental Benefits

The preceding discussion demonstrates how a policy instrument in a secondary
market (i.e., a subsidy on ethanol production) can generate a welfare improvement
given a single unpriced good in the economy. The ability to determine an optimal
level of a single policy instrument can be linked to the unique policy mapping in
Eq. (11) (i.e., by choosing one instrument we can control the level of the single
output). The problem becomes more complex if two unpriced goods exist. This
scenario is particularly important in the historical support for the renewable fuels
standard in the United States. Specifically, the support from a variety of special
interest groups is necessary for the renewable fuel standards including: (1) farm
groups whose support of the renewable fuels standard can be traced the use of
corn to manufacture ethanol, (2) industrial and consumer groups who support
renewable fuels as a means to reduce the country’s dependence on imported
oil (fuel security or sufficiency), and (3) environmental groups who support the
renewable fuels standards as a means to increase carbon recycling (reduction in
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greenhouse gases). The diversity of goals is embedded in the act. For example,
while environmental groups support growth of renewable fuels to reduce carbon
emissions, they oppose the environmental consequences of large scale commercial
agriculture that come from expanded ethanol production. As a result, the original
renewable fuels standards passed in the Energy Independence and Security Act
(EISA) of 2007 included two sets of mandates—one for ethanol and another for
cellulosic biofuels. The goal was to develop technology to transform grasses (such
as switch grass) and other cellulosic crops into biofuels. The concept was that
such a technology would generate environmental benefits. However, the technology
for large scale cellulosic biofuels has been slow to develop. Hence, the overall
environmental consequences of the renewable fuels standards are mixed as high
corn prices have resulted in potentially fragile land drawn into production to meet
the increased demand for corn.

To develop the complexity in policy design with multiple unpriced goods, we
modify Eq. (11)

QF W fy2; y3g ! fy4A; y4Bg (16)

where y4A is the value of fuel security and y4B is the environmental benefit of
reduced atmospheric carbon. The contribution of this paper is the conjecture that the
combination of unpriced goods responds differently to a combination of tax/subsidy
incentives. For example, taxing gasoline reduces the overall emission of carbon
while subsidizing ethanol affects both carbon and fuel security.

5 Conclusions

The policy process is typically a complicated system of compromise between groups
with different goals. Further, policy goals are typically accomplished indirectly
through secondary markets. This paper demonstrates how gasoline taxes and
ethanol subsidies can be used to meet possibly multiple policy goals. The Energy
Independence and Security Act of 2007 imposes certain blend targets for biofuels
under the Renewable Fuel Standards. The standards foresaw two sources of biofuel
supplements for gasoline—ethanol and cellulosic. Implicitly the standards were
imposed to meet two general policy goals: increase the availability of fuel and
improve the environmental quality. The role of biofuels in the first objective is
clear, but whether biofuels actually improved the environmental quality is an open
debate. Some of this debate is tied up in technical discussions of carbon fate models.
However, regardless of whether biofuels reduce carbon emissions this mechanism
of improving the environmental quality through a secondary market introduces a
variety of mathematical assumptions. The fact that these goals can be achieved in
theory should not be confused with the efficiency of such policy in practice. It is
not clear that the policy has had its intended effect. One of the basic problems is
measuring carbon emissions. The level of carbon emitted is typically measured by
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the inputs into the process and not the outputs—the current level of atmospheric
carbon. In addition, the increased level of U.S. biofuels may be swamped by the
overall global increase in the use of carbon through energy consumption. In addition
to these practical difficulties, we assumed several functional relationships such
as the relationship between gasoline and ethanol consumption and environmental
quality is known and well behaved. This assumption is probably suspect.
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Geostatistical Analysis in Extremes:
An Overview

M. Manuela Neves

Abstract Classical statistics of extremes is very well developed in the univariate
context for modeling and estimating parameters of rare events. Whenever rain,
snow, storms, hurricanes, earthquakes, and so on, happen the analysis of extremes
is of primordial importance. However such rare events often present a temporal
aspect, a spatial aspect or both. Classical geostatistics, widely used for spatial data,
is mostly based on multivariate normal distribution, inappropriate for modeling tail
behavior. The analysis of spatial extreme data, an active research area, lies at the
intersection of two statistical domains: extreme value theory and geostatistics. Some
statistical tools are already available for the spatial modeling of extremes, including
Bayesian hierarchical models, copulas and max-stable random fields. The purpose
of this chapter is to present an overview of basic spatial analysis of extremes, in
particular reviewing max-stable processes. A real case study of annual maxima of
daily rainfall measurements in the North of Portugal is slightly discussed as well the
main functions in R environment for doing such analysis.

1 Motivation and Introduction

This chapter is related to a talk presented in a session of the “International
Conference Planet Earth. Mathematics of Energy and Climate Change” entitled
The role of Statistics of Extremes in Society. Through the ages natural disasters
and catastrophes have happened, causing deaths and destruction. Remember, for
example, the 1755 Lisbon earthquake and tsunami and the 2005 hurricane Katrina,
New Orleans, see Fig. 1.

The scientific community has been worried about whether anything could be
done for society to be at least better prepared for those occurrences.

On 18.01.12, Nicolas Guerin [22], from École Polytechnique Fédérale de
Lausanne, wrote in News Mediacom:

. . . “The problem of extremes is that there are so few events, by defini-
tion. . . explains EPFL mathematician Anthony Davison. It’s thus necessary to
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Fig. 1 The 1755 Lisbon earthquake and tsunami (left) and the 2005 hurricane Katrina, New
Orleans (right)

create specific models that are different from those that use innumerable mean
values. . .

For several years now, the scientists have noted that the increase in extreme
events associated with climate change appears to be having much more of an
impact on society than the increase in mean temperatures. Natural disasters are
accompanied by a significant human and economic cost. . . ”

Extreme value theory (EVT) is the branch of probability and statistics dedicated
to characterizing the behavior of the extreme observations. An extreme observation
is a datum that has low probability of occurrence, but which can be very large (or
small).

EVT has its beginnings in the early to middle part of the last century. It formally
began with the paper by Dodd [14], followed by papers of Fréchet [18], Fisher
and Tippett [17] Gumbel [23] and von Mises [42], to cite the pioneering and most
relevant works.

Rare events such as the risk of flooding, potential crop damage from drought,
health effects of extreme air pollution, storms, and so on, may cause severe impacts
on human life as well as on ecosystems. In weather and climate studies as well as in
other fields, often what one wants to characterize is not the usual behavior, but the
extreme events.

Assessing the behavior of rare events such as wind speed, precipitation and
temperature presents unique statistical challenges, and requires one to characterize
the tail of the distribution of the quantity of interest.

Emil Gumbel (1891–1966) was the pioneer in the application of statistics of
extremes. He wrote “ . . . The aim of a statistical theory of extreme values is
to analyze observed extremes and to forecast further extremes”. Gumbel [24]
presents several applications of EVT on real world problems in engineering
and in meteorological phenomena. There appear first applications in hydrology.
“. . . It seems that the rivers know the theory. . . ” is a remarkable expression from
Gumbel.
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Recently, a special issue of the journal Extremes (2010) 13:2 on Statistics of
Extremes in Weather and Climate, shows the relevance of EVT in the area.

Nowadays, extreme value analysis appears in quite diversified areas revealing
the importance of statistics of extremes in applications. Many excellent books,
presenting both the methodological basis and a great emphasis in the applications
must be referred to. Besides Gumbel [24], we can mention Tiago de Oliveira
(ed.) [12] that is still a reference today with a wide range of contributions and
applications of statistics of extremes. It was the result of a remarkable meeting
that took place thirty years ago in Vimeiro and fortunately was remembered in
2013, celebrating that conference and also dedicated to Ivette Gomes, a highly
recognized international researcher in Statistics of Extremes. More recently, other
books emphasizing the applications appeared and deserve to be mentioned: Coles
[4], Finkenstadt and Rootzén (eds.) [16], Castillo et al. [3], Beirlant et al. [1], Reiss
and Thomas, [33] and Gomes et al. [21].

Statistical modeling of extremes was based initially on limiting families of
distributions for maxima of a sequence, X1; : : : ;Xn, of independent and identically
distributed (i.i.d.) random variables from an unknown distribution function (d.f.),
F. Given that the distribution of the maxima is highly dependent of the unknown
form of F, similar to the central limit theory, researchers tried to obtain sequences
fan > 0g and fbng 2 R such that Mn WD maxfX1; : : : ;Xng, linearly normalized by
those constants, had a non-degenerate limiting distribution.

Univariate EVT is well developed, but is it well recognized that many extreme
events, particularly in the environment, environmental health, climate, hydrology or
meteorology occur in a place and/or in a time. In those areas of application we are
faced with the task of analyzing data that are geographically referenced and show a
correlated structure that needs to be adequately modelled .

Spatial data are measurements or observations taken at specific locations or
within specific regions. The dependence structure of those data needs to be
adequately captured. Geostatistics is an active area of research with important
applications in the environment, agriculture and public health. Classical methods
are well known and explored under the Gaussian model.

Regarding extreme values there was thus a need to develop methods for analyzing
and characterizing spatial extreme data. Spatial extreme theory is an area that lies
at the intersection of EVT and geostatistics. While classical geostatistics is usually
applied to situations where only one realization of the process is taken, the spatial
extreme approach needs multiple realizations underlying the subset of extreme data
analyzed.

After this general motivation and introduction, Sect. 2 introduces the basic
notions in EVT and in Standard Geostatistics. In Sect. 3 a background in spatial
extremes is given as well as some most common statistical models in the max-
stable process approach for spatial extremes. Section 4 is devoted to slightly discuss
an application to annual maxima of daily rainfall data, with particular emphasis to
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the use of R software. Applications to rainfall data have been done recently by Smith
and Stephenson [39], Padoan et al. [31] and Davison et al. [8].

2 Fundamental Notions and Basic Results

Classical EVT has been one of the most fast developing areas in the last decades.
The underlying mathematical basis is well established, see e.g. Leadbetter et al.
[26], Embrechts et al. [15] and de Haan and Ferreira [11], to cite only a few books.
To model the tail of a distribution, where extreme events often occur, has been a
challenge for researchers. There is now a well established set of methods to model
the tail of a distribution.

2.1 Main Limiting Results in EVT

For the univariate EVT the main and well known result is: Let X1; : : : ;Xn be inde-
pendent replications from an unknown d.f., F, and define Mn WD maxfX1; : : : ;Xng.
Fréchet [18], Fisher and Tippet [17], Gumbel [23], and von Mises [42], in Fig. 2,
obtained the first results concerning the existence of a non-degenerate law of the
maximum of that series, suitably normalized.

Gnedenko [20] and later on de Haan [9] gave necessary and sufficient conditions
for the existence of sequences fan > 0g and fbng 2 R such that,

lim
n!1P

�
Mn � bn

an
� x

�
D lim

n!1Fn.anx C bn/ D EV�.x/;

Fig. 2 Fréchet (1878–1973), Gumbel (1891–1966), von Mises (1883–1953) and Weibull (1887–
1979) (from left to right)
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Fig. 3 Gumbel, Fréchet and Weibull p.d.f. (left) and zoom of Gumbel, Fréchet, Weibull and Gauss
p.d.f. (right)

8x 2 R, where EV� is a nondegenerate distribution function. This function, called
Extreme Value d.f., is given by

EV�.x/ D
�

expŒ�.1C �x/�1=� �; 1C �x > 0 if � 6D 0

expŒ� exp.�x/�; x 2 R if � D 0:
(1)

In applications, the d.f. in (1) can also present a more general form with a location
parameter � 2 R and a scale parameter ı 2 RC.

The EV� incorporates the three (Fisher-Tippett) types: Gumbel type: �.x/ D
exp.� exp.�x// � EV0.x/, x 2 R; .� D 0/, the limit for exponential tailed
distributions; Fréchet type: ˚�.x/ D exp.�.x/�1=� / � EV� .

x�1
�
/, x > 0; � > 0,

the limit for heavy tailed distribution and Weibull type: ��.x/ D exp.�.�x/1=� / �
EV�.

�x�1
�
/, x < 0; � < 0, the limit for short tailed distributions. These three

families of models were combined as the d.f. EV� in (1) by von Mises [42].
If � D 0, the right endpoint, x� WD supfx W F.x/ < 1g, can then be either finite

or infinite. If � > 0, F has an infinite right endpoint. If � < 0, F has a finite right
endpoint, x�. The shape parameter, �, is then directly related to the weight of the
right tail, F WD 1 � F, of the underlying model F. As � increases the right tail
becomes heavier. Figure 3 shows the behavior of the right-tails for the three different
types of EV models, together with the Gauss model for comparison.

Jointly with the knowledge of methodological aspects of extreme values theory,
the interest for having free, accurate and simple software has increased tremen-
dously, motivated by the wide range of areas of application of EVT.

R is an environment and a programming language for statistical computing
and graphics. It is a free and open source project. Several packages for extreme
value analysis are already available, with a large set of functions, among which we
mention: evd, Stephenson [40], with functions for statistical analysis of extremes,
including multivariate extremes and Bayesian methods; ismev, Stephenson [41],
with functions for classical extreme value analysis, fitting extreme value distribution
to “block maxima”, as well as generalized Pareto distribution to excesses over a
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high threshold and extRemes, with a graphical user interface based on ismev,
are perhaps the most well known. Other packages are nevertheless available, see
Gilleland, et al. [19]. They published a very nice software review, comparing the
available statistical software and presenting the main characteristics of the main
packages for extreme value analysis.

2.2 Standard Geostatistics

If the quantity of interest, e.g. the rainfall level, is observed at different locations
spread over a region, it is necessary to know how to take into account the spatial
pairwise dependence among sites, for an adequate analysis of data. There are three
types of spatial data:

• Geostatistical data or point referenced data are measurements taken at fixed
locations s 2 K 
 Rd. These locations are generally spatial continuous. Data
may be modeled as values from a spatial process.

• Lattice data or areal referenced data where K is again a fixed subset but
observations are associated with spatial regions and with well defined boundaries.

• Spatial points patterns where locations are now the variable of interest, so K is
itself random and observation sites may be treated as random.

We shall consider geostatistical data modeled by a stochastic process fY.s/g
where s 2 K and K is a compact subset in Rd. Data are observed at D D
fs1; : : : ; sDg 
 K 
 Rd. Usually d D 2 and we shall assume it throughout. Essential
elements for exploring and modeling spatial data are: stationarity, isotropy and the
variogram, key elements of the “Matheron school”, see Cressie [7].

Let us consider a spatial process with mean, �.s/ D EŒY.s/� and variance
VarŒY.s/� finite for all s 2 K 
 R2.

Usually it is assumed second-order stationarity what implies that covariance
relationship between values of the process at any two locations can be summarized
by the covariance function C.h/ D Cov.Y.s/;Y.s C h//, for all h 2 R2, such that s
and s C h both lie within K. That function depends only on the separation vector h.

Assuming also that E ŒY.s C h/ � Y.s/� D 0, with s and sCh 2 K, the variogram
is defined as:

E ŒY.s C h/� Y.s/�2 D Var ŒY.s C h/� Y.s/� D 2�.h/;

where �.h/ is designated as the semivariogram and is a crucial measure for
quantifying spatial dependence in the data. If the semivariogram depends only on
the length of h, and not on the orientation, �.h/ D �.khk/, the process is said to
be isotropic, i.e., roughly speaking “as it looked the same in all directions”. Table 1
summarizes the main models for isotropic semivariograms.
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Table 1 Theoretical semivariograms

Model Semivariogram (�.t/)

Linear �.t/ D
(

2 C �2t; t > 0I
0; otherwise.

Spherical �.t/ D
8̂
<
:̂


2 C �2; t � 1=�I

2 C �2 � 3

2
�t � 1

2
.�t/3

�
; 0 < t � 1=�I

0; otherwise.

Exponential �.t/ D
(

2 C �2 .1� exp.��t// ; t > 0I
0; otherwise.

Powered exponential �.t/ D
(

2 C �2 .1� exp.�j�tjp// ; t > 0I
0; otherwise.

Matérn at � D 3=2 �.t/ D
(

2 C �2 .1� .1C �t/ exp.��t// ; t > 0I
0; otherwise.

In an exploratory phase of a geostatistical analysis, the dependence is investi-
gated via an empirical covariogram or empirical semivariogram.

Assuming stationarity and isotropy the simplest semivariogram estimator is the
moments estimator, Matheron [27],

O�.h/ D 1

2jN.h/j
X

.si;sj/2N.h/

fY.si/ � Y.sj/g2;

where N.h/ D f.si; sj/ W jjsi � sjjj D hg and jN.h/j denotes the cardinality of N.h/.
A few steps can be summarized for basic geostatistical analysis: remove trends

in mean and (perhaps) in variance; transform residuals to standard normal margins;
use graphical techniques to assess likely form for the semivariogram function; fit a
suitable semivariogram model; make inferences using weighted least squares (krig-
ing), likelihood or Bayes procedures; make predictions using the fitted correlation
to obtain a map of predictions, based on a fitted normal model.

In R environment several packages are available for geostatistical analysis.
Exploratory analysis, modeling and extrapolating are possible through several
functions in spatial, gstat, sp, MASS and geoR, for example.

• gstat includes functions as: variogram—calculates sample (experimen-
tal) variograms; plot.variogram—plots an experimental variogram with
automatic detection of lag spacing and maximum distance;fit.variogram—
iteratively fits an experimental variogram; krige—a generic function to make
predictions by inverse distance interpolation, ordinary kriging, OLS regres-
sion, regression-kriging and co-kriging; krige.cv—runs krige with cross-
validation, see Pebesma [32] and Bivand et al. [2] for a complete overview of
gstat functions and examples.
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• geoR—extensively described by Diggle and Ribeiro Jr. [13] and Ribeiro Jr. et al.
[35], with a series of tutorials.

Usually it is supposed that fY.s/g follows a Gaussian process, so likelihood
inference is realized under this assumption.

3 Geostatistical Analysis in Extremes

As mentioned in the previous section, Gaussian processes play a central role in
modeling spatial processes. In this approach relevance is given to studying the
central tendencies of the distribution rather than the distribution tails. However in
many events already pointed out behind, the extremes are of main interest. The
generalization of classical multivariate extreme value distributions to the spatial
case is done through max-stable processes. Other statistical approaches have been
developed for the spatial modeling of extremes, such as Bayesian hierarchical
models and copulas, topics that will not be considered in this brief overview. A
recent and very good survey on spatial extremes is Cooley et al. [6].

The purpose of this section is to review some max-stable processes, and mainly to
show packages and functions already available in the R environment for the analysis
of spatial extremes. First results date back to de Haan [10] and were developed by
several authors, such as Smith [38], Schlather [36] and Kabluchko et al. [25], to
mention only a few.

Max-stable processes follow a similar asymptotic motivation to the univariate
EV distribution, providing a general approach to modeling process extremes
incorporating temporal or spatial dependence. For the region K under study and the
location s, we will assume Y1.s/;Y2.s/; : : : as independent replicas of a stochastic
process.

Consider that we have daily rainfall data collected in some stations and we are
interested in considering the maximum of that quantity over a period of time (e.g. a
year) in order to:

• Assess the dependence of the extreme precipitation levels between stations.
• Predict values at unobserved locations.
• Elaborate a map of the distribution of the maximum precipitation levels.

Interest is now to model extremes of a process fY.s/g over spatial domain
K, where data are observed at sites sd 2 fs1; : : : ; sDg within K and at times
T D ft1; : : : ; tng. A difference between geostatistics and spatial extremes is that
much of geostatistics is applied to situations where one has only one realization of
the process fY.s/g. However to perform an extreme value analysis it is necessary
that multiple realizations fYi.s/g underlie the subset of extreme data which are
analyzed.

An overview on some main max-stable models is here considered and briefly
applied to a case study.
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3.1 Some Models for Max-Stable Processes

Let us recall the definition of max-stable process by de Haan [10]. Let fYi.s/g,
s 2 D; i D 1; : : : ; n, be independent replicas of a stochastic process fY.s/g defined
in D 
 R2.

Definition 1 The stochastic process fY.s/g is called max-stable if, for all s 2 D
there exist normalizing sequences fan.s/ > 0g and fbn.s/g such that, as n ! 1,

�
maxiD1;:::;n Yi.s/ � bn.s/

an.s/


!d fY�.s/gs2R2

where fY�.s/g is identical in law to fY.s/g.

To characterize max-stable processes is a very difficult task. For max-stable
processes with Fréchet unit margins de Haan [10] introduced a very useful represen-
tation that allowed the construction of parametric models for spatial extremes. Such
a general representation is as follows: let fYi.s/gi2N, be independent realizations of a
stochastic process fY.s/g with EŒY.s/� D 1 and let �i be points of a Poisson processQ

with intensity d�=�2 on .0;1/. Then

Z.s/ D max
i�1 �iYi.s/; s 2 D; (2)

is a max-stable process with unit-Fréchet margins. and the distribution function is
determined by

P
�
Z.s/ � z.s/; s 2 D

� D exp

 
� E

�
sup
s2D

�
Y.s/
z.s/

�!
:

Different choices of the process Yi.s/ lead to different models of max-stable
processes. As examples let us mention the following models.

• Smith [38] proposed to take Yi.s/ D '.s�si/, where ' is a zero mean multivariate
normal density with covariance matriz˙ , where the joint distribution at two sites
is given by

P ŒZ.s1/ � z1;Z.s2/ � z2� D

exp

�
� 1

z1
˚

�
a

2
C 1

a
log

z2
z1

�
� 1

z2
˚

�
a

2
C 1

a
log

z1
z2

��
; (3)

where a D p
.s1 � s2/T˙�1.s1 � s2/, is a dependence parameter, and ˚ is the

standard normal d.f.
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• Schlather [36] proposed a more flexible class of max-stable processes by taking
Yi.s/ to be any stationary Gaussian random field with finite expectation. He
considered

Z.s/ D max
i�1 �i maxf0;Yi.s/g

where � D E



maxf0;Yi.s/g
�
< 1, being the joint distribution at two sites

given by

P ŒZ.s1/ � z1;Z.s2/ � z2� D

exp

"
�1
2

�
1

z1
C 1

z2

� 
1C

s
1 � 2.�.h/C 1/z1z2

.z1 C z2/2

!#
; (4)

where h D jjs1 � s2jj and �.h/ is chosen from Whittle-Matérn, Cauchy and
Powered Exponential, see Schlather [36].

• As an example of another model let us consider a more recent proposal, the so-
called Brown-Resnick process, studied in Kabluchko et. al. [25], who proposed
an alternative specification for the Yi.�/ process, Y.s/ D exp

�
�i.s/ � �2.s/=2

�
,

where �.s/ is a Gaussian process with stationary increments, being �2.s/ the
variance of �.s/.

3.2 Spatial Dependence of Extremes

To use max-stable models we need to have information on how the dependence
between two locations decreases, when the distance increases. It would be nice to
have a kind of variogram for extremes of a stochastic process. However if we assume
that Z is a unit Fréchet max-stable process, the variance (and even the mean) might
be infinite.

A new function is now needed to reflect how evolves the spatial dependence of
extremes. It provides sufficient information about extremal dependence and it is
called the extremal coefficient function, Schlather and Tawn [37].

Definition 2 If Z.�/ is a max-stable process with unit Fréchet margins the extremal
coefficient function �./ is defined by

P ŒZ.s1/ � z;Z.s2/ � z� D exp

�
��.jjs1 � s2jj/

z

�
;

where 1 � �.jjs1 � s2jj/ � 2.
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The extremal coefficient function has the following meaning: If �.jjs1�s2jj/ D 1,
we have perfect dependence; if �.jjs1 � s2jj/ D 2, we have independence.

Extremal coefficient functions for the above models are:

• �.jjs1 � s2jj/ D 2˚

�p
.s1�s2/T˙�1.s1�s2/

2

�
, for the Smith model covering the

whole range of dependence;

• �.jjs1 � s2jj/ D 1C
q

1��.jjs1�s2jj/
2

, for Schlather model that has upper bound of

1 C p
1=2. A drawback of this model is that independence of extremes can not

be attained because � 2 Œ1I 1:8333� and � D 2 is never attained;

• �.jjs1 � s2jj/ D 2˚
�p

�.jjs1 � s2jj/=2
	

, for the Brown-Resnick process. As

�.jjs1�s2jj/ ! 0, we have �.jjs1�s2jj/ ! 1, while if �.jjs1�s2jj/ is unbounded,
then �.jjs1 � s2jj/ ! 2 as jjs1 � s2jj ! 1.

Another measure of dependence between two locations is given by a “kind”
of variogram. The first idea was to consider the madogram, a tool in classical
geostatistics, Matheron [28], defined as:

�.jjs1 � s2jj/ D E ŒjZ.s1/� Z.s2/j� :

The madogram requires the finiteness of the first-moment and for stationary max-
stable processes with unit Fréchet margins, mean and variance may be not finite
and that mean value does not exist theoretically. Consequently, variogram-based
approaches, specially designed for extremes, have been proposed:

• the F-Madogram, Cooley et al. [5],

�F.jjs1 � s2jj/ D 1

2
E ŒjFfZ.s1/g � FfZ.s2/gj� :

The F-madogram is related to the extremal coefficient function as:

�F.jjs1 � s2jj/ D �.jjs1 � s2jj/� 1

�.jjs1 � s2jj/C 1
:

• �-Madogram, Naveau et al. [29].

��.jjs1 � s2jj/ D 1

2
E

jF�fZ.s1/g � F1��fZ.s2/gj

�
; 0 � � � 1;

where F.z/ D exp.�1=z/ is the unit Fréchet d.f.

The F-Madogram is similar to the �-Madogram when � D 0:5. The F-Madogram
has the advantage of suggesting an estimator directly from its definition, see Cooley
et al. [5].
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Naveau et al. [29] discussed the estimation of the madogram. For the F-
Madogram it was considered the plug in, OF, an estimate of the d.f., at the specified
location and the binned estimate of the F-madogram. For the ��Madogram, the
binned ��Madogram estimator and the adjusted estimator have been proposed.

4 A Case Study

For 21 different stations, in the North of Portugal, daily precipitation has been
recorded. Our data refers to the maximum annual values for 20 years (1977–1996),
in each station. A preliminary analysis of these data was done in Neves and Prata
Gomes [30]. It would be nice to have more years of observations but surprisingly in
recent years some missing values were found.

Figure 4 shows the region of Portugal where data have been collected on the left,
and locations of the stations pointed out on the right. In each site and location, the
maxima annual values of daily precipitation were considered in our study.

We began our analysis by performing marginal analysis and transformation.
Daily values of precipitation at a given station x are dependent, however, the maxima
values at each hydrological year can be considered almost independent.

As an illustration of the graphical diagnostic GEV fitting, graphics in two
locations were chosen and displayed in Figs. 5 and 6.

The transformation of the data at each station to the unit Fréchet distribu-
tion was then performed, through the function gev2frech() of the package
SpatialExtremes, Ribatet [34].

To estimate the spatial dependence structure, estimates of values of the extremal
coefficient at two stations s1 and s2 are evaluated. For this, the fitextcoeff()
was used considering both Smith, [38], and Schlather-Tawn, [37], estimators.
As far as we know only these estimators are available in R package. Work is
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Fig. 4 Map of the North of Portugal (left) and the positions of the stations where data were
recorded (right)
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Fig. 5 GEV model diagnostic for data from Guarda

now in progress for including other functions in R environment. Figure 7 shows
pairwise extremal coefficient estimates and lowess curves for Smith and Schlather-
Tawn estimators and also the F-madogram, here obtained through fmadogram()
function.

Trend surfaces were tried to be estimated in order to capture the spatial
dependence structure by describing the marginal parameters as:
�.x/ D ˇo;� C ˇ1;�lon.x/C ˇ2;�lat.x/
ı.x/ D ˇ0;ı C ˇ1;ı lon.x/C ˇ2;ı lat.x/
�.x/ D ˇo;�

where lon.x/ and lat.x/ denote the longitude and the latitude of the stations.
However, for our data, values of �.x/, ı.x/ and �.x/ showed a weak relationship

with lon.x/ and lat.x/. Other trend surfaces need to be considered, but work is
now in progress. Even though, considering the estimated matrix for Smith model as
well as estimated sill and range for Schlather model, with the powered exponential
correlation function, several simulations were performed on a 21	21 grid. Figure 8
displays one of those simulations for the Smith model and for the Schlather model.
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Fig. 6 GEV model diagnostic for data from Vila Real
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Fig. 7 Pairwise extremal coefficient estimates and lowess curves: Smith and Schlather-Tawn
(left); F-madogram and binned madogram (right)

5 Concluding Remarks

This chapter was intended to introduce spatial models for extreme value analysis
as well as to present an overview of functions available in the R software for
doing that analysis. Max-stable processes are a natural generalization of multivariate
extreme models and the most common way to deal with extreme value data in spatial
statistics. Some procedures for estimating the spatial dependence available in the R
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Fig. 8 One realization of the Smith (left) and Schlather and Tawn (right) models

environment were shown and some simulations using Smith and Schlather models
were also performed in the R package SpatialExtremes.

Work is already in progress for including more max-stable models in R, as well
as other approaches for modeling spatial dependence.

Some difficulties related to the amount of data available still remain. How to deal
with missing values, in a given real situation, is another challenging point.

Acknowledgements Research partially supported by National Funds through FCT—Fundação
para a Ciência e a Tecnologia, projects PEst-OE/MAT/UI0006/2014 (CEAUL)
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Reducing the Minmax Regret Robust Shortest
Path Problem with Finite Multi-scenarios

Marta M.B. Pascoal and Marisa Resende

Abstract The minmax regret robust shortest path problem is a combinatorial
optimization problem that can be defined over networks where costs are assigned
to arcs under a given scenario. This model can be continuous or discrete, depending
on whether costs vary within intervals or within discrete sets of values. The problem
consists in finding a path that minimizes the maximum deviation from the shortest
paths over all scenarios. This work focuses on designing tools to reduce the network,
in order to make easier the search for an optimum solution. With this purpose,
methods to identify useless nodes to be removed and to detect arcs that surely
belong to the optimum solution are developed. Two known algorithms for the
robust shortest path problem are tested on random networks with and without these
preprocessing rules.

1 Introduction

The robust shortest path problem is a network optimization problem that consists
in finding a path between two given nodes that minimizes the worst case for
the scenarios considered for the arc costs. Two types of objective functions are
commonly adopted. One is an absolute version of the problem that finds the path
with the minimum maximum cost over all scenarios. This is called the minmax
shortest path problem or the absolute robust shortest path problem [7, 9]. The
other is concerned with the relative version of the problem, which considers the
regret costs of each path towards the shortest paths among all scenarios and that
minimizes the maximum of these deviation costs. This is the so called minmax
regret robust shortest path problem or robust deviation shortest path problem [8, 9].
This paper addresses this latter version of the problem, considering that each arc
cost is associated with a finite number of scenarios.
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Murthy and Her [7] were the first to approach the absolute version of the problem
and introduced a labeling algorithm to solve it. Later, Yu and Yang [9] extended the
study to the relative version of the problem, proposing a dynamic programming
strategy for solving it and devising a particular method for layered networks.
Besides, they also showed that the problem is strongly NP-hard if the number of
scenarios is unlimited. More recently, Pascoal and Resende [8] developed three
algorithms for the relative robust shortest path problem; the first is a labeling method
where labels are pruned according to cost lower and upper bounds; the second is a
ranking based method and the third is a hybrid version of the two previous methods.

An alternative to deal with costs uncertainty consists of assuming that each
cost ranges within known intervals. Karasan et al. [3] were the first to address
the robust shortest path problem with interval data, focusing on the case of acyclic
networks. These results were extended and new methods were proposed for general
networks in the works by Montemanni et al. [4–6]. Another contribution of [3] was
to introduce rules to identify a priori, and later to delete, arcs that do not belong to
the optimum solution. This allows to reduce the network before a robust shortest
path algorithm is applied. In a recent work Catanzaro et al. [2] further developed
these techniques and established new sufficient conditions to identify both nodes
and arcs that cannot be part of the solution but also nodes and arcs that are certainly
part of the solution.

To our knowledge no preprocessing techniques have been studied or applied to
models with discrete data. Therefore, the main purpose of the current work is to
exploit new preprocessing strategies for the finite multi-scenario model, inspired by
the results presented in [2]. These rules were implemented together with the labeling
and the hybrid approaches in [8]. The impact of the developed rules is evaluated by
means of empirical tests in random instances.

The remainder of this work is organized into five other sections. The next one is
concerned with the definition of the minmax regret robust shortest path problem and
with introducing notation. Section 3 is dedicated to establishing theoretical results
which allow to remove unnecessary nodes and identify arcs that obligatory belong
to the robust shortest path. The correspondent algorithms are outlined and their time
computational complexity orders are presented. Section 4 shows an example of the
application of such preprocessing rules. In Sect. 5 computational experiments over
randomly generated networks are presented and their results are analyzed. Finally,
conclusions are discussed and future topics of investigation are suggested.

2 Problem Definition and Notation

Hereinafter a finite multi-scenario model is represented as G.V;A;Tk/, where G is
a directed graph with a set of nodes V D f1; : : : ; ng, a set of m arcs A � f.i; j/ W
i; j 2 V and i ¤ jg and a finite set of acceptable parameters Tk D ftl W l 2 Ikg, with
Ik WD f1; : : : ; kg, k > 1. It is assumed that each node j 2 V can be reached from
node 1 and that G contains no parallel arcs. Given the set Tk, a scenario l 2 Ik is
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determined according to the costs assigned under tl. For each arc .i; j/ 2 A, i and j
are named the tail and the head nodes, respectively. The associate cost function is
defined by ck

ij W Tk �! R
C
0 , where cl;k

ij WD ck
ij.tl/ represents the cost of arc .i; j/ in

scenario l, or under parameter tl.
Let A0 be a nonempty subset of A. Then, G � A0 denotes the subgraph of G with

set of arcs AnA0. In particular, G � f.i; j/g is represented by G�ij .
A path from i to j, i; j 2 V , in graph G, also called an .i; j/-path, is an alternating

sequence of nodes and arcs of the form

p D hv1; .v1; v2/; v2; : : : ; .vr�1; vr/; vri;

with v1 D i, vr D j and where vs 2 V , for s D 2; : : : ; r � 1, and .vs; vsC1/ 2 A, for
s D 1; : : : ; r � 1. The sets of arcs and of nodes in a path p are denoted by A. p/ and
V. p/, respectively. Given two paths p; q, such that the destination node of p is also
the initial node of q, the concatenation of p and q is the path formed by p followed
by q, and is denoted by p ˘ q. In the following, paths will be represented simply by
their sequence of nodes.

The cost of a path p in scenario l, or under tl, l 2 Ik, is defined by

v. p; tl/ D
X

.i;j/2A.p/

cl;k
ij : (1)

With no loss of generality, 1 and n denote the origin and the destination nodes of
the graph G, respectively. For simplicity of presentation, it will also be assumed that
there are no arcs arriving at 1 and no arcs starting at n in G. The set of all .1; n/-paths
in G is denoted by P.G/.

Let pl
ij represent the shortest .i; j/-path in G, i; j 2 V , for a given scenario l 2 Ik.

In order to simplify notation, pl
1 is used to denote pl

1n and LBl
i is used to denote

v. pl
in; tl/, i 2 V .

The minmax regret robust shortest path problem corresponds to determining a
path in P.G/ with a least maximum robust deviation, i.e. satisfying

arg min
p2P.G/

RC. p/; (2)

where RC. p/ is the robustness cost of p in G, defined by

RC. p/ WD max
l2Ik

RD. p; tl/; (3)

and RD. p; tl/ represents the robust deviation of a path p under parameter tl, l 2 Ik,
in G, given by

RD. p; tl/ WD v. p; tl/� LBl
1: (4)

Any optimum solution of (2) is called a robust shortest path of G.
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Given a path p 2 P.G/, the set of scenarios in which RC. p/ occurs corresponds
to the set of indices of the parameters under which the robust deviation of p is
maximized and will be denoted by I. p/ WD farg maxl2Ik RD. p; tl/g.

3 Preprocessing Techniques

As mentioned in the introduction, Karasan et al. [3] addressed the robust shortest
path problem with interval data and introduced preprocessing techniques to reduce
the size of a problem before it is solved. Namely, rules were defined with the goal
of identifying in advance arcs which do not belong to any robust shortest path. Later
on, Catanzaro et al. [2] developed a similar idea, in order to identify nodes that
can be known in advance not to belong to any optimum solution. The first of these
results is based on the shortest paths for at least one realization of the arc costs for
scenarios that result from the lower and the upper limits of the cost intervals. The
second is based on the shortest path under the scenario associated with the upper
bounds on the cost intervals. The cost of this path is compared with the cost of the
shortest path that contains node i, for any i 2 V , under the scenarios associated
with the lower limits of the cost intervals. In this section similar ideas are explored
when considering a discrete set of possible scenarios. Conditions for reducing the
network while not discarding the optimum solution are introduced and algorithms
for implementing such conditions are outlined. Finally, the time complexity order
of these methods is analyzed.

An arc/node of a robust shortest path is called robust 1-persistent, otherwise it is
denominated robust 0-persistent.

The following result presents a sufficient condition for detecting robust 0-
persistent nodes, valid for any scenario.

Proposition 1 Consider a path q 2 P.G/ and a node r … V.q/. If v. pOl1r ˘ pOlrn; tOl/ >
RC.q/C LBOl1 for some Ol 2 Ik, then node r is robust 0-persistent.

Proof Let r 2 VnV.q/ and q0 be any path in P.G/nfqg such that r 2 V.q0/. Let q01r

and q0rn represent the .1; r/-subpath and the .r; n/-subpath of q0, respectively. Then,
by definition of robustness cost of a given path, one has

RC.q0/ D max
l2Ik

RD.q0; tl/ D max
l2Ik

n
v.q01r; tl/C v.q0rn; tl/ � LBl

1

o
:

Given that pl
1r and pl

rn are the shortest .1; r/-path and the shortest .r; n/-path under
tl, l 2 Ik, in G, respectively, then

RC.q0/ � max
l2Ik

n
v. pl

1r; tl/C LBl
r � LBl

1

o
D max

l2Ik

RD. pl
1r ˘ pl

rn; tl/: (5)
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Consequently, if v. pOl1r ˘ pOlrn; tOl/ > RC.q/ C LBOl1 for some Ol 2 Ik, then RD. pOl1r ˘
pOlrn; tOl/ > RC.q/. Therefore,

max
l2Ik

RD. pl
1r ˘ pl

rn; tl/ > RC.q/:

From (5) it follows that RC.q0/ > RC.q/, which means that any path in G that
contains node r cannot be a robust shortest path. Therefore, node r is robust 0-
persistent. ut

The detection of a robust 0-persistent node is more effective than the identifi-
cation of a single robust 0-persistent arc, given that the removal of a node from a
network implies the elimination of all its incoming and outgoing arcs. Thus, the
latter case will not be considered.

In [2] the identification of robust 1-persistent arcs in an interval data model was
also presented. Computational tests showed that using this result, together with the
robust 0-persistency, led to an actual reduction of the network and, besides that, it
allowed to find an optimum solution more efficiently. Specifically, by considering
the shortest path under the scenario associate to the upper bounds of the interval
data, the new result was based on the choice of the arcs of such path to be
evaluated. For the scenario that attributed the upper limits of the interval costs
to the correspondent arcs of that path and the lower limits of the interval costs
to the correspondent remaining arcs of the network, the rule could be derived by
determining the shortest path on the subnetwork resultant from removing the arc
under analysis at the original network, in case node n was still reachable from
node 1.

The following result has the same motivation and introduces a broader rule for
detecting robust 1-persistent arcs, which are restricted to the shortest .1; n/-paths
for the scenarios of the adopted finite multi-scenario model. Provided that a path
and its robustness cost are known, it deals with the scenarios for which the associate
shortest .1; n/-paths contain the arc under evaluation:

Proposition 2 Let q 2 P.G/ and .i; j/ 2 A.q/ \ fA.pl
1/ W l 2 Ikg be an arc such

that node n is reachable from node 1 in G�ij . Let S.i; j/ D fl 2 Ik W .i; j/ 2 pl
1g be

the set of scenarios for which the associate shortest .1; n/-paths contain arc .i; j/.
Let p�l

1 denote the shortest .1; n/-path in P.G�ij/ under tl, l 2 Ik. If v. p�Ol1 ; tOl/ >
RC.q/C LBOl1 for some Ol 2 S.i; j/, then arc .i; j/ is robust 1-persistent.

Proof Let q 2 P.G/ contain some arc in the set fA.pl
1/ W l 2 Ikg, .i; j/ 2 A.q/ be

an arc in that set and p 2 P.G�ij/. Then, by definition of robustness cost of a path
and because p�l

1 is the shortest path under scenario l that does not contain arc .i; j/,
l 2 Ik, one gets

RC. p/ D max
l2Ik

RD. p; tl/ � max
l2Ik

RD. p�l
1 ; tl/; (6)
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with

max
l2Ik

RD. p�l
1 ; tl/ D max

�
max

l2IknS.i;j/
RD. p�l

1 ; tl/; max
l2S.i;j/

RD. p�l
1 ; tl/


: (7)

For every l 2 IknS.i; j/, one has p�l
1 D pl

1 and therefore

RD. p�l
1 ; tl/ D RD. pl

1; tl/ D 0:

This means that maxl2IknS.i;j/ RD. p�l
1 ; tl/ D 0. Since any robust deviation of a path

is non-negative, then (6) and (7) imply RC. p/ � maxl2S.i;j/ RD. p�l
1 ; tl/. Then, if

v. p�Ol1 ; tOl/ > RC.q/C LBOl1

for some Ol 2 S.i; j/, i.e., RD. p�Ol1 ; tOl/ > RC.q/, one gets

RC. p/ > RC.q/:

This means that any path in P.G/which does not contain arc .i; j/ cannot be a robust
shortest path. Therefore, arc .i; j/ is robust 1-persistent. ut

It should be noticed that when looking for a robust shortest path, the identification
of a robust 1-persistent arc .i; j/ allows to delete from the network all the other arcs
with tail node i or head node j. This is more effective than detecting a robust 1-
persistent node, given that this information does not exclude the arcs connected to
it. Hence, the first technique is adopted rather than the second.

Since the calculation of the shortest paths for all scenarios is needed to calculate
the robustness cost of a given path, one can take a shortest path with the minimum
robustness cost as a candidate for the optimum solution and apply Propositions 1
and 2. Let Q denote the set of shortest .1; n/-paths for the scenarios of the model
with the least robustness cost, i.e.

Q D arg minfRC. pl
1/ W l 2 Ikg: (8)

Given any path q 2 Q, the sets of possible robust 0-persistent nodes and robust
1-persistent arcs will be denoted by Snod and Sarc, respectively, and are given by

Snod D V �
n
r 2 V.q/ W q 2 Q

o
(9)

and

Sarc D
n
.i; j/ 2 A.q/ W q 2 Q and node n is reachable from node 1 in G�ij

o
:

(10)
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Moreover, the inequalities stated in Propositions 1 and 2 can be particularized.
Namely, for any node r 2 Snod, since

v. pl
1r ˘ pl

rn; tl/ D v. pl
1r; tl/C v. pl

rn; tl/ D v. pl
1r; tl/C LBl

r;

one concludes that if

9Ol 2 Ik W v. pOl1r; tl/ > minfRC. pl
1/ W l 2 Ikg C LBOl1 � LBOlr (11)

holds, then node r is robust 0-persistent. Similarly, for any arc .i; j/ 2 Sarc, if
condition

9Ol 2 S.i; j/ W v. p�Ol1 ; tl/ > minfRC. pl
1/ W l 2 Ikg C LBOl1 (12)

is satisfied, then arc .i; j/ is robust 1-persistent.

3.1 Algorithms

The algorithms to identify robust 0-persistent nodes and robust 1-persistent arcs first
need to determine the tree of the shortest .j; n/-paths under tl, denoted by T l, j 2 V ,
l 2 Ik, and to calculate their costs LBl

j. Any shortest path tree algorithm can be used
with such purpose, for instance with a labeling method to find the shortest path, like
Bellman-Ford’s or Dijkstra’s algorithms (see [1]). The variable RCmin represents
the least robustness cost of the paths in set Q.

The following pseudo-code summarizes the procedure for determining robust 0-
persistent nodes which are stored in the list P0nod. Testing (11) for a given scenario
l, implies computing the tree of the shortest .1; j/-paths under tl, denoted by QT l,
l 2 Ik, j 2 V . Computational effort can be avoided if the smallest l 2 Ik for which
condition (11) is fulfilled is known, for each node r selected in Snod. In fact, if lr
denotes that scenario, then node r is a robust 0-persistent node and its analysis can
halt. The tests for scenarios lr C 1; : : : ; k if lr ¤ k can thus be skipped. Moreover,
when maxflr W r 2 Snodg ¤ k, the computation of the trees QT l can be skipped for
l D maxflr W r 2 Snodg; : : : ; k, which can be useful when k is large.

In terms of the worst case computational time complexity of Algorithm 1, two
phases should be considered. The first corresponds to determining the costs LBl

j,
j 2 V , l 2 Ik and the robustness cost, RCmin, which is of Oa

1 D O.km C k2n/ for
acyclic networks and of Oc

1 D O.k.mCn log n/Ck2n/ for general networks [8]. The
second concerns the search for robust 0-persistent nodes. The computation of the
tree QT l is similar to the computation of T l. However, for the former only the costs
for the scenario where the paths are the shortest are needed. Thus, such procedure
has time of O.m C n/ for acyclic networks and O.m C n log n/ in the general case
for each scenario [1]. Then, for each node selected in Snod, (11) is checked in O.1/
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Algorithm 1: Finding robust 0-persistent nodes

1 for l D 1; : : : ; k do
2 Compute the tree T l;
3 for j D 1; : : : ; n do LBl

j  cost of the shortest .j; n/-path under tl;

4 RCmin minfRC. pl
1/ W l 2 Ikg;

5 Q fpl
1 W l 2 Ik and RC. pl

1/ D RCming;
6 Snod V � fr 2 V.q/ W q 2 Qg;
7 P0nod ;;
8 Compute the tree QT 1;
9 for r 2 Snod do

10 for l D 1; : : : ; k do
11 if l ¤ 1 and tree QT l was not yet determined then Compute the tree QT l;
12 pl

1r  shortest .1; r/-path under tl;
13 if v. pl

1r; tl/ > RCminC LBl
1 � LBl

r then
14 P0nod P0nod [ frg;
15 break;

16 return P0nod

time. The analysis of the nodes in Snod � Vnf1; ng considers at most k scenarios
and at most n � 2 nodes, therefore, it can be done in Oa

2 D O.k.m C n// time
for acyclic networks and in Oc

2 D O.k.m C n log n// time for general networks.
Consequently, Algorithm 1 has a time complexity of Oa

1 C Oa
2 D O.km C k2n/ for

acyclic networks and of Oc
1 C Oc

2 D O.km C kn log n C k2n/ for general networks.
The following pseudo-code summarizes the procedure for searching for robust

1-persistent arcs. The list P1arc stores such arcs. When an arc .i; j/ is selected in
Sarc to be scanned only the shortest .1; n/-path in the reduced network G�ij under
the scenarios l 2 S.i; j/ for which .i; j/ 2 pl

1 has to be determined, since for the
remaining scenarios p�l

1 D pl
1. Thus, the inequality (12) only has to be tested for

the scenarios S.i; j/ in Ik, and, moreover, the algorithm can halt the search when a
scenario satisfies that inequality.

In a worst case, Algorithm 2 has the same time complexity order as Algorithm 1
to determine RCmin. Then, the second phase is concerned with the analysis of the
arcs in Sarc, which implies the shortest paths computation, and since at most k.n�1/
arcs are used, one obtains Oa

2 D O.k2n.n C m// D O.k2mn/ time for acyclic
networks and Oc

2 D O.k2n.m C n log n// time for general networks. Consequently,
Algorithm 2 has a polynomial time complexity of Oa

1 C Oa
2 D O.k2mn/ for acyclic

networks, and Oc
1 C Oc

2 D O.k2mn C k2n2 log n/ for general networks.
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Algorithm 2: Finding robust 1-persistent arcs

1 for l D 1; : : : ; k do
2 pl

1  shortest path under tl;
3 LBl

1  cost of pl
1 under tl;

4 RCmin minfRC. pl
1/ W l 2 Ikg;

5 Q fpl
1 W l 2 Ik and RC. pl

1/ D RCming;
6 Sarc f.i; j/ 2 A.q/ W q 2 Q and node n is reachable from node 1 in G�

ij g;
7 P1arc ;;
8 for .i; j/ 2 Sarc do
9 S.i; j/ fl 2 Ik W .i; j/ 2 pl

1g;
10 for l 2 S.i; j/ do
11 p�l

1  shortest path under tl in G�

ij ;
12 if v. p�l

1 ; tl/ > RCminC LBl
1 then

13 P1arc P1arc[ f.i; j/g;
14 break;

15 return P1arc

4 Example

In this section the preprocessing techniques for finding robust 0-persistent nodes
and robust 1-persistent arcs introduced previously are exemplified.

Let G.V;A;T2/ be the network represented in Fig. 1. Figure 2 shows the trees
of the shortest paths in this network from every node to node 7 under scenario 1—
Fig. 2a—and under scenario 2—Fig. 2b.

After computing these trees, Q is set to fp11; p
2
1g, with p11 D h1; 2; 7i, LB11 D 2,

and p21 D h1; 4; 6; 7i, LB21 D 7. Since v. p11; t2/ D 10 and v. p21; t1/ D 8, one has
RC. p11/ D 3 and RC. p21/ D 6. Hence, p11 D h1; 2; 7i is the path with the minimum
robustness cost in Q, and RCmin D 3.
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Fig. 1 Network G.V;A; T2/
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Fig. 2 Shortest path trees rooted at node n D 7 in G.V;A; T2/. (a) Under scenario 1; (b) under
scenario 2
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Fig. 3 Shortest path trees rooted at node 1 in G.V;A; T2/. (a) Under scenario 1; (b) under
scenario 2

4.1 Identifying Robust 0-Persistent Nodes

Because q D p11 D h1; 2; 7i, the set of nodes to be scanned is Snod D f3; 4; 5; 6g.
Figure 3 shows the trees of the shortest paths from node 1 to any node under scenario
1—Fig. 3a—and under scenario 2—Fig. 3b.

According to Algorithm 1, one starts by checking inequality (11) in scenario 1.
For nodes 4, 5 and 6 that condition is satisfied. In fact, for node 4,

v. p114; t1/ D 0 > RCmin C LB11 � LB14 D �2I
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for node 5,

v. p115; t1/ D 3 > RCmin C LB11 � LB15 D 1

and for node 6,

v. p116; t1/ D 2 > RCmin C LB11 � LB16 D 0:

Consequently, nodes 4, 5 and 6 are robust 0-persistent. For node 3 and the same
scenario, this condition is not satisfied, because v. p113; t1/ D 0 and RCmin C LB11 �
LB13 D 2. The same happens for scenario 2, because v. p213; t2/ D 4 and RCmin C
LB21 � LB23 D 6. Consequently, P0nod D f4; 5; 6g and node 3 cannot be deleted
from the network when searching for an optimum solution.

4.2 Identifying Robust 1-Persistent Arcs

Because q D p11 D h1; 2; 7i, the set of arcs to be scanned is Sarc D f.1; 2/; .2; 7/g.
According to Algorithm 2, one first considers arc .1; 2/ for which S.1; 2/ D f1g.
Node 7 is reachable from node 1 in G�12 and p�11 D h1; 3; 2; 7i, with v. p�11 ; t1/ D 3.
Nevertheless, RCmin C LB11 D 5, therefore condition (12) is not satisfied and one
can not conclude anything about arc .1; 2/. Afterward, arc .2; 7/ is selected and
S.2; 7/ D f1g. Now, node 7 is reachable from node 1 in G�27 and p�11 D h1; 3; 5; 7i,
with v. p�11 ; t1/ D 7 under scenario 1. Since 7 > RCmin C LB11 D 5, condition (12)
is satisfied for this case. Consequently, arc .2; 7/ is robust 1-persistent and belongs
to an optimum solution, P1arc D f.2; 7/g.

4.3 Computing a Robust Shortest Path After Preprocessing

After the preprocessing a robust shortest path can be computed in a reduced
network, represented in Fig. 4. The robust 0-persistent nodes, 4, 5 and 6, are also
removed from G, as well as all the arcs that start or end in these nodes. Arc .2; 7/
must be contained in the optimum solution since it is robust 1-persistent. Thus, the

1 0, 4

2, 9

2
0, 1

3

3, 3

7

i
c1,2ij ,c 2,2

ij
j

Fig. 4 Reduced network after preprocessing
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reduced network results from removing from G all the remaining arcs that start
in node 2, .2; 5/, and all the remaining arcs that end in node 7, .5; 7/ and .6; 7/.
Nothing can be said at this moment about the other arcs in G, represented with a
dashed line in Fig. 4.

There are only two .1; 7/-paths containing .2; 7/ in the reduced network, q D
h1; 2; 7i, with RC.q/ D 3, and q0 D h1; 3; 2; 7i, with v.q0; t1/ D 3 and v.q0; t2/ D 8.
Then, RC.q0/ D 1 < RC.q/, and therefore, q0 is the .1; 7/-path with the minimum
robustness cost in the reduced network, i.e. q0 is the robust shortest path in G.

5 Computational Experiments

In this section a computational study of the performance of the preprocessing
techniques introduced earlier and of their impact on the resolution of the robust
shortest path problem when combined with the labeling and the hybrid algorithms
introduced in [8] are presented.

In order to apply the preprocessing techniques described in Sect. 3, Algorithms 1
and 2 were implemented in Matlab 7.12 and ran on a computer equipped with an
Intel Pentium Dual CPU T2310 1.46 GHz processor and 2GB of RAM. The codes
use Dijkstra’s algorithm [1] to solve the single destination shortest path problem for
a given scenario. As mentioned above, the preprocessing techniques were combined
with the labeling algorithm (LA) and the hybrid algorithm (HA). The robust shortest
path problem was solved with and without preprocessing.

The benchmarks used in the experiments correspond to randomly generated
directed graphs with n nodes, m arcs and k scenarios. For each scenario, each arc
cost is assigned with a random integer number in U.0; 100/. The computational
tests were performed for k 2 f2; 10g, n 2 f250; 500; 750; 1000g and d 2 f5; 10; 20g,
where d D m=n represents the network density.

For each network dimension, 10 instances were generated. For each instance,
Algorithms 1 and 2 were applied and the associate robust shortest path problems
were solved by LA and HA after preprocessing. Alternatively, LA and HA were
applied to solve the same instances without preprocessing.

5.1 Results

In order to analyze the performance of the algorithms for each dimension, the
average total running times (in seconds) are calculated. Let P be the CPU time
to preprocess the network, NP be the CPU time for solving the robust shortest
path without any preprocessing and AP be the CPU time for solving the same
problem after preprocessing. Let �.P/, �.NP/ and �.AP/ denote the corresponding
averages. The indices 0 and 1 are used to distinguish the preprocessing of robust
0-persistent nodes and the preprocessing of robust 1-persistent arcs, respectively. In
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Table 1 Average results for preprocessing robust 0-persistent nodes

HA LA

n d k P0 Nod0 NP AP0 P0 C AP0 NP AP0 P0 C AP0
250 5 2 0.210 134 0.324 0.304 0.514 0.473 0.353 0.563

10 1.033 111 1.193 1.164 2.197 1.358 1.209 2.242

10 2 0.227 20 0.318 0.331 0.558 0.830 0.499 0.726

10 1.218 201 1.531 1.471 2.689 1.534 1.473 2.691

20 2 0.220 4 0.342 0.342 0.562 1.173 0.521 0.741

10 1.185 8 1.562 1.594 2.779 2.588 1.648 2.833

500 5 2 0.479 380 0.673 0.648 1.127 0.926 0.688 1.167

10 2.404 309 2.995 3.041 5.445 3.153 3.037 5.441

10 2 0.537 145 0.732 0.725 1.262 1.438 1.075 1.612

10 2.641 101 3.593 3.646 6.287 4.109 3.601 6.242

20 2 0.553 147 0.744 0.699 1.252 2.082 1.186 1.739

10 2.705 3 3.400 3.439 6.144 6.037 4.013 6.718

750 5 2 0.741 319 1.127 1.281 2.022 2.284 1.638 2.379

10 5.899 370 6.797 7.263 13.162 8.221 6.860 12.759

10 2 0.859 281 1.218 1.329 2.188 2.491 1.934 2.793

10 5.816 90 6.920 7.433 13.249 10.610 8.264 14.080

20 2 0.865 27 1.294 1.390 2.255 4.233 2.720 3.585

10 6.470 0 8.775 9.189 16.659 22.426 10.581 18.051

1000 5 2 1.088 714 1.721 2.003 3.091 2.557 1.703 2.791

10 7.881 631 8.805 10.079 17.960 10.424 9.089 16.970

10 2 1.192 403 1.817 2.896 4.088 3.645 2.831 4.023

10 8.313 457 9.449 11.661 19.974 11.546 10.775 19.088

20 2 1.203 185 1.855 1.853 3.056 7.094 3.926 5.129

10 7.568 1 9.825 9.556 17.124 29.270 11.975 19.543

addition, let Nod0 and Arc1 be the number of robust 0-persistent nodes and robust
1-persistent arcs, respectively, and �.Nod0/ and �.Arc1/ be their averages.

The averages for the preprocessing of robust 0-persistent nodes are reported
in Table 1, where � was omitted to simplify notation. The plots in Fig. 5 show
the average CPU times considering the density of the network and the number of
scenarios.

Since robust 1-persistent arcs were rarely detected with the performed tests, the
values of �.Arc1/ were always 0 and therefore �.NP/ and �.AP1/ were similar.
Thus, preprocessing robust 1-persistent arcs did not bring any advantage and in
Table 2 only �.P1/ is shown. These results were close to the correspondent for
�.P0/ in Table 1 when the number of scenarios was small (k D 2). Nevertheless,
when k D 10, preprocessing robust 0-persistent nodes became more demanding
than preprocessing robust 1-persistent arcs. This can be explained by the fact that
the set of possible scenarios for checking condition (11) is generally larger than the
number of scenarios involved to check (12), which implies an increased effort in
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Fig. 5 Average CPU times for preprocessing robust 0-persistent nodes and for algorithms HA and
LA with and without preprocessing

Table 2 Average CPU times
for preprocessing robust
1-persistent arcs

d k n D 250 n D 500 n D 750 n D 1000

5 2 0.239 0.477 0.970 1.159

10 0.228 0.567 1.196 1.641

10 2 0.337 0.517 0.763 1.232

10 0.256 0.701 0.959 1.152

20 2 0.286 0.635 0.897 1.143

10 0.231 0.473 1.257 1.368

solving shortest path problems. The results show that such difference is more clear
when the networks are bigger (n 2 f750; 1000g).

Table 1 shows that finding robust 0-persistent nodes was always faster than
finding the robust shortest path without preprocessing (�.P0/ < �.NP/), both when
HA and LA are considered. Moreover, the smaller the density, the higher the number
of robust 0-persistent nodes. In fact, when d D 5, more than half of the nodes in the
network were identified as being robust 0-persistent.

The preprocessing of robust 0-persistent nodes was quite effective when solving
the robust shortest path problem with LA for the networks with the highest density.
The reason is that the denser the network, the bigger the average number of arcs
that emerge from each node, and, consequently, the bigger the number of labels that



Reducing the Robust Shortest Path Problem 261

can be discarded when detecting robust 0-persistent nodes. For d D 20, Table 1
and the plots in Fig. 5 confirm such results (�.NP/ > �.P0/C �.AP0/), specially
for the two largest networks (n 2 f750; 1000g). Exceptions were observed when
d D 20 and k D 10 for the two smallest networks (n 2 f250; 500g), possibly
due to a major effort in calculating the robustness costs after preprocessing given
that more scenarios are involved. Globally, the CPU time used by LA to solve the
problem after preprocessing was always inferior to the correspondent time without
preprocessing (�.AP0/ < �.NP/).

For HA, �.P0/ is close to �.NP/ and then the difference between both can be
easily compensated by the time necessary to solve the problem after preprocessing
(�.AP0/). This value exceeded �.NP/ for HA in many of the large networks
(n 2 f750; 1000g), generally when only a small number of robust 0-persistent nodes
could be identified. In both cases the number of paths ranked in HA [8] did not
decrease enough to spare enough computational effort for the overall performed
tests. Hence, even though for some cases finding the robust shortest path with HA
after preprocessing was faster than without preprocessing, in general this approach
did not seem to react well to preprocessing.

Figure 5 shows that the performances of HA and LA are similar for the networks
with the lowest densities (d 2 f5; 10g). Globally, for the same density and the same
number of nodes, j�.NP/�.�.P0/C�.AP0//j grows with the number of scenarios.

6 Conclusions

This work approached preprocessing techniques for the minmax regret robust
shortest path problem with a finite number of scenarios. The research concerned
the identification of nodes/arcs that participate or do not participate in an optimum
solution, before this is actually determined. Based on [2], sufficient conditions were
derived to search for robust 0-persistent nodes and for robust 1-persistent arcs. The
developed rules can be implemented in polynomial time and depend on the shortest
paths for the scenarios with the least robustness cost.

Computational experiments were performed over randomly generated networks
in order to study the impact of preprocessing on finding a robust shortest path.
The labeling and hybrid approaches in [8] were used to compute the robust
shortest path with and without preprocessing. The strategy for identifying robust
0-persistent nodes was the most useful, specially in sparse networks, for which the
problem size could be significantly reduced at most of the cases. Moreover, for
the networks with the highest density, the labeling method applied after detection
of robust 0-persistent nodes outperformed its application without preprocessing.
The results were different when using the same preprocessing followed by the
hybrid method. In this case the preprocessing made some of the original instances
easier to solve. Nevertheless the CPU time demanded for both preprocessing and
computing the robust shortest path exceeded the CPU times of the hybrid method
when applied without preprocessing. For the considered instances preprocessing
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robust 1-persistent arcs was not advantageous, given that very few of those arcs
could have been identified.

Future research on this subject can be guided to develop new techniques that
allow more nodes to be discarded or that can identify more arcs belonging to
an optimum solution. One of the possible techniques to investigate is a dynamic
approach for identifying such nodes or arcs based on the robust shortest path
candidates determined along the algorithm.
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Mathematics of Energy and Climate Change:
From the Solar Radiation to the Impacts
of Regional Projections
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Abstract This chapter focuses on the natural and anthropogenic drivers of climate
change and on the assessment of potential impacts of regional projections for
different scenarios of future climate. Internal and external forcing factors of climate
change are associated to changes in the most important processes of energy transfer
with influence on the energy balance of the climate system. The role of the solar
activity, regular variations in the orbital parameters of the Earth and the radiative
forcing which comprises the changes in the chemical composition of the atmosphere
and the characteristics of the radiative processes that occur in the atmosphere and
on the surface of the Earth will be discussed. Recent evidences of climate change
and the general characteristics of the climate models used in climate projection
will be presented. The chapter ends with results of some case studies of potential
impacts of regional climate change projections in Portugal, namely in forest fire
regime, extreme precipitation intensity and in the design of storm water drainage
infrastructures.
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DMC Duff Moisture Code
DC Drought Code
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LWR Long wave radiation
MIROC Model for Interdisciplinary Research on Climate
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1 Introduction

The participation in the thematic session “Energy Transfer and Management” of
the “International Conference and Advanced, School Planet Earth, Mathematics of
Energy and Climate Change” was considered as an opportunity to promote the
proximity and interaction between mathematicians, climatologists and engineers
working in the energy transfer and management scientific areas. The participants
were challenged to present their work from the standpoint of mathematics, attracting
and motivating the colleagues from this area of science to improve the methodolo-
gies used in climate research and/or to propose different approaches usually used
in their areas of study. This contribution is intended to respond to this request
by focusing on the concepts and processes in the physics of climate as well as
the assessment of climate change and its impacts. It aims to contribute to clarify
some key definitions and phenomena, focuses mainly on the laws and principles
governing these concepts and processes as well as on the adopted methodology and
the presentation of the main results obtained in specific case studies.
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2 Natural and Anthropogenic Drivers of Climate Change

This section is devoted to present the concepts and processes of the physics of
climate that are fundamental to understand and assess future climate changes.
Various definitions of weather and climate can be found in the literature. Weather
is a detailed description of the state of the Atmosphere and daily evolution for a
short period of time (of just a few days). The state of the Atmosphere is defined
by the values of a complete set of thermo-hydro-dynamic properties, usually named
climatic elements. These properties may be extensive (e.g. volume, mass, energy,
entropy) whose values are proportional to the size of the system or intensive (e.g.
temperature, pressure, wind) with local character and value defined in each point
and instant [60]. Climate comes from Ancient Greek word klima, which means
inclination in a clear mention to the different amount of energy per unit area
that reaches the Earth’s surface depending to the direction of the incident solar
rays. Climate is commonly defined as the “expected weather” [9], the “average
weather” or the “the state, including a statistical description, of the climate system”
[40]. More rigorously, climate may be defined as a set of statistics (e.g., averaged
quantities, higher moment statistics and information on the occurrence of extreme
events) of the climate elements that characterizes the structure and behavior of
the Atmosphere, Hydrosphere and Cryosphere [60], over a period of time that
may range from a few months to thousands or millions of years [40], but it is
common to adopt the classical period of 30 years recommended by the World
Meteorological Organization [85]. A discussion of the statistical descriptors of
climate may be found in [26] and variations in these statistics, on all spatial and
temporal scales may be defined as the climate variability. This variability may
be decomposed into the internal variability, caused by natural internal processes
within the climate system (such as internal instabilities and feedbacks, leading to
nonlinear interactions among various components of the climate system), or external
variability, caused by natural or anthropogenic variations in external forcing namely
astronomical (e.g., changes in orbital parameters, in the intensity solar radiance
and rate of rotation of the Earth) and terrestrial (e.g. changes in the composition
of the Atmosphere due to human activity or volcanic activity, in the land use/land
cover and in long-term tectonic factors) forcings [40, 60]. In summary, the climate
variability result from the complex interactions between forced (external) and free
(internal) variations within the dissipative and highly nonlinear Climate System with
many sources of instabilities [60]. In a recent past, the United Nations Framework
Convention on Climate Change (UNFCCC) makes a distinction between climate
change attributable to human activities altering the atmospheric composition, and
climate variability attributable to natural causes. However, the most recent IPCC
definition of climate change [40] is adopted here as the change in the state of the
climate that can be identified (e.g., by using statistical tests) by changes in the mean
and/or the variability of its properties, and that persists for an extended period,
typically decades or longer, independently of the cause of the change.
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Climate change is usually presented in direct or indirect association with the
increase of global temperature. In fact, the most recent Fifth Assessment Report of
the Intergovernmental Panel on Climate Change [41], provides a list of undeniable
observable changes in climate since 1950 including: the warming of the Atmosphere
and the Oceans; reduction of the amount of snow and ice; rising of sea level and
concentrations of greenhouse gases. Most of these recent observable evidences of
climate change are associated to changes (increases) of air temperature. From the
thermodynamics point of view, the temperature of a system is a measure of its
energy content. The object of this study is the Climate System (Fig. 1) which may
be defined as an open (due to the sporadic exchanges of usually small amounts
of mass with the outside) and non-isolated system (for the energy exchange with
the Sun and the outer space). The Climate System is composed by the following
subsystems: Atmosphere (the gas layer that surrounds the planet), Hydrosphere
(the water in liquid phase deposited on the surface forming the oceans, rivers and
lakes), Cryosphere (water in the solid phase—snow and ice), Lithosphere (the solid,
inorganic, mineral, rocky crust covering entire planet) and the Biosphere (all living
organisms from one-celled organisms to plants and animals). These subsystems
interact with each other through many different processes (e.g. hydrological and
carbon cycles) exchanging mass, energy and momentum.

Fig. 1 The Climate System, their components, processes and interactions. Image from the [38]
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Thus, to understand the changes of climate it is necessary to study all the
processes of energy transfer within and between each subsystem but essentially
between the Climate System and its neighborhood. The Climate System receives
energy from interior of the Earth and other stars but it is mainly powered by sun
energy. This energy reaches the top of the Atmosphere in the form of radiation in a
process that can be described by the laws of radiation.

In 1791, Pierre Prévost, a Genevan philosopher and physicist, showed that all
bodies radiate heat independent of its temperature [65]. However, it is the Planck’s
law that describes the distribution of the energy radiated by a black body in thermal
equilibrium. This special body is an ideal model, which consist of a perfect absorber
that emits the maximum possible amount of energy at a given temperature in all
directions (i.e., isotropically). The Planck’s law states that the amount and quality
of energy emitted by blackbody is determined solely by its absolute temperature
i.e. the emitted radiation has a spectrum that is only determined by the temperature
alone and not by the shape or composition of the body, which can be written in terms
of the wavelength or frequency (spectral radiance), using c D ��, by

E.�;T/d� D 2hc2

�5.ech=k�T � 1/
d� or E.�;T/d� D 2h�3

�5.ech=k�T � 1d�

where h D 6:63 	 10�34 J is the Planck constant, c is the speed of the light in the
propagation medium, and k D 1:38 	 10�23 J K�1 is the Boltzman constant. The
integration of the spectral radiance (Planck’s law) for all possible wavelengths and
angles of a hemisphere covering a horizontal surface leads to the total radiance,

�E.T/ D �T4

where � D 5:670 	 10�8 W m�2 K�4 is the Stefan-Boltzman constant. The above
equation is the Stefan-Boltzman law that states that the flux density emitted by
a blackbody is proportional to the fourth power of the temperature (T4). The
wavelength of maximum emission is the solution of a simple extreme problem
solved by differentiating E.�;T/ with respect to � and setting the derivative equal
to zero,

T�max D 2898�m K

which constitutes the Wien law. These radiation laws are well illustrated in Fig. 2
where the intensity of radiation is plotted for different values of blackbody’s
temperature. The shape of the thick black lines are defined by Plank’s law, the
area below those lines are a measure of the total energy emitted by a blackbody
(Stefan-Boltzman’s law) and the wavelength of maximum emission decrease with
the increase of temperature which helps to understand why Wien law is also known
as Wien displacement law.

Two other radiation laws should be mentioned: the Kirchhoff’s law and the Beer-
Bouger-Lambert law. The first takes into account that, in general, a medium do not
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Fig. 2 Blackbody radiation (Planck Radiation Law) which relates the intensity of radiation
emitted by unit surface area into a fixed direction (solid angle) from the blackbody as a function
of wavelength for a specific temperature. Wien displacement Law (T:�max D const:) is also
illustrated. Image from the Croatian-English Chemistry Dictionary & Glossary. Credits to E.
Generalic (http://glossary.periodni.com/glossary.php?en=blackbody+radiation)

absorb all but also reflect and transmit part of the incident energy so that, for each
wavelength,

˛� C r� C t� D 1

where ˛� is the absorptivity defined as the quotient between the absorbed and total
monochromatic intensity, ˛� D I˛.�/=I.�/, r� D Ir.�/=I.�/ is the reflectivity and
t� D It.�/=I.�/ is the transmissivity of the layer [60].

The amount of energy that reaches the Climate System (top of the Atmosphere)
depends on two factors: the amount of energy emitted by the Sun and the orbital
radius of the Earth (distance Earth-Sun). In fact, the Sun do not emit energy at the
same rate (Fig. 3) and the changes in solar activity and its relationship with climate
is a contemporary topic of research (cf. [6, 11, 24, 27, 31, 46, 47, 50, 83]).

On the other hand, the distance to the sun is primarily determined by the
orbital parameters of the Earth, in particular the eccentricity of the orbit, the
obliquity of the Earth’s axis, and the precession of the Earth. These three factors
combined determine the flux of incoming solar radiation to the Climate System
and the temporal and spatial distribution of that energy over the Earth Surface.

http://glossary.periodni.com/glossary.php?en=blackbody+radiation
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Fig. 3 Several indicators of solar variability recorded during the last three solar cycles,
namely solar irradiance (i.e. direct solar power at the top of the Earth’s atmosphere), sunspot
numbers, solar flare activity, and 10.7 cm radio flux. All data are depicted as the annual
average value except the solar irradiance which is also depicted as both a daily measure-
ment and a moving annual average. Image created by Robert A. Rohde/Global Warming Art
(http://www.globalwarmingart.com/wiki/File:Solar_Cycle_Variations_png)

The relative importance of these orbital parameters is not always evident. For
example, presently, the summer season on the northern Hemisphere occurs when
Earth is on the aphelion (the point of the orbit where the Earth is farthest from
the Sun) as a consequence of small eccentricity of orbit and the obliquity of the
Earth’s axis. However, these orbital parameters do not remain constant over time
but vary periodically (Fig. 4). The Earth’s eccentricity determines the shape of
the Earth’s orbit around the Sun and is constantly fluctuating between circular
and more elliptical (0–5 % ellipticity) with two main periodicities 100,000 and
413,000 years [12]. These oscillations, from more elliptic to less elliptic, are
of prime importance to glaciation in that it alters the distance from the Earth to
the Sun, thus changing the distance the Sun’s short wave radiation must travel
to reach the Earth, subsequently reducing or increasing the amount of radiation
received at the Earth’s surface in different seasons. These oscillations are termed
the Milankovitch cycles due to the work of Milutin Milankovitch, the Serbian
astronomer, geophysicist and mathematician who contributes to the explanation
of Earth’s long-term climate changes (e.g. ice ages) caused by the changes in the
position of the Earth in comparison to the Sun [34] but this theory was largely
advanced by Hays et al. [29]. Berger [7] provides a review on the Milankovitch
theory and climate.

For relative long periods of time, the Earth’s surface temperature remains
constant which implies that the incoming solar radiation must be balanced by the
outgoing terrestrial radiation [16]. Due to the temperature of their surfaces, the

http://www.globalwarmingart.com/wiki/File:Solar_Cycle_Variations_png


270 M.G. Pereira

Fig. 4 Variations in Earth’s orbit, the resulting changes in solar energy flux at high latitude, and
the observed glacial cycles. Principal frequencies for each of the three kinds of variations are also
labeled. Orbital data from [66], glacial data is from [51], solar forcing curve data (insolation) is
derived from July 1st sunlight at 65ıN latitude according to Jonathan Levine’s insolation calculator.
The gray bars indicate interglacial periods, defined here as deviations in the 5,000 year average
of at least 0.8 standard deviations above the mean. Image created by Robert A. Rohde/Global
Warming Art (http://www.globalwarmingart.com/wiki/File:Milankovitch_Variations_png)

maximum spectral intensity of the Sun and Earth radiation is located in the visible
and infrared parts of the spectrum, respectively (Fig. 5).

After reaching the top of the Atmosphere (TOA) the solar radiation suffers a set
of accidents before reaching the Earth’s surface (Fig. 6). From the total incoming
solar shortwave radiation (SWR) that reaches the TOA only about 50 % is absorbed
by Earth’s surface because: (a) about 6 % is backscattered by the atmospheric gases
and 24 % reflected back to outer space by the aerosols and clouds (20 %) as well
as by the Earth’s surface (4 %); and (b) about 20 % is absorbed by clouds (3 %)
and air gases (16 %) mainly water vapor, carbon dioxide and dust (Fig. 5). The
energy that reaches the Earth’s surface is then used to heat the lower levels of
the Atmosphere (7 %), to feed the hydrological cycle (23 %) and emitted (20 %) as
long wave radiation (LWR). The LWR emitted from the Earth’s surface is strongly
absorbed by the clouds and specific atmospheric constituents—e.g. water vapor,
carbon dioxide, methane, nitrous oxide—usually named as greenhouse gases for
reemitting LWR into all directions and in particular to the Earth’s surface, reheating
the lower layers of the atmosphere (greenhouse effect).

The Climate System loses energy (infrared radiation) from the middle layers
of the troposphere while the Sun provides an excess of energy primarily in the

http://www.globalwarmingart.com/wiki/File:Milankovitch_Variations_png
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Fig. 5 Individual absorption spectrum for major greenhouse gases and total
absorption plus Rayleigh scattering bands effects on both downgoing solar and
upgoing terrestrial radiation. Image created by Robert A. Rohde/Global Warming Art
(http://www.globalwarmingart.com/wiki/File:Atmospheric_Transmission_png)

tropics and the subtropics. The energy is then partially redistributed to middle
and high latitudes by atmospheric winds and oceanic currents in complex energy
transport processes. From the thermodynamics perspective, the Climate System
may be viewed as a giant heat engine, where the high-temperature reservoir is
the subtropical region, the low-temperature reservoir are the middle layers of the
Atmosphere, and the energy (heat) of the sun is converted into the mechanical
energy of the ocean and the atmosphere (here viewed as the working fluids of
the heat engine) to transport an almost unimaginably large amount of heat from
the tropics to the poles, largely carried out by the mid-latitude storms, and the
work performed used to maintain the kinetic energy of the circulations against the
continuous drain by friction [5, 60].

http://www.globalwarmingart.com/wiki/File:Atmospheric_Transmission_png
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Fig. 6 Estimate of the Earth’s annual and global mean energy balance. The long term average of
the amount of incoming solar radiation absorbed by the Earth and atmosphere is balanced by the
outgoing long wave radiation emitted by the Earth’s surface and Atmosphere. Only about half of the
incoming solar radiation is absorbed by the Earth’s surface which is transported to the Atmosphere
by warming the air in contact with the surface (sensible heat), by evapotranspiration (thermals,
latent heat) and by long wave radiation partially absorbed by clouds and greenhouse gases. In
turn, the Atmosphere radiates long wave energy out to space but also downward back to Earth
(greenhouse effect). Image from [38]

Under averaged conditions, the evolution of the Climate System is determined
by its own internal dynamics as a result of the non-uniform heating, characteristics
and interaction between its components (internal forcings). However, changes in
the natural (e.g. volcanic eruptions and solar radiation) and human induced (e.g.
atmospheric composition, vegetation types) external forcings (Fig. 7) have the
ability to affect the climate, disrupting the radiation balance of the Earth (Fig. 6):
(1) by changing the incoming solar radiation (e.g., through changes in Earth’s or
Sun’s orbit, solar activity/cycles); (2) by changing the albedo, i.e. the fraction of
solar radiation that is reflected (e.g., though changes in cloud cover, atmospheric
particles, land use and vegetation cover); and (3) by changing the concentration of
gases and aerosols involved in atmospheric chemical reactions, able to act as cloud
condensation nuclei (modifying the properties of cloud droplets and potentially
affecting precipitation regime), to absorb, scatter and reflect SWR and LWR and
changing the longwave radiation from Earth back towards space [16, 38]. The way
the Climate System responds to these changes is not linear due to the large number
of feedback mechanisms.

The drivers of climate change are all the natural or anthropogenic factors that can
disrupt the climate system and cause a statistically significant change in, at least, one
feature of the statistical distribution of any climatic element, beyond the limits set
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Fig. 7 Main drivers of climate change affecting the radiative balance between incoming solar
shortwave radiation (SWR) and outgoing longwave radiation (OLR). Image from [16]

by the climate variability. To assess future climate change, it is necessary to have
projections of the climatic elements which is achieved with climate models. These
primary tools for climate research are the result of trying to solve numerically a set
of non-linear differential equations that describe the evolution (in time and space)
of a complete set of climatic elements. These models are constantly evolving for
a better representation of a higher number of physical, chemical and biological
properties and processes of its components, their interactions, feedback processes
and spatial resolution (Fig. 8). However, current coupled Atmosphere-Ocean Gen-
eral Circulation Models (AOGCMs) are already able to provide a comprehensive
representation of the climate system that are used to study and simulate the climate,
even for operational purposes, which includes monthly, seasonal and interannual
climate predictions [40]. A comprehensive assessment of the climate model’s types,
characteristics and ability, both individually and collectively, to simulate the most
important features of the climate is provided in [23].
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Fig. 8 The evolution of climate models in terms of the different components that were coupled
into the climate models with increasing complexity and range of processes has increased over time
(illustrated by growing cylinders, in the left panel) and the current (a) higher resolution models
(87:5 � 87:5 km) and (b) in the very high resolution models now being tested (30:0 � 30:0 km)
(right panel). Image from [16]

3 Potential Impacts of Regional Climate Change Projections

This section is devoted to presenting the results of the assessment of regional
impacts of climate change in two case studies: the area burned by forest fires, and
in the design of storm water runoff systems. In both cases, the study area is the
Continental Portugal, the south-westernmost country of Europe located in the SW
corner of the Iberian Peninsula (Fig. 9).

3.1 Effects on Wildfire Regime

Three different types of factors influencing wildfires in Portugal: (a) the phys-
iological conditions of the vegetation/forest which includes the type, state and
characteristics (e.g., moisture content, fire resistance, organization and cleanliness
of the forest); (b) geographical conditions (such as the location and accessibility to
the site of the fire, topography, amount and availability of firemen and equipment
and other resources for fire combat, the number and intensity of simultaneous fires,
amount and type of socioeconomic activities); and, (c) weather and climate.

Weather and climate are among the most important factors of forest fires
worldwide. Indeed, the climate defines the existence and type of vegetation in
each region and, along with the weather conditions (mainly temperature and
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Fig. 9 Geographical location of Continental Portugal in Western Europe

precipitation), are responsible for the physiological state of the vegetation. Weather
is also a determinative factor at all stages of the fire: from ignition (lightning),
development (wind, humidity, temperature) and extinction (precipitation).

In Portugal, several studies have put in evidence that these factors are responsible
for about two-thirds of the variability of the annual total burnt area (hereafter, BA)
[61, 63]. Similar findings were found for other regions of Spain [77]. In addition, the
role of specific weather parameters in fire activity in Portugal has been demonstrated
in several studies, for example, the synoptic weather patterns at different levels of
altitude [3, 61], extreme weather conditions [76] and circulation weather types [77].

Meteorological variables are frequently used, alone or in combination with other
information, in the development of indices of fire danger/risk for various regions of
the world [20, 30, 79]. The Comparative analysis of the performance of several fire
danger indices have been performed for southern Europe [8, 81]. In Portugal, the
Portuguese Institute of the Sea and the Atmosphere IPMA (Instituto Português do
Mar e da Atmosfera) starts to use in 1988 the Portuguese index [25, 35], which is a
modified version of the Nesterov index [71] but in 1998 adopted the Canadian Fire
Weather Index, also known as FWI, for having greater predictive capacity of fire
risk in summer [81].

In fact the FWI is just one of the fire indices that integrate the Canadian Forest
Fire Danger Rating System (CFFDRS), which was specifically designed for Canada
(Fig. 10). The development of the CFFDRS starts in 1968 and presently comprises
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Fig. 10 Structure of the Canadian Forest Fire Danger Rating System, CFFDRS and of the
Canadian Forest Fire Weather Index System, CFFWIS. Both adapted/extracted from [48]

two major subsystems: the Canadian Forest Fire Weather Index System (CFFWIS)
[79, 80]; and, the Canadian Forest Fire Behaviour Prediction System (CFFBPS).
The CFFWIS (Fig. 10) uses exclusively daily weather data to compute a set of fire
indices and has shown to be appropriate to rate the risk of forest fires all over the
world [86]. The system entails a total of six components: three fuel moisture codes
and three fire behaviour indexes. The Fine Fuel Moisture Code (FFMC), the Duff
Moisture Code (DMC) and the Drought Code (DC) respectively account for the
average moisture content of surface litter and other cured fine fuels, decomposing
litter of moderate depth and of deep, compact organic (humus) layers of the soil
that presents different drying rates. The Initial Spread Index (ISI) combines the
effects of wind and FFMC to estimate the expected rate of fire spread, while the
Buildup Index (BUI) combines DMC and DC to account for the total amount of
fuel available for combustion. The BUI is finally combined with ISI to produce the
FWI and the Daily Severity Rating (DSR). Mathematically, the DSR is defined as a
power of the FWI (DSR D 0:0272FWI1:77) but rates the difficulty of controlling
fires. The FWI is a suitable general index of daily fire danger in forested areas
while DSR reflects more accurately the expected efforts required for fire suppression
and was specifically designed for averaging either in time or in space [57]. The
equations and program code of the CFFWIS as well as a comprehensive description
of these indexes may be found in [79, 80], respectively. These moisture codes and
fire indexes are numerical ratings and, in this study, were computed on the basis of
daily values of air temperature, relative humidity, and wind speed at 12 UTC and
24-h cumulated precipitation for the 1980–2007 period obtained from ERA-40 re-
analysis product [78] of the European Centre for Medium-Range Weather Forecasts
(ECMWF).

The assessment of the potential impacts of regional climate change projections
on wildfire regime was performed following the approach and the methodology
described in [63] and is based on the Portuguese Rural Fire Database, PRFD [62].
This dataset provides detailed information for each fire occurred in mainland in the
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period 1980–2007 which includes: type of land cover affected by the fire (in forest,
shrubs and agricultural areas), location of the fire ignition in terms of the name of
the administrative regions (district, county and parish) and date and time of ignition
and extinction. Monthly and annual cumulated values of burnt area in Portugal were
derived from the PRFD for the 28-year period. The annual cycle of monthly burnt
area for mainland Portugal reveals that the vast majority of total burnt area (89 %)
is due to fires in the summer months (26 % in July, 46 % in August and 17 % in
September). The inter-annual variability is also much higher during the summer
months and the variability of July and August is about twice the one of September.
These results are expected in the Mediterranean region due to the temperate type of
climate that induces high levels of water and thermal stress on the vegetation during
the hot and dry periods in the late spring and summer [61, 76, 82].

Time series of burnt area in July and August (Fig. 11) account for 72 % of the
total burnt area in Portugal and resembles the high inter-annual variability of the
annual burnt area time series which suggest that the annual fire regime will be
dominated by the events that take place in those two summer months. Therefore
the study will be restricted to the burnt areas in the months of July and August.

Annual values of burnt area were clustered in two classes, severe/mild, if the
monthly burnt areas of July and August are both greater/lower than the upper /lower
terciles of the respective month, i.e. greater than 39,000 ha for July and 44,000 ha
for August/lower than 11,000 ha for July and 23,000 ha for August. According to

Fig. 11 Box plot of the annual cycle of monthly burnt area in Portugal for the period 1980–2007.
Boxes indicate monthly values of the lower quartile (Q1), the median and the upper quartile (Q3).
Whiskers extend down to the minimum and up to the maximum monthly values
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Fig. 12 Inter-annual variability of burnt area in mainland Portugal for yearly (thin line with grey
diamonds) and July plus August (thick line with white circles) amounts, for the period 1980–2007.
A plus (C) inside the white circle represents a severe summer season, defined as one where the
monthly burnt areas of July and August are both greater than the upper tercile of the respective
month while a minus sign (�) inside the white circle represents a mild summer season, defined as
one where both the monthly burnt areas of July and August are lower than the respective lower
terciles

this criteria, the years of 1990, 1991, 1995, 2003 and 2005 were severe ones whereas
the years of 1982, 1983, 1988, 1997 and 2007 were mild ones (Fig. 12).

Composites analysis was used to assess the relationship between of monthly
burnt area in July and August and the meteorological and fire risk indexes.
Composite analysis includes the composite which is an arithmetic averages for a
subsample (or class) and the anomaly which is the departure of composite from
the grand average computed for the entire sample. The statistical significance is
assessed by estimating percentiles 10 and 90 from a sample of 1,000 composites
randomly generated using the bootstrapping technique [21]. As shown in Fig. 13,
monthly composites of the air temperature, acumulated precipitation and DSR from
January to August present a contrasting behaviour between severe and mild years
during the months preceding and during the summer fire season that is worth
mentioning and analysing in detail.

In the pre fire season, severe years are associated to positive anomalies of
precipitation in the early spring (March), followed by significant negative anomalies
of precipitation and air relative humidity (not shown) and positive air temperature
anomalies in May and June. This climatic pattern is consistent with the atmospheric
circulation from NE, over Portugal during this period (not shown). As expected,
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Fig. 13 Monthly anomalies (between January and August) of the daily severity rating (DSR),
temperature and cumulated precipitation (upper, middle and bottom panels, respectively), for
composites of severe (solid lines with white circles) and mild (dashed lines with white diamonds)
fire seasons. The 90 and 10 % statistical significant level obtained with bootstrap are also plotted
in dotted lines
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DSR anomalies reflect the above-described cumulative behaviour of temperature,
relative humidity (not shown), wind and precipitation, the increasing trend of posi-
tive anomalies from April to June. In the case of mild years an opposite behaviour
is observed, i.e. there is significant less than usual amount of precipitation and
relative humidity (not shown) in March and an abnormal high values of precipitation
in the months of May and June, in conjunction with meaningful lower values of
temperature, associated with SW surface wind (not shown). During summer major
statistically significant differences between severe and mild fire seasons are found
in all meteorological variables and, consequently, in DSR. Severe fire seasons are
characterised by extreme negative precipitation and humidity anomalies and positive
temperature associated to southern leading to utmost DSR anomalies.

Results from composite analysis suggest developing a Burned Area Model
(BAM) by means of multiple linear regression analysis of monthly burnt areas in
summer using, as predictors, meteorological risk indices (that integrate the effects of
the meteorological variables) respecting to the pre-fire and/or fire seasons. Because
of the highly asymmetrical character of the monthly means of burnt area in July
and August (Fig. 11), the decimal logarithm of monthly burnt area was used as the
predictand. It must be emphasized the positive and statistically significant (p-value
< 0:001) value of the Pearson Product-Moment correlation coefficient between
the decimal logarithm of areas burned in July and in August (0.63) and between
the DSR and the decimal logarithm of monthly burnt area for the months of July
(0.69) and August (0.71), during the period 1980–2007. However, it is also worth
noting the very low correlation (r D 0:15, p-value < 0:26) between DSR monthly
means of July and August. These results suggest that the BA in July and August are
associated with different meteorological fire risk conditions during the summer and
the climatological background in the pre-summer season could also condition the
fire regimes in those months. Different selection methods (e.g., stepwise, forward,
backward and explained variance) were used to select the best and parsimonious
BAM which was obtained when using the following equation:

Log10.BAJ=A/ D 2:6173C 0:1189	 DSRJ=A C 0:1095	 DSRPF

where Log10 is the decimal logarithm, BAJ=A is the monthly burnt areas in July
or in August, DSRJ=A is the monthly mean of DSR in July or in August depending
if the predictand is the monthly burnt area in July or August, respectively, DSRPF

is the monthly mean of DSR during the pre-fire period (PF), defined as May and
June when the predictand is the decimal logarithm of monthly burnt area in July
(Log10.BAJ/) and May, June and July when the predictant is the decimal logarithm
of monthly burnt area in August (Log10.BAA/). Both predictors retained in the model
are significant at the 5 % level and were selected in the order they appear in the
model with an increasing value of the coefficient of determination (r2) from 0.47,
when BAJ=A is the only predictor, to 0.61 when both predictors are used in the model.
In order to mitigate the effects of over fitting, the performance of the experiments
was evaluated using a cross validation procedure that removes 14 year pairs (i.e.
July and August for each year) instead of the more usual and less demanding leave-
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one-out-cross validation scheme [84]. The overall agreement between observed
and modelled values using cross-validation of the decimal logarithm of burnt area
reveals only a slightly decrease of r2 to 0.58 (p-value <0:001). This means that the
BAM is able to explain, in cross-validation mode, almost 3/5 of the total variance.
In addition, the Kolmogorov-Smirnov test confirms that the observed and modelled
values of the logarithm of the values of burnt area as well as the residuals of the
BAM has a normal distribution. The quality and robustness of these results will be
exploited when the developed BAM will be used as a generator of monthly burnt
area scenarios in present and future climate conditions.

Values of the meteorological variables needed to compute the DSR for the future
were simulated by the Model for Interdisciplinary Research on Climate, MIROC
[42] for three grid points of the MIROC 3.2 medium resolution (medres) grid, two
located over mainland Portugal and one over Galicia (Spain). Data was extracted
for the twentieth century model simulations 20C3M, and for the emission scenario
B1 [55] covering the 1951–2000 and 2051–2100 period, respectively. MIROC is a
coupled General Circulation Model (GCM) used in the 4th Assessment Report of
the Intergovernmental Panel on Climate Change [37] and several model comparison
studies indicate MIROC as one of the models with best performance, in particular
over the Iberian Peninsula [1, 22, 52, 54, 56, 69, 75]. The B1 scenario corresponds to
a rapid economic growth but high level of environmental and social consciousness
is accompanied by rapid changes towards a service and information economy and
the introduction of cleaning technologies [36]. Averages were made over the three
selected grid points for the considered parameters, and monthly means were finally
computed.

The BAM was then used with DSR values for the pre-fire and the fire season
estimated with GCM outputs respecting to 20C3M and B1 climate scenario to
generate time series of burnt areas in July and August for present and future
scenarios. Kolmogorov-Smirnov (K-S) tests were then used to check the null
hypothesis that the samples of DSR and BA simulated with the BAM has a normal
distribution. However, there are changes in both the mean and the variance, even in
the case of present climate (20C3M) due to climate change signal as well as to the
limitations of BAM and bias of the GCM (noise). In an attempt to remove the noise
and for the correct comparison of results, the normal distribution of the BA samples
N(5.58, 1.18) obtained with the BAM using data for present (20C3M) scenario was
forced to match (i.e. have the same mean and variance of) the BA normal distribution
N(4.34, 0.54) obtained with observed data (Table 1). Then the exactly the same
correction factors were applied to correct the BA normal distributions, N(6.11, 0.81)
and N(6.61, 1.20), obtained with the BAM when using 2051–2078 and 2073–2100
data for B1 of future climate scenario (Table 1).

Descriptive statistics of the normal distributions of the Log10.BAJ=A/ may be
found in Table 2. When compared with the present climate scenario (20C3M), there
are increases in the means of Log10.BA/ with both future climate scenarios periods,
respectively of 6 % (4.34–4.58) and 11 % (4.34–4.81) from the 20C3M to the B1
scenario 2051–2078 and 2073–2100 periods. The same does not happen in the case
of the standard deviation where a contrast is found for the two periods of the future
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Table 1 Means, standard deviations and p-values from the one-sample Kolmogorov-Smirnov (K-
S) normality test for the following samples of burnt areas in July and August: observed values
(1980–2007), simulated values using BAM fed with observed meteorological data (1980–2007)
and of simulated values using BAM fed with GCM outputs from the present climate scenario,
20C3M (1973–2000) and from future climate scenario B1 (2051–2078 and 2073–2100)

Observed Modelled 20C3M B1
1980–2007 1980–2007 1973–2000 2051–2078 2073–2100

LogBA Mean 4.34 4.34 5.58 6.11 6.61
St. deviation 0.54 0.42 1.18 0.81 1.20
p-value (K-S test) 0.74 0.71 0.72 0.69 0.70

Table 2 Descriptive
statistics of the corrected
normal distributions of
logarithm of monthly burnt
area for present (20C3M) and
future (B1) climate scenario

20C3M B1

1973–2000 2051–2078 2073–2100

Mean 4.34 4.58 4.81

St deviation 0.54 0.37 0.55

P5 3.63 3.98 3.95

P10 3.73 4.21 4.13

P25 3.94 4.39 4.45

P50 4.24 4.62 4.79

P75 4.66 4.81 5.11

P90 5.21 5.02 5.55

P95 5.39 5.08 5.77

IQR 0.73 0.43 0.66

climate scenario; the standard deviation remains unchanged from the 20C3M to the
last period of B1 scenarios, but presents a decrease of about 30 % (0.54–0.37) from
the 20C3M to the first 28-year of B1 scenario. It is also worth noting that differences
in percentiles changes with increasing percentiles, e.g. from 0.35 (0.32) in P5 to 0.38
(0.55) in P50 and to �0.31 (0.38) in P95 when going from present climate to first
(last) 28-year period of B1 scenario. This is an important aspect, since it reveals that
for the 2051–2078 period major increases in burnt area are only expected for values
below P75 and the larger increases should be expected for P10 (0.48) values of burnt
area while for the 2073–2100 period increases are therefore to be expected for all
values of burnt area but larger increases are found for P50 (0.55).

Differences are more impressive when analysing changes in burnt area (and not
in the logarithm) from present to future climate scenarios, e.g. by looking at the
measures of location and dispersion of the corresponding log-normal distributions
(Table 3). Increases of 17,000 ha to 42,000 ha and 61,000 ha may be observed in
the median from the 20C3M to the first and last 28-year period of B1 scenario,
respectively. On the other hand, the mean changes from 53,000 ha for present
climate scenario to 51,000 ha in the 2051–2078 period and increase to 157,000 ha to
the 2078–2100 period of B1 scenario. The weight of extremely large values of burnt
area is also well apparent given the growing differences between the median values
associated to the large positive skewness of the log-normal distributions. Increases
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Table 3 Measures of location and dispersion respecting to the lognormal distributions of monthly
burnt area for present (20C3M) and future (B1) climate scenarios

20C3M B1

1973–2000 2051–2078 2073–2100

Mean (�103 ha) 53 51 157

Median (�103 ha) 17 42 61

Interquartile range (�103 ha) 37 41 100

Relative dispersiona 2.14 0.98 1.64
a Defined as the semi-interquartile range divided by the median

may also be found in dispersion, taking into account that the inter-quartile range
increase from 37,000 ha, in the case of the 20C3M scenario, to 41,000 ha and
100,000 ha, in the case of first and last 28-year period of B1 scenario. However,
relative dispersion presents a rather different behaviour of the mean and the median,
that is, a decrease from 20C3M to the 2051–2078 period of B1 (2.14–0.98) and an
increase to the 2073–2100 period (0.98–1.64).

3.2 Impact of Projected Climate Change in the Design
of Storm Water Drainage Infrastructures

The design of stormwater drainage infrastructure relies on the implicit assumption
that the intense precipitation distribution is statistically stationary [68]. However,
several European countries have experienced the occurrence of floods in urban areas
more frequently in recent years. In addition, latest projections of climate change [39]
points to changes in the precipitation regime, in particular an increase frequency
and intensity of precipitation extreme events, namely long drought periods and
heavy precipitation episodes, even in regions where total precipitation may decrease
[17, 39]. All these facts point to: (i) the increased uncertainty about the performance
of the storm water drainage infrastructures constructed under current paradigm in
the near future; (ii) the need to assess potential changes in the regime of intense
rainfall at the regional scale; and, (iii) eventually start to design and construct
drainage structures capable of responding to these expectable changes in extreme
precipitation regime.

In Portugal, the design of storm water drainage infrastructure is regulated by
the Regulatory Decree nr. 23/95 of 23rd August [19], which adopted the Intensity
Duration Frequency (IDF) curves developed by Matos and Silva (1986). From
the mathematical point of view, the IDF curves reflects the power law behavior
dependence of the precipitation intensity (I) with the duration of the precipitation
(t) according to

I D a 	 tb
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where a and b are the so called IDF parameters. These curves are of empirical
nature and, from the engineering point of view, are of fundamental importance for
the design of hydraulic structures, as they provide maximum precipitation intensity
related to a given length and a given return period which represent key information
for the design of hydraulic structures [10].

The objective of this study is to assess the impacts of potential change in the
precipitation regime in the design of drainage systems for rainwater and hence
the need to review the legislation that supports the design of these structures. The
study relied on a comparative analysis between the IDF parameters provided by
the Portuguese legislation and those obtained with precipitation data observed in
meteorological stations located and representative of the three precipitation zones
defined for Portugal and simulated by COSMO-CLM [COnsortium for Small-scale
MOdelling and Climate Limited-area Modelling Community] [67] regional climate
model (RCM) for recent past and future climate conditions.

The precipitation data used in this study comprises: (a) hourly time series
observed in eight selected weather stations (based on their length and quality),
located on the three rainfall regions defined in Portuguese Law [19] provided by the
National System of Water Information and Resources, SNIRH (Sistema Nacional de
Informação e Recursos Hídricos) (Fig. 14); and (b) and daily time series simulated
by the COSMO-CLM with ECHAM5/MPI-OM1 boundary conditions for recent
climate conditions (20C, 1961–2000) and for the B1 and A1B (2000–2100) SRES
scenarios [55] for the grid cells containing the location of the aforementioned
weather stations. The COSMO-CLM model has demonstrated high performance
in simulating the precipitation in different regions of Europe and, for that reason,
has been used to asses changes in precipitation regime over Europe [28, 44] and
specifically over Portugal [15].

The methodology used for the estimation of the IDF curves is based on [10],
explained in [64] and embraces: (i) disaggregation (and aggregation) of precipitation
from daily to hourly time scales using the method of the fragments [4, 70, 73, 74]
and from hourly to sub-hourly scales using the disaggregation coefficients suggested
by [10], in order have maximum precipitation for ten different duration times (5, 10,
15, 30 min, 1, 2, 6, 12, 24 and 48 h); (ii) fitting of the Gumbel distribution function
to time series of maximum precipitation intensity for each of the ten durations, using
likelihood estimation of the location (�) and scale (�) parameters in each case (cf.
[13]); (iii) use of the Gumbel inverse probability distribution to estimate maximum
precipitation intensity values for eight return periods (2, 5, 10, 20, 50, 100, 500 and
1,000 years); (iv) plot of I (mm/h) versus precipitation duration (min) in logarithmic
scales (log.log plot) and the subsequent use of regression analysis to estimate the
IDF parameters a and b; and, finally (v) correction of the COSMO-CLM model’s
bias dues to its difficulty in reproducing exactly the observed weather conditions.
The goodness of fit of the Gumbel distribution function to the data was assessed
with the analysis of Quantile-Quantile plots and the Kolmogorov-Smirnov test (KS
test) while the IDF parameters were estimated using robust regression [32, 33, 72]
with a statistical significance level of 5 % and the quality of the linear regression
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Fig. 14 Rainfall regions defined in the Portuguese Law [19] and the geographical location of the
weather stations used in this study

also assessed by the coefficient of determination (r2), the F-statistic (p-value) and
the error variance.

The impact of projected climate change in the design of storm water drainage
infrastructures was performed directly on their size. For sake of simplicity, from
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all the different types of these systems, only a specific residential rain gutter and
collector will be considered. The flows (Q) were calculated with the rational method
using a contribution area of 100 m2 for the rain gutter and 155 m2 for the rain
collector, a flow coefficient equal to the unit (typically used for building coverings)
and precipitation intensity (I) estimated for a duration (t) of 5 min and a return
period (T) of 10 years. It was assumed that the rain gutter has a rectangular shape,
with a base (B) of 20 cm, inclination (i) of 0.5 % and was dimensioned so that the
height of the water depth (h) therein does not exceed 7/10 of the total height of
the rain gutter. The Manning-Strickler’s formula (Q D K 	 Af 	 R2=3 	 i1=2), was
then used with a roughness coefficient (K) of 90 m1=3/s, which correspond to metal
plate. The hydraulic radius (R) and the area occupied by the fluid (Af ), in the case
of rectangular sections, are determined respectively by using the following set of
equations:

Q D K 	 Af 	 R2=3 	 i1=2

R D .B 	 h/=.B C 2h/

Af D B 	 h

The residential rain collector was also designed using the Manning-Strickler
formula for full section, roughness (K) of 120 m1=3/s (which correspond to polyvinyl
chloride, PVC) and an inclination (i) of 2 %. The hydraulic radius (R), in the case
of a filled circular section, is given by R D Di=4, where Di is the internal diameter
of the piping.

The residential rain gutter and collector were designed following the previously
described methodology and using IDF curve parameters estimated with observed
and simulated data for three time periods (2011–2040, 2041–2070 and 2071–2100)
of both future climate scenarios, after correcting the RCM bias. The differences
between the drainage structures dimensions estimated for future current and future
climate conditions are presented in Table 4.

The first result which should be emphasized is the difference between the
dimensions of the organs of collecting rainwater, estimated for different weather
stations of the same rainfall region, which may suggest the need to revise the law
[19] that determines the same dimensions for all local within the same rainfall
region.

In general, the results points to the need of larger rain gutters and collectors in
the future. The expected increases tend to be higher for the end of the century and
for the conditions of A1B climate scenario. Maximum estimated increases can reach
50 % for the rain gutter and 25 % for the collector but are not identical distributed
across the country. Estimated maximum increases in the height of the rain gutter
were obtained for the 2071–2100 period of A1B scenario and are of 49 % (in São
Manços) for region A, 40 % (in Castelo Melhor) for region B and 19 % (in Pega)
for region C. Expected maximum changes in the rain gutter dimensions are also not
uniform in all precipitation regions except in region C. In fact, it range between 32 %
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(Ponte da Barca) and 49 % (in São Manços) in region A and from 26 % (Pinelo) to
40 % (Castelo Melhor), in region B.

In order to obtain an average value representative for the mid-twenty-first
century, averages were built for each station over the three time periods, thus
sampling decadal variability. This results on an estimated average increase of 42 %
(33 %) in São Manços and 19 % (30 %) in Ponte da Barca for the A1B (B1) scenario
in Region A. For region B, changes are larger for Castelo Melhor (about 20 %) than
for Pinelo (about 9 %) for both scenarios. On the contrary, little differences were
found for region C, with changes ranging between about 11 and 6 %, respectively
for scenario A1B and B1 in both weather stations. Furthermore, averages were built
over both stations in each region and both scenarios to obtain values representative
per region considering scenario uncertainty. Averaged increase in Gutter dimension
is likely to be higher in Region A (31 %) than in region B (14 %) and in region C
(8 %).

The projected changes for the rain collector size are essentially proportional
those of the gutter (Table 4) and for that reason a detailed presentation of the
results is omitted. The main results are: (i) changes are typically smaller than for
the gutter; (ii) averaged changes in the collector diameter increases from 5 % in
region C, to 8 % in region B and 16 % in region A; (iii) different behavior in
region A is characterized by higher changes in the weather stations located in the
southern (São Manços) than in the northern part (Ponte da Barca) and, in region B,
at lower (Castelo Melhor) than at higher altitude (Pinelo); (iii) higher homogeneity
in the expected changes in mountainous region C and (iv). Finally, it is important
to underline that projected changes in the size of the building drainage systems
are statistical significant at the 99 % level in all cases except in the 6 cases (17 %)
identified by a dagger in Table 4 and for the station of Pega in the first 30-year period
of the A1B scenario. It is important to underline that projected changes in all cases
of rainfall region A are statistical significant (99 %) and that statistical significance
is higher in the end of the twenty-first century.

4 Conclusions

Climate change was presented as a problem of energy transfer between the Sun and
the Earth (e.g. changes in the orbital parameters of our planet) and the radiative
balance of the Climate System (i.e. changes in the chemical composition of the
atmosphere), adopting a personal presentation of the fundamental concepts and
privileging the mathematical description of the processes. However, most of the
definitions and concepts used in this chapter may be found in the literature and,
specifically, on the glossary of the recent Fifth Assessment Report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC) which also provides a
comprehensive assessment of the physical science basis of climate change [40].

Results of the assessment of the potential impacts of regional climate change on
the area burned by rural fires in Continental Portugal consistently points towards: (i)
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an increasing risk of fire under future climate conditions; (ii) an increasing possibil-
ity of having much larger fire events; (iii) an increasing inter-annual variability of the
fire regime, which together with the positive bias will have dramatic consequences at
the social, economic and environmental levels. Nevertheless, it is very likely that the
simulated amounts of burnt area are overestimated. This is to be attributed at least to
three orders of reasons: (i) the use of global (GCM) or regional (RCM) circulation
models which are just limited representations of reality; (ii) the use of a linear BAM
which is only able to explain a partial amount of the inter-annual variability (even if
up to 2/3 of the total variance), prevents the introduction of feedback mechanisms
that might reduce the amounts of burnt area and applied to future climate scenarios,
i.e. to meteorological conditions beyond the range of the tested domain; and, (iii)
not taking into account other important factors for fire occurrence and size such as
that are not yet fully understood nor properly modelled, such as those related to
changes in fuel structure [58, 59], climate-vegetation dynamics and in conservation
planning [45], patterns of lightning strikes [18] and anthropogenic activities and
drivers of fire, such as control over ignition, fire management, suppression activities,
land use/land cover changes [2, 14, 43, 45, 49].

Finally, the methodology developed to assess the impact of projected climate
change in the design of storm water drainage infrastructures ensures robustness,
statistical significance and adequate comparative analysis of the results obtained.
Differences in the design of storm water drainage systems with observed and
simulated data for the future scenarios suggest that the impact of climate change will
generally imply: (i) the increase of the dimension of these organs in the future; (ii)
this variation is not identical in the three rainfall regions defined for Portugal; (iii)
nor between stations within of each of these regions. Moreover, these differences are
very similar to those found between the size of the drainage systems designed with
the IDF curves stipulated in the Portuguese Law [19] and estimated with the same
data simulations [64] which reinforces the need to review the rainfall classification
of the territory and update the IDF curves defined in the legislation.
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Infinite Horizon Optimal Control for Resources
Management in Agriculture

Fernando Lobo Pereira

Abstract This article concerns an optimal control based framework for the opti-
mization of resources in agriculture taking into account the environment sus-
tainability. A decentralized, adaptive, hierarchic architecture to support long term
coordinated decision-making strategies is required in order to achieve the common
long term desired equilibrium in the environment state, and, at the same time, allow
the economic sustainability of a number of distributed farm producers with, possibly
conflicting, short term economic goals. The overall coordination is achieved by an
adaptive Model Predictive Control structure that, on the one end hand, promotes
the long term common good by approximating the solution to an infinite horizon
optimal control problem, and, on the other hand, provides agro-chemical indicators
to each one of the local farmers. We will emphasize on the importance of optimality
results for infinite horizon optimal control problems of the Mayer type depending
on the state at the final time while satisfying constraints at both trajectory endpoints.

1 Introduction

A framework based on optimal control is proposed as an advanced tool to support
the management and control of resources in agriculture and builds on the issues dis-
cussed in [14]. The general motivation relies on the clear perception of the difficulty
in meeting the future food needs on earth without destroying the environmental
equilibrium, [7].

From the small sample of literature review in [14], it is clear that: (a) the interest
in applying control and optimization techniques has been growing substantially, and
(b) the overall problem is so complex that, generally speaking, only relatively partial
problems have been addressed by these techniques. A cursory review of the litera-
ture points out to the extreme wide variety of problems whose complexity range
may vary tremendously. This variety arises at two, generally interdependent, levels:
(a) specification of the scope of the problem, and (b) the problem specificities once
its scope is defined. In the later, the modeling of wealth of dynamics and constraints
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so that the essentially relevant features are captured and, at the same time, the
tractability constraints are satisfied, and specification of performance functionals
and time horizons to be considered are key challenges. In what concerns the former,
the extremely vast array of highly intertwined contexts that can be considered—
economics, environment, climate, ecology, natural resources (notably, water and
soil), spatial (from farm level to a region or country) and time scales (from short
horizon of a few production scales to long horizon returns). In order to deal with
the complexity for either concentrated or distributed control problem formulations,
researchers have resorted to the specification of architectures enabling the organiza-
tion of complex systems in multiple interacting monolithic simpler subsystems.

The promising perspectives of optimal control were pointed out in the pioneer
work of David Zilberman in [24] by outlining a few sketchy statements of optimal
control problems in agricultural economics.

In [8, 11, 12, 21], optimal control problems with an increasing degree of
sophistication have been considered in order to find the combination of chemical
and non-chemical control strategies optimizing the long term economic trade-off
between crop yield profits, herbicide costs, and long term adverse effects of weed
resistance. In particular, one should point out the effect of weeds resistance to herbi-
cides which, in spite of the modeling difficulties, proved to be an important factor in
the problem formulation. Various techniques, such as nonlinear programming, Pon-
tryagin Maximum Principle and dynamic programming, have been used to solve the
formulated optimal control problems. The general conclusion of these studies is that
a better performance is achieved if a wider range of control methods are available
and that, even without explicitly considering environmental factors in the problem,
the optimal solutions are environmentally friendlier than the conventional ones.

The optimal control of pests has been investigated in a number of articles, notably
[5, 18, 23]. Besides the economic issues addressed in the optimal weed control
problems, now, issues concerning long term ecosystem equilibrium have been
considered. Moreover, optimal strategies seeking long term environmental equilibria
have been designed for problems with multiple pest species and by combining the
use of fertilizers and pesticides. The Pontryagin Maximum Principle and dynamic
programming techniques, [1, 4, 16] have been used to solve these problems.

Other classes of optimal control problems for resources management in agricul-
ture considering more global contexts have also been considered. While soil erosion
and lake restoration from phosphorus runoff were taken into account in [9], the
problem of optimal carbon sequestration in agricultural soils (either by reduced
tillage, organic farming and other carbon input to the soil techniques, switch to
perennial crops, etc.) that takes into account the fact that carbon de-sequestration is
far faster than sequestration is formulated in [6, 19].

It is important to observe that the optimal control problems considered so far
were monolithic due to the fact that its formulation did not require the consideration
of multiple, distributed, independent, albeit interacting and, possibly, conflicting,
subsystems. However, when that is the case, a meaningful problem formulation
requires an appropriate architectural arrangement in order to optimize resources for
complex problems for which, usually, decisions affect multiple conflicting interests,
different sets of stakeholders, and impacts in different time horizons.
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In [17], a systemic approach is adopted in order to formulate optimization and
optimal control problems to optimize the economic valuable botanical yield compo-
nents based on a functional-structural plant growth model in terms of the source-sink
dynamics. This model encompasses all pertinent ingredients which encompass both
botanical, and ecological yield components, and all other environmental factors.
A key challenge here is to ensure the compatibility of this model with the plant
model in terms of spatial and temporal scales. In [10], optimal control modeling
was used to analyze how public resources should be allocated to small-scale water
protection efforts in agriculture or, alternatively, to investments in large-scale waste
water treatment plants to control point source loads. In [20], an analysis is performed
in the context of the Australian agriculture to show the need of increasingly adaptive
policies to take into account the evolution of perceptions of the state of the system
and of the intervening processes in the multiple spatial and temporal scales, as
well as the increased role of environment changes for which climate variability
plays a prominent role. Finally, a much more general context is considered in [7]
where it is argued that the optimal development path in the sense of the max-min
criterion of intergenerational justice is too demanding to be practical and too
costly for the economically less competitive. This calls for a development policy
following an optimal growth approach while encompassing measures to mitigate
the intergenerational and intra-generational welfare inequalities.

The crescendo of complexity that emerges from this small sample of publications
points out to a number of research directions that go well beyond the conventional
ones naturally associated with the usual “monolithic” optimal control problem for-
mulation, such as: (i) modeling of system’s dynamics, constraints and performance
criteria; (ii) approaches to solve it, which may draw from optimization and control
theory, and computational procedures; and (iii) framework to integrate the generated
output in appropriate decision-making and control support systems. Another class of
challenges that have not been addressed to the same extent, concerns the formulation
and solution of decision and control problems which encompass the following
issues:

• Spatial heterogeneity due to soil composition, groundwater distribution, solar and
wind exposure, etc.

• Ecosystem interactions to account for multiple crops, species of weeds, and pests.
• Environmental effects such as soil, groundwater, air, and carbon emis-

sion/sequestration.
• Geographic boundary effects, notably with distinct agricultural production facil-

ities.
• Multiple goals, possibly conflicting and manifesting in different time horizons.
• Meteorological variability, as well as, unanticipated climate change trends.

This requires a very ambitious research agenda to be addressed by a strongly
interdisciplinary research program involving key stakeholders.

A general abstract control architecture satisfying some key identified require-
ments is discussed in the next section. Then, in Sect. 3 some key results in Optimal
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Control and Model Predictive Control are considered as providing the basis for
decision and control synthesis in the context of the control architecture. Finally,
some brief conclusions are given in Sect. 4.

2 A Control Architecture

A careful analysis of some key references, e.g., [7, 9, 10, 17, 19, 20, 23, 24], led to the
distillation of the following general requirements to be satisfied by a comprehensive
dynamic optimization based framework to support decision-making and control:

• Long (say, infinite) time and short time horizon optimal control strategies should
be articulated in spite of the, possibly conflicting, goals to be considered in the
different time horizons.

• Scalability in time and space to deal with complexity and heterogeneity.
• Coordinated decentralization of the decision and control system composed by

multiple independent decision makers.
• Adaptivity to take into account climate change trends, other environment

changes, economic and social trends, and, possibly disruptive, technological
developments.

• Robustness of the solution with respect to modeling uncertainties and perturba-
tions.

These requirements are described here in general and relatively abstract terms.
Obviously, they have to be further detailed in the specific context in which an
optimal control based management and control support tool would be designed.
This task will be part of the tool in question design activity.

The layered control architecture depicted in Fig. 1 was proposed in [14].

Fig. 1 Layered control architecture
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The layers composing the system are: Planning, Coordination and Execution.
The Planning layer considers the global issues and takes aggregated information
of the system from the coordination layer and external sources to generate long-
term planning targets which are passed to the Coordination layer. If significant
inconsistencies between the current and the executed plans are detected the global
plan is updated. Moreover, detected significant trends can be incorporated into
the models so that plans reflect the overall system’s evolution. The Coordination
layer receives the planned targets and generates shorter term targets for each one
of the subsystems to achieve their coordination. It aggregates status data from the
subsystems, to provides “feedback” data to the planning layer. The Execution layer
of each subsystem computes its control strategy by taking into account the local
goals, constraints, and the coordinating targets provided by the Coordination layer.

In all these layers, optimization, and specially optimal control, plays a key
role, even when consensus might have to be generated in order to coordinate
subsystems with conflicting goals. However, the performance criteria and targets
at the overall planning level are different than those at the level of each one of
the subsystems. Clearly, this modular structure accommodates spatial heterogeneity,
decentralization, adaptivity, and concurs to the subordination of strategies optimiz-
ing shorter term local goals subject to the local constraints (e.g., to ensure economic
sustainability) to global, longer term, goals (e.g., environment sustainability) via the
coordination layer that bridges both perspectives.

3 Model Predictive Control Based Framework

In spite of its already long tradition, Model Predictive Control (MPC) is still a
growing topic due to the fact that its wide range of schemes yield control strategies
combining “optimality” with adaptivity. Here, we are particularly interested in
control designs that ensure control strategies that are: (a) robust to episodic
perturbations, (b) adaptive to sustained changing trends, and (c) “optimal” in the
sense of the trade-off between conflicting short term economic local goals with
long term global environment targets. In this context, we envisage MPC schemes
generating control strategies that approximate solutions to infinite horizon optimal
control problems, [15].

Essentially, the variant of the general MPC scheme, [13], that we are considering
here is as follows:

1. Initialization: t D t0, x.t0/.
2. Solve .PT/ over Œt0; t0 C T� to obtain an optimal reference trajectory x�.
3. Compute an optimal feedback control u� during Œt0; t0 C�� to track x� restricted

to this time interval.
4. Sample the state variable x at t0 C� to obtain Nx D x.t0 C�/.
5. Slide the time origin by� time units, let x.t0/ D Nx, and go to step .2/.
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Here, T and � are the durations of the optimization (or prediction) and of
the control horizons, respectively. Notice that feedback control is considered both
during the intervals between consecutive sampling times, and when solving the open
loop optimal control problem .PT/ which, by using the sampled state variable, takes
into account perturbations that might affect the state trajectory. Remark also, that
identification methods can be used to adapt models in .PT/ if warranted by the
observed deviations in the values of the sampled state variable. The optimal control
problem .PT/ can be stated as follows:

.PT/ Minimize g.x.T//C
Z t0CT

t0

l.s; x.s/; u.s//ds

subject to Px D f .t; x; u/; L-a.e.

x.t/ 2 Xt; u 2 U ; x.t0/ 2 C0:

Here, the functions .f ; l/ W Œt0; t0 C T�	R
n 	R

m ! R
n 	R represent the controlled

dynamics and the running cost of the system, g W R
n ! R is the endpoint cost

functional, and .Xt;Ut/ 
 R
n 	R

m are, respectively, the pointwise state and control
constraint sets. A wide range of optimality conditions are currently available to
support solution methods to this problem, [1–4, 16].

Since one key objective of the proposed resources optimization framework is to
reconcile long term goals driving the system to an environmental equilibrium with
short term goals ensuring economic competitiveness, the MPC scheme running at
the Planning and Coordination layers should generate strategies that asymptotically
approximate the solution to an “infinite-horizon” optimal control problem, that is

Minimize g1.�/C
Z 1

t0

l.t; x.t/; u.t//dt

subject to Px D f .t; x; u/ L-a.e.; x.t0/ 2 C0;

� 2 C1; lim
t!1 x.t/ D �; u 2 U ;

where the function g1.�/ is the performance functional that forces the system to
be driven to the desired long term equilibrium. Following the arguments in [15],
the optimal control problem .PT/ to be considered in the MPC scheme, so that its
solutions approximate the infinite horizon ones, is:

.PT/ Minimize V.t0 C T; x.t0 C T//C
Z t0CT

t0

l.s; x.s/; u.s//ds

subject to Px D f .t; x; u/; u 2 U ; x.t0/ 2 C0;

where the value function V.�; �/ defined by

V.
; z/ WD min
.x;u/2ACP.
;z/

�
g.�/C

Z 1



l.t; x.t/; u.t//dt


;
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being ACP.
; z/ the set of all feasible asymptotically convergent control processes
.x; u/ satisfying x.
/ D z.

Under appropriate assumptions, the value function can be obtained by solving an
Hamilton-Jacobi partial differential equation

8
<
:
@

@t
V.t; x/C min

u2˝h @
@x

V.t; x/; f .t; x; u/i D 0

V.T; x.T// D g.x.T//;

for which the existence of solution is ensured by the assumptions and by adopting
compatible notions of derivatives and of solution concept, [22]. The huge difficulties
associated with the computational complexity of this equation are well known even
for finite horizon problems. Thus, in [15], an alternative approach to this problem
is considered by examining necessary conditions of optimality for infinite horizon
optimal control problems particularly well suited for this class of applications. In
this article, we consider the problem on Œ0;1/,

.P1/ Minimize h.x.0/; �/

such that Px.t/ D f .t; x.t/; u.t// L � a:e:

x.0/ 2 C0; lim
t!1 x.t/ D � 2 C1

u.t/ 2 ˝ 
 R
m;

where C0 and C1 are compact sets and the remaining ingredients are as above. In
spite of the significant body of literature on this class of problems, the degenerative
effect of the infinite horizon still constitutes a huge challenge. The maximum
principle proposed in [15], features a new transversality condition at infinity—
based on the concept of directional inclusion at infinity—that, for asymptotically
convergent control processes, yield an interesting trade-off between the applicability
breadth (dictated by the required assumptions) and the information provided by the
optimality conditions.

4 Conclusions

The decision support system based on optimal control discussed in this article
satisfies some important requirements arising in resources management and control
in agriculture. These requirements were extracted from a significant review of
pertinent literature. The planning and coordinated control layers of the proposed
multi-layer control structure relies on an “infinite horizon” Model Predictive Control
scheme. Some theoretical challenges inherent to optimality conditions for this class
of problems were examined. The complexity inherent to the formulation of the
optimization problems at various levels of the control architecture is huge, and,
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thus, this article can be regarded as a roadmap pointing out to a number of research
issues which may lead to tools to design decision-making, management and control
support systems.
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Distributed Reasoning

Pedro Rodrigues and João Gama

Abstract This paper discusses the problem of learning a global model from
local information. We consider ubiquitous streaming data sources, such as sensor
networks, and discuss efficient learning distributed algorithms. We present the
generic framework of distributed sources of data, an illustrative algorithm to monitor
the global state of the network using limited communication between peers, and an
efficient distributed clustering algorithm.

1 Introduction

Data are distributed in nature. Nowadays, detailed data for almost any task are
collected over a broad area, and streams in at a much greater rate than ever before.
In particular, advances in miniaturization, the advent of widely available and cheap
computer power, and the explosion of networks of all kinds gave life to inanimate
things. Simple objects that surround us are gaining sensors, computational power,
and actuators, and are changing from static, inanimate objects into adaptive, reactive
systems. Sensor networks and digital social networks are present everywhere [7].

Examples of network data include smart grids consisting of millions of auto-
mated electronic meters. The meters would generate an overwhelming amount
of distributed data that can be handled with emergent techniques: data streams
management and processing approaches. A key characteristic of smart grids is the
intelligent layer that analysis the data produced by these meters allowing companies
to develop powerful new capabilities in terms of grid management, planning and
customer services for energy efficiency. The development of the market with a
growing share of load management incentives and the increasing number of local
generators will bring new difficulties to grid management and exploitation. Present
monitoring systems suffer for the lack of machine learning technologies that can
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modify the behavior of monitoring systems based on the sequence patterns arriving
over time. From a data mining point of view, a smart grid forms a network
(eventually decomposable) of distributed sources of high-speed data streams. The
dynamics of data are unknown; the topology of network changes over time, the
number of meters tends to increase and the context where the meter acts evolves
over time. This way, several data mining tasks are involved: prediction, cluster
analysis (profiling), event and anomaly detection, correlation analysis, etc. All
these characteristics constitute challenges and opportunities for applied research in
distributed data mining. The requirements of near real-time analysis for multiple
time horizons and multiple space aggregations make these analyses an even harder
research challenge.

In this work we focus on clustering, one of the most used data mining techniques.
The goal in cluster analysis is the assignment of a set of observations (or objects)
into groups so that observations in the same group are similar in some sense.

The paper is organized as follow. In Sect. 2 we present the distributed network
framework and an illustrative example about distributed reasoning. In Sect. 3, we
present a distributed clustering algorithm for sensor networks. In the context of
this work, a cluster is defined to be a set of sensors. The key characteristic of
the proposed algorithm is that each sensor processes locally their own data, and
communicate with neighbours in order to learn a global view of the network. The
last section concludes the paper by presenting the lessons learned.

2 Network Data Model

The goal of our study are networks of interconnected nodes. Nodes, or sensors or
peers, are sensing the environment measuring some quantity of interest. Individu-
ally, each peer has a local and limited information about the environment. If sensors
communicate, the network might have a global perspective of the environment.
Figure 1 illustrates this context.

2.1 The Framework

Network topology is the organizational hierarchy of the interconnected nodes.
Different network topologies can affect throughput, but reliability is often more
critical.

A common structure is the star network, where all nodes are connected to a
special central node, the coordinator. This is the typical layout found in a wireless
sensor networks. Another popular layout is the mesh network, where each node is
connected to an arbitrary number of neighbours in such a way that there is at least
one traversal from any node to any other. The main purpose of a mesh network is
fault tolerance.
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Fig. 1 A network of interconnected nodes. Circles represent sensors, edges represent communi-
cation paths

Routing is the process of selecting network paths to carry network traffic. Some
popular routing schemes are: unicast: delivers a message to a single specific node;
broadcast: delivers a message to all nodes in the network; anycast: delivers a
message to a group of nodes, typically the ones nearest to the source.

In data-mining problems, a user runs queries over the data produced by the
sensors. A query is defined over the data produced by all the sensors:

Query D Q.
n[

iD0
Si/

We can consider two types of queries:

1. One-shot queries: What is the current state of the network?
2. Continuous queries: Track and monitor the state of network at any time.

Continuous queries are of particular interest because they are used for monitoring
purposes, understanding dynamics, detect anomalies and changes.

In the network data model, data is vertically distributed. Answering continuous
queries, requires specific characteristics of the algorithms. Following [2, 13], the
requirements for processing continuous queries are:

• Single pass: process each observation once;
• Small space: constant space;
• Small processing time;
• Reduced communications.

Local approaches are the most efficient ones [5]. They preserve privacy and security
issues but require some sort of synchronization between peers [8].
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2.2 An Illustrative Example

In this section, we present an illustrative application of ubiquitous reasoning. The
problem consists of monitoring data produced in a sensor network. The sensors
monitor the concentration of air pollutants. Each sensor maintains a data vector with
measurements of the concentration of various pollutants (CO2, SO2, O3, etc.). A
function on the average of the data vectors determines the Air Quality Index (AQI).
The goal consists of trigger an alert whenever the AQI exceeds a given threshold.
The problem involves computing a function over the data collected in all sensors. A
trivial solution consists of sending data to a central node. This might be problematic
due to huge volume of data collected in each sensor and the large number of sensors.

Sharfman et al. [12] present a distributed algorithm to solve this type of problems.
They present a geometric interpretation of the problem. Figure 2 illustrate the
instance space. Each axis corresponds to one pollutant. For visualization purposes,
we represent only two pollutants. The gray dots corresponds to the sensor’s
measurements, and the black dot to the aggregation vector, the AQI index. The gray
region corresponds to the alarm region. The goal is detect whenever the AQI index is
inside the gray region. In Fig. 2 we present three examples. The first one, all sensors
and the AQI index are outside the alarm region. In the second plot, the AQI index is
outside the alarm region, although one of the sensors is inside the alarm region. The
third plot, illustrate the case where the AQI index is inside the alarm region, although
all sensors are outside the alarm region. These examples illustrate that information
of individual sensors is not enough to make a decision about the global state of the
network. Sensors need to share information to reach a correct decision.

The method is based on local computations with reduced communications
between sensors. The base idea is that the aggregated function is always inside
the convex-hull of the vectors space (see Fig. 3a, b). Suppose that all points share
a reference point. Each sensor can compute a sphere with diameter the current
measurement and the reference point. If all spheres are in the normal region, the

Fig. 2 The vector space: the gray dots (A, B, C) corresponds to the sensor’s measurements; and the
black dot (D) to the aggregation vector. The gray region corresponds to the alarm region. The left
and central figures illustrates a normal air condition. The right figure presents an alarm condition,
where none of the sensors is inside the alarm region
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Fig. 3 The bounding theorem: the convex-hull of sensors is bounded by the union of spheres.
Sensors only need to communicate their measurements when the spheres are non-monochromatic

aggregated value is also in the normal region. This holds, because the convex-hull
of all vertex is bounded by the union of the spheres (see Fig. 3c, d). In the case that a
sphere is not monochromatic, the node triggers the re-calculation of the aggregated
function. Sensors broadcast their current measurements, and a new common point
is computed.

The algorithm guarantees that any alarm is detected and no false alarms are
signalled. The algorithm only uses local constraints. Mostly only local computations
are required and this minimizes the communications between sensors.

3 Clustering Distributed Data Sources

Clustering is the most popular technique for data understanding. The basic idea
behind clustering streaming data sources is to find groups of sources that behave
similarly through time, which is usually measured in terms of the distance between
the data series or the data distribution. Let X be a sensor node producing obser-
vations xi at each time step i. The goal of an incremental clustering system for
streaming data sources is to find (and make available at any time i) a partition
C.i/ of data sources, where data sources in the same cluster tend to be more alike
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Algorithm 1: The Monitoring Threshold Functions Algorithm (sensor node).

1 begin
2 Broadcast Initial position ;
3 Compute an initial reference point ;
4 foreach new measurement do
5 Compute the sphere with diameter defined by the current measurements and the

reference point and check its colour;
6 if sphere non monochromatic then
7 Broadcast the actual measurement;
8 Recompute a new reference point;

9 if new messages with current measurements from other sensors received then
10 Recompute the reference point;

than data sources in different clusters [3, 9, 11]. We propose a local algorithm to
perform clustering of sensors on ubiquitous sensor networks, based on the moving
average of each node’s data over time. L2GClust has two main characteristics. On
one hand, each sensor node keeps a sketch of its own data. On the other hand,
communication is limited to direct neighbours, so clustering is computed at each
node. The moving average of each node is approximated using memoryless fading
average, while clustering is based on the furthest point algorithm applied to the
centroids computed by the node’s direct neighbours. This way, each sensor acts as
data stream source but also as a processing node, keeping a sketch of its own data,
and a definition of the clustering structure of the entire network of data sources.

In this work we search for a definition of k clusters of sensor nodes, with k
previously known by the system. Although this simple example lacks some of the
common characteristics of real-world scenarios (e.g. unknown number or clusters or
unbalanced data), its extension is straightforward. If the number of clusters to find is
unknown, each node could search for a clustering with different number of clusters.
As only centroids are transmitted and used as single points (as if operating with
ensembles of clusters), there’s no need to know how many points come from each
node; all centroids that are received are included in the clustering as single points.
For unbalanced data (in terms of the assignment of nodes to clusters) we believe that
the convergence would take longer but deeper analysis is required in future work.

As previously stated, we consider that each sensor produces a univariate stream
of data, and we want to define a clustering structure for the sensors, where sensors
producing streams, which are alike, are clustered together. Hence, we should
consider techniques that project each sensor’s data stream into a reduced set of
dimensions that suffice to extract similarity with other sensors. These estimates can
be seen as the sensor’s current view of its own data, giving a sign of where in the
data-space this sensor is included [10]. One-way to summarize a data stream x is by
computing its sample mean O�x and standard deviation O�x. Our approach is to keep
track of the moving average of each sensor, as an estimate of the sample mean of
most recent data.
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Each sensor produces data continuously. Given this, each sensor s is responsible
of keeping its own estimate of the sample mean ( O�s) in a online fashion. Moving
averages are usually easy to compute, if we can keep a small buffer of data
points [10]. However, in such resource-demanding scenarios, this is seldom the
case. Nonetheless, sum-based statistics computed on sliding windows can be
approximated by weighting the sums using fading statistics [4]. The ˛-fading
sum Sx;˛.i/ of observations from a stream x is computed at time 8i > 0, as:
Sx;˛.i/ D xi C˛	Sx;˛.i�1/, where Sx;˛.0/ D 0. In the computation, ˛ (0 � ˛ < 1)
is a constant determining the forgetting factor of the sum. This way, the ˛-fading
average at observation 8i > 0 is then computed as: Mx;˛.i/ D Sx;˛.i/

N˛.i/
, where N˛.i/ D

1 C ˛ 	 N˛.i � 1/ is the corresponding ˛-fading increment, with N˛.0/ D 0. An
important feature of the ˛-fading increment is that: limi!C1 N˛<1.i/ D 1

1�˛ . Each
value of ˛, which should be close to 1 (e.g. 0.999), will converge to sliding windows
of different sizes. This way, at each observation i, N˛.i/ gives an approximated value
for the weight given to recent observations used in the ˛-fading sum.

3.1 Local Clustering of Stream Sources

The goal is to have at each local site an approximation of the global clustering struc-
ture of the entire sensor network. Each sensor should include incremental clustering
techniques which operate with distance metrics developed for the dimensionally-
reduced sketches of the data streams. Also, and although in several real-world
scenarios this is not true, we should not assume the sample mean of each sensor
to be correlated with its physical location and connectivity, as the matching between
data clusters and physical clusters is a promising strategy for sensor network
comprehension, so we should not bias the clustering solution [10]. Given the simple
sketch definition, the dissimilarity between two sensors x and y is the absolute
distance between their sample means, d.x; y/ D j O�x � O�yj.

3.1.1 Neighbourhood Interaction

Each sensor x is not only able to sketch its own data in a dimensionally-reduced def-
inition (the fading average Mx;˛), but it is also able to interact with its neighbouring
nodes 	x. The main characteristic of our approach is that, at each new observation
i produced by sensor x, instead of sending its own sketch Mx;˛ to its neighbours
	x, the node sends its own estimate of the global clustering Cx.i/. Note that, with
this approach, each node needs to keep an estimate of the global cluster centers
Cx.i/ � Cg.i/. This estimate can be seen as the sensor’s current view of the entire
network which, together with its own sketch, gives a sign of where in the entire
network data-space this sensor is included.
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Fig. 4 The two main local steps in L2GClust. In the left figure, each node receives data from direct
neighbours. Each node recomputes their centroids and send the new centroids to the neighbour
nodes (right figure)

At first observations, each sensor node x has only access to its own sketch
Mx;˛.i/. However, with neighbour nodes broadcasting their approximations of the
global clustering structure Cy.i/;8y 2 	x, node x suddenly has access to several
data points which are believed by other nodes to be the real cluster centers. Let
Px.i/ be the complete set of clustering definitions fCj.i/ j j 2 	xg received by node
x between observations xi�1 and xi. The set of points used in the clustering step
includes: O�x, the node’s own sketch; Cx.i � 1/, the node’s approximation of global
cluster centers (computed before observation xi); and Px.i/, the centroids sent by
node’s direct neighbours. Therefore, Cx.i/ is computed by clustering the set of points
fMx;˛.i/g [ Cx.i � 1/[ Px.i/.

The idea behind this step is to aggregate all the locally defined centers and apply a
clustering procedure on these centers, considering them as points for the clustering.
This way, next time this sensor uses or transmits its estimate Cx.i/ of the global
clustering structure, it is already updated with its most recent sketch and neighbours’
information (Fig. 4).

3.1.2 Furthest-Point Clustering

In the general task of finding k centers given m points, there are two major
objectives: minimize the radius (maximum distance between a point and its
closest cluster center) or minimize the diameter (maximum distance between two
points assigned to the same cluster) [1]. The Furthest Point algorithm [6] gives a
guaranteed 2-approximation for both the radius and diameter measures. It begins by
picking an arbitrary point as the first center, c1, then finding the remainder centers
ci iteratively as the point that maximizes its distance from the previously chosen
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centers fc1; : : : ; ci�1g. After k iterations, one can show that the chosen centers
fc1; c2; : : : ; ckg represent a factor 2 approximation to the optimal clustering [1].

This strategy gives a guaranteed definition of the cluster centers, computed by
finding the center ki of each cluster after attracting remainder points to the closest
center ci. Since we are applying clustering to cluster centroids, we are in fact
merging clustering definitions, a known technique which has been argued to give
good results [1].

4 Conclusions

In this paper, we have discussed the problem of learning global models from
distributed local information. We have presented a clustering algorithm for data
streams generated on wide sensor networks producing high speed data, from a
dynamic (time-changing) environment. The algorithms run locally in each node
of the network, processing their own data and communicating aggregated data to
its neighbours. This is an important characteristic in several applications, because
it preserves user’s privacy. A good characteristic of the proposed systems is the
ability to adapt to resource-restricted environments: system granularity can be
defined given the resources available in the network’s processing sites. The proposed
algorithms reduce both the dimensionality and the communication burdens, by
exploiting limited computational resources at each local sensor.
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Multiscale Internet Statistics: Unveiling
the Hidden Behavior

Paulo Salvador, António Nogueira, and Eduardo Rocha

Abstract Being able to characterize and predict the behavior of Internet users
based only on layer 2 statistics can be very important for network managers
and/or network operators. Operators can perform a low level monitoring of the
communications at the network entry points, independently of the data encryption
level and even without being associated with the network itself. Based on this low
level data, it is possible to optimize the access service, offer new security threats
detection services and infer the users behavior, which consists of identifying the
underlying web application that is responsible by the layer 2 traffic at different
time instants and characterize the usage dynamics of the different web applications.
Several identification methodologies have been proposed over the years to classify
and identify IP applications, each one having its own advantages and drawbacks:
port-based analysis, deep packet inspection, behavior-based approaches, learning
theory, among others. Although some of them are very efficient when applied to
specific scenarios, all approaches fail when only low level statistics are available or
under data encryption restrictions. In this work, we propose the use of multiscaling
traffic characteristics to differentiate web applications and the use of a Markovian
model to characterize the dynamics of user actions over time. By applying the
proposed methodology to Wi-Fi layer 2 traffic generated by users accessing different
common web services/contents through HTTP (namely social networking, web
news and web-mail applications), it was possible to achieve a good prediction of the
different users behaviors. The classification results obtained show that the developed
multiscaling traffic Markovian model has the potential to efficiently identify, model
and predict Internet users behaviors based only on layer 2 traffic statistics.
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1 Introduction

Nowadays, Internet can be seen as an ever-changing platform where new different
types of services and applications are constantly emerging. Consequently, novel
and more complex communications paradigms are continuously appearing, creating
network traffic that results from multiple simultaneous interactions. This growing
traffic complexity, together with the emergence of highly stealth security attacks,
create huge challenges for network operators to improve resources utilization,
network performance, service personalization and security. Moreover, network
operators are limited by legal and technical constrains when they need to analyze
confidential/protected traffic data. These constrains, and the need to optimize the
users’ quality of experience, lead to an increasing need for new ways of unveiling
the hidden behaviors of users, applications, services and networks, based only on
low level traffic statistics.

In this way, a new network analysis paradigm that captures, analyzes, charac-
terizes, models and (if possible) predicts the multiscale traffic dynamics, must be
applied. The concept behind this approach is the fact that Internet traffic is generated
and shaped by several events and mechanisms occurring in different time scales.
High timescale events are associated with human behaviors and actions. Service
and high level network mechanisms events, such as the establishment of traffic
sessions and the corresponding control mechanisms (traffic shaping), originate mid-
range timescale components. Protocol and low level network mechanisms, such as
packets arrivals and queuing, are mapped to very low timescale events. All these
mechanisms and events are correlated since the traffic of any Internet application
is generated by user requests and controlled by service daemons and traffic control
mechanisms, influencing how packet arrivals will occur. For example, when a user
performs a request using an Internet application, such as clicking on a link in
a web site or requesting an on-line video, several processes are created by the
operating system. Each one of these processes creates a set of Internet sessions,
each generating a traffic flow and a sequence of packets.

This chapter presents some results of applying this multiscale analysis to Internet
traffic generated by different users accessing distinct services. These results include
a multiscale analysis based on wavelet transforms applied to several low level traffic
metrics, such as the number of transmitted bytes and packets. The analysis of the
energy variation at different scales allows the creation of bi-dimensional behavior
descriptors, in terms of the energy variation at a specific timescale. These descriptors
will allow the differentiation and identification of users, applications and services
behaviors.

The proposed methodology can be applied to scenarios where existing identifi-
cation approaches are not applicable at all or have limited efficiency, like low level
monitoring and service optimization at Wi-Fi [16] or WiMax [12] access points
and Universal Mobile Telecommunications System (UMTS) [8, 31] or Long Term
Evolution (LTE) [1] base stations.
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Besides this identification effort, this chapter also proposes the use of a Marko-
vian model [25, 29] to characterize the various dynamics of the user actions over
time. This methodology will be able to identify and predict the different user
behaviors, even if this information is somehow hidden when performing a classical
statistical analysis of the generated traffic.

The results obtained by applying the proposed classification methodology to
layer 2 traffic promiscuously captured in the vicinity of a Wi-Fi network access
point (without authenticating) show that it is able to achieve a good identification
accuracy. It was possible to identify, model and predict the behavior of users
accessing three common web applications: social networking (without chatting and
game interactions), news web journals and web-mail.

For validation purposes, the ground-truth of the data was assured by asking a
pre-determined set of users to replicate their traditional Internet behavior using a
controlled environment (user terminals and network).

The remaining part of this paper is organized as follows: Sect. 2 presents some
of the most relevant related work on statistical classification of web applications
and user behavior modeling; Sect. 3 presents some important background on traffic
dynamics and multiscaling analysis; Sect. 4 presents the details of the proposed
identification methodology and user behavior model; Sect. 5 presents the results
of a proof-of-concept of the methodology and, finally, Sect. 6 presents some brief
conclusions about the presented identification methodology and user behavior
model.

2 Related Work

Identifying different behaviors of Internet users by analyzing the application
types they are running is the key issue of many crucial network monitoring and
management tasks, such as quality of service improvement, network equipment
optimization or detection of security threats. Most existing approaches are based
on static information about the applications (such as the name and type of the
application, its owner, the execution time, or the host on which the application was
executed). However, such approaches are not applicable to scenarios involving low
level monitoring, traffic encryption or under stringent confidentiality requirements,
since they rely on analyzing specific fields of the packet header.

One of the first and most common forms of traffic classification is port-based
classification, which relies on the port numbers employed by the application at
the transport layer. However, since many modern applications use dynamic ports
negotiation, port-based classification became ineffective [18, 30], with accuracy
ranges between 30 and 70 %. Chronologically, the next proposed classification
technique was deep packet inspection (DPI) or payload-based classification, which
requires the inspection of the packets’ payload: this classifier extracts the application
payload from the layer 4 data unit and searches for a signature that can identify the
flow type. Although DPI is widely used by today’s traffic classifier vendors, being
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very accurate [20, 30] for some scenarios, it is unable to deal with low level or
encrypted data.

Since different applications typically generate different traffic patterns, the study
of the statistical properties of the traffic flows can be a very efficient identification
methodology. The statistical approach to classification is based on collecting
statistical data of the network flow, such as the mean packet size, flow duration,
number of bytes per time interval, number of packets per time interval, etc., and has
been the subject of intensive research in recent years.

Paxson et al. [26] established a relationship between flow application type and
flow properties (such as the number of bytes and the flow duration). In [9], the
authors proposed a methodology for separating chat traffic from other Internet
traffic using statistical properties such as packet sizes, number of bytes, duration
and packets inter arrival times. In [21], Mcgregor et al. explored the possibility of
forming clusters of flows based on flow properties such as packet size statistics
(e.g., minimum and maximum), byte count, idle times, etc., using an expectation
maximization (EM) algorithm to find the clusters’ distribution density functions.
A study focusing on identifying flow application categories rather than specific
individual applications was presented in [28]. Although it was limited by a small
dataset, the authors have been able to show that the k-nearest neighbor algorithm
and other techniques can achieve good results, correctly identifying around 95 % of
the flows. In reference [32], the authors were able to obtain an average success rate
of 87 % in the separation of individual applications using an EM based clustering
algorithm. In [23], Moore et al. studied the basic Navie Bayes algorithm, enhanced
by certain refinements, showing that it is able to achieve an accuracy level of 95 %.

In [3], realtime classification was addressed by studying the feasibility of
application identification at the beginning of a TCP connection: based on an analysis
of packet traces collected on eight different networks, the authors found that it is
possible to distinguish the behavior of an application from the observation of the size
and the direction of the first few packets of the TCP connection. Three techniques
were applied to cluster TCP connections: K-Means, Gaussian Mixture Model and
spectral clustering. Crotti et al. [6] presented a realtime classification mechanism
based on three simple properties of the captured IP packets: their size, inter-arrival
time and arrival order. Based on new structures called protocol fingerprints, which
express these quantities in a compact way, and on a simple classification algorithm
based on normalized thresholds, the proposed technique showed promising results
on classifying of a reduced set of protocols. In [11], a traffic classification
approach based on Support Vector Machines (SVM) was proposed: using a simple
optimization algorithm, a statistical traffic classifier was able to perform correctly
with only a few hundred samples for training. Note that these algorithms were tested
only against basic application protocols. Encrypted applications communications
add additional constraints to the detection problem by making the traffic packet
headers and data inaccessible to network based monitoring systems. Therefore, the
detection methods that rely on packets headers/data information are completely
inappropriate in encrypted communications scenarios [18, 24].
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Bar-Yanai et al. [2] introduces a hybrid statistical algorithm that integrates
the k-nearest neighbors and k-means machine learning algorithms. The proposed
algorithm is fast, accurate and is insensitive to encrypted traffic, overcoming several
weaknesses of the DPI approach (like asymmetric routing and packet ordering).
The strength of the algorithm was demonstrated on encrypted BitTorrent, which is
known to use packet encryption, port alternation and packet padding (on initial flow
packets) to avoid detection.

The BLINC [17] approach is based on observing and identifying patterns of host
behavior at the transport layer, analyzing the social, functional and application level
patterns. The fact that this approach relies on layer 3 and layer 4 traffic statistics
makes it impossible to be used by an operator in certain entry points of the network
where only low level data is available.

The work published in [10] demonstrated that cluster analysis can be effectively
used to identify similar groups of traffic using only transport layer statistics. The
K-Means and DBSCAN (Density Based Spatial Clustering of Applications with
Noise) unsupervised clustering techniques and the AutoClass algorithm, which is a
probabilistic model-based clustering technique that allows the automatic selection
of the number of clusters, were used to achieve an accurate traffic identification. The
accuracy of the clustering techniques was compared using the HTTP, P2P, POP3
and SMTP protocols. The connections that DBSCAN labeled as noise reduced the
overall accuracy of this algorithm, since they are considered as misclassification
mistakes. However, DBSCAN presented the highest accuracy when classifying
three of the studied protocols, while K-Means was the fastest approach.

Instead of classifying traffic based on statistics of individual flows, the authors
in [14] focused on building behavioral profiles describing the dominant patterns
of a target application. A two-level matching mechanism is then used to classify
captured traffic, where the first determines if a host participates in the application
by comparing its behavior with the profiles. Subsequently, each flow of the host
is compared to the profiles in order to identify the ones that were generated by
the studied application. The selected target application was P2P and several rules
were obtained for TCP and UDP connections, which are merged from different
training traces. Then, the authors looked back at the behavior of each host to
construct application profiles. The classification results proved that their approach
could accurately identify BitTorrent traffic. However, the number of rules required
for classification was very high, which raised doubts about the scalability of the
approach and its ability to classify traffic on-the-fly.

In a recent work [15], the authors propose a “two-way” application of k-
means clustering techniques that consists in analyzing a bidirectional flow as two
unidirectional flows. The authors argue that, in this way, they are able to increase
the classification accuracy by as much as 18 % when compared to other similar
approaches. In addition, they state that their approach generates fewer clusters,
which implies that fewer calculations have to be performed to classify traffic.
Several discriminators were proposed and the authors used their own version of the
Sequential Forward Selection (SFS) algorithm to choose the best discriminators. It
starts by clustering the training data according to each of the several discriminators
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separately and then determines the best ones by evaluating how many flows were
assigned to the correct cluster. In the following iterations, the previously selected
discriminators are combined with all the others individually to cluster the data. The
best combination is selected until no improvement is made. The k-means clustering
technique was used due to its fast training times and ease of implementation. Their
results showed indeed an increase in the accuracy when compared to some other
works.

Rocha et al. [27] presented a methodology for the detection of security attacks
and the classification of Internet flows that relies on multidimensional Gaussian
distributions [22]. In this way, it is possible to account for the correlation between
the values that are obtained for the different dimensions, allowing to infer even more
accurate probability distributions. The proposed approach starts by performing a
multiscale analysis to the sampled IP data-streams, obtaining multiscale estimators
for all streams; the estimators are subsequently processed by mapping a dimension
to each timescale, so that the multivariate distributions (for each protocol) can be
inferred; an algorithm will then find the dimensions where the separation between
the several distributions is most noticeable and each of the traffic streams is then
classified according to the probability of belonging to each one of the inferred
distributions.

3 Traffic Dynamics and Multiscaling Analysis

The classification approaches that will be proposed are based on the decomposition
and analysis of the network traffic at several time scales, i.e. different aggrega-
tion levels, in order to identify and model the different characterizing frequency
spectrum components. In this manner, a Multi-Scale Signature is obtained for each
application class, allowing the construction of accurate traffic and user profiles.

Figure 1 shows three different frequency spectrum regions, together with their
corresponding events (Power is related to the energy of the different types of
events). Human events, which are associated in the Internet world to human/user
behaviors and actions, can be mapped to low frequency components. Network
events, such as the establishment of traffic sessions and the corresponding control
mechanisms (traffic shaping), originate mid-range frequency components, while
protocol and Internet events, such as packets arrivals, create components in the
high-frequency spectrum region. All these mechanisms and events are correlated
since traffic belonging to any Internet application is generated by user requests
(which are low-frequency events) and controlled by Internet sessions and traffic
control mechanisms (which are mid-range frequency events), creating events such
as Internet packet arrivals that originate high frequency components. For instance,
when a user performs a request using an Internet application, such as clicking on a
link in a web site or requesting an on-line video, several processes are created by
the operating system. Each one of these processes creates a set of Internet sessions,
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each generating a traffic flow. At the network layer, each one of these connections
will transmit and receive the requested data in several packets.

The analysis of each mechanism can then be performed by using the appropriate
aggregation scale or frequency, as shown in Fig. 2, which illustrates how the
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mechanisms of the different scales are connected and how they shape Internet traffic.
The graph on the left side represents the traffic generated by an Internet application,
from which we are able to infer all the mechanisms present at the several scales of
analysis and their corresponding traffic patterns. The time interval between user
requests is represented by �1, while �2x represents the time intervals between
the starting instants of the Internet sessions and �3x the time intervals between
the different Internet packets. The analysis of such events, which are characteristic
of each application class, and of the corresponding frequency components allow a
simple but effective traffic assignment. This analysis allows us to associate captured
traffic to the corresponding Internet application class.

The inability of conventional Fourier analysis to preserve the time dependence
and describe the evolutionary spectral characteristics of non-stationary processes
requires tools that allow time and frequency localization. Wavelet transforms can
provide information concerning both time and frequency, which allows local,
transient or intermittent components to be elucidated [5]. Such components are
often obscured due to the averaging inherent within spectral only methods, like Fast
Fourier Transform (FFT) [4], for example.

Wavelets are mathematical functions that are used to divide a given signal into
its different frequency components. They consist of a short duration wave that has
limited energy. Wavelets enable the analysis of each one of the signal components
in an appropriate scale. Starting with a mother wavelet  .t/, a family  
;s.t/ of
“wavelet daughters” can be obtained by simply scaling and translating  .t/:

 
;s.t/ D 1pjsj .
t � 


s
/ (1)

where s is a scaling or dilation factor that controls the width of the wavelet (the
factor 1pjsj being introduced to guarantee preservation of the energy, k 
;sk D j j)
and 
 is a translation parameter controlling the location of the wavelet. Scaling a
wavelet simply means stretching it (if jsj > 1) or compressing it (if jsj < 1), while
translating it simply means shifting its position in time.

Given a signal x.t/ 2 L2.</ (the set of square integrable functions), its
Continuous Wavelet Transform (CWT) with respect to the wavelet  is a function
of time (
) and scale (s), WxI .
; s/, obtained by projecting x.t/ onto the wavelet
family f 
;sg:

WxI .
; s/ D
Z �1
C1

x.t/
1pjsj .

t � 


s
/dt (2)

By analogy with the terminology used in the Fourier case, the energy components
of the signal are given by the square of the CWT components of the signal
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Fig. 3 Each application type will have a distinct Multi-Scale Signature: example of the Web-Mail
application

and the (local) Wavelet Power Spectrum (sometimes called Scalogram or Wavelet
Periodogram) is defined as the normalized energy over time and scales:

Ex.
; s/ D 100

ˇ̌
WxI .
; s/

ˇ̌2
P


 0

P
s0

ˇ̌
WxI .
 0; s0/

ˇ̌2 (3)

Figures 3, 4 and 5 show examples of scalograms. Scalograms reveal much
information about the nature of non-stationary processes that was previously hidden,
so they are applied to a lot of different scientific areas: diagnosis of special
events in structural behavior during earthquake excitation, ground motion analysis,
transient building response to wind storms, analysis of bridge response due to vortex
shedding, among others [13].

Using this mathematical tool, the previously mentioned Multi-Scale Signature of
each application type can be easily obtained, facilitating the construction of accurate
traffic and user profiles. Figures 3, 4 and 5 show examples of these signatures for
three particular services: Web-Mail, Facebook and Web-News, respectively.
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Fig. 4 Each application type will have a distinct Multi-Scale Signature: example of the Facebook
application

4 Multiscaling Behavior Modeling

4.1 Multiscale Traffic Data

Let us assume that process x.t/ represents a counting statistic of a layer 2 traffic
trace to and from a specific user terminal (e.g., number of frames on the upload
direction, number of bytes in the download direction, etc.). The user is identified
by a layer 2 address depending on the underlying communications technology. It is
possible to apply a multiscaling analysis to process x.t/ by calculating the scalogram
using Eq. (3). We characterize the multiscale user behavior by the estimator of the
standard deviation of that user’s traffic energy within a time window for a set of
timescales. Therefore, a traffic process energy standard deviation at time interval k
and time scale s using a sliding time window of width W can be defined as:

ODx.k; s/ D
vuut 1

W � 1
X


2Œk�W;k�

�
Ex.
; s/� Ex.k; s/

	2
(4)
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Fig. 5 Each application type will have a distinct Multi-Scale Signature: example of the Web-News
application

with k D fW;W C 1;W C 2; : : :g and

Ex.k; s/ D 1

W

X

 02Œk�W;k�

Ex.

0; s/ (5)

Choosing J timescales (fs1; s2; : : : ; sJg) of interest, it is possible to define a vector
Bx;k that describes the inferred localized multiscaling characteristics (at time interval
k) of the traffic process x:

Bx;k D f ODx.k; sj/; j D 1; : : : ; Jg (6)

Since each application type is characterized by a distinct multi-scale signature,
the most important time-scales of activity can be identified by inferring the mean
of the activity energy for each traffic process, while the constancy of the pseudo-
periodicity can be quantified by inferring the standard deviation of the activity
energy. This is illustrated in Fig. 6.
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Fig. 6 Mean and standard deviation of the energy over a set of chosen timescales

4.2 Markov Modulated Multivariate Gaussian Processes Model

The discrete time Markov Modulated multivariate Gaussian Process (dMMGP)
model that will be proposed characterizes position and mobility of a subject based
on the following assumptions: (a) the multiscaling behavioral metrics for the use of
a specific web application can be described by a multivariate Gaussian distribution,
(b) the time scales of importance can be pre-determined, (c) a ground truth for
the multiscaling characteristics of web applications usage can be pre-established
and (d) the transition between applications can be described by an underlying
(homogeneous) Markov chain where each state maps the multiscaling behavior
characteristics of a specific web application usage, as illustrated in Fig. 7.

The dMMGP can then be described as a J-dimensional random process .B/
with a multivariate Gaussian distribution that characterizes the behavior of a user
in an universe of A possible applications in a J-dimensional environment (for J
time scales of importance), whose parameters are a function of the state .S/ of the
modulator Markov chain .B; S/ with A states. The dMMGP model states will map
the applications multiscale characteristics and the dMMGP model transitions will
define the user behavior/dynamics on the usage of the different applications. The
former will be inferred based on pre-established ground truth (set of known flows)
for the web applications multiscaling characteristics and the later will be inferred
based on the dynamics of the mapping of a set of flows of specific users to the
application multiscale characteristics (i.e. model states).

More precisely, the (homogeneous) Markov chain

.B; S/ D f.Bk; Sk/; k D 0; 1; : : :g
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Fig. 7 Markov chain that describes the multiscaling behavior characteristics of the different web
application usage profiles

with state space RJ 	 U, with U D f1; 2; : : : ;A C 1g, is a dMMGP if and only if for
k D 0; 1; : : :,

P.BkC1 D b; SkC1 D njSk D m/ D pmn�n.b/ (7)

where b 2 R
J is a generic multiscale component in a J-dimensional environment,

pmn represents the probability of a transition from state m to state n of the underlying
Markov chain in time interval Œk; k C 1�, and

�a.b/ D .2�/�
J
2 †
� 12
a e�

1
2 .b�ma/

T˙�1
a .b�ma/ (8)

is the multivariate Gaussian distribution of the multiscaling characteristics of
application a flows, it is centered in ma and has covariance matrix ˙a.

Whenever (7) holds, we say that .B; S/ is a dMMGP with a set of modulating
states with size A and parameter matrices P, M and S. Matrix P is the transition
probability matrix of the modulating Markov chain S,

P D

2
664

p11 p12 : : : p1A

p21 p22 : : : p2A

: : : : : : : : : : : :

pA1 pA2 : : : pAA

3
775 (9)

while matrix M defines the mean values of each multiscaling Gaussian distribution:

M D 

m1 m2 : : : mA

�
(10)
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where ma is a J 	 1 vector. Matrix S contains the covariance (sub-)matrices of each
multiscaling Gaussian distribution:

S D 

†1 †2 : : : †A

�
(11)

where †a is a J 	 J matrix. Moreover, we denote by … D Œ�1; �2; : : : ; �A� the
stationary distribution of the underlying Markov chain.

Matrix P will be unique for each user, and will characterize his/her behavior on
the usage of the applications characterized by matrices M and S. The overall mul-
tiscaling behavior of a user can be statistically described by a stationary probability
density defined by a weighted sum of A multivariate Gaussian distributions:

f .b/ D
AX

aD1
�a�a.b/;b 2 R

J (12)

where b is a multiscale component that belongs to the J-dimensional domain of
chosen timescales.

4.3 Model Inference Procedure

Assuming that we have a ground-truth for a set of A web applications, analyzed
over F flows, over K time windows in J timescales of interest, we can define the
multiscale profile of an application a.a D 1; : : : ;A) as Ga; f ;k, inferred using Eq. (6)
considering that process x.t/ is the f -th flow of application a, with a D 1; : : : ;A,
f D 1; : : : ;F and k D 1; : : : ;K, i.e.:

Ga; f ;k D Bx;k; x $ flow f of application a (13)

The M and S matrices of the dMMPGP model can then be inferred as

ma D 1

KF

FX
fD1

KX
kD1

Ga; f ;k (14)

†a D 1

KF � 1

FX
fD1

KX
kD1

��
Ga; f ;k � ma

� �
Ga; f ;k � ma

�T
	

(15)

The final step of the inference procedure is to infer matrix P, i.e. the transition
probabilities between the states defined in the first step. This task is achieved by
probabilistically mapping each multiscaling behavior of each unknown flow trace
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x.t/ Bx;k; k D 1; : : : ;K to one state/application and then averaging the probabilistic
transitions between states, according to a probability vector:

qk D f�1.Bx;k/; : : : ; �A.Bx;k/g; k D 0; 1; : : : ;K (16)

4.4 Behavior Prediction

Defining ck D fck;a W a D 0; 1; : : : ;Ag; k D 0; 1; : : : ;K, where ck is the probability
vector defining that within time-window Œk � W; k� the user is using application a,
and based on Eq. (12) we can define the multivariate distribution of the predicted
multiscaling behavior of the user in a future time-window (z observations in the
future) as:

AX
aD1

ckCz�a (17)

with

ckCz D ckPz (18)

where ckCz represents the probabilistic vector that quantifies the probability of a web
application to be in use k time windows in the future.

So, after inferring a behavior model for each user, the multiscale characteristics
of the current user’s data flow are probabilistically mapped to a specific state and,
based on the inferred underlying Markov chain transitions, it is possible to predict
which application the user will be “using” in the future. This is illustrated in Fig. 8.

Fig. 8 Predicting which application a user will be using in the future
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5 Proof of Concept

5.1 Data-Set

The test data-set was obtained by capturing, in promiscuous mode, the layer 2 traffic
having as source or destination a specific Wi-Fi network access point. The traffic
capture was performed without authenticating to the network and consisted only of
802.11 frames. In a controlled environment, where all terminals were using a bare
installation of Linux with a daemon that recorded all browse requests, a set of invited
users were asked to access and use their usual web applications, maintaining their
typical behavior. This approach allowed us to create the ground-truth of a mapping
between layer 2 data traces and their originating users and web applications. Within
the context of this proof of concept, we only used the data traces that were created by
users accessing three general web applications: social networking, namely Facebook
(without chatting and game interactions), news web journals and web-mail access.
The total number of data sets was divided in two: the first half was used to infer the
underlying dMMGP model of the behavior of each application and user, while the
second half of the data sets was used to validate the inferred models by comparing
the predicted multiscale behavior (and associated web application usage sequence)
of each user. The raw statistical process used was the amount of bytes transmitted
from the Wi-Fi access point to each user, sampled every 0.1 s. Sampling the raw
statistics in 0.1 s allows our method to measure and incorporate some of the most
characteristic multiscale dynamics of an application: (a) the lower timescales that
are strictly related with the way that specific application handles the multiple data
sessions, (b) the medium timescales that are related with the application algorithmic
dynamics and (c) the higher timescales that reflect mainly the user interactions
dynamics [7]. For the purpose of the model inference, we use time windows with
a width of 120 s (W D 1200) and considered time windows in 20 s interval. The
choice of these values is a tradeoff between the amount of (past) data necessary to
fully characterize the traffic dynamics and the amount of data that can be process
and analyzed in pseudo-real time. The heavier computational tasks, which are the
construction and update of the behavior models, are made off-line. However, to
perform the application and user identification the measured data must be matched
with previously inferred models in pseudo real-time. The interval between windows
of classification was chosen in order to minimize the delay between the moment
of an user application change and its effective detection by our methodology.
With an appropriate choice of parameters, namely window size and interval of
processing, this methodology is fully scalable since the computation power required
is proportional to the amount of traffic (number of users) under analysis.

Figures 9 and 10 depicted the 80 and 90 % quantile frontiers of the inferred
multivariate Gaussian distributions of the multidimensional characteristics of each
application (using just 3 timescales) for all users. These distributions reveal that the
multiscale characteristics of the three web applications are distinct and have a small
overlap in the universe of the three dimensions/scales considered.
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Fig. 9 80 % quantile frontiers of the inferred multivariate Gaussian distributions of the multidi-
mensional characteristics of each application
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Table 1 Identification of the
current web application
results

Web-mail (%) Facebook (%) Web-news (%)

Web-mail 69:95 7:84 22:20

Facebook 4:12 83:13 12:74

Web-news 7:08 24:35 68:55

After inferring the underlying dMMGP model, we use the test data traces to test
the precision of the model in identifying the current web application of an user every
20 s. In this test, we were able to obtain a precision of 72.4 % of correctly classified
windows and the identification results presented in Table 1. The results show a very
good agreement between the identified web application and the real application,
considering the reduced amount of information (in terms of raw data and time span
of the observation) used for the identification.

Using the test data traces to test the precision of the model in identifying the web
applications that are in use 60 s in the future we obtained a precision of 55.3 %
of correctly classified windows. The results show that the identification/predicting
results are still significantly above the pure random guess.

From these results we can conclude that this methodology was able to obtain
very good classification and prediction results considering the reduced amount of
information (only network layer 2 sampled statistics) and that the web applications
under consideration may, in some particular cases, be very similar. Most of the errors
can be explained by the fact that some Web-news pages are very similar to social
networking applications pages and even incorporate social network features within
its own Web-pages. Also, when the Web-news web pages have less content the user
dynamics may get similar to Web-mail or Facebook interactions (i.e., small data
chunks exchanged at small intervals).

6 Conclusions and Future Work

This paper presented an approach that uses multiscaling traffic characteristics to
differentiate between different web applications and a Markovian model that is
able to characterize the dynamics of user actions over time. By applying this
methodology to Wi-Fi layer 2 traffic generated by users accessing different common
web services/contents through HTTP (namely, social networking, web news and
web-mail applications), it was possible to achieve a good matching and prediction
of the users behaviors. The proposed methodology may be applied to preallocate
resources in network access points based on past user behavior and pseudo real-
time predictions of short term requirements.

As future work, we plan to test our methodology incorporating more applications
with completely different behavior (such as video streaming, P2P file transferring,
online games, etc.). This will require the improvement of the inner algorithms of the
methodology to accommodate multiple and dynamic timescale ranges.
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Fig. 11 Internet applications and corresponding frequency mapping regions

We have already started a multi-scale decomposition of known traffic from
several classes of web applications (online news, on-line video services and photo-
sharing) and, in order to assess the ability of identifying compromised hosts,
traffic from two widely deployed illicit applications: network scans and snapshots.
Network scans were simulated using a known scanning tool [19] to replicate the
behavior of a compromised host scanning for available services, and corresponding
vulnerabilities, in other connected hosts. The second illicit application consisted
of taking snapshots of the users’ desktops and uploading them every time the
user performed a click. The purpose of this security attack is stealling confidential
information.

Several differentiating regions, shown in Fig. 11 and mapped into the corre-
sponding application in Table 2, emerged in the frequency spectrum. Region A
encompasses very low frequency events which can be associated to commands
sent to compromised hosts in order to perform a scan or an upload of stolen
confidential informations. This region can, thus, be associated to stealth attacks.
Network scans also map to another differentiating region (region E), since these
scans do not generate substantial mid range frequency components due to the low
variance between scanning probes and to the low number and variation of the created
traffic flows. Snapshots can be identified by analyzing other frequency spectrum
components in which differentiating regions, such as region C, emerge due to the
high energy associated to the creation of file transfer sessions, which are automatic
mechanisms associated to user clicks on web-pages. Region B encompasses other
types of low-frequency events corresponding to user requests typically associated
to online news applications. Region D includes low-frequency events occurring
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Table 2 Internet applications with their corresponding frequency mapping regions and classifica-
tion results

Internet applications Regions Classification accuracy (%)

On-line news B and F and H 90.00

[89.00–91.00]

On-line video F and G 88.90

[88.10–89.70]

Photo-sharing D and H 85.75

[84.70–86.80]

Network scans A and E 99.00

[98.00–100.00]

Information theft A and C and H 90.00

[89.20–90.80]

periodically with low variation and, consequently, can be associated to photo-
sharing applications where users perform periodic requests for downloading images
shared by other users. For analyzing the creation of traffic sessions and the
presence of traffic control mechanisms, region F was created and accounts for
applications presenting significant mid-range frequency components. This region
can be associated to on-line news and video applications, which are frequently
mixed since many news pages present embedded videos that create a significant
amount of events in this frequency range. Finally, regions G and H differentiate
applications presenting significant and low high-frequency events, respectively.
Region G region includes applications generating a high amount of network traffic,
which can be associated to on-line video services. On the other hand, region H
includes applications that do not present significant high-frequency components,
indicating that they generate a small amount of network traffic. This set includes
on-line news, photo-sharing, network scans and snapshots.

This classification procedure allow us to achieve an accurate classification of
the traffic generated by the different applications and an accurate identification of
some of the most used Internet attacks, as shown in Table 2. Nevertheless, some
classification overlaps can occur due to similarities between the different classes:
On-Line News and Video classes are intrinsically connected since many journal
web-pages contain embedded videos; on the other hand, some Photo-Sharing traffic
was assigned to the News class due to irregular user interactions.

Finally, our short term plans include the developing of a prototype and test in a
3G/4G network base station for optimal dynamic allocation of resources.
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The Role of Clouds, Aerosols and Galactic
Cosmic Rays in Climate Change

Filipe Duarte Santos

Abstract A review of the role played by clouds, by natural and anthropogenic
aerosols and by their interaction, on climate, is presented. The suggestion that
galactic cosmic rays may affect the interaction between clouds/aerosols and climate
is here discussed in the context of the CLOUD (Cosmics Leaving Outdoor Droplets)
experiment at CERN. The experiment has shown that cosmic rays enhance aerosol
nucleation and cloud condensation but the effect is too weak to have an impact on
climate during a solar cycle or over the last century. The CLOUD experiment has
also revealed a nucleation mechanism involving the formation of clusters containing
sulphuric acid and oxidized organic molecules.

1 Clouds

The Earth system is continually seeking to establish equilibrium between energy
it receives from the Sun and energy it emits back out to space. Clouds contribute
to this radiative balance because they reflect, absorb and radiate energy. They can
warm or cool the Earth depending on their altitude, composition, optical depth and
size. About 20 % of the incoming shortwave solar radiation is reflected by clouds
and about 4 % is absorbed [10]. As regards the outgoing infrared radiation clouds
are responsible for about 26 % of the emissions. To understand the role of clouds in
climate it is therefore essential to know how they absorb and emit shortwave solar
radiation and infrared radiation. Clouds tend to cool and warm the atmosphere by
reflecting the incoming solar radiation and by inhibiting the emission of infrared
radiation from the Earth’s surface to space. The cooling effect depends on the
difference between the cloud and surface albedos and on the amount of incident
solar radiation. The smaller the surface albedo below a cloud and the larger the
incident solar radiation the greater is its cooling effect. Clouds can also exert a
warming effect by absorbing part of the infrared radiation emitted by the surface
and by re-emitting a smaller amount of infrared radiation because the top of the
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cloud is at a lower temperature compared to the surface. This effect is particularly
strong in high altitude clouds. In general high clouds tend to have a warming effect,
while low clouds tend to have a cooling effect. Clouds also produce precipitation
from water vapor releasing heat to the atmosphere in the process. Thus clouds play
a very important role since they can modify the radiative energy balance and water
exchanges that contribute to determine the climate.

Anthropogenic climate change, which results from emissions of greenhouse
gases into the atmosphere associated with some human activities, has a variety
of impacts on cloud processes that represent cloud-climate feedbacks. These occur
through changes in cloud cover, cloud-top height and cloud optical properties. The
identification of the cloud-climate feedbacks and the determination of their sign
and magnitude can only be addressed through the use of global climate models
(GCM) that simulate the Earth climate system. The problem however is that cloud
processes span scales from the submicron scale of cloud condensation nuclei to
cloud system scales of up to thousands of kilometres. It is impossible at present
to make numerical simulations for this range of spatial scales in the GCMs due
to limitations in computing power. The representation of microphysical processes
in clouds, such as cloud droplets and ice crystals formation, turbulence, cumulus
convection, and aerosol and chemical transport is made through parameterizations in
the GCMs. Recently global cloud-resolving models have been run with grid spacing
as small as 3.5 km [11]. However, such models can only be used for relatively short
simulations of a few months to a year or two on the fastest supercomputers. It is
likely that in the future they may also provide long term climate projections. The
limitations in resolution of the GCMs are one of the main sources of uncertainties in
the simulations of cloud-climate feedbacks. Realistic simulation of cloud processes
and the response of clouds to climate change is one of the greatest challenges of
climate modelling. The recent Intergovernmental Panel on Climate Change (IPCC)
Fifth Assessment Report [3] concludes that the net radiative feedback due to all
cloud types in the atmosphere is likely positive, although a small negative feedback
is not excluded. The likely range of the cloud feedback parameter is �0:2–2.0
W m�2 K�1. Most climate models simulate a decrease in low-cloud amounts, which
increases global warming, but the deficiencies in the model representation of low
clouds at the global scale and the uncertainties in the mechanisms of cloud formation
gives a low confidence to this result. In conclusion the most uncertain radiative
feedbacks in GCMs continue to be the cloud feedbacks.

2 Aerosols

Another important source of uncertainty in our simulations of the climate system
and the future climate is the role played by atmospheric aerosols. These are small
particles that come from natural and anthropogenic sources and have a major impact
on climate and also on our health. The most important groups of aerosols are
sulphates, nitrates, organic carbon, black carbon, mineral dust and sea salt. Often
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aerosols clump together to form hybrid particles such as those that result from
clumping carbon from soot or smoke with sulphates and nitrates. Atmospheric
aerosols have a relatively short lifetime of about 1 day to a few weeks in the
troposphere and about 1 year in the stratosphere.

Aerosols affect the climate through aerosol-radiation and aerosol-cloud interac-
tions. As regards the former interaction aerosols scatter and absorb the incoming
solar radiation, thereby modifying the Earth’s radiative balance. Some aerosols, such
as pure sulphate aerosols, scatter most of the solar radiation and are very weakly
absorbing. Others, such as soot, are strongly absorbing. Aerosol scattering tends to
cool the climate, while aerosol absorption has the opposite effect of warming the
climate. Anthropogenic emissions of aerosols and their gaseous precursors have
increased substantially since the beginning of the industrial revolution inducing
a net cooling effect on climate that compensated part of the warming effect of
anthropogenic greenhouse gas emissions. To project the global impact of the
aerosol-radiation interaction on the future climate requires the use of data from
ground-based networks and from satellite-based sensors and the use of climate
models. There are still many uncertainties on aerosol monitoring at the regional and
global levels, in particular as regards to soot and the role it plays in the atmosphere.

The aerosol-cloud interaction arises because aerosols serve as cloud condensa-
tion nuclei and ice nuclei upon which liquid droplets and ice crystals can form.
In general, a large concentration of aerosols tends to produce more low clouds
and also liquid clouds which are brighter and have longer lifetime because of
the larger number of smaller cloud droplets. Both these effects tend to cool the
climate. However, it is very difficult to model the overall impacts of aerosols on
cloud amounts and cloud properties because of the complexity of the aerosol-cloud
interactions and the need to represent them through parameterizations in the climate
models.

Although it is likely that aerosol anthropogenic emissions had an overall cooling
effect on climate in the twentieth century there is limited evidence for a rather
weak aerosol-climate feedback during the twenty-first century [3]. Over the last
two decades, anthropogenic aerosol emissions have decreased in industrialised
countries, but increased in developing countries, particularly in China and India.
In the medium and long term it is likely that the aerosol anthropogenic emissions
will tend to decrease due to their damaging impact on health, thereby increasing the
global warming induced by greenhouse gases.

3 Galactic Cosmic Rays, Climate Change and the CLOUD
Experiment

There is another mechanism that may affect the interaction between clouds/aerosols
and climate. Galactic cosmic rays (GCR) are the primary source of ionization in
the atmosphere above 1 km altitude. Since high solar activity reduces the flux of
GCR reaching the Earth atmosphere, through deflection of the low energy GCR,
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it was suggested in 1959 [8] that GCR may act to amplify a presumed impact of
variations in solar activity on climate through an enhanced production of charged
aerosols that may grow to become cloud condensation nuclei (CCN). If cosmic rays
do affect cloudiness, they would provide a link through which solar activity could
affect climate [17].

There have been many studies that seek to establish correlations between the
flux of cosmic rays reaching the Earth and the properties of aerosols and clouds.
These correlations would imply an interaction between GCR and climate, a field
that adopted the name of cosmoclimatology [9, 15, 16]. However, correlations
between GCR and low-level cloud cover data obtained using satellite remote sensing
observations over periods of one decade or less have not proved robust when
extending the time period under consideration [1]. Some studies found small but
significant positive correlations between GCR and high- and mid-altitude clouds
[7, 13] but these variations were very weak and dependent on how Forbush events
of rapid decrease in GCR intensity were selected [3].

Other studies have addressed the investigation of the physical mechanisms
linking cosmic rays to cloudiness. The most studied is the ion-aerosol clean air
mechanism in which the atmospheric ions produced by the GCR have an impact on
CCN concentrations and cloud properties through aerosol nucleation and growth.
However aerosol nucleation rates resulting from variations in ionization rates
induced by CGR flux changes are poorly known [4].

The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has
recently addressed these questions [6]. It consists of a chamber that simulates
the atmosphere. Due to its cleanliness and to controlled amounts of trace gases,
the CLOUD chamber allows the measurement of nucleation and of the molecular
makeup and growth of newly-formed molecular clusters from single molecules up
to stable aerosol particles. Furthermore the chamber has the capability to measure
nucleation enhancement by cosmic rays that are simulated using the CERN pion
beam. The chamber is exposed to a 3.5 GeV/c secondary charged pion beam
from the CERN Proton Synchrotron, spanning GCR intensity range from ground
level to the stratosphere. The experiment has shown that GCR-induced ionization
enhances water sulphuric acid nucleation in the middle and upper troposphere,
but is very unlikely to give a significant contribution to nucleation taking place in
the continental boundary layer. It is now clear that cosmic rays enhance aerosol
nucleation and cloud condensation nuclei production in the free troposphere, but
the effect is too weak to have an impact on climate during a solar cycle or over the
last century. It is too weak because the radiative forcing produced by cosmic rays
is very small compared with the total global average radiative forcing in the present
day atmosphere. The main components of this total radiative forcing result from
changes in the atmospheric concentrations of well-mixed greenhouse gases (CO2,
CH4, N2O, among others), ozone, stratospheric water vapour, aerosols, and from
changes in surface albedo and in the solar irradiance. The first five components have
an anthropogenic origin and only the last one is natural. Volcanic radiative forcing
produced by major eruptions is also a natural radiative forcing with a very irregular
temporal pattern. The globally averaged solar cycle modulation of the Earth’s
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radiative forcing arising from the increase in atmospheric ionization by GCR, from
solar maximum to minimum, through charged nucleation of aerosol, the direct
aerosol effect and the cloud albedo effect amounts to 0.05 W m�2 [5]. This value
is considerably smaller than the change in radiative forcing caused by the changes
in total solar irradiance during a solar cycle, which is �0:24W m�2, from solar
maximum to minimum. Both these forcings are smaller than the present day total
global average anthropogenic radiative forcing, which is estimated at C2:3W m�2
[3]. The natural radiative forcing due to changes in average solar irradiance is
estimated at 0.05 W m�2, and therefore much smaller than the anthropogenic
radiative forcing. It should also be noticed that the total anthropogenic radiative
forcing has been increasing from 0.57 W m�2 in 1950, to 1.25 W m�2 in 1980 to
2.3 W m�2 presently. In conclusion there is at present no evidence for a causal
connection between variations in cosmic ray intensity and the observed climate
change [3].

The CLOUD chamber allows the study of particle aerosol nucleation in the
atmosphere knowing the participating molecules, which is a necessary step to
understand the processes of aerosol formation and their effects on clouds and
climate. While sulphuric acid is the main driver of nucleation, the nucleation rate
is also affected by ammonia, amines and volatile organic vapours. The CLOUD
experiment has shown that dimethylamine above three parts per trillion by volume
can enhance particle formation rates more than 1000-fold compared with ammonia,
which is sufficient to account for the particle formation rates observed in the
atmosphere [2, 14]. The nucleation rate measurements made in the CLOUD
chamber are well reproduced by a dynamical model that simulates cluster collision
and coagulation rates which are computed from kinetic gas theory. Equilibrium
constants are computed from quantum chemical calculations of binding energies
of molecular clusters, and evaporation. Cluster fission rates are then obtained from
detailed balance. All possible cluster-cluster processes have been included. The
electrostatic enhancement of ion-molecule collisions is calculated by using dipole
moments and polarizabilities obtained from quantum chemistry. The model has no
fitted parameters. The experiments also reveal a nucleation mechanism involving the
formation of clusters containing sulfuric acid and oxidized organic molecules from
the very first step. Inclusion of this mechanism in a global aerosol model yields a
photochemically and biologically driven seasonal cycle of particle concentrations
in the continental boundary layer, in good agreement with observations [12].
The newly discovered role played by amines in cloud formation, suggests that
natural and anthropogenic sources of amines can have an influence on climate.
Anthropogenic amine emissions could be considered as a possible geoengineering
technology. Furthermore it is important to note that CO2 scrubbing using amines
is the most frequent method for post-combustion capture. Amine technology has
already been used for decades to capture CO2 from both flue gas and natural gas.
The widespread use of this technology for carbon capture from fossil fuel power
plants would tend to increase the anthropogenic amine emissions and their possible
cooling effect on climate.
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Long Time Behaviour and Self-similarity
in an Addition Model with Slow Input
of Monomers

Rafael Sasportes

Abstract We consider a coagulation equation with constant coefficients and a time
dependent power law input of monomers. We discuss the asymptotic behaviour of
solutions as t ! 1, and we prove solutions converge to a similarity profile along
the non-characteristic direction.

1 Introduction

We study some aspects of the long time behaviour of a system with an infinite num-
ber of ordinary differential equations modelling the kinetics of particle coagulation;
we consider a mean-field point island deposition growth process, with Becker-
Döring type kinetics with critical island size i D 1. In [4] a different island growth
model is considered, for which clusters of size j (1 < j � i) do not arise.

The system we consider is composed of a large number of particles, each particle
consisting of an integer number of monomers with mass 1, so that a j-cluster (a
particle formed by j monomers) will have mass j. We assume these clusters can
bind together to form larger clusters, and that we only have binary reactions, in the
sense that we only consider aggregation of two clusters at a time, one of them being
a monomer; we do not consider, for example, simultaneous aggregation of three
clusters. The cluster interaction is assumed to follow the mass action law of chemical
kinetics. Let .cj.t//1jD1 be the sequence whose elements are the concentration of
clusters of mass j at some time t, and we want to study the evolution of cj.t/ as
t ! C1, either pointwise in j (i.e., for each fixed j), or when j also converges
to C1 in some way related to the convergence of t. The evolution of the cluster
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population can be described by the following coagulation kinetic equations

Pc1 D �c21 � c1

1X
jD1

cj

Pcj D c1.cj�1 � cj/; j � 2:

(1)

From the first equation in (1) it is clear that the number of monomers is decreasing;
as described in more detail in [6], Eq. (1) are a special case of the Becker-
Döring coagulation equations, corresponding to a situation where the only effective
reactions are the ones involving monomers. Thus the special role played by
monomers is expected to freeze the dynamics when we run out of monomers. In the
context of aggregation models of cluster growth [3] we consider an “addition” model
[7] where cluster growth can only occur by the addition of movable monomers
to the immovable clusters [3]. We provide a source of monomers by adding a
source term J1.t/ to the right hand side of the c1-equation in (1). One way to
externally supply monomers is to define the input term J1.t/ independently of the
state of the system. This is a reasonable assumption in a number of applications,
including in simple models of polymerization and of epitaxial growth [2]. The
easiest hypothesis about J1.t/, which turns out to be very useful in applications, is to
make it a time independent constant. Another possible choice, quite interesting from
a mathematical viewpoint, is to consider for J1 a power law J1.t/ D ˛t!; with ˛ >
0 and ! 2 R: The constant case was considered in [6], using an approach based
on methods (Poincaré compactification and center manifold) that are not available
for the general power law case; the case ! > �1=2 was considered in [5]. For
! � �1=2 partial results were obtained in [8]. In this paper we restrict ourselves to
! D �1=2. A formal analysis was presented in [9], and we use the ansatz provided
by Wattis [9] to rigorously analyse the addition model with a power law input of
monomers J1.t/ D ˛t�1=2, namely

Pc1 D ˛t�1=2 � c21 � c1

1X
jD1

cj

Pcj D c1.cj�1 � cj/ j � 2:

(2)

We study two aspects of the dynamical behaviour of solutions to (2). First, we want
to establish the componentwise behaviour of the solution as time t ! C1 and
the behaviour of the total amount of clusters. The second aspect of the dynamics
we are interested in is the occurrence of similarity behaviour. Our first step consists
in transforming the infinite dimensional system (2) into a problem that is almost
exactly solvable. Introducing the total number of clusters as a new macroscopic
variable c0.t/ defined by c0.t/ D P1

jD1 cj.t/; and formally differentiating termwise,
we conclude that c0 satisfies the evolution equation

Pc0 D ˛t�1=2 � c0c1:
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Using c0, we can write system (2) as

Pc0 D ˛t�1=2 � c0c1;
Pc1 D ˛t�1=2 � c0c1 � c21;
Pcj D c1.cj�1 � cj/; j � 2:

(3)

If
P1

jD1 cj.0/ < 1 then if .c0; c1; cj/; j � 2 is a solution of system (3) then
.c1; cj/; j � 2 is a solution of system (2). The proof can be done as in [6,
Theorem 2.1].

The equations governing the dynamics of c0.t/ and c1.t/ actually define a
nonautonomous bidimensional system

Pc0 D ˛t�1=2 � c0c1
Pc1 D ˛t�1=2 � c0c1 � c21;

(4)

and we can now study the dynamics of (4) in a way totally independent of the
remaining components of the infinite dimensional system. In order to solve this
system we use an ansatz for a convenient change of variables suggested by Wattis
[9, Table 2] and obtained via formal asymptotics. Based on [9, Table 2] we expect
solutions .c0; c1/ of system (4) to have the following behaviour as t ! C1

c0.t/  �
3˛2

�1=3
.log t/1=3 and c1.t/  .˛=3/1=3t�1=2 .log t/�1=3 ; (5)

in the following sense

lim
t!C1 c0.t/

�
3˛2 log t

��1=3 D 1 and lim
t!C1 c1.t/.˛=3/

�1=3t1=2 .log t/1=3 D 1:

This suggests that defining functions C0.t/ and C1.t/ by

C0.t/ WD �
3˛2

��1=3
.log t/�1=3c0.t/ and C1.t/ WD .˛=3/�1=3t1=2.log t/1=3c1.t/;

(6)

they might both be expected to converge to 1 as t ! C1, and reciprocally, if
this happens then c0 and c1 will behave as stated in (5). To prove this convergence
behaviour we need an equation for the evolution of .C0;C1/. We begin by
differentiating (6), and then replacing it into system (4). We then change the time
scale t 7! 
 by letting

d


dt
D �

3˛2
�1=3

.log t/1=3 : (7)

Considering t > 1 we have a well defined change of variables, and defining

x.
/ WD C1.t.
// and y.
/ WD C0.t.
//;
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and denoting d
d
 .�/ by .�/0 we finally obtain an equation for .x; y/:

x0 D 1 � xy � Oc.
/x2 C Od.
/x
y0 D Oc.
/.1 � xy � Oc.
/y/; (8)

where

Oc.
/ D c .t.
// WD .9˛/�1=3 .t.
//�1=2 .log t.
//�2=3 ;

and

Od.
/ D d .t.
// WD Oc2.
/.3=2 log t.
/C 1/:

In [5] we have seen that for ! > �1=2, the change of variables corresponding to
(7) can be explicitly solved; for ! D �1=2 we do not have an explicit expression
for t as a function of 
 , and we will use some preliminary results to obtain what we
need: the asymptotic relationship between the two time scales.

For t 2 Œ1;C1Œ we have d
=dt D �
3˛2

�1=3
.log t/1=3 > 0; since

limt!1 d
=dt D C1, we can conclude that 
.t/ (resp. t.
/) is a strictly increasing
function of t (resp. 
). This allows us to conclude that 
 ! C1 (resp. t ! C1)
as t ! C1 (resp. 
 ! C1). To get a better estimate on the asymptotic behaviour
of 
.t/, using integration by parts, we obtain from (7)


.t/ D t.3˛2 log t/1=3 .1C o.1// as t ! C1:

This allows us to write t.
/ D 
.3˛2 log 
/�1=3 .1C o.1// as 
 ! C1.
We also have as 
; t ! C1 that


.t/ D O
�
t.log t/1=3

�
and t.
/ D O

�

.log 
/�1=3

�
;

and also

Oc.
/ D O
�
.
 log 
/�1=2

�
and Od.
/ D O

�

�1

�
:

In the next section, we will study the bidimensional system (4); then in Sect. 3
we will study the long time behaviour of solutions, and in Sect. 4 we will study the
existence of self-similar behaviour.
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2 The Bidimensional System

Since we are only interested in non-negative solutions to (4), by solution we shall
mean non-negative solution. The main result of this section concerns the asymptotic
behaviour of c0 and c1.

Theorem 1 Let ˛ > 0, and .c0; c1/ be any solution of (4). Then

1. .3˛2/�1=3 .log t/�1=3 c0.t/ ! 1 as t ! C1,
2. .˛=3/�1=3t1=2.log t/1=3c1.t/ ! 1 as t ! C1,
3. .3=˛ log t/2=3t

�
˛t�1=2 � c0c1

� ! 1 as t ! C1.

To prove this theorem we use two propositions. These propositions follow closely
what was done in a series of lemmas in [5, 6], and the proofs differ mainly because
now we have a log term and also, as mentioned already, because we do not have an
explicit expression for the change of variables defined by (7). We start by showing
that non-negative solutions to (8) remain non-negative as 
 ! C1, then we show
how the x and y boundedness are closely related, and finally we show that every
solution to (8) with positive initial data is bounded.

Proposition 1 For the system of equations (4) the following holds

1. The first quadrant fx � 0; y � 0g is positively invariant for (8).
2. y (resp. x) is bounded ” x (resp. y) is bounded away from zero.
3. Every solution to (8) with positive initial data is bounded.

An immediate consequence of Proposition 1 is that solutions to (8), with positive
initial data, are bounded and bounded away from zero; we also have that the
conclusions of Proposition 1 still hold if the initial condition is nonnegative.
Proposition 1 also implies that every orbit of (8) is bounded and bounded away
from zero. We are now ready to study the !-limit set of (8). We start by showing
that the !-limit set of every orbit is contained in the hyperbola fxy D 1g, then we
fully identify it by showing that both x and y converge to 1, and finally we establish
the convergence rate of x.
/y.
/ as 
 ! C1.

Proposition 2 For the system of Eq. (8) the following holds

1. Let .x; y/ be any solution to (8) then x.
/y.
/ ! 1� as 
 ! C1.
2. lim
!C1 x.
/ D 1 and lim
!C1 y.
/ D 1.
3. Let .x; y/ be any solution to (8) then we have lim
!C1 1�x.
/y.
/

Oc.
/ D 1:

Recalling the definition of x, y and Oc, Theorem 1 follows from the last two statements
in Proposition 2.
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3 Long Time Behaviour of the System

Given a solution of (4), we introduce a new time scale

&.t/ WD &0 C
Z t

t0

c1.s/ds; (9)

where &0 is a positive constant, and we consider the new phase variables

Qcj.&/ WD cj.t.&//; (10)

where t.&/ is the inverse function of &.t/. When c1.t/ > 0, these are well defined
and & is an increasing function of t: In these new variables, the equations for cj in
(3) now become

Qcj
0 D Qcj�1 � Qcj; j � 2;

where .�/0 D d
d& .�/: This system of differential equations is a lower triangular linear

system and thus can be explicitly solved in terms of the function Qc1.&/ starting from
the equation for j D 2 and applying the variation of constants formula recursively:

Qcj.&/ D e�&
jX

kD2

& j�k

. j � k/Š
ck.0/C 1

. j � 2/Š
Z &

0

Qc1.& � s/s j�2e�sds: (11)

From now on we will only consider the new time scale defined by (9).
We now establish convergence results similar to those of Theorem 1 but for all

values of j, and in both time scales.

Proposition 3 With cj; & and Qcj.&/ as given by (9) and (10)

1. &.t/ D .8˛=3/1=3 t1=2 .log t/�1=3 .1C o.1//; as t ! C1,
2. .1=2/1=3.3=˛/2=3&.log &/2=3 Qcj.&/ D 1C o.1/;8j � 1; as & ! C1,
3. .˛=3/�1=3 t1=2 .log t/1=3 cj.t/ �! 1;8j � 1; as t ! C1:

By definition we have d&=dt D c1.t/ and we already know from Theorem 1 the
asymptotic behaviour of c1, hence we have the following estimates

8" > 0; 9T"W 8t > T"; 1 � " < t1=2 .3 log t=˛/1=3 c1.t/ < 1C "

H) t�1=2 .3 log t=˛/�1=3 .1 � "/ < c1.t/ < t�1=2 .3 log t=˛/�1=3 .1C "/:
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We are thus naturally led to estimate the integral
R t

t0
s�1=2 .log s/�1=3 ds, as t ! C1,

to obtain, as t ! C1

&.t/ D .8˛=3/
1
3 t1=2 .log t/�

1
3 .1C o.1//: (12)

Using Eq. (12) we obtain the following relation between the logarithms of &.t/ and
t.&/

log &.t/ D 1

2
log t.&/.1C o.1//;

and using this last equation,

t.&/ D .4˛=3/�2=3 &2 .log &/2=3 .1C o.1//; (13)

as & ! 1. Using (13) we obtain the asymptotic behaviour of Qc1.&/

lim
&!C1 .1=2/

1=3 .3=˛/2=3 & .log &/2=3 Qc1.&/ D 1: (14)

Using (14) and the representation of the Qcj given by (11) we can establish the
behaviour of cj in terms of the original t variable. To this end, letting

g.&/ WD .1=2/1=3.3=˛/2=3&.log &/2=3; (15)

we can write g.&/Qc1.&/ D 1 C o.1/; as & ! C1. Multiplying (11) by g.&/ we
obtain

g.&/Qcj.&/ D g.&/e�&
jX

kD2

& j�k

. j � k/Š
ck.0/C g.&/

. j � 2/Š

Z &

0

Qc1.&�s/s j�2e�sds: (16)

The first term on the right hand side of (16), corresponding to the non-monomeric
initial data contribution, can be written as

&.log &/2=3e�&

jX
kD2

& j�k

. j � k/Š
ck.0/ D O

�
.log &/2=3& j�1e�&

� D o
�
e��&

�
as & ! C1;

for every � < 1 and fixed j.
For the second term in the right hand side of (16) we start by changing integration

variables s 7! y D s=& , which allows us to write the integral term as an integral over
the fixed interval Œ0; 1�. Defining the function

 .�/ WD g.�/Qc1.�/; (17)
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we obtain

g.&/

. j � 2/Š
Z &

0

Qc1.& � s/s j�2e�sds

D & j�1.log &/2=3

. j � 2/Š
Z 1

0

 .&.1 � y//y j�2

.1 � y/.log&.1 � y//2=3
e�&ydy: (18)

In order to evaluate the integral in (18) we split the interval of integration at the
y D 1 singularity as .0; 1 � "/ and .1 � "; 1/, for a fixed " 2 .0; 1/. For the integral
over .1 � "; 1/ we know that since Qc1 is continuous and goes to zero at infinity, by
(14), there exists a positive constant M satisfying 0 � Qc1.x/ � M for x 2 Œ0;C1Œ

and hence

& j.log &/2=3
Z 1

1�"
Qc1.&.1 � y//y j�2e�&ydy � & j.log &/2=3M

Z 1

1�"
e�&ydy (19)

D M& j�1.log &/2=3e�& .exp.1 � "/� 1/ ;

and this term is exponentially small when & ! C1.
For the integral over .0; 1 � "/, we use the fact that y < 1 � " ) &.1 � y/ >

&" ! C1 as & ! C1, then for & sufficiently large, we can use (14) and (17) to
conclude that  D 1C o.1/ in the interval we are considering, and thus

8ı1 > 0; 9T1.ı1/W 8& > T1.ı1/;  .&.1 � y// 2 Œ1 � ı1; 1C ı1�;

and hence as & ! C1 we have

.1 � ı1/Ij.&/ �
Z 1�"

0

.log &/2=3 .&.1 � y//y j�2

.1 � y/.log &.1 � y//2=3
e�&ydy � .1C ı1/Ij.&/; (20)

where

Ij.&/ WD
Z 1�"

0

�
1C log.1 � y/

log &

��2=3 y j�2

1 � y
e�&ydy:

For y 2 Œ0; 1 � "Œ, we now have that

8ı2 > 0; 9T2.ı2/W 8& > T2.ı2/;

�
1C log.1 � y/

log &

��2=3
2 Œ1 � ı2; 1C ı2�:
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Hence for & sufficiently large, it is enough to estimate the integral
R 1�"
0

y j�2

1�y e�&ydy;
which, using Watson’s lemma, is equal to

Z 1�"

0

y j�2

1 � y
e�&ydy D � . j � 1/

& j�1 C O

�
1

& j

�
; as & ! C1:

Putting this last expression in (20) results in

& j�1

. j � 2/Š

Z 1�"

0

.log &/2=3 .&.1 � y//y j�2

.1 � y/.log &.1 � y//2=3
e�&ydy D 1C O.&�1/ as & ! C1:

(21)

Gathering (19) and (21), we have the following generalization of (14), as & ! C1

.1=2/1=3.3=˛/2=3&.log &/2=3 Qcj.&/ D 1C o.1/;8j � 1;

or in the original t variable [using (12)], as t ! C1

t1=2 .3 log t=˛/1=3 cj.t/ ! 1;8j � 1:

This concludes the proof of Proposition 3.

4 Self-similar Behaviour

We can now turn to the results concerning convergence of solutions to self-similar
profiles.

Da Costa and Sasportes [5] showed that when the input of monomers is given by
J1.t/ D ˛t! , with ! > �1=2 we have a similarity profile ˚1;! W RC n f1g ! R

defined by

˚1;!.	/ WD
(
.1 � 	/ !�1

!C2 if 0 < 	 < 1
0 if 	 > 1:

The following result states that choosing ! D �1=2, the function ˚1;�1=2 is still a
similarity profile for the solutions to (2) along non-characteristic directions.

Theorem 2 Let .cj/ be any non-negative solution of (2) with initial data satisfying
9� > 0;� > 1 W 8j; cj.0/ � �=j�. Let &.t/ and Qcj.&/ be as in (9) and (10),
respectively. Then for 	 D j=& fixed and 0 < 	 ¤ 1, we have

lim
j;&!C1.1=2/

1=3.3=˛/2=3&.log &/2=3 Qcj.&/ D ˚1;�1=2.	/:
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4.1 Monomeric Initial Data

For monomeric initial data, the representation formula for Qcj [given by (11)] shows
that we only have the integral term, and multiplying (11) by g.&/ we have

g.&/Qcj.&/ D g.&/

. j � 2/Š

Z &

0

Qc1.& � s/s j�2e�sds: (22)

In order to evaluate the right hand side of (22) we replace the discrete variable j
by a continuous one x, allowing us to use Stirling’s asymptotic formula for the �
function. Let '1 on Œ2;1/ 	 Œ0;1/ be defined by

'1.x; &/ WD g.&/

� .x � 1/
Z &

0

Qc1.& � s/sx�2e�sds:

When x � 2 is an integer, the function '1 clearly satisfies '1.x; &/ D g.&/Qcx.&/, and
we shall use '1 instead of the definition of Qcj. Using Stirling’s asymptotic formula
� .x/ D e�xxx�1=2p2� �1C O.x�1/

�
as x ! 1, the recursive relation � .x � 1/ D

� .x/=.x � 1/, letting 	 WD x=&; and changing variable s 7! y D s=& , we can write,

'1.&	; &/ D 1p
2�

�
9

2˛2

�1=3
	3=2�	&&1=2&.log &/2=3	

	 �1C O
�
&�1

�� Z 1

0

Qc1.&.1 � y//
exp.&.	 log y � y C 	//

y2
dy: (23)

In order to make clear the asymptotic behaviour of Qc1.&/ we multiply (and divide)
inside the previous integral by g.&.1�y//, as defined in (15) and (17), and we obtain

'1.&	; &/ D 1p
2�

�
9

2˛2

�1=3
	
3
2�	&&1=2&.log &/2=3

�
9

2˛2

��1=3
&�1	

	 �1C O
�
&�1

�� Z 1

0

 .&.1 � y//
exp.&.	 log y � y C 	//

.log.&.1 � y///2=3 y2.1 � y/
dy:

Simplifying and grouping the logarithmic terms we obtain

'1.&	; &/ D 1p
2�
	
3
2�	&&1=2

�
1C O

�
&�1

��	

	
Z 1

0

 .&.1 � y//

�
1C log.1 � y/

log &

��2=3 exp.&.	 log y � y C 	//

y2.1 � y/
dy: (24)
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Rearranging the last expression, the proof reduces to the asymptotic evaluation as
& ! C1 of the function I.	; &/ defined by

I.	; &/ WD &1=2	�	&e&		

	
Z 1

0

 .&.1 � y//

�
1C log.1 � y/

log &

��2=3 exp.&.	 log y � y//

y2.1 � y/
dy: (25)

We start by showing that for 	 > 1 we have I.	; &/ ! 0, as & ! C1. In order to
study the behaviour of '1 we first split the interval of integration as .0; 1 � "/ and
.1 � "; 1/, for a fixed " 2 .0; 1/.

In .0; 1� "/ both  .&.1� y// and
�
1C log.1�y/

log &

	�1
are 1C o.1/ for large values

of & , and hence to evaluate (25) it is enough to estimate

&1=2	�	&e&	
Z 1�"

0

exp.&.	 log y � y//

y2.1 � y/
dy

D &1=2	�	& exp.&	/
Z 1�"

0

y�2 exp.&.	 log y � y//

.1 � y/
dy

� &1=2	�	& exp.&	/ exp

�
max

t2Œ0;1�"� g1.t/
�Z 1�"

0

1

1 � y
dy

D &1=2	�	& exp.&	/ exp

�
max

t2Œ0;1�"� g1.t/
�

log "�1; (26)

where g1.t/ WD .&	 � 2/ log t � & t: For & > 2=.	 � 1/ and t � 1, the function g1
satisfies g01.t/ D .&	 � 2/=t � & � .&	 � 2/ � & D &.	 � 1/ � 2 > 0; and hence
g1.t/ � g1.1 � "/ D �&.1 � " � 	 log.1 � "// � 2 log.1 � "/. Plugging this result
back in (26) we have

&1=2	�	&e&	 exp

�
max

t2Œ0;1�"� g1.t/
�

log "�1

D &1=2 log "�1

.1 � "/2 exp
��&�	 log 	� 	C .1 � "/� 	 log.1 � "/

��
;

and so it is enough to check that we have 	 log 	 � 	C .1 � "/ � 	 log.1 � "/ > 0

for & > 2=.	� 1/ and 	 > 1. But

	 log 	� 	C .1 � "/� 	 log.1� "/ > 0 , .1 � "/� 	 > 	 log
1 � "
	

, 1 � "
	

� 1 > log
1 � "
	

;
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and, letting z D .1� "/=	, this last inequality amounts to z > log z C 1 which holds
for all z ¤ 1, and that is the case since 	 > 1 ) 	 ¤ 1 � ". This concludes the
proof in the interval .0; 1 � "/.

We now show that the integral over .1 � "; 1/ also goes to 0 as & ! C1. Since
Qc1 is continuous and goes to 0 as & ! C1 it is bounded in Œ1 � "; 1�, and so there
is a constant M > 0 such that Qc1.&.1 � y// < M;8y 2 Œ1 � "; 1�. Now we have to
estimate

	�	&&3=2.log &/2=3
Z 1

1�"
exp .&.	 log y � y C 	//

y2
dy

D &3=2.log&/2=3
Z 1

1�"
exp .�&.	 log 	 � 	 log y C y � 	//

y2
dy

D &3=2.log&/2=3
Z 1

1�"
exp.�&h.y//

y2
dy

< &3=2.log &/2=3 exp

�
�& min

t2Œ1�";1� h.t/
�Z 1

1�"
1

y2
dy

D &3=2.log&/2=3
"

1 � "
exp .�&h.1// ; (27)

where h.t/ WD 	 log 	 � 	 log t C t � 	 has a unique minimum at t D 1, and since
h.1/ D 	 log 	C 1 � 	, and 	 log 	C 1 � 	 > 0 for 	 ¤ 1 the expression in (27) is
exponentially small as & ! C1. This concludes the proof for 	 > 1.

For 	 < 1 we use a similar approach, but the situation being slightly more
delicate, since now the (unique) maximum of 	 log y � y is attained at an interior
point (1 > 	 2 .0; 1/), we need to split the integral by writing it as a sum of integrals
over .0; "/, ."; 1� "/ and .1� "; 1/. With g and  defined as above, for every " > 0
we split the integral over Œ0; 1� as the sum of three integrals: I1 over .0; "/, I2 over
."; 1� "/ and I3 over .1� "; 1/. We will show that both I1 and I3 go to zero, and that
the only non zero contribution comes from the integral over ."; 1� "/. Given 	 < 1,
we choose " > 0 in such a way that 	 2 ."; 1� "/, for instance " < minf	=a; 1�	g,
with a > 1.

For the integral over I1, we now have that both  .&.1� y// and
�
1C log.1�y/

log &

	�1

are 1Co.1/when estimating the integral for large values of & ; and hence to evaluate
the integral over I1 we can use an argument similar to the one we already used in the
	 > 1 case. To evaluate I1 it is then enough to estimate, as & ! C1, the value of

&1=2	�	&e&	
Z "

0

exp.&.	 log y � y//

y2.1 � y/
dy:
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As in .0; 1 � "/, using g1.t/ D .&	 � 2/ log t � & t, we have 0 < t < " < 	=a < 	

and hence for & > 2=.1 � 1=a/	, we can conclude that g01 satisfies tg01.t/ D &.	 �
t/ � 2 > 0; since & > 2=.	 � 	=a/ > 2=.	 � t/ and hence g1.t/ � g1."/ D �&
." � 	 log "/� 2 log ". We then have the following estimates

&1=2	�	&e&	
Z "

0

exp.&.	 log y � y//

y2.1 � y/
dy D &1=2	�	&e&	

Z "

0

exp.g1.y//

1 � y
dy

� &1=2	�	&e&	 exp
�

max
t2Œ0;"� g1.t/

� Z "

0

1

1 � y
dy

D &1=2	�	& exp.&	C g1."/ log.1 � "/�1

D &1=2"�2 log.1� "/�1 exp.�&.	 log 	� 	C " � 	 log "//:

And so we only need to check that 	 log 	� 	C "� 	 log " > 0, which is true since
this last expression is always positive, except for 	 D " where it is zero, and we
chose " < 	. Hence I1 ! 0, as & ! C1.

For I3, the integral over Œ1 � "; 1�, we have 0 � &.1 � y/ � &", and we use
Eq. (23), which involves Qc1, and we have to evaluate, as & ! C1,

	�	&&3=2.log &/2=3
Z 1

1�"
exp.&.	 log y � y C 	//

y2
dy:

This can be done as before, by showing that the function h.y/ WD 	 log 	 � 	 �
	 log yCy is always positive for y 2 Œ1�"; 1�, remembering that we picked " < 1�	,
and hence y > 1 � " > 	, when evaluating I3. And so recalling that h.y/ � 0, and
h.y/ > 0 for y ¤ 	, we conclude that I3 is also exponentially small as & ! C1.

For the integral I2, we use again the fact that for y 2 ."; 1 � "/, we have�
1C log.1�y/

log &

	�2=3 ! 1 as & ! C1; and so we rewrite (23) as

p
2� '1.&	; &/ D �

2˛2=9
��1=3

	3=2�	&&1=2&.log &/2=3	

	 �1C O
�
&�1

�� Z 1�"

"

Qc1.&.1 � y//
exp.&.	 log y � y C 	//

y2
dy

D 	3=2�	&&1=2 	

	 �1C O
�
&�1

�� Z 1�"

"

 .&.1 � y//
.log &/2=3 exp.&.	 log y � y C 	//

y2.1 � y/.log &.1 � y//2=3
dy

D 	3=2�	&&1=2
�
1C O

�
&�1

�� 	

	
Z 1�"

"

 .&.1 � y//

�
log &

log &.1 � y/

�2=3 exp.&.	 log y � y C 	//

y2.1 � y/
dy:
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Since in this case  .&.1 � y// and
�

log &
log &.1�y/

	2=3
are 1 C o.1/ when & ! 1, it

holds that

8ı > 0; 9T.ı/W 8& > T.ı/;  .&.1 � y//

�
log&

log &.1 � y/

�2=3
2 Œ1 � ı; 1C ı�:

It is then enough to study the limit, as & ! C1, of the function

J.	; &/ WD 	3=2�	& &1=2
Z 1�"

"

exp.&.	 log y � y C 	//

y2.1 � y/
dy;

since we can write .1 � ı/J.	; &/ � I2 � .1C ı/J.	; &/, for & sufficiently large.
Applying Laplace’s method for the asymptotic evaluation of integrals [1, p. 431]

to the integral

Z 1�"

"

exp.�&.y � 	 log y � 	//
y2.1 � y/

dy D
Z 1�"

"

exp.�&�.y//
y2.1� y/

dy;

where � W .0; 1/ ! R defined by �.y/ WD y � 	 log y � 	, is smooth and has a
unique minimum, attained at y D 	 2 ."; 1 � "/ with value �.	/ D �	 log 	 and
�00.	/ D 	�1, we obtain, as & ! C1,

Z 1�"

"

exp.�&.y � 	 log y � 	//

y2.1� y/
dy D

D
p
2�	=& exp.&	 log 	/

	2.1 � 	/
C O

�exp.&	 log 	/

&3=2

	
: (28)

Now from (23) and (28), we obtain for 	 < 1, as & ! C1

'1.&	; &/ D 1p
2�
	3=2�	&&1=2 exp.&	 log	/

1

	2.1 � 	/
p
2�	=& C O

�
&�1

�

D 1

1 � 	 .1C o.1// :

This concludes the proof in the monomeric case.



Long Time Behaviour and Self-similarity in an Addition Model 359

4.2 Non monomeric Initial Data

If the initial condition is not monomeric we have the contribution from the sum term
in the right hand side of (11). Multiplying it by g.&/ we now have to prove that

lim
j;&!C1 g.&/e�&

jX
kD2

& j�k

. j � k/Š
ck.0/ D 0; 	 D j=& fixed, and 	 ¤ 1:

Since we want to show the limit is zero, we will drop the constants in the definition
of g, and so we only consider the terms &.log &/2=3. The proof is based on the same
argument used in [6, Sect. 5.2]. Defining � WD 	�1, letting & D j�; and using the
assumption on the initial condition in Theorem 2, namely cj.0/ � �=j�, we then
have

&.log &/2=3e�&
jX

kD2

& j�k

. j � k/Š
ck.0/ � �j�.log j�/2=3 exp.�j�/

jX
kD2

. j�/j�k

. j � k/Šk�

WD �'2.�; j/:

Our goal is to prove that '2.�; j/ ! 0 as j ! 1, for all positive � ¤ 1. We can
adapt the results in the study of '2 presented in [6, Sect. 5.2], noticing that we only
need to multiply all the estimates in [6, Sect. 5.2] by

p
j�.log j�/2=3. The estimates

show that now in order for '2 to converge to zero we need to consider initial data
satisfying cj.0/ � �=j�, but in this case with � > 1. The log j term growing much
slower than

p
j has no influence on the convergence of '2 to zero. This completes

the proof of the theorem.

4.3 On the Self-similar Behaviour Along the Characteristic
Direction

In the case with input ˛t! with ! > �1=2, we have seen [5] that for values of ! < 1
the singularity of the self-similar solution ˚1;! can be dealt with by considering a
different similarity variable and a different time-scaling, allowing us a sort of inner
expansion for the characteristic direction 	 D 1, and we obtained a function ˚2;!
satisfying

Qcj.&/  &.!�1/=.2!C4/˚2;!
�
. j � &/=p&� :

It is worth noticing that for ! > �1=2 the similarity variable was independent of
!, and the exponent of the time scaling variable, although !-dependent was always
half the exponent used for ˚1;! . Now we also have a singularity at 	 D 1 and so it
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is natural to check if this similarity variable also gives rise to a solution, and if that
is the case, one for which 	 D 1 is no longer a singularity.

Choosing the similarity variable . j � &/=
p
& and replacing & by &1=2 in the

expression in the limit in Theorem 2

&1=2
�
log.&/1=2

�2=3 D .1=2/2=3&1=2.log &/2=3;

and letting ˚2;�1=2 W R ! R be defined by

˚2;�1=2.�/ WD e��2=2
Z C1
0

y�1e��y2�y4=2dy;

we hope it is equal to the limit for � D . j � &/=
p
& fixed and � 2 R, of

lim
j;&!C1C˛&

1=2.log &/2=3 Qcj.&/; (29)

where C˛ > 0 is a constant that only depends on ˛. We now show that this limit
does not exist.

Following a strategy similar to the one we used in [6] for ! > �1=2, for
monomeric initial data we have to estimate

.log &/2=3 &1=2 Qcj.&/ D .log &/2=3 &1=2

� . j � 1/

Z &

0

Qc1.& � s/s j�2e�sds;

as & ! C1; j ! C1; . j � &/=
p
& fixed.

We define the function '3 in Œ2;1/ 	 Œ0;1/ by

'3.x; &/ WD .log &/2=3 &1=2

� .x � 1/
Z &

0

Qc1.& � s/s j�2e�sds;

and using the similarity variable � D . j � &/=p&.D .x � &/=p&/ we rewrite '3 as

'3.& C �
p
&; &/ D .log &/2=3 &1=2

� .& C �
p
& � 1/

Z &

0

Qc1.& � s/s&C�
p
&�2e�sds:

If 2 � x D j 2 N, we have '3. j; &/ D .log &/2=3 &1=2 Qcj.&/, and hence we need to
evaluate the limit

lim
&!C1'3.& C �

p
&; &/: (30)
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Changing variables s 7! w WD pp
& � s=

p
& , in such a way that & � s D p

&w2

and ds D �2p&wdw, we obtain

'3.& C �
p
&; &/ D .log &/2=3 &1=2

� .& C �
p
& � 1/

	

	
Z &1=4

0

Qc1.p&w2/.& � p
&w2/&C�

p
&�2 exp.�& C p

&w2/2
p
&wdw: (31)

Using (17), and letting D D 2.˛=3/2=3, we rewrite (31) as

'3.& C �
p
&; &/ D D

.log&/2=3 &1=2

� .& C �
p
& � 1/

Z &1=4

0

�
log.

p
&w2/

��2=3
.
p
&w2/�1 	

	 .p&w2/.& � p
&w2/&C�

p
&�2 exp.�& C p

&w2/
p
&wdw

D D
&&C�

p
&�3=2e�&

� .& C �
p
& � 1/

Z &1=4

0

�
1C 4 log w

log &

��2=3
 .

p
&w2/ 	

	
�
1 � w2p

&

�&C�p&�2
exp.

p
&w2/

1

w
dw:

Using Stirling’s asymptotic expansion for the Gamma function we can write

1

� .& C �
p
& � 1/ D 1p

2�

exp.& C �
p
&/

.& C �
p
&/&C�

p
&�3=2 .1C o.1//;

as & ! C1, and hence '3 can be written, as & ! C1,

'3.& C �
p
&; &/ D Dp

2�

&&C�
p
&�3=2 exp.�

p
&/

.& C �
p
&/&C�

p
&�3=2 .1C o.1//	 (32)

	
Z &1=4

0

�
1C 4 log w

log &

��2=3
 .

p
&w2/

�
1 � w2p

&

�&C�p&�2
exp.

p
&w2/

1

w
dw:

To estimate the multiplicative prefactor in (32) as & ! C1 we can write it as

&&C�
p
&�3=2 exp.�

p
&/

.& C �
p
&/&C�

p
&�3=2 D exp

�
��

2

2

�
.1C o.1//; (33)
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where in (33) to compute the limit as & ! C1 we use the change of variables

& 7! x WD �=
p
& to obtain

�
e.1 C x/�1=x

��2=x
and then we apply L’Hôpital’s rule

twice. Using this last expression we can write (32) as & ! C1 in the following
way

'3.& C �
p
&; &/ D Dp

2�
exp.��2=2/.1C o.1//	 (34)

	
Z &1=4

0

�
1C 4 log w

log &

�
�2=3

 .
p
&w2/

�
1 � w2p

&

�&C�
p

&�2

exp.
p
&w2/

1

w
dw:

In the case where ! > �1=2 in [6] the proof continued with a study of the
integral term in (34) by considering first w (and also

p
&w2) close to zero, and

then w away from zero, and showing that the integral, for small values of w, could
be made arbitrarily small, while the remaining integral, for w away from zero
converged as & ! C1. In the case at hand we no longer have convergence,
essentially due to the singularity arising from 1=w in the integrand of (34). We
now consider " > 0 arbitrarily small and 1 < T < &1=4 and we show that
the integral over Œ";T� can be made arbitrarily large. We start by splitting the
integral over Œ0; &1=4� in (34) as a sum over 3 intervals Œ0; "�; Œ";T� and ŒT; &1=4�.
The integrals over Œ0; "� and ŒT; &1=4� are both non negative and for w 2 Œ";T� we
have

p
&w2 � p

&"2 ! C1 as & ! C1, and so as by (14), (15), and (17), it

follows that
�
1C 4 log w

log &

	�2=3
 .

p
&w2/ D 1C o.1/ as & ! C1.

This means that for w 2 Œ";T� the integral we want to evaluate is asymptotically
equal to

.1C o.1//
Z T

"

�
1 � w2p

&

�&C�p&�2
exp.

p
&w2/

1

w
dw:

To estimate this last integral we have as & ! C1
�
1 � w2p

&

	&C�p&�2
exp.

p
&w2/ D exp

�
�w4

2
� �w2

	�
1C o.1/

�
; (35)

where (35) is obtained by first changing variables & 7! x D 1=
p
& and then

applying L’Hôpital’s rule. From (35) we conclude that there exists a continuous
function g.w; &/ defined for &1=4 > " and w 2 Œ";T� and satisfying 1C g.w; &/ � 0

and g.w; &/ ! 0 as & ! C1 for each fixed w, such that

�
1� w2p

&

	&C�p&�2
exp.

p
&w2/ D exp.�w4=2� �w2/

�
1C g.w; &/

�
: (36)
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We now estimate the integral

Z T

"

exp.�w4=2� �w2/
�
1C g.w; &/

� 1
w

dw: (37)

Using (36)

1C g.w; &/ D
�
1 � w2p

&

	&C�p&�2
exp.

p
&w2 C w4=2C �w2/;

which implies, as & ! C1;
�
1 � w2p

&

	�p& � 1
2

exp.�w2�/ and

�
ew2
�
1 � w2p

&

	p&�p& � 1

2
exp.�w4=2/:

Since
�
1 � T2p

&

	�2
> 1 we have

1C g.w; &/ D
�
1� w2p

&

	&C�p&�2
exp.

p
&w2 C .w4=2/C �w2/ � 1

4
exp.�w4=2/;

and hence the integral in (37) can be estimated as

Z T

"

exp.�w4=2� �w2/
�
1C g.w; &/

� 1
w

dw � 1

4

Z T

"

exp.�w4 � �w2/
1

w
dw

> L1

Z T

"

1

w
dw; (38)

where L1 D L1.�;T/ WD exp.�T4 � �T2/=4. The integral in (38) can be made
arbitrarily large, since we can choose " > 0 suitably small, and hence since the
integral in (34) is (strictly) larger than the integral in (37), this concludes the proof
that the limit in (30) [and hence in (29)] does not exist.

5 Concluding Remarks

We studied the addition model with input J1 D ˛t�1=2 and showed the existence of
self-similar behaviour along non-characteristic directions.

Along the characteristic direction we considered a different similarity variable,
� D . j � &/=

p
& . This new “layer” variable of width

p
& around j D & provides a

kind of expansion of the singularity of the scaling transformation ˚1;�1=2. For this
similarity variable, we concluded that ˚2;�1=2 does not scale like &1=2.log &/2=3.
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Whether there is some similarity variable and some constants a and b such that the
similarity function scales like &a.log &/b remains an open question.
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Modelling the Fixed Bed Adsorption Dynamics
of CO2 = CH4 in 13X Zeolite for Biogas
Upgrading and CO2 Sequestration

José A.C. Silva and Alírio E. Rodrigues

Abstract The sorption of CO2 and CH4 in binderless beads of 13X zeolite has been
investigated between 313 and 423 K and total pressure up to 0.5 MPa through fixed
bed adsorption experiments. Experimental selectivities CO2 =CH4 range from 37 at
a low pressure of 0.0667 MPa to approximately 5 at the high temperature of 423 K.
The breakthrough curves measured show a plateau of pure CH4 of approximately
6 min depending of the operating conditions chosen. A mathematical model was
developed and tested predicting with good accuracy the behaviour of the fixed bed
adsorption experiments being a valuable tool for the design of cyclic adsorption
processes for biogas upgrading and CO2 capture using 13X zeolite.

1 Introduction

The reduction of CO2 and CH4 emissions to atmosphere is a matter of great concern
nowadays since both gases can contribute significantly to the so-called greenhouse
effect that describes the trapping of heat near earth’s surface by gases in the
atmosphere. At the same time CO2 =CH4 separations are of interest in treating gas
streams like landfill gas, biogas and coal-bed methane. Accordingly, there is a need
to investigate on this topic and that can be done with improved efficient technologies
to separate or remove CO2 and CH4 from exhaust gases. Two recent reviews
discuss this matter with great detail concerning the use of adsorbents (porous solids)

J.A.C. Silva (�)
Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Bragança, Apartado 134,
5301-857 Bragança, Portugal
e-mail: jsilva@ipb.pt

A.E. Rodrigues
Faculdade de Engenharia, Departamento de Engenharia Química, LSRE – Laboratory
of Separation and Reaction Engineering, Universidade do Porto, Rua do Dr. Roberto Frias,
4200-465 Porto, Portugal
e-mail: arodrig@fe.up.pt

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Mathematics of Energy and Climate Change,
CIM Series in Mathematical Sciences 2, DOI 10.1007/978-3-319-16121-1_18

365

mailto:jsilva@ipb.pt
mailto:arodrig@fe.up.pt


366 J.A.C. Silva and A.E. Rodrigues

based technologies to handle CO2 capture and CO2 =CH4 separations (see [1, 2]).
Biogas is mainly composed by CH4 (60–70 %) and CO2 (30–40 %) and to obtain
a high energy content CO2 needs to be separated from CH4. For this purpose a
variety of solid physical adsorbents have been considered including molecular sieve
zeolites and a new class of adsorbents named Metal-Organic Frameworks (MOFs).
The technology for biogas upgrading using adsorbents is called Pressure Swing
Adsorption (PSA). With this technique, carbon dioxide is separated from the biogas
by adsorption under elevated pressure. The adsorbing material, is regenerated by a
sequential decrease in pressure before the column is reloaded again, hence the name
of the technique. A review about the use of PSA technology for Biogas Upgrading
is described by Grande [3]. The modelling of fixed bed adsorption dynamics is of
fundamental importance for the design of industrial adsorbers due to the complexity
of these systems, that involve several mechanisms for mass and heat transfer coupled
with thermodynamic models that describe the equilibrium between gas and solid
phases (see [4]).

In this work, we will present fixed bed adsorption data of CO2 and CH4 on zeolite
13X at 313, 373 and 423 K and pressures up to 0.5 MPa. A mathematical model is
developed and validated to describe the fixed bed experimental data which could be
used in the implementation (simulation) of cyclic adsorption processes (PSA, TSA)
for the purification of biogas or CO2 sequestration.

2 Mathematical Model for Simulation of Fixed Bed
Adsorption Dynamics

In practice the separation of gaseous mixtures by porous solids adsorbents are
performed in a fixed bed. The perspective of the design engineer is to predict the
response of the column at the outlet (breakthrough curve) after a step change in
the concentration at inlet. The transient dynamic response must take into account
distinct levels of porosity: bed, particles and crystals, each one corresponding to
bulk porosity, macropores and micropores, respectively (Fig. 1). Each level presents
different resistances to mass transfer; some of these resistances are placed in series
and can be grouped into a single parameter (e.g., film, macropore, and micropore
resistances) in order to simplify the numerical procedure (Linear-Driving-Force
(LDF) model). At the same time since adsorption is an exothermic phenomena the
importance of heat effects should also be considered in the design of such adsorbers.

Let us consider that at time zero a mixture of known composition and an inert
gas is introduced at the inlet of the column.

The following additional assumptions are made:

1. Ideal gas;
2. There is no pressure drop in the column;
3. The flow pattern is described by the axial dispersed plug flow model;
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Fig. 1 Schematic representation of a fixed bed adsorption system showing distinct resistances to
mass transfer at different scales

4. The mass transfer between bulk gas phase and adsorbent particle is accounted by
a Linear-Driving-Force (LDF) model (see [4]).

5. A resistance to heat transfer exists in the external fluid film around the solid.
6. The adsorption equilibrium isotherm is described by the Fowler Model described

below in the text (see also [5]).

Table 1 shows the mathematical model equations that describe this system and
Table 2 the nomenclature of the variables used.

2.1 Numerical Solution of Model Equations

The set of coupled partial differential equations was reduced first to a set of ordinary
differential/algebraic equations (DAE’s) applying orthogonal collocation technique
to the spatial coordinate (see [6]), where the first and second order differential
terms were substituted by collocation matrices A.i; j/ and B.i; j/, respectively. The
collocation points were given by the zeros of Jacobi polynomials P.˛;ˇ/N .x/, with
˛ D ˇ D 0 calculated by subroutine JCOBI and the collocation matrices A.i; j/ and
B.i; j/ found by subroutine DFOPR. Both subroutines can be found in a FORTRAN
code in Villadsen and Michelsen [6]. The number of interior interpolation points
N was chosen to give stability to the numerical solution of discretized equations.
The resulting system was solved using a fifth order Runge-Kutta code (ODE’s) in
conjunction with a Gauss elimination (Algebraic equations). Sixteen collocation
points appeared to give satisfactory accuracy for all calculations performed. This
gives for two adsorbable species 128 (64 	 2) ODE’s being integrated at the same
time: 32 (16	 2) from the Mass balance to adsorbable species; 32 (16	 2) from the
equation representing the Mass transfer rate, 32 (16 	 2) from the Energy balance
in the gas phase and 32 (16 	 2) from the energy balance for the solid phase. At
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Table 1 Mathematical model for the study of fixed bed adsorption dynamics

Overall mass balance:

@F

@z
C "b

@C

@t
C .1� "b/

ncpX
#D1

@Nq#
@t
D 0:

Boundary condition:

z D 0I t > 0 F D Ff :

Mass balance to sorbate species i:

�"bDax
@

@z

�
C
@yi

@z

�
C @.Fyi/

@z
C "b

@.Cyi/

@t
C .1� "b/

@Nq#
@t
D 0:

Boundary conditions

z D 0I t > 0; "bDaxC
@yi

@z
D F.yi � yif /;

z D LI t > 0;
@yi

@z
D 0:

Mass transfer rate to solid:

@Nq#
@t
D kLDFC.yi � Ny#/:

Energy balance (gas phase):

�Kax
@2T

@z2
CFcpg

@T

@z
C"bCcpg

@T

@t
C .1�"b/aphp.T�Ts/Cachw.T�Tw/ D 0:

Boundary conditions

z D 0I t > 0; KaxC
@T

@z
D Fcpg.T � Tf /;

z D LI t > 0;
@T

@z
D 0:

Energy balance (solid phase):

cps
@Ts

@t
D aphp.T � Ts/C

ncpX
#D1

.��Hi/
@Nq#
@t
:

Initial conditions

t D 0I 8zI yi D Nq# > 0; KaxC
@T

@z
D Fcpg.T � Tf /;

z D LI t > 0;
@T

@z
D 0:
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Table 2 Nomenclature for the mathematical model

ac Specific area of column (m�1)

ap Specific area of particle (m�1)

cpg Heat capacity of gas (J/mol K)

cps Heat capacity of solid (J/m3 K)

C Total gas phase concentration (mol/m3)

Cf Total gas phase concentration at inlet of the column (mol/m3)

dp Particle diameter (m)

dc Column diameter (m)

Dax Axial mass dispersion coefficient (m2/s)

F Total molar flux (mol/m2 s)

Ff Total molar flux at inlet of the column (mol/m2 s)

hp Film heat transfer coefficient (W/m2 K)

hw Wall heat transfer coefficient (W/m2 K)

Kax Axial heat dispersion coefficient (W/m K)

��Hi Heat of adsorption of species i (J/mol)

kLDF Linear Driving Force (LDF) mass transfer coefficient (s�1)

L Column length (m)

ma Mass of adsorbent (g)

ncp Number of components (–)

Pc Total gas pressure in the column (kPa)

Nq# Average adsorbed phase concentration of species i in the pores of the adsorbent
in equilibrium with the gas phase Ny# (mol/m3)

t Time (s)

T Temperature in bulk gas phase (K)

Tf Temperature in bulk gas phase at inlet of column (K)

Ts Temperature in solid phase (K)

Tw Temperature at the wall of the column (K)

v Interstitial velocity (m/s)

yi Mole fraction of sorbate species i in bulk phase

Ny# Average gas phase concentration of species i in the pores of the adsorbent
(mol/m3)

yif Mole fraction of sorbate species i at inlet of column

z Axial coordinate in bed (m)

Greek letters

"b Bed porosity
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the same time there are 32 (16	 2) equations being solved by Gaussian elimination
from the equation representing the Overall mass balance.

2.2 Binary Isotherms

The binary adsorption equilibrium of CO2 and CH4 in 13X zeolite is described by
the Fowler isotherm [5],

1

p1

�1

.1 ��/
D b1 exp

�
�w11�1

RT
� w12�2

RT

�
; (1)

1

p2

�2

.1 ��/
D b2 exp

�
�w22�2

RT
� w21�1

RT

�
; (2)

where � D q=qm is the degree of filling of sites, b is an equilibrium constant, p the
pressure, q the amount adsorbed and qm is the amount adsorbed at the saturation of
the adsorbent, w is the extra energy when sorbate molecules occupy adjacent sites,
R the ideal gas constant and T the temperature, � is the total fractional loading
(species 1 and 2) and the subscripts 1 and 2 refer to the two species of the binary
system. Table 3 shows the model parameters.

Table 3 Isotherm model
parameters for single and
binary sorption of CO2 and
CH4 in binderless beads of
13X zeolite

CO2(1) CH4(2)

qm (mmol/gads) 7.4 7.4

��H (kJ/mol) 43.1 8.9

w11 (kJ/mol) 12.3 –

w22 – –

313 K

b (atm�1) 21.3 0.0643

�w12=RT (–) 1.39

373 K

b (atm�1) 1.49 0.0374

�w12=RT (–) 1.25

423 K

b (atm�1) 0.286 0.0256

�w12=RT (–) 1.10
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2.3 Adsorbent and Sorbates

The powder of 13X from which the binderless beads were formed is from
Chemiewerk Bas Kostritz GmbH (Germany) with a Si/Al ratio of 1.18. Metakaolin
is used to manufacture the beads. The synthesis and characterization procedure is
described in detail elsewhere (see [7]). Briefly, the beads formed consist in spherical
particles with a diameter ranging from 1.2 to 2.0 mm. The size of the zeolite crystals
are around 2 m. The sorbate and inert gases were furnished by Air Liquid with the
following purities: methane N35 (99.95 %), carbon dioxide N48 (99.998 %), and
helium ALPHAGAZ 2 (99.9998 %).

2.4 Multicomponent Fixed Bed Experiments

The adsorption column is a 4.6 mm i.d. stainless steel column with 80 mm length
placed inside a chromatographic oven. A typical experiment consists in measuring
continuously the concentration histories at the outlet of the column using a thermal
conductivity detector (TCD) and a mass spectrometer (MS) after feeding the column
with a mixture of CO2 and CH4 of known composition. When the saturation is
reached, the column is regenerated. Details of the apparatus and experimental
procedure can be found elsewhere (see [8]).

3 Results and Discussion

3.1 Binary Breakthrough Curves

In practice we wish to separate the CO2 from CH4 by feeding the fixed bed
containing adsorbent particles with mixtures of known composition. When in
contact with the adsorbent the mixture is selectively adsorbed giving rise to a
breakthrough curve at the outlet with a different composition of the one in bed inlet
until the fixed bed is completely saturated. In this section we give an overview of
two typical binary breakthrough curves obtained in the 13X zeolite from where the
amounts adsorbed and the selectivities of CO2 and CH4 were calculated. Figure 2
shows the experimental breakthrough curve after feeding the column with a 50/50
CO2 =CH4 mixture diluted with helium (inert) at the temperature of 313 K at a total
pressure in the column of 0.5 MPa. We plot the breakthrough curve in terms of
the normalized mole flow of the adsorptive species Fi=F0, as a function of time.
Figure 2 shows that at this temperature the separation between CO2 and CH4 at the
end of the column is significant given rise to a long plateau of pure CH4 of almost
4 min. It can be also seen that CH4 breaks the column practically at 1 min due to the
very low affinity of this compound with the adsorbent. Another interesting feature
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Fig. 2 Binary 50/50 breakthrough curve of CO2 =CH4 in 13X zeolite at the temperature of 313 K
and total pressure in the column of 0.5 MPa. Points are experimental data and lines represent model
predictions (black for fluxes and red for temperature). The experimental conditions and model
parameters are specified in Table 4. Feed conditions: yCO2 f D 0:333; yCH4 f D 0:333; Pf D
0:5MPa; Tf D 313K; Ff D 2:21mol/m2 s; Cf D 194mol/m3

observed in the figure is that the mass transfer zone for CH4 is very steep being
much more dispersive for CO2. The model described in Table 1 was used to simulate
the binary breakthrough shown in Fig. 2. The model parameters are described in
Table 4. To capture the profile of the breakthrough curve it is necessary to use a non-
isothermal model. The black lines in the figure show that the model describes with
good accuracy the concentration profiles of both components. The figure also shows
the temperature at the outlet of the bed (red line) where it can be seen a temperature
wave accompanying the breakthrough of each compound. The peak rise is small
(only 2 K) when CH4 breaks but is significant in the case of the CO2 (20 K). This is
due to the low adsorption of CH4 when compared to CO2 and also the difference in
the heats of adsorption of both compounds (8.9 kJ/mol for CH4 and 43.1 kJ/mol for
CO2, see Table 3). It should be expected much higher peak rises in large industrial
columns since they operate in adiabatic conditions. Figure 3 shows a breakthrough
curve for a different ratio of CO2(25)/CH4(75) in the feed. It can be seen that in this
case the plateau of pure CH4 increases to around 6 min. The model predicts again
with good accuracy the concentration profiles of both components. The peak rise of
CO2 also increases to around 30 K. Both breakthrough curves represented in Figs. 2
and 3 indicate that the binderless 13X zeolite is efficient for the removal of CO2

from its binary CO2 =CH4 mixtures. At the same time the mathematical model is
capable to capture with good accuracy the concentration profiles of both compounds
as well as the plateau of pure CH4 observed experimentally.
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Table 4 Model parameters for the simulation of the breakthrough experiments

Cpg 29.1 J/mol K KLDF 7.2 s�1

Cps 0.8 J/g K Kax 0.465 W/m K

dp 1:6� 10�3 m L 0.08 m

dc 4:6� 10�3 m ma 0.817 g

Dax 8:25� 10�5 m2/s (see note 1) Greek letters

hp 319 W/m2 K (see note 2) "b 0.38

hw 250 W/m2 K (see note 3)

Note 1: Calculated by the Correlation Dax D 0:7Dm C 0:5dp� taken from Ruthven [4]. The axial
mass Peclet number is 162
Note 2: This value was estimated from the limit of Nu D 2 and it can be considered a very high
value, which means that the temperature between solid and bulk gas phase is in equilibrium
Note 3: This parameter was obtained through the fitting of the experimental breakthrough curve
Note 4: The isotherm model parameters are the ones shown for the Fowler isotherm (see Table 3)

Fig. 3 Binary 25/75 breakthrough curve of CO2 =CH4 in 13X zeolite at the temperature of 313 K
and total pressure in the column of 0.5 MPa. Points are experimental data and lines represent model
predictions (black for fluxes and red for temperature). The experimental conditions and model
parameters are specified in Table 4. Feed conditions: yCO2 f D 0:166; yCH4 f D 0:486; Pf D
0:5MPa; Tf D 313K; Ff D 2:47mol/m2 s; Cf = 194 mol/m3

3.2 Sorption Selectivities

The primary requirement for an economic separation is an adsorbent with
sufficiently high adsorption selectivity, S, defined on a molar basis by S D
.q1=p1/=.q2=p2/, where in this case component 1 (CO2) is the more adsorbed
component. Figure 4 shows the temperature dependent sorption selectivity obtained
for several 50/50 and 25/75 CO2 =CH4 mixture experiments as a function of total



374 J.A.C. Silva and A.E. Rodrigues

Fig. 4 Selectivities as
function of temperature and
total mixture pressure of
adsorbable species for several
binary 50/50 and 25/75
mixture ratio experiments

pressure of the sorbate species. One point in the figure means one experimental
binary breakthrough curve. The SCO2=CH4 is very high at the low temperature
of 313 K and total pressure of sorbates of 0.0666 MPa being 36.3 and 21.1 for the
25/75 and 50/50 mixtures, respectively. As the pressure increases the selectivities
decreases but the values are still considerable high at 313 K and total pressure of
0.334 MPa ranging from 14.4 to 10.4 for the 25/75 and 50/50 mixtures, respectively.
When temperature increases the selectivities decreases being the lowest value
observed 5.4 at 423 K, partial pressure, 0.334 MPa in a 50/50 mixture. These
results show that the binderless beads o 13X zeolite can be considered an excellent
separator of mixtures CO2 =CH4 when appropriate operating conditions are chosen.

4 Conclusions

We performed a study of the sorption of binary mixtures of CO2 and CH4 in
binderless beads of 13X zeolite between 313 and 423 K and total pressure up to
0.5 MPa. Experimental selectivities CO2 =CH4 range from 37 at a low pressure of
0.0667 MPa and temperature of 313 K to approximately 5 at the high temperature of
423 K. The efficiency of the separation of mixtures CO2 =CH4 in the binderless
beads of 13X zeolite starting from a fresh column is illustrated through two
breakthrough curves where pure plateaus of CH4 are observed (6 and 4 min
for mixtures 25(CO2)/75(CH4) and 50(CO2)/50(CH4) respectively) at 313 K and
total pressure 0.5 MPa. The mathematical fixed bed adsorption dynamic model
developed taking into account several resistances to mass and heat transfer coupled
to the thermodynamic model of adsorption of Fowler was validated through the
experimental data proving to be a valuable tool for the design of cyclic adsorption
processes for biogas upgrading and CO2 capture.
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Detection of Additive Outliers in Poisson
INAR(1) Time Series

Maria Eduarda Silva and Isabel Pereira

Abstract Outlying observations are commonly encountered in the analysis of time
series. In this paper a Bayesian approach is employed to detect additive outliers in
order one Poisson integer-valued autoregressive time series. The methodology is
informative and allows the identification of the observations which require further
inspection. The procedure is illustrated with simulated and observed data sets.

1 Introduction

It is well known that unusual observations and intervention effects often occur
in data sets and can have adverse effects on model identification and parameter
estimation. Time series of counts are no exception. In the last decades time series of
counts have become available in a wide variety of fields including: actuarial science,
computer science, economics, epidemiology, finance, hydrology, meteorology and
environmental studies. These data are naturally non-normal and present non linear
characteristics. The need to analyse such data adequately led to a multiplicity
of approaches and a diversification of models that explicitly account for the
discreteness of the data, see [10] for a recent review. In this paper we focus on
the class of Poisson integer valued autoregressive models of order 1, INAR(1).
This model, first proposed by [1], has been extensively studied in the literature
and applied to many real-world problems because of its simplicity and easiness
of interpretation. In fact, any data series that may be thought of as the number of
members (e.g. people, firms or orders) of a queue, the number of units in a stock
or inventory, or the outcome of a birth-and-death process, or a branching process
with immigration may be modelled by the INAR class. The point is that the INAR
class has found applications across many disciplines. Hence, it is timely to study the
problem of outlier detection given its relevance for inference and diagnostics.

M.E. Silva (�)
CIDMA & Faculdade de Economia, Universidade do Porto, Porto, Portugal
e-mail: mesilva@fep.up.pt

I. Pereira
CIDMA & Departamento de Matemática, Universidade de Aveiro, Aveiro, Portugal
e-mail: isabel.pereira@ua.pt

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Mathematics of Energy and Climate Change,
CIM Series in Mathematical Sciences 2, DOI 10.1007/978-3-319-16121-1_19

377

mailto:mesilva@fep.up.pt
mailto:isabel.pereira@ua.pt


378 M.E. Silva and I. Pereira

In the framework of Gaussian linear time series the problem of detecting and
estimating outliers and other intervention effects has been investigated by several
authors including [4, 6, 11, 15]. However, the problem of modelling outliers and
other intervention effects in the context of time series of counts has, as yet,
received little attention in the literature albeit its relevance for inference and
diagnostics. Moreover, in this context additional motivation stems from the fact
that the usual techniques for outlier removal are not adequate since often lead
to non integer values. In the context of time series of counts, [7] investigate the
problem of modelling intervention effects in INGARCH models and [2, 3] consider
Conditional Least Squares (CLS) estimation of the parameters of an INAR(1)
model contaminated, at known time periods, with innovational and additive outliers,
respectively. Here the problem of detecting outliers is considered under a Bayesian
perspective. Bayesian approaches have been used to detect outliers in ARMA
models by [11] and in bilinear models by [5]. This approach has the advantage
of not requiring beforehand knowledge on the number and location of outliers in
the series and of treating equally all the observations (with and without outliers).
In fact, all the observations have the same prior probability of being an outlier.
Then, at each time point we estimate the posterior probability of occurrence of
an outlier via Gibbs sampling. The Gibbs sampler [8] is a Markovian updating
scheme enabling the obtention of samples from a joint distribution via iterated
sampling from full conditional distributions. The method may be briefly described
considering the case of three parameters .�1; �2; �3/ with a complex (posterior) joint
and marginal distributions. Let y be the observed time series and fi.�ij�k; �l; y/
be the conditional distribution of �i given the remainder parameters �k; �l and
data, y. The Gibbs sampler employed in this paper then works as follows: given
initial values .�.0/1 ; �

.0/
2 ; �

.0/
3 /, draw �

.1/
1 from f1.�1j�.0/2 ; �

.0/
3 ; y/; then draw �

.1/
2

from f2.�2j�.0/3 ; �
.1/
1 ; y/ and finally, complete the first iteration by drawing �.1/3 from

f3.�3j�.1/1 ; �
.1/
2 ; y/: After a large number of iterations, say M CN we obtain a sample

.�
.j/
1 ; �

.j/
2 ; �

.j/
3 /; j D M C 1;M C 2; : : : ;M C N whose empirical distribution can

approximate the desired posterior marginals. This methodology provides estimates
for the probability of outlier occurrence at each time point leading to an effective
outlier detection.

To motivate our approach, we represent in Fig. 1a a data set studied by [16]
concerning the number of different IP addresses (approximately equivalent to the
number of different users) accessing the server of the pages of the Department of
Statistics of the University of Würzburg in 2-min periods from 10 am to 6 pm on the
29th November 2005, in a total of 241 observations. Henceforth, this data set will
be denoted as IP data and is analysed in detail in Sect. 4.1. Figure 1b represents the
posterior probability of outlier occurrence at time t and clearly indicates t D 224

as an outlying observation. This result agrees with that of [16] who uses statistical
process control techniques.

The paper is organized as follows. Section 2 introduces the first order Poisson
integer-valued autoregressive model contaminated with outliers. Section 3 explains
the procedure for outlier detection and discusses several computational issues.



Detection of Additive Outliers in Poisson INAR(1) Time Series 379

(a)

t

N
. o

f a
cc

es
se

s

0 50 100 150 200 250

0
4

8

0 50 100 150 200 250

0.
0

0.
6

(b)

Time

P
os

t. 
pr

ob
. o

ut
l. 

oc
cu

r.

Fig. 1 Number of different IP addresses accessing the server of the pages of the Department of
Statistics of the University of Würzburg between 10 am and 6 pm on 29 November 2005 (a);
posterior probability of outlier occurrence (b)

Section 4 illustrates the methodology on several sets of simulated data as well as
on the IP data set. Section 5 concludes the paper.

2 INAR.1/ Models with Additive Outliers

The Poisson INAR(1), PoINAR(1), model, first introduced by [1] and [12] is defined
by the recursive equation

Xt D ˛ ı Xt�1 C et; t 2 N0; (1)

where ı denotes the binomial thinning operator and fetg; the arrival process, is
a sequence of independent and identically distributed Poisson variables, et 
Po.�/; independent of the thinning operations. The binomial thinning is defined

as ˛ ı Xt�1
DD PXt�1

jD1 �t;j; with �t;j; j D 1; : : : ;Xt�1 a sequence of independent
Bernoulli random variables (r.v.’s) with probability of success P.�tj D 1/ D ˛:

Thus ˛ ı Xt�1jXt�1  Bi.Xt�1; ˛/; ensuring the discreteness of the process. In
fact, the thinning operator ı acts as the analogue of the usual multiplication
used in the continuous-valued autoregressive, AR(1), processes. This concept of
thinning is well known in classical probability theory and has been used in the
Bienaymé-Galton-Watson branching processes literature as well as in the theory
of stopped-sum distributions. Under the above conditions if X0  Po.�=.1 � ˛//;

then the process is strictly stationary and Xt  Po.�=.1 � ˛//; yielding a Poisson
marginal. Xt behaves like a queue, with arrivals at time t represented by et and
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survivors remaining in the queue, from t � 1 to t, by ˛ ı Xt�1. Alternatively the
model may be thought of as a birth-and-death, or stock, process, with additions
(births) being generated by et and losses (deaths) by Xt�1 � ˛ ı Xt�1:

Note that the Poisson INAR(1) process is a Markov process and that the
distribution of Xt given Xt�1; p.XtjXt�1/ is the convolution of the two components,
binomial and Poisson, as follows:

p.xtjxt�1/ D
MtX

iD0

 
xt�1

i

!
˛i .1 � ˛/xt�1�i e�� �xt�i

.xt � i/Š
(2)

where Mt D min .xt�1; xt/ and
��� is the standard combinatorial symbol.

Assume now that the observed time series of counts y1; : : : ; yn may be contami-
nated with one or more additive outliers at unknown time points. Roughly speaking
an additive outlier can be interpreted as a measurement error or as an impulse due
to some unspecified exogenous source at time 
i; i D 1; : : : ; k: When outliers are
present, Xt is unobservable. Then the proposed model for Yt is the following

Yt D Xt C 	tıt; 1 � t � n (3)

where Xt is a PoINAR(1) process satisfying (1), ı1; : : : ; ın are Bernoulli variables
with P.ıt D 1/ D �; independent of Xt and 	1; : : : ; 	n are integer valued
independent random variables, also independent of Xt and of ıt. This means
that if ıt D 1 the observed value Yt is contaminated with an additive outlier
(AO) of magnitude 	t: Henceforth, model (3) will be called a Poisson INAR(1)
contaminated with outliers.

To obtain the likelihood of the data let y D .y1; : : : ; yn/; ��� D .˛; �/; ııı D
.ı1; : : : ; ın/; 			 D .	1; : : : ; 	n/ and assume that there is no outlier in the first
observation, that is y1 D x1: Moreover, under (3) Xt D Yt � 	tıt is a PoINAR(1).
Then conditioning on the first observation the likelihood of y is given by

L.���;ııı;			;�; y/ D
nY

tD2
�ıt .1� �/1�ıt

	
MtX

iD0

�yt�ıt	t�i

.yt � ıt	t � i/Š

 
yt�1 � ıt�1	t�1

i

!
e�� ˛i .1 � ˛/yt�1�ıt�1	t�1�i

where now Mt D min.yt�1 � 	t�1ıt�1; yt � 	tıt/.

3 Bayesian Outlier Detection in PoINAR.1/ Models

In this section we describe the Bayesian approach via Gibbs sampling to estimate
model (3).
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In addition to the data and the likelihood, the Bayesian model specification
also requires a prior distribution on the parameters. The prior distribution for the
contamination parameter � is �  Be.h; g/; with expectation E.�/ D h=.h C g/:The
prior distribution for 	t is Po.ˇ/: Regarding the PoINAR(1) parameters ˛ and � we
choose for prior distributions the conjugate of Binomial and Poisson, respectively
and thus ˛  Be.a; b/; �  Ga.c; d/ [14]. The choice of the set of hyperparameters
a; b; c; d; ˇ; h; g is discussed in Sect. 3.2.

Under the above assumptions the prior distribution for .���;ııı;			; �/; denoted
�.���;ııı;			; �/ is given by

�.���;ııı;			; �/ / e�d� �c�1 ˛a�1 .1 � ˛/b�1 �h�1 .1 � �/g�1
nY

tD2
e�ˇ

ˇ	t

	tŠ
: (4)

The posterior distribution for .���;ııı;			; �/ is then given by

�.���;ııı;			; �jy/ / �.���;ııı;			; �/ L.���;ııı;			; �; y/

/ e�Œd�Cnˇ� �c�1 ˛a�1 .1 � ˛/b�1 �h�1 .1 � �/g�1

ˇ
Pn

tD2 	t

Qn
tD2 	tŠ

L.���;ııı;			; �; y/ (5)

with 0 < ˛ < 1; � > 0; 0 < � < 1; ıt D 0; 1 and 	t D 0; 1; : : : ; t D 2; 3; : : : ; n:
This approach is attractive since it enables to measure the likelihood that at each

time point the observed value Yt is affected by an outlier as well as describe the dis-
tribution of the outlier size. However, the complexity of the posterior distribution (5)
(and consequently of the marginals) makes them analytically intractable. Hence
MCMC (Marlov Chain Monte Carlo) methods are required. The model parameters
are then estimated by sampling from the complete conditional distribution of each
parameter, conditional on the previous sampled values of the other parameters.

3.1 Full Posterior Distributions

The full conditional posterior distributions for ˛ and � are given by [14]

�.˛j�;ııı;			; �; y/ / ˛a�1 .1 � ˛/b�1
nY

tD2
�ıt .1 � �/1�ıt

MtX
iD0

�yt�	tıt�i

.yt � 	tıt � i/Š

 
yt�1 � 	t�1ıt�1

i

!

˛i .1 � ˛/yt�1�	t�1ıt�1�i (6)
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and

�.�j˛;ııı;			; �; y/ / �c�1e�.dC.n�1//�

nY
tD2
�ıt .1 � �/1�ıt

MtX
iD0

�yt�	tıt�i

.yt � 	tıt � i/Š

 
yt�1 � 	t�1ıt�1

i

!

˛i .1 � ˛/yt�1�	t�1ıt�1�i: (7)

Now, with respect to the full conditional distribution of ııı and 			 we reason as
follows. Let j D 2; : : : ; n; and for each j define $ı$ı$ı D .˛; �;			; �; ııı.�j// and $	$	$	 D
.˛; �;ııı.�j/; �;			.�j// where ııı.�j/ and 			.�j/ denote the vectors ııı and 			, respectively,
each with the jth component deleted. To derive the full conditional distribution of ııı
first note that ıjj.yyy;$ı$ı$ı/  Ber.pj/: Accordingly, we can write

pj D P.ıj D 1jyyy;$ı$ı$ı/ D P.ıj D 1;yyyj$ı$ı$ı/
f .yyyj$ı$ı$ı/ : (8)

But

f .yyyj$ı$ı$ı/ D f .yyyjıj D 1;$ı$ı$ı/P.ıj D 1j$ı$ı$ı/C f .yyyjıj D 0;$ı$ı$ı/P.ıj D 0j$ı$ı$ı/
with P.ıj D 1j$ı$ı$ı/ D �:

Therefore

pj D �f .yyyjıj D 1;$ı$ı$ı/

�f .yyyjıj D 1;$ı$ı$ı/C .1 � �/f .yyyjıj D 0;$ı$ı$ı/
: (9)

To compute f .yyyjıj D 1;$ı$ı$ı/ first note that Yt inherits the Markovian property of
Xt and consequently the outlier at time j affects the model for t D j and t D j C 1:

Therefore

f .yyyjıj D 1;$ı$ı$ı/ Df .yj; yjC1jyj�1; ıj D 1;$ı$ı$ı/

Df .yj; yjC1jyj�1; ıj D 1; ˛; �; 	j/

Df .yjjyj�1; ıj D 1; ˛; �; 	j/

	 f .yjC1jyj; ıj D 1; ˛; �; 	j/: (10)

Moreover, assuming that Yj�1 D Xj�1 and YjC1 D XjC1 meaning that there are
no patches of outliers we have

f .yjjyj�1; ıj D 1; ˛; �; 	j/ De��
M��

jX
iD0

 
yj�1

i

!
˛i .1 � ˛/yj�1�i �yj�	j�i

.yj � 	j � i/Š

(11)
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and

f .yjC1jyj; ıj D 1; ˛; �; 	j/

D e��
M�

jX
iD0

 
yj � 	j

i

!
˛i .1 � ˛/yj�	j�i �yjC1�i

.yjC1 � i/Š

(12)

with M��t D min .yt�1; yt � 	t/ and M�t D min .yt � 	t; ytC1/:
Similarly, if ıj D 0 then Xj D Yj and therefore

f .yyyjıj D 0;$ı$ı$ı/ Df .yyyjıj D 0; ˛; �; 	j/

D
jC1Y
tDj

MtX
iD0

 
yt�1

i

!
˛i .1 � ˛/yt�1�i e��

�yt�i

yt � iŠ
(13)

Now, to derive the conditional posterior distribution of 			 note that if ıj D 0; no
outlier at t D j; there is no information about 	j except the prior. Then 	jj.yyy; ıj D
0;$	$	$	/  Po.ˇ/: However, if ıj D 1; yyy contains information about 	j: Therefore we
have

�.	j jyyy; ıj D 1;$	$	$	/ D
�.	jjıj D 1;$	$	$	/f .yyyjıj D 1; 	j;$	$	$	/P1
	jD0 �.	jjıj D 1;$	$	$	/f .yyyjıj D 1; 	j;$	$	$	/

/ e�ˇˇ	j=.	jŠ/ f .yj; yjC1 j	j; ıj D 1; ˛; �; �/;

	j D 0; 1; 2; : : : (14)

with f .yj; yjC1 j	j; ıj D 1; ˛; �; �/ as given in (10).
Finally, the conditional posterior distribution for � depends only on ııı: Since the

prior distribution of � is Be.h; g/ the conditional posterior is given by

�jyyy; �;			;ııı � �jııı  Be.h C k; g C n � 1 � k/ (15)

where k is the number of outliers (number of ıj’s equal to 1).
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3.2 Computational Issues

The full conditional distributions of ˛; �, ııı D .ı2; : : : ; ın/; 			 D .	2; : : : ; 	n/ and
� do not have standard forms, therefore we have to use the Metropolis-Hastings
algorithm to draw a sample of a Markov chain which converges to the joint posterior
distribution of the parameters. Since they are not log-concave densities we use the
Gibbs methodology within the Metropolis step. In particular Adaptive Rejection
Metropolis sampling—ARMS [9]—is used inside the Gibbs sampler. When the
number of iterations is sufficiently large, the Gibbs draw can be regarded as a sample
from the joint posterior distribution. Thus, complete distributions for the estimated
parameters are obtained.

Two key issues in the successful implementation of this methodology are:
deciding the length of the chain and the burn-in period and establishing the
convergence of the chain. We use a burn-in period of M iterations and then iterate
the Gibbs sampler for a further N iterations, but retain only each Lth element in the
sample. This thinning strategy reduces the autocorrelation within the chain.

We now discuss the other relevant issue in the proposed Bayesian approach:
the choice of the hyperparameters for prior distributions. Recall from Sect. 2 that
the prior distributions for ˛ and � are Be.a; b/ and Ga.c; d/; respectively. In the
absence of further or inside information we set a D b D c D d D 0:001 to
use non informative prior distributions (Beta and Gamma distributions with large
variability). For the prior distribution for the size of the outlier at time t; 	t  Po.ˇ/
two approaches are pursued: an informative setup in which ˇinfo is set equal to three
times the standard deviation of the 1-step-ahead prediction error and also a non-
informative setup with ˇninfo D 30 to reflect large variability. Finally, regarding the
prior distribution for the probability of outliers occurrence, �  Be.h; g/;we choose
h D 5; g D 95 to express the view that outliers occur occasionally. The posterior
probability of outlier occurrence is then estimated and inspected to identify potential
outliers. In an automated procedure a cut-off value, typically c D 0:2; may be used.

4 Illustration

In this section we document the performance of the above procedure with simulated
data sets of 100 observations. In all the examples the Gibbs sampler is iterated
M C N D 5005 times and the L D 5th value of the last N D 2505 iterations is
kept, providing sample sizes of 501 values from which the probability of outlier
occurrence at each time point as well as all the other parameter estimates are
computed. The parameters ˛ and � are computed as the posterior mean. To ensure
an integer value, the size of the outlier 	 is computed as the posterior median. The
results are reported for ˇninfo D 30 since they do not differ from those obtained
with ˇinfo: We simulate time series from several PoINAR(1) processes without and
with outliers of different sizes introduced at different times. The range of values
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considered for ˛ and � allow to illustrate the performance of the methodology for
time series with small and large variability.

Table 1 reports the results from the application of the methodology to time
series simulated from INAR(1) models with ˛ D 0:15; 0:5; 0:85 and � D 1; 3; 5;

all contaminated with three outliers of different sizes. The data generating model
is identified in the column headed Model by the parameters of the contaminated
PoINAR(1) model: ˛; � and 	S; which indicates contamination with an outlier of
size 	 at time S: Finally, all the outliers detected by the algorithm, that is all the time
points for which the posterior probability of outlier occurrence is over the threshold
Op D 0:2, are indicated by the time of occurrence, estimated size, and associated
posterior probability.

The results indicate that the procedure detects all the additive outliers in
PoINAR(1) time series with high (near 1) estimated probabilities of occurrence.
Moreover, the occurrence of false detections was null in the contaminated time
series as well as in outlier free time series whose results are not reported here.

Note that the convergence of the MCMC algorithm was duly analysed with the
usual diagnostic tests available in [13].

4.1 IP Data Example

Let us consider once again the motivating example of Sect. 1, regarding the number
of different IP addresses accessing the server of the Department of Statistics of
the University of Würzburg on November 29th, 2005, between 10 am and 6 pm,
represented in Fig. 1 [16]. The sample mean and variance of the series are Nx D
1:32; O�2 D 1:39: The autocorrelation and partial autocorrelation functions indicate
that a model of order one is appropriate. CLS estimates for ˛ and � are Ǫ D 0:22

and O� D 1:03; respectively. The result of applying the proposed methodology is
represented in Fig. 1b indicating the possible occurrence of an outlier at time t D
224: The estimated size of the outlier is O	 D 7: It is interesting to note that setting the
time of the outlier to t D 224 and using the results from [2] the CLS estimate for 	
is O	CLS D 6:73: Removing the effect of the outlier at t D 224 the mean and variance
of the resulting series are 1.29 and 1.2, respectively. The autocorrelation and partial
autocorrelation functions still indicate that a model of order one is appropriate. CLS
estimates for the parameters are now ǪCLS D 0:29 and O�CLS D 0:91 in accordance
with the estimates obtained from the Gibbs sampling, ǪBayes D 0:27 and O�Bayes D
0:89; whose posterior distributions are represented in Fig. 2.
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Table 1 Results from Gibbs sampling in simulated INAR(1) time series with parameters ˛; �;
contaminated at time S with an outlier of size 	S

Outliers detected Outliers detected

Model Estimates Time Size Probability Model Estimates Time Size Probability

˛ 0.15 0.07 ˛ 0.85 0.90

� 1 1.27 � 1 0.83

	34 7 34 8 0.89 	9 7 9 7 0.87

	50 5 50 8 0.89 	29 13 29 12 0.99

	63 9 63 9 1.00 	75 18 75 19 0.99

˛ 0.15 0.01 ˛ 0.85 0.86

� 3 3.60 � 3 2.62

	24 9 24 11 0.99 	9 31 9 29 0.92

	28 13 28 13 0.99 	29 13 29 10 0.99

	65 6 65 7 0.99 	75 22 75 22 0.99

˛ 0.15 0.01 ˛ 0.85 0.85

� 5 5.3 � 5 4.60

	33 7 33 11 0.99 	38 40 38 37 0.92

	70 12 70 13 1.00 	41 28 41 27 0.99

	10 16 10 18 0.98 	78 17 78 20 0.99

˛ 0.5 0.41 ˛ 0.85 0.90

� 1 0.94 � 1 0.83

	9 10 9 11 0.90 	9 7 9 7 0.87

	27 4 27 7 0.85 	29 13 29 12 0.99

	97 7 97 8 0.81 	75 18 75 19 0.99

˛ 0.5 0.59 ˛ 0.85 0.86

� 3 2.28 � 3 2.62

	99 17 99 17 0.99 	9 31 9 29 0.92

	17 12 17 16 0.99 	29 13 29 10 0.99

	7 7 7 7 0.97 	75 22 75 22 0.99

˛ 0.5 0.51 ˛ 0.85 0.85

� 5 4.30 � 5 4.60

	29 10 29 14 0.91 	38 40 38 37 0.92

	22 21 22 22 0.99 	41 28 41 27 0.99

	19 15 19 17 0.99 	78 17 78 20 0.99

5 Concluding Remarks

In this paper, a retrospective analysis of the Poisson INAR(1) model for time
series of counts under a Bayesian approach is carried out. The Bayesian framework
is more flexible than a classical likelihood approach leading to the identification
of observations that may require further scrutinizing. In fact, by estimating the
probability that each observation is affected by an outlier under a certain model, the
procedure is useful for detecting suspicious observations but also possible model
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Fig. 2 Posterior distribution of ˛ and �: The dotted lines represent the estimates ǪBayes D 0:27

and O�Bayes D 0:89

inadequacies since the presence of many outliers may indicate the wrong choice of
model. There are, thus, several extensions to this work that are being investigated,
namely: the detection of patches of outliers that may cause masking and swamping
effects; development of strategies for including different outliers effects and other
interventions; other distributional assumptions; higher-order models.
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From Ice to Penguins: The Role of Mathematics
in Antarctic Research

José C. Xavier, S.L. Hill, M. Belchier, T.J. Bracegirdle, E.J. Murphy,
and J. Lopes Dias

Abstract Mathematics underpins all modern Antarctic science as illustrated by
numerous activities carried out during the international year “Mathematics for
Planet Earth”. Here, we provide examples of some ongoing applications of math-
ematics in a wide range of Antarctic science disciplines: (1) Feeding and foraging
of marine predators; (2) Fisheries management and ecosystem modelling; and (3)
Climate change research. Mathematics has allowed the development of diverse
models of physical and ecological processes in the Antarctic. It has provided insights
into the past dynamics of these systems and allows projections of potential future
conditions, which are essential for understanding and managing the effects of fishing
and climate change. Highly specific methods and models have been developed
to address particular questions in each discipline, from the detailed analyses of
remote-sensed predator tracking data to the assessment of the outputs from multiple
global climate models. A key issue, that is common to all disciplines, is how to
deal with the inherent uncertainty that arises from limited data availability and the
assumptions or simplifications that are necessary in the analysis and modeling of
interacting processes. With the continued rapid development of satellite-based and
remote observation systems (e.g. ocean drifters and automatic weather stations),
and of new methods for genetic analyses of biological systems, a step-change
is occurring in the magnitude of data available on all components of Antarctic
systems. These changes in data availability have already led to the development
of new methods and algorithms for their efficient collection, validation, storage
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and analysis. Further progress will require the development of a wide range of
new and innovative mathematical approaches, continuing the trend of world science
becoming increasingly international and interdisciplinary.

1 Introduction

The Polar Regions are the cornerstones of the global ecosystem, barometers of
the health of the planet, and messengers of global processes [49, 56]. Because
it strongly influences the global climate and harbours unique and diverse
biological communities, the Antarctic plays a distinct and critical role in both
the physical Earth system and the ecosystem that it supports. Antarctica is
renowned as being the highest, driest, windiest and coldest continent, boasting
the lowest recorded temperature on Earth, �93:2 ıC, on the East Antarctic Plateau
(http://www.nasa.gov/press/2013/december/nasa-usgs-landsat-8-satellite-pinpoints-
coldest-spots-on-earth/#.UqndqvvwoYt, accessed 12/12/13), but it is surrounded
by the Southern Ocean which, in contrast, is very thermally stable (with some
locations varying as little as 0:2 ıC over a year) [25]. Some of the key science on
globally important issues is conducted in the Antarctic, often coordinated by the
Scientific Committee on Antarctic Research and various the bodies that administer
the Antarctic Treaty System. These issues include sea level rise, climate change,
ocean acidification, biodiversity change, the ozone hole and global ocean circulation
[3, 25, 56, 72, 89, 91, 92, 97, 98]. Furthermore, the Antarctic continues to spark
the curiosity and imagination of people around the world. It appeals to the sense of
adventure and fear of the unknown. These are perfect ingredients for education and
outreach [52, 102, 103, 117], providing an excellent way to transmit basic concepts
about a wide range of Science, Technology, Engineering and Mathematics (STEM)
disciplines. During the international year “Mathematics for Planet Earth”, numerous
activities related to mathematics were carried out throughout the world, including
the International Conference and Advanced School Planet Earth, Mathematics of
Energy and Climate Change, held in Lisbon (Portugal), in 21–28 March 2013. Here,
we follow discussions at that conference with a selective review of how mathematics
is applied in a wide range of Antarctic science disciplines

2 The Scope of Mathematical Analyses in Antarctic Science

Mathematics underpins all modern Antarctic science. It is central to of the data
collection process, for example in generating efficient algorithms to allow data
storage and transfer, and for the calibration and validation of data from in-situ
and remote instrumentation (e.g. automatic weather stations and satellite-based
instruments). Mathematics is used in analyses and modeling of all aspects of
Antarctic science including weather and climate, ice sheet and sea ice dynamics,

http://www.nasa.gov/press/2013/december/nasa-usgs-landsat-8-satellite-pinpoints-coldest-spots-on-earth/#.UqndqvvwoYt
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ocean circulation, biogeochemical cycles and ecosystem processes. The range and
complexity of applications is wide, from simple analyses of small scale experiments
to high resolution satellite-based studies that provide circumpolar views, and
from simple theoretical to fully coupled atmosphere-ocean-ice models. Here, we
illustrate the development and application of mathematical analyses by considering
three major areas of Antarctic science: (1) Feeding and foraging of marine top
predators; (2) Fisheries management and ecosystem modeling; and (3) Climate
change research. These sections provide illustrations in three distinct types of
scientific activity. Studies of the feeding and foraging of marine top predators are
strongly field based and require extensive sample collection and analysis and careful
design of sampling methods. With the advent of satellite instrumentation, remote
tracking now provides high resolution information on position and movement,
which has revolutionized analyses of predator foraging. This has been associated
with the development of a range of other remote devices, and has generated a step-
change in the size of datasets available. The second area, fisheries management and
ecosystem modeling, provides an illustration of the use of mathematical methods in
an applied arena to generate robust policy advice. The final area, climate change,
illustrates the challenge of developing projections of the impacts of future change
that can only be addressed through mathematical analysis and modelling.

3 The Application of Mathematics in the Study of Feeding
and Foraging Ecology of Marine Top Predators

In order to understand how the Southern Ocean food web operates, it is essential
to understand what animals eat and where they feed. To obtain reliable estimates
from the available data requires a wide range of mathematical tools (particularly
statistical and modeling tools). The most common source of feeding data is the
stomach contents of sampled predators. To characterize the diet of top predators,
such as penguins (Fig. 1) or albatrosses, prey in these stomach contents are generally
quantified by their frequency of occurrence, or the number or mass of each prey
species [87, 112]. To identify the prey (generally fish, cephalopods such as squid and
octopods, and crustaceans), scientists often have to use hard structures that are not
destroyed by digestion. These structures include the sagittae otoliths (colloquially
the “ear bones”) of fish. Otoliths are calcium carbonate structures located directly
behind the brain of teleost (bony) fish. For crustaceans, scientists use their carapaces
and for cephalopods their beaks. Cephalopod beaks are chitinous structures, whose
function is similar to that of teeth in carnivorous mammals: to grasp, kill and
dismember their prey.

Allometric regression equations can be derived to describe the relationship
between the mass and length of complete individuals of known species and the
size of their otoliths, carapaces or beaks. When applied to hard structures found
in stomach contents these equations provide a valuable mathematical tool for
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Fig. 1 Penguins, such as
macaroni penguins, are
important components of the
Southern Ocean ecosystem
and are difficult to directly
observe because of the
remote and hostile conditions
in which they live and the
considerable distances that
they travel. Nonetheless
Antarctic scientists have used
mathematical tools to develop
ways to study their behavior
and ecology in the wild,
including their feeding and
foraging ecology (photo by
José Xavier)

reconstructing what a predator has been consuming [14, 37, 88, 110]. However,
numerous prey species do not have allometric equations because they are still poorly
known (therefore scientists must rely on equations from closely related species)
and many of the available allometric equations are based on a limited number and
size range of specimens. Therefore, future work must focus on obtaining more
complete fish, crustaceans and cephalopods to improve allometric equations, and
on characterizing the uncertainty that is inherent in the application of such methods
[112, 113, 115, 116, 118, 119].

One of the key issues that marine ecologists need to address, when assessing the
diet and feeding ecology of a predator, is how many samples are needed. This is
essential to characterize their diet correctly, and so to provide fundamental data for
food web studies, particularly modeling the present ecosystem status and predicting
future changes. Mathematically, this is an interesting challenge. A randomization
technique was used to estimate the number of stomach samples from albatrosses
needed to reach two saturation points: (1) the maximum cumulative number of
species; and (2) where each of the five most important species (i.e. >5% of the
diet, by mass) was present in at least one sample [113]. For each sampling event,
the program randomly selected one of the samples and checked the species present.
If one or more of the required species were absent, the program randomly selected
another sample that had not yet been selected, and the process was repeated until
one of the two saturation points was reached. The entire process was repeated 100
times. This study also compared different ways of collecting samples (i.e. using
stomach contents or voluntary regurgitations, named boluses) which permitted the
investigation of biases associated with each sampling method [113].

Other techniques for analyzing diet use tissues from stomach samples to identify
prey species, or from predators (e.g. flesh, feathers, blood) to identify their habitat
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or trophic level (e.g. DNA analyses, stable isotopes, fatty acids, trace elements,
chemical pollutants) with considerable success [21, 28, 28, 53, 86, 96]. Each
of these techniques involves its own unique analytical challenges. Mixed data
sources (e.g. diet data obtained from stomach contents and data on the stable
isotope signatures from predators and prey) can be compared to calibrate different
methods. A Bayesian multisource stable isotope mixing model (SIAR: Stable
Isotope Analyses in the statistical package R) has been used to estimate the probable
contributions of each prey to the diet of each individual and hence the predator’s
level of specialization on particular prey items [74]. This method indicated that for
wandering albatrosses Diomedea exulans fish was the main component (56.4 %)
of the diet, followed by cephalopods (43.6 %). These proportions were similar to
those from analysis of stomach contents, showing the usefulness of these models
for future research [20].

Advances in micro-technology (and the decreasing of the size of tracking
devices) in the last two decades have revolutionized our understanding of the
foraging behavior of predators [12, 12, 36, 77, 79, 79]. Seabirds can travel great
distances (hundreds to thousands of kilometres) and exhibit a number of unique
physiological adaptations for such highly pelagic lifestyles [29]. Albatrosses and
petrels spend the great majority of their lives at sea, and the use of tracking
technology is the most effective and, in many respects the only, means for gaining
detailed insights into their foraging behaviour [51, 73, 83].

Satellite sensors, combined with “ground truth” data from in situ surveys, are
contributing to a better understanding of ocean systems by providing large scale
and long-term data on biological bulk parameters such as chlorophyll, and on
ecologically relevant physical parameters, such as sea surface temperature or ice
cover [97]. These data, combined with tracking technology can be used to answer
scientific questions about foraging behavior and how animals use their ocean
habitat. For example, satellite-tracking on animals in the late 1990s involved the
deployment of a Platform Terminal Transmitter (PTT) that sends a short radio signal
typically every 90 s to polar-orbiting NOAA satellites. The precision of the location
estimate can vary from meters to hundred of meters, depending on the number of
satellites in view at that place and time, the design and power of the transmitter,
and the speed of the animal [108]. More recently, Global Positioning System (GPS)
loggers have been widely used, mostly because of their higher precision (within
10 m) [107] and ability to record positions at various time intervals, from minutes to
days (depending on the amount of time the device is on) [70]. However, if scientists
are more interested in knowing where animals are for a longer period of time (e.g.
large migration studies), geolocators or Global Location Sensing (GLS) loggers
are extremely useful [27, 78]. GLS loggers record ambient light. This allows the
estimation of sunset and sunrise times from curve thresholds. These times in turn
allow the estimation of latitude from day length, following standard astronomical
algorithms, and longitude from the time of local mid-day with respect to GMT and
Julian day. The disadvantages are that the animal must be recaptured (as with most
GPS loggers), only two locations can be calculated per day, latitude estimation is
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impossible for variable periods around the equinoxes, and the precision is relatively
low, with an average error of 186 km estimated for free-ranging albatrosses [78].

These examples demonstrate that the reliable estimation of animal location, and
its associated error, is a fundamental part of modern animal ecology. There are many
existing techniques for handling location error, but these are often ad hoc or are
used in isolation from each other. There is a Bayesian framework for determining
location that uses all the data available, is flexible enough to be used with all tagging
techniques, and provides location estimates with built-in measures of uncertainty
[95]. Bayesian methods allow the contributions of multiple data sources to be
decomposed into manageable components. Sumner et al. [95] showed that many
of the problems with uncertainty in archival tag and satellite tracking data can be
reduced and quantified using readily available tools.

With these mathematical tools applied to the feeding and foraging of top preda-
tors, it has been possible to model potential areas where poorly known organisms
may be distributed. Indeed, the distribution of many cephalopod, crustacean and fish
species in the Southern Ocean, and adjacent waters, is poorly known, particularly
during times of the year when research surveys are rare [16, 35, 90, 111]. Analysing
the stomach samples of satellite-tracked higher predators has been advocated as a
potential method by which such gaps in knowledge can be filled. This approach
showed that wandering albatrosses, Diomedea exulans, foraged in up to three
different water-masses, the Antarctic zone (AZ), the sub-Antarctic zone (SAZ) and
the sub-Tropical zone (STZ) [114]. A probabilistic mathematical model was applied
to the tracking and diet data collected from wandering albatrosses to construct
a large scale map of where various prey were captured. Furthermore, robustness
and sensitivity analyses were used to test model assumptions about the time spent
foraging and relative catch efficiencies and to evaluate potential biases associated
with the model. The analysts were able to predict the distributions of a multiple
cephalopod, crustacean and fish species [114]. This method is likely to be used in
the future to predict the distributions of poorly known species, such as large oceanic
cephalopods, that are not effectively sampled using nets [109, 115, 119].

In summary, mathematical methods are critically important to studies in marine
ecology, including those related to the feeding and foraging ecology of top
predators. The many examples range from producing mathematical mixed models to
quantify the consumption of prey to providing the algorithms that allow the tracking
of top predators in the Southern Ocean.

4 The Application of Mathematics in Fisheries Management
and Ecosystem Modelling

4.1 Management of Southern Ocean Fisheries

Fishing is one of the main economic activities in the Southern Ocean, alongside
science and tourism [34]. The responsible management of these fisheries is therefore
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an important applied ecology problem, which has led to innovative approaches that
make extensive use of mathematics and modelling. Fishing removes animals from
an ecosystem which would otherwise continue feeding, growing, reproducing
and being fed upon. Such removals can reduce the ability of fished populations
to replace themselves and they can have wider impacts on other populations
by changing the balance of predators and prey. The Southern Ocean ecosystem
has already experienced considerable perturbation as a result of past harvesting
which started in the late 1770s and led to localised extinctions of Antarctic fur
seals Arctocephalus gazella and the commercial extinction of many baleen whale
species which had previously consumed an estimated 175 Mt yr�1 of Antarctic krill
Euphausia superba [57].

Antarctic krill is a swarming shrimp-like animal that grows to a maximum of
about 6 cm, and is now the target of an expanding fishery [39, 71]. There is also
commercial harvesting of various fish species including the high-value Antarctic
toothfish, Dissostichus mawsoni, and Patagonian toothfish, Dissostichus eleginoides
[34]. Fish products are generally sold for direct human consumption while krill is
usually processed to produce fishmeal for aquaculture, and oil which is sold as a
health supplement [39, 71]. These fisheries are managed by the Commission for
the Conservation of Antarctic Marine Living Resources (CCAMLR), which was
established in 1982. CCAMLR is responsible for ensuring that fisheries do not
cause long-term damage to fished populations or the wider ecosystem. Consequently
fisheries management draws on a much broader research effort which aims to
understand the dynamics and structure of Southern Ocean ecosystems.

One of the key challenges faced by the scientists who advise CCAMLR is
uncertainty. Assessments of the state of fished populations are affected by some-
times considerable estimation error and there are no failsafe models to indicate
how these populations change in response to fishing, environmental variability and
changes in other populations. The uncertainty about how fishing will affect complex
ecosystems is even greater. Thus many of the major uses of mathematics in Southern
Ocean fisheries management and related research address uncertainty in some
form. These uses include producing useful estimates of the state of fished stocks
from limited observations, identifying safe catch levels, understanding ecosystem
structure and dynamics and evaluating potential risks to the wider ecosystem.

CCAMLR uses the precautionary approach to identify catch levels for Southern
Ocean fisheries. Hill [39], paraphrasing Garcia [32], states that the precautionary
approach aims to “reduce the probability of occurrence of bad events within
acceptable limits when the potential for these events is plausible, but not necessarily
demonstrated, and the potential costs are significant.” Hill [39] also suggests that the
precautionary approach should reduce the risk of harm to the ecosystem by setting
low catch limits and protecting areas from fishing until there is evidence that the
risks associated with more intensive fishing are acceptable.
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4.2 Analyses and Models for the Management of Fin Fish
Stocks

In order to provide robust management advice to CCAMLR on sustainable catch
limits that are consistent with the precautionary approach, fisheries scientists
undertake regular (annual or biennial) assessments of exploited fin fish stocks.
In common with fisheries management elsewhere, these stock assessments use a
vast array of fishery-dependent (e.g. catch rates) and fishery-independent (e.g. local
biomass estimates from scientific fishing) data to describe the past and current status
of a stock and to project the potential response of the stock to current and future
management options (e.g. catch limits). Mathematical techniques lie at the heart
of all stock assessments and are used in the construction of assessment models for
each fished stock. These models are generally based on population dynamics models
that can have varying degrees of complexity. The choice of stock assessment model
will depend both on the quality and availability of data on catch and fishing effort
and knowledge and availability of information on stock size, geographical stock
boundaries, and species-specific life history traits such as growth, natural mortality
and sexual maturity. Our understanding of these processes is usually summarized in
formal mathematical models (e.g. the von Bertallanfy growth equation) [19].

The two species of toothfish mentioned above are exploited by deepwater
demersal longline fisheries in various locations throughout the Southern Ocean [33].
Several of these fisheries have taken place for over two decades and consequently
assessments can draw on a large amount of fishery-dependent and ecological data.
These “established” fisheries, that include those carried out within the Ross Sea and
at a number of sub-Antarctic islands (i.e. South Georgia [48] and the Heard and
McDonald islands [18]) are assessed using age—structured, Bayesian “integrated”
stock assessment methods. The input data for these assessments include trawl survey
estimates of recruitment, commercial catch at length or age data, standardised
catch rate data, mark-recapture data from multi-year tagging programmes, and
estimates of natural mortality, growth, the length-weight relationship and maturity
data. Given the integrated nature of these assessments in which many datasets are
used concurrently to estimate parameters, much attention is given to the statistical
weighting of each dataset. Bayesian methods are frequently used in the estimation
procedure and uncertainty in the dynamics is evaluated using Markov Chain Monte
Carlo (MCMC) methods [60, 61].

A number of smaller fisheries for the two toothfish species exist in the high seas
areas of the Southern Ocean, in particular on the seamounts of the Indian Ocean
sector for which data on stock size and biological parameters is far more sparse [2].
In these new, exploratory and research fishery areas, biomass estimates of the local
toothfish population are usually derived from mark recapture data and calculated
using the Lincoln -Peterson equation which estimates population size as the product
of the numbers of animals captured in each of two events divided by the number
that were captured twice (i.e. in both events) [58]. This biomass estimate allows
suitable catch limits to be obtained by the application of a conservative exploitation
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rate. The scientific purpose of these fisheries, which are considered “data poor”, is
the collection of high quality data on abundance and the biological characteristics of
the stock with the aim of developing fully integrated stock assessments in the near
future. As more abundant and robust data become available for these fisheries, more
complex population dynamics models are developed and tested in the transition
towards a fully integrated assessment.

As with all biological systems there are varying degrees of uncertainty associated
with the data used within the stock assessment models. A suite of mathematical
procedures has been developed to address this uncertainty in order to improve model
fits within the stock assessments of Southern Ocean fin fish populations. These
procedures are part of an integrated approach which aims to reduce the uncertainty
in the projections used to evaluate management options. The areas of greatest
uncertainty have included the estimation of levels of illegal fishing [1], tagging
[120], cetacean depredation [22], unaccounted fishing mortality [106], appropriate
model weighting for catch-at-age data, catch [17] and natural mortality [19], among
others.

4.3 Analyses and Models for the Management of Antarctic
Krill Stocks

Antarctic krill is a highly abundant species. Atkinson et al. [6] used various
statistical models to estimate the gross growth potential, the amount of new biomass
that would be produced by growth each year if all animals survived. These estimates
ranged from 342 to 536 Mt yr�1 depending on the model used. For comparison,
total global marine fisheries landings are approximately 80 Mt yr�1 [30]. Of course,
Antarctic krill do not achieve their full growth potential because many of them do
not survive the year. The vast population of Antarctic krill is continually grazed
by an array of predators including pelagic and demersal fish, penguins and other
seabirds, whales, seals and even benthic invertebrates. Many of these predators rely
on Antarctic krill as their main source of food [57, 104, 112]. For this reason the
precautionary approach for Antarctic krill has to consider the indirect effects of
fishing on predators since it effectively removes part of their food supply [34].
Management which includes such considerations is sometimes known as Ecosystem
Based Management [63].

In a logistic biomass growth model, the per-capita rate of increase is highest at
half of the asymptotic biomass. This leads to the hypothesis that fished populations
are most productive if reduced to half of their pre-fishing biomass [84]. However,
the requirement to explicitly manage potential impacts on Antarctic krill predators
led to a more precautionary objective: to ensure that, in the long-term, fishing does
not reduce the Antarctic krill population by more than 25 % on average [23, 42].
Scientists use a stochastic population projection model to identify catch levels that
meet this criterion. The model runs multiple simulations with random deviates in
various population parameters (e.g. recruitment, natural mortality, age at maturity)
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and a range of different catch levels, until it finds the correct level. During this
process catch levels are also assessed against another criterion: that the risk of
the breeding population falling below 20 % of its initial biomass is no more than
10 %. The highest catch level that meets both criteria is selected to manage the
fishery [23].

Smith et al. [93] used nine ecosystem dynamics models (that is models of
the interacting dynamics of multiple species) to assess the potential impacts of
fishing on the rest of the ecosystem. This study considered fisheries for lower
trophic level species, such as capelin (Mallotus villosus), herring (Clupea spp.)
and anchovies (e.g. Engraulis spp.) in other oceans and did not directly consider
the Antarctic krill fishery. Nonetheless it found that allowing a fishery to deplete
the biomass of the fished population by no more than 25 % provided reasonable
catch levels while achieving “much lower impacts on marine ecosystems” than
the higher depletion rates allowed by many fisheries management regimes. This
suggests that the general approach used for setting Antarctic krill catch limits
might be appropriately precautionary. However, a recent study shows that the catch
limits selected using this approach are sensitive to assumed levels of recruitment
variability and that recruitment variability in real Antarctic krill stocks might be
higher than that assumed in model projections [55]. The ecosystem impacts of
fishing depend not just on how much biomass of the fished species it removes, but
also where it removes biomass from. Although Antarctic krill is widely distributed
throughout the Southern Ocean, the vast majority of the catch (83 % of all reported
catch to date) [39] is taken from the Scotia Sea and southern Drake Passage (Fig. 2)
and is in fact concentrated in just 26 % of this area [33]. Specifically, fishing occurs
in and close to the shallow waters that surround the many islands in this area.
Fishing does not generally occur in the more hostile waters of the open ocean
where Antarctic krill is still abundant but much less likely to occur in the dense
aggregations that the fishery targets [45]. Scientists have used ecosystem dynamics
models to assess the risk that such spatially restricted fishing poses to Antarctic krill
predators [81, 105]. These models are spatially resolved to distinguish the various
shallow water and open ocean areas and they represent the interactions between
Antarctic krill, the fishery, and several groups of competing predators. The exact
nature of these interactions is uncertain and there is very little information about
past dynamics from which to infer the interactions. Consequently, the modelers
did not attempt to devise a single best model to project the consequences of future
fishing. Instead they attempted to evaluate the uncertainty in such projections and
they translated this uncertainty into estimates of the risks associated with candidate
management options (Fig. 3).

The approach to this uncertainty about the true nature of the modeled interactions
was to use multiple plausible “scenarios” or plausible representations of the system
[44]. The word “scenario” here means a model and its data (sensu Rademeyer
et al. [85]). The scenarios were based on two different model structures, described
in Plagányi and Butterworth [81] and Watters et al. [105] and several alternative
parameterizations of each model structure. These alternative parameterizations were
chosen specifically to bracket key uncertainties. For example, the speed at which
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Fig. 2 The Antarctic continent and the Southern Ocean which surrounds it. The Polar Front is the
approximate northern limit of the Southern Ocean ecosystem. Antarctic krill is a major component
of this ecosystem, the main prey item for a diverse suite of predators and the focus of a developing
fishery. Although Antarctic krill fishing is permitted in much of the Southern Ocean, the vast
majority of the catch to date has been taken in the Scotia Sea and southern Drake Passage region
[39, 71]. Antarctic krill abundance in this region is correlated with September sea ice extent [4],
the average position of which (1979–2004) is shown

Antarctic krill are transported on ocean currents is not known, but the actual speed
is likely to lie between a minimum of zero and a maximum of the speed of passive
particles drifting with the currents, which can be deduced from ocean circulation
models [43]. Watters et al. [105] developed four parameterizations, each of which
combined one of these extreme values for plausible transport speeds with an extreme
plausible value for a second key uncertainty affecting the functional relationship
between prey availability and the proportion of the predator population that is able
to breed.

Another important innovation recognized the impossibility of predicting with
accuracy the future state of the system when it is influenced by multiple interacting
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Fig. 3 The format used to present the results of model projections with intentionally high levels
of uncertainty [38, 105]. The varied results of multiple simulations were used to calculate the
probability of each modelled predator population falling below a threshold level. The results show
how this risk increases with catch level (“proportion of catch limit”) and varies between three
alternative spatial distributions of the catch limit (labelled A to C)

drivers including climate variability and change, and recovery from historic over-
harvesting of whales. The modelers therefore assessed the marginal effects of
Antarctic krill fishing in their projections by comparing them to otherwise identical
projections without fishing.

The modelers performed 1001 stochastic projections with each scenario for each
evaluated management option (consisting of a catch limit and its spatial distribution
amongst modeled spatial units). One of the risks evaluated was the probability of
each modeled predator population falling below 75 % of its size in comparable
projections without fishing. The models generated several thousand projections per
management option with which to calculate this probability. The analysts presented
results in the format shown in Fig. 3, which shows the coherent accumulation of risk
with increasing catch limit, and identifies the least risky spatial distribution (where
the catch limit in each spatial unit is proportional to the total predator demand for
Antarctic krill in the same unit, labeled “B” in the figure). Hill [38] demonstrated
that this distribution remains the least risky even if a different reference level (other
than 75 %) or scheme for aggregating modeled predator populations is used.

Because managers need to consider the implications of management options for
the fished stock, the fishery and predators in multiple areas, the models assessed
each of these risks. One important consideration is that various model outputs (e.g.
the biomass of the fished stock versus the biomass of one of its predators) have
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Fig. 4 The biomass of a modelled krill-like species in 500 stochastic simulations using two
different harvest control strategies: (a) a fixed catch limit, as is currently used to manage the
Antarctic krill fishery, and (b) a feedback method which uses model predictive control (MPC)
to adjust catch limits in response to information about the harvested stock and its predators [40]

different levels of sensitivity to perturbations in model parameters, suggesting that
uncertainties in these parameters could bias comparisons of different risks [41].

Scientists advising CCAMLR are attempting to develop a feedback management
approach for the Antarctic krill fishery that will modify spatially resolved catch
limits in response to information about the local and larger-scale state of the
ecosystem. Such an approach is difficult to design and implement when there are
multiple objectives for multiple connected areas, and when the system’s dynamics
are complex and uncertain. Hill and Cannon [40] used a branch of control theory
called model predictive control (MPC) to show that such an approach is feasible
in principle and more likely than the current fixed catch limit to simultaneously
achieve objectives for the state of the Antarctic krill stock, the state of multiple
predator populations and the state of fishery catches (Fig. 4). Their study applied
MPC to a relatively simple ecosystem dynamics model consisting of two connected
areas, each containing a single prey population and a single predator population.
Their study also clarified the information requirements of such an approach, which
include regular estimates of each of the relevant state variables or, at least, reliable
ways of inferring these from the other state estimates and, critically, a clear set of
quantitative objectives for each relevant state. Defining such objectives is a major
challenge facing CCAMLR and other organizations around the world which seek to
implement Ecosystem Based Management [38, 59].

4.4 Ecosystem Modelling

Models exploring the interactions between different populations in the ecosystem
are useful for devising and assessing Ecosystem Based Management approaches.
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Some pioneering models of this type were developed for the Southern Ocean
ecosystem in the 1980s [10, 11] and the modeling effort that continued to develop
since then was the subject of a detailed review by Hill et al. [42]. More recent
developments include the ecosystem dynamics models described above and a suite
of Ecopath-type food web models [7, 26, 46, 80]. Ecopath-type models compile
available data on the diet, biomass, and production and consumption rates of the
numerous organisms in a particular food web [82]. Modelers generally aggregate
these organisms in so-called functional groups to reduce the number of model
parameters. The modelers then adjust the parameters to satisfy the “mass balance”
constraint that the rate of biomass production by any prey group cannot exceed the
rate of consumption of that prey biomass by its predators.

One use of Ecopath-type food web models is to identify which functional groups
are likely to be strongly affected by changes in the abundance of fished species
[101]. A related use is to explore the potential responses to a plausible change in one
part of the food web. For example, Ballerini et al. (in press) converted their model of
the winter food web in Marguerite Bay into a bottom-up model, in which consumer
biomass increases or decreases with the availability of prey. They increased the
modeled biomass of small phytoplankton relative to large phytoplankton while
maintaining a constant total phytoplankton biomass. This change is a consistent
with recently observed effects [65]. The model predicted reduced production of
Antarctic krill and its predators as a result of this change. Hill et al. [46] reduced
Antarctic krill biomass by 80 % in their model of the South Georgia shelf food web
and readjusted the parameters to achieve mass balance. They found that, without
compensating effects, this produced a similar decline in the biomass of Antarctic
krill predators (fish, seals, penguins and other seabirds). However, a combination
of compensating effects (an increase in grazing zooplankton called copepods and a
shift in predator diets to take advantage of this increased copepod biomass) could
minimize the impacts on Antarctic krill predators. This illustrates the wide range of
outcomes that are possible within the current uncertainties on ecological knowledge.
Future model development and data collection should aim to better characterize
these uncertainties so that it is possible to assess which outcomes are most likely.

The existing suite of food web models for the Southern Ocean provide a valuable
resource for comparing the structure and operation of the different regional food-
webs [68, 69]. However, each of the existing regional models was developed by
a different modeling team, using patchy and uncertain data, and each model was
designed and analyzed to address a unique set of research questions. The differences
between the models therefore include real underlying ecological differences, differ-
ences due to sampling error in the available data, and differences in the assumptions
and subjective decisions made by the various modeling groups. The challenge of
distinguishing real ecological differences from these sources of uncertainty is likely
to be a major theme in future food web modeling.

In summary, mathematics and modeling are critical to understanding ecosystem
structure and dynamics, assessing potential responses to change and developing
appropriate fisheries management approaches. CCAMLR’s commitment to Ecosys-
tem Based Management and the relative paucity of ecological data for the Southern



From Ice to Penguins: The Role of Mathematics in Antarctic Research 403

Ocean produce some interesting challenges that have led to innovative ecological
modeling and analysis. It is practically impossible to identify definitive models of
ecosystem structure or dynamics and consequently much of this innovation and
many of the ongoing challenges concern the appropriate treatment of uncertainty.

5 The Application of Mathematics in Antarctic Climate
Change Research

The analysis and projection of climate change using mathematical modeling
currently receives much attention from scientists, politicians, the media and the
general public. Due to the increased rates of environmental change in the Antarctic,
considerable research effort has been devoted to modeling the Antarctic atmosphere
and the Southern Ocean, and to quantifying physical and biological aspects of
change. Most global climate models suggest that regional temperature increases will
be greatest and most rapid at higher latitudes [49, 98]. Rapid increases are already
evident over the Antarctic Peninsula where, in the last half century, air temperatures
have risen by 2–3 ıC. To the west of the Antarctic Peninsula sea ice has also declined
and ocean temperatures have increased by 1 ıC over five decades [64, 99]. Although
climate models have successfully helped to build a broad picture of the causes of
recent regional change, there are still many gaps in knowledge which affect the
ability of climate models to reliably represent the Antarctic climate and the behavior
of its ice caps and sea ice. A recent study by Turner et al. [100] examined the annual
cycle and trends in Antarctic sea ice extent (SIE) for 18 climate models. Many of the
models have an annual SIE cycle that differs markedly from that observed over the
last 30 years. In contrast to the satellite data, which exhibit a slight increase in SIE,
the mean SIE of the models over 1979–2005 shows a decrease in each month [100].
The models have very large differences in SIE over 1860–2005. The negative SIE
trends in most of the model runs over 1979–2005 are a continuation of an earlier
decline. There are two major gaps in knowledge that hamper the understanding
of the observed increase. Possibly the most important is the limited observational
record, in which reliable Antarctic-wide estimates of SIE are only available after
approximately 1979. It is therefore very difficult to estimate the size of natural
fluctuations in ice extent, which may have contributed to the recent changes. Related
to this, the other major gap is in understanding the processes for change that need
to be mathematically represented in climate models. At present is seems that the
processes responsible for the observed SIE increase over the last 30 years are not
being simulated correctly [100].

Another important prediction of climate change models is changing patterns of
precipitation, altering the water input to terrestrial ecosystems. Spatially detailed
predictions are not yet available for Antarctica, although water is possibly the single
most important factor limiting the distribution of Antarctic terrestrial biota [25].
In some Antarctic terrestrial systems local environmental changes result in greater
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energy input and warming, which may be accompanied by a lengthening of the
season in which liquid water is available. There is evidence that such changes might
increase production, biomass, population size, community complexity and the rate
of colonization by previously absent organisms [13, 25]. However, at fine scales
a decrease or total loss of water input could lead to local extinctions and drastic
changes in local ecosystem structure [24].

Increases in primary biological productivity are already being seen at the margins
of the Antarctic continent. These occur in areas of sea-ice loss where recent ice shelf
retreat has occurred [76]. However, Antarctic marine species are generally amongst
the least capable of adapting to environmental change. There are three main reasons
[75]: (1) The geographical range over which they can live or disperse is restricted;
(2) they have evolved to live in a very specific environment and tolerate only a
narrow range of environmental conditions; and (3) they have long life histories
and consequently slow rates of adaptation. Statistical analysis of experimental
research provides evidence that the shallow mega- and macrobenthos are also very
sensitive to temperature change (stenothermal). Being warmed by about 5 ıC over
periods greater than one month kills most species tested to date, but even smaller
temperature rises (2 or 3 ıC above normal) drastically hinder their ability to perform
critical functions, such as avoiding predators [9]. In pelagic waters, changes to key
pelagic species have also been notable. Regression analysis indicates a statistically
significant relationship between Antarctic krill abundance and winter SIE in the
western Scotia Sea, and there were apparent declines in both between the 1970s
and 1980s [4, 99]. Further SEI declines would likely lead to more changes in the
distribution and abundance of Antarctic krill.

Some studies have combined climate projections from global climate models
with statistical models linking ecological processes to environmental variables (e.g.
[40, 54, 54]). For example, Hill et al. [40] used sea surface temperature projections
from 16 climate models with a statistical model linking Antarctic krill growth [5]
to sea surface temperature. They found that plausible future warming is likely
to lead to substantial reductions in the ability of Antarctic krill to produce new
biomass throughout the northern Scotia Sea (Fig. 5). This is where large populations
of Antarctic fur seals, Arctocephalus gazella, penguins and flying seabirds feed
on Antarctic krill during the summer breeding season. A reduction in Antarctic
krill biomass could result in greater predation on alternative prey and therefore
negative impacts on some fish species [3]. As mentioned in the previous section,
food web models have been used to assess how such changes could propagate
through the food web [7, 46]. A key issue taken into account by Hill et al. [47] is
that different climate models give different projections, contributing to uncertainty
in estimates of future change. Assessing and quantifying this uncertainty is an
important mathematical challenge in itself and an active area of research is in
developing statistical approaches to combining information from different climate
models [15, 94].

The effects of climate change in populations of top predators, such as penguins,
have also been considered [8]. Even apparently straightforward tasks, like obtaining
an estimate of the total number of penguins, are not easy and require plenty of
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Fig. 5 The results of a study which used projections from multiple climate models to drive a
statistical model of Antarctic krill growth [40]. The figure shows the spatial pattern of projected
change in gross growth potential (GGP, an indicator of new biomass production) from 1997–2011
to 2070–2099. The growth model represents the influence of both temperature and food availability.
The panels are arranged from top to bottom in order of increasing projected warming from three
different representative control pathways (RCPs, which control the radiative forcing and hence
warming in climate models). The figures are arranged from left to right in order of increasing
final food availability indicated by chlorophyll concentration, including a 50 % decrease and a
50 % increase from current (observed) concentrations. Additionally, the central column shows the
degree of agreement between climate models: Cells where 50 % or more of the models project
significant GGP change are highlighted with stippling if 90 % or more of models agree on the sign
of the change, and are highlighted with hatched lines if fewer than 90 % agree

mathematical tools. As an example, a recent study aimed to estimate the population
of emperor penguins, Aptenodytes fosteri, using a single synoptic survey in 2009
[31]. The analysts examined the whole continental coastline of Antarctica using
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Fig. 6 The location of all known emperor penguin colonies in Antarctica and the estimated
number of adults present in each at the time of a 2009 satellite survey [31]

a combination of medium resolution and very high resolution satellite imagery to
identify emperor penguin colonies and the area occupied by penguins in each. They
obtained actual counts of penguins from eleven ground truthing sites and used robust
regression to model the relationship between the number of adult penguins and the
area they occupy. They then used the model to estimate of the number of adult
penguins at every colony. Finally they scaled this number up to estimate the total
population of adults, including those that were absent at the time of the survey, using
information about rates of participation in breeding and breeding success (Fig. 6).
The final estimate of 238,000 adults present, out of a total population of 595,000
compares with the previously published estimate of 135,000–175,000breeding pairs
[62]. The revised, comprehensive estimate of the total breeding population can be
used in population models and will provide a baseline for long-term research [31]
which is necessary because global and regional emperor penguin populations are
likely to be strongly affected by climate change [8, 50, 98].

In summary, climate research has always depended upon mathematics to build
models and implement analyses. These models and analyses have increased our
understanding of the past, and are now being used to project future climate
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conditions. This is particularly important in the Antarctic where recent changes
in some areas are amongst the most extreme on earth. Ecological models are now
being linked to climate projections from global climate models, providing a new era
of research and bringing disciplines together. Future Antarctic climate research will
include foci on characterizing and reducing the uncertainty in model outputs (e.g. by
collecting further data and by improving the precision on the variables collected),
on improving understanding and representation of climate processes (to improve
model performance and the reliability of projections) and on working together with
other science disciplines to provide robust evidence on the range of climate impacts,
from sea level changes to biodiversity effects, that will inform policy decisions.

6 Final Considerations

Mathematical analyses are crucial in all areas of Antarctic science and central
to addressing issues of global importance. In each scientific area highly specific
methods and models have been developed to address particular questions, from the
detailed analyses of remotely sensed predator tracking data to the assessment of the
outputs from multiple climate models to determine the potential impacts of future
global climate change. A key issue, that is common to all scientific disciplines, is
how to deal with the inherent uncertainty associated with the analysis of process
interactions in Antarctic systems. Major uncertainties are often the result of limited
data availability, due to the difficulties of operating in remote Antarctic systems.
However, over the last decade a series of long-term sampling programmes and large-
scale international integrated projects (such as Census of Antarctic Marine Life
(http://www.caml.aq/), ANDRILL (http://www.andrill.org), GLOBEC (http://www.
globec.org/)), and a rapid increase in the volume of remotely sensed information
available, have changed the scale of the data available for analysing these systems.
This increase in data availability has led to the development of new methods and
algorithms for their efficient collection, validation, storage and analyses. With the
continued rapid development of satellite-based and remote observation systems (e.g.
ocean drifters and automatic weather stations), and of new methods for genetic
analyses of biological systems, a step-change is occurring in the magnitude of
data available on all components of Antarctic systems. Dealing with these data will
require a similar step-change in the use of mathematics in all aspects of Antarctic
science.

Many of the issues of global importance in Antarctic science are at the inter-
faces between traditional disciplines (e.g. biology and physics or oceans and the
cryosphere). In many of these areas new methodological and analytical approaches
and models are required. For example, addressing questions about how climate
change and direct human impacts (such as fishing) will affect ecosystems requires
integrated studies that link knowledge of biogeochemical cycles, species and food
webs [68, 69]. This requires integrated whole ecosystem (also termed “end-to-
end”) analyses at local (10 s to 100 km), regional (100 s to 100 km) and circumpolar

http://www.caml.aq/
http://www.andrill.org
http://www.globec.org/
http://www.globec.org/
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scales (10,000 s km) [66, 68]. Such whole system integration has become a central
focus of international activities in many areas of Antarctic science, and particularly
in Southern Ocean studies aimed at linking climate and ecosystem processes
[66]. There are major theoretical and analytical challenges in developing such
integrated analyses and models. These include questions about how different
physical, chemical and biological processes link across a range of scales [67], how
different model structures can be coupled together to ensure appropriate feedbacks
and system behaviour [68] and how to control and characterize the uncertainty
that often multiplies as models integrate more processes [44]. This will require the
development of a wide range of new and innovative mathematical approaches.
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Appendix A: CIM International Planet Earth
Events MECC I, 2013

In 2013 the CIM organized the International Conference on the Mathematics of
Planet Earth: MECC I, 2013—International Conference Planet Earth, Mathematics
of Energy and Climate Change, 25–27 March 2013. Furthermore, the CIM orga-
nized the following Advanced School Planet Earth directly before and after the
International Conference: School MECC I, 2013—Advanced School Planet Earth,
Mathematics of Energy and Climate Change, 21–23 and 27–28 March 2013.

The CIM Mathematics of Planet Earth events stemmed from the CIM’s role
as a partner institution of the International Program Mathematics of Planet Earth
2013 (MPE 2013). We were pleased that the CIM-MPE events were announced,
for example, in the ICIAM newsletter for January 2013 and the EMS newsletter for
March 2013.

These events were enthusiastically supported by many Portuguese institutions,
including: the SPM; SPE; APDIO; CEMAPRE; CEAUL; CMA-UNL; CMAF-
UL; CMUP; INESCTEC; ISR; IT; UECE FCUL; ISEG; Calouste Gulbenkian
Foundation (FCG) and Ciência Viva (CV).

The International Conference MECC I, 2013 was hosted by the Calouste
Gulbenkian Foundation.

The Advanced School Planet Earth, Mathematics of Energy and Climate Change
was hosted by the Faculdade de Ciências, Universidade de Lisboa (FCUL).

In addition, the CIM would especially like to thank Irene Fonseca for her scien-
tific guidance, João Paulo Almeida for his guidance and coordination of the events,
Antónia Turkman for her assistance in coordinating with the Calouste Gulbenkian
Foundation, Telmo Parreira for organizing and compiling the proceedings, and
Paulo Mateus, Pedro Baltazar and Telmo Parreira for developing and maintaining
the conference website. The CIM would like to thank the CGF staff and members of
the local organizing committee as well as the Calouste Gulbenkian Foundation for
their incredible hospitality throughout the event and for providing to speakers and
participants the opportunity to experience the beautiful city of Lisbon in a friendly
ambiance.
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The CIM would like to thank the following keynote speakers of MECC I, 2013
for their insightful lectures:

• Inês Azevedo, Carnegie Mellon University, USA
• Richard James, University of Minnesota, USA
• Christopher K.R.T. Jones, University of North Carolina, USA
• Pedro Miranda, Universidade de Lisboa, Portugal
• Keith Promislow, Michigan State University, USA
• Richard L. Smith, University of North Carolina, USA
• José Xavier, Universidade de Coimbra, Portugal
• David Zilberman, University of California, Berkeley, USA

The CIM’s thanks also go to the 60 invited speakers for their insightful
presentations, and to the 17 session organizers, whose energy and commitment were
so vital to the success of the events:

• João Paulo Almeida, IPB
• Paulo A.V. Borges, Universidade dos Açores
• Margarida Brito, FCUP
• Miguel Centeno Brito, Universidade de Lisboa
• José Luís dos Santos Cardoso and Mário Gonzalez Pereira, UTAD
• Maria da Conceição Carvalho, FCUL
• Stéphane Louis Clain, Universidade do Minho
• João Gama, Universidade do Porto
• Sílvio M.A. Gama and João Emílio Almeida, FCUP
• Ivette Gomes, Universidade de Lisboa
• Patrícia Gonçalves, Universidade do Minho
• Raquel Menezes, Universidade do Minho
• Alberto Adrego Pinto, Universidade do Porto
• António Pacheco Pires, UTL
• Carlos Ramos, Universidade de Évora
• Delfim F.M. Torres, Universidade de Aveiro
• Tânia Pinto Varela, UTL

The CIM would like to thank the members of the local organizing committee of
MECC I, 2013 for their remarkable professionalism: Alberto Pinto (FCUP); Paulo
Mateus, (IST); Pedro Baltazar (IST); João Paulo Almeida (IPB); Abdelrahim Mousa
(FCUP); Renato Soeiro (FCUP); Bruno Neto (FCUP); Filipe Martins (FCU)P; João
Coelho, (FCUP) and Joana Becker (FCUP).

The book of abstracts of MECC I, 2013 can be found in the link:

http://sqig.math.ist.utl.pt/cim/mpe2013/docs/bookMECC2013.pdf

Porto, Portugal Alberto Adrego Pinto

http://sqig.math.ist.utl.pt/cim/mpe2013/docs/bookMECC2013.pdf
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CIM thanks the participants Margarida Brito (Universidade do Porto), João Coelho
(LIAAD-INESC TEC, Universidade do Porto), José Cardoso (Universidade de
Trás-os-Montes e Alto Douro), Ricardo Cruz (Universidade do Porto), João
Gama (LIAAD-INESC TEC, Universidade do Porto), Ivette Gomes (CEAUL and
DEIO/FCUL, Universidade do Lisboa), Richard James (University of Minnesota,
USA), Carlos Ramos (Centro de Investigação em Matemática e ções, Universidade
de Évora), Andrew Schmitz (Universityof Florida, USA), and Ana Soares
(Universidade do Minho) of the International Conference and Advanced School
Planet Earth, Mathematics of Energy and Climate Change MECC 2013, Portugal,
21–28 March 2013, for sharing their ideas and points of view with us in this
interview.

The questions presented here are based on several interviews; in particular, the
interviews published in previous CIM bulletins. CIM thanks Renato Soeiro and
Alberto Pinto for organizing this interview (see also CIM Bulletin 35).

On the meeting

What was your general impression of the MECC 2013 meeting?

Margarida Brito: In a word, the meeting, due to its interdisciplinary character
and the outstanding quality of the participants was a success. The exchange was very
prolific, in a purely scientific sense as well as with regard to possible institutional
developments and the social impact in general.

José Cardoso: My overall impression of the meeting was very positive. It joined
in the same space researchers from different areas with one important link between
them: the planet earth. With talks involving important issues in the everyday life
of all living beings of our planet, such as climate, energy, and sustainability,
the researchers did not just focus on mathematics as an end in itself. Rather,
they discussed, with a pragmatic approach to the implications of the new results,
new ideas, and, consequently, new materials and new technologies, whether the

© Springer International Publishing Switzerland 2015
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participating community in this meeting, scientific and non-scientific, could become
aware of the vast array of problems and challenges that nature incessantly provides
us and that, in our own interests, we seek to solve to improve our well-being.

João Coelho: This meeting was fabulous. It provided a general view about what
research areas the mathematical society is working on.

Ricardo Cruz: The meeting combined researchers from a wide range of intersec-
tional mathematical areas. It was a great opportunity for M.Sc. and Ph.D. students to
meet researchers in several fields, and a good opportunity for collaboration among
the researchers.

João Gama: Conferences are meeting places and opportunities to present and
discuss our work. In a conference we need to organize and explain in a coherent and
comprehensive way the main ideas behind our results. However, sometimes the most
relevant aspect comes from the informal contacts that the coffee breaks promote.
The offline discussions and the personal contacts with authors whose work we are
interested in allow us to enlarge our scientific network, leading us to other scientific
experiences.

Ivette Gomes: I organized a session on Statistics of Extremes in Society at CIM
International Conferences and Advanced Schools Mathematics of Planet Earth 2013
(CIM-MPE 2013), and due to my schedule I could only attend two other organized
sessions and two plenary talks. My overall impression was quite positive.

Richard James: I enjoyed it very much.
Carlos Ramos: The general impression was very good.
Andrew Schmitz: The meeting was excellent.
Ana Soares: Very good.

Something you would like to highlight?

Margarida Brito: It is difficult to choose. The meeting as such was extremely
pleasant, with a nice atmosphere, partly due to the conference location, the Calouste
Gulbenkian Foundation in Lisbon, which provided an ambience favorable to prolific
interchange, not only during the sessions, but during the intervals and at the end
of the sessions as well. It was also remarkable to see the great engagement of
postgraduate students at the meeting.

José Cardoso: Just to mention a few examples and not pretending to be
exhaustive, one heard interesting ideas and new background on the conversion of
heat into electricity, the specific mathematics involved in extreme conditions such as
in the polar zones, some issues related to photovoltaic dye sensitized solar cells, the
relation between technology and bioeconomy, energy conversion on the nanoscale,
some topics on biofuels for food crops, as well as more general and well-known
questions such as how to reduce CO2 emissions, and wind power prediction, and
also global questions related to climate change such as the role played by internal
waves in the surface-atmosphere interface. Beyond all of this, anyone could find in
the thematic sessions a variety of subjects where mathematics plays a crucial role.

João Coelho: I would like to highlight the quality of the speakers and the
relevance of their research.
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João Gama: MECC 2013 was an amazing multidisciplinary meeting. Conversa-
tions were more difficult due to the different languages of the attendees, but much
richer for those who participate in the game of talking with people outside their
borders.

Ivette Gomes: The large variety of topics presented.
Richard James: It was diverse and fascinating, and the venue of the Calouste

Gulbenkian Foundation was superb.
Carlos Ramos: The place—the Calouste Gulbenkian Foundation—and the

diversity of researchers and communications. The location is fantastic with very
good conditions for communications and most of all for informal talks between
researchers and students.

Andrew Schmitz: For me, a highlight was the in-depth questions and answers in
the sessions I attended.

Ana Soares: The presence of a significant number of Portuguese researchers
representing almost all areas of research.

How important do you think that events like this are for students and researchers?

Margarida Brito: In general, meetings like this are important for researchers to
develop their ideas through exchange, especially in fields in which interdisciplinar-
ity proves to be essential. Students who participate in these events are exposed to
different approaches, open problems, and questions, which encourage and develop
their own capacity of research. In particular, the Conference on Mathematics
of Energy and Climate Change stands out due to its intrinsic interdisciplinarity,
providing researchers with an absolutely necessary platform of exchange and
discussion and providing a challenge for participating students.

José Cardoso: One important consequence of this type of meeting is that the
general public will be aware of the fundamental role played by mathematics in
nature and in the endless attempts to control it. Furthermore, it enables each
researcher not only to display their own results and ideas but also to acquire a global
overview of many interesting areas of research, and, possibly, to establish new links
with other researchers.

João Coelho: They are very important because students and researchers can
increase their knowledge and find new ideas and topics to work on.

Ricardo Cruz: The strong adhesion to the event shows there was a growing
demand for a conference providing this spectrum of research fields.

Ivette Gomes: The talks I attended were indeed essentially devised for
researchers or students at a Ph.D. level, and not for students at an M.Sc. level.

Richard James: These meetings with an intentional flavor, and with a broad col-
lection of viewpoints, are particularly valuable, because they introduce to students
a variety of viewpoints that can never be represented in any single institution.

Carlos Ramos: These events are very important for providing a survey and a
broad perspective of the area of dynamical systems and its applications within and
outside mathematics. I think this is an appropriate type of conference to initiate
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advanced students in scientific communication and to provide a good opportunity
for the students to meet very good active researchers.

Ana Soares: Very important for students in the sense that the meeting represents
an opportunity to follow different topics and approaches.

How do you see the impact of this meeting on your field and outside of your field?

Margarida Brito: Well, it was in fact an interdisciplinary meeting, bringing
together researchers in mathematics and science working in different fields. By
this, I do not refer specifically to mathematical fields, but to different fields of
science. Keeping in mind that mathematics, applied to a specific domain, does
not mean just using a tool but rather reflecting this domain and its problems in
mathematical terms, which may lead to the development of new mathematical
methods or even theories, it becomes evident that the exchange which is promoted
and facilitated by a congress such as this one is of great importance to the progress of
scientific research. This meeting thus emphasizes the decisive role of mathematics
in science. We can’t overestimate the impact in the scientific field of research.
Moreover, the meeting highlights the importance of mathematics in addressing
planetary problems. The scientific fields in question are fields with direct connection
to problems of humanity, and as these problems are the sort of problems that demand
rapid solutions, we can’t overestimate the impact of the meeting on society, as well.

Ricardo Cruz: Beyond the meeting itself, participants were invited to submit
papers for a volume published by Springer, and the response was overwhelming.

Ivette Gomes: Mathematics is the sharp tool that allows us to describe, to
understand, to forecast and to a certain extent to control all phenomena in the world,
and even in the universe. Unfortunately, this idea is left behind in the formal teaching
of mathematics, and there is the general misleading opinion that mathematics is an
abstract science, and that beyond some elementary algebra, analysis, and differential
equations used by engineers, it is a kind of useless puzzle. Therefore, periodic
meetings on how mathematics intervenes in our way of dealing with reality are a
very welcome initiative. I hope they will continue and attract an even wider audience
and diversity of active participants.

Richard James: It is particularly valuable for people to see that mathematics has
a lot to offer in the study of energy and the environment.

Carlos Ramos: What is, generally, the impact of these events on specific areas,
areas they relate to, and on the interplay between different areas or fields of
knowledge? The main impact is on the relation between subjects—some very
applied—and the possibility of future work it opens.

Andrew Schmitz: The impact of this meeting is positive from a worldwide
perspective.

Ana Soares: The impact is relevant on the field because several experts get
together and discuss ideas and new problems. Outside the field, it is important
because it shows the interdisciplinary character of mathematics.

What would you say is, generally, the impact of these events on specific areas, as
they relate to and on the interplay between different areas or fields of knowledge?
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Margarida Brito: Let us briefly look at just one problem as an illustration, taken
from the main topics from this conference. The reliability of climate previsions is
of high importance for a great number of decisions. Previsions depend on a large
number of data. We need, besides other things, knowledge about the surface of the
earth, which means the earth’s crust and the oceans. We have to consider as well
the respective consequences of a variety of possible political decisions, which will
possibly interfere. So the model on which we elaborate is very complex. Currently,
climate researchers know that the actual available data from geology and oceanology
is still far from sufficient and that from sociology is minimal. Furthermore, to
establish the theoretical bases for prevision, one must take into account that, vice
versa, climate interferes at least on the development of the behavior of the oceans.
The fast development of electronic data processing in the last decades of the last
century motivated the idea of the development of complete models, inducing a
tendency to neglect a reflection of the specificity of models, the methods and forms
of simplification. This was accompanied by a pushback of theoretical and analytical
reflection of the observed phenomena. And, mainly due to mathematicians, the
conscience of the inherent interdisciplinary approach was developed, as well as the
conscience of the importance of the quality and quantity of data in order to achieve
climate research progress. International meetings of this type are fundamental to
identify the relevant questions and the different areas or fields involved.

Ivette Gomes: I have a very favorable and positive opinion on all these issues.
The impact of the meeting on the broad area of mathematics, including statistics,
is high. And due to the interdisciplinary character of the meeting, the impact of the
talks is surely also high outside the field of mathematics.

Andrew Schmitz: At least in our session, additional knowledge was obtained from
the impact of the US Ethanol Policy.

On your research:

Did you always want to be a mathematician?

João Coelho: Yes.
Ivette Gomes: Indeed, I wanted to study architecture and not mathematics. But

my marks in history at the secondary school were not high enough for a candidacy
to architecture. Mathematics, a discipline where I had always had very high marks
was thus my choice, and today I think this was the most sensible decision.

Richard James: Not at all. As an undergraduate, I was a biomedical engineer—it
was a very broad program (at Brown University) that began with basic cellular and
molecular biology and ended near physiology and medicine, and the engineering
side included a particular focus on mathematics, mechanics, and thermodynamics.
Though I was headed for a medical career, I fortunately realized at some point that I
liked the quantitative, mathematical part much better, and I turned in that direction.
I was (and still am) fascinated by the idea that, by purely mathematical reasoning,
one can understand profound things about nature.

Carlos Ramos: I have always wanted to be a scientist (with mathematics).
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Ana Soares: Yes, I did.

How did you start working in this area? What was the motivation? Could you tell
us about your mathematical beginnings and subsequent career development?

João Coelho: Earlier in my life I started loving math. I liked to study the
properties of the numbers and also to discover the methods of solving problems
using mathematics. Now, I have a job in stock management, and I use mathematical
methods to optimize the management. In the future, my ambition is to obtain a Ph.D.
degree. And, who knows, perhaps I will present my future work at future editions
of these meetings.

João Gama: My first research experience was in the context of an interdisci-
plinary European project. I learned a lot from the long discussions on problem
formulation using different languages and approaches. The diversity of methods,
assumptions, limitations, algorithms, and interpretations was fundamental in my
obtaining a much deeper understanding about my own area. We know this to be
true: multiple views are always a plus.

Ivette Gomes: I got a degree in Pure Mathematics at the Faculty of Science of
Lisbon (FCUL), and my major topic was algebra. I almost went to the USA to
work for a Ph.D. in Goldie’s ring theory or some similar topic. Indeed, by the end
of my 5th year, Professor Almeida Costa was able to provide me with a grant from
Gulbenkian Foundation and all the facilities to go abroad immediately after finishing
my degree in Pure Mathematics. At the time I chose pure mathematics, and after
getting my B.Sc. in Mathematics, I was absolutely sure about this choice. But in my
5th year I had to choose a few optional courses in the area of applied mathematics,
and as far as I remember I have chosen courses in probability theory, mathematical
statistics, and stochastic processes. Then, my field of interest changed, since dealing
with uncertainty and risk is surely the ultimate challenge for a mathematician. I
immediately decided not to go to the USA but to stay in Lisbon in order to get
a degree in Applied Mathematics. I even found a job as a teacher at a secondary
school. But Professor Tiago de Oliveira got to know this through some of my friends
in applied mathematics, and he immediately offered me a position at FCUL, in the
Department of Applied Mathematics. It was really a tough but gratifying experience.
I had to teach courses like Monte Carlo simulation and population dynamics, and I
had to use the computer intensively, something that I had never done before. Tiago
de Oliveira helped us in the decision of going to Sheffield for the Ph.D. Indeed,
Tiago de Oliveira was a very good friend of Joe Gani, the founder of The Probability
Trust in Sheffield. But Joe Gani was no longer at Sheffield when we arrived there
in September 1975—I only met him 30 years later, in 2005, at the ISI meeting in
Sydney, and it was indeed very gratifying talking with him at the time. In Sheffield, I
first began my M.Sc. study in Probability and Statistics. I had courses in probability,
statistics, weak convergence theory, and data analysis, among others. But as both
Dinis and I had Gulbenkian grants and got very high marks in the first term, they
thought it sensible to transfer us immediately to the Ph.D. degree in January 1976.
I had already had some exposure in Lisbon to statistics of extremes, indeed in the
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area of bivariate extremes and dependence function estimation, through the reading
of an article by Tiago de Oliveira on the subject. I enjoyed the topic very much,
but in order to diversify the topics under research at our university, Tiago thought
it sensible and I agreed that it would be better to get a specialization in another
area, like density estimation, non-parametric statistics, or inference on stochastic
processes. But Clive Anderson was a lecturer there and was working in extreme
value theory, and he invited me to work under his supervision in the area of
extremes. Clive then provided me with several topics of research beginning with
rates of convergence and penultimate approximations, extremes of random fields,
concomitants of order statistics, and maxima of different types of weak dependent
structures, among others. I am deeply indebted to Clive, a person who served as a
thesis supervisor and has often helped me with suggestions but given me a lot of
freedom, letting me go my own way. Indeed, I almost always followed this path
with my Ph.D. students. If a student is bright enough to make his own way, I think
we have no right to impose much on him. Back in the University of Lisbon, I started
courses in computational statistics, order statistics, and also in applied areas such
as statistical quality control. Although I enjoy teaching, my main interest has been
research (and family life).

Carlos Ramos: I started with physics and naturally arrived to dynamical systems.
Ana Soares: I loved fluid mechanics and all mathematical problems motivated in

physical and engineering applications. My Master’s supervisor proposed that I study
shock wave problems and combustion problems. I accepted and I am still working
in mathematical physics.

How would you describe the essence of your own research to a young student?

Ivette Gomes: The majority of decisions can be made in terms of averages and
their fluctuations, and thus with the “middle” observations, when we order the
data available (something we could describe as central order statistics). A few,
exceedingly important problems deal with extreme order statistics, either maxima
or minima, since extreme down-crossings or up-crossings of thresholds can result in
very severe losses (for instance floods, droughts, wild fires, and bankruptcy). Models
for extreme events have been developed under a wide variety of assumptions,
but the basic models are important guidelines in terms of successfully choosing
shape, scale, and location. In the last few years, the focus of my research has been
on strategies to choose the most reliable models to deal with concrete situations,
working essentially under a semi-parametric framework.

Carlos Ramos: I work with the analogy between mathematical structures and
other concepts from outside mathematics.

Ana Soares: I study mathematics which help to understand and explain many
applied problems arising in real-world applications mainly related to physics and
engineering.
Which would you say are the most interesting/challenging open (or recently solved)
problems in your area, and what do you think the future holds in your area and in
your line of research?
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Ivette Gomes: Although computational statistics has been used to “let the data
speak for themselves,” I strongly believe that science does not deal with singular
data. In fact, what is useful is to abstract the characteristic features of the problem,
and try to develop a general theory for that class of problems. One of the ways to
do that is to fit useful models—useful because they are general, or mathematically
tractable, or have simple characterizations. One way of doing this is to think
on a large scale, in the sense that we try to devise what would be good for a
large dataset (and indeed in data analysis we may simulate pseudo-observations
to observe the behavior of larger datasets than the one at hand). In other words,
we develop asymptotic approximations. This requires a much deeper study on the
rate of convergence towards these asymptotic behaviors. Much has been done in
this field, but there is room for further developments. There is also a need to build
up models under more realistic assumptions than the commonly used ones that in
general do not go beyond weak convergence hypotheses and some mild form of
parental homogeneity. On the other hand, as in many situations data gathering is
drastically limited, behavior with small samples is also a crucial area of research.
And the analysis of spatial and big data is also quite challenging.

Richard James: My area (applied mathematics) is not so much driven by
longstanding hard problems that famous mathematicians could not solve. Rather,
it is driven by the ideas that precede the problem. The formulation of the problem
is typically the most fascinating and challenging part. This does not imply that the
solution is easy! Some of the problems on the theme of the Advanced School on
providing alternative methods of producing energy that do not rely on burning fossil
fuels, and the reliable, accurate prediction of climate change are challenging. But
simple, classical problems, like, “why are the planets of the solar system where they
are?” also fascinate me.

Carlos Ramos: One of the biggest challenges is to develop mathematics taking
into account biology (natural sciences generally speaking) and the social sciences.
Reflecting on how mathematics has been developed since Newton, taking into
account mainly physics. This process can help to theorize in the referred sciences.

How do you see your area in terms of its importance in mathematics and in other
fields of knowledge, the impact on and from other areas, and how do you expect this
interplay to develop further?

Ivette Gomes: Extreme value theory is an important area of probability/statistics,
both because of its intrinsic beauty and inspirational value for emerging areas
(for instance, stability in generalized convolution algebras) and because of its
outstanding performance in dealing with extreme risks—for instance, the use of
extreme high quantiles, known as value at risk (VaR) in finance. Statistics blends
mathematics with the taming of uncertainty, it deals with using the rigor of deductive
reasoning, applying it to uphold the use of induction in knowledge building, and I
wouldn’t agree with the view that statistical reasoning is no more than a subarea
of mathematics. But a large share of statistical research, either in probability or
stochastic processes, and is traditionally called mathematical statistics, uses deep
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results from many areas of mathematics, like numerical methods, analysis, algebra,
functional analysis, and many others, to construct new deep rigorous knowledge on
how to transform information in knowledge, and how to use randomness as an ally.
Under this specific perspective, I feel that my field is a sophisticated and challenging
area of mathematical research.

Richard James: Mathematics is the language of science. I always inherently liked
mathematics, but, as an undergraduate, I also thought that it would certainly be a
good idea to learn the language well, because of the inseparable relation between
ideas and language. I’m now even more convinced. I suspect that the importance of
mathematics in science will grow.

Carlos Ramos: In my opinion dynamical systems will become a cornerstone
in mathematics, influencing all mathematics, conceptually, structurally and from a
practice point of view. The area as a pure area will be maintained and will develop
itself slowly, the interplay between other mathematical areas will explode, and
regarding the scientific applications it will develop tools “ready to use” in a similar
way as has happened with statistics. The most important thing is that conceptually
DS can furnish the correct concepts and tools for the advance and effective synthesis
in science.

Do you have a favorite result, your own and/or from others?

Ivette Gomes: This is a difficult question, since I am convinced that in general
we are “infatuated” with our more recent results. So, I could answer that I am
proud of my recent work showing that by simply using general definitions of a
mean, the Hill estimator of the extreme value index can be much improved. But
looking back to more ancient results, I like what I have done on pre-asymptotic
approximations and domains of attraction of extreme stable models. Indeed, among
the articles I read during my stay in Sheffield, UK (1975–1978), for my Ph.D., the
one that influenced me most was possibly the article by Fisher and Tippett (1928),
on rates of convergence and penultimate approximations. And indeed I still think
there is some kind of magic in this topic, because this, my first passion, has been
intermittently revisited after my Ph.D. thesis, either individually or in co-authorship,
first with Dinis Pestana, next with Laurens de Haan, and more recently with Luisa
Canto e Castro, Sandra Dias, and Paula Reis, in a topic relating pre-asymptotic
approximations and reliability of large and coherent systems. But in fact my main
reward along my professional life has always been the continued pleasure provided
by my research activity. Concerning favorite results from others and outside the
field of extremes, I think Jacques Bernoulli was right in naming his law of large
numbers “his gold theorem.” Indeed, the core of simulation is a clever use of the
law of large numbers. And, also because of its many uses, from simulation to meta-
analysis, the probability transform theorem, bringing the uniform to the limelight
of probability, is also one of my favorite results. On the other hand, the very bright
total probability theorem, which is Descartes’s method translated into probability
language, is a foremost result, and I would be happy to discover who deserves the
credit to have first used it and understood its universal value. Mathematical statistics
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is a recent field, and the pioneering achievements, K. Pearson’s chi square criterion,
Student’s illuminating study on the error of the mean (which contains a lucid view
of the uses of simulation), and Fisher’s ANOVA and all its ensuing creation of
experimental design are landmarks, and not only in the history of statistics, since
they played a central role in changing the paradigm of scientific research.

Is it difficult to get funding for research in your area?

Ivette Gomes: Yes, indeed. In the preface of his book on probability, Kallenberg
states that while circa 1950 Loève’s book on probability covered the main results in
the field, by the time he wrote his book, several shelves in a library were needed to
provide a fair account of the field. I think that it was in a very interesting book by Ian
Hacking that I read that per year more than 600,000 new theorems were published,
and that a first-rate mathematician was able to incorporate around 100 of them in his
toolbox. This difference between the advancement of science and the filtering of its
essentials has a perverse effect on the understanding of the relevance of alien work,
and the fact that in Portugal evaluation panels seldom have statisticians has had a
very negative impact in funding probability and statistics research.

On research, more generally:

What would you say are the most important things to keep a research group
going?

Ivette Gomes: New scientists are trained by the example of the senior way of
solving problems, so proximity and facilities for exchange of ideas are important
assets for the future of science. Guidance in documentation is also an important
step in educating young researchers. Incentives for the group, including funding
for presenting and discussing ideas in workshops and seminars and for inviting
researchers from other groups that are tackling similar problems, are also important.
A peaceful life at the research unit is also something invaluable.

Richard James: It is not so easy in the US to achieve long-term continuity of a
group, and this presents distractions and difficulties. But it should be appreciated
that this has been true for the whole history of the mathematical sciences, as one
can see from the letters of Euler and Newton. From the perspective of individual
countries, the percentage of GDP spent on scientific research correlates extremely
well with every measure of quality of life.

Andrew Schmitz: The importance of the subject and the competency of the
researchers.

Ana Soares: The leadership and the team.
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How do you see the relation between traveling and research?

Ivette Gomes: The capacity for imagining new problems and having inspirational
ideas when listening to ideas that seem very far from the actual problems the
group (or individual) is dealing with is one of the important assets in scientific life.
The opportunity to contact others, to listen to their problems and methods, and to
extract from this new, path-breaking ways of dealing with problems is something
invaluable, and travel is one of the most direct ways of achieving it.

Richard James: I am a huge proponent of sabbatical leaves.
Andrew Schmitz: To carry out research, traveling to conferences along with

giving papers is a must.
Ana Soares: It is important to leave, for short periods, the activity related

to courses and administrative issues. Sometimes, it is easier to concentrate on a
problem and to have new ideas.

Onteaching W

What do you think about the relation between teaching and researching?

Margarida Brito: Teaching at the university level without researching seems
problematic to me. We only really understand things if and when we are in a
productive relation with them, I think. And what is more, if we want to motivate the
students to do their own research, it helps to confront them with working problems.
Also from the point of view of research, the relation of teaching and research
persists. Teaching clarifies one’s own thoughts.

José Cardoso: The relation between teaching and researching is sometimes
difficult, but most of the time it is mutually beneficial for the student and for the
researcher: the former can realize better the way science works, the latter can have
the opportunity to clarify to himself the importance of his own research for other
people as well as their utility.

João Coelho: It is fundamental. It is the way to guide students to success.
Ivette Gomes: This is one of the most difficult questions. I have met excellent

researchers who are boring speakers. And one of my best professors at the Faculty
of Science was a fine scholar, with a superb critical knowledge of many fields
of mathematics, and as far as I am aware he did not publish many results in
international journals. But in his classes, we were shown brilliantly how it was
necessary to alter hypothesis to be able to prove statements, and hence the core
of research activity in mathematics. A deep knowledge of the field is an important
asset to alter the syllabus of basic courses to accommodate new knowledge (directly,
or by preparing students to do it in more advanced courses). Providing appropriate
documentation is essential to curtail the exposition of matters in the classroom,
leaving to the students the “burden” of completing proofs and solving exercises.
In tutorials, it is important to discuss strategies to solve the problem at hand, and to
enlighten how a knowledge of the theoretical background is essential to gain from
a singular problem the ability to solve many more of its class. Teaching at a more
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advanced level is simpler, both because the students have chosen this path of study
because they have an interest in it, and because the emphasis can be placed almost
exclusively on the mathematical explanation. And advanced courses can be much
more gratifying when the lecturer has contributed to the field, and can give a lively
explanation on how he developed his ideas and got the results, and whether there
are open issues that need further developments.

Carlos Ramos: It is natural that they can develop simultaneously.
Andrew Schmitz: Those of us who are fortunate draw strong connections between

teaching and research, especially if your research can be tied directly to your teacher.
So often people teach classes that bear little relationships to the subjects they teach.

Ana Soares: It depends on the course level. In general, for basic courses, the
research can help in finding pertinent examples or to show the students new
streamlined methods related to some topics. For advanced courses, it is crucial to be
updated and really involved in research activities.

Any thoughts on what’s crucial for a university teacher and/or student?

Ivette Gomes: For a university teacher: to have a deep knowledge of the field,
to be inventive by using well-chosen examples, to provide adequate documentation
and guidelines for further reading, to listen to the students, to be fair. For a student:
to understand that she or he is in the university to learn both in and out of class. To
realize that it is necessary to quickly develop the capability of making hierarchies
in knowledge, discerning what is essential and what is accessory, for the present
time, but at the same time to respect all knowledge as a treasure, an asset that can
be invaluable in the future.

Andrew Schmitz: An excellent teacher must have both knowledge of the subject
as well as interest in the field.

What are your thoughts on the relation between high school and university in terms
of education?

Ivette Gomes: High school should be a right for everyone, and hence the teaching
there should emphasize what is useful for everyone. But as a large share of students
will progress to university courses, and the time frames are shorter and shorter
(in my time graduation took 5 years, now it has been reduced to three), there is
plainly the need to adapt the syllabus so that students leave with some operational
capabilities in basic matters.

Do you have any advice for students starting their research?

João Coelho: Please don’t give up, and always believe that success comes from
work.

Ivette Gomes: Work hard, read a lot, ask questions to others but mainly to
yourselves, when you cannot solve a problem try solving something similar, perhaps
weaker in the sense that you either assume more hypotheses or reduce the scope of
what you are trying to prove. Using simple examples to start with is a good choice.
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Andrew Schmitz: Pick a subject that is of current interest and that you are keen
about.

Ana Soares: Yes, please do not concentrate on only one problem. Do not leave
important tasks for the last moment.

And for the ones who are hesitating between pursuing a Ph.D. and looking for a
different job?

João Coelho: Look for a job, get experience (and money, of course), and then
pursue a Ph.D. I will do the same.

Ivette Gomes: I listen and I ask questions, but I do not give answers, since in
this matter I feel that the only plausible conduct is to help them to find their own
answers, like in Socrates’ maieutic method.

Ana Soares: If you like to investigate problems, if you like to develop under-
standing and to contribute to finding solutions of problems, if you like to do solitary
work, pursue a Ph.D. If you like to obtain quick results, if you do not like to invest
in studying problems, try another job.

Have all of your research students chosen academic careers?

Ivette Gomes: A great majority of my Ph.D. and M.Sc. research students are in
academia. But some of them are also in Brazil, Canada, . . . for their choices, but
essentially due to the crisis in Portugal, and to the fact that universities are not
recruiting new people.

Carlos Ramos: Yes.
Andrew Schmitz: About 60 % of my students have chosen academic careers.
Ana Soares: No.

On other issues:

Do you have hobbies?

João Coelho: Yes, photography, swimming, and agriculture.
Ivette Gomes: I collect owls, coins, and stamps. I enjoy traveling. I love

swimming, cycling, and playing table tennis. I also love music, and occasionally
I like to do embroidery and knitting.

Andrew Schmitz: My major hobby is farming.
Ana Soares: Yes, music, dancing, swimming.

Do you have a connection to Portugal? How do you see its development?

Ivette Gomes: Yes, I have a strong connection to Portugal. I am Portuguese, I
live in Portugal, I felt the happiness of watching the rise of democracy, and now
I feel with discomfort all the misfortunes caused by the abuses of some politicians
whom we do not respect but that our constitutional laws, judicial power, and even the
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power of the media seem unable to control. Concerning research, after a favorable
period, namely inspired by the late minister Veiga Simão, now there seem to exist
guidelines to destroy whole areas of research. Concerning teaching, in my opinion
there has been a general decline, mainly as a consequence of the implementation of
what is called the Bologna agreement. The democratic regiment of our universities
also changed drastically, and for the worse. Sincerely, I am a bit frightened about
the developments in the last few years.

Ana Soares: The development of research in Portugal has been notable, but
recently the researchers have fewer opportunities and so some notable researchers
have had to leave Portugal.
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