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Abstract We consider ordinary differential equations on the unit simplex of R
n

that naturally occur in population games, models of learning and self reinforced
random processes. Generalizing and relying on an idea introduced in Dupuis and
Fisher (On the construction of Lyapunov functions for nonlinear Markov processes
via relative entropy, 2011), we provide conditions ensuring that these dynamics are
gradient like and satisfy a suitable “angle condition”. This is used to prove that
omega limit sets and chain transitive sets (under certain smoothness assumptions)
consist of equilibria; and that, in the real analytic case, every trajectory converges
toward an equilibrium. In the reversible case, the dynamics are shown to be C1

close to a gradient vector field. Properties of equilibria -with a special emphasis on
potential games—and structural stability questions are also considered.

1 Introduction

Let S be a finite set, say S D f1; : : : ; ng:A rate matrix over S is a n�n matrix L such
that Lij � 0 for i ¤ j and

P
j Lij D 0:We let R.S/ denote the space of such matrices.

For x 2 R
n and L 2 R.S/ we let xL denote the vector defined by .xL/i D P

j xjLji:

Let

� D fx 2 R
n W xi � 0;

X

i

xi D 1g

be the unit simplex of probabilities over S: In this paper we are interested in ordinary
differential equations on � having the form

dx

dt
D xL.x/ WD F.x/ (1)
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where L W � 7! R.S/ is a sufficiently smooth function. Such dynamics occur—
through a natural averaging procedure- in models of games describing strategic
interactions in a large population of players, as well as in certain models of learning
and reinforcement. These models are usually derived from qualitative assumptions
describing the “microscopic” behavior of anonymous agents, and it is usually
believed or assumed that similar qualitative microscopic behaviors should lead to
similar global dynamics. However there is no satisfactory general theory supporting
this belief.

To be more precise, under the assumption that L.x/ is irreducible, there exists a
unique “invariant probability” for L.x/; �.x/ 2 � characterized by

�.x/L.x/ D 0: (2)

Several models corresponding to different rate functions x 7! L.x/ have the same
invariant probability function x 7! �.x/: For instance, to each population game (see
Sect. 2.1) which average ODE is given by (1), there is a canonical way to define a
learning process (see Sect. 2.2) which average ODE is given by

dx

dt
D �x C �.x/ WD F�.x/; (3)

but there is no evidence that the dynamics of (1) and (3) are related in general.
The purpose of this paper is to provide sufficient conditions on �.x/ ensuring

that (1) has a gradient-like structure. This heavily relies on an idea introduced
in [10] where it was shown that the relative entropy between x and �.x/ is a
strict Lyapounov function for systems of Gibbs type. We extend this idea to other
class of systems beyond systems of Gibbs type, including population games and
reinforcement process with imitative dynamics, and investigate further dynamics
properties.

To give the flavor of the results presented in this paper, let � W � 7! P� be a
smooth function mapping � into its relative interior. Let �� be the set of vector
fields having the form given by (the right hand side of) (1), where for each x; L.x/
is irreducible and verifies (2). Note that �� is a convex set of vector fields on � and
that F� 2 �� :

Theorem A

For all F 2 �� :
(i) Equilibria (respectively non degenerate equilibria) of F coincide with equilib-

ria (respectively non degenerate equilibria) of F�:
(ii) In general, global dynamics of F and F� are “unrelated.” We construct an

example for which F� is globally asymptotically stable (every trajectory
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converge toward a linearly stable equilibrium) while every non equilibrium
trajectory for F converge to a limit cycle.

(iii) Assume that there exists a Ck; k � 1 strictly increasing function s W R 7! R

such that x 2 P� 7! s.. xi
�i.x/

//i2S is the gradient (or quasi gradient) of some

function V W P� 7! R: Then

(a) V is a strict Lyapounov function for F (F is gradient-like) and verifies an
angle condition,

(b) Omega limit sets and chain-transitive sets of F are equilibria,
(c) In the real analytic case, every solution to (1) converge toward an

equilibrium,
(d) In the reversible case, hyperbolic equilibria of F coincide with non

degenerate critical points of V and, provided there are finitely many
equilibria, F is C1 close to a gradient vector field for a certain Riemannian
metric,

(e) The set �� is not (in general) structurally stable.

Section 2 describes a few examples that motivate this work. Section 3 contains
some preliminary results and the main assumptions. Section 4 is devoted to Theorem
A; .ii/I Sect. 5 to .iii/; .a/; .b/; .c/I Sects. 6 and 7 to .iii/.d/ and Sect. 8 to .iii/.e/:
Other results and examples are also discussed in these sections. For instance, in
Sect. 6.1, the local dynamics (dynamics in the neighborhood of equilibria) of mean
field systems associated to potential games is precisely described in term of Nash
equilibria.

2 Motivating Examples

Throughout this section we see S as set of pure strategies. A Markov matrix over S
is a n � n matrix K such that Kij � 0 and

P
j Kij D 1: We let M.S/ denote the sets

of such matrices and we assume given a Lipschitz map

K W � 7! M.S/:

For further reference we may call such a map a revision protocol. This terminology
is borrowed from [23].

2.1 Population Games

Good references on the subject include [22] and the survey paper [23] from which
some of the examples here are borrowed.
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Consider a population of N agents, each of whom chooses a strategy in S at
discrete times k D 1; 2; : : : : Depending on the context, an agent can be a player,
a set of players, a biological entity, a communication device, etc. The state of the
system at time k 2 N is the vector XN

k D .XN
k;1; : : :X

N
k;n/ 2 � where NXN

k;i equals
the number of agents having strategy i: The system evolves as follows. Assume
that at time k the system is in state XN

k D x: Then an agent is randomly chosen in
the population. If the chosen agent is an i�strategist, he/she switches to strategy j
with probability Kij.x/: This makes .XN

k /k�1 a discrete time Markov chain, which
transition probabilities are

P.XN
kC1 D x C 1

N
.ej � ei/jXN

k D x/ D xiKij.x/

where .e1; : : : ; en/ is the standard basis of Rn: Let

L.x/ D �Id C K.x/: (4)

By standard mean-field approximation (see [5, 15] for precise statements, and [22,
23] for discussions in the context of games), the process f.XN

k / W kN � Tg can be
approximated by the solution to (1) (with L.x/ given by (4)) with initial condition
x D XN

0 ; over the time interval Œ0;T�:

2.1.1 Revision Protocols

Assume, as it is often the case in economic or biological applications, that the
population game is determined by a continuous Payoff-function U W � 7! R

n: The
quantity Ui.x/ represents the payoff (utility, fitness) of an i� strategist when the
population state is x:

An attachment-function is a continuous map w W � 7! R
n2C : The weight wij.x/

can be seen as an a priori attachment of an i�strategist for strategy j: It can also
encompasses certain constraints on the strategy sets. For instance wij.x/ D 0

(respectively wij.x/ << 1) if a move from i to j is forbidden (respectively costly).
We call the attachment function imitative if

wij.x/ D xj Qwij.x/ (5)

Most, not to say all, revision protocols in population games fall into one of the two
next categories:

(i) [Sampling]

Kij.x/ D wij.x/f .Uj.x//
P

k wik.x/f .Uk.x//
(6)

where f is a non negative increasing function.
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(ii) [Comparison]

Kij.x/ D wij.x/g.Ui.x/;Uj.x// for i ¤ j (7)

Kii.x/ D 1 �
X

j¤i

Kij.x/

where g.u; v/ is nonnegative, decreasing in u, increasing in v and such thatP
j¤i Kij.x/ � 1:

2.2 Processes with Reinforcement and Adaptive Learning

Suppose now there is only one single agent in the population. In the context of
games, one can imagine that this agent consists of a finite set of players and that
S is the cartesian product of the strategy sets of the players. let Xk 2 S denote the
strategy of this agent at time k: Let�k 2 � denote the empirical occupation measure
of .Xk/ up to time k: That is

�k D 1

k

kX

jD1
ıXj

where ı W S 7! � is defined by ıi D ei: Suppose now that the agent revises her
strategies as follows:

P.XkC1 D jjX0; : : : ;Xk�1;Xk D i/ D Kij.�k/:

The process .Xk/ is no longer a Markov process but a process with reinforcement
(see [20] for a survey of the literature on the subject). Using tools from stochastic
approximation theory, it can be shown (see [1]) that, under certain irreducibility
assumptions, the long term behavior of .�k/ can be precisely related (see [1–3]
and the brief discussion preceding Corollary 3) to the long term behavior of the
differential equation on �

dx

dt
D �x C �.x/ (8)

where �.x/ 2 � is the invariant probability of K.x/: Note that (8) can be rewritten
as (1) with Lij.x/ D ıij � �j.x/:
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3 Hypotheses, Notation, and Preliminaries

Let L be a rate matrix, as defined in the introduction. Then L is the infinitesimal
generator of a continuous time Markov chains on S: A probability � 2 � is called
invariant for L if it is invariant for the associated Markov chain, or equivalently

�L D 0:

A sufficient condition ensuring that � 2 � is invariant is that L is reversible with
respect to �; meaning that

�iLij D �jLji:

The matrix is said irreducible if for all i; j 2 f1; : : : ; ng there exist some integer
k and a sequence of indices i D i1; i2; : : : ; ik�1; ik D j such that Lil;ilC1

> 0 for
l D 1; : : : ; k � 1:

An irreducible rate matrix admits a unique invariant probability which can be
expressed as a rational function of the coefficients .Lij/ (see e.g. Chapter 6 of [11]).

The relative interior of � is the set

P� D fx 2 � W 8i 2 S; xi > 0g:

From now on we assume given a C1 map1 L W � 7! R.S/ satisfying the following
assumption:

Hypothesis 1 (Standing Assumption) For all x 2 P�;L.x/ is irreducible.

We sometimes assume

Hypothesis 2 (Occasional Assumption) For all x 2 �; L.x/ is irreducible.

In view of the preceding discussion Hypotheses 1 and 2 imply the following

Lemma 1 There exists a C1 map � W P� 7! P� such that for all x 2 P�; y D �.x/ is
the unique solution to the equation

yL.x/ D 0; y 2 �:

If L is Ck;C1 or real analytic, the same is true for �: Under Hypothesis 2, � is
defined on all � and maps� into P�:
We let F� denote the map defined as

F�.x/ D �x C �.x/: (9)

1By this we mean that L is the restriction to � of a C1 map defined in a neighborhood of � in
aff .�/ D fx 2 R

n W P
i x1 D 1g.
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Throughout, it is implicitly assumed that the domain of F� is P� under Hypothesis 1
and� under Hypothesis 2.

We now consider the dynamics induced by (1). Without loss of generality, we
may assume that (1) is defined on all Rn and induces a flow ˚ D .˚t/ leaving �
positively invariant. Indeed, by convexity of �; the retraction r W Rn 7! � defined
by r.x/ D argminy2�kx � yk is Lipschitz so that the differential equation

dy

dt
D yL.r.y// (10)

is Lipchitz and sub-linear on all Rn: By standard results, it then induces a flow
˚ W R � R

n 7! R
n where t 7! ˚.t; y/ D ˚t.y/ is the unique solution to (10) with

initial condition y: For all x 2 � and t � 0; ˚t.x/ 2 � and the map t 2 R
C 7! ˚t.x/

is solution to (1).
In the following we sometime use the notation ˚t.x/ D x.t/ D .x1.t/; : : : ; xn.t//:

The tangent space of � is the space

T� D fu 2 R
n W

nX

iD1
ui D 0g:

Lemma 2 (i) There exists ˛ � 0 such that for all x 2 � xi.t/ � e�˛txi.0/: In
particular, P� is positively invariant.

(ii) If for all x 2 @� L.x/ is irreducible, then ˚t.�/ � P� for all t > 0 and the
dynamics (1) admits a global attractor

A D
\

t�0
˚t.�/ � P�:

Proof .i/ Let ˛ D supx2� �Lii.x/: For all j ¤ i and x 2 �

Pxi � �˛xi C xjLji.x/:

Hence

xi.t/ � e�˛tŒxi.0/C
Z t

0

e˛sxj.s/Lji.x.s//ds� � e�˛txi.0/:

The second inequality is the first statement. From the first inequality and the
continuity of L.x.t// it follows that xi.t/ > 0 for all t > 0whenever that xjLji.x/ > 0:
Let now x 2 @�: Assume without loss of generality that x1 > 0: By irreducibility
there exists a sequence 1 D i1; i2; : : : ik D j such that Lil ;ilC1

.x/ > 0: Hence, by
continuity, Lil;ilC1

.x.t// > 0 for all t small enough. It then follows that xj.t/ > 0 for
all t > 0. �

Remark 1 Assumption 1 is not needed in Lemma 2.
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Throughout we let

Eq.F/ D fx 2 � W F.x/ D 0g

denote the equilibria set of F: Note that in view of the preceding Lemmas

Eq.F/\ P� D fx 2 P� W F�.x/ D 0g

and, in case L.x/ is irreducible for all x 2 �; Eq.F/ � P�:
An equilibrium p is called non degenerate for F provided the Jacobian matrix

DF. p/ W T� 7! T� is invertible.

Lemma 3 Let p 2 Eq.F/ \ P�: Then p is non degenerate for F if and only if it is
non degenerate for F� :

Proof Let LT.x/ W T� 7! T� be defined by LT.x/h D hL.x/: Then for all x 2
P�F.x/ D xL.x/ D .x � �.x//L.x/ D LT.x/.x � �.x//: Hence at every equilibrium

p 2 P� DF. p/ D �LT . p/.DF�. p//: By irreducibility, LT . p/ is invertible (see
Lemma 8 in the Appendix). Thus DF. p/ is invertible if and only if DF�. p/ is
invertible. �

4 Dynamics of F and F� are Generally Unrelated

While F and F� have the same equilibria, they may have quite different dynamics
as shown by the following example.

Suppose n D 3 so that � is the unit simplex in R
3: Let G be a smooth vector

field on � such that:

(i) G points inward P� on @�;
(ii) Every forward trajectory of G converge to p D .1=3; 1=3; 1=3/;

(iii) |DG. p/|�1 D
� �� �1
1 ��

�

; � > 0;

where | W T� 7! R
2 is defined by |.u1; u2; u3/ D .u1; u2/:

It is easy to construct such a vector field.
Choose " > 0 small enough so that "G.x/ C x lies in P� for all x 2 � and set

�.x/ D "G.x/C x: Then, F� and G have the same orbits.
Let W be a 3� 3 symmetric irreducible matrix with positive off-diagonal entries.

Set Lij.x/ D Wij�j.x/ for i ¤ j and Lii.x/ D � P
j¤i Lij.x/: The matrix L.x/ is an

irreducible rate matrix, reversible with respect to �.x/: It follows from Lemmas 2
and 3 that F.x/ D xL.x/ has a global attractor contained in P� and a unique
equilibrium given by p:
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Furthermore,

DF. p/ D �L. p/TDF�. p/ D �"L. p/TDG. p/ D � "
3

WDG. p/

where the last equality follows from the definition of L and the fact that �. p/ D p:
To shorten notation, set b D "

3
W12; c D "

3
W13 and d D "

3
W23: Then

|DF. p/|�1 D
�
.b C 2c/ c � b

d � b .b C 2d/

� � �� �1
1 ��

�

The determinant of this matrix is positive and its trace equals

.c � d/� 2�.b C c C d/:

If one now choose c > d and � small enough, the trace is positive. This makes
p linearly unstable. By Poincaré-Bendixson theorem, it follows that every forward
trajectory distinct from p converges toward a periodic orbit.

Remark 2 It was pointed out to me by Sylvain Sorin and Josef Hofbauer that this
example is reminiscent of the following phenomenon. Consider a population game
which revision protocol takes the form

Kij.x/ D xj

R
max.0;Uj.x/� Ui.x// for i ¤ j

(here R is chosen so that
P

j¤i Kij.x/ � 1). This is a particular case of imitative
pairwise comparison protocol (see Eq. (7)).

Then, the mean field ode is the classical replicator dynamics (see Example 3.2 in
[23]):

Pxi D xi.Ui.x/�
X

j2S

xjUj.x// (11)

Here the rate matrix L.x/ is not irreducible and its set of invariant probabilities is
easily seen to be the Best Reply set

BR.x/ D conv.fei W Ui.x/ D max
j2S

Uj.x/g/:

where conv.A/ stands for the convex hull of A: The vector field (9) is not defined
but can be replaced by the differential inclusion

Px 2 �x C BR.x/: (12)



126 M. Benaim

If one assume that Ui.x/ D P
j Uijxj with U the payoff matrix given by a Rock-

Paper-Scissors game,

U D
0

@
0 �1 1

1 0 �1
�1 1 0

1

A I

Then p D .1=3; 1=3; 1=3/ is the unique equilibrium of (11) in P� (corresponding
to the unique Nash equilibrium of the game) and every solution to (11) with initial
condition in P�nf pg is a periodic orbit. On the other hands, solutions to (12) converge
to p: Phase portraits of these dynamics can be found in ([23], Section 5) and a
detailed comparison of the replicator and the best reply dynamics is provided in [14].

5 Gradient Like Structure

For u; v 2 R
n we let hu; vi D P

i uivi:

A map h W P� 7! R
n; is called a gradient if there exists a C1 map V W P� 7! R

such that for all x 2 P� and u 2 T�

hh.x/; ui D DV.x/:u WD hrV.x/; ui:

It is called a quasigradient or a ˛-quasigradient if x 7! ˛.x/h.x/ is a gradient for
some continuous map ˛ W P� 7! R

�C: That is

˛.x/hh.x/; ui D hrV.x/; ui (13)

for all x 2 P� and u 2 T�:

Remark 3 If V is the restriction to P� of a C1 map W W Rn 7! R; then rV.x/ is the
orthogonal projection of rW.x/ onto T�: That is

rVi.x/ D @W

@xi
.x/ � 1

n

nX

jD1

@W

@xj
.x/; i D 1; : : : n:

Remark 4 A practical condition ensuring that h is a gradient is that

(a) h is the restriction to P� of a C1 map h W Rn 7! R
n;

(b) For all x 2 P� and i; j; k 2 f1; : : : ; ng
@hi

@xj
.x/C @hj

@xk
.x/C @hk

@xi
.x/ D @hi

@xk
.x/C @hk

@xj
.x/C @hj

@xi
.x/:

This follows from ([13], Theorem 19.5.5.)
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Notation

We use the following convenient notation. If x; y are vectors in R
n and s W R 7! R

we let x:y 2 R
n (respectively x

y and s.x/) be the vector defined by .xy/i D xiyi

(respectively . x
y /i D xi

yi
; si.x/ D s.xi//:

5.1 Gradient Like Structure

A C1 map V W P� 7! R is called a strict Lyapounov function for F (or ˚/ if for all
x 2 P�

F.x/ ¤ 0 ) hF.x/;rV.x/i < 0:

Theorem 3 Let s W�0;1Œ7! R be a C1 function with positive derivative and let
hs W P� 7! R

n be the map defined by

hs.x/ D s.
x

�.x/
/:

Assume that hs is a ˛-quasigradient. Then

(i) The map V (given by (13)) is a strict Lyapounov function for F on P�I
(ii) The critical points of V coincide with Eq.F/\ P�I

(iii) V satisfies the following angle condition: For every compact set K � P� there
exists c > 0 such that

j hrV.x/;F.x/i j� c k rV.x/ kk F.x/ k

for all x 2 K:

Remark 5 (Gibbs Systems) If �.x/ is a Gibbs measure,

�ˇ;i.x/ D e�.U0
i CˇP

j Uijxj/

Z.x/
(14)

where U D .Uij/ is a symmetric matrix, ˇ � 0; and

Z.x/ D
X

j

e�.U0
j CˇP

k Uikxk/;
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parts .i/ and .ii/ of Theorem 3 have been proved in [10], Theorems 5.3 and 5.5.
Here s.t/ D log.t/ and

V.x/ D
X

i

xi log.xi/C
X

j

U0
j xj C ˇ

2

X

ij

Uijxixj: (15)

Proof of Theorem 3

Part .i/ relies on the following Lemma.

Lemma 4 Let L be an irreducible transition matrix with invariant probability �:
Let x 2 �; fi D xi

�i
; s. f /i D s. fi/ and cf D infi s0. fi/ > 0: Then there exists

�.L/ > 0 depending continuously on L such that

hxL; s. f /i � �cf�.L/Var�. f /

where Var�. f / D P
i. fi � 1/2�i D P

i
.xi��i/

2

�i
:

The proof of this lemma uses elementary convexity arguments and classical tools
from Markov chain theory. It is proved in appendix. Applying this lemma with L D
L.x/ and � D �.x/ gives

hF.x/;rV.x/i < 0

unless x D �.x/:

.ii/ The set Eq.F/\ P� coincides with fixed points of � in P�: Let x 2 P�: rV.x/ D
0 , hs.x/ 2 R1 where 1 is the vector which components are all equal to 1:
The function s being injective this is equivalent to xi

�i.x/
D xj

�j.x/
for all i; j: That

is x D �.x/:
.iii/ Let K � P�: By Lemma 4 (applied with L D L.x/ and � D �.x/) and

continuity of the maps involved, there exists c > 0 depending on K such that

jhrV.x/;F.x/ij � c
X

i

.xi � �i.x//
2 D ckx � �.x/k2:

To prove the angle condition it then suffices to show that both kF.x/k and
krV.x/k are bounded by some constant times kx � �.x/k: Now, F.x/ D
xL.x/ D xL.x/� �.x/L.x/ so that

kF.x/k � c1kx � �.x/k

with c1 D supx2� kL.x/k:
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By Lipschitz continuity of s and compactness, there exist c2; c3 > 0 depending
on K such that

js. xi

�i.x/
/ � s.1/j � c2j xi

�i.x/
� 1j � c3jxi � �i.x/j:

Thus, for all u 2 T� such that kuk D 1

hhs.x/; ui D hhs.x/� s.1/1; ui � khs.x/� s.1/:1k � c3kx � �.x/k:

This implies that krV.x/k � c3kx � �.x/k and concludes the proof. �
The following result proves to be useful for certain dynamics leaving invariant the

boundary of the simplex. Such dynamics occur in population games using imitative
protocols (see Eq. (5)) as well as in certain models of vertex reinforcement (see
Example 3 below).

For x 2 � let Supp.x/ D fx 2 � W xi > 0g:
Proposition 1 Assume that assumptions of Theorem 3 hold. Assume furthermore
that

(a) For all x 2 �

xi D 0 ) Lji.x/ D 0

and the reduced rate matrix ŒLij.x/�i;j2Supp.x/ is irreducible
(b) The maps V W P� 7! R

n and ˛ W P� 7! R
�C (given by Eq. (13)) extend to C1

(respectively continuous) maps V W � 7! R
n and ˛ W � 7! R

�C:

Then V is strict Lyapounov function for F on �:

Proof Let T�.x/ D fu 2 T� W ui D 0 for i 62 Supp.x/g: By assumption .a/ the
map x 7! �.x/ is defined for all x 2 � continuous in x and �i.x/ D 0 , xi D 0:

Therefore, using assumption .b/, the equation

8x 2 P�;8u 2 T� ˛.x/hhs.x/; ui D hrV.x/; ui

extends to

8x 2 �;8u 2 T�.x/
X

i2Supp.x/

s.
xi

�i.x/
/ui D hrV.x/; ui

Thus

X

i2Supp.x/

s.
xi

�i.x/
/.xL.x//i D hrV.x/;F.x/i
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for all x 2 �: By Lemma 4 the left hand side is nonpositive and zero if and only if
xi D �i.x/ for all i 2 Supp.x/:�

Remark 6 Note that under the assumptions of Proposition 1, the angle inequality of
Theorem 3 doesn’t hold on the boundary of the simplex

Example 1 Let W W Rn 7! R be a Ck map, k � 1. Suppose that for all x 2 P�

�i.x/ D fi.xi/ .
@W
@xi
.x//

Pn
jD1 fj.xj/ .

@W
@xj
.x//

Then, Theorem 3 applies in the following cases:

Case 1  .u/ D e�ˇu with ˇ � 0; and fi.t/ > 0 for all t > 0: It suffices to choose
s.t/ D log.t/ and

V.x/ D
nX

iD1
xi log.xi/ �

nX

iD1

Z xi

1

log. fi.u//du C ˇW.x/ (16)

Then hs is the gradient of V:
Case 2  .u/ D uˇ; ˇ > 0; fi.t/ D t and @W

@xi
> 0 on fx 2 � W xi > 0g: It suffices

to choose s.t/ D �t�1=ˇ and

V.x/ D �W.x/:

Then hs is the ˛-quasigradient of V with

˛.x/ D Œ
X

j

xj.
@W

@xj
/ˇ/��1=ˇ:

Example 2 (Potential Games) Examples of applications of Example 1, case 1,
are given by Potential Games (see [22] for an comprehensive presentation and
motivating examples). We use the notation of Sect. 2. A Potential Game is a game
for which the payoff function is such that for all x 2 �

Ui.x/ D �@W

@xi
.x/; i D 1 : : : n

Consider a population game with a revision protocol given by (7). Suppose that the
attachment matrix takes the form

wij.x/ D fj.xj/ Qwij.x/



On Gradient Like Properties of Population Games 131

with Qw irreducible and symmetric. Let ˇ � 0:Assume furthermore that g.u; v/ takes
one of the following form:

Pairwise comparison

g.u; v/ D eˇ.v�u/

1C eˇ.v�u/
or g.u; v/ D min.1; eˇ.v�u//;

Imitation driven by dissatisfaction

g.u; v/ D e�ˇu;

Imitation of success

g.u; v/ D eˇv:

In all these situations, K.x/, hence L.x/ is reversible with respect to �ˇ.x/ with

�ˇ;i.x/ D fi.xi/e
�ˇ @W

@xi
.x/

P
j fj.xj/e

�ˇ @W
@xj
.x/
:

Theorem 3 applies with V given by (16).

Remark 7 (Gibbs Systems, 2) A particular case of potential games is obtained with
W.x/ D 1

2

P
ij Uijxixj with U D .Uij/ symmetric, and fi.x/ D e�U0

i : Here payoffs
are linear in x W

Ui.x/ D �
X

j

Uijxj

and we retrieve the situation considered in [10]. See Remark 5.

Example 3 (Vertex Reinforcement) Let K be the revision protocol defined by

Kij.x/ D Aijx
	
j

P
k Aikx	k

where A is a matrix with positive entries and 	 � 1: For population games (see
Sect. 2.1) this gives a simple model of imitation: an agent of type i; when chosen,
switches to j with a probability proportional to the .number of agents of type j/	 :
For processes with reinforcement (as defined in Sect. 2.2) the probability to jump
from i to j at time n is proportional to .the time spent in j up to time n/	 : This later
model called a vertex reinforced random walks was introduced by Diaconis and first
analyzed in Pemantle [19] (see also [1] and [7] for more references on the subject).
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When A is symmetric, K.x/ is reversible with respect to

�i.x/ D x	i
P

k Aikx	kP
ij Aijx

	
i x	j

D xi
@W
@xiP

j xj
@W
@xj

(17)

with

W.x/ D
X

i;j

Aijx
	
i x	j (18)

We are then in the situation covered by Example 1, case 2, with  .u/ D u; fi.t/ D
t; s.t/ D � 1

t and V D �W:
Both Theorem 3 and Proposition 1 apply.

Example 4 (Interacting Urn Processes) Closely related to vertex reinforced ran-
dom walks are models of interacting urns (see [6, 8, 24]). For these models �i.x/ D
xi
@W
@xi

for some smooth function W: This is a particular case of Example 1, case 2.

5.2 Limit Sets and Chain Transitive Sets

Using Lasalle’s invariance principle we deduce the following consequences from
Theorem 3.

Corollary 1 Assume that assumptions of Theorem 3 hold. Then every omega limit
set of ˚ contained in P� is a connected subset of Eq.F/\ P�:
Combining this results with Lemma 2 (ii) and Proposition 1 gives

Corollary 2 Assume that one of the following condition hold:

(a) Assumptions of Theorem 3 and Hypothesis 2 or;
(b) Assumptions of Proposition 1.

Then every omega limit set of ˚ is a connected subset of Eq.F/:

A set L is called attractor free or internally chain transitive provided it is compact,
invariant and ˚ jL has no proper attractor. For reinforced random processes like the
ones defined in Sect. 2.2, limit sets of .�n/ are, under suitable assumptions, attractor
free sets of the associated mean field Eq. (8) (see [1]). More generally attractor
free sets are limit sets of asymptotic pseudo trajectories (see [3]). It is then useful
to characterize such sets. Note however that the existence of a strict Lyapounov
function, doesn’t ensure in general, that internally chain transitive sets consist of
equilibria (see e.g. Remark 6.3 in [2]).
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Corollary 3 Assume that assumptions of Theorem 3 hold and that hs is Ck for
some k � n � 2 D dim.T�/ � 1: Then every internally chain transitive set of
˚ contained in P� is a connected subset of Eq.F/ \ P�: If we furthermore assume
that L.x/ is irreducible for all x 2 �; then every internally chain transitive set of ˚
is a connected subset of Eq.F/

Proof Let C D Eq.F/ \ P� and A � P� an attractor free set. By Theorem 3, C
coincide with critical points of V: By the assumption V is CkC1 so that by Sard’s
theorem (see [12]), V.C/ has empty interior. It follows (see e.g. Proposition 6.4 in
[2]) that A � C: �

5.3 Convergence Toward One Equilibrium

In case equilibria are isolated, Corollary 1 implies that every trajectory bounded
away from the boundary converge to an equilibrium and that every trajectory
converges in case L.x/ is irreducible for all x: However, when equilibria are
degenerate, the gradient-like property is not sufficient to ensures convergence. There
are known examples of smooth gradient systems which omega limit sets are a
continuum of equilibria (see [18]). However, in the real analytic case, gradient like
systems which verify an angle condition are known to converge.

Theorem 4 Suppose that assumptions of Theorem 3 hold and that V is real
analytic. Then every omega limit set meeting P� reduces to a single point.

Proof Let p be an omega limit point. If V is real analytic, it satisfies a Lojasiewicz
inequality at p in the sense that there exist 0 < � � 1=2; ˇ > 0 and a neighborhood
U. p/ of p such that

jV.x/� V. p/j1�� � ˇkrV.x/k

for all x in a U. p/. Such an inequality called a “gradient inequality” was proved by
Lojasiewicz [16] and used (by Lojasiewicz again) to show that bounded solutions
of real analytic gradient vector fields have finite length, hence converge. When the
dynamics is not a gradient, but only gradient like with V as a strict Lyapounov
function, the same results holds provided that V satisfies an angle condition:

hrV.x/;F.x/i � ckF.x/kkrV.x/k

for all x 2 U. p/: This is proved in [9] (see also [17], Theorem 7). �

Example 5 (Gibbs Systems, 3) If � is given by (14) with U symmetric, V given
by (15) is real analytic so that every solution to (1) converges toward an equilibrium.
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6 Equilibria

Recall that point p 2 Eq.F/ is called non degenerate if the jacobian matrix DF. p/ W
T� 7! T� is invertible. It is called hyperbolic if eigenvalues of DF. p/ have non
zero real parts. If p is hyperbolic, T� admits a splitting

T� D Eu
p ˚ Es

p

invariant under DF. p/ such that the eigenvalues of DF. p/jEs
p

(respectively
DF. p/jEu

p
) have negative (respectively positive) real parts.

Point p 2 Crit.V/ D fx 2 P� W r.V/.x/ D 0g is called non-degenerate if
Hess.V/. p/ the Hessian or V at p has full rank. In a suitable coordinate systems
Hess.V/. p/.u; u/ D PnC

iD1 u2i � Pn�

jD1 u2j with nC C n� D dim.T�/ D n � 1: The
number n� is called the index of p (with respect to V) and is written Ind. p;V/:

Proposition 2 Assume that assumptions of Theorem 3 hold. Let p 2 Eq.F/ \ P�:
Then

(i) Point p is non degenerate if and only if it is a non degenerate critical point of V:
(ii) If furthermore L is C2 and p is hyperbolic,

dim.Eu
p/ D Ind. p;V/:

Proof From Lemma 3, p is non degenerate if and only if DF�. p/ is invertible and
(see the proof of Lemma 3)

DF. p/ D �LT. p/DF�. p/ (19)

Now, a direction computation (details are left to the reader) of the Hessian of V at x
leads to

hHess.V/.x/u; vi D ˛.x/hs0.
x

�.x/
/.u � x

�.x/
D�.x/u; vi1=�.x/

where hu; vi1=� stands for
P

i uivi
1
�i
: Since p D �. p/

hHess.V/. p/u; vi D ˛. p/s0.1/h.I � D�. p//u; vi1=p (20)

for all u; v 2 T�; This proves that HessV. p/ is non degenerate if and only if .I �
D�. p// D �DF�. p/ is non degenerate and concludes the proof of the first part.

We now prove the second part. By the stable manifold theorem, there exists a
(local) C2 manifold Ws

p tangent to Es
p at p positively invariant under˚ and such that

for all x 2 Ws
p limt!1˚t.x/ D p: Clearly p is a global minimum of V restricted to

Ws: For otherwise there would exists x 2 Ws
p such that

V. p/ > V.x/ > lim
t!1 V.˚t.x// D V. p/:
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Since p is also a critical point rV. p/ D 0: Let u 2 Es
p and let 	 W� � 1; 1Œ7! Ws

p be

a C2 path with 	.0/ D p; P	.0/ D u: Set h.t/ D V.	.t//: Then Ph.0/ D 0 (because
p is a critical point of V) and h00.0/ D hHessV. p/u; ui is non negative because
h.t/ � h.0/:

On the other hand, by the spectral decomposition of HessV. p/ we can write
T� D Es

V ˚ Eu
V with hHessV. p/u; ui > 0 (respectively < 0) for all u 2 Es

V n
f0g (respectively Eu

V n f0g). Thus, Es
p \ Eu

V D f0g and, consequently, dim.Es
p/ C

dim.Eu
V/ � dim.T�/: Similarly dim.Eu

p/C dim.Es
V/ � dim.T�/: This proves that

dim.Eu
p/ D dim.Eu

V/ D Ind. p;V/: �

Remark 8 This later proposition shows that in the neighborhood of an hyperbolic
equilibrium p, Px D F.x/ and Px D �rV.x/ are topologically conjugate. Indeed, part
.ii/ of the proposition implies that the linear flows fetDF. p/g and fetHess.V/. p/g are
topologically conjugate (see e.g. Theorem 7.1 in [21]), and by Hartman-Grobman
Theorem (see again [21]), nonlinear flows are locally conjugate to their linear parts
in the neighborhood of hyperbolic equilibria. However, note that while eigenvalues
of Hess.V/. p/ are reals there is no evidence that the same is true for DF. p/ in
general. The next proposition proves that this is the case when L.x/ is reversible
with respect to �.x/:

Proposition 3 Let p 2 Eq.F/ \ P�: Assume that assumptions of Theorem 3 hold
and that L. p/ is reversible with respect to �. p/ D p: Then there exists a positive
definite bilinear form g0. p/ on T� such that for all u; v 2 T�

g0. p/.DF. p/u; v/ D �hHess.V/. p/u; vi

In particular

(i) DF. p/ has real eigenvalues,
(ii) p is hyperbolic for F if and only if it is a non degenerate critical point of V:

Proof Let p 2 Eq.F/ \ P�: Set L D L. p/ and recall that LT W T� 7! T� is
defined by LTh D hL: Then, by Lemma 8 in the Appendix, �LT is a definite positive
operator for the scalar product on T� defined by hu; vi1=p D P

i uivi
1
pi
: Define now

g0. p/ by

g0. p/.u; v/ D �h.LT/�1u; vi 1
p
: (21)

Using (19) and (20) it comes that for all u; v 2 T�

g0. p/.DF. p/u; v/ D �h.I � D�. p//u; vi1=p

D �Œ˛. p/s0.1/��1hHess.V/. p/u; vi:

Replacing g0. p/ by ˛. p/s0.1/g0. p/ proves the result. �
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A useful consequence of this later proposition is that it is usually much easier to
verify non degeneracy of equilibria rather than hyperbolicity. Here is an illustration:

Example 6 (Gibbs Systems, 4) Consider the symmetric Gibbs model analyzed in
[10] (see Remark 5 and Example 7). We suppose that the symmetric matrix U D
.Uij/ is given and we treat U0 D .U0

i /i2S and ˇ as parameters. Let 
rev.U0/ denote
the set of maps

R
C �� 7! T�;

.ˇ; x/ 7! Fˇ.x/ D xLˇ.x/

such that Lˇ verifies assumption 2, is C1 in x; and Lˇ.x/ is reversible with respect to
�ˇ.x/ where

�ˇ;i.x/ D e�U0
i �ˇP

j Uijxj

Z.x/
:

Proposition 4 There exists an open and dense set G0 � R
n such that for all U0 2

G0 and F 2 
rev.U0/

(i) The set f.x; ˇ/ 2 ��R
CW W Fˇ.x/ D 0g is a C1 one dimensional submanifold,

(ii) There exists an open dense set B0 � R
C containing 0 such that for all ˇ 2 B0

equilibria of Fˇ are hyperbolic.

Proof Let H W P� � R
n � R

C 7! T� be defined by H.x;U0; ˇ/ D rVU0;ˇ.x/ where
VU0;ˇ is given by (15). Since @H

@U0 .x;U
0; ˇ/ is the identity map, H is a submersion.

Hence, by Thom’s parametrized transversality Theorem (see [12], Chapter 3), there
exists an open and dense set G0 2 R

n such that for all U0 2 G0; .x; ˇ/ 7!
H.x;U0; ˇ/ is a submersion. This proves .i/: By the same theorem, for all ˇ 2 B0
with B0 open and dense in R

C; x 7! H.x;U0; ˇ/ is a submersion, meaning that
critical points of VU0;ˇ are nondegenerate. By Proposition 3, equilibria of Fˇ are
hyperbolic. �

Remark 9 Other genericity results can be proved, if one fix U0 or ˇ and treat U as
a parameter. Compare to the proof of Theorem 2.10 in [4] in an infinite dimensional
setting.

6.1 Equilibria of Potential Games

Consider a population game with C1 payoff function U W � 7! R
n: Recall that the

game is called a potential game, provided Ui.x/ D � @W
@xi
.x/ for all x 2 � and some

potential W W Rn 7! R:
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Point x� 2 � is called a Nash equilibrium of U if, given the population state x�,
every agent has interest to play the mixed strategy x�: That is

8i 2 f1; : : : ; ng Ui.x
�/ � hU.x�/; x�i (22)

Let

Supp.x�/ D fi 2 f1; : : : ; ng W x�
i > 0g:

It follows from (22) that

8i 2 Supp.x�/ Ui.x
�/ D hU.x�/; x�i:

We let NE.U/ denote the set of Nash equilibria of U: For all ˇ � 0 and x 2 �

we let �ˇ.x/ 2 � be defined as

�ˇ;i.x/ D eˇUi.x/

P
j eˇUj.x/

; i D 1; : : : ; n (23)

and we let �.ˇ;U/ (respectively, �rev.ˇ;U// denote the set of all vector fields
having the form given by (1) where L.x/ is C1 in x, irreducible and admits �ˇ.x/
as invariant (respectively reversible) probability. Recall (see Eq. (9)) that

F�ˇ D �Id C �ˇ:

Our aim here is to describe Eq.F/ for F 2 �.ˇ;U/ in term of NE.U/ for large
ˇ; with a particular emphasis on potential games. Some of the results here are
similar to the results obtained in Benaïm and Hirsch (n 2 coordinative games, 2000,
unpublished manuscript) for n � 2 pseudo games.

Proposition 5 Let N be a neighborhood of NE.U/: There exists ˇ0 � 0 such that
for all ˇ � ˇ0 and F 2 �.ˇ;U/

Eq.F/ � N

Proof Equilibria of F coincide with equilibria of F�ˇ : Let x.ˇ/ be such an
equilibrium. Then for all i; j

log.xi.ˇ//� log.xj.ˇ//

ˇ
D Ui.x.ˇ// � Uj.x.ˇ//:

Thus for every limit point x� D limˇk!1 x.ˇk/ it follows that

Ui.x
�/ D Uj.x

�/
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if i; j 2 Supp.x�/ and

Ui.x
�/ � Uj.x

�/

if i 62 Supp.x�/ and j 2 Supp.x�/: �

Remark 10 Note that Proposition 5 only requires the continuity of U:

We shall now prove some converse results.
A Nash equilibrium x� is called pure if Supp.x�/ has cardinal 1 and mixed

otherwise. It is called strict if inequality (22) is strict for all i 62 Supp.x�/:

Theorem 5 Let x� be a pure strict Nash equilibrium and N a (sufficiently small)
neighborhood of x�: Then, there exists ˇ0 > 0 such that for all ˇ � ˇ0 and F 2
�.ˇ;U/

(i) Eq.F/\ N D fx�̌g
(ii) Equilibrium x�̌ is linearly stable for F�ˇ :

(iii) Assume furthermore that the game is a potential game. Then x�̌ is linearly
stable for F under one of the following conditions:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:

Proof Suppose without loss of generality that x�
1 D 1 and x�

i D 0 for i ¤ 1:

Set Rij D Uj � Ui: By assumption and continuity, there exists ı > 0; ˛ > 0 such
that for all x 2 B.x�; ˛/ D fx 2 � W kx � x�k � ˛g;

Ri1.x/ � ı for i > 1I

kRij.x/k � ı if Rij.x
�/ ¤ 0

and

kRij.x/k � ı if Rij.x
�/ D 0:

Thus

1 � �ˇ;1.x/ D .1C
X

i>1

e�ˇRi1.x//�1 � .1C .n � 1/e�ˇı/�1:

This implies that �ˇ maps B.x�; ˛/ into itself for ˇ large enough. By Brouwer’s
Theorem, it then admits a fixed point x�̌: To prove uniqueness and assertion .ii/ it
suffices to prove that �ˇ restricted to B.x�; ˛/ is a contraction. From the expression
�ˇ;i D .

P
j eˇRij/�1; we get
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@�ˇ;i

@xm
D �

X

j

ŒˇeˇRij.
X

k

eˇRik/�2
@Rij

@xm
� WD

X

j

Dij D
X

j¤i

Dij:

Let j ¤ i: If Rij.x�/ ¤ 0

jDijj � ˇeˇRij.1C eˇRij/�2 � ˇmin.eˇRij ; e�ˇRij/ � ˇe�ˇı:

If Rij.x�/ D 0: Then i ¤ 1 and

jDijj � ˇeˇRij.eˇRi1 /�2 D ˇeˇ.Rij�2Ri1/ � ˇe�ˇı

These inequalities show that kD�ˇ.x/k < 1 for all x 2 B.x�; ˛/ and ˇ large enough,
proving uniqueness of the equilibrium as well as assertion .ii/: The last assertion
follows from Propositions 2 and 3. �

A Nash equilibrium x� is called fully mixed if Supp.x�/ D f1; : : : ; ng and
partially mixed if 1 < card.Supp.x�// < n:

A fully mixed Nash equilibrium is called non degenerate if for all u 2 T�

�8w 2 T� hDU.x�/u;wi D 0
� ) u D 0:

Let

T�.x�/ D fu 2 T� W ui D 0 for i 62 Supp.x�/g:

A partially mixed equilibrium x� is called non degenerate if for all u 2 T�.x�/
�8w 2 T�.x�/ hDU.x�/u;wi D 0

� ) u D 0;

Lemma 5 Let x� 2 � be a mixed equilibria. Assume that Supp.x�/ D f1; : : : ; rg
for some 1 < r � n and set

x� D .q1; : : : ; qr�1; 1 �
r�1X

iD1
qi; 0; : : : ; 0/:

Let, for i D 1; : : : ; r � 1;

hr
i .x1; : : : ; xr�1; y1; : : : ; yn�r/ D Ui.x1; : : : ; xr�1; 1 �

r�1X

iD1
xi �

n�rX

iD1
yi; y1; : : : ; yn�r/

� Ur.x1; : : : ; xr�1; 1 �
r�1X

iD1
xi �

n�rX

iD1
yi; y1; : : : ; yn�r/
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Then x� is non degenerate if and only if the .r � 1/� .r � 1/ matrix

�
@hr

i

@xj
..q; 0//

�

i;jD1;:::r�1

is invertible.

Proof One has

@hr
i

@xj
.q; 0/ D .

@Ui

@xj
.x�/� @Ui

@xr
.x�// � .@Ur

@xj
.x�/� @Ur

@xr
.x�//:

Let

v D .v1; : : : ; vr�1;�
r�1X

iD1
vi; 0; : : : ; 0/ 2 T�.x�/

and

w D .w1; : : : ;wr�1;�
r�1X

iD1
wi; 0; : : : ; 0/ 2 T�.x�/:

Then it is easily seen that

r�1X

iD1

r�1X

jD1

@hr
i

@xj
.q/viwj D hDU.x�/v;wi:

This proves that x� is non degenerate if and only if
h
@hr

i
@xj
..q; 0//

i

i;jD1;:::r�1 is

invertible. �

Theorem 6 Let x� be a non degenerate fully mixed Nash equilibrium for U and N
a (sufficiently small) neighborhood of x�: Then, there exists ˇ0 > 0 such that for all
ˇ � ˇ0 and F 2 �.ˇ;U/

Eq.F/\ N D fx�̌g:

Assume furthermore that the game is a potential game with potential W: Then x�̌
is hyperbolic for F and its unstable manifold (for F) has dimension Ind.x�;Wj�/
under one of the following conditions:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:
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Proof Set T D 1=ˇ: Equilibria of F�ˇ are given by the set of equations

T.log.xi/� log.xn// D Ui.x/� Un.x/; i D 1; : : : ; n � 1

or, with the notation of Lemma 5,

T.log.xi/� log.1 �
n�1X

iD1
xi// D hn

i .x1; : : : ; xn�1/; i D 1; : : : ; n � 1: (24)

Write x� D .q1; : : : ; qn�1; 1 � Pn�1
iD1 qi/: For T D 0; q D .q1; : : : ; qn�1/ is solution

to (24). Hence, by the implicit function theorem (which hypothesis is fulfilled by the
non degeneracy of x� and Lemma 5) there exists ˛0 > 0; a neighborhood O of q in
.R�C/n�1 and a C1 map T 2�� ˛0; ˛0Œ7! q.T/ 2 O such that .T; q.T// is the unique
solution to (24) in �� ˛0; ˛0Œ�O: This proves the first assertion of the theorem with
ˇ0 > 1=˛0 and x�̌ D .q.1=ˇ/; 1� Pn�1

iD1 qi.1=ˇ//.
In case, the game is a potential game with potential W; F is gradient-like with

Lyapounov function Vˇ given by (16). Since x� is fully mixed, 1
qi
< 1 so that

k 1
ˇ

HessVˇ.x�̌/ � HessW.x�/k ! 0 as ˇ ! 1: In particular, for ˇ large enough
HessVˇ.x�̌/ is non degenerate, because x� is non degenerate. The last assertion then
follows from Propositions 2 and 3. �

Theorem 7 Let x� be a strict and non degenerate partially mixed Nash equilibrium
for U which support has cardinal 1 < r < n: Let N be a (sufficiently small)
neighborhood of x�: Then, there exists ˇ0 > 0 such that for all ˇ � ˇ0 and
F 2 �.ˇ;U/

Eq.F/\ N D fx�̌g:

Assume furthermore that the game is a potential game with potential W and that
one of the following conditions hold:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:

Then x�̌ is hyperbolic and

k � dim.Eu
x�
ˇ
/ � min.n � r C k; r � 1/:

with k D Ind.x�;Wj�.x�// and dim.Eu
x�
ˇ

/ stands for the dimension of the unstable

manifold (for F).

Proof Assume without loss of generality that Supp.x�/ D f1; : : : ; rg and set x� D
.q1; : : : ; qr�1; 1� Pr�1

iD1 qi; 0; : : : ; 0/:Write every element of� as .x1; : : : ; xr�1; 1�
Pr�1

iD1 xi �Pn�r
iD1 yi; y1; : : : yn�r/ and set x D .x1; : : : ; xr�1/; y D .y1; : : : ; yn�r/: Thus,
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with ˇ D 1=T; equilibria of F�ˇ are given by the following system of equations:

T.log.xi/ � log.1 �
r�1X

iD1
xi �

n�rX

iD1
yi// D hr

i .x; y/; i D 1; : : : r � 1 (25)

and

T.log.yi/ � log.1 �
r�1X

iD1
xi �

n�rX

iD1
yi// D hr

iCr.x; y/; i D 1 : : : n � r (26)

where hr
i is defined in Lemma 5. The triplet .T D 0; x D q; y D 0/ is solution

to (25). Thus by the non degeneracy hypothesis and the implicit function theorem,
there exists a smooth map

Ox W O 7! V ; .T; y/ 7! Ox.T; y/

where O is a neighborhood of .0; 0/ in R � R
n�r and V a neighborhood of q in

R
r�1 such that .T; Ox.T; y/; y/ is solution to (25). Recall that 0 <

Pr�1
iD1 qi < 1 and

hr
iCr.q; 0/ < 0 for all i D 1; : : : ; n � r (because x� is strict). Thus, by choosing O

small enough we can furthermore ensure that

0 < 1 �
r�1X

iD1
Oxi.T; y/ �

n�rX

iD1
yi < 1 (27)

and

hr
iCr.Ox.T; y/; y/ � �ı < 0; i D 1 : : : n � r (28)

for all .T; y/ 2 O:
Now replacing x by Ox.T; y/ in (26) leads to

yi D Gi.T; y/; i D 1 : : : n � r

where

Gi.T; y/ D .1 �
r�1X

iD1
Oxi.T; y/ �

n�rX

iD1
yi/ exp .

1

T
hr

iCr.Ox.T; y/; y//:

Using (27) and (28) we see that ˛ small enough and T � log.1=˛/
ı

G.T; �/ maps
fy 2 R

n�r W 0 � yi � ˛g into itself. By Brouwer’s fixed point theorem, G.T; �/
admits a fixed point Oy.T/: Furthermore, kDyG.T; y/k � C

T e�ı=T for some constant
C making G.T; �/ a contraction. This implies that Oy.T/ is unique. Finally define x�̌
by x�̌

;i D Oxi.T; Oy.T// for 1 � i < r and x�̌
;iCr D Oyi.T/ for 1 � 1 � n � r:
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We now prove the last assertions. By assumption, T�.x�/ admits a decomposi-
tion T�.x�/ D EC ˚ E� with hHess.W/.x�/u; ui > 0 (respectively < 0) for all
u 2 EC (respectively E�) and u ¤ 0:

Set T�s.x�/ D fu 2 T� W u1 D : : : D ur D 0g: Then

T� D EC ˚ E� ˚ T�s.x
�/:

Let now Vˇ be the Lyapounov function given (16). Then for all u 2 T�

Qˇ.u/ WD h 1
ˇ

Hess.Vˇ/.x
�̌/u; ui D hHessW.x�̌/u; ui C 1

ˇ

X

i

1

x�̌
;i

u2i :

The construction of x�̌ shows that 1
ˇ

1
x�
ˇ;i

! 0 for i � r and 1
ˇ

1
x�
ˇ;i

! 1 for i > r

when ˇ ! 1: Thus, for ˇ large enough, Qˇ is non degenerate, definite positive on
EC and T�s.x�/; and definite negative on E�:

This implies that its index is bounded below by k D dim.E�/ and above
by min .r � 1; n � r � k/: This index equals the dimension of the stable manifold
by Proposition 2. Under the reversibility assumption hyperbolicity follows from
Proposition 3. �

7 Reversibility and Gradient Structure

Recall that an irreducible rate matrix L is called reversible with respect to � 2 P� is
�iLij D �jLji: In this case � is the (unique) invariant probability of L: Here we will
consider gradient properties of (1) under the assumption that L.x/ is reversible.

A Ck; k � 0 (Riemannian) metric on P� (or �) is a Ck map g such that for each
x 2 � g.x/ W T� � T� 7! R is a definite positive bilinear form. Given a C1 map
V W P� 7! R we let gradgV denote the gradient vector field of V with respect to g:
That is

g.x/.gradgV.x/; u/ D hrV.x/; ui

for all u 2 T�:

Proposition 6 Assume that for all x 2 P� L.x/ is reversible with respect to �.x/ and
assume that the map h W P� 7! R

n; defined by

h.x/ D x

�.x/

is a ˛-quasigradient. Then there exists a metric g on P� such that for all x 2 P�
F.x/ D �gradgV.x/: If L and ˛ are Ck then g is Ck:
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Proof The proof is similar to the proof of Proposition 3. Let A.x/ W T� 7! T�
be defined by A.x/h D �hL.x/: Then A.x/ and L.x/ are conjugate by the relation
�.x/L.x/h D A.x/�.x/h and A.x/ is a definite positive operator for the scalar
product on T� defined by hu; vi1=�.x/ D P

i uivi
1

�i.x/
: Define now a Riemannian

metric on T� by

g0.x/.u; v/ D hA.x/�1u; vi 1
�.x/
: (29)

Since F.x/ D xL.x/ D .x � �.x//L.x/ D A.x/.�x C �.x//; we get

g0.x/.F.x/; u/ D �h x

�.x/
� 1; ui D �h x

�.x/
; ui:

If x 7! x
�.x/ is a quasi gradient, this makes F a gradient for the metric g.x/ D

˛.x/g0.x/: �

Example 7 Suppose that L.x/ is reversible with respect to �; independent on x:
Then x 7! x

�
is the gradient of the �2 function V.x/ D P

i.
xi
�i

� 1/2�i: Hence
F.x/ D �gradgV.x/ for some metric g.

Under the weaker assumption that x 7! s. x
�.x/ / is a quasi-gradient for some

strictly increasing function s (see Theorem 3) it is no longer true that F is a gradient,
but it can be approximated by a gradient. The next Lemma is the key tool. Its proof
is identical to the proof of Proposition 3.

Lemma 6 Assume that assumptions of Theorem 3 hold and that for all x 2 P�;L.x/
is reversible with respect to �.x/: Then there exists a metric g0 on P� such that for
p 2 Eq.F/\ P� and u; v 2 T�

g0. p/.DF. p/u; v/ D �hHess.V/. p/u; vi:

If, furthermore, L and ˛ (in Eq. (13)) are Ck then g0 is Ck:

Theorem 8 Assume that

(a) Assumptions of Theorem 3 hold with s; ˛ and L Ck; k � 2;

(b) For all x 2 P� L.x/ is reversible with respect to �.x/;
(c) Eq.F/\ P� is finite.

Then for every neighborhood U of Eq.F/ \ P� and every " > 0 there exists a Ck

metric g on P� such that

(i) �gradgV D F on P� n U :
(ii) k � gradgV � FkC1;U � " where

kGkC1;U D sup
x2U

kG.x/k C kDG.x/k:
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Proof Let E D P� \ Eq.F/; v.x/ D d.x; E/ D minp2E kx � pk and let  W RC 7!
Œ0; 1� be a C1 function which is 0 on Œ0; 1�; 1 on Œ3;1Œ and such that 0 �  0 � 1:

Fix " > 0 and let �.x/ D  .
v.x/
"
/; G0 D �gradg0V where g0 is given by Lemma 6

and

G.x/ D .1 � �.x//G0.x/C �.x/F.x/:

Since for all p 2 E ;F. p/� G0. p/ D DF. p/� DG0. p/ D 0 there exists a constant
C > 0 such that

kG0.x/ � F.x/k � Cv.x/2; kDG0.x/� DF.x/k � Cv.x/:

Thus

kG.x/� F.x/k D .1 � �.x//kG0.x/ � F.x/k � C.1 � �.x//v.x/2 � C"2

and

kDG.x/ � DF.x/k D k.1 � �.x//.DG0.x/ � DF.x//C hr�.x/;G0.x/� F.x/ik

� C..1 � �.x//v.x/C 1

"
v.x/2/ � C":

This shows that G is a C1 approximation of F which coincides with F on fv.x/ � 3"g
and with G0 on fv.x/ � "g: Furthermore,

hrV.x/;G.x/i D �.1 � �.x//g0.x/.G0.x/;G0.x//C �.x/hrV.x/;F.x/i � 0

with equality if and only if x 2 E :
Now, for all x 2 P� n E

T� D rV.x/? ˚ RG.x/

and the splitting is smooth in x: Hence u 2 T� can be uniquely written as u D
Px.u/C tx.u/G.x/ with tx.u/ 2 R and Px.u/ 2 rV.x/?: Let g be the metric on P�nE
defined by

g.x/.u; v/ D g0.Px.u/;Px.v//C tx.u/tx.v/g0.x/.G0.x/;G.x//:

Then g coincides with g0 on f0 < x < v.x/ < "g so that g can be extended to a C2

metric on P�: By construction of G and g; G D �gradgV: �



146 M. Benaim

8 Questions of Structural Stability

Let Ck
pos.�;T�/ denote the set of Ck vector fields F W � 7! T� leaving� positively

invariant.
Two elements F;G 2 Ck

pos.�;T�/ are said topologically equivalent if there
exists a homeomorphism h W � 7! � which takes orbits of F to orbits of G
preserving their orientation. A set � � Ck

pos.�;T�/ is said structurally stable if
all its elements are topologically equivalents.

Let � W � 7! P� be a smooth function. Assume that � verifies the assumption
of Theorem 3 and that F� has non degenerate equilibria. Let ��; rev denote the
convex set of vector fields having the form given by (the right hand side of) (1),
where for each x 2 �; L.x/ is irreducible and reversible with respect to �.x/: By
Theorem 3, Proposition 3 and Theorem 8 all the elements of ��; rev have the same
strict Lyapounov function V; hyperbolic equilibria (given by the critical points of V)
and are C1 close to �gradgV for some metric g:We may then wonder wether ��; rev
is structurally stable. The following construction shows that this is not the case.

8.1 Potential Games are not Structurally Stable

Here � stands for the two-dimensional simplex in R
3: Let

Q� D f.y1; y2/ 2 R
2 W y1; y2 � 0; y1 C y2 � 1g

and | W R3 7! R
2 be the projection defined by |.x1; x2; x3/ D .x1; x2/: Note that |

maps� homeomorphically onto Q�:
Let QW W R2 7! R be a smooth function. Assume that

(a) �r QW points inward Q� on @ Q�I
(b) The critical set crit. QW/ D fy 2 Q� W r QW.y/ D 0g consist of (finitely many) non

degenerate points,
(c) For all u 2 R

@ QW
@y1

.u; u/ D @ QW
@y2

.u; u/:

In particular, the diagonal D. Q�/ D f.y1; y2/ 2 Q� W y1 D y2g is positively
invariant under the dynamics

Py D �r QW.y/ (30)

(c) There is a saddle connection contained in D. Q�/; meaning that there are two
saddle points of QW s1; s2 2 D. Q�/ and some (hence every) point y 2�s1; s2Œ
which ˛ limit set under (30) is s1 and omega limit set is s2:
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It is not hard to construct such a map.
Let W W R3 7! R be defined by W D QW ı | :
Consider now the 3-strategies potential game associated to W: Payoffs are then

defined by

Ui.x/ D �@
QW
@xi

.x1; x2/; i D 1; 2 and U3.x/ D 0:

Using the notation of Sect. 6.1, record that F�ˇ D �Id C �ˇ where �ˇ is defined
by (23), and �rev.ˇ;U/ is the set of vector fields given by (1) with L.x/ irreducible
and reversible with respect to �ˇ.x/:

Proposition 7 For all ˇ > 0 sufficiently large, there exists F 2 �rev.ˇ;U/ (which
can be chosen C1 close to F�ˇ ) which is not equivalent to F�ˇ :

Proof of Proposition 7

By definition of Nash equilibria (see Sect. 6.1) and condition .a/ above, Nash
equilibria of U are fully mixed and coincide with critical points of QW W

crit. QW/ D |.NE.U//:

Lemma 7 For all " > 0 there exists ˇ0 > 0 such that for all ˇ � ˇ0 and F 2
�rev.ˇ;U/ there is a one to one map

p 2 crit. QW/ 7! pˇ 2 Eq.F/;

such that

(i) kp � |. pˇ/k � ";

(ii) The unstable (respectively stable) manifold of pˇ has dimension Ind. p; QW; /
(resp. 2 � Ind. p; QW/). In particular, s1ˇ and s2ˇ are saddle points.

(iii) p 2 D. Q�/ , |. pˇ/ 2 D. Q�/
(iv) Under the dynamics induced by F�ˇ ; the interval Œs1ˇ; s

2
ˇ� is invariant and for

some (hence all) q 2�s1ˇ; s2ˇŒ the alpha limit (respectively omega limit) set of q

equals s1ˇ (respectively s2ˇ).

Proof Assertions .i/ and .ii/ this follows from Propositions 5 and 6.
On |�1.D. Q�// D f.x1; x1; 1 � 2x1/g equilibria of F�ˇ are given by the implicit

equation T.log.x1/ � log.1 � 2x1// D U1.x1; x1/ where T D 1=ˇ: Solutions for
T D 0 coincide with |�1.D. Q�/ \ crit. QW//: For T > 0 and small enough, assertion
.iii/ then follows from the implicit function theorem.
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By condition .c/; @ QW
@x1

D @ QW
@x2

on D. Q�/: Thus U1.x/ D U2.x/ (hence F�ˇ;1.x/ D
F�ˇ;2.x// on |�1.D. Q�// proving invariance of Œs1ˇ; s

2
ˇ� � |�1.D. Q�//: Assertion .iv/

follows since, by .iii/; there are no equilibria in �s1ˇ; s
2
ˇŒ: �

We now construct F 2 �rev.ˇ;U/: Let L.x/ be the rate matrix defined for i ¤ j by

Lij.x/ D �ˇ;j.x/ if i; j 62 f1; 3g

L13.x/ D .1C a.x//�ˇ;3.x/ and L31.x/ D .1C a.x//�ˇ;1.x/

where a W � 7! R
C is a smooth function to be defined below. Then Eq. (1) reads

Px1 D .x2�ˇ;1.x/� x1�ˇ;2.x//C .x3�ˇ;1.x/� x1�ˇ;3.x//.1C a.x//;

Px2 D .x1�ˇ;2.x/� x2�ˇ;1.x//C .x3�ˇ;2.x/� x2�ˇ;3.x//;

Px3 D � Px1 � Px2:

Thus, on x1 D x2;

Px1 � Px2 D Œx3�ˇ;1.x/ � x1�ˇ;3.x/�a.x/

D a.x/

Z.x/
.x3e

ˇU1.x/ � x1/:

The map x 7! x3eˇU1.x/ � x1 vanishes at points s1ˇ; s
2
ˇ and has a constant sign

over Œs1ˇ; s
2
ˇ� (for otherwise there would exists an equilibrium for F in �s1ˇ; s

2
ˇŒ

contradicting Lemma 7). Let p D .s1ˇ C s2ˇ/=2 and B� be the Euclidean open ball
with center p and radius �: Choose � small enough so that

(i) B� \ Œs1ˇ; s
2
ˇ� D�q1; q2Œ with s1ˇ < q1 < q2 < s2ˇ where < stands for the natural

ordering on Œs1ˇ; s
2
ˇ�:

(ii) x 7! x3�ˇ;1.x/� x1�ˇ;3.x/ has constant sign on B�:

Let x 7! a.x/ be such a D 0 on � n B�; a > 0 on B� and 0 � a � � on �: Then,
the alpha limit set of q1 equals s1ˇ; for both F and F�ˇ but since Px1 � Px2 doesn’t

vanish on B� the trajectory through q1 exits B� at a point ¤ q2 and, consequently,
the omega limit set of q1 for F is distinct from s2ˇ: This proves that F and F�ˇ are
not equivalent.
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8.2 Open Question

The preceding construction shows that �rev.ˇ;U/ is not structurally stable for an
arbitrary potential game but this might be the case for particular examples. Consider
for example the Gibbs model described in Remark 5. For U0 2 R

n and U D .Uij/

symmetric, let �rev.ˇ;U0;U/ be the set of C1 vector field given by (1) with L.x/
irreducible and reversible with respect to the Gibbs measure (14).

Question

For generic .U0;U/ and ˇ large enough, is �rev.ˇ;U0;U/ structurally stable ?

Appendix

Let L be an irreducible rate matrix and � 2 P� denote the invariant probability of L.
That is the unique solution (in �) of �L D 0: For all f ; g 2 R

n we let

h f ; gi D
X

i

figi; h f ; gi� D
X

i

figi�i and h f ; gi1=� D
X

i

figi
1

�i
:

The Dirichlet form of L is the map E W Rn 7! RC defined as

E. f / D �h f ;Lf i� D 1

2

X

i;j

. fi � fj/
2Lij�i:

By irreducibility, E. f / > 0 unless f is constant, and the spectral gap

� D supfE. f / W h f ; 1i� D 0; h f ; f i� D 1g

is positive. We let L� be the irreducible rate matrix defined by

L�
ij D �jLji

�i
:

Note that L� admits � as invariant probability and that L� is the adjoint of L for
h; i�:

We let LT W T� 7! T� be defined by

LT h D hL:
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Finally recall that for all f 2 R
n f
�

stands for the vector defined by . f
�
/i D fi

�i
; i D

1 : : : n:

Lemma 8 For all u; v 2 T�

hLTu; vi1=� D hL�.
u

�
/;
v

�
/i�

In particular LT is invertible and LT is a definite negative operator for h; i 1
�

whenever L is reversible with respect to �:

Proof The first assertion follows from elementary algebra. For the second, note that
hLTu; ui1=� D �E. u

�
/: Thus, by irreducibility,

hLTu; ui1=� < 0

unless u D 0: �

Proof of Lemma 4

Given f 2 R
n we write f � 0 if fi � 0 for all i: We let 1 2 R

n denote the vector
which components are all equal to 1: For all t � 0 we let Pt D etL: Since L is a rate
matrix, .Pt/ is a Markov semigroup meaning that Ptf � 0 for all f 2 R

n with f � 0

and Pt1 D 1:

Lemma 9 Let I � R be an open interval and S W I 7! R a C2 function such that
S00.t/ � ˛ > 0: Let f 2 R

n be such that fi 2 I for all i: Then

d

dt
hS.Pt f /; 1i� jtD0 � �˛E. f /:

Proof For all u; v 2 I S.v/� S.u/� S0.u/.v � u/ � ˛=2.v � u/2: Hence for all i; j

S. fj/� S..Pt f /i/ � S0..Pt f /i/. fj � .Pt f /i/ � ˛=2. fj � .Pt f /i/
2:

Applying Pt to this inequality gives

Pt.Sf /i � S..Pt f /i/ � ˛=2Pt. fi � .Pt f /i/
2/ D ˛=2.Pt f 2i � .Pt f /2i /

Hence

Pt.Sf /� S..Pt f // � ˛=2Pt. f � .Pt f //2/ D ˛=2.Pt f 2 � .Pt f /2/:
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Therefore, using the fact that hPtg; 1i� D hg; 1i� leads to

hSf � S.Pt f /; 1i� � ˛h f 2 � .Pt f /2; 1i�:

Dividing by t and letting t ! 0 leads to the desired inequality. �

Let S W�0;1Œ7! R be a C2 function with positive second derivative. Let HS
� W

� 7! R be the map defined by

HS
�.x/ D

X

i

�iS.
xi

�i
/:

Corollary 4 For all x 2 �

hrHS
�.x/; xLi � �˛�Var�. f /

where fi D xi
�i

Proof For x 2 � let x.t/ D xetL; fi D xi
�i
; fi.t/ D xi.t/

�i
and P�

t g D etL�

g: Note that
P�

t ) is the adjoint of Pt with respect to h; i�:
For all g 2 R

n; hx.t/; gi D hx;Ptgi D h f ;Ptgi� D hP�
t f ; gi� so that f .t/ D P�

t f :
Hence by the preceding lemma applied to L� it follows that

hrHS
�.x/; xLi D d

dt
hS.P�

t f /; 1i� jtD0 � �˛E. f / � �˛�Var�. f /

where ˛ D mini S00. xi
�i
/ > 0: �

We now prove the Lemma. Set S.t/ D R t
1 s.u/du: Then for all u 2 T�

hrHS
�.x/; ui D

X

i

uis.
xi

�i
/

and the results follows from Corollary 4.
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