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Abstract In the last decade wildfires became a serious problem in Portugal due
to socieconomic and climate change trends. In order to analyse wildfire data, we
employ beta regression for modelling the proportion of burned wild area, under a
Bayesian perspective. Our main goal is to find out fire risk factors that influence the
proportion of area burned and what may make a wild area susceptible or resistant to
fire. Then, we analyse wildfire data in Portugal during 1990–1994 through Bayesian
normal and beta regression models that use Markov chain Monte Carlo methods for
estimating quantities of interest.

1 Introduction

In Portugal, wildfires (related to natural forests and other plant areas) have been
increasing in the last years. Fire is indeed an important issue in Mediterranean
region affecting namely the ecological and economic aspects of forest areas and
causing loss of human life. Many factors have contributed to the increasing number
of wildfires, e.g., climate change [7]. Some studies have identified changes in the
number of fires, burned area and fire size distribution depending on topographical
variables and vegetation type, e.g., in the Spanish region Catalonia [10] and
Portugal [13].

Gomes [9] pointed out many causes and consequences of forest fires in Portugal,
e.g., currently, rural and forest areas in Portugal are considerably deserted due to
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population migrations from these areas to the main cities, which began in the 1950s.
Fernandes et al. [5] proposed a fuel modelling and fire hazard assessment, used
to evaluate and compare the fire hazard potential between forest types defined by
their composition and structure. They found that potential fire behaviour is primarily
driven by stand structure, rather than by cover type.

Marques et al. [13] presented an approach of the characterisation fire occurrence
in Portugal, combining the use of geographic information systems (GIS) and gener-
alised linear models (GLM). They emphasised the relationship between ecological
and socioeconomic features on the proportion of area burned, recording also the
number of fires and fire size for three 5-year periods, including the period 1990–
1994. Descriptive statistics indicated variations in the distribution of fires over recent
decades, with a significant increase in number of very large fires. Regression models
underlined the impact of the forest cover type and the proximity to roads on the
proportion of area burned.

For modelling wildfires, GLM [1, 14] have been often adopted, even as that is
based on the Gaussian distribution by transforming the response [13]. Ferrari and
Cribari-Neto [6] proposed a regression model where the response is beta distributed
using a parameterisation of the beta law that is indexed by mean and dispersion
parameters. Beta regression can be used for modelling the proportion of area
burned that is restricted to the interval (0, 1). The regression parameters of the beta
regression model are interpretable in terms of the mean of the response and, when
the logit link is used, of an odds ratio, unlike the parameters of a linear regression
that employs a transformed response [6].

This work proposes to model the proportion of burned area due to wildfires in
Portugal, based on beta regression and under a Bayesian perspective (see e.g. [8, 17]
for some Bayesian GLMs). The rest of the article is organised as follows. Section 2
succinctly describes the motivation of this work and the different modelling of wild-
fires. In Sect. 3 we present Bayesian beta regression for modelling the proportion of
area burned, taking the use of Markov chain Monte Carlo (MCMC) methods for
estimating quantities of interest. Some results of Bayesian beta regression related
to the wildfire data analysis in the entire Portuguese mainland between 1990 and
1994, and concluding remarks are done respectively in Sects. 4 and 5, including the
identification of the fire risk factors.

2 Motivation and Methods

In Portugal, burned area mapping, obtained by semi-automated classification of
high-resolution remote sensing data from Instituto Superior de Agronomia (ISA)—
Universidade de Lisboa, identified 35,198 fire perimeters with burned areas equal to
or greater than 5 ha in the period 1975–2007 and the corresponding area burned is
about 3:8 � 106 ha that is equivalent to nearly 40 % of the country area [13].
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Fig. 1 Fire perimeters between 1990 and 1994 in Portugal (left), a zoom over a burned area is
shown in the right, based on the classes of the covariates: (a) land use, (b) altitude, (c) slope,
(d) slope orientation (aspect), (e) road proximity, (f) population density, (g) temperature, (h) pre-
cipitation, (i) layer indicating the fire perimeters

In the period 1990–1994, Marques et al. [13] pointed out that: (1) 5706 Por-
tuguese wildfires were recorded and the total burned area extended over 442,745 ha,
burning about 4.97 % of the country area, (2) the average area burned per wildfire
was 77 ha, (3) 149 wildfires extended over 500 ha, accounting for 44 % of the
burned area, (4) none extended over 10,000 ha. Figure 1 (left side) exemplifies the
distribution (frequency) of these fires identifying high and critical fire zones that are
specially located in the northern and central interior of Portugal.

In order to analyse variations in Portuguese wildfires in 1990–1994, the areas
burned were included as map layers in the GIS database according to eight fire
features (covariates), which were initially categorised, based on extensive prelimi-
nary data analysis and referred in the paper [13], into several classes: altitude (m),
slope (%), slope orientation, population (hab/km2), roads proximity (m), number of
days with precipitation greater than 1 mm in the fire season (from May to October),
number of days with maximum temperature higher than 25 ıC in the fire season, and
land cover (Table 1), including the observed proportion of the each land use classes
in parentheses. Theses classes were also chosen based on some studies using the
same data such as Moreira et al. [15] and Pereira et al. [19].

Figure 1 illustrates the fire perimeters used for constructing burned area data
from related map layers. Notice that land cover map used in this study further
included a map at the scale 1/25,000 (Carta de Ocupação do Solo—COS’90)
produced by Instituto Geográfico Português using cartographic information from
aerial photography mostly dated from 1990 [13], as well as that road proximity
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Table 1 Description of the classes of the eight fire features used in the wildfire data

Roads Precipitation Temperature

proximity Population Slope Altitude Slope (number of days (number of days

(m) (hab/m2) (%) (m) orientation �1 mm)a >25 ıC)a

�1000 <25 0–10 < 200 Flat 0–6 0–3

<1000 25–100 10–20 200–400 North 7–13 4–48

>100 20–30 400–700 East 14–18 49–71

>30 >700 South 19–22 72–92

West 23–26 93–112

�27 �113

Land cover: annual crop (5.3 %); eucalyptus (10.9 %); hardwoods (7 %); hardwoods
and softwoods mixed with eucalyptus (HSME) (8.9 %); agro-forestry (5.8 %);
permanent crop (3.5 %); shrubs (27.4 %); resinous or softwoods (RS) (18.8 %);
softwoods mixed with eucalyptus (SME) (8.6 %); others (e.g. social areas) (3.8 %)
aNumber of days in the fire season (from May to October)

included trails and was defined (1000 m distance) based on previous work e.g.
Catry et al. [3]. Although continuous covariates as temperature and precipitation
could be better explored in their natural form, we chose to categorize them because
of a matter of simplicity and interpretation for the data collection and the model
parameters, respectively.

For the modelling of wildfires, we record the observed proportion of burned area,
denoted by ri that is the burned area out of total area for the ith combination of
levels for the covariates in study, i D 1; : : : ; k. We propose to model the proportion
of burned area from these eight underlying covariates by assuming beta distribution
for ri, i.e.,

• Beta model: ri � Beta.�i�; .1 � �i/�/, with mean E.ri/ D �i and variance
Var.ri/D �i.1��i/

�C1
.

Alternative GLM can model the proportion ri, for instance:

• Gaussian model: logit.ri/ � log.ri=.1�ri// � Normal.�i; �2/;

• Gamma model: � log.ri/ � Gamma.�; �=�i/, with E.ri/D�i and Var.ri/D �2
i

�
.

These two models and other GLM based on transformations of ri, such as
arcsin.

p
ri/ and Box-Cox transformation, are discussed and developed in [1, 14].

Figure 2 displays histograms of the observed proportion of area burned without and
with logit transformation in Portugal during the period 1990–1994, indicating that
transforming response may not be the best way of wildfire modelling, what happens
in the proportions close to one in Fig. 2 and notice that the beta model does not
transform the response.
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Fig. 2 Histograms of the observed proportion of area burned without (right) and with (left) logit
transformation in Portugal during the period 1990–1994

3 Bayesian Beta Regression

Let r1; : : : ; rk be random variables, where ri follows a beta distribution with mean
�i and unknown precision �, whose probability density function is

f .rij�i; �/ D � .�/

� .�i�/� ..1��i/�/
r�i��1

i .1 � ri/
.1��i/��1; 0 < ri < 1; (1)

where � .�/ is the gamma function, 0<�i <1 and � >0, iD1; : : : ; k. Notice that the
parameterisation of the beta distribution (1) was suggested by Ferrari and Cribari-
Neto [6] in order to model response variable that is continuous and restricted to the
interval (0, 1) and is related to other variables through a regression structure.

The beta regression model is obtained from Eq. (1) by assuming that the mean �i

can be written as

g.�i/ D zT
i ˇ � �i; (2)

where ˇ D .ˇ1; : : : ; ˇp/T is the regression parameter vector associated with the
covariate vector zi D .zi1; : : : ; zip/T for the ith observation, iD1; : : : ; k, and g.�/ is a
logit link function g.�/ D logŒ�=.1 � �/� (for other link functions, see [1, 6, 14]).

3.1 Posterior Distribution

For the likelihood, we can assume different sampling distributions for the proportion
ri, e.g., beta distribution defined in Eq. (1) or normal distribution for the transformed
proportion, as referred in Sect. 2. Based on the former distribution with logit link
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function in Eq. (2), the likelihood function is given by

L.ˇ; �jx/ D
kY

iD1

� .�/

� .�i�/ � ..1��i/�/
r�i��1

i .1�ri/
.1��i/��1; (3)

where x D friI zi; iD1; : : : ; kg is the data, and �i D ezT
i ˇ=.1CezT

i ˇ/, iD1; : : : ; k.
In Bayesian analysis, we also consider information a priori that here consists of

assuming independent normal distributions with zero mean and variances v2
j for the

regression coefficients, j D 1; : : : ; p, and inverse gamma distribution with shape a
and scale b parameters for the precision parameter � (or gamma distribution with
shape a and scale b parameters for the variance �2 related to normal regression).
In fact, we assigned non-informative prior distribution, i.e., highly dispersed, but
proper normal and inverse gamma prior distributions for the model parameters ˇ

and � (or 1=�2), respectively. In that case, one expects that inferential results on the
model parameters are not too different from those ones under a frequentist approach.

Assuming a priori independence amongst the model parameters, we can construct
the joint posterior density related to the beta regression model (2), which is
denoted by

	.ˇ; �jx/ � L.ˇ; �jx/	1.ˇ/	2.�/R R
L.ˇ; �jx/	1.ˇ/	2.�/ dˇd�

; (4)

where 	1.ˇ/ and 	2.�/ are the normal and inverse gamma prior distributions of ˇ

and �, respectively, being the distribution (4) proportional to

kY

iD1

� .�/ r�i��1
i .1�ri/

.1��i/��1

� .�i�/ � ..1��i/�/
e� 1

2

Pp
jD1.ˇ2

j =v2
j / ��.aC1/e�b=� : (5)

Notice that the mean �i is a function of the linear predictor �i D zŤ , iD1; : : : ; k.
The joint posterior distribution (5) is awkward to work with, since the marginal

posterior distributions of some parameters are not easy to obtain explicitly. These
posteriors can be evaluated using MCMC methods (see e.g. [8, 11, 17]). In particular
Gibbs sampling that works by iteratively drawing samples for each parameter from
the corresponding full conditional distribution, which is friendly implemented in
software WinBUGS [12]. Other MCMC method, proposed by Hoffman and Gelman
[11], is the No-U-Turn Sampler (NUTS) that is a variant of the Hamiltonian Monte
Carlo (HMC), also known as hybrid Monte Carlo. Neal [16] presented HMC method
in order to avoid a long time to converge to the posterior distribution as e.g. in Gibbs
sampling by using a clever auxiliary variable scheme that transforms the problem of
sampling from a posterior distribution into the problem of simulating Hamiltonian
dynamics.
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3.2 Evaluating and Comparing Models

An important issue in Bayesian data analysis is to choose among postulated sub-
models of a statistical model, e.g. the beta regression model (2). Some summary
measures of model comparison, such as the posterior mean of Deviance D.�/, where
� is the model parameter vector, are easily evaluated with MCMC methods. Other
two measures of predictive accuracy are Deviance Information Criterion (DIC) and
Watanabe-Akaike Information Criterion (WAIC) (see [8, 21]). DIC is here defined as

DIC D D.�/ C Var.D.�//; (6)

where � and Var.D.�// denote the posterior mean of model parameter � and the
posterior variance of the deviance, respectively, whereas WAIC is defined by

WAIC D D.�/ C 2

kX

iD1

Var.Di.�//; (7)

where Var.Di.�// denotes the posterior variance of the ith term of the deviance.
DIC and WAIC handle Bayesian models of any degree of complexity, and models
with smaller (6) and (7) should be preferred to models with larger ones.

4 Wildfire Data Analysis

For the wildfire data described in Sect. 2, we fitted several regression models based
on the response, proportion of the burned area in Portugal during the period 1990–
1994, as in Marques et al. [13], but now focusing on the beta regression instead of
normal regression, and under a Bayesian perspective. One of the eight covariates
presented in Table 1, i.e. slope orientation, was removed from the analysis by not
showing any difference among its categories.

Let M1 and M3 denote regression beta model (1) with eight covariates showed in
Table 1, apart from the covariate slope orientation, whereas M2 and M4 represent the
corresponding normal models. Table 2 lists these sub-models of the beta and normal
model with only main covariate effects, M1 and M2, and also with interactions
between two covariates. Based on the comparison model measures DIC (6) and
WAIC (6), fitted models with interactions had better evaluation than models with
only main effects for both beta and normal models. These evaluating values were
calculated taking into account the same response ri=.1�ri/ (so-called odd), which
generates a sampling log-normal and second-kind beta distributions for normal and
beta distributions, respectively. So, normal regression had better fitting than beta
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Table 2 Model comparison measures of four fitted regression models for wildfire data

Regression models WAIC DIC

M1: beta regression with only main effects �10,161.37 �10,165.68

M2: normal regression with only main effects �14,593.76 �14,605.28

M3: beta regression with interactions between two covariates �10,723.74 �10,728.94

M4: normal regression with interactions between two covariates �15,263.72 �15,285.41

regression, and that can namely be associated with the large number of observations
(k D 25;388). However, we chose to select model M3 in order to illustrate the beta
regression model that has not been employed in the analysis of wildfire burned areas,
even as it can be considered the natural choice.

For all models showed in Table 2, we assumed prior normal distribution with
mean zero and variance 104 for the regression parameters and prior inverse gamma
and gamma distributions with shape parameter 1 and scale parameter 0.01 for the
precision parameter � (beta regression) and the variance �2 (normal regression),
respectively. That is, highly dispersed, but proper prior distributions. MCMC
samples of size 5000 were obtained for all models, after 2500 iterations of burn-
in, implemented in software Stan [20]. A study of convergence of the samples was
carried out with no worrying features.

For selected beta model M3, Table 3 displays the model parameter estimates:
posterior mean, standard deviation (SD) and 95 % highest posterior density (HPD)
credible intervals (CI) for the model parameters. Note that related to the proportion
of area burned in Portugal during the period 1990–1994:

1. There is no significant effect of annual and permanent crops in contrast to the
other categories of land cover;

2. The land covers with larger likelihood to have wildfires are (in increasing
order) agro-forestry, hardwoods, hardwoods and softwoods mixed with euca-
lyptus (HSME), resinous or softwoods (RS), eucalyptus, softwoods mixed with
eucalyptus (SME), and shrubs (the most likelihood).

3. The proportion increases for larger categories of slope and altitude, whereas
population and roads proximity display a decreasing effect in the proportion.

4. Because temperature and precipitation had an unexpected negative effect in
the proportion, we decided to look for a potential interaction effect between
the two covariates. We found significant interaction between temperature and
precipitation in model M3, even as that is not clear for the smaller categories of
both covariates.

5. As large the categories of temperature and precipitation as large is the odd of
burned area (interaction effect). Notice that the largest category did not have
observation enough for confirming that.

6. The estimates in Table 3 also indicates that there is some dispersion in the
proportion of area burned (see 95 % HPD credible interval of �).
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Table 3 Estimates of the regression parameters and dispersion parameter (�) for model M3

95 % CI 95 % CI

Parameter Mean SD Lower Upper Parameter Mean SD Lower Upper

Roads proximity (ˇ17) Temperature (ˇ25; : : : ; ˇ29)

<1000 �0:05 0.01 �0:08 �0:02 4–48 �2:63 0.12 �2:87 �2:39

Population (ˇ18; ˇ19) 49–71 �2:63 0.13 �2:87 �2:38

25–100 �0:09 0.02 �0:12 �0:05 72–92 �2:67 0.13 �2:92 �2:43

�100 �0:15 0.02 �0:19 �0:11 93–112 �2:94 0.16 �3:24 �2:63

Slope (ˇ14; ˇ15; ˇ16) �113 �2:78 0.20 �3:18 �2:41

10–20 0:21 0.02 0:18 0:24 Land cover (ˇ2; : : : ; ˇ10)

20–30 0:66 0.02 0:61 0:70 Annual crop �0:04 0.04 �0:11 0:03

�30 2:16 0.06 2:05 2:27 Eucalyptus 0:49 0.04 0:42 0:56

Altitude (ˇ11; ˇ12; ˇ13) Hardwoods 0:18 0.04 0:11 0:25

200–400 0:12 0.02 0:08 0:16 HSME 0:32 0.04 0:24 0:39

400–700 0:15 0.02 0:11 0:19 Agro-forestry 0:08 0.04 0:00 0:15

�700 0:40 0.02 0:35 0:44 Permanent crop �0:05 0.04 �0:13 0:02

Precipitation (ˇ20; : : : ; ˇ24) Shrubs 0:61 0.03 0:54 0:68

7–13 �0:58 0.13 �0:83 �0:30 RS 0:48 0.04 0:42 0:55

14–18 0:08 0.18 �0:29 0:43 SME 0:59 0.04 0:51 0:66

19–22 0:43 0.19 0:06 0:80

23–26 �0:62 0.17 �0:96 �0:29 Intercept (ˇ1) 0:81 0.13 0:57 1:05

�27 �2:72 0.96 �4:62 �0:84 � 1:36 0.01 1:34 1:39

(ˇ30) Temperature (4–48) � Precipitation (7–13) 0:70 0.14 0:40 0:95

(ˇ31) Temperature (4–48) � Precipitation (14–18) 0:03 0.19 �0:33 0:40

(ˇ32) Temperature (4–48) � Precipitation (19–22) �0:11 0.19 �0:46 0:29

(ˇ33) Temperature (4–48) � Precipitation (23–26) 0:62 0.18 0:28 0:98

(ˇ34) Temperature (4–48) � Precipitation (�27) 2:70 0.96 0:79 4:57

(ˇ35) Temperature (49–71) � Precipitation (7–13) 0:54 0.14 0:27 0:82

(ˇ36) Temperature (49–71) � Precipitation (14–18) �0:15 0.19 �0:53 0:21

(ˇ37) Temperature (49–71) � Precipitation (19–22) �0:35 0.19 �0:72 0:04

(ˇ38) Temperature (49–71) � Precipitation (23–26) 0:73 0.18 0:39 1:09

(ˇ39) Temperature (49–71) � Precipitation (�27) 2:96 0.96 1:09 4:88

(ˇ40) Temperature (72–92) � Precipitation (7–13) 0:47 0.15 0:19 0:75

(ˇ41) Temperature (72–92) � Precipitation (14–18) �0:04 0.19 �0:42 0:34

(ˇ42) Temperature (72–92) � Precipitation (19–22) �0:35 0.19 �0:72 0:04

(ˇ43) Temperature (72–92) � Precipitation (23–26) 0:85 0.18 0:49 1:21

(ˇ44) Temperature (72–92) � Precipitation (�27) 3:41 0.96 1:50 5:30

(ˇ45) Temperature (93–112) � Precipitation (7–13) 0:60 0.18 0:25 0:96

(ˇ46) Temperature (93–112) � Precipitation (14–18) 0:70 0.23 0:27 1:17

(ˇ47) Temperature (93–112) � Precipitation (19–22) 1:38 0.26 0:88 1:89

(ˇ48) Temperature (93–112) � Precipitation (23–26) 3:26 0.23 2:81 3:73

(ˇ49) Temperature (�113) � Precipitation (7–13) 0:57 0.22 0:10 0:98
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5 Concluding Remarks

This analysis of wildfire data in Portugal allow us to figure out the influence of
the observed combinations of eight fire risk features on the proportion of burned
area. Our results of beta regression are essentially consistent with those ones
of normal regression, presented in Marques et al. [13], whose analysis did not
include the explanatory variables: slope orientation, precipitation, temperature and
the interaction between the last two ones. In fact, our model and conclusions bring
improvements on the results reported by them based on a similar data set. So, we
also identified changes in the proportion of burned area depending on topographical
variables and vegetation type. Pereira et al. [18] pointed out that some variability
of the burned area in Portugal is partly due both to the amount of precipitation in
the fire season and in the preceding late spring season and to the occurrence of
atmospheric circulation patterns that induce extremely hot and dry spells.

In addition, our intuition about interaction between precipitation and temperature
was corrected, and we also believe that some latent variables can explain some
unobserved heterogeneity in these wildfire data, e.g. spatial extra-variation across
fire regions. For instance, Amaral-Turkman et al. [2] proposed a spatio-temporal
model to analyse jointly the probability of ignition and fire sizes in Australia and
New Zealand. Further research is being developed for capturing the spatio-temporal
effects on the proportion of burned area, more proper sampling distributions and link
functions. Notice that 4 % of observed burned areas were 0 or 1 being replaced by
10�10 and 1 � 10�10, respectively, for simplicity, We intend to include that issue in
future work, as well as to do a full sensitivity analysis of our prior options (see e.g.
[8]) and some simulation to clarify the impact of a big data as our wildfires in the
results. For the our choice of beta regression instead of normal regression, we also
believe that a comprehensive simulation study must be done in order to verify the
second choice, as well as the residual analysis for understanding that unexplained
situation of the observed proportions close to one (see e.g. Espinheira et al. [4]).
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