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Foreword

I was very honored to be invited by Professor Alberto Adrego Pinto to the lecture
at the Advanced School Planet Earth, Dynamics, Games and Science II (DGS II)
from August 28 to August 30, 2013, and to speak at the associated international
conference from September 2 to September 4, 2013. I have known Alberto since I
was a graduate student at the CUNY Graduate Center in the 1980s. After both of
us completed our Ph.D. degrees, we worked on a similar subject: smooth rigidity
for one-dimensional dynamical systems and its generalization to Anosov dynamical
systems of the two-torus, for many years. I was impressed by his work with
his collaborators, using techniques and methods in smooth dynamical systems to
develop many excellent results on smooth rigidity. Meanwhile, my collaborators and
I tried to develop smooth rigidity into symmetric rigidity by applying techniques and
methods in quasiconformal mappings theory and Teichmüller theory, and to build up
a new Teichmüller theory for dynamical systems. So I knew that attending the DGS
II would be stimulating and rewarding. Also, I knew that Alberto is an outstanding
organizer and has the talent to lead a successful advanced school and conference,
and indeed, his organizational skills and talents were proven again. I had a wonderful
time in Lisbon, Portugal, and enjoyed many fruitful discussions with Alberto and his
Portuguese colleagues. In particular, Alberto and his collaborators explained to me
their work in game theory and some basic facts about its related Nash equilibrium,
and we discussed some differences and similarities between the Nash equilibrium
and the Gibbs equilibrium from a dynamical systems point of view. The Advanced
School DGS II and the Conference DGS II were very successful. The Advanced
School DGS II and the Conference DGS II in Portugal were parts of the international
year of the Mathematics of Planet Earth 2013 (MPE 2013) held under the patronage
of UNESCO. The activities at the Advanced School DGS II and the Conference
DGS II were held in the beautiful city of Lisbon. The Advanced School DGS
II was held in Escola Superior de Economia e Gestão, Universidade Técnica de
Lisboa (ISEG-UTL), Lisbon, Portugal, and the Conference DGS II was held in the
renowned Calouste Gulbenkian Foundation, Lisbon, Portugal. This was my third
trip to the city of Lisbon. The previous two were only for one or two days, but
this one was for a week. On this trip, I not only had many fruitful discussions with
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vi Foreword

other lecturers and speakers and Portuguese mathematicians, but I also visited a
museum in Lisbon where I learned more about Prince Henry the Navigator and
his school of navigation, where some of the leading geographers, cartographers,
astronomers, and mathematicians of the fifteenth century from various parts of
Europe came to work; and participants were trained in navigation, map-making, and
science, including mathematics. The school of navigation started the Portuguese as
well as the European exploration of new lands. So, following the scientific tradition
of Portugal, this volume contains the broad mathematical themes of this conference
on dynamical systems and game theory. It contains samples of the numerous talks
and presentations given at the Advanced School DGS II and the Conference DGS
II. The reader will find many interesting topics in dynamical systems and game
theory, including many interdisciplinary contributions from economics, population
dynamics, ecology, healthcare, disease epidemics, cell biology, and physics. This
volume will also encourage and help the reader to explore “new lands” in various
scientific areas. Finally, I would like to express my thanks to Alberto Adrego Pinto,
Jean-Pierre Bourguignon, Rolf Jelstch, and Marcelo Viana for their efforts in editing
and putting together this important volume.

Yunping Jiang
Distinguished Professor of Mathematics

Department of Mathematics
Queens College of the City University of New York

65-30 Kissena Blvd, Queens, NY 11367-1597, USA
Department of Mathematics

The Graduate Center of the City University of New York
365 Fifth Avenue, New York, NY 10016, USA



Foreword

I was quite pleased, and honored, to be asked by Alberto Pinto to speak at the
International Conference and Advanced School Planet Earth, Dynamics, Games
and Science II (DGS II) and to lecture in the advanced school that accompanied
the conference from 28 August to 6 September, 2013. I had met Alberto at
several conferences over the previous years and was well aware of the high-
quality work that he and many of his Portuguese colleagues were doing in many
branches of mathematics and science. So I knew that attending DGS II would
be stimulating and rewarding. I was, however, unaware of Alberto’s extraordinary
organizational and leadership talents, as were displayed by these events. The extent
of the diverse activities organized under Alberto’s leadership as president of the
international Center of Mathematics (CIM), together with Irene Fonseca (president
of the CIM’s scientific council) and a large number of Portuguese mathematicians,
universities, institutions and organizations, is quite remarkable. These activities
constitute an outstanding contribution to the international year of the Mathematics
of Planet Earth 2013 (MPE 2013), held under the patronage of UNESCO, during
which mathematical organizations, universities, and research centers around the
world hosted conferences, workshops, schools, and long-term programs intended to
showcase the ways in which the mathematical sciences can be useful in addressing
our planet’s many problems.

A highlight of the MPE 2013 activities centered in Portugal was the DGS
II conference and the associated advanced schools, held at the facilities of the
renowned Calouste Gulbenkian Foundation and the Escola Superior de Economia
e Gestão, Universidade Técnica de Lisboa, respectively. These locations in the
beautiful city of Lisbon are wonderful venues for scientific meetings and their
hospitality was greatly enjoyed by all. The broad mathematical themes of the
conference were dynamics and game theory. The chapters in this volume constitute
a sampling of the numerous talks and presentations held during this event. A casual
glance at the table of contents will show the reader a list of contributions to the
mathematical development of game theory and dynamical systems as well as inter-
disciplinary contributions from numerous scientific fields , including economics,
population dynamics, ecology, healthcare, disease epidemics, cell biology, and
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physics. Game theory’s roots were in economics and the contributions in this volume
show that its vibrant role in economics continues unabated. More recently, game
theory and methodologies inspired by game theoretic ideas have made foundational
contributions to other disciplines, the life sciences being a notable example. For
example, extensions of game theoretic methods to dynamic settings have been
and continue to be developed in order to model and understand evolutionary and
adaptive processes in biology, with impacts ranging from the evolution of antibiotic
resistance of pathogens to large-scale ecosystems.

This volume serves well to illustrate the many roles that mathematics can play in
addressing a wide variety of scientific problems that relate to our planet earth. I am
confident that the reader will be inspired by the contributions and will be stimulated
to learn more about the goals of MPE 2013. I want to thank Alberto and his fellow
editors, Jean-Pierre Bourguignon, Rolf Jelstch, and Marcelo Viana, for their efforts
in putting this important volume together.

Jim Michael Cushing
Professor of Mathematics

Interdisciplinary Program in Applied Mathematics
Department of Mathematics

University of Arizona
Tucson, AZ 85721, USA



Preface

As the International Center for Mathematics (CIM) celebrated its 20th anniversary
on the 3rd of December 2013, it is the perfect opportunity to look back on this past
year, which has undoubtedly been one of the most ambitious and eventful ones in its
history. With the support of our associates from 13 leading Portuguese universities,
our partners at the University of Macau, and member institutions such as the
Portuguese Mathematical Society, in 2013 the CIM showed yet again the importance
of a forum such as this for bringing together leading Portuguese-speaking scientists
and researchers from around the world.

The hallmark project of the year was the UNESCO-backed International Program
Mathematics of Planet Earth (MPE) 2013, which the CIM participated in as a
partner institution. This ambitious and global program was tasked with exploring
the dynamic processes underpinning our planet’s climate and man-made societies,
and with laying the groundwork for the kind of mathematical and interdisciplinary
collaborations that will be pivotal to addressing the myriad issues and challenges
facing our planet now and in the future. The CIM heeded the MPE’s call to action
by organizing two headline conferences in March and September of 2013: the
“Mathematics of Energy and Climate Change” conference in Lisbon in the spring,
and the conference “Dynamics, Games, and Science II” in the fall. Both were held at
the world-renowned Calouste Gulbenkian Foundation in Lisbon, one of more than
15 respected Portuguese foundations and organizations that enthusiastically sup-
ported the CIM conferences. As well as the conferences themselves, well attended
“advanced schools” were held before and after each event: at the Universidade de
Lisboa in the spring, and at the Universidade Técnica de Lisboa in the fall.

These conferences succeeded in bringing together some of the most accom-
plished mathematical and scientific minds from across the Portuguese-speaking
world and beyond, while also serving as a launch pad for one of the CIM’s most
exciting endeavors in years: the new CIM Series in Mathematical Sciences, which
will include lecture notes and research monographs and be published by Springer-
Verlag. “The collaboration with Springer will bring mathematics developed in
Portugal to a global audience,” CIM President Alberto Adrego Pinto said at the time

ix



x Preface

of the announcement, “and will help strengthen our contacts with the international
mathematics community.”

These first two volumes in the series, consisting of review articles selected
from work presented at the “Mathematics of Energy and Climate Change” and
“Dynamics, Games, and Science” conferences, reflect the CIM’s international
reach and standing. Firstly, they are characterized by an impressive roster of
mathematicians and researchers from across the United States, Brazil, Portugal, and
several other countries whose work will be included in the volumes.

The authors are complemented by the editorial board responsible for this first
installment, a world-renowned “quartet” consisting of: president of the European
Research Council Jean-Pierre Bourguignon from the École Polytechnique; former
Société Mathématiques Suisse and European Mathematical Society president Rolf
Jeltsch from the ETH Zurich; current Sociedade Brasileira de Matemática president
Marcelo Viana from Brazil’s Instituto Nacional de Matemática Pura e Aplicada; and
CIM president Alberto Adrego Pinto from the Universidade do Porto.

While the MPE program was a major focus of the CIM’s activities in 2013,
the center also organized a number of further events aimed at fostering closer ties
and collaboration between mathematicians and other scientists, mainly in Portugal
and other Portuguese-speaking countries. In this context the CIM held the 92nd
European Study Group with Industry meeting, part of a vital series held throughout
Europe to encourage and strengthen the connections between mathematics and
industry. As the MPE program made clear, humanity faces all manner of challenges,
both man-made and natural, and though industry is attempting to overcome them,
in many cases mathematics and science are far better suited to the task. Yet it is
often industry that delivers the kinds of innovative ideas that will launch the next
great scientific and technological revolutions, and which academia must adapt to.
The potential for dialogue and cooperation between academia and industry is in fact
so great that I have now made it one of the core initiatives in my presidency of the
US-based Society for Industrial and Applied Mathematics (SIAM).

As we look back at the successful year the CIM had in 2013, we should also
bear in mind the dramatic changes currently taking place in the world, changes that
above all the mathematical sciences—including statistics, operational research, and
computer science—will be called upon to address. Foremost among them is the
rise of Big Data, especially as it relates to national security, finance, medicine, and
the Internet (among other fields), which has come to dominate research in many
scientific sectors and requires new analytical tools, which mathematics can provide.
This new landscape will require an unparalleled level of partnership between science
and industry, and is what prompted the European Commission to recently announce
its Europe 2020 Growth Strategy, which calls for investment in groundbreaking
research, innovation in industry, and the cultivation of a new generation of scientists.
It is no coincidence that these three pillars are at the core of the CIM’s own mission,
and the CIM series in Mathematical Sciences will provide the ideal platform for
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communicating and broadening the impact of the CIM’s activities with regard to
these global challenges.

President of CIM Scientific Council Irene Fonseca
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Corruption, Inequality and Income Taxation

Elvio Accinelli and Edgar J. Sánchez Carrera

Abstract It is recognized that corrupt behavior determines the institutional types
of an economic system where an institution is ruled out by economic agents (e.g.
officials-public or private) abusing their role to procure gain for themselves (rent-
seeking activities) or somebody else. In this vein, we study an evolutionary model
of institutional corruption. We show that income inequality and income taxation
are the main factors (explanatory variables) for fighting institutional corruption.
We conclude with some feasible policies on institutions, beliefs and incentives to
combat the corruption.

1 Introduction

A large number of papers on the causes and consequences of corruption have been
published (for a survey, see [3, 5, 7, 8], among others). Bardhan [3] notes that
corruption appears relevant in undeveloped economies where the organization of
the State is inefficient, democratic control of the civil community over government
actions is absent, and bureaucrats have wide discretionary power (see also [2]).
The literature about the long-run economic consequences of corruption (see [4, 11])
focuses on rent seeking in the provision of public services. A government official
controls the offer of a service against private demand, and then he/she has some
discretionary power on the offer and can restrict it in several ways (e.g. denying
permission or delaying its release). Bribes are the extra-price charged by bureaucrats
to private customers, and arise like rents. The economic consequences of this
phenomenon concern distortions in resources allocation mainly in terms of less
private investment, and a reduced rate of human capital formation. For example,
Ehrlich [4] states that corruption is an economic activity that requires some political
capital. Effort devoted to the accumulation of this kind of knowledge has an
alternative use in human capital production. Corruption reduces economic growth
through a negative influence on investments in human capital.
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2 E. Accinelli and E.J. Sánchez Carrera

While a large proportion of corrupt practices are illegal, in this paper we do
not consider a legal approach to the definition of corruption since not all corrupt
practices are illegal and not all illegal activities are corrupt practices. In fact, Jain [7]
identifies three categories of corruption grand involving political elite, bureaucratic
involving corrupt practices by appointed bureaucrats, and legislative corruption
involving how legislative votes are influenced by the private interest of the legislator.
The three types of corruption differ only in terms of the decisions that are influenced
by corrupt practices.

However, few are the articles studying strategic fundamentals that cause corrupt
behavior in a society. Hence, the aim of this paper is to describe the evolution of
corruption behavior in a society. Our approach is based on recognizing of what
economists call incentives or psychologists reinforcement for choosing a certain
behavior. When individuals need to choose an action or future behavior between
several possible, they are pressed by different kind of incentives and penalties. We
understand corruption as a possible behavior followed by several individuals in a
given population (see [1]). Accinelli and Carrera [1] pointed out that individuals
under the pressure of incentives and penalties need to choose one of two antagonistic
possible behaviors, being corrupt or non-corrupt. When individuals choose driven
by imitation, but they have not complete information, however they must choose
and do this base upon its own beliefs.

In this paper we assume that individuals are no completely informed about
the payoff of his/her choices, but they are rational in the sense that they choose
with higher probability the behavior that they understand has in each moment, the
highest expected value. In our model, we consider a distribution of income for the
population, and strategic interaction between people who pay taxes and officials who
control such tax compliance. The baseline approach of our model comes from [6]
that examine the implications of corruptibility and the potential abuse of authority
for the effects and optimal design of (potentially non-linear) tax collection schemes.
Hindriks et al. find that the distributional effects of corruption and tax evasion are
regressive, hence for the poor have little to gain from evading taxes and are at the
same time vulnerable to over-reporting of their incomes; for the rich, the converse
is true. The government can Levy progressive taxes without reducing its own payoff
by creating countervailing incentives in the form of commissions: the parties are
tempted to understate income to evade progressive taxes, and tempted to overstate
income to raise the commission payments.

The central authority problem’s is to choose a system of fines and capture the
corrupt behavior of the auditors, in order to discourage this kind of behavior. We
call evaders to citizens who do not pay taxes and corrupts to auditors accept bribes.
However, as long as the central planner sets the optimal policy on the basis that all
citizens pay taxes, every deviation of this situation imply a deviation of the optimal
fiscal policy, with repercussion in the social welfare. Consequently if in the society
there exist evaders, the established taxation is not optimal, and this fact becomes
in its turn in a new incentive for citizens choosing to be evaders. Nonetheless, if
this subpopulation with the time, tends to become smaller, then the perception of
social welfare from each of the social groups increases as the share of the population
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that pays taxes increases. Consequently the action to pay taxes is perceived as not
prejudicial like in other cases. In this way, any incentives to do not comply with tax
obligations tend to disappear and any basis of corrupt auditors. In what follows, we
analyze the impact on the decisions made by different social groups, of the possible
policies defined by the central planner.

Our goal is to explain the structural evolution of corrupt behavior in a given
society as the result of individuals’ decisions influenced by the behavior of the others
members of this society. Along this evolutionary process, at every time, individuals
make their choices about their future behavior, the result of this process is the social
evolution. In particular we analyze the interaction between the tax authority and
citizens, to study the evolution of corrupt behavior as the result of individuals’
beliefs and institutional policies.

The remainder of this paper is organized as follows. Section 2 develops a
game-theory model related to tax evasion and corruption in the tax inspectorate.
Section 3 is devoted to study the evolutionary dynamics of corrupt behavior and
taxpayers. Finally, Sect. 4 contains some implications of the results and discusses
their application to economy.

2 The Model

Consider an economy where institutions are ruled out by two populations, namely
citizens and auditors.

Citizens are required to pay taxes, however only those following a non-corrupt
behavior meet this requirement. We shall say that are evaders, or corrupts, those
citizens who do not pay taxes. Consequently, the population of citizens, C, is
composed by: tax evaders or corrupt, CC , and tax payer or non-corrupt, CN : There
are tax audits done in each period. The task of auditors is to monitor tax compliance
of citizens. The population of auditors, P, is composed in turn, by: corrupt, PC, and
non-corrupt, PN . Non-corrupt auditors are those that make their job according to the
national tax compliance laws. Corrupt auditors do not do their job according to the
law, and they take bribes from citizens evaders. Moreover:

1. Citizens are distributed according to their levels of income, denoted by a set Y;
and a probability that a citizen x 2 C has income lower or equal to y 2 Y is:

P. y.x/ � y/ D P. y/:

Note that this probability corresponds to the fraction of citizens with income
lower than or equal to y:We assume that according to their income level, citizens
are divided into n different groups, I1; I2 : : : :; In; thus y W C ! I where I D
fI1; : : : Ing; so x 2 Ii if and only if y.x/ 2 y.Ii/ D .y

i
; Nyi/ where y

i
is de lower

income of a citizen in class Ii and Nyi is the higher income of a citizen in such
class. By n.Ii/ we denote the share of citizens in the level Ii:
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2. We consider that the central planner has implemented a proportional taxation
policy, so all citizen should pay taxes proportional to their income, �. y/ � y.x/,
where 0 < �. y/ < 1. By y.x/ we denote the income of the citizen x. That
is, the central authority sets rates by income levels, i.e. �. y/ D �.Ii/ for all
y 2 Ii; i D 1; : : : :; n: So that the total amount paid as tax by a x-citizen with
income level y 2 Ii is equal to �.Ii/ � y.x/.

3. We consider that income distribution is constant over time, but the percentage
of taxpayers is time-variant. Hence, in every period of time t we represent by:

• ˛.t/ the share of citizens taxpayers,
• �.t/ the share of non-corrupt auditors.
• ˇ.t/ D 1 � ˛.t/ is the share of tax evaders, and ı.t/ D 1 � �.t/ represents

the share of corrupt auditors.

4. In this vein, we state the following.

Definition 1 Let us define the index, �c, as a measure of total illegal behavior
in the economy, i.e.

�c.t/ D ˇ.t/C ı.t/:

5. We denote by underliney and Ny the lowest and the highest income levels,
respectively. Thus the distribution of taxes P˛. y/ is supported in the interval
Œy; Ny�: Total income due to taxes collected in time t is:

Tt D
Z Ny

y
�. y/y.x/dP˛. y/;

The subscript ˛ indicates that the total of citizens paying �. y/ � y.x/ depends on
the total share of taxpayers, given by ˛.

6. We consider that the tax audit is performed, in each period, on citizens with
certain probability PA 2 Œ0; 1�. Thus tax evasion is punishable and let us denote
by m > 0 the fine imposed by a non-corrupt auditor on a citizen tax evader
when s/he is audited.

7. The model takes into account the possibility that a briber may bargain with the
auditor some money in exchange for not revealing the evasion. This bargain has
been succeeded when a corrupt auditor meets an evader, and then the corrupt
auditor gets a bribe equal to NB D k�. y/y.x/ > 0, 8 0 < k < 1.

8. However the central authority can detect to the illegal behavior and conse-
quently punishing the corrupt auditor. The fine imposed to the corrupt auditor
by the central authority is M > 0, and pM 2 Œ0; 1� is the probability that the
corrupt auditor is detected. Hence, we can state that the sum of the probabilities
�.t/C pM � 0 measures the efficiency of the central authority as guarantors of
legal behavior.
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9. If a non-corrupt auditor meets a tax evader citizen, s/he is facing the monitoring
cost, c.˛; �/ > 0, by punishing the evader. This cost is a decreasing function
of ˛; and increasing with �; and convex in both variables. Such a monitoring
cost corresponds to the work associated with this process, and it increases as
the number of evaders or the number of corrupt officers is increasing. This
somehow shows that the incentives to behave legally changes according to the
profile distribution of economic agents (see the above Item 3–4, Definition 1).
To counteract this negative action about the behavior of public officials, can be
doing, for instance, paying a premium to those officials who fulfill their duties.
In many Latin American countries, there is a prize to presenting a right fiscal
report, and it is paid to employees who are not cheating.

10. If corruption is punished, the total amount received by the payment of fines
is transferred to improve the social welfare. The total money obtained by the
central authority is the sum of the total money of taxes collected plus the total
amount received from fines. The total amount of fines is a random variable, W,
with expected value NW: So, the central authority has an expected total national
revenue:

Rt D Tt C NWt > 0:

Individuals, P and C, have some utility due to the tax system and national
revenue. That is, utilities of auditors and citizens,

uP.˛;R/ > 0 and ux.˛;R/ > 0;

depend on the total national revenue, R, and on the share, ˛, of taxpayers.

Therefore, under the above considerations, if the policy of the central planner
is given, then individual (expected money-metric) utility functions (or expected
payoffs) are given by:

uCNx.˛/ D ux.˛;R/C .1 � �. y//y.x/; .A/

uCCx.˛; �/ D ux.˛;R/ � PA
�
�
�
m C .1 � �. y//y.x/

� C �
1 � ���.1 � k�. y//y.x/

��
; .B/

uPC .˛/ D up.˛;R/C .1 � ˛/�Pn
iD1 k�.Ii/y.Ii/ni

� � PMM; .C/

uPNC .˛; �/ D up.˛;R/ � .1 � ˛/c.�/: .D/
(1)

Note that these utilities can change over time if the share populations change, and
˛ and � are the only endogenous variables while the parameters R, �. y/, m are
exogenously determined by the central authority. The parameter k is a constant fixed
by the corrupt auditors. The first equation (A) is the utility function of a taxpayer
with income y.x/. The second one (B) is the utility function corresponding to a
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citizen tax-evader, with income y.x/; 0 < k < 1 correspond to the proportion of the
tax that citizen tax-evader must pay to a corrupt auditor with probability .1 � �/.
With probability � , an evader is revealed by a non-corrupt auditor and must pay a
fine m plus the amount owned. The third one (C) is the utility function of the corrupt
auditor. We assume that with probability .1 � ˛/ the audited citizens are evaders,
and in this case the auditor takes bribes. The last one (D) the utility of a non-corrupt
auditor. we assume that an honest auditor must perform certain management when
confronting an individual evader. This management has a cost, which we assume
decreases when the number of honest auditors. This management should only be
performed when confronting an individual evader, otherwise we assume it is zero,
i.e., @c.˛;�/

@�
< 0: Obviously, the probability to pay this cost, decrease when the

number of honest citizen increase. Either because the probability of facing a citizen
evader decreases or because the cost is shared between more auditors

Remark 1 A citizen chooses to be a non-corrupt, i.e. he/she is taxpayer, if uCNx.˛/ >

uCCx.˛; �/ which holds when:

�. y/ � y.x/.1C PA/C mPA�

y.x/
�
1 � PA.�k � k � �/

� ;

where �. y/ is a threshold value indicating a social limit, beyond which the utility
of an honest citizen with income y surpasses the associated utility to the corrupt
behavior. This threshold value makes reference to the highest income tax rate that
the central authority should impose for not favoring the evader behavior. Note that
� 0. y/ < 0 means that citizens with higher incomes are more likely to become
evaders.

Remark 2 An auditor chooses to be a non-corrupt if uPNC.˛; �/ > uPC.˛/ which
holds when:

pM >
.1 � ˛/ŒPn

iD1 k�.Ii/y.Ii/ni�C .1 � ˛/c.�/
M

;

and so the difference uPNC.˛; �/� uPC.˛/ is positive and it is increasing either when
pMor M are large enough.

We assume that the level of social welfare increases with the total national
revenue and with the share of taxpayers, i.e.

@uj

@R
.˛;R/ > 0 and

@uj

@˛
.˛;R/ > 0 for all j 2 fC;Pg;

and that the functions uj.˛;R/ are concave with respect to R, i.e.

@2uj.˛;R/

@R2
< 0;
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where auditors and citizens do not value equally the welfare obtained by taxes,
this assumptions is considered in the fact that uC.˛;R/ is not necessarily equal to
uP.˛;R/:

Central authority should fix the optimal tax rate assuming that every citizen pay
taxes. So this is not longer optimal in the presence of citizens evaders. Suppose the
share of taxpayers in time t is ˛.t/ D ˛. Consider in addition that P˛.Ii/ correspond
to the proportion of citizens in the level Ii; i D 1; : : : ; n that in time t are paying
taxes. The level of income of each group (or social class) is symbolized by y.Ii/:

Then in terms of income, the expected amount of tax collected can be written
as:

T˛.t/ D
nX

iD1
�.Ii/Œ y.Ii/� y.Ii�1/P˛.Ii; t/�;

where as we said P˛.Ii; t/ represents the percentage of citizens with income y.Ii/

that are taxpayers, in time t. While total (potential) amount collected corresponds
to:

T˛D1 D
nX
1

�.Ii/Œ y.Ii/� y.Ii�1/P˛D1.Ii/�

where P˛D1.Ii/ is the share of taxpayers citizen with income yIiC1
while P.Ii/ is the

total share of individuals with such income in the population, so P.Ii/� P˛.Ii; t/ for
all t; with equality if and only if ˛D 1:

From now on to facilitate the scripture, if not strictly necessary, we suppress
the variable t although all values depend on the distribution of populations, which
certainly change over time.

The utility of a citizen x;q who is a taxpayer, is given by the Eq. (1A), and it can
be written as:

uCNx.˛; �/ D ux

 
˛;

nX
1

�. y.Ii/Œ y.Ii/� y.Ii�1/�P˛.Ii/C NW
!

C .1 � �.Ij//y.Ij/:

To simplify the notation we denote by �j the optimal tax corresponding to the income
level equal to yIj ; j D 1; 2 : : : ; n i.e. �j D �.Ij/: The next proposition offers an
important result.

Proposition 1 As the gap between social classes (measured by the different income
levels Ii), is increasing (more income inequality), the greater the tax evasion (more
corruption).

Proof If the policy maker considers that every citizen pay taxes according with
their income, i.e.: ˛ D 1; then the utility function depends only on taxes � D
.�1; : : : ; �n/; and these are fixed by the central authority. More precisely, if ˛ D 1

then R.�/ D T˛D1.�/ and so, the optimal tax rate ��. y/ (the optimal policy for the
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central planner) must verify the equations:

@uCNx
@�j

.1;R.��// D @uCNx
@R .1;R.��// @R

@�j
.��/

D @uCNx
@R

�
1;
Pn

1 �
�
i Œ y.Ii/ � y.Ii�1/�P˛D1.Ii/

�
Œ y.Ij/ � y.Ij�1/�P˛D1.Ij/� y.Ij/ D 0

(2)

or equivalently,

@uCNx

@R

 
1;

nX
1

��i Œ y.Ii/ � y.Ii�1/�P˛D1.Ii/

!
�y.Ij/

y.Ij/
P˛D1.Ij/ D 1; (3)

for all j D 1; : : : ; nI where �y.Ij/ D y.Ij/ � y.Ij�1/ is the income gap between the
social classes Ij and Ij�1: Note that if we assume ˛ D 1, then P˛D1.Ij/ is equal to
the total percentage of citizens with income y � Ij: Given that the utility function is

strictly concave in R it follows that
@2uCNx

@�2j
< 0 so, ��j is a maximum. In conclusion,

by Eq. (3) it follows that the number of citizens that are willing to be taxpayers is a
decreasing function of the gap between social classes Ij and Ij�1: Hence, as lower is
the gap between social classes, the lower is the tax evasion.

As we argue previously, auditors may have interest in to coexist with evaders
(Eqs. (1C) and (1D)). It follows from these equations that the interest of auditors in
this complicity tends to decrease when the possibility of being caught in their illegal
actions is increasing. This argues in favor of auditing and administrative controls,
because they are part of public activities aimed at ensuring the normal functioning of
the institutions. Another problem is the cost of establishing a convenient mechanism
to punish the illegal activity of evaders and corrupt auditors. As we will prove in the
next section, it is possible to establishing an adequate system of monitoring, based
on probabilities and fines, enabling to ensure that shares of taxpayers and no-corrupt
auditors may evolve positively.

3 On the Evolutionary Dynamics of the Model

We consider in this section that citizens and auditors play an asymmetric contest
evolutionary game. The possible strategies for each individual in each subpopulation
are to implement a corrupt behavior or a legal (honest) behavior. Since players are
rational they will choose between these two pure strategies, according with the
perception of the rewards and possible punishment that, each election imply. The
strategic election is influenced on one hand, by the behavior of their peers (imitative
behavior), and on the other hand this strategic election is strongly influenced by the
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behavior of the counterpart, i.e. the corrupt behavior of the citizens is encouraged
by the corrupt behavior of the auditors, and reciprocally.

To analyze the evolution of legal behavior by citizens and auditors, we admit
that the tax rate imposed by the policy maker is optimal, and then we introduce
a dynamical system of imitation based on the well known model of [9], where
the parameters of this dynamical system are strongly related with the degree of
efficiency of the monitoring system (see Remarks 1–3). Therefore, consider that:

1. Citizens imitate the behavior of their leader neighbors or successful people, and
they perceive the possibilities to be punished or not. This fact is captured by
the parameters b and f in the dynamical system (4), see below. According with
their beliefs, they will choose the most profitable behavior. So, this beliefs are
strongly related with the perception of the citizens of the governmental efficiency
to capture the illegal actions.

2. It is natural also to assume that the growth rate of corrupt auditors, Pı
ı
, increases

with their relative weight in the auditors’ population and decreases with the
number of citizens who are not willing to give bribes. Recall that ˇ D 1 � ˛

and � D 1 � ı, and all these variables must be non-negative in every time.
3. If in some time tf , ˛.tf / D 1, then for all t > tf , implies that Pı.t/ < 0 and

P̨ .t/ D 0. Reciprocally, if in a given time all auditor is corrupt then every citizen
is an evader, and then P̨ .t/ < 0 and Pı.t/ D 0.

To obtain the evolution for the share of corrupt behavior in a given time t D t0;
assuming that in t D t0, 0 < ˛.t0/ < 1 and 0 < ı.t0/ < 1: This situation can be
medelled using the following system of differential equations:

P̨ D ˛.a C b˛ � cı/;

P̌ D � P̨ ;

Pı D ı.d � e˛ C f ı/;

P� D �Pı:

(4)

where a; b; c; d; e; f are positive constants, and the magnitude of these parameters
are in direct relation with the policy implemented by the central authority, in
particular with the amount of fines and the probability that the corrupt behavior
can be caught and punished (see Remarks 1–2).

The study of many evolutionary models, social or biological, is based on
the determination and analysis of parameters or combinations of parameters that
determine the change in the qualitative behavior of the solutions of a system of
differential equations. In our case this study corresponds to the central authority,
who must find those combinations that achieve a better social growth. To ensure
that the appropriate values of the parameters, prevail in society, she must design a
suitable social, or economic policy. Certainly, this is not a simple task, however the
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identification of these parameters and the role they play in social evolution, can help
in the process of fulfilling this goal.

For instance in the first equation, the parameter c represents the negative weight
that the corrupt auditors play in the evolution of the society. It follows that the
social influence of this group, measured by c; decreases if m or p.m/ increase. The
parameter b represents the importance of the imitation inside the subpopulation of
the taxpayers, this value increases with the difference: uCIx.˛; I; t/ � uCNIx.˛; I/:
We assume that the citizens or auditors, can change their behavior followed up to
the present, if and only if there exists in society, a different behavior that may be
imitated. This leads us to conclude that if in time t D tf for instance ˛.tf / D 1 then
˛.t/ D 1 for all t � tf : Analogously, for the other cases, i.e., if ˇ.tf / D 1 then
ˇ.t/ D 1 for all t � tf and the same for the auditors. So, the dynamical system (4)
can be reformulated as:

P̨ D
8<
:
˛.a C b˛ � cı/; if 0 < ˛.t0/ < 1

0 8 t � tf W ˛.tf / D 1 or ˛.tf / D 0:

Pı D

8̂
<̂
ˆ̂:
ı.d � e˛ C f ı/;

0 8 t � tf W ı.tf / D 1 or ı.tf / D 0:

(5)

The parameter b; measures the effect of the imitation in the behavior of the
citizens. The growth rate of the legal behavior, is higher when greater the influence
of imitation in social behavior, measured by b:

@. P̨
˛
/

@˛
D b > 0:

The intensity of this parameters, depends strongly on the difference between the
utilities of the tax payers citizens and evaders. This shows that it is possible, for
the central authority, to design a policy to ensure legal behavior on the part of
citizens, (see Remark 1) which as we will see impact favorably also in the behavior
of auditors (see below Eq. (6)).

The pernicious effect on the society, of the corrupt behavior of auditors is
strongly related with the parameter c: Note that

@. P̨
˛
/

@ı
D �c < 0:

The parameter e; measure the rate at which decreases, by the effect of an
increased legal behavior of citizens, the corrupt behavior of auditors, and the
parameter f measure the rate at which increases by the effect of an increased illegal
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activity of the auditors, the corrupt behavior of auditors. This parameter is strongly
related with the role that the imitation plays in the society.

@.
Pı
ı
/

@˛
D �e < 0 and

@.
Pı
ı
/

@ı
D f > 0: (6)

Note that the incentives of the auditors to follow a corrupt behavior decrease, as
increase the percentage of citizens following the legal behavior.

Therefore:

Remark 3 If ı > aCb
˛

then, P̨ < 0 the growth rate of taxpayers will be negative. So,
only in the case where ı is large enough it is possible to observe an increased illegal
activity of the citizens. This means that in the absence of the corrupt auditors, tax
evasion tends to disappear.

Remark 4 If we get that in given period of time t D t0, the number of taxpayers is
large enough, ˛.t0/ > cı�a

b , then the citizens prefer to pay taxes. In the case where
˛.t0/ > c�a

b this preference dos not depend on the number of corrupt auditors. This
possibility is given in the case where ı D 1

This show, once again, that the main characteristics of the differential system are
strongly related with the policy of incentives chosen by the central planner.

The system (4) represents the structural dynamics of the behaviors of corrupt
auditors and taxpayer citizens. According with this evolutionary system the index
of corruption in the society (see Definition 1) evolves according with de differential
equation:

P�c.t/ D .1 � P̨ /C Pı:

From the dynamical system (5) we obtain de following proposition

Proposition 2 Coexist both corrupt and non-corrupt officials and citizens in the
economy. The relative share of every group depend on the policy followed by the
central authority.

To see this, the system (4) admits the following nullclines:

� W a C b˛ � cı D 0;

� W d � e˛ C f ı D 0:

(7)

defined in a closed bounded region, and suppose a positive half path which lies
entirely within that region.

Proof Note that the region Œ0; 1� � Œ0; 1� is invariant for this differential equation
system (4). Which means that, the solution of the system will remain permanently
in this region. Firstly, consider that the phase plane portrait of the nullclines (see
Fig. 1) is: Then, one of the different situations below is true:
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Fig. 1 Nullclines do
intersect in Œ0; 1� � Œ0; 1�

Fig. 2 Nullclines do not
intersect in Œ0; 1� � Œ0; 1�
with 0 < d

c < 1

1. The nullclines do intersect in Œ0; 1�� Œ0; 1�, see Fig. 1, and this is the case if e
f < 1

and b
c <

e
f :

2. The nullclines do not intersect in Œ0; 1� � Œ0; 1�, these cases are represented in
Fig. 2 and Fig. 3, then

a. � is below �; this is the case if a
c < 1 and b

c <
e
f ; or

b. a
c > 1 and e

f < 1; or
c. a

c < 1 and e
f > 1:

The more relevant case is 2(a). Note that in this case, the initial relation between
the percentages of honest citizens and corrupt auditors is the clue to that allows to
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Fig. 3 Nullclines do not intersect in Œ0; 1� � Œ0; 1�

understanding the future evolution of the population. So, if the initial values verify
the relationships

0 < ˛.t0/ < � f ı.t0/C d

e

and

1 > ı.t0/ >
a C b˛.t0/

c

then the population evolves in such way that all citizen does not like to be a taxpayer
and all auditor is corrupt. But if the initial number of honest citizens is large enough

˛.t0/ > � f ı.t0/C d

e

and

ı.t0/ <
a C b˛.t0/

c

the society evolves to an idyllic world without corruption. However, more realistic
are the situations in which:

0 < ˛.t0/ < � f ı.t0/C d

e
and 0 < ı.t0/ <

a C b˛.t0/

c

or

˛.t0/ > � f ı.t0/C d

e
and ı.t0/ >

a C b˛.t0/

c
;
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because, in this case, the society evolves to a steady state in which there exists
a positive percentage of corrupt auditors and evaders together with a positive
percentage of honest auditors and taxpayers see (Fig. 1).

The final distribution to which society arrives, in the case given by Proposition 2,
depends strongly, on the ability of the government to develop successful institutional
policies. In terms of our model, choosing a good policy means to implement the right
values for the main parameters, see Remarks 1–4.

4 Concluding Remarks: Institutions, Beliefs and Incentives

In this paper we show that there is a positive relationship between income inequality
and corruption. We also show that the evolutionary dynamics yields results such that
corruption prevails and/or coexists with non-corrupt behavior. But we can also get
the result of the eradication of corruption and tax evasion.

The evolution of corruption is the result of a free choice made by individuals
in a society. This choice is based on beliefs originated in the perception of the
actual world. These beliefs may be wrong or not, but define the future behavior of
individuals and thus the evolution of society. As [10] explained, all rational model
includes explicitly the beliefs, and the decision making as a process in two steps:

1. The step one entails the creation of a model on how the world is and how it
evolves in the future. This model establishes relationships between actions an
consequences.

2. In the second step, given such a model individuals choose the behavior or
the action that they prefer. This choice is an individual fact, and in principle
individuals do not consider the social implications of these choices. They do it
only taken account their individual beliefs and preferences.

So, what is the role of institutions in this process?

• Institutions must ensure that rational choice is freely made by individuals
depending on their personal interests and does not become counterproductive
or pernicious in the long period.

• Individuals not fully informed about the future performance of their current
behavior can choose rationally according with the information available and their
belief, but these can be wrong or incorrect when evaluated in light of the complete
information. For this purpose, institutions should design a policy of incentives,
rewards and penalties that citizens do choose correctly in full use of their talents
and abilities, compensating in this way, for the lack of information available to
citizens.

In terms of the dynamical system the responsibility of the central authority is to put
the society in the basin of attraction of a desirable state. To do this she must consider
the possibility to change the parameters, in such way that the initial conditions



Corruption, Inequality and Income Taxation 15

remain in the interior of such basin of attraction. If the central authority is not able
to obtain this result, then nothing will change and we are caught in a poverty trap
characterized by a system of institutional corruption.
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Discrete Symmetric Planar Dynamics

B. Alarcón, S.B.S.D. Castro, and I.S. Labouriau

Abstract We review previous results providing sufficient conditions to determine
the global dynamics for equivariant maps of the plane with a unique fixed point
which is also hyperbolic.

1 Introduction

The Discrete Markus-Yamabe Question is a problem concerning discrete dynamics,
formulated in dimension n by Cima et al. [9] as follows:
[DMYQ(n)] Let f W Rn �! Rn be a C1 map such that f .0/ D 0 and for any x 2 Rn,
Jf .x/ has all its eigenvalues with modulus less than one. Is it true that 0 is a global
attractor for the discrete dynamical system generated by f ?

It is known that the answer is affirmative in dimension 1 and there are counter-
examples for dimensions higher than 2, see [8, 14].

In dimension 2, Cima et al. [9] prove that an affirmative answer is obtained
when f is a polynomial map, and provide a counter example which is a rational
map. After this, research on planar maps focused on the quest for minimal sufficient
conditions under which the DMYQ has an affirmative answer. Alarcón et al. [6] use
the existence of an invariant embedded curve joining the origin to infinity to show
the global stability of the origin. Symmetry is a natural context for the existence of
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such a curve, and this led us to a symmetric approach to this problem and to the
results in [1–5] that we review in this article.

The present article studies maps f of the plane which preserve symmetries
described by the action of a compact Lie group. In this setting we characterise the
possible local dynamics near the unique fixed point of f , that we assume hyperbolic.
We establish for which symmetry groups local dynamics extends globally. For the
remaining groups we present illustrative examples.

2 Preliminaries

This section consists of definitions and known results about topological dynamics
and equivariant theory. These are grouped in two separate subsections, which are
elementary for readers in each field, containing material from the corresponding
sections of [1–5] and is included here for ease of reference.

2.1 Topological Dynamics

We consider planar topological embeddings, that is, continuous and injective maps
defined in R2. The set of topological embeddings of the plane is denoted by
Emb.R2/.

Recall that for f 2 Emb.R2/ the equality f .R2/ D R2 may not hold. Since every
map f 2 Emb.R2/ is open (see [12]), we will say that f is a homeomorphism if f is
a topological embedding defined onto R2. The set of homeomorphisms of the plane
will be denoted by Hom.R2/. When H is one of these sets we denote by H C (and
H �) the subset of orientation preserving (reversing) elements of H .

We denote by Fix. f / the set of fixed points of a continuous map f W R2 ! R2.
Let !. p/ be the set of points q for which there is a sequence nj ! C1 such that

f nj. p/ ! q. If f 2 Hom.R2/ then ˛. p/ denotes the set !. p/ under f�1.
Let f 2 Emb.R2/ and p 2 R2. We say that!. p/ D 1 if k f n. p/k ! 1 as n goes

to 1, where k�k denotes the usual Euclidean norm. Analogously, if f 2 Hom.R2/,
we say that ˛. p/ D 1 if k f�n. p/k ! 1 as n goes to 1.

A map f 2 Emb.R2/ is dissipative if there exists a compact set W � R2 that is
positively invariant and attracts uniformly all compact sets. This means that f .W/ �
W and for each x 2 R2,

dist. f n.x/;W/ ! 0; as n ! 1

uniformly on balls kxk � r, r > 0. Observe that in the case f 2 Hom.R2/ the
dissipativity of f means that 1 is asymptotically stable for f�1.

We say that 0 2 Fix. f / is a local attractor if its basin of attraction U D f p 2
R2 W !. p/ D f0gg contains an open neighbourhood of 0 in R2 and that 0 is a global
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attractor if U D R2. The origin is a stable fixed point if for every neighborhood U
of 0 there exists another neighborhood V of 0 such that f .V/ � V and f .V/ � U.
Therefore, the origin is an asymptotically local (global) attractor or a (globally)
asymptotically stable fixed point if it is a stable local (global) attractor. See [7] for
examples.

We say that 0 2 Fix. f / is a local repellor if there exists a neighbourhood V of
0 such that !. p/ … V for all 0 ¤ p 2 R2 and a global repellor if this holds for
V D R2.

The origin is an asymptotically global repellor if it is a global repellor and,
moreover, if for any neighbourhood U of 0 there exists another neighbourhood V
of 0, such that, V � f .V/ and V � f .U/.

When the origin is a fixed point of a C1-map of the plane, the origin is a
local saddle if the two eigenvalues of Df0, ˛; ˇ, are both real and verify 0 <

j˛j < 1 < jˇj. In case the two eigenvalues are strictly positive the origin is
called a direct saddle. We define the origin to be a global (topological) saddle for
a C1�homeomorphism if additionally its stable and unstable manifolds Ws.0; f /,
Wu.0; f / are unbounded sets that do not accumulate on each other, except at 0 and
1, and such that

R2 n .Ws [ Wu [ f1g/ D U1 [ U2 [ U3 [ U4;

where for all i D 1; : : : ; 4 Ui � R2 is open connected and homeomorphic to R2

verifying:

(i) either f .Ui/ D Ui or there exists an involution ' W R2 ! R2 such that . f ı
'/.Ui/ D Ui

(ii) for all p 2 Ui both k f n. p/k ! 1 and k f�n. p/k ! 1 as n goes to 1.

We say that f 2 Emb.R2/ has trivial dynamics if !. p/ � Fix. f /, for all p 2
R2. Moreover, we say that a planar homeomorphism has trivial dynamics if both
!. p/; ˛. p/ � Fix. f /, for all p 2 R2.

Let f W RN ! RN be a continuous map. Let � W Œ0;1/ ! R2 be a topological
embedding of Œ0;1/ : As usual, we identify � with � .Œ0;1// : We will say that �
is an f -invariant ray if �.0/ D .0; 0/ ; f .�/ � � ; and limt!1 k�.t/k D 1.

Proposition 1 (Alarcón et al. [6]) Let f 2 EmbC.R2/ be such that Fix. f / D f0g.
If there exists an f -invariant ray � , then f has trivial dynamics.

Corollary 1 Let f 2 HomC.R2/ be such that Fix. f / D f0g. If there exists an f -
invariant ray � , then for each p 2 R2, as n goes to ˙1, either f n. p/ goes to 0 or
k f n. p/k ! 1.

In order to explain the construction of examples in Sect. 5 we need to introduce
the concept of prime end.

We say that f W R2 ! R2 is an admissible homeomorphism if f is orientation
preserving, dissipative and has an asymptotically stable fixed point with proper and
unbounded basin of attraction U � R2. Note that U is non empty, so the proper
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condition follows when the fixed point is not a global attractor. Since f .U/ D U, we
can obtain automatically the unboundedness condition if we suppose that f is area
contracting.

Let f W R2 ! R2 be an admissible homeomorphism and consider the
compactification of f to the Riemann sphere f W S2 ! S2. Hence U � S2 D
R2 [ f1g. A crosscut C of U is an arc homeomorphic to the segment Œ0; 1� such
that a; b … U and PC D C n fa; bg � U, where a and b are the extremes of C. Every
crosscut divides U into two connected components homeomorphic to the open disk
d D fz 2 C W jzj < 1g.

Let x� be a point in U. For convenience we will consider only the crosscut such
that x� … C. We denote by D.C/ the component of U n C that does not contain x�.
A null-chain is a sequence of pairwise disjoint crosscuts fCngn2N such that

lim
n!1 diam.Cn/ D 0 and D.CnC1/ � D.Cn/;

where diam.Cn/ is the diameter of Cn on the Riemann sphere.
Two null-chains are equivalent fCngn2N � fC�n gn2N if given m 2 N

D.Cn/ � D.C�m/ and D.C�n / � D.Cm/;

for n large enough. A prime end is defined as a class of equivalence of a null-chain
and the space of prime ends is

P D P.U/ D C = �;

where C is the set of all null-chains of U.
The disjoint union U� D U [ P is a topological space homeomorphic to the

closed disk Nd D fz 2 C W jzj � 1g such that its boundary is precisely P.
It is well studied in [13] that the Theory of Prime Ends implies that an admissible

homeomorphism f induces an orientation preserving homeomorphism f � W P ! P
in the space of prime ends. This topological space is homeomorphic to the circle,
that is P ' T D R=Z, and hence the rotation number of f � is well defined, say N	 2
T. The rotation number for an admissible homeomorphism is defined by 	. f / D N	.

2.2 Equivariant Theory

Let 
 be a compact Lie group acting on R2, that is, a group which has the structure
of a compact C1-differentiable manifold such that the map 
 � 
 ! 
 , .x; y/ 7!
xy�1 is of class C1. The following definitions and results are taken from Golubitsky
et al. [10], especially Chapter XII, to which we refer the reader interested in further
detail.
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We think of a group mostly through its action or representation on R2. A linear
action of 
 on R2 is a continuous mapping


 � R2 ! R2

.�; p/ 7! �p

such that, for each � 2 
 the mapping 	� that takes p to �p is linear and, given
�1; �2 2 
 , we have �1.�2p/ D .�1�2/p. Furthermore the identity in 
 fixes every
point. The mapping � 7! 	� is called the representation of 
 and describes how
each element of 
 transforms the plane.

We consider only standard group actions and representations. A representation of
a group 
 on a vector space V is absolutely irreducible if the only linear mappings
on V that commute with 
 are scalar multiples of the identity.

Given a map f W R2 ! R2, we say that � 2 
 is a symmetry of f if f .�x/ D
� f .x/. We define the symmetry group of f as the biggest closed subset of GL.2/
containing all the symmetries of f . It will be denoted by 
f .

We say that f W R2 ! R2 is 
 -equivariant or that f commutes with 
 if

f .�x/ D � f .x/ for all � 2 
:

It follows that every map f W R2 ! R2 is equivariant under the action of its
symmetry group, that is, f is 
f -equivariant.

Let ˙ be a subgroup of 
 . The fixed-point subspace of ˙ is

Fix.˙/ D f p 2 R2 W �p D p for all � 2 ˙g:

If ˙ is generated by a single element � 2 
 , we write Fixh�i.
We note that, for each subgroup˙ of 
 , Fix.˙/ is invariant by the dynamics of

a 
 -equivariant map ([10], XIII, Lemma 2.1).
When f is 
 -equivariant, we can use the symmetry to generalize information

obtained for a particular point. This is achieved through the group orbit 
 x of a
point x, which is defined to be


 x D f�x W � 2 
 g:

Lemma 1 Let f W R2 ! R2 be 
 -equivariant and let p be a fixed point of f . Then
all points in the group orbit of p are fixed points of f.

Proof If f . p/ D p it follows that f .�p/ D � f . p/ D �p, showing that �p is a fixed
point of f for all � 2 
 .

The relation between the group action and the Jacobian matrix of an equivariant
map f is obtained through the following

Lemma 2 Let f W V ! V be a 
 -equivariant map differentiable at the origin.
Then Df .0/, the Jacobian of f at the origin, commutes with 
 .
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Proof Since f is 
 -equivariant we have f .�:v/ D � f .v/ for all � 2 
 and v 2 V .
Differentiating both sides of the equality with respect to v, we obtain Df .�:v/� D
�Df .v/ and, evaluating at the origin gives Df .0/� D �Df .0/:

3 Symmetries in the Plane

In this section, we describe the consequences for the local dynamics arising from the
fact that a map is equivariant under the action of a compact Lie group 
 . These are
patent in the structure of the Jacobian matrix at the origin, obtained using Lemma 2.

Since every compact Lie group in GL.2/ can be identified with a subgroup of the
orthogonal group O.2/, we need only be concerned with the groups we list below.

Compact Subgroups of O.2/

• O.2/, acting on R2 ' C as the group generated by � and  given by

�:z D ei� z; � 2 S1 and :z D Nz:

• SO.2/, acting on R2 ' C as the group generated by � given by

�:z D ei� z; � 2 S1:

• Dn, n � 2, acting on R2 ' C as the finite group generated by � and  given by

�:z D e
2�i
n z and :z D Nz:

• Zn, n � 2, acting on R2 ' C as the finite group generated by � given by

�:z D e
2�i
n z:

• Z2.hi/, acting on R2 as

:.x; y/ D .x;�y/:

Since most of our results depend on the existence of a unique fixed point for f ,
it is worthwhile noting that the group actions we are concerned with are such that
Fix.
 / D f0g. Therefore, if f is 
 -equivariant then f .0/ D 0.

If the representation is absolutely irreducible, we know that Df .0/ is a multiple
of the identity and thus it has one real eigenvalue of geometric multiplicity two.
Therefore, the origin is locally either an attractor or a repellor. We have the following
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Lemma 3 The standard representation on R2 is absolutely irreducible for O.2/
and Dn with n � 3 and for no other subgroup of O.2/.

Proof The proof follows by direct computation.

• O.2/: the generators of this group are � and  and it suffices to find the linear
matrices that commute with both. A real matrix

�
a b
c d

�

commutes with  if and only if b D c D 0. In order for such a matrix to commute
with any rotation it must be

�
a 0
0 d

��
cos � � sin �
sin � cos �

�
D
�

cos � � sin �
sin � cos �

��
a 0
0 d

�

which holds when a D d or sin � D 0 for all � 2 S1. Therefore, the action of
O.2/ is absolutely irreducible.

• SO.2/: the elements of SO.2/ are rotation matrices which commute with any
other rotation matrix, also non-diagonal ones.

• Dn, n � 3: see the proof for O.2/. In the last step, we must have a D d or
sin 2�=n D 0 which is never satisfied for n � 3. Hence, the action is absolutely
irreducible.

• Zn, n � 3: as for SO.2/, any rotation matrix commutes with the rotation of 2�=n,
including non-diagonal ones.

• Z2.hi/: see the proof for  2 O.2/ to conclude that linear commuting matrices
are diagonal but not necessarily linear multiples of the identity.

• Z2: all linear maps commute with �Id.
• D2 D Z2 ˚ Z2.hi/: as above, Z2 introduces no restrictions and for commuting

with  it suffices that the map is diagonal.

The following result is then a straightforward consequence of the previous proof.

Lemma 4 The linear maps that commute with the standard representations of the
subgroups of O.2/ are rotations and homotheties (and their compositions) for SO.2/
and Zn, n � 3, linear multiples of the identity for O.2/ and Dn, n � 3, any linear
map for Z2 and maps represented by diagonal matrices for the remaining groups.

Proof The only linear maps that were not already explicitly calculated in the
previous proof are those that commute with rotations. We have

�
a b
c d

��
cos � � sin �
sin � cos �

�
D
�

cos � � sin �
sin � cos �

��
a b
c d

�
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if and only if either sin � D 0 for all � 2 S1 or a D d and b D �c. Hence, the only
maps commuting with either SO.2/ or Zn, n � 3, are rotations and homotheties and
their compositions.

With the results obtained so far, we are able to describe the Jacobian matrix at
the origin for maps equivariant under each of the groups above.

Proposition 2 (Proposition 2.3 in [4]) Let f be a planar map differentiable at the
origin. The admissible forms for the Jacobian matrix of f at the origin are those
given in Table 1 depending on the symmetry group of f .

Furthermore, the symmetry constrains the normal form as described in
[3, Theorem 2.1] and in the next result, and its consequences for the linear part
of f appear in Table 1.

Proposition 3 (Proposition 3.1 in [3]) Let 
 be a compact Lie group acting on
R2. Assume 
 is the symmetry group of a polynomial map f .

(i) If  2 
 , then f does not answer the DMYQ(2) in the affirmative unless f is of
the form:

f .x; y/ D
�

d1 0
0 d2

��
x
y

�
C y2p.y2/

�
1

0

�
:

Table 1 Compact subgroups of O.2/ and the admissible forms of the Jacobian at the origin of
maps equivariant under the standard action of each group. If in addition the Jacobian at the origin
is hyperbolic, then this determines the local stability

Symmetry group Df .0/ Hyperbolic local dynamics

O.2/

 
˛ 0

0 ˛

!
˛ 2 R Attractor/repellor

SO.2/

 
˛ �ˇ
ˇ ˛

!
˛; ˇ 2 R Attractor/repellor

Dn; n � 3
 
˛ 0

0 ˛

!
˛ 2 R Attractor/repellor

Zn; n � 3
 
˛ �ˇ
ˇ ˛

!
˛; ˇ 2 R Attractor/repellor

Z2 Any matrix Saddle/attractor/repellor

Z2.hi/
 
˛ 0

0 ˇ

!
˛; ˇ 2 R Saddle/attractor/repellor

D2 D Z2 ˚ Z2.hi/
 
˛ 0

0 ˇ

!
˛; ˇ 2 R Saddle/attractor/repellor
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(ii) If there is an element � 2 
 of order n � 3, then f does not answer the
DMYQ(2) in the affirmative unless f is linear. Moreover, the linear part of f is
either a homothety or a rotation matrix.

4 Dynamics: Local to Global

Figure 1 illustrates the dynamics near the origin of equivariant maps for several
symmetry groups. A common feature of Fig. 1a–d is the existence of at least one
symmetry axis. This axis is the subspace fixed by a reflection and hence it is
invariant under the dynamics. Such a fixed-point subspace naturally contains an
invariant ray (see [4, Lemma 3.3]). This allows us to use Proposition 1 to obtain the
following results:

Proposition 4 (Proposition 3.4 in [4]) Let f 2 Emb.R2/ have symmetry group 

with  2 
 , such that Fix. f / D f0g. Suppose one of the following holds:

.a/ f 2 EmbC.R2/ and f does not interchange connected components of R2 n
Fixhi.

.b/ Fix. f 2/ D f0g.

Then for each p 2 R2 either !. p/ D f0g or !. p/ D 1.

The next example shows that assumption .b/ in Proposition 4 is necessary in the
case where f interchanges connected components of R2 n Fixhi.

Example Consider the map f W R2 ! R2 defined by

f .x; y/ D
�
�ax3 C .a � 1/x;� y

2

	
0 < a < 1:

It is easily checked that f has symmetry group D2 and verifies (see Fig. 2):

1. f 2 EmbC.R2/ is an orientation-preserving diffeomorphism.
2. Spec. f /\ Œ0;1/ D ;.
3. 0 is a local hyperbolic attractor.
4. Fix. f 2/ ¤ f0g.

a) b) c) d)

Fig. 1 Local/global attractor with symmetry: (a) O.2/; (b) D4 (without symmetries Z8 or SO.2/);
(c) D2 (without symmetry D4); (d) Z2hi (without symmetry D4)



26 B. Alarcón et al.

Fig. 2 A local attractor which is not a global attractor due to the existence of periodic orbits

a) b) c)

Fig. 3 Local/global saddle with symmetry: (a) D2; (b) Z2./; (c) Z2

Theorem 1 (Theorem 3.5 in [4]) Let f 2 Emb.R2/ be dissipative with symmetry
group 
 with  2 
 such that Fix. f / D f0g. Suppose in addition that one of the
following holds:

.a/ f 2 EmbC.R2/ and f does not interchange connected components of R2 n
Fixhi.

.b/ There exist no 2-periodic orbits.

Then 0 is a global attractor.

Corollary 2 (Corollary 3.6 in [4]) Suppose the assumptions of Theorem 1 are
verified and f is differentiable at 0. If every eigenvalue of Df .0/ has norm strictly
less than one, then 0 is a global asymptotic attractor.

For analogous results concerning a repellor see [4].
For the groups Z2, Z2.hi/ and D2 D Z2 ˚ Z2.hi/ the origin may also be a

saddle as illustrated in Fig. 3. For D2, we have:

Proposition 5 ([5]) Let f 2 Hom.R2/ be a C1-homeomorphism with symmetry
group D2 such that Fix. f / D f0g. Suppose also that one of the following holds:

.a/ f is orientation preserving and 0 is a direct saddle.

.b/ There exist no 2-periodic orbits.

Then if 0 is a local saddle, then 0 is a global saddle.

In order to obtain a global saddle for f with symmetry group either Z2 or Z2.hi/,
we need the additional assumption that f is a diffeomorphism, see [5].
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5 Strictly Local Dynamics

Figure 4 shows the local dynamics for maps equivariant under the action of groups
that do not contain a reflection. These are SO.2/ and Zn. For these groups, local
dynamics of attractor/repellor type does not necessarily extend to global dynamics,
as we proceed to indicate.

We use examples referring to a local attractor. Examples with a local repellor
may be obtained considering f�1.

The dynamics of an SO.2/-symmetric embedding is mostly determined by its
radial component, as can be seen by writing f in polar coordinates as f .	; �/ D
.R.	; �/;T.	; �//. It is easily shown that since f is SO.2/-equivariant, the radial
component R.	; �/ only depends on 	 and R 2 Emb.RC/. The fixed points of the
radial component are invariant circles for f hence knowledge about local dynamics
does not contribute to the description of global dynamics unless Fix.R/ D f0g.

The next two theorems show how a local attractor may be prevented from being
a global attractor in a Zn-equivariant problem. Thus the examples in Fig. 4a, b may
or may not extend to the whole plane.

Theorem 2 (Theorem 3.1 in [2]) For each n > 2 there exists f W R2 ! R2 such
that:

(a) f is a differentiable homeomorphism;
(b) f has symmetry group Zn;
(c) Fix. f / D f0g;
(d) The origin is a local attractor;
(e) There exists a periodic orbit of minimal period n.

The idea of the proof is to start with a Z4-equivariant example due to Szlenk (see
[9]), sharing the same properties. Each quadrant of the plane is invariant under the
map f4 of this example. We deform the first quadrant into a sector of the plane,
of angle 2�=n and then use the Zn symmetry to cover the rest of the plane, as
illustrated in Fig. 5. The main difficulty is to prove that the result is a differentiable
homeomorphism.

a) b)

Fig. 4 Local attractor with symmetry: (a) Z2; (b) Z4
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Fig. 5 Construction of the Zn-equivariant example Fn in a fundamental domain of the Zn-action,
shown here for n D 6

The Zm-equivariant homeomorphisms constructed in Theorem 2 have rotation
number 1=m. So we might be led to think that the presence of the Zm-symmetry
implies that the rotation number of the homeomorphism should be rational. One
consequence would be that the asymptotically stable fixed point is a global attractor
if and only if there are no periodic points different from the fixed point.

The next result shows that this is false. We prove in [1] the existence of Zm-
equivariant and dissipative homeomorphisms in the plane with an asymptotically
stable fixed point such that the induced map in the space of prime ends is conjugated
to a Denjoy map, which is also Zm-equivariant. The idea is to construct Zm-
equivariant Denjoy maps in the circle and then, in the context of symmetry, to
reproduce the construction used to prove the following:
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Proposition 6 (Proposition 2 in [11]) Given w 2 .0; 1/ n Q and a Denjoy map
�, there exists an admissible map f with rotation number Nw and such that f � is
topologically conjugated to �.

Observe that two admissible homeomorphisms f1; f2 with the same basin of
attraction U verify that

. f1 ı f2/
� D f �1 ı f �2 :

Let f be an admissible homeomorphisms with basin of attraction U. Suppose f is
Zm-equivariant and U is also invariant by R 1

m
. Hence, the following holds:

f � ı R�1
m

D R�1
m

ı f �:

Since R�1
m

is a periodic homeomorphism of T with rotation number 1=m, then R�1
m

is conjugated to the linear rotation R 1
m

and f � is said to be Zm-equivariant in the
space of prime ends.

Theorem 3 (Theorem 4.2 in [1]) Given an irrational number � … Q, there exists a
Zm�equivariant and admissible homeomorphism in R2 with rotation number N� 2 T
that induces a Denjoy map in the circle of prime ends which is also Zm�equivariant.

Hence, [1] shows that for Zm-equivariant homeomorphisms one cannot guarantee
that the rotation number is rational and proves the existence of Zm-equivariant
homeomorphisms with some complicated and interesting dynamical features.
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Decision Analysis in a Model of Sports Pricing
Under Uncertain Demand

Alberto A. Álvarez-López and Inmaculada Rodríguez-Puerta

Abstract We consider a model, due to Andersen and Nielsen (Econ Lett
118(2):262–264, 2013), concerning the behavior of a risk-averse sports team under
uncertainty in demand: the team chooses a value for the price of its ticket, but the
ticket demand is stochastic at the moment of decision. For this model, we carry out
a decision analysis by studying several comparative-static effects not considered
by the authors in their paper. Specifically, we examine the effect of changes in the
team’s risk aversion, and also the effect of a variation in the risk of the random
demand. Furthermore, we enhance the model by considering a proportional profit
tax, and we study the effect of a variation in the tax rate. We derive some conditions
under which the sports team finds optimal to reduce the ticket price as a consequence
of a rise in the tax rate.

1 Introduction

In [2], Andersen and Nielsen present a relevant static model of decision for a risk-
averse sports team under uncertain demand. The team chooses a price for its ticket
(for a particular match), but the decision must be made facing a stochastic demand
for tickets. They find that the team will price in the inelastic part of the demand
curve, according to empirical evidence coming from the sports economics literature
(see the references in [2]). The authors also consider a comparative-static effect: the
influence on the optimal ticket price of a variation in fixed costs.
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With this model as the starting point, we carry out a decision analysis for the
sports team. To this end, we will examine the influence on the optimal ticket
price of two kinds of variation: in the team’s risk aversion, and in the risk of the
random demand. In addition, we will enhance the model with the consideration of a
proportional profit tax, and we will study the effect of changes in its rate.

In Sect. 2, we formulate the model and derive its main result. The presentation is
the same as that given by Andersen and Nielsen in their paper, except for some
relevant methodological details. Namely, in this section we start making use of
a lemma (Lemma 2) that allows us to obtain useful bounds for the expectation
of products of random variables. This lemma is uncommon in the literature, but
applying it simplifies and enhances the usual Sandmo’s methodology (see [5]).

With Sect. 3, we properly start the decision analysis for the sports team by
studying the effect of a change in the team’s risk aversion. As a straightforward
application of it, we also study the effect of a variation in fixed costs.1

Section 4 focuses on the effect of a variation in the risk of the random demand,
expressed as a variation in its standard deviation.

In Sect. 5, the proportional profit tax is included in the model, and the effect of a
variation in its rate is examined.

Finally, Sect. 6 presents some concluding remarks.
Throughout this paper, we shall denote the Arrow–Pratt measures of risk aversion

by ru (absolute) and Ru (relative) for a firm with a Bernoulli utility function u. In
addition, we will make use of the acronyms CARA, DARA, IARA, CRRA, etc.,
in the usual manner: to stand for constant, decreasing or increasing, absolute or
relative, risk aversion.

2 The Model

We consider a sports team that faces an uncertain demand. The team must fix a ticket
price. Given a ticket price p > 0, the actual demand is postulated in the following
form:

x. p; "/ D f . p/"C ˛." � 1/; (1)

where f . p/ > 0 is the theoretical non-random demand for the price p, " > 0 is
a non-degenerate random variable with EŒ"� D 1, and ˛ > 0 is a (non-random)

1The effect of fixed costs is examined in [2] only for the case of a team that exhibits decreasing
absolute risk aversion.
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number.2 Ex post profits are given by

�. p; "/ D pf . p/"C p˛." � 1/� B;

where B > 0 are fixed costs.3

The sports team’s attitude towards risk is modeled by a Bernoulli utility
function u, sufficiently regular (at least of class C 2 on R) and such that u0 > 0

and u00 < 0. In particular, the team is risk averse. The expected utility of choosing
the price p is given by U. p/ 	 E

�
u
�
�. p; "/

��
. The team maximizes this function U

on the interval Œ0;C1/:

max
p2Œ0;C1/

U. p/: (2)

Writing M. p/ 	 f . p/ C pf 0. p/, the first- and second-order derivatives of U take
the form:

U0. p/ D E
�
u0.�/

�
M. p/"C ˛." � 1/

��
;

U00. p/ D E
�
u00.�/

�
M. p/"C ˛." � 1/

�2 C u0.�/M0. p/"
�
:

We assume that U00. p/ < 0 for each p 2 Œ0;C1/,4 and thus the function U is
strictly concave on Œ0;C1/. Furthermore, we have that U0.0/ D u0.�B/f .0/ > 0,
and thereby there is no corner solution. That is, if the maximization problem (2)
admits a solution, this solution is positive and unique, and is characterized by the
first-order condition U0. p/ D 0.

Before studying the properties of the problem (2), let us consider the sports
team’s problem in absence of uncertainty, that is, as if the demand were certain and
solely described by f . This problem is exactly that of maximizing expected profits,
which takes the form

max
p2Œ0;C1/

pf . p/� B: (3)

The objective function of this maximization problem is simply the team’s total
income, and its first derivative is the marginal revenue: M. p/ D f . p/Cpf 0. p/. From
now on, we assume that the maximization problem (3) has a unique solution p0. We
have that p0 > 0 (since M.0/ D f .0/ > 0), and M. p0/ D 0 (first-order condition).

2According to [2, p. 262], the number ˛ “determines the strength of the additive shift relative to the
multiplicative shift.” On the other hand, it is assumed that f is a function of class C 2 on Œ0;C1/.
3In [2], the fixed costs are denoted by F. The marginal costs are assumed to be null (this is usual in
the literature on Sports Economics, as pointed out in [2]). In addition, capacity restrictions of the
team’s stadium are not considered.
4A sufficient condition for U00 < 0 is the following: f 0 < 0 and f 00 6 0.



34 A.A. Álvarez-López and I. Rodríguez-Puerta

Notice that, at a price for which the marginal revenue is null (as it is for p0), the
elasticity of demand equals �1.

Coming back to the problem (2), the following lemma gives us the sign of one of
the terms in the expression of U0. p/.

Lemma 1 For all p 2 .0;C1/, we have that E
�
u0
�
�. p; "/

�
˛." � 1/� < 0.

Proof Fix p > 0. We apply Lemma 2 (see Appendix) with the random variable X D
" � 1, and the real functions  	 1 and �.s/ D u0

�
pf . p/.s C 1/ C p˛s � B/:

since u00 < 0 and pf . p/ C p˛ > 0, the function � is strictly decreasing, and we
obtain:

E
�
u0.�/." � 1/

�
< u0.�B/ � EŒ" � 1� D 0;

and hence the result is proven (recall that ˛ > 0). ut
The following proposition now establishes that the maximization problem (2) has

indeed a solution, and compares it to that of the problem (3).

Proposition 1 There exists a price p� > 0 such that p� is the (unique) solution of
the maximization problem (2). Furthermore: p� < p0.

Proof We know that M. p0/ D 0, and hence U0. p0/ D E
�
u0
�
�. p0; "/

�
˛." � 1/

�
.

According to Lemma 1, we have that U0. p0/ < 0. As U0.0/ > 0, there exists a
point p� 2 .0; p0/ such that U0. p�/ D 0. This point p� > 0 is the unique solution
of the problem (2), and p� < p0. ut

That is: on facing uncertain demand, the risk-averse sports team reduces the
optimal price of its tickets.

Now, as a result of the equality U0. p�/ D 0 and Lemma 1, we deduce:

E
�
u0.��/M. p�/"

� D � E
�
u0.��/˛." � 1/� > 0;

where �� 	 �. p�; "/. Thus M. p�/ > 0. This means that the sports team prices in
the inelastic part of the demand curve.

These two results correspond to those presented by Andersen and Nielsen in [2].

3 Effect of a Change in Risk Aversion

In this section, we wish to study the effect on the optimal ticket price of a change in
the team’s risk aversion. To this end, we consider a new Bernoulli utility function v
in the same conditions as u, and define V. p/ 	 E

�
v
�
�. p; "/

��
. We assume that the

absolute risk aversion for v is strictly greater than that for u, in the sense that rv > ru

(that is: rv.s/ > ru.s/ for all s). Also, we denote by p�u and p�v the corresponding
optimal prices.
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The following proposition holds:

Proposition 2 Assume that rv > ru. We have that p�v < p�u .

Proof Fix p > 0 such that M. p/ > 0. We can write:

U0. p/ D E
�
u0.�/

�
M. p/"C ˛." � 1/�� D E

h
v0.�/

u0.�/
v0.�/

�
M. p/"C ˛." � 1/�i:

Now, consider the real functions

�.s/ D u0
�

p
�

f . p/C ˛
� s C ˛

M. p/C ˛
� p˛ � B

	
;

 .s/ D v0
�

p
�

f . p/C ˛
� s C ˛

M. p/C ˛
� p˛ � B

	
;

and set � D �= . Thus  > 0; also, as .u0=v0/0 D .u0=v0/.rv � ru/ > 0 (recall the
hypothesis), the function � results to be strictly increasing. By applying Lemma 2
(see Appendix) to these functions and the random variable X D M. p/"C ˛."� 1/,
we obtain:

U0. p/ D E
h
v0.�/

u0.�/
v0.�/

�
M. p/"C˛."�1/�i > �.0/E

�
v0.�/

�
M. p/"C˛."�1/��:

Writing this inequality at p D p�v yields:

U0. p�v / > �.0/E
�
v0
�
�. p�v ; "/

��
M. p�v /"C ˛." � 1/

�� D 0;

according to the first-order condition for p�v with the utility function V . That
is: U0. p�v / > 0 D U0. p�u /. Since the function U0 is strictly decreasing, it follows
that p�v < p�u . ut

Thus, if risk aversion increases, the optimal price for the ticket decreases.

An Application: Effect of a Variation in Fixed Costs The effect on the optimal
ticket price of an increase in fixed costs can be readily studied as a consequence of
Proposition 2. To see this, assume that fixed costs rise from its original value B to a
new value B0, and set ˇ D B0 � B > 0. We can consider the utility v.t/ D u.t C ˇ/;
depending on whether the team exhibits DARA, CARA, or IARA, we have: ru > rv ,
ru D rv , or ru 6 rv , respectively. With an easy generalization of Proposition 2, we
obtain the following conclusion: an increase in fixed costs reduces, leaves constant,
or increases, the optimal ticket price depending on whether the sports team exhibits
DARA, CARA, or IARA, respectively.

A reasonably intuitive explanation of this behavior can be given. Assume the
IARA case, for instance. The team gets poorer when fixed costs increase. As the
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team exhibits IARA, its risk aversion decreases. As a result, the team will price at a
higher value.5

4 Variations in the Risk of the Random Demand

A variation in the risk of a random variable can be formulated under several
approaches. For instance, in terms of stochastic dominance (usually, first- or second-
order stochastic dominance). Here we will focus on the effect of a variation in the
standard deviation. To this end, set: " D 1 C �ı, where � > 0 is a number and ı
is a random variable with EŒı� D 0 and VarŒı� D 1, so that VarŒ"� D �2. We wish
to examine the effect on the optimal ticket price p� of a variation in the standard
deviation � .6

We denote by dp�=d� the corresponding comparative-static effect of � on p�.
The following proposition establishes a sufficient condition for this effect to be
negative.

Proposition 3 If the function u00 is decreasing, then dp�=d� < 0.

Proof According to the Implicit Function Theorem applied to the first-order
condition U0. p�/ D 0, we have that dp�=d� equals:

�E
�
u00.��/p

�
f . p/C ˛

�
ı
�
M. p/C M. p/�ı C ˛�ı

�C u0.��/
�
M. p/C ˛

�
ı
�

U00. p�/

(recall that �� D �. p�; "/). As U00. p�/ < 0, the sign of dp�=d� is the same as that
of its numerator. The numerator can be written in the following form:

p
�

f . p/C ˛
�
M. p/E

�
u00.��/ı

�C p
�

f . p/C ˛
��

M. p/C ˛
�
� E

�
u00.��/ı2

�
C �

M. p/C ˛
�

E
�
u0.��/ı

�
:

Notice that each factor written out of the expectation operator is positive. Now
the second addend is negative, and also the third addend according to Lemma 1
(note that ı D ." � 1/=�). About the first addend, it is negative or null provided
that u00 is decreasing, as a result of applying Lemma 2 taking  	 1, the decreasing

5As pointed out in footnote 1, Andersen and Nielsen also study the effect of fixed costs (for the
DARA case) in their paper (see [2, p. 263]). They give a direct proof of the result.
6Notice that the standard deviation of the random variable x. p; "/ (see (1)) is

�
f . p/C˛�� . Thus a

variation in � is indeed equivalent to a variation in the standard deviation of the random demand x.
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function �.s/ D u00
�
pf . p/.1C �s/C p˛�s � B

�
, and the random variable X D ı:

E
�
u00.��/ı

�
6 �.0/EŒı� D 0:

Finally, indeed dp�=d� < 0. ut

5 Consideration of a Proportional Profit Tax

In this section, we consider that there exists a proportional profit tax at a rate � ,
with 0 < � < 1. Therefore, after-tax profits are given by

�� . p; "/ D .1 � �/
�
pf . p/"C p˛." � 1/� B

�
;

and the new utility to be maximized is U� . p/ D E
�
u
�
�� . p; "/

��
. We assume,

as before with the no-tax model, that U00� < 0, and eventually that the new
maximization problem admits a solution p�� that is positive and unique. We would
like to study the effect on the optimal ticket price p�� of a variation in the tax rate � .

Write dp�� =d� to stand for the corresponding comparative-static effect of � on p�� .
The following proposition gives us its sign, which is closely related to the relative
risk aversion of the sports team.

Proposition 4 Depending on whether the sports team exhibits DRRA, CRRA, or
IRRA, we have that dp�� =d� 6 0, dp�� =d� D 0, or dp�� =d� > 0, respectively.

Proof From the first-order condition U0� . p�� / D 0, we obtain:

dp��
d�

D �E
��u00.��� / � ��� � �M. p�� /"C ˛." � 1/��

U00� . p�� /
;

where ��� 	 ��. p�� ; "/. As U00� . p�� / < 0, the sign of dp�� =d� is the same as that of
its numerator. We can write:

E
��u00.��� / ���� � �M. p�� /"C˛."�1/�� D E

�
u0.��� /Ru.�

�
� /
�
M. p�� /"C˛."�1/��:

Now, consider the following real functions:

 .s/ D u0
�
.1 � �/

�
p��
�

f . p�� /C ˛
� s C ˛

M. p�� /C ˛
� p�� ˛ � B

	�
;

�.s/ D Ru

�
.1 � �/

�
p��
�

f . p�� /C ˛
� s C ˛

M. p�� /C ˛
� p�� ˛ � B

	�
:



38 A.A. Álvarez-López and I. Rodríguez-Puerta

We have that > 0, and also that � is decreasing, constant, or increasing, according
as the team exhibits DRRA, CRRA, or IRRA, respectively.7 Furthermore, consider
the random variable X D M. p�� /"C˛."� 1/. In the DRRA case, for instance, from
Lemma 2 we can deduce:

E
�
u0.��� /Ru.�

�
� /
�
M. p�� /"C˛."�1/�� 6 �.0/E

�
u0.��� /

�
M. p�� /"C˛."�1/�� D 0

(the last factor is null according to the first-order condition U0� . p�� / D 0); that
is: dp�� =d� 6 0. For the other cases, the final result is obtained, mutatis mutandis,
with the same proof. ut

Thus we have just proven this property: on facing an increase in the rate of
a proportional profit tax, the optimal ticket price decreases, remains constant or
increases depending on whether the sports team exhibits DRRA, CRRA or IRRA,
respectively.

The case of a reduction of price motivated by an increase in the tax rate (the
DRRA case) is somewhat surprising. We find an intuitively plausible explanation. A
rise in the tax rate implies a proportional decrease in profits. Since the team exhibits
DRRA, a proportional reduction of profits makes the team more risk averse. This
leads to a reduction in the ticket price.

6 Concluding Remarks

We consider a model, due to Andersen and Nielsen (see [2]), for a sports team
that has to price its ticket under uncertain demand. For this model, we study some
comparative-static effects not examinated by the authors in their paper.

Firstly, we present the model and derive the main result obtained by Andersen
and Nielsen, namely: the sports team will choose a value for the ticket price lower
than the value chosen in absence of uncertainty, and doing this way, the team will
price in the inelastic range of the demand curve. Our method of proof is slightly
different.

Secondly, we study the effect of a variation in the team’s risk aversion. We find
that an increase in risk aversion produces a decrease in the optimal value of the
ticket price. The analysis in this section easily finds an application on examining the
effect of a variation in fixed costs: a rise in fixed costs will reduce, leave constant,
or increase, the optimal ticket price depending on whether the team exhibits DARA,
CARA, or IARA, respectively.

7Notice that M. p�

� / > 0, since Lemma 1 remains valid if we write �� instead of � (the proof
would be, mutatis mutandis, the same).
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Next, we consider a variation in the risk of the random demand, postulated as
a variation in its standard deviation. We find that, provided that the function u00 is
decreasing, the optimal ticket price decreases when the standard deviation increases.

Finally, we enhance the model by considering a proportional profit tax. We
examine the effect of a variation in the tax rate. We obtain that the optimal price
decreases, remains constant, or increases, according as the sports team exhibits
DRRA, CRRA, or IRRA, respectively. It is a remarkable fact that reducing the ticket
price can be optimal for the sports team facing a rise in a tax rate.
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Appendix

The following lemma slightly generalizes a result taken from [3]:

Lemma 2 Let  and � be two real functions defined on R such that  > 0

and � is increasing. If � D  � �, and X is a real random variable such that the
expectation EŒX .X/� is finite, and such that the probability of the set fX ¤ 0g is
positive, then:

EŒX �.X/� > �.0/EŒX .X/� ;

and the reverse inequality holds when � is decreasing. In addition, if � is strictly
increasing or strictly decreasing, the corresponding inequalities also hold strictly.

Proof See [4]: in Lemma 1, write F 	 1 and Z D X. See also [1]. ut
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Growth Diagrams and Non-symmetric Cauchy
Identities on NW (SE) Near Staircases

Olga Azenhas and Aram Emami

Abstract The Robinson-Schensted-Knuth (RSK) correspondence is an important
combinatorial bijection between two line arrays of positive integers (or non-negative
integer matrices) and pairs of semi-standard Young tableaux (SSYTs). One of its
applications, in the theory of Schur polynomials, is a bijective proof of the well
known Cauchy identity. An interesting analogue of this bijection was given by
Mason, where SSYTs are replaced by semi-skyline augmented fillings (SSAFs),
originated in the Haglund-Haiman-Loehr formula for non-symmetric Macdonald
polynomials. The latter object SSAF has the advantage of detecting the key of a
SSYT which is easily read off from the SSAF shape. Using this analogue, we have
previously considered the restriction of RSK correspondence to multisets of cells in
a (truncated) staircase. The image is described by a Bruhat order inequality between
the keys of the recording and the insertion fillings. This has allowed to derive a
(truncated) triangular version of the Cauchy identity, due to Lascoux, where Schur
polynomials are replaced by key polynomials or Demazure characters. We now
consider the restriction of RSK to a near staircase, in French convention, where
the top leftmost and the bottom rightmost cells and also possibly some cells in
the diagonal layer are deleted. The image is described by additional Bruhat order
inequalities, specified by the cells in the diagonal layer. The bijection is then used to
extend the triangular version to near staircases, also a version due to Lascoux, where
Demazure characters are now under the action of Demazure operators specified by
the cells in the diagonal layer. Our analysis is made in the framework of Fomin’s
growth diagrams where a formulation of the Mason’s analogue is given. This is then
used to show how to pass from a triangular shape to a near staircase, via the action
crystal operators, and how this affects the keys in the image of the RSK.

1 Introduction

The Robinson-Schensted-Knuth (RSK) correspondence [12] is a bijection between
biwords (an array of two words), over two finite totally ordered alphabets, and
pairs of semi-standard Young tableaux (SSYTs), of the same shape, with entries
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respectively in those alphabets. Let N denote the set of nonnegative integers, and, as
usual, if n is a positive integer, let Œn� be the set f1; : : : ; ng. Given a positive integer
n, let m and k be fixed positive integers such that 1 6 m 6 n, 1 6 k 6 n and
m C k > n C 1. Let x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ be two sequences
of indeterminates. The well-known Cauchy identity [24] expresses the Cauchy
kernel

Qk
iD1

Qm
jD1.1 � xiyj/

�1 as a sum of products of Schur polynomials s� in
.x1; x2; : : : ; xk/ and .y1; y2; : : : ; ym/; respectively,

kY
iD1

mY
jD1
.1 � xiyj/

�1 D
X
�

s�.x1; : : : ; xk/s�.y1; : : : ; ym/; (1)

over all partitions � of length 6 minfk;mg: Schur polynomials in a finite number
of indeterminates .x1; x2; : : : ; xk/ are indexed by partitions � of length 6 k. They
are combinatorially described by SSYTs of shape �, over the alphabet Œk�, see
[7, 30, 31],

s�.x1; : : : ; xk/D
X

T SSYT
sh.T/D�

xT ;

where sh.T/ denotes the shape of the SSYT, T, and xT WD xc1
1 � � � xck

k , with ci

the multiplicity of i in T. Thereby, the right hand side of (1) can be written asX
.P;Q/

xPyQ; where the sum runs over all pairs .P;Q/ of SSYTs of the same shape

with length 6 minfk;mg. On the other hand, expanding the product of formal
power series, on the left hand side of (1), and identifying each monomial xiyj,
i 2 Œk�; j 2 Œm�, with the biletter

�j
i

�
, the RSK correspondence, over the finite

alphabets Œk� and Œm�, provides a bijective proof for identity (1). Key polynomials
or Demazure characters ˛, with ˛ 2 N

n [3, 19, 28], and Demazure atoms O˛ ,
with ˛ 2 N

n [19, 26], defined in Sect. 6, both of which form a Z-linear basis for
the ring of integer polynomials ZŒx1; : : : ; xn�. When the vectors ˛ 2 N

n are anti-
dominant, key polynomials lift the basis of Schur polynomials for the subring of
symmetric polynomials ZŒx1; : : : ; xn�

Sn , where Sn denotes the symmetric group
of degree n. The Cauchy kernel

Qk
iD1

Qm
jD1.1 � xiyj/

�1 in (1) can be written asQ
.i;j/2.mk/ .1 � xiyj/

�1, an expansion over the rectangle shape .mk/ of height k and
width m. Cauchy kernels over arbitrary Ferrers shapes are no more symmetric in
the indeterminates. Their expansions are not on the basis of Schur polynomials but
rather over the basis of key polynomials and the basis of Demazure atoms. Lascoux
has studied Cauchy kernel expansions over staircases which he then generalized
for arbitrary Ferrers shapes [16]. For staircase shapes the expansion is explicit in
the SSYTs for which Lascoux has provided both an algebraic proof, with Fu and
Lascoux [6], and a combinatorial proof. The latter based on the fact that, in type A—
not known for other Weyl groups [21]—RSK can be formulated in the language of
bicrystals [11, 14, 16, 22]. For other shapes, the expansion is not entirely explicit in
the SSYTs and only an algebraic explanation for the expansion was provided in [16].
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Mason [25, 26] has defined an analogue of RSK where the output is a pair
of semi-skyline augmented fillings (SSAFs) whose shapes, vectors in Nn, are a
rearrangement of each other, see Sects. 2 and 3. The SSAFs, combinatorial objects
coming from the Haglund-Haiman-Loehr formula for non-symmetric Macdonald
polynomials [9], are in bijection with SSYTs in a way that the shape detects
the right key of a SSYT [19], see Section 3. Key polynomials and Demazure
atoms (or standard bases) were first described combinatorially by Lascoux and
Schützenberger in [18, 19], for which they have introduced the key notion of right
key of a SSYT. Thus, they are also combinatorially described by SSAFs [26]

O�.x/ D
X

F SSAF
sh.F/D�

xF; �.x/ D
X

F SSAF
sh.F/6�

xF; (2)

where the inequality regarding the shape of F, sh.F/, is in the Bruhat order. In [1, 2],
we have proved that the analogue of RSK correspondence, restricted to multisets of
cells in the staircase of size n, gives pairs .F;G/ of SSAFs, with entries 6 n, whose
shapes satisfy sh.G/ 6 !sh.F/ in Bruhat order, with ! the longest permutation of
Sn. As a consequence, using (2), we can write

Y
iCj�nC1
16i; j6n

.1 � xiyj/
�1 D

X
.F;G/

sh.G/6!sh.F/

xFyG D
X
�2Nn

O�.x/!�.y/; (3)

where the sum runs over pairs .F;G/ of SSAFs with entries 6 n. More generally,
the analogue of RSK can be restricted to multiset of cells in a truncated staircase
with height k and width m [1, 2, 4]. This allows to extend the triangular expansion
(3) to truncated triangles. A bijective proof for the following non-symmetric Cauchy
kernel expansion, over a truncated staircase of size n, with height k and width m >
k—a special case of the more general formula for Ferrers shapes, due to Lascoux,
in [16]—has been provided in [1, 2, 4]

Y
.i;j/2

.1 � xiyj/
�1 D

X
�2Nk

O�.x/��.�;SE/!�.y/: (4)

Here ��.�;SE/ is the Demazure operator, see Sect. 6, indexed by �.�; SE/ a reduced
expression of Sn, specified by the cells above the biggest staircase inside the
truncated shape, as explained in [16]. Recall that Demazure operators �i act on key
polynomials � via elementary bubble sorting operators on the entries of the vector
� [28], see Sect. 6. It is then possible to determine explicitly ��.�;SE/!�, and write

(4) D
X
�2Nk

O�.x/.0m�k;˛/.y/; (5)
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Fig. 1 A near staircase of
size n with one layer of p
gray cells, 1 6 p < n, sited
on the stairs, at most one cell
in each stair, avoiding the top
and the basement. The label ri

indicates that the row index is
ri C 1, 1 6 i 6 p, counted
from the bottom to the top n

n

.. .
. . .

. . .

. . .

r1

. . .

rp

where ˛ depends on � in a certain way as explained in [2]. In particular, when
k D m D n, the identity for staircase shapes (3) is recovered.

In this work, we give a combinatorial expansion for the non-symmetric Cauchy
kernel

Q
.i;j/2� .1�xiyj/

�1, being the product over all cells .i; j/ of the near staircase
�, in French convention, as shown in the Fig. 1. Theorem 5, in Sect. 7, extends the
analogue of RSK on triangular shapes to multiset of cells in the near staircase.
It produces pairs .F;G/ of SSAFs with entries 6 n such that the pair of shapes
satisfy inequalities, in the Bruhat order, specified the p gray boxes sited on the
stairs of staircase Fig. 1. This bijection allows the following combinatorial formula
expansion in terms of pairs of SSAFs (SSYTs), see Theorem 6, Sect. 8,

Y
.i;j/2�

.1 � xiyj/
�1 D

X
.F;G/2A

xFyG C
X
16z6p

X
Hz

X
.F;G/2A Hz

z

xFyG

D
X
�2Nn

.�r1 : : : �rp O�.x//!�.y/:

For z D 0; 1; : : : ; p, Hz D fi1 < i2 < � � � < izg 2 �Œp�z
�
, and

A Hz
z WD



.F;G/2SSAF2nW

sh.G/—!sriz
���Osrim

���sri1
sh.F/; mD1;2;:::;z

sh.G/�!sriz
���sri1

sh.F/

�
;

where SSAFn denotes the set of all SSAFs with entries 6 n, and the inequal-
ities are in the Bruhat order of Sn (‘ˆ’ means omission). In particular, A WD
A ;0 WD f .F;G/2SSAF2nW sh.G/�!sh.F/ g : This provides a bijective proof for the identity

Y
.i;j/2�

.1 � xiyj/
�1 D

X
�2Nn

.�r1 : : : �rp O�.x//!�.y/ (6)
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an instance of the Lascoux’s formula for an arbitrary Ferrers shape [16], in the case,
� is the near staircase in Fig. 1.

The paper is organised in eight sections as follows. In Sect. 2, we introduce the
basic terminology of our combinatorial objects and the relationship between them.
In Sect. 3, the RSK, reverse RSK and the RSK analogue, due to Mason, are defined,
and it is shown that the key of a SSYT is easily read off from a SSAF. In Sect. 4, we
recall the growth diagram version of reverse RSK and from that our growth diagram
version for the RSK analogue is given. In Sect. 5, the definition of Bruhat order in Sn

and some basic properties are briefly recalled. In Sect. 6, Demazure operators, key
polynomials or Demazure characters, and Demazure atoms as well as some of their
properties are summarised. In Sect. 7, the RSK analogue under the action of crystal
operators is analysed. The main results of this section, Theorems 4 and 3, detect how
the key of a SSYT change in Bruhat order when cells are created in certain corners
of a Ferrers shape. The restriction of the analogue of RSK to near stair shapes is
described in Theorem 5. Finally, in the last section, this latter theorem is used to
give a combinatorial proof of the Cauchy kernel expansion (6), due to Lascoux.

2 SSYT, Reverse SSYT and SSAF

Semi-skyline augmented fillings (SSAFs) have been introduced in [9, 10], to
describe combinatorially (non-symmetric) Macdonald polynomials. In [26], Mason
has defined a weight preserving bijection, %; between reverse semi-standard Young
tableaux (RSSYTs) and SSAFs. We shall use this map to define SSAFs. It allows
later to translate the analogue of RSK [25] for growth diagrams via the usual reverse
RSK.

2.1 SSYT and Reverse SSYT

A weak composition � D .�1 : : : ; �n/ is a vector in Nn: A weak composition �
whose entries are in weakly decreasing order, that is, �1 � � � � � �n; is said to be
a partition. Every weak composition � determines a unique partition obtained by
arranging the entries in weakly decreasing order. More precisely, it is the unique
partition in the orbit of � regarding the usual action of symmetric group Sn on Nn.
A partition � D .�1; : : : ; �n/ is identified with its Young diagram (or Ferrers shape)
dg.�/ in French convention, an array of left-justified cells (boxes) with �i cells in
row i from the bottom, for 1 � i � n: The cells are located in the diagram dg.�/ by
their row and column indices .i; j/, where 1 � i � n and 1 � j � �i:

A filling of shape � (or a filling of dg.�/), in the alphabet Œn�, is a map T W
dg.�/ ! Œn�: A semi-standard Young tableau (SSYT) T of shape sh.T/ D �, in the
alphabet Œn�, is a filling of dg.�/weakly increasing in each row from left to right and
strictly increasing up in each column. The column word of the SSYT T is the word
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dg( )
1 1 2 3
2 5
4

SSYT T

5 3 3 2
4 2
1

RSSYT T

Fig. 2 The Ferrers diagram of � D .4; 2; 1/, a SSYT and a RSSYT of shape �, respectively, with
contents c.T/ D .2; 2; 1; 1; 1/ and c.QT/ D .1; 2; 2; 1; 1/

Fig. 3 The SSAF F corresponding to the RSSYT QP defined by the weight preserving bijection %

consisting of the entries of each column, read top to bottom and left to right. The
content c.T/ D .˛1; : : : ; ˛n/ or weight of T is the content or weight of its column
word, that is, ˛i is the multiplicity of i in the column word of T, for all i. A key
tableau is a SSYT such that the set of entries in the .j C 1/th column is a subset
of the set of entries in the jth column, for all j. There is a bijection [28] between
weak compositions in Nn and keys in the alphabet Œn� given by � ! key.�/; where
key.�/ is the SSYT such that for all j, the first �j columns contain the letter j. Any
key tableau is of the form key.�/ where � is the content and the shape is the unique
partition in its Sn-orbit.

A reverse semi-standard Young tableau (RSSYT), QT, of shape sh. QT/ D �, in
the alphabet Œn�, is a filling of dg.�/ such that the entries in each row are weakly
decreasing from left to right, and strictly decreasing from bottom to top (Fig. 2).

2.2 SSAFs are in Bijection with RSSYTs

Fix n 2 N. A weak composition � D .�1; : : : ; �n/ is visualised as a diagram
consisting of n columns, with �j cells (boxes) in column j, for 1 6 j 6 n. Formally,
the column diagram of � is the set dg0.�/ D f.i; j/ 2 N2 W 1 � j � n; 1 � i � �jg
where the coordinates are in French convention, i indicates the vertical coordinate,
indexing the rows, and j the horizontal coordinate, indexing the columns. (The prime
reminds that the components of � are the columns.) The number of cells in a column
is called the height of that column, and a cell a in a column diagram is written
a D .i; j/; where i is the row index and j the column index. The augmented diagram
of � , bdg.�/ D dg0.�/[f.0; j/ W 1 � j � ng, is the column diagram with n extra cells
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adjoined in row 0. This adjoined row is called the basement and it always contains
the numbers 1 to n in strictly increasing order. The shape of bdg.�/ is defined to be
�: The empty augmented diagram consists of the basement elements from 1 to n.

We now introduce the semi-skyline augmented filling (SSAF) object as the output
of the injective map %, in [26], acting on RSSYTs. Let QP be a RSSYT in the alphabet
Œn�. Define the empty semi-skyline augmented filling as the empty augmented
diagram with basement elements from 1 to n. Pick the first column of QP; say, P1:
Put all the elements of the first column P1 to the top of the same basement elements
in the empty semi-skyline augmented filling. The new diagram is called the semi-
skyline augmented filling corresponding to the first column of QP and is denoted
by SSAF. Assume that the first i columns of QP, denoted P1;P2; : : : ;Pi, have been
mapped to a SSAF. Consider the largest element, a1, in the .i C 1/-th column PiC1.
There exists an element greater than or equal to a1 in the i-th row of the SSAF. Place
a1 on top of the leftmost such element. Assume that the largest k � 1 entries in PiC1
have been placed into the SSAF. The k-th largest element, ak, of PiC1 is then placed
into the SSAF. Place ak on top of the leftmost entry b in row k � 1 such that b > ak

and the cell immediately above b is empty. Continue this procedure until all entries
in PiC1 have been mapped into the .i C 1/-th row and then repeat for the remaining
columns of QP to obtain the semi-skyline augmented filling F.

It is clear that rotating F 90ı, sliding down the boxes in each column, and
reordering them, in decreasing order from bottom to top, we obtain QP.

We can associate to each SSAF, F, a weak composition that records the length of
the columns of F, and defines the shape of F, sh.F/: The content of the SSAF F is
the vector c.F/ D c. QP/ 2 Nn whose i-th entry is the multiplicity of the letter i in the
SSAF F (Fig. 3).

3 RSK, Reverse RSK, and the Analogue of RSK Detecting
Keys

The Robinson-Schensted-Knuth (RSK) correspondence is a bijection between two
line arrays of positive integers and pairs SSYTs of the same shape. Mason has
introduced an interesting analogue of RSK where SSYTs are replaced by SSAFs
[25]. This latter bijection has the advantage that the shapes of the pair of SSAFs
exhibit the keys of the pair of SSYTs produced by RSK.

3.1 The Reverse RSK

The reverse Schensted insertion applied to the word b1 : : : bm, over the alphabet Œn�,
gives the reverse SSYT QP. It consists of reversing the roles of 6 and > in defining the
Schensted insertion of b1 : : : bm. Equivalently, if we apply the Schensted insertion
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to �bm; : : : ;�b1 to get the SSYT, P.�bm; : : : ;�b1/, and then change the sign in all
entries of P.�bm; : : : ;�b1/, we obtain the reverse SSYT QP [31].

The two line array w D
�

j1 j2 � � � jl
i1 i2 � � � il

�
, such that jr < jrC1, and if jr D jrC1 then

ir 6 irC1, for all 1 6 r 6 l�1, where ir; jr 2 Œn�, is called a biword in lexicographic
order (with respect to the first row) over the alphabet Œn�. The reverse RSK (RRSK)
algorithm is the obvious variant of the RSK algorithm [31]. We apply the RSK to

the biword Qw D
��jl : : : �j1

�il � � � �i1

�
, instead of w D

�
j1 � � � jl
i1 � � � il

�
, to obtain a pair of

semi-standard Young tableaux, and then change the sign in all entries of that pair of
SSYTs. We will obtain a pair . QP; QQ/ of reverse SSYTs.

3.2 Analogue of Schensted Insertion and Reverse Schensted
Insertion: SSAFs in Bijection with SSYTs by Assigning
the Right Key

The fundamental operation of the Robinson-Schensted-Knuth (RSK) algorithm [12]
is Schensted insertion which is a procedure for inserting a positive integer k into a
semi-standard Young tableau T. In [25] a similar procedure for inserting a positive
integer k into a SSAF F is defined, which is used to describe an analogue of the
RSK algorithm. Based on this analogue of Schensted insertion, a weight preserving
and a shape rearranging bijection � between SSYTs and SSAFs, over the alphabet
Œn�, is given. The bijection � is defined to be the insertion, from right to left, of the
column word of a SSYT, which consists of the entries of each column, read from
top to bottom and left to right, into the empty SSAF with basement 1; : : : ; n. The
shape of �.T/ provides the right key, KC.T/, of T, a notion due to Lascoux and
Schützenberger [19].

Theorem 1 [26] Given an arbitrary SSYT T, let � be the shape of �.T/: Then
KC.T/ D key.�/:

On the other hand, applying the reverse Schensted insertion to the column word of
the SSYT, T, gives the RSSYT, QT . Then %. QT/ is a SSAF and %. QT/ D �.T/ [25].
We then have two equivalent weight preserving and shape rearranging bijections
between SSYTs and SSAFs, see Fig. 4.

3.3 RSK, Reverse RSK and Analogue of RSK for SSAFs

Given the alphabet Œn�, the RSK algorithm is a bijection between biwords in
lexicographic order and pairs of SSYTs of the same shape over Œn�. The analogue of
Schensted insertion is applied in [25] to find an analogue ˚ of the RSK to produce
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Fig. 4 QT is the reverse
Schensted insertion of T

Fig. 5 The analogue of RSK
˚ D % ı RRSK D � ı RSK
detects the keys of the pair
.P;Q/ of SSYTs produced by
RSK

pairs of SSAFs. The map ˚ defines a bijection between the set of all biwords w
in lexicographic order in the alphabet Œn�, and pairs of SSAFs whose shapes are
rearrangements of a same partition in Nn, and the contents are respectively those of
the second and first rows of w. The bijection ˚ applied to a biword w is the same
as applying the reverse RSK to w and then applying % to each reverse SSYT of the
output pair . QP; QQ/, that is, ˚.w/ D .%. QP/; %. QQ//.
Corollary 1 [25, 26] The RSK algorithm commutes with the above analogue ˚:
That is, if .P;Q/ is the pair of SSYTs produced by RSK algorithm applied to
biword w; then .�.P/; �.Q// D ˚.w/; and KC.P/ D key.sh.�.P///, KC.Q/ D
key.sh.�.Q///.

The relation between RSK, the reverse RSK and ˚ , the analogue of RSK, is
summarised in Fig. 5. In particular, it is clear that ˚ the analogue of RSK also
shares the symmetry of RSK.
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4 Reverse RSK and Analogue of RSK in Terms of Fomin’s
Growth Diagrams

The formulation of RSK in terms of growth diagrams is due to Fomin [5],
subsequently developed by Roby [29] and van Leewven [23], and applied to
enumeration by Krattenthaler [13]. The bijection % between SSAFs and RSSYTs
allows a growth diagrammatic formulation of the analogue of RSK where SSYT are
replaced with SSAFs [25] via reverse Schensted insertion. In this section we follow
very closely [13, 31].

Let w be a biword in the lexicographic order over the alphabet Œn�. We can
represent a biword w in the n � n square diagram, by putting the number r in the

cell .i; j/ of the square grid, when the biletter

�
j
i

�
appears r times in the biword

w. The rows are counted from bottom to top and the columns from left to right. For

instance, if w D
�
1 1 2 3 4 4 5 7 7

2 7 2 4 1 3 3 1 1

�
, with n D 7, then we obtain the 7 � 7 square

diagram Fig. 6.
We would like to have a 01-filling of this diagram Fig. 6, that is, at most one 1 in

each row and each column. To remedy this, the entries in the diagram are separated
as we now explain. Construct a rectangle diagram with more rows and columns.
The entries which are originally in the same column or in the same row are put in
different columns and rows in the larger diagram. An entry m is replaced by m 1’s
in the new diagram, all of them placed in different rows and columns. The entries in
a row are separated from bottom/left to top/right, and the 1’s are represented by X’s.
If there should be several entries in a column as well, separate entries in a column
from bottom/left to top/right. In the cell with entry m, we replace m by a chain of m
X’s arranged from bottom/left to top/right. The original n columns and n rows are
indicated by thick lines, whereas the newly created columns and rows are indicated
by thin lines. See Fig. 7.

Fig. 6 Scanning the
columns, from left to right
and bottom to top, the biword
w is recovered in
lexicographic order
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Fig. 7 The 01-filling
representation of the biword
w. The 1’s are represented by
crosses

To give an interpretation of reverse RSK in terms of growth diagrams, we start
by assigning the empty partition ; to each point of a corner cell on the right column
and on the top row of the 01-filling. Then assign partitions to the other corners
inductively by applying the following local rules. Consider the cell below, labeled
by the partitions "; �; �, such that " 
 � and " 
 �, where the containment
means that the Ferrres shapes differ at most by one box. Then � is determined as
follows:

"

�

�

• If " D � D �; and if there is no cross in the cell, then � D ":

• If " D � ¤ �; then � D �:

• If " D � ¤ �; then � D �:

• If "; �; � are pairwise different, then � D �[ �, i.e., �i D maxf�i; �ig.
• If " ¤ � D �; then � is formed by adding a box to the .k C 1/-st row of � D �;

given that � D � and " differ in the k-th row.
• If " D � D �; and if there is a cross in the cell, then � is formed by adding a box

to the first row of " D � D �:

Applying the local rules leads to a pair of nested sequences of partitions on the
left column and in the bottom row of the growth diagram. Let �i be the partition
assigned to the i-th thick column on the bottom row of the growth diagram when we
scan the thick columns from right to left, with the rightmost column being column 0.
Then the bottom row labelling assigned to the thick columns of the growth diagram
produces a sequence of partitions �n � � � � � �1 � �0 D ;, such that �i=�i�1
is a horizontal strip. Let �i be the partition assigned to the i-th thick row on the
left of the growth diagram when we scan the thick rows from top to bottom, with
the top row being row 0. Then the left column labelling assigned to the thick rows
of the growth diagram produces a sequence of partitions ; D �0 
 �1 
 � � � 
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Fig. 8 The growth diagram of the reverse RSK of w, and the pair .QP; QQ/ of RSSYTs, respectively,
produced by the sequence of partitions on the left column and on the bottom row

�n, such that �i=�i�1 is a horizontal strip. Filling in with n C 1 � i respectively
the cells of �i=�i�1, and �i=�i�1, for i > 1, produces the pair . QP; QQ/ of RSSYTs
of the same shape. Their contents are, respectively, those of the second and the
first rows of w. See Fig. 8. This is the same as applying the reverse RSK to the
biword w.

In addition there is a global description of the local rules as a consequence of a
variant of Greene’s theorem [8] and Theorem 2 in [13]. A SW-chain of a 01-filling
is a sequence of 1’s such that any 1 is below and to the left of the preceding 1 in the
sequence. The length of a SW-chain is defined to be the number of 1’s in the chain.
Another way to find the nested sequences of partitions on the bottom and on the left
of the growth diagram is just looking for the k SW-chains by using the following
natural version of the Theorem 2 in [13].

Theorem 2 Given a diagram with empty partitions labelling all the corners along
the right side and the top side of a rectangle shape, which has been completed
according to the reverse RSK local rules, the partition � D .�1; �2; : : : ; �l/

labelling corner c satisfies the following property: For any k, the maximal
cardinality of the union of k SW-chains situated in the rectangular region to
the right and above c is equal to �1 C �2 C � � � C �k. In particular, �1 is
the length of the longest SW-chain in the rectangular region to the right and
above c.

The map %, defined in Sect. 2.2, allows us to find the pair of SSAFs from the
growth diagram corresponding to the reverse RSK. Recall that the shape of a
SSAF is the weak composition that records the length of its columns. A partition
on the left column or in the bottom row of the growth diagram is the shape of
a RSSYT, a rearrangement of the shape of a SSAF. Consider the bottom row
labelling �n � � � ��1 � �0 D ; assigned to the thick columns of the growth
diagram. For each i D 1; : : : ; n, let �ili�1 � � � � � �i1 , with �ili WD �i, be the
bottom sequence of partitions labelling the li � 1 thin columns, strictly in between
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the two thick columns i � 1 and i. Start with the empty partition �0 D ;, the
rightmost partition of the bottom sequence in the growth diagram, and the empty
SSAF with basement Œn�. Proceed to the left along the bottom row. When we
arrive to the partition �ij , we put a cell, filled with n � i C 1, in the leftmost
possible place of the SSAF such that the shape of the new SSAF becomes a
rearrangement of the partition �ij and the decreasing property on the columns of
the SSAF, from the bottom to the top, is preserved. At the end of the scanning of
the bottom row, the SSAF G is obtained. Its shape is a rearrangement of the shape
of QQ.

Similarly, consider the left column labelling ; D �0 
 �1 
 � � � 
 �n assigned to
the thick rows of the growth diagram. For each i D 1; : : : ; n, let �i1 
 � � � 
 �ili�1 ,
with �ili WD �i, be the left sequence of partitions labelling the li � 1 thin rows,
strictly in between the two thick rows i � 1 and i. At the end of the procedure, when
the scanning of the left column is finished, the SSAF F is obtained. Its shape is a
rearrangement of the shape of QP. See Fig. 9.
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Fig. 9 The growth diagram of the reverse RSK of w and the growth of the corresponding pair of
SSAFs. The bottom row chain of partitions of the growth diagram produces a sequence of SSAFs
where each shape is a rearrangement of the corresponding partition. Similarly for the left column
chain of partitions. At the end of the procedure the SSAFs G and F are respectively obtained

5 Bruhat Order in Sn and in a Sn-Orbit

Let � D �1 : : : �n 2 Sn, written in one line notation. A pair .i; j/, with i < j,
such that �i > �j, is said to be an inversion of � , and `.�/ denotes the number of
inversions of � . The Bruhat order in Sn is the partial order in Sn defined by the
transitive closure of the relations

� < t�; if `.�/ < `.t�/, (t transposition, � 2 Sn):

We may write ˛ < ˇ in the Bruhat ordering of Sn if `.˛/ < `.ˇ/ and ˇ D �˛

for some permutation � in Sn that can be written as a product of transpositions each
increasing the number of inversions when passing from ˛ to ˇ.

Let � D siN � � � si1 be a decomposition of � into simple transpositions si D .i i C
1/, 1 6 i < n. When N D `.�/, the number N in a such decomposition is minimised,
and we say that we have a reduced decomposition of � . The longest permutation of
Sn is denoted by !.

Let � be a partition in Nn. The Bruhat ordering of the orbit of �, Sn�, is defined
by taking the transitive closure of the relations

˛ < t˛; if ˛i > ˛j, i < j, and t the transposition .i j/, (˛ 2 Sn�).
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Given ˛ 2 Nn, a pair .i; j/, with i < j, such that ˛i < ˛j, is called an inversion
of ˛, and �.˛/ denotes the number of inversions of ˛. We may write ˛ < ˇ if
�.˛/ < �.ˇ/ and ˇ D �˛ for some permutation � in Sn that can be written as a
product of transpositions each increasing the number of inversions when passing
from ˛ to ˇ. The following lemma recalls some useful properties whose proof are a
simple exercise.

Lemma 1 Let ˛, ˇ 2 Nn: Let 1 6 p < n and 1 6 r1 < r2 < � � � < rp < n. Then

.a/ ˛r1 < ˛r1C1 ) srp : : : sr2˛ > srp : : : sr2sr1˛.

.b/ ˛r1 > ˛r1C1 ) srp : : : sr2sr1˛ > srp : : : sr2˛.

.c/ if ˛r1 < ˛r1C1 and .srp�1 : : : sr2˛/rp < .srp�1 : : : sr2 ˛/rpC1 it implies

.srp�1 : : : sr2sr1˛/rp < .srp�1 : : : sr2sr1˛/rpC1:

.d/ if ˇ — !srp � � � Osri � � � sr2sr1˛, for i D 1; 2; : : : ; p, and ˇ � ! srp � � � sr2 sr1 ˛, it
implies (‘ ’̂ means omission)

.srt : : : sr2sr1˛/rtC1
< .srt : : : sr2sr1˛/rtC1C1; t D 0; 1; : : : ; p � 1:

6 Demazure Operators, Demazure Characters
and Demazure Atoms

Isobaric divided difference operators [17], or Demazure operators [3], �i and O�i,
1 6 i < n, act on ZŒx1; : : : ; xn� by

�i f D xi f � si.xi f /

xi � xiC1
; (7)

O�i f D .�i � 1/f D �i f � f ; (8)

where the simple transposition si of Sn acts on f swapping xi with xiC1, and 1 is
the identity operator on ZŒx1; : : : ; xn�. It follows from the definition that �i f D f
and O�i f D 0 if and only if si f D f . They both satisfy the commutation and the
braid relations of Sn, �i�j D �j�i, O�i O�j D O�j O�i for ji � jj > 1, and �i�iC1�i D
�iC1�i�iC1, O�i O�iC1 O�i D O�iC1 O�i O�iC1. This guarantees that, for any permutation � 2
Sn, there exists a well defined isobaric divided difference �� WD �iN � � ��i2�i1 and
O�� WD O�iN � � � O�i2 O�i1 , where siN : : : si2si1 is any reduced expression of Sn. In addition,
they satisfy the quadratic relations �2i D �i and O�2i D � O�i:

The 0-Hecke algebra Hn.0/ of Sn, a deformation of the group algebra of Sn, is
an associative C-algebra generated by T1; : : : ;Tn�1 satisfying the commutation and
the braid relations of the symmetric group Sn, and the quadratic relation T2i D Ti

for 1 6 i < n. Setting OTi WD Ti � 1, for 1 6 i < n, another set of generators of the
0-Hecke algebra Hn.0/ is obtained. The sets fT� W � 2 Sng and f OT� W � 2 Sng are
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both linear bases for Hn.0/, where T� D TiN � � � Ti2Ti1 and OT� WD OTiN � � � OTi2
OTi1 , for

any reduced expression siN � � � si2si1 in Sn. Since Demazure operators (7) or bubble
sort operators satisfy the same relations as Ti, and similarly for isobaric divided
difference operators (8) and OTi, the 0-Hecke algebra Hn.0/ of Sn may be viewed as
an algebra of operators realised either by any of the two isobaric divided differences,
or by bubble sort operators, swapping entries i and i C 1 in a weak composition ˛,
if ˛i > ˛iC1, and doing nothing, otherwise.

Therefore, the two families f�� W � 2 Sng and f O�� W � 2 Sng are both linear
bases for Hn.0/, and from the relation O�i D �i �1, the change of basis from the first
to the second is given by a sum over the Bruhat order inSn, �� D P

�6� O�� [15, 27].
Key polynomials and Demazure atoms can be defined through Demazure operators,
˛ D ��x� where ˛ D �� and � is a partition, and similarly O˛ D O��x� (assume
� a minimal coset representative modulo stabiliser of �). Thereby, key polynomials
or Demazure characters are decomposed into Demazure atoms [17, 19],

˛ D
X
ˇ6˛

Oˇ: (9)

We recall that Demazure operators �i act on key polynomials � via elementary
bubble sorting operators on the entries of the vector � [28], that is,

�i� D
(
si� if �i > �iC1
� if �i 6 �iC1

: (10)

The action of Demazure operators on Demazure atoms O� is as follows

�i O� D
8<
:

Osi� C O� if �i > �iC1
O� if �i D �iC1
0 if �i < �iC1

: (11)

7 Crystal Operators and Growth Diagrams

Biwords are multisets of cells in a Ferrers shape. We analyse the behaviour of the
RSK analogue under the action of a crystal operator. The main results of this section,
Theorems 4 and 3, detect how the key of a SSYT change in Bruhat order when cells
are created in certain corners of a Ferrers shape.
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7.1 Crystal Operators on Biwords and the Analogue of RSK

Crystal operators or coplactic operations er, fr, 1 6 r < n, are defined on any word
over the alphabet Œn� [20]. These operations can be extended to biwords in two ways.
Either by considering w in lexicographic order, with respect to the first row, or to

the second. Let w D
�

u
v

�
be in lexicographic order, with respect to the first

row. Write erw WD
�

u
erv

�
and, similarly, for frw. Let

�
k
l

�
be the biword w

rearranged in lexicographic order, with respect to the second row. Write e�r w WD�
l

erk

�
and, similarly, for f �r w. The resulting biwords are still in lexicographic

order with respect to the first row. (The � recalls that the action is in the first row of
w equipped with the appropriate order.) For details, see [14, 16, 20]. In this work we
shall not consider the two actions simultaneously on w. We rather emphasise that
if w� denotes w with the rows u and v swapped, and rearranged in lexicographic

order, with respect to the first row, that is, w� D
�

l
k

�
, then e�r w D erw�. As our

running example, consider the following biword in lexicographic order, with respect
to the first row, over the alphabet [7],

w D
�

1 1 2 2 3 3 3 3 4 4 4 5 5 6 7
3 4 2 6 3 4 4 4 3 3 4 3 4 1 1

�
: (12)

The crystal operator e3 acts on w through its action on the second row of w
as follows. Ignore all entries different from 3 and 4, obtaining the subword
34344433434. Match, in the usual way, all 43 (in blue in the example below),
remaining the subword v0 D 344. Change to 3 the leftmost 4, giving 334. The
image of the initial word v is obtained by replacing the subword v0 in v with 334.
For example, applying twice e3 to w means to apply twice e3 to the second row of
w, and the subword 344 change to 333, obtaining

34344433434

e3
34334433434

e3
34334433433

The action of the crystal operator f3 is defined similarly and f 23 e23w D f3e3w D w.
Here, if, after the matching, the remaining word is empty then the operators er and
fr do nothing on w. Recall the representation of a biword in a rectangle diagram,
defined in Sect. 4. We now represent a biword w in a Ferrers shape, see Fig. 10, by

putting a cross “X” in the cell .i; j/ of � for each biletter

�
j
i

�
in w. A biletter is

identified with the corresponding cell. The number of crosses is the multiplicity of
the biletter in the biword. The biword w can be recovered, from this representation,
in two ways. In lexicographic order with respect to the first row, scanning the
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Fig. 10 Representation of
the biword w (12) in a Ferrers
shape. The cells marked with
X are the biletters in w

columns of the Ferrers shape �, from left to right, and bottom to top. In lexicographic
order with respect to the second row, scanning the rows of the Ferrers shape �, from
bottom to top and left to right.

Let w be a biword in lexicographic order represented in the Ferrers shape �. We
introduce an operation �r in the Ferrers shape �, acting in the rows r and r C 1 as
follows. Consider the two row rectangle defined by the rows r and r C 1 of �. (If
necessary add blank cells to the row r C 1 such that rows r and r C 1 have the same
length. If there is more than one cross in the same cell then order the crosses, from
left to right, and put each one in a different sub column made of thin lines. We say
that a crossed thick cell in row r C 1 and a crossed thick cell, to the SE, in row
r, is a factor if in these two rows there is no crossed cell in the columns between
them. In each factor match the rightmost cross in row r C 1 with the leftmost cross
in row r. Ignore the matched crosses. Repeat the procedure with the new factors
until no factors are left. At this point slide down all the unmatched crosses from row
r C 1 to row r. See Figs. 11 and 12 where, for readers convenience, the crosses are
represented with different colours to stress the matching.

This matching and sliding of crosses translate to the action of the operator er,
as long as it is possible, on the second row of the biword w. The operator �r is the
analogue of applying m times the crystal operator er, to the second row of w, where
m is the number of unmatched r C 1 in the second row of w. Thereby, we also write
�rw D em

r w to mean the biword obtained by applying m times the crystal operator
er, to the second row of w, where m is the number of unmatched r C 1 in the second
row of w. Similarly, we define the operator � rw WD f m

r w, where m is the number of
unmatched r in the second row of w.

Consider now the 01-filling representation of the biwords w and �rw in the
Ferrers shapes � embedded in a rectangle shape. Apply the local rules, as defined
in Sect. 4. Notice that in the 01-filling of w, we match a cross in row r C 1 with a
cross to the SE, in row r, such that in these two rows there is no unmatched cross in a
column between them. These two growth diagrams have the same bottom sequences
of partitions and the left sequences are different only in the partitions assigned to the
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Fig. 11 The double action of the crystal operators e3 on the biword w (12) is visualized in the
rectangle defined by the two rows 3 and 4 of the Ferrers shape �. The cross matching is represented
with different colours. The unmatched black Xs in the top row slide down. One has �3w D e23w
and f 23 �3w D w

Fig. 12 The cross matching in the rows 3 and 4 of � is represented using different colours, where
the black Xs are unmatched. On the left, scan � along columns from left to right and bottom to top
to obtain w. On the right, the new set of crossed cells of � yields a new biword �3w

rows r and r C 1: In [20], it is proved that the bottom sequence is preserved by the
operations er and fr , when the entries of the first row of the biword w are distinct.
In the 01-filling the biword read from the diagram has no repeated letters in both
rows. (In fact the first row of the biword can be read as Œn�, if the blank columns in
the 01-filling are shrunk.) Thus the bottom sequence of the 01-filling of the growth
diagram is preserved by those operations. Moreover, from the 01-filling and [20],
we can assure the validity of left square diagram in Fig. 14 for any biword.

Let wr and Qwr be the biwords that are obtained from w and �rw; after deleting
all the biletters with bottom rows different from r and r C 1. The translation of the
movement of the cells in the Ferrers shape to the 01-filling is as follows. In the 01-
filling of wr move up, without changing of columns, the matched crosses of row
r C1, say s crosses, to the top most s rows such that they form SW chain. Then slide
down the remaining unmatched crosses, from row r C 1 to row r, without changing
of columns, such that these crosses and all the crosses of row r form a SW chain.
The result is the 01-filling corresponding to Qwr: See Fig. 13.

It is clear that the longest SW chain in the first k columns, from right to left, of
the 01-filling of wr and of Qwr, has length equal to the total number of crosses in row
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Fig. 13 The 01-fillings of w3 and Qw3 are respectively a blow-up of the two row rectangles defined
by the rows 3 and 4 of the Ferrers shapes in Fig. 11. The crosses are represented using different
colors according to the matching

Fig. 14 ˚.w/ D .F;G/, ˚.erw/ D .�rF;G/ and ˚.frw/ D .�rF;G/

r and row r C 1, of those columns, minus the number of matched crosses in row
r C 1, of those columns. It means that the length of the longest SW chain in the
first k columns, from right to left is preserved. Theorem 2 implies that the bottom
sequences in growth diagrams corresponding to wr and Qwr are the same. See Fig. 13.

Let �r be the analogue operator of fr, and �r the analogue of er for SSAFs,
defined in [26]. Figure 14 shows the relation between the action of crystal operators
er, fr , their analogues�r,�r, the RSK and the analogue of RSK˚ . If F is SSAF, put
�rF D �

m
r F where m is the number of unmatched r C 1 in the row reading (left to

right and top to bottom) of the SSAF F. Similarly, put � rF D �m
r F. Equivalently,

if F D �.P/ with P a SSYT, then �rF D �.em
r P/ where m is the number of

unmatched r C 1 in P. See Fig. 14.
Next theorem is, therefore, a consequence of our discussion. Recall that ˚ D

% ı RRSK D � ı RSK:

Theorem 3 Let w be a biword in lexicographic order. If ˚.w/ D .F;G/ then
˚.�rw/ D .�rF;G/.
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Theorem 4 [4] Let � be a Ferrers shape where �r D �rC1 > �rC2 > 0, for some
r > 1. Let w be a biword consisting of a multiset of cells of � containing the cell
.r C 1; �rC1/ with multiplicity at least one. Let ˚.w/ D .F;G/. If sh.F/ D � then
�r < �rC1 and sh.�rF/ D sr�. Moreover, �rw does not contain the biletter

�
�rC1

rC1
�

and therefore it fits the Ferrers shape � with the cell .r C 1; �rC1/ deleted.

Figure 15 illustrates this theorem.
Transpose the Ferrers shape �, and denoted it by �. This means that we swap

the rows of w and then rearrange it in lexicographic order. This biword is w� and
is now represented in �. The move of crosses between the rows r and r C 1 of � is
translated to a move of crosses on the columns r and r C 1 of �. The translation of
�r to the columns r and r C 1 of the Ferrers shape � is � �r w WD �rw�. The growth
diagram of the 01-filling of w is transposed, through the secondary diagonal. The
move of crosses on the rows is translated to a move of crosses on the columns. As a
consequence of the symmetry of the growth diagram we have the following versions
of Theorems 3 and 4.

Corollary 2 [4] Let w be a biword in lexicographic order. If ˚.w/ D .F;G/ then
˚.� �r w/ D .F; �rG/.

Corollary 3 [4] Let � be a Ferrers shape and let � D .�01; �02; : : : ; �0�1/ be the
conjugate of � where �0r D �0rC1 > �0rC2. Let w be a biword consisting of a multiset
of cells of � containing the cell .�0rC1; r C 1/ with multiplicity at least one. Let
˚.w/ D .F;G/. If sh.G/ D � then �r < �rC1 and sh.�rG/ D sr�. Moreover, � �r w
does not contain the biletter

� rC1
�0

rC1

�
and therefore it fits the Ferrers shape � with the

cell .�0rC1; r C 1/ deleted.

The following proposition says that under certain conditions the shape of a SSAF
change.

Proposition 1 [4] Let F be a SSAF with shape �, and �r < �rC1, for some r > 1.
Then sh.�rF/ D sr�:

7.2 The Bijection

Next theorem characterizes the biwords whose biletters constitute a multiset of cells
in a staircase possibly plus a layer of boxes sited on the stairs of the staircase, in
French convention, leaving the top of the first column and the end of the first row
free. See Fig. 1. This is the NW version because we use operations on the rows of
a Ferrers shape. Rows are counted from SE to NW. A SE version also exists by
performing operations on the columns. Columns are counted from NW to SE. Let
SSAFn be the set of all SSAFs with basement Œn�.

Theorem 5 (NW Inner Layer) Let w be a biword in lexicographic order on the
alphabet Œn�, and let ˚.w/ D .F;G/ 2 SSAF2n, with sh.F/ D � and sh.G/ D ˇ.
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Fig. 15 The procedure of passing from a biword under the action of the operator �r to a pair of
SSAFs, where n D 7, r D 3. The biletters .i; j/ satisfy iC j 6 8C 1 in w, and iC j 6 7C 1 in
�3w. In particular, the biletter .r C 1; 5/ D .4; 5/ in w is transformed to .r; 5/ D .3; 5/ in �3w.
The crossed cells are represented using different colours according to the matching

Let 0 6 p < n, 1 6 r1 < � � � < rp < n. Then w consists of a multiset of cells in

the staircase of size n and the p cells

 
n � r1 C 1

r1 C 1

!
, : : :,

 
n � rp C 1

rp C 1

!
, each with

multiplicity at least one, if and only if

.a/ ˇ � !srp � � � sr2sr1�,

.b/ ˇ — !srp � � � Osri � � � sr2sr1�, for i D 1; 2; : : : ; p, wherebmeans omission.

Proof By induction on p. For p D 0, it is the main Theorem in [1, 2, 4]. For p > 0,
we use Theorem 4 and Proposition 1. Let p > 1 and assume that the statement is
true for p � 1.

Only if part. We have ˚.w/ D .F;G/, with sh.F/ D �, and w has the p biletters 
n � r1 C 1

r1 C 1

!
,

 
n � r2 C 1

r2 C 1

!
, : : :,

 
n � rp C 1

rp C 1

!
, where 1 6 r1 < � � � < rp < n.

Applying Theorem 4 to the cell .r1 C 1; n � r1 C 1/, it follows that �r1 < �r1C1, and
if ˚.�r1w/ D .�r1F;G/, then sh.�r1F/ D sr1� and �r1w does not contain the cell
.r1C1; n�r1C1/. Therefore,�r1w fits the staircase and, in addition, it has the p�1
biletters

 
n � r2 C 1

r2 C 1

!
, : : :,

 
n � rp C 1

rp C 1

!
. From the only if part of the inductive

hypothesis, if ˇ WD sh.�r1F/ D sr1� then sh.G/ � !srk � � � sr2ˇ and, for all 2 � i �
k, sh.G/ — !srk � � � Osri � � � sr2ˇ. Henceforth, sh.G/ — !srk � � � Osri � � � sr2sr1�, for i D 2;

: : : ; k, and sh.G/ � !srk � � � sr2sr1�. It remains to prove that sh.G/ — !srk � � � sr2�.
By contradiction suppose that sh.G/ � !srp � � � sr2�. Since, for all 2 � i < p,

sh.G/ — !srp � � � Osri � � � sr2sr1� and, from Lemma 1, .a/, !srp � � � Osri � � � sr2� � !srp

� � � Osri � � � sr2sr1�, then for all 2 � i � p, sh.G/ — !srp � � � Osri � � � sr2�. Hence,
we have, ˚.w/ D .F;G/, with sh.F/ D � such that, for all 2 � i � p,
sh.G/ — !srp � � � Osri � � � sr2�, and sh.G/ � !srp � � � sr2�. From the if part of the
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inductive hypothesis, w only has p � 1 cells sited on the staircase of size n. This
is false, and we must have sh.G/ — !srp � � � sr2�.

If part. Let 1 6 r1 < � � � < rp < n. Consider ˚.w/ D .F;G/ 2 SSAF2n with
sh.F/ D � such that sh.G/ — !srp � � � Osri � � � sr2sr1�, for i D 1; 2; : : : ; p, and sh.G/ �
!srp � � � sr2sr1�. Then, by Lemma 1, .d/, .srt � � � sr2sr1�/rtC1

< .srt � � � sr2 sr1�/rtC1C1,
for t D 0; : : : ; p � 1. Since �r1 < �r1C1, by Proposition 1, one has sh.�r1F/ D sr1�.
Let sr1� DW ˇ, then ˚.�r1w/ D .�r1F;G/ 2 SSAF2n with sh.�r1F/ D ˇ is such
that sh.G/ — !srp � � � Osri � � � sr2ˇ, for i D 2; : : : ; p, and sh.G/ � !srp � � � sr2ˇ. From
the if part of the inductive hypothesis, �r1w has the following p � 1 cells sited

on the staircase of size n,

 
n � r2 C 1

r2 C 1

!
; : : :,

 
n � rp C 1

rp C 1

!
. But N�r�rw D w and

applying N�r to �rw will not change these p � 1 biletters. Either it creates a cell, in

row r1 C 1, sited on the staircase of size n, thus the biletter

 
n � r1 C 1

r1 C 1

!
, or does

nothing above the staircase of size n. Suppose that we are in the last case, w has
the same p � 1 biletters, as �rw, sited on the staircase. Using the only if part of the
inductive hypothesis, we have

.a/ sh.G/ — !srp � � � Osri � � � sr2�, for i D 2; : : : ; p, and

.b/ sh.G/ � !srp � � � sr2�.

The last condition .b/ is in contradiction with our hypothesis because sh.G/ —
!srp � � � sr2�. Hence, w should have one more biletter sited on the staircase and

since N�r1 can only create the biletter

 
n � r1 C 1

r1 C 1

!
, then w has the p biletters

 
n � r1 C 1

r1 C 1

!
,

 
n � r2 C 1

r2 C 1

!
, : : :,

 
n � rp C 1

rp C 1

!
.

8 A Non-symmetric Cauchy Kernel Over Near Staircases

We give finally a bijective proof via the RSK analogue of the identity (6).

8.1 Some Notation and a Lemma

Given a finite set S and an integer m > 0, let
�S

m

�
denote the set of all m-element

subsets of S.
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Let 0 6 p < n and 1 6 r1 < r2 < � � � < rp < n. For each 0 6 z 6 p, and each
Hz D fi1 < i2 < � � � < izg 2 �Œp�z

�
, define

A Hz
z D



.F;G/2SSAF2nW

sh.G/—!sriz
���Osrim

���sri1
sh.F/; mD1;2;:::;z

sh.G/�!sriz
���sri1

sh.F/

�
:

Put A WD A ;0 D f .F;G/2SSAF2nW sh.G/�!sh.F/ g :
For each z D 0; : : : ; p � 1, and Hz D f2 6 i1 < � � � < izg 2 �Œ2;p�z

�
, where Œ2; p�D

Œp� n f1g, let

BHz
z WD

8<
: .F;G/2SSAF2nW

sh.F/r1<sh.F/r1C1

sh.G/—!sriz
���Osrim

���sri1
sr1 sh.F/;mD1;2;:::;z

sh.G/�!sriz
���sri1

sr1 sh.F/

9=
; :

Lemma 2 Given 1 6 p < n, for each z D 0; : : : ; p � 1, and Hz D f2 6 i1 < � � �
< izg 2 �Œ2;p�z

�
, let H1

zC1 WD f1g [ Hz. Then

BHz
z D f.F;G/ 2 A Hz

z W sh.F/r1 < sh.F/r1C1g [ A
H1

zC1

zC1 :

Let x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ be two sequences of indeterminates. From
(11), with �r1 the isobaric divided difference with respect to x, one has

X
�2Nn

�r1 O�.x/ D
X
�2Nn

�r1

X
F2SSAFn
sh.F/D�

xF D
X
�2Nn

�r1>�r1C1

�r1

X
F2SSAFn
sh.F/D�

xF

D
X
�2Nn

�r1>�r1C1

X
F2SSAFn
sh.F/D�

xF C
X
�2Nn

�r1>�r1C1

X
F2SSAFn

sh.F/Dsr1�

xF:

Thereby

X
�2Nn

0
BBB@�r1

X
.F;G/2A Hz

z
sh.F/D�

xFyG

1
CCCA D

X
.F;G/2A Hz

z
sh.F/r1>sh.F/r1C1

xFyG C
X

.F;G/2BHz
z

xFyG: (13)
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8.2 The Combinatorial Formula

In [16], Lascoux gives a Cauchy kernel expansion formula for any Ferrers shape
which produces, in particular, the following Cauchy kernel expansion over the near
staircase, on the NW part Fig. 1,

Y
.i;j/2�

.1 � xiyj/
�1 D

X
�2Nn

.�r1 : : : �rp O�.x//!�.y/:

Next theorem gives a bijective explanation.

Theorem 6 Let 0 6 p < n and 1 6 r1 < r2 < � � � < rp < n. Let � be the near
staircase Fig. 1. Then

1.

X
�2Nn

.�r1 : : : �rp O�.x//!�.y/ D
X

.F;G/2A
xFyG C

X
16z6p

X
Hz

X
.F;G/2A Hz

z

xFyG;

(14)
where Hz 2 �Œp�z

�
.

2.

Y
.i;j/2�

.1 � xiyj/
�1 D

X
�2Nn

�
�r1 : : : �rp O�.x/

�
!�.y/:

Proof
1: The proof is by induction on p. If p D 0, we get,

X
�2Nn

O�.x/!�.y/ D
X
�2Nn

X
.F;G/2SSAF2n
sh.G/6!sh.F/

sh.F/D�

xFyG D
X
�2Nn

X
.F;G/2A
sh.F/D�

xFyG D
X

.F;G/2A
xFyG:

Let p > 1 and suppose that identity (14) is true for p � 1 operators �i. Then, since
�r1 is linear,

X
�2Nn

.�r1�r2 : : : �rp O�.x//!�.y/ D �r1

 X
�2Nn

.�r2 : : : �rp O�.x//!�.y/
!

D �r1

0
B@

p�1X
zD0

X
Hz2.Œ2;p�z /

X
.F;G/2A Hz

z

xFyG

1
CA D

p�1X
zD0

X
Hz2.Œ2;p�z /

0
BBB@
X
�2Nn

�r1

X
.F;G/2A Hz

z
sh.F/D�

xFyG

1
CCCA
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D
p�1X
zD0

X
Hz2.Œ2;p�z /

0
BBB@

X
.F;G/2A Hz

z
sh.F/r1>sh.F/r1C1

xFyG C
X

.F;G/2BHz
z

xFyG

1
CCCA : (15)

Using Lemma 2,

(15) D
p�1X
zD0

X
Hz2.Œ2;p�z /

0
BBB@

X
.F;G/2A

Hz
z

sh.F/r1>sh.F/r1C1

xFyG C
X

.F;G/2A
Hz

z
sh.F/r1 <sh.F/r1C1

xFyG C
X

.F;G/2A
H1zC1

zC1

xFyG

1
CCCA

D
p�1X
zD0

X
Hz2.Œ2;p�z /

0
BB@

X
.F;G/2A

Hz
z

xFyG C
X

.F;G/2A
H1zC1

zC1

xFyG

1
CCA D

pX
zD0

X
Hz2.Œp�z /

X
.F;G/2A

Hz
z

xFyG:

2: Let �0 the biggest staircase inside of �. Then, identifying xiyj with the biletter
�j

i

�
,

and using the bijection in Theorem 5, it follows that

Y
.i;j/2�

.1 � xiyj/
�1 D

Y
.i;j/2�0

.1 � xiyj/
�1

pY
iD1
.1 � xriC1yn�riC1/�1

D
X

.F;G/2A
xFyG C

pX
zD1

X
Hz2.Œp�z /

X
.F;G/2A Hz

z

xFyG:ut

The combinatorial expansion formula for the SE part, in the sense of [16], can
be obtained by using the change of basis (9), or, in alternative, the SE version of
Theorem 5 coming from Corollary 3.
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Clustering Techniques Applied
on Cross-Sectional Unemployment Data

Carlos Balsa, Alcina Nunes, and Elisa Barros

Abstract Using a cross-section database that observes the Portuguese labour
market in two different phases of the business cycle, the present paper aims to
address the issue of the segmentation of the Portuguese labour market taking into
account the heterogeneity resulting from different unemployment characteristics
observed along the Portuguese geographical space and applying two optimization
clustering methods: the k-means and the spectral methods. The k-means is a
traditional optimisation clustering method applied to cluster data observations.
Spectral clustering is an alternative method based on the computation of the
dominant eigenvectors of a matrix related with the distance among data points. The
results obtained by the two methods are not identical but are very close and show
that, apart the economic phase of the cycle, Portugal presents two very different
profiles of registered unemployment. One of them can be considered problematic
because it presents a higher percentage of unemployed women, long duration
unemployed and unemployed with low levels of formal education—these are the
groups that present more difficulties in the labour market and for which is more
difficult to find a job after losing one. The segmentation of the labour market is a
reality and the labour market is not adjusting to the business cycle.
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1 Introduction

Clustering aims the partition of a data set by bringing together similar elements in
subsets, called clusters. The similarity depends on the distance between data points
such that a reduced distance indicates that they are more similar among them than a
larger one. Several distinct methods can be used to measure the distance among the
elements of a data set [1]. Along this work we will consider the traditional Euclidian
distance, i.e., the 2-norm of the differences between data points vectors.

The k-means [2] is an optimization method that partitions the data in exactly k
clusters, previously determine. This is achieved in a sequence of steps which begins,
for instance, with an initial partition randomly generated. In each step the cluster’s
centroid (arithmetic vector mean) is computed. The minimum distance between
each data point and the clusters0 different centroids will decide the formation of new
clusters. The formation of a new cluster implies assigning each observation to the
cluster that presents the lowest distance. After that the centroids are (re)calculated
and the former step is repeated until the moment each individual belongs to a stable
cluster, i.e., when the sum of the squared distances to the centroid of all data points
over all the clusters is minimized. The algorithm presents a rather fast convergence,
but one cannot guarantee that the algorithm finds the global minimum [3].

Spectral methods, and in particular the spectral clustering algorithm, are useful
when considering non-convex shaped subsets of points. Spectral clustering methods
use the k dominant eigenvectors of a matrix, called affinity matrix, based on the
distance between the observations. The idea is grouping data points in a lower-
dimensional space described by those k eigenvectors [4]. The approach may not
make a lot of sense, at first, since we could apply the k-means methodology directly
without going through all the matrix calculations and manipulations. However, some
analyses show that mapping the points to this k-dimensional space can produce tight
clusters that can easily be found applying k-means [5].

The empirical application of the two cluster methods will be made using
as observations 278 Portuguese mainland municipalities (concelhos) that will be
classified regarding the type=characteristics of unemployment official registers. The
set of observations, x1; : : : ; x278, that contains 278 vectors, whose 11 coordinates
(variables that represent unemployment features) are the values for some of the
indicators used to characterise Portuguese unemployment (gender, age classes,
levels of formal education, situation relating unemployment and unemployment
duration), is divided in k clusters. The idea is that the classification of observations
resulting from the spectral method could be than compared to the classification
given by the traditional k-means method.

The composition of the groups, in two different phases of the economic cycle,
will be analysed. In the empirical analysis will be classify data for the year 2007,
which corresponds to an expansion phase (2007 was a year of low unemployment)
of the business cycle, and for the year 2012, which corresponds to a busyness cycle
recession phase (2012 was a year with a high level of register unemployment).
In 2012 data regarding unemployment in Portugal were disturbing—14% of the



Clustering Techniques Applied on Cross-Sectional Unemployment Data 73

population which wanted to work, was looking for a job and, at the same time,
was available to work was unemployed. According to Centeno and Novo [6], if
until during the nineties the unemployment rate had a cyclical behaviour in this new
century the Portuguese economy is not being able to change the structural nature of
the registered unemployed, in particular in the positive phase of the business cycle as
expected. The authors refer, for instance, the long term unemployment that remains
a problem over time in the Portuguese economy due, among others, to low levels of
formal education and generous unemployment benefits. They point out the labour
market segmentation as the cause for the problem: the Portuguese labour market
splits itself in a stronger and a weaker market in a vicious cycle of low productivity,
qualification and remuneration. Starting from this point our aim is to verify the
existence of this segmentation in two different economic periods confirming, or not,
the idea of persistence of difficulties regarding the adjustment of the labour market
to the business cycle. At the same time, the distribution of the registered unemployed
features over space will also be analysed to verify if the Portuguese labour market
segmentation persists just over time or if remains also over space—considering as
units of space the Portuguese municipalities.

The results are analysed from both mathematical and economic points of view.
The main goal is to find evidence regarding which method produces the best cluster
partition and, accordingly, to understand if the resulting clusterisation makes sense
either in terms of the spatial distribution of unemployment characteristics over
a country’s administrative territory and over time—particularly over the different
phases of the business cycle—regarding the issue of segmentation of the Portuguese
labour market refereed above. On one hand it is important to understand if the appli-
cation of the cluster methodology could avoid a priori subjective grouping criteria
as the one that just groups municipalities in administrative regions [7]. The problem
of unemployment has traditionally been studied as a national phenomenon being the
national unemployment rates considered as a consequence of national labour market
characteristics. However the rates of unemployment at the regional level are very
heterogeneous inside countries, particularly in Europe. According to Südekum [8],
in Europe, regional labour market disparities within many countries are of about the
same magnitude as differences between countries. Taking into account this findings
is important to understand the regional dynamics of unemployment [9, 10]. On
another hand is important to understand if the mathematical methodology could
offer insights that help to stress the need to implement structural changes in the
labour market since the normal stabilization mechanism of the business cycle seems
not enough to overcome the segmentation problem. In sum, the idea is to understand
if a particular cluster methodology for data mining analysis provides useful and
suitable information that could be used to the development of national, regional or
local unemployment policies.

The paper is divided as follows. The k-means method and the spectral clustering
method are presented in Sects. 2 and 3, respectively. The methods description is
followed by Sect. 4 where data and variables analysed are also presented and
described. In Sect. 5 we move ahead toward the optimal number of clusters applying
both selected methods. In Sect. 6 the results are presented and discussed. The groups
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obtained by the two methods, its composition and its evolution from 2007 to 2012
will be analysed. The concluding remarks can be found on Sect. 7.

2 The k-Means Method

We are concerned with m data observations xi 2 Rn that we want classify in k
clusters, where k is predetermined. We organize the data as lines in a matrix X 2
Rm�n. To describe the k-means method as proposed in [3] we denote a partition of
vectors x1; : : : ; xm in k clusters as

Q D f�1; : : : ; �kg where

�j D f` W x` 2 clusterjg

defines the set of vectors in cluster j. The centroid, or the arithmetic mean, of the
cluster j is:

mj D 1

nj

X
`2�j

x` (1)

where nj is the number of elements in cluster j. The sum of the squared distance, in 2-
norm, between the data points and the j cluster’s centroid is known as the coherence:

qj D
X
`2�j

��x` � mj

��2
2

(2)

The closer the vectors are to the centroid, the smaller the value of qj. The quality
of a clustering process can be measured as the overall coherence:

Q
�Y	

D
kX

jD1
qj (3)

The k-means is considered an optimization method because it seeks a partition
process that minimizes Q.

Q
/ and, consequently, finds an optimal coherence. The

problem of minimizing the overall coherence is NP-hard and, therefore, very
difficult to achieve. The basic algorithm for k-means clustering is a two step heuristic
procedure. Firstly, each vector is assigned to its closest group. After that, new
centroids are computed using the assigned vectors. In the following version of k-
means algorithm, proposed by Eldén [3], these steps are alternated until the changes
in the overall coherence are lower than a certain tolerance previously defined.
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The k-means algorithm

1. Start with an initial partitioning
Q.0/ and compute the corresponding centroid vectors m.0/

j for

j D 1; : : : ; k. Compute Q.
Q.0/

/. Put t D 1.
2. For each vector xi find the closest centroid. If the closest centroid is mt�1

p assign i to �.t/p .

3. Compute the centroids m.t/
j for j D 1; : : : ; k of the new partitioning

Q.t/.

4. If
ˇ̌
ˇQ.Q.t/

/� Q.
Q.t�1/

/

ˇ̌
ˇ < tol, stop; Otherwise t D tC 1 and return to step 2.

Since it is an heuristic algorithm there is no guarantee that k-means will converge
to the global minimum, and the result may depend on the initial partition

Q.0/.
To avoid this issue, it is common to run it multiple times, with different starting
conditions choosing the solution with the smaller Q .

Q
/.

3 Spectral Clustering Method

Let x1; : : : ; xm be a m data observations set in a n-dimensional euclidian space. We
want to group these m points in k clusters in order to have better within-cluster
affinities and weaker affinities across clusters. The affinity between two observations
xi and xj is defined by Ng et al. [11] as:

Aij D e
�

kxi�xjk22
2�2 (4)

where � is a scaling parameter that determines how fast the affinity decreases
with the distance between xi and xj. The appropriate choice of this parameter is
crucial [5]. In [11] we can find a description of a method able to choose the scaling
parameter automatically.

The spectral clustering algorithm proposed by Ng et al. [11] is based on the
extraction of dominant eigenvalues and their corresponding eigenvectors from the
normalized affinity matrix A 2 Rm�m. The components Aij of A are given by Eq. (4),
if i ¤ j, and by Aii D 0, if i D j. The sequence of steps is presented below in the
Spectral Clustering Algorithm.

The spectral clustering algorithm
1. Form the affinity matrix A as indicated in Eq. (4).
2. Construct the normalized matrix L D D�1=2AD�1=2 with Dii DPm

jD1 Aij.
3. Construct the matrix V D Œv1v2 : : : vk� 2 Rm�k by stacking the eigenvectors associated with

the k largest eigenvalues of L.
4. Form the matrix Y by normalizing each row in the m � k matrix V (i.e. Yij D

Vij=
�Pk

jD1 V2
ij

	1=2
).

5. Treat each row of Y as a point in Rk and group them in k clusters by using the k-means method.
6. Assign the original point xi to cluster j if and only if row i of matrix Y was assigned to cluster j.
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4 Data Description

The 278 data observations represents the Portuguese continental concelhos. Each
data point have 11 coordinates representing characteristics of the unemployed
register individuals. Indeed, the unemployed individuals registered in the Portuguese
public employment services of the Instituto de Emprego e Formação Profissional
(IEFP) present a given set of distinctive characteristics related with gender, age,
formal education, unemployment spell (unemployment for less than a year or
more than a year) and the situation related with the unemployment situation
(unemployed individual looking for a first employment or for another employment).
The observations and coordinates are observed in two points in time—2007 and
2012—which correspond to two different phases of the business cycle as mentioned
above.

The referred characteristics are important determinants of unemployment and
are important economic vectors regarding the development of public employment
policies. National public policies benefit from being based on simple and objective
rules however a blind application of these national policies across space (regions)
and time could be ineffective if the addressed problem is not well explored and
identified [12] at a regional and temporal level. For example, in many countries the
labour market problems of large cities are quite different from those of rural areas—
even when the unemployment rate is the same [13]. It is believed this is the case
of the Portuguese economy. The same happens when the issue concerns different
phases of the business cycle, i.e. when the problem is analysed over time. The impact
of a crisis on the labour market varies across (and within) countries depending on
the structure of the economy, institutions in place and policymakers response. In
particular, the downturn in the business cycle has different implications for various
segments of the population as defined by such characteristics as gender and age [14].
So, in terms of expected results and to avoid the waste of scarce resources, well
targeted policies are more efficient. Consequently, the main strategies of the labour
market policy, and in particular of the labour market measures, should be to deal
with the situation at hand, across regions and time. For instance, it is easier to
integrate an unemployed person into a job if the policy measure depends on the
local labour market conditions [13] at a particular moment in time depending on
the macroeconomic context. Even considering the hypothesis that the Portuguese
market is a segmented market where the situation of groups more exposed to labour
market problems persists over time independently of the business cycle phases.

A complete study of regional and temporal similarities (or dissimilarities) in a
particular labour market, as the Portuguese, should not be limited by a descriptive
analysis of the associated economic phenomena. It should also try to establish
spacial and temporal comparison patterns among geographic areas and time periods
in order to develop both national and regional public policies to fight the problem.
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Indeed high unemployment indicators and regional inequalities are major concerns
for European policy-makers since the creation of European Union. However, even
if the problem is known the policies dealing with unemployment and regional
inequalities have been few and weak [15]. In Portugal, in particular, there are
some studies that try to define geographic, economic and social homogeneous
groups [16]. Yet, to the best of our knowledge, there are no studies that offer
an analysis of regional unemployment profiles. Other economies are starting to
develop this kind of statistical analysis using as a policy tool the cluster analysis
methodology [7, 17–19]. Regarding unemployment and business cycle there are
several national and international studies that focus this subject however they not
compare results obtained from the cluster methodology as this papers intends to do.

The data concerning the above mentioned characteristics are openly available
in a monthly period base in the website of IEFP (http://www.iefp.pt/estatisticas/
Paginas/Home.aspx). Additionally, the month of December gives information about
the stock of registered unemployed individuals at the end of the respective year. In
the case of this research work, data from unemployment registers in 2007 and 2012
have been used (2007 was a year of low register unemployment and 2012 was a
year with a high level of register unemployment). The eleven variables available to
characterise the individuals and that have been used here are divided in demographic
variables and variables related with the labour market. These variables are dummy
variables, measured in percentage of the total number of register individuals in a
given concelho. We have a total of 278 observation vectors x1; : : : ; x278, which one
with 11 unemployment characteristics presented in Table 1.

Women, individuals in a situation of long duration unemployment, younger or
older unemployed individuals and the ones with lower formal education are the
most fragile groups in the labour market and, consequently, are the most exposed

Table 1 Description of the
register unemployed

Variable number Unemployment variable

1 Female

2 Long duration unemployed

3 Unemployed looking for a new employment

4 Age lower than 25 years

5 Age between 25 and 35 years

6 Age between 35 and 54 years

7 Age equal or higher than 55 years

8 Less than 4 years of formal education

9 Between 4 and 6 years of formal education

10 Between 6 and 12 years of formal education

11 Higher education

http://www.iefp.pt/estatisticas/Paginas/Home.aspx
http://www.iefp.pt/estatisticas/Paginas/Home.aspx
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to unemployment situations [14, 20]. They are also the most challenging groups
regarding the development of public employment policies, namely the regional ones.

5 Determining the Clusters’ Number

We begin by applying the two clustering methods to partition in k clusters the data
points set x1; : : : ; xm, with m D 278 Portuguese mainland concelhos regarding the
11 chosen unemployment characteristics. As the optimal number of targeted groups
is unknown a priori, we repeat the partition for k D 2; 3; 4 and 5 clusters.

To evaluate the quality of the results from the cluster methodology and to
estimate the correct number of groups in our data set we resort the silhouette statistic
framework. The silhouette statistic introduced by Kaufman and Rousseeuw [1] is a
way to estimate the number of groups in a data set. Given observation xi, the average
dissimilarity to all other points in its own cluster is denoted as ai. For any other
cluster c, the average dissimilarity of xi to all data points in cluster c is represented
by Nd .xi; c/. Finally, bi denote the minimum of these average dissimilarities Nd .xi; c/.
The silhouette width for the observation xi is:

si D .bi � ai/

max fbi; aig : (5)

The average silhouette width is obtained by averaging the si over all observations:

Ns D 1

m

mX
iD1

si: (6)

If the silhouette width of an observation is large it tends to be well clustered.
Observations with small silhouette width values tend to be those that are scattered
between clusters. The silhouette width si in Eq. (5) ranges from �1 to 1. If an
observation has a value close to 1, then it is closer to its own cluster than it is to a
neighbouring one. If it has a silhouette width close to �1, then it is a sign that it is not
very well clustered. A silhouette width close to zero indicates that the observation
could just as well belong to its current cluster or one that is near to it.

The average silhouette width (Eq. (6)) can be used to estimate the number of
clusters in the data set by using the partition with two or more clusters that yield
the largest average silhouette width [1]. As a rule of thumb, it is considered that
an average silhouette width greater than 0:5 indicates a reasonable partition of the
data, and a value less than 0:2 would indicate that the data do not exhibit a cluster
structure [5].

Figure 1 presents the average silhouette width value (Eq. (6)) corresponding
to the case of seven different partitions of the data observations set, this is, k D
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Fig. 1 Average silhouette width for k D 2; 3; : : : ; 7 clusters. (a) 2007, (b) 2012

2; 3; 4; 5; 6 and 7 clusters resulting from the application of the k-means and
spectral method in 2007 and 2014.

In 2007 the best partition obtained with the application of the two methods occurs
with k D 2. The two cluster solution presents a larger value of the average silhouette
width, near 0:37. Nonetheless, the average of the silhouette is close but smaller than
0:5 which reveals that the data set does not seem to present a strong trend to be
partitioned in two clusters. The computed value indicates that the distance between
the two considered clusters is not very large.

In 2012 the best partition obtained with the application of the two methods occurs
also with k D 2. The average silhouette with value is near 0:43, for the spectral
method, and near 0:44 for the k-means method.

These values reveal that the data set presents a stronger trend to be partitioned
in two clusters in 2012 than in 2007. Nevertheless, the results seem to stress the
hypothesis defined in the beginning of this paper—the Portuguese labour market
is segmented in two parts that persist over the business cycle being necessary
more (in terms of labour policy) than just an adjustment of the economy. It could
be concluded that more than cyclical the unemployment in Portugal seems to be
structural.

6 Results’ Analysis

In Sect. 5 we have seen that both spectral clustering method and k-means method
indicate that the data are best partitioned into two clusters. Here we analyse the
results of the classification of the 278 Portuguese mainland concelhos in two groups.
We start by analysing the differences between clusters resulting from the application
of different methods in Sect. 6.1, after that (Sect. 6.2) we compare the two clusters
in order to identifies the two main unemployment profiles. Finally, in Sect. 6.3 we
identify the differences between groups obtained for the years 2007 and 2012.
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Table 2 Clusters’ properties Method j nj qj Q

(a) 2007

k-Means 1 160 5:0954 8.9582

2 118 3:8627

Spectral 1 153 4:8862 8.9706

2 125 4:0844

(b) 2012

k-Means 1 177 3:4161 5.3276

2 101 1:9115

Spectral 1 154 2:7511 5.3536

2 124 2:6026

6.1 Comparing Methods

The number of observations included in the two clusters corresponding to the years
2007 and 2012 partitions are presented in Table 2. Both methods produce a larger
and a smaller cluster. However, the difference between the two clusters is higher
in the case of k-means. Cluster 1 obtained by the k-means includes n1 D 160

observations in 2007 and n1 D 177 in 2012. The corresponding cluster obtained
by the spectral method includes n1 D 153 observations in 2007 and n1 D 154 in
2012. The difference between cluster 1 and cluster 2 increases from 2007 to 2012
for both methods. In the case of k-means the difference increases from 42 to 76,
while in the case of the spectral method the difference increases from 28 to 30.

We also note in Table 2 that the higher the number of observations nj the greater
the value of the local coherence qj (Eq. (2)). For example, the difference of 23
observations for the first cluster in 2012 is reflected in the larger local coherence
(q1 D 3:4161) obtained with the k-means methods. The second cluster comprises
n2 D 101 observations and presents a local coherence of q2 D 1:9115, for the k-
means, and n2 D 124 observations and a local coherence of q2 D 2:6026 for the
spectral method.

Although the differences between the computed coherence for each cluster, it
is possible to observe that both methods achieve a very similar overall coherence
(Eq. (3)). In 2007, Q  8:96 for the k-means and Q  8:97 for the spectral method.
In 2012, Q  5:33 for the k-means and Q  5:35 for the spectral method. Both
methods achieve approximately the same overall coherence.

As the two methods do not produce the same two clusters, we have identified the
composition of each cluster to know which are the observations that remain in the
same cluster independently of the method. Table 3 presents the number of repeated
observations in the two clusters, both in 2007 and 2012. The cluster determined
by one method includes, or is included in, the corresponding cluster determined
by the other method. In 2007, for instance, the number of repeated observations
in the cluster one is 153 which corresponds to the total number of observations
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Table 3 Intersection of the
two clusters

Cluster k-Means Spectral Repeated
j nj nj nj

(a) 2007

1 160 153 153

2 118 125 118

(b) 2012

1 177 154 154

2 101 124 101

included in the same cluster (n1 D 153) obtained by spectral method. In turn, the
118 observations assigned to second cluster by the k-means are also part of the same
cluster determined by the spectral method (n2 D 118).

The results presented in Table 3 show that clusters obtained by the two methods
are very similar. In 2007, 153 observations are assigned to the first cluster and 118
assigned to the second by the two methods. There are only 7 observations whose
allocation fluctuates with the method. This number represents about 2.5% of the
total number of observations (278). The number of floating observations increases
to 23 in 2012, which corresponds to 8.8% of the total number of observations.

6.2 Comparing Clusters

The comparison of observations’ values in the two clusters over the years of 2007
and 2012 is presented in Fig. 2. The mean value obtained for the 11 variables,
presented in Table 1, are plotted for each cluster. It is possible to observe that both
methods retrieve clusters that present the same pattern. This reinforces the idea that
the clusters produced by the two methods are very similar.

From Fig. 2 we can also observe that the big difference between cluster 1 and
cluster 2 is mainly due to the value of the variables 2 (long duration unemployment),
9 (formal education lower than 4 year) and 10 (6–12 years of formal education).
In the second cluster are gathered the Portuguese mainland concelhos that present
a higher percentage of unemployed register individuals with long duration unem-
ployed (variable 2) and unemployed with a low level of formal education (variable
9). In cluster 1 we have concelhos that presents unemployed register individuals
with an higher level of formal education. This observation is made regardless of the
phase of the economic cycle because the differences between the two clusters in
2007 are very similar to the differences in 2012, as stressed before.
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Fig. 2 Observations’ mean by variable. (a) 2007, (b) 2012
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Table 4 Comparison
between 2007 and 2012

Cluster 2007 2012 Repeated
j nj nj nj

(a) k-Means

1 160 177 133

2 118 101 74

(b) Spectral clustering

1 153 154 118

2 125 124 89

6.3 Comparing Years

Table 4 allows to analyse the composition of the cluster considering the year in
analysis. Cluster 1 increases, regarding the number of observations including on
it, and cluster 2 decreases its number, from 2007 to 2012. This variation is more
pronounced in the case of k-means application.

In Table 4 is also possible to observe that there are a large number of observations
that are in the same cluster whatever the phase of the cycle in study. For example,
in the case of the K-means application there are 133 observations that remain in
the first cluster and 101 which remain in the second one. The high number of
repeated observations indicates that an high number of concelhos follow the same
unemployment profile pattern over the economic cycle apart the economic phase,
stressing the division of the country in two distinct unemployment profiles that
remain over time and economic crises.

The selection of only 2 years may not allow to capture the dynamics of the
economic cycle but these results show that the Portuguese labour market seem not
to adapt to changes in the economic and financial framework and may be subjected
to an unemployment hysteresis phenomenon—an eminently microeconomics (firm
level) phenomenon that spreads to a macroeconomic level [21]. The economic
literature discusses that the link between growth and unemployment may be hys-
teretic [22]. The phenomenon arrives from, for instance, human capital depreciation,
stigmatization by employers, loss of social networks and a strict employment
protection legislation which, for example, makes Portugal a good case to study
labour demand driven hysteresis [23].

The results presented in this research work seem to stress the existence of path
dependent unemployment profiles (as happens for the employment [21]) determined
by the history of previous economic cycle dynamics. As a result the labour market
policies designed to fight unemployment should be not only address particular
regional problems but should also present long-run effects to fight, for example,
the human capital depreciation in more depressed regions and/or the stigmatization
of particular labour market groups (as women and older people).

In Fig. 3 the mean value of the variables found in each cluster’s repeated
observations is compared. Figure 3a refers to the concelhos that remain in the
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Fig. 3 Values of the repeated observations over time. (a) k-Means, (b) spectral
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same cluster, independently of the year where the k-means had been applied (see
Table 4a), and Fig. 3b refers to those concelhos that are repeated when the spectral
method had been applied (see Table 4b). It is clear that the main differences
between the two cluster are due to the variables 1 (female unemployment), 2
(long duration unemployment), 9 (4–6 years of formal education) and 10 (6–
12 years of formal education). In the second cluster (cluster 2) are gathered the
Portuguese mainland concelhos that present a higher percentage of unemployed
register individuals with more problematic characteristics—women, long duration
unemployed individuals, individuals that are looking for a job for the first time
(individuals with no connections with the labour market), individuals with more
than 55 years and with lower number of years of formal education (for example, this
cluster gathers the concelhos with a lower percentage of unemployed individuals
with a higher education). From the labour market groups point of view, we can say
that cluster 2 includes the groups of individual that are the most fragile.

The results illustrated in Fig. 3 confirm the existence of two distinct country’s
unemployment profiles. Despite the stage of the business cycle, that tends to
align the unemployment registration rates regardless of the observed individual
characteristics, it is possible to verify the existence of regional differences that
should be studied and analysed carefully in order to make employment public
policies more effective and efficient.

Comparing Fig. 3a with Fig. 3b we can conclude that k-means and spectral
method denote the same overall data partition and, consequently, both can identify
the two distinct unemployment profiles.

It has been concluded until now that there are two groups of concelhos with
homogeneous profiles in terms of unemployment characteristics. In order to have
an idea about the composition of each group, Table 5 presents the list of Portuguese
mainland concelhos that remain in the same cluster independently of the applied
cluster method and the analysed year. There are 118 concelhos always classified
in cluster one and 74 always classified in cluster two. Such observation allows to
conclude these are the most representative concelhos regarding each one of the
two unemployment profiles. For a full characterisation of the concelhos within
each cluster would be important to have information regarding other economic,
social and demographic features however it is possible to find in cluster 2 well
known depressed municipalities located in the more depressed Portuguese regions.
In cluster 1 is possible to find municipalities located along the coast, the more
developed area of the Portuguese economy. The remaining concelhos—the 86 ones
not presented in the above table—move between the two unemployment profiles
depending on the applied cluster method and the year in analysis. Such swing
suggests that, over time, their profile of unemployment individuals is no as robust
as the one found for the concelhos in the table. Nevertheless, they match one of the
two identified profiles.
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Table 5 Concelhos that remain in the same cluster independently of the applied cluster method
and the analysed year

Cluster Concelhos

1 Bragança, Caminha, Melgaço, Miranda do Douro, Monção, Ponte da Barca, Vila
Nova de Cerveira, Vila Real, Almeida, Anadia, Aveiro, Batalha, Carregal do Sal,
Castelo Branco, Celorico da Beira, Coimbra, Condeixa-a-Nova, Figueira da Foz,
Figueira de Castelo Rodrigo, Guarda, Ílhavo, Leiria, Lousã, Mangualde, Mealhada,
Meda, Miranda do Corvo, Montemor-o-Velho, Mortágua, Oliveira do Hospital,
Penela, Pinhel, Pombal, Porto de Mós, Proença-a-Nova, Santa Comba Dão, São
Pedro do Sul, Trancoso, Vila de Rei, Alcanena, Alcobaça, Alcochete, Alenquer,
Almada, Almeirim, Amadora, Benavente, Bombarral, Cadaval, Caldas da Rainha,
Cartaxo, Cascais, Constância, Ferreira do Zêzere, Golegã, Lisboa, Loures, Lourinhã,
Mação, Mafra, Moita, Montijo, Nazaré, Odivelas, Oeiras, Ourém, Palmela, Peniche,
Rio Maior, Santarém, Sardoal, Seixal, Sesimbra, Setúbal, Sintra, Sobral de Monte
Agraço, Tomar, Torres Novas, Torres Vedras, Vila Franca de Xira, Vila Nova da
Barquinha, Aljustrel, Alvito, Arraiolos, Beja, Borba, Campo Maior, Castelo de Vide,
Cuba, Elvas, Eestremoz, Évora, Fronteira, Grândola, Montemor-o-Novo, Mora,
Portalegre, Reguengos de Monsaraz, Santiago do Cacém, Sines, Sousel, Vendas
Novas, Viana do Alentejo, Vila Viçosa, Albufeira, Aljezur, Castro Marim, Faro,
Lagoa, Lagos, Loulé, Olhão, Portimão, São Brás de Alportel, Silves, Tavira, Vila do
Bispo, Vila Real de Santo António

2 Alijó, Amarante, Armamar, Arouca, Baião, Barcelos, Boticas, Cabeceiras de Basto,
Carrazeda de Ansiães, Castelo de Paiva, Celorico de Basto, Cinfães, Espinho, Fafe,
Felgueiras, Freixo de Espada à Cinta, Gondomar, Guimarães, Lamego, Lousada,
Marco de Canaveses, Mesão Frio, Moimenta da Beira, Mondim de Basto,
Montalegre, Murça, Oliveira de Azemeis, Paços de Ferreira, Paredes, Penafiel, Peso
da Régua, Ponte de Lima, Póvoa de Lanhoso, Póvoa de Varzim, Resende, Ribeira de
Pena, Sabrosa, Santa Maria da Feira, Santa Marta de Penaguião, Santo Tirso, São
João da Pesqueira, Tabuaço, Torre de Moncorvo, Trofa, Valongo, Valpaços, Vieira do
Minho, Vila do Conde, Vila Nova de Famalicão, Vila Nova de Foz Côa, Vila Nova de
Gaia, Vila Pouca de Aguiar, Vila Verde, Vimioso, Vinhais, Vizela,
Albergaria-a-Velha, Arganil, Castanheira de Pera Castro Daire, Fornos de Algodres,
Gouveia, Idanha-a-Nova, Penacova, Penamacor, Sátao, Seia, Avis, Castro Verde,
Crato, Mourão, Ourique, Serpa, Monchique

7 Concluding Remarks

Results obtained with spectral clustering method are consistent with the k-means
results. Both methods denote the same overall data partition over space (different
geographic areas) and time (different phases of the business cycle). The cluster
methodology being considered an exploratory data-analysis technique intended
largely for generating rather than testing hypothesis [24] proves to be, in this
empirical application, a powerful ally to start an analysis of a given labour market
(in this particular case, the Portuguese).

From the economic point of view the clustering methodology helps to identifies
the two main groups of Portuguese concelhos in terms of unemployment profiles.
Both cluster methods seem to divide the total number of concelhos in two economic
meaningful clusters that persists regardless of the business cycle phase denoting
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the segmentation of the Portuguese labour market and a possible unemployment
hysteresis phenomenon. Indeed, these two clusters persist over time and space, in
the Portuguese economy.

Apart the economic phase of the cycle, Portugal presents two very different
profiles of registered unemployment. One of them can be considered problematic
because it presents a higher percentage of unemployed women, long duration
unemployed and unemployed with low levels of formal education—these are the
groups that present more difficulties in the labour market and for which is more
difficult to find a job after losing one. The two well defined groups could be
object of distinct public policies—policies well targeted that can be more effective
and efficient regarding the spatial and the economic context where they will be
implemented and that be able to have not only short- but also long-run effects which
could overcome the problems arising from path dependent unemployment profiles.

References

1. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley, New York (1990)

2. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
pp. 281–297. University of California Press (1967)

3. Eldén, L.: Matrix methods in data mining and pattern recognition. SIAM (2007)
4. Mouysset, S., Noailles, J., Ruiz, D.: Using a global parameter for Gaussian affinity matrices

in spectral clustering. High Performance Computing for Computational Science—VECPAR
2008, pp. 378–390 (2008)

5. Martinez, W.L., Martinez, A.R., Solka, J.L.: Exploratory Data Analysis with MATLAB. CRC
Press, Boca Raton (2010)

6. Centeno, M., Novo, Á.A.: Segmentação. Tema de Discussão, Boletim Económico de Primavera
2012 do Banco de Portugal 7, 30 (2012)

7. Álvarez de Toledo, P., Núñez, F., Usabiaga, C.: Labour Market Segmentation, Clusters,
Mobility and Unemployment Duration with Individual Microdata. MPRA Paper 46003,
University Library of Munich, Germany (2013)

8. Südekum, J.: Increasing returns and spatial unemployment disparities. Pap. Reg. Sci. 84, 159–
181 (2005)

9. Garcilazo, J.E., Spiezia, V.: Regional nemployment clusters: neighborhood and state effects in
Europe and North America. Rev. Reg. Stud. 37(3), 282–302 (2007)

10. Altavilla, C., Caroleo, F.E.: Asymmetric Effects of National-based Active Labour Market
Policies. Reg. Stud. 47(9), 1482–1506 (2013)

11. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. Adv.
Neural Inf. Process. Syst. (NIPS) 14, 849–856 (2002)

12. Campo, D., Monteiro, C.M.F., Soares, J.O.: The European regional policy and the socio-
economic diversity of European regions: a multivariate analysis. Eur. J. Oper. Res. 187,
600–612 (2008)

13. Blien, U., Hirschenauer, F., Van, P.T.H.: Classification of regional labour markets for purpose
of labour market policies. Pap. Reg. Sci. 89(4), 859–881 (2009)

14. Verick, S.: Who is hit hardest during a financial crisis? The Vulnerability of Young Men and
Women to Unemployment in an Economic Downturn. IZA Discussion Papers, 4359 (2009)



88 C. Balsa et al.

15. Overman, H.G., Puga, D.: Unemployment Clusters across Europe’s Regions and Countries.
Econ. Policy 17(34), 115–148 (2002)

16. Soares, J.O., Marques, M.M.L., Monteiro, C.M.F.: A multivariate methodology to uncover
regional disparities: a contribution to improve European union and Governmental decisions.
Eur. J. Oper. Res. 45, 121–135 (2003)

17. Arandarenko, M., Juvicic, M.: Regional labour market differences in Serbia: assessment and
policy recommendations. Eur. J. Comp. Econ. 4(2), 299–317 (2007)

18. López-Bazo, E., Del Barrio, T., Artís, M.: Geographical distribution of unemployment in Spain.
Reg. Stud. 39(3), 305–318 (2005)

19. Nadiya, D.: Econometric and cluster analysis of potential and regional features of the labor
market of Poland. Ekonomia 21, 28–44 (2008)

20. Dean, A.: Tackling long-term unemployment amongst vulnerable groups. OECD Local
Economic and Employment Development (LEED) Working Paper 2013/11, OECD Publishing
(2013)

21. Mota, P.R., Vasconcelos, P.B.: Nonconvex Adjustments Costs, Hysteresis, and the Macrody-
namics of Employment. J. Post Keynesian Econ. 36(1), 93–112 (2012)

22. Lang, D., Peretti, C.: A strong hysteretic model of Okun’s Law: theory and a preliminary
investigation. Int. Rev. Appl. Econ. 23(4), 445–462 (2009)

23. Mota, P.R., Varejão, J., Vasconcelos, P.B.: Hysteresis in the dynamics of employment.
Metroeconomica 63(4), 661–692 (2012)

24. Everitt, B.S.: Cluster Analysis. Wiley, London (1993)



A Note on the Dynamics of Linear
Automorphisms of a Convolution Measure
Algebra

A. Baraviera, E. Oliveira, and F.B. Rodrigues

Abstract Given a finite group G and � 2 P.G/, we study the dynamics of the
linear automorphisms of a convolution measure algebra over G, T�.�/ D � � �.
In order to understand and classify the asymptotic behavior of this dynamical
system we provide an alternative to classical results, a very direct way to understand
convergence of the sequence f�ngn2N, where �n D � � : : : � �„ ƒ‚ …

n

, through the subgroup

generated by its support.

1 Introduction

The space of probabilities on a metric space G (or more generally, Radon Measures)
has two natural classes of linear automorphisms. The first one is the push forward
induced by some fixed map f W G ! G, (and it just takes in consideration the linear
structure of the space of measures). It has been extensively studied by Sigmund
(in [1]) and Komuro (in [9]); more recently it also appears in Kloeckner (in [8])
for example. The second one, when G is a topological group, is based on the
convolution of two measures. In this case, the space of Radon measures is an infinite
dimensional Banach algebra, with respect to the convolution operation, that is, a
Measure Convolution Algebra (see [3, p. 73] and [11]). Hence the other natural
linear automorphism is T�.�/ D � � �, for a fixed measure �.

We propose to understand the topological dynamics of this map in this way. The
iteration of T� led us to analyze the powers of convolutions of �, since, from basic
properties of the operation �, we obtain that iterating the map n times T� is the
convolution �n � �.

The problem of studying powers of convolution of probability measures has
been explored in several papers in the last few years and has several applications
in statistics and group theory (see [4, 7]). In a general setting, G is a compact
topological group, P.G/ is the set of all probability measures on G and � 2 P.G/.
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The main goal of this paper is to establish direct conditions on the support of
the measure �, which is quite natural from the ergodic point of view, to ensure
convergence of the sequence f�n WD � � : : : � �„ ƒ‚ …

n

gn2N.

We study the asymptotic behavior of the sequence f�ngn2N on a finite group,
with a complete description of the accumulation points of that sequence, that is, the
limit sets of the dynamics T� . The main point in this note is that our presentation
follows a dynamical point of view, and the main result is obtained with the use of
the Perron-Frobenius Theorem (see [2]).

We would like to point out that our results on the convergence of power are
not necessarily new, or that they replace the classical literature, but are just easier
to compute and to apply. To the best of our knowledge, there is no direct way to
extract this kind of characterization of the limit powers just from the necessary and
sufficient conditions for convergence, that we find in previous works. Moreover, our
characterization makes use of much more elementary results of analysis and algebra.

Many of the ideas developed here can be immediately applied to compact (or
locally compact) topological groups (see Remark 6 for details), but the results will
be more abstract and not computational since the probability spaces are not finite
dimensional and the objects are given by existence theorems.

1.1 Main Result

In this text we present the following:

Theorem 1 Let G D fg0; : : :; gn�1g be a finite group. If � 2 P.G/ is an acyclic
probability and H is the subgroup generated by the support of �, then

lim
n!1 �

n D
X
h2H

1

jHjıh:

We also get an interesting result when the probability measure � is not acyclic,
which we will then use in the last section in order to obtain a solution for the
Choquet-Deny equation (see [5]).

2 Proof of Theorem 1

We will always denote by .G D fg0; g1; : : :; gn�1g; �/ a finite group of order n where
g0 D e is the neutral element of the operation “�”.
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Remember that the space of real continuous functions in G, C.G;R/ is identified
with Rn. We denote a function f 2 C.G;R/ by the row vector

f .G/ D . f .g0/; f .g1/; : : :; f .gn�1// 2 R
n:

As usual, the dual of C.G;R/ is identified with .Rn/� ' Rn, is the space of signed

measures over G, C.G;R/0 D
n
� D Pn�1

iD0 piıgi ; p D . p0; p1; : : :; pn�1/ 2 R
n
o
:

In this work we denote
R

G fd� D Pn�1
iD0 pi f .gi/ D h f .G/; pi; where h�; �i is the

usual product in Rn. In this setting, if �n D f p 2 Rn j pi 2 Œ0; 1�; and
Pn�1

iD0 pi D
1g then P.G/ D

nPn�1
iD0 piıgi 2 C.G;R/0 j p 2 �n

o
: If � D

n�1X
iD0

piıgi and � D
n�1X
iD0

qiıgi we define their convolution as

.� � �/. f / D
Z

G
fd.� � �/ D

Z
G

Z
G

f .gh/d�.g/d�.h/:

Defining f .G2/ as

f .G2/ D

2
64

f .g0g0/ � � � f .g0gn�1/
:::

: : :
:::

f .gn�1g0/ � � � f .gn�1gn�1/

3
75

we get a characterization of the convolution in coordinates.

Lemma 1 If � D Pn�1
iD0 piıgi ' p and � D Pn�1

iD0 qiıgi ' q then .� � �/. f / D
hq; f .G2/ � pi:
Proof Indeed,

.� � �/. f / D
Z

G

n�1X
iD0

pi f .gih/d�.h/ D
n�1X
iD0

n�1X
jD0

qipj f .gigj/ D hq; f .G2/ � pi:

Since P.G/ is an affine space of codimension 1 in C.G;R/0 we know that �.G�
G/ is given by a bi-stochastic matrix. In order to get the next result, we define a new
matrix obtained by a measure � ' . p0; : : :; pn�1/ 2 P.G/. Denoting

G�1 � G D

2
64

g�10 g0 � � � g�10 gn�1
:::

: : :
:::

g�10 gn�1 � � � g�1n�1gn�1

3
75 ;
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then

�.G�1 � G/ D

2
64
�.g�10 g0/ � � � �.g�10 gn�1/

:::
: : :

:::

�.g�10 gn�1/ � � � �.g�1n�1gn�1/

3
75 ;

where �.g�1i � gj/ D pm if g�1i � gj D gm.

Lemma 2 Given �; � 2 P.G/, then � � � D � � �.G�1 � G/:

Proof If � D Pn�1
iD0 piıgi and � D Pn�1

iD0 qiıgi we set � � � D Pn�1
kD0 akıgk . From

Lemma 1 we know that ak D
X

gigjDgk

piqj D
n�1X
iD0

fqipj j gj D g�1i gkg: Since the

equation gigj D gk has an unique solution, for a fixed k and for each i we have j.i; k/
well determined. It allows us to write, ak D q0 � pj.0;k/ C : : :C qn�1 � pj.n�1;k/: Using
matrices we have

�
a0 � � � an�1

� D �
q0 � � � qn�1

� �

2
64

pj.0;0/ � � � pj.n�1;0/
:::

: : :
:::

pj.0;n�1/ � � � pj.n�1;n�1/

3
75 :

and we get the formula � � � D � � �.G�1 � G/:

Thus, in order to compute the powers of the convolution � � � � � � � , we have
�mC1 WD � � : : : � �„ ƒ‚ …

mC1
D � � �.G�1 � G/m; so we can estimate the long time behavior

of �n from the powers of the matrix �.G�1 � G/.

Example 1 We consider G D .Z3;C/ and � D .1=3; 1=4; 5=12/. So

G�1 � G D
2
4 0 1 22 0 1

1 2 0

3
5 and �.G�1 � G/ D

2
4 1=3 1=4 5=12

5=12 1=3 1=4

1=4 5=12 1=3

3
5 :

Definition 1 A stochastic matrix A D .aij/ is called primitive if there is N 2 N

such that all the entries of the matrix AN are positive.

Definition 2 A matrix A with non-negative entries is called doubly-stochastic if its
rows and columns sum 1.

The following will be very useful in what follows

Theorem 2 (Berman and Plemmons [2]) If A is an n � n primitive and doubly
stochastic matrix, then limm!1 Am D 1

n J; where J D .aij/, aij D 1 for all i, j.
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Definition 3 We say that G is generated by g1; : : :; gk 2 G such that for all g 2 G
we have that g D gr1

1 � � � grk
k , with rj 2 f0; 1; : : :; ng.

We recall the definition of the support of a given measure. Let G be a finite group
and � D . p0; : : :; pn�1/ 2 P.G/; The support of � is the set supp.�/ D fgi 2 G W
�.gi/ D pi > 0g:We denote by H the subgroup of G generated by supp.�/, i.e., H D
hsupp.�/i. In order to get the next result, Proposition 1, we need a new definition
and some technical lemmas (Lemmas 3 and 4). We start with the definition:

Definition 4 (Acyclic) Given � 2 P.G/, we define the set ZC.�/m by

ZC.�/m D fgi1 : : :gim W gik 2 supp.�/g:

Let H be the subgroup of G generated by supp.�/. We say that � is an acyclic
probability measure if there exists N 2 N such that ZC.�/N D H. In particular,
ZC.�/1 D supp.�/.

We would like to observe that the acyclic property is similar to [4] for probabilities
in matrices, but in that case the convergence is given by a rank theorem.

Example 2 Let g 2 G be an element of order 2 and � D ıg. In this case H D fe; gg
and

ZC.�/m D



e; if m is even
g; if m is odd.

From this property follows that � is not an acyclic probability measure.

Example 3 Let H be a cyclic group generated by g and � D ˛ıe C .1 � ˛/ıg,
0 < ˛ < 1. Then � is acyclic. In fact, if H D fe; g; : : :; gn�1g, then

ZC.�/n D fen; en�1g; en�2g2; : : :e1gn�1g D H:

Example 4 Let G be a finite abelian group of order n and � 2 P.G/. We can
identify � D P

i piıgi ' p D . p0; : : :; pn�1/. If ZC. p/ D fg; hg and H D hg�1hi,
then � is acyclic. In fact, to see this we only need to notice that gn�khk D .g�1h/k:

Example 5 Let H D hg1; : : :; gki be a finitely generated abelian subgroup of G and
� 2 P.G/. If � 2 P.G/ is such that ZC.�/ D fe; g1; : : :; gkg then � is acyclic.

Remark 1 If we have that jGj D n and the support of � has more than n
2

C 1

elements, then � is acyclic; in particular �.G�1 � G/ is primitive.

When the probability � is acyclic, we have the following proposition:

Proposition 1 Let G D fg0; : : :; gn�1g be a finite group, � 2 P.G/ acyclic and
H D hZC.�/i. It is possible to order the elements of G such that the matrix �.G�1�
G/ D .�.H�1g�1i � gjH//i;j satisfies lim

n!1 �.G
�1 � G/n D B, where B is the matrix
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given by

0
BBBB@

1
jHjJ 0 : : : 0

0 1
jHjJ 0 : : :

:::
:::

:::
:::

0 : : : 0 1
jHjJ

1
CCCCA ;

where 0 is the null matrix of order jHj and J is the matrix of order jHj with all the
coefficients equal to 1.

Proof The proof of this result follows from the remark and lemmas below.

Remark 2 Let us consider an acyclic probability � 2 P.G/ and the subgroup H
generated by ZC.�/. We suppose that jHj D n. And we can take the equivalence
classes determined by H in G, i.e., gH D fgh W h 2 Hg: And we know that G can
be written as a disjoint union of the equivalence classes determined by H. Therefore
we can write G as follows

G D fe; h1; : : :; hk; g1h1; : : :; g1; g1hk; g2h1; : : :; g2; g2hk; : : :; gl; glh1; : : :; glhkg
D H P[ g1H P[ � � � P[ glH;

for certain group elements g1 D e; g2; : : :; gl 2 G where P[ denotes the disjoint union
and giH \ gjH D ; for i 6D j. Thus l is such that nl is the order of the group G. Then
we have that the matrix �.G�1 � G/ is given in blocks by

0
BB@

�.H�1 � H/ �.H�1 � g1H/ : : : �.H�1 � glH/
�.H�1g�1

1 �H/ �.H�1g�1
1 � g1H/ : : : �.H�1g�1

1 � glH/
:::

:::
:::

:::

�.H�1g�1
l �H/ : : : : : : �.H�1g�1

l � glH/

1
CCA ;

where the blocks in the diagonal are always the matrix �.H�1 � H/.

Lemma 3 The blocks �.H�1g�1i � gjH/ are always the null matrix for i 6D j.

Proof Take the block �.H�1g�1i � g2H/ and notice that

�..h�1r g�1i /.gjhs// > 0 , .h�1r g�1i /.gjhs/ 2 ZC.�/ � H

) g�1i gj 2 H ) giH D gjH;

but it is a contradiction, since giH \ gjH D ;.
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By Lemma 3 we have that the powers of the matrix �.G�1 � G/ are given by

�.G�1 � G/n D

0
BB@
�.H�1 �H/n 0 : : : 0

0 �.H�1 �H/n : : : 0
:::

:::
:::

:::

0 : : : : : : �.H�1 �H/n

1
CCA :

Lemma 4 The matrix �.H�1 � H/ is primitive.

Proof Let us consider the matrix A D .aij/i;j WD .�.h�1i hj//i;j. Then we notice that

aij > 0 , h�1i hj 2 ZC.�/

, 9Nh 2 ZC.�/ such that h�1i hj D Nh
, hj D hi Nh; Nh 2 ZC.�/:

It implies that aij > 0 if and only if hj 2 Lhi.ZC.�//. As Lhi is a bijection, in each
line we have jZC.�/j positive coefficients. Consider now A2, which we denote by
A2 D .a2ij/i;j. Then we have that

a2ij > 0 ,
n�1X
kD0

�.h�1i hk/�.h
�1
k hj/

, 9k 2 f0; : : :; n � 1g such that �.h�1i hk/�.h�1k hj/ > 0

, �.h�1i hk/ > 0 and �.h�1k hj/ > 0

, 9h0; h00 2 ZC.�/ such that hk D hih0; hj D hkh00

, hj D hih0h00

, hj 2 Lhi.ZC.�/2/:

Again, we can see that A2 has jZC.�/2j positive coefficients. Following by induction,
if An D .an

ij/i;j, then an
ij > 0 , hj 2 Lhi.ZC.�/n/: As � is acyclic we have, from

Definition 4, that there exists N 2 N such that for n > N

an
ij > 0 , hj 2 Lhi .ZC.�/n/ D hiH D H:

It implies that for n > N the matrix An D .an
ij/i;j has jHj positive coefficients in each

line. As the matrix A has order jHj we see that A is primitive.

Lemma 5 Let �; � 2 P.G/ and � a permutation on G. Then we have that

� � �..�.G//�1 � �.G// D � � �.G�1 � G/:
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Proof We notice that the convolution does not depend on the way the group
elements of G are ordered, then � ��..�.G//�1��.G// D ��� D ���.G�1�G/:

We would like to point out that B D limn!1 �.G�1 � G/n is also doubly
stochastic and has always 1 as an eigenvalue.

Remark 3 The main fact used in the Lemma 5 was that the integral does not change
under permutation of the group G, that is, the convolution depends of the operations
between two elements and not of the position that we choose to identify a probability
with a vector.

Using Lemma 5 to rearrange the group by the equivalence classes determined by H
and making some permutation on the elements one can easily conclude that under
the conditions of Proposition 1, the matrix �.G�1 � G/ D .�.g�1i gj//i;j satisfies
lim

n!1 �.G
�1 � G/n D B, where B is the matrix given by

bij D
(
0; if g�1i gj 62 H
1
jHj ; if g�1i gj 2 H

This completes the proof of Theorem 1.

Example 6 Take G D hai�hbi isomorphic to Z2�Z3 and � D p D ˛ıe C.1�˛/ıb,
0 < ˛ < 1. So we have

�.G�1 � G/ D

0
BBBBBBB@

˛ 0 0 0 .1 � ˛/ 0

0 ˛ 0 .1 � ˛/ 0 0

.1 � ˛/ 0 ˛ 0 0 0

0 0 0 ˛ 0 .1 � ˛/

0 0 .1 � ˛/ 0 ˛ 0

0 .1 � ˛/ 0 0 0 ˛

1
CCCCCCCA
:

In that case, H D ZC.�/ D fe; bg and hZC.�/i D fe; b; b2g, and by Proposition 1,
reordering the elements of G as fe; a; b2; ab; b; ab2g we have that

lim
n!1 �.G

�1 � G/n D diag

�
1

3
J;
1

3
J

�
;

where J is a 3 � 3 matrix with all entries equal to 1. Then we have that lim
n!1 �

n D
1

3
.ıe C ıb C ıb2 /.

Remark 4 If the probability � 2 P.G/ is not acyclic, then there exists a finite
number of subsets of hZC.�/i, let us say K1; : : :;Kl such that for each n 2 N,
ZC.�/n D Ki for some i 2 f1; : : :; lg. Following the same computations used to
get Theorem 1, it is possible to show that the sequence f�ngn2N has l accumulation
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points and each of these accumulation points is a uniform probability measure
supported on a set Kj.

Remark 5 Let G1;G2 be compact topological groups and � W G1 ! G2 a
homomorphism of groups. It is easy to see that the push forward map �] W P.G1/ !
P.G2/ given by �].�/.A/ D �.��1.A// for all A � G2, satisfies the following:

�].� � �/ D �].�/ � �].�/:

It implies that limn!1 �].�n/ D limn!1.�].�//n.

The next proposition guarantees the density of the set of acyclic probabilities. It
shows how big this set is, in the sense of the topology of P.G/.

Proposition 2 Let �0 2 P.G/, where G is a finite group. Given " > 0, there exists
N� 2 P.G/ such that N� is an acyclic probability and d. N�; �0/ < ", i.e., the set of
acyclic probabilities is dense in P.G/.

Proof Let " > 0 and �0 D p D Pk�1
iD0 piıhi with supp.�0/ D ZC. p/ D fg 2 G W

�0.g/ > 0g and H D hZC. p/i D fh0; : : :; hk�1g: Then we define a D minf pi W pi >

0g and N" D 1
2

minf"; ag.We consider the measure N� D Np D Pk�1
iD0 Npiıhi , where

Npi D
( N"

k�jZ
C
. p/j ; if pi D 0

pi � N"
jZ

C
. p/j ; if pi > 0:

Obviously N� 2 P.G/ and as d.�0; N�/ D P
i jpi � Npij D P

piD0
N"

k�jZ
C
. p/j CP

pi>0
N"

jZ
C
. p/j D 2 N" < "; so we get the result.

3 Application: Dynamics of T�

We start this section with the basic properties of the linear automorphism T� W
P.G/ ! P.G/, given by

T�.�/ D � � �;

where � 2 P.G/ is a fixed probability.

Proposition 3 The map T� is continuous in the weak topology, linear and its fixed
points satisfy the Choquet-Deny equation, � � � D �.

For a proof the reader can see for example [3, p. 73], [5] and [6]. What remains
to be understood is the asymptotic behavior of T� .

Theorem 3 Let G D fg0; : : :; gn�1g be a finite group. If � 2 P.G/ is an acyclic
probability, H D hZC.�/i is the subgroup generated by the support of �, then the
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!�limit set, here denoted by L!.�/, that is the set of accumulation points of its
orbit, is L!.�/ D P

h2H
1
jHjıh � �; linear on �. Moreover, � is a recurrent point

of the dynamics, that is, � 2 L!.�/, only if � is a solution of the Choquet-Deny
equation N� � � D �; where N� D limn!1 �n.

Proof Since Tn.�/ D �n��we have from Theorem 1 that f N� j N� is an accumulation
points of �ng D fPh2H

1
jHjıhg because � is an acyclic. Thus

L!.�/ D fN� � � j N� is an accumulation points of �ng D
(X

h2H

1

jHjıh � �
)
;

that is linear on �. In particular � 2 L!.�/, only if � is solution of the Choquet-
Deny equation N� � � D �:

Example 7 We consider G D .Z3;C/ and � D .1=3; 1=4; 5=12/. So

G�1 � G D
2
4 0 1 22 0 1

1 2 0

3
5 and �.G�1 � G/ D

2
4 1=3 1=4 5=12

5=12 1=3 1=4

1=4 5=12 1=3

3
5 :

To find the fixed points for T� we need to solve the following equation:

�
q0 q1 q2

� D �
q0 q1 q2

� �
2
4 1=3 1=4 5=12

5=12 1=3 1=4

1=4 5=12 1=3

3
5 :

By linear algebra we have that there is only one solution for the above equation and

it is given by �0 D 1

3
.ı0 C ı1 C ı2/. So the unique fixed point is �0.

We also have that � is recurrent only if lim
n!1 �

n �� D �. But lim
n!1 �

n D �0, and

it implies that � is recurrent only if

�
q0 q1 q2

� D �
q0 q1 q2

� �
2
4 1=3 1=3 1=31=3 1=3 1=3

1=3 1=3 1=3

3
5 ;

and solving this equation the unique possibility is � D �0.

Using Theorem 3, we will try to find conditions for two measures to have the
same !�limit, where � D P

i piıgi is an acyclic. First we observe that if � DP
i qiıgi 2 P.G/, then L!.�/ D f��Bg. If we identify�with the vector q D P

i qiei

in R
n, where feig0�i�n�1 is the canonical basis of Rn, we have that

q � B D
�X

i

qiei

	
� B D

X
i

qi

�
ei � B

	
;
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where B D N�.G�1 � G/ for N� D limn!1 �n as in Theorem 3. It implies that
L!.�/ D P

i qiL!.ıgi/. So, to determine the !�limit of a measure it is enough
to determine the !�limit of the measures ıgi , for all gi 2 G. Then we notice that
if H D hZC. p/i, jHj D k, jGj D jHjl, N� D .q0; : : :; qn�1/, � D ıg0 , and if we

write ˛0 D
k�1X
iD0

qi; ˛1 D
2k�1X
iDk

qi; : : :; ˛l D
n�1X

iDn�k�1
qi then we have the equivalence

� � B D N� � B if and only if

� 1
k
;
1

k
; : : :;

1

k„ ƒ‚ …
k

; 0; : : :; 0
	

D
� 1

k
˛0; : : :;

1

k
˛0„ ƒ‚ …

k

;
1

k
˛1; : : :;

1

k
˛1„ ƒ‚ …

k

; : : :;
1

k
˛l; : : :;

1

k
˛l„ ƒ‚ …

k

	

k�1X
iD0

qi D 1;

2k�1X
iDk

qi D 0; : : :;

n�1X
iDn�k�1

qi D 0:

It implies that L!.ıg0 / D L!.�/ if and only if
k�1X
iD0

qi D 1, where � D .1; 0; : : :; 0/.

By the previous argument we can see that

L!.ıgi/ D L!.ıg0 / for 0 � i � k � 1; L!.ıgi/ D L!.ıgk/ for k � i � 2k � 1; : : :;
L!.ıgi/ D L!.ıgn�k�1 / for n � k � 1 � i � n � 1;

and from it, it follows that L!.�/ D
X

i

qiL!.ıgi/ D
lX

jD0
˛jL!.ıgjk/; and if N� D

.q0; : : :; qn�1/ and we take � D ıgi with mk � i � .m C 1/k � 1,

L!. N�/ D L!.ıgi/ , ˛m D
.mC1/k�1X

iDmk

qi D 1; and ˛j D 0 for j 6D m:

Finally, given � D .q0; : : :; qn�1/ and �0 D .q00; : : :; q0n�1/,

L!.�/ D L!.�
0/ ,

k�1X
iD0

qi D
k�1X
iD0

q0i;
2k�1X
iDk

qi D
2k�1X
iDk

q0i; : : :;
n�1X

iDn�k�1
qi D

n�1X
iDn�k�1

q0i:

Definition 5 Let � 2 P.G/ be an acyclic probability measure and � 2 P.G/. We
call the basin of � the set f� 2 P.G/ W limn!1 Tn

� .�/ D �g:
Example 8 Now we return to the Example 6 where G D fe; a; b2; ab; b; ab2g; in
that particular situation, � D p D ˛ıe C .1 � ˛/ıb, 0 < ˛ < 1 is acyclic and we
can rewrite G as G D fe; b; b2; a; ab; ab2g according to the conjugation classes of
H D fe; b; b2g as in Remark 2 in order to apply Lemma 3.
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Then, given � D .q0; : : :; q5/ and �0 D .q00; : : :; q05/, we have

L!.�/ D L!.�
0/ ,

2X
iD0

qi D
2X

iD0
q0i, and

5X
iD3

qi D
5X

iD3
q0i:

For instance, if �0 D . 1
4
; 1
2
; 0; 1

8
; 0; 1

8
/ we have

lim
n!1Tn

� .�
0/ D 1

3

�
q00 C q01 C q02; : : :; q00 C q01 C q02; q03 C q04 C q05; : : :; q03 C q04 C q05

	

D �
1
4
; 1
4
; 1
4
; 1
12
; 1
12
; 1
12

� D �:

So, the basin of attraction of � D �
1
4
; 1
4
; 1
4
; 1
12
; 1
12
; 1
12

�
, that is, f� D .q0; : : :; q5/ j

limn!1 Tn
� .�/ D �g is given by

8<
:

q0 C q1 C q2 D 3
4

q3 C q4 C q5 D 1
4

q0; : : :; q5 2 Œ0; 1�

that is a convex region of an hyperplane in R6 of dimension 4; more precisely
q0 D 3

4
�a�b, q1 D a; q2 D b, q3 D 1

4
�c�d, q4 D c; q5 D d, aCb � 3

4
; cCd � 1

4

and a; b; c; d 2 Œ0; 1� is the basin of attraction of � D �
1
4
; 1
4
; 1
4
; 1
12
; 1
12
; 1
12

�
.

Actually, the next proposition shows that the basin of a measure � 2 P.G/ is
always a convex subset of an hyperplane.

Proposition 4 Let � D p 2 P.G/ be an acyclic probability measure and H D
hZC. p/i, with jHj D k and jGj D jHjl. Given � 2 P.G/ with

� D .q0; : : :; q0„ ƒ‚ …
k

; q1; : : :; q1„ ƒ‚ …
k

; : : :; ql�1; : : :; ql�1„ ƒ‚ …
k

/

Then the basin of � is a convex subset of a hyperplane of dimension n.k�1/
k in Rn.

Proof To prove the convexity of the basin of a given � we only need to notice that
if �1; �2 2 P.G/ and 0 � ˛ � 1, then

T�.˛�1 C .1 � ˛/�2/ D .˛�1 C .1 � ˛/�2/ � �.G�1 � G/

D ˛�1 � �.G�1 � G/C .1 � ˛/�2 � �.G�1 � G/:



A Note on the Dynamics of Linear Automorphisms of a Convolution Measure Algebra 101

Hence, if �1; �2 are in the basin of �, then

lim
n!1Tn

� .˛�1 C .1 � ˛/�2/ D ˛ limn!1 Tn
� .�1/C .1 � ˛/ limn!1 Tn

� .�2/

D ˛�C .1 � ˛/� D �:

In order to prove the second part of the proposition, we notice that if � D
.q00; q01; : : :; q0n�1/ is in the basin of �, then limn!1 Tn

� .�/ D � if and only if

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

1

k

k�1X
iD0

q0i D q0

:::

1

k

n�1X
iDn�k�1

q0i D ql�1

q0; : : :; qn�1 2 Œ0; 1�:

If we forget the restriction
n�1X
iD0

q0i D 1 and q0; : : :; qn�1 2 Œ0; 1�, we have a linear

system which has n variables and l linearly independents equations. Then its space
of solution is given by an hyperplane of dimension n�l D n� n

k D n.k�1/
k : Therefore

the solution of the system above is a convex set given by the intersection of a
hyperplane of dimension n.k�1/

k with the simplex �n D f.x0; : : :; xn�1/ W Pi xi D
1; xi 2 Œ0; 1�g.

Thus we have a complete characterization of the limit set of the dynamics of a
map T� , but the generical behaviour of this type of dynamical systems is given in
Example 7. Indeed we can prove the following:

Theorem 4 There is an open and dense set O � P.G/ such that for all � 2 O ,
L!.�/ D f�0 ��g;8� 2 P.G/; where �0 D 1

jGj
PjGj�1

iD0 ıgi is the unique fixed point
of T� .

Proof Consider the set of probabilities

O D
8<
:� D

jGj�1X
iD0

piıgi 2 P.G/ j pi > 0

9=
; :

Thus, for every � 2 O , � is an acyclic probability because H D G, and Theorem 3
proves that the !�limit set by T� of � 2 P.G/, here denoted by L!.�/, is L!.�/ D
1
jGj
PjGj�1

iD0 ıgi � �: Moreover, � is a recurrent point of the dynamics, that is, � 2
L!.�/, only if � is solution of the Choquet-Deny equation �0 � � D �; where
�0 D limn!1 �n D 1

jGj
PjGj�1

iD0 ıgi . From the theory of doubly stochastic matrices,
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we know that the only solution is � D �0, since every fixed point is recurrent, there
is just one of them. Thus, we just need to prove that O is an open and dense set,
which is trivial because its complementary set is

Oc D
8<
:� D

jGj�1X
iD0

piıgi 2 P.G/ j 9pi D 0

9=
; ;

which is a finite union of algebraic sets in RjGj, so it is closed with empty interior,
which concludes the proof.

Remark 6 For the general case, locally compact groups or semi-groups, we can
ask the same questions about the dynamics of T� as before. However we can
get existence results, or some characterization, but not explicit computations. For
example, the set of fixed points of T� is the solution of the Choquet-Deny equation
� � � D �, which can be explicitly solved for finite groups. In [10], Thm 2, they
prove that � satisfies � � � D � if, and only if, � � ıg D �, for all g 2 S.�/, where
S.�/ is the closed semi-group generated by the support of �. Also, the limit sets of
T� are related to the accumulation points of �n for n 2 N. Again the results that we
can find in the literature are of existence or characterization of the convergence, see
for instance [7], Corollaries 2.1 and 2.2. Thus a generalization of Theorem 3 will
be:

Theorem 5 Let G be a compact topological group. If � 2 P.G/ then !�limit set
by T� of � 2 P.G/, here denoted by L!.�/, is

L!.�/ D fN� � � j N� is an accumulation points of �ng:

Again, we can not describe this set in an unique way for all topological groups as
we did for the finite ones.
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Periodic Homogenization of Deterministic
Control Problems via Limit Occupational
Measures

Martino Bardi and Gabriele Terrone

Abstract We consider optimal control problems where the dynamical system and
the running cost are affected by fast periodic oscillations of the state variables. We
show that, under suitable controllability and structure assumptions, it is possible to
describe the limiting optimal control problem. The proofs make use of results in the
theory of homogenization and singular perturbations of Hamilton-Jacobi equations.

1 Introduction

We consider an optimal control problem in RN in which the dynamics

(
Px.s/ D f

�
x.s/; x.s/

�
; ˛.s/

	
x.0/ D x

(1)

and the cost functional

J�.t; x; ˛/ WD
Z t

0

l

�
x.s/;

x.s/

�
; ˛.s/

�
ds C h.x.t// (2)

undergo fast periodic oscillations. The controls ˛ are measurable functions taking
values in a compact metric space A. The vector field f W RN � RN � A ! RN

is bounded, uniformly continuous, and Lipschitz-continuous in x uniformly with
respect to ˛. The running cost l W RN � RN � A ! R and the terminal cost h W
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RN ! R are given bounded uniformly continuous functions. Both f .x; �; ˛/ and
l.x; �; ˛/ are ZN-periodic.

We are interested in understanding the behaviour of the solutions of this problem
for very small � > 0. In particular we investigate the existence and the nature of a
limit problem, independent of �, which approximates in some sense the �-problem.
Similar issues in Calculus of Variations have a very wide literature and various
notions of convergence were developed in that context, see, for instance, Braides
and De Franceschi [10] and the references therein. Some particular control problems
have been formulated as problems in Calculus of Variations with dynamical
constraints and have been studied in that context [11, 12, 17], but the problem can
be still considered largely open.

Here we study a notion of variational convergence based on the value function of
the control problem. We recall that the value function is defined by the infimum of
the cost functional among all trajectories, that is,

v�
�
t; x
� WD inf

n
J�.t; x; ˛/

ˇ̌
ˇ x.�/ solves (1)

o
: (3)

We say that the control problem with cost functional J� defined in (2) and
dynamics (1) converges as � ! 0 to the limit control problem with cost functional

J.t; x; �/ D
Z t

0

l .x.s/; �.s// ds C h.x.t// (4)

and dynamics

Px.s/ D f .x.s/; �.s// ; (5)

if the value function v�
�
t; x
�

converges locally uniformly to the value function of the

limit control problem v.t; x/ WD inf
n
J.t; x; �/

ˇ̌
ˇ x.�/ solves (5)

o
.

In the sequel of the paper we look for f ; l and a constraint on the control functions
�.�/ so that this kind of convergence occurs. We split the study in two parts. First
we use that v� solves in viscosity sense the Cauchy problem



@tv

� C H
�
x; x

�
;Dv�

� D 0 in .0;C1/ � RN

v�
�
0; x

� D h.x/ in RN ;
(6)

where the Hamiltonian H is given by

H.x; y; p/ D max
˛2A

f�p � f .x; y; ˛/ � l .x; y; ˛/g ;

see, e.g., [8]. This is a periodic homogenization problem for a Hamilton–Jacobi
equation, which consists in finding an effective Hamiltonian NH.x; p/ and appropriate
conditions such that v�.t; x/ converges locally uniformly to a function v.t; x/,
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viscosity solution of a limiting Cauchy problem



@tv C NH.x;Dv/ D 0 in .0;C1/ � RN

v
�
0; x

� D h.x/ in RN :
(7)

Results of this type go back to the seminal paper [21] and have been extensively
studied in the last decades for many different problems within the theory of viscosity
solutions; see [15, 16] and also [1, 2], and [3] where it was shown the connection
with singular perturbation problems. This is a classical subject in ODEs and control,
pioneered by Levinson and Tichonov, see [14, 19], and the references therein. In
the context of singular perturbations Artstein and Gaitsgory introduced averaging
techniques and the use of invariant measures and limit occupational measures; see
[4–7, 18], and also [20] for connections between such method and the viscosity
theory for Hamilton-Jacobi equations.

The second part of our strategy is a representation of the effective Hamiltonian
NH as a Bellman Hamiltonian for suitable dynamics and cost f ; l related to the data
f ; l of the original problem (1), (2). Then the uniqueness of viscosity solutions to (7)
implies that the limit v of v� is in fact the value function of the problem (4), (5).
Limit occupational measures play a crucial role in the construction of such limit
system.

The paper is organized as follows. Section 2 discusses the simple case of
uncontrolled dynamics to show the role of invariant measures of ergodic dynam-
ical systems. In Sect. 3 we reformulate the homogenization problem as singular
perturbation, introduce the limit occupational measures, and formulate the main
representation result for the limit control problem, under suitable controllability
conditions on the system (1). Section 4 deals with vector fields f in (1) that depend
on x.s/=� but not on x.s/, and show that the controllability assumptions of the
preceding section can be weakened and in some cases the limit problem is very
simple. Finally in Sect. 5 we briefly describe some generalizations to appear in [9]
together with a more complete theory and detailed proofs.

2 Uncontrolled Problem and Invariant Measures

We assume in this section that the dynamics and running cost are not controlled,
that is

f D f
�

x;
x

�

	
and l D l

�
x;

x

�

	
: (8)

Then the value function v�.t; x/ coincides with the cost functional J�.t; x/ and it
solves the inhomogeneous transport equation



@tv

� � Dv� � f .x; x
�
/ D l.x; x

�
/ in .0;C1/ � RN

v�
�
0; x

� D h.x/ in RN :
(9)
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Classical results in ergodic theory (see [13, 22], [3, Sect. 3.1]) ensure that the
dynamics

Py.t/ D f .x; y.t// y.0/ D y x 2 RN frozen: (10)

has an invariant probability measure �x. Here y 2 RN , but since f and l are ZN

periodic, we define the averaged vector field and running cost by setting

Of .x/ WD
Z

TN
f .x; y/d�x.y/; Ol.x/ WD

Z
TN

l.x; y/d�x.y/;

where TN D RN=ZN .
In the following Proposition we recover within the theory of homogenization of

PDEs a result of the classical theory of averaging of ODE’s.

Proposition 1 Consider the problem (1)–(2) with f and l as in (8). Assume that for
every x the dynamics (10) has a unique invariant measure�, independent of x. Then,
as � ! 0, the problem converges to the dynamics

Px.s/ D Of .x.s// (11)

with cost functional

OJ.t; x/ WD
Z t

0

Ol.x.s//ds C h.x.t//: (12)

Proof We look for a solution of (9) of the form v�.t; x/ D u�.t; x; x
�
/. Then u�.t; x; y/

solves



@tu� � �

Dxu� C 1
�
Dyu�

� � f .x; y/ D l.x; y/ in .0;C1/ � R2N

u�
�
0; x; y

� D h.x/ in R2N :

A direct computation shows that the function

w.t; y/ D
Z t

0

G.Nx; y.s/; Np; 0/ds y.�/ solving (10) with x D Nx

is the unique viscosity solution of the evolutive problem

@tw � Dyw � f .Nx; y/C G.Nx; y; Np; 0/ D 0 in .0;C1/ � RN ; w.0; y/ D 0:

where G.x; y; p; q/ WD �.p C q/ � f .x; y/� l.x; y/. Since by assumption the invariant
measure is unique, it is easy to check that the quotient w.t; y/=t converges to a
constant uniformly w.r.t. y as t ! C1. Then such constant is the appropriate value
of the effective Hamiltonian at .Nx; Np/, see [3, Sect. 2.1]. By definition of invariance
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we also get

NH .Nx; Np/ D
Z

TN
Œ�Np � f .Nx; y/� l.Nx; y/� d�.y/ D �Np � Of .x/ � Ol.x/:

Moreover, by the theory of [2, 3], the upper and lower semilimits of u� are
respectively a subsolution and a supersolution of



@tv � Dv � Of .x/ D Ol.x/ in .0;C1/ � RN

v
�
0; x

� D h.x/ in RN :
(13)

Observe that Of ; Ol are averages with respect to a measure independent of x. Then (13)
satisfies the comparison principle between viscosity sub- and supersolutions, and its
unique solution is the value function associated to problem (11)–(12)

Ov.t; x/ WD
Z t

0

Ol.x.s//ds C h.x.t//; x.�/ solving (11) with x.0/ D x:

Then the upper and lower semilimits of u� coincide and we conclude that the
convergence of v�.t; x/ D u�.t; x; x

�
/ to Ov.t; x/ unique solution of (13), is locally

uniform. ut
Remark 1 In Proposition 1 we have assumed that the unique invariant measure
of (10) is independent of x. This is verified when f D f .y/ and Py D f .y/ is a uniquely
ergodic dynamical system. Another case in which this hypothesis is satisfied is when
f D f .x/ and the following non-resonance condition holds:

f .x/ � k ¤ 0 8 k 2 ZNnf0g; x 2 RN :

In this case, the unique invariant measure of (10) is the Lebesgue measure, Of D f
and

Ol.x/ D
Z

TN
l.x; y/dy:

3 Controllable Dynamics and Limit Occupational Measures

By introducing the additional state variables y D x=�, we rewrite the dynamics (1)
as the singularly perturbed control system


 Px.s/ D f .x.s/; y.s/; ˛.s// x.0/ D x
Py.s/ D 1

�
f .x.s/; y.s/; ˛.s// y.0/ D x=�

(14)
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Rescaling time by t D �s, the dynamics for the fast variables y in (14) can be
approximated by

Py.t/ D f .x; y.t/; ˛.t// y.0/ D y; (15)

where the slow variable x is frozen in its initial position. For any choice of control
˛ and initial point y 2 RN there is a unique solution y.�/ of the previous dynamics
and we use it to define a measure over RN � A as

�t WD 1

t

Z t

0

ı.y.s/;˛.s//ds;

where ı is the Dirac’s delta. These measures are called occupational measure, as
they are probability measures giving the percentage of time interval .0; t/ spent by
a trajectory of (15) in Borel subsets of RN � A. We further define the set of limit
occupational measures [18] or limiting relaxed controls [1] as the set of weak-star
limits of occupational measures:

Z.x/ WD
n
�
ˇ̌
ˇ � D lim

n!1�tn weak-star, for some tn ! 1; ˛.�/; y
o
:

If the dynamics (15) is bounded-time controllable—that is, any pair of points in TN

can be joined by a trajectory of (15) corresponding to a suitable choice of the control,
in a uniformly bounded time—the set Z.x/ is nonempty, convex and compact with
respect to the weak-star topology; see [18, 20]. We define the averaged vector field
and running cost by integrating with respect to measures in Z.x/:

Nf .x; �/ WD
Z

RN�A
f .x; y; ˛/d�.y; ˛/;

Nl.x; �/ WD
Z

RN�A
l.x; y; ˛/d�.y; ˛/; � 2 Z.x/:

Proposition 2 Assume that

for any x exists �.x/ > 0 s.t.
B.0; �.x// 
 cof .x; y;A/ for any y:

(16)

Then the optimal control problem (1)–(2) converges as � ! 0 to the problem with
cost functional

NJ.t; x; �/ WD
Z t

0

Nl.x.s/; �.s//ds C h.x.t//: (17)
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and dynamics given by the differential inclusion

Px.s/ D Nf .x.s/; �.s// �.s/ 2 Z.x.s//; x.0/ D x: (18)

Proof We look for a solution of (6) of the form v�.t; x/ D u�.t; x; x
�
/. Then u�.t; x; y/

solves in viscosity sense

(
@tu� C G

�
x; y;Dxu�; Dyu�

�

	
D 0 in .0;C1/ � R2N

u�
�
0; x; y

� D h.x/ in R2N ;
(19)

where G.x; y; p; q/ WD H.x; y; pCq/. This PDE corresponds to a singularly perturbed
control problem that was studied under the current assumptions in [20]. We recall
here the main steps of the proof. The controllability condition (16) is equivalent to
the following coercivity property with respect to q: for every x; p 2 RN ,

G.x; y; p; q/ � �.x/jqj � C.1C jpj/ for any y; q (20)

for some C > 0 (see [3, Section 6.1]). This entails that G is ergodic, namely, NH exists
and the upper and lower semi-limits of u� are respectively a viscosity subsolution
and supersolution of (7). Arguing as in [1, Theorem 7] it is possible to prove the
following representation formula:

NH.x; p/ D max
�2Z.x/

˚�p � Nf .x; �/ � Nl.x; �/ : (21)

Since (20) also implies that NH.x; p/ is Lipschitz continuous (see [3, Proposi-
tion 6.4]), the comparison principle holds for problem (7) and u� converges locally
uniformly as � ! 0 to v.t; x/, unique solution of (7); then v� also converges to the
same function. To complete the proof it is necessary to check that the value function
associated to (18)–(17), that is

Nv.t; x/ WD inf
nNJ.t; x; �/

ˇ̌
ˇ x.�/ solves (18)

o
;

is a viscosity solution of (7). To see this, one needs to take into account formula (21),
to prove that Nv is continuous, that the multivalued map f .x;Z.x// in (18) is Lipschitz
continuous, and that the limiting dynamics admits trajectories defined for any
positive time: we refer to [20] for the details. ut
Remark 2 Although the controllability condition (16) does not hold in Sect. 2, the
statement of Proposition 1 is consistent with that of Proposition 2 and provides an
example in which the set of limiting occupational measures is explicit and it is a
singleton.
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4 Purely Oscillating Dynamics

In this section we study simpler expressions for the limiting dynamics when the
vector field depends on x.s/ only via the oscillating terms x.s/

�
, that is,

(
Px.s/ D f

�
x.s/
�
; ˛.s/

	
x.0/ D x:

(22)

4.1 Weakening the Controllability Conditions

For systems of the form (22) the dynamics of the oscillating variables in rescaled
time is independent of x

Py.t/ D f .y.t/; ˛.t//: (23)

Consequently, the set of limiting relaxed controls is Z.x/ D Z independent of
x. This permits to prove the convergence without the additional controllability
assumption (16). As before, we set

Nf .�/ WD
Z

RN�A
f .y; ˛/d�.y; ˛/; � 2 Z:

Proposition 3 Consider the optimal control problem (22)–(2) and assume that the
system (23) is bounded-time controllable. Then, the problem converges as � ! 0 to
the one with dynamics

Px.s/ D Nf .�.s//; x.0/ D x; �.s/ 2 Z (24)

and cost functional NJ.t; x; �/ as in (17).

Proof We proceed along the same lines and keep the same notations as in the proof
of Proposition 2. The assumed bounded-time controllability of (23) implies that Z
is a convex and compact subset of probability measures. Moreover, the upper and
lower semi-limits of u� are, respectively, a subsolution and a supersolution of (7),
with

NH.x; p/ D max
�2Z

˚�p � Nf .�/ � Nl.x; �/ :

Now, since f does not depend on x, NH.x; p/ satisfies regularity properties that
guarantee the comparison principle for the effective Cauchy problem (7). Thus, the
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locally uniform convergence of u�—and then that of v�—to the value function

Nv.t; x/ WD inf
nNJ.t; x; �/

ˇ̌
ˇ x.�/ solves (24)

o
;

unique solution of (7) can be proved without requiring any extra controllability
assumption. ut

4.2 A Simple Degenerate Limit for Special Costs

Here we consider the special case that

l D l
�x

�

	
; h.x/ D 0;

in (2), so that the cost functional is

J�.t; x; ˛/ D
Z t

0

l

�
x.s/

�

�
ds: (25)

We also assume the following controllability condition, much weaker than condi-
tion (16),

max
˛2A

f�q � f .y; ˛/g � 0 for any y; q 2 RN . (26)

The next result says that in this case the limit control problem reduces to the static
optimization problem of the running cost with respect to the state variables.

Proposition 4 Consider the optimal control problem (22)–(25) and assume that the
system (23) is bounded-time controllable and satisfies (26). Then, the value function
v�.t; x/ WD inf J�.t; x; ˛/ converges locally uniformly as � ! 0 to

v.t/ D t min
y2TN

l.y/:

Proof The value function v� is the unique solution of

(
@tv

� C max
˛

n
�Dxv

� � f
� x

�
; ˛
	o

D l
� x

�

	
in .0;C1/ � RN

v�
�
0; x

� D 0 in RN :
(27)

Set H.y; q/ WD max
˛

f�q � f .y; ˛/g � l .y/. Condition (26) implies that H.y; q/ �
H.y; 0/ for any y; q. Then, arguing by contradiction as in [3, Proposition 6.6], we get

NH D max
y2RN

H.y; 0/ D max
y2TN

f�l.y/g D �l.y0/;
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for some y0 2 Œ0; 1/N , since l is continuous and periodic. Then v�.t; x/ converges
locally uniformly to the unique solution of

@tv C NH D 0 v
�
0/ D 0;

which is Nv.t/ D tl.y0/: ut

5 Generalizations of the Results

We will show in the forthcoming paper [9] how the results described in this note can
be generalized to prove variational convergence of optimal control problems with
dynamics

8̂
<̂
ˆ̂:

Px1.s/ D f1
�

x.s/; x2.s/
�
; ˛1.s/; ˛2.s/

	

Px2.s/ D f2
�

x.s/; x2.s/
�
; ˛2.s/

	
x.0/ D x;

(28)

and cost functional

Z t

0

l

�
x.s/;

x2.s/

�
; ˛1.s/; ˛2.s/

�
ds C h.x.t//: (29)

The state variable x is divided here in two groups, x1 and x2. The dynamics for
the oscillating variables, x2, is controlled only by the ˛2 component of the control
variable .˛1; ˛2/. Problem (1) considered here corresponds to the particular choice
f1 	 0 (then the dynamics for x1 can be ignored) and f2 D f .

The arguments sketched in the proof of Proposition 1 can be adapted to show
convergence of (28)–(29) when the dynamics for x2 is uncontrolled, i.e. f2 D
f2.x; x2=�/. A representation of the limiting optimal control problem can be provided
in terms of invariant measures of the flow associated to the dynamics of fast
oscillations.

The strategy described in Sect. 3 and the averaging result of Proposition 2
can be adapted to show convergence of optimal control problems like (28)–(29);
assumption (16) must be satisfied with f D f2 and A D A2, the compact set of values
for the ˛2 components of the control. An analog of Proposition 3 holds, whenever
f2 depends on x2=� but not on x and the dynamics

Py.t/ D f2 .y.t/; ˛2.t// ; y.0/ D y

is bounded-time controllable.
The case treated in Sect. 4.2 can be generalized to (28)–(29) provided fi D

fi.x1;
x2
�
; ˛i/ (i D 1; 2), l D l.x1;

x2
�
; ˛1/, h D h.x1/. We can show that an optimal
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control problem satisfying this partially decoupled structure admits a variational
limit. As � ! 0, the oscillations x2=� play the role of a new control variable
valued in the torus. More precisely, the limiting dynamics is governed by the drift
f1 D f1.x1; y; ˛1/ controlled by

.y; ˛1/ W Œ0;1/ ! Œ0; 1/N2 � A1 measurable

and the associated cost functional is

Z t

0

l.x1.s/; y.s/; ˛1.s//ds C h.x1.t//:
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On Gradient Like Properties of Population
Games, Learning Models and Self Reinforced
Processes

Michel Benaim

Abstract We consider ordinary differential equations on the unit simplex of Rn

that naturally occur in population games, models of learning and self reinforced
random processes. Generalizing and relying on an idea introduced in Dupuis and
Fisher (On the construction of Lyapunov functions for nonlinear Markov processes
via relative entropy, 2011), we provide conditions ensuring that these dynamics are
gradient like and satisfy a suitable “angle condition”. This is used to prove that
omega limit sets and chain transitive sets (under certain smoothness assumptions)
consist of equilibria; and that, in the real analytic case, every trajectory converges
toward an equilibrium. In the reversible case, the dynamics are shown to be C1

close to a gradient vector field. Properties of equilibria -with a special emphasis on
potential games—and structural stability questions are also considered.

1 Introduction

Let S be a finite set, say S D f1; : : : ; ng:A rate matrix over S is a n�n matrix L such
that Lij � 0 for i ¤ j and

P
j Lij D 0:We let R.S/ denote the space of such matrices.

For x 2 R
n and L 2 R.S/ we let xL denote the vector defined by .xL/i D P

j xjLji:

Let

� D fx 2 R
n W xi � 0;

X
i

xi D 1g

be the unit simplex of probabilities over S: In this paper we are interested in ordinary
differential equations on � having the form

dx

dt
D xL.x/ WD F.x/ (1)
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where L W � 7! R.S/ is a sufficiently smooth function. Such dynamics occur—
through a natural averaging procedure- in models of games describing strategic
interactions in a large population of players, as well as in certain models of learning
and reinforcement. These models are usually derived from qualitative assumptions
describing the “microscopic” behavior of anonymous agents, and it is usually
believed or assumed that similar qualitative microscopic behaviors should lead to
similar global dynamics. However there is no satisfactory general theory supporting
this belief.

To be more precise, under the assumption that L.x/ is irreducible, there exists a
unique “invariant probability” for L.x/; �.x/ 2 � characterized by

�.x/L.x/ D 0: (2)

Several models corresponding to different rate functions x 7! L.x/ have the same
invariant probability function x 7! �.x/: For instance, to each population game (see
Sect. 2.1) which average ODE is given by (1), there is a canonical way to define a
learning process (see Sect. 2.2) which average ODE is given by

dx

dt
D �x C �.x/ WD F�.x/; (3)

but there is no evidence that the dynamics of (1) and (3) are related in general.
The purpose of this paper is to provide sufficient conditions on �.x/ ensuring

that (1) has a gradient-like structure. This heavily relies on an idea introduced
in [10] where it was shown that the relative entropy between x and �.x/ is a
strict Lyapounov function for systems of Gibbs type. We extend this idea to other
class of systems beyond systems of Gibbs type, including population games and
reinforcement process with imitative dynamics, and investigate further dynamics
properties.

To give the flavor of the results presented in this paper, let � W � 7! P� be a
smooth function mapping � into its relative interior. Let �� be the set of vector
fields having the form given by (the right hand side of) (1), where for each x; L.x/
is irreducible and verifies (2). Note that �� is a convex set of vector fields on � and
that F� 2 �� :

Theorem A

For all F 2 �� :
(i) Equilibria (respectively non degenerate equilibria) of F coincide with equilib-

ria (respectively non degenerate equilibria) of F�:
(ii) In general, global dynamics of F and F� are “unrelated.” We construct an

example for which F� is globally asymptotically stable (every trajectory
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converge toward a linearly stable equilibrium) while every non equilibrium
trajectory for F converge to a limit cycle.

(iii) Assume that there exists a Ck; k � 1 strictly increasing function s W R 7! R

such that x 2 P� 7! s.. xi
�i.x/

//i2S is the gradient (or quasi gradient) of some

function V W P� 7! R: Then

(a) V is a strict Lyapounov function for F (F is gradient-like) and verifies an
angle condition,

(b) Omega limit sets and chain-transitive sets of F are equilibria,
(c) In the real analytic case, every solution to (1) converge toward an

equilibrium,
(d) In the reversible case, hyperbolic equilibria of F coincide with non

degenerate critical points of V and, provided there are finitely many
equilibria, F is C1 close to a gradient vector field for a certain Riemannian
metric,

(e) The set �� is not (in general) structurally stable.

Section 2 describes a few examples that motivate this work. Section 3 contains
some preliminary results and the main assumptions. Section 4 is devoted to Theorem
A; .ii/I Sect. 5 to .iii/; .a/; .b/; .c/I Sects. 6 and 7 to .iii/.d/ and Sect. 8 to .iii/.e/:
Other results and examples are also discussed in these sections. For instance, in
Sect. 6.1, the local dynamics (dynamics in the neighborhood of equilibria) of mean
field systems associated to potential games is precisely described in term of Nash
equilibria.

2 Motivating Examples

Throughout this section we see S as set of pure strategies. A Markov matrix over S
is a n � n matrix K such that Kij � 0 and

P
j Kij D 1: We let M.S/ denote the sets

of such matrices and we assume given a Lipschitz map

K W � 7! M.S/:

For further reference we may call such a map a revision protocol. This terminology
is borrowed from [23].

2.1 Population Games

Good references on the subject include [22] and the survey paper [23] from which
some of the examples here are borrowed.
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Consider a population of N agents, each of whom chooses a strategy in S at
discrete times k D 1; 2; : : : : Depending on the context, an agent can be a player,
a set of players, a biological entity, a communication device, etc. The state of the
system at time k 2 N is the vector XN

k D .XN
k;1; : : :X

N
k;n/ 2 � where NXN

k;i equals
the number of agents having strategy i: The system evolves as follows. Assume
that at time k the system is in state XN

k D x: Then an agent is randomly chosen in
the population. If the chosen agent is an i�strategist, he/she switches to strategy j
with probability Kij.x/: This makes .XN

k /k�1 a discrete time Markov chain, which
transition probabilities are

P.XN
kC1 D x C 1

N
.ej � ei/jXN

k D x/ D xiKij.x/

where .e1; : : : ; en/ is the standard basis of Rn: Let

L.x/ D �Id C K.x/: (4)

By standard mean-field approximation (see [5, 15] for precise statements, and [22,
23] for discussions in the context of games), the process f.XN

k / W kN � Tg can be
approximated by the solution to (1) (with L.x/ given by (4)) with initial condition
x D XN

0 ; over the time interval Œ0;T�:

2.1.1 Revision Protocols

Assume, as it is often the case in economic or biological applications, that the
population game is determined by a continuous Payoff-function U W � 7! Rn: The
quantity Ui.x/ represents the payoff (utility, fitness) of an i� strategist when the
population state is x:

An attachment-function is a continuous map w W � 7! R
n2C : The weight wij.x/

can be seen as an a priori attachment of an i�strategist for strategy j: It can also
encompasses certain constraints on the strategy sets. For instance wij.x/ D 0

(respectively wij.x/ << 1) if a move from i to j is forbidden (respectively costly).
We call the attachment function imitative if

wij.x/ D xj Qwij.x/ (5)

Most, not to say all, revision protocols in population games fall into one of the two
next categories:

(i) [Sampling]

Kij.x/ D wij.x/f .Uj.x//P
k wik.x/f .Uk.x//

(6)

where f is a non negative increasing function.
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(ii) [Comparison]

Kij.x/ D wij.x/g.Ui.x/;Uj.x// for i ¤ j (7)

Kii.x/ D 1 �
X
j¤i

Kij.x/

where g.u; v/ is nonnegative, decreasing in u, increasing in v and such thatP
j¤i Kij.x/ � 1:

2.2 Processes with Reinforcement and Adaptive Learning

Suppose now there is only one single agent in the population. In the context of
games, one can imagine that this agent consists of a finite set of players and that
S is the cartesian product of the strategy sets of the players. let Xk 2 S denote the
strategy of this agent at time k: Let�k 2 � denote the empirical occupation measure
of .Xk/ up to time k: That is

�k D 1

k

kX
jD1

ıXj

where ı W S 7! � is defined by ıi D ei: Suppose now that the agent revises her
strategies as follows:

P.XkC1 D jjX0; : : : ;Xk�1;Xk D i/ D Kij.�k/:

The process .Xk/ is no longer a Markov process but a process with reinforcement
(see [20] for a survey of the literature on the subject). Using tools from stochastic
approximation theory, it can be shown (see [1]) that, under certain irreducibility
assumptions, the long term behavior of .�k/ can be precisely related (see [1–3]
and the brief discussion preceding Corollary 3) to the long term behavior of the
differential equation on �

dx

dt
D �x C �.x/ (8)

where �.x/ 2 � is the invariant probability of K.x/: Note that (8) can be rewritten
as (1) with Lij.x/ D ıij � �j.x/:
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3 Hypotheses, Notation, and Preliminaries

Let L be a rate matrix, as defined in the introduction. Then L is the infinitesimal
generator of a continuous time Markov chains on S: A probability � 2 � is called
invariant for L if it is invariant for the associated Markov chain, or equivalently

�L D 0:

A sufficient condition ensuring that � 2 � is invariant is that L is reversible with
respect to �; meaning that

�iLij D �jLji:

The matrix is said irreducible if for all i; j 2 f1; : : : ; ng there exist some integer
k and a sequence of indices i D i1; i2; : : : ; ik�1; ik D j such that Lil;ilC1

> 0 for
l D 1; : : : ; k � 1:

An irreducible rate matrix admits a unique invariant probability which can be
expressed as a rational function of the coefficients .Lij/ (see e.g. Chapter 6 of [11]).

The relative interior of � is the set

P� D fx 2 � W 8i 2 S; xi > 0g:

From now on we assume given a C1 map1 L W � 7! R.S/ satisfying the following
assumption:

Hypothesis 1 (Standing Assumption) For all x 2 P�;L.x/ is irreducible.

We sometimes assume

Hypothesis 2 (Occasional Assumption) For all x 2 �; L.x/ is irreducible.

In view of the preceding discussion Hypotheses 1 and 2 imply the following

Lemma 1 There exists a C1 map � W P� 7! P� such that for all x 2 P�; y D �.x/ is
the unique solution to the equation

yL.x/ D 0; y 2 �:

If L is Ck;C1 or real analytic, the same is true for �: Under Hypothesis 2, � is
defined on all � and maps� into P�:
We let F� denote the map defined as

F�.x/ D �x C �.x/: (9)

1By this we mean that L is the restriction to � of a C1 map defined in a neighborhood of � in
aff .�/ D fx 2 Rn WPi x1 D 1g.
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Throughout, it is implicitly assumed that the domain of F� is P� under Hypothesis 1
and� under Hypothesis 2.

We now consider the dynamics induced by (1). Without loss of generality, we
may assume that (1) is defined on all Rn and induces a flow ˚ D .˚t/ leaving �
positively invariant. Indeed, by convexity of �; the retraction r W Rn 7! � defined
by r.x/ D argminy2�kx � yk is Lipschitz so that the differential equation

dy

dt
D yL.r.y// (10)

is Lipchitz and sub-linear on all Rn: By standard results, it then induces a flow
˚ W R � Rn 7! Rn where t 7! ˚.t; y/ D ˚t.y/ is the unique solution to (10) with
initial condition y: For all x 2 � and t � 0; ˚t.x/ 2 � and the map t 2 RC 7! ˚t.x/
is solution to (1).

In the following we sometime use the notation ˚t.x/ D x.t/ D .x1.t/; : : : ; xn.t//:
The tangent space of � is the space

T� D fu 2 R
n W

nX
iD1

ui D 0g:

Lemma 2 (i) There exists ˛ � 0 such that for all x 2 � xi.t/ � e�˛txi.0/: In
particular, P� is positively invariant.

(ii) If for all x 2 @� L.x/ is irreducible, then ˚t.�/ � P� for all t > 0 and the
dynamics (1) admits a global attractor

A D
\
t�0
˚t.�/ � P�:

Proof .i/ Let ˛ D supx2� �Lii.x/: For all j ¤ i and x 2 �

Pxi � �˛xi C xjLji.x/:

Hence

xi.t/ � e�˛tŒxi.0/C
Z t

0

e˛sxj.s/Lji.x.s//ds� � e�˛txi.0/:

The second inequality is the first statement. From the first inequality and the
continuity of L.x.t// it follows that xi.t/ > 0 for all t > 0whenever that xjLji.x/ > 0:
Let now x 2 @�: Assume without loss of generality that x1 > 0: By irreducibility
there exists a sequence 1 D i1; i2; : : : ik D j such that Lil ;ilC1

.x/ > 0: Hence, by
continuity, Lil;ilC1

.x.t// > 0 for all t small enough. It then follows that xj.t/ > 0 for
all t > 0. �

Remark 1 Assumption 1 is not needed in Lemma 2.
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Throughout we let

Eq.F/ D fx 2 � W F.x/ D 0g

denote the equilibria set of F: Note that in view of the preceding Lemmas

Eq.F/\ P� D fx 2 P� W F�.x/ D 0g

and, in case L.x/ is irreducible for all x 2 �; Eq.F/ � P�:
An equilibrium p is called non degenerate for F provided the Jacobian matrix

DF. p/ W T� 7! T� is invertible.

Lemma 3 Let p 2 Eq.F/ \ P�: Then p is non degenerate for F if and only if it is
non degenerate for F� :

Proof Let LT.x/ W T� 7! T� be defined by LT.x/h D hL.x/: Then for all x 2
P�F.x/ D xL.x/ D .x � �.x//L.x/ D LT.x/.x � �.x//: Hence at every equilibrium

p 2 P� DF. p/ D �LT . p/.DF�. p//: By irreducibility, LT . p/ is invertible (see
Lemma 8 in the Appendix). Thus DF. p/ is invertible if and only if DF�. p/ is
invertible. �

4 Dynamics of F and F� are Generally Unrelated

While F and F� have the same equilibria, they may have quite different dynamics
as shown by the following example.

Suppose n D 3 so that � is the unit simplex in R3: Let G be a smooth vector
field on � such that:

(i) G points inward P� on @�;
(ii) Every forward trajectory of G converge to p D .1=3; 1=3; 1=3/;

(iii) |DG. p/|�1 D
��� �1
1 ��

�
; � > 0;

where | W T� 7! R2 is defined by |.u1; u2; u3/ D .u1; u2/:

It is easy to construct such a vector field.
Choose " > 0 small enough so that "G.x/ C x lies in P� for all x 2 � and set

�.x/ D "G.x/C x: Then, F� and G have the same orbits.
Let W be a 3� 3 symmetric irreducible matrix with positive off-diagonal entries.

Set Lij.x/ D Wij�j.x/ for i ¤ j and Lii.x/ D �Pj¤i Lij.x/: The matrix L.x/ is an
irreducible rate matrix, reversible with respect to �.x/: It follows from Lemmas 2
and 3 that F.x/ D xL.x/ has a global attractor contained in P� and a unique
equilibrium given by p:
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Furthermore,

DF. p/ D �L. p/TDF�. p/ D �"L. p/TDG. p/ D � "
3

WDG. p/

where the last equality follows from the definition of L and the fact that �. p/ D p:
To shorten notation, set b D "

3
W12; c D "

3
W13 and d D "

3
W23: Then

|DF. p/|�1 D
�
.b C 2c/ c � b

d � b .b C 2d/

���� �1
1 ��

�

The determinant of this matrix is positive and its trace equals

.c � d/� 2�.b C c C d/:

If one now choose c > d and � small enough, the trace is positive. This makes
p linearly unstable. By Poincaré-Bendixson theorem, it follows that every forward
trajectory distinct from p converges toward a periodic orbit.

Remark 2 It was pointed out to me by Sylvain Sorin and Josef Hofbauer that this
example is reminiscent of the following phenomenon. Consider a population game
which revision protocol takes the form

Kij.x/ D xj

R
max.0;Uj.x/� Ui.x// for i ¤ j

(here R is chosen so that
P

j¤i Kij.x/ � 1). This is a particular case of imitative
pairwise comparison protocol (see Eq. (7)).

Then, the mean field ode is the classical replicator dynamics (see Example 3.2 in
[23]):

Pxi D xi.Ui.x/�
X
j2S

xjUj.x// (11)

Here the rate matrix L.x/ is not irreducible and its set of invariant probabilities is
easily seen to be the Best Reply set

BR.x/ D conv.fei W Ui.x/ D max
j2S

Uj.x/g/:

where conv.A/ stands for the convex hull of A: The vector field (9) is not defined
but can be replaced by the differential inclusion

Px 2 �x C BR.x/: (12)
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If one assume that Ui.x/ D P
j Uijxj with U the payoff matrix given by a Rock-

Paper-Scissors game,

U D
0
@ 0 �1 1

1 0 �1
�1 1 0

1
A I

Then p D .1=3; 1=3; 1=3/ is the unique equilibrium of (11) in P� (corresponding
to the unique Nash equilibrium of the game) and every solution to (11) with initial
condition in P�nf pg is a periodic orbit. On the other hands, solutions to (12) converge
to p: Phase portraits of these dynamics can be found in ([23], Section 5) and a
detailed comparison of the replicator and the best reply dynamics is provided in [14].

5 Gradient Like Structure

For u; v 2 Rn we let hu; vi D P
i uivi:

A map h W P� 7! Rn; is called a gradient if there exists a C1 map V W P� 7! R

such that for all x 2 P� and u 2 T�

hh.x/; ui D DV.x/:u WD hrV.x/; ui:

It is called a quasigradient or a ˛-quasigradient if x 7! ˛.x/h.x/ is a gradient for
some continuous map ˛ W P� 7! R�C: That is

˛.x/hh.x/; ui D hrV.x/; ui (13)

for all x 2 P� and u 2 T�:

Remark 3 If V is the restriction to P� of a C1 map W W Rn 7! R; then rV.x/ is the
orthogonal projection of rW.x/ onto T�: That is

rVi.x/ D @W

@xi
.x/ � 1

n

nX
jD1

@W

@xj
.x/; i D 1; : : : n:

Remark 4 A practical condition ensuring that h is a gradient is that

(a) h is the restriction to P� of a C1 map h W Rn 7! Rn;

(b) For all x 2 P� and i; j; k 2 f1; : : : ; ng
@hi

@xj
.x/C @hj

@xk
.x/C @hk

@xi
.x/ D @hi

@xk
.x/C @hk

@xj
.x/C @hj

@xi
.x/:

This follows from ([13], Theorem 19.5.5.)
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Notation

We use the following convenient notation. If x; y are vectors in Rn and s W R 7! R

we let x:y 2 Rn (respectively x
y and s.x/) be the vector defined by .xy/i D xiyi

(respectively . x
y /i D xi

yi
; si.x/ D s.xi//:

5.1 Gradient Like Structure

A C1 map V W P� 7! R is called a strict Lyapounov function for F (or ˚/ if for all
x 2 P�

F.x/ ¤ 0 ) hF.x/;rV.x/i < 0:

Theorem 3 Let s W�0;1Œ7! R be a C1 function with positive derivative and let
hs W P� 7! Rn be the map defined by

hs.x/ D s.
x

�.x/
/:

Assume that hs is a ˛-quasigradient. Then

(i) The map V (given by (13)) is a strict Lyapounov function for F on P�I
(ii) The critical points of V coincide with Eq.F/\ P�I

(iii) V satisfies the following angle condition: For every compact set K � P� there
exists c > 0 such that

j hrV.x/;F.x/i j� c k rV.x/ kk F.x/ k

for all x 2 K:

Remark 5 (Gibbs Systems) If �.x/ is a Gibbs measure,

�ˇ;i.x/ D e�.U0
i Cˇ

P
j Uijxj/

Z.x/
(14)

where U D .Uij/ is a symmetric matrix, ˇ � 0; and

Z.x/ D
X

j

e�.U
0
j Cˇ

P
k Uikxk/;
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parts .i/ and .ii/ of Theorem 3 have been proved in [10], Theorems 5.3 and 5.5.
Here s.t/ D log.t/ and

V.x/ D
X

i

xi log.xi/C
X

j

U0
j xj C ˇ

2

X
ij

Uijxixj: (15)

Proof of Theorem 3

Part .i/ relies on the following Lemma.

Lemma 4 Let L be an irreducible transition matrix with invariant probability �:
Let x 2 �; fi D xi

�i
; s. f /i D s. fi/ and cf D infi s0. fi/ > 0: Then there exists

�.L/ > 0 depending continuously on L such that

hxL; s. f /i � �cf�.L/Var�. f /

where Var�. f / D P
i. fi � 1/2�i D P

i
.xi��i/

2

�i
:

The proof of this lemma uses elementary convexity arguments and classical tools
from Markov chain theory. It is proved in appendix. Applying this lemma with L D
L.x/ and � D �.x/ gives

hF.x/;rV.x/i < 0

unless x D �.x/:

.ii/ The set Eq.F/\ P� coincides with fixed points of � in P�: Let x 2 P�: rV.x/ D
0 , hs.x/ 2 R1 where 1 is the vector which components are all equal to 1:
The function s being injective this is equivalent to xi

�i.x/
D xj

�j.x/
for all i; j: That

is x D �.x/:
.iii/ Let K � P�: By Lemma 4 (applied with L D L.x/ and � D �.x/) and

continuity of the maps involved, there exists c > 0 depending on K such that

jhrV.x/;F.x/ij � c
X

i

.xi � �i.x//
2 D ckx � �.x/k2:

To prove the angle condition it then suffices to show that both kF.x/k and
krV.x/k are bounded by some constant times kx � �.x/k: Now, F.x/ D
xL.x/ D xL.x/� �.x/L.x/ so that

kF.x/k � c1kx � �.x/k

with c1 D supx2� kL.x/k:
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By Lipschitz continuity of s and compactness, there exist c2; c3 > 0 depending
on K such that

js. xi

�i.x/
/ � s.1/j � c2j xi

�i.x/
� 1j � c3jxi � �i.x/j:

Thus, for all u 2 T� such that kuk D 1

hhs.x/; ui D hhs.x/� s.1/1; ui � khs.x/� s.1/:1k � c3kx � �.x/k:

This implies that krV.x/k � c3kx � �.x/k and concludes the proof. �
The following result proves to be useful for certain dynamics leaving invariant the

boundary of the simplex. Such dynamics occur in population games using imitative
protocols (see Eq. (5)) as well as in certain models of vertex reinforcement (see
Example 3 below).

For x 2 � let Supp.x/ D fx 2 � W xi > 0g:
Proposition 1 Assume that assumptions of Theorem 3 hold. Assume furthermore
that

(a) For all x 2 �

xi D 0 ) Lji.x/ D 0

and the reduced rate matrix ŒLij.x/�i;j2Supp.x/ is irreducible
(b) The maps V W P� 7! Rn and ˛ W P� 7! R

�C (given by Eq. (13)) extend to C1

(respectively continuous) maps V W � 7! Rn and ˛ W � 7! R
�C:

Then V is strict Lyapounov function for F on �:

Proof Let T�.x/ D fu 2 T� W ui D 0 for i 62 Supp.x/g: By assumption .a/ the
map x 7! �.x/ is defined for all x 2 � continuous in x and �i.x/ D 0 , xi D 0:

Therefore, using assumption .b/, the equation

8x 2 P�;8u 2 T� ˛.x/hhs.x/; ui D hrV.x/; ui

extends to

8x 2 �;8u 2 T�.x/
X

i2Supp.x/

s.
xi

�i.x/
/ui D hrV.x/; ui

Thus

X
i2Supp.x/

s.
xi

�i.x/
/.xL.x//i D hrV.x/;F.x/i
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for all x 2 �: By Lemma 4 the left hand side is nonpositive and zero if and only if
xi D �i.x/ for all i 2 Supp.x/:�

Remark 6 Note that under the assumptions of Proposition 1, the angle inequality of
Theorem 3 doesn’t hold on the boundary of the simplex

Example 1 Let W W Rn 7! R be a Ck map, k � 1. Suppose that for all x 2 P�

�i.x/ D fi.xi/ .
@W
@xi
.x//Pn

jD1 fj.xj/ .
@W
@xj
.x//

Then, Theorem 3 applies in the following cases:

Case 1  .u/ D e�ˇu with ˇ � 0; and fi.t/ > 0 for all t > 0: It suffices to choose
s.t/ D log.t/ and

V.x/ D
nX

iD1
xi log.xi/ �

nX
iD1

Z xi

1

log. fi.u//du C ˇW.x/ (16)

Then hs is the gradient of V:
Case 2  .u/ D uˇ; ˇ > 0; fi.t/ D t and @W

@xi
> 0 on fx 2 � W xi > 0g: It suffices

to choose s.t/ D �t�1=ˇ and

V.x/ D �W.x/:

Then hs is the ˛-quasigradient of V with

˛.x/ D Œ
X

j

xj.
@W

@xj
/ˇ/��1=ˇ:

Example 2 (Potential Games) Examples of applications of Example 1, case 1,
are given by Potential Games (see [22] for an comprehensive presentation and
motivating examples). We use the notation of Sect. 2. A Potential Game is a game
for which the payoff function is such that for all x 2 �

Ui.x/ D �@W

@xi
.x/; i D 1 : : : n

Consider a population game with a revision protocol given by (7). Suppose that the
attachment matrix takes the form

wij.x/ D fj.xj/ Qwij.x/
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with Qw irreducible and symmetric. Let ˇ � 0:Assume furthermore that g.u; v/ takes
one of the following form:

Pairwise comparison

g.u; v/ D eˇ.v�u/

1C eˇ.v�u/
or g.u; v/ D min.1; eˇ.v�u//;

Imitation driven by dissatisfaction

g.u; v/ D e�ˇu;

Imitation of success

g.u; v/ D eˇv:

In all these situations, K.x/, hence L.x/ is reversible with respect to �ˇ.x/ with

�ˇ;i.x/ D fi.xi/e
�ˇ @W

@xi
.x/

P
j fj.xj/e

�ˇ @W
@xj
.x/
:

Theorem 3 applies with V given by (16).

Remark 7 (Gibbs Systems, 2) A particular case of potential games is obtained with
W.x/ D 1

2

P
ij Uijxixj with U D .Uij/ symmetric, and fi.x/ D e�U0

i : Here payoffs
are linear in x W

Ui.x/ D �
X

j

Uijxj

and we retrieve the situation considered in [10]. See Remark 5.

Example 3 (Vertex Reinforcement) Let K be the revision protocol defined by

Kij.x/ D Aijx
�
jP

k Aikx�k

where A is a matrix with positive entries and � � 1: For population games (see
Sect. 2.1) this gives a simple model of imitation: an agent of type i; when chosen,
switches to j with a probability proportional to the .number of agents of type j/� :
For processes with reinforcement (as defined in Sect. 2.2) the probability to jump
from i to j at time n is proportional to .the time spent in j up to time n/� : This later
model called a vertex reinforced random walks was introduced by Diaconis and first
analyzed in Pemantle [19] (see also [1] and [7] for more references on the subject).
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When A is symmetric, K.x/ is reversible with respect to

�i.x/ D x�i
P

k Aikx�kP
ij Aijx

�
i x�j

D xi
@W
@xiP

j xj
@W
@xj

(17)

with

W.x/ D
X

i;j

Aijx
�
i x�j (18)

We are then in the situation covered by Example 1, case 2, with  .u/ D u; fi.t/ D
t; s.t/ D � 1

t and V D �W:
Both Theorem 3 and Proposition 1 apply.

Example 4 (Interacting Urn Processes) Closely related to vertex reinforced ran-
dom walks are models of interacting urns (see [6, 8, 24]). For these models �i.x/ D
xi
@W
@xi

for some smooth function W: This is a particular case of Example 1, case 2.

5.2 Limit Sets and Chain Transitive Sets

Using Lasalle’s invariance principle we deduce the following consequences from
Theorem 3.

Corollary 1 Assume that assumptions of Theorem 3 hold. Then every omega limit
set of ˚ contained in P� is a connected subset of Eq.F/\ P�:
Combining this results with Lemma 2 (ii) and Proposition 1 gives

Corollary 2 Assume that one of the following condition hold:

(a) Assumptions of Theorem 3 and Hypothesis 2 or;
(b) Assumptions of Proposition 1.

Then every omega limit set of ˚ is a connected subset of Eq.F/:

A set L is called attractor free or internally chain transitive provided it is compact,
invariant and ˚ jL has no proper attractor. For reinforced random processes like the
ones defined in Sect. 2.2, limit sets of .�n/ are, under suitable assumptions, attractor
free sets of the associated mean field Eq. (8) (see [1]). More generally attractor
free sets are limit sets of asymptotic pseudo trajectories (see [3]). It is then useful
to characterize such sets. Note however that the existence of a strict Lyapounov
function, doesn’t ensure in general, that internally chain transitive sets consist of
equilibria (see e.g. Remark 6.3 in [2]).
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Corollary 3 Assume that assumptions of Theorem 3 hold and that hs is Ck for
some k � n � 2 D dim.T�/ � 1: Then every internally chain transitive set of
˚ contained in P� is a connected subset of Eq.F/ \ P�: If we furthermore assume
that L.x/ is irreducible for all x 2 �; then every internally chain transitive set of ˚
is a connected subset of Eq.F/

Proof Let C D Eq.F/ \ P� and A � P� an attractor free set. By Theorem 3, C
coincide with critical points of V: By the assumption V is CkC1 so that by Sard’s
theorem (see [12]), V.C/ has empty interior. It follows (see e.g. Proposition 6.4 in
[2]) that A � C: �

5.3 Convergence Toward One Equilibrium

In case equilibria are isolated, Corollary 1 implies that every trajectory bounded
away from the boundary converge to an equilibrium and that every trajectory
converges in case L.x/ is irreducible for all x: However, when equilibria are
degenerate, the gradient-like property is not sufficient to ensures convergence. There
are known examples of smooth gradient systems which omega limit sets are a
continuum of equilibria (see [18]). However, in the real analytic case, gradient like
systems which verify an angle condition are known to converge.

Theorem 4 Suppose that assumptions of Theorem 3 hold and that V is real
analytic. Then every omega limit set meeting P� reduces to a single point.

Proof Let p be an omega limit point. If V is real analytic, it satisfies a Lojasiewicz
inequality at p in the sense that there exist 0 < � � 1=2; ˇ > 0 and a neighborhood
U. p/ of p such that

jV.x/� V. p/j1�� � ˇkrV.x/k

for all x in a U. p/. Such an inequality called a “gradient inequality” was proved by
Lojasiewicz [16] and used (by Lojasiewicz again) to show that bounded solutions
of real analytic gradient vector fields have finite length, hence converge. When the
dynamics is not a gradient, but only gradient like with V as a strict Lyapounov
function, the same results holds provided that V satisfies an angle condition:

hrV.x/;F.x/i � ckF.x/kkrV.x/k

for all x 2 U. p/: This is proved in [9] (see also [17], Theorem 7). �

Example 5 (Gibbs Systems, 3) If � is given by (14) with U symmetric, V given
by (15) is real analytic so that every solution to (1) converges toward an equilibrium.
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6 Equilibria

Recall that point p 2 Eq.F/ is called non degenerate if the jacobian matrix DF. p/ W
T� 7! T� is invertible. It is called hyperbolic if eigenvalues of DF. p/ have non
zero real parts. If p is hyperbolic, T� admits a splitting

T� D Eu
p ˚ Es

p

invariant under DF. p/ such that the eigenvalues of DF. p/jEs
p

(respectively
DF. p/jEu

p
) have negative (respectively positive) real parts.

Point p 2 Crit.V/ D fx 2 P� W r.V/.x/ D 0g is called non-degenerate if
Hess.V/. p/ the Hessian or V at p has full rank. In a suitable coordinate systems
Hess.V/. p/.u; u/ D Pn

C

iD1 u2i �Pn
�

jD1 u2j with nC C n� D dim.T�/ D n � 1: The
number n� is called the index of p (with respect to V) and is written Ind. p;V/:

Proposition 2 Assume that assumptions of Theorem 3 hold. Let p 2 Eq.F/ \ P�:
Then

(i) Point p is non degenerate if and only if it is a non degenerate critical point of V:
(ii) If furthermore L is C2 and p is hyperbolic,

dim.Eu
p/ D Ind. p;V/:

Proof From Lemma 3, p is non degenerate if and only if DF�. p/ is invertible and
(see the proof of Lemma 3)

DF. p/ D �LT. p/DF�. p/ (19)

Now, a direction computation (details are left to the reader) of the Hessian of V at x
leads to

hHess.V/.x/u; vi D ˛.x/hs0.
x

�.x/
/.u � x

�.x/
D�.x/u; vi1=�.x/

where hu; vi1=� stands for
P

i uivi
1
�i
: Since p D �. p/

hHess.V/. p/u; vi D ˛. p/s0.1/h.I � D�. p//u; vi1=p (20)

for all u; v 2 T�; This proves that HessV. p/ is non degenerate if and only if .I �
D�. p// D �DF�. p/ is non degenerate and concludes the proof of the first part.

We now prove the second part. By the stable manifold theorem, there exists a
(local) C2 manifold Ws

p tangent to Es
p at p positively invariant under˚ and such that

for all x 2 Ws
p limt!1˚t.x/ D p: Clearly p is a global minimum of V restricted to

Ws: For otherwise there would exists x 2 Ws
p such that

V. p/ > V.x/ > lim
t!1V.˚t.x// D V. p/:
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Since p is also a critical point rV. p/ D 0: Let u 2 Es
p and let � W� � 1; 1Œ7! Ws

p be

a C2 path with �.0/ D p; P�.0/ D u: Set h.t/ D V.�.t//: Then Ph.0/ D 0 (because
p is a critical point of V) and h00.0/ D hHessV. p/u; ui is non negative because
h.t/ � h.0/:

On the other hand, by the spectral decomposition of HessV. p/ we can write
T� D Es

V ˚ Eu
V with hHessV. p/u; ui > 0 (respectively < 0) for all u 2 Es

V n
f0g (respectively Eu

V n f0g). Thus, Es
p \ Eu

V D f0g and, consequently, dim.Es
p/ C

dim.Eu
V/ � dim.T�/: Similarly dim.Eu

p/C dim.Es
V/ � dim.T�/: This proves that

dim.Eu
p/ D dim.Eu

V/ D Ind. p;V/: �

Remark 8 This later proposition shows that in the neighborhood of an hyperbolic
equilibrium p, Px D F.x/ and Px D �rV.x/ are topologically conjugate. Indeed, part
.ii/ of the proposition implies that the linear flows fetDF. p/g and fetHess.V/. p/g are
topologically conjugate (see e.g. Theorem 7.1 in [21]), and by Hartman-Grobman
Theorem (see again [21]), nonlinear flows are locally conjugate to their linear parts
in the neighborhood of hyperbolic equilibria. However, note that while eigenvalues
of Hess.V/. p/ are reals there is no evidence that the same is true for DF. p/ in
general. The next proposition proves that this is the case when L.x/ is reversible
with respect to �.x/:

Proposition 3 Let p 2 Eq.F/ \ P�: Assume that assumptions of Theorem 3 hold
and that L. p/ is reversible with respect to �. p/ D p: Then there exists a positive
definite bilinear form g0. p/ on T� such that for all u; v 2 T�

g0. p/.DF. p/u; v/ D �hHess.V/. p/u; vi

In particular

(i) DF. p/ has real eigenvalues,
(ii) p is hyperbolic for F if and only if it is a non degenerate critical point of V:

Proof Let p 2 Eq.F/ \ P�: Set L D L. p/ and recall that LT W T� 7! T� is
defined by LTh D hL: Then, by Lemma 8 in the Appendix, �LT is a definite positive
operator for the scalar product on T� defined by hu; vi1=p D P

i uivi
1
pi
: Define now

g0. p/ by

g0. p/.u; v/ D �h.LT/�1u; vi 1
p
: (21)

Using (19) and (20) it comes that for all u; v 2 T�

g0. p/.DF. p/u; v/ D �h.I � D�. p//u; vi1=p

D �Œ˛. p/s0.1/��1hHess.V/. p/u; vi:

Replacing g0. p/ by ˛. p/s0.1/g0. p/ proves the result. �
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A useful consequence of this later proposition is that it is usually much easier to
verify non degeneracy of equilibria rather than hyperbolicity. Here is an illustration:

Example 6 (Gibbs Systems, 4) Consider the symmetric Gibbs model analyzed in
[10] (see Remark 5 and Example 7). We suppose that the symmetric matrix U D
.Uij/ is given and we treat U0 D .U0

i /i2S and ˇ as parameters. Let �rev.U0/ denote
the set of maps

R
C �� 7! T�;

.ˇ; x/ 7! Fˇ.x/ D xLˇ.x/

such that Lˇ verifies assumption 2, is C1 in x; and Lˇ.x/ is reversible with respect to
�ˇ.x/ where

�ˇ;i.x/ D e�U0
i �ˇ

P
j Uijxj

Z.x/
:

Proposition 4 There exists an open and dense set G0 � Rn such that for all U0 2
G0 and F 2 �rev.U0/

(i) The set f.x; ˇ/ 2 ��R
CW W Fˇ.x/ D 0g is a C1 one dimensional submanifold,

(ii) There exists an open dense set B0 � R
C containing 0 such that for all ˇ 2 B0

equilibria of Fˇ are hyperbolic.

Proof Let H W P� � Rn � RC 7! T� be defined by H.x;U0; ˇ/ D rVU0;ˇ.x/ where
VU0;ˇ is given by (15). Since @H

@U0 .x;U
0; ˇ/ is the identity map, H is a submersion.

Hence, by Thom’s parametrized transversality Theorem (see [12], Chapter 3), there
exists an open and dense set G0 2 Rn such that for all U0 2 G0; .x; ˇ/ 7!
H.x;U0; ˇ/ is a submersion. This proves .i/: By the same theorem, for all ˇ 2 B0
with B0 open and dense in RC; x 7! H.x;U0; ˇ/ is a submersion, meaning that
critical points of VU0;ˇ are nondegenerate. By Proposition 3, equilibria of Fˇ are
hyperbolic. �

Remark 9 Other genericity results can be proved, if one fix U0 or ˇ and treat U as
a parameter. Compare to the proof of Theorem 2.10 in [4] in an infinite dimensional
setting.

6.1 Equilibria of Potential Games

Consider a population game with C1 payoff function U W � 7! Rn: Recall that the
game is called a potential game, provided Ui.x/ D � @W

@xi
.x/ for all x 2 � and some

potential W W Rn 7! R:
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Point x� 2 � is called a Nash equilibrium of U if, given the population state x�,
every agent has interest to play the mixed strategy x�: That is

8i 2 f1; : : : ; ng Ui.x
�/ � hU.x�/; x�i (22)

Let

Supp.x�/ D fi 2 f1; : : : ; ng W x�i > 0g:

It follows from (22) that

8i 2 Supp.x�/ Ui.x
�/ D hU.x�/; x�i:

We let NE.U/ denote the set of Nash equilibria of U: For all ˇ � 0 and x 2 �

we let �ˇ.x/ 2 � be defined as

�ˇ;i.x/ D eˇUi.x/P
j eˇUj.x/

; i D 1; : : : ; n (23)

and we let �.ˇ;U/ (respectively, �rev.ˇ;U// denote the set of all vector fields
having the form given by (1) where L.x/ is C1 in x, irreducible and admits �ˇ.x/
as invariant (respectively reversible) probability. Recall (see Eq. (9)) that

F�ˇ D �Id C �ˇ:

Our aim here is to describe Eq.F/ for F 2 �.ˇ;U/ in term of NE.U/ for large
ˇ; with a particular emphasis on potential games. Some of the results here are
similar to the results obtained in Benaïm and Hirsch (n 2 coordinative games, 2000,
unpublished manuscript) for n � 2 pseudo games.

Proposition 5 Let N be a neighborhood of NE.U/: There exists ˇ0 � 0 such that
for all ˇ � ˇ0 and F 2 �.ˇ;U/

Eq.F/ � N

Proof Equilibria of F coincide with equilibria of F�ˇ : Let x.ˇ/ be such an
equilibrium. Then for all i; j

log.xi.ˇ//� log.xj.ˇ//

ˇ
D Ui.x.ˇ// � Uj.x.ˇ//:

Thus for every limit point x� D limˇk!1 x.ˇk/ it follows that

Ui.x
�/ D Uj.x

�/
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if i; j 2 Supp.x�/ and

Ui.x
�/ � Uj.x

�/

if i 62 Supp.x�/ and j 2 Supp.x�/: �

Remark 10 Note that Proposition 5 only requires the continuity of U:

We shall now prove some converse results.
A Nash equilibrium x� is called pure if Supp.x�/ has cardinal 1 and mixed

otherwise. It is called strict if inequality (22) is strict for all i 62 Supp.x�/:

Theorem 5 Let x� be a pure strict Nash equilibrium and N a (sufficiently small)
neighborhood of x�: Then, there exists ˇ0 > 0 such that for all ˇ � ˇ0 and F 2
�.ˇ;U/

(i) Eq.F/\ N D fx�̌g
(ii) Equilibrium x�̌ is linearly stable for F�ˇ :

(iii) Assume furthermore that the game is a potential game. Then x�̌ is linearly
stable for F under one of the following conditions:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:

Proof Suppose without loss of generality that x�1 D 1 and x�i D 0 for i ¤ 1:

Set Rij D Uj � Ui: By assumption and continuity, there exists ı > 0; ˛ > 0 such
that for all x 2 B.x�; ˛/ D fx 2 � W kx � x�k � ˛g;

Ri1.x/ � ı for i > 1I

kRij.x/k � ı if Rij.x
�/ ¤ 0

and

kRij.x/k � ı if Rij.x
�/ D 0:

Thus

1 � �ˇ;1.x/ D .1C
X
i>1

e�ˇRi1.x//�1 � .1C .n � 1/e�ˇı/�1:

This implies that �ˇ maps B.x�; ˛/ into itself for ˇ large enough. By Brouwer’s
Theorem, it then admits a fixed point x�̌: To prove uniqueness and assertion .ii/ it
suffices to prove that �ˇ restricted to B.x�; ˛/ is a contraction. From the expression
�ˇ;i D .

P
j eˇRij/�1; we get
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@�ˇ;i

@xm
D �

X
j

ŒˇeˇRij.
X

k

eˇRik/�2
@Rij

@xm
� WD

X
j

Dij D
X
j¤i

Dij:

Let j ¤ i: If Rij.x�/ ¤ 0

jDijj � ˇeˇRij.1C eˇRij/�2 � ˇmin.eˇRij ; e�ˇRij/ � ˇe�ˇı:

If Rij.x�/ D 0: Then i ¤ 1 and

jDijj � ˇeˇRij.eˇRi1 /�2 D ˇeˇ.Rij�2Ri1/ � ˇe�ˇı

These inequalities show that kD�ˇ.x/k < 1 for all x 2 B.x�; ˛/ and ˇ large enough,
proving uniqueness of the equilibrium as well as assertion .ii/: The last assertion
follows from Propositions 2 and 3. �

A Nash equilibrium x� is called fully mixed if Supp.x�/ D f1; : : : ; ng and
partially mixed if 1 < card.Supp.x�// < n:

A fully mixed Nash equilibrium is called non degenerate if for all u 2 T�

�8w 2 T� hDU.x�/u;wi D 0
� ) u D 0:

Let

T�.x�/ D fu 2 T� W ui D 0 for i 62 Supp.x�/g:

A partially mixed equilibrium x� is called non degenerate if for all u 2 T�.x�/
�8w 2 T�.x�/ hDU.x�/u;wi D 0

� ) u D 0;

Lemma 5 Let x� 2 � be a mixed equilibria. Assume that Supp.x�/ D f1; : : : ; rg
for some 1 < r � n and set

x� D .q1; : : : ; qr�1; 1 �
r�1X
iD1

qi; 0; : : : ; 0/:

Let, for i D 1; : : : ; r � 1;

hr
i .x1; : : : ; xr�1; y1; : : : ; yn�r/ D Ui.x1; : : : ; xr�1; 1 �

r�1X
iD1

xi �
n�rX
iD1

yi; y1; : : : ; yn�r/

� Ur.x1; : : : ; xr�1; 1 �
r�1X
iD1

xi �
n�rX
iD1

yi; y1; : : : ; yn�r/
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Then x� is non degenerate if and only if the .r � 1/� .r � 1/ matrix

�
@hr

i

@xj
..q; 0//

�
i;jD1;:::r�1

is invertible.

Proof One has

@hr
i

@xj
.q; 0/ D .

@Ui

@xj
.x�/� @Ui

@xr
.x�// � .@Ur

@xj
.x�/� @Ur

@xr
.x�//:

Let

v D .v1; : : : ; vr�1;�
r�1X
iD1

vi; 0; : : : ; 0/ 2 T�.x�/

and

w D .w1; : : : ;wr�1;�
r�1X
iD1

wi; 0; : : : ; 0/ 2 T�.x�/:

Then it is easily seen that

r�1X
iD1

r�1X
jD1

@hr
i

@xj
.q/viwj D hDU.x�/v;wi:

This proves that x� is non degenerate if and only if
h
@hr

i
@xj
..q; 0//

i
i;jD1;:::r�1 is

invertible. �

Theorem 6 Let x� be a non degenerate fully mixed Nash equilibrium for U and N
a (sufficiently small) neighborhood of x�: Then, there exists ˇ0 > 0 such that for all
ˇ � ˇ0 and F 2 �.ˇ;U/

Eq.F/\ N D fx�̌g:

Assume furthermore that the game is a potential game with potential W: Then x�̌
is hyperbolic for F and its unstable manifold (for F) has dimension Ind.x�;Wj�/
under one of the following conditions:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:
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Proof Set T D 1=ˇ: Equilibria of F�ˇ are given by the set of equations

T.log.xi/� log.xn// D Ui.x/� Un.x/; i D 1; : : : ; n � 1

or, with the notation of Lemma 5,

T.log.xi/� log.1 �
n�1X
iD1

xi// D hn
i .x1; : : : ; xn�1/; i D 1; : : : ; n � 1: (24)

Write x� D .q1; : : : ; qn�1; 1 �Pn�1
iD1 qi/: For T D 0; q D .q1; : : : ; qn�1/ is solution

to (24). Hence, by the implicit function theorem (which hypothesis is fulfilled by the
non degeneracy of x� and Lemma 5) there exists ˛0 > 0; a neighborhood O of q in
.R�C/n�1 and a C1 map T 2�� ˛0; ˛0Œ7! q.T/ 2 O such that .T; q.T// is the unique
solution to (24) in �� ˛0; ˛0Œ�O: This proves the first assertion of the theorem with
ˇ0 > 1=˛0 and x�̌ D .q.1=ˇ/; 1�Pn�1

iD1 qi.1=ˇ//.
In case, the game is a potential game with potential W; F is gradient-like with

Lyapounov function Vˇ given by (16). Since x� is fully mixed, 1
qi
< 1 so that

k 1
ˇ

HessVˇ.x�̌/ � HessW.x�/k ! 0 as ˇ ! 1: In particular, for ˇ large enough
HessVˇ.x�̌/ is non degenerate, because x� is non degenerate. The last assertion then
follows from Propositions 2 and 3. �

Theorem 7 Let x� be a strict and non degenerate partially mixed Nash equilibrium
for U which support has cardinal 1 < r < n: Let N be a (sufficiently small)
neighborhood of x�: Then, there exists ˇ0 > 0 such that for all ˇ � ˇ0 and
F 2 �.ˇ;U/

Eq.F/\ N D fx�̌g:

Assume furthermore that the game is a potential game with potential W and that
one of the following conditions hold:

(a) L (hence F) is C2 and x�̌ is hyperbolic for F; or
(b) F 2 �rev.ˇ;U/:

Then x�̌ is hyperbolic and

k � dim.Eu
x�

ˇ
/ � min.n � r C k; r � 1/:

with k D Ind.x�;Wj�.x�// and dim.Eu
x�

ˇ

/ stands for the dimension of the unstable

manifold (for F).

Proof Assume without loss of generality that Supp.x�/ D f1; : : : ; rg and set x� D
.q1; : : : ; qr�1; 1�Pr�1

iD1 qi; 0; : : : ; 0/:Write every element of� as .x1; : : : ; xr�1; 1�Pr�1
iD1 xi �Pn�r

iD1 yi; y1; : : : yn�r/ and set x D .x1; : : : ; xr�1/; y D .y1; : : : ; yn�r/: Thus,
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with ˇ D 1=T; equilibria of F�ˇ are given by the following system of equations:

T.log.xi/ � log.1 �
r�1X
iD1

xi �
n�rX
iD1

yi// D hr
i .x; y/; i D 1; : : : r � 1 (25)

and

T.log.yi/ � log.1 �
r�1X
iD1

xi �
n�rX
iD1

yi// D hr
iCr.x; y/; i D 1 : : : n � r (26)

where hr
i is defined in Lemma 5. The triplet .T D 0; x D q; y D 0/ is solution

to (25). Thus by the non degeneracy hypothesis and the implicit function theorem,
there exists a smooth map

Ox W O 7! V ; .T; y/ 7! Ox.T; y/

where O is a neighborhood of .0; 0/ in R � Rn�r and V a neighborhood of q in
Rr�1 such that .T; Ox.T; y/; y/ is solution to (25). Recall that 0 <

Pr�1
iD1 qi < 1 and

hr
iCr.q; 0/ < 0 for all i D 1; : : : ; n � r (because x� is strict). Thus, by choosing O

small enough we can furthermore ensure that

0 < 1 �
r�1X
iD1

Oxi.T; y/ �
n�rX
iD1

yi < 1 (27)

and

hr
iCr.Ox.T; y/; y/ � �ı < 0; i D 1 : : : n � r (28)

for all .T; y/ 2 O:
Now replacing x by Ox.T; y/ in (26) leads to

yi D Gi.T; y/; i D 1 : : : n � r

where

Gi.T; y/ D .1 �
r�1X
iD1

Oxi.T; y/ �
n�rX
iD1

yi/ exp .
1

T
hr

iCr.Ox.T; y/; y//:

Using (27) and (28) we see that ˛ small enough and T � log.1=˛/
ı

G.T; �/ maps
fy 2 Rn�r W 0 � yi � ˛g into itself. By Brouwer’s fixed point theorem, G.T; �/
admits a fixed point Oy.T/: Furthermore, kDyG.T; y/k � C

T e�ı=T for some constant
C making G.T; �/ a contraction. This implies that Oy.T/ is unique. Finally define x�̌
by x�̌;i D Oxi.T; Oy.T// for 1 � i < r and x�̌;iCr D Oyi.T/ for 1 � 1 � n � r:
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We now prove the last assertions. By assumption, T�.x�/ admits a decomposi-
tion T�.x�/ D EC ˚ E� with hHess.W/.x�/u; ui > 0 (respectively < 0) for all
u 2 EC (respectively E�) and u ¤ 0:

Set T�s.x�/ D fu 2 T� W u1 D : : : D ur D 0g: Then

T� D EC ˚ E� ˚ T�s.x
�/:

Let now Vˇ be the Lyapounov function given (16). Then for all u 2 T�

Qˇ.u/ WD h 1
ˇ

Hess.Vˇ/.x
�̌/u; ui D hHessW.x�̌/u; ui C 1

ˇ

X
i

1

x�̌;i
u2i :

The construction of x�̌ shows that 1
ˇ

1
x�

ˇ;i
! 0 for i � r and 1

ˇ
1

x�

ˇ;i
! 1 for i > r

when ˇ ! 1: Thus, for ˇ large enough, Qˇ is non degenerate, definite positive on
EC and T�s.x�/; and definite negative on E�:

This implies that its index is bounded below by k D dim.E�/ and above
by min .r � 1; n � r � k/: This index equals the dimension of the stable manifold
by Proposition 2. Under the reversibility assumption hyperbolicity follows from
Proposition 3. �

7 Reversibility and Gradient Structure

Recall that an irreducible rate matrix L is called reversible with respect to � 2 P� is
�iLij D �jLji: In this case � is the (unique) invariant probability of L: Here we will
consider gradient properties of (1) under the assumption that L.x/ is reversible.

A Ck; k � 0 (Riemannian) metric on P� (or �) is a Ck map g such that for each
x 2 � g.x/ W T� � T� 7! R is a definite positive bilinear form. Given a C1 map
V W P� 7! R we let gradgV denote the gradient vector field of V with respect to g:
That is

g.x/.gradgV.x/; u/ D hrV.x/; ui

for all u 2 T�:

Proposition 6 Assume that for all x 2 P� L.x/ is reversible with respect to �.x/ and
assume that the map h W P� 7! Rn; defined by

h.x/ D x

�.x/

is a ˛-quasigradient. Then there exists a metric g on P� such that for all x 2 P�
F.x/ D �gradgV.x/: If L and ˛ are Ck then g is Ck:
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Proof The proof is similar to the proof of Proposition 3. Let A.x/ W T� 7! T�
be defined by A.x/h D �hL.x/: Then A.x/ and L.x/ are conjugate by the relation
�.x/L.x/h D A.x/�.x/h and A.x/ is a definite positive operator for the scalar
product on T� defined by hu; vi1=�.x/ D P

i uivi
1

�i.x/
: Define now a Riemannian

metric on T� by

g0.x/.u; v/ D hA.x/�1u; vi 1
�.x/
: (29)

Since F.x/ D xL.x/ D .x � �.x//L.x/ D A.x/.�x C �.x//; we get

g0.x/.F.x/; u/ D �h x

�.x/
� 1; ui D �h x

�.x/
; ui:

If x 7! x
�.x/ is a quasi gradient, this makes F a gradient for the metric g.x/ D

˛.x/g0.x/: �

Example 7 Suppose that L.x/ is reversible with respect to �; independent on x:
Then x 7! x

�
is the gradient of the �2 function V.x/ D P

i.
xi
�i

� 1/2�i: Hence
F.x/ D �gradgV.x/ for some metric g.

Under the weaker assumption that x 7! s. x
�.x/ / is a quasi-gradient for some

strictly increasing function s (see Theorem 3) it is no longer true that F is a gradient,
but it can be approximated by a gradient. The next Lemma is the key tool. Its proof
is identical to the proof of Proposition 3.

Lemma 6 Assume that assumptions of Theorem 3 hold and that for all x 2 P�;L.x/
is reversible with respect to �.x/: Then there exists a metric g0 on P� such that for
p 2 Eq.F/\ P� and u; v 2 T�

g0. p/.DF. p/u; v/ D �hHess.V/. p/u; vi:

If, furthermore, L and ˛ (in Eq. (13)) are Ck then g0 is Ck:

Theorem 8 Assume that

(a) Assumptions of Theorem 3 hold with s; ˛ and L Ck; k � 2;

(b) For all x 2 P� L.x/ is reversible with respect to �.x/;
(c) Eq.F/\ P� is finite.

Then for every neighborhood U of Eq.F/ \ P� and every " > 0 there exists a Ck

metric g on P� such that

(i) �gradgV D F on P� n U :
(ii) k � gradgV � FkC1;U � " where

kGkC1;U D sup
x2U

kG.x/k C kDG.x/k:
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Proof Let E D P� \ Eq.F/; v.x/ D d.x; E/ D minp2E kx � pk and let  W RC 7!
Œ0; 1� be a C1 function which is 0 on Œ0; 1�; 1 on Œ3;1Œ and such that 0 �  0 � 1:

Fix " > 0 and let �.x/ D  .
v.x/
"
/; G0 D �gradg0V where g0 is given by Lemma 6

and

G.x/ D .1 � �.x//G0.x/C �.x/F.x/:

Since for all p 2 E ;F. p/� G0. p/ D DF. p/� DG0. p/ D 0 there exists a constant
C > 0 such that

kG0.x/ � F.x/k � Cv.x/2; kDG0.x/� DF.x/k � Cv.x/:

Thus

kG.x/� F.x/k D .1 � �.x//kG0.x/ � F.x/k � C.1 � �.x//v.x/2 � C"2

and

kDG.x/ � DF.x/k D k.1 � �.x//.DG0.x/ � DF.x//C hr�.x/;G0.x/� F.x/ik

� C..1 � �.x//v.x/C 1

"
v.x/2/ � C":

This shows that G is a C1 approximation of F which coincides with F on fv.x/ � 3"g
and with G0 on fv.x/ � "g: Furthermore,

hrV.x/;G.x/i D �.1 � �.x//g0.x/.G0.x/;G0.x//C �.x/hrV.x/;F.x/i � 0

with equality if and only if x 2 E :
Now, for all x 2 P� n E

T� D rV.x/? ˚ RG.x/

and the splitting is smooth in x: Hence u 2 T� can be uniquely written as u D
Px.u/C tx.u/G.x/ with tx.u/ 2 R and Px.u/ 2 rV.x/?: Let g be the metric on P�nE
defined by

g.x/.u; v/ D g0.Px.u/;Px.v//C tx.u/tx.v/g0.x/.G0.x/;G.x//:

Then g coincides with g0 on f0 < x < v.x/ < "g so that g can be extended to a C2

metric on P�: By construction of G and g; G D �gradgV: �
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8 Questions of Structural Stability

Let Ck
pos.�;T�/ denote the set of Ck vector fields F W � 7! T� leaving� positively

invariant.
Two elements F;G 2 Ck

pos.�;T�/ are said topologically equivalent if there
exists a homeomorphism h W � 7! � which takes orbits of F to orbits of G
preserving their orientation. A set � � Ck

pos.�;T�/ is said structurally stable if
all its elements are topologically equivalents.

Let � W � 7! P� be a smooth function. Assume that � verifies the assumption
of Theorem 3 and that F� has non degenerate equilibria. Let ��; rev denote the
convex set of vector fields having the form given by (the right hand side of) (1),
where for each x 2 �; L.x/ is irreducible and reversible with respect to �.x/: By
Theorem 3, Proposition 3 and Theorem 8 all the elements of ��; rev have the same
strict Lyapounov function V; hyperbolic equilibria (given by the critical points of V)
and are C1 close to �gradgV for some metric g:We may then wonder wether ��; rev
is structurally stable. The following construction shows that this is not the case.

8.1 Potential Games are not Structurally Stable

Here � stands for the two-dimensional simplex in R3: Let

Q� D f.y1; y2/ 2 R
2 W y1; y2 � 0; y1 C y2 � 1g

and | W R3 7! R2 be the projection defined by |.x1; x2; x3/ D .x1; x2/: Note that |
maps� homeomorphically onto Q�:

Let QW W R2 7! R be a smooth function. Assume that

(a) �r QW points inward Q� on @ Q�I
(b) The critical set crit. QW/ D fy 2 Q� W r QW.y/ D 0g consist of (finitely many) non

degenerate points,
(c) For all u 2 R

@ QW
@y1

.u; u/ D @ QW
@y2

.u; u/:

In particular, the diagonal D. Q�/ D f.y1; y2/ 2 Q� W y1 D y2g is positively
invariant under the dynamics

Py D �r QW.y/ (30)

(c) There is a saddle connection contained in D. Q�/; meaning that there are two
saddle points of QW s1; s2 2 D. Q�/ and some (hence every) point y 2�s1; s2Œ
which ˛ limit set under (30) is s1 and omega limit set is s2:
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It is not hard to construct such a map.
Let W W R3 7! R be defined by W D QW ı | :
Consider now the 3-strategies potential game associated to W: Payoffs are then

defined by

Ui.x/ D �@
QW
@xi

.x1; x2/; i D 1; 2 and U3.x/ D 0:

Using the notation of Sect. 6.1, record that F�ˇ D �Id C �ˇ where �ˇ is defined
by (23), and �rev.ˇ;U/ is the set of vector fields given by (1) with L.x/ irreducible
and reversible with respect to �ˇ.x/:

Proposition 7 For all ˇ > 0 sufficiently large, there exists F 2 �rev.ˇ;U/ (which
can be chosen C1 close to F�ˇ ) which is not equivalent to F�ˇ :

Proof of Proposition 7

By definition of Nash equilibria (see Sect. 6.1) and condition .a/ above, Nash
equilibria of U are fully mixed and coincide with critical points of QW W

crit. QW/ D |.NE.U//:

Lemma 7 For all " > 0 there exists ˇ0 > 0 such that for all ˇ � ˇ0 and F 2
�rev.ˇ;U/ there is a one to one map

p 2 crit. QW/ 7! pˇ 2 Eq.F/;

such that

(i) kp � |. pˇ/k � ";

(ii) The unstable (respectively stable) manifold of pˇ has dimension Ind. p; QW; /
(resp. 2 � Ind. p; QW/). In particular, s1ˇ and s2ˇ are saddle points.

(iii) p 2 D. Q�/ , |. pˇ/ 2 D. Q�/
(iv) Under the dynamics induced by F�ˇ ; the interval Œs1ˇ; s

2
ˇ� is invariant and for

some (hence all) q 2�s1ˇ; s2ˇŒ the alpha limit (respectively omega limit) set of q

equals s1ˇ (respectively s2ˇ).

Proof Assertions .i/ and .ii/ this follows from Propositions 5 and 6.
On |�1.D. Q�// D f.x1; x1; 1 � 2x1/g equilibria of F�ˇ are given by the implicit

equation T.log.x1/ � log.1 � 2x1// D U1.x1; x1/ where T D 1=ˇ: Solutions for
T D 0 coincide with |�1.D. Q�/ \ crit. QW//: For T > 0 and small enough, assertion
.iii/ then follows from the implicit function theorem.



148 M. Benaim

By condition .c/; @ QW
@x1

D @ QW
@x2

on D. Q�/: Thus U1.x/ D U2.x/ (hence F�ˇ;1.x/ D
F�ˇ;2.x// on |�1.D. Q�// proving invariance of Œs1ˇ; s

2
ˇ� � |�1.D. Q�//: Assertion .iv/

follows since, by .iii/; there are no equilibria in �s1ˇ; s
2
ˇŒ: �

We now construct F 2 �rev.ˇ;U/: Let L.x/ be the rate matrix defined for i ¤ j by

Lij.x/ D �ˇ;j.x/ if i; j 62 f1; 3g

L13.x/ D .1C a.x//�ˇ;3.x/ and L31.x/ D .1C a.x//�ˇ;1.x/

where a W � 7! RC is a smooth function to be defined below. Then Eq. (1) reads

Px1 D .x2�ˇ;1.x/� x1�ˇ;2.x//C .x3�ˇ;1.x/� x1�ˇ;3.x//.1C a.x//;

Px2 D .x1�ˇ;2.x/� x2�ˇ;1.x//C .x3�ˇ;2.x/� x2�ˇ;3.x//;

Px3 D � Px1 � Px2:

Thus, on x1 D x2;

Px1 � Px2 D Œx3�ˇ;1.x/ � x1�ˇ;3.x/�a.x/

D a.x/

Z.x/
.x3e

ˇU1.x/ � x1/:

The map x 7! x3eˇU1.x/ � x1 vanishes at points s1ˇ; s
2
ˇ and has a constant sign

over Œs1ˇ; s
2
ˇ� (for otherwise there would exists an equilibrium for F in �s1ˇ; s

2
ˇŒ

contradicting Lemma 7). Let p D .s1ˇ C s2ˇ/=2 and B� be the Euclidean open ball
with center p and radius �: Choose � small enough so that

(i) B� \ Œs1ˇ; s
2
ˇ� D�q1; q2Œ with s1ˇ < q1 < q2 < s2ˇ where < stands for the natural

ordering on Œs1ˇ; s
2
ˇ�:

(ii) x 7! x3�ˇ;1.x/� x1�ˇ;3.x/ has constant sign on B�:

Let x 7! a.x/ be such a D 0 on � n B�; a > 0 on B� and 0 � a � � on �: Then,
the alpha limit set of q1 equals s1ˇ; for both F and F�ˇ but since Px1 � Px2 doesn’t

vanish on B� the trajectory through q1 exits B� at a point ¤ q2 and, consequently,
the omega limit set of q1 for F is distinct from s2ˇ: This proves that F and F�ˇ are
not equivalent.
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8.2 Open Question

The preceding construction shows that �rev.ˇ;U/ is not structurally stable for an
arbitrary potential game but this might be the case for particular examples. Consider
for example the Gibbs model described in Remark 5. For U0 2 Rn and U D .Uij/

symmetric, let �rev.ˇ;U0;U/ be the set of C1 vector field given by (1) with L.x/
irreducible and reversible with respect to the Gibbs measure (14).

Question

For generic .U0;U/ and ˇ large enough, is �rev.ˇ;U0;U/ structurally stable ?

Appendix

Let L be an irreducible rate matrix and � 2 P� denote the invariant probability of L.
That is the unique solution (in �) of �L D 0: For all f ; g 2 R

n we let

h f ; gi D
X

i

figi; h f ; gi� D
X

i

figi�i and h f ; gi1=� D
X

i

figi
1

�i
:

The Dirichlet form of L is the map E W Rn 7! RC defined as

E. f / D �h f ;Lf i� D 1

2

X
i;j

. fi � fj/
2Lij�i:

By irreducibility, E. f / > 0 unless f is constant, and the spectral gap

� D supfE. f / W h f ; 1i� D 0; h f ; f i� D 1g

is positive. We let L� be the irreducible rate matrix defined by

L�ij D �jLji

�i
:

Note that L� admits � as invariant probability and that L� is the adjoint of L for
h; i�:

We let LT W T� 7! T� be defined by

LT h D hL:
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Finally recall that for all f 2 Rn f
�

stands for the vector defined by . f
�
/i D fi

�i
; i D

1 : : : n:

Lemma 8 For all u; v 2 T�

hLTu; vi1=� D hL�.
u

�
/;
v

�
/i�

In particular LT is invertible and LT is a definite negative operator for h; i 1
�

whenever L is reversible with respect to �:

Proof The first assertion follows from elementary algebra. For the second, note that
hLTu; ui1=� D �E. u

�
/: Thus, by irreducibility,

hLTu; ui1=� < 0

unless u D 0: �

Proof of Lemma 4

Given f 2 Rn we write f � 0 if fi � 0 for all i: We let 1 2 Rn denote the vector
which components are all equal to 1: For all t � 0 we let Pt D etL: Since L is a rate
matrix, .Pt/ is a Markov semigroup meaning that Ptf � 0 for all f 2 Rn with f � 0

and Pt1 D 1:

Lemma 9 Let I � R be an open interval and S W I 7! R a C2 function such that
S00.t/ � ˛ > 0: Let f 2 Rn be such that fi 2 I for all i: Then

d

dt
hS.Pt f /; 1i� jtD0 � �˛E. f /:

Proof For all u; v 2 I S.v/� S.u/� S0.u/.v � u/ � ˛=2.v � u/2: Hence for all i; j

S. fj/� S..Pt f /i/ � S0..Pt f /i/. fj � .Pt f /i/ � ˛=2. fj � .Pt f /i/
2:

Applying Pt to this inequality gives

Pt.Sf /i � S..Pt f /i/ � ˛=2Pt. fi � .Pt f /i/
2/ D ˛=2.Pt f 2i � .Pt f /2i /

Hence

Pt.Sf /� S..Pt f // � ˛=2Pt. f � .Pt f //2/ D ˛=2.Pt f 2 � .Pt f /2/:
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Therefore, using the fact that hPtg; 1i� D hg; 1i� leads to

hSf � S.Pt f /; 1i� � ˛h f 2 � .Pt f /2; 1i�:

Dividing by t and letting t ! 0 leads to the desired inequality. �

Let S W�0;1Œ7! R be a C2 function with positive second derivative. Let HS
� W

� 7! R be the map defined by

HS
�.x/ D

X
i

�iS.
xi

�i
/:

Corollary 4 For all x 2 �

hrHS
�.x/; xLi � �˛�Var�. f /

where fi D xi
�i

Proof For x 2 � let x.t/ D xetL; fi D xi
�i
; fi.t/ D xi.t/

�i
and P�t g D etL�

g: Note that
P�t ) is the adjoint of Pt with respect to h; i�:

For all g 2 Rn; hx.t/; gi D hx;Ptgi D h f ;Ptgi� D hP�t f ; gi� so that f .t/ D P�t f :
Hence by the preceding lemma applied to L� it follows that

hrHS
�.x/; xLi D d

dt
hS.P�t f /; 1i� jtD0 � �˛E. f / � �˛�Var�. f /

where ˛ D mini S00. xi
�i
/ > 0: �

We now prove the Lemma. Set S.t/ D R t
1 s.u/du: Then for all u 2 T�

hrHS
�.x/; ui D

X
i

uis.
xi

�i
/

and the results follows from Corollary 4.
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Wave Interaction with Floating Bodies
in a Stratified Multilayered Fluid

Filipe S. Cal, Gonçalo A.S. Dias, and Juha H. Videman

Abstract We derive from first principles the dynamical equations that govern
the interaction of small-amplitude water waves with freely floating obstacles in a
stratified multilayer fluid. Focusing on two-layer fluids, we present the equations
in an easily manageable matrix form, write down conditions for the stability of
equilibrium and, by limiting ourselves to time-harmonic motions, recast the problem
as a spectral boundary-value problem composed of a differential equation and
an algebraic system, coupled through boundary conditions. Proceeding with a
suitable variational and operator formulation, we present an elimination scheme
that simplifies the system to a linear spectral problem for a self-adjoint operator in
a Hilbert space. Under symmetry assumptions on the geometry of the fluid domain,
we derive a sufficient condition guaranteeing the existence of trapped modes in a
two-layer fluid channel.

1 Introduction

Given the recent growing interest in the interaction of water waves with freely
floating structures, cf. [7, 10–12, 16, 19, 20, 22, 23], it is natural to start thinking
beyond homogeneous constant-density fluids. Now, while the equations governing
the fluid and wave motion in stratified media are well-known (cf. [9]), the equations
that couple this motion with the motion of a freely floating body have been derived
for a homogeneous fluid only, see John [8] and Mei et al. [17].

As the simplest generalization of a constant-density fluid, we may consider a
fluid that lies in several homogeneous layers of uniform but distinct densities. This
situation is likely to occur, e.g., in fjords, channels, rivers and estuaries, being,
therefore, of great practical interest. Besides, it is often used as an approximation of
a continuously stratified fluid which itself does not maintain irrotational flow.

In this chapter, we set down the equations coupling the motion of a freely floating
structure to the wave motion in a multilayer fluid. The equations are derived from the
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fundamental principles of physics under the assumption that the motion is of small
amplitude near the equilibrium position. Moreover, conditions ensuring stability of
the equilibrium position are inferred from energy considerations. For expediency,
we establish the equations and stability conditions for a two-layer fluid and only
outline the generalization to multilayer fluids. We also express the equations in a
non-dimensional form and, considering time-harmonic motions, recast the problem
in the frequency domain as a coupled spectral boundary-value problem consisting of
a differential equation and an algebraic system. Following an argument set forth in
[22], we then proceed to rewrite the original quadratic eigenvalue problem as a linear
one and present, as an example, a trapping condition in a two-layer fluid channel.

Built upon the general framework laid down here, one can now investigate the
wave/structure interaction in multilayer fluids, see [3, 4] for numerous examples
of floating bodies supporting trapped modes. Some of the results presented in this
review paper have been published in a more concise form in [2].

This chapter is organised as follows. In Sect. 2 we introduce our notation and
derive the kinematic and dynamic (zeroth and first order) conditions on the wetted
surface of a freely floating body partially immersed in a two-layer fluid. We
restate the equations in a matrix form, for two-dimensional motions and for totally
submerged obstacles. In Sect. 3, we investigate the stability of equilibrium of a freely
floating body in a two-layer fluid and in Sect. 4 generalize the results to a stratified
multilayer fluid. In Sect. 5, we formulate the problem for a time-harmonic motion,
rephrase it in a variational and operator form, and present a scheme which reduces
the problem to a linear pencil B � !D. Making symmetry assumptions on the fluid
motion and on the movements of the freely-floating body, we are able to guarantee
that the self-adjoint operator B is positive definite and, consequently, rewrite the
problem in normal form M � �I. Finally, we derive a condition that guarantees the
existence of trapped modes in a two-layer fluid channel.

2 Equations of Motion for a Two-Layer Fluid

2.1 Equations of Motion in the Absence of Obstacles

Consider the mechanical system consisting of an incompressible inviscid heavy fluid
occupying two homogeneous immiscible layers, one on top of the other, and of a
rigid body floating freely in it, i.e. the only external force acting on the totally or
partially immersed body is gravity. Assume that the constant density of the lower
layer is greater than the one in the upper layer (	2 > 	1 > 0) and that the flow in
each layer is irrotational (cf. Lamb [14]).

The fluid domain extends to infinity in horizontal directions, but has finite depth,
being bounded from below by a horizontal rigid bottom and from above by a free
surface. A Cartesian coordinate system is chosen in such a way that when the fluid
is at rest the .x; y/�plane coincides with the free surface and the interface is a
horizontal surface at z D �h.
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Fig. 1 A freely floating body
in a two-layer fluid

θ1

θ2

Γ

Σ 1

Γ

1

2

Σ 2

The upper and lower fluid layers are denoted by ˘1 D R2 � .�h; 0/ and ˘2 D
R2 � .�hb;�h/, hb; h 2 RC (hb > h). Let B be a bounded connected open subset
of R3 representing a partially immersed rigid body (in its equilibrium state). Within
the upper and lower fluid layers, we introduce the open sets �1 D B \ ˘1 and
�2 D B \˘2 corresponding to the submerged parts of the body B and assume that
the fluid regions

˝1 D ˘1 n �1 ; ˝2 D ˘2 n �2
are Lipschitz domains so that the normal vector is defined almost everywhere on
@˝1 and @˝2. We also define (see Fig. 1) the unpierced parts of the free surface and
the interface (at their rest position) by 
1 and 
2, i.e.,


1 D ˚
.x; y; z/ 2 @˝1 W z D 0


; 
2 D ˚

.x; y; z/ 2 @˝1 \ @˝2 W z D �h

;

and the rigid bottom by


b D ˚
.x; y; z/ 2 @˝2 W z D �hb


:

The Eulerian description of the fluid motion is given by the vector field u. j/.x; y; z; t/,
that is, the fluid velocity in layer j at a fixed position .x; y; z/ 2 ˝j, j D 1; 2, at an
instant t > 0. Assuming the fluid to be inviscid and ignoring surface tension, the
equations of motion can be derived layer-wise from the basic conservation laws (see
Lamb [14] for details). The conservation of mass implies the continuity equation

.	j/t C r � .	j u. j// D 0 in ˝j ; j D 1; 2:
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Under the assumption of constant-density at each layer, the previous equation
reduces to

r � u. j/ D 0 in ˝j ; j D 1; 2: (1)

The conservation of linear momentum leads to the (layer-wise) Euler equations:

u. j/
t C u. j/ � ru. j/ D �rP. j/

	j
C g in ˝j ; j D 1; 2: (2)

Here P. j/ is the mechanical mean pressure at point .x; y; z/ in layer j at time t, and
g D .0; 0;�g/ is the gravitational force per unit volume (g denotes the acceleration
due to gravity).

Assuming that the motion stays irrotational at all times, the velocity vectors u. j/

can be expressed in simply connected domains ˝j as gradients of (scalar) velocity
potentials ˚.1/.x; y; z; t/ and ˚.2/.x; y; z; t/, i.e.

u. j/ D r˚. j/ in ˝j ; j D 1; 2: (3)

From (1) it then follows that the potentials ˚. j/ satisfy the Laplace equation in their
respective domains at every time instant t.

Next, assuming that the wave motion is of small amplitude, we may linearise the
equations of motion (see John [8] and Mei et al. [17]) and thus make the following
ansatz for the velocity potentials

˚. j/.x; y; z; t/ D � ˚
. j/
1 .x; y; z; t/C �2˚

. j/
2 .x; y; z; t/C : : : ; j D 1; 2 ;

where � > 0 is a small parameter. The first order velocity potentials ˚.1/
1 and ˚.2/

1 ,
the functions we are interested in, satisfy the Laplace equation in their domains, i.e.,

	j �˚
. j/
1 D 0 in ˝j ; j D 1; 2 :

We also assume that the function �.x; y; t/ which describes the vertical position of
the free surface at time t, can be expanded in powers of � as

�.x; y; t/ D �0.x; y/C � �1.x; y; t/C �2�2.x; y; t/C : : : :

Note that the free surface at its rest position, defined by equation z D �0.x; y/,
cannot depend on t. The kinematic boundary condition at the free surface requires
that

˚.1/
x �x C ˚.1/

y �y C �t D ˚.1/
z on z D �.x; y; t/ :
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Substituting the expansions of ˚.1/ and � into the previous equation, gives at the
zeroth order

�
�0
�

t
D 0

and at the first order

�
˚
.1/
1

�
x

�
�0
�

x C �
˚
.1/
1

�
y

�
�0
�

y C �
�1
�

t D �
˚
.1/
1

�
z (4)

on the free surface. From Eqs. (2) and (3) one derives the Bernoulli equation

˚
. j/
t C 1

2
jr˚. j/j2 C gz D �P. j/

	j
C Cj in ˝j ; j D 1; 2; (5)

where Cj is an arbitrary function of t. The last term on the left-hand side is the
hydrostatic contribution, whereas the rest is the hydrodynamic contribution to the
total pressure. Choosing C1 D P0

	1
, where P0 is the constant atmospheric pressure,

the Bernoulli equation (5) leads to the dynamic boundary condition on the free
surface

g �C ˚
.1/
t C 1

2

��
˚.1/

x

�2 C �
˚.1/

y

�2 C �
˚.1/

z

�2	 D 0 on z D �.x; y; t/ ;

Similarly, substituting the expansions of ˚.1/ and � into previous equation, we
obtain the zeroth order dynamic boundary condition

�0 D 0

and the first order dynamic boundary condition

g �1 C �
˚
.1/
1

�
t D 0 ; (6)

both valid on 
1. Thus, we can see that the free surface is horizontal in its rest
position and, eliminating �1 between (4) and (6), we find the classical linearised
kinematic/dynamic boundary condition

�
˚
.1/
1

�
tt C g

�
˚
.1/
1

�
z D 0 on 
1 :

On the interface between the two fluid layers (at its rest position), we have the
following linearised transmission conditions

	1

��
˚
.1/
1

�
tt

Cg
�
˚
.1/
1

�
z

	
D 	2

��
˚
.2/
1

�
tt

Cg
�
˚
.2/
1

�
z

	
and

�
˚
.1/
1

�
z

D �
˚
.2/
1

�
z

on 
2 :
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On the rigid bottom, we impose the Neumann boundary condition (no normal flow)

�
˚
.2/
1

�
n

D 0 on 
b :

Collecting the previous equations, we obtain the system (cf. Lamb [14])

�˚
.1/
1 D 0 in ˝1 (7)

�˚
.2/
1 D 0 in ˝2 (8)

�
˚
.1/
1

�
tt

C g
�
˚
.1/
1

�
z

D 0 on 
1 (9)

	1

��
˚
.1/
1

�
tt

C g
�
˚
.1/
1

�
z

	
D 	2

��
˚
.2/
1

�
tt

C g
�
˚
.2/
1

�
z

	
on 
2 (10)

�
˚
.1/
1

�
z D �

˚
.2/
1

�
z on 
2 (11)

�
˚
.2/
1

�
z

D 0 on 
b (12)

2.2 Boundary Condition on the Surface of the Floating Body

Let �1 and �2 be the wetted surfaces of the partially immersed rigid body B
belonging, at each instant of time t, to the upper layer and to the lower layer,
respectively, i.e.,

�j D f.x; y; z/ 2 ˘j W z D f .x; y; t/g ; j D 1; 2 ;

where f is a sufficiently smooth real-valued function satisfying the ansatz

f .x; y; t/ D f0.x; y/C �f1.x; y; t/C �2f2.x; y; t/C : : : : (13)

The equilibrium counterparts of �1 and �2 are defined by

˙1 D f.x; y; z/ W z D f0.x; y/I �h < z < 0g ;
˙2 D f.x; y; z/ W z D f0.x; y/I z < �hg :

Let X.t/ D .X.t/;Y.t/;Z.t// be the vector position of the centre of rotation
(coinciding with the centre of mass) of the body B at time instant t, expanded as

X.t/ D X0 C �X1.t/C �2X2.t/C : : : ; (14)

where X0 D .X0;Y0;Z0/ is the rest position of the centre of mass of B. Note that
for our purposes here any other choice of rotation centre would increase complexity
needlessly (see Mei et al. [17]). Moreover, let Nx D .Nx; Ny; Nz/ denote a time-dependent
coordinate system attached to the body and chosen so that Nx D x for any point in
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the body (or the fluid) when the system is at rest. Points in the coordinate systems
Ox;y;z and ONx;Ny;Nz are related, up to the first order, by

Nx D x � ��X1 C �1 � .x � X0/
�C O.�2/ ; (15)

where we have the angular position of the body denoted by �.t/ D ��1.t/C O.�/,
with ��1 D .�˛; �ˇ; ��/ denoting the angles of rotation of the body with respect
to the lines going through the centre of mass X0 parallel to the x,y and z-axis,
respectively, for order �.

Since Nz D f0.Nx; Ny/ when the system is at rest, expanding f0 in Taylor series with
respect to .x; y/, and using relations (15), from Eq. (13) we obtain at first order �

f1 D Z1 C ˛
�
y � Y0

� � ˇ
�
x � X0

�

� �
f0
�

x

�
X1 C ˇ

�
z � Z0

� � ��y � Y0
�	

� �
f0
�

y

�
Y1 C �

�
x � X0

� � ˛�z � Z0
�	
: (16)

Continuity of normal velocity requires that

˚. j/
x fx C˚. j/

y fy C ft D ˚. j/
z on �j ; j D 1; 2 : (17)

On substituting the expansions of ˚. j/ and f , we obtain at the first order

�
˚
. j/
1

�
x

�
f0
�

x
C �

˚
. j/
1

�
y

�
f0
�

y
C �

f1
�

t
D �

˚
. j/
1

�
z
; j D 1; 2 :

Recalling (16), we can write the linearised kinematic boundary condition at ˙j,
j=1,2, omitting the subindices of the first order velocity potentials, as

˚. j/
n D �

.X1/t C .�1/t � .x � X0/
� � n ; j D 1; 2 ; (18)

where n D .�.f0/x;�.f0/y; 1/ is the unit normal vector to ˙j pointing into B.
Alternatively (see Nazarov and Videman [22]), we can introduce a vector a 2 R6,
describing the translational displacements (components aj; j D 1; 2; 4) of the mass
centre of the body and the angular displacements (components aj; j D 3; 5; 6) of the
body about the axes passing through the centre of mass, by

a D �
X1;Y1; �;Z1; ˛; ˇ

�
; (19)

and define a matrix of rigid-body motions D.x/ 2 R3�6 by

D.x/ D

2
64
1 0 �y 0 0 z

0 1 x 0 �z 0

0 0 0 1 y �x

3
75 : (20)
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Consequently, the equations in (18) take the form

˚. j/
n D nTD.x � X0/ at on ˙j ; j D 1; 2 : (21)

Remark 1 The kinematic equation at the boundary of the rigid body can be
written locally without necessarily taking into consideration the entire body surface.
Considering a neighbourhood of a certain point x0 on the surface �j, where one
can define a local coordinate system .�1; �2; �/, with the � axis normal to the
surface at x0, pointing into the body, one can write the equation analog of (17)
in local coordinates (cf. Kuznetsov et al. [13], p. 9). This allows us to generalise
the treatment given in this work to surfaces that cannot be described globally as
z D f .x; y; t/, but only locally as the graph of a function of �1, �2, and t.

2.3 Translational Dynamics of the Floating Body

The equations governing the translational motion of a rigid body, totally or partially
submerged in an inviscid fluid (the only forces acting on the body’s surface are due
to the fluid pressure), and freely floating (buoyancy and gravity balance each other)
result from the Newton’s second law of motion or, equivalently, from the balance of
linear momentum. These equations can be written in the form

IBXtt D
2X

jD1

Z
�j

P. j/ n ds � IBg e3 ; (22)

where IB is the total mass of the body, X is the instantaneous position of the centre of
mass of B and n D .�fx;�fy; 1/ is the normal vector to �j pointing into B. Moreover,
P.1/ is the pressure acting on the surface of the body in the upper layer which,
according to the linearised Bernoulli equation, can be written as

P.1/ D �	1 g f � � 	1˚
.1/
t C O.�2/ : (23)

In the lower layer, the pressure exerted on the body is given by

P.2/ D 	1 g h � 	2 g .f C h/� � 	2˚.2/
t C O.�2/ : (24)

Substituting (23) and (24) into (22) and expanding X and f in �, results in

� IB.X1/tt D �
Z
�1

	1 g .f0 C �f1/ n ds C
Z
�2

.	1 g h � 	2 g .f0 C �f1 C h// n ds

� �

2X
jD1

	j

Z
�j

˚
. j/
t n ds � IBg e3 C O.�2/ ; (25)
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where the left hand side has no zeroth order terms, since the rest position X0 of the
centre of mass is constant in time. On the right hand side, we have both zeroth and
first order hydrostatic and hydrodynamic terms. All higher order terms are included
in O.�2/.

Selecting the vertical component, we obtain

�IB.Z1/tt D �	1 g
Z
#1

.f0 C �f1/ dxdy � .	2 � 	1/ g
Z
#2

.f0 C �f1 C h/ dxdy

� �

2X
jD1

	j

Z
�j

˚
. j/
t n3 ds � IBg C O.�2/ ; (26)

where #1 and #2 are the projections of the cross-sectional areas of the parts of the
body piercing the free surface and the interface, respectively, onto a horizontal plane,
at each instant in time.

The equilibrium counterparts of the #j are the �j. These �j are the cross-sectional
areas of the parts of the body piercing the free surface and the interface at the same
horizontal plane, when the body is at its rest position. Given that the measure of #1
differs from the measure of �1 by O.�/, and since f0 is of order O.�/ in the region
where #1 and �1 differ from each other (note that f0 D 0 at the boundary of �1), we
obtain

Z
#1

.f0 C �f1/ dxdy D
Z
�1

.f0 C �f1/ dxdy C O.�2/ :

A similar reasoning can be made for #2 and �2, with f0 C h D 0 at the boundary of
�2.

Expressing also �j in terms of its equilibrium counterpart˙j, j D 1; 2, plus higher
order terms in �, the vertical component of the linear momentum balance becomes

�IB.Z1/tt D �	1 g
Z
�1

.f0 C �f1/ dxdy � .	2 � 	1/ g
Z
�2

.f0 C �f1 C h/ dxdy

� �
2X

jD1
	j

Z
˙j

˚
. j/
t n3 ds � IBg C O.�2/ : (27)

From the zeroth order, writing f0 D � R 0f0 dz and f0Ch D � R �h
f0

dz, and defining
the momenta

I�j D
Z
�j

d x ; j D 1; 2 ;
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where�1 and�2 are the submerged parts of the body in its equilibrium state, in the
upper and lower layer, respectively, we obtain

IBg D 	1 g I�1 C 	2 g I�2 ; (28)

which is nothing but the Archimedes’ principle of flotation.
At the first order in �, the vertical component satisfies the equation

IB.Z1/tt D �
2X

jD1
	j

Z
˙j

˚
. j/
t n3 ds � 	1 g

Z
�1

f1 dxdy � .	2 � 	1/ g
Z
�2

f1 dxdy :

(29)

Now, f0 is constant at the boundary of �1, as well as at the boundary of �2, so that

Z
�j

.f0/x dxdy D
Z
�j

.f0/y dxdy D 0 ; j D 1; 2 :

Hence, substituting Eq. (16) into (29) gives

IB.Z1/tt D �
2X

jD1
	j

Z
˙j

˚
. j/
t n3 ds

� 	1 g
�
˛I�1y � ˇI�1x C Z1I

�1
� � .	2 � 	1/ g

�
˛I�2y � ˇI�2x C Z1I

�2
�
;

(30)

where

I�j D
Z
�j

dxdy ; I
�j
x D

Z
�j

�
x � X0

�
dxdy ; I

�j
y D

Z
�j

�
y � Y0

�
dxdy ; j D 1; 2 :

Let us next consider the x-component of the equation of motion (25)

�IB.X1/tt D �	1 g
Z
�1

.f0 C �f1/n1 ds �
Z
�2

�
	2 g .f0 C �f1 C h/� 	1 g h

�
n1 ds

� �

2X
jD1

	j

Z
�j

˚
. j/
t n1 ds C O.�2/ : (31)

Reasoning as above, we can replace �j by ˙j. Integrating by parts and observing
that f0 D 0 and f0 C h D 0 at the boundaries of �1 and �2, respectively, we get rid of
the hydrostatic terms and obtain, for the x-component,

�IB.X1/tt D ��
2X

jD1
	j

Z
˙j

˚
. j/
t n1 ds C O.�2/ : (32)
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Similarly, for the y-component

�IB.Y1/tt D ��
2X

jD1
	j

Z
˙j

˚
. j/
t n2 ds C O.�2/ : (33)

Note that at the zeroth order the previous two equations are trivially satisfied.
Collecting Eqs. (30), (32) and (33), the linearised form of the equation of

motion (22) is written as

IB.X1/tt D �
2X

jD1
	j

Z
˙j

˚
. j/
t n ds

�
�
	1 g

�
˛I�1y � ˇI�1x C Z1I

�1
�C .	2 � 	1/ g

�
˛I�2y � ˇI�2x C Z1I

�2
�	

e3 :

(34)

2.4 Rotational Dynamics of the Floating Body

The rotational motion of a rigid body is governed by an equation where the body’s
angular acceleration times its moments of inertia equal the resultant of the moment
of forces applied. In our case, the moments acting on the body arise only from the
fluid pressure because the body’s centre of mass is assumed to coincide with its
centre of rotation. Therefore,

I� tt D
2X

jD1

Z
�j

.x � X/ � P. j/ n ds ; (35)

with I being the inertia tensor defined through

I D

2
64

IB
yy C IB

zz �IB
xy �IB

xz

�IB
yx IB

xx C IB
zz �IB

yz

�IB
zx �IB

zy IB
xx C IB

yy

3
75

and � tt the angular acceleration. In the inertia tensor matrix we have

IB
xx D

Z
B
.x � X0/

2 dm ; IB
xy D

Z
B
.x � X0/.y � Y0/ dm ;

with dm D 	B.x/dxdydz denoting the mass element of the body, and 	B.x/ its
density distribution, similarly for IB

yy ; I
B
zz ; I

B
xz and IB

yz (see, e.g., Landau and Lifshitz
[15], Sect. 32). Note that, by definition, IB

x D IB
y D IB

z D 0.
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Let us derive from (35) the equations of equilibrium for the body at rest (zeroth
order equation in �) and the equations of motion for small-amplitude motions (first
order in �). Using expansions (14), (23) and (24), the zeroth order equation becomes

0 D �	1 g
Z
˙1

.x � X0/ � n f0 ds � g
Z
˙2

.x � X0/ � n
�
	2 .f0 C h/� 	1 h

�
ds ;

where n D � � .f0/x;�.f0/y; 1
�

is the normal vector to ˙j pointing into B. For the
x-component, it follows

0 D �	1 g
Z
�1

.y � Y0/ f0 dxdy � 	1 g
Z
�1

.f0 � Z0/ f0 .f0/y dxdy

�.	2 � 	1/ g
Z
�2

.y � Y0/ .f0 C h/ dxdy

�.	2 � 	1/ g
Z
�2

.f0 � Z0/ .f0 C h/ .f0/y dxdy : (36)

Since f0 vanishes at the boundary of �1 and f0 C h at the boundary of �2, the second
and the fourth terms integrate to zero. Therefore, defining

I
�j
x D

Z
�j

.x � X0/ dx ; I
�j
y D

Z
�j

.y � Y0/ dx ; j D 1; 2 ;

where the�j, j D 1; 2, denote the submerged parts of the body at rest in each of the

layers, and writing f0 D � R 0f0 dz and f0 C h D � R �h
f0

dz, Eq. (36) reads as

	1 g I�1y C 	2 g I�2y D 0 : (37)

For the y-component, a similar reasoning results in

	1 g I�1x C 	2 g I�2x D 0 : (38)

The zeroth order equation for the z-component is trivially satisfied.
Moving on to the next order in �, we first notice that the left-hand side of (35)

can be written as
h
.IB

yy C IB
zz/˛tt � IB

xyˇtt � IB
xz�tt

i
; (39)

h
.IB

zz C IB
xx/ˇtt � IB

yz�tt � IB
xy˛tt

i
; (40)

h
.IB

xx C IB
yy/�tt � IB

xz˛tt � IB
yzˇtt

i
: (41)
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Now, the right hand side of (35) can be divided into two parts. The first term
corresponds to the hydrodynamic torque and is given by

��
2X

jD1

Z
˙j

	j˚
. j/
t .x � X0/ � n ds C O.�2/ :

The other terms, representing the buoyancy torque, read as

�	1 g
Z
�1

f .x � X/ � n ds � g
Z
�2

�
	2 .f C h/� 	1 h

�
.x � X/ � n ds ;

where n D � � fx;�fy; 1
�
.

Let us look more closely at the buoyancy torque. Writing out the cross products
and recalling that f D �f1CO.�2/ at the boundary of �1 and that f Ch D �f1CO.�2/
at the boundary of �2, we see that the terms multiplied by fx or fy can be integrated in
x or in y and, thus, are O.�2/. Therefore, taking Eqs. (13) and (14) into account and
subtracting the buoyancy torque terms of order zero in �, yields for the x component

�� 	1 g
Z
�1

.f1.y � Y0/ � f0Y1/ dxdy

�� .	2 � 	1/ g
Z
�2

.f1.y � Y0/� .f0 C h/Y1/ dxdy C O.�2/ :

Introducing now the cross-section second-order moments, defined by

I
�j
xx D

Z
�j

.x � X0/
2 dxdy ; I

�j
xy D

Z
�j

.x � X0/.y � Y0/ dxdy ; j D 1; 2;

and similarly for I
�j
yy ; I

�j
zz ; I

�j
xz and I

�j
yz, substituting f1 from (16), writing f0 D � R 0f0 dz

and f0 C h D � R �h
f0

dz, and collecting the first order terms in �, yields for the x-
component

.IB
yy C IB

zz/˛tt � IB
xyˇtt � IB

xz�tt

D �
2X

jD1
	j

Z
˙j

˚
. j/
t

� � .z � Z0/n2 C .y � Y0/n3
�

ds

�	1 g
�
Z1 I�1y C ˛I�1yy � ˇI�1xy � � I�1x C ˛I�1z

�

�g
�
.	2 � 	1/

�
Z1 I�2y C ˛I�2yy � ˇI�2xy

�C 	2
��� I�2x C ˛I�2z

��
: (42)
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The corresponding equations for the y- and z-component read as

.IB
zz C IB

xx/ˇtt � IB
yz�tt � IB

xy˛tt

D �
2X

jD1
	j

Z
˙j

˚
. j/
t

�
.z � Z0/n1 � .x � X0/n3

�
ds

C	1 g
�
Z1 I�1x C ˛I�1xy � ˇI�1xx C � I�1y � ˇI�1z

�

Cg
�
.	2 � 	1/

�
Z1 I�2x C ˛I�2xy � ˇI�2xx

�C 	2
�
� I�2y � ˇI�2z

��
; (43)

and

.IB
xx C IB

yy/�tt � IB
xz˛tt � IB

yzˇtt

D �
2X

jD1
	j

Z
˙j

˚
. j/
t

�
.y � Y0/n1 � .x � X0/n2

�
ds : (44)

2.5 Equations of Motion in Matrix Form

We can now summarise the linear system of dynamic equations for floating bodies

Matt D �
2X

jD1
	j

Z
˙j

˚
. j/
t D.x � X0/

Tn ds � gKa ; (45)

where n 2 R3 is the unit normal vector to ˙j pointing into B and a 2 R6 is the
generalised vector, defined in (19), describing the translational displacements of
the centre of mass of the body (components aj; j D 1; 2; 4) as well as the angular
displacements about the axis through the centre of mass X0 (components aj; j D
3; 5; 6). Moreover, D 2 R3�6 is the matrix of rigid body displacements defined
in (20) and M 2 R6�6 is the mass matrix given by

M D
Z

B
D.x � X0/

TD.x � X0/ 	B.x/ dxdydz :

The mass matrix is a Gram matrix, thus, in particular, symmetric and positive
definite. Recalling that all first-order moments of inertia of B vanish in view of
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the definition of X0, we obtain

M D

2
66666666666666664

IB 0 0 0 0 0

0 IB 0 0 0 0

0 0 IB
xx C IB

yy 0 �IB
xz �IB

yz

0 0 0 IB 0 0

0 0 �IB
xz 0 IB

yy C IB
zz �IB

xy

0 0 �IB
yz 0 �IB

xy IB
xx C IB

zz

3
77777777777777775

: (46)

The buoyancy matrix K 2 R6�6 can be defined block-wise as

K D
"
O3 O3

O3 K0

#
; (47)

with O3 denoting the 3 � 3 null matrix and K0 2 R3�3 a matrix of the form

K0 D K� C K� ;

K� D 	1

Z
�1

d.x � X0/
Td.x � X0/ dxdy

C.	2 � 	1/

Z
�2

d.x � X0/
Td.x � X0/ dxdy;

K� D diag
˚
0; 	1I

�1
z C 	2I

�2
z ; 	1I

�1
z C 	2I

�2
z


;

where d.x/ D .1; y;�x/ and where we have used the zeroth order balance
equations (37) and (38). Note that the part K� of the buoyancy matrix is symmetric
and positive definite as a sum of two 3� 3 Gram matrices. Recalling the definitions
of the area moments, we can finally write the matrix K0 as

2
66666666666664

�
	1 I�1

C.	2 � 	1/ I�2

�  
	1 I�1y

C.	2 � 	1/ I�2y

! ��	1 I�1x

�.	2 � 	1/ I�2x

�

 
	1 I�1y

C.	2 � 	1/ I�2y

!  
	1 .I�1yy C I�1z /

C.	2 � 	1/ I�2yy C 	2 I�2z

!  
�	1 I�1xy

�.	2 � 	1/ I�2xy

!

��	1 I�1x

�.	2 � 	1/ I�2x

�  
�	1 I�1xy

�.	2 � 	1/ I�2xy

! �
	1 .I�1xx C I�1z /

C.	2 � 	1/ I�2xx C 	2 I�2z

�

3
77777777777775

:

(48)
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2.6 Two-Dimensional Motion

The two-dimensional motion, say in the xz-plane is described by the velocity
potentials ˚.1/.x; z; t/, in the upper layer, and ˚.2/.x; z; t/, in the lower layer, and
by three rigid-body motions. The zeroth order equations can be written as

IBg D 	1 g I�1 C 	2 g I�2 ; 	1 g I�1x C 	2 g I�2x D 0 ;

where IB denotes the total mass of the body, and

I�j D
Z
�j

dxdz ; I�j D
Z
�j

dx ; j D 1; 2 :

Above, �1 and �2 stand for the submerged parts of the body B (in its rest state) in
the upper and lower layer, and �1 and �2 are the segments of the free surface and
interface pierced by the body and the free surface, respectively.

It is easy to see that the first-order equations of motion read as

Matt D �
2X

jD1
	j

Z
˙j

˚
. j/
t D.x � X0; z � Z0/

Tn ds � gKa ; (49)

where ˙1 and ˙2 denote the wetted surfaces of the body in the upper and lower
layer, respectively, and n D .n1; n3/ is the vector normal to ˙j and pointing into
B. The vector a D .X1;Z1; ˇ/ represents the rigid-body motions (two translational
displacements and the rotation about the axis passing through the centre of mass and
perpendicular to the xz-plane) and D 2 R2�3 is a matrix defined by

D.x; z/ D
"
1 0 z
0 1 �x

#
: (50)

The mass matrix M 2 R3�3 is given by

M D

2
66664

IB 0 0

0 IB 0

0 0 IB
xx C IB

zz

3
77775 ;
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Fig. 2 A totally submerged
body Γ

1

2Γ

Σ 2

Σ 1Θ1

Θ2

and the buoyancy matrix K 2 R3�3 takes the form

K D

2
666666664

0 0 0

0

�
	1 I�1

C.	2 � 	1/ I�2

� ��	1 I�1x

�.	2 � 	1/ I�2x

�

0

��	1 I�1x

�.	2 � 	1/ I�2x

� �
	1 .I�1xx C I�1z /

C.	2 � 	1/ I�2xx C 	2 I�2z

�

3
777777775
:

2.7 Equations of Motion for a Totally Submerged Body

The contour of a totally submerged body can be defined by gluing the graphs of
two (or more) functions of the form f .x; y/, see Fig. 2 for a simple example. It is
straightforward to show that the equations of motions are the same as before except
for the part K0 of the buoyancy matrix, see (48), which now writes as

K0 D

2
666666666664

.	2 � 	1/ I�2 .	2 � 	1/ I�2y �.	2 � 	1/ I�2x

.	2 � 	1/ I�2y

 
.	2 � 	1/ I�2yy

C	1 I�1z C 	2 I�2z

!
�.	2 � 	1/ I�2xy

�.	2 � 	1/ I�2x �.	2 � 	1/ I�2xy

�
.	2 � 	1/ I�2xx

C	1 I�1z C 	2 I�2z

�

3
777777777775

:
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At the same time, we end up showing that all previous equations are valid for freely
floating bodies defined not only by a single graph z D f .x; y/ but by a union of
graphs (surfaces) of piecewise smooth functions.

3 Stability of Equilibrium

We have already seen that at the equilibrium position the body must satisfy the
Archimedes’ principle of flotation

IBg D 	1 g I�1 C 	2 g I�2 ;

that is, the upward buoyancy force acting on the body equals the weight of the
displaced fluid. Defining Wj D 	j g I�j as the weight of the displaced fluid in layer j
and letting

Xj
F D .I�j/�1

Z
�j

x dx ; j D 1; 2 ;

be the centres of buoyancy of the parts of the body submerged in the upper layer
.j D 1/ and the lower layer .j D 2/, we define the centre of buoyancy of the entire
submerged part of the body by

XF D W1X1
F C W2X2

F

W1 C W2

:

Thus, the balance equations (37) and (38) can be written as

XF � X0 D 0 ; YF � Y0 D 0 : (51)

These equations confirm that, in the equilibrium position, the centre of buoyancy of
the submerged part of the body must lie on the same vertical line as the centre of
mass of the entire body.

Let us now analyse the stability of equilibrium. The kinetic energy of the coupled
system is given by

T D
2X

jD1

Z
˝j

	j
1

2
jr˚. j/j2 dx C 1

2
aT

t Mat

and its potential energy by

V D 1

2
	1g

Z

1

�2ds C 1

2
.	2 � 	1/g

Z

2

�2ds C 1

2
g aTKa ;
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where �.x; y; t/ and �.x; y; t/ describe the vertical positions of the free surface and
the interface. The integrals over the free surface 
1 and the interface 
2 correspond
to the potential energy of the fluid and the term defined by the buoyancy matrix K
to the potential energy of the body.

The stability analysis consists in studying the properties of the Hessian of the
potential energy in the equilibrium configuration of the system. Considering the
potential energy as a function of �; � and a, we can guarantee stability if the Hessian
is positive semi-definite. The Hessian matrix is an 8 � 8 block-diagonal matrix H
such that

det H D det Hfluid det K D det Hfluid detO3 det K0 D 0 ;

where the Hessian of the fluid parcel is given by

Hfluid D g diag f	1meas.
1/; .	2 � 	1/meas.
2/g :

Hence, if the matrices Hfluid and K0 are positive definite, the system is stable. The
first condition requires that 	1 > 0 and 	2 > 	1, which translates to gravitational
stability. The second condition corresponds to fluctuation stability. Recall that the
first three components of the vector a (horizontal translations and rotation about the
vertical axis) do not influence buoyancy nor potential energy.

Recalling the form of the floating matrix, cf. (47) and (48), we readily obtain

1

2
g aTKa D 1

2
g
h
Z1 ˛ ˇ

i
K0
h
Z1 ˛ ˇ

iT

D 	1
�
˛2I�1yy � 2˛ˇI�1xy C ˇ2I�1xx

�C .	2 � 	1/
�
˛2I�2yy � 2˛ˇI�2xy C ˇ2I�2xx

�

C.˛2 C ˇ2/
�
	1 I�1z C 	2 I�2z

�

C	1I�1
 

Z1 � ˇI�1x � ˛I�1y

I�1

!2
C .	2 � 	1/I

�2

 
Z1 � ˇI�2x � ˛I�2y

I�2

!2

�	1
�
˛I�1y � ˇI�1x

�2
I�1

� .	2 � 	1/

�
˛I�2y � ˇI�2x

�2
I�2

:

Note that the matrix K0 becomes singular if the body crosses neither the free surface
nor the interface (see Eq. (48)). Hence, assuming that at least one of the surfaces is
pierced, the matrix K0 is positive definite if

	1
�
˛2I�1yy � 2˛ˇI�1xy C ˇ2I�1xx

�C .	2 � 	1/
�
˛2I�2yy � 2˛ˇI�2xy C ˇ2I�2xx

�

C .˛2 C ˇ2/
�
	1 I�1z C 	2 I�2z

�

� 	1

�
˛I�1y � ˇI�1x

�2
I�1

� .	2 � 	1/

�
˛I�2y � ˇI�2x

�2
I�2

> 0 ; (52)
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for all .˛; ˇ/ 2 R2nf.0; 0/g, then the matrix K0. Now, let us define

�
Xj

A;Y
j
A

	
D .I�j/�1

 Z
�j

x dxdy;
Z
�j

y dxdy

!
; j D 1; 2 ;

and introduce second order moments of inertia of �j, with respect to their area
centres, by

QI�j
xx D

Z
�j

.x�Xj
A/
2dxdy ; QI�j

yy D
Z
�j

.y�Yj
A/
2dxdy ; QI�j

xy D
Z
�j

.x�Xj
A/.y�Yj

A/ dxdy :

Given that

I
�j
xx �

�
I
�j
x

	2
I�j

D QI�j
xx ; I

�j
yy �

�
I
�j
y

	2
I�j

D QI�j
yy ; I

�j
xy � I

�j
x I

�j
y

I�j
D QI�j

xy;

condition (52) can be written as

	1
�
˛2QI�1yy C ˇ2QI�1xx � 2˛ˇQI�1xy

�C .	2 � 	1/
�
˛2QI�2yy C ˇ2QI�2xx � 2˛ˇQI�2xy

�

C .˛2 C ˇ2/
�
	1 I�1z C 	2 I�2z

�
> 0 :

This inequality is valid if and only if it holds for .˛; ˇ/ D .cos �; sin �/ 8� 2 Œ0; �Œ,
i.e.

	1
�
cos2 � QI�1yy C sin2 � QI�1xx � sin.2�/ QI�1xy

�

C .	2 � 	1/
�
cos2 � QI�2yy C sin2 � QI�2xx � sin.2�/ QI�2xy

�

C 	1 I�1z C 	2 I�2z > 0 8� 2 Œ0; �Œ :

Defining a second moment of inertia with respect to a horizontal line rotated
counterclockwise by an angle � relative to the x-axis and passing through the area
centre of �j by

QI�j

�� D
Z
�j

�
�.x � Xj

A/ sin � C .y � Yj
A/ cos �

	2
dxdy ;

the sufficient condition for the matrix K0 to be positive definite becomes

	1 QI�1�� C .	2 � 	1/ QI�2�� C 	1 I�1z C 	2 I�2z > 0 ; (53)
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or, equivalently,

	1

�QI�1�� � QI�2�� C I�1.Z1F � Z0/
	

C 	2

�QI�2�� C I�2.Z2F � Z0/
	
> 0 8� 2 Œ0; 2�Œ :

Finally, in view of Archimedes’ principle, the stability condition (53) takes the form

Z0 � ZF <
	1 QI�1�� C .	2 � 	1/ QI�2��

IB
8� 2 Œ0; �Œ : (54)

This condition generalises the classical condition of stability of equilibrium (see
Euler [5], John [8]) to two-layer fluids. It guarantees in particular that if the centre of
buoyancy of the body is below its centre of mass, i.e. Z0 > ZF , then the configuration
is stable if the distance between the two centres is small enough or one of the area

moments QI�j

�� large enough.
In the two-dimensional case, the sufficient condition (53) simplifies to

	1 QI�1xx C .	2 � 	1/ QI�2xx C 	1 I�1z C 	2 I�2z > 0 : (55)

4 Stratified Fluid

The generalization to the multilayer n > 2 case is quite straightforward. The
Archimedes’ principle of flotation becomes

IBg D
nX

jD1
	j g I�j :

Defining Wj D 	j g I�j as the weight of the displaced fluid in layer j and letting

Xj
F D .I�j/�1

Z
�j

x dx ; j D 1; : : : ; n ;

be the centre of buoyancy of the part of the body submerged in the jth layer, we
define the coordinates of the centre of buoyancy of the entire body by the weighted
average of these centres,

XF D
Pn

jD1 WjX
j
FPn

jD1 Wj
:
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The balance equations for the x- and y-component are now

nX
jD1

	j g I
�j
y D 0 and

nX
jD1

	j g I
�j
x D 0 :

Using the definition of the centre of buoyancy of the entire body, the above balance
equations reduce to

XF � X0 D 0 and YF � Y0 D 0 :

The linear system of dynamic equations for a body floating in n layers is

Matt D �
nX

jD1
	j

Z
˙j

˚
. j/
t D.x � X0/

Tn ds � gKa ;

where the only difference with respect to the case n D 2 case lies in the new matrix
K0 D K� C K�, for which we define

K� D
nX

jD1
.	j � 	j�1/

Z
�j

d.x � X0/
Td.x � X0/ dxdy ;

K� D diag
˚
0;

nX
jD1

	jI
�j
z ;

nX
jD1

	jI
�j
z g ;

and where 	0 D 0, which means that the air above the free surface exerts negligible
pressure on the fluid layers and the floating body below.

Concerning the stability of the equilibrium, matrix K0 is positive definite if

nX
jD1
.	j � 	j�1/ QI�j

�� C
nX

jD1
	j I

�j
z > 0 ;

with the obvious definitions. Equivalently,

nX
jD1
.	j � 	j�1/ QI�j

�� C
nX

jD1
	j I�j.Zj

F � Z0/ > 0 8� 2 Œ0; �Œ ;

or, in view of Archimedes’ principle,

Z0 � ZF <

Pn
jD1.	j � 	j�1/ QI�j

��

IB
8� 2 Œ0; �Œ :
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5 Time-Harmonic Motion

Assuming that the motion of the coupled system is time harmonic with frequency
!, we may express the (first order) velocity potentials ˚. j/, j D 1; 2, and the
displacement vector a as

.˚. j/.x; y; z; t/; a/ D Re
�
e�i!t.'. j/.x; y; z/;˛/

�
; j D 1; 2

and write Laplace equations (7)–(8), kinematic/dynamic boundary condition on the
free surface (9), linearised transmission conditions on the interface (10)–(11), Neu-
mann boundary conditions on the bottom (12), kinematic boundary conditions (21)
and dynamic boundary conditions (45) on the surface of the floating body as the
following spectral boundary-value problem for the eigenpair

�
.'.1/; '.2/;˛/; !

�

	j �'
. j/ D 0 in ˝j ; j D 1; 2 ; (56)

'.1/z D g�1!2'.1/ on 
1 ; (57)

	1
�
'.1/z � g�1!2'.1/

� D 	2
�
'.2/z � g�1!2'.2/

�
and '.1/z D '.2/z on 
2 ;

(58)

'.2/n D 0 on 
b ; (59)

'. j/
n D �i!nTD.x � X0/˛ on ˙j ; j D 1; 2 ; (60)

!2M˛ D �i!
2X

jD1
	j

Z
˙j

'. j/D.x � X0/
Tn ds C gK˛ ; (61)

with the composite eigenvector .'.1/; '.2/;˛/ consisting of two scalar functions '.1/

and '.2/, and a number vector ˛.
Problem (56)–(61) should be complemented with suitable radiation conditions

at infinity which we omit here since we do not wish to limit neither the fluid
domain nor the type of solutions satisfying the equations (see Kuznetsov et al.
[13] for a discussion on radiation conditions). However, since we are ultimately
interested in studying solutions with finite energy, all results that follow are based
upon the assumption that problem (56)–(61) admits a solution .'.1/; '.2/;˛/ 2
H1.˝1/ � H1.˝2/ � C6.

Remark 2 Equations (56)–(61) have been written for a single freely floating body
although it is easy to consider the multi-body case. In fact, one only needs to
couple the fluid motion .in both layers/ with every floating structure via boundary
conditions of the form (60) and consider, for each body, an equation of motion such
as (61). Essentially, this just increases the dimension of the algebraic part of the
system of Eqs. (56)–(61).
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It is now possible to rewrite Eqs. (56)–(61) in a dimensionless form. For that we
have to redefine coordinates and unknowns through the following transformations:

Qx D x
d
; Q'.Qx/ D '.x/p

d3g
; Q̨ D G

˛

d
; (62)

using for characteristic length the depth of the lower fluid layer d D hb � h, and
defining the matrix G D diagf1; 1; d; 1; d; dg, cf. [12]. In this regard, the domains
are transformed from their original description to this new metric with respect to
d, thus being denoted by Q̋ j, Q
j, Q
b, and Q̇ j. Furthermore, the new nabla operator
is given by Qr D .@Qx; @Qy; @Qz/; the new normal vector to Q̇ j is denoted by Qn; the
propagation frequency is now Q! D !

p
d=g, making the new spectral parameter Q!2.

Finally, the quantities represented by matrices in Eqs. (56)–(61) become

QD0 D D0G
�1; QM D 	�12 d�3G�1MG�1; QK D 	�12 d�2G�1KG�1 ; (63)

where G�1 is the inverse of G defined above. Furthermore, we will reparameterize
the masses by dividing all densities by 	2, thus defining 	 D 	1=	2 and Q	B D 	B=	2.
These definitions transform (56)–(61) into the following non-dimensional spectral-
value problem:

	2�j Q� Q'. j/ D 0 in Q̋ j ; j D 1; 2 ; (64)

Q'.1/Qz D Q!2 Q'.1/ on Q
1 ; (65)

	
� Q'.1/Qz � Q!2 Q'.1/� D � Q'.2/Qz � Q!2 Q'.2/� and Q'.1/Qz D Q'.2/Qz on Q
2 ; (66)

Q'.2/Qn D 0 on Q
b ; (67)

Q'. j/
Qn D �i Q! QnT QD.Qx � QX0/ Q̨ on Q̇ j ; j D 1; 2 ; (68)

Q!2 QM Q̨ D �i Q!
2X

jD1
	2�j

Z
Q̇j

Q'. j/ QD.Qx � QX0/
T Qn dQs C QK Q̨ ; (69)

where we have set 	 D 	1=	2. The following analysis is based on the non-
dimensional description even though the tildes will not appear anymore.

5.1 Variational and Operator Formulation

Let us derive a variational formulation for problem (56)–(61) (see Nazarov and
Videman [21, 22] for similar computations). We start by multiplying the Laplace
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equations by test functions  . j/ 2 C1.˝j/, where C1.˝j/ denotes the set of
restritions to˝j of functions in C1c .R3/. Integrating by parts and using the boundary
condition (57) on the free surface, the boundary condition (59) on the bottom, the
transmission conditions at the interface (58), and the kinematic boundary condition
on the wetted surface of the body, we obtain

	

Z
˝1

r'.1/ � r .1/ dx D 	!2
Z

1

'.1/  .1/ dxdy � i!	
Z
˙1

nTD.x � X0/˛ .1/ ds

� 	
!2

.1 � 	/

Z

2

�
'.2/ � 	'.1/

�
 .1/ dxdy ;

Z
˝2

r'.2/ � r .2/ dx D �i!
Z
˙2

nTD.x � X0/˛ .2/ ds

C !2

.1 � 	/

Z

2

�
'.2/ � 	'.1/

�
 .2/ dxdy :

Summing the previous equations, gives

2X
jD1

	2�j
�r'.j/;r .j/�

˝j
C

2X
jD1

i!	2�j
�
nTD.x � X0/˛;  

.j/
�
˙j

D !2
�
	
�
'.1/;  .1/

�

1

C 1

1 � 	
�
'.2/ � 	 '.1/;  .2/ � 	  .1/�


2

�
(70)

where .�; �/˝j , .�; �/˙j and .�; �/
j denote the usual scalar products in
�
L2.˝j/

�3
, L2.˙j/

and L2.
j/, respectively. On the other hand, taking the (complex) inner product
between Eq. (61) and a vector ˇ 2 C6, results in

.K˛;ˇ/C6 �
2X

jD1
i!	2�j

�
'. j/;nTD.x � X0/ˇ

�
˙j

D !2.M˛;ˇ/C6 : (71)

The variational formulation for problem (56)–(61) thus consists in finding a non-
trivial .'.1/; '.2/;˛/ 2 H1.˝1/ � H1.˝2/ � C

6 and ! 2 C, such that Eqs. (70)
and (71) are satisfied for all . 1;  2;ˇ/ 2 H1.˝1/ � H1.˝2/ � C

6.

Definition 1 A non-trivial solution .'.1/; '.2/;˛/ 2 H1.˝1/ � H1.˝2/ � C6 of
problem (70)–(71) is called a trapped mode; the corresponding value of! is referred
to as a trapping frequency.

Choosing ˇ D ˛ in (71) and  D ' in (70), proves the following result.
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Proposition 1 (Equipartition of Energy) Let .'.1/; '.2/;˛/ 2 H1.˝1/�H1.˝2/�
C6 be a solution to problem (70)–(71). Then the following equality holds

	kr'.1/k2L2.˝1/ C kr'.2/k2L2.˝2/ C !2 .˛;M˛/
C6

D !2
�
	k'.1/k2L2.
1/ C 1

1 � 	
k'.2/ � 	 '.1/k2L2.
 2/

�
C .˛;K˛/

C6 :

where the left-hand side represents the kinetic energy and the right-hand side the
potential energy of the coupled system.

Let H be the Hilbert space composed of elements ' D .'.1/; '.2// 2 H1.˝1/ �
H1.˝2/ and equipped with the scalar product

h'; i D
2X

jD1
	2�j

�r'. j/;r . j/
�
˝j

C
2X

jD1
	2�j

�
'. j/;  . j/

�

j
:

and the associated norm k�k D h�; �i 12 . We introduce linear operators A, T by

hA'; i D 	
�r'.1/;r .1/�

˝1
C �r'.2/;r .2/�

˝2
8 ';  2 H ;

hT'; i D 	
�
'.1/;  .1/

�

1

C 1

1 � 	

�
'.2/ � 	'.1/;  .2/ � 	 .1/

�

2

8 ';  2 H :

The operators A W H ! H and T W H ! H are positive, continuous and self-adjoint.
We also define the operator S W H ! C6 through

h˛;S i D
�

˛; 	

Z
˙1

D.x � X0/
Tn .1/ ds C

Z
˙2

D.x � X0/
Tn .2/ ds

�
C6

;

for all ˛ 2 C6;  2 H. Note that the operator S is compact given that the boundary
of the floating body is a compact set and, consequently, H1.˝j/ is compactly
embedded into L2.˙j/.

Problem (70)–(71) can now be written as

hA'; i C i!hS�˛;  i D !2hT'; i ; (72)

.K˛;ˇ/C6 � i!hˇ;S'i D !2.M˛;ˇ/C6 ; (73)

for all . ;ˇ/ 2 H � C6, where S� is the adjoint operator of S, defined through

hS�˛;  i D 	
�
nTD.x � X0/˛;  

.1/
�
˙1

C �
nTD.x � X0/˛;  

.2/
�
˙2
;

for all ˛ 2 C6;  2 H.
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5.2 Reduction Scheme

Unlike the trapping of water waves by fixed obstacles, the interaction of time-
harmonic waves with freely floating objects gives rise to a quadratic operator
pencil. Following Nazarov and Videman [22], we present a scheme that reduces the
quadratic pencil to a linear spectral problem (linear pencil) for a self-adjoint operator
in a Hilbert space. For any ! ¤ 0, problem (72)–(73) can formally be reduced to a

linear problem by defining � D !T
1
2 ', � D !M˛ and X D .'; �;˛;�/. This results

in the system

2
6664

A 0 0 0

0 I 0 0
0 0 K 0

0 0 0 N

3
7775X D !

2
66664

0 T
1
2 �iS� 0

T
1
2 0 0 0

iS 0 0 I6

0 0 I6 0

3
77775X ; (74)

where T
1
2 , the operator square root of T, is a continuous self-adjoint operator in H,

N D M�1 is a symmetric and positive definite matrix, I is the identity operator in H
and I6 is the 6 � 6 identity matrix. Note that the spectral parameter ! appears only
linearly.

Remark 3 If ..'; �;˛;�/; !/ is a solution to (74) then ..';��;�˛;�/;�!/ solves
the same problem. It thus suffices to consider positive values of !.

The matrix on the left-hand side in (74) is necessarily singular because the
buoyancy matrix K is singular. To deal with the singular part of the matrix K, we
need to rewrite the previous system (74) in an equivalent form where the first three
components of ˛ are eliminated, removing the rigid body movements not influenced
by buoyancy. To this end, we decompose the vectors ˛ and � as

˛ D
�

˛ı
˛�

�
; � D

�
�ı
��

�
; ˛ı;˛�;�ı;�� 2 C

3 ;

where ˛ı D .˛1; ˛2; ˛3/, ˛� D .˛4; ˛5; ˛6/, similarly for �ı;��, and write the
matrix N D M�1 block-wise as

N D
"

Nıı Nı�
N�ı N��

#
;

where all blocks are 3�3 matrices. Moreover, we introduce the operators Sı W H !
C3 and S� W H ! C3 as compositions of projections from C6 into C3 and S, that
is, Sı (S�) returns the first (last) three components of the image of S, respectively.
Now, consider system (74) and write the first three lines of the third row as

0 D ! .iSı' C �ı/ : (75)
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Decomposing the fourth row of system (74) as

Nıı�ı C Nı��� D !˛ı ;

N�ı�ı C N���� D !˛� ;

and using (75), we obtain

S�ıNııSı' C iS�ıNı��� D i!S�ı˛ı ;

�iN�ıSı' C N���� D !˛� :

Defining a truncated eigenvector X� D .'; �; ˛�; ��/ 2 H � H � C3 � C3 and
considering the previous equalities, system (74) can be written as

BX� D !DX� ; (76)

where the matrix operators B and D take the form

B D

2
6664

A C S�ıNııSı 0 0 iS�ıNı�
0 I 0 0

0 0 K0 0

�iN�ıSı 0 0 N��

3
7775 ; D D

2
66664

0 T
1
2 �iS�� 0

T
1
2 0 0 0

iS� 0 0 I3

0 0 I3 0

3
77775 :

The operators B and D are both continuous and self-adjoint, and the operator B is
positive because

hBX�; X�i D hA'; 'i C h�; �i C �
K0˛�; ˛�

�
C3

C
 

N
�iSı'

��

	
;
�iSı'

��

	!

C6

� hA'; 'i C k�k2H C �
K0˛�; ˛�

�
C3

C CN
�kSı'k2

C3
C k��k2C3

�
;

where CN denote some positive constant due to the positive definiteness of N.
Recalling that K0 is positive definite, we conclude that the operator B is positive.

Having determined a solution ..'; �; ˛�; ��/; !/ to the linear operator
pencil (76), we conclude that ..'; �; ˛; �/; !/ solves problem (74), with

˛ D
 
!�1.�iNııSı' C Nı���/

˛�

!
; � D

 
�iSı'

��

!
:

Moreover, ..';˛/; !/ is a non-trivial solution to problem (72)–(73).
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5.3 Condition for the Existence of Trapped Modes

Assuming now that the coupled motion of the system takes place in an open channel
bounded laterally by rigid walls. To this end, we redefine the upper and lower fluid
layers as

˘1 D f.x; y; z/ 2 R
3 W x 2 .�1;1/; y 2 .�l; l/; z 2 .�h; 0/g

˘2 D f.x; y; z/ 2 R
3 W x 2 .�1;1/; y 2 .�l; l/; z 2 .�hb;�h/g

where l denotes half of the (non-dimensionalised) distance between the vertical
walls, and h and hb denote the (non-dimensionalised) depths.

Using the ideas of Evans et al. [6], we assume that the body is symmetric with
respect to the centreplane fy D 0g and impose symmetry conditions on the fluid
motion and rigid body movements. We introduce the following subspace of anti-
symmetric functions

H0 D ˚
' 2 H W '. j/.x;�y; z/ D �'. j/.x; y; z/ ; j D 1; 2



and restrict the body movements to swaying, rolling and yawing, i.e.,

˛1 D ˛4 D ˛6 D 0 :

In this way we create a new spectral problem whose continuous spectrum is the set
.�1;�!$� [ Œ!$;1/, where !$ is a positive cut-off value that leaves room for a
discrete non-empty spectrum belonging to the interval .�!$; !$/, cf. [18]. At the
same time, the positive operator B in Eq. (76) becomes positive definite and thus,
there is a self-adjoint, positive definite operator B

1
2 , which is the positive square root

of B. Defining Y D B
1
2 X� and � D 1=!, the spectral problem (76) can be written

as

MY D �Y ; (77)

with the new self-adjoint operator M D B�
1
2 DB�

1
2 . The continuous spectrum of the

operator M is Œ��$; 0/[ .0; �$�, with the obvious identification �$ D 1=!$. Since
� D 0 is an eigenvalue of infinite multiplicity, it belongs to the essential spectrum
Œ��$; �$� of the operator M, but does not influence the spectrum of the original
problem. For the discrete spectrum of M, there are two possibilities: either the norm
of the operator concides with �$, so that the discrete spectrum is empty, or the norm
is greater then �$, and the discrete spectrum of M is non-empty since the norm
belongs to its spectrum. Hence, if

kMk D sup
Y¤0

jhMY; Yij
hY; Yi > �$ (78)
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then the discrete spectrum of the operator M contains at least one eigenvalue � >

�$. By the definition of the square root of B, inequality (78) can be written as

sup
X

�
¤0

jhDX�; X�ij
hBX�; X�i >

1

!$
: (79)

This is a sufficient condition for the existence of a trapped mode. Since, in general,
there is no hope to calculate the norm of the operator M, we will rewrite the
condition choosing a particular test function.

Consider a function '� 2 H0 defined by '�.x/ D e��jxj�$.y; z/, where �$ D
.�

.1/

$ ; �
.2/

$ / is the non-trivial solution of the problem in the absence of bodies

corresponding to the cutoff value �$ D !2$ , defined by (see Cal et al. [4])

�
.1/
$ .y; z/ D sin

��
2l

y
	 

e
�
2l .zCh/ C

�
2l � �$
�
2l C �$

e
�
l h e� �

2l .zCh/

!
;

�
.2/

$ .y; z/ D sin
��
2l

y
	 

1 �
�
2l � �$
�
2l C �$

e
�
l h

!
csch

��
2l

	
cosh

��
2
.z C hb/

	
(80)

and � � 1 is a small positive parameter. Defining the following test function

X� D .'�; ��; 0; 0/ ; �� D !$T
1
2 '� ;

we obtain

hBX�; X�i D h'�; '�i C h��; ��i C �
NııSı�$; Sı�$

�
C3
:

Computing

˝
DX�; X�

˛ D 2Re
˝
T
1
2 ��; '�

˛

and observing that
˝
T'�; '�

˛ D O.��1/, cf. Cal et al. [1], we see that

˝
DX�; X�

˛ D 2 !$
˝
T'�; '�

˛

is positive for sufficiently small � > 0. Hence, the sufficient condition (79) is
satisfied if

!$ hDX�; X�i � hBX�; X�i > 0 : (81)



Wave Interaction with Floating Bodies in a Stratified Multilayer Fluid 183

Recalling the identity (see Cal et al. [1])

	
�r'.1/� ;r'.1/� �˘1 C �r'.2/� ;r'.2/� �˘2 D !2$ 	

�
'.1/� ; '

.1/
�

�
� 1

C !2$
1

1 � 	

�
'.2/� � 	'.1/� ; 	'.2/� � 	'.1/�

�
� 2

C O.�/ ;

where

�1 D ˚
.x; y; z/ 2 @˘1 W z D 0


; �2 D ˚

.x; y; z/ 2 @˘2 W z D �h

;

and noting that e��jxj D 1C O.�/ in any compact set, yields the following equality

!$ hDX�; X�i � hBX�; X�i D 	
�r�.1/$ ;r�.1/$ ��1 C �r�.2/$ ;r�.2/$ ��2

� !2$	
�
�
.1/
$ ; �

.1/
$

�
�1

� !2$
1

1 � 	
�
�
.2/
$ � 	�

.1/
$ ; �

.2/
$ � 	�

.1/
$

�
�2

� �
NııSı�$; Sı�$

�
C3

C O.�/ :

Therefore, by choosing a trial function X� , with small enough � > 0, we have come
up with the following sufficient condition for the existence of a trapped mode for
problem (72)–(73) (subject to the symmetry assumptions)

	
�r�.1/$ ;r�.1/$ ��1 C �r�.2/$ ;r�.2/$ ��2 � !2$	

�
�
.1/

$ ; �
.1/

$

�
�1

� !2$

1 � 	
�
�
.2/

$ � 	�.1/$ ; �.2/$ � 	�
.1/

$

�
�2

� �
NııSı�$; Sı�$

�
C3
> 0 : (82)

We have proved the following statement

Theorem 1 Assume that the obstacle is symmetric with respect to the centreplane
fy D 0g of the channel. If the inequality (82) holds, then problem (70)–(71) admits a
trapped mode .'.1/; '.2/;˛/ 2 H1.˝1/� H1.˝2/�C6 corresponding to a trapping
frequency ! < !$.

6 Conclusions

One of the main challenges in addressing the problem of wave trapping by freely
floating obstacles in its full generality is the singular structure of the floating matrix,
recall that the surge, sway and yaw motions are all unaffected by the buoyancy
forces. Besides, if the body is totally submerged it can only gain a stable, freely
floating position if it is bottom-heavy (and weighs as much as the liquid it displaces),
i.e. the centre of buoyancy must lie above the centre of mass. In a multilayer fluid,
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this situation becomes more interesting, although not necessarily simpler, because
of the density differences across the interfaces between the fluid layers. Now also a
homogeneous body can be fully submerged and have a stable equilibrium position.
Moreover, the structure can interact with both surface and internal (interface) gravity
waves.

In this vein, we have recently shown that a totally submerged body not piercing
the interface generates trapped modes, see [3]. The result was shown for any stable,
that means bottom-heavy, floating cuboid but generalization to other objects is
straightforward. Using an algebraic test function, we also proved the existence of
trapped modes for objects piercing the free-surface and the interface. Moreover,
in [4] we gave examples of periodic arrays of freely-floating structures supporting
trapped waves and studied how the problem parameters (density ratio, obstacle
dimensions, layer depths and radian frequency) influence the trapping condition.
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Shannon Switching Game and Directed Variants

A.P. Cláudio, S. Fonseca, L. Sequeira, and I.P. Silva

Dedicated to the memory of Yahya Ould Hamidoune (1947–2011)
and Michel las Vergnas (1941–2013)

Abstract Shannon’s switching game is a combinatorial game invented by
C. Shannon circa 1955 as a simple model for breakdown repair of the connectivity
of a network. The game was completely solved by A. Lehman, shortly after, in
what is considered the first application of matroid theory. In the middle 1980s
Y. O. Hamidoune and M. Las Vergnas introduced and solved directed versions of
the game for graphs considering their generalization to oriented matroids. We do a
brief review of the main results and conjectures of the directed case.

1 Introduction

In the middle 1950s C. Shannon invented the following game: given a connected
graph G with two distinguished vertices x and y, two players JOIN and CUT choose
alternately one unplayed edge. JOIN reinforces the chosen edge that becomes
invulnerable and CUT deletes the chosen edge. JOIN wins if he succeeds in making
invulnerable the edges of a path connecting x to y. CUT wins otherwise.

Shannon’s game, like Hex, invented earlier by Piet Hein are examples of two
player games where the objective of one or both players is to connect or keep
connected some subset of nodes of a network.
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Mathematically both games are well known combinatorial games where J. Nash’s
stealing argument applies [2]. In the case of the Shannon switching game Nash’s
argument guarantees that if one of the players, JOIN or CUT, has a winning strategy
playing second then the same strategy applied to any fictitious first move of its
opponent, guarantees that he, JOIN, respectively CUT, playing first will win the
game too.

The game was completely solved by Lehman in 1964 [15] and is a classical game
in combinatorics and its applications [2, 5, 11, 16].

Less known are the results and conjectures concerning the directed versions of
Shannon’s switching game for graphs and oriented matroids that were introduced
and studied by Hamidoune and Las Vergnas in [12, 13]. The detailed presentation
and discussion of these directed versions in [12] makes it clear that the directed
versions are considerably more difficult to analyse.

In general all these games were inspired and have direct applications in engineer-
ing problems and network analysis of electrical networks, optical networks, more
generally, communication networks and information theory.

In what follows we recall Lehman’s results on Shannon’s game, and then briefly
review the main results and conjecture of the directed case.

We have implemented a computational prototype of two games: TREE and
ARBORESCENCE whose analysis, as the reader will see, is the key for solving
respectively, the undirected and the directed, Shannon switching games. In both
games the human player plays as JOIN, starts second, and has a winning strategy.
However at his first mistake, the computer is expected to take the lead and win. The
interested reader may download the games from [9]: http://shlvgraphgame.fc.ul.pt/.

2 Solution of Shannon’s Classical Game

2.1 Shannon’s Switching Game .GI e/

Shannon’s switching game .GI e/ is a two player game played on a connected graph
G with a distinguished edge e D fx; yg; x 6D y, not subject to play. Two players,
JOIN and CUT, play alternately choosing one unplayed edge of the graph. JOIN
reinforces the chosen edge, CUT deletes the chosen edge.

JOIN wins if he succeeds in reinforcing the edges of a path connecting x to y.
CUT wins otherwise.

Shannon’s switching games .GI e/ are combinatorial games that fall into one of
the following three classes:

A JOIN GAME, if JOIN playing second has a winning strategy, a CUT GAME,
if CUT playing second has a winning strategy or a NEUTRAL GAME, when the
first player has a winning strategy (see Fig. 1).

http://shlvgraphgame.fc.ul.pt/
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Fig. 1 (a) JOIN game; (b)
CUT game; (c) NEUTRAL
game

x

y

x

y

x

y

e e e
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(b)

(c)

The game was solved by A. Lehman who characterized each class of games. The
clues of Lehman’s solution are the following:

1. The observation that the game depends exclusively on the matroid of cycles of
the graph (see Definition 1).

This observation enlightens the duality between the objectives of JOIN
and CUT simplifying, on one hand, the analysis of the game and showing
simultaneously, that the natural context of the game is matroids, rather than
graphs or graphic matroids.

2. The strategies and characterization of Shannon’s game are derived from the
strategies of an associated game: the TREE GAME on a particular kind of graph:
blocks (see Definition 2).

Constructive and algorithmic aspects of Lehman’s results for graphs were
considered by Bruno and Weinberg in [6] exploring the notion of principal
partition of a graph introduced by Kishi and Kajitani [14] that they have
generalized to matroids in [7].

In the next paragraphs we sketch the main results and strategies, starting with the
description of the associated game: TREE.

We assume the reader is acquainted with the basic notions of graph theory.
Good references are [1, 11]. In the next paragraph we recall some terminology and
notation.

Notation Given a graph G, we denote by V.G/ the set of its vertices and by E.G/
the set of its edges. A subgraph G0 of G is any graph satisfying the conditions
V.G0/ 
 V.G/ and E.G0/ 
 E.G/. For every edge e, G n e denotes the subgraph
obtained from G deleting e, and G=e the subgraph obtained from G contracting
e. We recall that the contraction G=e is the graph obtained from G identifying the
vertices of the edge e and then eliminating e.
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A tree T is a connected graph with minimum number of edges. The numbers of
vertices and edges of a tree are related by: jE.T/j D jV.T/j � 1. A forest is a graph
whose connected components are trees.

Given a connected graph G, a spanning tree T of G is a maximal tree that is a
subgraph of G. One has V.T/ D V.G/ and jE.T/j D jV.G/j � 1.

Definition 1 (Matroid of Cycles of a Connected Graph) The matroid of cycles of
a connected graph G is the pair M.G/ D .E.G/;B/ where B 
 2E.G/, the family
of bases of the matroid, is defined as: B WD fE.T/ W T is a spanning tree of Gg.
The number of edges, jV.G/j � 1, of a (any) base is the rank of the cycle matroid.

The circuits of the matroid M.G/ are the sets of edges of a minimal closed path
of the graph. A cocircuit of M.G/ is a minimal subset of edges whose removal
disconnects the graph.

One says that an edge e is spanned by a subset of edges A 
 E.G/ if there is a
circuit C of M.G/ such that e 2 C 
 A [ e. Clearly, given a connected graph G and
a spanning tree T of G every edge e … E.T/ is spanned by E.T/ or simply, by T.
Moreover, there is a unique circuit C.TI e/ such that e 2 C.TI e/ 
 E.T/ [ e.

A graphic matroid is the matroid of cycles of some graph.

For an introduction to matroids the reader may consult [18] or [17].

2.2 TREE

Like Shannon’s switching game TREE is a two person game played on a connected
graph G. The two players, JOIN and CUT, play like in Shannon’s game: alternately,
JOIN reinforcing one unplayed edge, CUT deleting one edge. The objective of JOIN
is to reinforce the edges of a connected spanning tree of G. If he does not succeed,
CUT wins.

Notice that CUT wins if he deletes the edges of a cocircuit of the graph G,
equivalently, a cocircuit of the graphic matroid of G.

The analysis of this game depends exclusively on the notion of pair of maximally
distant spanning trees of the graph G, resp. pair of maximally distant bases in
the case of a matroid. In other words, the game depends on the matroid union
M.G/

W
M.G/, with M.G/ the cycle matroid of the graph.

Definition 2 (Blocks and Maximally Distant Spanning Trees) A block is a
matroid that is the union of two disjoint bases. A connected graph G is a (connected)
block if E.G/ D E.T1/] E.T2/ with T1;T2 two edge-disjoint spanning trees of G.

A pair of maximally distant spanning trees of a connected graph G is a pair of
spanning trees .T1;T2/ that maximizes the cardinal jE.T/[E.T 0/j with .T;T 0/ a pair
of spanning trees of the graph. A connected graph G is a (connected) block if and
only every pair .T1;T2/ of maximally distant spanning trees satisfies the equalities:
jE.T1/[ E.T2/j D jE.T1/j C jE.T2/j D 2jE.T1/j.
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All the strategies to play TREE and Shannon’s switching game follow from the
proof of the next Lemma:

Lemma 1 The TREE game on a connected block is a JOIN game.

The proof describes a recursive winning strategy for JOIN playing second.
Strategy for JOIN winning TREE on a connected block, playing second

(1) Let G D T1]T2 be a connected block, with set of edges E.G/ D E.T1/]E.T2/,
T1;T2 two edge disjoint spanning trees of G.

(2) Denote by c the edge deleted by CUT in his first move. Assume w.l.o.g. that
c 2 E.T1/.

Notice that once c is deleted T1 n c has exactly two connected components,
say R and S.

(3) JOIN then responds reinforcing(contracting) any edge j 2 E.T2/ that has one
vertex in R and the other in S, equivalently, j is any edge of T2 such that the
unique circuit - C.T1I j/—contained in E.T1/[ j contains c.

For every such j, the graph G1 D G n c=j is a connected block whose rank is
rank.G/� 1. The game continues with G replaced by G1.

Figure 2, below, illustrates the strategy.
From the above strategy one concludes that the game TREE is a JOIN game for

any connected graph G containing a spanning block. Notice that when the graph
strictly contains a spanning block T1[T2, CUT may delete an edge outside E.T1/[
E.T2/. In this case JOIN imagines a possible move for CUT in the block and replies
to that fictitious move of CUT.

If a graph G does not contain a spanning block then every pair .T1;T2/ of
maximally distant spanning trees of G satisfies one of the following two conditions:
either .i/ jE.T1/ \ E.T2/j D 1 or .ii/ jE.T1/ \ E.T2/j � 2. It is not hard to derive
from the proof of the lemma winning strategies for the first player, JOIN or CUT, in
case .i/, as well as winning strategies for CUT playing second in case .ii/.

j2

j1

c

G

Fig. 2 JOIN possible responses to CUT playing c
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Notice also that the above algorithm gives the strategy for JOIN playing second
in Shannon’s switching game when the distinguished edge e is spanned by a
(connected) block not containing it. The fact that JOIN can reinforce a spanning
tree of such a block will certainly guarantee that JOIN reinforces the edges of a
circuit contained in that block union e, in other words that block contains a circuit
of the graph, broken at e.

The next theorem solves TREE. Theorem 2, a direct consequence of Theorem 1,
solves Shannon’s switching Game.

Theorem 1 (Classification of TREE [15], See Also [12]) Let G be a connected
graph. Consider a pair .T1;T2/ of maximally distant spanning trees of G.

1. If jE.T1/\ E.T2/j the TREE game is a JOIN game.
2. If jE.T1/\ E.T2/j the TREE game is a NEUTRAL game.
3. If jE.T1/\ E.T2/j the TREE game is a CUT game.

Theorem 2 (Classification of Shannon’s Switching game [15], See Also [12]) A
Shannon’s switching Game .G; e/ is:

1. a JOIN game if and only if G contains a block spanning, but not containing e;
2. a NEUTRAL game if and only if G contains a block spanning e and every such

block contains e;
3. a CUT game if and only if there is no block spanning e.

3 Hamidoune-Las Vergnas Directed Switching Games

In the 1980s Hamidoune and Las Vergnas [12] studied generalizations of Lehman’s
results to oriented matroids. They defined two types of directed variants of
Shannon’s game: in the first type CUT plays as in the original game, deleting edges,
but JOIN plays differently. Each move of JOIN consists in directing one edge of the
graph. In the second type of variants both players direct edges.

The objectives of JOIN are then translated in terms of directed paths, positive
directed circuits or cocircuits.

Concerning the games of the second type, very little is known about them. Even
their classification is not clear. In contrast with the undirected case, where a player
having a winning strategy playing second has a winning strategy playing first, there
are examples [12] of games of the second type where J. Nash stealing argument does
not apply, games where a player has a winning strategy playing second but looses
when playing first.

Concerning the directed games of the first type, Hamidoune and Las Vergnas
proved that, in this case, the classification of the directed and undirected Shannon’s
switching games are exactly the same. Their proofs for the directed case, follow
the same ideas of the non-oriented case, however the strategies described are more
elaborate and not generalizable to oriented matroids in general.
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The complete characterization of the winning positions, which is known from
[13] only for blocks, requires in that case, and in contrast with the undirected case,
the analysis of all previous moves evidentiating the complexity of the analysis of
the directed case.

In the next paragraphs we briefly review the main results of Hamidoune and Las
Vergnas.

In what follows, we shall call the JOIN player in the directed games d-JOIN.
Also the directed Shannon’s switching game, introduced in [12], will be called
Hamidoune-Las Vergnas switching game.

3.1 Hamidoune-Las Vergnas Switching Game .GI e/

Let .GI e/ be a graph (or a digraph) with a distinguished arc e D .x; y/, not subject
to play. Two players d-JOIN and CUT play alternately choosing one unplayed edge
of the graph. d-JOIN directs the chosen edge and CUT deletes the chosen edge.
d-JOIN wins if he succeeds in directing a path from x to y. CUT wins otherwise.

It is clear that we can import several results from Lehman’s study of the
undirected case namely that a winning strategy for CUT in the associated undirected
game .GI e/ must be a winning strategy for CUT in the directed game .GI e/. The,
non obvious question is then whether the existence of a winning strategy for JOIN in
Shannon’s Game implies the existence of a strategy for d-JOIN in the corresponding
Hamidoune-Las Vergnas Game or not.

Hamidoune and Las Vergnas, in [12] and [13], prove that this is the case.
Although the winning strategies for the undirected game can not, in general, be
adapted do the directed case they follow a similar approach, starting with the
analysis of a directed TREE game, ARBORESCENCE, on a connected block.

3.2 ARBORESCENCE .GI x/

ARBORESCENCE is a game played on a connected graph G with a distinguished
vertex x. The two players CUT and d-JOIN play as in Hamidoune-Las Vergnas
directed switching game. In this case the objective of d-JOIN is to direct the edges
of an arborescence rooted at x.

Lemma 2 ARBORESCENCE on a connected block is a d-JOIN game.

3.2.1 Hamidoune-Las Vergnas Strategy for d-JOIN Playing Second
on a Connected Block [13]

This is the crucial step of the Hamidoune-Las Vergnas results. We use the short
proof in [13] that works by induction on the number of edges of the block.
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Let G be a connected block. If jE.G/j D 2 obvious. If jE.G/j > 2 and CUT
deletes an edge c then either there is a nonempty connected block X of Gnc incident
to x or not.

In the first case G0, the subgraph induced by X, and G00 WD G=X are both
connected blocks. By induction d-JOIN has winning strategies, ˙ 0 and ˙ 00, for
winning playing second, resp. in G0 and in G00. The strategy of d-JOIN in G is
the following: if the move c of CUT falls into X he responds directing an edge j
given by strategy˙ 0, if the move c falls into E.G/ n X he answers directing an edge
according to strategy ˙ 00.

In the second case, G itself is the only connected block incident to x. In this case
d-JOIN must respond to the move c of CUT by directing one edge j of Gnc incident
to x (outgoing from x).

The game restarts with G replaced by G1 WD G n c=j.

Example 1 In this example we play ARBORESCENCE in the connected block
represented in the next Fig. 3a. The player d-JOIN plays second and wins using
the strategy described in the proof of the Lemma. The i-th moves of CUT is denoted
ci and the i-th move of d-JOIN is denoted ji.

The first move of CUT is c1 D 8. Since the smallest block incident to x is G itself,
JOIN responds directing one edge incident to x, outgoing from x. d-JOIN played the
edge j1 D 7 in the first figure. The game continues in G1 WD G n c1=j1 represented
in Fig. 3b.

CUT’s second move is c2 D 2. Now there is a connected block incident to x
contained in G1 n c2, namely the block with edges X D f1; 5g. According to the
above strategy d-JOIN plays in G001 WD G1=X. Since the edge c2 D 2 is contained
in the block X1 D fc2 D 2; 6g of G01, incident to x, according to the above strategy
d-JOIN answers j2 D 6.

The game continues in the graph G2 D G1 n c2=j2, represented in Fig. 4a.
The reader may easily see from G2 that, according to the strategy defined, the

answer to CUT’s move c3 D 3 must be j3 D 4. The last Fig. 4b, represents G3 D
G2 n c3=j3, and it is clear that JOIN’s answer to c4 D 1 must be j4 D 5.

j1 2

1

6

5

4

3

c1

x

j2

1 5

4

3
c2

x

G1 := G \ c1 j1

(b)(a)

Fig. 3 Game played on a block with d-JOIN answering with Hamidoune-Las Vergnas strategy
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4 = j31 5

3 = c3
x

G2 := G1 \ c2 j2

5 = j4

1 = c4

x

G3 := G2 \ c3 j3

(b)(a)

Fig. 4 Game played on a block with d-JOIN answering with Hamidoune-Las Vergnas strategy

j1 c2

c4

j2

j4

j3

c3

c1

x

Fig. 5 The previous ARBORESCENCE game in the original graph

In Fig. 5 we have represented all the moves of the previous game in the original
graph G.

The next Theorem is a direct consequence of the above lemma:

Theorem 3 (Classification of ARBORESCENCE and Hamidoune-Las Vergnas
Switching Game [12, 13])

1. ARBORESCENCE in a connected graph G with root x is a d-JOIN game (resp.
a CUT game or a NEUTRAL game) if and only if TREE is a JOIN game on G
(resp. a CUT game or a NEUTRAL game on G).

2. A Hamidoune-Las Vergnas switching game .GI e/ is a d-JOIN game (resp. a CUT
game or a NEUTRAL game) if and only if the corresponding undirected switching
game is a JOIN game on G (resp. a CUT game or a NEUTRAL game on G).

We point out that from a computational point of view all the algorithms involved
in evaluating a position and playing strategically any one of the unoriented games,
TREE or Shannon’s switching game, are polynomial time algorithms. For the
directed games, ARBORESCENCE and Hamidoune-Las Vergnas switching game,
this is not known except in very particular cases [12]. The reason being that there
is no general theorem characterizing all the winning positions at some point of the
game.
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Since TREE and Shannon switching games have natural generalized versions
in terms of matroids, one would expect that Hamidoune-Las Vergnas switching
game and ARBORESCENCE had a natural generalized version in terms of oriented
matroids. Although ARBORESCENCE, at least so far, has no natural generalization
to oriented matroids Hamidoune-Las Vergnas switching game does have. In the next
paragraph we consider the generalization of both switching games to configurations
of (real) vectors a particular case of matroids and oriented matroids.

The interested reader may consult [3] for an introduction to oriented matroids.

3.3 Shannon Switching Game, TREE and Hamidoune-Las
Vergnas Switching Game on Configurations of Vectors

Shannon switching game .VI e/ and TREE on a configuration of vectors are
particular cases of the generalized versions of the games for matroids. The board
instead of a graph is now a (finite) configuration of vectors V in some linear space
over an arbitrary field. In both games the two players JOIN and CUT choose
alternately one unplayed vector of V , CUT deletes it, JOIN reinforces/marks it.

In Shannon’s switching game .V; e/, where e is a distinguished vector not subject
to play, JOIN wins if he succeeds in marking a set of vectors whose linear span
contains e. CUT wins otherwise.

In TREE on a configuration of vectors V , JOIN wins if he succeeds in marking a
base of the linear span of V .

Lehman’s results [15] on Shannon’s switching game and TREE, namely Theo-
rems 1 and 2 of the last section, hold for the more general games on matroids and
therefore on configurations of vectors which correspond to coordinatizable matroids
(see [17, 18]). We recall that a matroid is a block if it the union of two disjoint bases.
In terms of coordinatizable matroids or configurations vectors this translates as: a
configuration V of vectors of some linear space is a block iff V it is the union of two
disjoint bases of the linear span of V .

Concerning the directed versions of these games, Hamidoune-Las Vergnas
switching game and ARBORESCENCE, only the first has a generalization to
configurations of vectors necessarily over an ordered field which may be assumed
to be the reals.

3.3.1 Hamidoune-Las Vergnas Switching Game .VI e/ on a Configuration
of Vectors

Let .VI e/ be a configuration of vectors of Rd, e a distinguished vector not subject
to play. The two players CUT and d-JOIN choose alternately one unplayed vector.
CUT deletes it and d-JOIN decides if he leaves the vector or if he replaces it by its
opposite before marking the chosen one.

The objective of d-JOIN is to capture the distinguished vector e inside the
positive cone spanned by his marked vectors.
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We recall that the following conjecture of Hamidoune and Las Vergnas is open
even for configurations of real vectors:

Conjecture 1 (Hamidoune-Las Vergnas [12]) The classification of a directed
switching game .MI e/ on an oriented matroid M is the same as the classification of
the associated undirected game .MI e/ on the underlying matroid M. More precisely,
a directed switching game .MI e/ is:

1. a JOIN game if and only if there is a block of M spanning but not containing e.
2. a CUT game if and only if there is a block of M� spanning but not containing e.
3. a NEUTRAL game if and only if both M and M� have blocks containing e.

The structure of the positive cones spanned by a configuration of vectors is
encoded by the associated oriented matroid.

In the case of configurations of vectors corresponding to graphs, and since
graphic matroids have a unique class of orientations [4] or [3], the structure of
positive cones is actually encoded in the underlying matroid.

The opposite situation occurs on configurations of vectors admitting many
orientation classes. This is the case of the uniform matroids, Un;d corresponding
to configurations of n vectors in general position in Rd (every d-subset of vectors is
a base of Rd). An important step would be to understand Hamidoune-Las Vergnas
conjecture in this class of oriented matroids.

Notice that because Lehman’s results hold for matroids, in order to prove the
conjecture for uniform matroids one only needs to prove that d-JOIN has a winning
strategy playing first when playing in a block, i.e. in an oriented uniform matroid
U2d;d.

Example 2 Shannon and Hamidoune-Las Vergnas switching games on a configura-
tion of vectors that is a block.

The next figure, Figure 6, represents a configuration .VI e/ of four vectors in
general position ofR2. The corresponding matroid and oriented matroid are U4;2 and
one of its orientations. This is a first example which is not included in Theorem 3,
because U4;2 is not the matroid of cycles of a graph [17, 18] (Fig. 6).

Fig. 6 A configuration .VI e/
of 4 vectors in general
position in R

2 1

e

2

3

O(0, 0)



198 A.P. Cláudio et al.

Analysis of the Shannon Switching Game .VI e/

In this game JOIN playing first wins, independently of how he plays. In fact, JOIN,
starting first will mark two vectors j1; j2 2 f1; 2; 3g. Every subset of two vectors
of f1; 2; 3g is an (unordered) basis of R2 and therefore fj1; j2; eg contains (actually
is) a minimal linearly dependent subset of V , i.e. a circuit of the matroid U4;2

containing e.

Analysis of the Hamidoune-Las Vergnas Switching Game .VI e/

In this game d-JOIN playing first has a winning strategy. In contrast with the non
oriented case d-JOIN must define carefully his strategy. Notice that if in his first
move d-JOIN marks one of the vectors 1 or its opposite, �1, he may loose. In fact,
if he marks 1, CUT eliminates 2 and e does not belong to poscone.f1; 3g/ nor to
poscone.f1;�3g/ so d-JOIN loses. Similarly if he plays �1, CUT wins responding
3.

The winning strategy for d-JOIN consists in playing in the first move either 2
or �3. Only playing in this way he guarantees that he has a good answer to every
possible move of CUT.

Recently, Chatelain and Ramirez [8], extending previous results of Forge and
Vielleiribière [10], proved that d-JOIN has a winning strategy playing first in the
orientations of U2d;d that are obtained as unions of rank 1/or rank 2 uniform oriented
matroids. We point out that the oriented matroids arising in this way all correspond
to vector configurations of vectors in general position in some Rd and do not cover
all the possible orientations of U2d;d.

The Hamidoune-Las Vergnas conjecture, for oriented matroids, even for config-
urations of vectors, remains open.

Acknowledgements This work was partially supported by Fundação para a Ciência e a Tecnolo-
gia, PEst-OE/MAT/UI0209/2013.
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A Proposal to Measure the Functional Efficiency
of Futures Markets

Meliyara Consuegra and Javier García-Verdugo

Abstract This paper presents a method to measure the functional efficiency of
futures markets in terms of social welfare using a standard futures market structural
model. Employing the concept of social surplus, it can be shown that the error
committed when using futures prices to estimate spot prices in the future results in
a welfare loss caused by the erroneous allocation of resources. Therefore, the social
welfare associated with the presence of futures markets can be measured using a
social loss (SL) statistic and its components. The results confirm the consistency
and robustness of the method. Finally, several practical uses for the SL statistic are
suggested.

1 Introduction

In the second half of the twentieth century, futures markets received increasing
attention from academics, governments and companies in general. An important
part of the research has focused in the efficiency of futures markets from the
perspective of the Efficient Market Hypothesis (EMH). This paper aims to study
the functional efficiency of these markets. When we talk about functional efficiency,
we refer to the efficiency with which futures markets perform the functions of price
risk transfer and price discovery. Regarding the transfer of price risks, participants
seek to protect themselves from the variability of prices, and the efficiency of the
hedging instrument depends on the relative variation between futures contract prices
and the prices in the physical market. Price discovery refers to the fact that each
participant in the futures markets acts using all available information and their
own estimates about future price changes. In this paper the functional efficiency of
futures markets is assessed estimating the social loss derived from allocation errors
that are committed when the prices of futures contracts are used as estimators for
prices in the physical markets.

The outline of this paper is as follows. The second section reviews all the
previous research on this topic. The next section presents the basic model, while
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section four develops the theoretical and empirical indicators for the quantification
of social welfare loss in futures markets. The fifth section presents the application
of the model through some examples. The last section concludes and proposes other
directions for future research.

2 Previous Research

Different papers such as Peroni and McNown [16], Switzer and El-Khoury [24],
Maslyuk and Smyth [13], Kawamoto and Hamori [10] and Stevens [23] have
focused on the efficiency of energy futures markets from a theoretical perspective.
Other authors such as Chowdhury [6] and Timmermann and Granger [25] studied
the efficiency in futures markets in general. The paper by Kawamoto and Hamori
[10] is closest to our approach in the sense that they also used a sample of
futures contracts with different maturities. A crucial difference is that they test
the EMH, which assumes that the information of all past prices is reflected in
today’s prices. Stevens [23] found that the WTI futures market1 is shown to be
inefficient2 according to the weighted least squares (WLS) and the trimmed least
squares (TLS) tests, but efficient when the ordinary least squares (OLS) test is used.
There are similar papers that studied the efficiency of futures contracts in other
markets. McKenzie and Holt [14] tested the market efficiency and unbiasedness in
agricultural futures markets and Wang and Ke [27] studied the efficiency in Chinese
agricultural futures markets.

All these studies are only able to produce dichotomic results on the existence
of efficiency, showing their limitation to examine the efficiency of futures markets.
Contrary to the literature reviewed in the previous paragraph, this paper employs
a generic structural model of futures markets in which efficiency is measured with
an indicator that evaluates the functional efficiency of futures markets in terms of
social welfare. This model is useful for different types of commodities, such as
metals, agricultural and energy.

The model used in this paper was originally developed by Stein [18, 19, 21].
This model has been used by several authors along the years, which is a proof of
its usefulness: Brooks [4] and Stein [22] studied the financial futures markets, Hong
[8] applied the model to the non-financial futures, Avsar and Goss [1] studied the
informational efficiency of electricity futures contracts, Pennings and Garcia [15]
examined the determinants of heterogeneity in hedging behavior in a concomitant
mixture regression framework, and García-Verdugo and Consuegra [7] focused on
energy futures contracts. Different versions of Stein’s model have been used by
Kawai [9] and Turnovsky [26] who studied the spot and futures prices of non-

1The crude oil price is that of West Texas Intermediate traded on the New York mercantile
exchange.
2Inefficient in the sense of the EMH.
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storable and storable commodities respectively; Bond [3] examined the effects
of supply and interest rate shocks in commodity futures markets; Pindyck and
Rotemberg [17] who proved that the prices of largely unrelated raw commodities
have a persistent tendency to move together, and Chari and Jagannathan who studied
the volatility of prices with the introduction of futures markets [5].

Stein’s model is based on the optimization of individual decisions made by
different market participants and has several useful features. First, it explains the-
oretically which variables determine equilibrium prices, equilibrium open interest
and the variability of prices. Second, it can incorporate exogenous and endogenous
expectations, as well as participants with different forecasting abilities. Above all, it
can be used to analyse the ex-post contribution of futures markets to social welfare
through the optimal inter-temporal allocation of resources, which is the main reason
why it was selected to be used in this paper.

3 The Basic Model

The basic model has two periods. In period t producers and consumers decide
the proportion of their commercial positions to be hedged with futures, and
speculators make their investment decisions. In period t C 1 exchanges are made
in the physical market and open positions in the futures markets are canceled.
Commercial participants are attracted to futures markets by the possibility of
protecting themselves from price risks. On the contrary, the variability of these same
prices attracts speculators and determines their corresponding level of expected
benefits. As a result of the participant’s hedging, an optimal level of production
as well as optimal positions in the futures market are obtained. In this section
we present the mathematical expressions of the participants’ positions, supply and
demand functions, and futures and spot prices.

In general, it can be stated that commercial participants are attracted to futures
markets by the possibility of protecting themselves from price risks. On the other
hand, the variability of these same prices attracts speculators and determines their
corresponding level of expected benefits. As a result of the participants’ hedging
or speculative decisions, an optimal level of production and an optimal position in
the futures market is obtained. Since Stein’s model is based on the optimization
of individual decisions made by different market participants, we start from the
expressions that summarize the determinants of the open positions of commercial
firms with sale price uncertainty, commercial firms with purchase price uncertainty
and speculators [21].

It can be shown that the open position x.t/ for each commercial firm with sale
price uncertainty is given by:

x.t/ D qtC1.t/
˛.1 � r2/var p C c

� E1p.t C 1I t/� qtC1.t/
˛r2var p

(1)



204 M. Consuegra and J. García-Verdugo

Similarly, the open position y.t/ for each commercial firm with purchase price
uncertainty is given by:

y.t/ D a � qtC1.t/
˛.1 � r2/var p C b

C E2p.t C 1I t/� qtC1.t/
˛r2var p

(2)

Finally, the open position z.t/ for each speculator is given by:

z.t/ D Esp.t C 1I t/ � qtC1.t/
ˇ var p

(3)

The price of the future contract in t is denoted by qtC1.t/ in the three equations. E1p
and E2p are the expected prices by each type of commercial firms. Assuming that
all commercial firms have identical expectations, E1p D E2p D Ecp. ˇ and ˛ are
the risk aversion parameters, varp is the price risk, r2 will referred to as the quality
of the hedging instrument,3 b is the slope of the individual demand functions and c
is the slope of the individual supply functions of the commercial participants.

From (1)–(3) the aggregated open positions are obtained. Therefore, the open
position X for n1 commercial firms of the first type is represented in Eq. (4), where
xi.t/ are the sales (+) or purchases (-) at the time t of futures contracts maturing at tC
1. The open position Y for n2 commercial firms of the second type can be aggregated
as (5), where yi.t/ D �xi.t/. Accordingly, yi represents the purchases (+) and sales
(-) at the time t of futures contracts maturiting at t C 1. And the open position Z for
ns speculators is denoted by (6). The total demand of futures by speculators Z.t/ is
the sum of the long (+) or short (-) position of futures speculators, zi.

X.t/ D
n1X

iD1
xi.t/ D n1Œx.t/� (4)

Y.t/ D
n2X

iD1
yi.t/ D n2Œ y.t/� (5)

Z.t/ D
nsX

iD1
zi.t/ D nsŒz.t/� (6)

By subtracting X.t/ minus Y.t/ we obtain the supply function of futures contracts
by commercials, denoted by C in Eq. (7). And the demand function S D Z.t/ is a

3r is the correlation between the price of the commodity relevant for the commercial firm and the
price of the standardized commodity defined in the futures contract.
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result of the open position of speculators.

C D X.t/� Y.t/ D wcŒqtC1.t/ � Ecp�C v1qtC1.t/ � v2Œa � qtC1.t/� (7)

S D Z.t/ D wsŒEsp � qtC1.t/� (8)

The speculative coefficients wc D n1Cn2
˛r2varp and ws D ns

ˇvarp determine the magnitude
of speculation by commercial firms and speculators respectively. Accordingly, the
higher the risk aversion of the participants, the lower the speculative component
of the commercial firms’ futures position and the lower the speculators’ position.
On the other hand, the larger the number of participants, the higher the speculative
futures position of firms and speculators. The output and input coefficients v1 D

n1
˛.1�r2/varpCc

and v2 D n2
˛.1�r2/varpCb

represent the magnitude of hedging by
commercials entities with uncertainty in sales and purchase prices respectively.
Assuming that all the participants are rational Ecp � Esp � Emp, which is
the subjective expected price in t for period t C 1 by commercial participants
and speculators. If qtC1.t/ D Ecp, the open positions in the futures markets of
commercials entities will not depend on wc, and it will only depend on production
and demand parameters. The net hedging pressure .h/ is the excess supply of futures
contracts by commercials when the futures price is equal to their expected price, so
h D v1qtC1.t/ � v2Œa � qtC1.t/�.

The literature on commodities futures markets traditionally assumes that spec-
ulative transactions result in net long speculative positions. Accordingly, the only
commercial participants included in Stein’s model are assumed to hold a net
short position in futures contracts, i.e. they are sellers hedging against the risk of
falling prices. In the model, futures prices determine production, while consumption
exogenously equals production.4

The market equilibrium is obtained when the supply function (7) equals the
demand function (8). Then, the prices of the futures contracts are obtained:

qtC1.t/ D .1 � ı/Emp.t C 1I t/; where ı D h=w

Emp
(9)

The term w is the sum of the coefficients wc and ws. The parameter ı reflects
the sufficiency or insufficiency of speculation to satisfy the need for commercial
hedging or hedging pressure. At the same time, if the quality of the hedging
instrument is assumed to be perfect (r2 D 1), the equilibrium of the goods market
determines (10):

qtC1.t/ D cS.t C 1/ (10)

4Futures prices collect the intertemporal allocation of resources for production and not for
consumption, but welfare in the model does not vary significantly.
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Equation (11) is the market supply function since cS.t C 1/ is the aggregate
marginal production cost when marginal costs of individual commercial participants
are assumed to be linear. Using (9), the supply equation can be written in terms of
the participants’ subjective expectation of the commodity spot price:

O 	 Emp.t C 1I t/ D c

1 � ı
S.t C 1/ (11)

On the other hand, since consumption exogenously equals production in the model,
the market demand function can be given as:

D.t C 1/ 	 p�.t C 1/ D u�.t C 1/� bS.t C 1/ (12)

Considering that u�.t C 1/ is a random parameter relevant to the second period,
demand D.t C 1/ follows an unknown probability distribution and p�.t C 1/ is the
random spot price in t C 1. ED.t C 1/ is the objective expectation of demand, and
its expression is:

ED.t C 1/ 	 Ep.t C 1/ D Eu.t C 1/� bS.t C 1/ (13)

The expected value of the spot price in (13) is denoted by Ep.t C 1/. The difference
between value D and its objective expectation of demand ED is known as the
inevitable error ".t C 1/. This error is due to the unpredictable variation of the
random parameter u� around its expected value Eu.t C 1/. This difference can be
shown to be equal to ".t C 1/ D p.t C 1/ � Ep.t C 1/, and is represented in Fig. 1
by the segment CB.

Lacking the capacity for perfect forecast, companies can only attempt to predict
the value of the objective expectation of demand ED. Their actual estimate of ED is
known as the subjective expectation of demand EmD.

EmD.t C 1/ 	 Emp.t C 1/ D Eu.t C 1/C ym.t/ � bS.t C 1/ (14)

B

p, q

G

O

Orf

H
A

D

ED

EmD

Emp(t+1; t)

S(t+1) S S

Ep(t+1; t)

p(t+1)

qt+1 (t)

Soot

C

E

F

Fig. 1 Social loss associated with the suboptimal allocation of resources
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The difference between both expectations of the demand function is known as the
Bayesian error ym.t/, represented in Fig. 1 as the segment EC. It can be shown
that ym.t/ D Ep.t C 1/ � Emp.t C 1I t/. For convenience, Fig. 1 represents D >

ED > EmD, but it need not be so. The intersection of the supply curve with EmD
determines the subjective expectation of the equilibrium price and the amount to be
produced in t. In turn, Emp.t C 1I t/ and the risk premium determines the futures
priceqtC1.t/, as is shown in Eq. (10). Eventually, the production S.t C1/ reaches the
market in tC1 and is faced with the actual demand curve D, which results in p.tC1/.
The consideration or not of a risk premium (embodied in the parameter ı) affects
the futures price because it shifts the supply function, as can be seen from Eq. (12):
the actual supply curve O in Fig. 1 shifts to the left of the risk-free supply function
Orf because a positive risk premium is assumed. Therefore the distance between
these two curves (EF in Fig. 1) represents the risk premium, given by Emp � qtC1.t/,
that can be considered the third source of forecast error. Let us take a step back
to put these concepts in perspective. Stein [20] identified two types of social loss
in the forward markets: the avoidable and the unavoidable. The unavoidable error
represents the difference between the market equilibrium price and the expected
equilibrium price. The avoidable error is the gap between the expected equilibrium
price and the forward price. This model was expanded by Stein [21] for futures
markets. In this paper he identified three types of errors: the inevitable error, the
Bayesian error and the risk premium. For futures markets the unavoidable error is
called inevitable; the Bayesian error occurs because of the difference between the
subjective and objective expected price of the contract; finally, the risk premium
occurs when expected demand exceeds marginal cost. The inevitable and Bayesian
errors plus the risk premium comprise the total forecast error:

p.t C 1/� qtC1.t/ D Œ p.t C 1/� Ep�C ŒEp � Emp�C ŒEmp � qtC1.t/� (15)

4 The Empirical Model

As we saw in Fig. 1 S.t C 1/ is the volume of output that reaches the market at
t C 1, while Sopt is the optimal volume of production, which is obtained from the
intersection of Orf and actual demand D. Following Stein [21], we assume that the
loss of social welfare—or simply social loss—is the triangular area ABF between
the effective demand curve and the marginal cost curve, Orf , between the actual
output S.t C 1/ and the perfect-foresight equilibrium output Sopt, while the triangle
AGH represents the inevitable social loss caused by the random parameter u�.t C1/

included in D (see Eq. (12)). Therefore, total social loss can be represented with the
expression:

L.t C 1/ D 1

2
Œ p.t C 1/� qtC1.t/�:ŒSopt � S.t C 1/� (16)
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This value is the product of the price forecast error and the deviation of production
S.t C 1/ from the optimal value Sopt. Since the production deviation depends on the
price deviation, the loss of social welfare can be rewritten as:

L.t C 1/ D K Œ p.t C 1/� qtC1.t/�2 where K D 1

2.b C c/
(17)

Therefore, ex-post social loss L.t C 1/ is a multiple K of the square of the price
deviation between the subsequently realized cash price p.t C 1/ and the futures
price. Stein [21] defines the social loss statistic SL as the ratio of the social loss
L.t C 1/ to the minimum or inevitable social lossL0. Using Eq. (17), it can be seen
that the expected social loss EŒL.t C 1/� is equal to the constant K times the mean
squared error, MSE, of the price forecast for t+1. On the other hand, the expectation
of the inevitable social loss E.L0/ D EKŒ".t C 1/�2 can be written as K times MSE0.
Therefore, the value of K is not needed to compute the SL statistic for the estimation
of social welfare loss:

SL D EŒL.t C 1/�

E.L0/
D EKŒ p.t C 1/� qtC1.t/�2

EKŒ".t C 1/�2
D MSE.t C 1/

MSE0
(18)

At the same time that we move from two periods to a more realistic k periods,
we define the empirical equivalent of MSE.k/ as:

MSE.k/ D 1

n

nX
tD1
Œlnp.t C 1/� lnqtCk.t/�

2 (19)

where n is the number of observations in the data. MSE.k/ is the mean squared error
derived from the estimation of the spot price in period t C k using the price in t of
the futures contract which expires k periods later. On the other hand, MSE.1/ will
be used as an empirical proxy of the unobservable minimum expected social loss
MSE0. Thus the last term in (18) can be rewritten as

SL D MSE

MSE0
D EŒ p.t C 1/� qtC1.t/�2

EŒ".t C 1/�2
(20)

In a similar way, the decomposition of the forecast error in (15) contains only
theoretical variables that could only be used if observable proxies are found. Fortu-
nately, an alternative method provides an empirical equivalent for the decomposition
of MSE.k/ according to the type of error:

MSE.k/ D EŒ p.t C k/� qtCk.t/�
2 D . p � q/2 C Œ�q.1� d/�2 C .1� r2/�2p (21)

where Np and Nq are the means of spot and futures prices during the relevant period, �2p
is the variance of spot prices, �q is the standard deviation of futures prices, d is the
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regression coefficient of p over q, and r is the correlation coefficient5 between p and
q. The first term is the part of MSE which is derived from the difference between
the mean values of spot and future prices, the second is due to the risk premium
which separates the value of d from the unit, and the third is a composition of the
inevitable and Bayesian errors. Now, the empirical approximation to SL.k/ in (20)
includes squared terms that exaggerate the absolute differences between the values
of the statistic and reduce the informative content of the computed mean of forecast
deviations. Following the method applied by Ma [12] in his efficiency contrasts, the
squared root of the mean squared error can be used as an alternative:

RMSE.k/ D
"
1

n

nX
tD1
Œ lnp.t C 1/� lnqtCk.t/�

2

# 1
2

(22)

so that:

SL.k/ D RMSE.k/

RMSE.1/
(23)

4.1 Applications of the Model

In this section we are going to apply the model to evaluate the functional efficiency
of certain futures markets. Five energy futures markets and three food futures
markets with monthly data from 1992 to 2012 were use for the analysis. The
futures contracts selected for the empirical analysis are traded in the Intercontinental
Exchange (ICE) of London, the Chicago Mercantile Exchange (CME) and the
Chicago Board of Trade (CBOT), which is part of the CME Group. Eight products
and six maturities for each futures contract were selected: crude Brent and diesel
from ICE; WTI (West Texas Intermediate) crude oil, heating oil, gasoline, and
natural gas from CME; and corn, wheat and soybean that are traded in CBOT.

Following Kumar’s [11] approach, we used futures prices corresponding to
the last trading day of each month during the period of study. Kumar tested the
hypothesis that the last futures price of each month contains all relevant information
up to that moment, which is why those prices should be more accurate in predicting
prices in the future. He concluded that price predictions made during the last trading
day were superior to those obtained with alternative methods.

Table 1 shows the SL statistic for every product during the period 1992–2012.
Since lower SL values represent a higher functional efficiency of the market, the
products are organized accordingly with the most efficient at the top. Thus, in terms

5Note that these two variables are different from those that determine the quality of the hedging
instrument in the basic model.
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Table 1 SL values for the
period 1992–2012

SL(2) SL(3) SL(4) SL(5) SL(6)

Heating oil 1.18 1.42 1.63 1.84 2.02

Natural gas 1.32 1.49 1.67 1.82 1.92

Brent crude oil 1.59 2.02 2.37 2.67 2.93

WTI crude oil 1.62 2.07 2.46 2.80 3.08

Gasoline 1.75 2.25 2.52 2.77 2.99

Soybean 1.80 2.29 2.74 3.09 3.50

Wheat 1.81 2.32 2.81 3.41 3.90

Gasoil 1.87 2.46 2.98 3.41 3.82

Corn 1.89 2.57 3.21 3.69 4.02

of social welfare, heating oil was the most efficient futures market for maturities 2
through 4, natural gas was the most efficient for maturities 5 and 6, and corn was the
least efficient for every maturity. It should be highlighted that, in terms of social loss,
agricultural futures contracts generally perform worse than energy futures. However,
the specific ranking varies somewhat as k increases. Broadly speaking, the futures
contracts whose associated SL values increased most with the time to maturity are
usually those that fare worse when considering the absolute SL values and vice
versa.

More interesting is to compare the evolution of functional efficiency in each
market over time. In Table 2 data are divided in three periods: period 1: 1992–1996,
period 2: 1997–2006 and period 3: 2007–2012. In 1992–1996 the most and least
efficient markets were the same as throughout the total period; in 1997–2006 the
least efficient market of the group was gasoline while heating oil remained the most
efficient; in period 3 natural gas was more efficient than heating oil while the wheat
futures market was the least efficient for every maturity. Between the period 1 and
2, the corn market reduced its SL value for every maturity, moving from the least
efficient to the sixth most efficient market in the group, remaining at this level of
efficiency in period 3. On average, between the sub-periods 1992–1996 and 2007–
2012, heating oil markets, diesel, and natural gas presented the greatest increases in
social loss in the past two sub-periods (32.5, 31.5 and 30.6 % respectively), while the
gasoline market presented a reduction in social loss almost as great as the increase
presented in the other two markets (�32:1%). Crude WTI and Brent Crude showed
positive variations of 15.4 and 16.4 % respectively, much less than that of natural
gas and diesel.

Observing the overtime rate of variation of the SL statistic, we found that
between the first and the last period, heating oil, wheat and gasoil futures presented
the greatest increases in SL values for every k (on average 46.9, 40.2 and 38.6 %
respectively), while the corn market presented the largest reduction in social loss
(�32:3%) followed by gasoline with a reduction 22.4 %. Excluding corn and
gasoline, every product reduced its efficiency, which means a decrease in social
welfare. Corn futures markets significantly increased their efficiency between the
period 1 and 2. Between period 2 and 3 this market maintained its efficiency level
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Table 2 SL values for three
periods

1: 1992–1996 SL(2) SL(3) SL(4) SL(5) SL(6)

Heating oil 1.12 1.29 1.44 1.59 1.75

Natural gas 1.27 1.41 1.43 1.45 1.49

Soybean 1.58 1.76 1.94 2.28 2.78

Brent crude oil 1.59 2.06 2.34 2.53 2.65

WTI crude oil 1.64 2.13 2.37 2.57 2.68

Gasoil 1.75 2.23 2.57 2.80 2.94

Wheat 1.81 2.35 2.81 3.21 3.56

Gasoline 1.92 2.53 2.93 3.27 3.64

Corn 2.56 3.55 4.57 5.46 6.03

2: 1997–2006 SL(2) SL(3) SL(4) SL(5) SL(6)
Heating oil 1.14 1.30 1.38 1.44 1.48

Natural gas 1.34 1.48 1.65 1.77 1.83

Brent crude oil 1.53 1.85 2.14 2.40 2.67

WTI crude oil 1.58 1.94 2.25 2.54 2.85

Wheat 1.70 2.06 2.51 3.24 3.63

Corn 1.81 2.42 2.97 3.37 3.66

Gasoil 1.83 2.32 2.69 3.03 3.38

Soybean 1.94 2.48 2.97 3.38 3.85

Gasoline 2.14 2.70 2.90 3.10 3.33

3: 2007–2012 SL(2) SL(3) SL(4) SL(5) SL(6)
Natural gas 1.36 1.64 1.97 2.27 2.49

Heating oil 1.37 1.78 2.18 2.55 2.85

Gasoline 1.52 1.97 2.29 2.55 2.74

WTI crude oil 1.66 2.21 2.73 3.13 3.42

Brent crude oil 1.70 2.25 2.70 3.07 3.35

Soybean 1.73 2.26 2.74 3.05 3.39

Corn 1.81 2.48 3.10 3.57 3.89

Gasoil 2.00 2.80 3.60 4.23 4.80

Wheat 2.22 3.03 3.77 4.74 5.98

for k D 2 and reduced it in a small amount for the other maturities. Gasoline futures
markets contracts considerably increase its efficiency overtime, specially between
period 1 and 3. In general, between the first and the third period, corn and gasoline
futures contracts increased their functional efficiency while that of the other studied
contracts reduced.

As expected, for every sub-period as well as for the whole period 1992–2012,
SL values increase for every product with the distance to contract maturity, showing
that futures prices see their capacity for prediction reduced when k increases. It
should be noted again that agricultural futures markets showed worse results than
energy futures markets in terms of social loss. This result can be explained by the
dependence of the SL value on the forecast error, which is usually higher in the
food sector than in the energy industry. Food products are more perishable than
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energy products, naturals disasters and climate variations affect them more, and the
influence on crops of other variables that are quite hard to forecast [2] increase the
probability of a higher forecast error and of a corresponding higher SL value.

5 Conclusions

This paper has presented a useful and simple measurement of the functional
efficiency of futures markets. The SL statistic is shown to be a consistent indicator
that can be used to quantitatively estimate social losses associated with the use of
futures markets for spot price forecasting by using concepts and tools related to
social surplus theory. The SL statistic computed for several energy and agricultural
futures and maturities show that this indicator can be used to compare the relative
behaviour of different markets and to analyse the evolution of their functional
efficiency over time.

A great deal of research is still needed in this area. One direction of advance
would be to explain the SL statistic and its evolution over time using the variations
in futures markets indicators such as open interest, trading volume and commodity
price volatility. These indicators were only taken into account in this paper as
criteria for selecting the contracts to be considered, since the energy and food
futures that were chosen were those with higher open interest and trade volume.
Another direction of research would be the comparison between the values of the SL
statistic associated with futures markets with the values of the indicator computed
for forward contracts traded in the physical market, as was suggested by Stein [20].
Finally, a natural expansion of this research would be to apply this quantification
method to other groups of commodities, such as other agricultural futures, metals
and financial products such as equities, bonds and currencies.
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On the Fundamental Bifurcation Theorem
for Semelparous Leslie Models

J.M. Cushing

Abstract This brief survey of nonlinear Leslie models focuses on the fundamental
bifurcation that occurs when the extinction equilibrium destabilizes as R0 increases
through 1. Of particular interest is the bifurcation that occurs when only the oldest
age class is reproductive, in which case the Leslie projection matrix is not primitive.
This case is distinguished by the invariance of the boundary of the positive cone
on which orbits contain temporally synchronized, missing age classes and by the
bifurcation of oscillatory attractors, lying on the boundary of the positive cone,
in addition to the bifurcation of positive equilibria. The lack of primitivity of
the Leslie projection matrix, while seemingly only a mathematically technicality,
corresponds to a fundamental life history strategy in population dynamics, namely,
semelparity (when individuals have one reproductive event before dying). The
study of semelparous Leslie models was historically motivated by the synchronized
outbreak cycles of periodical insects, the most famous being the long-lived cicadas
(C. magicicada spp).

1 Introduction

Many mathematical models used to describe the dynamics of biological populations
aggregate all individuals into a single state variable, such as population numbers,
densities, biomass, etc. Structured population dynamics allows for differences
among individuals by means of some designated characteristics. As models for the
dynamics of structured populations, matrix models describe discrete time dynamical
systems which advance a distribution vector x D col .xi/ of numbers (or densities)
xi of individuals, assigned to a finite collection of (say m) specified classes, forward
in time by a multiplication by a projection matrix P [4]. Typically the classification
scheme is based on characteristics such as chronological age, a physiological trait
(size, weight, etc.), life history stages (juvenile, adult, quiescent, etc.), the state of
health (disease susceptible, infected, etc.), spatial location, and so on. Historically
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the first influential use of matrix models can be found in the seminal work of P.H.
Leslie who studied populations structured by age [47, 48].

The projection matrix P has nonnegative entries that describe transition prob-
abilities of individuals between classes and their mortality and fecundity rates. If
these vital rates remain constant in time, then the resulting dynamic system is linear.
Assuming no other processes (such as immigration or emigration, harvesting or
seeding, etc.), the sequence of population densities is x .t/ D Ptx.0/; x .0/ � 0;

and the study of this sequence is a beautiful application of Perron-Frobenius theory.
This classic theory is applicable to the nonnegative matrix P when it is irreducible,
an assumption generally made in applications to population dynamics. This amounts
to requiring that there is a path that, in time, connects any two classes (through
transitions or births). The vector x .0/ D 0 remains fixed in time, a fixed point
we refer to as the extinction equilibrium. Extinction is obviously of fundamental
important in population dynamics; thus the stability of the extinction equilibrium
is of basic importance in mathematical models. If the dominant eigenvalue r (the
spectral radius) of P is less than 1, then the extinction equilibrium is globally
attracting. If r > 1 then the extinction equilibrium unstable (and repeller for
x .0/ � 0) and x .t/ grows exponentially without bound. If r D 1; there exist
bounded non-extinction states, including equilibria given by constant multiples of
the positive Perron eigenvector v > 0 of P associated with r D 1 (and, if P is not
primitive, there can be other bounded dynamics such as periodic cycles [1, 36]).
Thus, the destabilization of the extinction state at r D 1 results in a bifurcation
phenomenon which creates bounded non-extinction states, but in this linear case
only non-generically at exactly r D 1. We say this bifurcation is vertical and the
spectrum associated with non-extinction states is a point spectrum.

Density-dependence is a term used in population dynamics to describe the
situation when vital rates of a population depend on population density. For a
matrix model this means P D P.x/ and the resulting discrete time dynamical
system becomes nonlinear. That the extinction equilibrium x D 0 loses stability
as r increases through 1, where now r is the dominant eigenvalue of the inherent
(density free) projection matrix P .0/, is a consequence of the linearization principle
for maps [34]. The nature of the bifurcation that results, at least in a neighborhood
of the bifurcation point .r; x/ D .1; 0/, is well-known provided P.x/ is primitive. By
primitive is meant that P.x/ is nonnegative, irreducible and has a strictly dominant
eigenvalue r .x/ (equivalently that some integer power Pn .x/ is positive). In this
case, a continuum of positive equilibria bifurcates from x D 0 as r is increased
through 1 whose stability depends on the direction of bifurcation (at least in a
neighborhood of the bifurcation point): they are (locally asymptotically) stable if the
bifurcation is forward (i.e. they correspond to r > 1) and unstable if it is backward
(they correspond to r < 1) [8, 11]. Thus, for nonlinear models the bifurcation is
not vertical and the spectrum is a continuum, unlike linear matrix models. This
fundamental bifurcation result is described in more detail for nonlinear Leslie age-
structured matrix models in Sect. 3.
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The primitivity assumption, i.e. that the dominant eigenvalue r be a strictly
dominant eigenvalue of P.0/, might seem a minor technicality in a rigorously stated
mathematical theorem. Indeed, strict dominance is not needed for the nonlinear
bifurcation results described in the previous paragraph but for one crucial exception,
namely, that the direction of bifurcation determines the stability of the bifurcation.
This is no longer true (in general) if P.0/ is imprimitive. The mathematical reason is
that destabilization of the extinction equilibrium occurs not solely because the real,
dominant eigenvalue r leaves the unit circle in the complex plane, but because other
eigenvalues simultaneously leave the unit circle. This occurrence also leads to other
possible bifurcation phenomenon from x D 0 at r D 1.

These mathematical details are not insignificant with regard to applications to
structured population dynamics. The semelparous Leslie model discussed in Sect. 3
is, as we will see, an example possessing an imprimitive projection matrix. A
population is semelparous if individuals have only one reproductive event before
death. This life history strategy is used by numerous species across many taxa,
including species of insects, arachnids, molluscs, and a few species of reptiles,
amphibians, and marsupials, and many species plants (for which the strategy is also
known as monocarpy). Perhaps the most famous examples are certain species of
cicadas and salmon and, of course, annual plants. The opposite life history strategy
of multiple reproductive events before death is called iteroparity. Semelparity and
iteroparity, along with traits such as the timing of reproduction, resource allocation
trade-offs, and number or size of offspring, play central roles in studies of life history
strategies (see for example [60, 63]). A study of matrix models with imprimitive
projection matrices is, therefore, of more than just mathematical interest.

Historically, the hallmark example of a matrix model with imprimitive projection
matrix is the semelparous Leslie (age structured) model. This interest was par-
ticularly stimulated by studies of cicada population dynamics that utilized Leslie
matrices [2, 3] and whose periodic, synchronized outbreaks have long fascinated
biologists. In Sect. 3 we survey some recent results for this model with regard to the
fundamental bifurcation that occurs when the extinction equilibrium is destabilized
as r increases through 1. As we will see, certain basic features of the bifurcation
are known in general, but a full understanding of the bifurcation has not yet been
obtained except in lower dimensions m D 2 and 3. The complexity of the dynamic
possibilities rapidly increases with the dimension m and a full accounting of the
possibilities might be attainable only for specialized models. (The same conclusion,
using methods other than those described in this paper, was reached in [30].)
The dimension m can be thought of as the maturation time for individuals in the
population, which for the long lived periodic cicada Cicadidae Magicicada (which
in fact is the longest lived insect known) is 13 or 17 years (m D 13 or 17 in the
Leslie model). This provides one stimulus for further study of higher dimensional
semelparous Leslie models.
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2 Preliminaries

Denote m-dimensional Euclidean space by Rm and its positive cone by

RmC $ fx D col .xi/ 2 Rm j xi > 0g :

The closure and boundary of RmC are denoted by NRmC and @RmC D NRmCnRmC
respectively. We consider discrete time dynamical systems defined by matrix
multiplication

x .0/ D x0 2 RmC
x .t C 1/ D Px .t/ for t D 1; 2; : : :

where the m � m matrix is called the projection P matrix. In population dynamic
models, P generally has an additive decomposition

P D F C T

where F and T are the fertility and transition matrices respectively. Specifically

F D �
fij
�
; T D �

sij
�

fij � 0; 0 � sij � 1; ˙m
iD1sij � 1 for i; j D 1; 2; : : : ;m

where fij is the per unit number of i-class offspring produced by a j-class individual
during a time unit that survive to the end of the time unit.

An example is the (extended) Leslie matrix model based on age classes when the
census time interval for t is equal to the length of the age classes. We denote the
projection matrix for a Leslie model by L D F C T where

F D

0
BBBBB@

0 0 � � � 0 sm

0 0 � � � 0 0
0 0 � � � 0 0
:::
:::

:::
:::

0 0 � � � 0 0

1
CCCCCA
; T D

0
BBBBB@

0 0 � � � 0 0

s1 0 � � � 0 0

0 s2 � � � 0 0
:::
:::

:::
:::

0 0 � � � sm�1 sa

1
CCCCCA

0 < si � 1 for i D 1; 2; : : : ;m � 1 (1)

sm > 0; 0 � sa < 1:

Here the i D 1; 2; : : : ;m � 1 classes consist of juveniles (non-reproducing)
individuals and the adult class xm is not structured. The number sa is the fraction of
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adults who survive a time unit (and hence reproduce again). Assuming population
counts are made at the end of each time step, the quantity sm is the number
of newborns produced per adult during a time unit that survive to the census
time. In this way sm contains both adult reproduction and newborn survivorship
characteristics.

The famous Perron-Frobenius Theorem applies to the (nonnegative and irre-
ducible) Leslie projection matrix L. Therefore, its spectral radius r D 	 ŒL� is
positive and is a simple eigenvalue of L with positive eigenvector

v .r/ D

0
BBBBBBBBB@

p1
:::
pi

ri�1

:::
pm�1

rm�2

r
sm

1
CCCCCCCCCA

(2)

where

pi D
i�1Q
nD1

sn for i D 2; 3; � � � ;m

is the probability of living to age i: For later notational convenience we define p1 D
1. The dominant eigenvalue r satisfies the characteristic equation.

rm � sarm�1 � pmsm D 0.

Moreover, no other eigenvalue has larger absolute value nor has a nonnegative right
or left eigenvector.

If the population is iteroparous, i.e. sa > 0, then the Leslie matrix L is primitive.
That is to say r strictly dominates all other eigenvalues. A bifurcation of equilibria
(fixed points) occurs at r D 1. The equilibrium x .t/ 	 0 is a global attractor if
r < 1 and is a repeller if r > 1: At r D 1 there is a continuum (of global extent)
of positive equilibria, namely the positive scalar multiples of v D v.1/: This is a
vertical transcritical bifurcation whose spectrum is a single point r D 1. At r D 1

all orbits with x0 2 RmCn f0g approach a multiple of v as t ! C1 and in this sense
the bifurcating branch of positive equilibria is stable.

In these assertions we can replace r by the quantity

R0 D sm
pm

1 � sa
: (3)

This follows from a basic theorem in [23] that guarantees r and R0 (in general matrix
models) equal 1 simultaneously or always lie on the same side of 1. Also see [8, 11,
15, 51]. This allows for a stability determination by a simple calculation from the
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entries of L (no algebraic formula exists for r; in general). Biologically R0 is the
expected number of newborns per newborn over the course of its lifetime and is
called the net reproductive number (or rate).

If the population is semelparous, i.e. sa D 0, the Leslie matrix L is imprimitive.
This is because r is no longer strictly dominant. Indeed, the eigenvalues of L are
� D ruk where

uk VD exp

�
2� .k � 1/

m
i

�
, k D 1; 2; : : : ;m

are the mth roots of unity. In this case,

r D R1=m
0 ; R0 D

mY
iD1

si: (4)

The vertical bifurcation of positive equilibria still occurs at r D 1, as in the primitive
case; but it is no longer stable in the sense that all orbits with x0 2 RmCn f0g approach
a multiple of v as t ! C1. At r D 1 there also exists a continuum of periodic
cycles. These cycles have a special form. Because Lm D diag .R0/ and hence Lm D
I when r D 1 all points x0 2 RmC produce an m-cycle, i.e., a periodic orbit of
period m (although m might not be the minimal period). This includes so called
synchronous cycles, which are periodic orbits lying on the boundary @RmC of the
positive cone. The boundary @RmC is straightforwardly seen to be forward invariant
since a zero component in x0 advances one entry (modulo m) at each time step:
Similarly, positive components advance one entry at each step. These cycles have
the same number of missing age classes (and positive age classes) at each point
and they sequentially move between the coordinate hyperplanes. At the extreme are
single class m-cycles in which only one entry is positive at each point of the cycle.
In the case of semelparity we see, then, that continua of such so-called synchronous
m-cycles also exist when r D 1. These synchronous cycles for the linear case can
be the source of synchronous oscillations in nonlinear matrix models, to which we
next turn our attention.

3 Nonlinear Leslie Matrix Models

The linear Leslie model predicts either extinction when r < 1 or unbounded
(exponentially) unbounded growth when r > 1. Bounded population persistence can
only occur at r D 1, the point spectrum of the bifurcating branch of equilibria and/or
periodic cycles. The ecological notion of density dependence, i.e. the dependence
of the components in F and T on population density, allows for population self
regulation and bounded persistence on a spectrum of r values of positive measure
(for example, all r > 1). This assumption results in a nonlinear matrix model of the
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form

x .0/ D x0 2 RmC (5)

x .t C 1/ D L .x/ x .t/ for t D 1; 2; : : :

in which the age-specific entries in the fertility and transition matrices may depend
on population density

L .x/ D F .x/C T .x/ :

F .x/ D

0
BBBBB@

0 0 � � � 0 sm�m .x/
0 0 � � � 0 0

0 0 � � � 0 0
:::
:::

:::
:::

0 0 � � � 0 0

1
CCCCCA

T .x/ D

0
BBBBB@

0 0 � � � 0 0

s1�1 .x/ 0 � � � 0 0

0 s2�2 .x/ � � � 0 0
:::

:::
:::

:::

0 0 � � � sm�1�m�1 .x/ sa�a .x/

1
CCCCCA

where the fertility and survivorship parameters si (satisfying (1)) have been modified
by density dependent, multiplicative factors �i .x/ normalized so that

�i .0/ D 1 for all i D 1; 2; � � � ;m and i D a: (6)

In this way, the si are the inherent fertility and survivorship rates, by which we mean
the rates in the absence of density effects. We refer to r and R0 given by (3) and (4)
as the inherent population growth rate and the inherent net reproductive number
respectively. We must supply the multiplicative factors �i with some mathematical
properties, which we do by assuming the following.

A1: �i 2 C2
�
D; NRmC

�
where D is an open set in Rm containing NRmC:

In addition to the normalizations (6) we require, for x 2 NRmC, that
sm�m .x/ > 0 and 0 < si�i .x/ � 1 for i D 1; 2; : : : ;m � 1 and i D a.

We denote partial derivatives by

@j�i .x/ $ @�i.x/

@xj
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and introduce the notation

@0j �i $ @�i.x/

@xj

ˇ̌
ˇ̌
xD0

:

We denote the (row vector) gradient of �i with respect to x evaluated at x D 0 by

r0�i $
�
@01�i � � � @0j �i � � � @0m�i

	
:

A negative derivative @j�m .x/ < 0 represents a negative feedback on fertility
with respect to an increase in the density of the jth age class when the population
age distribution is x. A positive derivative represents a positive feedback (a so-called
component Allee effect). Similarly for other survivorship factors �i .x/ :

Functions commonly used by modelers for negative feedback factors include the
rational function

1

1C˙m
iD1cixi

(7)

often referred to as a Leslie-Gower [49] (or Beverton-Holt or discrete Lotka-Volterra
nonlinearity) and exponential function

exp
��˙m

iD1cixi
�

(8)

(often called the Ricker model [57]). Functions that have been used for positive
feedback include [7]

xj
1

1C˙m
iD1cixi

or xj exp
��˙m

iD1cixi
�

.

A basic biological question concerns the extinction or persistence of a pop-
ulation, which mathematically concerns the stability properties of the extinction
equilibrium x D 0. The Jacobian of (5) at x D 0 is L .0/, which is the linear
Leslie matrix in Sect. 1 with dominant eigenvalue r. The Linearization Principle [34]
implies x D 0 is stable or unstable if r < 1 or r > 1 respectively, or mathematically
more conveniently if R0 < 1 or R0 > 1.

Theorem 1 Assume A1. If R0 < 1 (equivalently r < 1) then the extinction
equilibrium x D 0 is (locally asymptotically) stable. If R0 > 1 (equivalently r > 1)
then the extinction equilibrium is unstable.

Theorems from persistence theory add to the dynamics near x D 0 when r > 1.
Define

jxj $
Pm

iD1 jxij :
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The nonlinear Leslie model (5) is uniformly persistent with respect to x D 0 if
there exists a ı > 0 such that lim inft!C1 jx .t/j > ı for all x .0/ 2 RmCnf0g. It is
dissipative on NRmC if there is a compact subset of NRmC into which all orbits in NRmC enter
and remain after a finite number of time steps. If (5) is both uniformly persistent with
respect to x D 0 and dissipative, then it is called permanent on NRmC. That is to say,
there exist constants ı1; ı2 > 0 such that

ı1 < lim inf
t!C1 jx .t/j � lim sup

t!C1
jx .t/j < ı2

for all x .0/ 2 RmCnf0g. The following theorem is proved in [46] (also see
Theorem 1.2.1 in [8] and, for the semelparous case sa D 0; Proposition 3.3 in [45]).

Theorem 2 Assume A1. If the nonlinear Leslie model (5) is dissipative on NRmC, then
for R0 > 1 it is permanent with respect to the extinction equilibrium x D 0 on NRmC.

Under the conditions of this theorem not only is x D 0 unstable when R0 > 1

(equivalently r > 1), but no orbit in RmCnf0g leads to extinction.
A sufficient condition for dissipativity is that there exists a number k0 > 0 such

that

�m .x/ xm; �a .x/ xm � k0 for x 2 RmC. (9)

These inequalities mean that the adult class self-regulates its vital rates. To see this
we note, from the first component of the Leslie model (5), that

0 � x1 .t C 1/ D b�m .x .t// xm .t/ � bk0

for all t � 0 from which follow the inequalities

0 � xi .t C 1/ D si�1�i�1 .x .t// xi�1 .t/ � bk0

for all t � i � 1 and i D 1; 2; � � � ;m � 1: Finally

0 � xm .t C 1/ D sm�1�m�1 .x .t// xi�1 .t/C sa�a .x .t// xm .t/ � bk0 C sak0

for all t � m � 1: Thus, all orbits in NRmC lie and remain in the rectangular region

B VD ˚
x 2 NRmC j 0 � xi � bk0 for i D 1; 2; � � � ;m � 1 and 0 � xm � bk0 C sak0



after m � 1 time steps.
From the destabilization of the equilibrium x 	 0, as caused by an eigenvalue

of the Jacobian increasing through 1 as R0 (and hence r) increases through 1, we
expect that a branch of non-zero equilibria will (transcritically) bifurcate from x 	 0

at R0 D 1. That is to say, we expect there will exist a continuum of pairs .R0; x/ for
which x is a nonzero equilibrium of (5) whose closure contains the bifurcation point
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.1; 0/. Theorems from bifurcation theory can be applied to validate this assertion.
One way to do this is to write the equilibrium equation of (5), namely, the algebraic
equation

x D L .x/ x (10)

as

.I � T .x// x D R0˚ .x/ x (11)

where

˚ .x/ D

0
BBBBBB@

0 0 � � � 0 1�sa
pm
�m .x/

0 0 � � � 0 0

0 0 � � � 0 0
:::
:::

:::
:::

0 0 � � � 0 0

1
CCCCCCA
:

Note that sa�a .x/ < 1 implies I � T .x/ has a nonnegative inverse

0
BBBBBBBBB@

1 0 � � � 0 0 0

s1�1 .x/ 1 � � � 0 0 0

s1�1 .x/ s2�2 .x/ s2�2 .x/ � � � 0 0 0
:::

:::
:::

:::
:::

˘m�2
jD1 sj�j .x/ ˘m�2

jD2 sj�j .x/ � � � sm�2�m�2 .x/ 1 0
˘m�1

jD1 sj�j.x/

1�sa�a.x/

˘m�1
jD2 sj�j.x/

1�sa�a.x/
� � � ˘m�1

jDm�2sj�j.x/

1�sa�a.x/
sm�1�m�1.x/
1�sa�a.x/

1
1�sa�a.x/

1
CCCCCCCCCA
:

We write the equilibrium equation (11) equivalently as

x D R0M .x/ x

where

M.x/ VD .I � T .x//�1 ˚ .x/

D

0
BBBBBBB@

0 0 � � � 0 1�sa
pm

:::
:::

:::
:::

0 0 � � � 0 pj
1�sa
pm

:::
:::

:::
:::

0 0 � � � 0 1

1
CCCCCCCA
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which has the abstract form

x D R0M .0/ x C R0h .x/ (12)

where

jR0h .x/j D O
�
jxj2

	
near x D 0

uniformly in R0 on compact intervals.
Corresponding to a (nonzero, positive or negative) solution of Eq. (12) we refer

to a (nonzero, positive or negative) equilibrium pair .R0; x/ : Equation (12) has the
form of the nonlinear eigenvalue problem whose bifurcation properties are studied
in [56] (also see [40]). A characteristic value of a matrix is the reciprocal of an
eigenvalue. Note that M.0/ has one characteristic value, namely, 1 and that it is
geometrically simple. Using Theorem 1.20 in [56] (see the Appendix) we find that
there exists a continuum C eC of positive equilibrium pairs .R0; x/ that contains .1; 0/
and is unbounded in R1C � RmC. (See the Appendix for further details.) It follows that
either the spectrum of C eC

S $
˚
R0j .R0; x/ 2 C eC

 � RC

is unbounded in RC or the range of C eC

R $
˚
xj .R0; x/ 2 C eC

 � RmC

of C eC is unbounded in RmC or both. Both are continua.
Perturbation methods in classic bifurcation theory (e.g. Lyapunov-Schmidt

techniques) allow for a parameterization of the bifurcating continuum C of positive
equilibria near the bifurcation point .R0; x/ D .1; 0/. The result is contained in the
following theorem (see [8] for details). Let v D v .1/, i.e.

v D

0
BBBBBBBBB@

p1
:::

pi
:::

pm�1
1

sm

1
CCCCCCCCCA

[see (2)].

Theorem 3 Assume A1 and a1 ¤ 0 where

a1 $ ˙m
iD1r0�i v C sm

1 � sa
r0�a v: (13)
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The nonlinear Leslie model (5) has is a continuum C eC of positive equilibrium pairs
which bifurcates from .R0; x/ D .1; 0/, is unbounded in RC � RmC and, near the
bifurcation point .R0; x/ D .1; 0/, has the parameterization

x D � 1

a1
v"C �"2 C O

�
"3
�
; R0 D 1C " (14)

for " ' 0 if a1 < 0 and " / 0 if a1 > 0.

Definition 1 The bifurcation of the continuum C eC is forward (to the right or super-
critical) if .R0; x/ 2 C eC implies R0 > 1 in a neighborhood of the bifurcation point
.1; 0/. The bifurcation of the continuum C eC is backward (to the left or sub-critical)
if .R0; x/ 2 C eC implies R0 < 1 in a neighborhood of the bifurcation point .1; 0/.

Note that the direction of bifurcation of C eC is determined by the sign of the
quantity a1 (if it is nonzero). If a1 < 0 (which is certainly the case if there are no
positive feedback components at x D 0) then C eC bifurcates forward. On the other
hand, if a1 > 0 then the bifurcation is backward. An inspection of the formula for a1
shows that the latter case requires positive feedback density effects at low population
densities (i.e. component Allee effects [7]) and these must be of sufficient magnitude
if negative feedback components are also present.

The set of R0 values for which the nonlinear Leslie model (5) has a positive
equilibrium is of obvious interest applications. This set includes the spectrum S of
the bifurcating continuum C eC. S is a continuum, i.e. is an interval in RC, whose
closure contains 1. In an exceptional case, S could be the singleton set f1g as it is in
the linear case. However, more generallyS is an interval of real numbers of positive
measure. This is certainly the case if a1 ¤ 0 since, in that case, the bifurcation at
.1; 0/ is not vertical by Theorem 3.

When can we expect there to exist a positive equilibrium for all values of R0 > 1?

Corollary 1 ([17]) Assume A1. If there exists a function k W RC ! RC; bounded
on bounded sets in RC, such that

jxj � k .R0/ for all .R0; x/ 2 C eC, (15)

then the spectrum S � RC of C eC is unbounded and there exists (at least one)
positive equilibrium for each R0 > 1.

This corollary follows because (15) implies that a bounded spectrum S would
imply a bounded range R, in contradiction to C eC being unbounded.

As an example, suppose the inequalities (9) hold. We showed above that all orbits
eventually lie and remain in the compact region B: It follows that any equilibrium
must lie in this region and therefore (15) holds with

k .R0/ $ m
R0

˘m�1
jD1 sj

k0 C sak0.
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Note: A pair .R0; x/ 2 C eC corresponds to a positive equilibrium x 2 RmC of the
nonlinear Leslie model for parameters si that yield the corresponding R0 value. The
inherent projection matrix L .0/ of that model has a dominant eigenvalue r and we
can, therefore, associate with each pair in C eC a positive equilibrium pair .r; x/ : If the
R0 spectrum S of C eC is unbounded, it follows from a theorem of Li and Schneider
[51] that the spectrum of r values obtained from the corresponding equilibrium pairs
.r; x/ is also unbounded. �

When might there be positive equilibria for R0 < 1? This will certainly be the
case when a1 > 0 and the continuum C eC bifurcates backward at .1; 0/. As we
observe from the formula (13) for a1, this requires the presence of component Allee
effects of sufficient magnitude. If a1 < 0 then there are no positive equilibria
for R0 < 1 in a neighborhood of the bifurcation point .1; 0/ , but this does
preclude the possibility of equilibrium pairs .R0; x/ from the continuum C eC outside
a neighborhood of .1; 0/ for which R0 < 1. One case in which this can be ruled out
altogether is when

�i .x/ ; �a .x/ � 1 for x 2 NRmC (16)

(which disallows any component Allee effects near x D 0). In this case we obtain
from equilibrium equation (10) the inequality

0 � x D L .x/ � L .0/ x:

If R0 < 1 then r < 1 [23] and all orbits of

y0 D x0 2 RmC
y .t C 1/ D L .0/ y .t/

satisfy limtCC1 y .t/ D 0, By a straightforward comparison argument, the orbits of
the nonlinear Leslie model (5) satisfy 0 � x .t/ � y .t/ and hence also tend to the
origin.

Corollary 2 Assume A1 and (16). Then R0 < 1 (equivalently r < 1) implies that
the extinction equilibrium x D 0 is globally asymptotically stable.

Combining these results we have the following result.

Corollary 3 Assume A1, the adult self regulation assumption (9), and that the
inequalities (16) hold. Then for the nonlinear Leslie model (5) we have that:

• the extinction equilibrium x D 0 is globally asymptotically stable for R0 < 1;
• the model is permanent with respect to x D 0 for R0 > 1;
• there exists at least one positive equilibrium for all values of R0 > 1.

Example sub-models for the vital rates �i .x/ and �a .x/ that satisfy (16) are
the Leslie-Gower (7) and the Ricker (8) functions. The adult self regulation
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inequalities (9) are satisfied if cm > 0, and hence all the conclusions in Corollary 3
hold for models built using any combinations of these familiar nonlinearities.

We have not yet taken up the question of the stability or instability of the
equilibria from the bifurcating continuum C eC. In general such equilibria can be
either stable or unstable, depending on the specifics of the nonlinearities used in
the model. Some general conclusions can be made, however, in the neighborhood
of the bifurcation point .R0; x/ D .1; 0/. Tractability of this question is obtained
from the parameterization (14) of C eC near .1; 0/. This parameterization allows for
a parameterization of the Jacobian of (5) evaluated at the positive equilibrium and,
in turn, a parameterization of the eigenvalues � D � ."/ of the Jacobian.

If the population is iteroparous, i.e. if sa > 0, then the Jacobian at the bifurcation
point has a strictly dominant eigenvalue of 1: Thus, �1 .0/ D 1 and all other
eigenvalues lie inside the unit circle. This means, in this case, that these eigenvalues
will remain inside the complex unit circle for " small (by continuity) and the
stability of the bifurcating positive equilibria can be determined by the eigenvalue
�1 ."/ D 1 C �

0

1 .0/ " C O
�
"2
�

alone. A calculation of �
0

1 .0/ can be made by
perturbation or calculus methods and the result is (see Lemma 1.2.2 in [8] or, in a
more general abstract setting, see the exchange of stability principle for transcritical
bifurcations in [40])

�1 ."/ D 1 � ca1"C O
�
"2
�

for a positive constant c > 0. This leads to the following stability result for the
equilibrium on the bifurcating continuum C eC in a neighborhood of the bifurcation
point.

Definition 2 The bifurcation of C eC at R0 D 1 is called stable (unstable) if, in
a neighborhood of .R0; x/ D .1; 0/, the positive equilibria from the range of the
continuum C eC are locally asymptotically stable (unstable).

Theorem 4 Assume A1 and sa > 0: If a1 < 0 then the bifurcation of the continuum
C eC of positive equilibrium pairs of the nonlinear, iteroparous Leslie model (5) at
.R0; x/ D .1; 0/ is forward and stable. If a1 > 0 it is backward and unstable.

Taken together Theorems 3 and 4 constitute a fundamental bifurcation theorem
for the iteroparous nonlinear Leslie model (5) that guarantees the occurrence of a
transcritical bifurcation of positive equilibria at the destabilization of the extinction
equilibrium when R0 increases through 1 and the fact that the stability or instability
of the bifurcation depends on the direction of bifurcation.

Example 1 The m D 3 stage nonlinear Leslie model with projection matrix

L .x/ D
0
@ 0 0 be�c1x1.t/�c3x3.t/

1 � �l 0 0

0
�
1 � �p

�
e�c2x3.t/ 1 � �a

1
A (17)

b > 0, 0 < �l; �p; �a < 1 and ci > 0.
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(known as the LPA model) was extensively used over a period of several decades
in numerous experimental studies of nonlinear dynamics involving the insect
Tribolium castaneum (aka flour beetles). See [24] and [6]. The three stages represent
larval, pupal and adult stages in this insect and the unit of time is 2 weeks. This
matrix model has the form (5) with parameters

s3 D b; s1 D 1 � �l; s2 D 1 � �p; sa D 1 � �a

R0 D b
.1 � �l/

�
1 � �p

�
�a

and Ricker-type nonlinearities (8):

�1 .x/ 	 1; �2 .x/ D e�c2x3.t/, �3 .x/ D e�c1x1.t/�c3x3.t/; �a .x/ 	 1

for which assumption A1 holds with D D R3: There are no positive feedbacks and,
indeed, the inequalities (16) hold. The population is iteroparous (sa > 0). From
these observations we conclude from Theorem 3, Corollary 2 and Theorem 4 that
the extinction equilibrium is globally asymptotically stable for R0 < 1, that the
population permanent when R0 > 1, and the bifurcation of positive equilibria at
R0 D 1 is forward and stable.

Although the inequalities (9) do not both hold (�3 .x/ x3 is bounded for x 2 R3C,
but sa�a .x/ x3 is not), an observation of the components of the equilibrium equations
yields, for x 2 R3C, the inequalities

0 � x1 � b
1

c1e

0 � x2 � .1 � �l/ b
1

c1e

0 � x3 � �
1 � �p

�
.1 � �l/ b

1

c1e
C .1 � �a/ x3

the latter of which implies

0 � x3 �
�
1 � �p

�
.1 � �l/

�a
b
1

c1e
:

A summation shows that (15) holds with

k .R0/ D �a C �a .1 � �l/C .1 � �l/
�
1 � �p

�
.1 � �l/

�
1 � �p

�
c1e

R0:

It follows from Corollary 1 that there exists at least one positive equilibrium for all
values of R0 > 1.

The stability properties of the bifurcating positive equilibria, in a neighborhood
of the bifurcation point, given in Theorem 4 might or might not persist globally



230 J.M. Cushing

along the continuum C eC. As is well known for nonlinear maps further bifurcations
(numerous types), and even routes-to-chaos, can occur as R0 is increased. This can
indeed happen for the LPA model in Example 1, which formed the basis of the
nonlinear studies described in [6, 24].

Strong Allee effects have been of increasing interest in theoretical ecology
during the last couple of decades [7]. This is a dynamic scenario in which there
exist multiple (nonnegative) attractors one of which is the extinction equilibrium,
a scenario which in matrix models can only occur if R0 � 1. One common way
that a strong Allee effect arises in models is when a backward bifurcation occurs at
R0 D 1 and the spectrum S of C eC is infinite. In this case, R0 D 1 necessarily lies
in the spectrum S which would imply the existence of a positive equilibrium for R0
at and near 1 and, in particular for R0 / 1. This occurs, for example if a1 > 0 and
the bound (15) hold (Theorem 3 and Corollary 1).

Geometrically, one can think of the backward bifurcating continuum C eC as
“turning around” at a point

�
R�0 ; x�

� 2 R1C � RmC (usually at a saddle-bifurcation) so
as to have an infinite spectrum (or so as to at least include R0 D 1). Thus, for R0 / 1

the extinction equilibrium x D 0 is stable and there exist (at least) two other positive
equilibria, one of which (near the bifurcation point) is unstable and the other on C eC
is potentially stable.

The turning point of C eC usually occurs as a saddle-node (blue-sky) bifurcation
which creates stable positive equilibria (and hence a strong Allee effect involving
equilibria for at least R0 ' R�0 ). If this stability of the positive equilibria persists
along the continuum C eC until R0 D 1, then a strong Allee effect involving equilibria
occurs for R0 / 1. It can happen, however, that the stable positive equilibria created
by the saddle-node bifurcation lose their stability at a spectrum point R0 < 1, say by
a period doubling or Neimark-Sacker bifurcation. In this case, a strong Allee effect
occurs for R0 / 1 that involve non-equilibrium attractors. For examples, see [17].

In this scenario, a strong Allee effect provides the possibility of population
survival when environmental conditions degrade so as to produce R0 < 1. It requires
a backward bifurcation which, in turn, requires sufficiently strong positive feedbacks
(component Allee effects) at low population densities. The caveat is, of course, that
the population must remain out of the basin of attraction of the extinction state (the
Allee basin).

4 Nonlinear Semelparous Leslie Models

All the theorems and corollaries in Sect. 3 are valid for the semelparous (sa D 0)
Leslie model

x .0/ D x0 2 RmC
x .t C 1/ D L .x/ x .t/ for t D 1; 2; : : : (18)
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L.x/ D T

0
BBBBB@

0 0 � � � 0 sm�m .x/
s1�1 .x/ 0 � � � 0 0

0 s2�2 .x/ � � � 0 0
:::

:::
:::

:::

0 0 � � � sm�1�m�1 .x/ 0

1
CCCCCA

with the exception of Theorem 4. For the semelparous Leslie model, as we will
see, the stability of the bifurcating positive equilibria does not depend solely on the
direction of bifurcation.

4.1 Bifurcating Equilibria

The mathematical reason underlying the failure of the direction of bifurcation to
sufficiently determine the stability of the bifurcating continuum C eC of positive
equilibria at R0 D 1 for semelparous Leslie models is the imprimitivity of the
inherent projection matrix L .0/. The destabilization of the extinction equilibrium
x D 0 in this case is not caused by the dominant eigenvalue L .0/ alone leaving
the complex unit circle, but by all m eigenvalues simultaneously leaving the unit
circle (at the mth roots of unity) as R0 increases through 1. As a consequence of
this, when analyzing the parameterized branch of positive equilibria, as outlined
in the paragraph preceding Theorem 4, one needs to calculate expansions of all
m eigenvalues of the Jacobian in order to see whether they all move into the
complex unit disk or whether at least one moves out of the circle as one follows the
bifurcating branch of positive equilibria. These calculations are carried out in [18]
where conditions for stability and instability are obtained that involve quantities in
addition to a1. Define

ak $
mX

nD1

mX
jD1

pj@
0
j �n Re un�j

k for k D 1; 2; : : : ;m1=2 C 1 (19)

where

m1=2 $



m
2

if m is even
m�1
2

if m is odd.

Since u1 D 1 the definition of a1 is consistent with that in Sect. 3 when sa D 0.
The following theorem provides stability and instability criteria for the bifurcat-

ing positive equilibria, in a neighborhood of the bifurcation point, in relation to the
direction of bifurcation. It follows from the expansion

j�kj D 1 � 1

m

ak

a1
"C O

�
"2
�
; " D R0 � 1 (20)
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of the eigenvalue magnitudes for the Jacobian evaluated at the bifurcating equilibria
near the bifurcation point, as calculated in [18].

Theorem 5 ([18]) Assume A1. Let C eC be the unbounded continuum of positive
equilibrium pairs that bifurcates from .R0; x/ D .1; 0/ as given in Theorem 3.

(a) If a1 < 0 then the bifurcation of C eC at R0 D 1 is forward: If ak < 0 for all
k D 1; 2; : : : ;m1=2 C 1 then the bifurcation of C eC is stable. If at least one of
these ak > 0, then the bifurcation of C eC is unstable:

(b) If a1 > 0 then the bifurcation C eC at R0 D 1 is backward and unstable.

Generically, in the sense that a1 ¤ 0, Theorem 5(b) implies the backward
bifurcation of positive equilibria at R0 D 1 (a1 > 0) is always unstable.1 However,
Theorem 5(a) shows that a forward bifurcation is not necessarily stable, in contrast
to the iteroparous case in Theorem 4. While analytically rather clear-cut, the stability
criteria for a forward bifurcation, namely, that all ak be negative, does not lend
itself to an immediately obvious biological interpretation. They have to do with the
relationship between the effects of density on vital rates among individuals within
the same age class and those among individuals of different age classes.

For example, suppose there are no density effects between age classes; that is to
say, suppose �i does not depend on xj for all j ¤ i: Then @0j �n D 0 for all j ¤ n
and ak D a1 for all k. It follows from Theorem 5 that a forward bifurcation is stable.
More generally, write

ak D a1 C
mX

nD1

mX
jD1

pj@
0
j �n

�
Re un�j

k � 1
	

and note that the double sum on the right side contains no within-class density
effects, i.e. no derivatives @0j �n with j D n. Thus, if a1 < 0 and the magnitudes
of all between-class density effects are sufficiently small, then ak < 0 for all k.

Corollary 4 If a1 < 0 and between-class density effects are weak, i.e.
ˇ̌
ˇ@0j �n

ˇ̌
ˇ are

sufficiently small for all j ¤ n, then the bifurcation of C eC at R0 D 1 is forward and
stable for the semelparous model (18).

As we will see in Sect. 4.2, when between-class density effects become signifi-
cant, the stability of the bifurcating branch of positive equilibria can be lost. For a
further analysis of the relationship between between-class and within-class density
effects, the direction of bifurcation, and the stability properties of the bifurcating
positive equilibria see [18].

Note that Corollary 1 concerning an unbounded spectrum and the sufficiency
of (9) for an unbounded spectrum both hold for the semelparous model (18).

1This corrects an error in Theorem 4.1 of [10].



On the Fundamental Bifurcation Theorem for Semelparous Leslie Models 233

4.2 Bifurcating Synchronous Cycles

To investigate further the nature of the bifurcation at R0 D 1 for the nonlinear
semelparous Leslie model (18), we begin with the m D 2 dimensional case

L .x/ D
�

0 s2�2 .x1; x2/
s1�1 .x1; x2/ 0

�
:

This semelparous, juvenile-adult model has been extensively studied by several
authors [19–22, 32, 33, 55, 64, 66] (also see [54]).

If one begins with a population of only x1 > 0 juveniles, then the resulting orbit

x .0/ D
�

x1
0

�
; x .1/ D

�
0

s1�1 .x1; 0/ x1

�
;

x .2/ D
�

R0�2 .0; s1�1 .x1; 0/ x1/ �1 .x1; 0/ x1
0

�
; � � �

sequentially visits the positive coordinate axes. This shows that the boundary of the
positive cone is invariant and has a dynamic that can be understood by an analysis
of the one-dimensional composite map

x1 .t C 1/ D R0 N� .x1 .t// x1 .t/ (21)

N� .x1/ $ �2 .0; s1�1 .x1; 0/ x1/ �1 .x1; 0/ ; R0 D s1s2

which describes the dynamics of every other point (the juvenile component) of the
orbit. An equilibrium of this composite map corresponds to an orbit of period 2 of
the semelparous model. This cycle is an example of a single-class synchronous 2-
cycle by which is meant a periodic cycle in which the age classes are synchronized
in a way that they are temporally separated and that only one class is present at each
point in time.

One-dimensional maps, such as (21), have been well studied and there is a large
literature, and a large quantity of analytic methods, available for their analysis. For
example, one approach is to view (21) as an m D 1 dimensional matrix model
to which we can apply the equilibrium bifurcation theorems in Sect. 3. Or, more
straightforwardly, one can investigate the equilibrium equation for positive solution
pairs .R0; x1/, which obviously are defined by the equation

1 D R0 N� .x1/ :

Noting that N� .x1/ is positive valued for x1 � 0 and that N� .0/ D 1, we see that the
pairs .R0; x1/ D .1= N� .x1/ ; x1/ for x1 2 R1C define a continuum of equilibrium pairs
that bifurcates from .1; 0/ at R0 D 1 (whose range is R1C) and whose direction of
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bifurcation is forward and stable or backward and unstable if

@01 N� < 0 (or @01 N� > 0)

respectively. A calculation shows @01 N� D cw where

cw $ @01�1 C s1@
0
2�2:

Each of these equilibrium pairs .R0; x1/ corresponds to a single-class synchronous
2-cycle of the m D 2 of the dimensional semelparous Leslie model (18) as defined
by the two points

�
x1 .1/
x2 .1/

�
D
�

x1
0

�
;

�
x1 .2/
x2 .2/

�
D
�

0

s1�1 .x1; 0/ x1

�

of the cycle. Identify this cycle by its pair of positive components x1 .1/ ; x2 .2/
(which are the two cohort densities that temporally alternate) and denote the
corresponding single-class synchronous 2-cycle pair by

.R0; Œx1 .1/ ; x2 .2/�/ 2 R1C � R2C

where for every x1 2 R1C

R0 D 1

N�1 .x1/ ; x .1/ D x1; x .2/ D s1�1 .x1; 0/ x1:

The continuum of equilibrium pairs .R0; x1/ of (21) produces a continuum C 2C of
these single-class synchronous 2-cycle pairs of the semelparous Leslie model (18).
This continuumC 2C bifurcates from .1; 0; 0/ at R0 D 1 and it is a forward bifurcation
if cw < 0 and a backward bifurcation if cw > 0.

That the stability of the x .1/ D x1 component as an equilibrium of the composite
map (21) depends on the direction of bifurcation only tells us about the stability of
the single-class 2-cycles with respect to the dynamics on the boundary @R2C. The
stability or instability of these cycles as cycles of the semelparous Leslie model (18)
on NR2C requires further analysis. This stability analysis involves the eigenvalues
�1; �2 of the Jacobian of the composite map (which is the product of the Leslie
model’s Jacobian evaluated at the two points of the 2-cycle). Making use of the
parameterizations

�
x1
0

�
D
 

� 1
cw

0

!
"C O

�
"2
�
;

�
0

s1�1 .x1; 0/ x1

�
D
 

0

� s2
cw

!
"C O

�
"2
�
;

R0 D 1C "
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of the synchronous 2-cycle points, one can calculate the parameterizations

�1 D 1 � "C O
�
"2
�
; �2 D 1C cw � cb

cw
"C O

�
"2
�

of these eigenvalues, where

cb $ a1 � cw D @01�2 C s1@
0
2�1

measures the between-class density effects. Accompanying these bifurcating,
single-class synchronous 2-cycles, are the bifurcating positive equilibria, which
have, together with eigenvalues of the associated Jacobian, the expansions

�
x1
x2

�
D
 

� 1
cwCcb

� s1
cwCcb

!
"C O

�
"2
�
; R0 D 1C "

�1 D 1 � 1

2
"C O

�
"2
�
; �2 D �1C cw � cb

cw C cb
"C O

�
"2
�
:

From these expansions one can sort out the direction of bifurcation and stability
properties of both the positive equilibria and synchronous 2-cycles. The results are
summarized in the following theorem.

Theorem 6 ([22]) Consider the m D 2 dimensional, semelparous Leslie
model (18) and assume A1 holds. Also assume that a1 D cw C cb ¤ 0 and cw ¤ 0.
Then a bifurcation of unbounded continua C eC and C 2C of positive equilibrium pairs
and single-class, synchronous 2-cycles respectively occurs at R0 D 1.

(a) If cw C cb < 0 then the bifurcation of C eC at R0 D 1 is forward. The bifurcation
is stable if cw � cb < 0 and unstable if cw � cb > 0.

(b) If cw C cb > 0 then the bifurcation of C eC at R0 D 1 is backward and unstable.
(c) If cw < 0 then the bifurcation of C 2C at R0 D 1 is forward. The bifurcation is

stable if cw � cb > 0 and unstable if cw � cb < 0.
(d) If cw > 0 then the bifurcation of C 2C at R0 D 1 is backward and unstable.

That a forward bifurcation in a nonlinear semelparous Leslie model (5) is not
necessarily stable can be seen by cases (a) and (c). Also note that the positive
equilibria and the synchronous 2-cycles can bifurcate in opposite directions, since
cw C cb and cw do not necessarily have the same signs. In any case, however, a
backward bifurcation is always unstable. Also note that it is never the case that both
bifurcating continua are stable, although it is possible that both are unstable.

A natural question to ask is whether Theorem 6 can be extended in some manner
to higher dimensional semelparous Leslie models with m � 3. The properties of
the C eC equilibrium bifurcation for m � 3, namely its occurrence, direction of
bifurcation and stability properties, are described by Theorem 5. We next turn our
attention to the bifurcation of single-class, synchronous m-cycles at R0 D 1.
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Periodic m-cycles are fixed points of the m-fold composite map obtained
from (18) whose components satisfy equations of the form

x1 D R0 N�1 .x/ x1 (22)

x2 D R0 N�2 .x/ x2

:::

xm D R0 N�m .x/ xm

where N�i .x/ is a composite made from the coefficients �i .x/ of the Leslie projection
matrix L .x/. Single class synchronous cycles correspond to fixed points with xj D 0

for j D 2; 3; : : : ;m, and where x1 > 0 is a positive fixed point of the one dimensional
map

x1 D R0 N� .x1/ x1 (23)

with

N� .x1/ $ N�1 .x/jxjD0; j¤1 > 0, N� .0/ D 1:

This one dimensional map can be treated in the manner that we treated the map (21)
when m D 2. There is a continuum of equilibrium pairs .R0; x1/ that bifurcates
forward (backward) from .1; 0/ if cw < 0 (or cw > 0) where

cw D
mX

nD1
pn@

0
n�n: (24)

Each equilibrium pair corresponds to a single-class, synchronous m-cycle of the
semelparous Leslie model (18) and the bifurcating continuum of equilibrium pairs
produces a continuum C mC of single-class synchronous m-cycle pairs

.R0; Œx1 .1/ ; x2 .2/ ; : : : ; xm .m/�/ 2 R1C � RmC

of the semelparous Leslie model (18). This continuum C mC bifurcates from
.1; Œ0; : : : ; 0�/ at R0 D 1 and it is a forward bifurcation if cw < 0 and a backward
bifurcation if cw > 0.

Since positive fixed points of (23) satisfy the equation

1 D R0 N� .x1/

the range of the continuum (i.e. of the set of x1 values obtained from the continuum)
is the half line R1C, since there is a unique R0 D 1= N� .x1/ for each x1 2 R1C. With
regard to the spectrum of R0 values from the continuum C mC , a little thought about
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the composite N� .x1/ reveals that the adult regulation assumption (9) on �m implies
N� .x1/ x1 is bounded for x1 � 0. This in turn implies the spectrum of R0 on the
continuum is unbounded (and hence is a half line in R1C).

We summarize these results in the following theorem.

Theorem 7 Assume A1 and cw ¤ 0. A continuum C mC of single-class m-cycles for
the semelparous Leslie model (18) bifurcates from the origin x D 0 at R0 D 1. If
cw < 0 the bifurcation is forward. If cw > 0 the bifurcation is backward. The range
of the continuum, i.e. the set of first class cohort densities x1 from the cycles, is the
half line R1C. If �m .x/ satisfies (9), then the spectrum of R0 values is infinite (and
hence is a positive half line whose closure contains 1).

By Theorem 3 the direction of the bifurcation at R0 D 1 of the continuum C eC of
positive equilibria is determined by the sign of

a1 D ˙m
nD1r0�n v; v D col .pi/ .

This quantity involves both between-class and within-class density effects @0j �n. On
the other hand, by Theorem 7 the direction of bifurcation at R0 D 1 of the continuum
C mC of single class, synchronous m-cycles determined by the sign of the quantity cw

given by (24), which involves only within-class density effects @0n�n. Since these
quantities can have different signs, it follows that the two continuum can bifurcate
in opposite directions.

Theorem 7 provides the existence of a bifurcating continuum of single-class,
synchronous m- cycles : General stability and instability criteria for these cycles
have yet to be obtained for dimensions m � 3 and this remains a challenging open
problem. Some results are known, however, under special assumptions.

4.3 Negative Feedback Only

Most of the literature on nonlinear Leslie matrix focusses on the case of negative
feedback density effects (negative derivatives @0j �n) and the absence of positive
density effects (no positive derivatives @0j �n, i.e. no component Allee effects).
Assume

A2: @0j �n � 0 for all 1 � j; n � m with at least one @0n�n < 0:

Then a1 < 0 and cw < 0 (and cb � 0) and, by Theorems 3 and 7, both the
bifurcating continua of positive equilibria and single-class m-cycle are forward.

In the m D 2 dimensional case we have the following corollary of Theorem 6.

Corollary 5 Assume m D 2 and that A1 and A2 hold. The bifurcation at R0 D 1

of the continua C eC and C 2C of positive equilibria and single-class, synchronous
2-cycles of semelparous Leslie model (18) are both forward and the following two
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alternatives hold:

(a) If cw < cb then the bifurcation of C eC is stable and the bifurcation of C 2C is
unstable;

(b) If cw > cb then the bifurcation of C eC is unstable and the bifurcation of C 2C is
stable.

The two alternatives in Corollary 5 describe a dynamic dichotomy at the
bifurcation point R0 D 1: either the bifurcating positive equilibria or bifurcating the
synchronous 2-cycles are stable, but not both. Which bifurcating branch is stable
depends on the relative strength of between-class and in-class density effects, which
we can express in terms of the ratio

	 $ cb

cw
. (25)

If 	 < 1 then within-class effects out weigh between-class effects and the
population equilibrates. On the other hand, if 	 > 1 then between-class effects out
weigh between-class effects and the population tends towards synchronous 2-cycle
oscillations in which the juveniles and adults are temporally separated.

It is interesting to notice that this dynamic dichotomy, in the case m D 2, bears
a similarity with the classic two species competitive exclusion principle, except
that in the case of semelparous Leslie populations the two dynamic outcomes
have to do with age classes within a single population and not the presence or
absence of species. (Mathematically, this relates to the fact that the composite of the
semelparous model has the same mathematical form as a two species competition
model.)

The dynamic dichotomy between the bifurcating positive equilibria and the
single-class, synchronous 2-cycles described in Corollary 5 for m D 2 does not
hold in higher dimensions m � 3. This can be seen, for example, in studies of the
m D 3 dimensional case [9, 12, 18]. As we will see in Theorem 9, however, when
m D 3 there is a dynamic dichotomy between the stability of the bifurcating positive
equilibria and the boundary of the positive cone as an attractor or repeller.

The boundary @RmC of the positive cone is an attractor if there exists an open
neighborhood U � RmC of @RmC (in the relative topology of R3) such that orbits with
initial conditions in U have !-limit sets in @RmC. The boundary @RmC of the positive
cone is a repeller if there exists a neighborhood U � RmC of @RmC such that for the
orbit from each initial condition not in @RmC there exists a time T > 0 such that the
orbit lies outside of U for all t � T.

The use of average Lyapunov functions for the study of nonlinear Leslie models
was pioneered by Kon et al. [43, 45, 46]. This approach leads to criteria for the
attracting and repelling properties of the boundary @RmC that require the calculation
the maxima and minima of quantities taken along all orbits on @RmC (e.g. see
Theorem 4.1 in [45]). This obviously requires some knowledge of the dynamics
on @RmC; which in general can be complicated. Near the bifurcation point, however,
the dynamics on @RmC is usually simpler and, in fact, usually involves attracting
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(synchronous) cycles. Here, we will restrict attention to this case and assume all
orbits on @RmC approach a cycle.

Theorem 8 ([18]) In addition to A1 and A2, suppose the follow two assumptions
hold for the semelparous model (18):

A3: �i .x/ xi is bounded for x 2 NRmC for all 1 � i � m;
A4. every orbit on @RmC approaches a synchronous cycle as t ! C1.

The boundary @RmC of the positive cone is an attractor (repeller) if, for every periodic
cycle c .j/ on @RmC, the quantity

� $
pP

jD1
ln

�
R0

mQ
nD1

�n .c .j//

�
(26)

is negative (positive). Here p is the period of the cycle.

For dimension m D 2 we saw that the dynamics on @RmC were described by a
(composite) one-dimensional map, which permitted us to address the assumption
A4 near R0 D 1. In higher dimensions, however, it is possible for an increasing
number of different types of synchronous cycles to arise at bifurcation, namely k-
class synchronous cycles with k positive entries at each time step. These cycles
correspond to fixed points of the composite map (22) with k positive and m � k zero
entries. It is an open problem to obtain conditions under which the bifurcation of k-
class synchronous cycles occurs at R0 D 1, although one approach that uses Eq. (22)
is clear. Select any subset of k of Eq. (22), set xi D 0 for all other subscripts, and
study the resulting system of equations using the bifurcation methods used above
for single-class cycles.

Under assumption A2, the bifurcation of the single-class m-cycles is forward.
Therefore, for R0 ' 1 it is necessary, in order to apply Theorem 8, to calculate � for
the bifurcating single-class cycle. Since a parameterization of the cycle is possible
by perturbation methods, one can calculate an approximation of � for R0 ' 1, which
turns out to be

� D
 

m � 1 �
m�1P
qD1

	q

!
"C O

�
"2
�

where

	q D
Pm

iD1 pi@
0
i �iCqPm

iD1 pi@
0
i �i

; q D 1; 2; : : : ;m � 1 (27)

(subscripts on �i are calculated modulo m) [18]. Theorem 8 gives the following
result.

Corollary 6 Assume A1, A2 and A3 hold for the semelparous model (18). Assume
for R0 ' 1 that all boundary orbits tend to the single-class m-cycle as t ! C1.
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Then for R0 ' 1

m�1P
qD1

	q > m � 1 implies @RmC is an attractor

m�1P
qD1

	q < m � 1 implies @RmC is a repeller.

The ratios 	q are measures of the relative strength of between-class density
effects in comparison to with-in class density effects. The denominator of 	q in (27)
is a measure of within-class competition (at low population densities) as based on
the derivatives @0i �i: In the numerator, the derivative @0i �iCq measures the density
effect that ith age class has on the survivorship of age class i C q modulo m. This
means that the numerator of the ratio 	q is a measure of the density effects among
these selected (but not all) unidirectional pairings of age classes. Thus, Corollary 6
generalizes the conclusion stated after Corollary 5 for m D 2, namely, that weak
density effects between age classes promotes stabilization with all age classes
present, while strong density effects between age classes promotes synchronized
oscillations with missing age cohorts.

Suppose we strengthen the local monotonicity assumption A2 to the following
global assumptions, which are satisfied, for example, by the Leslie-Gower type
nonlinearities (7).

A4: @i�j .x/ < 0 and @i .�i .x/ xi/ > 0 for x 2 NRm
C

.

In the m D 2 dimensional case, Eq. (22) reduce to a single (one dimensional) map

x1 D R0 N�1 .x1/ x1

which by A4 is a monotone map and, as a result, all orbits equilibrate as t ! C1:

For R0 > 0 assumption A4 also implies x D 0 is a repeller and there exists a unique
positive fixed point x1 > 0. All this goes to show that all boundary orbits tend to
the single-class 2-cycle when R0 > 1. Corollary 6 implies the boundary @R2C is an
attractor or repeller when 	1 is greater than or less than 1. Here 	1 is identical to 	
in (25) and this result provides an enhancement of Corollary 5.

Unlike the case m D 2; however, the monotonicity assumptions A4 do not
guarantee that all boundary orbits tend to the single-class synchronous 3-cycle when
m D 3. When m D 3 Eq. (22) defining the boundary cycles is a planar map, which
under A4, is strictly competitive on NR2C and strongly competitive on R2C to which
the powerful theory of planar monotone maps can be applied (e.g. Proposition 2.1
in [62]). The result is that if R0 > 1 then all orbits converge to an equilibrium
in NR2C, specifically to a non-negative equilibrium lying on a positive axis @R2C or
possibly a positive equilibrium in R2C. These fixed points correspond to a single-
class synchronous 3-cycle and a two-class, synchronous 3-cycle respectively. Under
our working assumptions we know that a single-class 3-cycle exists for R0 ' 1.
Using bifurcation theory it can be shown that positive two-class synchronous
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3-cycles also bifurcate from the origin at R0 D 1 if both 	i > 1 or both 	i < 1

[18]. A parameterization of these bifurcating two-class 3-cycles near R0 D 1 leads
to the expansion

� D 	1 C 	2 � 	21 � 	22 C 	1	2 � 1

	1	2 � 1 "C O
�
"2
�

which, coupled with the expansion (27), with m D 3, for the single-class 3-cycles
lead to the following result.

Theorem 9 Assume A1, A2 and A3 hold for the semelparous model (18). For R0 '
1 we have the following alternatives for the cases m D 2 and m D 3.

Suppose m D 2. If 	1 < 1 then the bifurcating positive equilibria are stable and
the boundary @R2C is a repeller. If 	1 > 1 , the bifurcating positive equilibria are
unstable and @R2C is an attractor.

Suppose m D 3. If 	1 C 	2 < 2 then the bifurcating positive equilibria are stable
and the boundary @R3C is a repeller. If 	1 C 	2 > 2 then the bifurcating positive
equilibria are unstable and @R3C is an attractor.

This theorem describes, for R0 ' 1, a dynamic dichotomy between the boundary
of the positive cone and a positive equilibrium. By this is meant, roughly speaking,
that strong within-class (negative feedback) density effects, measured by the ratios
	i, promotes equilibration with over-lapping age classes while strong between-class
density effects destabilize this equilibration and promotes oscillations with missing
age classes present at each time step. In the latter case (i.e. when 	1 C 	2 > 2)
for the m D 3, an orbit within the positive cone does not necessarily approach a
synchronous cycle, or a periodic oscillation of any kind, even though it approaches
the boundary of the cone on which orbits do approach the single-class 3-cycle. If,
in addition to 	1 C 	2 > 2 , one of the ratios 	i is less than 1, then the single-class
synchronous 3-cycle is also unstable, namely it is a saddle (it is stable if both 	i > 1)
[12]. In this case orbits in the positive cone that approach the boundary, approach
a cycle chain on the boundary. This invariant set consists of the three phases of the
synchronous 3-cycle together with heteroclinic connections among them. See Fig. 1.
Other types of cycle chains (ones that also contain 2-cycle synchronous cycles and
their phases) can also bifurcate from the origin, under different circumstances. For
a list of the possibilities when m D 3 see [12]. Since 	1 C 	2 > 2 also implies that
the positive equilibrium is unstable, we see that the dynamic dichotomy in the case
m D 3 is not between the positive equilibrium and the single-class synchronous
cycle, unlike the case m D 2.

In general, for dimensions m � 4 a description of the dynamic alternatives near
the bifurcation point R0 D 1 remains an open problem. It is not known in general
if a dynamic dichotomy exists between the two alternatives of a stable positive
equilibrium and an attracting boundary @RmC. Even if the boundary is known to
be an attractor (from inside the positive cone), an understanding of the dynamics
on the boundary is complicated by the possibility of many types of synchronous
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Fig. 1 These plots show orbits from the semelparous LPA model (17) with coefficients �a D 1

and b D 3, �l D 0:5; �p D 0; c1 D c3 D 0:1; c2 D 0:2. We calculate 	1 D 0 and 	2 D 5 and
conclude that both continua of bifurcating positive equilibria and single-class synchronous cycles
are unstable, but that the boundary @R3

C

is an attractor. Note that R0 D 1:5. (a) The open circles are
the points of the single-class 3-cycle which are temporally visited counter-clockwise. Also shown
are points on heteroclinic connecting orbits lying in the coordinate planes (which temporally are
visited sequentially). (b) The time series of the single-class 3-cycle showing the synchrony of the
age classes. (c) An orbit starting near the unstable positive orbits displays a spiral departure from
the equilibrium. (d) This plot shows how the orbit approaches @R3

C

, specifically the cycle chain
shown in (a). (e) The x1 component of this orbit appears to approach a period three oscillations by
t D 160. (f) However, this component departs from this oscillation and undergoes a phase shift at
around t D 200, after which it returns to a period three oscillation, but with its phase shifted by
one time unit. (g) Three more such phase shifts are shown. They occur infinitely often, increasingly
further apart, creating infinitely many longer and longer episodes of (near) single-class oscillations
of period three.
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m-cycles and connecting heteroclinics, i.e. types of cycle chains (to say nothing
of other possible bifurcating invariant sets lying on the boundary). The dynamic
complexity can greatly increase with the dimension m � 4, and it is likely that a
complete and general description of the bifurcation at R0 D 1 will not be possible
for higher dimensions [30].

4.4 Backward Bifurcations

As mentioned at the end of Sect. 3 a strong Allee effect, that is to say, the occurrence
of multiple attractors, one of which is the extinction equilibrium and another which
is a non-extinction attractor, often (if not usually) arises in population models
from a backward bifurcation. For nonlinear matrix models, a backward bifurcating
continuum of positive equilibria (necessarily unstable for R0 / 1) can “turn around”
at a saddle-node bifurcation point R�0 < 1, creating stable positive equilibria
for R0 < 1 when the extinction state is also stable. For the semelparous Leslie
model (18) opportunities for a strong Allee effect arise from such an occurrence
for both the continuum of positive equilibria and the continuum of single-class
synchronous cycles (or more complicated cycle chains).

For example, we see from Theorem 6 that several bifurcation scenarios at R0 D 1

are possible for the m D 2 dimensional case, due to the fact that the continuaC eC and
C eC can bifurcate in the same or different directions. Figure 2 shows orbits calculated
from the semelparous Leslie model (18) with m D 2 and

�1 .x/ D 1C ˛x2
1C c21x1 C c22x2

; �2 .x/ D 1

1C c11x1 C c12x2
: (28)

The parameter values chosen in Fig. 2, together with Theorem 6, imply that both
continua C eC and C 2C bifurcate backward. The result is a strong Allee effect in
this model in which there are two non-extinction attractors for values of R0 < 1,
namely a positive equilibrium and a single-class, synchronous 2-cycle, as well as
a stable extinction equilibrium. Among other things, this example shows that the
dynamic dichotomy that occurs in the m D 2 dimensional semelparous Leslie model
described in Corollary 5 does not occur when both continua bifurcate backwards.

5 Concluding Remarks

I have focussed in this paper on the dynamics of m dimensional, nonlinear
semelparous Leslie models that arise from bifurcations that occur at R0 D 1 due
to the loss of stability of the extinction equilibrium. Under quite general conditions,
methods from modern and classic bifurcation theory establish the existence of two
basic continua that bifurcate from the extinction equilibrium at R0 D 1, one C eC
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Fig. 2 These plots show three example orbits for the m D 2 semelparous Leslie model (18) with
�1 .x/ and �2 .x/ given by (28) with parameter values c11 D c12 D c22 D 0:01; c21 D 0; ˛ D 0:6;

s1 D 0:5; and b D 1:25. These values imply R0 D 0:625 < 1 and cw D �0:015; cb D 0:295;

cwCcb D 0:280; and cw�cb D �0:310: By Theorem 6 both continua bifurcate backwards, which
accounts for a strong Allee effect with two non-extinction attractors in the presence of an attracting
extinction equilibrium. Some initial conditions lead to extinction as in plot (a), some to a positive
equilibrium as in plot (b), and some to a single-class synchronous 2-cycle as in plot (c)

consisting of positive equilibrium pairs and the other C mC consisting of single-class,
synchronous m-cycle pairs. These continua have a global extent in the sense that
they are unbounded, i.e. either their spectrum or range is unbounded. The directions
of bifurcation, in a neighborhood of the bifurcation point .R0; x/ D .1; 0/, can
be determined from the signs of the quantity a1 in the case of C eC and cw in the
case of C mC : Both a1 and cw are linear combinations of the derivatives @0j �i (the
sensitivities of the Leslie matrix entries �i to changes in low age-class densities).
In models with no positive feedback density effects (i.e. no derivative @0j �i > 0

or, in other words, no component Allee effects) the bifurcation of both continua is
forward. Positive feedback effects can, if of sufficient magnitude, lead to backward
bifurcations (which can, in turn, lead to strong Allee effects).
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The question of what attractors arise from these bifurcations is a difficult one
and has not been fully resolved in general, except in lower dimensions. The two
dimensional case m D 2 is well understood (Theorem 6): backward bifurcations
are unstable and, in the case of forward bifurcations, one but not both bifurcations
of C eC and C eC is stable. The case m D 3 is also well-understood, at least in
the absence of positive feedback terms, in that there is a dynamic dichotomy
between C eC and @R3C (Theorem 9). In this case, the attractor is not necessarily a
positive equilibrium or a single-class synchronous 3-cycle, but can be a cycle chain
consisting of the three phases of the 3-cycle connected by heteroclinic orbits lying
on @R3C. This anticipates the complexity of the dynamics on @RmC, in particular the
number and type of synchronous cycles, that can occur for higher dimensions m.
The boundary dynamics significantly influence the dynamics and type of attractors
for the semelparous Leslie model (5) on NRmC. It seems unlikely that a thorough
accounting of the possibilities is possible for higher dimensions m � 4 without
specialized and simplifying assumptions on the model. Using a different approach
to the study of the dynamics of the Leslie model (5)—one based on a formal limiting
procedure and comparison with associated differential equation models—Diekmann
and van Gils come to the same conclusion, even with the specialized assumption
they make that all density dependence is through a single weighted population size
[30].

There is a large literature that investigates the dynamics of semelparous Leslie
models from other points of view that do not restrict attention to a neighborhood
of the bifurcation at R0 D 1. These studies generally restrict the nonlinearities in
the model in some way or another. Common assumptions include limiting density
dependence to a few or even just one age class [50, 53, 61, 66], assuming density
effects are through a dependence on one weighted population size w D ˙m

jD1wjxj (so
that �i D �i .w/ for all i) [25–27, 29–31, 65–68], use of specific nonlinearities such
as Leslie-Gower (7) [49] or Ricker (8) types [57], and an hierarchical structure to
density dependence in which the vital rates of an age class depend only on densities
of older (or younger) age classes [16, 37, 38]. These studies often are done with an
eye towards the possibility of positive (non-synchronous) periodic cycles, invariant
loops, and chaotic attractors. Given that one-dimensional maps m D 1 can, as is well
known, exhibit complex dynamics, it is certainly to be expected that such attractors
will occur in nonlinear Leslie models of dimension m � 2: They generally arise
when R0 is increased and a destabilization of the positive equilibria on C eC occurs
by means of a period-doubling or Neimark-Sacker (discrete Hopf) bifurcation, and
subsequently by destabilizations of non-equilibrium attractors, all of which can
lead to a so-called route-to-chaos. For semelparous Leslie models, since both the
boundary @RmC and the interior RmC of the positive cone are invariant, it is possible
for such bifurcation scenarios to occur in the interior and on the boundary positive
cone. Thus, one can see complicated attractors on @RmC and/or in RmC: Biologically
the former are distinguished by always having a missing age class while the latter
never have a missing age class.

A theme that arises from the study of the semelparous Leslie model (5) is
that strong competition (negative feedback density effects) between age-classes
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(relative to within class competition) promotes synchronous oscillations. This is
viewed as a kind of competitive exclusion principles among age-classes (in analogy
to the competitive exclusion principle among different species). This idea forms
one of the principle hypotheses offered to explain the synchronized, recurrent
outbreaks of periodical insects, the periodical cicadas being the most famous
example. Another competing hypothesis is predator saturation: by synchronizing
their emergence adults overwhelm predators by their number and thereby assure
successful reproduction of at least a fraction of their number (for a discussion see
[52, 69]). Bulmer and Bencke [2, 3] concluded from their seminal model studies,
in which predation and fungal infections of adult were included in a semelparous
Leslie model, that between-class competitive effects (particularly in the youngest
age classes) are the primary cause of synchronized cohort oscillations. Although
there is some evidence of such competition among cicada nymphs [39], as they
struggle for feeding locations on tree roots, it is difficult to obtain observational data
about the interactions among age classes of nymphs.

There is, however, some striking experimental evidence of the phenomenon of
competition induced synchronization of age classes. Decades long experimental
studies of nonlinear dynamics conducted with Tribolium castaneum (flour beetles),
reported in [5, 24, 28, 41], were not designed to study synchronized oscillations in a
semelparous species. Indeed, T. castaneum is not naturally semelparous. However,
the experimental protocol used in the keystone study of dynamic bifurcations
and routes-to-chaos in effect made the experimental cultures of T. castaneum
semelparous by imposing high adult mortality. (Theoretically�a D 0:96 in the LPA
model (17), although in practice 100 % mortality was often imposed during the long
term study.) With the cultures placed into an essentially semelparous life history,
between-class density effects were increased in a sequence of replicated cultures
(specifically, c2 was increased from 0 to 1 in (17). The goal of that experiment was
to document a sequence of bifurcations and their resulting complicated attractors
(including chaotic attractors) that were predicted to occur by the LPA model (17).
For our purposes here, we point out that at the lowest level of between-class
competition, c2 D 0, there was observed an equilibrium state with all age-class
present and at the highest level, c2 D 1, single-class synchronous 3-cycles were
observed. This is in agreement with the principle that strong between-class compe-
tition promotes synchronized oscillations. See Fig. 3. Furthermore, attracting cycle
chains, as illustrated in Fig. 1b, offer a deterministic explanation of experimentally
observed phase shifts in the synchronous 3-cycles (which were explained in [35] by
stochastic jumps among the basins of attractions of the three phases).

In addition to many unanswered questions concerning the nature of the primary
bifurcation at R0 D 1 for the semelparous Leslie model in higher dimensions, there
are extensions and elaborations of the model that also present interesting challenges.
For example, the role of evolution in determining semelparity or iteroparity has
long been of interest in life history theory [60, 63]. In this regard, the fundamental
bifurcation at R0 D 1 has been studied for evolutionary versions of matrix
models primitive projection matrices [13, 14] and for semelparous Leslie models
of dimension m D 2 [22]. As already mentioned, models that include the effects of
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Fig. 3 Experimental evidence for single-class cycles induced by inter-class competition. The
graphs show the age class histograms (at the end of 80 weeks when transients were dissipated)
in the experimental treatments that underwent the weakest and strongest cannibalism rates. The
former treatment shows overlapping age classes (larvae, pupae, adults), while the latter shows
single cohorts of non-overlapping age classes. (The larval and pupal stages for T. castaneum are 2
weeks in length, which is the time unit used in the LPA model (17))
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predation (and parasitism) have been formulated and studied [2, 3, 44], although not
specifically with the bifurcation at R0 D 1 in mind. The fundamental bifurcation
at R0 D 1 has also been studied for spatial versions of matrix models, but only for
primitive projection matrices [58, 59].

The semelparous Leslie model is a notable and important example of a matrix
population model that has an imprimitive projection matrix. A signature feature
of this model is the presence of synchronous orbits, i.e. orbits with missing age
classes. It has been shown that no matrix model, of any kind, with a primitive
projection matrix can have synchronous orbits [42]. It would be interesting to study
the fundamental bifurcation at r D 1 for general matrix models with imprimitive
projection matrices and to ascertain the role that synchronous cycles play.

Acknowledgements The author was partially supported by NSF grant DMS 0917435.

Appendix

Theorem 1.20 in [56] implies the existence of two, globally distinct continua C eC
and C e� of nonzero equilibrium pairs each of which satisfies the two alternatives, i.e.
is unbounded in R1 � Rm or contains a point .�; 0/ where � ¤ 1 is a characteristic
value of M .0/.2 In a neighborhood of .1; 0/, C eC and C e� consist of positive and
negative equilibrium pairs respectively. Since second alternative is ruled out by the
fact that M .0/ has no characteristic value other than 1, C eC and C e� are globally
distinct distinct continua that are unbounded in R�Rm. For purposes of contradiction
we assume the unbounded continuum CeC, which in a neighborhood of .1; 0/ lies
in R1C � RmC, does not remain in R1C � RmC. In this case, it must contain a point�
R�0 ; x�

� 2 @
�
RC � RmC

�
other than .1; 0/ and we can find a sequence of points

.R0n; xn/ 2 C eC \ �
RC � RmC

�
such that limn!1 .R0n; xn/ D �

R�0 ; x�
�

where R�0 � 0

and x� 2 NRmC. We want to arrive at a contradiction.
The points .R0n; xn/ satisfy (12)

xn D R0nM .0/ xn C R0nh .xn/ : (29)

First, suppose x� D 0. We can extract a subsequence from the sequence of unit
vectors

un D xn

jxnj 2 RmC

2To apply Theorem 1.20 in [56] we extend the domain of the �i .x/ to Rm by re-defining them
smoothly outside of the closure NRm

C

of the positive cone. This is possible by assumption A1.
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that converges to a nonnegative unit vector u W

lim
n!1 un D u 2 NRC

Passing to the limit in

xn

jxnj D R0nM .0/
xn

jxnj C R0n
h .xn/

jxnj :

we obtain u D R�0M .0/ u: This leads to an immediate contradiction if R�0 D 0.
If R�0 ¤ 0 then since the only characteristic value of M .0/ is 1 we obtain
another contradiction, namely, R�0 D 1. Having ruled out x� D 0; we conclude
that x� 2 @RmCnf0g: Passing to the limit in Eq. (29) we conclude that x� is an
equilibrium of the nonlinear Leslie model (with R0 D R�0 ). However, an inspection
of components of the equilibrium equation (10) shows that if one component equals
0 then all components equal 0; i.e. x� D 0. This is a contradiction to x� 2 @RmCnf0g.
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Review on Non-Perturbative Reducibility
of Quasi-Periodically Forced Linear Flows
with Two Frequencies

João Lopes Dias

Abstract These are the notes of the short course “Stability of quasi-periodic
dynamics” given at the Advanced School Planet Earth, Dynamics, Games and
Science II held in Lisbon, Portugal, from 28 August to 6 September 2013 and
organized by the International Center of Mathematics CIM - Portugal. We review
some recent results concerning the stability of non-autonomous linear differential
equations with a quasi-periodic forcing.

1 Non-Autonomous Linear Ode’s

1.1 General Setting

Our goal is to survey some recent results on the dynamics of non-autonomous linear
ordinary differential equations of the type

Px D A.t/ x: (1)

We are seeking a solution xWR ! Rn for the above equation when we have a real-
analytic matrix function AWR ! gl.n;R/. Here gl.n;R/ stands for the Lie algebra
of n � n matrices with real coefficients and GL.n;R/ is the corresponding Lie group
of non-singular matrices.

Any solution can be obtained from the fundamental solution

XWR ! GL.n;R/
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(also called monodromy matrix, time-evolution operator, propagator, basic matrix,
principal matrix, etc.) which satisfies

PX D A.t/X; X.0/ D I: (2)

In fact, the solution with initial condition x0 is given by

x.tI x0/ D X.t/ x0:

Notice that the columns of X.t/ are linearly independent solutions.

Example 1 (Stability of Solutions of Non-Linear Ode’s) Take the ordinary differen-
tial equation Px D f .x/ with solution x.tI x0/. We can rewrite it as

@

@t
x.tI x0/ D f .x.tI x0//:

The stability of this solution with respect to the initial condition x0 can be studied
by looking at

@

@t

@

@x0
x.tI x0/ D Df .x.tI x0//

@

@x0
x.tI x0/:

Its fundamental solution is therefore in the form (2).

One can focus the study on a subclass of systems (2), namely linear skew-product
flows generated by vector fields in the form

( PX D A.�/X on GL.n;R/ (fiber)
P� D '.�/ on M (base)

(3)

with 'W M ! TM and AW M ! gl.n;R/ for some compact manifold M, and initial
condition .�;X/.

A fibered vector field (also called linear skew-product vector field) is the above
vector field

v.�;X/ D .'.�/;A.�/X/:

We write it in a simpler form as v D .';A/: The flow generated by v is called a
fibered flow (also called linear skew-product flow) and it is given by

� t.�;X/ D .�t.�/; ˚ t.�/X/;
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where ˚ t.�/ is the fundamental solution of PX D A.�t.�//X and �t.�/ is the
solution of the base dynamics. The cocycle property � tCs D � t ı �s implies that

˚ tCs.�/ D ˚ t.�s.�// ˚ s.�/: (4)

A fibered Cr-diffeomorphism is defined as

f .�;X/ D . .�/;B.�/X/;

where BW M ! GL.n;R/ is Cr and  W M ! M. Therefore, its action on fibered
flows is

f ı � t ı f�1.�;X/ D . Q�t.�/; Q̊ t.�/X/;

where Q�t D  ı�t ı  �1 and1

Q̊ t D .B ı�t ˚ t B�1/ ı  �1:

On fibered vector fields the action of a fibered diffeomorphism is

.Df v/ ı f�1.�;X/ D . Q'; QA.�/X/;

where Q' D .D '/ ı  �1 and

QA D .' � DB B�1 C B AB�1/ ı  �1:

So, the vector field in the new coordinates and with a time reparametrization using
� 6D 0 is

Qv D .�T!; � QA/:

It is easy to check that fibered diffeomorphisms and time rescalings preserve the
class of fibered flows and fibered vector fields.

In this work we are going to focus in the case that the base M is the d-dimensional
torus Td D Rd=Zd, ' is a constant vector field and the fiber is restricted to the Lie
group SL.2;R/ of 2 � 2 unimodular matrices:

( PX D A.�/X on SL.2;R/ (fiber)
P� D ! on Td (base)

(5)

1We are writing B�1 ı  �1.�/ to mean B. �1.�//�1.
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with AWTd ! sl.2;R/ real-analytic and ! 2 Rd. The base dynamics is simply
�t.�/ D � C !t mod Zd.

To simplify notation whenever  D id, we denote the fibered vector field A in
the new fibered coordinates B as

B�A D ! � DB B�1 C B A B�1:

Example 2 (Linear One-Dimensional Schrödinger Equation) Let VWTd ! R, ! 2
Rd, E 2 R and � 2 Td. The second order ode with respect to yWR ! R,

�Ry.t/C V.� C !t/y.t/ D Ey.t/;

is equivalent to

"
Py
Ry

#
D
"

0 1

V.� C !t/ � E 0

#"
y

Py

#
:

By writing Y D .y; Py/ one can write the above equation as a fibered vector field.

The particular simple base dynamics is preserved if we restrict the fibered
diffeomorphisms to the case that  is an automorphism T 2 SL.d;Z/ of the torus.
Hence, Q�t.�/ D � C T!t mod Z

d and

Q̊ t.�/ D B.T�1� C !t/ ˚ t.T�1�/B.T�1�/�1:

Furthermore, Q'.�/ D T! and

QA.�/ D ! � DB.T�1�/B.T�1�/�1 C B.T�1�/A.T�1�/B.T�1�/�1:

2 Reducibility and Almost Reducibility

2.1 Reducibility

.!;A/ is reducible if there is a fibered coordinate change that conjugates it to a
constant vector field:

PY D CY:

That is, we want to find C 2 sl.2;R/ and BW 2Td ! SL.2;R/ of class Cr such that

˚ t.�/ D B.� C !t/�1etCB.�/: (6)
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Equivalently,

! � DB D CB � BA:

Notice that we allow B to be defined in 2Td. See Theorem 1 below to understand
why we want to loose the concept of reducibility in this way.

Reducibility preserves several aspects of the dynamics. In particular, since B is
a periodic and continuous map thus bounded, (6) implies that both ˚ t and etC have
the same time growth (Lyapunov exponents) and boundness.

An obstruction to reducibility is non-uniform hyperbolicity. Indeed, non-uniform
hyperbolic systems can not be reducible because any constant vector field which is
hyperbolic is obviously uniformly hyperbolic. So,

Non-uniformly hyperbolic ) non-reducible:

Equivalently,

Reducible ) uniform hyperbolic or zero Lyapunov exponents:

We say that .!;A/ is rotations reducible if there is a conjugacy to a map
CWTd ! so.2;R/.

2.2 Space of Real-Analytic Matrix-Valued Functions

Given h > 0, consider the set of real-analytic maps FWTd ! gl.2;R/ with Fourier
expansion

F.�/ D
X
k2Zd

Fkeik��

and analytic extension to k Im �k < h. We choose the norm

kFkh D
X
k2Zd

kFkkehkkk:

Let Bh be the Banach space of such functions with finite norm kFkh < C1.

2.3 Almost Reducibility

A is almost reducible if there exists sequences hn > 0 (we might have hn ! 0)
and BnW 2Td ! SL.2;R/ real-analytic on j Im � j < hn such that Bn conjugates the



258 J. Lopes Dias

system into

( PX D .An C Fn.�//X
P� D !

with kAnk bounded and

lim
n!C1

kFnkhn

h�n
D 0

for any � � 1.

Remark 1
1. Almost reducibility is weaker than reducibility.
2. Many systems very close to constant are not reducible but are almost reducible.
3. An almost reducible system behaves like a reducible one for a long time.

3 Simple Cases

We denote by !? the orthogonal hyperplane to !. It is easy to see that

A.�0 C !t/ D
X

k2!?\Zd

Akeik��0 C
X

k 62!?\Zd

Akeik�.�0C!t/:

We can thus reduce our study to the following situations.
The first is when !? \ Z

d D f0g. This is equivalent to ! being rationally
independent, i.e. ! � k 6D 0 for any k 2 Z

d n f0g. In two dimensions, this means
that the slope of ! is an irrational number. Section 4 deals with the case d D 2.

If !? \ Z
d 6D f0g, then either we can reduce to a lower dimensional rationally

independent vector or else ! is a multiple of a rational vector in Q
d. This last case

corresponds to a periodic A. In fact, by a time rescaling we can assume that ! 2 Z
d.

If ! D 0, for a fixed initial condition �0,

( PX D A.�0/X
P� D 0:

Hence, (2) has the solution X.t/ D etA.�0/. That is, the dynamical behavior is
determined by the spectral properties of the constant matrix A.�0/.

Example 3 A D �
a 0
0 �a

�
, X.t/ D

"
eat 0

0 e�at

#



Non-Perturbative Reducibility 259

0.5 1.0
x

–1.0

–1.0

–0.5

–0.5

0.5

1.0
y

Example 4 A D �
0 �b
b 0

�
, X.t/ D

"
cos.bt/ � sin.bt/

sin.bt/ cos.bt/

#

0.5 1.0
x

0.5

1.0

y

–1.0

–1.0

–0.5

–0.5
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The following is a well-known result.

Theorem 1 (Floquet) If ! 2 Zd and A 2 Cr, then .!;A/ is Cr-reducible to the
constant C D 1

2
log˚2.0/ 2 sl.2;R/.

Proof By a torus automorphism and a time reparametrization we can reduce to the
case ! D .1; 0; : : : ; 0/. So, ˚ t.�/ D ˚ t.�1; 0/.

Choose

B.�/ D e�1C˚�1.0/�1:

We are going to show that this is a reducibility conjugacy. Indeed, using (4),

B.� C !t/ ˚ t.�/B.�/�1 D e.�1Ct/C ˚�1Ct.0/�1 ˚ t.�/ ˚�1 .0/e��1C

D etCe�1C ˚�1.0/�1˚ t.�/�1 ˚ t.�/ ˚�1 .0/ e��1C

D etC:

Take the canonical basis fejg. To address the periodicity of B let p 2 N. Now,
B.� C pej/ D B.�/ when j 6D 1 and any p. Write Cp D 1

p log˚p.0/. Furthermore,

using the fact that � ! ˚ t.�/ is Zd-periodic,

B.� C pe1/ D e.�1Cp/Cp˚�1Cp.0/�1

D e�1Cp˚p.0/˚p.0/�1 ˚�1 .p; O�/�1
D B.�/

Notice that C1 might not be a real-valued matrix, but C2 is. We then can take p D 2.
Finally, B has the regularity of ˚ t.

Example 5

PX D
�
0:5 cos t �1
1 �0:5 cos t

�
X
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0.5 1.0
x

0.5

1.0

y

–1.0

–1.0

–0.5

–0.5

Example 6

PX D
�

cos t �1
1 � cos t

�
X
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4 Results

The above problem for a rationally independent frequency vector ! has a long
history. We just mention below a few names of researchers which have contributed
to the subject, in order to stimulate the research for literature.

1. Bogoljubov, Mitropoliski, Samolienko (1960s)
2. Dinaburg, Sinai (1970s)
3. Moser, Pöschel (1980s)
4. Eliasson (1990s)
5. Ávila, Jitomirskaya, Krikorian, Puig, Hou, You, Zhou (2000s)
6. many others

It is our intention here to focus only on the following recent results. Consider the
fibered vector field

( PX D .A C F.�//X
P� D .˛; 1/

(7)

where ˛ 2 .0; 1/ n Q.

Theorem 2 (Hou-You [1]) Let h > 0, A 2 sl.2;R/. There is ı D ı.h; kAk/ > 0

such that for any kFkh < ı and ˛ 2 .0; 1/ n Q, (7) is almost reducible.

Remark 2 We call the above result non-perturbative because ı does not depend
on ˛.

By looking at the projectivized flow, i.e. the flow on T2 � P1, we can compute
the rotation vector of the form .˛; 1; 	/. We call 	 the rotation number (also called
internal frequency—the external frequency being ! D .˛; 1/).

We say that 	 is !-diophantine if there is �; � > 1 such that

jk � ! � 2	j � ��1

kkk� ; k 2 Z
2 n f0g:

Consider the continued fractions expansion of ˛

˛ D 1

a1 C 1

a2C 1
:::

D Œa1; a2; : : : �

and the rational approximants pn
qn

D Œa1; : : : ; an� co-prime. Thus, pn
qn

! ˛. We define
the number

ˇ.˛/ D lim sup
log qnC1

qn
:
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In particular ˇ.˛/ D 0 if ˛ is diophantine or Brjuno.

Theorem 3 (Hou-You [1]) Under the same conditions as in the previous theo-
rem,

1. if 	 !-diophantine, then (7) is rotations reducible
2. if 	 !-diophantine and ˇ.˛/ D 0, then (7) is reducible

5 Proofs

We sketch the main steps of the proofs of the above theorems. Further details,
including the proofs of the lemmas, can be found in [1].

5.1 Small Divisors

The main difficulty is how to obtain a solution to the reducibility equation: find
C 2 sl.2;R/ and BW 2T2 ! SL.2;R/ close do I, i.e. B D eY , such that

! � DeY D CeY � eY.A C F/:

This is indeed a difficult task since problems appear already at the linearized
reducibility equation.

Recall that matrices in sl.2;R/ have either real eigenvalues (hyperbolic
case or parabolic for zero e-values) or pure imaginary (elliptic). Suppose
A D M

�
� 0
0 ��

�
M�1 D M QAM�1 where � is either in R or in iR

Let QF D M�1FM and Z D M�1YM D �
a b
c �a

�
. So, the linearized reducibility

equation is

! � DZ D QAZ � Z QA � QF D
"

0 2�b
�2�c 0

#
� QF:

In Fourier modes (k 2 Z2 n f0g):

ik � !Zk D
"

0 2�bk

�2�ck 0

#
� QFk

with solution

Zk D �

2
64
QFk;11

ik�!
QFk;12

ik�!C2�
QFk;21

ik�!�2�
QFk;11
ik�!

3
75 :
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This solution of the conjugacy equation deals with small divisors depending on the
type of matrix A.

1. In the hyperbolic case we have � D 	. So we have jik �!˙ 2	j � j2	j. The only
small divisors are then

1

jk � !j

whenever k 2 Z2 n f0g verifies jk � !j ' 0.
2. The elliptic case � D i	 is harder because there are more resonant modes in

1

jk � !j ;
1

jk � ! ˙ 2	j :

corresponding to all k 2 Z2 n f0g for which jk � !j; jk � ! ˙ 2	j ' 0.

In Fig. 1 we present an example of the resonance lines, that is the points x 2 R2

orthogonal to ! such that x � ! D 0 or x � ! D ˙2	.

Fig. 1 Fourier modes indices in Z2: the red lines are the resonance lines, the blue line is the
direction of !
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5.2 Truncation of Modes

Given N 2 N, consider the following truncation operator:

TNF.�/ D
X
kkk<N

Fkeik�� :

The remaining operator is simply defined as

RNF.�/ D F.�/ � TNF.�/:

We can easily control the norm of the remaining terms. Given h0 < h,

kRNFkh0 D
X
kkk�N

kFkkehkkke�.h�h0/kkk � e�N.h�h0/kFkh

Notice also that kFkk � e�hkkkkFkh (exponential decay of Fourier coefficients for
analytic functions).

5.3 Elimination of Non-Resonant Modes I

Let � > 0 and the sets of Fourier indices

&1 D fk 2 Z
2W jk � !j � �g; &2 D fk 2 Z

2W jk � ! ˙ 2	j � �g:

The above sets are the complement to strips around the resonance lines.
Define the projection

I
�F.�/ D

X
k2&1

"
0 �ck

ck 0

#
eik�� C

X
k2&2

"
ak bk

bk �ak

#
eik�� ;

where Fk D � ak bk�ck
bkCck �ak

�
. Notice that the elliptic part of Fk is the one related to

small divisors of the type k �!, and the remaining part deals with small divisors like
k � ! ˙ 2	.

We say that F 2 Bh is �-resonant if I�F D 0. There is not much effort to
construct a conjugacy of our original system to one which is non-resonant. This is
because the elimination of the modes in I�F does not deal with small divisors.
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Lemma 1 Let " < 10�8 and kFkh < ". Then,

( PX D .A C F.�//X
P� D !

is conjugated to

( PX D .A C OF.�//X
P� D !

(8)

where OF is "1=4-resonant and k OFkh � ".

Using the above conjugacy we obtain Fourier modes indices as in Fig. 2.

Fig. 2 Indices of the remaining Fourier modes after the elimination of the non-resonant modes
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5.4 Rotation

Lemma 2 If kk�k D minfkkkW jk � ! ˙ 2	j < "1=4g, then (8) is conjugated to

( PX D .A1 C F1.�//X
P� D !

(9)

where

A1 D
"
0 �	0
	0 0

#
; 2	0 D 2	 � k� � !

with j2	0j � "1=4 and kF1kh=3 � "3=4.

The particular form of the resonant modes are crucial in order to have such a control
on kF1kh=3. Otherwise it grows with ekk�kh.

Notice also that the analyticity width decreases, except when k� D 0.
The new vector field has now modes for the indices as in Fig. 3.

Fig. 3 The resonance lines get closer since 	0 is small, but Fourier modes are no longer restricted
to resonant indices
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5.5 Elimination of Non-Resonant Modes II

As before, we remove the non-resonant modes.

Lemma 3 Equation (9) is conjugated to

( PX D .A1 C F2.�//X
P� D !

(10)

where F2 is "3=16-resonant and kF2kh=3 � "3=4.

See Fig. 4.

Fig. 4 Another elimination of non-resonant modes
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5.6 The Structure of Resonances

Let us recall here the following well-known properties of the continued fraction
expansion of ˛ and the corresponding rational approximations pn=qn. We have

k.pn; qn/ � qn.˛; 1/k � 1

qnC1
;

and qn � �n, where � D 1Cp5
2

is the golden ratio.
For the step n we write

q D qn; q0 D qnC1; p D pn; p0 D pnC1

Lemma 4 If kkk < q0=6 and jk � !j < 1=.7q/, then k D `.q;�p/ for some ` 2 Z.

From the previous lemma we know that (see also Fig. 5)

Tq0=6F2.�/ D
X

kD`.q;�p/

Fkeik�� :

Fig. 5 In the truncation box we only find modes with indices in one line
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Thus we are able to get the estimate

kRq0=6F2kh=3 � "3=4e�q0h:

5.7 Floquet Theory Revisited

By a step similar to the Floquet theorem 1, we obtain the following result.

Lemma 5 Let .q;�p/ 2 Z2 fixed and

F.�/ D
X
`2Z

F`.q;�p/e
i`.q;�p/��

Then,

( PX D F.�/X
P� D !

is reducible by a conjugacy B.�/.

Lemma 6 Equation (10) is conjugated to

( PX D .A3 C F3.�//X
P� D !

(11)

where

kF3kh=4 � "1=8e�q0h

A3 C F3 D B�.A1 C Tq0=6F2 C Rq0=6F2/ D C C B�Rq0=6F2

5.8 After One Step

In the previous sections we have constructed one step in a iterative scheme that leads
to the convergence to a constant vector field. At this time we still need to perform
a normalization in order to diagonalize A3. After this we obtain a conjugated vector
field whose Fourier modes indices are again as in Fig. 1 but the modes have much
smaller norm.

So, one step in the scheme corresponds to

.A;F/ 7! .A0;F0/
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with

kF0kh0 � minfh16; "33=32e�q0hg:

5.9 Convergence

Finally, we iterate the previous steps and obtain a sequence Fn with

kFnkhn � minfh16n ; e
�qnC1hng:

If hn ! 0 the system is just almost reducible (in the real-analytic setting).
If lim hn > 0 and kBnk are bounded, the system is reducible. This can be

achieved by imposing conditions on the rotation number that make the Rotation
and Floquet Lemmas steps unnecessary after a finite number of iterations. Those
steps are the ones that shorten the analyticity strip width and increase the norms of
the conjugacies.
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Collateral Versus Default History

Marta Faias and Abdelkrim Seghir

Abstract This paper deals with equilibrium existence for incomplete markets
economies with finitely-lived agents and infinitely-lived agents when default is
allowed and borrowers have to constitute collateral in terms of durable goods.
In the first model, lenders are protected by an exogenous personalized collateral.
In the second model, the personalized collateral requirements are endogenously
determined by a financial institution whose objective is to minimize the default rate
taking into account agent’s default history.

1 Introduction

The analysis of finite-horizon economies has been extended to an infinite horizon
in two main ways. The first one assumes that each agent is alive for a finite number
of periods and is succeeded by his offspring forming an infinite sequence of the
so-called Overlapping Generations Models (OLG). The OLG models have been
introduced by Samuelson [21] and used in incomplete markets without default
by Florenzano–Gourdel–Páscoa [9], Schmachtenberg [23] and Seghir [24], among
others. The second approach considers a finite number of infinitely-lived agents.
This approach was introduced by Bewley [6] in a complete market economy
and used for incomplete markets without default by Florenzano–Gourdel [8],
Hernandez–Santos [14], Levine–Zame [15] and Magill–Quinzii [16, 17], among
others. All these papers prove equilibrium existence in incomplete markets when
assets are either numeraire or nominals, assuming that borrowers fully keep their
promises. As is well known since the Hart’s counterexample [13], equilibrium may
fail to exist in the real case if the short sales are not bounded a priori, as the rank of
the return matrix may drop.
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When default is allowed, some mechanism have been imposed in the literature
in order to protect lenders from total default and urge borrowers to pay, at least
partially, their debt. A first mechanism requires borrowers to constitute collateral in
terms of durable goods. These collateral are seized and given to the lenders in case
of default. For incomplete markets of collateralized real assets, Geanakoplos–Zame
[12] prove equilibrium existence for a finite-horizon model while Araujo–Páscoa–
Torres-Martínez [3] show equilibrium existence, for an infinite-horizon economy
with a finite number of infinitely-lived agents, without imposing any exogenous
bounds on the short sales. A second mechanism assumes that borrowers suffer
disutility from defaulting. For incomplete markets of nominal/numeraire assets,
when borrowers suffer utility penalties proportional to their real amount of default,
equilibrium existence was proved by Araujo–Monteiro–Páscoa [2] for a two-period
model and by Araujo–Monteiro–Páscoa [1] for an infinite-horizon model. Moreover,
in an infinite-horizon model in which these two mechanism coexist, Páscoa–Seghir
[19] prove that equilibrium exists provided that utility penalties are moderate.

In this paper, we extend the model of Araujo–Páscoa–Torres-Martínez [3] to a
demographic structure that includes both a finite number of infinitely-lived agents
and overlapping generations. The demographic structure of this model is of interest
for several reasons. First, infinitely-lived agents can be interpreted as altruistic
agents who increase the preferences of their descendants, who in turn increase
the preferences of their offspring. . . until infinity. In fact, they consider the welfare
of their whole dynasty. Second, as in Muller–Woodford [18], one may suppose
that certain institutions are effectively agents with infinite-horizon consumption
programs. For example, Thompson [26] argues that corporations should be modeled
as infinitely-lived agents while private households are finitely-lived. Third, the
infinitely-lived agents (households) can be interpreted as finitely-lived individuals
who inherit of their ancestors’ debt while finitely-lived agents do not. It is for
example the case of mortgage markets without life insurance protection. Note that
such a demographic structure has been studied by Wilson [27] (for a complete
market model) and Florenzano–Gourdel–Páscoa [9] (for a real incomplete market
model with bounded short sales when default is not allowed). On the other hand,
one may interpret the finitely-lived agents as a representation of the behavior of
agents who optimize over a finite horizon, not because of their biological life span,
but because of financial constraints (for example, in Seghir [24], the agents are
constrained to attend the financial market at all the periods of their lifetime except
at the last one). In the present, one may interpret the demographic structure as one
where there are both financially constrained and unconstrained agents.

As in Araujo–Páscoa–Torres-Martínez [3], Ponzi schemes are ruled out and
equilibrium existence is guaranteed without exogenous restrictions such as debt
constraints or a transversality condition. It turns out that the obligation of consti-
tuting collateral in terms of durable goods guarantees that, in equilibrium, short
sales are bounded node by node. These endogenous bounds rule out the possibility
of Ponzi games for infinitely-lived agents as our stochastic structure is characterized
by a finite number of immediate successors at each node. On the other hand, Ponzi
schemes are avoided for the finitely-lived agents as they cannot attend the financial
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market at the last period of their lifetime. However, the presence of finitely-lived
agents generates a technical problem that does not occur in the case of infinitely-
lived agents. More precisely, the budget sets of finitely-lived agents may fail to be
lower semicontinuous as their interior could be empty.

The objective of this paper is twofold. First, we aim at proving equilibrium
existence for an infinite–horizon economy with finitely-lived agents and infinitely-
lived agents when collateral requirements are personalized. Second, we study a
general equilibrium model in which default taxes are restricted through some
enforcement mechanism that: (1) directly affects agents’ wealth, and (2) takes into
account the default history of each agent. More precisely, we prove equilibrium
existence in a model in which real assets are protected by endogenous personalized
collateral. That is, in this second model, and contrary to Araujo–Páscoa–Torres-
Martínez [3], collateral are personalized and are endogenously determined by a
financial institution whose objective is to fix these personalized collateral in order
to minimize the default rate. We address the equilibrium existence in such a model
and study the possibility of choosing these collateral requirements in order to
perfectly anticipate the equilibrium default rates and, therefore, adjusting according
to traders’ default history or with the default history of their families.

The paper is organized as follows. The model is presented in the next section.
Section 3 deals with default history rate and states our main result. Section 4 presents
some concluding remarks. Finally, an appendix is devoted to proofs.

2 The Model

2.1 The Stochastic Structure

We consider a pure-exchange economy with infinite time horizon. The stochastic
structure is described by an infinite event-tree with an unique root. Formally, let T D
f0; 1; � � � g be the set of periods and let S be the set of states of nature. The revelation
of information is described by a sequence of partitions of S; .F0;F1; : : : ;Ft; : : : /;

where the number of subsets in Ft is finite and, for each t > 0, FtC1 is finer than the
partition Ft (i.e.: � 2 FtC1; � 0 2 Ft H) � � � 0 or � \ � 0 D ;).

At node 0; we assume that there is no information so that F0 D S: The
information available at time t is assumed to be the same for all agents in the
economy (symmetric information) and described by the subset � of the partition
Ft in which the state of nature lies.

A pair � D .t; �/ where t 2 T and � 2 Ft is called a node and t.�/ D t is the
date of node �: The set D consisting of all nodes is called the event-tree induced
by F:

A node � 0 D .t0; � 0/ is said to succeed (resp. strictly) node � D .t; �/ if t0 > t
(resp. t0 > t) and � 0 � �: We write � 0 > � (resp. � 0 > �). The set of nodes which
succeed a node � 2 D is called the subtree D.�/ and DC.�/ D f� 0 2 Dj� 0 > �g is
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the set of strict successors of �: The subset of nodes of D.�/ at date T is denoted by
DT.�/ and the subset of nodes between t.�/ and T by DT.�/: When � is the initial
node, the notations are simplified to DC; DT ; DT :

For each � 2 D; �C D f� 0 2 D.�/jt.� 0/ D t.�/ C 1g is the set of immediate
successors of �: The number of elements of �C is finite and is called the branching
number b.�/ at � .b.�/ D #�C/:

If � D .t; �/; t > 1; the unique node �� D .t � 1; � 0/; � � � 0 is called the
predecessor of �:

2.2 The Commodity Markets and Demographic Structures

At each node � 2 D; a finite number G of physical goods, indexed by g D 1; : : : ;G;
are traded on spot markets. These goods are durable and may suffer a partial
depreciation from a period to another. The structure of depreciation in the event-
tree is given by a collection of functions .Y� /�2D W R

GC ! R
GC: More precisely,

if one unit of a commodity g0 is consumed at the node ��, the consumer obtains
Y�.eg0/g 2 RC units of the good g at the node �: So, for instance, we say that a
good g is durable if, for all node �, Y�.eg/g 2 RCC. A perishable good g is such that
Y�.eg/g D 0; for each node � 2 D.

Let p.�/ D .p.�; g/; g 2 G/ denotes the vector of spot prices at node � and
p D .p.�/; � 2 D/ 2 R

D�GC be the spot price process.
Agents’ incomplete participation is allowed in our model. Let H be the (count-

able) set of agents. At each node �; we denote by H.�/ the finite set of agents who
can trade on the spot markets. We denote by Dh the sub-tree of nodes at which agent
h 2 H can trade on the spot markets. The root of the sub-tree Dh is denoted by �h.
We say that agent h is infinitely-lived if for all t 2 N there exists a node � 2 Dh such
that Qt.�/ D t. Otherwise, agent h is said to be finitely-lived. We denote by H1 the set
of finitely-lived agents and by H2 the set of the infinitely-lived agents.

The set ıDh denotes agent h0s terminal nodes, that is, the set of nodes � 2 Dh

such that D.�/ \ Dh D f�g (if such nodes exist; otherwise we suppose that ıDh is
empty).

We introduce the following technical conditions:

a. For each agent h 2 H, if � 2 .Dh � ıDh/ then �C � Dh,
b. For each node � 2 D there exists at least one agent h 2 H such that � 2 .Dh �
ıDh/.

The previous conditions have also been used by Santos and Woodford [22] and
Seghir and Torres-Martinez [25]. Condition b. is satisfied if there exists at least an
infinitely-lived agent (i.e. if H2 ¤ ;).

We denote by QH.�/ the set of agents who have access to the financial markets
at node �. Hence, h 2 H.�/ if and only if � 2 Dh, and h 2 QH.�/ if and only if
� 2 .Dh � ıDh/.
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At each node � 2 Dh, agent h can choose a collateral-free consumption
allocation xh.�/ 2 R

GC. We denote by xh D �
xh.�/

�
�2Dh agent h0s collateral-free

consumption plan and by Xh D R
Dh�GC agent h0s consumption space.

Each agent h 2 H is characterized by an endowment process wh 2 Xh and a
utility function Uh W Xh ! RC that represents his preferences.

2.3 The Financial Structure

At each node, a finite number J.�/ of one-period real assets are available for
intertemporal transaction and insurance. Given � 2 D; Aj.�/ 2 R

GC denotes the
promises of asset j. We denote A.�/ D .Aj.�//j2J.��/; and A WD Q

�2D
A.�/: At each

node � 2 D; given a commodity prices p.�/; the vector p.�/Aj.�/ represents the
financial promises value, denominated in units of account, of asset j (sold at node
��). Thus, at each node � 2 D; the .b.�/�J.�//-matrix V.p/ WD .p.� 0/Aj.� 0// �02�C

j2J.�/

completely describes the default-free promises at period t.�/C 1.
Let q.�/ D .q.�; j/; j 2 J.�// 2 RJ.�/ be the vector of prices of the securities

issued at node � and let q D .q.�/; � 2 D/ denote the security price process which
belongs to the security price space

Q
�2D

RJ.�/:

At each node � 2 .Dh � ıDh/; agents can choose a portfolio zh.�/ WD .zh
j .�/; j 2

J.�// 2 Zh
� D RJ.�/, with zh

j .�/ D �h
j .�/ � �h

j .�/; where:

� �h
j .�/ 2 RC denotes the quantity of asset j bought by agent h 2 QH.�/ at node �;

� �h
j .�/ 2 RC denotes the quantity of j sold by agent h at node �:

At each node � 2 D; the debt of agent h 2 H.�/; induced by the sale of asset
j 2 J.��/, is p.�/Aj.�/�h

j .�
�/: Since default is allowed, agent h 2 H pays, at

node �, an amount �h
j .�/; denominated in units of account, with 0 6 �h

j .�/ 6
p.�/Aj.�/�h

j .�
�/:

2.4 The Exogenous Personalized Collateral Requirement

In order to protect lenders against total default, we require each seller h 2 QH.�/
of one unit of an asset j 2 J.�/ to constitute an exogenous personalized physical
collateral Mh

j .�/ 2 R
GC: The lack of payment causes the seizure of the collateral by

the lenders. Therefore, each agent will deliver the minimum between the value of
the depreciated collateral and the original debt. That is:

�h
j .�/ D minfp.�/Aj.�/; p.�/Y�

�
Mh

j .�
�/
�g�h

j .�
�/:
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In view of markets’ anonymity, lenders do not know how much returns they will
receive on their long positions. As in Dubey et al. [7], each lender of one unit of
asset j at node � will expect to receive the average rate of payments, denoted by
Rj.�/; which will be determined endogenously in equilibrium. This average rate of
payments will perfectly anticipate the market’s average rate of the payments.

We define the economy E , with exogenous personalized collateral requirements,
as follows:

E WD ��
Xh;Zh;Uh; !h;Mh

�
h2H ;A

�
:

Definition 1 (Budget Sets) Given vector prices .p; q/ and anonymous rates of
payments R, the budget set, Bh.p; q;R/; of agent h 2 H is the set of allocations
.xh; �h; �h; �h/ satisfying the following conditions:

• At node �h;

p.�h/xh.�h/C p.�h/Mh.�h/�h.�h/C q.�h/zh.�h/ 6 p.�h/!h.�h/; (1)

• At each node � 2 .Dh � ıDh/, � ¤ �h,

p.�/xh.�/C p.�/Mh.�/�h.�/C q.�/zh.�/C
X

j2J.��/

�h
j .�/

6
X

j2J.��/

Rj.�/�h
j .�
�/C p.�/Y�

�
Mh.��/�h.��/C xh.��/

�C p.�/!h.�/;

(2)

• At each node � 2 ıDh,

p.�/
�
xh.�/ � !h.�/

�
6

X
j2J.��/

�
Rj.�/�h

j .�
�/ ��h

j .�/
�

Cp.�/Y�
�
Mh.��/�h.��/C xh.��/

�
;

where, for each � 2 Dh � �h, 0 6 Rj.�/ 6 p.�/Aj.�/:

We define agent h0s total utility at an allocation .x; �; �/ as Vh.x; �/ WD
Uh
�
x.�/C Mh.�/�.�/

�
:

We denote by W� the aggregate endowment accumulated until a node �, that is,

W� WD
X

h2H.�/

wh.�/C Y�
�
W��

�
; 8� 2 D n f�0g; (3)

where W�0 D P
h2H.�0/

wh.�0/.
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Now, we can define the concept of equilibrium in our economy:

Definition 2 (Equilibrium) An equilibrium of E is a collection of vector
prices .p; q/, anonymous payments rates R and individual choice variables�

xh; �
h
; �

h
; �

h
	

h2H
, satisfying:

(i) For each agent h 2 H; .xh; �
h
; �

h
; �

h
/ maximizes Vh over Bh.p; q;R/:

(ii) Physical and Financial markets clear,

X
h2H.�/

Œxh.�/C M
h
.�/�

h
.�/� D W� ; (4)

X
h2 QH.�/

�
h
j .�/ D

X
h2 QH.�/

�
h
j .�/; 8� 2 D; 8j 2 J.�/: (5)

(iii)

8� 2 DT n f0g; 8j 2 J.��/; Rj.�/
X

h2 QH.��/

�
h
j .�
�/ D

X
h2 QH.��/

�
h
j .�/: (6)

Condition (i) requires the optimality of agents’ choices over their budget sets. Con-
ditions (4) and (5) require the commodity and asset markets to clear. Condition (6)
says that, at each node and for each asset, total effective deliveries made by the
sellers are equal to total expected deliveries made by the buyers.

Proposition 1 Let us consider an economy E WD ��
Xh;Zh;Uh; !h;Mh

�
h2H

;A
�

satisfying the following assumptions:

[A1]. For each agent h 2 H; Uh.x/ D P
�2Dh

vh
� .x/:Moreover, 8� 2 D; the function

vh
� W RGC �! R is continuous, strictly monotone and concave with vh

� .0/ D 0: In

addition, 8h 2 H2; 8˛ 2 R
GC;

P
�2D

vh
� .˛/ is finite.

[A2]. 8h 2 H; !h 2 Int Xh;

[A3]. There exists W > 0 such that W� 6 W; 8� 2 D:
[A4]. 8� 2 D; 8j 2 J.�/; 8h 2 H.�/; Mh

j .�/ ¤ 0:

Then, E has an equilibrium
�

p; q;R;
�

xh; �
h
; �

h
; �

h
	

h2H

		 :

This model extends the model of Araujo–Páscoa–Torres-Martínez [3] of incomplete
financial markets model with default and collateral requirements to the case in
which borrowers have to constitute personalized collateral. This extension is very
simple and the proof of equilibrium existence is close to the proof of Araujo–
Páscoa–Torres-Martínez [3]. However, a technical problem arises in our model in
comparison with the one of Araujo–Páscoa–Torres-Martínez [3]. More precisely, the
budget correspondences of finitely-lived agents may not be lower semicontinuous,
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as their interior may be empty. We define modified budget sets in order to overcome
this problem (see Appendix for more details).

Given personalized collateral requirements Mh, different from zero, there exists
an equilibrium in finite-horizon truncated economies. It follows from the personal-
ized non-arbitrage condition:

p.�/Mh
j .�/ � qj.�/ > 0;

that a sequence of equilibria for truncated economies has a convergent subsequence
and the cluster point is an equilibrium for the original economy.

As in Araujo–Páscoa–Torres-Martínez [3], the non-arbitrage condition guaran-
tees that, in equilibrium, the commodity price vectors are bounded away node by
node. Moreover, in Araujo–Páscoa–Torres-Martínez [3], this non-arbitrage condi-
tion, together with the fact that the number of alive agents is the same at all nodes,
ensures that the value of the short sales is uniformly bounded from above along the
event-tree. In our model, since the number of alive consumers depend on the nodes,
this uniform bound no longer holds. However, we still obtain bounds on the short
sales, node by node. As the stochastic structure of our model is characterized by a
finite number of immediate successors at each node, we get a cluster point of the
truncated economy equilibria. Finally, the short sales are protected by personalized
collateral and, as in Araujo–Páscoa–Torres-Martínez [3], we do not require either
debt constraints or a transversality condition to prove that this cluster point is an
equilibrium for the original economy.

3 A Model with Endogenous Personalized Collateral
Requirement

In this section, we use the same stochastic, financial, commodity, demographic
structures of the previous model. However, to protect lenders against total default
and to bound the asymptotic growth of the debts along the event-tree, we suppose
that there is an institution that requires each seller h 2 QH.�/ of one unit of an asset
j 2 J.�/ to constitute a personalized physical collateral Mh

j .�/ 2 R
GCnf0g: The main

objective of this institution is to control the future default rates, without affecting too
much the negotiations in the financial market. More precisely, this institution aims
at maintaining the collateral at a practical level which is neither “too low” (although
this allows agents to trade more, the default rate could be very high) nor “too high”
(in order to have enough traders on the financial market).

Therefore, the best would be to obtain a compatibility of the personalised
collateral requirement with: (1) the equilibrium default rate, and (2) the variations
of commodity and asset prices.
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Given prices . p; q/, the default of agent h 2 QH.�/ on asset j 2 J.�/, at node
� 2 �C is given by:

th
�;j WD p.�/Aj.�/�h

j .�/ ��h
j .�/: (7)

The default history of agent h at node � is then given by the vector h
� WD .th

�;j/,
where � 6 � and j 2 J.��/.

The institution aims at establishing the personalized level of collateral, for agent
h at node �, using an adjusting rule given by a function

Fh
�;j W RGC � RC � R

m.�/
C ! R

GC; (8)

where m.�/ D #f.�; j/ W � 6 �; j 2 J.��/g.
The main question is: Is there any personalized collateral level Mh that allows

to perfectly anticipate the default rate in equilibrium? In other words, is it possible
to choose M WD .Mh

j .�/; � 2 D; j 2 J.�/; h 2 H/; such that there exists at least an
equilibrium for which:

8� 2 D; 8j 2 J.�/; 8h 2 H; Mh
j .�/ D Fh

�;j

�
p.�/; qj.�/; 

h
�

	
? (9)

Agents take the requirements as given and they know that the lack of payment
causes the seizure of the collateral by the lenders. Therefore, each borrower will
choose the payments�h

j .�/ satisfying:

�h
j .�/ D minfp.�/Aj.�/; p.�/Y�

�
Mh

j .�
�/
�g�h

j .�
�/

As in the first model, each lender of one unit of asset j at node � will expect to
receive the average rate of payments given by Rj.�/; which will be determined in
equilibrium and will perfectly foresee the market average rate of payments.

Our economy E 0, with endogenous personalized collateral requirements, is
defined as

E 0 WD ��
Xh;Zh;Uh; !h;Fh

�
h2H ;A

�
:

Definition 3 (Budget Sets) Given vector of prices .p; q/; anonymous rates of
payments R, and personalized collateral requirements .Mh/h2H , the budget set
Bh.p; q;R;Mh/; of agent h 2 H is the set of allocations .xh; �h; �h; �h/ that satisfy
the following conditions:

p.�h/xh.�h/C p.�h/Mh.�h/�h.�h/C q.�h/zh.�h/ 6 p.�h/!h.�h/; (10)
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for each � 2 .Dh � ıDh/, � ¤ �h,

p.�/xh.�/C p.�/Mh.�/�h.�/C q.�/zh.�/C
X

j2J.��/

�h
j .�/

6
X

j2J.��/

Rj.�/�h
j .�
�/C p.�/Y�

�
Mh.��/�h.��/C xh.��/

�C p.�/!h.�/;

(11)

for each � 2 ıDh,

p.�/
�
xh.�/ � !h.�/

�

6
X

j2J.��/

�
Rj.�/�h

j .�
�/��h

j .�/
�C p.�/Y�

�
Mh.��/�h.��/C xh.��/

�
;

where, for each � 2 Dh � �h, 0 6 Rj.�/ 6 p.�/Aj.�/:

Now, we can define the concept of equilibrium in our economy:

Definition 4 (Equilibrium) An equilibrium of E 0 is a collection of vector prices

.p; q/, anonymous payments rates R, personalized collateral requirements .M
h
/h2H

and individual choice variables
�

xh; �
h
; �

h
; �

h
	

h2H
satisfying:

(i) For each agent h 2 H; .xh; �
h
; �

h
; �

h
/ maximizes Vh over Bh.p; q;R;M

h
/:

(ii) Physical and Financial markets clear,

X
h2H.�/

Œxh.�/C M
h
.�/�

h
.�/� D W� ; (12)

X
h2 QH.�/

�
h
j .�/ D

X
h2 QH.�/

�
h
j .�/; 8� 2 D; 8j 2 J.�/: (13)

(iii) The anonymous payment rates, Rj.�/; perfectly foresee the payments�
h
j .�/,

8� 2 DT n f0g; 8j 2 J.��/; Rj.�/
X

h2 QH.��/

�
h
j .�
�/ D

X
h2 QH.��/

�
h
j .�/: (14)

Under standard assumptions on the primitives of the economy, we prove that it is
possible to choose personalized collateral in order to satisfy Eq. (9). Then, our main
result can be stated as follows:
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Proposition 2 Let E 0 be an economy satisfying the following assumptions:

[A1]. For each agent h 2 H; Uh.x/ D P
�2Dh

vh
� .x/:Moreover, 8� 2 D; the function

vh
� W RGC �! R is continuous, strictly monotone and concave with vh

� .0/ D 0: In

addition, 8h 2 H2; 8˛ 2 R
GC;

P
�2D

vh
� .˛/ is finite.

[A2]. 8h 2 H; !h 2 Int Xh;

[A3]. There exists W > 0 such that W� 6 W; 8� 2 D:
[A4]. For each node � 2 D; for each asset j 2 J.�/; for each agent h 2 QH.�/, the

function Fh
�;j that adjusts the collateral requirements as function of the default

history is increasing, continuous and uniformly bounded from below by a vector
ˇ 2 R

GC n f0g:
Then, there exists an equilibrium .p; q;R; .M

h
/h2H ; .x

h; �
h
; �

h
; �

h
/h2H/ for

which, the financial institution chooses the personalized collateral such that:

M
h
j .�/ D Fh

�;j.p.�/; qj.�/; 
h
�/:

Assumptions [A1]–[A3] are classical in the infinite horizon incomplete market
models. In fact, assumption [A3] requires that for each node of the event-tree,
the aggregate initial endowment accumulated until this node is uniformly bounded
from above along the event-tree. This assumption is satisfied, e.g., when the
depreciation structure satisfies assumption [D] of Araujo–Páscoa–Torres-Martínez
[3]. Assumption [A4] requires that the collateral requirements are increasing with
respect to agents’ default history. Moreover, it guarantees that the personalized
collateral are different from zero along the event-tree (i.e.: it does not vanish
completely).

Remark 1 • The personalized collateral requirements can be interpreted as credit
restrictions. In fact, given an equilibrium for which the personalized collateral
perfectly foresee the default rates, we have that agents are restricted to consume
at least a quantity .p.�/Mh

j .�//g of good g. Then, as the rule Fh
�;j guarantees

at least a positive quantity of collateral, there exists a commodity g0 for which
.p.�/Mh

j .�//g0 > 0. Then, if ch
�.g
0/ denotes the total quantity of commodity

g0 consumed by agent h 2 H, the following inequality will be satisfied in
equilibrium:

�
h
j .�/ 6

ch
�.g
0/

.p.�/Mh
j .�//g0

:

Markovian economic models with credit restrictions which depend on the default
history have been studied by Braido [5] and Sabarwal [20]. However our
approach is different, since our economy does not have recursive structure and
the default penalties are associated to physical requirement rather than bounds
on the debt volume.
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4 Concluding Remarks

In this paper, we extend the model of Araujo–Páscoa–Torres-Martínez [3] to allow
for Overlapping Generations model and personalized collateral requirements. In this
way, in our first model, considering the collateral to be the same for all agents, we
obtain the model of Araujo–Páscoa–Torres-Martínez [3] as a particular case.

The main result of the second part of our paper is to prove the existence of an
equilibrium for which the personalized collateral requirements perfectly foresees
the default rate in equilibrium and is compatible with agents’ default history.

The rules that can be used by the financial institution to set the optimal collateral
requirement are very general, and depend on the evolution of the default rate of each
agent and the price variations.

In addition, we guarantee that it is possible to obtain compatibility between
personalized requirement and the default history in order to restrict agents’ collateral
requirement not only as a function of their personal default history but also as a
function of the default history of their dynasty. This result is consistent with the
practice of the mortgage markets without life insurance protection.

As we already mentioned, in the case where the adjusting rules do not depend
on both the past default rate and the price evolution, we obtain the result of Araujo–
Páscoa–Torres-Martínez [3] as a particular case. Moreover, Araujo–Páscoa–Torres-
Martínez [4] study an extension of the model for the case of infinitely-lived assets,
by analysing not just the equilibrium existence but also the existence of speculative
bubbles compatible with agents’ rationality. In this context, the authors allow the
collateral coefficient to adjust for price variation. In particular, requirements that
maintain a fixed margin value are analyzed. We could also consider in our model
infinitely-lived assets and study these kind of requirements by allowing the margin
to vary with the default history. Agents with high default would have to constitute
higher marginal values. This is an important issue to address in future research.

Appendix

Proof of Proposition 1

The proof of this proposition is close to the proof of Araujo–Páscoa–Torres-
Martínez [3]. However, because in our model the number of alive agents depend
on the nodes, the uniform bound on the debt values in the former paper no longer
holds. However, we obtain bounds on the short sales using similar tricks. Since the
stochastic structure of our model is characterized by a finite number of immediate
successors at each node, these bounds rule out the possibility of Ponzi games.
Moreover, the presence of finitely-lived agents in our model leads to a new technical
difficulty, namely that the interior of the budget sets of these agents could be empty,
and therefore the budget correspondences may fail to be lower semicontinuous. To
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overcome this problem, one can define modified budget correspondences that are
lower semicontinuous, and applying the Gale and Mas-Colell fixed point theorem
[10, 11], we guarantee that each truncated economy has an equilibrium. These
modified correspondences are close to the correspondences defined below (in the
following proof of Proposition 2) but obviously they do not depend on the collateral
since the personalized collateral are exogenous in our first model.

Proof of Proposition 2

Equilibria in the Truncated Economies

Let E 0T be the truncated economy associated with the original economy E 0;
which has the same characteristics than E 0; but where we suppose that agents are
constrained to stop their exchange of goods at period T and their exchange of assets
at period T � 1: Formally, for each T > 0; let us define the following sets:

�T�1 WD
8<
:.p; q/ 2 R

DT�GC �
Y
�2DT

R
J.�/

ˇ̌
ˇ̌ 8� W t.�/ < T; kp.�/k1 C kq.�/k1 D 1;

8� W t.�/ D T; kp.�/k1 D 1:

�
;

Let us recall that for each node � 2 DT ; for each asset j 2 J.��/; one has
Rj.�/ 6 kAj.�/k1: Let us denote by:

RT WD fRD.Rj.�/; � 2 DT ; j 2 .��// j 8� 2 DT ; 8j 2 .��//g; Rj.�/6 kAj.�/ k1g :

Moreover, let us denote by M WD f˛ 2 R
GC j ˇ 6 ˛ 6 Wg:

For each h 2 H;

XhT WD f.xh.�/; � 2 D/ 2 Xh j 8� W t.�/ > T; xh.�/ D 0g;
ZhT WD f.zh.�/; � 2 D/ 2 Xh j 8� W t.�/ > T; zh.�/ D 0g;

and 8� W t.�/ D T; 8j 2 J.�/; Mh
j .�/ D 0:
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Moreover, the budget set of an agent h 2 H for the truncated economy can be
defined as follows:

BhT.p; q;R;Mh/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

.x; �; �;�/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

p.�h/xh.�h/C p.�h/Mh.�h/�h.�h/C q.�h/zh.�h/

6 p.�h/!h.�h/; �h 2 DT�1;

p.�/ � .xh.�/� !h.�//C p.�/Mh.�/�h.�/C q.�/ � zh.�/

C P
j2J.��/

�h
j .�/ 6 p.�/ŒY.�/xh.��/C Y.�/Mh.��/�h.��/�C

P
j2J.��/

Rj.�/�h
j .�

�/; 8� 2 .Dh � ıDh/\ DT�1; � ¤ �h;

p.�/ � .xh.�/� !h.�//C P
j2J.��/

�h
j .�/ 6

p.�/ŒY.�/xh.��/C Y.�/Mh.��/�h.��/�CP
j2J.��/

Rj.�/�h
j .�

�/;8� 2 ıDh [ DT ; � ¤ �h;

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

Moreover, for each agent h 2 H; the utility function UhT for each truncated
economy E 0T is defined as follows:

UhT.xh; �h; �h; �h/ WD
X
�2DT

vh
� .Qxh.�//: (15)

Lemma 1 Under the assumptions stated above, an allocation .x; �; �;D/ which
satisfies the conditions (ii), (iii), (iv) and (v) of Definition 4 is bounded.

Proof of Lemma 1 Let .x; �; �;�/ be an allocation which satisfies the conditions
(ii), (iii), (iv) and (v) of Definition 4. The bounds on x; � and � are obtained as in
Araujo–Páscoa–Torres-Martínez [3]. More precisely, it follows from (ii) that:

X
.h;g/2H.0/�G

Œxh.0; g/C
X

j2J.0/

Mh
j .0/�

h
j .0/� D

X
.h;g/2H�G

!h.0; g/ 6 WH.0/: (16)

Let Y WD maxf.Y.�//g;g0 ; .�; g; g0/ 2 �DT � G � Gg: Then, 8� 2 DT nf0g; one has:

P
.h;g/2H.�/�G

Œxh.�; g/C P
j2J.�/

Mh
jg.�/�

h
j .�/� 6

WH.�/C YG C P
.h;g/2H.�/�G

Œxh.��; g/C P
j2J.��/

Mh
jg.�
�/�h

j .�
�/�:

(17)

It then follows from Eqs. (16) and (17) that for each node � 2 DT W t.�/ D t that:

X
.h;g/2H.�/�G

Œxh.�; g/C
X

j2J.�/

Mh
jg.�/�

h
j .�/� 6 WH.�/

tX
nD0

.YG/
n
: (18)
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By definition of the personalized collateral, one has that mh.�/ D min
j2J.�/

kMh
j .�/k1 >

0; and hence 8h 2 H one gets:

xh.�; g/ 6 WH.0/
tX

nD0
.YG/

n WD �.�/ < C1; (19)

�h
j .�/ 6 �.�/

mh.�/
WD ˛h.�/ < C1; 8j 2 J.�/; (20)

�h
j .�/ 6 ˛h.�/ < C1; 8j 2 J.�/; (21)

On the other hand, since 8j 2 J.�/; �h
j .�/ 6 p.�/Aj.�/�h

j .�
�/ and in view of our

normalization, one gets:

�h
j .�/ 6 kAj.�/k1˛h.��/ WD �h.�/ < C1: (22)

We will denote by ˛.�/ WD sup
h2H.�/

˛h.�/ and by �.�/ WD sup
h2H.�/

�h.�/:

For each h 2 H; let us define:

BhT.p; q;R;Mh; �; ˛; �/ D

8̂
ˆ̂<
ˆ̂̂:
.x; �; �;�/ 2 BhT.p; q;R;Mh/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

xh.�; g/ 6 2�;

�h
j .�/ 6 2˛.�/;

�h
j .�/ 6 2˛.�/;

�h
j .�/ 6 2�.�/;

9>>>=
>>>;

Let E 0T.�; ˛; �/ be an economy with the same characteristics as E 0T but in which
the budget constraints are defined by the set BhT.p; q;R;Mh; �; ˛; �/:

Lemma 2 The truncated and compactified economy E 0T.�; ˛; �/ has an equilib-

rium .pT ; qT ;R
T
; .xhT ; �

hT
; �

hT
; �

hT
/h2H/ such that 8h 2 H; 8� 2 DT�1; 8j 2

J.��/; one has M
hT
j .�/ WD Fh

�;j.p
T.�/; qT.�/; hT

� /:

Proof of Lemma 2 The first new technical difficulty in our model in comparison
with Araujo–Páscoa–Torres-Martínez [3] is that the budget set correspondences
of the finitely-lived agents may not be lower semicontinuous (since their interior
can be an empty set). Let us consider an agent h 2 H and define the set
B0hT

.p; q;R;Mh; �; ˛; �/ by replacing all the inequalities in BhT.p; q;R;Mh; �; ˛; �/

by strict inequalities. Moreover, let us define the correspondence

B00hT
.p; q;R;Mh; �; ˛; �/ D


 f.!h; 0; 0; 0/g if B0hT
.p; q;R;Mh; �; ˛; �/ D ;

BhT.p; q;R; �; ˛; �/ if B0hT
.p; q;R;Mh; �; ˛; �/ ¤ ; :
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Remark 2 8h 2 H; 8.p; q/ 2 �T ; 8R 2 RT ; 8Mh 2 M; B00hT
.p; q;R;Mh/ ¤ ;

since it always contains .!i; 0/:

Moreover, one can easily prove that B00hT is lower semicontinuous. To simplify the
notations, we define v WD .p; q;R;M/; and w WD .x; �; �;�/:

For each agent h 2 H; let us define the following correspondence:

� hT.v;w/ D



BhT.v; �; ˛; �/ if w … BhT.v; �; ˛; �/

B0hT
.v; �; ˛; �/ \ Ph.w/ if w 2 BhT.v; �; ˛; �/

;

We also define the correspondence:

�0T.v;w/ D

8̂
ˆ̂<
ˆ̂̂:
.p0; q0/ 2 �T

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

8� 2 DT ;

.p0.�/� p.�// � P
h2H

Œxh.�/CMh.�/�h.�/C Y.�/xh.��/

�Y.�/Mh.��/�h.��/� !h.�/�C .q0.�/� q.�// � P
h2H

zh.�/ > 0:

9>>>=
>>>;

where Ph.w/ WD fw0 j Uh.w0/ > Uh.w/g:
Moreover, we add the following players to this generalized game:

• Given an allocation .x; �; �;�/; at each node � 2 DT�1; for each asset j 2 J.�/;
a financial institution chooses Mh

j .�/ in order to solve the following problem:

min
Mh

j .�/2M
ŒMh

j .�/ � Fh
�;j.p.�/; q.�/; 

h
� /�

2
;

• Given an allocation .x; �; �;�/; at each node � 2 DT n f0g; for each j 2 J.��/;
an auctioneer chooses Rj.�/ 6 kAj.�/k1 in order to maximize:

ŒRj.�/
X
h2H

�h.��/�
X
h2H

Dh
j .�/�

2
:

Since, 8h 2 H[f0g; � hT is lower semicontinuous and by definition of� hT ; w …
� hT.v;w/; it follows from the Gale and Mas-Colell fixed point theorem [10, 11] that

there exists .pT ; qT ;R
T
; .M

hT
/h2H.x

hT ; �
hT
; �

hT
; �

hT
/h2H/ WD .v;w/ such that:

8h 2 H [ f0g; � hT.v;w/ D ;:

That is, 8h 2 H; B0hT
.v; �; ˛; �/ \ Ph.w/ D ; and

.p.�/� pT.�// � P
h2H
ŒxiT.�/C Mh.�/�

hT
.�/ � Y.�/xhT.��/

�Y.�/Mh.��/�hT
.��/� !h.�/�C .q.�/ � qT.�// � P

h2H
zhT.�/ 6 0;

(23)
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On the other hand, the game played by the financial institution and the
auctioneers yield to Mh

j .�/ D Fh
�;j.p.�/; q.�/; 

h
� / and Rj.�/

P
h2H

�h
j .�
�/ D

P
h2H

Dh
j .�/: The feasibility conditions can be easily obtained using Eq. (23). �

Lemma 3 The truncated economy E 0T has an equilibrium .pT ; qT ;R
T
; .M

hT
/h2H;

.xhT ; �
hT
; �

hT
; �

hT
/h2H/:

Proof of Lemma 3 We have already proved that 8h 2 H; B0hT
.v; �; ˛; �/ \

Ph.w/ D ;: It then remains to prove that 8h 2 H; BhT.v; �; ˛; �/ \ Ph.w/ D ;:
This follows from a classical convexity argument. �

Asymptotic Results The techniques used in Araujo–Páscoa–Torres-Martínez [3]
can be easily adapted to the case of incomplete participation and personalized
collateral to show that the cluster point is an equilibrium of the original economy.
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Regularity for Mean-Field Games Systems
with Initial-Initial Boundary Conditions:
The Subquadratic Case

Diogo A. Gomes and Edgard A. Pimentel

Abstract In the present paper, we study forward-forward mean-field games with a
power dependence on the measure and subquadratic Hamiltonians. These problems
arise in the numerical approximation of stationary mean-field games. We prove
the existence of smooth solutions under dimension and growth conditions for the
Hamiltonian. To obtain the main result, we combine Sobolev regularity for solutions
of the Hamilton-Jacobi equation (using Gagliardo-Nirenberg interpolation) with
estimates of polynomial type for solutions of the Fokker-Planck equation.

1 Introduction

Mean-field games aim at understanding differential games with a (very) large
number of rational, indistinguishable, intelligent players. Individually each player
is not in position to impact the outcome of the system, however, every player is
influenced by aggregate effect of the remaining agents.

This theory was introduced independently by Lasry and Lions [31–33] and
Huang et al. [28, 29]. Since then it has known an intense research activity, and
several authors have developed in detail a variety of problems and new directions
of research. Among these we mention numerical methods [2, 3, 30], finite-state
problems [14, 20, 22], obstacle problems [15], extended mean-field games [18, 24],
probabilistic methods [10, 11], long-time behavior [6, 8], weak solutions [7, 38],
applications to economics and environmental policy [26, 30, 34] to name only a
few. For a detailed account of the recent developments and perspectives, we refer
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the reader to the survey papers [1, 5, 16, 27], the lectures by Lions [35, 36] and the
recent book [4].

A typical mean-field game is given by the system of partial differential equations

(
�ut C H.x;Du/ D �u C g.m/ on Td � Œ0;T�
mt � div.DpHm/ D �m on Td � Œ0;T� ; (1)

where T
d is the d-dimensional torus, T > 0 is a terminal time, which is fixed. In

many applications (1) is equipped with initial-terminal boundary conditions:

(
u.x;T/ D uT.x/

m.x; 0/ D m0.x/:
(2)

Existence of weak solutions for (1)–(2) was firstly investigated in [32]. In [38],
the author addressed the existence of weak solutions to the planning problem.
Smooth solutions for mean-field games in the presence of quadratic Hamiltonians
were considered in [8]. However, the argument in that paper depends on a Hopf-
Cole transformation which does not extend to a more general class of Hamiltonians
satisfying quadratic growth conditions, except, perhaps, in very special perturbation
regimes. MFG systems with nonlocal couplings were investigated in [9].

The first results concerning smooth solutions for Hamiltonians with quadratic
and subquadratic growth appeared in [36]. These were substantially improved in
[25]. The superquadratic case was treated in [23].

The stationary setting was first addressed in [31]. The existence of smooth
solutions was discussed in [17, 21] and [24]. See also [19] for a related problem.
The results in [12], which were established prior to mean-field games, ensure the
existence of solutions for a class of stationary MFG systems.

In the present paper, we study a variant of (1)–(2) obtained by reversing time in
the Hamilton-Jacobi equation and prescribing an initial condition u0. This yields:

(
ut C H.x;Du/ D �u C g.m/ on Td � Œ0;T�
mt � div.DpHm/ D �m on Td � Œ0;T� ; (3)

(
u.x; 0/ D u0.x/

m.x; 0/ D m0.x/:
(4)

The system (3)–(4) is referred to as a forward-forward mean-field game (FF-MFG).
This class of systems has been considered in the realm of numerical methods to
approximate the equilibrium problem, see [2]. Although these systems are well-
behaved from the numerical perspective, the existence of solutions, as well as the
regularity of the FF-MFG has not yet been addressed in the literature. As a main
result, we obtain a set of conditions under which classical solutions for the FF-MFG
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systems can be shown to exist. This is done by combining a Gagliardo-Niremberg
type of argument for the solution of the Hamilton-Jacobi equation with estimates
for the Fokker-Planck equation, of polynomial type.

1.1 Main Assumptions

In this paper we assume that H satisfies a subquadratic growth condition and
suppose further that g.m/.x; t/ D a.x/m˛.x; t/, where a W T

d ! R
C
0 . The

Hamiltonian H, a.x/ and the exponent ˛ satisfy several assumptions as detailed
next.

In the sequel we introduce the Assumptions under which we work.

A 1 The Hamiltonian H.x; p/ W Td � Rd 7! R

1. is of class C2;
2. is assumed to be, for fixed x, strictly convex in p;
3. is coercive with respect to p, i.e.,

lim
jpj!1

H.x; p/

jpj D C1;

and, without loss of generality, it is also assumed that H.x; p/ � 1.

A 2 The non-linearity g is of the form

g.m/.x; t/
:D a.x/m.x; t/˛;

where a 2 C 1.Td/ is non-negative.

A 3 We have .u0;m0/ 2 C1.Td/. Furthermore, m0 � 0 for some 0 > 0.

A 4 H satisfies the following conditions:

jH.x; p/j � C jpj� C C

and

ˇ̌
DpH.x; p/

ˇ̌ � C jpj��1 C C;

for 1 < � < 2 and a positive constant C > 0.

Next, we state the following auxiliary result:
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Lemma 1 Let d > 2. Then, there exists ˛�;d satisfying

˛�;d � 2.�4C 8� � 6�2 C �3/

d.4� � 5�2 C �3/
;

such that for ˛ < ˛�;d, there are 0 � (; � � 1 < �; r; p; Qr; Qp; a( and b(
satisfying (9)–(16) as well as

.� � 1/.4� � ��/

.2 � �/

r(˛

.� � 1/ < 1

and

.� � 1/.2C ��/

�

r(˛

.� � 1/
< 1:

Proof The result is established by recurring to the software Mathematica.

Notice that

lim
�!2

2.�4C 8� � 6�2 C �3/

d.4� � 5�2 C �3/
D 2

d
;

and

lim
�!1

2.�4C 8� � 6�2 C �3/

d.4� � 5�2 C �3/
D C1:

A 5 The exponent ˛ in A2 is such that

˛ � ˛�;d:

Our Assumptions include, but are not limited to, Hamiltonians given by

H.x; p/
:D h.x/

�
1C jpj2

	 �
2 C V.x/;

where 1 < � < 2, h;V 2 C 2.Td/, h � 1; and V � 0.

1.2 Main Result

The main result of this paper is the existence of classical solutions for the forward-
forward mean-field games systems, as stated in the next Theorem:
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Theorem 1 Assume that the Assumptions A1–A5 are satisfied. Then, (3) admits a
classical solution .u;m/ under the initial-initial data (4).

To prove Theorem 1 we introduce an approximate problem. It is done by
considering the non-local operator g� D �� � g.�� � m/, where the kernel �� is a
symmetric, standard, mollifier. By doing so, one obtains:

(
u�t C H.x;Du�/ D �u� C g.m�/

m�
t � div.DpHm�/ D �m�;

(5)

with g0 D g, by convention. Existence of solutions to (5) can be obtained by the
methods in [37] and [25]. See also [5].

1.3 Outline of the Proof

In order to establish Theorem 1 one proceeds by carefully combining estimates, of
polynomial type, for the solution of the Fokker-Planck equation with bounds for u�

in L1. A key ingredient is the following result from [25]:

Theorem 2 Let .u�;m�/ solve (5)–(4). Suppose m� 2 L1.0;TI Lˇ0 .Td//; and
assume that

p >
d

2
;

and

r 	 p Œd.� � 1/C 2�

2p � d
;

where � > 1. Then,

Z
Td
.m�/ˇn dx � C C C

���ˇ̌DpH
ˇ̌2���rn

Lr.0;TILp.Td//
;

where

rn D r
�n � 1
� � 1

;

ˇnC1 D �ˇn, � > 1 and ˇ0 	 1.

The critical bounds in L1 for the Hamilton-Jacobi equation are given in the
following Lemma:
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Lemma 2 Let .u�;m�/ be a solution to (5)–(4) and suppose that A1–A4 hold. For
r; p > 1 satisfying

p

�
r � 1

r

�
>

d

2
;

we have,

ku�kL1.0;TIL1.Td// � C C C kg�.m
�/kLr.0;TILp.Td// :

We prove Lemma 2 in Sect. 2. Recurring to the Gagliardo-Nirenberg Theorem we
have:

Theorem 3 Let .u�;m�/ solve (5)–(4). Suppose that H satisfies A1 and A4. Then,
for 1 < p; r < 1,

kD2u�kLr.0;TILp.Td// 6 ckg�.m
�/kLr.0;TILp.Td// C cku�k

�
2��

L1.0;TIL1.Td//
C C;

where c; C > 0 are constants.

We establish Theorem 3 in Sect. 3. By combining Theorems 2 and 3 with
Lemma 2 one obtains bounds for kDu�kLr.0;TILp.Td//; which are uniform in �. Then,
an additional argument based on the non-linear adjoint method, see [13], yields
Lipschitz regularity for u�. See [25]. Several additional estimates for a solution
.u�;m�/ can be derived once Lipschitz regularity for solutions to the Hamilton-
Jacobi equation is established, as outlined next. These provide further regularity for
.u�;m�/ and allow us to consider the limit � ! 0, which concludes the argument.

The remaining of this paper is organized as follows: Lax-Hopf type of estimates
are established in Sect. 2. In Sects. 2 and 3 we present the proofs of Lemma 2
and Theorem 3, respectively. In Sect. 4, regularity for Du� in Lr.0;TI Lp.Td// is
established and, by recurring to the non-linear adjoint method, Lipschitz regularity
for the solutions of the Hamiton-Jacobi equation is proved.

In Sect. 5 we prove several estimates for a solution of (3). In particular, we
obtain that ln m� is Lipschitz, and that both u� and m� are Hölder continuous. We
also address the existence of solutions to the regularized problem. The proof of
Theorem 1 closes the paper.

2 Lax-Hopf Estimates

When considering MFG systems equipped with initial-terminal boundary condi-
tions, the Hamilton-Jacobi equation is inherently related to an optimal control
problem. Next, we explore this idea in the setting of initial-initial boundary
conditions. By doing so we manage to obtain upper bounds for u� .
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Proposition 1 Let .u�;m�/ be a solution to (5) and let � solve

(
�t � div.b�/��� D 0

�.x; �/ D �� .x/;
(6)

where b W Td � Œ0;T� ! Rd is a smooth vector field and � 2 .0;T�. Then

Z
Td

u�.x; �/�.x; �/dx �
Z �

0

Z
Td
ŒL.x; b/C g�.m

�/� � C
Z
Td

u�0.x/�.x; 0/dx:

Proof For ease of notation we drop the superscript �. We multiply the first equation
in (5) by � and the first equation in (6) by u and add them. Then, integration by parts
yields:

d

dt

Z
Td

u�dx C
Z
Td
.H C b � Du � g.m// �dx D 0:

Integrating in time over .0; �/ and using the definition of L.x; v/ one obtains

Z
Td

u.x; �/�.x; �/dx D �
Z �

0

Z
Td
.H C b � Du � g/ �dxdt C

Z
Td

u0.x/�.x; 0/dx

�
Z �

0

Z
Td
ŒL.x; b/C g.m/� �dxdt C

Z
Td

u0.x/�.x; 0/dx;

where the inequality follows from the definition of the Legendre transform.

We also need a lower bound for u� . This follows from the maximum principle. In
what follows, Lemma 2 is proved.

Proof (Proof of Lemma 2) Set b 	 0 in Proposition 1. The result then follows by
combining the Hölder inequality for convolutions and elementary properties of the
heat kernel with the maximum principle.

3 Hamilton-Jacobi Equation in Sobolev Spaces

Next, we consider Sobolev estimates for solutions of the Hamilton-Jacobi equation.
We recover a series of previously obtained results. See [25]. The next lemma is a
simple consequence of the Gagliardo-Niremberg interpolation inequality:

Lemma 3 Assume that u 2 W2;p.Td/. Then,

kDukL2p.Td/ � CkD2uk 1
2

Lp.Td/
kuk 1

2

L1.Td/
; (7)
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for some constant C > 0.

Then one easily obtains:

Lemma 4 Let u 2 W1;2p.Td/. Then, there exists C > 0 such that

kDukL�p.Td/ � CkDukL2p.Td/;

for every 1 < � < 2.

From this we get the following result

Corollary 1 Assume that u 2 W2;p.Td/. Then,

kDukL�p.Td/ � CkD2uk 1
2

Lp.Td/
kuk 1

2

L1.Td/
; (8)

for some constant C > 0.

This Corollary implies

Lemma 5 Assume that .u�;m�/ is a solution of (5)–(4) and suppose that H satisfies
A1–A4. Then, for 1 < p; r < 1,

kH.x;Du�/kLr.0;TILp.Td// � ckD2u�k
�
2

Lr.0;TILp.Td//
ku�k

�
2

L1.0;TIL1.Td//
C C;

where c; C > 0 are constants.

This lemma yields Theorem 3 by standard parabolic regularity.

4 Lipschitz Regularity for the Hamilton-Jacobi Equation

In what follows we combine the arguments of the Sect. 3 with polynomial estimates
for the Fokker-Planck equation, as stated in Theorem 2. This yields improved
regularity for the Hamilton-Jacobi equation.

Throughout this section we shall consider 1 < a < 1 and

1

b(
D 1 � ( C (

�
; (9)

where � > 1 and 0 < ( < 1. We start by recovering some critical results from [25].

Lemma 6 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A4 hold. Then,

km�kL1.0;TILb( .Td// � C C C
���ˇ̌DpH

ˇ̌2���
r(
�

Lr.0;TILp.Td//
;
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where

p >
d

2
(10)

and

r D p.d.� � 1/C 2/

2p � d
: (11)

Corollary 2 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A4 hold. Assume
further that (12) is satisfied. Then,

��g�.m
�/
��

L
a
˛ .0;TIL b(

˛ .Td//
� C C C

��jDpHj2�� r(˛
�

Lr.0;TILp.Td//
;

where p > d
2

and r are given as in Lemma 6.

Lemma 7 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A4 hold. Let Qp and
Qr satisfy

Qp
� Qr � 1

Qr
�
>

d

2
; (12)

where

1

Qp
:D ˛.1 � �/C ˛�

b(
(13)

and

1

Qr
:D ˛�

a
; (14)

with 0 � � � 1. Then

ku�kL1.0;TIL1.Td// � C C C kg�k�
L

a
˛

�
0;TIL b(

˛ .Td/

� :

Lemma 8 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A4 hold. Assume
additionally that (12)–(14),

2.� � 1/r

�
D a

˛
(15)
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and

2.� � 1/p

�
D b(

˛
: (16)

Then,

��Du�
��

L2.��1/r.0;TIL2.��1/p.Td//
� C

��g�
�� �
2��C �

2

L
a
˛ .0;TIL b(

˛ .Td//
C C

��g�
�� 1
�C �

2

L
a
˛ .0;TIL b(

˛ .Td//
C C:

Corollary 3 Assume that .u�;m�/ is a solution of (5)–(4) and suppose that A1–A4
hold. Assume further that (12)–(16) are satisfied. Then,

��Du�
��

L2.��1/r.0;TIL2.��1/p.Td//
� C C C

��Du�
�� .��1/.4����/

.2��/
r(˛
�

L2.��1/r.0;TIL2.��1/p.Td//

C C
��Du�

�� .��1/.2C��/
�

r(˛
�

L2.��1/r.0;TIL2.��1/p.Td//
:

where p > d
2

and r is given as in Lemma 6.

Lemma 9 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A5 are satisfied.
Then, there exist � > 1, r and p satisfying (10)–(11) such that

��Du�
��

L2.��1/r.0;TIL2.��1/p.Td//
� C:

Proof Firstly, combine Lemma 1 with Corollary 3. Then, the previous computations
along with an application of the weighted Young’s inequality implies the result.

In what follows, the main result of this section is presented.

Theorem 4 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A5 are satisfied.
Then, km�kL1.0;TILˇ .Td// is uniformly bounded in �, for any ˇ > 1.

Proof For p > d
2
, � > 1 and r > 1 given as in Lemma 6, Theorem 2 ensures that

for any ˇ > 1 there exists rˇ for which

Z
Td
.m�/ˇ.�; x/dx � C C C

��jDpH.x;Du�/j2��rˇ
Lr.0;TILp.Td//

:

By combining Lemma 9 with A4 one obtains

kjDpH.x;Du�/j2kLr.0;TILp.Td// � CkDu�k2.��1/
LF.0;TILG.Td//

C C 6 C:

This verifies the Theorem.
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Corollary 4 Assume that .u�;m�/ is a solution of (5)–(4). Suppose that A1–A5
hold. Then, kDu�kLr.0;TILp.Td//, kD2u�kLr.0;TILp.Td// are uniformly bounded, in �, for
any p; r > 1.

Proof It follows from Theorem 4 that kg�.m�/kLr.0;TILp.Td// is bounded uniformly in
�, for any p; r > 1. Then

��u
��

L1.0;TIL1.Td//
and kD2u�kLr.0;TILp.Td// are also bounded,

because of Lemma 2 and Theorem 3. Finally, from Lemma 3

kDu�kL2r.0;TIL2p.Td// 6 CkD2u�k 1
2

Lr.0;TILp.Td//
ku�k 1

2

L1.0;TIL1.Td//
:

Corollary 5 Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A5 are satisfied.
Then Du� 2 L1.Td � Œ0;T�/, uniformly in �.

5 Further Regularity

Once we have established Lipschitz regularity for u� , a series of estimates can be
obtained, improving the regularity of a solution .u�;m�/ to (5). These are explored
in [25] and recalled below.

5.1 Fokker-Planck Equation

Corollary 6 (See [25]) Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A5
hold. Then

• D3
xxxu�;D2

xtu
� 2 L2.Td � Œ0;T�/, Dxxu� 2 L1.Œ0;T�;L2.Td//,

• D2
xxm�;m�

t 2 L2.Td � Œ0;T�/, and Dxm� 2 L1.Œ0;T�;L2.Td//,
• D3

xxxm�;D2
xtm

� 2 L2.Td � Œ0;T�/, D2
xxm� 2 L1.Œ0;T�;L2.Td// and

• there is r > d such that Dxm�;D2
xxm�;m�

t 2 Lr.Td � Œ0;T�/ and then m� 2
C0;1�d=r.Td � Œ0;T�/.

These bounds are uniform in �.

5.2 Hopf-Cole Transformation

Consider the following logarithmic transform w�
:D ln m� . Hence, w� satisfies

w�t D div.DpH.x;Dxu�//C DpH.x;Dxu�/Dw� C jDw�j2 C�w�: (17)

By investigating the regularity of solutions to (17), one obtains the following
Theorem:
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Theorem 5 (See [25]) Assume that .u�;m�/ solves (5)–(4). Assume also that A1–
A5 hold and define w�

:D ln m�. Then, the family ln m� is equi-Lipschitz.

In particular, m is bounded by above and below.

5.3 Limit as � ! 0

In the sequel, we are interested in the behavior of a solution .u�;m�/ to (5) as � ! 0.
The next Lemma ensures Hölder regularity for u� .

Lemma 10 (See [25]) Assume that .u�;m�/ is a solution of (5)–(4). Assume that
A1–A5 hold. Then, there exists � 2 .0; 1/ for which

ku�kC 0;� .Td�Œ0;T�/ � C;

uniformly in �, for some constant C > 0.

Regularity for m� in C 0;� , for some � 2 .0; 1/, is established next.

Lemma 11 (See [25]) Assume that .u�;m�/ solves (5)–(4). Suppose that A1–A5 are
satisfied. Then, there exists m 2 C 0;�

�
Td � Œ0;T��, for some � 2 .0; 1/, such that

m� ! m through some subsequence, uniformly in compacts, in C 0;�
�
Td � Œ0;T��.

Because of the non-linear nature of the Fokker-Planck equation, one must obtain
convergence for the Du�. This is done in the next Lemma.

Lemma 12 (See [25]) Assume that .u�;m�/ is a solution of (5)–(4). Suppose that
A1–A5 hold. Then, there is u 2 C 0;�

�
Td � Œ0;T��, for some � 2 .0; 1/, such that

u� ! u, through some subsequence, uniformly in compacts, in C 0;�
�
Td � Œ0;T��.

Moreover, we also have Du� ! Du

Corollary 7 (See [25]) Assume that .u�;m�/ is a solution of (5)–(4). Suppose that
A1–A5 hold. Then, the limit of m� as � ! 0 is a weak solution of

mt � div
�
DpH.x;Du/m

� D �m;

where

u D lim
�!0 u�:

5.4 The Regularized Problem: Existence

Existence of solutions to (5) follows along the lines to those presented by the authors
in [25].
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Proposition 2 There exists a solution to (5)–(4).

5.5 Proof of Theorem 1

From Proposition 2, we know that there exists a smooth solution to (5)–(4). The key
task is to pass to the limit � ! 0.

Lemma 10 and Corollary 6 ensure the Hölder regularity of u� and m� , uniformly
in �. Also, from Lemmas 11 and 12, it follows that u� ! u in C 0;� .Td � Œ0;T�/,
Du� ! Du almost everywhere and m� ! m in C 0;� .Td � Œ0;T�/, as � ! 0.

Corollary 7 implies that m solves

mt � div.DpH.x;Du/m/ D �m;

as a weak solution. Since u� is Lipschitz continuous and m� is uniformly convergent
in compacts, it follows that the limit u solve

ut C H.x;Du/ D �u C g.m/;

in the viscosity sense. Finally, because .u;m/ has the same regularity as .u�;m�/,
one concludes the proof.
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A Budget Setting Problem

Orlando Gomes

Abstract Consider a typical agency relation involving a capital owner and a
manager. The principal (i.e., the capital owner) has a potential budget to assign
to investment projects. The effective amount of investment will be a share of
the potential level, given the specific form of interaction that will be established
between the principal and the agent (i.e., the manager). The budget setting problem
originating from this relation is evaluated from the point of view of the manager,
who wants to maximize the received budget, in an intertemporal basis. The optimal
control problem is subject to a constraint, which indicates how the assigned budget
evolves over time. In this constraint, a matching function takes a central role; the
arguments of the function are the agent’s effort to absorb new funds and the financial
resources the principal has available but has not yet channeled to the manager.

1 Introduction

Agency relations and the information asymmetries they enclose are a main topic of
economic analysis. Pioneer work on this subject by Akerlof [1], Spence [7], Stiglitz
[8], Jensen and Meckling [5] and Fama and Jensen [3], among others, has launched
a prolific literature that intends to explain how a principal selects an agent to act on
her/his behalf and to pursue her/his goals. Because principal and agent have different
interests and the access to relevant information probably differs among them, there
are potential costs involved in this relation, for both players.

This paper proposes a simple intertemporal optimization model that deals with
agency relations in a specific context, namely concerning the interaction of a capital
owner with a team of managers that will undertake a series of investment projects
over time. The team is selected a priori, and therefore we will not be concerned
with adverse selection issues. The problem arises when the capital owner has to
decide how much financial resources to allocate to the agent. The principal has a
given potential budget to assign, but she/he will release the funds only against new
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business proposals. If the managers do not make any new proposal, the principal will
progressively cut the access to funds. From the point of view of the managers, they
will be interested in accessing the largest possible portion of the potential budget,
however collecting additional funds has a cost, related to the design of business
proposals the managers will have to present to the capital owner.

Budget setting is a relevant theme of research in economics, management and
management accounting. There are several approaches to this issue in the literature,
for instance the ones proposed by Brekelmans [2] and Gox and Wagenhofer [4]. Our
analysis differs from the mentioned studies because it takes a dynamic scenario and
because it focus on the matching between the will of the capital owner in transferring
funds to new projects and the effort made by managers to present new investment
proposals. The matching process is essential for our analysis; we will assume a
matching function that is adapted from typical labor market search and matching
theory (see Pissarides [6]).

The techniques employed to solve the intertemporal optimization problem
respect the conventional tools used to assess dynamic behavior in low dimensional
systems (associated to our maximization problem there will be only one dynamic
constraint). See, for instance, Walde [9] for a thorough analysis of the tools
employed to explore this kind of modeling structure.

The remainder of the paper is organized as follows. Section 2 presents and
describes the model; Sect. 3 derives optimality conditions and characterizes the
steady-state; Sect. 4 approaches the stability of the derived dynamic system; Sect. 5
presents a small numerical illustration; Sect. 6 concludes.

2 The Model

Consider a continuous time modeling structure, in which a capital owner has a given
potential budget to assign to investment projects. The capital owner has already
chosen the team of managers that will undertake the projects and, in the specific
stage we are considering, the decision under evaluation is how much financial
resources should be transferred to the hands of the managers in order to achieve
the best possible outcome from the point of view of the involved parties. This is an
agency relation, involving a principal—agent relationship, where the capital owner
will assume the role of the principal and the managers will be the agent. Principal
and agent may have different or even contradictory interests and, thus, it is vital to
understand how they will relate.

The maximum budget available for investment in the activities to be pursued by
the hired managers is an invariant in time amount B. Not all of this budget will,
presumably, be allocated to the agent and, therefore, we define share b.t/ 2 .0; 1/

as the percentage of budget B that at time t is allocated to project development.
Under this simple scenario, the two involved entities will have decisions to make.
The investor will be concerned with the efficiency with which the managers allocate
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the financial resources they receive, and wants to choose, in each period, the share
of B that best serves this intent. The managers want to receive the highest possible
amount of resources they can get, however they will have to incur in a cost to obtain
them. Let the cost of acquisition of funds be given by variable x.t/. This variable
may be interpreted as the costs the agent in the relation must have to support in
order to convince the capital owner to release funds. Thus, variable x.t/ may be
associated with the preparation of proposals by the agent to present projects that the
principal will perceive as profitable and, thus, worth releasing additional funds. We
should remark that x.t/ is a control variable from the point of view of the managers;
they choose how much they want to expend in order to obtain the best possible
outcome, from their viewpoint, which consists in maximizing, on an intertemporal
basis, the difference between the received budget and the project proposal costs.

The mechanism through which funds are assigned to the managers is the result
of a matching process, between the agent’s project proposals effort, measured by
the value of variable x.t/, and the budget share that at a given time period the
capital owner can potentially assign to the investment projects; this corresponds
to the funds, from budget B, not yet allocated to those projects, i.e., Œ1 � b.t/�B.
The matching process is expressed under the form of a matching function with the
following features.

Definition 1 Take a real-valued function f W R2C �! RC. Function f is a matching
function, such that y.t/ D f fx.t/; Œ1 � b.t/�Bg. The output of the function, y.t/,
represents the budget transferred from the principal to the agent, at period t,
given the values of the respective inputs. Function f contemplates the following
properties:

(i) f is continuous and differentiable;
(ii) f is an increasing function in both arguments: fx > 0, f.1�b/B > 0;

(iii) f is subject to decreasing marginal returns, relating each of its inputs: fxx < 0,
f.1�b/B;.1�b/B < 0;

(iv) f is homogeneous of degree 1: f f"x.t/; "Œ1 � b.t/�Bg D "f fx.t/; Œ1 � b.t/�Bg,
8" > 0;

(v) Both inputs are essential to reach a positive output, i.e., f f0; Œ1 � b.t/�Bg D
f Œx.t/; 0� D 0.

An explicit functional form that obeys the listed properties is, for instance, a
Cobb-Douglas specification of the matching process, i.e., f fx.t/; Œ1 � b.t/�Bg D
Ax.t/˛fŒ1 � b.t/�Bg1�˛, A > 0, ˛ 2 .0; 1/. The mentioned properties have, all
of them, an intuitive interpretation; most importantly, they indicate that a stronger
effort by the team of managers in presenting new project proposals and a larger
available budget produce, evidently, a better matching result, that is translated in a
more generous fund transfer. Logically, there are diminishing returns in this relation:
with higher values of each of the inputs, matching will continue to occur but at a
progressively lower rate. Observe, as well, that the inputs in the matching function
are both indispensable to deliver a meaningful outcome: if the managers do not
present any investment proposal, they will receive no funds even though these are
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potentially available; similarly, if the capital owner has no funds left to assign to
this class of projects, the matching result will be null no matter how much effort the
managers employ in presenting new proposals.

Another central assumption that we take is that the capital owner forces the agent
to present innovative projects in order to continue to receive funds. To impose this
behavior on the part of the agent, the principal will automatically cut a share � 2
.0; 1/ of the budget assigned in the previous period from the budget of the current
period. The agent can only recover this value by presenting new projects; if it fails
to do so, the budget will shrink over time and converge, in the long-run, to zero. The
capital owner is not interested in maintaining an agency relation with managers who
do not show a will to innovate and this mechanism functions as a way to impose the
presentation of new projects in case the managers want to continue to receive funds
to develop business activities.

Under the above assumptions, the following differential equation will character-
ize the dynamics of budget assignment,

�
b.t/ D f fx.t/; Œ1 � b.t/�Bg � �b.t/, b.0/ given (1)

In the proposed context, the agent wants to maximize, in an intertemporal basis,
the value of its available financial resources. We designate these resources by �.t/
and define them as the difference between the received budget and the costs incurred
to propose new projects, i.e., �.t/ WD b.t/B�x.t/. Since the problem is of a dynamic
nature, the objective function of the managers will be�.t/ WD R1

0
�.t/ exp.�	t/dt.

Parameter 	 > 0 is the rate at which the future is discounted to the present. An
infinite horizon is considered because we have not established an ending date for
the agency relation; furthermore, the consideration of a positive discount rate makes
far in time outcomes negligible from the current period point of view.

The above reasoning has conducted us to an optimal control problem, that the
agent will want to solve, in which the value of �.t/ is maximized, given resource
constraint (1). The problem is relevant, from an economic point of view, because it
contemplates a trade-off: a low effort in searching for new funds will not allow the
managers to access a high budget; an excessively strong effort to collect new funds
may lead to a higher budget but at an exaggerated cost; somewhere in the middle, the
optimal solution will be found: by maximizing�.t/, the agent will arrive to optimal
trajectories for the two endogenous variables of this setup: the control variable x.t/,
and the state variable b.t/.

Worthwhile noticing, in this environment, is the specific role of variable b.t/,
the share of the potential budget that is delivered to the managers. This is not a
control variable either for the principal or for the agent. Its value is the result of a
pre-specified rule through which the capital owner attributes funds. It is the choice
of the agent, which acts optimally, and the choice of the principal, concerning the
values of the overall budget (B) and the rate at which it cuts managers’ funds (�),
that will determine the specific path one will encounter for the assigned budget.
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The next section will present the steps required to solve the optimal control
problem.

3 Solution of the Optimal Control Problem

As described in the previous section, a team of managers is interested in addressing
the following optimal control problem,

Max
x.t/

Z 1
0

�.t/ exp.�	t/dt

subject to :
�
b.t/ D f fx.t/; Œ1 � b.t/�Bg � �b.t/

b.0/ given

�.t/ W D b.t/B � x.t/

Computation of first-order conditions allows to find an equation of motion for
variable x.t/ that is valid under the agent’s optimal behavior.

Proposition 1 Assume a Cobb-Douglas matching function. If the agent maximizes,
intertemporally, the value of its financial resources, the time trajectory of its control
variable, x.t/, will be governed by the following law of motion,

�
x.t/ D 1

1 � ˛

 
	 C �

1� ˛b.t/

1 � b.t/
� ˛A



Œ1 � b.t/�B

x.t/

� 1�˛!
x.t/ (2)

Proof To arrive to the solution of the optimization problem, we start by presenting
the respective current-value Hamiltonian function,

HŒx.t/; b.t/� D b.t/B � x.t/C p.t/ .f fx.t/; Œ1 � b.t/�Bg � �b.t//

With the Hamiltonian function a new variable is introduced, namely the co-state
or shadow-price variable p.t/, which can be interpreted as a kind of Lagrange
multiplier for this dynamic setting. From the Hamiltonian, we draw the first-order
optimality conditions of the problem,

Hx D 0 ) p.t/fx D 1

�
p.t/ D 	p.t/� Hb ) �

p.t/ D .	C �/p.t/� B � fb
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The transversality condition lim
t!1p.t/ exp.�	t/b.t/ D 0 must be satisfied as well.

The first-order conditions correspond, under Cobb-Douglas matching, to

˛A



Œ1 � b.t/�B

x.t/

� 1�˛
p.t/ D 1 (3)

�
p.t/ D .	C �/p.t/� B C .1� ˛/A

�
x.t/

1 � b.t/

�˛
B1�˛ (4)

The differentiation of (3) with respect to time yields

�
p.t/

p.t/
D .1 � ˛/

2
4
�
x.t/

x.t/
C

�
b.t/

1 � b.t/

3
5 (5)

By replacing the price motion by the corresponding expression in (4) and the
motion of the budget share as given by (1), we can transform expression (5) in a
dynamic equation for the control variable x.t/. After some computation, we arrive
to differential equation (2) as presented in the proposition.

At this stage, we are in the possession of the information required to analyze
the optimal dynamics of the problem under evaluation. A two-dimensional system,
involving two endogenous variables is composed by Eqs. (1) and (2). The study of
the dynamics requires looking at the steady-state outcome and respective stability
properties. For now, in this section, we concentrate on the steady-state properties.

As it is usual in this kind of model, we define the steady-state as the long-
run position for which the system eventually tends and where the respective
endogenous variables have stopped growing, i.e., it will correspond to the pair

of values .x�; b�/ D f.x�; b�/ W �x.t/ D 0I �b.t/ D 0g. Explicit solutions for
.x�; b�/ with respect to the parameters of the model, are not feasible to present.
Nevertheless, the following relations are straightforward to obtain and will be useful
when approaching the stability result,

– From (1):

A
�
x�
�˛ ��

1 � b�
�

B
�1�˛ D �b� (6)

– From (2):

˛A

�
.1 � b�/B

x�

�1�˛
D 	C �

1 � ˛b�

1 � b�
(7)

The above conditions allow to state the following result



A Budget Setting Problem 311

Proposition 2 In the budget setting problem with a Cobb-Douglas matching
function, a steady-state exists and it is unique.

Proof Equation (6) may be solved in order to x�, what delivers the outcome

x� D



�b�

A Œ.1 � b�/B�1�˛

� 1=˛
(8)

Replacing the value of x� as presented above into (7), one obtains an equilibrium
equation solely for steady-state value b�,

˛A1=˛
�
.1� b�/B
�b�

� 1�˛
˛

D 	 C �
1 � ˛b�

1 � b�
(9)

Although condition (9) does not allow to obtain an explicit value for b�, it is
straightforward to observe that it has a solution and that this solution is unique.
The left hand side (lhs) of the condition is a decreasing function, while the right
hand side (rhs) is increasing, as the first derivatives show,

d.lhs/

db�
D �.1 � ˛/A1=˛

�
.1 � b�/B
�b�

� 1�2˛
˛ B

� .b�/2
< 0

d.rhs/

db�
D �

1 � ˛
.1 � b�/2

> 0

Thus, the lhs of (9) is a decreasing function, starting at infinity, for b� D 0, and
falling towards zero as b� grows to its maximum value, b� D 1. The rhs of (9) is
an increasing function such that rhsD 	 C � for b� D 0 and rhs! 1 as b� tends
to 1. This reasoning implies that the lhs and the rhs will necessarily cross and that
they will cross only once in the domain defined for b�. This proves the claim in
the proposition: only one value of b� 2 .0; 1/ satisfies the conditions underlying the
proposed analytical setup. Once in possession of the equilibrium value of the budget
share, the steady-state level of x� is straightforward to find, given (8).

In the following section, the system’s stability will be addressed.

4 Stability

Having arrived to a unique steady-state point .x�; b�/, we can now address the
stability properties of such steady-state. To undertake this study, we first need to
linearize the system of dynamic equations in the vicinity of .x�; b�/. For such, one
has to compute the respective Jacobian matrix, which is composed by the derivatives
of each of the equations with respect to each of the endogenous variables, duly
evaluated in the steady-state.
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The respective computation leads to the following outcome,

J D
" ��1�˛b�

1�b�
˛� b�

x�

� x�

.1�b�/2
C x�

1�b�

�
	C �1�˛b�

1�b�

	
	 C �1�˛b�

1�b�

#
(10)

Matrix J in (10) is the Jacobian matrix of the linearized system,

" �
b.t/
�
x.t/

#
D J �

�
b.t/� b�
x.t/ � x�

�
(11)

The stability properties of the steady-state will be dependent on the signs of the
eigenvalues of matrix J. Negative eigenvalues correspond to stable dimensions and
positive eigenvalues are associated with unstable dimensions. The evaluation of the
matrix conducts to the following result,

Proposition 3 The dynamic system underlying the budget setting problem, as
formulated, delivers a saddle-path stable equilibrium.

Proof One can arrive to the signs of the eigenvalues by computing the trace and
the determinant of matrix (10). The value of the trace is immediately found by
looking at the matrix: Tr.J/ D 	; the determinant will take the expression Det.J/ D
� �
1�b�

�
	 C �

1�b�

�
.

Clearly, the trace is a positive value, while the determinant is negative, meaning
that one of the eigenvalues is positive while the other is necessarily negative.1 In
this circumstance, the two-dimensional space we are dealing with involves a stable
dimension and an unstable dimension, i.e., the equilibrium is saddle-path stable.
The eigenvalues could also be computed directly from the matrix. In the case of
this system they are relatively straightforward to derive: �1 D � �

1�b�
< 0I �2 D

	C �
1�b�

> 0:

The saddle-path stable equilibrium is a convenient result in the type of optimal
control problem we have just addressed. Because we have two kinds of variables, a
state variable and a control variable, saddle-path stability is sufficient to guarantee
convergence from any initial state .x0; b0/ in the vicinity of the steady-state towards
this second position, i.e., to point .x�; b�/. The agent can adjust the value of x� in
order to place the system over the stable arm and, as a result, guarantee the stability
of the equilibrium.

An additional step can be taken in the analysis of the stability properties. Namely,
one might compute the expression of the stable trajectory. The generic expression
of the stable path is given by

x.t/ � x� D p2
p1

�
b.t/ � b�

�

1Recall that, for any square matrix of order 2, Tr.J/ D �1C �2 and Det.J/ D �1�2, for �1 and �2
the eigenvalues of the matrix.
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b(t )

x(t )

b∗
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x∗

Fig. 1 Phase diagram (dynamic relation between the endogenous variables)

Elements p1 and p2 in the slope of the expression correspond to the elements of
the eigenvector of J that relate to the negative eigenvalue (the one that represents
stability). The calculus of the elements of the eigenvalue imply the following
outcome:

x.t/ � x� D � x�

1 � b�
�
b.t/� b�

�

or, equivalently,

x.t/ D x�

1 � b�
Œ1 � b.t/� (12)

The expression of the stable trajectory, (12), indicates that once the agent
has adjusted her/his behavior in terms of the resources allocated to design new
investment proposals, the path that will be followed and that will lead to the long-
term equilibrium point is negatively sloped, i.e., as x.t/ increases, the budget share
assigned to the managers, b.t/, will decline. This can be interpreted as follows:
starting, for instance, at a point .x0; b0/ for which x0 > x� and b0 < b�, the
convergence to the steady-state will be characterized by a process in which the costs
incurred to gather additional budget will diminish as the budget share grows until
reaching their steady-state values. Figure 1 sketches the dynamic relation between
the two variables of interest.

Next section provides a small numerical example to illustrate the dynamics of
the model.
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Table 1 Steady-state results under different parametrizations

˛ D 0:8 A D 0:12 BD 105 � D 0:11 	 D 0:075

b� 0.717 0.823 0.773 0.740 0.739

x� 0.286 0.232 0.247 0.257 0.225

5 Numerical Illustration

Assume the following array of parameter values: ˛ D 0:75; A D 0:1; B D 100;
� D 0:1; 	 D 0:05. The value of ˛ indicates that three quarters of the matching
process depends on the project proposals and only one quarter is attributable to
the available budget; the value of � states that at each period 10 % of the budget
previously assigned to the agent is withdrawn by the capital owner; the value chosen
for 	 imposes a 5 % intertemporal discount rate. The other values are not specially
relevant and just determine the scale of the analysis.

With specific numerical values, it is possible to compute the steady-state pair
.x�; b�/. The evaluation of condition (9) leads to result b� D 0:769, i.e., 76:9%
of the budget the capital owner has available for the agent’s activities is effectively
channeled for the projects, given the matching process. The steady-state value of the
cost proposal variable is obtainable from (8), x� D 0:247.

If we change parameter values, the steady-state will be subject to perturbations.
The direction of such perturbations should be intuitive. Table 1 indicates the impact
over equilibrium of changing the value of each parameter, one at a time.

The table considers, for each case represented in a column, a different combi-
nation of parameters; the original parameterization is maintained with exception of
the indicated change. This allows us to understand what is the impact over both
endogenous variables, in terms of their steady-state values, when those changes
occur. Results are intuitive: if the matching depends relatively more on the agent’s
effort in gathering additional funds, this will make b� to decrease and x� to increase;
when the efficiency of the overall matching process increases (larger A), this implies
an increase in b� and a fall in x� (a larger equilibrium budget is obtained with less
resources allocated to attain such goal); the increase in the overall budget, relatively
to the benchmark situation, does not change x�, but makes b� to increase; a larger
automatic cut in the assigned budget will imply a new steady-state locus such that b�
falls and x� increases; finally, a higher discount rate will signify that less attention
will be given to the far future and this translates in a fall of both equilibrium values.

Let us return to the benchmark parametrization. With these values, we confirm
the existence of a saddle-path stable equilibrium in this specific case, because the
eigenvalues of the Jacobian matrix are �1 D � 0:1

1�0:769 D �0:433I �2 D 0:05 C
0:1

1�0:769 D 0:483. The saddle trajectory, given by (12), is x.t/ D 1:069 Œ1 � b.t/�;
in this case, in the convergence towards .x�; b�/ following the saddle path, as b.t/
increases one unit, x.t/ will fall 1:069 units.
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6 Conclusion

The paper presented a dynamic optimization problem concerning the allocation of
a budget from a capital owner to a manager or a team of managers. The problem is
meaningful because it involves a trade-off: in this agency relation, the agent wants to
maximize the value of the budget she/he can apply for, but this comes with a cost: to
obtain additional funds, the manager will have to prepare new investment proposals
that imply spending resources. On the principal’s side, there is a maximum budget
that the capital owner is willing to transfer to the manager, but the budget effectively
transferred will depend on the capacity of the agent to present new projects; if these
are not presented, the budget will be progressively cut over time at a constant rate.

Although simple, this theoretical structure is rich enough to deliver interesting
results: an equation of motion for the control variable of the problem is derived
and, evaluating such equation together with the rule that describes how the assigned
budget evolves, one can address the stability of the long-run result. The respective
dynamic system is saddle-path stable, what is sufficient to guarantee convergence
towards the equilibrium, since one of the variables is a control variable and, thus,
the corresponding value can be adjusted in order for the system to follow the saddle
trajectory in the direction of the steady-state, where the values of the endogenous
variables will end up by remaining constant.

In economics, as well as in other research fields, agency relations are common
and subject to important discussion. The proposed model intends to contribute to
this literature by furnishing a general framework of analysis. The framework is
particularly suited to study the allocation of funds in situations where this allocation
depends on proposals made by those who want to access the funds; for instance, the
application to research grants by teams of scientists could be a relevant setting to
explore further the possibilities of this setup.
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Dynamic Political Effects in a Neoclassic Growth
Model with Healthcare and Creative Activities

L. Guimarães, O. Afonso, and P.B. Vasconcelos

Abstract This paper extends the Ramsey-Cass-Koopmans (RCK) model by con-
sidering both a non constant number of hours worked by each individual through
time and leisure, which includes healthcare and creative activities. With this exten-
sion, the seminal RCK model can be used to analyse the economic growth effects
arising from governmental policies. In this context, governmental expenditures
financed by lump-sum taxes and inefficient expenditures lead to a decrease in the
short, medium and long-run economic growth.

1 Introduction

By considering microeconomic foundations, the Ramsey-Cass-Koopmans (RCK)
model has made a great impact in the economic growth literature; however, the
long-term economic growth remains unexplained (e.g., Acemoglu [1, Chaps. 2, 3
and 8]).

In the original RCK model, agents maximize their lifetime utility, dependent on
the consumption level, and their labour supply is assumed to be constant. These
assumptions are restrictive; for example, the number of hours worked by each
individual is not constant through time and leisure, in which healthcare and creative
activities are included, affects positively the utility (e.g., Fogel [4] , Ramey and
Francis [7]).

The RCK is a neoclassical growth model with an endogenous saving rate. It
aims at studying whether the accumulation of capital accounts for the long term
growth. This is accomplished by modelling the intertemporal allocation of income,
i.e, the relation between consumption and savings focusing in the dynamics. By
allowing consumers to behave optimally, the analysis permit us to discuss how
incentives affect the behaviour of the economy. The model deals with infinitely lived
households that choose consumption and savings to maximise their dynastic utility,
bearing in mind the intertemporal budget constraint.
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This paper extends the RCK model to cope with its weakness, allowing that a
well-known and established model be used to analyse the economic growth effects
arising from typical governmental policies (e.g., Irmen and Kuehnel [5]). In line
with Fogel [4] and Ramey and Francis [7], among others, the utility function is
modified to consider the fraction of time each individual devotes to healthcare and
creative activities.1 In this context, governmental expenditures financed by lump-
sum taxes and inefficient expenditures lead to a decrease in the short, medium and
long-run economic growth.

After these introductory remarks, the paper proceeds to characterize the set-up
of the model, consumers, productive structure and laws of motion, in Sect. 2. Then,
in Sect. 3 the dynamic general equilibrium is derived and, resorting to numerical
computation, steady state and transitional dynamics are analyzed. Finally, in Sect. 4,
the paper ends with some concluding remarks.

2 Set-up of the Model

The model will be developed considering the consumers side, Sect. 2.1, the produc-
tive side, Sect. 2.2, and deriving from these two sides the laws of motion, Sect. 2.3.

It is assumed that agents live infinitely and that the economy is populated by an
invariant large set of identical households. Households divide their time between
work to earn an income, and healthcare and creative activities. Additionally, they
decide to spend part of their income directly on consumption and lend another part
in return for future interest. The fraction of the output that is not consumed is used
in investment. Also, the output of the economy is produced in perfect competition
by using labour and physical capital.

2.1 Consumers

In the original RCK model, the constant-relative risk aversion instantaneous utility
function, U, is represented by

U .C/ D
(

C.t/1��

1�� � ¤ 1

ln.C.t// � D 1
(1)

where C is the consumption, t denotes a given time instant, � represents the relative
risk-aversion coefficient of the agents (without lost of generality, we will consider
� D 1). In Ben-Porath [2] agents decide on how to split their labour time. They may

1In order to isolate the effect of healthcare and creative activities on agents decisions, endogenous
human-capital accumulation is not considered.
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simply work or they may study. If they work, they have a higher income today while
if they study, by increasing their human-capital, they might achieve a higher income
in the future. Thus, the decision on how to split their labour time generates a trade-
off between higher income today and higher income in the future. This division
of the labor time between labor and human capital formation may also be found
in one of the most important first generation of endogenous growth models (e.g.,
Lucas [6]). In this case, the economy has two sectors, one for the production of
the final good and other for human-capital formation. In the long run, growth is
explained by human-capital accumulation. Caballe and Santos [3] and Turnovsky
[9] also used this approach by focusing on productive government expenditures and
long run growth.

In the present model, agents devote time to healthcare and creative activities
since, by doing so, they decrease the time devoted to labour yielding a higher utility.
This can be interpreted as equivalent to a postponement of the entrance in the labor
market. As a result, individual’s utility depends not only on the consumption level
but also on the fraction of labour time used for leisure. The instantaneous utility
function has now an additional component of labour generating disutility:

U .C/ D ln.C.t// � .1 � i.t//1C'

1C '
; 0 < i.t/ < 1 (2)

where i is the fraction of time used for healthcare and creative activities, and ' > 0
is a labour coefficient as a proxy for the temporal elasticity of substitution of labour.
Since @U

@i > 0 and @2U
@2i

< 0 the more agents devote time to leisure the higher is
utility, at decreasing rate. The intuition behind this assumption is that households
like to postpone the entrance in the labour market2; yet, as time passes, individuals
do not value this postponement and thus they prefer to work once achieved a certain
age.

Agents are infinitely-lived as assumed in the original RCK model so it is their
objective to maximize:

U .C; i/ D
Z C1

tD0
e�	t

"
ln C.t/ � .1 � i.t//1C'

1C '

#
dt (3)

where 	 > 0 is the discount rate.
Households accumulate assets, a, in the form of physical capital. Those assets

earn returns at the interest rate r .t/. Households’s assets stock is affected by net
savings, given by the difference between income (interest and wages per unit of
effective labour, w) and consumption. The flow budget constraint is

Pa .t/ D r .t/ a .t/C w .t/A .t/ Œ1 � i .t/� � C .t/ (4)

2Thus, the focus is on the particular channel related to the postponement of the entrance in the
labour market. This channel also accommodates the possibility of agents to switch from working
to healthcare and creative activities, and vice versa.
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where Pa .t/ is the change in the assets stock, and 1 � i.t/ is the fraction of
time devoted to work. Households maximize lifetime utility subject to the budget
constraint and the “no Ponzi games” condition (limt!1 a .t/ e�	t D 0).

For the solution procedure we consider the Hamiltonian

H D ln C.t/C � Œw.t/A.t/.1 � i.t//C a.t/r.t/ � C.t/� (5)

and compute the first order conditions.
The solution for the consumption path, which is independent of the household,

is the standard Euler equation

PC .t/

C .t/
D r .t/ � 	 (6)

where PC .t/ is the change in aggregate consumption. Moreover, the resulting
expression for i is

i.t/ D 1 �
�

w.t/A.t/

C.t/

� 1
'

(7)

which implies that the fraction of time devoted to healthcare and creative activities
depends positively on consumption but negatively on wages. Higher wages imply
higher opportunity cost connected with healthcare and creative activities and thus
more time is devoted to work.

2.2 Productive Structure

Following the usual RCK approach, the production function, Y-the output, has
constant returns to scale in capital, K, and labour, L.1 � i/, the Inada conditions
are satisfied and Harrod-neutral technological-knowledge progress is considered:

Y.t/ D K.t/˛ ŒA.t/L.t/.1 � i.t//�1�˛ (8)

where ˛ is the share of capital in production and A is the technological-
knowledge.

Representing the capital and output per unit of effective household, respectively,
k.t/ D K.t/

A.t/L.t/ D K.t/
A.t/ and y.t/ D Y.t/

A.t/L.t/ D Y.t/
A.t/ , since, without loss of generality, the

number of households, L, is normalised to 1. Function (8) can then by rewritten as

y.t/ D k.t/˛.1 � i.t//1�˛ (9)
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The change of technological-knowledge progress, PA, depends positively on i
(healthcare and creative activities)

PA.t/ D i.t/A.t/ (10)

What is implicit in (10) is that the increase in technological-knowledge progress
is an externality from healthcare and creative activities, and since there is a very
high number of agents, the impact of each of them on the technological-knowledge
progress is almost null.

Under competitive markets each input earns its marginal product; thus,

w.t/ D @y.t/

@.1 � i.t//
D .1 � ˛/

�
k.t/

1 � i.t/

�˛
(11)

r.t/ D @y.t/

@k.t/
� ı D ˛

�
1 � i.t/

k.t/

�1�˛
� ı (12)

where ı is the discount rate of capital. It is important to note from (10) and (11),
that the increase in technological-knowledge progress by the fraction of time i is not
remunerated with wages: there is only an indirect impact on wages by the increase in
A. Intuitively, households engage in healthcare and creative activities to have higher
utility and not because they are increasing others productivity.

The expression for i in (7) can be rewritten considering (11).

2.3 Laws of Motion

Since physical capital in the economy is K.t/ D a.t/L D a.t/, then the capital
per unit of effective household is k.t/ D a.t/

A.t/ . Now, bearing also in mind (10), (11)
and (12) in (4) yields the following path for k:

Pk .t/ D k.t/˛ Œ1 � i.t/�1�˛ � k.t/ Œı C i.t/� � c.t/ (13)

where c.t/ D C.t/
A.t/L.t/ D C.t/

A.t/ is the consumption per unit of effective household. This

equation states that the change k.t/, Pk.t/, is equal to the difference between savings,
k˛.1 � i/1�˛ � c, and break even investment, k Œı C i�.

Considering the Euler equation (6) and (12), the path of c.t/ is

Pc .t/ D c .t/
�
˛k.t/˛�1.1 � i.t//1�˛ � i.t// � ı � 	� (14)
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3 General Equilibrium

Once characterised the country’s economic structure, we now proceed to analyse
the implications of healthcare and creative activities, which play a crucial role in the
dynamic general equilibrium. We start with the steady state and then we analyse the
transitional dynamics, by using, for instance, the following set of baseline parameter
values: 	 D 0:05, ' D 4, ı D 0:05 and ˛ D 0:4. Thus, the model is solved
numerically to obtain an approximate solution. MATLAB was the software chosen,
since it comprises state of the art numerical methods to solve system of ordinary
differential equations.

3.1 Steady-State and Transitional Dynamics

The steady state can be easily computed by solving the system of nonlinear
equations (13) and (14) for Pk D Pc D 0. The phase-diagram is depicted by Fig. 1
in which is also represented the stable saddle path (the eigenvalues of the Jacobian
matrix evaluated at the steady state are �0:2443 and 0:1640/.
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Fig. 1 Phase diagram
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The Pc D 0 curve is different from the one in the original RCK model, which is a
vertical line. In this model, as the capital per unit of effective household increases,
initially the consumption per unit of effective household decreases until a certain
level of k. Regarding the Pk D 0 curve, to keep k constant, the higher is c the higher
has to be k. In order to exist convergence to the steady-state, both c and k must
evolve in the same direction.

3.2 Government Intervention

Following Romer [8], the government buys output at rate G per unit of effective
household. Additionally, it is assumed that G does not affect utility directly, is only
used as public consumption, and is financed with lump-sum taxes. In this case,
Eq. (13) becomes:

Pk .t/ D k.t/˛.1 � i.t//1�˛ � k.t/ Œı C i.t/� � c.t/� G (15)

A change of G from 0 to 0:1 is now considered.
The resulting effects in the phase diagram are plotted in Fig. 2. In turn, Fig. 3

depicts the immediate (short run), transitional dynamics (medium run) and the
steady state levels (long run) of all relevant variables.3

Variable c jumps down due to the adjustment by households (immediate level
effect), which does not occur in k. These two variables increase during the
transitional phase towards their new steady state levels.

The immediate impact on wages results from the increase in the labour supply. As
the fraction of time devoted to healthcare and creative activities jumps down, labour
supply increases and thus wages decrease. Then, during the transitional phase, k
increases and thus also the marginal productivity of labour; hence, the demand for
labour and wages rise. In order to smooth the utility, households work less and the
labour supply decreases, which also affects positively wages.

However, in the new steady-state the fraction of time househoulds devote to
healthcare and creative activities falls in comparison to the previous steady state.
This results from the fact that wages are higher than before while consumption is
more or less the same; households face a higher opportunity cost of healthcare and
creative activities.

3That is, consumption per unit of effective household, capital per unit of effective household, wages
per unit of effective labour, interest rate, fraction of leisure time and path of the total capital and
total output growth rates (which, since the number of households is fixed, are equivalent to the
growth rates of output and capital per capita).
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Fig. 2 Phase diagram with and without government intervention

Bearing in mind the behaviour of c and i, in the new steady state households reach
lower utility. This also means, that after an increase in the government inefficiency
totally financed by lump-sum taxes yield a lower growth-rate of technological
knowledge arising from healthcare and creative activities.

The path of the interest rate has the opposite explanation to the one for wages
per unit of effective labour. Initially, due to the jump up in the labour supply, the
marginal return of investing in capital increases. On the other hand, in transition
dynamics, since k is increasing and labour supply is falling, capital becomes a
relatively abundant input and its marginal return falls.

Initially, k does not change. However, the growth rate of technological knowledge
falls at the time of this change leading to a fall in the growth rate of capital, K.
Immediately after, k starts increasing and additionally technological knowledge
starts increasing at higher rates. These two facts together, lead to higher growth-
rate of K than in the previous steady state. During the transition towards the new
steady state, k is increasing at decreasing rates, which explains the fall in the growth
rate of K. In the new steady-state, K grows at the rate of technological knowledge,
which, in turn, is now lower than before.
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Fig. 3 Impact of government intervention on the relevant variables over time

As initially i decreases and k stays constant, there are two forces influencing the
impact in the growth rate of output: the increment in the labour supply and the fall
in the growth rate of technological knowledge, being, in this particular case, the
latter stronger than the former. During the transitional phase, although capital and
technological knowledge are increasing, the fall in the labour force lead to a fall
in the growth rate of output. Hence, in the long run, an increase in the government
inefficiency completely financed by lump-sum taxes lead to lower growth-rate of
output.

4 Concluding Remarks

This paper presents an endogenous version of the simpler Ramsey-Cass-Koopmans
model, by introducing two new features: the decision of households regarding their
healthcare and creative activities responsible for the technological knowledge and an
inefficient government, which expenditures are fully financed by lump-sum taxes.
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In this context, a lower growth-rate of the economy can be observed. Households,
concerned about the future, decrease consumption more than the increase in the
government expenditures (in the original RCK model households fall consumption
by the exact amount of the government expenditures). Therefore, they have a higher
disposable income to invest in assets thus increasing future income. Moreover, they
immediately dedicate less time to healthcare and creative activities. Then, towards
the new steady state, they will increase at decreasing rates the time devoted to these
activities. As a result, households expect to have a better life in the future than if
they simply accommodated the increase in government expenditures with a fall in
consumption.

However, to keep their level of assets in the new steady state, they have to work
more even though they are consuming a bit more. Consequently, they devote less
time to healthcare and creative activities and thus the growth-rate of technological
knowledge falls.

We leave for future work the sensitivity analysis of the model with respect to the
most relevant parameters and values of the exogeneous variables.
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An Introduction to Geometric Gibbs Theory

Yunping Jiang

Abstract This is an article I wrote for Dynamics, Games, and Science. In Dynam-
ics, Game, and Science, one of the most important equilibrium states is a Gibbs
state. The deformation of a Gibbs state becomes an important subject in these areas.
An appropriate metric on the space of underlying dynamical systems is going to
be very helpful in the study of deformation. The Teichmüller metric becomes a
natural choice. The Teichmüller metric, just like the hyperbolic metric on the open
unit disk, makes the space of underlying dynamical systems a complete space.
The Teichmüller metric precisely measures the change of the eigenvalues at all
periodic points which are essential data needed to obtain the Gibbs state for a
given dynamical system. In this article, I will introduce the Teichmüller metric
and, subsequently, a generalization of Gibbs theory which we call geometric Gibbs
theory.

1 Introduction

The mathematical theory of Gibbs states, an important idea originally from physics,
is a beautiful mathematical theory starting from the celebrated work of Sinai [23, 24]
and Ruelle [20, 21]. It leads to the study of SRB-measures in Anosov dynamical
systems and, more generally, Axiom A dynamical systems due to the further work of
Sinai, Ruelle, Bowen, and many other people (see [2]). A very important feature of a
Gibbs state is that it is an equilibrium state. This equilibrium state plays an important
role in mathematics, as well as many other areas such as physics, chemistry, biology,
economy, and game theory.

An important topic in the current study of Gibbs states (in mathematics, we
also call them Gibbs measures) is to study the deformation of a Gibbs state.
For example, how does a Gibbs measure (or a SRB-measure) changes when the
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underlying dynamical system changes? How does the density of a Gibbs measure (or
SRB-measure) with respect to the Lebesgue measure changes when the underlying
dynamical system changes? To study the deformation of a Gibbs measure, an
appropriate metric on the space of underlying dynamical systems will be very
helpful. Ruelle has proposed to use the Whitney theory (see [16, 22]). In this note I
would like to introduce another metric from Teichmüller theory and, subsequently,
a generalized Gibbs theory which we call geometric Gibbs theory. The Teichmüller
metric closely relates to the eigenvalues at all periodic points: Given a one-
dimensional (expanding) smooth dynamical system f , the essential data needed to
determine the Gibbs measure is the set of eigenvalues

n
log�f .p/ D log j. f n/0.p/j I p a periodic point of f of period n

o
:

Given two topologically conjugate dynamical systems f and g, with

g ı h D h ı f ;

where h is the conjugacy, how can we measure the geometric difference between f
and g? The answer is the set of ratios

n
0 < ˛.p/ D min

n log�f .p/

log�g.h.p//
;

log�g.h.p//

log�f .p/

o
� 1

o
:

Actually, h is locally ˛.p/-Hölder continuous near p but the exponent changes with
p. These exponents can be measured precisely by using so-called “quasiconformal
dilatation” from complex analysis (refer to [9]), that is, the Teichmüller metric.
The Teichmüller metric, just like the hyperbolic metric (or Lobachevsky metric or
Poincaré metric) on the open unit disk, makes the space a complete space.

This article intends to give a summary of our work in this direction. A more
complete version of our work with more detailed proofs will be available in [15].
I first give a brief review of classical Gibbs theory in Sect. 2. Then, following the
traditional terminology in dynamical systems, I introduce a circle g-function in
Sect. 3. In Sect. 4, I give the definition of a geometric Gibbs measure associated to
a circle g-function. In the same section, I show the existence of a geometric Gibbs
measure for any circle g-function and the uniqueness for the constant g-function.
I further show that a geometric Gibbs measure is an equilibrium state. Finally, I
introduce the Teichmüller metric on the space of all circle g-functions in Sect. 5.
The Teichmüller metric makes the space of all circle g-functions a complete space.
I expect this new metric will play an important role in the study of deformations
of geometric Gibbs measures. In particular, when a circle g-function is Hölder
continuous, the corresponding geometric Gibbs measure is absolutely continuous
with respect to the Lebesgue measure. Therefore, we have a density function.
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We would like to study the derivative of a density function with respect to a Hölder
continuous g-function and connect this derivative with the susceptibility function

�.�/ D
1X

nD0
�n
Z

T
	.dx/X.x/

d

dx
.A. f nx//

at � D 1, which is formally the derivative of the density with respect to a Hölder
continuous g-function, as described in [16, 22].

2 Classical Gibbs Theory

Suppose d � 2 is a positive integer. Consider the symbolic dynamical system � W
˙ ! ˙ , where

˙ D fw D � � � in�1 � � � i1i0 j in�1 2 f0; � � � ; d � 1g; n D 1; 2; � � � g

and

� W w D � � � in�1 � � � i1i0 ! �.w/ D � � � in�1 � � � i1

is the shift map. The space ˙ D Q0
1f0; 1; � � � ; d � 1g is a compact topological

space with the product topology. We purposely write

w D � � � in�1 � � � i1i0

from the right to left because we will later use

v D j0j1 � � � jn�1 � � �

to represent a point on the unit circle. An n-cylinder Œw�n containing w D
� � � in�1 � � � i1i0 is the subset of all elements w0 D � � � i0nCm � � � i0nin�1 � � � i0 for i0nCm 2
f0; � � � ; d � 1g and m D 0; 1; � � � .

A real function � W ˙ ! R is called Hölder continuous if there are two constants
C > 0 and 0 < � < 1 such that j�.w/ � �.w0/j � C�n as long as w and w0 are in
the same n-cylinder. We use C H to denote the space of all Hölder continuous real
functions on ˙ . We call a positive Hölder continuous function  on ˙ a Hölder
potential. We also use C to denote the space of all continuous real functions on ˙
and M to denote the space of all finite Borel measures on˙ , which is the dual space
of C . Then M .�/ means the space of all �-invariant probability measures in M ,
that is, the space of measures with total measure 1 and satisfying�.��1.A// D �.A/
for all Borel subsets A of ˙ .
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The classical Gibbs theory ensures that associated to each Hölder potential  ,
there is a number P D P.log /, called the pressure, and unique �-invariant
probability measure � D � , called a Gibbs measure, such that

C�1 � �.Œw�n/

exp.�Pn CPn�1
iD0 log .� i.w///

� C (1)

for any n-cylinder Œw�n, where C is a fixed constant. A Gibbs measure depends only
on a cohomologous equivalence class and is an equilibrium state in the sense that

P.log / D ent�.�/C
Z
˙

log d� D sup
�2M .�/

n
ent�.�/C

Z
˙

log d�
o

where ent�.�/ is the measure-theoretical entropy of � with respect to �.
In a proof of the existence and uniquess of the Gibbs measure � for a given

Hölder potential  , we use the Ruelle-Perron-Frobenius operator

L �.w/ D
X

�.w0/Dw

 .w0/�.w0/ W C H ! C H : (2)

The Ruelle-Perron-Frobenius theorem (refer to [10] for a proof) says that there is a
positive real number � and a positive Hölder function 	 2 C H such that L 	 D �	:

Here � is the unique, maximal, positive, simple eigenvalue of L . Note that in this
case, the pressure P D log�. If we consider a new Hölder potential

Q D  � 	
� � 	 ı � ;

then we get a normalized Ruelle-Perron-Frobenius operator L Q , that is, L Q 1 D 1:

Let L �Q W M ! M be its dual operator. Then the Gibbs measure � Q is just the

unique fixed point of L �Q in this case. (The Gibbs measure � D 	 �� Q .) This leads

to the study of g-measure theory in Keane’s paper [17] as follows.
A non-negative continuous real function g defined on˙ is called a g-function if

d�1X
iD0

g.wi/ D 1: (3)

For a g-function g, define the transfer operator

Lg�.w/ D
X

�.w0/Dw

g.w0/�.w0/ W C ! C :

It is a normalized Ruelle-Perron-Frobenius operator, that is, Lg1 D 1. Let L �g W
M ! M be its dual operator. Every fixed point � of L �g is called a g-measure
associated with g. Here we always assume that � is a probability measure.
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Any � 2 M .�/ is absolutely continuous with respect to Q� D L �1 �. So we have
the Radon-Nikodým derivative

RND�; Q�.w/ D d�

d Q�.w/; Q� � a:e: w:

It is a Q�-measurable function. The following theorem is in Leddrapier’s paper [18]
and is used in Walters’ paper [25] for the study of a generalized version of Ruelle’s
theorem. Let B be the Borel �-algebra on ˙ .

Theorem 1 Suppose g is a g-function and � 2 M is a probability measure. The
following statements are equivalent:

(i) � is a g-measure for g, i.e., L �g � D �.
(ii) � 2 M .�/ and RND�; Q�.w/ D g.w/ for Q�-a.e. w.

(iii) � 2 M .�/ and

EŒ�j��1.B/�.w/ D Lg�.�.w// D
X

�.w0/D�.w/
g.w0/�.w0/; for �-a.e. w;

where EŒ�j��1.B/� is the conditional expectation of � with respect to
��1.B/.

(iv) � 2 M .�/ and is an equilibrium state for g in the sense that

0 D ent�.�/C
Z
˙

log g d� D sup
�2M .�/

n
ent�.�/C

Z
˙

log g d�
o
:

Furthermore, if g is a positive Hölder continuous g-function, then RND�; Q� is
actually a Hölder continuous function and

RND�; Q�.w/ 	 g.w/: (4)

However, this fact may not be true in general for a merely continuous g-function.
One of our goals in generalized Gibbs theory is to associate with a circle g-function
(see the definition in the next section) a g-measure, which we will call a geometric
Gibbs measure, such that the equality (4) holds. We will also study the uniqueness
of a geometric Gibbs measure for any given circle g-function.

3 Circle g-Functions

We use

T D fz 2 C j jzj D 1g
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to denote the unit circle in the complex plane C. The universal cover of T is the real
line R with the covering map

z D �.x/ D e2� ix W R ! T;

where 2�x is the angle of z.
Consider an orientation-preserving covering map f W T ! T of degree d. We

normalize it by assuming that f .1/ D 1. We use F to denote the lift of f to R such
that F.0/ D 0. We have that F.x C 1/ D F.x/C d.

We use h to denote a circle homeomorphism and assume that h.1/ D 1. Let H be
the lift of h such that H.0/ D 0. We also have H.x C 1/ D H.x/C 1.

A C1 circle endomorphism f is called expanding if there are constants C > 0 and
� > 1 such that

.Fn/0.x/ � C�n; x 2 R; n D 1; 2; � � � :

A circle endomorphism f is C1C˛ for some 0 < ˛ � 1 if f 0 is ˛-Hölder continuous.
A circle homeomorphism h is called quasisymmetric if there is a constant M � 1

such that

M�1 � jH.x C t/ � H.x/j
jH.x/� H.x � t/j � M; 8x 2 R; 8t > 0:

In particular, if we can take M D 1C ".t/ for some bounded positive real function
".t/ with ".t/ ! 0C as t ! 0C , then h is called symmetric. For example, a
C1-diffeomorphism of T is symmetric. But, we would like to remind the reader,
a symmetric homeomorphism may be totally singular, that is, it may map a positive
Lebesgue measure subset to a zero Lebesgue measure subset, and vice versa.

A circle endomorphism f is called uniformly symmetric if there is a bounded real
function ".t/ > 0 for t > 0 such that ".t/ ! 0C as t ! 0C and such that

1

1C ".t/
� jF�n.x C t/ � F�n.x/j

jF�n.x/ � F�n.x � t/j � 1C ".t/; 8x 2 R; 8t > 0; n D 1; 2; � � � :

A C1C˛ , for some 0 < ˛ � 1, circle expanding endomorphism f is uniformly
symmetric. Again we would like to remind the reader that a uniformly symmetric
circle endomorphism may be totally singular.

In the terms of complex analysis, the reader can find descriptions of quasisym-
metric circle homeomorphisms in [1], symmetric circle homeomorphisms in [7],
and uniformly symmetric circle endomorphisms in [5].

Consider the space

˙C D fv D j0j1 � � � jn�1 � � � j jn�1 2 f0; 1; � � � ; d � 1g; n D 1; � � � g



An Introduction to Geometric Gibbs Theory 333

and the shift map

�C.v/ D j1 � � � jn�1jn � � � W ˙C ! ˙C:

The space ˙C D Q1
0 f0; 1; � � � ; d � 1g is a compact topological space with

the product topology. An n-cylinder Œv�Cn containing v D j0j1 � � � jn�1 � � � is the
subset of all points v0 D j0 � � � jn�1j0n j0nC1 � � � for j0nCm 2 f0; 1; � � � ; d � 1g and
m D 0; 1; � � � . The set of all cylinders forms a topological basis of ˙C such that
it is a compact topological space. The space ˙C with this topology is called the
symbolic representation of the unit circle T. More precisely, for any z D e2� ix 2 T,
we have that

x D x.v/ D
1X

kD0

jk
dkC1 ; v D j0j1 � � � jn�1 � � � 2 ˙C: (5)

The Lebesgue metric jv� v0j D jx.v/� x.v0/j induces the Lebesgue measure m0 on
˙C.

Every uniformly symmetric circle endomorphism f is semi-conjugate to �C, that
is, we have a projection �f W ˙C ! T, which is 1-1 except for a countable set, such
that

�f ı �C.v/ D f ı �f .v/; v 2 ˙C:

This implies that any two uniformly symmetric circle endomorphisms f and g of the
same degree are topologically conjugate, that is, there is a circle homeomorphism h
of T such that

f ı h D h ı g:

Furthermore, h is a quasisymmetric circle homeomorphism (refer to [9]).
Now let us return to the space ˙ . Suppose f is a uniformly symmetric circle

endomorphism. For any w D � � � in�1 � � � i1i0 2 ˙; let vn D j0j1 � � � jn�2jn�1 and
vn�1 D �.vn/ D j0j1 � � � jn�2 where j0 D in�1, � � � , jn�2 D i1, jn�1 D i0. Consider
two intervals on T,

Ivn D �f .Œv�
C
n / � Ivn�1 D �f .Œv

0�Cn�1/

where v D vn � � � and v0 D vn�1 � � � and the ratio

gn.w/ D jIvn j
jIvn�1 j

:
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We have that

Theorem 2 (Circle g-Function [15]) Suppose f is a uniformly symmetric circle
endomorphism. Then the limiting function

g.w/ D lim
n!1 gn.w/ W ˙ ! R

exists and is a continuous positive function. The convergence is uniform. Further-
more, if f is C1C˛, then g.w/ is a Hölder continuous positive function and the
convergence is exponential. The function g.w/ is called a circle g-function since
it satisfies the condition (3).

Furthermore, when d D 2, g.w/ also satisfies a compatibility condition

1Y
nD0

g.w0

n‚…„ƒ
1 � � � 1/

g.w1 0 � � � 0„ƒ‚…
n

/
D const; 8w 2 ˙; (6)

where the convergence in the formula is uniform on ˙ . The conditions (3) and (6)
give a complete characterization of a circle g-function as proved in [3, 4, 11].
That is, a continuous positive g-function is a circle g-function if and only if it
satisfies the conditions (3) and (6). For a Hölder continuous positive g-function,
it is a circle g-function if and only if it satisfies the conditions (3) and (6) and the
convergence in (6) is exponential. Furthermore, the realized uniformly symmetric
circle endomorphism f is C1C˛. Note that, from our proof of Katok’s conjecture
in [12], any C1 uniformly symmetric circle endomorphism is expanding.

We use G to denote the space of all circle g-functions on ˙ and H G to denote
the space of all Hölder continuous circle g-functions on ˙ .

4 Geometric Gibbs Measures

For any v D j0 � � � jn�1 � � � 2 ˙C, let x D x.v/ in (5). Then z D e2� ix 2 T. Consider
the cylinder Œv�Cn in ˙C. Let vn D j0 � � � jn�1 and wn D in�1 � � � i0 where i0 D
jn�1; � � � ; in�1 D j0. Then we have the n-cylinder Œw�n in ˙ where w D � � � wn 2 ˙ .

Suppose � 2 M .�/ is non-atomic and does not take zero on any cylin-
ders Œw�n. For each n � 0, take dnC1 intervals labeled I00 : : : 0„ ƒ‚ …

n

, � � � , Ivn , � � � ,

I.d � 1/.d � 1/ : : : .d � 1/„ ƒ‚ …
n

, each with angle length

jIvn j D 2��.Œw�n/:
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Arrange them counter-clockwise in numerical order of the angle of z on the unit
circle T beginning at 1. Since � is �-invariant, we have that

Ivn D [d�1
jD0 Ivnj

and that

� � � � Ivn � Ivn�1 � � � � � Iv1 :

Since� is non-atomic and does not take zero on any cylinders Œw�n, \1kD1Ivn contains
only one point which we denote as h�.z/. This defines a homeomorphism h�.z/ W
T ! T.

Definition 1 Suppose g is a circle g-function. A non-atomic �-invariant probability
measure � is a geometric Gibbs measure associated with g if f� D h� ı qd ı h�1� is
a uniformly symmetric circle endomorphism and

lim
n!1

�.Œw�n/

�.Œ�.w/�n�1/
D g.w/ (7)

uniformly on w 2 ˙ .

We have proved the following theorem.

Theorem 3 (Existence [15]) For any circle g-function g, we can find a geometric
Gibbs measure � D �.g/ associated with it. Furthermore, if g is a Hölder
continuous circle g-function, then the measure � found in the first part of this
theorem is the Gibbs measure in the classical sense.

For the measure � in the above theorem, we have that

RND�; Q�.w/ 	 g.w/;

as we expected in Sect. 2.
An important question to ask at this point is whether a geometric Gibbs measure

is unique. Even when g is a Hölder continuous circle g-function, although we know
it has a unique Gibbs measure in the classical sense, it may still have more than one
geometric Gibbs measures. However, we have the following theorem.

Theorem 4 (Uniqueness [13, 15]) The constant circle g-function g.w/ D 1=d has
only one geometric Gibbs measure associated with it.

We would like to note that a general circle g-function is very non-trivial. This
makes the study of uniqueness more difficult but interesting.

Another important topic to study at this point is the ergodicity of a geometric
Gibbs measure. For a Hölder continuous circle g-function g, we know that the Gibbs
measure � D �.g/ in the classical sense is ergodic, that is, for any Borel subset A
of ˙ , if ��1.A/ D A and if �.A/ > 0, then �.A/ D 1. We would like to know the
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ergodicity for any geometric Gibbs measure associated with a circle g-function. We
expect that the answer is affirmative.

Furthermore, we know that a geometric Gibbs measure is an equilibrium state.

Theorem 5 (Equilibrium [6, 15]) Suppose g is a circle g-function. Every geomet-
ric Gibbs measure � corresponding to g is an equilibrium state in the following
sense,

0 D ent�.�/C
Z
˙

log g d� D sup
�2M .�/

n
ent�.�/C

Z
˙

log g d�
o
:

5 Teichmüller Metric

We introduce a Teichmüller metric on G and show that it is a complete metric. Under
this metric, H G is dense in G . We use [1, 7, 19] as references for the Teichmüller
theory and for the quasiconformal mapping theory.

Suppose U S is the space of all uniformly symmetric circle endomorphisms of
degree d. Let qd.z/ D zd be the basepoint in U S . We first define the Teichmüller
space for U S as follows. For any f 2 U S , let hf be the conjugacy from f to qd,
i.e.,

f ı hf D hf ı qd:

We know that hf is quasisymmetric. Thus we can think of U S as the space of
marking pairs . f ; hf /. We define an equivalence relation �T : Two pairs . f ; hf / �T

.g; hg/ if hf ı h�1g is symmetric. The Teichmüller space

T U S D fŒ. f ; hf /� j . f ; hf / 2 U S ; with the basepoint Œ.qd; id/�g

is the space of all �T -equivalence classes Œ. f ; hf /�. We have a one-to-one correspon-
dence between G and T U S (refer to [15]). Thus we have that

G D T U S :

By using T U S , we define a Teichmüller metric on G .
Let QS be the set of all quasisymmetric homeomorphisms of T. Let S be the

subset of QS consisting of all symmetric homeomorphisms of T. For any h 2
QS , let Eh be the set of all quasiconformal extensions of h into the unit disk. For
each Qh 2 Eh, let �Qh D Qhz=Qhz be its complex dilatation. Let

kQh D k�.z/k1 and KQh D 1C kQh
1 � kQh

:
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Here KQh is called the quasiconformal dilatation of Qh. Using quasiconformal dilata-
tion, we can define a pseudo-distance in QS by

d.h1; h2/ D 1

2
infflog KQh1Qh�1

2
j Qh1 2 Eh1 ;

Qh2 2 E2g:

It will induce a distance in the space U T of QS modulo the space of Möbius
transformation preserving T, which is the universal Teichmüller space and which is
a complete metric space and a complex manifold with complex structure compatible
with the Hilbert transform. Now consider the space

AU T D QS modulo S :

It is called an asymptotical universal Teichmüller space. Given two cosets S h1 and
S h2 in this factor space, define

d.S h1;S h2/ D inf
A;B2S d.Ah1;Bh2/:

It defines a distance onAU T . The asymptotical Teichmüller space .AU T ; d.�; �//
is a complete metric space and a complex manifold. The topology on
.AU T ; d.�; �// is the finest topology which makes the projection � W U T !
AU T continuous, and � is also holomorphic. Refer to [7].

An equivalent topology on the quotient space AU T can be defined as follows.
For any h 2 QS , let Qh be a quasiconformal extension of h to a small neighborhood
of T in the complex plane. Suppose U is the domain of Qh. Let

�Qh.z/ D Qhz.z/
Qhz.z/

; z 2 U; kQh D k�Qh.z/k1;U ; and BQh D 1C kQh
1 � kQh

:

Then the boundary dilatation h is defined as

Bh D inf
Qh

BQh;

where the infimum is taken over all quasiconformal extensions Qh of h in a
neighborhood of T. It is known that h is symmetric if and only if Bh D 1. Define

Qd.h1; h2/ D 1

2
log Bh�1

2 h1
:

Then it is a distance on AU T . The two distances d and Qd on AU T are equal.
There is a natural embedding from

G D T U S 3 g D Œf ; hf � ,! Œhf � 2 AU T :
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Thus, the restriction of Qd.�; �/ on G D T U S gives a distance which we denote as
dG .�; �/. We call the space

�
G ; dG .�; �/

	

the Teichmüller space of circle g-functions.

Theorem 6 (Completeness [15]) The Teichmüller space
�
G ; dG .�; �/

	
is a com-

plete metric space and H G is dense in this space.

Moreover, the space
�
G ; dG .�; �/

	
has a complex Banach manifold structure

(refer to [8, 15]). We would like to point out that there is a maximal norm

kgk D max
w2˙ jg.w/j

on the space G . This also introduces a metric dmax.�; �/ on G . But this metric is not
complete. Moreover, this metric will not measure the change of a geometric Gibbs
measure in a good sense. For example, even if dmax.�; �/ is small, the change of a
geometric Gibbs measure could be big. So it is just like the Euclidean metric on
the open unit disk. The Teichmüller metric we have introduced is precisely like the
hyperbolic metric (or Lobachevsky metric or Poincaré metric) on the open unit disk.
Topologies induced from both metrics are the same (refer to [14, 15]).
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Sphere Rolling on Sphere: Alternative Approach
to Kinematics and Constructive Proof of
Controllability

F. Silva Leite and F. Louro

Abstract The kinematic equations for rolling a sphere on another sphere, subject to
non-holonomic constraints of non-slip and non-twist, are known and can be found
in [7]. Here we present an alternative approach to derive these kinematic equations
which is also suitable for describing the rolling of more general manifolds embedded
in Euclidean space. This approach consists on rolling each of the manifolds
separately on a common affine tangent space and then using the transitive and
symmetric properties of rolling maps to derive the kinematic equations of rolling
one manifold on the other. We use this approach to derive the kinematic equations
for rolling an n-dimensional sphere on another one with the same dimension. It
is also well known that the sphere rolling on sphere system is controllable, except
when the two spheres have equal radii. This is a theoretical result that guarantees the
possibility to roll one of the spheres on the other from any initial configuration to any
final configuration without violating the non-holonomic constraints. However, from
a practical viewpoint it is important to know how this is done. To answer this more
applied question, we present a constructive proof of the controllability property, by
showing how the forbidden motions can be performed by rolling without slip and
twist. This is also illustrated for 2-dimensional spheres.

1 Introduction

The most classical of all non-holonomic systems is the rolling sphere, rolling
without slip and without twist on the affine tangent space at a point. Another
interesting example of a system subject to non-holonomic constraints is that of
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a sphere rolling over another sphere of the same dimension. Rolling motions of
manifolds embedded in Euclidean space Rn can be described by curves in the Lie
group SEn of orientation preserving isometries of the ambient space, as explained
in Sharpe [13]. Other relevant studies involving rolling motions are [4, 5, 11, 14].
We take the definition in [13] and consequent properties of rolling maps to derive
the kinematic equations for the rolling spheres. We also show how the forbidden
motions, twists and slips, can be produced using rolling without slip/twist. This is
a constructive proof of the complete controllability of the system, when the spheres
have unequal radii.

The organization of the paper is as follows. The formal definition of rolling and
properties of rolling maps appear in Sect. 2. The particular case of a sphere rolling
on another sphere and the derivation of the corresponding kinematics are presented
in Sect. 4. Finally, in Sect. 5 we include a constructive proof of controllability.

2 Rolling Maps

We refer to Sharpe [13] and Lee [9] for details concerning differential and
Riemannian geometry.

Let M and N be two smooth manifolds, with the same dimension, both
isometrically embedded in Euclidean space R

n. Rolling maps describe how M rolls
upon N, without slip or twist, along a curve ˛ on M. Rolling is a rigid motion
in the embedding space, subject to holonomic and non-holonomic constraints.
A rolling motion is then described by the action of the isometry group on R

n,
preserving orientations. This is the special Euclidean group SEn, the semi-direct
product SOn ËRn D fX D .R; s/; R 2 SOn; s 2 R

ng, with group operations

.R1; s1/ ı .R2; s2/ D .R1R2;R1s2 C s1/;

.R; s/�1 D .R�1;�R�1s/;

and the action on Rn is defined as

SEn � R
n ! R

n

.X; p/ 7! X.p/ D R p C s:

We adopt the definition of a rolling map given in Sharpe [13] and write some of
the constraints in terms of R and s.

Definition 1 A rolling map of M upon N, without slip or twist, along a piecewise
smooth curve ˛ W Œ0; t1� ! M is a piecewise smooth mapping

X W Œ0; t1� ! SEn DSOn ËRn

t 7! X.t/D.R.t/; s.t// (1)
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satisfying the following conditions:

• Rolling conditions (for all t 2 Œ0; t1�)
� X.t/.˛.t// DW ˛.t/ 2 N.
� TX.t/.˛.t//.X.t/.M// D T˛.t/N.

• No-slip condition (for almost all t 2 Œ0; t1�):
P̨ .t/ D R.t/. P̨ .t//

• No-twist conditions (for almost all t 2 Œ0; t1�):
� Tangential part: PR.t/R>.t/ .T˛.t/N/ � .T˛.t/N/?:
� Normal part: PR.t/R>.t/ .T˛.t/N/? � T˛.t/N:

The curve ˛ on M is called the rolling curve and ˛ is called the development
of ˛ on N. The rolling conditions in the definition above are holonomic constraints,
they correspond to admissible configurations of the two manifolds, while the non-
slip and non-twist conditions are non-holonomic constraints. The second, normal
part of the no-twist conditions is always satisfied for manifolds of co-dimension 1.
For the most classical of all rolling motions: the 2-sphere rolling on the tangent
space at the south pole, the admissible configurations are all positions of the sphere
in which it is tangent to the plane, while the non-holonomic constraints forbid any
pure translation and any rotation around an axis orthogonal to the plane.

Remark 1 It has been proven in Sharpe [13] that for each piecewise smooth curve ˛
on M there exists a unique rolling map having ˛ as its rolling curve. In the situation
when M D N, the rolling map reduces to the identity map and the development
curve coincides with the rolling curve. Also, if the rolling curve ˛ belongs to the
intersection of the two manifolds, then the corresponding rolling map reduces to the
identity (X.t/ D .I; 0/ satisfies all the conditions trivially) and ˛ 	 ˛.

In what follows, if X D X.t/ is defined as in (1), X� stands for the tangent map of X
and X�1 stands for the mapping

X�1 W Œ0; t1� ! SEn DSOn ËRn

t 7! X�1.t/D.R�1.t/;�R�1.t/s.t// ;

2.1 Properties of Rolling Motions

The following properties can easily be proven using Definition 1 and are of
particular importance for our purposes. The first two have also been derived in
Sharpe [13]. Suppose that three manifolds M1, M2 and M3, embedded in Euclidean
space, are tangent to each other at a point p 2 M1 \ M2 \ M3 and that t 7! ˛1.t/ is
a curve in M1 satisfying ˛1.0/ D p.
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1. Rolling motions are transitive
Suppose that M1 rolls on M2 with rolling map X1, rolling curve ˛1, and
development curve ˛2. Also suppose that M2 rolls on M3 with rolling map X2,
rolling curve ˛2, and development curve ˛3. Then M1 rolls on M3 with rolling
map X2 ı X1, rolling curve ˛1, and development curve ˛3.

2. Rolling motions are symmetric
Suppose that M1 rolls on M2 with rolling map X1, rolling curve ˛1, and
development curve ˛2. Then M2 rolls on M1 with rolling map X1�1, rolling curve
˛2, and development curve ˛1.

3. Rolling under a change of coordinates
If M1 rolls on M2 with rolling map X1, rolling curve ˛1, and development curve
˛1 and Xc 2 SEn is a fixed isometry, then Xc.M1/ rolls on Xc.M2/ with rolling
map Xc ı X1 ı Xc

�1, rolling curve Xc.˛/ and development curve Xc.˛/.

3 Kinematic Equations of Rolling

In this section we derive the kinematic equations for the motion of a smooth
manifold rolling on the affine tangent space at a point. At first glance this may
seem to be very restrictive. However, due to the definition of rolling and consequent
properties, the results for this particular situation are the key to study more general
rolling problems, as will be illustrated later for a sphere rolling on another sphere.

Assume that M is rolling on the affine tangent space at a point, i.e. N D Taff
p0 M,

where p0 D ˛.0/ D ˛.0/: The kinematic equations describe the translational and
the rotational velocities of the rolling motion, starting from .R.0/; s.0// D .I; 0/,
the identity of SEn, and so they have the form


 Ps.t/ D u.t/
PR.t/ D A.t/R.t/

;

for some vector valued function u taking values in Rn and A taking values in son

(the Lie algebra of SOn, consisting of the skew symmetric matrices). Conditions on
these functions are determined from the holonomic and non-holonomic constraints.

When SOn leaves M invariant, the rolling curve is always of the form ˛.t/ D
R.t/>p0, for some R.t/ 2 SOn. Under this assumption, the first rolling condition
implies that s.t/ D ˛.t/ � p0 2 Tp0M and, consequently, the no-slip condition
becomes

Ps.t/ D �A.t/ p0:
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On the other hand, the structure of A.t/ D PR.t/R>.t/ 2 son is determined from
the no-twist conditions

A.t/ T˛.t/N � .T˛.t/N/?;

A.t/ .T˛.t/N/? � T˛.t/N:

Consequently, for an appropriate choice of coordinates, the matrix function A has
the following structure

A.t/ D
"

0 b.t/
�b>.t/ 0

#
; (2)

where b.t/ 2 Rm�.n�m/. We can now write the kinematic equations for rolling the
manifold M upon N D Taff

p0 M:


 Ps.t/ D �A.t/ p0
PR.t/ D A.t/R.t/

; (3)

where A.t/ has the structure (2).

Remark 2 When M is the .n � 1/-sphere S centered at the origin, with radius 	, and
p0 is its south or north pole, then

b.t/ D

2
64

u1.t/
:::

un�1.t/

3
75 ; A.t/ D Pn�1

iD1 ui.t/Ai;n;

and Eqs. (3) for rolling S on its affine tangent space at p0 reduce to the well know
(see, for instance, [6]) kinematic equations

( Ps.t/ D "	u.t/
PR.t/ D

�Pn�1
iD1 ui.t/Ai;n

	
R.t/

;

where Ai;j D eie>j �eje>i are the elementary skew symmetric matrices , " D 1 if p0 is
the south pole and " D �1 if p0 is the north pole. In this case, the rolling condition
X.t/.˛.t// D ˛.t/, where X D .R; s/, reduces to

R.t/˛.t/ D p0: (4)

Remark 3 If the sphere is not centered at the origin, the kinematic equations can
be easily derived from the above, using a convenient change of coordinates. For
instance, consider the following case which will be useful later. Let M be a sphere of
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radius 	, centered at the point .0; � � � ; 0; a/>. We can obtain the rolling map for the
rolling motion of M on its affine tangent space at the north pole p0 D .0; � � � ; 0; a C
	/> from the rolling map X D .R; s/ of the sphere S in previous remark and the
isometry X� D .I; �/ 2 SEn, where � D .0; � � � ; 0; a/>. In this case, X� is a pure
translation and the translation vector � sends S to M D S C � . In this situation,

X� ı X ı X�1� D .R;�R� C s C �/

is the rolling map for the rolling motion of M upon its affine tangent space at the
point p0, with rolling curve ˛ C � and development ˛ C � .

4 A Sphere Rolling on Another Sphere

The most classical of all non-holonomic problems is that of a sphere rolling on
its affine tangent space at a point. Other rolling spheres problems, including a
sphere rolling on another sphere, have been studied in the literature using different
approaches, but in most cases only for 2-dimensional spheres. We refer, for instance,
the work of Bor and Montgomery [2], exploiting the configuration space and the
connection with octonions, the work of Jurdjevic included in [6], and more recently
the results of Jurdjevic and Zimmerman in [7] and of Bloch and Rojo in [1].

The kinematic equations for rolling a sphere on another sphere have been derived
in [7], but we present here an alternative approach which uses the kinematic
equations of a sphere rolling on its affine tangent space at a point together with
the transitive and symmetric properties of rolling. This approach may be used with
great success for other manifolds, as long as one knows how to roll each one on the
affine tangent space at a point. And since this rolling is easier to generate, due to the
simplicity of the latter space, the proposed approach provides a simpler alternative to
derive the kinematic equations of rolling general manifolds embedded in Euclidean
space.

We consider two spheres of the same dimension n�1, embedded in the Euclidean
space Rn: S1 with radius 	1 and S2 with radius 	2. Suppose that the sphere S2 is
centered at the origin and is stationary. Assume that S1 is centered at the point c D
.0; � � � ; 0;�.	1 C 	2//

>, so that at time t D 0 it is tangent to S2 at the south pole
of S2, p0 D .0; � � � ; 0;�	2/>. Assume now that S1 starts rolling over S2, along a
piecewise smooth curve ˛, satisfying ˛.0/ D p0.

Our objective is to derive the kinematic equations for the rolling motion of S1
on the outside of the stationary sphere S2. This will be accomplished by using the
kinematic equations derived in Sect. 3, for rolling a manifold on the affine tangent
space at a point, together with the symmetric and transitive properties and remarks
contained in Sect. 2.

Let N denote the affine tangent space to S2 at p0, which also coincides with the
affine tangent space to S1 at the same point. We know how to roll the spheres S1
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and S2 on N. Consequently, we know how to roll S1 on N and N on S2. Thus, by
transitivity, we can achieve our goal.

• Rolling S1 over N D Taff
p0 S1:

For a sphere with radius 	1 centered at the origin and rolling on the affine
tangent space at the north pole q0, the kinematic equations are


 Ps D �A.t/ q0
PR D A.t/R

; (5)

where A.t/ D Pn�1
iD1 ui.t/Ai;n, for some scalar functions u1; � � � ; un�1. Also,

from (4), the rolling curve ˛ satisfies

R.t/˛.t/ D q0: (6)

So, according to Remark 3, the rolling map for S1 over N is defined by X1 D
.R1; s1/ D .R;�R� C s C �/, where � is the translation vector .0; � � � ; 0;�.	1 C
	2//

> with kinematic equations


 Ps1 D �A1.t/ .q0 C R1�/
PR1 D A1.t/R1

; (7)

where A1 	 A, having rolling curve ˛1 D ˛ C � and development curve ˛1 D
˛ C � . It follows from (6) that

R˛ C � D p0: (8)

• Rolling S2 over N D Taff
p0 S2:

The sphere S2 is centered at the origin and has radius 	2. So, .X2 D .R2; s2/ is
the rolling map for rolling S2 over the affine tangent space at the south pole p0,
and the corresponding kinematic equations are given by:


 Ps2 D �A2.t/ p0
PR2 D A2.t/R2

; (9)

with A2.t/ D Pn�1
iD1 vi.t/Ai;n, for some scalar functions v1; � � � ; vm. Moreover, the

rolling curve ˛2 satisfies

R2˛2 D p0: (10)

For our purpose, we assume that the development curve ˛2 coincides with ˛1.
According to the symmetric property of rolling in Sect. 2, N rolls upon S2 with
rolling map X2 D .R2;�R2>s2/, rolling curve ˛1 2 N and development curve
˛2 2 S2.
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• Rolling S1 over S2:
Applying now the transitive property of rolling in Sect. 2, with M1 D S1,

M2 D N and M3 D S2, we conclude the following: S1 rolls upon S2 with rolling
map X3 D X2�1 ı X1 D .R2>R1;R2>.s1 � s2//, rolling curve ˛1 2 S1 and
development curve ˛2 2 S2, so that

X3.˛1/ D ˛2: (11)

We now show that, under the assumption

˛2 D ˛1; (12)

the matrices A1 and A2 in (7) and (9) respectively, are related through

A2 D �	1
	2

A1: (13)

This is a consequence of the following simple calculations, where the conditions (8)
and (10) are used.

X3.˛1/ D ˛2

, R2>R1˛1 C R2>.s1 � s2/ D ˛2
, R2>R1˛1 C R2>.s1 � s2/ D R2>p0
, R1˛1 C s1 � s2 D p0
, R1˛ C R1� C s1 � s2 D p0
, p0 � � C R1� C s1 � s2 D p0
, s1 � s2 D � � R1�:

Consequently,

Ps2 � Ps1 D PR1� D A1R1�: (14)

On the other hand, using the kinematic equations (7) and (9), we have

Ps2 � Ps1 D �A2p0 C A1q0 C A1R1�; (15)

and by comparison of (14) and (15), it follows that

A1q0 D A2p0: (16)

Finally, the relationship A2 D 	1
	2

A1 follows from here, taking into account the

particular structure of the matrices A1 and A2 and the fact that p0 D .0 � � � ; 0;�	2/>
and q0 D .0 � � � ; 0; 	1/>. In conclusion, we may state the following.
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Theorem 1 Suppose that S1 starts rolling over S2 without slip or twist along a
curve ˛1 satisfying ˛1.0/ D p0. Then, the corresponding rolling map is given by

X3 D .R2
>R1;R2

>.s1 � s2//;

where s1, s2, R1 and R2 are the solutions of the following differential equations

8̂
ˆ̂<
ˆ̂̂:

Ps1 D �U.t/.p0 � � C R1�/
Ps2 D �U.t/q0
PR1 D CU.t/R1
PR2 D � 	1

	2
U.t/R2

; (17)

satisfying s1.0/ D s2.0/ D 0 and R1.0/R2.0/ D I, where

U.t/ D
"

0 u.t/
�u>.t/ 0

#
;

for some vector function u depending on the rolling curve ˛1. Moreover, along the
rolling motion, the point of contact p0 traces out the curve ˛2 D R2>p0 on S2.

It is straight forward to conclude from the above relations that u.t/ D � 1
	1

P̨
1.

Clearly u is a constant function if and only if ˛1 is a geodesic on N. It is well
known that the development of a geodesic curve is a geodesic. (This is an immediate
consequence of the fact, proved in Sharpe [13, Sect. B.3], that if the development is
a straight line, then the rolling curve is a geodesic.) So, the case when u is constant
corresponds to the situation when the rolling curve ˛1 is a geodesic on S1 and,
consequently, its development ˛2 is also a geodesic on S2.

With appropriate changes in notation, Eqs. (17) are in accordance with Proposi-
tion 2.3 in [7].

Remark 4 The kinematics for the related situation where S1 of radius 	1 rolls inside
S2 of radius 	2 > 	1 are obtained by centering S1 at .0; � � � ; 0;�.	2 � 	1//

> and
replacing q0 by .0; � � � ; 0;�	1/> and � by .0; � � � ; 0;�.	2 � 	1//>.

5 Constructive Proof of Controllability

As before, S1, S2 are fixed .n � 1/-spheres in Rn, of radii 	1, 	2, tangent at p0 2
S1 \ S2, with S1 outside S2. Exchanging the spheres if necessary, assume 	1 < 	2.
Rescaling, we may and will take 	2 D 1 and put � WD 	1 < 1.

Following Sharpe [13], we take for state space of the system where S1 rolls on
the outside of S2 the connected component˙ of

˚
.q; p;M/ 2 S1 � S2 � SOn W M TqS1 D TpS2
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containing the trivial configuration .p0; p0; I/. A state space rolling motion is any
curve � W Œ0; t1� ! ˙ determined by a rolling motion X D X.t/ D .R; s/ of S1 over
S2 as follows: if X has rolling curve ˛1.t/ and development ˛2.t/, then

�.t/ D .˛1.t/; ˛2.t/;R.t//:

In this situation, �.t1/ is reachable from �.0/. The rolling system is controllable if
�1 is reachable from �0, for every �0; �1 2 ˙ .

A fixed Euclidean motion X1 2 SEn is achievable if .p0;X1.p0/;X1/ is in ˙ and
is a state reachable from .p0; p0; I/.

It is well known that the system is controllable when the spheres have unequal
radii. We prove this by first showing that certain infinitesimally forbidden motions
are achievable and then checking that any state transfer is achieved by a composition
of such motions. This is in the spirit of [8], where a similar strategy was carried out
for the n-sphere rolling on a hyperplane. The forbidden motions used are the twists
and slips defined below. We will exhibit explicit piecewise geodesic rolling motions
that achieve each of those motions.

When n D 3, the spheres are two-dimensional. The no-twist condition prevents
rotations of S1 about the axis 0p0 (twists at p0), while the no-slip condition forbids
slipping motions which may be thought of as rotations of S1 about an axis through
the center of S2 (the origin) and perpendicular to 0p0 (these we term slips from
p0). In Sect. 5.1 we will show that these motions are achievable. Next, in Sect. 5.2,
we will define the higher-dimensional analogues of twists and show that those are
achievable as well. Finally, in the last section we establish controllability for all
n > 3, carrying out the plan sketched above.

It will be convenient to re-parametrize system (17) so that t is the arclength of
the rolling and development curves:

8̂
<
:̂

s1 � s2 D .I � R1/�
PR1 D C 1

�
U.t/R1

PR2 D �U.t/R2

: (18)

For coordinates in which S1 is centered at c D .1C �/ p0 and S2 is centered at the
origin, as before, but now p0 is be the north pole of S2, the kinematics (18) keep
their form. We will use such coordinates in the following two sections.

5.1 Miming Twists and Slips for n D 3

Now p0 D .0; 0; 1/>. With Ai;j as in Remark 2, let Ay WD A1;3; Ax WD A2;3; Az WD
A1;2, and A .�/ WD Ay cos �CAx sin �: Since d

dt

ˇ̌
tD0

�
etA.�/p0

� D .cos �; sin �; 0/, the

rotation matrix etA.�/ moves p0 in the direction with angle � in the tangent space to S2
at p0, identified with the xy-plane. In this situation a twist at p0 is the motion

�
e˛Az ; 0

�
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and a slip from p0 is
�
etA.�/; 0

�
. These correspond to the state transfers .p0; p0;M/ !

.p0; p0; e˛Az M/ and .p0; p0;M/ ! .etA.�/p0; etA.�/p0; etA.�/M/, respectively.
Note that if a constant control

U D
2
4 0 0 u1

0 0 u2
�u1 �u2 0

3
5

has norm one (u21 C u22 D 1), then U D A .�/ for some � and e2�U D I.
A half-tumble is a rolling motion of S1 over S2 corresponding to a geodesic

development with length �� . If a rolling motion starting from p0 is a sequence
of two half-tumbles, then its development is ˛2.t/ with ˛2 .0/ D p0, ˛2 .��/ D
e��V1p0, ˛2 .2��/ D e��V2e��V1p0, for skew symmetric V1, V2 which relate to the
control values by U1 D A .�1/ D V1, U2 D A .�2/ D e���V1V2e��V1 : It is easy to
check that if the angle between those two geodesic arcs is ˇ (measured such that
ˇ D �

2
is a left-turn), then �2 D � C �1 � ˇ.

By integrating (18),

R1.2��/ D e�A.�2/e�A.�1/

R2.2��/ D e��A.�1/e��A.�2/:

Therefore,

X3.2��/ D .R3; s3/ D .R>2 R1; 0/: (19)

A tumble is a sequence of two half-tumbles with the same control input U D
A .�/, for which the rolling motion X3 satisfies X3.2��/ D,

�
e2��A.�/; 0

�
:

Proposition 1 In dimension 3, any twist is achievable.

Proof We first handle the case 0 < � < 1
2
. Given any ˛ 2 .0; �=2/, consider a

spherical quadrangle Œp0;A;B;C� on S2 with interior angle 2˛ both at p0 and at the
opposite vertex B and each of whose four arcs has the same length T D �� . Note
that 0 < T < �=2. For definiteness, the vertices are labeled counter-clockwise, as
seen from the outside of S2 (Fig. 1).

We compute the angle ˇ at A and C. The spherical triangle Œp0;A;B� has interior
angles ˛, ˇ, and again ˛ at those vertices. Let W be the arc-angle of p0B. By the law
of sines of spherical trigonometry,

sin ˛

sin T
D sinˇ

sin W
(20)

and by the law of cosines,

cos W D cos2 T C sin2 T cosˇ: (21)
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Fig. 1 A twist obtained by
rolling

For convenience, put 
 D cos .T/, so that 0 < 
 < 1. Then cos W D 
 2 C�
1 � 
 2

�
cosˇ: The previous relations imply

cosˇ D 
 2 sin2 ˛ � cos2 ˛


 2 sin2 ˛ C cos2 ˛
; (22)

which uniquely defines ˇ 2 Œ0; ��. (Note that, for fixed 
 , ˇ .˛; 
 / decreases from
� to 0 as ˛ increases from 0 to �=2.)

The two left arcs form a development curve with �1 D �˛, �2 D � � ˛ C ˇ.
Using (19), the rolling motion X12 from p0 along the two left arcs is .R12; 0/ at
t D 2T, with

R12 D eTA.�1/e.�CT/A.�2/e�A.�1/

D eTA.�˛/e.�CT/A.��˛Cˇ/e�A.�˛/:

Analogously, the two right arcs are a development with �3 D ˛, �4 D � C ˛ � ˇ

and at t D 2T, the rolling motion from p0 is .R34; 0/

R34 D eTA.�3/e.�CT/A.�4/e�A.�3/

D eTA.˛/e.�CT/A.�C˛�ˇ/e�A.˛/:

Therefore, the rolling motion around the closed curve is, at t D 4T, .R1234; s/ D�
R�134 ; 0

�
.R12; 0/ D .R�134 R12; 0/:

It is shown by elementary means in [10] that R1234 D e.�4˛C2ˇ/Az . Alternatively,
this may be seen by using the Gauss-Bonnet theorem: when a 2-sphere rolls on
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a plane along a closed rolling curve  , it undergoes a turn by an angle equal to
the area enclosed by  . The area enclosed by the four-sided development curve is
A D 4˛C2ˇ�� , so that S2 is turned by that angle relative to the plane N on which
both spheres roll. On the other hand, the rolling curve on S1 is a lune of area 2ˇ
twice traversed, so that S2 turns by 4ˇ relative to N. The difference gives the angle
of the twist. See, for example Murray and Sastry [12, p. 385].

Using (22), and fixed � , define f .˛/ D 2˛ � ˇ. One checks that f .0/ D � ,
f .�

2
/ D �� . This establishes that finitely many half-tumbles suffice to achieve any

twist at p0.
If 1

2
< � < 1, we consider a similar quadrangle as before, but now with T D

� .1 � �/. Consider a rolling motion that traverses the same sequence of points
.p0;A;B;C; p0/, but now moving along the longer portion (of length QT D 2� �
T) of the great circle containing each successive pair of points. Since eQTA.�C�/ D
e�TA.�C�/ D eTA.�/, again X3

�
4 QT� D .e.�4˛C2ˇ/Az ; 0/.

Finally, when � D 1
2
, it is enough to take for development a spherical lune with

the poles as endpoints.

Proposition 2 In dimension 3, any slip is achievable.

Proof Suppose the slip to be constructed is the motion .S; 0/ D .eWA.�/; 0/ 2 SEn,
0 < W < � . Consider a spherical triangle with vertices p0, A, B D Sp0, so that the
arcs Œp0;A� and ŒA;B� have length T D �� . (See Fig. 2.) It is clear that the rolling
motion along that development is a sequence of two half-tumbles and that if it is
preceded by a suitable twist .e�Az ; 0/ at p0, then the net effect is a slip from p0 to B.
From the construction in the previous Proposition and by symmetry, � D �2˛C ˇ.
A pure slip is achieved.

Fig. 2 A slip obtained by
rolling
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5.2 Miming Twists and Slips for n > 3

Let n > 3, so that S1; S2 are .n � 1/-spheres in Rn and S1 \ S2 D fp0g, as before.
We define the higher-dimension analogues of the forbidden motions of S1 slipping
from p0 and S1 twisting at p0. Let L D span fp0g. A twist at p0 is .exp M; 0/ 2 SEn,
where M 2 son and Mp0 D 0. A slip from p0 is .exp N; 0/ 2 SEn with N 2 son,
N .L/ � L?, and N

�
L?
� � L.

Under our chosen coordinates, p0 D .0; : : : ; 0; 1/> 2 Rn and the requirements
that .exp M; 0/ be a twist at p0 and .exp N; 0/ 2 SEn be a slip from p0 are simply
that

M D
" QM 0

0 0

#
; N D

"
0 b

�b> 0

#
; (23)

with QM.n�1/�.n�1/ skew symmetric and b 2 Rn�1.

Proposition 3 Any twist .exp M; 0/ 2 SEn is achievable.

Proof Recall that a Givens rotation is a matrix of the form exp
�
tAi;j

�
, where Ai;j D

eie>j �eje>i is an elementary skew symmetric matrix, as in Remark 2, and t is scalar.

Here, 1 6 i; j 6 n � 1 for each factor of the decomposition of QM. Since QM is
skew symmetric, exp QM is orthogonal of determinant one and there is a constructive
procedure to decompose it as a finite product of Givens rotations [3]. In order to
obtain each twist

�
etAi;j ; 0

�
, it is enough to perform the maneuvers of the previous

section using only the control input entries ui and uj.

Proposition 4 Any slip .exp N; 0/ 2 SEn is achievable.

Proof Define the vector b by the second equality in (23). We claim that there are
n � 2 twists .exp Mi; 0/, all at p0, 3 6 i 6 n, for which, putting

Kn D exp .Mn/ � � � exp .M3/ ; (24)

and p D .0; : : : ; 0; t/> 2 Rn�1, one has

N D
"

0 b
�b> 0

#
D Kn

"
0 p

�p> 0

#
K�1n :

We check this claim by induction on the dimension n > 3. The base case holds with
K3 D .e Az ; 0/ and .cos ; sin / jbj D b. For the step, given N.nC1/�.nC1/, and thus
b 2 Rn, choose a twist .exp MnC1; 0/,

MnC1 D
" QMnC1 0

0 0

#
;
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such that exp
� QMnC1

�
b D c D .0; c2; : : : ; cn/

> D .0jQc/> : By the induction
hypothesis, there is a finite product Kn as in (24) for which

"
0 c

�c> 0

#
D Kn

"
0 p

�p> 0

#
K�1n

and now we check

exp .MnC1/Kn

"
0 p

�p> 0

#
K�1n exp .�MnC1/

D
"

exp QMnC1 0
0 1

#"
0 c

�c> 0

#"
exp

�� QMnC1
�
0

0 1

#

D
"

0 b
�c> 0

#"
exp

�� QMnC1
�
0

0 1

#
D
"

0 b
�b> 0

#
;

as required.
The slip

 
exp

"
0 p

�p> 0

#
; 0

!

corresponds to the slip
�
etAx ; 0

�
with respect to the last three variables and is

therefore achievable, as shown in the previous section. From Proposition 3, all of
the twists .exp Mi; 0/ are achievable and thus so is the slip .exp N; 0/.

Slips from p0 allow for motion from p0 to any other point on S2, as we now show.

Proposition 5 For any q 2 S2 there is a slip S such that Sp0 D q.

Proof Put q D .Qq; qn/
> with qn scalar. Let b relate to N as in (23) and suppose

jbj D 1. From

exp .�N/ D I C .cos .�/ � 1/

"
bb> 0
0 1

#
C sin .�/N;

it follows that exp.�N/p0 D .Qq; qn/
> 2 S2 when � and b satisfy b sin � D Qq and

qn D cos � , that is, S D exp.�N/.
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5.3 Proof of Controllability

To establish controllability, it is enough to check that .p0; p0; I/ 2 ˙ is reachable
from arbitrary � 2 ˙ , since the system is symmetric.

From � D .q; p;M/ one reaches .p0; p0;M0/ by a rolling motion for which the
rolling curve is a geodesic connecting q to p0 in S1. By a slip of S1 from p0 to p0 one
reaches .p0; p0;M00/ and if this is in˙ , then .M00; 0/ 2 SEn must be a twist at p0 and
therefore from .p0; p0;M00/ one may reach .p0; p0; I/.

Acknowledgements The work of the first author was supported by FCT project PTDC/ EEA–
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The Dual Potential, the Involution Kernel
and Transport in Ergodic Optimization

A.O. Lopes, E.R. Oliveira, and Ph. Thieullen

Abstract Consider the shift � acting on the Bernoulli space ˙ D f1; 2; : : : ; ngN.
We denote Ȯ D f1; 2; : : : ; ngZ D ˙ � ˙ . We analyze several properties of the
maximizing probability �1;A of a Hölder potential A W ˙ ! R. Associated to
A.x/, via the involution kernel, W.x; y/, W W Ȯ ! R, one can get the dual potential
A�.y/, where .x; y/ 2 Ȯ . We denote �1;A� the maximizing probability for A�. We
would like to consider the transport problem from �1;A to �1;A� . In this case, it is
natural to consider the cost function c.x; y/ D I.x/ � W.x; y/ C � , where I is the
deviation function for �1;A, as the limit of Gibbs probabilities�ˇA for the potential
ˇA when ˇ ! 1. The value � is a constant which depends on A. We could also
take c D �W above. We denote by K D K .�1;A; �1;A�/ the set of probabilities
O�.x; y/ on Ȯ , such that ��x . O�/ D �1;A; and ��y . O�/ D �1;A� : We describe the

minimal solution O� (which is invariant by the shift on Ȯ ) of the Transport Problem,
that is, the solution of

inf
O�2K

Z Z
c.x; y/ d O� D � max

O�2K

Z Z
.W.x; y/ � �/ d O�:

The optimal pair of functions for the Kantorovich Transport dual Problem is
.�V;�V�/, where we denote the two calibrated sub-actions by V and V�, respec-
tively, for A and A�. We show that the involution kernel W is cyclically monotone. In
other words, satisfies a twist condition in the support of O�. We analyze the question:
is the support of O� a graph? We also investigate the question of finding an explicit
expression for the function f W ˙ ! R whose c-subderivative determines the graph.
We also analyze the same kind of problem for expanding transformations on the
circle.
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1 Introduction

It seems natural to try to investigate the connections of Transport Theory with
Ergodic Theory. Some results on this direction appear in [18, 32–34, 51]. Here we
follow a different path.

Given a continuous function A W ˙ D f1; 2; 3; ::; dgN ! R, we call �1;A a
maximizing probability for A, if

R
Ad� attains the maximal value in �1;A, when the

probabilities � range among the set of invariant for the shift acting on the Bernoulli
space ˙ . We denote by m.A/ this maximal value.

Such maximizing probabilities�1;A can be seen as the equilibrium states at zero
temperature for a system on the one dimensional lattice N with d spins in each site
and under the influence of an interacting potential A (see [5, 8, 12, 14, 27, 35, 42,
46]).

A main conjecture on the area claims that for a generic Hölder potential A the
maximizing probability has support in a unique periodic orbit for the shift (for a
partial result see [12]). This conjecture was recently proved by G. Contreras (see
[10]).

We address the question of finding the optimal transport plan from a certain
maximizing probability to another. More precisely, we would like to consider the
transport problem from �1;A to �1;A� , where A W ˙ D f1; 2; 3; ::; dgN ! R is a
Hölder potential and A� its dual (see [2]).

We consider here that A acts on the variable x and A� in the variable y. A function
W.x; y/ called the involution kernel will play an important role in the theory. The
twist condition for W is a kind of convexity assumption. We will describe bellow
with all details the setting we are going to consider in the present paper. We will
also provide several examples to illustrate the theory.

We assume here in most (but not all) of the results that the maximizing
probability �1;A (on ˙) for A is unique.

We denote by O� the minimizing probability over Ȯ D f1; 2; 3; ::; dgZ D ˙ �˙;
for the natural Kantorovich Transport Problem associated to the �W, where W.x; y/,
for .x; y/ 2 ˙ �˙; is the involution kernel associated to A (see [2]).

We will denote by O� the shift on Ȯ . The probability O�max denotes the natural
extension of �1;A as described in [2].

We point out that by its very nature the Classical Transport Theory is not a
Dynamical Theory (in the sense of considering invariant probabilities) [48, 53, 54].
One has to consider a cost which is obtained from dynamical properties in order to
get optimal plans which are invariant for O� .

Recent results in Ergodic Transport are [13, 22, 36, 37, 41, 44].
We will consider a cost which is the involution kernel W. First we show that:

Theorem 1 The minimizing Kantorovich probability O� on Ȯ associated to �W,
where W is the involution kernel for A, is O�max. Same property is true for c instead
of W

One of our main results is Theorem 5 which claims that the support of O�max is
W-cyclically monotone. We do not assume the twist condition in the above result.
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The calibrated subactions V play an important role in Ergodic Optimization.
They can help to find the support of the maximizing probability (see [5, 27] or [12]
for instance). Moreover, if we denote R.x/ D V.�.x// � V.x/ � A.x/C m.A/, then
I.x/ D P

n�0 R.�n.x// defines a nonnegative lower semicontinuous function (can
be infinite at several points) which is the deviation function for the family of Gibbs
states associated to A when the temperature converges to zero [2] (see [3, 36] for the
case of the XY model). For a class of explicit nontrivial examples of subactions V
see [4].

Theorem 2 If V is the calibrated subaction for A, and V� is the calibrated
subaction for A�, then, the pair .�V;�V�/ is the dual (�W C I)-Kantorovich pair
of .�1;A; �1;A�/, when I is the deviation function for A.

Finding the optimal transport measure between two probabilities is the solution
of the so called relaxed problem [53]. If we want to find a measurable transformation
(the Monge problem) which transfers one probability to another we need to show
that the graph property is true in the support of such probability (which does not
always happen if one considers a general cost function) [53].

Finally, we analyze later here the graph property for the support of the O�max (over
Ȯ D f1; 2; 3; ::; dgZ) which is the minimizing probability for the cost function �W.

One can consider in the Bernoulli space ˙ D f0; 1gN the lexicographic order. In
this way, x < z, if and only if, the first element i such that, xj D zj for all j < i, and
xi ¤ zi, satisfies the property xi < zi. Moreover, .0; x1; x2; : : :/ < .1; x1; x2; : : :/:

One can also consider the more general case ˙ D f0; 1; : : : ; d � 1gN, but in
order to simplify the notation and to avoid technicalities, we consider only the case
˙ D f0; 1gN.

Definition 1 We say a continuous G W Ȯ D ˙ � ˙ ! R satisfies the twist
condition on Ȯ , if for any .a; b/ 2 Ȯ D ˙ � ˙ and .a0; b0/ 2 ˙ � ˙ , with
a0 > a, b0 > b, we have

G.a; b/C G.a0; b0/ < G.a; b0/C G.a0; b/: (1)

The twist condition is inspired in the Aubry-Mather Theory [1, 11, 23–25]. It is
a quite natural concept in Classical Optimization and Transport Theory [6, 13, 15,
40, 45, 48, 53, 54] (see [37] for dynamical examples).

The twist condition is also described by the concept of global cyclically
monotonicity (see [53])

We point out that in Mather Theory in order to have the graph property (see
[11, 43]) for the minimal action measure it is necessary to assume that Lagrangian
is convex in the velocity. We need in our setting some technical assumptions to
replace this important property. We believe that the twist condition is the natural
one.

Definition 2 We say a continuous A W ˙ ! R satisfies the twist condition, if its
involution kernel W satisfies the twist condition.
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The involution kernel of A is not unique (see [2]), but if the above property is true
for some W, then it will also be true for any other one.

Our final result is:

Theorem 3 Suppose the involution kernel W satisfies the twist condition on Ȯ ,
then, the support of O�max D O� on Ȯ is a graph. Moreover, if d D 2, then there exists
at most one point in the support of O� which has two points in the support of O� in its
vertical fiber. The � orbit of this point is a zero measure set.

There are examples where the existence of this exceptional point occurs and this
is associated to the concept of turning point (see [13, 37, 40]).

Similar results occur for the case of a general d. A similar definition can be
considered for an expanding transformation on Œ0; 1�, and we are also able to get the
analogous graph property result. This also includes the case of T.x/ D � 2x (mod
1).

We present in the Appendix at the end of the paper several examples (and
computations) where one can write the involution kernel W explicitly and the twist
condition is satisfied. First we will explain all the preliminaries we will need later.

Consider X a compact metric space. Given a continuous transformation f W X !
X, we denote by Mf the convex set of f -invariant Borel probability measures. As
usual, we consider in Mf the weak* topology. The standard model used in ergodic
optimization is the triple .X; f ;Mf /. Given a potential A 2 C0.X/, we denote

m.A/ D max
�2Mf

Z
X

A.x/ d�.x/: (2)

We are interested here in the characterization and main properties of A-
maximizing probabilities, that is, the probabilities belonging to the set

f � 2 Mf W
Z

X
A.x/ d�.x/ D m.A/ g: (3)

We will assume here that A is Hölder.
In the following we will also assume that the maximizing probability �1;A D

�1 is unique.
Under reasonable hypothesis (expanding, hyperbolic, etc.) several results were

obtained related to this maximizing question, among them [2, 5, 7–9, 12, 14, 23,
24, 26–28, 35, 38, 46, 50, 52]. For maximization with constraints see [20, 39].
Questions related to the dynamics on the boundary of the fat attractor appear in
[37]. Naturally, if we change the maximizing notion for the minimizing one, the
analogous properties will also be true.

Our focus here will be mainly on symbolic dynamics and on expanding
transformations on S1 or the interval Œ0; 1�. We recall some basic definitions (see
[5] or [12] for example).

Let � W ˙ ! ˙ be a subshift of finite type defined by a matrix C of 0 and 1,
where �.x0; x1; x2; ::/ D .x1; x2; x3; ::/: In this case we are considering X D ˙ D
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f1; 2; 3; ::; dgNC and f D � . Remind that, for a fixed � 2 .0; 1/, we consider for ˙
the metric d.x; Nx/ D �k, where x D .x0; x1; : : :/; Nx D .Nx0; Nx1; : : :/ 2 ˙ and k D
minfj W xj ¤ Nxjg. In this situation, given a Hölder potential A W f1; 2; 3; ::; dgN ! R,
one should be interested in A-maximizing probabilities for the triple .˙; �;M� /,
where the probabilities are consider over B, the �-algebra of Borel of ˙ . In order
to simplify the notation here we will consider the full Bernoulli space (all entries of
C are equal to 1).

Given an C1C˛ expanding transformation T of fixed degree on S1 and A W S1 !
R we will be interested in A- maximizing probabilities on .S1;T;MT/; where the
probabilities are consider over B, the �-algebra of Borel of S1.

One can consider the analogous setting for C1C˛ expanding transformations of
fixed degree over Œ0; 1�.

Convex potentials A W Œ0; 1� ! R and the transformation T W Œ0; 1� ! Œ0; 1�,
given by T.x/ D 2 x (mod 1), were considered in [29] where it was shown that the
maximizing probabilities in this case are Sturmian measures. For T.x/ equal to � 2 x
(mod 1) however, the situation is completely different (see [31]).

Definition 3 A function u 2 C0.˙/ is a sub-action for the potential A if, for any
x 2 ˙ D f1; 2; 3; : : : ; dgNC , we have

u.x/ 6 u.�.x//� A.x/C ˇA: (4)

Let .˙�; ��/ be the dual subshift.
In the case of the full Bernoulli space (all entries of C equal 1) then ˙� D

f1; 2; 3; ::; dgN and ��.y0; y1; y2; : : :/ D .y1; y2; : : :/:
We consider the space of the dynamics . Ȯ ; O�/, the natural extension of .˙; �/,

as subset of ˙� � ˙ . In fact, if y D .: : : ; y1; y0/ 2 ˙� and x D .x0; x1; : : :/ 2 ˙ ,
then Ȯ will be the set of points

< y; x >D .: : : ; y1; y0jx0; x1; : : :/ 2 ˙� �˙;

such that .y0; x0/ is an allowed word (no restrictions when we consider the full
Bernoulli space). In this case

O� .: : : ; y1; y0jx0; x1; : : :/ D .: : : ; y1; y0; x0jx1; x2; : : :/:

We point out that we use here the notation < y; x >D .x; y/. For functions b W
Ȯ ! R, we denote its value on < y; x > by b.x; y/. We define the map � W Ȯ ! ˙

by �.x; y/ D �y.x/ D .y0; x0; x1; : : :/. Note that, if �x W Ȯ ! ˙ is the projection
in the x coordinate, then, �y.x/ D �x ı O��1 .x; y/: We denote by �y.x; y/ D y the
projection on the second coordinate. Note that O��1.x; y/ D .�y.x/; ��.y//:

Definition 4 A continuous function V W ˙ ! R is called calibrated subaction for
A, if

V.x/ D max
z W �.z/Dx

�
V.z/C A.z/� m.A/

�
:
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In other terms, V is a calibrated subaction if for any x 2 ˙ , there exists z 2 ˙ , such
that, �.z/ D x, and V.z/C A.z/ � m.A/ D V.x/ .

Note that for all z we have V.�.z// � V.z/� A.z/C m.A/ � 0: We show bellow
some explicit expressions for calibrated subactions for a class of potentials A.

We point out that we will also consider here analogous results for an expanding
transformation T W S1 ! S1 (or, T W Œ0; 1� ! Œ0; 1�) of class C1C˛ , and a Hölder
potential A W S1 ! R (or, A W Œ0; 1� ! R) as in [12]. The case T.x/ D � 2x (mod 1)
is one of the examples we have on mind.

In this case one could consider analogous problems in S1 � S1, or, S1 � ˙ , if
one consider the symbols i which index the inverse branches �i of T [37, 40]. The
existence of involution kernel, L.D.P. properties, etc., are also true.

The calibrated sub-action is unique (up to an additive constant) if the maximizing
probability is unique (see [2, 12, 21]). We point out that we called strict in [2] what
we denote here by calibrated. We will use from now on the notation of [2].

Definition 5 Given A W ˙ ! R Lipchitz potential, consider A�.y/ (the dual
potential), where A W ˙� ! R, and W.x; y/ D WA.x; y/ its involution kernel.

This means, by definition that for all < y; x >D .x; y/ 2 Ȯ

A�.y/ D A.�y.x//C W.�y.x/; �
�.y//� W.x; y/: (5)

This expression can be also written in the form

A�.x; y/ D A. O��1.x; y//C W. O��1.x; y// � W.x; y/:

If A depends on just two coordinates we can take A� as the transpose of A.
Therefore, the above definition extends this concept in the case A depends on infinite
coordinates on the Bernoulli space. We say A is involutive if A D A�.

We address the question of regularity of the involution kernel W (is bi-Hölder) in
the item (d) in the Appendix.

We denote by M the Bernoulli space or the unitary circle. Suppose T is an
expanding transformation on M (T can be the shift � or the transformation T defined
above).

For a Lipchitz potential A W M ! R the pressure of A is the value

P.A/ D sup
� invariant for T

fh.�/C
Z

A d� g;

where h.�/ is the Kolmogorov entropy of the invariant probability �.
The equilibrium state for A is the probability � which realizes the above

supremum.



The Dual Potential, the Involution Kernel and Transport in Ergodic Optimization 363

Given a Hölder function A W M ! R, by definition the Ruelle operator
LA W C.M/ ! C.M/ acts on continuous functions � W M ! R, in such way
that, LA.�/ D ', where

'.x/ D LA.�/.x/ D
X

T.y/Dx

eA.y/ �.y/:

This operator (sometimes called transfer operator) helps to understand equilib-
rium states in Thermodynamic Formalism. This corresponds to the analysis of the
Statistical Mechanics of the one-dimensional lattice at positive temperature (see
[47]). Maximizing probabilities correspond to the limit of equilibrium states when
temperature goes to zero (ground states) as one can see for instance in [5].

When A is such that LA.1/ D 1 we say that A is normalized.
The dual operator L �A acts on the space of probabilities measures on M. Given a

probability �, then, L �A .�/ D � where the probability measure � is the unique one
satisfying

Z
� d L �A .�/ D

Z
� d� D

Z
LA .�/ d�

for any continuous function �.
An important result claims that there exists a positive value � which is simulta-

neous an eigenvalue for LA and L �A (see [47]). This � is the spectral radius of LA.
This defines a main eigenfunction for LA and a main eigenprobability for L �A .

In [33] it is shown that the dual of the Ruelle operator L �A is a contraction for
the 1-Wasserstein distance when A is normalized. The fixed point probability is the
main eigenprobability for L �A .

We suppose that c is a normalization constant for W in the sense that

Z Z
eW.x;y/�c d�A�.y/ d�A.x/ D 1; (6)

where �A and �A� are respectively the eigen-probability for the dual Ruelle
operator of A and A� [12]. We also denote by �A and �A� the corresponding eigen-
functions for LA. Finally, �A D �A �A D and �A� D �A� �A� are the invariant
probabilities which are the solutions of the respective pressure problems for A and
A�. For a fixed A we consider a real parameter ˇ, and the corresponding potentials
ˇA, and the eigenfunctions �ˇ A, and so on.

In Statistical Mechanics ˇ is the inverse of temperature. In this way asymptotic
results when ˇ ! 1 can be consider as the ones which describes the system in
equilibrium at temperature zero. Note that ˇW is an involution kernel for ˇA, and
its dual is ˇA�.
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It is known (see for instance [12]) that a sub-action V can obtained as the limit

V.x/ D lim
ˇ!1

1

ˇ
log�ˇA.x/: (7)

This V is a calibrated sub-action for A (see [2, 12, 20]). We can also get a
calibrated sub-action V� for A� using the limit

V�.y/ D lim
ˇ!1

1

ˇ
log�ˇA�.y/ : (8)

From [2] (see also [42]) we have

�A�.y/ D
Z

e WA.x;y/�c d�A.x/:

Finally, we define for each x 2 ˙ ,

I.x/ D
1X

nD0
ŒV ı � � V � .A � m.A// � �n .x/;

where V is a (any) calibrated sub-action.
The function I, where I W ˙ ! R[ f1g, can have infinite values, but it is lower

semi-continuous. In [2] it is shown that for any cylinder set C � ˙ ,

lim
ˇ!C1

1

ˇ
log�ˇ A.C/ D � inf

x2C
I.x/

In this way we get a Large Deviation principle for �ˇ A ! �1:
Remember that we denote by ��1 the unique maximizing probability for A� (it

is unique because �1 is unique for A, and, moreover, A and A� are cohomologous
in Ȯ ).

All the results described above are true for expanding transformations T of class
C1C˛ on the circle S1. In this case we have to consider the natural extension OT of T.
This also includes the case of T.x/ D � 2x (mod 1).

In the case T W S1 ! S1, given by T.x/ D 2 x (mod 1), we define OT in the
following way: the Baker transformation associated to T, denoted by OT.x1; x2/,
where OT W Œ0; 1�2 ! Œ0; 1�2, is such that satisfies for all .x1; x2/ 2 Œ0; 1�2,
OT.x1;T�.x2// D .T.x1/; x2/ (see picture bellow) . In this case T� W S1 ! S1, with
T�.y/ D 2 y (mod 1), OT plays the role of O� , and T� plays the role of ��, on the
definitions and results above.

All the above apply for an expanding transformation T W S1 ! S1, or T W Œ0; 1� !
Œ0; 1�.

The transformation OT on S1 � S1, contract vertical fibers by forward iteration and
expand (and cut) vertical fibers by backward iteration.
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Characterization of S

Remember that we said that W W Ȯ D ˙ �˙ ! R satisfies the twist condition
on Ȯ , if for any .a; b/ 2 Ȯ D ˙ � ˙ and .a0; b0/ 2 ˙ � ˙ , with a0 > a, b0 > b,
we have

W.a; b/C W.a0; b0/ < W.a; b0/C W.a0; b/: (9)

We have the analogous definition for expanding transformations on the interval:

Definition 6 We say W W Œ0; 1�2 ! R continuous satisfies the twist condition on
Œ0; 1�2, if for any .a; b/ 2 Œ0; 1�2 and .a0; b0/ 2 Œ0; 1�2, with a0 > a, b0 > b, we have

W.a; b/C W.a0; b0/ < W.a; b0/C W.a0; b/: (10)

Same definition for W on S1 � S1.
When x; y 2 Œ0; 1� (or, on S1), the condition

@2 W

@x @y
< 0;

implies the twist condition for W. The twist condition can be seen as a kind of
transversality condition (see [37])

Example 1 Consider the transformation T W S1 ! S1, given by T.x/ D � 2 x (mod
1) and A.x/ D a C bx C cx2, where a; b; c are constants and c > 0. In item (b) in
the Appendix we show an explicit expression for the W-kernel and we prove that
W satisfies the twist condition. From this, we can get an explicit expression for the
calibrated subaction for a certain potential (see Remark 6 in the Appendix).

We point out that for considering the system above in S1 we have to assume above
that A.0/ D A.1/: If we are interested in the case of Œ0; 1� the same result can be
obtained but we do not have to assume A.0/ D A.1/:

Moreover, we also show in item (c) in the Appendix that a certain class of analytic
perturbations of A.x/ D a C bx C cx2 produces W-kernels which are twist.

Example 2 In item (b) in the Appendix we show an example of a W-kernel for
a continuous potential A, and for the action of the shift � on the Bernoulli space
f0; 1gN, which is twist.
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Example 3 Consider the Gauss map T.x/ D 1
x � Œ 1x � on Œ0; 1�.

We can define the Baker transformation associated to T, denoted by OT.x1; x2/,
where OT W Œ0; 1�2 ! Œ0; 1�2. The involution kernel W for A.x1/ D � log T 0.x1/ is
W.x1; x2/ D �2 log.1 C x1 x2/ (see [2]).

It is known that the dual of A D � log T 0 is A� D � log T 0 (see Proposition 4 in
[2]).

The maximizing probability for such potential � log T 0.x/ D 2 log.x/ is the ı-

Dirac in the fixed point b, where b is the golden mean b D
p
5�1
2

(see for instance
[14]). In this case m.A/ D 2 log.b/.

Note that W is differentiable on any point .x1; x2/ 2 Œ0; 1�2.
One can easily see that an explicit calibrated sub-action u (unique up to an

additive constant because the maximizing probability is unique [20]) satisfying

u.x/ 6 u.T.x// � A.x/C m.A/; (11)

is u.x/ D W.x; b/ D �2 log.1C x b/.
Note that

@2 W

@x @y
< 0;

and, therefore, W is twist.

Example 4 Suppose T.x/ D � 2 x (mod 1), T W Œ0; 1� ! Œ0; 1� and A W Œ0; 1� ! R

is Hölder and monotonous. Under some assumptions on A one can get cases where
the maximizing probability is unique and with support on the right fixed point p (see
[31]). In the same way as in last example one can show that V.x/ D W.x; p/ is a
calibrated subaction.

If one considers on the interval Œ0; 1� the potential A.x/ D x2 is under such
assumptions. One can show that A�.y/ D y2, and W.x; y/ D .1=3/.x2 C y2/ �
.4=3/xy (see Remark 6 in item (b) in the Appendix). In the same way @2 W.x;y/

@x @y < 0:

Example 5 Consider the transformation T W S1 ! S1, given by T.x/ D � 2 x (mod
1) and A.x/ D �.x � 1

2
/2 (a continuous potential on S1) for which all results in

[2] apply (see also [37] where it is shown in this case the graph property). The
maximizing probability has support in the periodic orbit of period 2 (see [29, 30]).

One can define the continuous Baker transformation associated to T, denoted by
OT.x1; x2/, where OT W Œ0; 1�2 ! Œ0; 1�2 is such that satisfies for all .x1; x2/ 2 Œ0; 1�2,
OT.x1;T.x2// D .T.x1/; x2/.

In this case, we show in Remark 6 in the Appendix that a smooth W-kernel is:

W.x; y/ D �.1=3/x2 � .1=3/y2 C .4=3/xy � .2=3/x � .1=3/y:

The dual potential A� is equal to A.

This W-kernel is not twist because @2 W.x;y/
@x @y > 0:
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It follows from a general result presented in [31] that any maximizing measure
for this potential is �1 D .1 � t/ı1=3 C tı2=3, where t 2 Œ0; 1�, so the critical value
is m D A.1=3/ D A.2=3/.

It is easy to verify that,

V.x/ D .W.x; 1=3/ � W.1=3; 1=3//�Œ.0;1=2/�.x/C W.x; 2=3/ � W.2=3; 2=3/�Œ1=2;1�.x/

D maxfW.x; 1=3/ � W.1=3; 1=3/;W.x; 2=3/ � W.2=3; 2=3/g

is a calibrated subaction for A.

W.x; 1=3/�W.1=3; 1=3/=red,
W.x; 2=3/ � W.2=3; 2=3/ D
blue and �=black—The cali-
brated subaction is the supre-
mum of the two functions
described in the picture

This calibrated subaction is not analytic but piecewise analytic (see [40] for more
general results).

Example 6 Consider the transformation T W S1 ! S1, given by T.x/ D � 2 x (mod
1) and A.x/ D .x � 1

2
/2 (a continuous potential on S1) for which all results in [2]

apply.
In this case we show in item (b) in the Appendix that a smooth W-kernel is:

W.x; y/ D .1=3/x2 C .1=3/y2 � .4=3/xy C .2=3/x C .1=3/y;

the dual potential A� is equal to A and this involution kernel W is twist.

Similar results can be obtained for T W S1 ! S1, given by T.x/ D 2 x (mod 1)
and A.x/ D �.x � 1

2
/2 (a continuous potential on S1)
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Definition 7 Given G W Ȯ ! R upper semi-continuous, and f .x/ continuous,
where f W ˙ ! R, we define the G-transform of f , denoted by f #.y/, where
f # W ˙� ! R; the function such that

f #.y/ D max
x2˙ f�f .x/C G.x; y/g: (12)

We can use also the notation f #
G, instead of f #; if we want to stress the dependence

on G.

In this case we say that f # is the G-conjugate of f [53, 54]. We use the notation
of [49, p. 268]. Note that, if we add a constant to f , then new f # will be obtained
from the old one by subtracting the same constant. Therefore, in this case the sum
f .x/ C f #.y/ will be the same. We are interested, for example, when G D �W or
G D �W C I. A similar definition and properties can be consider for expanding
transformations on Œ0; 1�.

Proposition 1 If V is a subaction for A, then V# D V#
W is a subaction for A�.

Proof Given y there exist z0 such that

V#.��.y// � V#.y/ D max
x2˙ f�V.x/C W.x; ��.y//g�

max
z2˙ f�V.z/C W.z; y/g D

max
x2˙ f�V.x/C W.x; ��.y//g � .�V.z0/C W.z0; y/ / �

�V.�y.z0// C W.�y.z0/; �
�.y// C V.z0/ � W.z0; y/ �

A.�y.z0//� m.A/C W.�y.z0/; �
�.y// � W.z0; y/ D

A�.y/� m.A/ D A�.y/ � m.A�/:

The subaction you get by �W-transform is not necessarily calibrated.
Note that if we add a constant to W (the new W will be also a W-Kernel), then

all of the above will be also true.
In a similar way like in the reasoning of last proposition one can get:

Proposition 2 If V� is a sub-action for A�, then

.V�/#W .x/ D max
z2˙�

f�V�.z/C W.x; z/g

is a subaction for A.

Analogous definitions can be consider for an expanding transformation T W S1 !
S1. This also includes the case of T.x/ D � 2x (mod 1).
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2 The Transport Problem

We assume that the maximizing probability �1 for A is unique. We denote by
��1 a fixed maximizing probability for A�. We denote by K .�1; ��1/ the set of
probabilities O�.x; y/ on Ȯ , such that

��x . O�/ D �1; and ��y . O�/ D ��1 :

We are going to consider bellow the cost function c.x; y/ D I.x/ � W.x; y/ C �;

which is defined for x such that I.x/ ¤ 1.

The Kantorovich Transport Problem Given A (and all the probabilities
described above) we are interested in the minimization problem

C.�1; ��1/ D inf
O�2K .�

1
;��

1
/

Z Z
.I.x/ � W.x; y/C �/ d O� D

inf
O�2K .�

1
;��

1
/

Z Z
c.x; y/ d O� D

max
O�2K .�

1
;��

1
/

Z Z
.W.x; y/� � � I.x// d O� (13)

where, I is the deviation function for �1 D limˇ!1 �ˇA (see [2]),

cˇ D
Z Z

eˇW.y;x/ d�ˇA.x/ d�ˇA�.y/; (14)

and

� D lim
ˇ!1

1

ˇ
log cˇ ; (15)

as in proposition 5 in [2]. We call c.x; y/ D �W.x; y/C � C I.x/ the cost function.
Therefore, c is lower semi-continuous. A probability O� on Ȯ which attains such
minimum is called an optimal transport probability. We denote it by O�. We will
show later that O�max, the natural extension of �1, will be the optimal transport
probability O�.

One of our main results is Theorem 5 which claims that: The support of O�max is c-
cyclically monotone. In other words, the twist condition for c is true when restricted
to the support of the maximizing probability O�max.

Remark 1 Note that if we subtract the deviation function I.x/ of the cost function,
that is, if we consider a new cost c.x; y/ D �W.x; y/ C � , the problem above will
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not change, because I is constant zero in the support of �1. In other words

C.�1; ��1/ D inf
O�2K .�

1
;��

1
/

Z Z
.�W.x; y/C �/ d O� ;

and, the optimal transport probability will be the same. In some sense this setting is
nicer because the cost c is a continuous function on Ȯ .

Definition 8 A pair of functions f .x/ and f #.y/ will be called c-admissible (or, just
admissible for short) if

f #.y/ D min
x2˙ f�f .x/C c.x; y/g: (16)

In other words �f # is the �c-conjugate of �f . Note that in this case, 8x 2 ˙; y 2
˙�, we have that f .x/C f #.y/ � c.x; y/: We denote by F the set of all admissible
pairs .f .x/; f #.y//.

The Kantorovich Dual Problem Given A and the corresponding c (W and all
the probabilities described above) we are interested in the maximization problem

D.�1; ��1/ D max
.f ;f #/2F

.

Z
fd�1 C

Z
f #d��1 /: (17)

A pair of admissible .f ; f #/ 2 F which attains the maximum value will be called
an optimal pair.

The Kantorovich duality theorem (see [53]) claims that under general conditions
D.�1; ��1/ D C.�1; ��1/: The main tool to prove this result is the Fenchel-
Rockafellar duality Theorem.

Theorem 4 (Fenchel-Rockafellar Duality) Suppose E is a normed vector space,
� and� two convex functions defined on E taking values in R[fC1g. Denote��
and ��, respectively, the Legendre-Fenchel transform of � and � . Suppose there
exists v0 2 E, such that �.v0/ < C1; �.v0/ < C1 and that � is continuous on
v0.

Then,

inf
v2E
Œ�.v/C�.v/� D max

f2E�

Œ���.�f /���.f /� (18)

We will not present the proof of this general theorem but we will present a nice
geometric proof in a simple case (one-dimensional) in item (e) in the Appendix. We
suppose, from now on, that the maximizing probability for A, denoted by �1 is
unique. We denote, as in [12] the calibrated sub-actions V and V� by

V.x/ D lim
ˇ!1

1

ˇ
log�ˇA.x/ and V�.y/ D lim

ˇ!1
1

ˇ
log�ˇA�.y/ : (19)
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The above convergence is uniform and V is (up to constant) the unique calibrated
sub-action for A (see [2, 12, 20]). We will show later that .f ; f #/ such that f .x/ D
�V.x/ and f #.y/ D �V�.y/ is the optimal pair.

Important Property If O� is an optimal transport probability and if .f ; f #/ is an
optimal pair in F , then the support of O� is contained in the set

f< y; x > 2 Ȯ j such that .f .x/C f #.y// D c.x; y/ g: (20)

It follows from the prime and dual linear programming problem formulation. The
condition above is the complementary slackness condition (see [17, 19, 48]).

The reciprocal of this result is also true (see [54, Remark 5.13, p. 59]).
If x and y are such that .f .x/C f #.y// D c.x; y/ we say that they are realizers for

the cost c. In [13] it is shown that the set of realizers for I � W is an invariant set
for the dynamics of O�: In this section we are mainly concerned with the support and
not with all realizers.

If one finds O� an admissible pair .f ; f #/ satisfying the above claim (for the
support), then, one solves the Kantorovich problem, that is, one finds the optimal
transport probability O� .

No we will prove Theorem 1.

Proposition 3 The minimizing Kantorovich probability O� on Ȯ associated to �W
is O�max.

Proof Proposition 10 (1) in [2] claims that if O�max is the natural extension of the
maximizing probability �1, then for all < p�jp > in the support of O�max we have

�V.p/ � V�.p�/ D �W.p; p�/ C �:

This is the same as saying that in the support of O�max

�V.p/ � V�.p�/ D �W.p; p�/ C � C I.p/ D c.p; p�/;

because I is zero in the support of �1: Then if �V.x/ and �V�.y/ is an admissible
pair, then O�max is the optimal transport probability for such c.x; y/. This will be
shown in the next proposition. We will show bellow that the �c-transform of V
is V�.

Note that if W is a W-Kernel for A, for all ˇ, we have that ˇW is a W-Kernel for
ˇA. We denote by cˇ the normalizing constant for ˇW, as in [2]. It is known that
1
ˇ

log cˇ D � .
Now we will show Theorem 2.

Proposition 4 The pair .�V;�V�/ is admissible.

Proof For a fixed y we have to show that

�V�.y/ D .�V/#c D inf
x2˙ f�.�V.x//C c.x; y/g :
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This is the same as

V�.y/ D sup
x2˙

f .�V.x//� c.x; y/ g D sup
x2˙

f �V.x/� .� � W.x; y/C I.x/ /g ;

or, for all x

� V�.y/ � V.x/C c.x; y/ : (21)

From Proposition 3 in [2] (we just write here W.x; y/, instead of W.y; x/ there)
we have

�ˇA�.y/ D
Z

eˇWA.x;y/�cˇ
1

�ˇA.x/
d�ˇA.x/ D

Z
eˇWA.x;y/�cˇ�log�ˇA.x/ d�ˇA.x/:

Consider now the limit

V�.y/ D lim
ˇ!1

1

ˇ
log.�ˇA�.y// D

lim
ˇ!1

1

ˇ
log

Z
eˇWA.x;y/�cˇ�log�ˇA.x/ d�ˇA.x/:

From [12] the function 1
ˇ

log.�ˇA.x// converges uniformly with ˇ to V.x/.
Therefore, one can write

lim
ˇ!1

1

ˇ
log

Z
eˇWA.x;y/�cˇ�log�ˇA.x/ d�ˇA.x/ D

lim
ˇ!1

1

ˇ
log

Z
eˇ .WA.x;y/���V.x/ / d�ˇA.x/

Now, by Varadhan’s Integral Lemma [16] we obtain

V�.y/ D sup
x

fWA.x; y/� � � V.x/ � I.x/g D sup
x

f�V.x/C W.x; y/� � � I.x/g;

where I is the deviation function.

Finally, we get that O�max is the optimal transport probability for such c.x; y/.
From now on we will use either the notation O� or O�max for the optimal transport
probability. In [40] Transport Theory is used as a tool to show that in some cases
the calibrated subaction is piecewise analytic. In [13] some generic properties of
the potential A is considered and special results about the realizers of the W � I are
obtained.

The last theorem says: for any y 2 ˙� we have

V�.y/ D sup
x2˙

f�V.x/� c.x; y/g: (22)
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Note that when y D p�, for p� in the support of ��1, the supremum

V�.p�/ D sup
x

f�V.x/C W.x; p�/ � � � I.x/g D sup
x

f�V.x/� c.x; p�/g;

is realized at x D p, for p in the support of �1 (with < p�; p > in the support of O�).

Remark 2 Remember that, if the maximizing probability for A� is unique, then
there is a unique calibrated sub-action for A� (up to additive constant) [2, 20].

Analogous definitions and properties can be obtained for T W S1 ! S1. This also
includes the case of T.x/ D � 2x (mod 1). We could likewise consider the analogous
problem for A�: given A� (obtained from A) fixed, denote I� W ˙� ! R, the non-
negative deviation function for �ˇ A� ! ��1. Denote c�.x; y/ D .I�.y/� W.x; y/C
�/.

Then, consider the problem

C.�1; ��1/ D inf
O�2K .�

1
;��

1
/

Z Z
.I�.y/� W.x; y/C �/ d O� D

inf
O�2K .�

1
;��

1
/
c�.x; y/ d O� D inf

O�2K .�
1
;��

1
/

Z Z
.�W.x; y/C �/ d O�;

which have the same minimizing measures, as for the minimization for c.x; y/ D
.I.x/� W.x; y/C �/ among probabilities on K .�1; ��1/.

Note also that from Proposition 3 in [2] we have

�ˇA.x/ D
Z

eˇWA.x;y/�cˇ
1

�ˇA�.y/
d�ˇA�.y/ D

Z
eˇ

� WA.x;y/�cˇ�log �ˇA�.y/ d�ˇA�.y/:

In the same way as before one can show that for any x 2 ˙ , we have

V.x/ D .�V�/#c�
D sup

y2˙�

f�V�.y/� c�.x; y/g: (23)

Note that c.x; y/ D c�.x; y/ in the support of the minimizing O�max for c (or for
c�).

Remark 3 It is not necessarily true that . .�V�/#c�
/#c�

D �V�: However, the
expression is true when restricted to the support of the optimal transport probability
O�max. In the same way . .�V/#c /

#
c D �V in the support of O�max.
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3 Graph Properties and the Twist Condition

Consider a lower semi-continuous cost function c.x; y/ on Ȯ (or, a continuous cost
function �W.x; y/ on Ȯ ). We refer the reader to [48, 53, 54] and [19] for general
references on optimal mass transportation problems.

Definition 9 A set S � Ȯ is called c-cyclically monotone, if for any finite number
of points .xj; yj/ in S, j 2 f1; 2; : : : ; ng, and any permutation � of the n letters, we
have

nX
jD1

c.xj; yj/ �
nX

jD1
c.x�.j/; yj/: (24)

Proposition 5 (See Theorem 2.3 [19]) For a continuous function c.x; y/ � 0;

where Ȯ , if 	 2 K .�1; ��1/ is optimal for c, then, 	 has a c-cyclically monotone
support.

Corollary 1 The support of O�max, the natural extension of �1 is c-cyclically
monotone.

We will present bellow in the next theorem a direct proof of this fact.

Definition 10 A function f W ˙ ! R [ f1g is c-concave, if there exist a set
A � ˙ � R such that

f .y/ D sup
.x;�/2A

fc.x; y/C �g

Definition 11 A function f W X ! R [ f1g is c-convex, if .�f / is c-concave.

Definition 12 Given x 2 ˙ , the set O@c f .x/ is the set of y 2 Ȯ such that, for all
z 2 ˙ we have

f .z/ � f .x/ � c.z; y/ � c.x; y/

In this case we say y is a c-sub-derivative for f in x.

An important problem is to know, for a certain given x, if the O@c f .x/ has
cardinality 1.

Proposition 6 (See Theorem 2.7 in [19], Lemma 2.1 in [49] and Section 4 in
[48]) For S � Ȯ to be c-cyclically monotone, it is necessary and sufficient that
S � O@c.f /.x/ D f.x; y/ j f .z/� f .x/ � c.z; y/� c.x; y/ ; 8z 2 Xg, for some c concave
f , where f W ˙ ! R [ f1g.



The Dual Potential, the Involution Kernel and Transport in Ergodic Optimization 375

Moreover: f is defined in the following way: choose .x0; y0/ 2 S, then

f .x/ D inf
n2N; .xj;yj/2S; 1�j�n

Œ . c.x; yn/� c.xn; yn/ /C

. c.xn; yn�1/� c.xn�1; yn�1/ /C : : :

C. c.x2; y1/� c.x1; y1/ /C . c.x1; y0/� c.x0; y0/ / �:

Note that if S � Ȯ is a graph, then for each x 2 ˙ in the x-projection of S, we
have that O@c.f /.x/ has cardinality 1. Consider fixed .x0; y0/; .x1; y1/ in the support of
O�max and .x0; y1/; .x1; y0/ 2 Ȯ . Given a function f .x; y/ we denote

�f ..x0; y1/; .x1; y0// D . f .x0; y0/C f .x1; y1// � . f .x0; y1/C f .x1; y0/ /; (25)

and

b.x; y/ D I.x/C � � W.x; y/C V.x/C V�.y/: (26)

The c-cyclically monotone condition for the support of O�max will follow from the
claim

�c ..x0; y1/; .x1; y0// D . c.x0; y0/C c.x1; y1//� . c.x0; y1/C c.x1; y0/ / � 0:

(27)

This is so because any permutation of letters can be obtained by a series of
composition of transformations that exchange just two letters. It will follow from
the proof bellow that �c ı � D �c.

The next result does not assume a global assumption on twist condition for c.

Theorem 5 Given A W ˙ ! R Hölder, then c.x; y/ D I.x/ � W.x; y/ C � � 0,
for all .x; y/ 2 ˙ . Moreover, for .x0; y0/; .x1; y1/ in the support of O�max, we have
�c � 0: Therefore, the support of O�max is c-cyclically monotone. In other words,
the twist condition for c (or, for W) is true when restricted to the support of the
maximizing probability O�max.

Proof First we point out that �c D �b. We will show that under our hypothesis is
true that �b � 0. First note that

ŒV� ı O��1 � V� � A� � O� .x; y/ D ŒV� � V� ı O� � A � W C W ı O�� .x; y/ D
Œ� C V.x/C V�.y/� W.x; y/� C ŒV ı O� � V � A�.x; y/�

Œ� C V ı O� C V� ı O� � W ı O�� .x; y/:

Remember (see [2]) that

I.x/ D
1X

nD0
ŒV ı � � V � A� O�n .x; y/
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We denote

In.x; y/ D
n�1X
kD0

ŒV ı � � V � A� ı O�k .x; y/ D In.x/;

and

Rn .x; y/ D In.x; y/ C Œ � C V.x/C V�.y/� W.x; y/ ��
Œ � C V C V� � W � O�n .x; y/:

We claim that if .x; y/ is in the support of O�max, then b.x; y/ D 0: Moreover,
for all .x; y/ 2 ˙ , we have b.x; y/ � 0: One can prove this result by means of
Varadhan’s Integral Lemma [16] with the same reasoning as in the last proposition
of the previous section. We will give bellow a direct proof of the claim.

Either I.x/ D 1, and the claim is trivially true or I.x/ is finite. In this case, any
accumulation point of O�n.x; y/ will be in the support of O�max.

Moreover, b.x; y/ D R.x; y/ D limn!1 Rn.x; y/ � 0: As in the support of O�max,
we have that R.x; y/ D 0, then, b.x; y/ D 0. In any case R.x; y/ � 0: This shows the
claim. We point out that �c D �b D �W in the case I.x/ is finite.

We also remark that if .x0; y0/ is in support of O�max, then as R.x0; y0/ is zero, it
follows that R.x0; y/ is finite. This is so because .x0; y/ is in the stable manifold of
.x0; y0/ and

Rn.x0; y/� Rn.x0; y0/ D
nX

kD1
f ŒV� ı O��1 � V� � A�� O�k.x0; y/� ŒV� ı O��1 � V� � A�� O�k.x0; y0/ g:

Finally, if .x0; y0/ and .x1; y1/ are both in the support of O�max, then R.x0; y1/ <
1, R.x1; y0/ < 1 and I.x0/ D 0 D I.x1/. In this case, for any .x; y/ of the form
.x0; y0/; .x1; y1/; .x1; y0/, or .x0; y1/

R.x; y/ D I.x; y/C Œ� C V C V� � W�.x; y/ D b.x; y/:

As we know that R is non-negative, then

Œb.x0; y0/C b.x1; y1/� � Œb.x1; y0/C b.x0; y1/� D 0 � Œb.x1; y0/C b.x0; y1/� � 0:

This shows that �b � 0:
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We did not use the twist condition above. Note that we could alternatively
consider the function g W ˙ ! R defined in the following way: choose .x0; y0/ 2 S,
then

g.x/ D inf
n2N; .xj;yj/2S; 1�j�n

Œ .W.x; yn/� W.xn; yn/ /C

.W.xn; yn�1/� W.xn�1; yn�1/ /C : : :

C.W.x2; y1/� W.x1; y1/ /C .W.x1; y0/ � W.x0; y0/ / �;

which has the advantage of just taking into account a continuous function W. The
graph property for S D support of O�, and all kinds of different considerations can be
obtained from such g. We want to show now that if W satisfies the twist condition
and the maximizing probability for A is unique, then the support of O� on Ȯ is a
graph. Our proof works for the Venously space f0; 1; 2; ::; dgN as well for the interval
Œ0; 1� [considering T either conjugated to 2x (mod 1) or to �2x (mod 1)].

Consider the cost c.x; y/ D I.x/�W.x; y/�� , and a subset S � X�Y c-cyclically
monotone.

Lemma 1 Suppose the c satisfies the twist condition and let S be a c-cyclically
monotone subset, if .a; b/; .a0; b0/ 2 S and a ¤ a0 and b ¤ b0, then a < a0 and
b > b0, or a > a0 and b < b0.

Proof Indeed, suppose a < a0 then, if b < b0, the twist condition on W implies that

c.a; b/C c.a0; b0/ > c.a; b0/C c.a0; b/:

On the other hand, S is c-cyclically monotone subset, so

c.a; b/C c.a0; b0/ � c.a; b0/C c.a0; b/;

that is an absurd.

A similar property is true for W. This Lemma means that the correct figure
associated to a pair of points in S is given by:

We point out that, in principle, could exist points z of S in the vertical fiber
passing by a or in the horizontal fiber passing by b.

Now we will show Theorem 3.

Theorem 6 (Graph Theorem) Suppose the involution kernel W satisfies the twist
condition and let O� be the c-minimizing measure of probability to the transport
problem, then S D supp O� is a graph in x (up to an orbit of measure zero), moreover
this graph is monotone not increasing.

Proof In fact we will just use the twist condition for W on the support of the optimal
transport probability. In order to get advantage of the geometrical and combinatorial
arguments we will present pictures for the case of a transformation T W Œ0; 1� !
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Characterization of S

Œ0; 1�, given by T.x/ D 2 x (mod 1). Define vC.x/ D maxfyj.x; y/ 2 Sg and v�.x/ D
minfyj.x; y/ 2 Sg. In order to prove that supp O� is a graph we need to prove that
v�.x/ D vC.x/ for any x in the support of �1. We say that a point .x; y/ in the
support of O� is non-graph, if there exist another point of the form .x; z/, in the
support of O�, and such that z ¤ y. Note that the image of two points in the support
of O� on the fiber over x will go on two different points in the support of O� on the
fiber over �.x/. That is, the forward image by O�n of non-graph points will go on
non-graph points. This maybe can not be true for backward images by O�n.

Suppose the support of the maximizing probability �1 (unique) is a periodic
orbit. If S is not a graph, then v�.x/ < vC.x/ for some x. As the transformation
O� contracts each fiber by forward iteration, we have that, the image of the interval
fiber from .x; v�.x// to .x; vC.x//, by a finite iterate of O� , goes inside the fiber
.x; v�.x// to .x; vC.x//. Therefore, �� has a periodic point in the support of ��1:
If the maximizing probability �1 is unique for A, then ��1 is unique for the
maximization problem for A�. In this case the support of ��1 is this periodic orbit.
Therefore, there is a minimal distance (in vertical fiber) between non-graph points
and this is in contradiction with the contraction on vertical fibers. The conclusion is
that S is a graph if the support of the maximizing probability �1 is a periodic orbit.
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Remark 4 In the case of the shift, if supp�1 is a periodic orbit, one can easily show
that if supp�1 D the orbit by � of .a0; a1; : : : ; a.n�1/; a0; : : :/ then supp��1 D
orbit by �� of .a.n�1/; : : : ; a2; a1; a0; a.n�1/; : : :/:

Support of O� in the periodic
case

We suppose from now on that the support of the maximizing probability �1 is
not a periodic orbit.

Characterization of S

Suppose, that v�.x/ < vC.x/ for some x, then we claim that there is no other
point in support of O� in the fiber by x between p1 D v�.x/ and p2 D vC.x/. Indeed,
from the above picture we see that if there exists a point .x; p/ in the support of O�
such that v�.x/ D p1 < p < p2 D vC.x/, then, as O� is ergodic, should exist a point
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.q1; q2/ in a small neighborhood V of .x; p/ such that returns by a forward n-iterate
by O� to V .

This iterate has to return to the fiber, and this contradicts the fact that the support
of the maximizing probability �1 is not a periodic orbit.

If the support of �1 is not a periodic orbit, then we claim that does not exist two
pairs .x1; y1/; .x1; z1/ and .x2; y2/; .x2; z2/, in the support of O�, such that, the orbits
by � of x1 and x2 are different.

In order to simplify the argument and the notation we consider bellow T�.x/ D
2x (mod 1), but we point out the reasoning apply to any expanding transformation of
degree d. Given yn and zn, n D 1; 2, there exists a rational point of the form sn D q

2k ,
with 0 < q < 2k; q; k 2 N, such that yn < sn < zn, n D 1; 2. Consider the sn

determined by the smallest possible value k.
The pair of points OT�r.xn; yn/ and OT�r.xn; zn/, r � 0, determine non-graph points

in the same fiber, for any r > 0, until time r D k. In time r D k�1, it happens for the
first time that the horizontal fiber through 1=2 cuts the vertical segment connecting
OT�.k�1/.xn; yn/ and OT�.k�1/.xn; zn/.

In this way, for each n, we get a horizontal forbidden region An (a horizontal strip
from one vertical side to the other vertical side of Œ0; 1�� Œ0; 1�) determined by such
pair OTk�1.xn; yn/ and OT�.k�1/.xn; zn/, n D 1; 2, which contains the horizontal fiber
through 1=2.

If we apply the argument for n D 1, then the next forbidden region A2 for n D 2

will contain the previous one A1. Moreover, considering the full forbidden region
determined by these two pair of points we reach a contradiction.

In the picture bellow we show the final pair of points q1 and q2 in a O�-orbit (in
the same vertical fiber) which has the property that its images p1 and p2 are on
different sides of the upper and down rectangles. The images of p1 and p2 by O�
are not anymore in the same vertical fiber (neither their future iterates). There is
no room for getting a different pair of p1 and p2 like this (because of the forbidden
region).

In this way, from above, we get that could exist just one orbit of x by � such
that over the fiber over x there is two points in the support. That is, the projection
K � ˙ on the x-axis of the non-graph points have to be the orbit of a single point x.
Therefore, �1.K/ D P

k �1.f�k.x/g/:
We assume first that the set of non-graph points have probability 1 and we will

reach a contradiction. Indeed, �1.f�k.x/g/ � �1.f� j.x/g/, for k � j, and the �1
probability of the set fxg is zero or is positive.

Remember that the support of O� is invariant by O� . Now we will show that, indeed,
if there exists non-graph points, this set has probability 1.

Note that if the vertical fiber by x 2 ˙ is such that v�.x/ < vC.x/, then �.x/ also
has this property. If the transformation O� we consider preserves orientation in the
vertical fiber then the iterates are in the same order. Otherwise they exchange order.
That is, the set of points .x; y/ which are not graph point are invariant by forward
iteration by O� . Moreover, O� is a forward contraction in vertical fibers. Denote by
B D f .x; vC.x//g in the support of O� such that fv�.x/ < vC.x/ g. The set B is the
upper part of the non-graph part of the set S.
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The dynamics on the support

We will show that O�.B/ D 0 or O�.B/ D 1. We suppose first that O� preserves
order in the fiber by forward iteration. Consider QB the set f .x; y/g in the support of
O� such that for some n � 0 we have f O�n .x; y/ 2 B g. Note that as B is forward
invariant, once O�n .x; y/ 2 B, for some fixed n, then O�m .x; y/ 2 B, for any m � n.

We will show that O��1 QB D QB. The fact that O��1 QB � QB follows easily from
the definition of QB. Given x 2 QB, there exists n � 0 such that O�n .x; y/ 2 B. If
n � 1, then O�n�1 . O�.x; y// 2 B and, therefore, .x; y/ 2 O��1 QB: In the other case
.x; y/ 2 B, but then . O�.x; y// 2 B, because O� preserves order in the fiber, and
does not exist more than two points in the vertical fiber over �.x/ which are in
S. Therefore, .x; y/ 2 O��1 QB.

As O� is ergodic, then O�. QB/ D 0 or O�. QB/ D 1.
If O�. QB/ D 1, then take a Birkhoff point z 2 QB for the ergodic probability O�.

Therefore, we get that the asymptotic frequency of visit to the set C D f .x; v�.x//g
in the support of O� such that fv�.x/ < vC.x/ g (the bellow part of the non-graph
part of set S) is zero. Finally, we get that O�.C/ D 0. In the same way O�.B/ D 1.

If O�. QB/ D 0, we get that O�.B/ D 0. Now, using a similar argument for the lower
part of the non-graph part we get that O�.C/ D 1.

This shows that the �1 projection of the non-graph points has probability one and
this proves the theorem.

The above reasoning also applies to T.x/ D � 2x (mod 1) and to the shift in the
Bernoulli space.
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4 Selection of Minimizing Sequences

In this section we want to exhibit a nice expression for the function f (defined before)
such that, the set f.x; O@c f .x// j x 2 g support f�1g = support of O�max, in the case
the support of O�max is a periodic orbit. In the end of the section we address briefly
the general case.

Definition 13 We say that c W Ȯ D ˙ �˙ ! R, upper semicontinuous, satisfies
the twist condition on Ȯ , if (bellow we just consider values of c which are finite)
for any .a; b/ 2 Ȯ D ˙ �˙ and .a0; b0/ 2 ˙ �˙ , with a0 > a, b0 > b, we have

c.a; b/C c.a0; b0/ > c.a; b0/C c.a0; b/: (28)

If W is twist and c.x; y/ D I.x/ � W.x; y/C � , then c is twist. We assume from
now on this property.

Theorem 7 Suppose the support of O�max is a periodic orbit. Choose .x0; y0/ in such
way that x0 2 ˙ is the smaller point in the projection and y0 2 Ȯ the smaller on the
fiber over x0. From the above, in this case for any given z 2 ˙ , the f defined before
is such that

f .z/ D Œ . c.z; yn/� c.xn; yn/ /C
. c.xn; yn�1/� c.xn�1; yn�1/ / C : : :

C : : :C f. c.x3; y2/� c.x2; y2/ / g C
. c.x2; y1/� c.x1; y1/ /C . c.x1; y0/� c.x0; y0/ / �;

where we use all the possible xi which are in the support of the maximizing
probability for A on the left of z, and for each xi we choose the corresponding
yi. In the notation of f above, the last one .xn; yn/ D .xn.z/; yn.z// is such that
.xn.z/; yn.z// D .xk�1; yk�1/. Which means n D k � 1.

Moreover, x0 < x1 < x2 < : : : < xn:

If z D xk for some element xk in the support of �A, then, in the notation of f
above, if xk�1 < z < xk, then .xn; yn/ D .xn.z/; yn.z// is such that .xn.xk/; yn.xk// D
.xk�1; yk�1/. The case z D xk is include in the expression above for f . In this case
xk D xnC1 following the above notation. The index of the xi has no dynamical
meaning.

Proof Consider the cost c.x; y/ D I.x/ � W.x; y/ � � , and a subset S � X � Y c-
cyclically monotone. Also, assume that c verifies the twist condition: If a < a0 and
b < b0 then c.a; b/C c.a0; b0/ > c.a; b0/C c.a0; b/:

In this way, the definition of c implies that: W.a; b/ C W.a0; b0/ < W.a; b0/ C
W.a0; b/:

Define�.x; x0; y/ D W.x; y/� W.x0; y/, so the twist condition can be restated as:
if a < a0, and b < b0, then, �.a; a0; b/ < �.a; a0; b0/:
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Therefore, if we define the map y ! �.a; a0; y/ we get a increasing map.
Observe that:

(i) �.x; x0; y/ D ��.x0; x; y/
(ii) �.x; x; y/ D 0

(iii) �.x; x0; y/C�.x0; x00; y/ D �.x; x00; y/

In particular the map, y ! �.a0; a; y/ is decreasing if a0 > a.
Using the fact that c.x; y/ D I.x/� W.x; y/� � we get,

@cf .x/ D fy 2 Yjf .z/ � f .x/ � I.z/� I.x/� ŒW.z; y/ � W.x; y/�;8z 2 Xg:

We know that S is c-cyclically monotone, if and only if, S � O@cf .x0/ where f is a
c-convex function given by:

f .z/ D min
.xi;yi/	S;iD1::n

nX
iD0

c.xiC1; yi/� c.xi; yi/;

where .x0; y0/ 2 S is as fixed point and xnC1 D z. Using c.x; y/ D I.x/�W.x; y/��
we get,

f .z/ D min.xi;yi/	S;iD1::n
nX

iD0
I.xiC1/� I.xi/� ŒW.xiC1; yi/� W.xi; yi/� D

D min.xi;yi/	S;iD1::n
nX

iD0
I.xiC1/ � I.xi/C Œ�.xi; xiC1; yi/� D

D min.xi;yi/	S;iD1::nI.z/� I.x0/C
nX

iD0
�.xi; xiC1; yi/:

Lemma 2 If, .xi; yi/ � S; i D 0; 1; 2 is such that x0 < x1 < x2 < z and y2 < y1 < y0
then,�.x0; x1; y0/C�.x1; z; y1/ > �.x0; x1; y0/C�.x1; x2; y1/C�.x2; z; y2/ (Figs. 1
and 2).

Proof Observe that, �.x1; z; y1/ D �.x1; x2; y1/ C �.x2; z; y1/ > �.x1; x2; y1/ C
�.x2; z; y2/, because�.x2; z; �/ is increasing and y1 > y2.

Lemma 3 If, .xi; yi/ � S; i D 0; 1; 2 is such that x0 < x1 < z < x2 and y2 < y1 < y0
then,�.x0; x1; y0/C�.x1; z; y1/ < �.x0; x1; y0/C�.x1; x2; y1/C�.x2; z; y2/:

In particular, �.x0; x1; y0/ C �.x1; z; y1/ < �.x0; x2; y0/ C �.x2; z; y2/ (Figs. 3
and 4).

Proof Observe that, �.x1; z; y1/ D �.x1; x2; y1/ C �.x2; z; y1/ < �.x1; x2; y1/ C
�.x2; z; y2/, because�.x2; z; �/ is decreasing and y1 > y2.



384 A.O. Lopes et al.

Fig. 1 Bad

Fig. 2 Good

Fig. 3 Bad
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Fig. 4 Good

Now observe that,
�.x0; x2; y0/C�.x2; z; y2/ D �.x0; x1; y0/C�.x1; x2; y0/C�.x2; z; y2/ >
�.x0; x1; y0/C�.x1; x2; y1/C�.x2; z; y2/ > �.x0; x1; y0/C�.x1; z; y1/.

Now one can generalize the idea above: Suppose that, .xi; yi/ � S; i D
0; 1; 2; : : : ; n is such that x0 < x1 < : : : < xk < z < xkC1 < : : : < xn and
yn < : : : < y2 < y1 < y0, then, �.x0; x1; y0/C�.x1; x2; y1/C : : : C�.xk; z; yk/ <

�.x0; x1; y0/C�.x1; x2; y1/C : : :C�.xn; z; yn/:

In order to see this, we proceed by induction in the right side of the inequality
above:
�.xn�1; xn; yn�1/ C �.xn; z; yn/ > �.xn�1; xn; yn�1/ C �.xn; z; yn�1/ D
�.xn�1; z; yn�1/.

In this step we discard the pair .xn; yn/. We must to repeat this process while
n � j > k, discarding all points in the right side of z. So the conclusion is, that we
can discard all points in the right side of z decreasing the sum, and we can introduce
a point between the last point in the left size of z, and z, decreasing the sum.

We discard .x2; y2/; .x3; y3/; .x4; y4/; from right size and insert .A;B/ between
.x1; y1/ and z (Figs. 5 and 6).

The case in which z < x0 must be analyzed now:
Observe that:

�.x0; x1; y0/ C �.x1; x2; y1/ C �.x2; x3; y2/ C �.x3; x4; y3/ C �.x4; x5; y4/ C
�.x5; z; y5/ >
�.x0; x1; y0/ C �.x1; x2; y1/ C �.x2; x3; y2/ C �.x3; x4; y3/ C Œ�.x4; x5; y4/ C
�.x5; z; y4/� D
�.x0; x1; y0/C�.x1; x2; y1/C�.x2; x3; y2/C�.x3; x4; y3/C�.x4; z; y4/;

and successively to eliminate 4 and 3.
Now we check what happen with permutations of the order in the projected

points.
Note that the sum

Pn
iD0 c.xiC1; yi/� c.xi; yi/ can change by sorting the sequence

of points .xi; yi/ � S; i D 1::n. So we need to consider the natural question about
the better way to rename this points.
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Fig. 5 Bad

Fig. 6 Good

Please, check the below figure (Figs. 7 and 8):
We claim that it is possible discard all the points at the right side of z and also all

the points between x0 and z that are no ordered in order to minimize the sum above.
In fact:

�.x0; x1; y0/C�.x1; x2; y1/C
�.x2; x3; y2/C�.x3; x4; y3/C Œ�.x4; x5; y4/C�.x5; z; y5/� >

�.x0; x1; y0/C�.x1; x2; y1/C�.x2; x3; y2/C Œ�.x3; x4; y3/C�.x4; z; y4/� >

�.x0; x1; y0/C Œ�.x1; x2; y1/C�.x2; x3; y2/�C Œ�.x3; z; y3/� >

�.x0; x1; y0/C Œ�.x1; x3; y1/C�.x3; z; y3/� >

�.x0; x1; y0/C�.x1; z; y1/:
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Fig. 7 Bad

Fig. 8 Good

So the sequence .x0; y0/; .x1; y1/ in this order minimize this sum. We know that
the graph property is true. But suppose we have a more general case where�.x; z; y/
can be consider and we do not have the graph property.

Consider the sequence .x0; y0/; .x1; y1/ and suppose z > x1 > x0. Additionally
suppose that .x1; :/ \ S ¤ fy1g, so we can compares the sum �.x0; x1; y0/ C
�.x1; z; y1/ with �.x0; x1; y0/C�.x1; z; y/ for any y 2 .x1; :/ \ S ¤ fy1g.

We claim that this function is monotone increasing in y.
In fact suppose that y0 < y1 < y00 < y0, as in Figs. 9 and 10. Observe

that, �.x1; z; y1/ < �.x1; z; y00/ and �.x1; z; y1/ > �.x1; z; y0/ because x1 < z.
The conclusion is that if the support of O�max is a periodic orbit, then, we choose
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Fig. 9 Too bad

Fig. 10 Going down is better

.x0; y0/ in the support of O�max. From the above, in this case given z 2 ˙ , then

f .z/ D Œ . c.z; yn/� c.xn; yn/ /�C
. c.xn; yn�1/� c.xn�1; yn�1/ / C : : :

C : : :C f. c.x3; y2/� c.x2; y2/ / g C
. c.x2; y1/� c.x1; y1/ /C Œ. c.x1; y0/ � c.x0; y0/ / �:;

where we use all the possible xi, i D 1; 2; ::; n; on the left of z, and for each xi we
choose the corresponding yi such that .xi; yi/ is in the support of O�max. Moreover,
x0 < x1 < x2 < : : : < xn:

Finally, we can say that O@cf .xk/ D yk, for any k.
One can get similar results for the function g (obtained just from the kernel W)

defined before.
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From the reasoning above (for the case of W satisfying the twist condition), in the
case �1 is not a periodic orbit, then in definition of f , the infimum is not attained
in a finite sequence of xn in the support of �1.
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Appendix

Here we consider first the shift˙ D f0; 1gN, and˙ as a metric space with the usual
distance:

d.x; y/ D


0; if x D y
.1=2/n; if n D minfi j xi ¤ yig:

Additionally, we suppose that˙ is ordered by x < y, if xi D yi for i D 1::n � 1, and
xn D 0 and yn D 1.

As the usual, we consider the dynamical system .˙; �/ where � W ˙ ! ˙ is
given by �.x/ D �.x1; x2; x3; : : :/ D .x2; x3; x4; : : :/.

(a) Potentials and the Involution Kernel
As usual we denote

��x .y/ D .x1; y1; y2; y3; : : :/ and �y.x/ D .y1; x1; x2; x3; : : :/;

and

O�.x; y/ D .�.x/; ��x .y// and O��1.x; y/ D .�yx; ��.y//;

the skew product map, where ��.y D .y1; y2; y3; : : :// D .y2; y3; y4; : : :/.

We also define �k;yx D .yk; yk�1; : : : y2; y1; x0; x1; x2; : : :/, where x D
.x0; x1; x2; : : :/; y D .y1; y2; y3; : : :/. In a similar way we define ��k;yx:

Given a continuous function A W ˙ ! R, remember that a continuous function
W W ˙ �˙ ! R is an involution kernel for A if .W ı O��1�W CA ı O��1/.x; y/ does
not depends on x; In this case the continuous function A�.y/ D .W ı O��1 � W C A ı
O��1/.x; y/ is called the W-dual potential of A.

As in [2] we define the cocycle�A.x; x0; y/, where

�A.x; x
0; y/ D

X
n�1

A ı O��n.x; y/ � A ı O��n.x0; y/ D
X
n�1

A ı �n;y.x/ � A ı �n;y.x
0/;

and its dual version�A�.x; y; y0/, where

�A�.x; y; y0/ D
X
n�1

A� ı O�n.x; y/� A� ı O�n.x; y0/ D
X
n�1

A� ı ��n;x.y/� A� ı ��n;x.y0/:
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Note that:

(i) �A.x; x0; y/ D ��A.x0; x; y/, in particular�A.x; x; y/ D 0,
(ii) �A.x; x0; y/C�A.x0; x00; y/ D �A.x; x00; y/,

(iii) �A.x; x0; y/ D �A.�yx; �yx0; ��.y//C ŒA ı �yx � A ı �yx0�;

and the same relations are true for�A�.x; y; y0/.
Using this properties one can prove that, for any involution kernel we have

W.x; y/� W.x0; y/ D �A.x; x0; y/ and W.x; y/� W.x; y0/ D �A�.x; y; y0/:
From this fact, we get that the difference between two involution kernels for

A is a continuous function of y: fInvolution kernels for Ag=C0.˙/ D W0; where
W0.x; y/ D �A.x; x0; y/ for a fix x0 2 ˙ is called a fundamental involution kernel of
A. Indeed, the property (iii) shows that W0 is an involution kernel for A.

On the other hand, given another involution kernel, W we have W.x; y/ �
W.x0; y/ D �A.x; x0; y/, thus

W.x; y/ D W.x0; y/C�A.x; x
0; y/ D W.x0; y/C W0.x; y/ D g.y/C W0.x; y/;

where g.y/ D W.x0; y/ 2 C0.˙/.
As an example we compute the general dual potential. First for W0.x; y/ D

�A.x; x0; y/ we get:

A�0 .y/ D .W0.�yx; ��.y///� W0.x; y/C A.�yx/
D �A.�yx; x0; ��.y//��A.x; x0; y/C A.�yx/
D A.�yx0/C�A.�yx0; x0; ��.y//:

Given another involution kernel, W we have W.x; y/ D W.x0; y/C W0.x; y/ thus

A�.y/ D .W ı O��1 � W C A ı O��1/.x; y/ D W.x0; ��.y//� W.x0; y/C A�0 .y/:

(b) The Twist Property of an Involution Kernel

If A W ˙ ! R is a potential and W an arbitrary involution kernel for A, as we
said before, W has the twist property, if for any, a; b; a0; b0 2 ˙

W.a; b/C W.a0; b0/ < W.a; b0/C W.a0; b/;

provided that a < a0 and b < b0.
If we rewrite this inequality as,

W.a; b/C W.a0; b0/ < W.a; b0/C W.a0; b/
W.a; b/� W.a0; b/ < W.a; b0/� W.a0; b0/

�A.a; a0; b/ < �A.a; a0; b0/;

we get an alternative criteria for the twist property, that is, W has the twist property,
if for any, a; a0 2 ˙ the function y ! �A.a; a0; y/; is strictly increasing, provided
that a < a0.
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Remark 5 This characterization shows a very important fact. The twist property is
a property of A, so we can said that A is a twist potential or equivalently A has a
twist involution kernel (as, obviously other involution kernel is also twist).

Remark 6 As an initial approximation we can consider a different setting of
dynamics. Let T.x/ D �2x . mod 1 /, and

�0x D �1
2

x C 1

2
; and �1x D �1

2
x C 1;

the inverse branches that defines the skew maps (that are not the actual natural
extension of T):

OT.x; y/ D .T.x/; ��x .y// and OT�1.x; y/ D .�yx;T�.y//:

So, one can compute an involutive (that is, A�.y/ D A.y/) smooth kernel for
A1.x/ D x and A2.x/ D x2 given by

W1.x; y/ D �1
3
.x C y/ and W2.x; y/ D 1

3
.x2 C y2/� 4

3
xy:

As a corollary we get that any potential A.x/ D a C bx C cx2 has a smooth
involution kernel given by W.x; y/ D a C bW1.x; y/C cW2.x; y/:

Here and in the next paragraphs, we will denote

WA.x; y/ WD a C bW1.x; y/C cW2.x; y/;

where A.x/ D a C bx C cx2 is a polynomial of degree 2.
We observe that the twist property can be derived from the positivity of the

second mix derivative of the involution kernel when it is smooth. Note that,

@2W1

@x@y
D 0; and

@2W2

@x@y
D �4

3
;

thus W1 is not twist and W2 is. Actually any potential A.x/ D a C bx C cx2 where
c > 0 is twist.

Remark 7 In this remark we are going to consider the case of A.x/ D a C bx C cx2

where c < 0 (not twist). In this case we will be able to compute the calibrated
subaction explicitly, which, we believe, it is interesting in itself.

As a first example consider A.x/ D �.x � 1/2 which is a convex potential.
From [30, 31] we get that the unique maximizing measure for this potential is

�1 D ı2=3, so the critical value is m D A.2=3/. Using the fact that m D A.2=3/
one can show that there is a unique (up to constants) calibrated subaction � given
by:

�.x/ D W.x; 2=3/� W.2=3; 2=3/ D �1
3

x2 C 2

9
x
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where the kernel is given by

W.x; y/ D �.1=3/x2 � .1=3/y2 C .4=3/xy � .2=3/x � .2=3/y:

As a second example consider A.x/ D �.x � 1
2
/2 which it is also a concave

potential.
The general arguments in [31] shown that any maximizing measure for this

potential is �1 D .1 � t/ı1=3 C tı2=3, where t 2 Œ0; 1�, so the critical value is
m D A.1=3/ D A.2=3/. In this case the involutive smooth involution kernel is:

W.x; y/ D �.1=3/x2 � .1=3/y2 C .4=3/xy � .2=3/x � .1=3/y:

It is easy to verify that,

�.x/ D V1.x/�Œ.0;1=2/�.x/C V2.x/�Œ1=2;1�.x/ D maxfV1.x/;V2.x/g;

is indeed a calibrated subaction for A, where
V1.x/ D W.x; 1=3/� W.1=3; 1=3/ D �.x; 1=3; 1=3/D �.1=3/x2 C .1=9/x,
V2.x/ D W.x; 2=3/� W.2=3; 2=3/ D �.x; 2=3; 2=3/D �.1=3/x2 C .5=9/x � 2=9,

Note that,

�.�0x/ D V1.�0x/�Œ.0;1=2/�.�0x/C V2.�0x/�Œ1=2;1� .�0x/
D V1.�0x/ D �.�0x; 1=3; 1=3/
D �.�1=3x; �1=31=3;T�1=3/
D �.x; 1=3; 1=3/� ŒA.�1=3x/� A.�1=31=3/�
D V1.x/� ŒA.�0x/ � m�:

Thus �.�0x/C A.�0x/� m D V1.x/. Analogously, �.�1x/C A.�1x/� m D V2.x/ so

�.x/ D maxfV1.x/;V2.x/g
D maxf�.�0x/C A.�0x/ � m; �.�1x/C A.�1x/ � mg
D maxy2˙f�.�yx/C A.�yx/� mg:

(c) Twist Criteria

Is natural to consider a criteria for the twist property for a class of functions that
has a small dependence on the cubic (or higher order) terms. Let PC2 D fp.x/ D
a Cbx Ccx2 j c > 0g be the set of strictly convex polynomial. Consider p 2 PC2 , and
define

C".p/ D fA 2 C3.Œ0; 1�/jA.x/ D p.x/C "R.x/; where
@R

@x
2 C3.Œ0; 1�/g

Theorem 8 For any p 2 PC2 , there exists " > 0 such that all A 2 C".p/ is twist.
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Proof Consider p 2 PC2 fixed. So, p has a smooth and involutive involution kernel
given by

Wp.x; y/ D .a C bW1 C cW2/.x; y/;

that is, p�.y/ D p.y/, where W1.x; y/ D � 1
3
.x C y/ and W2.x; y/ D 1

3
.x2 C y2/ �

4
3
xy, are the involution kernel associated to x and x2 respectively. Let, A D p C
"R 2 C".p/, and WR be the involution kernel for R. Since R is C3 we get that,
its corresponding involution kernel WR is C2 in the variable x. Using the linearity
of the cohomological equation, we get WA.x; y/ D p.W/.x; y/ C "WR.x; y/, and
differentiating with respect to x, we have

@
@x WA.x; y/ D .b @

@x W1 C c @
@x W2/.x; y/C " @

@x WR.x; y/ D
� 1
3
b C 2

3
cx � 4

3
cy C " @

@x WR.x; y/

Since � 4
3
c < 0, and @

@x WR.x; y/ 2 C0.Œ0; 1�2/ the compactness of Œ0; 1�2 implies
that @

@x WA.x; �/ is a strictly decreasing function for any " small enough, which is
sufficient to ensure the twist property.

Remark 8 If, A 2 C1.Œ0; 1�/ is strongly convex, we can consider a perturbation of
A of order 2 given by

B".x/ D A.0/� A0.0/x C A00.0/
2

x2 C "
X
n�3

A.n/.0/

nŠ
xn 2 C".pA/;

where pA D A.0/ � A0.0/x C A00.0/

2
x2 2 PC2 . Thus, we can find "0 > 0 such that B"

is twist for any 0 < " < "0.

(d) The Involution Kernel is Bi-Hölder

We consider now T.x/ D 2x (mod 1) on the interval Œ0; 1� and the shift � on˝ D
f0; 1gN. A natural question is the regularity of the involution kernel W. We denote �j ,
j D 0; 1 the two inverse branches of T. Given w D .w1;w2; : : :/ 2 f0; 1gN we denote
by �k;w the transformation in Œ0; 1� given by �k;w.x/ D .�wk ı �wk�1 ı : : : ı �w1 / .x/:
We have that, for a fixed x0

�.x; x0;w/ D
1X

kD1
A.�k;w.x// � A.�k;w.x0//

and, the involution kernel W can be described as: for any .x;w/ we have W.x;w/ D
�.x; x0;w/: It is easy to see that W is Hölder on the variable x. Consider a; b 2 ˝

and suppose that d.a; b/ D 2�n: In this way aj D bj, j D 1; 2 : : : ; n�1; n. We denote
Na D �n.a/ and Nb D �n.b/.
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Proposition 7 Suppose A is ˛�Hölder. Consider a; b 2 ˝ such that d.a; b/ D 2�n:

For a fixed x 2 Œ0; 1� we have j W.x; a/� W.x; b/ j � C .2�n/˛:

Proof Note that for z D �n;a.x/ D �n;b.x/ and z0 D �n;a.x0/ D �n;b.x0/ we have

W.x; a/� W.x; b/ D
1X

kD1
A.�k;a.x// � A.�k;a.x0// � A.�k;b.x//C A.�k;b.x0// D

1X
kD1
ŒA.�k;a.x// � A.�k;b.x// � � ŒA.�k;a.x0//� A.�k;b.x0// � D

1X
kD1
ŒA.�k;Na.z//� A.�k;Nb.z// � � ŒA.�k;Na.z0// � A.�k;Nb.z0// �:

Note also that jz � z0j � d.a; b/ D 2�n: Consider z D z0 C h, then

A.�k;Na.z0 C h//� A.�k;Na.z0// � CA d.�k;Na.z0 C h/; �k;Na.z0//˛ �
CA . 2

�k h /˛ D CA. 2
�k /˛ h˛:

Then,

1X
kD1
ŒA.�k;Na.z// � A.�k;Na.z0// �� ŒA.�k;Nb.z// � A.�k;Nb.z0// �

� CA

1X
kD1

2 . 2�k /˛ h˛ � CA

1X
kD1

2 .2˛/�k h˛ � C d.a; b/˛:

From the above we get:

Theorem 9 If A W S1 ! R is Hölder then W W S1 � f0; 1gN ! R is bi-Hölder.

(e) The Fenchel-Rockafellar Theorem Given f W R ! R defined on the variable
x, the Legendre transform of f , denoted by f �, is the function on the variable p
defined by

f �.p/ D sup
x2R

fp x � f .x/g:

Theorem 10 (Fenchel-Rockafellar) Suppose f .x/ is smooth strictly convex, f W
R ! R, and, g.x/ is smooth strictly concave, g W R ! R. Denote by f � and g�
the corresponding Legendre transforms on the variable p. Then,

inf
x2R f f .x/ � g.x/ g D sup

p2R
f g�.p/ � f �.p/ g
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Fig. 11 The infimum

Fig. 12 The supremum

Proof By convexity and concavity properties we have that there exists x0 such that

inf
x2R f f .x/ � g.x/ g D f .x0/� g.x0/:

It is also true that f 0.x0/ � g0.x0/ D 0. Denote by p that value p D f 0.x0/. We
illustrate the proof via two pictures in a certain particular case. Figure 11 shows a
geometric picture of the position and values of f .x0/� g.x0/, g�.p/ and f �.p/: Note
that in this picture we have that f .x0/�g.x0/ > 0: This picture also shows the graph
of p x as a function of x. We observe that the Legendre transform is not linear on the
function. Let’s consider different values of p and estimate f �.p/ and g�.p/: Suppose
first p > p. In Fig. 12 we show the graph of p x, and the values of f �.p/ and g�.p/.
We denote by x2 the value such that

f �.p/ D sup
x2R

fp x � f .x/g D p x2 � f .x2/:
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Note that x2 > x0. We denote by x1 the value such that

0 < g�.p/ D sup
x2R

fp x � g.x/g D p x1 � g.x1/:

Note that x1 < x0.
Note also that f �.p/ and g�.p/ have different signs. From this picture one can see
that g�.p/ � f �.p/ < f .x0/ � g.x0/: In the case p < p a similar reasoning can be
done.
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Rolling Maps for the Essential Manifold

L. Machado, F. Pina, and F. Silva Leite

Abstract Computer vision problems typically have geometric constraints. When
two cameras view a 3D scene from two distinct positions, or a single camera views
a 3D scene from two different locations, there are a number of geometric relations
between the 3D points and their projections onto the 2D images. These relations
lead to constraints between the image points. In particular, the epipolar constraint
encodes the relation between correspondences across two images of the same scene.
In a calibrated setting, the epipolar constraint is parameterized by essential matrices,
which form the Essential Manifold. The reconstruction of a video from several
images of a scene can be formulated as an interpolation problem on this manifold.
An approach that simplifies the generation of an interpolating curve consists in
projecting the problem to a linear manifold where it can be solved easily, and then
projecting back the solution on the nonlinear manifold. The projection is realized by
rolling the Essential Manifold, without slip and twist, over an affine tangent space.
This gives particular relevance to rolling motions in the context of certain computer
vision problems. Having this in mind, we derive the kinematic equations for the
rolling motions of the Essential Manifold and present explicit solutions when it
rolls along geodesics.
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1 Introduction

Computer vision is a challenging topic which is being used in a wide variety of
real world applications, such as earth observation, optical character recognition,
3D model building, medical imaging, machine inspection, automotive safety, match
move, motion capture, surveillance, fingerprint recognition and biometrics. We refer
to Szeliski [13] and references therein for details concerning multiple applications
in this area.

The problem of recovering structure and motion from a sequence of images, also
known as stereo matching, is a crucial problem in computer vision and continues
to be one of the most active research areas with remarkable progress in imaging
and computing hardware (see also Ma et al. [10]). The Essential Manifold plays
an important role in this area since it encodes the epipolar constraint. The classical
problem of reconstructing a scene, or a video, from several images of the scene
can be formulated as an interpolation problem on the Essential Manifold. Typically,
it is given an ordered set of time-labeled essential matrices, E1; : : : ;En relating n
different consecutive camera views (snapshots), and the objective is to calculate a
continuum of additional virtual views by computing a smooth interpolating curve
through the Ei’s. According to Hüper and Silva Leite [6], interpolation problems on
manifolds can be efficiently solved via rolling techniques. This approach enables
to transform a difficult problem on a curved space into an easy problem on a flat
space. Therefore, in order to implement an interpolation algorithm on the Essential
Manifold it is particularly important to study rolling motions of this manifold over
an affine tangent space where classical interpolation methods may then be applied.
There are other problems in the area of computer vision where rolling methods
have been used successfully. We refer to Caseiro et al. [1] for a novel application of
rolling to solve multi-class classification problems on manifolds.

The classical definition of rolling, without slip and without twist, is presented in
Sharpe [12] for manifolds embedded in Euclidean spaces, namely R

n equipped with
the Euclidean metric. These rolling motions result from the action of the group
of orientation preserving isometries of the ambient space, which is the special
Euclidean group SEn. Although, according to Nash Theorem [11], every finite
dimensional Riemannian manifold can be smoothly isometrically embedded in a
sufficiently high-dimensional Euclidean space, finding an appropriate embedding
is not necessarily an easy task. For that reason, the concept of rolling has been
extended to manifolds embedded in a general Riemannian manifold in Hüper et al.
[7]. In the present work though, we consider the Essential Manifold embedded in
an appropriate Euclidean space, but since elements in this manifold have a matrix
representation, we follow the approach in Hüper and Silva Leite [6] and adjust
Sharpe’s definition so that the matrix structure is not destroyed.
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The organization of the paper is the following. In Sect. 2, we introduce the
notions of essential matrix, epipolar constraint and Essential Manifold, and describe
the Riemannian structure of the Essential Manifold, following the approach given
in Helmke et al. [4] and Ma et al. [10]. Section 3 starts with the notion of a rolling
map, which describes the rolling motion of a submanifold of a general Riemannian
manifold over another submanifold of equal dimension. This is based on the work of
Hüper et al. [7]. The main results, dedicated to the rolling motions of the Essential
Manifold over the affine tangent space at a point, appear after the general definition
of rolling. More specifically, we adjust the general conditions to our particular case,
derive the kinematic equations of rolling, and solve those equations explicitly when
the rolling curves are geodesics on the manifold. The paper ends with some remarks
and directions for further research.

2 The Essential Manifold

2.1 Geometric Formulation

It is well known from computer vision literature that the intrinsic projective
geometry between two views of the same scene is independent of the scene structure
and only depends on the cameras internal parameters and relative pose (see, for
instance, Hartley and Zisserman [3]). In this paper we deal with calibrated cameras,
that is, we assume that the camera parameters are known. We also assume that the
scene is static and, for simplicity, we admit that the images are taken by two identical
pinhole cameras, with focal length equal to one. The two cameras are denoted by
C1 and C2 and the corresponding images of the scene structure p are denoted by X1
and X2, respectively, as shown in Fig. 1.

Each camera is represented by an orthonormal reference frame and can therefore
be described as a change of coordinates relatively to an inertial reference frame.
Without loss of generality, we can assume that the inertial frame corresponds to one
of the two cameras, say C1, while the other is positioned and oriented according to

Fig. 1 Geometry between
two views of the same scene
structure
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an element .R; s/ of the special Euclidean group SE3 D SO3 ËR3, where R denotes
a rotation and s represents a translation vector of the displacement of the first camera
C1 into the second one C2. Let s1; s2 and s3 be the coordinates of s with respect to the
first camera basis (s D Œs1 s2 s3�>) and x1, x2 2 R3 be the homogeneous coordinates
of the projection of the same point p onto the two image planes of the cameras. If
we call X1 2 R3 and X2 2 R3 the 3D coordinates of the point p relative to the two
camera frames, they are related by a rigid body motion:

X2 D RX1 C s;

where Xi D �ixi, i D 1; 2, can be written in terms of the image points xi, i D 1; 2

and the depths �i; i D 1; 2, (�i > 0). So, the last equation can be written as

�2x2 D R�1x1 C s: (1)

Consider the isomorphism

b.�/WR3 �! so3

s D Œs1 s2 s3�
> 7�! Os WD

2
4 0 �s3 s2

s3 0 �s1
�s2 s1 0

3
5 ;

between R3 and the Lie algebra of SO3, which is the set of all 3�3 skew-symmetric
matrices, here denoted by so3. It is well known and trivial to prove that for any
vector x 2 R3, Osx D s � x (� denotes the cross product). Multiplying (on the left)
both sides of the Eq. (1) by Os we then obtain

�2Osx2 D �1OsRx1:

Now, by taking the inner product of both sides of the previous equation with x2, it
follows

x>2 OsRx1 D 0; (2)

which is called the epipolar constraint (Longuet-Higgins [9]). This intrinsic con-
straint is independent of depth information and decouples the problem of motion
recovery from 3D structure. This problem consists in finding .R; s/ 2 SE3 using
the known image points x1 and x2 and the epipolar constraint. The matrix E D OsR
in (2), which captures the relative orientation between the two cameras, is called
the essential matrix and the set of all such matrices is the so-called Essential
Manifold.
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2.2 Riemannian Structure of the Normalized Essential
Manifold

For many of the applications concerning essential matrices, it is enough to work
with a subset of normalized matrices, those of the form OsR, where the translation
vector s has norm 1. This set, referred in the literature as the Normalized Essential
Manifold, is defined as

E D



OsR W Os 2 so3; R 2 SO3;
1

2
tr.Os>Os/ D 1

�
:

As a consequence of a result in Huang and Faugeras [5], concerning a charac-
terization of essential matrices in terms of their singular values, we can say that
all normalized essential matrices have singular values f1; 1; 0g. Therefore, using the
singular value decomposition, any matrix E in E can be written as

E D UE0V
>; for some U; V 2 SO3 and E0 D

�
I2 0
0 0

�
:

Also, as pointed out in Helmke et al. [4], the Normalized Essential Manifold can
also be represented by pairs .UE0U>;UV>/, where U;V and E0 are as above. That is,
E D G .2; 3/�SO3, where G .2; 3/ is the isospectral manifold consisting of the 3�3
real symmetric projection matrices of rank 2 (a Grassmann manifold). From now on
we use this parametrization so that E D f.UE0U>;UV>/ W U; V 2 SO3g. We may
replace UV> by an arbitrary rotation matrix R to obtain the following definition
of the Normalized Essential Manifold that will be used throughout the rest of the
paper. Also, for the sake of brevity we omit the word normalized and call it simply
Essential Manifold.

Definition 1 The Essential Manifold is the 5-dimensional smooth manifold
defined as

E WD ˚�
UE0U

>;R
� W U; R 2 SO3


; (3)

where

E0 D
�

I2 0
0 0

�
: (4)

The Essential Manifold can be considered embedded in the Euclidean space
s3 � R3�3, where s3 denotes the set of all 3�3 real symmetric matrices. The natural
metric in this embedding space is defined as

h.J;K/; .L;M/is3�R3�3 D hJ;Lis3 C hK;MiR3�3 ; (5)
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where the metric h:; :i in the right hand side is related to the Frobenius norm
for matrices, that is, hA;Bi D tr.A>B/. With the above parametrization of the
Essential Manifold, the tangent space at a point P0 D .�0E0�>

0 ;R0/ 2 E and the
corresponding orthogonal space are, respectively, given by:

TP0E D ˚�
�0 Œ˝;E0��

>

0 ; R0C
� W ˝;C 2 so3


(6)

or, equivalently,

TP0E D

�
�0

�
0 &

&> 0

�
�>

0 ; R0C

�
W & 2 R

2�1; C 2 so3

�
(7)

and

.TP0E /
? D


�
�0

�
B 0
0 b

�
�>

0 ; R0S

�
W B 2 s2; b 2 R; S 2 s3

�
: (8)

Note that, as expected, the dimensions of the above spaces match with the
dimension of the embedding space, which is 15. Indeed, dim.TP0E / D 5 and
dim

�
.TP0E /

?�D10.

3 Rolling the Essential Manifold

We start this section with the important definition of a rolling map for general
manifolds and then specialize to the situation when the Essential Manifold rolls,
without slip and twist, over the affine tangent space at a point. The kinematic
equations for this rolling motion are therefore derived.

3.1 Rolling Maps

We gather the necessary information about rolling maps, so that we can describe the
rolling motion of the Essential Manifold later. As already mentioned, the classical
definition of a rolling map, for manifolds embedded in Euclidean spaces, appeared
first in Sharpe [12]. In the meanwhile, it has been refined and generalized in
order to accommodate manifolds embedded in a general Riemannian manifold.
We follow closely the notations in Hüper and Silva Leite [6], but include a more
general definition contained in Hüper et al. [7]. In this context, a rolling map
describes how two connected manifolds M0 and M1 of the same dimension n, both
isometrically embedded in the same Riemannian complete m-dimensional manifold
M .1 � n < m/, roll on each other without slipping and twisting. These motions
are described by the action of the group of isometries on the embedding manifold
M, which preserve orientations. Let us recall that, if M is equipped with the tensor
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metric g, an isometry on M is a diffeomorphism l W M ! M which preserves g,
that is, l�g D g, where l� denotes the pullback of l. Furthermore, the group of
isometries on M, denoted by Isom.M/ is a Lie group, whose dimension is never
greater than m.m C 1/=2 (Kobayashi [8]). The rolling map will be defined as a
curve in the connected component of Isom.M/ that contains the identity, satisfying
several conditions to be presented in Definition 2. This subgroup will be denoted by
G. So, a rolling map on a closed interval I D Œ0; �� � R (� > 0) can be described
using the following pair of mappings:

h W I ! G

t 7! h.t/
and

h.t/ W M ! M

p 7! q D h.t/.p/
:

Let x 2 M be a point and � 2 TxM be a tangent vector. This means that there
exists a smooth curve y W� � "; "Œ! M such that y.0/ D x and Py.0/ D �. We denote
by h.t/� the pushforward (differential) of h.t/. Also, from the action of G on M, we
may define the following actions, which will be used in the definition of rolling map
(Definition 2).

Ph.t/.x/ WD d

d �
Œh.�/.x/�

ˇ̌
ˇ̌
�Dt

; (9)

�Ph.t/ ı h.t/�1
�
.x/ WD d

d �

�
.h.�/ h.t/�1/ .x/

�ˇ̌ˇ̌
�Dt

; (10)

�Ph.t/ ı h.t/�1
�
� .�/ WD d

d �

�
.Ph.t/ ı h.t/�1/ .y.�//

�ˇ̌ˇ̌
�D0

: (11)

Definition 2 Let M0 and M1 be two n-dimensional connected manifolds isomet-
rically embedded in an m-dimensional complete Riemannian manifold M and let
G be the connected component of the group of isometries of M that contains the
identity. A rolling map of M1 over M0, without slipping and twisting, is a smooth
curve h W I ! G, satisfying, for all t 2 I, the following three properties:

1. Rolling conditions: There exists a smooth curve ˛1 W I ! M1, such that

a. h.t/.˛1.t// 2 M0;
b. Th.t/.˛1.t//.h.t/.M1// D Th.t/.˛1.t//M0.

The curve ˛1 is called the rolling curve and the curve ˛0 W I ! M0, defined by

˛0.t/ D h.t/.˛1.t//; (12)

is called the development of ˛1 on M0.
2. No-slip condition:

�Ph.t/ ı h.t/�1
�
.˛0.t// D 0: (13)
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3. No-twist conditions:

a. (Tangential part)

�Ph.t/ ı h.t/�1
�
�
�
T˛0.t/M0

� � .T˛0.t/M0/
?; (14)

b. (Normal part)

�Ph.t/ ı h.t/�1
�
� .T˛0.t/M0/

? � T˛0.t/M0: (15)

Remark 1

1. Rolling along piecewise-smooth curves only requires a minor adjustment in the
conditions, involving derivatives, of the previous definition, replacing “for all t”
by “for almost all t”.

2. The first rolling condition means that, during the motion, the development curve
˛0 is being drawn on M0 by the point of contact of the moving manifold h.t/.M1/

and the static manifold M0. The second rolling condition means that, at each time
t, both manifolds h.t/.M1/ and M0 have the same tangent space.

3. The no-slip condition is equivalent to P̨0.t/ D h.t/�. P̨1.t//. So, this condition has
the interpretation that the velocities of the rolling curve and of its development
at the point of contact are the same.

4. An interpretation for the no-twist conditions is not so easy to obtain. But Godoy
et al. in [2] proved that these conditions can be given an interesting geometric
interpretation as follows:

a. Tangential part: A vector field Y.t/ is tangent parallel along the curve ˛1.t/ if,
and only if, V.t/ D h.t/�Y.t/ is tangent parallel along ˛0.t/.

b. Normal part: A vector field Z.t/ is normal parallel along the curve ˛1.t/ if,
and only if, V.t/ D h.t/�Z.t/ is normal parallel along ˛0.t/.

5. In Sharpe [12], it has been proven that given any smooth curve on M0, there exists
a unique rolling map along that curve. This property of existence and uniqueness
has been generalized to any Riemannian submanifolds in Hüper et al. [7].

3.2 Rolling Maps for the Essential Manifold

In this section we specialize the rolling maps to the particular situation when M1

is the Essential Manifold E , and M0 is the affine tangent space to E at a particular
point P0, Taff

P0
E . Notice that M0 and M1 are assumed to be embedded submanifolds of

M D s3 � R3�3, endowed with the Riemannian metric defined in (5). The approach
we take here follows that of Hüper and Silva Leite [6], where the rolling of
Grassmann manifolds and of rotation groups has been studied. We recall that,
according to our definition of the Essential Manifold given in (3), elements in E
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are represented by pairs. We must define the group of isometries G of M. For that,
let us start with the Lie group G D SO3 � SO3 � SO3. It is an easy task to show that
it acts transitively on E via equivalence:

� W G � E �! E�
.U;V;W/; .�E0�>;R/

	
7�!

�
U�E0�>U>;VRW>

	 : (16)

Consider now the group G D G Ë
�
s3 � R3�3

�
, with the product rule

�
U1;V1;W1;X1;Y1

	 �
U2;V2;W2;X2;Y2

	

D
�

U1U2;V1V2;W1W2;U1X2U>

1 C X1;V1Y2W>

1 C Y1
	
;

and inverse

�
U;V;W;X;Y

	�1 D
�

U>;V>;W>;�U>XU;�V>YW
	
: (17)

The group G is connected and acts on s3 � R3�3 via

G � �s3 � R3�3
� �! s3 � R3�3�

.U;V;W;X;Y/; .A;B/
	

7�! �
UAU> C X;VBW> C Y

� : (18)

We can conclude that G is the isometry group of M D s3 � R3�3.
Now, if P0 D .�0E0�>

0 ;R0/ is an arbitrary point in E , ˛1 W Œ0; �� ! E , defined
by ˛1.t/ D �

U.t/�0E0�>

0U.t/>;V.t/R0W.t/>
�

is a curve on E starting from P0 at
t D 0. The transitive action of G on E defined by (16), ensures that any curve on E
has this form. Our goal is to find conditions under which the map

h W �0; �� �! G
t 7�! h.t/ D .U.t/>;V.t/>;W.t/>;X.t/;Y.t//

; (19)

is a rolling map of the Essential Manifold E over its affine tangent space Taff
P0
E ,

along

˛1.t/ D �
U.t/�0E0�

>

0U.t/>;V.t/R0W.t/
>

�
;

with development curve

˛0.t/ D h.t/.˛1.t// D �
�0E0�

>

0 C X.t/;R0 C Y.t/
� D P0 C Z.t/ 2 M0; (20)

where Z.t/ D .X.t/;Y.t// 2 s3 � R3�3.
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First, we must rewrite (9)–(11) for our particular situation.
Let .A;B/ be a point in s3 � R3�3 and .�; �/ 2 s3 � R3�3 be a tangent vector

to a smooth curve t 2� � "; "Œ7�! y.t/ D �
A.t/;B.t/

� 2 s3 � R3�3 that satisfies
y.0/ D �

A.0/;B.0/
� D .A;B/ and Py.0/ D .�; �/. Then, since

h.t/.A;B/ D �
U.t/>AU.t/C X.t/;V.t/>BW.t/C Y.t/

�
;

one gets

Ph.t/..A;B//

D d

d �
Œh.�/..A;B//�

ˇ̌
ˇ̌
�Dt

D d

d �

��
U.�/>AU.�/C X.�/;V.�/>BW.�/C Y.�/

��ˇ̌ˇ̌
�Dt

D � PU.t/>AU.t/C U.t/>A PU.t/C PX.t/; PV.t/>BW.t/C V.t/>B PW.t/C PY.t/�:
(21)

This is the counterpart of (9). Now,

h.�/ h.t/�1

D �
U.�/>U.t/;V.�/>V.t/;W.�/>W.t/;�U.�/>U.t/X.t/U.t/>U.�/C X.�/;

� V.�/>V.t/Y.t/W.t/>W.�/C Y.�/
�
;

(22)

so that, the counterpart of (10) is

�Ph.t/ ı h.t/�1
�
..A;B//

D d

d �

��
h.�/ h.t/�1

�
..A;B//

�ˇ̌ˇ̌
�Dt

D d

d �

ˇ̌
ˇ̌
�Dt

�
.U>.�/U.t/AU.t/>U.�/ � U>.�/U.t/X.t/U>.t/U.�/C X.�/;

V>.�/V.t/BW.t/>W.�/ � V.�/>V.t/Y.t/W.t/>W.�/C Y.�//
�

D � PU.t/>U.t/A C AU.t/> PU.t/ � PU.t/>U.t/X.t/� X.t/U.t/> PU.t/C PX.t/;
PV.t/>V.t/B C BW.t/> PW.t/ � PV.t/>V.t/Y.t/ � Y.t/W.t/> PW.t/C PY.t/�:

(23)
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Finally, the counterpart of (11) is written as

�Ph.t/ ı h.t/�1
�
�..�; �//

D d

d �

��Ph.t/ ı h.t/�1
�
.A.�/;B.�//

�ˇ̌ˇ̌
�D0

D � PU.t/>U.t/� C �U.t/> PU.t/; PV.t/>V.t/�C �W.t/> PW.t/�:

(24)

3.3 The Kinematic Equations of Rolling

In this section we derive the kinematic equations for the rolling motion by imposing
the no-slip and no-twist conditions on h.t/ given by (19). Taking into account (23)
and the expression for ˛0 given by (20), the no-slip condition (13) can be rewritten as

8<
:

PU.t/>U.t/�0E0�>

0 C�0E0�>

0U.t/> PU.t/C PX.t/ D 0

PV.t/>V.t/R0 C R0W.t/> PW.t/C PY.t/ D 0
: (25)

If we define the skew-symmetric matrices˝U, ˝V and ˝W by

˝U WD �>

0
PU>U�0; ˝V WD R>

0
PV>VR0; ˝W WD R0 PW>WR>

0; (26)

the no-slip condition takes the form
8<
:

PX.t/ D ��0
�
˝U.t/;E0

�
�>

0

PY.t/ D ˝W.t/R0 � R0˝V.t/
: (27)

Now, using (24), the tangential part of the no-twist conditions is equivalent to
showing that, for all .�; �/ 2 T˛0.t/M0,

� PU>U� C �U> PU; PV>V�C �W> PW� 2 .T˛0.t/M0/
?: (28)

But, T˛0.t/M0 D TP0E ( and similarly for the normal space). So, taking into account
the notations (26), the tangential part of the no-twist conditions (28) is equivalent to

��
�0˝U�

>

0 ; �
�
;R0˝VR>

0�� �R>

0˝WR0
� 2 .TP0E /

?; (29)

for all .�; �/ 2 TP0E . But, according to (6), for .�; �/ 2 TP0E , we have

� D �0

�
0 &

&> 0

�
�>

0 ; & 2 R
2�1 and � D R0C; C 2 so3: (30)
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Hence, writing the skew-symmetric matrix˝U as

˝U D
�
˝1 ˝2

�˝>

2 0

�
;

where˝1 2 so2, ˝2 2 R
2�1, and taking into account that

�
�0˝U�

>

0 ; �
� D �0

�
˝2&

> C&˝>

2 ˝1&

�&>˝1 �2˝>

2&

�
�>

0;

the characterization of the orthogonal space (8) enables us to conclude that

˝1& D 0; for all & 2 R
2�1:

This implies that ˝1 D 0 and, therefore,˝U must have the constrained structure

˝U D
�

0 ˝2

�˝>

2 0

�
: (31)

Additionally, when � D R0C; C 2 so3, the second component in (29) should be
of the form R0S, with S 2 s3. This requires that the matrix

�
˝VC � CR>

0˝WR0
�

is symmetric, for all C 2 so3. Using this requirement, and after some simple
calculations, one concludes that this is equivalent to

�
˝V C R>

0˝WR0;C
� D 0; for all C 2 so3:

Hence,˝V C R>

0˝WR0 D 0, that is

˝V D �R>

0˝WR0: (32)

Therefore, the tangential part of the no-twist conditions for the Essential Manifold
is equivalent to requiring that

˝U D
�

0 ˝2

�˝>

2 0

�
and ˝V D �R>

0˝WR0: (33)

Finally, we must impose the normal part of the no-twist conditions, which is
equivalent to showing that, for all .�; �/ 2 .T˛0.t/M0/

?,

� PU>U� C �U> PU; PV>V�C �W> PW� 2 T˛0.t/M0: (34)

But it turns out that if conditions (33) hold, the normal part of the no-twist conditions
holds as well. Indeed, the previous condition is equivalent to

��
�0˝U�

>

0 ; �
�
;R0˝VR>

0�� �R>

0˝WR0
� 2 T˛0.t/M0: (35)
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So, since .�; �/ 2 .T˛0.t/M0/
? D .TP0E /

?, we must have

� D �0

�
B 0

0 b

�
�>

0 ; B 2 s2; b 2 R and � D R0S; S 2 s3: (36)

Hence, using (33), after some calculations we obtain that

�
�0˝U�

>

0 ; �
� D �0

�
0 ˝2b � B˝2

�˝>

2B C b˝>

2 0

�
�>

0 ;

which is in accordance with the characterization of the tangent space (7). Moreover,
the second component presented in relation (35) should be of the form R0C, with
C 2 so3 and, taking into account (33), this requires that the matrix .˝VS C S˝V/

must be skew-symmetric, for all S 2 s3. A few computations show that this
requirement is verified. Thus, the no-twist conditions reduce to Eq. (33).

Now, if the second condition in (33) is used in (27), one obtains

8<
:

PX.t/ D ��0
�
˝U.t/;E0

�
�>

0

PY.t/ D �2R0˝V.t/
: (37)

The no-slip condition reduces to Eq. (37).
We can now state the main theorem.

Theorem 1 Let ˝U.t/; ˝V.t/ 2 so3 with ˝U D
�

0 ˝2

�˝>

2 0

�
; ˝2 2 R2�1.

If .U;V;W;X;Y/ is the solution of the following system of differential equations,
evolving on G,

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

PU.t/ D �U.t/�0˝U.t/�>

0

PV.t/ D �V.t/R0˝V.t/R>

0

PW.t/ D W.t/˝V .t/

PX.t/ D ��0
�
˝U.t/;E0

�
�>

0

PY.t/ D �2R0˝V.t/

; (38)

with initial condition at the identity element of G, that is, .U.0/;V.0/;W.0/;
X.0/;Y.0// D .I; I; I; 0; 0/, then

t 7! h.t/ D .U.t/>;V.t/>;W.t/>;X.t/;Y.t// 2 G
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is a rolling map (in the sense of Definition 2) of the Essential Manifold E over the
affine tangent space at the point P0 D .�0E0�0

>;R0/, along the rolling curve

t 7! ˛1.t/ D �
U.t/�0E0�

>

0U.t/
>;V.t/R0W.t/

>

�
;

with development curve

t 7! ˛0.t/ D �
�0E0�

>

0 C X.t/;R0 C Y.t/
�
:

Proof We have already proved, before the statement of the theorem, that Eq. (38)
encode the no-slip and the no-twist conditions. Since the curve ˛1 clearly lives in
the manifold E and ˛0.t/ D h.t/.˛1.t// D P0 C Z.t/, with Z.t/ D .X.t/;Y.t//, to
complete the proof it is enough to show that Z.t/ 2 TP0E . But since˝U.t/ and˝V.t/
are skew-symmetric, it follows from the last two equations of (38) that PZ.t/ 2 TP0E .
This, together with the initial condition Z.0/ D 0, implies that Z.t/ 2 TP0E , that is,
˛0.t/ 2 Taff

P0
E .

Remark 2 Equations (38), which encode the non-holonomic constraints of no-slip
and no-twist are called the kinematic equations for rolling the Essential Manifold
over the affine tangent space at the point P0.
The choice of ˝U and ˝V completely determine the solutions of the kinematic
equations and, consequently, the rolling curve (and its development). For that
reason, we say that these two functions are the “control functions” of the motion.

3.4 Rolling Along Geodesics

For the special situation where the control functions are constant, say ˝U.t/ D ˝U

and˝V.t/ D ˝V , the solution of the kinematic equations (38), with initial condition
.U.0/;V.0/;W.0/;X.0/;Y.0//D .I; I; I; 0; 0/, can be solved explicitly and

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

U.t/ D �0e�t˝U�>

0

V.t/ D R0e�t˝V R>

0

W.t/ D et˝V

X.t/ D �t�0
�
˝U;E0

�
�>

0

Y.t/ D �2tR0˝V

: (39)

In this case, the rolling curve

t 7! ˛1.t/ D �
�0e

�t˝U E0e
t˝U�>

0 ;R0e
�2t˝V

�
(40)
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is a geodesic on E , passing through P0 (at t D 0) and, consequently,

t 7! ˛0.t/ D P0 C .X.t/;Y.t// D P0 C t
�
�0 ŒE0;˝U� �

>

0 ; 2R0˝
>

V

�
(41)

is also a geodesic in the affine tangent space Taff
P0
E , satisfying ˛0.0/ D P0. The

second statement is obvious since a geodesic in the affine space is a straight line.
The first statement can be checked differentiating ˛1 twice and noticing that R̨1.t/
belongs to .T˛1.t/E /

?. Indeed, using the fact that et˝U˝Ue�t˝U D ˝U and the
anticommutativity of the matrix commutator, we can write

P̨1.t/ D �
�0e�t˝U

�
E0; et˝U˝Ue�t˝U

�
et˝U�>

0 ; R0e�2t˝V .�2˝V/
�

D �
�0e�t˝U ŒE0;˝U� et˝U�>

0 ; R0e�2t˝V .�2˝V/
�
:

(42)

Differentiating again and simplifying, we obtain

R̨1.t/ D �
�0e

�t˝U ŒŒE0;˝U� ;˝U� e
t˝U�>

0 ; R0e
�2t˝V .4˝2

V/
�
: (43)

Hence, taking into account that

ŒŒE0;˝U� ;˝U� D
��2˝2˝

>

2 0

0 2˝>

2˝2

�
; (44)

with �2˝2˝
>

2 a symmetric matrix and 2˝>

2˝2 a real number, we have

R̨1.t/ D
�
�0e

�t˝U

��2˝2˝
>

2 0

0 2˝>

2˝2

�
et˝U�>

0 ; R0e
�2t˝V .4˝2

V/

�
; (45)

which is in accordance with (8). So, R̨1.t/ belongs to .T˛1.t/E /
?, that is, the covariant

derivative of P̨1 is identically zero and, thus, (40) is a geodesic on E . We summarize
the previous in the following corollary of Theorem 1.

Corollary 1 If the control functions ˝U and ˝V are constant skew-symmetric
matrices, then

h.t/ D
�
�0e

t˝U�>

0 ; R0e
t˝V R>

0; e�t˝V ; �t�0
�
˝U;E0

�
�>

0 ; �2tR0˝V

	

is the rolling map of the Essential Manifold E over Taff
P0
E , without slipping and

twisting, along the geodesic

t 7! ˛1.t/ D �
�0e

�t˝U E0e
t˝U�>

0 ;R0e
�2t˝V

� 2 E
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with development curve

t 7! ˛0.t/ D P0 C Z.t/ D P0 C .X.t/;Y.t// D P0 C t
�
�0 ŒE0;˝U� �

>

0 ; 2R0˝
>

V

�
;

also a geodesic in the affine tangent space Taff
P0
E .

4 Final Remarks

We have derived the kinematic equations of rolling the Essential Manifold over
the affine tangent space at a point. The Essential Manifold plays a crucial role
in 3D computer vision and these rolling motions may be used to efficiently solve
interpolation problems on this manifold, by reducing them to simpler interpolation
problems on a flat space, the affine space. The kinematic equations of rolling can
be seen as control systems evolving on the group of isometries of the embedding
space, whose controls are the functions˝U and˝V . That is, choosing the controls is
equivalent to defining the rolling curve. This motivates several questions concerning
controllability and optimal control of rolling motions, issues that will be under
investigation in the near future.

Acknowledgements The work of the first and third authors was supported by FCT project
PTDC/EEA-CRO/122812/2010.
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Singleton Free Set Partitions Avoiding
a 3-Element Set

Ricardo Mamede

Abstract The definition and study of pattern avoidance for set partitions, which
is an analogue of pattern avoidance for permutations, begun with Klazar. Sagan
continued his work by considering set partitions which avoid a single partition of
three elements, and Goyt generalized these results by considering partitions which
avoid any family of partitions of a 3-element set. In this paper we enumerate and
describe set partitions, even set partitions and odd set partitions without singletons
which avoid any family of partitions of a 3-element set. The characterizations
of these families allow us to conclude that the corresponding sequences are P-
recursive. We also construct Gray codes for the sets of singletons free partitions
that avoid a single partition of three elements.

1 Introduction

Enumeration of pattern-avoiding objects such as permutations, words or compo-
sitions, is a very active area of research, with connections to several areas of
mathematics. In 1996, Klazar [5] extended the notion of pattern avoidance for
permutations, words and compositions to set partitions by analyzing set partitions
that avoid the patterns abab and aabb. Sagan [10] continued this work by consid-
ering set partitions which avoid a single partition of a 3-element set. Since then
this notion has been studied by many authors (see [7] and the references therein
for a comprehensive survey). In particular, Goyt [3] generalized Sagan’s results by
considering partitions, even partitions and odd partitions that avoid any family of
partitions of a 3-element set. In his book [7], T. Mansour proposed the study of
pattern avoidance in set partitions without singletons, that is set partitions whose
blocks have at least two elements, as a research direction. Following this suggestion,
we continue the work of Sagan and Goyt on pattern avoidance in set partitions,
considering set partitions without singletons that avoid any family of partitions of a
3-element set. To this end, we need some definitions.

R. Mamede (�)
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For integers m � n define the interval Œm; n� D fm;mC1; : : : ; ng with the special
case Œ1; n� D Œn�. A partition � of a set S 
 Œn�, n � 1, is a collection of nonempty
disjoint subsets B1; : : : ;Bt of S, called blocks, whose union is S. We will write � ` S
and b.�/ D t to denote the number of blocks of � . A block with only one element
is said to be a singleton. A partition is said to be in standard form if it is written
as � D B1=B2= � � �=Bt, where the blocks are listed in ascending order according to
their smallest element. Generally, we will not use braces and commas in the blocks
unless they are needed for clarity. For example, if � D 13=245=6=7 then � ` Œ7�

with b.�/ D 4.
The set of all set partitions of Œn�, n � 1, will be denoted by

˘n D f� W � ` Œn�g:

If S is a subset of the integers with cardinality #S D n, then the standardization
map corresponding to S is the unique order-preserving bijection stS W S ! Œn�. When
S is clear from the context we drop the subscript. For example, if S D f2; 5; 7g then
st.2/ D 1; st.5/ D 2 and st.7/ D 3. Thus, if � D 27=5 its standardization is
st.�/ D 13=2.

A set subpartition of a set partition� D B1=B2= � � � =Bt of S is a set partition� 0 of
S0 
 S such that each block of � 0 is contained in a different block of � . For example,
27=5 is a subpartition of 1356=27=4 but not of 1357=26=4. Let � 2 ˘k be a given
set partition called the pattern. We say that a partition � 2 ˘n contains the pattern
� if there exists a set subpartition � 0 of � such that st.� 0/ D � . In this case, � 0 is
called an occurrence of the pattern � in � . If � has no occurrences of � , then we say
that � avoids the pattern � . For example, � D 16=23=45 avoids the pattern 123 but
contains the pattern 13=2 since the standardization of the subpartition � 0 D 16=2 is
13=2. In this context, for R 
 ˘k we use the notation

˘n.R/ D f� 2 ˘n W � avoids every pattern � 2 Rg:

The set ˘.R/, with R 
 ˘3, was studied by Sagan [10] when #R D 1 and by Goyt
[3] for #R � 2. Denote by˘ 0n the set of all singleton free partitions of Œn�, and given
R 
 ˘k a subset of patterns, let

˘ 0n.R/ D f� 2 ˘ 0n W � avoids every pattern � 2 Rg

be the set of all singleton free partitions of Œn� that avoid all partitions of R. When
R D f�g, we simplify the notation and write ˘ 0n.�/.

In the next section we characterize the set ˘ 0n.�/, and give exact formulas and
generating functions for its cardinal, for various patterns � , including all � ` Œ3�.
We then use these results to characterize and enumerate˘ 0n.R/, for any R � ˘3. In
Sect. 3 we present the notion of sign of a partition, defined in [3], and enumerate the
set of singleton free signed partitions of Œn� which avoid any family of patterns of
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˘3. The study of P-recursiveness associated with permutation patterns begun with
Gessel [2] and Noonan-Zeilberger [9], and was applied to set partitions by Sagan
[10]. In Sect. 4 we show that although ˘ 0n is not P-recursive, the sets of singleton
free partitions and singleton free sign partitions that avoid any pattern � ` Œ3� are
P-recursive.

The last section is devoted to the combinatorial generation of the elements of
˘ 0n.�/, with � ` Œ3�. The search for combinatorial algorithms that list all elements
of a given combinatorial class of objects is common to several scientific topics and
has many applications (see [1] for an exhaustive bibliography). Among all lists of
a combinatorial class, there is a special kind of list called Gray code, where two
successive objects in the list are encoded in such a way that their codes differ as
little as possible. In such a list the generation of its elements is usually faster, and
the computational cost to produce the list is, in general, smaller. Moreover, the usual
recursive structure of a Gray code may throw new light on the combinatorial class.
To this end we construct Gray codes for the sets ˘ 0n.�/, for all � ` Œ3� for which
the set is not trivial, where each partition in the list is obtained from its immediate
predecessor by changing the block of at most two elements.

2 Singleton Free Set Partitions

We start by considering the case ˘ 0n.�/, with � a pattern in ˘3, namely 123; 1=23;
12=3; 1=2=3 and 13=2. Following the notation of [10] for exponential generating
functions, we let

FI.x/ D
X
i2I

xi

iŠ
; (1)

for a set I of nonnegative integers. In particular, when I D Œ0;m�, we write

expm.x/ D
mX

iD0

xi

iŠ
:

Let aI
n;` denote the number of partitions of Œn� with ` blocks with cardinalities

in the set I 
 N. As FI.x/ is the exponential generating function for the number
of ways an n-set can form a block with size in the set I, it follows that (see, for
example, [8] or [15])

X
n�0

aI
n;`

xn

nŠ
D FI.x/`

`Š
(2)
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is the exponential generating function for the number of partitions of Œn� with `
blocks, each of them having sizes in the set I. Finally, given a pattern � , we write

F�.x/ D
X
n�0

#˘ 0n.�/
xn

nŠ
: (3)

The distinction between (1) and (3) will be clear, since we denote patterns by Greek
letters and sets of integers by capital Latin letters.

For example, with I D N n f1g, it follows that #˘ 0n is the sum over all ` � 0

of the numbers aI
n;`, and thus the exponential generating function for the number of

singleton free set partitions of Œn� is

F.x/ D
X
n�0

#˘ 0n
xn

nŠ
D
X

n;`�0
aI

n;`

xn

nŠ
D
X
`�0

.ex � 1 � x/`

`Š
D exp.ex � 1 � x/: (4)

A partition � ` Œn� is layered if it is of the form Œ1; i�=ŒiC1; j�=ŒjC1; k�= � � � =Œ`C
i; n�. A partition � is said to be a matching if #B � 2, for all block B of � . When the
cardinality of each block is exactly 2 the partition is called a perfect matching. The
characterization of the set partitions in ˘n.�/, for � 2 ˘3, obtained by Sagan [10],
will be used repeatedly, so we state it below.

Theorem 1 (Sagan) For n � 1,

˘n.1=2=3/ D f� 2 ˘n W b.�/ � 2g;
˘n.123/ D f� 2 ˘n W � is a matchingg;
˘n.13=2/ D f� 2 ˘n W � is layeredg:

Given positive integers i < m, let � i
m be the layered pattern

1=2= � � �=i � 1=i.i C 1/=i C 2= � � �=m

in ˘m, where all blocks are singletons with the exception of Bi D fi; i C 1g.

Theorem 2 For n � 2,

˘ 0n.� i
m/ D f� 2 ˘ 0n W b.�/ � m � 2g;

F� i
m
.x/ D expm�2.exp.x/� 1 � x/:

Proof Since � i
m has m � 1 blocks, it is clear that if b.�/ � m � 2 then � avoids

the pattern � i
m. Reciprocally, let � 2 ˘ 0n.� i

m/ and assume that b.�/ � m � 1. Let
B1; : : : ;Bm�1 be m �1 blocks of � , each of them with at least two elements, ordered
by their least element: Bj D faj; : : :g; with

a1 < a2 < � � � < am�1:
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Next, let B0i; : : : ;B0m�1 be the blocks Bi; : : : ;Bm�1 ordered by their largest element:
B0j D f: : : ; bjg, with

bi < biC1 < � � � < bm�1:

Then,

a1 < a2 < � � � < ai < bi < biC1 < � � � < bm�1

and a1=a2= � � � =ai bi=biC1= � � �=bm�1 is a copy of � i
m in � , a contradiction.

It follows that the number of partitions in ˘ 0n.� i
m/ is the sum over all 0 � ` �

m �2 of the number aI
n;` of partitions of Œn� with ` blocks, each of them with at most

two elements:

#˘ 0n.� i
m/ D

m�2X
`D0

aI
n;`;

with I D f2; 3; : : :g. Thus, we can use (2) to write

F� i
m
.x/ D P

n�0 #˘ 0n.� i
m/

xn

nŠ D P
n�0

Pm�2
`D0 aI

n;`
xn

nŠ D Pm�2
`D0

�P
n�0 aI

n;`
xn

nŠ

	

D Pm�2
`D0

FI.x/`

`Š
D expm�2.exp.x/� 1 � x/:

Two patterns � and � are said to be Wilf-equivalent [7], denoted by � � � , if
the number of elements of the sets˘ 0n.R/ and˘ 0n.T/ are the same for all n � 1. The
last result shows that � i

m � � j
m, for i; j < m.

Corollary 1 The patterns � i
m, for 1 � i � m � 1, are Wilf-equivalent.

Corollary 2 For n � 2,

˘ 0n.12=3/ D ˘ 0n.1=23/D f12 � � �ng;
F1=23.x/ D F12=3.x/ D ex � x:

Proof It follows from the last results since 12 � � �n is the only partition in ˘ 0n with a
single block.

Theorem 3 For n � 2,

˘ 0n.12 � � �m/ D f� 2 ˘n W 2 � #B � m � 1; for all block B 2 �g;
F12���m.x/ D exp.expm�1.x/ � 1 � x/:

Proof The characterization of the elements of˘ 0n.12 � � � m/ is clear, since a partition
contains a copy of 12 � � � m if and only if it has a block with at least m elements. It
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follows that #˘ 0n.12 � � � m/ is the sum of the numbers aI
n;` of partitions of Œn� with

` � 0 blocks with cardinalities in the set I D Œ2;m � 1�. Again, we use (2) to write:

F12���m.x/ D P
n�0 #˘ 0n.12 � � � m/ xn

nŠ D P
n;`�0 aI

n;`
xn

nŠ D P
`�0

FI .x/`

`Š

D exp.expm�1.x/� 1 � x/:

The double factorial of an odd positive integer 2i � 1 is defined as the product of
all positive odd integers up to 2i � 1:

.2i � 1/ŠŠ D .2i � 1/.2i � 3/ � � �5 � 3 � 1:

Corollary 3 For n � 2,

˘ 0n.123/ D f� 2 ˘n W � is a perfect matchingg;

#˘ 0n.123/ D
(
.2k � 1/ŠŠ if n D 2k

0 otherwise
:

Proof The characterization of ˘ 0n.123/ is a consequence of the previous theorem,
and it can also be deduced from Theorem 1. Moreover, we can write

F123.x/ D
X
n�0

�
x2

2Š

	n

nŠ
D
X
n�0

.2n/Š

2nnŠ

x2n

.2n/Š
;

and since .2n/Š
2nnŠ D .2n � 1/ŠŠ the result follows.

Theorem 4 For n � 2,

˘ 0n.1=2= � � �=m/ D f� 2 ˘ 0n W b.�/ � m � 1g;
F1=2=���=m.x/ D expm�1.exp.x/ � 1� x/:

Proof The characterization of the partitions of Œn� that avoid the pattern 1=2= � � �=m
is clear from the definitions, and the generating function follows from (1), since:

F1=2=���=m.x/ D
X
n�0

#˘ 0n.1=2= � � �=m/
xn

nŠ
D
X
n�0

m�1X
`D0

aI
n;`

xn

nŠ
D

D
m�1X
`D0

0
@X

n�0
aI

n;`

xn

nŠ

1
A D

m�1X
`D0

FI.x/`

`Š
D expm�1.exp.x/ � 1 � x/;



Singleton Free Set Partitions Avoiding a 3-Element Set 423

where aI
n;` is the number of partitions of Œn� with ` � m � 1 blocks, and I is the set

of all integers greater than, or equal to 2.

When m D 3 the function F1=2=3.x/ generates the sequence A000295 in Sloane’s
Encyclopedia [14].

Corollary 4 We have

˘ 0n.1=2=3/D f� 2 ˘ 0n W b.�/ � 2g;
#˘ 0n.1=2=3/D 2n�1 � n; for n � 3;

with #˘ 00.1=2=3/ D #˘ 02.1=2=3/ D 1 and #˘ 01.1=2=3/D 0.

Proof From the generating function given in the last result, we have

F1=2=3.x/ D 1C .ex � 1 � x/C .ex�1�x/2

2
D 1

2
C x2

2
C e2x

2
� xex

D 1C x2

2
CP

n�1.2n�1 � n/ xn

nŠ ;

and the result follows.

The Eulerian number e.n;m/ is the number of permutations p1p2 � � � pn of Œn�
with exactly m descents, that is, m places in which pj > pjC1, for 1 � j � n � 1. Let
E.n;m/ be the set of all permutations of Œn� with exactly m descents.

Theorem 5 There is a bijection between ˘ 0n.1=2=3/ and E.n � 1; 1/, for n � 1.

Proof Using the description of ˘ 0n.1=2=3/ as the partitions of ˘ 0n having one or
two blocks, its cardinality 2n�1 � n for n � 3 can be obtained directly as follows. If
� 2 ˘ 0n has only one block then � D 12 � � � n. Otherwise, � D B1=B2, with

B1 D f1g [ S;

where S � Œ2; n� has i elements, for some 1 � i � n � 3. Thus,

#˘ 0n.1=2=3/ D 1C
n�3X
iD1

 
n � 1

i

!
D

n�1X
iD0

 
n � 1

i

!
� n D 2n�1 � n:

On the other hand, a permutation p D p1p2 � � � pn�1 of Œn � 1� with exactly one
descent must satisfy

p1 < � � � < pk; pk > pkC1; pkC1 < � � � < pn�1;

for some 1 � k � n � 2. Thus, to give such a permutation is to give a set S D
fp1; : : : ; pkg with k elements of Œn � 1� such that p1 < � � � < pk and pkC1 < � � � < pn.
There will be a descent at position k if and only if S ¤ f1; : : : ; kg. We identify
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permutations in E.n � 1; 1/ with sets S � Œn � 1� such that S ¤ Œk�. Therefore,

e.n � 1; 1/ D
n�1X
kD1

  
n � 1

k

!
� 1

!
D
 

n�1X
kD0

 
n � 1

k

!!
� n D 2n�1 � n:

We can now give an explicit bijection  W E.n � 1; 1/ ! ˘ 0n.1=2=3/, for n � 3.
Note that for n D 1 or 2 the result is trivial.

Let S D fp1; : : : ; pkg � Œn � 1�, S ¤ Œk�, with p1 < � � � < pk. If #S ¤ n � 2, we
set

 .S/ D f1; p1 C 1; : : : ; pk C 1g=B;

where B is the complement of f1; p1 C 1; : : : ; pk C 1g in Œn�, having #B � 2. If
#S D n � 2, then we must have S D f1; : : : ; Oi; : : : ; n � 1g, for some i 2 Œn � 2�,
where Oi means that the integer i is not in S. In this case, we put

 .S/ D
(

f1; 2; : : : ; ig=fi C 1; : : : ; ng; if i ¤ 1

f1; 2; : : : ; ng; if i D 1
:

From its construction, the partition  .S/ has one or two blocks, each with at least
two elements. Moreover, note that the partition f1; 2; : : : ; ig=fi C 1; : : : ; ng must be
obtained via the map  from a uniquely determined set S � Œn�1� with #S D n�2,
for otherwise we would have S D f1; : : : ; i � 1g, a contradiction. Henceforth, we
can easily conclude that  is a bijection.

Denote by Fn the n-th Fibonacci number which is defined by the recurrence
relation

Fn D Fn�1 C Fn�2; n � 2;

with the initial conditions F0 D 0 and F1 D 1 (sequence A000045 in [14]).

Theorem 6 For n � 1,

˘ 0n.13=2/D f� 2 ˘ 0n W � is layeredg;
#˘ 0n.13=2/D Fn�1:

Proof It is clear that if � is layered then � avoids the pattern 13=2. Reciprocally, let
B1 be the block of � 2 ˘ 0n.13=2/ having the integer 1, and let i > 1 be the largest
integer of B1. Note that if there is an integer 1 < j < i such that j is not in B1, then
st.1i=j/ D 13=2. Thus, we must have B1 D Œ1; i�. Iterating this process we find that
� is layered.

For the enumeration part, note that #˘ 01.13=2/ D F0 D 0 and #˘ 02.13=2/ D
F1 D 1. We claim that the number of elements of ˘ 0n.13=2/ is equal to the sums of
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Table 1 Singleton free partitions avoiding a 3-letter pattern

� ˘ 0

n.�/ #˘ 0

n.�/

12/3 12 � � � n 1

1/23 12 � � � n 1

1/2/3 Partitions with at most two blocks 2n�1 � n

13/2 Layered partitions Fn�1

123 Perfect matchings .2k � 1/ŠŠ if n D 2k

0 otherwise

the cardinals of ˘ 0n�2.13=2/ and ˘ 0n�1.13=2/, for n � 3. Consider the map

� W ˘ 0n�2.13=2/[˘ 0n�1.13=2/ �! ˘ 0n.13=2/;

where the image of the singleton free layered partition � of, respectively, Œn � 2� or
Œn � 1� is obtained by adding, respectively, the block fn � 1; ng to � , or by adding
the integer n to the block containing the letter n � 1. The map � is a bijection, since
if � is a layered partition of Œn�, then the block B containing n must also contain the
integer n�1. Therefore, if B D fn�1; ng, then � is the image of the layered partition
of Œn � 2� obtained by removing B from � , and if #B � 3, then it is the image of the
layered partition of Œn � 1� obtained from � by removing the letter n. Thus, we find
that #˘ 0n.13=2/ D #˘ 0n�2.13=2/C #˘ 0n�1.13=2/ and the result follows (Table 1).

Corollary 5 The number of layered set partitions of Œn� with at least one singleton
is given by 2n�1 � Fn�1.

Proof It follows from the previous result and the number 2n�1 of layered partitions
of Œn� obtained by Sagan [10].

We consider now the classification and enumeration of the set of singleton
free partitions that avoid a set R of patterns of ˘3, with #R � 2. Note that
since 12=3 � 1=23, if both patterns 12=3 and 1=23 are in R, then ˘ 0n.R/ D
˘ 0n.R n f1=23g/. Therefore, without loss of generality we may consider only the
patterns 12=3; 1=2=3; 13=2 and 123. The following proposition is a consequence of
Corollaries 2–4 and Theorem 6.

Proposition 1 Let R D f12=3; �g � ˘3. Then, for n � 3

˘ 0n.R/ D
(

;; if � D 123

f12 � � �ng; otherwise
:

It follows that ˘ 0n.˘3/ D ;. The results for ˘ 0n.R/, with #R D 2 or 3, are
easy to prove, so we omit the proofs. Table 2 describes these sets and gives their
enumeration for n � 3.
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Table 2 Singleton free partitions with more than one restriction

R ˘ 0

n.R/ #˘ 0

n.R/

f12=3; �g ; if � D 123 0 if � D 123

f12 � � � ng if � ¤ 123 1 if � ¤ 123

{123,13/2} f12=34= � � � =.n� 1/ng if n even 1 if n even

; if n odd 0 if n odd

{123,1/2/3} ; if n ¤ 4 0 if n ¤ 4

f12=34; 13=24; 14=23g if n D 4 3 if n D 4

{13/2,1/2/3} f1 � � � i=.iC 1/ � � � n W i 2 Œ2; n� 2�g [ f12 � � � ng n� 2
f12=3; 13=2; 1=2=3g f12 � � � ng 1

f12=3; 123; �g ; for � D 1=2=3 or � D 13=2 0

f13=2; 123; 1=2=3g f12=34g if n D 4 1 if n D 4

; if n ¤ 4 0 if n ¤ 4

3 Even and Odd Singleton Free Set Partitions

In this section we consider the number of even and odd singleton free set partitions
that avoid a set R of patterns of ˘3. A partition � ` Œn� with b.�/ D k has sign

sgn.�/ D .�1/n�k:

Definition 1 A set partition � of Œn� is even if sgn.n/ D 1, and is odd if sgn.n/ D
�1 [3]. We denote by E˘ 0n (resp. O˘ 0n) the set of all singleton free even (resp. odd)
set partitions of Œn�. Given R � ˘3, let E˘ 0n.R/ (resp. O˘ 0n.R/) be the set of all
singleton free even (resp. odd) set partitions of Œn� that avoid the patterns in R.

The complement �c of a set partition � D B1=B2= � � � =Bk ` Œn�, is the set
partition � D Bc

1=Bc
2= � � � =Bc

k where

Bc
i D fn � a C 1 W a 2 Big:

As mentioned in [3], the sign of � is the same as the sign of �c. Therefore, since
12=3 � 1=23, we obtain the following lemma.

Lemma 1 For n � 1,

#E˘ 0n.12=3/ D #E˘ 0n.1=23/;

#O˘ 0n.12=3/ D #O˘ 0n.1=23/:

We start by considering single restrictions.
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Theorem 7 For n � 1,

E˘ 0n.12=3/ D
(

;; if n is even

f12 � � �ng; if n is odd
;

and

O˘ 0n.12=3/ D
(

;; if n is odd

f12 � � �ng; if n is even
:

Proof By Corollary 2, the set ˘ 0n.12=3/ has only the one block partition 12 � � � n,
which will be even if n is odd, and will be odd otherwise.

Theorem 8 For n � 1,

E˘ 0n.1=2=3/ D
(

f� 2 ˘ 0n W b.�/ D 2g; if n is even

f12 � � �ng; if n is odd
;

#E˘ 0n.1=2=3/ D
(
2n�1 � n � 1; if n is even

1; if n is odd
I

and

O˘ 0n.1=2=3/ D
(

f� 2 ˘ 0n W b.�/ D 2g; if n is odd

f12 � � � ng; if n is even
;

#O˘ 0n.1=2=3/ D
(
2n�1 � n � 1; if n is odd

1; if n is even
:

Proof By Corollary 4, the 2n�1 � n partitions of Œn� that avoid the pattern 1=2=3
are the ones having one or two blocks. As in the previous result, the only partition
12 � � � n with one block is even if n is odd, and is odd otherwise. On the other hand,
if � is one of the 2n�1 � n � 1 partitions of Œn� with two blocks, then it will have the
same parity as n. Thus, the result holds.

Theorem 9 If n is an odd integer then E˘ 0n.123/ D O˘ 0n.123/ D ;.
If n D 2k � 1, then

E˘ 0n.123/ D ˘ 0n.123/ and O˘ 0n.123/ D ;; if k is even

and

O˘ 0n.123/ D ˘ 0n.123/ and E˘ 0n.123/ D ;; if k is odd:

Proof It follows from Corollary 3, since when n D 2k, all perfect matchings of Œn�
have k blocks, and thus its parity is the same of that of k.
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Theorem 10 For n � 1,

E˘ 0n.13=2/ D f� 2 ˘ 0n W � is layered and b.�/ has the parity of ng;
#E˘ 0n.13=2/D 1

2

�
˛n�ˇn

˛�ˇ
	

� 1
2

�
�n�ın

��ı
	
;

where

˛ D 1C p
5

2
; ˇ D 1 � p

5

2
; � D �1

2
C

p
3

2
i; ı D �1

2
�

p
3

2
i

are the roots of the equation x4 C 2x3 C x2 � 1 D 0.

Proof The description of the set E˘ 0n.13=2/ follows from Theorem 6 and the
definitions. For the enumeration part, we start by noticing that

#E˘ 0n.13=2/ D #O˘ 0n�2.13=2/C #O˘ 0n�1.13=2/

since, as in the proof of Theorem 6, any partition � 2 #E˘ 0n.13=2/ is uniquely
obtained from a partition in˘ 0n�2.13=2/, with parity different from n, by adding the
block fn � 1; ng, or from a partition from ˘ 0n�1.13=2/, with parity different from
n, by adding the integer n to the block having the letter n � 1. Therefore, using
Theorem 6 we can write

#E˘ 0n.13=2/ D #O˘ 0n�2.13=2/C #O˘ 0n�1.13=2/

D #˘ 0n�2.13=2/� #E˘ 0n�2.13=2/C #˘ 0n�1.13=2/� #E˘ 0n�1.13=2/

D Fn�3 C Fn�2 � #E˘ 0n�2.13=2/� #E˘ 0n�1.13=2/:

Thus, the sequence formed by the cardinalities an WD #E˘ 0n.13=2/, for n � 0,
satisfies the recurrence relation

an D Fn�3 C Fn�2 � an�2 � an�1; for n � 3 (5)

with the initial conditions a0 D a1 D a2 D 0.
Recalling that F.x/ D x

1 � x � x2
is the generating functions for the Fibonacci

numbers (see [6]), and setting G.x/ D
X
n�0

anxn, from the recurrence (5) we obtain

G.x/ D
X
n�3

.Fn�3 C Fn�2 � an�2 � an�1/ xn

D x3
X
n�0

Fnxn C x2
X
n�1

Fnxn � x2G.x/� xG.x/

D x2.x C 1/F.x/� .x2 C x/G.x/;
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that is, the generating function for the number of partitions in E˘ 0n.13=2/ is

G.x/ D x2.x C 1/

.1� x � x2/.1C x C x2/
:

Let ˛ D 1Cp5
2
; ˇ D 1�p5

2
; � D � 1

2
C
p
3
2

i; ı D � 1
2

�
p
3
2

i be the roots of the
equation .1� x � x2/.1C x C x2/ D 0. By the Binet formula [6], we have

x

1 � x � x2
D
X
n�0

˛n � ˇn

˛ � ˇ xn:

In a similar way, we can write 1C x C x2 D .1 � �x/.1 � ıx/, and thus

x

1C x C x2
D x

.1 � �x/.1 � ıx/
D 1

� � ı
�

1

1 � �x
� 1

1 � ıx
�

D
X
n�0

�n � ın

� � ı xn:

Finally, noticing that

G.x/ D 1

2

� x

1 � x � x2

	
� 1

2

�
x

1C x C x2

�
;

we get the desired result.

The sequence generated by ˘ 0n.13=2/, n � 2, is sequence A093040 in Sloane’
s Encyclopedia [14]. Since the set ˘ 0n.13=2/ is the union of the disjoint sets
E˘ 0n.13=2/ and O˘ 0n.13=2/, from the last theorem we get the analogous result for
singleton free odd set partitions that avoid the pattern 13=2, which corresponds to
sequence A094686 in [14].

Corollary 6 For n � 1,

O˘ 0n.13=2/ D f� 2 ˘ 0n W � is layered and b.�/ has not the parity of ng;

#O˘ 0n.13=2/ D 1

2

�
˛n � ˇn

˛ � ˇ

�
C 1

2

�
�n � ın

� � ı
�
;

where

˛ D 1C p
5

2
; ˇ D 1 � p

5

2
; � D �1

2
C

p
3

2
i; ı D �1

2
�

p
3

2
i

are the roots of the equation x4 C 2x3 C x2 � 1 D 0.
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Table 3 Singleton free even partitions with more than one restriction

R E˘ 0

n.R/ #E˘ 0

n.R/

f12=3; 1=2=3g ; if n is even 0

f12 � � � ng if n is odd 1

{12/3,123} ; 0

{12/3,13/2} ; if n is even 0

f12 � � � ng if n is odd 1

{1/2/3,123} ; if n ¤ 4 0

f12=34; 13=24; 14=23g if nD 4 3

{1/2/3,13/2} f1 � � � i=.iC 1/ � � � n W 2 � i � n� 2g if n is even n� 3
f12 � � � ng if n is odd 1

{123,13/2} f12=34= � � � =.n� 1/ng if n D 2k with k even 1

; otherwise 0

f12=3; 123; �g ; for � D 1=2=3 or � D 13=2 0

f12=3; 1=2=3; 13=2g ; if n is even 0

f12 � � � ng if n is odd 1

{123,1/2/3,13/2} f12=34g if n D 4 1

; if n ¤ 4 0

#R � 4 ; 0

Proof If H.x/ is the generating function for the numbers #O˘ 0n.13=2/, then by the
previous theorem,

H.x/ D F.x/� G.x/ D 1

2

X
n�0

�
˛n � ˇn

˛ � ˇ C �n � ın

� � ı
�

xn;

and the result follows.

We consider next the description and enumeration of the sets E˘ 0n.R/ and
O˘ 0n.R/ where #R � 2 and n � 2. As before, by Lemma 1, we have E˘ 0n.R/ D
E˘ 0n.R n f12=3g/ and O˘ 0n.R/ D O˘ 0n.R n f12=3g/, so we need to consider only
the patterns 12=3; 1=2=3; 123 and 13=2. Tables 3 and 4 give the results for E˘ 0n.R/
and O˘ 0n.R/, n � 2. The proofs are direct consequences of the theorems above.

4 P-Recursion

A sequence .an/n�0 is said to be P-recursive (short for polynomial recursive) if there
exist polynomials p0.x/; p1.x/ : : : ; pd.x/ with pd.x/ ¤ 0, such that

p0.n/an C p1.n/anC1 C � � � C pd.n/anCd D 0;
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Table 4 Singleton free odd partitions with more than one restriction

R O˘ 0

n.R/ #O˘ 0

n.R/

f12=3; 1=2=3g ; if n is odd 0

f12 � � � ng if n is even 1

{12/3,123} ; 0

{12/3,13/2} ; if n is odd 0

f12 � � � ng if n is even 1

{1/2/3,123} ; 0

{1/2/3,13/2} f1 � � � i=.iC 1/ � � � n W 2 � i � n� 2g if n is odd n� 3
f12 � � � ng if n is even 1

{123,13/2} f12=34= � � � =.n� 1/ng if n D 2k with k odd 1

; otherwise 0

T={12/3,1/2/3,13/2} ; if n is odd 0

f12 � � � ng if n is even 1

#R � 3; R ¤ T ; 0

for all n � 0. That is, .an/n�0 satisfies a homogeneous linear recurrence of finite
degree with polynomial coefficients [12]. The above relation defines anCd in terms
of the values of an; anC1; : : : ; anCd�1, provided pd.n/ ¤ 0, and can be used to
compute the sequence of values anCd with relatively low computational cost, for
n large enough. Our objective in this section is to identify the sequences #˘ 0n.�/,
#E˘ 0n.�/ and #O˘ 0n.�/, n � 1, for � ` Œ3�, which are P-recursive.

Closely related with P-recursive sequences is the notion of D-finite (short for
differentiably finite) formal power series [11]. A power series f .x/ is D-finite if there
exist finitely many polynomials p0.x/; p1.x/; : : : ; pm.x/ with pm.x/ ¤ 0 such that

p0.x/f .x/C p1.x/f
.1/.x/C � � � C pm.x/f

.m/.x/ D 0; (6)

where f .i/.x/ D dif=dxi.
An example of a D-finite function is f .x/ D ex, since f .x/� f 0.x/ D 0. Similarly,

any linear combination of series of the form xmeax (m 2 N; a 2 R) is D-finite,
since such series satisfy a linear homogeneous differential equation with constant
coefficients.

The following result, proved by Stanley in [11], was also mentioned in Jungen
[4].

Theorem 11 A sequence .an/n�0 is P-recursive if and only if its ordinary generat-
ing function f .x/ D P

n�0 anxn is D-finite.

Sagan [10] proved the following analogous result for exponential generating
functions.

Theorem 12 A sequence .an/n�0 is P-recursive if and only if its exponential
generating function f .x/ D P

n�0 anxn=nŠ is D-finite.
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A formal power series is said to be algebraic if there exist polynomials p0.x/;
p1.x/; : : : ; pd.x/, not all zero, such that

p0.x/C p1.x/f .x/C � � � C pd.x/f .x/
d D 0: (7)

The smallest positive integer d for which (7) hold is called the degree of f .x/. It is
simple to see that an algebraic power series f .x/ has degree 1 if and only if f .x/ is
rational. The following result asserts that all algebraic power series are D-finite (see
[12]).

Theorem 13 If f .x/ is an algebraic power series then f .x/ is D-finite

The converse of this result is false, since, for instance, the power series f .x/ D ex

is D-finite but not algebraic.
We will also need the following result of Stanley [12].

Theorem 14 If f .x/ and g.x/ are D-finite, then any linear combination af .x/ C
bg.x/ is also D-finite.

If f .x/ is D-finite and g.x/ is algebraic with g.0/ D 0, then the composition
f .g.x// is D-finite.

We start our analysis by showing that #˘ 0n, n � 1, does not form a P-recursive
sequence.

Proposition 2 The sequence #˘ 0n, n � 1, is not P-recursive.

Proof The proof follows essentially the same argument used by Sagan in [10] to
show that #˘n is not P-recursive. By contradiction, assume that the sequence #˘ 0n
is P-recursive. Then, its generating function

F.x/ D eex�1�x;

determined in (4), must be D-finite by Theorem 12, and so it must satisfy Eq. (6) for
some polynomials p0.x/; p1.x/; : : : ; pd.x/. A simple induction shows that the i-th
derivative of F.x/ can be written as

di

dxi
F.x/ D F.x/

�
ai
0 C ai

1e
x C ai

2e
2x C � � � C ai

i�1e.i�1/x C eix
�
;

for some constants ai
j, j D 0; 1; : : : ; i � 1. Thus, taking the derivatives in Eq. (6) and

dividing by F.x/, which is never zero, we get

q0.x/C q1.x/e
x C � � � C qd.x/e

dx D 0;

where

qi.x/ D pi.x/C
dX

kDiC1
ak

i pk.x/:
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Moreover, since the pi.x/ are not all zero, the same is true for the qi.x/. But this
implies that ex is algebraic, a contradiction.

Theorem 15 For any m � 1, the following sequences are P-recursive, for n � 1:

#˘ 0n.12 � � � m/; #˘ 0n.� i
m/; #˘ 0n.1=2= � � �=m/:

Furthermore, for any � ` Œ3�, the sequences #˘ 0n.�/, #E˘ 0n.�/ and #O˘ 0n.�/,
n � 1, are P-recursive.

Proof The exponential generating function for the numbers #˘ 0n.12 � � � m/, n � 1,
is given by F12���m.x/ D exp.expm�1.x/�1�x/. We have already seen that f .x/ D ex

is D-finite, and g.x/ D expm�1.x/� 1� x is algebraic since it is a polynomial. Thus,
by Theorem 14 the composition f .g.x// D F12���m.x/ is D-finite.

The exponential generating functions expm�2.ex �1� x/ and expm�1.ex �1� x/,
respectively, for the numbers #˘ 0n.� i

m/ and #˘ 0n.1=2= � � �=m/, n � 1, are D-finite
since these functions are linear combinations of series of the form xmeax, with m 2 N

and a 2 R, and thus satisfy a linear homogeneous differential equation with constant
coefficients.

Finally, note that by the results of Sects. 2 and 3, the generating functions for
#˘ 0n.�/, #E˘ 0n.�/ and #O˘ 0n.�/, for each � ` Œ3�, are either specifications of the
functions above, or rational functions, and thus are D-finite.

Since the generating functions of all sequences considered are D-finite, we can
use Theorems 11 and 12 to conclude that all these sequences are P-recursive.

5 Gray Codes

A Gray code for a class of combinatorial objects is a list of these objects so that the
transition from one object in the list to its successor takes only a “small change” (see
[13] for a comprehensive survey). The definition of “small change” depends on the
particular class of objects. In our case, we define the distance d.�; !/ between two
partitions �;! of Œn� as the minimum number of letters that must be moved between
blocks of � , possibly creating a new block, so that the resulting partition is !.

If the maximum distance between any two consecutive elements of a Gray code
is k, then we say that the Gray code has distance k.

In this section, we describe Gray codes with distance 2 for the sets ˘ 0n.�/, for
� D 1=2=3; 123; 13=2. The remaining cases � D 12=3 and 1=23 are trivial. We
point out that 2 is the minimum possible distance for a Gray code for these sets.
Except for � D 123, the partition 12 � � � n belongs to ˘ 0n.�/, and therefore, the
distance between 12 � � � n and any other partition must be at least equal to 2. The set
˘ 02n.123/ is formed by perfect matchings, and again in this case, 2 is the minimum
distance between two elements of this set.

We start with the case ˘ 0n.13=2/, for which we need the following definitions.
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Definition 2 Given a singleton free partition � D B1= � � � =Bt of Œn � j�, j D 1; 2,
define the partition �n of Œn� as

�n D
(

B1= � � � =Bt [ fng; if j D 1

B1= � � � =Bt=fn � 1; ng; if j D 2
:

Definition 3 Let � D B1= � � � =Bt�1=Bt and � be layered singleton free partitions of
Œn�. We say that � and � form a good pair if whenever #Bt�1 � 3 and Bt D fn�1; ng,
then Bt�1 [ fn � 1; ng is not a block of � .

Lemma 2 If �; � is a good pair of˘ 0n�j.13=2/ and d.�; �/ � 2 then �n; �n is also
a good pair of ˘ 0n.13=2/ and d.�n; �n/ � 2 , for j D 1; 2.

Proof If �; � is a good pair, it follows from the definitions of good pair and �n that
�n; �n is also a good pair. Assume that d.�; �/ � 2. This means that one or two
integers moved between blocks of � to get !, and the same is true for the partitions
�n and �n. Since �n and �n are obtained from � and � by inserting n is the last
block, or by inserting the block fn � 1; ng, the only non trivial situation to analyze
is when j D 1 and the last block, say Bt D fn � 2; n � 1g, of � vanishes in � .
That is, � D B1= � � �=Bt�1=Bt and � D B1= � � � =Bt�1 [ Bt. In this case, we have
�n D B1= � � � =Bt�1=Bt [ fng and �n D B1= � � �=Bt�1 [ Bt [ fng. But since � and �
form a good pair, we must have Bt�1 D fn � 4; n � 3g, and therefore �n is obtained
from �n by moving the integers n � 4 and n � 3 to the last block. It follows that
d.�n; �n/ D 2.

Note that if we drop the good pair condition in the last lemma, we may have
layered singleton free partitions � and � of Œn � 1� with distance 2 such that the
distance of �n and �n is greater than 2. For instance, d.123=45; 12345/ D 2 but
d.123=456; 123456/D 3.

Theorem 16 For each n � 4 there is a Gray code sequence with distance 2,

�1; �2 : : : ; �s;

for ˘ 0n.13=2/ such that any two consecutive elements are good pairs, �1 D 12 � � � n
and �s D 12 � � � .n � 2/=.n � 1/n.

Proof The list 1234; 12=34 is a good pair and forms a Gray code with distance 2
for˘ 04.13=2/. Assume the result for integers less than n, with n > 4, and let

˛1; : : : ; ˛s and ˇ1; : : : ; ˇt

be Gray codes with distance 2 for˘ 0n�2.13=2/ and˘ 0n�1.13=2/, respectively, in the
conditions of the theorem. Then

ˇn
1 D 12 � � � .n � 1/n;

ˇn
t D 12 � � � .n � 3/=.n � 2/.n � 1/n;
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Table 5 Gray codes for ˘ 0

n.13=2/, n D 2; : : : ; 8

˘ 0

2.13=2/ 12

˘ 0

3.13=2/ 123

˘ 0

4.13=2/ 1234, 12/34

˘ 0

5.13=2/ 12345, 12/345, 123/45

˘ 0

6.13=2/ 123456, 12/3456, 123/456, 12/34/56, 1234/56

˘ 0

7.13=2/ 1234567, 12/34567, 123/4567, 12/34/567, 1234/567, 123/45/67,

12/345/67, 12345/67

˘ 0

8.13=2/ 12345678, 12/345678, 123/45678, 12/34/5678, 1234/5678, 123/45/678,

12/345/678, 12345/678, 1234/56/78, 12/34/56/78, 123/456/78,

12/3456/78, 123456/78

˛n
1 D 12 � � � .n � 2/=.n � 1/n; and

˛n
s D 12 � � � .n � 4/=.n � 3/.n � 2/=.n � 1/n:

Thus, ˇn
t and ˛n

s is a good pair with d.ˇn
t ; ˛

n
s / D 2 and we may use Lemma 2 to

conclude that any other two consecutive partitions of the sequence

ˇn
1 ; : : : ; ˇ

n
t ; ˛

n
s ; : : : ; ˛

n
1 : (8)

form a good pair and have distance less than, or equal to 2. Moreover, from the
construction used in the proof of Theorem 6, we find that this sequence is an
exhaustive list of the elements of ˘ 0n.13=2/. This means that the list (8) is a Gray
code with distance 2 for˘ 0n.13=2/ in the conditions of the theorem (Table 5).

Theorem 17 For each n � 4 there is a Gray code sequence with distance 2 for
˘ 0n.1=2=3/ which starts with 12 � � � n and is followed by 1n=2 � � � .n � 1/.

Proof For n D 4, the list 1234; 14=23; 13=24; 12=34 is a Gray code with distance
2. By induction, assume that

˛0; ˛1; : : : ; ˛t

is a Gray code sequence with distance 2 for˘ 0n�1.1=2=3/, for some n � 1 � 4, with
˛0 D 12 � � � .n � 1/ and ˛1 D 1.n � 1/=23 � � � .n � 2/. Recalling that each partition
in ˘ 0n�1.1=2=3/ has one or two blocks, given ˛ D B1=B2 2 ˘ 0n�1.1=2=3/ define

n˛ D B1 [ fng=B2 and ˛n D B1=B2 [ fng:

For each i D 1; : : : ; n � 1, let ˇi D i n=1 � � � Oi � � � .n � 1/, where Oi means that the
integer i is not in the block, and let L be the sequence of partitions in ˘ 0n.1=2=3/
defined by:

L D 12 � � � n; ˇ1; ˇ2; : : : ; ˇn�1; ˛n
1 ; ˛

n
2 ; : : : ; ˛

n
t ;

n˛t; : : : ;
n˛2;

n˛1:
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Table 6 Gray codes for ˘ 0

n.1=2=3/, n D 2; 3; 4; 5; 6

˘ 0

2.1=2=3/ 12

˘ 0

3.1=2=3/ 123

˘ 0

4.1=2=3/ 1234, 14/23, 24/13, 12/34

˘ 0

5.1=2=3/ 12345, 15/234, 25/134, 35/124, 45/123, 14/235, 24/135, 12/345, 125/34,

245/13, 145/23

˘ 0

6.1=2=3/ 123456, 16/2345, 26/1345, 36/1245, 46/1235, 56/1234, 15/2346, 25/1346,

35/1246, 45/1236, 14/2356, 24/1356, 12/3456, 125/346, 245/136, 145/236,

1456/23, 2456/13, 1256/34, 126/345, 246/135, 146/235, 456/123, 356/124,

256/134, 156/234

It is clear from the definitions that each consecutive partitions in L have distance 2.
Moreover, note that by Corollary 4, the number of elements in L is

#L D 2
�
#˘ 0n�1.1=2=3/� 1

�C n

D 2
�
2n�2 � .n � 1/� 1

�C n

D 2n�1 � n:

That is, L is an exhaustive list of the elements in˘ 0n.1=2=3/, and therefore is a Gray
code sequence with distance 2 for˘ 0n.1=2=3/ (Table 6).

In the next theorem we construct a Gray code with distance 2 for the perfect
matchings of Œ2k�, that is, for the set˘ 02k.123/, k � 2. The next lemma, whose proof
is clear from the definitions, characterizes perfect matchings with distance 2.

Lemma 3 Two perfect matchings of Œ2k� have distance 2 if and only if all but two
of their blocks are equal.

Let ˛ D B1= � � � =Bk�1 be a perfect matching of Œn� with n D 2.k � 1/, written in
standard form. For each j D 1; : : : ; k � 1 let Bj D fa; bg with a < b, and define

˛0 D B1= � � �=Bj= � � �=Bk�1=fn � 1; ng;
˛j1 D B1= � � �=Bj�1=fa; ng=BjC1= � � � =Bk�1=fb; n � 1g; and

˛j2 D B1= � � �=Bj�1=fb; ng=BjC1= � � � =Bk�1=fa; n � 1g:

Lemma 4 Let ˛ and ˛1 be two perfect matchings of Œ2.k � 1/� with distance 2, and
j 2 Œk � 1�. Then,

1. d.˛0; ˛01/ D 2;
2. d.˛0; ˛j`/ D 2, for ` D 1; 2;
3. d.˛j1; ˛j2/ D 2;
4. d.˛j`; ˛

j`
1 / D 2 for ` D 1; 2.
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Proof The first three conditions are clear since all but two of the blocks of each of
the pairs of partitions ˛0; ˛01 , ˛0; ˛j` and ˛j1; ˛j2 are equal.

Let ˛ D B1= � � �=Bk�1 and ˛1 D B01= � � �=B0k�1 be perfect matchings of Œ2.k�1/�,
written in standard form and such that d.˛; ˛1/ D 2. Let n D 2.k � 1/, j 2 Œk � 1�

and assume that Bj D fa; bg, with a < b, so that

˛j1 D B=fa; ng=fc; dg=fb; n �1g and ˛j2 D B=fb; ng=fc; dg=fa; n �1g; (9)

where B D B1= � � � = OBj= � � � = OBq= � � �=Bk�1. Since the distance between ˛ and ˛1 is 2,
there must be a block Bq D fc; dg of ˛, with c < d, and two integers j0; q0 2 Œk � 1�

such that B0̀ D B` for ` ¤ j0; q0, and either

B0j0 D fa; cg and B0q0 D fb; dg or B0j0 D fa; dg and B0q0 D fb; cg:

Now, if Bj D B0j, then it is clear that d.˛j`; ˛
j`
1 / D 2 since all but two of the blocks

of these partitions are equal, for ` D 1; 2. So, assume that Bj ¤ B0j. We have two
cases to consider: a < c or c < a. We consider only the case a < c, the other case
being analogous. Then, we have j < q and j0 < q0, and this implies that

B0j D B0j0 D fa; cg and B0q0 D fb; dg or B0j D B0j0 D fa; dg and B0q0 D fb; cg:

In the first case we have

˛
j1
1 D B=fa; ng=fb; dg=fc; n � 1g and ˛j2

1 D B=fc; ng=fb; dg=fa; n � 1g;

and in the second

˛
j1
1 D B=fa; ng=fb; cg=fd; n � 1g and ˛j2

1 D B=fd; ng=fb; cg=fa; n � 1g:

In both cases, comparing the expressions of ˛j` given in (9) with that of ˛j`
1 , for

` D 1; 2, we conclude that their distance is 2.

Theorem 18 For each integer k � 1, there is a Gray code sequence for ˘ 02k.123/

with distance 2.

Proof The proof is by induction on k � 1. For k D 1 and k D 2, the lists 12
and 12=34; 13=24; 14=23 are Gray codes with distance 2. Assume the result for
k � 1 � 2, and let

Lk�1 D ˛1; ˛2; : : : ; ˛s;

be a Gray code sequence for˘ 02.k�1/.123/ with distance 2, where s D .2k � 3/ŠŠ by
Corollary 3.
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Table 7 Gray codes for ˘ 0

n.123/, n D 2; 4; 6

˘ 0

2.123/ 12

˘ 0

4.123/ 12/34, 13/24, 14/23

˘ 0

6.123/ 12/34/56, 16/34/25, 26/34/15, 36/24/15, 46/23/15, 16/23/45,

16/24/35, 13/24/56, 13/26/45, 12/36/45, 12/46/35, 13/46/25,

14/36/25, 14/26/35, 14/23/45

For each i D 1; : : : ; k � 1, let Ri be the list of all 2s partitions ˛i`
j , j D 1; : : : ; s

and ` D 1; 2, starting with ˛i1
i and ending in ˛i1

iC1, defined by:

Ri D ˛i1
i ; ˛

i1
i�1; : : : ; ˛i1

1 ; ˛
i2
1 ; ˛

i2
2 ; : : : ; ˛

i2
s ; ˛

i1
s ; ˛

i1
s�1; : : : ; ˛i1

iC1:

Finally, let

Lk D ˛01; R1; ˛
0
2 R2; : : : ; ˛

0
k�1; Rk�1; ˛0k ; ˛0kC1; : : : ; ˛0s :

By construction, all partitions in Lk are perfect matchings and, by Lemma 4, any
two consecutive partitions in Lk are distinct and have distance 2. Moreover, the list
Lk exhausts all elements of �2k.123/, since its cardinal is given by

#Lk D s C .k � 1/2s

D .2k � 3/ŠŠC .k � 1/2 ..2k � 3/ŠŠ/
D .1C 2k � 2/..2k � 3/ŠŠ/
D .2k � 1/ŠŠ

Therefore, Lk is a Gray code with distance 2 for˘ 02k.123/ (Table 7).
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Some Results on the Krein Parameters
of an Association Scheme

Vasco Moço Mano, Enide Andrade Martins, and Luís Almeida Vieira

Abstract We consider association schemes with d classes and the underlying
Bose-Mesner algebra, A . Then, by taking into account the relationship between
the Hadamard and the Kronecker products of matrices and making use of some
matrix techniques over the idempotents of the unique basis of minimal orthogonal
idempotents of A , we prove some results over the Krein parameters of an
association scheme.

1 Introduction

The concept of association scheme was defined by Bose and Shimamoto in 1952,
[4], and constitutes a powerful algebra and combinatorics tool that has a wide range
of applications from statistics, [2, 4], combinatorial designs, [2–4], coding theory,
[6], group theory, [8, 9], or character theory, [7]. One can observe an association
scheme with d classes as a general and more complex combinatorial structure.
In fact, each relation of an association scheme corresponds to an undirected graph
and, as a particular example, an association scheme with just two classes is
equivalent to a strongly regular graph and its complement.

In this work we consider association schemes with d classes and the correspond-
ing Bose-Mesner algebra, A , that is the algebra spanned by the matrices of the
association scheme, as well as the unique basis of minimal orthogonal idempotents
fE0; : : : ;Edg associated to A . We consider some special sums and products of these
idempotents to prove some results over the Krein parameters of the association
scheme.

This paper is organized as follows. In Sect. 2 the theory of association schemes
is surveyed, while in Sect. 3 we present some important notation and matrix theory
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results. Then, in Sect. 4, we prove some results over the Krein parameters of an
association scheme, namely a new upper bound for some of the Krein parameters.
We finish the paper with two examples of association schemes which proves the
optimality of our bound (Sect. 5).

2 Association Schemes and the Bose-Mesner Algebra

In this section we present relevant concepts for our work which can be seen, for
instance, in [1].

An association scheme with d associate classes on a finite set X is a partition of
X � X into sets R0;R1; : : : ;Rd, that are relations on X such that

.i/ R0 D f.x; x/ W x 2 Xg;
.ii/ if .x; y/ 2 Ri, then .y; x/ 2 Ri, for all x; y in X and i in f0; 1; : : : ; dg;
.iii/ for all i; j; l in f0; 1; : : : ; dg there is an integer pl

ij such that, for all .x; y/ in Rl

ˇ̌fz 2 X W .x; z/ 2 Ri and .z; y/ 2 Rjg
ˇ̌ D pl

ij:

The numbers pl
ij are called the intersection numbers of the association scheme. In the

case we have .x; y/ 2 Ri, the elements x and y of X are called i-th associates. It is
usual to observe the intersection numbers as the entries of the so called intersection
matrices L0;L1; : : : ;Ld, with .Li/lj D pl

ij, where L0 D In.
The definition presented above is due to Bose and Shimamoto, [4], and by axiom

.ii/ the relations Ri are all symmetric. This is why an association scheme defined in
this way is normally called symmetric. A more general definition can be seen in [6].
Along this text we will only consider symmetric association schemes.

The associate classes R0;R1; : : : ;Rd of a symmetric association scheme can be
described by their adjacency matrices A0;A1; : : : ;Ad, where each Ai is a matrix of
order n defined by .Ai/xy D 1, if .x; y/ 2 Ri, and .Ai/xy D 0, otherwise. We also
have

.a/ A0 D In;

.b/
Pd

iD0 Ai D Jn;
.c/ Ai D A>i , 8i 2 f0; 1; : : : ; dg;
.d/ AiAj D Pd

lD0 pl
ijAl, 8i; j 2 f0; 1; : : : ; dg;

where In and Jn are the identity and the all ones matrices of order n, respectively, and
A> denotes the transpose of A. Note that equality .b/ implies that the matrices Ai,
i 2 0; 1; : : : ; d, are linearly independent. It is also well known (see [1, Lemma 1.3])
that the symmetry of the scheme asserts that pl

ij D pl
ji and thus AiAj D AjAi, for all

i; j 2 f0; 1; : : : ; dg.
We can acknowledge A1;A2; : : : ;Ad as adjacency matrices of undirected simple

graphs G1;G2; : : : ;Gd, with common vertex set V . Two vertices u and v of V are
i-related if uv is an edge in Gi, for i 2 f1; 2; : : : ; dg.
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The simpler association schemes are those with only one class. It corresponds
to A0 D In and A1 D Jn � In. Since G1 is the complete graph this situation is out
of interest. The next simpler case regards symmetric association schemes with two
classes which is equivalent to strongly regular graphs. In fact, we have A0 D In,
A1, A2 D Jn � A1 � In, where A1 and A2 correspond to the adjacency matrices
of a strongly regular graph and it’s complement, respectively. Conversely, if A is
the adjacency matrix of a strongly regular graph, then In;A; Jn � A � In form an
association scheme with two classes.

The matrices A0;A1; : : : ;Ad of a symmetric association scheme generate a
commutative algebra, A , with dimension dC1, of symmetric matrices with constant
diagonal. This algebra is called the Bose-Mesner algebra of the scheme because it
was firstly studied by these two mathematicians in [3]. Note that A is an algebra
with respect to the usual matrix product as well as to the Hadamard (or Schur)
product, defined for two matrices A, B of order n as the componentwise product:
.A ı B/ij D AijBij. The algebra A is commutative and associative relatively to this
product with unit Jn.

An element E in A is an idempotent if E2 D E. Two idempotents E and F in
A are orthogonal if EF D 0. The Bose-Mesner algebra A has a unique basis of
minimal orthogonal idempotents fE0; : : : ;Edg such that

EiEj D ıijEi;

dX
iD0

Ei D In;

where ıij D 1, if i D j and ıij D 0, otherwise, for any i; j natural numbers. Let A
be an association scheme with d classes. If Aj 2 A , j 2 f0; 1; : : : ; dg has d C 1

distinct eigenvalues, namely �0; �1; : : : ; �d, the idempotents Ei can be obtained as
the projectors associated to the matrix Aj through the equality:

Ei D
dY

lD0;l¤i

Aj � �lIn

�i � �l
: (1)

Besides the intersection numbers already introduced in the beginning of the
section each association scheme contains three more families of parameters: the
eigenvalues, the dual eigenvalues and the Krein parameters. In fact, there are scalars
pi.j/ and qi.j/ such that, for all i 2 0; 1; : : : ; d, we have

Ai D
dX

jD0
pi.j/Ej and (2)

Ei D
dX

jD0
qi.j/Aj; (3)
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where the numbers pi.j/ and qi.j/ are the eigenvalues and the dual eigenvalues of
the scheme, respectively. We also define the eigenmatrix, P D .Pij/, and the dual
eigenmatrix, Q D .Qij/, each with dimension .d C 1/ � .d C 1/, as Pij D pj.i/
and Qij D qj.i/, respectively. From (2) and (3) one can deduce that PQ D In. As a
consequence, the dual eigenvalues are determined by the eigenvalues of A .

Finally, the Krein parameters discovered by Scott [13], of an association scheme
with d classes are the numbers ql

ij, with i; j; l 2 f0; 1; : : : ; dg, such that

Ei ı Ej D
dX

lD0
ql

ijEl:

These parameters can be seen as dual parameters of the intersection numbers and
they are determined by the eigenvalues of the scheme. The Krein parameters of
an association scheme with d classes can also be considered as the entries of the
matrices L�0 ;L�1 ; : : : ;L�d , such that .L�i /lj D ql

ij, which are called the dual intersection
matrices of the scheme.

3 Matrix Tools

In this section we introduce some notation and some Matrix Theory results that are
used in our work in Sect. 4.

We denote by Mn.R/ the space of n dimensional square matrices with real
entries and by Mm;n.R/ the space of m � n matrices with real entries. The space of
hermitian matrices with complex entries and dimension n is denoted by Hermn.C/

and Symn.R/ denotes the space of n dimensional real symmetric matrices. Besides
the Hadamard product already introduced in Sect. 2, we denote by ˝ the Kronecker
product, for matrices C D Œcij� 2 Mm;n.R/ and D D Œdij� 2 Mp;q.R/, defined by

C ˝ D D

0
B@

c11D � � � c1nD
:::

: : :
:::

cm1D � � � cmnD

1
CA :

The next result is of central importance in the proof of our results. For B 2 Symn.R/,
we denote the eigenvalues of B in increasing order by �1.B/ � �2.B/ � � � � �
�n.B/.

Theorem 1 ([10, Eigenvalues Interlacing Theorem]) Let A 2 Symn.R/ and Ar

denote any principal submatrix of A. Then, the eigenvalues of Ar interlace those of
A in the sense that:

�i.A/ � �i.Ar/ � �n�rCi.A/;

for each 1 � i � r.
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Note that Ar is obtained by deleting n � r rows and the corresponding columns
from A.

The next result shows that A ı B is a principal submatrix of A ˝ B. Note that
A.˛; ˇ/ denotes a submatrix of A 2 Mm;n.R/ determined by some index sets ˛
and ˇ.

Lemma 1 ([11, Lemma 5.1.1]) If A;B 2 Mm;n.R/, then

A ı B D .A ˝ B/ .˛; ˇ/

in which ˛ D f1;m C 2; 2m C 3; : : : ;m2g and ˇ D f1; n C 2; 2n C 3; : : : ; n2g. In
particular, if m D n, A ı B is a principal submatrix of A ˝ B.

By Lemma 1 and since the eigenvalues of A ˝ B are the product between the
eigenvalues of A with the eigenvalues of B, we have the following corollary of
Theorem 1, (see [11]).

Corollary 1 If A;B 2 Hermn.C/ .Sym.n;R//, then:

.i/ �min.A ı B/ � �min.A/�min.B/;
.ii/ �max.A ı B/ � �max.A/�max.B/;

where �min.X/ and �max.X/ denote the least eigenvalue and the greatest eigenvalue
of the matrix X, respectively.

4 Some Results on the Krein Parameters of an Association
Scheme

In this section we make use of the tools presented in Sect. 3 to prove some results
over the Krein parameters of an association scheme.

The following result establishes a formula for the calculation of the Krein
parameters of an association scheme.

Proposition 1 Consider an association scheme with d classes and let j; k; l 2
f0; 1; : : : ; dg. Then

ql
j k D

dX
mD0

QmjQmkPlm; (4)

with P and Q the eigenmatrix and the dual eigenmatrix of the association scheme,
respectively.

Proof Let fA0;A1; : : : ;Adg be an association scheme with d classes, P and Q
the eigenmatrix and the dual eigenmatrix of the association scheme, respectively,
and fE0;E1; : : : ;Edg the unique basis of minimal orthogonal idempotents of the
underlying Bose-Mesner algebra A .
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Let j; k; l 2 f0; 1; : : : ; dg: We have Ej D Pd
iD0 QijAi and Ek D Pd

iD0 QikAi:

Therefore,

Ej ı Ek D
dX

iD0
QijQikAi:

Also, we have the equality

Ej ı EkEl D
dX

iD0
QijQikAiEl:

From (2), we conclude that AiEl D PliEl: Thus

Ej ı EkEl D
dX

iD0
QijQikPliEl: (5)

Since, Ej ı Ek D Pd
iD0 qi

j kEi, we have ql
j kEl D Ej ı EkEl. Therefore, from (5), we

have

ql
j k D

dX
iD0

QijQikPli:

ut
Making use of the entries of the matrices P and Q, the formula given by equality (4)
allow us to easily calculate the Krein parameters of an association scheme.
Furthermore, the Krein parameters of an association scheme satisfy the following
results.

Theorem 2 The Krein parameters of an association scheme with d classes satisfy
the following properties.

1. For l 2 f0; 1; : : : ; dg the following equality holds:

X
0�i;j�d

ql
ij D 1: (6)

2. For l; r 2 f0; 1; : : : ; dg, we have

X
0�i�r�1
r�j�d

ql
ij � 1

2
: (7)
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Proof Consider an association scheme with d classes, the underlying Bose-Mesner
algebra, A , and fE0;E1; : : : ;Edg the unique basis of minimal orthogonal idempo-
tents of A .

1. From equality

 
dX

iD0
Ei

!
ı
0
@ dX

jD0
Ej

1
A D In;

we conclude that, for l 2 f0; 1; : : : ; dg,

dX
jD0

 
dX

iD0
Ei ı Ej

!
El D El;

from which (6) naturally arises.
2. Let r 2 f1; 2; : : : ; dg and B be the following matrix

B D .E0 C E1 C � � � C Er�1/˝ .Er C ErC1 C � � � C Ed/

C .Er C ErC1 C � � � C Ed/˝ .E0 C E1 C � � � C Er�1/:

Since B is an idempotent matrix its eigenvalues belong to the set f0; 1g. By
Lemma 1, we observe that matrix B has a principal submatrix, C, given by

C D .E0 C E1 C � � � C Er�1/ ı .Er C ErC1 C � � � C Ed/

C .Er C ErC1 C � � � C Ed/ ı .E0 C E1 C � � � C Er�1/;

and since the Hadamard product is commutative, C is given simply by

C D 2.E0 C E1 C � � � C Er�1/ ı .Er C ErC1 C � � � C Ed/:

Now, applying Theorem 1, we conclude that, for l 2 f0; 1; : : : ; dg,

0 � 2
X

0�i�r�1
r�j�d

ql
ij � 1

and inequality (7) follows immediately.
ut

The following result is a consequence of Theorem 2.
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Corollary 2 For each l 2 f0; 1; : : : ; dg, the Krein parameters of an association
scheme with d classes satisfy the following properties:

1.
dX

iD0
ql

ii � 1;

2. min
i2f0;:::;dg

fql
iig � 1

d C 1
.

Our last result establishes a new upper bound for some of the Krein parameters
of an association scheme.

Theorem 3 If l; i; j 2 f0; 1; : : : ; dg, i ¤ j, then

ql
ij � 1

2
:

Furthermore, if there exists an i 2 f0; 1; : : : ; dg, i ¤ j, such that ql
ii ¤ 0, then the

inequality presented is strict.

Proof Consider an association scheme with d classes, the underlying Bose-Mesner
algebra, A , and fE0;E1; : : : ;Edg the unique basis of minimal orthogonal idempo-
tents of A .

Let i; j 2 f0; 1; : : : ; dg. The matrix

B D
X
0�r�d

r¤j

.Er ˝ Er/C Ei ˝ Ej C Ej ˝ Ei

is an idempotent matrix which has a principal submatrix, C, given by

C D
X
0�r�d

r¤j

.Er ı Er/C Ei ı Ej C Ej ı Ei;

(see Lemma 1). For each l 2 f0; 1; : : : ; dg we also have that

2
664
X
0�r�d

r¤j

.Er ı Er/C Ei ı Ej C Ej ı Ei

3
775El

D
X
0�r�d

r¤j

Œ.Er ı Er/El�C
�
Ei ı Ej

�
El C �

Ej ı Ei
�

El

D
X
0�r�d

r¤j

�
ql

rrEl
�C ql

ijEl C ql
ijEl:
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Since the eigenvalues of an idempotent matrix are either 0 or 1, by Theorem 1, the
eigenvalues of C are bounded by 0 and 1 and therefore, for each l 2 f0; 1; : : : ; dg
we have

0 �
X
0�r�d

r¤j

�
ql

rr

�C 2ql
ij � 1: (8)

By property .1:/ of Corollary 2, from (8), we conclude the statements of Theorem 3.
ut

5 Some Examples

In this section we present two examples for our upper bound of the Krein parameters
of an association scheme. The first example is based on the notation presented in the
paper [5].

Example 1 Let n be an even natural number and Ui;j 2 Mn.R/ be the matrices
defined by

�
Ui;j
�

pq
D ıipıjq, for i; j; p; q 2 f1; 2; : : : ; ng. Let m D n

2
C 1. Now we

consider the family of matrices F D fBigi2f1;:::;mg such that:

• B1 D In;
• Br D Pn

lDr Ul;l�rC1 CPn
lDr Ul�rC1;l CPr�1

lD1 Un�rC1Cl;l CPr�1
lD1 Ul;n�rC1Cl, r D

2; : : : ;m;
• Bm D Pm�1

lD1 Un�mC1Cl;l CPm�1
lD1 Ul;n�mC1Cl.

From the definition, the matrices Aj, j 2 f2; : : : ;mg are symmetric matrices and
have null diagonal elements.

For i D 0; 1; : : : ; n � 1, let the matrices Ci be defined by the formula

.Ci/pq D


1 if q D p ˚n i;
0 if q ¤ p ˚n i

;

where ˚n denotes the sum modulo n. Then we have that the matrices Bj, for j 2
f2; : : : ;mg, are given by:

B1 D C0I
Bj D Cj�1 C Cn�jC1; j 2 f2; : : : ;m � 1gI

Bm D Cm�1:

Since the matrices Ci are commutative, then the family F D fBigi2f1;:::;mg is also
commutative.
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Now we construct the following association scheme with two classes A D
fA0;A1;A2g where:

A0 D InI

A1 D
m�1X
iD2

BiI

A2 D Jn � A1 � InI

where Jn is the all ones matrix. The minimal polynomial of A1 is given by

p.�/ D �.�C 2/.� � n C 2/;

since A1 is the adjacency matrix of a strongly regular graph with parameters .n; n �
2; n � 4; n � 2/ and eigenvalues 0, �2 and n � 2 (for detailed information on the
parameters and the eigenvalues of a strongly regular graph see [12]).

From equality (1) with j D 1 and since A21 D .n�2/In C .n�2/A1C .n�4/.Jn �
A1 � In/, then the unique basis of minimal idempotents of A is the set fE0;E1;E2g
such that

E0 D 1

n
JnI

E1 D 1

2
In � 1

2
.Jn � A1 � In/ I

E2 D n � 2

2n
In � 1

n
A1 C n � 2

2n
.Jn � A1 � In/ :

Then the Krein parameter q112 can be written as

q112 D n � 2
2n

;

which converges to 1=2 when n tends to infinity.

Since the association schemes of two classes are particular cases of association
schemes, we may conclude, from Example 1 that the upper bound 1=2 for the Krein
parameters ql

ij, for i ¤ j, in Theorem 3, is optimal for an association scheme with
any number of classes.
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In our final example we present a family of association schemes with three
classes constructed from symmetric designs. This family has an infinite number
of elements and it is presented and studied in [14], where the following definition
can be seen.

Let P be a set of points and B be a set of blocks, where a block is a subset of
P . Then, the ordered pair .P;B/ is a symmetric design with parameters .n; k; c/,
with c < k, if it satisfies the following properties:

.i/ B is a subset of the power set of P;
.ii/ jPj D jBj D n;
.iii/ 8b 2 B, jbj D k;
.iv/ 8p 2 P , jfb 2 B W p 2 bgj D k;
.v/ 8p1; p2 2 P , p1 ¤ p2, jfb 2 B W p1; p2 2 bgj D c;
.vi/ 8b1; b2 2 B, b1 ¤ b2, jfp 2 P W p 2 b1 ^ p 2 b2gj D c.

Example 2 Given a symmetric design with parameters .n; k; c/, we build a three
class association scheme, as in [14], in the following manner. Let X D P [ B.
We define the following relations in X � X:

R0 D f.x; x/ W x 2 XgI
R1 D f.x; y/ 2 P � B W x 2 yg [ f.y; x/ 2 B � P W x 2 ygI
R2 D f.x; y/ 2 P � P W x ¤ yg [ f.x; y/ 2 B � B W x ¤ ygI
R3 D f.x; y/ 2 P � B W x … yg [ f.y; x/ 2 B � P W x … yg:

Through the axioms .i/ � .vi/ of a symmetric design it is proved that R0;R1;R2;R3
constitute an association scheme with three classes over X. From the relations
above we compute the intersection matrices of the association scheme, given by
L0 D I4,

L1 D

0
BB@
0 k 0 0

1 0 k � 1 0

0 c 0 k � c
0 0 k 0

1
CCA ; L2 D

0
BB@
0 0 n � 1 0

0 k � 1 0 n � k
1 0 n � 2 0

0 k 0 n � k � 1

1
CCA ;

L3 D

0
BB@
0 0 0 n � k
0 0 n � k 0

0 k � c 0 n � 2k C c
1 0 n � k � 1 0

1
CCA :
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Now, using axioms .a/ � .d/ of the matrices of the Bose-Mesner algebra, A D
fA0;A1;A2;A3g, we obtain their multiplication table.

� A0 A1 A2 A3
A0 A0 A1 A2 A3
A1 A1 kA0 C cA2 .k � 1/A1 C kA3 .k � c/A2
A2 A2 .k � 1/A1 C kA3 .n � 1/A0 C .n � 2/A2 .n � k/A1 C .n � k � 1/A3
A3 A3 .k � c/A2 .n � k/A1 C .n � k � 1/A3 .n � k/A0 C .n � 2k C c/A2

Making use of the multiplication table of the matrices of A , we can calculate the
powers of A1 to obtain the following polynomial:

pA1.�/ D �4 C .�k2 � k C c/�2 C k2.k � c/; (9)

such that pA1.A1/ D On, where On denotes the n dimensional null matrix. Then
A1 has four distinct eigenvalues and therefore the least natural number such that
the set fIn;A1;A21; : : : ;A

k
1g is linear dependent is 4. Then, we conclude that the

polynomial (9) is the minimal polynomial of A1.
Applying formula (1) in order to matrix A1, considering the eigenvalues of the

polynomial (9), �0 D k, �1 D �k, �2 D p
k � c and �3 D �p

k � c, and taking
into account the equality

.n � 1/c D k.k � 1/; (10)

satisfied by these symmetric designs with parameters .n; k; c/, see [12], we obtain
the elements of the unique basis of minimal orthogonal idempotents of A :

E0 D A0 C A1 C A2 C A3
2n

D Jn

2n
I

E1 D A0 � A1 C A2 � A3
2n

I

E2 D .n � 1/pk � cA0 C .n � k/A1 � p
k � cA2 � kA3

2n
p

k � c
I

E3 D .n � 1/pk � cA0 � .n � k/A1 � p
k � cA2 C kA3

2n
p

k � c
:

Now we apply equalities (2) and (3) to compute the matrices P and Q, respectively:

P D

0
BB@
1 k n � 1 n � k
1 �k n � 1 k � n
1

p
k � c �1 �p

k � c
1 �p

k � c �1 p
k � c

1
CCA ; Q D 1

2n

0
BBB@

1 1 n � 1 n � 1

1 �1 � k�np
k�c

k�np
k�c

1 1 �1 �1
1 �1 � kp

k�c
kp
k�c

1
CCCA :
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Finally, we obtain the dual intersection matrices of this association scheme by
applying formula (4) from Proposition 1 and taking into account equality (10):
L�0 D I4=2n,

L�1 D 1

2n

0
BB@
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1
CCA ;

L�2 D 1

2n

0
BBB@

0 0 n � 1 0

0 0 0 n � 1

1 0 n�2
2

C n�2k
2
p

k�c
n�2
2

� n�2k
2
p

k�c

0 1 n�2
2

� n�2k
2
p

k�c
n�2
2

C n�2k
2
p

k�c

1
CCCA ;

L�3 D 1

2n

0
BBB@

0 0 0 n � 1
0 0 n � 1 0

0 1 n�2
2

� n�2k
2
p

k�c
n�2
2

C n�2k
2
p

k�c

1 0 n�2
2

C n�2k
2
p

k�c
n�2
2

� n�2k
2
p

k�c

1
CCCA :

From the dual intersection matrices presented above, it is possible to extract some
evidence of the optimality of the upper bound 1=2, for the Krein parameters ql

ij, with
i ¤ j, presented in Theorem 3. In fact, we can observe that

q023 D .L�2 /03 D n � 1

2n

and this value converges to 1=2, when n tends to infinity.

With these two examples we show that the upper bound presented in Theorem 3,
for the Krein parameters ql

ij, with i ¤ j of any association scheme, is optimal and
cannot be improved in the general case.
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A Periodic Bivariate Integer-Valued
Autoregressive Model

Magda Monteiro, Manuel G. Scotto, and Isabel Pereira

Abstract In this paper, a bivariate integer-valued autoregressive model with peri-
odic structure is introduced and studied in some detail. The model can be view as a
generalization of the one considered in Pedeli and Karlis (Stat. Model. 11:325–349,
2011). Emphasis is placed on models with periodic bivariate Poisson innovations.
Basic probabilistic and statistical properties of the model are discussed as well as
parameter estimation and forecasting. The proposed model is applied to a bivariate
data series concerning the monthly number of fires in neighbor counties, Aveiro and
Coimbra, in Portugal.

1 Introduction

Periodically correlated processes play an important role in the analysis of a variety
of data sets drawn from different areas such as economy [5, 6, 8], hydrology [19–
22], and signal processing [7] just to mention a few. Further examples can be
viewed in [10, 13] and the references therein. It is worth to mention that a large
part of the literature on this topic is devoted to the continuous-valued Periodic
AutoRegressive Moving Average (PARMA) models which are extensions of the
commonly used ARMA models, having parameters which vary periodically in
time. In contrast, however, the analysis of (univariate) periodically correlated time
series of counts has not received much attention in the literature. The work in [13]
introduced the periodic integer-valued autoregressive model of order one driven by a
periodic sequence of independent Poisson-distributed random variables. The authors
analyzed basic probabilistic and statistical properties of this models, namely the
existence and uniqueness of a periodically stationary and causal process, its second-
order structure, and issues related with parameter estimation. An application of the
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model proposed by [13] for the analysis of the number of hospital admissions per
week caused by influenza can be found in [14]. In [9] was introduced a general
class of periodic non-negative integer-valued moving average processes driven by a
sequence of periodic integer-valued random variables with regularly varying tails.
The authors analyzed some extremal properties related with this class of processes.

A related important problem which has not been addressed yet is the development
of the bivariate integer-valued autoregressive model with periodic structure. This
work aims at giving a contribution towards this direction. Many phenomena have
in their essence a periodic structure and there are several potential applications
for this class of models. For instance, they can be applied in the environmental
area, to model the monthly number of fires in neighbor counties (see Fig. 6); in
epidemiological area, in the analysis of monthly (or daily) number of infections
of different diseases related to each other, or in economy through the analysis of
the monthly number of short term unemployed and long term unemployed or the
monthly number of arrival flights and departure flights from an airport.

The literature on bivariate (and also multivariate) time series models for counts
based on thinning operators is still in its infancy. An important contribution was
made by Franke and Subba Rao in [4] who introduced the multivariate integer-
valued autoregressive (MINAR) model of order one based on the binomial thinning
operator, while a multivariate generalized INAR of order p was proposed by
Latour in [12] in which matrices operate on vectors using the generalized thinning
operator. More recently, Pedeli and Karlis introduced, in [15], the bivariate INAR
(BINAR) model of order one with bivariate Poisson and bivariate negative binomial
innovations. Pedeli and Karlis’s model is defined as

Xt D A ı Xt�1 C Zt 	
�
˛1 0

0 ˛2

�
ı
�

X1;t�1
X2;t�1

�
C
�

Z1;t
Z2;t

�
; t 2 ZZ; (1)

where the (binomial) thinning operator “ı” is defined as ˛j ı Xj
dD PXj

iD1 Ui.˛j/,
being Ui.˛j/, for i D 1; : : : ;Xj, i.i.d. Bernoulli random variables with success
probability ˛j 2 Œ0; 1�, for j D 1; 2. Furthermore, the authors assumed that all
thinning operations are performed independently of each other and of .Zt/ 	 .Zt W
t 2 IN/ and that the thinning operations at each time t and Zt are independent of .Xs/

for s < t. Moreover, .Z1;t;Z2;t/ are assumed to be independent IN2-valued random
pairs. The authors illustrated the performance of the BINAR.1/ model through an
empirical application to the joint modeling of the number of daytime and nighttime
road accidents in the Netherlands for the year 2001. It is important to refer that in
Pedeli and Karlis’ model the autoregression matrix A is diagonal which means that
there is no cross-autocorrelation in the counts; see also [16] for further details. A
bivariate INAR model that accounts for cross-autocorrelation in the counts has been
recently proposed by Boudreault and Charpentier in [2]. In order to also account
for negative correlation between the time series, Karlis and Pedeli introduced in
[11] a family of bivariate INAR.1/ processes where negative cross-correlation
is introduced through the innovations in terms of appropriate bivariate copulas.
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Extensions for bivariate INAR.1/ models with positively correlated geometric
marginals can be found in [18]. Bivariate INMA models based on the binomial
thinning operator and non cross-autocorrelation in the count were proposed by
Quoreshi, in [17] and by Brännäs and Quoreshi [3] who report an application to
the number of transactions in intra-day data of stock.

In this work, the model proposed by Pedeli and Karlis, in [15], is generalized
by assuming periodic time-varying parameters and periodic bivariate sequences of
innovations, i.e., expression (1) takes the form

Xt D At ı Xt�1 C Zt 	
�
�1;t 0

0 �2;t

�
ı
�

X1;t�1
X2;t�1

�
C
�

Z1;t
Z2;t

�
; t 2 ZZ (2)

with �j;t D ˛j;i, for t D i C kT .i D 1; : : : ;T/, j D 1; 2, and k 2 IN0. In this
framework, the thinning operator is defined as

�j;t ı Xj;t�1
dD

Xj;t�1X
iD1

Ui;t.�j;t/;

where .Um;t.�j;t// is a periodic sequence of independent Bernoulli random variables
with success probability P.Um;t.�j;t/ D 1/ D �j;t. Note that by the properties of the
binomial thinning operator

Xj;t D �j;t ı Xj;t�1 C Zj;t; j D 1; 2: (3)

It is assumed that .Zt/ forms a periodic sequence of independent random vectors
with mean ıt WD Œı1;t ı2;t�

0

being ıj;t D �j;i and covariance matrix ˙t where �2j;t D
(j;i�j;i, with (j;i > 0, �12;t WD 'i, for j D 1; 2; and t D iCkT .i D 1; : : : ;T; k 2 IN0/.
Furthermore, for each t, Zj;t is assumed to be independent of Xj;t�1 and �j;t ı Xj;t�1.
To avoid ambiguity T is taken as the smallest positive integer satisfying (2).

Throughout the rest of the work the model in (2) will be referred to as
periodic bivariate integer-valued autoregressive model of order one (PBINAR.1/,
in short) with period T 2 IN. Basic probabilistic and statistical properties of
the PBINAR.1/ model will be studied in some detail in the subsequent sections.
Moreover, parameter estimation and forecasting will be also discussed.

The rest of the paper is organized as follows: in Sect. 2, we demonstrate the exis-
tence and uniqueness of a periodically stationary and causal PBINAR.1/ process
satisfying (2). Furthermore, expressions for the mean, variance, and autocovariance
function are also derived. Parameter estimation is covered in Sect. 3. Forecasting is
addressed in Sect. 4. In Sect. 5.2 we present a simulation study with a comparison
between the different predictors referred in the previous section. An application
to real data concerning to the monthly number of fires in Aveiro and Coimbra is
presented in Sect. 6.Finally, some concluding remarks are given in Sect. 7.
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2 Basic Properties of the PBINAR.1/ Model

The analysis of the existence and uniqueness of a periodically stationary and causal
PBINAR.1/ process follows easily by the arguments given by Pedeli and Karlis
in [15], Sect. 2, since .Xt/ with t D i C kT .i D 1; : : : ;T/ is a strictly stationary
process. By iterating the equation in (3) and after rearranging some terms, it follows
by Proposition 2.1 in [13] that for i D 1; : : : ;T the stationary distribution of .Xj;iCkT/

is given by that of

Vj;i D
1X

mD1

T�1X
aD0
.ˇ

. j/
i;i ˇ

. j/
T;a.ˇ

. j/
T;T /

m�1/ı Zj;T.mC1/�a C
i�1X

mD0
ˇ
. j/
i;m ı Zj;i�m; j D 1; 2; (4)

with

ˇ
. j/
t;m WD

8̂
<
:̂

m�1Y
lD0

�j;t�l l > 0

1 l D 0

;

for m � t. Note that .ˇ. j/
t;m/ is T-periodic and that ˇ. j/

tCkT;m D ˇ
. j/
t;m for t > m, satisfying

that for i D 1; 2; : : : ;T; and k 2 N0, ˇ
. j/
t;iCkT D ˇ

. j/
t;i

�
ˇ
. j/
T;T

	k
, ˇ. j/

iCT;iCa D ˇ
. j/
i;i ˇ

. j/
T;a and

ˇ
. j/
T;T D

TY
mD1

˛j;m. The series on the right-hand side of (4) converges almost surely

and also in L2.
From the representation in (4) the mean and autocovariance function of .Xt/ can

be obtained.

Lemma 1 The mean value, variance and autocovariance structure of .Xj;t/, for j D
1; 2 and t D i C kT with i D 1; 2; : : : ;T; .T 2 IN/, and k 2 N0 are given by

1. Mean value:

�j;i 	 EŒXj;t� D

i�1X
mD0

ˇ
. j/
i;m�j;i�m C ˇ

. j/
i;i

T�i�1X
mD0

ˇ
. j/
T;m�j;T�m

1 � ˇ
. j/
T;T

I

2. Variance:

VŒXj;t� D

Kj.ˇ/

i�1X
mD0



ˇ
. j/
T;Tˇ

. j/
i;m�j;i�m C ˇ

. j/
i;m.1 � ˇ. j/

i;m/�j;i�m C
�
ˇ
. j/
i;m

	2
(j;i�m�j;i�m

�
C
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C Kj.ˇ/

T�i�1X
mD0

n
ˇ
. j/
T;Tˇ

. j/
i;i ˇ

. j/
T;m�j;T�mC

Cˇ. j/
i;i ˇ

. j/
T;m

�
1 � ˇ

. j/
i;i ˇ

. j/
T;m

	
�j;T�m C

�
ˇ
. j/
i;i ˇ

. j/
T;m

	2
(j;T�m�j;T�m

�

with Kj.ˇ/ WD 1=Œ1 � .ˇ. j/
T;T /

2�. The convention
P�1

mD0 D 0 is adopted.
3. Autocovariance structure:

!i WD Cov.X1;i;X2;i/ D Cov.X1;iCkT ;X2;iCkT/

D 1

1 � ˇ.1/T;Tˇ
.2/
T;T

ˇ
.1/
i;i ˇ

.2/
i;i

T�i�1X
mD0

ˇ
.1/
T;mˇ

.2/
T;m'T�m C

C 1

1 � ˇ.1/T;Tˇ
.2/
T;T

i�1X
mD0

ˇ
.1/
i;mˇ

.2/
i;m'i�m

and

Cov.X1;tCh;X2;t/ D ˇ
.1/
tCh;h

1 � ˇ.1/T;Tˇ
.2/
T;T

ˇ
.1/
i;i ˇ

.2/
i;i

T�i�1X
mD0

ˇ
.1/
T;mˇ

.2/
T;m'T�m C

C ˇ
.1/
tCh;h

1 � ˇ.1/T;Tˇ
.2/
T;T

i�1X
mD0

ˇ
.1/
i;mˇ

.2/
i;m'i�m

Cov.X1;t;X2;tCh/ D ˇ
.2/
tCh;h

1 � ˇ.1/T;Tˇ
.2/
T;T

ˇ
.1/
i;i ˇ

.2/
i;i

T�i�1X
mD0

ˇ
.1/
T;mˇ

.2/
T;m'T�m C

C ˇ
.2/
tCh;h

1 � ˇ.1/T;Tˇ
.2/
T;T

i�1X
mD0

ˇ
.1/
i;mˇ

.2/
i;m'i�m

with 'i WD Cov.Z1;iCT ;Z2;iCT /.

Proof The results follows by straightforward, although tedious, calculations. We
skip the details.

Remark The mean �j;i and !i can be calculated through the expressions

�j;i D ˇ
. j/
i;i

 
�j;T C 1

ˇ
. j/
i;i

i�1X
kD0

ˇ
. j/
i;k �j;i�k

!
; i D 1; : : : ;T; j D 1; 2:
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and

!i D
i�1X
kD0

ˇ
.1/
i;k ˇ

.2/
i;k 'i�k C ˇ

.1/
i;i ˇ

.2/
i;i !T ; i D 1; : : : ;T;

respectively.

Note that the probability generating function (pgf) of Xt, for t D i C kT, takes
the form

GXiCkT .s1; s2/ 	 GX1;iCkT ;X2;iCkT .s1; s2/ D
D GX1;0.1 � ˇ

.1/
i;i .ˇ

.1/
T;T /

k C ˇ
.1/
i;i .ˇ

.1/
T;T /

ks1/GX2;0.1 � ˇ.2/i;i .ˇ
.2/
T;T /

k C ˇ
.2/
i;i .ˇ

.2/
T;T /

ks2/ �

�
kY

mD1

T�1Y
aD0

GT�aIZ1;Z2
�
1�ˇ.1/i;i ˇ

.1/
T;a.ˇ

.1/
T;T /

m�1.1�s1/; 1�ˇ.2/i;i ˇ
.2/
T;a.ˇ

.2/
T;T /

m�1.1� s2/
	

�
i�1Y

mD0
Gi�mIZ1;Z2

�
1 � ˇ

.1/
i;m C ˇ

.1/
i;ms1; 1 � ˇ.2/i;m C ˇ

.2/
i;ms2

	
; (5)

where GiIZ1;Z2 represents the pgf of ZiCkT . The expression in (5) reduces to

GXiCkT .s1; s2/ D
C1Y
mD1

T�1Y
aD0

GT�aIZ1 ;Z2
�
1�ˇ.1/i;i ˇ

.1/
T;a.ˇ

.1/
T;T /

m�1.1 � s1/; 1�ˇ.2/i;i ˇ
.2/
T;a.ˇ

.2/
T;T /

m�1.1�s2/
	

�
i�1Y

mD0
Gi�mIZ1;Z2

�
1 � ˇ.1/i;m C ˇ

.1/
i;ms1; 1 � ˇ

.2/
i;m C ˇ

.2/
i;ms2

	
; (6)

as k tends to infinity.

Remark For the particular case in which ZiCkT .i D 1; : : : ;T/ follows the bivariate
Poisson distribution (Johnson et al., 1997, p. 125)

P.Z1;iCkT D z1;Z2;iCkT D z2/ D

D e�.�1;iC�2;i�'i/

min.z1;z2/X
mD0

.�1;i � 'i/
z1�m

.z1 � m/Š

.�2;i � 'i/
z2�m

.z2 � m/Š

'm
i

mŠ
; (7)

where �1;i; �2;i > 0 and 'i 2 Œ0;min.�1;i; �2;i//, then

GXiCkT .s1; s2/ D exp f�1;i.s1 � 1/C �2;i.s2 � 1/C !i.s1 � 1/.s2 � 1/g :
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Parameters 'i represent the covariance between the two time series within the ith
period, for i D 1; : : : ;T. The previous remark lead us to the following result.

Theorem 1 The marginal distribution of .XiCkT/ for i D 1; : : : ;T and k 2 IN0 is
bivariate Poisson with parameters .�1;i; �2;i; !i/ if and only if .ZiCkT/ is bivariate
Poisson with parameters .�1;i; �2;i; 'i/.

3 Parameter Estimation

Consider a finite time series .X1; : : : ;XNT/ from the PBINAR.1/ model in (2),
where N represents the number of complete cycles. Let � WD .˛1;˛2;�1;�2;'/

with ˛j D .˛j;1; : : : ; ˛j;T /, �j D .�1;T ; : : : ; �j;T/, for j D 1; 2 and ' D .'1; : : : ; 'T/

be the vector of unknown parameters. Without loss of generality it is assumed that
X0 D x0. Note that the transition probabilities in this case take the form

pi.yjx/ WD P.XiCkT D yjXi�1CkT D x/

D
M1X

m1D0

M2X
m2D0

P.˛1;i ı X1;i�1CkT D m1; ˛2;i ı X2;i�1CkT D m2jXi�1CkT D x/�

�P.Z1;iCkT D y1 � m1;Z2;iCkT D y2 � m2/

with y WD Œy1 y2�0, x WD Œx1 x2�0, M1 WD min.x1; y1/ and M2 WD min.x2; y2/. The
CML-estimator O� of � is obtained by maximizing the conditional log-likelihood
function

l.�/ WD ln.L.�// D
N�1X
nD0

TX
iD1

ln .pi.xiCTnjxi�1CTn// :

Numerical maximization is straightforward with standard statistical packages.
Note that from Theorem 2.2. in [1], since .Xt/ is a Markov chain, under standard

assumptions, we can obtain asymptotically normality of the CML-estimators.

Theorem 2 The CML-estimator O� of � is asymptotically normal, i.e,

p
N. O� � �/

d! N.0; I�1.�//;

where I.�/ is the Fisher information matrix.

The choice of the joint distribution for the innovation bivariate process deter-
mines the properties of the underlying bivariate process. In the univariate case, the
most frequently distributions assumed to the innovation process are the Poisson
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distribution and the negative binomial distribution. The first is appropriate for
modeling equidispersed data and has the advantage that the stationary distribution
has a closed form, also a Poisson distribution, while the second is adequate to model
overdispersed count data. In the standard bivariate INAR model presented in [15],
the bivariate distributions assumed for the innovation process were the bivariate
Poisson and the bivariate negative binomial. In the periodic case we will also give
emphasis to these two distributions.

3.1 Innovations with Periodic Bivariate Poisson Distribution

In the case of the PBINAR with periodic bivariate Poisson distribution for the
innovation process, the transition probabilities are given by

pi.yjx/ WD P.XiCkT D yjXi�1CkT D x/

D e�.�1;iC�2;i�'i/

M1X
m1D0

M2X
m2D0

LX
lD0

' l
i

lŠ

2Y
jD1

C
xj
mj˛

mj

j;i .1 � ˛j;i/
xj�mj

.�j;i�'i/
yj�mj�l

.yj�mj � l/Š
;

with L WD min.y1 � m1; y2 � m2/. In this case, from the partial derivatives of first
order the following system is obtained

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

N�1X
nD0

x1;i�1CnT

1 � ˛1;i
�

pi.xiCTn � .1; 0/jxi�1CTn � .1; 0//
pi.xiCTnjxi�1CTn/

� 1
�

D 0

N�1X
nD0

x2;i�1CnT

1 � ˛2;i
�

pi.xiCTn � .0; 1/jxi�1CTn � .0; 1//�

pi.xiCTnjxi�1CTn/
� 1

�
D 0

N�1X
nD0

pi.xiCTn � .1; 0/jxi�1CTn/

pi.xiCTnjxi�1CTn/
D N

N�1X
nD0

pi.xiCTn � .0; 1/jxi�1CTn/

pi.xiCTnjxi�1CTn/
D N

N�1X
nD0

pi.xiCTn � .1; 1/jxi�1CTn/

pi.xiCTnjxi�1CTn/
D N

for i D 1; : : : ;T. Analytical estimates for the above system cannot be found. Thus,
to solve this system numerical procedures have to be employed. In order to find
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standard errors for the parameter estimates associated to the Theorem 2, the diagonal
entries of the Hessian matrix are related to the expressions below and all other
entries are calculated in a very straightforward manner:

@2l.�/

@˛21;i
D 1

.1 � ˛1;i/2
�

�
N�1X
nD0



�x1;i�1CnT Cx1;i�1CnT .x1;i�1CnT � 1/

pi.xiCTn�.2; 0/jxi�1CTn � .2; 0//

pi.xiCTnjxi�1CTn/
C

C 2x1;i�1CnT
pi.xiCTn � .1; 0/jxi�1CTn � .1; 0//

pi.xiCTnjxi�1CTn/
�

�
�

x1;i�1CnT
pi.xiCTn � .1; 0/jxi�1CTn � .1; 0//

pi.xiCTnjxi�1CTn/

�2)
I (8)

@2l.�/

@�21;i
D

N�1X
nD0

(
pi.xiCTn�.2; 0/jxi�1CTn/

pi.xiCTnjxi�1CTn/
�
�

pi.xiCTn�.1; 0/jxi�1CTn/

pi.xiCTnjxi�1CTn/

�2)
I (9)

@2l.�/

@'2i
D

N�1X
nD0

�
pi.xiCTn � .1; 1/jxi�1CTn/

pi.xiCTnjxi�1CTn/

�
'i
0 � @2l.�/

@'i@�1;i
� @2l.�/

@'i@�2;i
;

for i D 1; : : : ;T. The second derivates in order to ˛22;i and �22;i are as in (8) and (9)
with .2; 0/ and .1; 0/ replaced by .0; 2/ and .0; 1/. In the case of ˛22;i, x1;i�1CnT has
to be replaced by x2;i�1CnT in (8).

3.2 Innovations with Periodic Bivariate Negative Binomial
Distribution

The case of the PBINAR with periodic bivariate negative binomial innovations is
more flexible than the periodic Poisson BINAR(1). The transition probabilities are
given by

pi.yjx/ D
�

ˇ�1i

�1;i C �2;i C ˇ�1i

�ˇ�1
i M1X

m1D0

M2X
m2D0

1


 .ˇ�1i C x1�m1Cx2�m2/
 .ˇ�1i /
�

�
2Y

jD1

C
xj
mj


 .xj � mj C 1/
˛

mj

j;i .1 � ˛j;i/
xj�mj

�
�j;i

�1;i C �2;i C ˇ�1i

�yj�mj

;
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where �1;i, �2;i, ˇi > 0, for all i 2 f1; 2; � � � ;Tg, are the parameters associated
with the periodic negative binomial bivariate distribution. Furthermore, the �1;i and
�2;i are the mean of each component in season i and ˇi is, for each season, the
parameter associated with the overdispersion. In fact, the variance, �2j;i is equal to
�j;i.1 C ˇi�j;i/. The covariance between the two components, in each season i, is
'i D �1;i�2;iˇi, i D 1; � � � ;T, which only allows for positive correlation.

In this case the expressions of the partial derivatives of the log likelihood do not
have a simple form as in the previous subsection.

4 Forecasting

In this section we consider the forecasting of future values XiCNTCh of the periodic
Poisson BINAR.1/ process given past observations up through time i C NT, for
i D 1; : : : ;T. Throughout the rest of the section it shall be assumed that h D j C kT,
for j 2 f1; : : : ;Tg. First note that by iterating equation (3) it follows that Xm;iCNTCh

can be expressed as

Xm;iCNTCh
dD ˇ

.m/
jCi;j.ˇ

.m/
T;T /

k ı Xm;iCNT C Vm;jCiCkT ;

where

Vm;jCiCkT D
j�1X
rD0

ˇ
.m/
jCi;r ı Zm;jCi�rCNT C

k�1X
wD0

T�1X
rD0

ˇ
.m/
jCiCT.NCk/;rCjCTw ı ZiCT.NCk�w/�r:

As in the univariate case,

ˇ
.m/
jCi;j.ˇ

.m/
T;T /

k ı Xm;iCNT jXm;iCNT � Bi.Xm;iCNT ; ˇ
.m/
jCi;j.ˇ

.m/
T;T /

k/; m D 1; 2:

Moreover, V1;jCiCkT and V2;jCiCkT are independent of X1;iCNT and X2;iCNT , respec-
tively with joint pgf

GV1;jCiCkT ;V2;jCiCkT .s1; s2/ D
j�1Y
rD0

GjCi�rIZ1;Z2
�
1 � ˇ.1/jCi;r.1 � s1/; 1�ˇ.2/jCi;r.1�s2/

	
�

�
k�1Y
wD0

T�1Y
rD0

Gi�rCTIZ1;Z2
�
1 � ˇ

.1/
jCiCTNCk/;rCjCTw.1�s1/; 1�ˇ.2/jCiCT.NCk/;rCjCTw.1�s2/

	
:

Furthermore, it is assumed that ZiCkT follows the bivariate Poisson distribution
in (7) with parameters .ı1;t; ı2;t;  t/ such that for t D i C kT, ı1;t D �1;i, ı2;t D �2;i
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and  t D 'i. In this case, the joint pgf above takes the form

GV1;jCiCkT ;V2;jCiCkT .s1; s2/ D exp
n�
�1;<iCj> � .ˇ

.1/
T;T /

kˇ
.1/
jCi;j�1;i

	
.s1 � 1/

o
�(10)

� exp
n�
�2;<iCj> � .ˇ.2/T;T /

kˇ
.2/
jCi;j�2;i

	
.s2 � 1/

o
�

� exp
n�
!<iCj> � .ˇ

.1/
T;Tˇ

.2/
T;T /

kˇ
.1/
jCi;jˇ

.2/
jCi;j!i

	

.s1 � 1/.s2 � 1/g

with

< i C j >WD



i C j; i C j � T
i C j � T; i C j > T

:

Note that the expression in (10) is the joint pgf of the bivariate Poisson distribution
in (7) with parameters .�1;i; �2;i; �3;i/, being

�1;i WD �1;<iCj> � .ˇ.1/T;T /
kˇ

.1/
jCi;j�1;iI

�2;i WD �2;<iCj> � .ˇ
.2/
T;T /

kˇ
.2/
jCi;j�2;iI

�3;i WD !<iCj> � .ˇ
.1/
T;Tˇ

.2/
T;T /

kˇ
.1/
jCi;jˇ

.2/
jCi;j!i:

Thus, the distribution of .X1;iCNTCh;X2;iCNTCh/ given .X1;iCNT ;X2;iCNT/ is the
convolution of two binomial distributions, with parameters .X1;iCNT ; ˇ

.1/
jCi;j.ˇ

.1/
T;T /

k/

and .X2;iCNT ; ˇ
.2/
jCi;j.ˇ

.2/
T;T /

k/ respectively, with the bivariate distribution which has
the joint pgf given in (10).

The discussion above leads to the following result.

Theorem 3 For the bivariate Poisson periodic model XiCNTChjXiCNT, h D j C kT,
for j 2 f1; 2; : : : ;Tg and k 2 IN0, the following properties hold:

(a) The pgf of XiCNTChjXiCNT is given by

GXiCNTChjXiCNTD.x1;iCNT ;x2;iCNT /
.s1; s2/ D

D .1 � ˇ
.1/
jCi;j.ˇ

.1/
T;T /

k.1 � s1//
x1;iCNT .1 � ˇ.2/jCi;j.ˇ

.2/
T;T /

k.1 � s2//
x2;iCNT

� exp
n�
�1;<iCj> � .ˇ

.1/
T;T /

kˇ
.1/
jCi;j�1;i

	
.s1 � 1/

o
�

� exp
n�
�2;<iCj> � .ˇ

.2/
T;T /

kˇ
.2/
jCi;j�2;i

	
.s2 � 1/

o
�

� exp
n�
!<iCj> � .ˇ.1/T;Tˇ

.2/
T;T /

kˇ
.1/
jCi;jˇ

.2/
jCi;j!i

	
.s1 � 1/.s2 � 1/

o
I
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(b) EŒXm;iCNTCjCkT jXm;iCNT � D
�
ˇ
.m/
jCi;j.ˇ

.m/
T;T /

k
	

Xm;iCNT C �m;<iCj> � .ˇ
.m/
T;T /

kˇ
.m/
jCi;j

�m;i, m D 1; 2;

(c) VŒXm;iCNTCjCkT jXm;iCNT � D
�
ˇ
.m/
jCi;j.ˇ

.m/
T;T /

k
	 �
1 � ˇ.m/jCi;j.ˇ

.m/
T;T /

k
	

Xm;iCNT C
�m;<iCj> � .ˇ

.m/
T;T /

kˇ
.m/
jCi;j�m;i, m D 1; 2;

(d) Cov.X1;iCNTCjCkT ;X2;iCNTCjCkT jX1;iCNT ;X2;iCNT/ D !<iCj>�.ˇ.1/T;Tˇ
.2/
T;T /

kˇ
.1/
jCi;j

ˇ
.2/
jCi;j!i.

(e) As k ! C1, XiCNTChjXiCNT has a bivariate Poisson distribution with
parameters .�1;<iCj>; �2;<iCj>; !<iCj>/:

To make a h-step ahead prediction we use the mode of the distribution of
XiCNTChjXiCNT or the mean, median and mode of the marginal distributions of
each component of XiCNTChjXiCNT . The median and mode are considered estimates
coherent with the model whereas the mean is considered an incoherent estimate
since may not produce an integer value.

5 Simulation Study for a Particular Periodic Poisson
BINAR.1/ Model

In this section a simulation study is conducted to illustrate the theoretical findings
given in the previous section for the periodic Poisson BINAR.1/ model and to
assess the small, moderate and large sample behavior of the CML estimators. A
comparison between the different predictors is also made in this section.

Throughout the analysis it shall be assumed that T D 4. The simulation
study contemplates the following combination of ˛’s, �’s and '’s: ˛1 D
.0:5; 0:9; 0:3; 0:8/, ˛2 D .0:85; 0:4; 0:7; 0:2/, �1 D .4; 2; 8; 5/, �2 D .1:5; 5; 3; 10/

and ' D .1; 1:5; 2:3; 3:8/. We simulated times series of length n D NT D
500; 1;200; 2;000 with 200 independent replicates.

5.1 Estimation

For all simulated model as well as all replicates, the CML estimates of the
parameters were calculated and the results are summarized in Table 1. The estimates
were calculated through numerical routines in R software which need initial values
to start the optimization procedure. In this case we used the CML estimates for the
parameters ˛’s and �’s from each marginal PINAR model obtained by the use of
the bisection method which does not require initial values. The initial values for the
covariance parameters of the innovation bivariate process were found through the
use of sample covariance of each season combined with the first equation of the
third point of Lemma 1. The results obtained with these initial values were similar
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Table 1 Maximum
likelihood estimates for �

n 500 1,200 2,000

Ǫ1;1 0.500 (0.056) 0.499 (0.027) 0.502 (0.019)

Ǫ1;2 0.893 (0.070) 0.901 (0.008) 0.901 (0.005)

Ǫ1;3 0.289 (0.069) 0.296 (0.044) 0.300 (0.034)

Ǫ1;4 0.790 (0.083) 0.799 (0.019) 0.800 (0.013)

Ǫ2;1 0.845 (0.065) 0.848 (0.009) 0.850 (0.007)

Ǫ2;2 0.398 (0.066) 0.401 (0.035) 0.401 (0.027)

Ǫ2;3 0.689 (0.063) 0.700 (0.021) 0.698 (0.015)

Ǫ2;4 0.198 (0.085) 0.199 (0.053) 0.193 (0.041)
O�1;1 3.947 (0.635) 4.027 (0.366) 3.980 (0.305)
O�1;2 2.010 (0.293) 1.997 (0.111) 2.008 (0.090)
O�1;3 8.048 (0.998) 8.051 (0.531) 7.97 (0.440)
O�1;4 5.014 (0.747) 5.025 (0.243) 4.989 (0.174)
O�2;1 1.508 (0.199) 1.525 (0.134) 1.495 (0.099)
O�2;2 4.956 (0.758) 4.980 (0.429) 5.011 (0.310)
O�2;3 3.073 (0.416) 2.998 (0.215) 3.003 (0.149)
O�2;4 9.933 (1.116) 10.031 (0.537) 10.053 (0.416)

O'1 0.889 (0.299) 0.976 (0.234) 0.952 (0.193)

O'2 1.403 (0.422) 1.478 (0.236) 1.499 (0.182)

O'3 2.216 (0.473) 2.241 (0.303) 2.234 (0.258)

O'4 3.813 (0.957) 3.830 (0.385) 3.838 (0.300)

Standard errors in parentheses

to those obtained by the use of the true values of the parameters as initial values in
the optimization procedure.

Figures 1, 2, and 3 display boxplots of the biases of the estimates for ˛j and �j

for j D 1; 2, and '.
From Table 1, it can be observed that the standard errors of the estimators rapidly

decrease to zero as n increases with special emphasis to the parameters related
to the binomial thinning and the parameters associated with the average of the
innovations. Furthermore, Figs. 1, 2, and 3 reveal that the estimates of ˛1 and ˛2,
componentwise, tend to be biased to the left and negatively skewed which implies
that the CML estimation has a tendency of underestimating the ˛’s mainly in the
case of small sample sizes. It also can be seen that CML estimation has a better
performance componentwise, regardless the component of the bivariate model, for
both ˛ and �, when thinning parameter is superior to 0.5. For '’s this tendency
is less obvious and is related with the magnitude of both thinning parameters.
As expected, however, both the bias and skewness approach zero as the sample
size increases. This is in agreement with the asymptotic properties of the CML
estimators, namely unbiasedness and consistency.
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Fig. 1 Boxplots for (a) the biases of the CML estimators Ǫ 1 and (b) the biases of the CML
estimators Ǫ 2. In (a), from left to right the first three boxplots display the biases of Ǫ1;1 for
n D 500; 1;200; 2;000. The subsequent three boxplots show the same information for Ǫ1;2, the next
three for Ǫ1;3, and the last three boxplots for Ǫ1;4. The boxplots in (b) show the same information
for the four components of Ǫ 2

5.2 Prediction

To compare and analyze the different predictors previously mentioned in Sect. 4
the realizations of the PBINAR model were used to make h-step ahead predictions,
from one to twenty. Consider OXi;tCh, Omi;tCh and Omoi;tCh respectively the estimators
of the mean, median and mode of the marginal conditional distribution Xi;nChjXi;n.
In addition to these estimators was also used the mode of the joint conditional
distribution XnChjXn, OmotCh.

In the different predictors the CML estimates were plugged-in in the prediction
probability functions. To assess the performance of each estimator with the increase
of dimension different measures were used. For the conditional mean is was
considered the square root of the mean squared error (RMSE) while the mean
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Fig. 2 Boxplots for (a) the biases of the CML estimators O�1 and (b) the biases of the CML
estimators O�2. In (a), from left to right the first three boxplots display the biases of O�1;1 for
n D 500; 1;200; 2;000. The subsequent three boxplots show the same information for O�1;2, the next
three for O�1;3, and the last three boxplots for O�1;4. The boxplots in (b) show the same information
for the four components of O�2

absolute error (MAE) was used to evaluate the performance of the conditional
median. For the conditional marginal mode and the mode of the joint distribution the
loss function everything or nothing (LFEN) was used to evaluate their performance.
This last function is defined by

LFEN D 1

2mh

mX
kD1

20X
hD1

2X
iD1

I
�

x.k/i;tCh

	
;
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Fig. 3 Boxplots for the biases of the CML estimators O'. From left to right the first three boxplots
display the biases of O'1 for n D 500; 1;200; 2;000. The subsequent three boxplots show the same
information for O'2, the next three for O'3, and the last three boxplots for O'4

Table 2 RMSE, MAE, LFEN e MPAE of 20 predictions h-step ahead

OXtCh OmtCh OmotCh OmotCh

RMSE MPAE MAE MPAE LFEN MPAE LFEN MPAE

n D 500 3.94 0.317 3.13 0.313 0.696 0.305 0.700 0.300
n D 1;200 3.93 0.325 3.12 0.321 0.704 0.312 0.694 0.294
n D 2;000 3.88 0.310 3.07 0.308 0.695 0.300 0.691 0.295

where m represents the number of replicates and

I
�

x.k/i;tCh

	
D
(
1 if j Omo.k/i;tCh � x.k/i;tChj > 1
0 if j Omo.k/i;tCh � x.k/i;tChj � 1

:

In order to compare the performance of the different predictors it was used the
measure mean percentage absolute error (MPAE) given by

MPAE D 1

2Hm

HX
hD1

mX
kD1

2X
iD1

jX�.k/i;tCh � X.k/i;tChj=X.k/i;t ;

where m represents the number of replicates and H the number of predictions and
X�i;tCh represents one of the predictors used according to the methodology.

Table 2 presents a summary of the measures used to compare the predictors
in the considered scenario.With the increase of n the measures RMSE, MAE and
LFEN tend to decrease and the comparison of MPAE between predictors allows
us to conclude that the mode (see bold values in Table 2) of the joint conditional
distribution of XnChjXn is the one that has a better performance for all dimensions
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Fig. 4 Plots for the h-step-ahead predictive marginal distributions for each component,
P.xk;TChjxk;T /, k D 1; 2 and h D 1; 2; 3; 4; (a) component 1 (b) component 2

that were used. Figure 4 presents the h-step-ahead predictive marginal distributions
for each component, P.xk;TChjxk;T/, k D 1; 2 and h D 1; 2; 3; 4 for a particular
realization of PBINAR. For each component, 1 and 2, the mode for the first season
is respectively 9 and 11, for the second season is 10 and 9, for the third season is
11 and 9 and for the fourth season is 13 and 11. Figure 5 shows the h-step-ahead
joint predictive distribution P..x1;TCh; x2;TCh/j.x1;T ; x2;T //, h D 1; 2; 3; 4. For the
first season the mode is (10,11), for the second season this pair is (11,9), for the
third season is (10,9) and in the last season is (11,9).
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Fig. 5 Plots for the h-step-ahead joint predictive distribution P.xTChjxT /, hD 1; 2; 3; 4

6 Application

The data used in this application refer to the monthly number of fires in the neighbor
counties Aveiro and Coimbra (Portugal) during the period 1980–2010 (Fig. 6).
A visual inspection of the sample ACF functions (Fig. 7) reveal a non-decaying
structure in the autocorrelation of the time series with a periodic pattern of 12
months. Figure 8 presents monthly sample means, variances and cross correlations,
where it can be seen the existence of overdispersion for both series in almost every
months.

Since the bivariate distributions for the innovations discussed in Sect. 3 only
allow for non-negative correlations and in August the sample correlation between
the two series is negative (�0:2), we tested the significance of this correlation
which, for the usual significance levels, not rejected the null hypothesis. Hence,
in order to model the data we considered both the bivariate Poisson INAR(1) model
and the bivariate INAR(1) model with bivariate negative binomial innovations. The
results are shown in Table 3. Comparing the log-likelihood one can see that negative
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Fig. 6 Monthly number of fires in Aveiro and Coimbra Counties

binomial BINAR(1) model provides a better fit and can suits more properly the
overdispersion. The standard errors of the estimates obtained by the two models
(derived numerically from the Hessian) show that fitting a BINAR(1) model with
negative binomial innovations generally improves the precision of the estimates. On
the other hand it is apparent that ignoring the overdispersion might lead to incorrect
standard errors and hence incorrect inferences.

It can be noticed that according to Coimbra data values the selected model
presents several thinning parameter estimates that are not significant, which means
that in the correspondent months the number of fires is being modeled only through
the innovation process.
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Fig. 7 Sample ACF for the Monthly number of fires in Aveiro and Coimbra Counties

Fig. 8 Plots of sample monthly means, sample monthly variances and sample monthly correlation
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7 Conclusions

In this article, a family of bivariate integer-valued autoregressive model of order one
with periodic structure was proposed. This family is a generalization of the BINAR
model of Pedeli and Karlis (2011)[15]. Likelihood-based estimators for model
parameters were derived and their asymptotic properties obtained and prediction
was also addressed.

As referred throughout, an important limitation of Pedeli and Karlis’ model is
that the autoregression matrix is diagonal which means that it causes no cross-
autocorrelation in the counts. This is also true for the PBINAR model. Therefore,
extensions for PBINAR models accounting for cross-autocorrelation is also an
impeding problem. Moreover, similar to what happens with conventional PARMA
models, PBINAR models can have an inordinately large number of parameters.
Therefore, the development of procedures for dimensionality reduction remains an
important topic for future work.
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The Macrodynamics of Employment Under
Uncertainty

Paulo R. Mota and P. B. Vasconcelos

Abstract Inthe context of the current Eurozone crisis, the study of the effects of
uncertainty in the macrodynamics of employment is a topic of major importance.
This paper tackles this challenging question. At a first step a non-ideal relay hystere-
sis type microeconomic model of employment adjustment with uncertainty is pre-
sented. Then, an aggregation mechanism is explicitly considered in order to analyse
the aggregate level of employment. Finally, as a new feature, uncertainty is consid-
ered endogenously determined by the actual state of the economy. Aggregate time-
series built from micro monthly data on a representative sample of Portuguese man-
ufacturing firms is used on a computational implementation of the linear play model
of hysteresis. Results illustrate that uncertainty enhances the hysteretic behaviour of
employment in small firms, but this effect is not significant for large ones.

1 Introduction

Firms, from almost all sectors of the economy, do not permanently adjust the
number of employees to accommodate demand shocks. This has been confirmed
by early empirical studies.1 Their reaction, on the contrary, is often discontinuous

1See, e.g., [16, 26], and for the Portuguese case [23, 30, 38].
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and lumpy, with periods of inaction punctuated by episodes of large adjustment, a
clear sign of non-convex adjustment costs.

It’s well established in the literature, Theory of Optimal Inertia, that when a firm
decision involves non-convex adjustment costs, as for the case of employment, it is
rational to postpone decisions until uncertainty has lower down to conformable lev-
els.2 Moreover, in the presence of uncertainty, non-convex employment adjustment
costs at the firm level may be relevant to the dynamics of aggregate employment
[30, 31].

In Portugal, as well as in other Eurozone countries, at the present, there is a
high level of economic, financial and regulatory uncertainty. This uncertainty may
reduce the employment reaction to macroeconomic policy, leading to a problem of
uncertainty trap.3 The sources of uncertainty are: (1) the size of the government
debt (and deficit) to GDP ratio and the doubts about the success of the adjustment
program; (2) the long term economic and social effects of the austerity measures
imposed by the IMF, the European Commission and the ECB; (3) doubts about
the permanent or temporary character of public wage cuts; (4) doubts about the
announced intention of a tax reform, and about the permanent or temporary nature of
tax increases; (5) constant application of piecemeal reforms in the labor market; (6)
great uncertainty surrounding the projections of the main macroeconomic variables,
such the GDP growth rate and the government deficit to GDP ratio that are
constantly being revised.

If a firm is uncertainty about whether an aggregate demand shock is transitory
or permanent it may delay its investment and employment decisions.4 Thus, as
the size of the employment inaction band increases with the level of uncertainty,
hysteresis can be quite strong even if the government applies measures towards the
deregulation of the labour market.

The main contribution of this paper is to analyse the effect of uncertainty in the
macrodynamics of employment. It also aims to show that uncertainty could result
from attempts to reduce non-convex adjustment costs, or from austerity measures
that depress the economic in the short-run. This is of high importance, particularly
in the context of the current Eurozone crisis.

We begin by introducing a simple microeconomic non-ideal relay-type model
of employment adjustment with uncertainty. Then, an aggregation mechanism
is explicitly considered in order to analyse the macrodynamics of employment.
Finally, uncertainty is considered endogenously determined by the actual state of
the economy, which encompasses the novelty of the work.

Portuguese firm-level monthly data spanning from 1995 until 2008 is used.
Notably, Portugal provides a good case to study labour demand driven hysteresis
since it has one of the strictest employment protection legislation in Europe, which
is a source of non-convexities in the adjustment technology.

2See, e.g., [7, 8, 12, 15, 21].
3See [4, 11].
4See [17].
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A switching employment equation is estimated from a computational implemen-
tation of the linear play model of hysteresis over aggregate time-series built from
firm-level data. This equation mimics the behaviour upon which for small changes
of labour demand there is a weak reaction of employment level, whereas for large
changes there is a strong reaction. It is assumed that the splitting factor is a positive
function of the magnitude of non-convex employment adjustment costs and the level
of uncertainty in the economy.5

This paper is structured as follows. Section 2 describes the model along with
some implementation details. Section 3 presents our empirical results, and Sect. 4
concludes.

2 The Model and Its Implementation

2.1 Micro Foundations of Discontinuous Adjustment
at the Firm Level

Let us assume a competitive market where each price taker active firm, j, ( j D
1; : : : J), employs one unit of employment, nj;t, at the unit wage cost wj, and one unit
of firm specific capital, kj;t, that costs rj � kj;t and produces yj;t D nj;t � kj;t D 1 units
of output, which it sells at a unit price Pj (the revenue is simply the output price).6

If inactive, the firm produces no output and employs zero units of employment.
Furthermore, every individual plant must pay a fixed and constant cost in time to
enter (hire a worker and to acquire firm specific physical assets), Hj, or to leave the
market (fire its single worker), Fj.7 In this model, switching the state of activity leads
to a complete depreciation of firing and hiring costs, the reason for which these are
regarded as sunk costs. Assuming a discount factor, ı D 1

1Ci , where i is the risk free
interest rate, and considering a profit maximising problem of the individual firm,
with discrete time and an infinite plan horizon, a previously inactive firm will only
enter the market if hiring costs are recovered. Hence the entry (expanding) trigger

5We follow [8].
6We are assuming that all firms face a common demand schedule (Pj;t D Pt) and that the wage rate
and the real cost of capital is constant over time, but not necessarily across firms.
7On the hiring side, examples of adjustment costs are the costs of advertising, recruiting and
training the new workers, including the costs resulting from disruption in production when
the new workers are hired. On the firing side, adjustment costs include mandatory advance
notice requirements, severance pay and other procedural inconveniences to dismissal caused by
employment protection legislation. A significant part of these adjustment costs are related to
personnel and legal departments to deal with hires and fires and thus fixed, i.e., independent of
the number of workers that are hired or dismissed (see, e.g., [27, 32]). A firm also incurs in
irreversible cost to buy physical assets like firm specific equipment or intangible assets such as
reputation, acquired by investments in marketing and advertising, or technical knowledge (see, e.g.,
[24, 35, 36]). Other non-firm specific investments like office equipment, cars, trucks and computers
can have a resale value well below their purchase cost due to the “lemons” problem [36, , p. 1111].
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price, PC
entry;j, exceeds the wage and the interest cost of firm non-specific physical

capital by 1
1Ci Hj. Conversely, a previously active firm will exit the market if losses

exceed firing costs. Hence exit (contracting) trigger price, PC
exit;j, is below the wage

plus the interest cost of firm non-specific physical capital by 1
1Ci Fj.8

The employment demand function of the plant j, may be represented by the non-
ideal relay hysteresis operator, RPC

exit;j;P
C
entry;j

.Pt/ D nj;t
9:

nj;t D

8̂
ˆ̂<
ˆ̂̂:

1; nj;t�1 D 0 ^ Pt � wj C rj � kj C i
iC1Hj_

nj;t�1 D 1 ^ Pt > wj C rj � kj � i
iC1Fj

0; nj;t�1 D 0 ^ Pt < wj C rj � kj C i
iC1Hj_

nj;t�1 D 1 ^ Pt 6 wj C rj � kj � i
iC1Fj

(1)

The first expression of Eq. (1) refers to a situation where firm j enters or stays
active while the second specifies the situation where firm j stays inactive or exits.

Since PC
entry;j D wj Crjkj C i

iC1Hj
10 is greater than PC

exit;j D wj Crjkj � i
iC1Fj

11 the

difference between these two trigger points, i
iC1 .Hj C Fj/, creates an employment

band of inaction or hysteresis band (see [15, 21, 36]). The employment band of
inaction depends positively on the fixed adjustment costs and negatively on the
interest rate. When i �! 0 the band of inaction tends towards zero, and when
i �! 1 the band of inaction tends to Hj C Fj. Thus, the higher the interest rate the
higher the importance of the fixed adjustment costs.

The model implies discontinuous employment adjustment. Each plant requires an
aggregate positive demand shock Pt > PC

entry;j to hire its workforce and an aggregate
negative demand shock Pt < PC

exit;j to dismiss it. Demand shocks within the range
PC

exit;j < Pt < PC
entry;j do not cause any action in employment (see [12, 14, 15, 19,

21], for a Theory of Optimal Inaction in the presence of non-convex employment
adjustment costs). Moreover, Pt, is not sufficient to determine the plant’s state of
employment. The whole history of the system, summarised in njt must be taken into
account. Thus, the system is characterised by path dependence and non-linearity.

In order to illustrate the effect of uncertainty on entry/job creation decision
and on exit/job destruction decision, we assume that output prices are random,
rather than known with certainty. The firm must choose the level of output and
employment before the output price is observed. Instead of considering permanent

8In this setting, the decision to enter is akin to the hiring decision, and the decision to exit is akin
to the firing decision. This simplification does not change the conclusions of the model as we can
consider a firm divided into single production units, with every unit represented individually [8].
9See [25] for a complete description of the model.
10The value function for a firm that enters the market is Vj;t D Pt�wt�rjkj

1�ı
� Hj, while the value

function for remaining outside the market is 0. Therefore, the entry condition is
Pt�wt�rjkj

1�ı
�Hj > 0:

11The value function for a firm to remain active is Vj;t D Pt�wt�rjkj

1�ı
, while the value function for

exiting the market is �Fj. Therefore, the exit condition is
Pt�wt�rjkj

1�ı
< �Fj:



The Macrodynamics of Employment Under Uncertainty 483

uncertainty, which requires dynamic programming tools as in [19], we introduce
uncertainty by considering an expected future stochastic one-time shock in the
price level that generates revenue uncertainty, in line with [7, 10]. As our objective
is the aggregation up to the macro level, we model uncertainty in a simple way,
assuming a nonrecurring single stochastic change in the output price, which can
be either positive, C�, or negative,��, in a discrete time model. We consider
that both realizations of the shock have the same probability of 1=2. In this case,
PtC1 D Pt ˙ � ) E .PtC1/ D Pt and from period t C 1 on the firm will decide
under certainty again.12

Admitting that the future path of the price is uncertain, waiting can have a
positive value since it brings more information about the evolution of the price level.
With uncertainty, a previously inactive/active firm has three possible strategies: (1)
stay inactive/active; (2) enter/exit the market; (3) wait and make a decision after the
realization of the stochastic shock. If the firm has the possibility of delaying its entry
decision, it faces a trade-off: waiting has the benefits mentioned above, but it also
has the cost of foregoing the profits earned, if entry had occurred.

Thus, uncertainty introduces an additional cost of entering (opportunity cost) that
is the value of the option to wait (see [5, 13, 19, 20, 22, 36]). With uncertainty, the
opportunity to make an investment and enter in the market is akin to a financial
American call option, while the decision to exit the market is akin to a financial put
option (see [1, 36], for the dynamics of capital stock).

In the case of uncertainty, the labour demand function of the individual firm
(which corresponds to the supply function) can be described as a non-linear
hysteretic transformation of a stochastic input, Pt

13:

nj;t D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

1; nj;t�1 D 0 ^ Pt � wj C rj � kj C i
iC1Hj C 1

1C2i� Œentry�_
nj;t�1 D 1 ^ Pt > wj C rj � kj � i

iC1Fj Œstay active�_
nj;t�1 D 1 ^ wj C rj � kj � i

iC1Fj � 1
1C2i� < Pt �

� wj C rj � kj � i
iC1Fj Œwait in activity�

0; nj;t�1 D 0 ^ Pt < wj C rj � kj C i
iC1Hj Œstay inactive�_

nj;t�1 D 0 ^ wj C rj � kj C i
iC1Hj� Pt <

< wj C rj � kj C i
iC1Hj C 1

1C2i� Œwait in activity�_
nj;t�1 D 1 ^ Pt � wj C rj � kj � i

iC1Fj � 1
1C2i� Œexit�

(2)

Combining both triggers under uncertainty, the width of the band of inaction is14:

PU
entry;j � PU

exit;j D PC
entry;j � PC

exit;j C 2ı

2 � ı
� D i

i C 1

�
Hj C Fj

�C 2�

1C 2i
(3)

12Although, we consider only revenue uncertainty, there could be also uncertainty in input costs
(like in the interest rates), exchange rate uncertainty, and tax and regulatory policies uncertainty
(see [22, p. 14]).
13See [7, 10] for more detail.
14See [7] for more detail.
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Fig. 1 Micro hysteresis loop—employment demand for plant j according to the non-ideal relay
model

where PU
entry;j and PU

exit;j are the entry and the exit triggers under uncertainty respec-
tively. Thus, uncertainty in the future behaviour of prices widens the employment
band of inaction. The option value of waiting effect raises the optimal entry
threshold, increasing the probability of a firm to stay inactive even if current demand
increases; similarly on the opposite sense, the waiting effect lowers the optimal exit
threshold, increasing the probability of a firm staying active in face of a decrease in
demand (see also [21, p. 121], and [7, p. 275]). Thus hysteresis effects are amplified.

Figure 1 illustrates a hypothetical dynamics of the price level, Pt, and the
correspondent path of the employment level of firm j, nj;t, in the non-ideal relay.
Considering some price dynamics, a previous inactive firm will enter the market
when the price is greater than PU

entry;j, which occurs at time t1, and will exit the
market when the price is lower than PU

exit;j, which occurs at time t2. Between t1 and
t2 the price level dynamics does not induce any action of the level of employment.

We conclude, also, from Eq. (2) that the lower the interest rate the higher the
importance of uncertainty for the width of the band of inaction. This has indeed
important policy implications. First, the effectiveness of expansionary monetary
policy via cutting interest rates is lower when uncertainty is large [9, 11, 22].15

Second, frequent interest rate changes by the central bank induce additional
uncertainty, which reduces the sensibility of investment to the interest rates [9].
Third, the lower the interest rate the lower the effect of the monetary policy on the
output as uncertainty increases [see Eq. (3)], result that entails an uncertainty trap
(see [4, 11]). Fourth, when uncertainty is large, if monetary policy is to be effective,
large variations of the Central Bank’s key interest rates are needed—possibly in the
range of the 50 basis points [7]. In the Eurozone with the ECB key interest rate for

15Belke [6] extends this argument to the effect of fiscal stimulus package to deal with the recent
crisis.
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the main refinancing operations set at 0.05 %, a lower point was reached where no
range of cuts has significant impact in the economy.

This result highlights the importance of hysteresis caused by uncertainty in
a context of low interest rate, as it is the present situation in many advanced
economies. In fact, in a low interest rate environment, fixed employment adjustment
costs are not as relevant as uncertainty in generating hysterical effects [see Eq. (3)].
Indeed, hysteresis can be quite strong even for small values of the fixed hiring and
firing costs (see [19]).

2.2 The Problem of Aggregation

The aggregate economy is represented as a set of the potential number of active
heterogeneous firms, J, in a limiting triangle with area T, each one acting according
to Eq. (1):

T D ˚�
PU

exit;j; PU
entry;j

� W PU
entry;j > PU

exit;j ; PU
exit;j > PU

exit;min ; PU
entry;j 6 PU

entry;max



where PU
exit;min is the exiting threshold for the less demanding firm or unit of labour,

and PU
entry;max is the entering threshold of the most demanding firm or unit of labour.

In this setting, the dynamics of aggregate employment is fully described by the
Preisach operator,˚ ŒP .t/� (for a more complete explanation of the Preisach model
of hysteresis see [29]16:

˚ ŒP .t/� D N .t/ D
Z Z

T
u
�
Pexit;j;Pentry;j

�
RPexit;j;Pentry;j dPexit;j dPentry;j (4)

where N .t/ is the aggregate employment at time t, and u
�
Pexit;j; Pentry;j

�
is the

density function of the individual firms in T.
The distance of the relays from the origin is determined by the variable cost,

wj C rj � kj, and the orthogonal distance of the relays from the 45ı-line is a
positive function of the non-convex employment, capital adjustment costs, and
uncertainty. The more important the widening effect of the employment band of
inaction at the micro level is, due to the uncertainty, the weaker the reaction of
aggregate employment to its forcing variables. Comparing with the case where
firms, distributed uniformly in the Preisach triangle, T, decide under certainty, each
relay is displaced to the northwest, and zones of inaction emerge at the macro
level (see [7, 8]). We are considering that the price level (the input variable) in our

16Preisach-type models of hysteresis have been used as a vehicle to describe the macrodynamics
of economic systems—see [2, 3, 18] for an early application to economic problems.
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hysteresis model is exogenous, and we concentrate in the endogenous17 character of
uncertainty.

Furthermore, we specify a time-dependent Preisach Model. Let us assume that
the unemployment rate in period t is given by the area of inactive firms in the
Preisach Triangle, as a proportion of the area of the Preisach Triangle, T, that
represents the potential number of active firms each one employing one worker18:

U .t/ D T � ˚ ŒP .t/�

T
(5)

We admit further that the level of uncertainty, �, depends on the variation of the
unemployment rate. Increasing unemployment is the result of the malfunctioning
of the economy and an indicator of a lack of aggregate demand and thus affects
business confidence, consequently:

� D f Œ�U .t/� (6)

Equations (2), (5) and (6) imply that a decrease of the aggregate demand,
captured by the price level, originates an increase of the unemployment rate leading
to an increase in the distance between the entry and exit thresholds for every firm:

.PU
entry;j � PU

exit;j/.U.t// D i

i C 1
.Hj C Fj/C 2

f .�U.t//

1C 2i
(7)

Consequently this causes a displacement of the Preisach triangle. Thus, the
process with uncertainty reinforces the hysteresis at the macro level.

To exemplify how the model works consider the hypothetical dynamics of the
price level displayed in Fig. 2 and the assumption that P.t0/ < Pexit;min.

In this situation, all the relays are switched off, i.e., all the firms are outside
the market, employing zero workers (nj;0 D 0, 8j), and aggregate employment is
zero (see Fig. 3a). Subsequently, the price increases monotonically, reaching a local
maximum at t1, P.t1/. All relays with Pentry;j 6 P.t1/ are switched on and all firms
hire one worker. The relays are now divided into two sets T0 and T1, the set of
the relays that are, respectively, switched off and on (Fig. 3b). Next, at t2, if the

17In fact, the market price can be influenced by the internal market dynamics as in [37], but this is
not essential here.
18The determinantes the unemployment rate are complex. Unemployment can be caused by: (1)
the time people take to move between jobs (frictional unemployment); (2) a mismatch of skills in
the labour market due to a lack of occupational and geographical mobility, and by technological
change (structural unemployment); (3) a lack of aggregate demand (cyclical unemployment). Here
we emphasise the third cause. We consider the firms as potential units of labour, with the set of
all potential units of labour representing all the jobs that can potentially be created in the economy
[28], and unemployment occurs when the economy is bellow full capacity. Moreover, cyclical
unemployment may be transformed into structural unemployment by hysteresis mechanisms
blurring the distinction between these two types of unemployment.
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Fig. 2 Hypothetical price level dynamics

Pentry Pentry
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P1

P2

T0

T1
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Fig. 3 Aggregate employment dynamics accordingly to the Preisach model (a) Initial State
(b) Price Increase to P1 (c) Price Decrease to P2 (d) Preisach Triangle Displacement due to
Uncertainty (e) Price Increase to P1

aggregate price level decreases to a local minimum P.t2/, those relays for which
Pexit;j > P.t2/ are switched off and the firms dismiss the worker (Fig. 3c).

This dynamics traces a staircase line dividing in two the area of the Preisach
triangle, T,—one part where the relays are on, representing the aggregate level of
employment, and the other where they are off, representing the level of unemploy-
ment in the economy.19 The vertex coordinates of the staircase line correspond to

19Given the potential number of units of labour that can be created in the economy (the area of the
Preisach Triangle—T), the unemployment rate results from a lack of demand represented by the
price level, and thus it should be considered as involuntary.



488 P.R. Mota and P.B. Vasconcelos

the sequence of the past non-dominated extrema of the input variable. At the macro
level, the system retains a selective memory of past shocks, represented by the
staircase line, since the level of employment is defined by the sequence of non-
dominated maxima and minima at the aggregate price level. Depending on this
sequence, the relationship between aggregate employment and the price level is
represented by different branches. Whenever the direction of the price path changes,
a continuous branch-to-branch transition occurs, causing multi-branch non-linearity.
A non-dominated demand shock, as the one that occurs at t5, clears the effect of the
previous dominated extrema from the memory bank. Thus, the coordinates of the
staircase partition between T0 and T1 are removed from the memory.

Let us consider now the effect of the time varying uncertainty. When the price
level decreases from t1 to t2, the unemployment increases from the area T0 in Fig. 3b
to the area T0 in Fig. 3c originating an increase of the level of uncertainty for every
firm, accordingly to Eq. (5). The consequence is the displacement of the Preisach
Triangle to Norwest, as in Fig. 3d. Assuming that the price level increases again
to a level P.t3/ D P.t1/, all the relays with Pentry;j 6 P.t3/ switch on leading
to an increase of the aggregate level of employment (decrease of the level of
unemployment). However, comparing Fig. 3b, e the transitory shock in the aggregate
demand caused a permanent increase of the unemployment rate.

2.3 Model Implementation

The transition from the firm level to the macro level leads to a change in the
hysteresis properties (see [29]). While micro adjustment is discontinuous, for
macrodynamics the adjustment occurs continuously. A piecewise-linear approxi-
mation of the Preisach operator, where the slope of the linear functions changes
every time the price reaches an extremum, is well-suited to describe a case like this.
The linear play hysteresis operator is able to capture the feature that the aggregate
demand can produce permanent effects on employment.

The play operator, Pr, is characterised by horizontal reversible inner branches of
the same length (the play segment) and upward sloping linear limiting branches (the
spurt segments),20 giving rise to counter-clockwise oriented loops. In this model the
memory effect is captured by the difference between two adjacent lines (the play
and the spurt). If ˇ1 denotes the slope of the flatter line (the play), then ˇ1 C ˇ2
is the slope of the steeper one (the spurt), and ˇ2 is the memory or remanence
parameter [8]:

dNt

dPt
D ˇ1 C d � ˇ2; with d D



0; on the play lines
1; on the spurt lines

(8)

20See [22, p. 15].
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As the slope of limiting branches is fixed, the operator is characterised by a single
constant—its input threshold value or the magnitude of the play segment. The initial
value of the operator state, the pair ŒPr .t0/ ;P .t0; /�, together with the future values
of the input, P .t/, determine the value of the employment, N .t/ (see, for more detail,
[39]).

The linear play hysteresis operator is implemented empirically via a linear
switching employment equation with an unknown splitting factor—the play—
capturing the non-linear play hysteresis effects.

In the empirical work, we use aggregate sales in manufacturing, St, as a proxy
of the state of aggregate demand represented in Eq. (4) by Pt. Following [8], we
consider that the change in St (the variable that causes hysteresis) may occur along
the play segment, PLAYt, in which case it is referred to as 4at, or on the spurt line,
in which case it is referred to as 4SPURTt:

4St D 4at C 4SPURTt, with

4SPURTt D



sign .4St/ � .j4St � PLAYt; j/ ; .j4St � PLAYt; j/ > 0
0; otherwise

(9)

The change in aggregate employment, Nt, induced by a change in real sales, is
divided between a weak reaction in the play area and a strong reaction described by
the spurt line when St changes sufficiently:

4Nt D ˇ14at C .ˇ1 C ˇ2/4SPURTt; with jˇ1j < jˇ1 C ˇ2j (10)

The location of the play line is shifted vertically by movements on the spurt line
in the direction of the change in employment. The cumulative vertical displacement
of the play line, induced by all previous movements on both spurt lines, is
expressed as:

Vt�1 D
t�1X
iD0

4SPURTi (11)

Thus, the realization of Nt can be expressed as a shift in Vt induced by past spurts
and the current change in the independent variable, 4St:

Nt D C C Vt�1 C 4Nt (12)

and using (10) and (11) we obtain:

Nt D C C ˇ2

t�1X
iD0

4SPURTi C ˇ14at C .ˇ1 C ˇ2/4SPURTt (13)
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Using (10) and bearing in mind that
Pt�1

iD0 4SPURTi C 4SPURTi DPt
iD0

4SPURTi, it results:

Nt D C C ˇ2

tX
iD0

4SPURTi C ˇ1St (14)

Summing and subtracting ˇ1
Pt�1

iD0 4Si, making ˇ0 D C � ˇ1
Pt�1

iD0 4Si, and
considering

Pt�1
iD0 4Si C 4Si D Pt

iD0 4Si D St and
Pt

iD0 4SPURTi D SPURTt

we have:

Nt D C C ˇ0 C ˇ1St C ˇ24SPURTt (15)

where SPURTt is a filtered aggregate sales series (dependent on the play value),
which summarises all preceding and present movements on the spurt lines causing
a structural shift of the current relationship between employment and sales.

Based on Eq. (15), we estimate the following model (we add a time trend, T).

8̂
ˆ̂<
ˆ̂̂:

Nt D ˇ0 C ˇ1St C ˇ24SPURTt C ˇ3T C �t

SPURTt D f .PLAYt/

PLAYt D � C ı�St ; �; ı > 0

�St D 1
n�1

Pt�1
iDt�k

h�
Si � S

�2i
(16)

where the artificial variable SPURTt is computed from Eqs. (9) to (15), assuming a
variable play value; PLAYt D �Cı�St . The splitting factor, PLAYt, is modelled as a
positive function of the fixed employment adjustment costs, captured by parameter
� , and also a positive function of the degree of uncertainty captured by parameter ı.
We consider, following [21, p. 116], that the level of uncertainty is determined by the
variance of aggregate sales taken as a proxy of the level of the aggregate demand.
Accordingly, we use the moving standard deviation of the logarithm of aggregate
sales, �St .

21 Higher values of �St correspond to more uncertainty and therefore to
wider play.22

In this framework,ˇ1 gives the reaction along the play, while ˇ1Cˇ2 the reaction
along the spurt segment. In the presence of hysteresis we expect ˇ2 > 0.

21In the estimation we set K D 3:
22There is a certain lack of consensus in literature concerning the best way to construct a proxy
for uncertainty. Nonetheless, typically uncertainty is captured by moving variances of the relevant
variables like output, inflation, real wages, interest rates, exchanges rates, etc. (see [17], for a
survey).
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Following the algorithm described in [8], a MATLAB program to generate the
spurt variable was developed and implemented, which in turn requires estimation of
the play width. The algorithm for the variable play model works as follows:

1. Load data:

• n, number of elements taken for analysis;
• St, real sales;
• Nt, employment;
• UIt, the proxy of uncertainty;
• T, the time trend.

2. Build a grid for the variable play:
Given:

• hmin, the minimum value to be considered on the grid for the variable play;
• hmax, the maximum value to considered on the grid for the variable play;
• hprec, the required precision;

Compute:

• h D hmax�hmin
hprec

,number of points on the grid.

3. Execute a grid search over a set of admissible values of the play and spurt:

(a) for each pair .�; ı/:

• for i D 1; : : : ; g C 1;
• for j D 1; : : : ; h C 1;

(b) recognise the switches and compute the values of the play and spurt:

• define ı D hmin C . j C 1/ � hprec;
• compute play D � C ı � UI;
• build spurt D f .play/; and

(c) estimate the employment equation by OLS and compute the corresponding
R2:

• X D Œones .n; 1/ ; spurt .1 W n/ ; .1 W n/0� I
•
�
R2 .i; j/ ; ˇ .i; j/ ; W� D R2_function.x; y/:

4. Select the pair .�; ı/ that maximises the goodness of fit of the employment
equation (as measure by R2):

•
�
R2max_vec; imax_vec

� D max
�
R2
� I

•
�
R2max; jmax

� D max
�
R2max_vec

� I imax_vec D imax_vec. jmax/I
• play D hmin C . jmax � 1/ � hprec:

It is worth mentioning that: (1) the spurt D f . play/ at step 3.2. provides the
necessary computations to evaluate changes in the spurt variable due to changes in
the input variable—see, for more detail, [8, p.191]; (2) the ˇ coefficients for the
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estimation of the R2 are computed using a numerically stable and computationally
efficient procedure based on QR factorisation; and (3) the non-linearity inherent to
hysteresis is captured by the hysteresis variable, while the rest of the model is kept
linear.

The test for the presence of hysteresis consists of checking the ability of the
hysteretic transformed input variable, SPURTt, to explain the observed aggregate
employment dynamics. The strategy is to test whether the non-linear model, which
includes hysteresis, provides better results than the linear one.

We start by studying the stationarity of the series by applying the augment
Dickey-Fuller units root test to the series in levels and to their first differences.
This step is necessary in order to check if the series are integrated of the same order.
To rule out the possibility of a spurious regression and to verify the existence of
a true equilibrium relationship between the variables, we test for the existence of
cointegration using the Johansen Test Procedure.23

However, because the series are non-stationary, we re-estimate the cointegrating
regression by Fully Modified least Squares (FM-OLS) proposed by Phillips and
Hansen [34] and developed by Phillips [33], which is an asymptotically efficient
estimator of long-run economic relationships.

Finally, we test for the significance of the transformed sales variable, hysteresis
implies ˇ2 > 0 in Eq. (16), using new statistics called fully-modified Wald tests,
which are asymptotically distributed chi-squared criteria, and facilitate inference in
integrated series of order one, I.1/, regression models. To verify the comparative
explanatory value of the models, we also perform a test on the increase in the
goodness of fit of the regression with only the original sales variable when we add
the hysteresis transformed variable.

3 Data

For the simulations, we use firm level data from the “Inquérito Mensal à Indústria—
Volume de Negócios e Emprego”, a monthly mandatory mail survey of manufactur-
ing firms with at least ten employees, run by Statistics Portugal.

Data include the number of employees in the firm, nj;t, and total sales, sj;t. We
use 168 waves of the survey, from January 1995 to December 2008. On average,
2,616 firms answered each month, totalling 439,488 records .firms � months/ over
the entire 14-year period. The distributions of firms by number of employees and
industry in the starting period are reported in Tables 1 and 2.

This data set was used to build the aggregate time series of employment, Nt, and
real sales, St (defined as the nominal value of sales obtained by aggregation over our

23We apply the Trace Test performed with four lags in the VAR representation and with an intercept
and time trend in the cointegration equation. We report the results of testing the null hypothesis of
no cointegration (r D 0) against the existence of at least one cointegrated vector (r).
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Table 1 Distribution of firms by size (1995:01)

Number of firms Proportion of firms (%)

10 6 n < 19 299 13.45

20 6 n < 49 528 23.75

50 6 n < 99 477 21.46

100 6 n < 199 410 18.44

200 6 n < 500 374 16.82

n > 500 135 6.07

Total 2,223 100.00

Table 2 Distribution of firms by activity sector (1995:01)

Number of firms Proportion of firms (%)

Mining 91 4.09

Food, tobacco and beverages 290 13.05

Textile, leather and shoes 447 20.11

Furniture and wood 310 13.95

Paper and printing 151 6.79

Chemicals, petroleum and rubber and plastic
products

182 8.19

Non metallic mineral products 184 8.28

Primary metals 50 2.25

Machinery, fabricated metals, motors and cars
and other transport material

498 22.40

Electricity and gas 20 0.90

Total 2,223 100.00

micro data, and deflated using CPI from OECD—Main Economic Indicators). The
variables were seasonally adjusted.

4 Estimation Results

We start by applying the augment Dickey-Fuller unit root test to find the order of
integration of the series. Table 3 shows the augmented Dickey-Fuller test statistic
for the levels and for the first difference of the variables. For all the variables in
levels the augmented Dickey-Fuller test statistic is larger than the 5 % critical value
(�3:445) indicating that we do not reject the hypothesis the existence of a unit root.
We do not reject the hypothesis of stationary of the first difference of the series. In
this case, the augmented Dickey-Fuller test statistic is smaller than the 5 % critical
value for all the variables. Thus, all the variables used in the regressions are non-
stationary and are I.1/. Moreover, the transformed series (the spurt variable) tends
to reflect the stationary properties of the original sales series variable.
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Table 3 Augmented Dickey-Fuller test statistics (5 % critical value: �3:445)

Variable Whole sample Small firms Large firms

Level First difference Level First difference Level First difference

Nt �0.48 �14.97 �1.31 �19.84 �1.39 �11.46

St �2.15 �15.78 �2.70 �9.28 �2.71 �13.99

SPURTt �1.39 �11.02 �0.94 �12.34 �1.87 �11.06

Table 4 Estimated play parameters

Whole sample Small firms Large firms

Constant
play

Variable
play

Constant
play

Variable
play

Constant
play

Variable
play

� 0.106 0.102 0.170 0.176 0.074 0.05

ı � 0.200 � 0.200 � 0.194

Average play 0.108 0.187 0.056
width

To obtain asymptotically unbiased estimates of the parameters, we estimate
Eq. (16) using FM-OLS.24

Through the process of grid search over parameters � and ı described in Sect. 3,
the estimated average values of PLAYt are 0.108, 0.187 and 0.056 for the whole
sample, for the subsample of small firms, and for the subsample of large firms
respectively (see Table 4).25 These results are consistent with the presence of an
employment band of inaction, which is found to be wider for small firms.26

The estimation results (see Table 5) show that the coefficient that captures the
reaction along the play, ˇ1, is not significantly different from zero (for a 5 %
significance level), while the coefficient that captures the additional reaction along
the spurt, ˇ2, is. The estimated ˇ2 are 0.366, 0.632, and 0.246 for the whole sample
and for the subsamples of the small and large firms respectively (t statistics are
6.952, 8.628 and 2.728 respectively). This is evidence of the reaction along the play
being weaker than the reaction along the spurt, which is true in all of the cases
considered.

In order to distinguish the impact of uncertainty from the non-convex employ-
ment adjustment costs on the presence of hysteresis, we test the hypothesis H0:
ı D 0 against H0: ı > 0. The F-Statistic (for K D 6 parameter and m D 1

24By applying Johansen cointegrating test to the three samples, we do not reject the hypothesis
of a single cointegrating vector relating the variables. The trace test statistic, 52.405, 58.81, and
48.166 for the whole sample, for the subsample of small firms and for the subsample of large firms
respectively, is greater than the 5 % critical value (42.91).
25We also report the estimation results for the case of a constant splitting factor (play) in the
employment equation.
26As the estimated play width is greater for the sub sample of the small firms, the linear play
algorithm originates a transformed series, which us smoother than in the case of the large firms.
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Table 5 Estimation results

Whole sample Small firms Large firms

Constant
play

Variable
play

Constant
play

Variable
play

Constant
play

Variable
play

Cons 11.349a

(11.64)
11.405a

(11.825)
6.124a

(7.488)
6.274a

(8.853)
9.484a

(6.284)
11.186a

(6.431)

St 0.038
(0.829)

0.035
(0.779)

0.058
(1.109)

0.049
(1.081)

0.080
(1.116)

�0.001
(�0:012)

SPURTt 0.366a

(6.952)
0.632a

(8.628)
0.246a

(2.728)

T �0.002a

(�26:56)
�0.002a

(�26:64)
�0.001a

(�15:01)
�0.001a

(�17:38)
�0.002a

(�16:61)

R2 0.891 0.892 0.786 0.815 0.848

DW 0.135 0.130 0.470 0.494 0.100
aSignificant at 5 %. t-statistics are in parentheses

restriction) for a comparison of the unrestricted (ı > 0) and the restricted case
with ı D 0 is 1.17 for the whole sample, 19.75 for small firms and 3.32 for
large firms.27 Consequently, uncertainty contributes to explaining the dynamics of
aggregate employment through hysteresis mechanisms, mainly, in the case of small
firms.

5 Conclusion

Our results highlight the importance of hysteresis caused by uncertainty in a context
of low interest rate, as it is the present situation in many advanced economies. In
fact, in a low interest rate environment, fixed employment adjustment costs are less
important to generate hysteresis effects, but on the contrary uncertainty is more
relevant. Therefore, hysteresis can be quite strong even for small values of the fixed
hiring and firing costs.

Although hysteresis is pervasive across different firm’s class size, due to non-
convex adjustment costs, uncertainty is especially important for the employment
dynamics of the small firms. A possible reason is that due to the structure of
management they are less able to develop mechanisms to deal with uncertainty.

This result is highly relevant as micro and small firms represent 97.8 % of the
total number of Portuguese firms, and they have a share of 53 % of the number of
employees.28

27F .ı D 0/ D .R2unrestricted�R2restricted/=m

.1�R2unrestricted/=.N�K/
:

28We are relying on 2008 data from Statistics Portugal.
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This implies that measures toward the deregulation of the labour market to
increase flexibility in working time; to make wages and labour costs more respon-
sive to market pressures; to weaken employment security provisions and unemploy-
ment benefit systems, could be of no use to increase the level of employment due
to hysteresis effects caused by uncertainty in the labour demand. Besides, even if
government reduces the level of fixed employment adjustment costs to a minimum,
a substantial source of irreversibility remains due to non-convex costs of physical
capital adjustment.
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A State Space Model Approach for Modelling
the Population Dynamics of Black Scabbardfish
in Portuguese Mainland Waters

Isabel Natário, Ivone Figueiredo, and M. Lucília Carvalho

Abstract Black scabbardfish (Aphanopus carbo Lowe, 1839) is a widely dis-
tributed species across the Atlantic ocean. In Portuguese mainland waters the
existing specimens are immature (not able to reproduce). It is admitted that they
have migrated from the West of the British Isles and that they remain in the area
for some years, until they attain an adequate size or physiological conditions which
allow them to migrate and reproduce elsewhere.

The present study aims to model the dynamics of the population of black
scabbardfish living in the International Council for the Exploration of the Seas
Division IXa, for which disaggregated data are available, although within the
context of a larger population. With this purpose, a state-space model is used, which
enables the estimation of the unknown abundance (latent process) by exploring its
dependency relationship with the observational data on the species fishing landings
in that area. The population is partitioned into length groups and the population evo-
lution process is subdivided into biological related subprocesses.The estimation is
achieved within a Bayesian paradigm, where all the available biological information
is incorporated in the prior distributions of the parameters of the subprocesses. Later,
short-term trajectories of the population living in IXa are studied, via simulations
that are constructed based on different management scenarios.
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1 Introduction

Black scabbardfish (BSF), Aphanopus carbo Lowe, 1839, is a deep water species
widely distributed across the Atlantic Ocean. The species population dynamics in
the NE Atlantic is currently considered to display a migratory behaviour essentially
driven by feeding and reproduction considerations [1, 4, 14]. Spawning seems to
occur in southern areas like Madeira and Canary Islands [2, 4, 9]. The recruits
migrate to most northern areas such as the West of the British Isles (BI) and the
Faroes Islands, where they grow for a few years. Afterwards juveniles seem to
move south again towards off mainland Portugal (P), International Council for the
Exploration of the Seas (ICES) Division IXa, growing to an adult size before leaving
for maturing and spawning in southern areas.

The main objective of this work is to come up with a model that accommodates
the previous assumptions about the BSF population dynamics and that is able to
estimate the BSF population abundance in P, which is an unknown time series.

In the NE Atlantic the BSF is an important commercial resource, being mainly
fished in three different spots [2, 6], in BI—deep-water trawl fishery—in P and off
the Madeira Archipelago—artisanal longlines fishery. BSF catches represent 0.01 %
of the Portuguese gross domestic product and 5 % of the total landed fish in value
in Portugal (average values for the decade 2002–2012, source Instituto Nacional de
Estatística). The kind of data that are available are landings data, observed as time
series, running in parallel with the related unknown BSF population abundance time
series. However, at the moment, almost only data from P are available with enough
detail.

So, the idea is to use a state space model for specifying the relation between
the unobserved state process (population abundance) and the observational process
(landings), which also allows the incorporation of the available knowledge on the
biology and the spatial dynamics (including migrations) of the species, following
the extensions in [12] of the population projection matrix models in [3]. Like this
we are able to estimate the latent fish abundance, along the time, as well as its
credible intervals, and also to produce estimates of the species vital parameters
and fishing mortality. Short-term projections of population abundances can also
be obtained by simulation, considering different scenarios regarding abundance
and fishing effort, enabling comparisons between different fishing policies and
associated uncertainties.

The estimation is done within the Bayesian paradigm, which is better suited to
incorporate the a prior biological information on the species dynamics. A sequential
importance sampling scheme [7] is implemented for estimation, a quite computer
intensive one as not only the model parameters but as well as the latent fish
abundance over time are to be estimated.

In Sect. 2 the data and model are detailed and carefully explained, including the
estimation and the projections, in Sect. 3 the corresponding results are presented and
finally in Sect. 4 they are discussed.
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2 Model and Data

The model for the BSF population dynamics that is proposed accommodates what
is known about the species, which is not much. It is observed that in P there are not
very small (young) specimens, as are observed in BI. It is then postulated that in P
the BSF population is composed by immigrants from BI that remain in the area for
some years. However, it is observed that in P the specimens are immature, that is,
they are not able to reproduce. So, in P, the BSF specimens that attain an adequate
size or physiological condition leave the area, emigrate, to reproduce somewhere
else (Madeira, Canárias,. . . ).

Any other existing biological information on species should be included, such
as survival to natural mortality and life stage transition, here defined through length
classes. Also survival to fishing must be considered.

The BSF population is better modelled if partitioned into length groups, corre-
sponding to different age groups, including in class C1 those specimens with length
inferior to 50 cm (recruits), nonexistent in P, in class C2 those with length between
50 and 103 cm (juveniles) and in class C3 those larger than 103 cm (adults). In P,
the number of specimens in C2 group is annually augmented due to the entrance
of specimens arriving from BI, observed to occur in the first semester of the year.
The number of specimens in C3 group is annually reduced due to the exit of a
fraction of specimens to elsewhere, observed to occur in the second semester of the
year.

Hereupon, in order to estimate the unknown population abundance, in number,
by exploring its dependency relationship with the observational data on landings,
the population dynamics is modelled through a state space model, constituted by
two component processes that run in parallel, a latent representing the unknown
population abundance and an observational being the observed landings (both
vectorial). Like this it is possible to model the evolution in time of the state
process, the unknown population, decomposing it into subprocesses, which describe
the main biological aspects of the species life cycle. The chosen time unit is the
semester, denoted by s, due to the distinct semestrial migration pattern mentioned
before.

2.1 Data

The landings data in P come from a small size commercial vessel fleet (n = 16)
operating there (Sesimbra landing port), targeting the BSF species, being the
fishing grounds the hard bottoms along the slopes of canyons (depth: 800–1200 m),
and employing deep-water longline as fishing gear. The landings occur, typically,
three times a week, and are divided per length group. The data, provided by the
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Portuguese General Directorate of Fisheries and Aquaculture, are in weight, being
converted to number by means of the mean weight by length group, estimated from
the DCF/EU landings sampling program.

2.2 Model Structure

As stated before the P population state vector in each semester s is constituted by
the number of C2 and C3 group members, nC2;s and nC3;s, respectively. It is further
convenient to subdivide these into the ones that were fished (F) and those that were
not (F). Furthermore, for modelling purposes, it is advisable to also include in this
population state vector the number of fish in BI, four semesters before s, nBI;s,
although its estimation is not a goal, but its consideration allows a better evaluation
of the fish flux entering P. So, shortening, we have the following state vector:

nnn0s D �
nBI;s nC2;s.F/ nC3;s.F/ nC2;s.F/ nC3;s.F/

�

The stochastic state process is based on the deterministic general process,
nnns D Pnnns�1, where P is a Lefkovitch projection matrix [3]. The complexity of this
dynamics is better captured and modeled by further subdividing the state process
into subprocesses [12], each of which only depends on the subprocess that occurred
immediately before:

• Semestrial evolution of BI population, which is supposed to be fairly unknown
and consequently not divided into subprocesses:

Us � Not detailed evolution in BI

• Semestrial evolution of the population in P, the main concern of this model, is
divided into four subprocesses:

Ms � Survival to natural mortality

Ts � Class transition

Ds � Displacement by migration -

entrance and departures of immature adults

Fs � Survival to fishing

The deterministic formulation, nnns D Pnnns�1 D FDTMU nnns�1 evolved to the
stochastic formulation via conditional expectations of the state process, which is
assumed to be a first order Markov process. It is further assumed that all the
individuals in the population act identically and independently. Denoting by uX

s



Modelling the Population Dynamics of Black Scabbardfish in Portuguese Waters 503

the state vector after subprocesses X happens, X D U;M;T;D;F, the population
evolution is done accordingly to the subprocesses described below:

Not detailed evolution in the BI, only allowing some variation in the BI
population abundance:

uuuU
s � HHHU

s .nnns�1/ W

0
B@

uU
BI;s � N.nBI;s�1; 0:1 � nBI;s�1/

uU
C2;s D nC2;s�1.F/

uU
C3;s D nC3;s�1.F/

1
CA

Survival to natural mortality, representing pM the probability of surviving to
natural mortality:

uuuM
s � HHHM

s .uuu
U
s / W

0
B@

uM
BI;s D uU

BI;s

uM
C2;s � Bi

�
uU

C2;s; pM
�

uM
C3;s � Bi

�
uU

C3;s; pM
�

1
CA

Class transition, representing p23 the probability of a specimen in group C2 grows
into group C3:
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Displacement by migration: this differs according to whether s is odd (immi-
gration to P) or even (emigration from P); let � represents the probability that a
specimen from BI, which has immigrated four semesters earlier, arrives alive in P
and pE represent the probability that a specimen exits P by migration:
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Survival to fishing: survival to fishing probabilities relate to the mortality rates
FCi;s through 1 � �Ci;s D exp.�FCi;s/. Fishing mortality rates are estimated by
linking them to the fishing effort on the basis of the catchability coefficient. A full
recruitment model with log-normal error term is considered, FCi;s D qCiEs [10],
where Es is a standardized fishing effort in semester s derived from estimates of
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the quantity catch-per-unit-of-effort (CPUE), obtained through the adjustment of a
GLM model to them, where the covariates involved, besides the temporal variations,
reflect the specificities of the different elements of the fishing fleet [8]. Further
note that an adjustment is made in group C2 (through probability pLargeC2, fixed)
to account for those smaller specimens in this group that are never caught (smaller
than 70 cm).
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The observational process yyy0s D . yBI;s yC2;s yC3;s/ ; is a stochastic function of the
unknown states nnns, representing yBI;s the estimated number of BI fish in semester
s�4 and representing yC2;s and yC3;s the BSF catches in C2 and C3 length groups in
semester s. Normal measurement errors with constant coefficients of variation are
considered for these:
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To summarize, the state space model can then be described by
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The initialization of this Markov process is done considering the specimens
caught in each group in the first semester and simulating the probability of fishing,
for each group, using the prior distribution of the corresponding q parameters.
With these we can initialize the number of fish caught in each group as the ones
observed in the first semester of the observed time series, estimate the total number
of specimens in each group by dividing the number of fish caught in each group by
the corresponding fishing probability, and then initialize the number of non-caught
fishes in each group as the difference between the total and the fished ones.
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2.3 Estimation

The estimation is done within a Bayesian paradigm, implying non-trivial integration
of the several probability density functions, which is accomplished through sequen-
tial Monte Carlo. The algorithm proposed by Liu and West [7] is implemented to
do sequential importance sampling with resampling, specially intended for space
state models. It is though necessary to specify prior distributions for the parameters,
where all the biological knowledge available about them is included.

Importance sampling is a technique that is used when direct sampling from a
target probability distribution is not feasible, but we can generate samples from
an alternative and easier trial distribution, and then weight them properly to be
used as samples from the target distribution. Sequential importance sampling with
resampling is a technique where, for space state models, the generation of the
unknown states is carried out using as trial density function the state equation
gs.nnnsjnnns�1I�/ and weights which are proportional to the observation density (fil-
tering). The algorithm yields estimates of nsjys, (ys D .y1; : : : ; ys/) and parameter
densities at each time point s. At the last time point S we get an estimate of the
posterior density of �.

To overcome a problem of “particle deplection” (particles with relative large sizes
tend to be chosen many times and dominate) kernel smoothing of parameter vectors
has been implemented at each time step, adding a small perturbation to parameter
values, increasing the diversity of parameters values in vicinity of the parameter
space. Also, auxiliary particle filter was implemented, where an initial “auxiliary”
resample is taken from the population at time s, with weights calculated according
to the expected likelihood of the states at time sC1, given the data as time sC1. This
resampled set of particles is then projected forward from time s to time s C 1, and
“corrected” using likelihood weights just as with filter, except that the likelihood
weights must take account of the auxiliary resampling stage.

Model adequacy is based mainly on the inspection of the estimated credible
intervals for the latent abundances, specially those relating to the number of
catch fishes, for which we have data to compare. The expected deviance is also
calculated.

The prior distributions for the model parameters were selected so that all the
available biological information was incorporated there, see Table 1. The common
non-informative gamma priors were chosen for the dispersions of the observation
errors.

2.4 Simulation

For management purposes it is interesting to be able to simulate several scenarios
regarding the BSF abundance, according to several levels of exploitation, for
example. Taking the estimates of the parameters and states for the last year for
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Table 1 Description of the subprocesses parameters

Prior

Parameter Subprocess distribution Description

pM Surviving Beta Probability of surviving to natural mortality.

EŒpM� D e�M , assuming an exponential model

for the individual lifetime.

M is estimated [5] as .e�M=2/agemax D punf ,

where punf is the proportion of the unfished

population that attends the maximum age,

agemax, considered to be respectively

equal to 0.05 and 46 semesters [13]

p23 Class transition Beta Probability of a specimen to transit from C2 to C3.

EŒp2;3� is determined using: (1) the interval

of total length for specimens that are likely to

transit to length group C3 in one semester;

(2) the probability of a specimen living in P

belongs to this length interval (determined

assuming the Von Bertallanffy model for growth

with parameter estimates given in [13])

� Immigration Beta Probability that a BI specimen that has immigrated

four semesters before arrives alive in P.

EŒ�� is calculated as the mean of the relative

decrease of the BI CPUE between the odd and

even semesters

pE Emigration Beta Probability that a specimen emmigrates from P.

EŒpE� is calculated as the mean of the

relative decrease of Portuguese CPUE between

the odd and even semesters

�C2 Survival Lognormal Probability that a C2 or C3 specimen die due

to to fishing. The information available to

estimate catchability is insufficient, so vague

log-normal distributions are adopted as prior

of distributions of qC2 and qC3

which data were available as inputs of a simulation study, and assuming that the
population dynamics remains almost identically except for some little differences,
three different scenarios were considered: no fishing, an increase of 5 % in the
fishing effort in P and a decrease of 20 % in the BI abundance, with no change
in the fishing effort in P.
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3 Results

The estimation algorithm as well as the predictions were programmed in R [11].
It was tuned according to [7] and, in order to implement it, 1,000,000 initial
particles were used. The Monte Carlo error, evaluated by averaging the coefficient
of variation for all the parameter mean estimates, based on five runs, has a value of
5.8 %. This section describes the main findings.

3.1 Estimation

The obtained estimates were the posterior distributions of all the model parameters
and the posterior estimates of all state vector components, summarized in their
posterior medians and 95 % credible intervals. Figure 1 depicts the estimates of
the catches and the observed data, showing the good adjustment between them, and
relatively narrow credible intervals.

Figure 2 displays the estimated abundances for C2 and C3 groups, both depicting
slightly increasing trends. Note however the high variability of the estimates in the
beginning of the time series, possibly due to a not so good initialization or to not so
much informative priors.

Figure 3 displays the prior and posterior distributions of parameters pM, p23, �,
pE, qC2 and qC3. From here it can be seen that the parameters who had more modified
the corresponding parameter distribution by the data were � and qC2; qC3, for which
less prior information was available.
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Fig. 1 C2 (left) and C3 (right) group estimates (lines) and observed (dots) catches
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Fig. 2 C2 (left) and C3 (right) group abundance estimates

3.2 Simulation

Figure 4 depicts the simulation results for the three scenarios considered: scenario
with no fishing, scenario with an increase of 5 % in fishing and the scenario where
a decrease of 20 % in the BI abundance of the resource occurs. From here it can be
seen that both scenarios involving changes produce the same result of decreasing
C3 predicted abundance. Interestingly, C2 predicted abundance do not change
significantly between the three scenarios, possibly because this group corresponds
to a much smaller part of the population.

4 Discussion

The model applied here to BSF dynamics has some important advantages over other
deterministic alternatives commonly used for the same purpose. It allows simulta-
neous incorporation in the model of fishery data and existing prior information on
the species life cycle, presents a flexible way to incorporate the different biological
aspects of the life cycle in a modular way, allows unprecise data by including
observational errors and weak information on the population process parameters
by using non-informative priors. This model not only provides abundance estimates
as it allows short-term predictions with just a little more effort.

As to the estimation results it is worth noting that data essentially altered the
distributions of the catchabilities qC2 and qC3, increasing their mean values that
were most probably taken to be very small, and of the probability of a BI specimen
that has immigrated four semesters before arrives alive in P, �, for which a prior
ignorance state was the starting point.
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Fig. 4 C2 (left) and C3 (right) group simulated abundance for the scenario with no fishing (top
row), for the scenario with an increase of 5 % in fishing (middle row) and for the scenario where a
decrease of 20 % in the BI abundance of the resource occurs (bottom row)
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Finally, as far as predictions are concerned, the slightly increasing estimated
abundance trend that was observed in the case where no fishing was assumed was
inverted when an increase in the fishing regime or a decrease in immigrants was
imposed.

As argued before this model is very modularized, being quite easy to incorporate
the population dynamics of the BSF in the other places assumed to belong to its
life spatial cycle. That should be the next step of this work, for which data are
being gathered. Naturally that when that happens it will be possible to obtain more
accurate predictions about the resource abundance in the different sea areas where it
exists and where it is being fished, allowing a better understanding of its evolution
for different fishing scenarios in the different places and helping to review the actual
fishing quotas if necessary.
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Entropy and Negentropy: Applications in Game
Theory

Eduardo Oliva

Abstract The concept of entropy has been applied to such different fields
as thermodynamics, cosmology, biology, chemistry, information theory and
economics. An interesting application of entropy in the latter field is the existence
of a complete ordering of information structures represented by the decrease in
entropy, computed à la Shannon, of the agent’s beliefs. In this paper we will apply
this entropy ordering to information structures used in experiments assessing the
role of communication in coordination games.

1 Introduction

Since the early works of Carnot, Clausius and Boltzmann [8, 10], entropy has proven
to be one of the most fruitful concepts in science. Although entropy is best known
for the role that it plays in classical thermodynamics and the so called second
law, applications of entropy can be found in such different fields as cosmology
(i.e. the arrow of time, Beckenstein-Hawking entropy of a black hole [9]), chemistry
and biology (Schrödinger’s and Brillouin’s concept of negentropy [3, 11]) and,
surprisingly, in language, cryptography and information theory with the seminal
work of Shannon on a mathematical theory of communication [12]. This connection
between information (the information theoretic Shannon entropy) and the mecano-
statistical properties of physical systems (the thermodynamic Boltzmann entropy)
allows one to apply physical techniques (as the Boltzmann-Gibbs distribution [7])
to economic problems (i.e. the statistical mechanics of money distribution [13]).

In this paper we will use another application of entropy in economics: deciding
which piece of information is better for an agent. A decision maker values
information that reduces the uncertainty about the true state of nature. Nevertheless,
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gathering information usually has a cost. Thus, the decision maker must choose the
most informative piece of information (from now information structure) at a given
cost. This is a hard choice, since the ranking of information depends upon at least:

• The agent’s priors about the true state of nature.
• The preferences and wealth of the agent.
• The decision problem itself.

It turns out that, under certain conditions, a complete ordering of the informativeness
of information structures exists and it is represented by the decrease in Shannon’s
entropy (i.e. increase in negentropy) of the agent’s beliefs. We will apply these
tools to the study of communication in coordination games. In [6] the effect of
nonbinding, preplay communication in bilateral coordination games was studied.
Two different information structures, one-way communication (only one agent
sends a signal) and two-way communication (both agents send a signal at the
same time) were used. The experiment implied the counterintuitive result that the
dominated strategy plays a fundamental role. Thus, a model where the agents have
private values (altruists and egoists) was proposed to explain the results. We will
apply the information ordering to discern which information structure (one-way or
two-way) is better in the signaling problem faced by an agent that knows its private
value (altruist, egoist) but does not know its opponent’s private value and wants to
maximize its expected utility.

The structure of the rest of the paper is as follows. In Sect. 2 we will explain the
experiment reported in [6] and the altruist-egoist model. Section 3 will be devoted
to describe the information structures used in the experiment. In Sect. 4 the entropy
ordering will be explained and applied to the experiment’s information structures.
Finally, the paper will close with a few remarks and conclusions.

2 A Cooperative Coordination Game: Altruist-Egoist Model

In [6] the effect of “cheap talk” (i.e. nonbinding, preplay communication at no
cost) on the equilibrium selection in coordination games was studied. Two different
information structures (one-way and two-way communication) and different coor-
dination games (with or without a dominated cooperative strategy) were considered.
Table 1 shows a coordination game with two Pareto-ranked Nash equilibra, (1,1) and
(2,2), and a dominated cooperative strategy (3) that leads to a Pareto-dominating
solution (3,3). The structure of this coordination game is intended to shed some
light on the processes of equilibrium selection and thus it does not try to model any
real world situation. Indeed, this coordination game is a mixture of two well known
games: the stag hunt (entries for strategies (1) and (2) in Table 1) and the prisonner’s
dilemma (entries for strategies (1) and (3) in the same table). Nevertheless, it is
possible to devise some ad hoc situation where this game applies, for example, in the
adoption of technologies. Let’s suppose that both players are enterprises that make
business between them via some software. They can: (1) continue working with the
same software; (2) make an upgrade to a new version (3) buy a better (but expensive)
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software that is compatible with the old version of the actual software but not with
the upgraded version (because it is too new). This new software is expensive to
maintain but it is really user friendly for the clients of the enterprise (i.e. the other
player). Upgrading the software (2) or buying new software (3) has a cost. Thus,
if the other enterprise does not upgrade it (1), the payoff will be less. Worse, if the
enterprise plays (3) and the oponent (1), the costs will strongly reduce the payoff
while the oponent will be glad to use a user-friendly software at a cost zero (i.e. its
payoff is increased). When one enterprise upgrades (2) and the other buys (3), the
systems are incompatible and thus no business can be done, dropping the payoffs.

In [6] it was shown that one-way communication increases the play of the
Pareto-dominant equilibrium (2,2) while two-way communication does not always
decrease the frequency of coordination failures, i.e. a result different from (2,2)
and (3,3).

More surprisingly, the dominated strategy (3) was announced and played a non
negligible number of times. Furthermore, in [5] it was found that variation on the
payoffs of dominated strategies influence the selection of a Nash equilibrium, which
cannot be explained assuming self-interested, rational players.

A model that can explain this behavior supposes that not all players are
self-interested. A percentage 	 of the players are altruists that receive, in addition
of the payoffs shown in Table 1, a warm glow ı when playing the cooperative
strategy (3). In the previous example, this warm glow corresponds to the possibility
of attracting new clients due to the improved interface. When c � f � ı � a � b
strategy (3) is neither dominant nor dominated for altruists players and (3) is the best
response to (3) and (1). Assuming that 	 is common knowledge, the game becomes
a game of imperfect information as being altruist or egoist is a private value.
Now, preplay communication will help to signal (or conceal) types of players and
influence the selection of an equilibrium. Depending on the type of communication
and the proportion of altruist players, different kinds of equilibria will appear and
disappear, as demonstrated in the appendix.

Table 1 Cooperative coordination game (a > b > c > d > e) with multiple Nash equilibria (1,1)
and (2,2), and a dominated strategy (3)

1 2 3

1 d,d (350,350) d,e (350,250) a,f (1000,0)

2 e,d (250,350) c,c (550,550) f,f (0,0)

3 f,a (0,1000) f,f (0,0) b,b (600,600)

The cooperative solution (3,3) Pareto-dominates both equilibria. In each cell, the first number is
row player’s payoff and the second is column player’s payoff. The values used in [6] are shown in
parentheses
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2.1 Equilibria in One-Way Communication

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
there exists a nonrevealing equilibrium in which

all players announce (3), egoists play (1) and altruists play (3). All other
announcements lead to the play of (2).

• When c�d
a�d > 	 � c�. fCı/

b�f there is a totally revealing equilibrium in which
altruists announce and play (3) and egoists announce and play (2). Egoists will
play (2) in response to an announce of (2) and (1) when (3) is announced.
Altruists will play (2) when (2) is announced and (3) when (3) is announced.

• When c�. fCı/
b�f > 	 Egoists and altruists will announce (2) and play (2).

2.2 Equilibria in Two-Way Communication

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
there exists a nonrevealing equilibrium in which all

players announce strategy (3). When (3,3) is announced, an altruist player will
play (3) and an egoist (1). Other announcements lead to the play of (2).

• When max
�

c�d
a�d ;

c�f�ı
b�f

	
> 	, there exists a sequential Nash equilibrium in

which all altruists announce (3), a proportion � D 	

1�	
c�a
d�c of egoists announce

(3) and the reminder announce (2). When announced (3,3) altruists will play (3)
and egoists (1). If other pair of announcements are made, the strategy played by
both players is (2).

As explained in Sect. 1, we will apply the entropy ordering to discern which of the
above communication structures (one-way or two-way) is preferred for a player that
knows her own private value (altruist or egoist) but does not know her opponent’s
private value.

3 Information Structures

Consider a decision maker facing a problem under uncertainty. This situation can
be characterized by

• X D .x1; : : : ; xK/ A vector composed by the K different states of nature.
• ˚ D .�1; : : : ; �K/ The vector of prior probabilities, �j, of xj being the true state

of nature.
• S D .s1; : : : ; sM) A vector composed by the M possible signals that the decision

maker can observe.
• Q D .q1; : : : ; qM) The vector of unconditional probabilities, qj, of observing

signal sj.
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An information structure consists of:

• The vector of unconditional probabilities of each signal, Q.
• The matrix ˘M�K of posterior probabilities. The element �mk D p.xkjsm/ is the

probability that the state of the world is xk when the signal sm has been observed.

The product of the unconditional probabilities of each signal and the matrix of
posterior probabilities must be equal to the vector of prior probabilities ˚ D Q˘ .
Another useful relationship is obtained applying Bayes’ theorem to the elements
of ˘

�mk D p.xkjsm/ D ˛km�k

qm
(1)

where ˛km D p.smjxk/ is the probability of signal sm being observed when the state
of nature is xk.

Once defined, we can express the information structures corresponding to
both communication structures studied in [6]. The states of nature are X D
.altruist; egoist/ with prior probabilities ˚ D .	; 1 � 	/. The possible signals that
the opponent can announce are S D .1; 2; 3/. The probabilities Q of each signal and
the matrix ˘

˘ D
0
@p.altruistj1/ p.egoistj1/

p.altruistj2/ p.egoistj2/
p.altruistj3/ p.egoistj3/

1
A

depend on the communication structure that we are studying.

3.1 One-Way Communication

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, all players announce (3), so Q

	>max
�

c�d
a�d ;

c�f �ı
b�f

	 D
.0; 0; 1/. The announcement of (3) carries no information. The probability of the
opponent being an altruist player after having announced (3) is 	, whereas 1 � 	
is the probability of being egoist. The components of interest of˘ are thus

˘
	>max

�
c�d
a�d ;

c�f �ı
b�f

	 D
0
@� �

� �
	 1 � 	

1
A

• When c�d
a�d � 	 � c�. fCı/

b�f , altruist players announce (3) and egoist players
announce (2). Then, Q c�d

a�d�	� c�. f Cı/
b�f

D .0; 1 � 	; 	/. This is a totally revealing
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equilibrium, as the components of interest of˘ manifest

˘ c�d
a�d�	� c�. f Cı/

b�f
D
0
@� �
0 1

1 0

1
A

• When c�. fCı/
b�f > 	, all players announce (2). Thus, Q c�. f Cı/

b�f >	
D .0; 1; 0/ and

the components of interest of ˘ are

˘ c�. f Cı/
b�f >	

D
0
@� �
	 1 � 	

� �

1
A

3.2 Two-Way Communication

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, both the player and opponent will announce (3).

So, the probability of receiving each signal is Q
	>max

�
c�d
a�d ;

c�f �ı
b�f

	 D .0; 0; 1/. The

announcement of the oponent (and that of the player) carries no information.
As expected, the matrix˘ is

˘
	>max

�
c�d
a�d ;

c�f �ı
b�f

	 D
0
@� �

� �
	 1 � 	

1
A

• When max
�

c�d
a�d ;

c�f�ı
b�f

	
> 	, the most interesting case appears. Now, egoist

players will mix signals, announcing signal (2) and (3) with probability 1 � �

and � respectively. Altruist players will always announce (3). Thus, q2 D
.1� 	/.1� �/, q3 D 	C .1� 	/� and Q

max
�

c�d
a�d ;

c�f �ı
b�f

	
>	

D �
0; 1� a�d

c�d	; 	
a�d
c�d

�
The components of interest of ˘ are computed taking advantage of Bayes’
theorem, as expressed by Eq. (1). The probability of signal (3) being announced
conditioned to being the oponent an altruist is p.3jaltruist/ D ˛altruist;3 D 1. The
probability of signal (3) being announced conditioned to being the oponent an
egoist is p.3jegoist/ D ˛egoist;3 D �. Similarly, p.2jegoist/ D ˛egoist;2 D 1 � �.
Since ˚ D .	; 1� 	/, the matrix ˘ is

˘
max

�
c�d
a�d ;

c�f �ı
b�f

	
>	

D
0
@ � �

0 1
c�d
a�d

a�c
a�d

1
A

For all cases described above, it is straightforward to demonstrate that ˚ D Q˘ .
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4 Entropy Ordering of Information Structures

A decision-maker with some initial prior about the probabilities of each state of
nature and with the possibility to buy some information faces a dilemma: which
piece of information buy at some cost or, stated in a different way, when one
information structure is more informative than another.

The first answer to this question appeared in the seminal work of Blackwell [1, 2].
According to Blackwell’s ordering, an information structure is more informative
than another if the latter is equivalent to receiving the informative signal of the
former structure with noise (i.e. the less informative is a garbled version of the most
informative). Usually, it is not possible to compare information structures with this
method (i.e. finding a garbling matrix that relates both information structures), thus
Blackwell ordering is incomplete.

In a recent paper [4], Cabrales, Gossner and Serrano present an informativeness
ordering that is complete and it is represented by the decrease of entropy (or increase
of negentropy) of the agent’s beliefs. This ordering depends only on the agent’s prior
but it is independent of his preferences, initial wealth and decision problem. Thus,
when some general properties on the agent’s utility function and payoffs related
to the states of nature [4] hold, ordering the information reduces to compute the
negentropy of the information process.

The negentropy of this process is

I D H.˚/ �
MX

mD1
qmH.�m�/ (2)

where �m� is the m row of ˘ and H(p) is the entropy computed à la Shannon

H.p/ D �
X

j

pj ln pj (3)

By continuity 0 � ln 0 D 0. With these definitions and the information structures
computed in Sect. 3 we can compute the negentropy of one-way and two-way
communication.

4.1 One-Way Communication

For all cases, we have

H.˚/ D � Œ	 ln 	C .1 � 	/ ln.1 � 	/� (4)
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• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
the information structure is

Q
	>max

�
c�d
a�d ;

c�f �ı
b�f

	 D .0; 0; 1/

˘
	>max

�
c�d
a�d ;

c�f �ı
b�f

	 D
0
@� �

� �
	 1 � 	

1
A

The entropy of the third row is

H.�3�/ D � Œ	 ln 	 C .1� 	/ ln.1 � 	/�

and the negentropy associated is identically zero I	> c�d
a�d

D 0. In this case,
one-way communication gives no information about the private value of the
opponent.

• When c�d
a�d � 	 � c�. fCı/

b�f , the information structure is

Q c�d
a�d�	� c�. f Cı/

b�f
D .0; 1 � 	; 	/

˘ c�d
a�d�	� c�. f Cı/

b�f
D
0
@� �
0 1

1 0

1
A

The entropy of each row (i.e. of the probability distribution of the state of nature
when a signal is emitted) is H.�2�/ D H.�3�/ D � Œ0 � ln 0C 1 � ln 1� D 0. The
incertitude has disappeared and the real state of nature (the type of the oponent)
has been revealed. The negentropy is thus I D H.˚/, the initial entropy, and it is
maximal.

• When c�. fCı/
b�f > 	 the information structure is

Q c�. f Cı/
b�f >	

D .0; 1; 0/

˘ c�. f Cı/
b�f >	

D
0
@� �
	 1 � 	

� �

1
A

The entropy of the second row is

H.�2�/ D � Œ	 ln 	 C .1� 	/ ln.1 � 	/�

and the negentropy associated is identically zero I c�. f Cı/
b�f >	

D 0. In this case,

one-way communication gives no information about the private value of the
opponent.
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4.2 Two-Way Communication

As in the previous information structure, Eq. (4) gives the entropy of the prior
probability distribution.

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, there is no difference with the one-way case and

thus, the negentropy is identically zero. No information is obtained when the
signal is observed.

• When max
�

c�d
a�d ;

c�f�ı
b�f

	
� 	 the messages convey some information. In this

case, the information structure is

Q
max

�
c�d
a�d ;

c�f �ı
b�f

	
�	 D

�
0; 1 � a � d

c � d
	; 	

a � d

c � d

�

˘
max

�
c�d
a�d ;

c�f �ı
b�f

	
�	 D

0
@ � �

0 1
c�d
a�d

a�c
a�d

1
A

The entropy of each row is

H.�2�/ D 0

H.�3�/ D �
�

c � d

a � d
ln

c � d

a � d
C a � c

a � d
ln

a � c

a � d

�

and the corresponding negentropy is I D H.˚/ � a�d
c�d	H.�3�/ < H.˚/

4.3 Comparing Both Information Structures

With these values, it is easy to conclude which information structure is preferred.

• When 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, the signals observed do not convey any informa-

tion and thus both information structures are equivalent.
• When c�d

a�d � 	 � c�. fCı/
b�f , the negentropy of one-way communication is

Ione�way D H.˚/, a totally revealing equilibrium, whereas the negentropy of
two-way communication is Itwo�way D H.˚/ � a�d

c�d	H.�3�/ < Ione�way.

• When c�f�ı
b�f > 	, the negentropy of one-way communication is zero and the

negentropy of two-way communication is Itwo�way D H.˚/� a�d
c�d	H.�3�/ > 0

Thus, there is an interval where one-way communication is preferred and another
interval where the preferred structure is two-way communication. Nevertheless, it is
worth to note that this last interval can be made arbitrarily small just by making the
free parameter ı (the warm-glow) approach its limiting value ı ! c � f , increasing
at the same time the interval where one-way communication is preferred.
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5 Conclusions

In this paper we have applied the entropy ordering of Cabrales, Gossner and
Serrano [4] to a generalized egoist-altruist model of a cooperative coordination
game [6]. We have obtained the result that, when the warm glow altruists receive
when playing the cooperative strategy is high enough, one-way communication is
more informative than two-way and thus preferred for any agent. Although this
result is not surprising, given the existence of a totally revealing equilibrium in
one-way communication, this method would be useful in other situations: when
announcements are binding or when gathering or emitting information has a cost.

Appendix

In this section we will find some of the equilibria of the general game shown in
Table 1.

Warm Glow Payoff

The warm glow ı that altruists players add to the payoffs shown in Table 1 when
playing the cooperative strategy (3) makes this strategy neither dominated nor
dominant for altruist players and strategy (3) is the best response to both (3) and
(1) for this type of players. The latter condition is met when, respectively

b C ı � a (5)

f C ı � d (6)

while the former is met whenever some of these conditions (7), (8) or (9) hold but
not all at the same time (if it were the case, (3) would be a dominant strategy).

f C ı � d (7)

f C ı � c (8)

b C ı � a (9)

Since if inequality (8) holds, then inequality (7) will also hold and since
inequality (9) is required for (3) to be the best response to (3) and inequality (7) is
required for (3) to be the best response to (1), we choose inequality (8) to be false.
Thus, we have the condition that c � f � ı � a � b.
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One-Way Communication

Proposition 1 If 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, there is a nonrevealing equilibrium in

which all players announce (3), egoists play (1) and altruists play (3). Any other
announcement leads to the play of (2) for both types of player.

Proof For egoist players, the strategy of announcing (3) and playing (1) should
result in a higher payoff than announcing and thus playing (2). Then, a	Cd.1�	/ >
c or equivalently 	 > c�d

a�d . For altruist players, announcing and playing (3) should
give a higher payoff than announcing and playing (2). Thus, 	.b C ı/C .1�	/. f C
ı/ > c or equivalently 	 > c�f�ı

b�f .

Proposition 2 If c�d
a�d > 	 >

c�f�ı
b�f , there exists a totally revealing equilibrium in

which altruists announce and play (3) and egoists announce and play (2). Egoists
and altruists play (2) in response to an announcement of (2). When (3) is announced,
egoists play (1) and altruists play (3).

Proof As shown above, when c�d
a�d � 	 egoists prefer to announce and play (2).

When (3) is announced, egoists will play (1) as it is the best response to an altruist
announcing and playing (3). Furthermore, when (2) is announced, playing (2) is
the best response. As 	 > c�f�ı

b�f announcing and playing (3) for altruists dominates
announcing and playing (2). For altruists, the best response to an altruist announcing
(3) is playing (3) and to an egoists announcing (2) is playing (2).

Proposition 3 If c�f�ı
b�f � 	, there is a nonrevealing equilibrium in which all

players announce and play (2).

Proof As shown above, when c�f�ı
b�f � 	 altruists will prefer to announce and play

(2) rather than announcing and playing (3). As egoists cannot induce altruists to play
(3) due to the low proportion of altruist players, they also announce and play (2).
This is true even if 	 > c�d

a�d , as altruists will never play (3).

Two-Way Communication

Proposition 4 If 	 > max
�

c�d
a�d ;

c�f�ı
b�f

	
, there is a nonrevealing equilibrium in

which all players announce (3), egoists play (1) and altruists play (3). Any other
pair of announcements will lead to the play of (2).

Proof As in one-way communication, the payoff for egoists players when announc-
ing (3) is a	 C d.1 � 	/ which is greater than c if 	 > c�d

a�d . The same reasoning
applies for altruists, being their payoff when they announce (3) 	.b C ı/ C .1 �
	/. f C ı/ greater than the payoff of announcing (2) when 	 > c�f�ı

b�f .
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Proposition 5 If c�d
a�d > 	, there exists an equilibrium in which all altruists

announce (3) and egoists announce (3) with probability � D 	

1�	
a�c
c�d and (2) with

probability 1 � �. When both announcements are (3) altruists will play (3) and
egoists will play (1). All other pair of announcements lead to the play of (2).

Proof For the egoists to be indifferent with respect to the announcement of (2) and
(3) we have

	a C .1 � 	/ Œ�d C .1 � �/c� D c (10)

Right side of Eq. (10) is the payoff of announcing (2). If the egoist player announces
(3), receives an announcement of (3) and plays (1), he will win a with probability 	
(he was confronted to an altruist) or d with a probability .1 � 	/� (the opponent
announcing (3) was an egoist). If he receives an announcement of (2), he is
confronted with an egoist, plays (2) and gains c. The probability of this event is
.1 � 	/.1 � �/. In order to be indifferent, we have that � D 	

1�	
a�c
c�d .

For altruists, announcing (3) is better than announcing (2) if, following the same
reasoning as above, we have

	.b C ı/C .1 � 	/ Œ�. f C ı/C .1 � �/c� � c (11)

Substituting the value of � in Eq. (11) we obtain, after some algebra

	 Œ.b C ı � c/.c � d/C . f C ı � c/.a � c/� � 0 (12)

The first term inside brackets is positive while the second is negative. Indeed, . f C
ı�c/ < 0. Thus, we can rewrite inequality (12) as .bCı�c/.c�d/ � .c�ı�f /.a�c/
where all of its terms are positive. Since b C ı � c � a � c we just have that
c � d � c � . f C ı/. As d � f C ı, which is required for the warm glow conditions,
we have that inequality (12) holds for any value of its parameters.

Proposition 6 If c�f�ı
b�f > 	, there exists an equilibrium in which all altruists

announce (3) and egoists announce (3) with probability � D 	

1�	
a�c
c�d and (2) with

probability 1��. When both announcements are (3) altruists will play (3) and egoists
will play (1). All other pair of announcements lead to the play of (2). In addition to
this, there exists another equilibrium in which altruists and egoists both announce
and play (2).

Proof Since c�f�ı
b�f > 	, altruists have no incentive to announce and play (3) unless

egoists reveal themselves announcing (2) with probability 1 � �. For egoists being
indifferent between announcing (2) and (3) we have

	 Œ�a C .1 � �/c�C .1 � 	/ ��2d C 2�.1 � �/c C .1 � �/2c� D c (13)
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The first term in Eq. (13) is the payoff when facing an altruist that announces (3).
With probability � the egoist announces (3), receives (3) and plays (1) and with
probability 1 � � announces (2), receives (3) and plays (2). The second term is the
payoff when facing an egoist. With probability �2 both announce (3) and thus play
(1). The other possible announcements lead to the play of (2). After some algebra it
can be shown that either � D 0 or � D 	

1�	
a�c
c�d . For � D 0, egoists always announce

and play (2) and thus altruists always announce and play (2).
When � D 	

1�	
a�c
c�d , altruist’s payoff should be greater or equal than c

	.b C ı/C .1 � 	/ Œ�. f C ı/C .1 � �/c� � c (14)

Since Eqs. (11) and (14) are similar, we can apply the same analysis obtaining the
conclusion that inequality (14) identically holds.
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Micro-Econometric Analysis of New Household
Formation in Spain

Orlando Montoro Peinado

Abstract This paper begins a new line in the estimate and classification of New
household formation in Spain. It starts with the study of the emancipation of young
people dependent of their parents and proposes a micro-econometric analysis to find
and measure socioeconomic factors that affect the decisions youngsters make when
they leave their parent’s home. In the first place a discrete choice model three level
nested multinomial logit based in population characteristics is proposed. In order to
improve the results avoiding systematic biases and making use of all the information
in the data source, the model is replaced by a sequence of three binary logits.

The period of study extends from 2008 to 2011 so it will be useful to find
evidence of how the economic crisis has affected the current trends of Spanish
growing New household formation levels and increasing emigration of young
dependents. The gap between Spain and the rest of European countries concerning
Emancipation and New household formation levels is reducing since the last nineties
but the high level of unemployment in the current crisis has supposed a brake in that
trend.

1 Introduction

Even when in 2007 there was already a gap between demand and supply for new
housing making bigger the housing bubble in Spain, it is clear that a main factor
of long term new housing demand is the New household1 formation. On the other
hand, the family structure and household composition is essential in the study of
savings pattern, consumption and in general people’s economic behaviour. This can
be seen, for example, in the Spanish current economic crisis where consumption in

1Household stands for the whole group of people living together in the same house.
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Table 1 Estimated parameters

X ˇ1 ˇ2 ˇ3

Intercept �3:7102 2:6964 �2:4504
Family income �0:00000234 �0:00002 0:000038

Personal income 0:000027 0:000058 �0:00000615
Age 0:0647 �0:00429 0:0457

Year-2008 �0:6618 1:8073 �1:436
Year-2009 0:054 0:7941 �0:989
Genre-men �0:2519 �0:0918 0:2845

Employment-no �0:9287 �2:0216 0:573

one family nucleus2 has been held by another family nucleus of the same household
or another member of what it is known as the extended family.3 This support has
made consumption to decrease less than expected while family debts have run higher
than expected.

The family structure and household composition are fundamental also for the
comprehension of social behaviour. Spain, like the rest of Mediterranean countries,
tends to have a delayed emancipation calendar. Spanish young people usually leave
their parents’ home later and have fewer experiences working abroad or living
alone before forming their own family than the rest of European people. While the
economic crisis has stimulated emigration inside Europe, it has slowed down the
tendency to a growing Emancipation and New household formation levels which
were reducing the gap with the rest of Europe. These tendencies are marked,
for instance, in the estimated model by the negative sign of the unemploymentś
parameters ˇ1 D �0:9 and ˇ2 D �2 detailed in Table 1.

The National Statistical Institutes have answered this demand for information and
have begun to improve their household projections integrating them into the rest of
statistics as Labour Force Survey or National Accounts. The household projections
methods can be divided into static and dynamic ones. Among the static methods are
the Household Head method used in [3] and the Propensity Method used currently
in the National Statistical Institute of Spain, INE. The static methods need less
information but they are more limited in results and less flexible to juncture changes.

The dynamic projection methods are based on hypothesis about future fluxes of
New household formation which are applied to current household and population
stocks in order to estimate future number of households and their typification. Not
only they offer more information than static ones but dynamic methods can include
juncture information in their models so they are more flexible to economy changes.

2Family nucleus stands for a couple living together, a couple and their children living together or
just one parent living with some of her/his children.
3Extended family stands for a family nucleus and other relatives.
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In [1] a probabilistic prediction model is developed. That model defines a specific
household’s typification and the states of household’s members depending mainly
on their relationships. Then a matrix of transitional probabilities between states is
estimated. Applying to this matrix a projected population conditioned to each type
of household it is set a new row of households by type which is considered a short
term estimate of the number of households and its typification. In [4] it is developed
the macro-simulation LIPRO program that processes all the information.

Evidence found in this paper could improve probabilities of changed between
states in the transition matrix of the mentioned methods so not only demographic
but juncture economic information could be included in the household projections
to better them.

Another category of studies, as in [2], highlights how in the last two decades
the One-person households have grown spectacularly in Spain, have diversified its
composition and are no longer exclusively from rural areas becoming significant in
big cities also. Between 1970 and 2001 the share of population living alone grew
from 2 to 7 %. This growth was caused partly by the fact that more young people
decided to emancipate and live alone.

On the other hand, in [5] it is noticed that the new ways to live in Spain had begun
in the 90s but it was in 2000 on when they rocketed. For instance, young people from
25 to 34 years old living alone increase from 112.173 in 1991 to 346.290 in 2001
according to the population censuses information.

This tendency was confirmed in 2011 where the share of One-person household
grew to 23 % in 2011. The micro-econometric analysis of New household formation
is coherent with all this results and can improve them providing ways to estimate
this information not only in census years but between and beyond that.

2 Econometric Model

To distill Emancipation from the process of leaving home, the target population
Young Dependent People is defined as people between 16 and 39 years old living
with their parents, at least one of them, not living with any partner and not being
parents-or if they are parents, not living with any of their children-. These people
are included in their parents’ family nucleus supposedly since they were born so
they are considered never to have left home and the act of leaving home for first
time is considered as the act of Emancipation.

The New household formation among Young Dependent People as defined is
almost 15 times higher than New household formation among non Young Dependent
People in 2010 which means that 77.5 % of new households formed in 2010 is owed
to Young Dependent People.

For this study the considered typification of New household formation is: One-
person household, Two Partners, Partition and Joining an Existing household. Two
Partners stands for two people who begin to live together coming from different
households of origin. Partitions are divisions of a family nucleus or divisions of a
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household with more than one family nucleus where at least two members of the
household leave.

Joining an Existing household stands for people who change their own household
to be part of another existing one or to found a new one with more than one person
from other household of origin.

The share of New household formation based on Partitions and Joining and
Existing household in 2010 represents less than 10 % of the total New household
formation. Moreover, these two types of New household formation among Young
Dependent People is completely residual.

Restricting the research to Young Dependent People as defined and to the first
two types of New household formation, One-person household and Two Partners, it
gets explained more than 70 % of the phenomena of New household formation and,
joining the young people’s emigration it is explained almost total Emancipation
phenomena. The emancipation of young dependents naturally relates to social,
demographic and economic reasons so it has been considered an appropriate
dimension to start working.

Therefore for the target population the process consists of deciding emancipate
and then choosing between going abroad or starting a New household and in this
case whether it is a One-person or Two Partners household. The factors to take
into account for this purpose are genre, age, household income, personal income,
year and employment. Only main effects are considered so at this stage dependency
between states is left out. This means, among other things, that this model does
not make differences between young dependents that never have left parents’ home
from those who had already gone but at the period of study they are living at their
parents’ home again. The economic reasons for living home in these two groups are
considered to be the same. It is not possible either to differentiate between new Two
Partners households where both people have emancipated at the same time from
the ones where one of its members were already emancipated from her/his parents
before beginning this new relationship.

The data source for the study is the longitudinal EU-SILC 2008–2011 related
to Spain so another two advantages of this study are that it can be replicated and
compared at European level and it can be continued in time. This survey tracks
households for 4 years, including new households funded by people previously
living in households included in the initial sample. The sample design of the EU-
SILC is a rotating panel with partial replacement of the sample of 25 % annually.
Information is available for both households and individuals that constitute them.
For households there is an annual cross-elevation4 factor and for people aged 16 or
older we use a longitudinal elevation factor.

4The elevation factor is the amount of total population represented by each case in the study.
The cross- elevation factor is the representation of one case over the total population 1 year. The
longitudinal elevation factor is the representation of the same case over the population who is
present two consecutive years.
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Fig. 1 Decision tree

The proposed model to analyze the decision process of emancipation is a three-
level nested logit as shown in Fig. 1.

The original data includes 270 cases, named LOST next to 45 % of total cases of
emancipation- of young dependents for whom it is known they have emancipated
but the type of emancipation they have chosen is not known. There are also 85
cases, named RNC next to 30 % of New household formation- of young dependents
for whom it is known they have started a New household but it is not known the type
of household they have formed.

In order to include these cases to make maximum use of the survey results and
avoid systematic biases, the three-level nested logit is replaced with a sequence of
three binary logits5 and conditional probabilities are estimated at each level.6 This
way all available cases at each level are included. In first level, wether to leave the

5In fact, in a decision process as the one described in Fig. 1 these two models are mathematically
the same except for the missing data -LOST and RNC cases-.
6For instance, according to the data in Fig. 1, the next probabilities are considered:

P.DE2D 1jDE1D 1/D Populationrepresentedbythe293caseswhereDE2 D 1

Populationrepresentedbythe331caseswhereDE1D 1differentfromLOST

P.DE3 D 1jDE2 D 1/ D Populationrepresentedbythe92caseswhereDE3 D 1

Populationrepresentedbythe208caseswhereDE2 D 1differentfromRNC
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parental home is decided, LOST cases are included. In second level, the conditional
probability of whether to form a new home or leave the country is decided, LOST
cases are not considered but RNC cases are included. In third level conditional
between living alone or starting a domestic partnership it is chosen so neither LOST
nor RNC cases can be included.

The proportion of young people who take each emancipation decision is esti-
mated as marginal probabilities obtained from the conditional ones estimated at each
level. For instance, marginal probability of New household formation (DE2D11) is
the compound probability of marginal Emancipation (DE1D1) and the conditional
New household formation (DE2D1 restricted to DE1D1) and marginal probability
of One-person household P(DE3D111) is the compound of marginal probability
of New household formation (DE2D11) and conditional One-person household
(DE3D1 restricted to DE2D11).

Probability of New household formation

P.DE2 D 11/ D P.DE1 D 1/P.DE2 D 1jDE1 D 1/

Probability of One-person Household formation

P.DE3 D 111/ D P.DE2 D 11/P.DE3 D 1jDE2 D 11/

Estimated probabilities by binary logit based in characteristics take the general form
1

1CeXˇ for decisions DE D 0 and eXˇ

1CeXˇ for decisions DE D 1 where X are the
characteristics taken in account and ˇ is the parameter which measures the effect
of the correspondent characteristic in the decision process. Characteristics X are
known for every individual in the study while ˇ must be estimated. As a result,
these are the expressions to be adjusted:

Living with parents P.DE1 D 0/ D 1

1C eXˇ1

Emancipation P.DE1 D 1/ D eXˇ1

1C eXˇ1

Emigration P.DE2 D 10/ D eXˇ1

1C eXˇ1

1

1C eXˇ2

New household formation P.DE2 D 11/ D eXˇ1

1C eXˇ1

eXˇ2

1C eXˇ2

Two Partner household P.DE3 D 110/ D eXˇ1

1C eXˇ1

eXˇ2

1C eXˇ2

1

1C eXˇ3

One-person household P.DE3 D 111/ D eXˇ1

1C eXˇ1

eXˇ2

1C eXˇ2

eXˇ3

1C eXˇ3
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Fig. 2 Probability of emancipation for unemployed dependents in 2010 per age, average personal
and family incomes

3 Results and Discussion

Related to the goodness of fit every parameter at every level has a p-value lower
than 0,0001 what is quite good to consider them different to 0 and ROC curve7

for each parameter is around 75 % what is considered good test also.The research
is completed with an influence analysis of LOST and RNC cases and dependency
between states analysis. It is suggested also to build a ROC curve for the three
decision levels integrated as one and to make considerations about the independence
of irrelevant alternatives clause that underlies the model.

As a trial, this paper focuses on unemployment effects over Emancipation and
New household formation. To understand the effect that each factor has over the
emancipation decision process, it is easy to see how the direction of the effect
that each factor has at each decision’s level depends on the sign of the estimated
parameter. Table 1 shows how unemployment negatively affects the decision of
emancipation at level 1.At the second stage, in case of deciding to emancipate,
unemployment encourages young dependents to go abroad rather than to form a
New household and, in the event of starting a household unemployment encourages
to be a One-person rather than a Two Partners household.

It is worth also building tendency charts as in Fig. 2 that shows how forming a
Two Partners household is quite unlikely at every age for unemployed dependents

7In a binary prediction model, a Receiver Operating Characteristic,ROC curve, is a representation
for different threshold settings of the fraction of true positive rate vs. false positive rate. For this
analysis three ROC curves are calculated�iD1, 2, 3-. True positive rate stands for the rate of well-
predicted DEiD1 survey cases and false positive rate stands for the rate of wrong-predicted DEiD0
-survey cases where DEiD1 is predicted by the model though real decision has been DEiD0-.



534 O.M. Peinado

Fig. 3 Probability of emancipation for employed dependents in 2010 per age, average personal
and family incomes

with average personal and household incomes. As forming a Two Partners house-
hold stands mainly for new couples where at least one of them is previously living
with her/his parents, unemployment reveals here as an important brake to form new
family nucleus when it means to leave the parent’s home. This does not exactly mean
that probabilities in Table 3 should be bigger for One-person than for Two Partners
in case of unemployment because there are other factors to take into account as the
ones included in the study and the probability’s levels in each case before the crisis.
In Fig. 3 it is shown the same figure for employed people. Shares of emigration are
higher for unemployed dependents while New household formation is higher for
employed dependents.

Another kind of results proposed to analyze the data are tables of shares of
dependents who emancipated depending on the different states they can represent.
Table 2 shows the emancipation shares per year in the period 2008–2010 for each
type of emancipation. It seems 2009 to be the big year for new Two Partners
households while Emigration and One-person households keep growing; One-
person households grew to be the most important form of emancipation in 2010
while Emigration became a significant way to emancipate in the same year.

In Table 3 it is shown how the employment factor affects to the emancipation
decisions. There are clearly higher levels of emancipation founding a New house-
hold for employed people and higher levels of going abroad for unemployed ones.
It is interesting also to note how One-person households for employed people grew
intensively in the period while it stagnated for the unemployed ones. Out of this
trial, it is interesting also to note how Spanish young women have begun to cut
distances with men concerning the age of emancipation beginning to leave their
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Table 2 Shares of emancipation per year and type

Young DE1D1 DE2D10 DE3D110 DE3D111

dependents emancipation emigration two partners on-person

2008 4.7 0.2 3.3 1.2

2009 8.1 0.9 4.5 2.7

2010 7.5 1.4 2.4 3.6

Total 7.2 1.0 3.3 2.9

Table 3 Shares of emancipation per year and type, employ and unemployed people

Young

unemployed DE1D1 DE2D10 DE3D110 DE3D111

dependents emancipation emigration two partners on-person

2008 1.9 0.3 1.2 0.5

2009 3.8 1.1 1.6 1.1

2010 3.5 1.7 0.7 1.1

Total 3.4 1.3 1.1 1.0

Young DE1D1 DE2D10 DE3D110 DE3D111

employed emancipation emigration two partners on-person

dependents

2008 7.5 0.1 5.4 2.0

2009 13.9 0.5 8.4 5.0

2010 13.5 1.1 5.0 7.4

Total 12.5 0.7 6.2 5.6

parent’s home earlier and how the family and personal incomes affect the decisions
of emancipation. Other interesting results concern the different effects of family and
personal incomes over level, age and ways of emancipation.

4 Conclusions

This analysis measures the effects of economic factors for Young Dependent
People in the New household formation in Spain within the period 2008–2011. By
comparison between Young Unemployed and Employed dependents in Table 3 it is
easy to see how unemployment has slowed down the increasing One-person New
household formation and the increasing general emancipation rates in Spain. By
comparison between Figs. 2 and 3 it is also easy to conclude that unemployment has
delayed the age of emancipation. Finally emigration of Young Dependent People
has increased from 0.2 to 1.4 making it a significant new way of emancipation.
This way it shows how except for the current economic situation Spain tends to
narrow the gap with the rest of European countries regarding Emancipation and
New household formation. These results can be applied to a projected population
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and households’ distribution to estimate Emigration and New household formation
under certain circumstances that regular population projections do not consider.
Usually population projections are conservative regarding juncture changes and do
not anticipate some economic effects as higher youth emigration rates that this kind
of models do. A final word on making estimates this way and taking households’
distribution from population surveys is to bear in mind the systematic bias that
underestimates the number of One-person and Two Partners households that some
of these surveys suffer.
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An Adaptive Approach for Skin Lesion
Segmentation in Dermoscopy Images Using
a Multiscale Local Normalization

Jorge Pereira, Ana Mendes, Conceição Nogueira, Diogo Baptista,
and Rui Fonseca-Pinto

Abstract Skin cancer is one of the most common malignancies in humans. Early
detection of suspicious skin signs is critical to prevent this kind of malignancy,
and various disciplines can play a crucial role in its detection. The lesion border
is especially relevant for diagnosis, and provides information on the shape of the
lesion, growth path, and growth rate. Digital image processing methods can be used
to perform automatic lesion border detection; nonetheless, the presence of artifacts
may induce artificial borders, thereby jeopardizing the efficiency of automatic
detection algorithms. Artifact removal is a necessary pre-processing step to improve
the accuracy quality of the border identification.

In this work, we present a method to identify and remove artifacts in dermoscopic
images. This pre-processing step enhances the output of the segmentation of the
lesion. This process is based on several applications of the Local Normalization,
which is a method that increases the local contrast between local pixels, improving
the overall quality of the image, especially with non-uniform illumination. The
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process is scale sensitive and uses a multi-scale approach adaptable to every shape
and size of skin lesions.

1 Introduction

Amongst all diseases and related research, cancer is still a major challenge for
science. It is seen as a senseless part of the natural life cycle of humans, and
constitutes a high cost issue for government budget.

Skin cancer is classified as a function of the cells from which it expands. Basal
Cell Carcinoma (BCC) emerges from the lower layer of the epidermis, Squamous
Cell Cancer (SCC) emerges from the middle layer of the epidermis and melanoma
is derived from melanocytes, which are pigment producing cells. BCC is the most
common form of skin cancer and the least dangerous. SCC is the second most
common form of skin cancer, but most likely to spread. Approximately 65 % of all
SCC and 36 % of all BCC arise in lesions that previously were diagnosed as actinic
keratosis, also known as solar keratosis [5], are the most common pre-cancer, and
the majority is derived from UV rays and consequent insulation.

Although melanoma type of cancer is the least common, it is also the most
aggressive, most likely to spread, and quickly becomes fatal [13].

In the United States, skin cancer is the most common form of cancer, and over the
past three decades more people have had skin cancer than all other cancers combined
[17, 20]. Melanoma is also the most common form of cancer for young adults (25–
29 years old) and the second most common form of cancer for young people (15–29
years old) [2].

Several studies in Europe have documented increases of melanoma incidence in
the last few decades [1, 6, 11, 18, 21]. In the particular case of Portugal the estimated
incidence for 2012 was 7.5 per 100,000, mortality 1.6 per 100,000 and prevalence
at 1, 3 and 5 years 12.08, 33.99 and 53.93 % respectively [8].

Melanocytic lesion is a term used to describe a region of the skin that differs
in color from the surrounding area. This difference in color (discoloration) is
often a benign nevus found in great number over the entire body and regularly
called age-spot. A relation between common acquired nevi and dysplastic nevi as
precursors of cutaneous melanoma has been found [19, 23], thus a change in the
melanocytic lesion characteristics constitutes a marker of warmness and should be
investigated. Early detection and monitoring of suspicions lesions is crucial for the
disease prognosis. Dermatologists use epiluminescence microscopy, dermatoscopy,
or dermoscopy as is usually referred, to perform early diagnosis of melanocytic
lesions and to track the progression thereof.

Dermoscopy uses a polarized light source and a magnifying lens allowing
the identification of dozens of morphological features such as pigment networks,
dots/globules, streaks, blue-white areas, and blotches [15]. A fluid is usually
spread on the skin surface to minimize light scattering, and therefore increases the
performance of this technique. The use of this fluid together with the presence
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of hairs in the skin surface, conducts to conspicuous artifacts in dermoscopic
images. The classification of some melanocytic lesions is sometimes difficult, even
for experienced specialists. The lesion border is especially relevant for diagnosis
since it allows gathering information on the shape of the lesion, growth path, and
growth rate. Lesion border detection algorithms applied to dermoscopic images
have been widely used in recent works with dermoscopic images [3, 7, 9, 12, 14].
Early detection of suspected skin lesions requires periodic monitoring. Currently
dermatologists often resort to digital dermoscopes and computer storage of the
information. Computers can also be used to perform automatic lesion border detec-
tion. The presence of artifacts may induce artificial borders, thereby jeopardizing
the efficiency of automatic detection algorithms. Artifact removal is a required pre-
processing step to improve the quality of detection.

2 Artifact Removal and Border Detection

Dermoscopic images involve some artifacts directly related to this kind of images,
i.e. hairs and air bubbles. The correct outline of lesion borders is critical for
diagnosis, and the efficiency of automatic lesion border detection is hampered by
artifacts.

2.1 Color Transformation and Rescaling

Dermoscopic images acquired by dermoscopes are true-color images with a typical
resolution of 768 � 512 pixels. To implement the proposed methodology, for the
segmentation, a transformation of the original RGB color space images into a gray-
scale color space is performed. This color transformation is appropriate in this case
since the reduction of data is important for the functioning of the algorithm and
improves their accuracy. Upon the conventional ways of performing this transform,
a process based on the weighted average of all three RGB channels is implemented.
Each RBG channel, Pi;j;m in the color space transform is defined in (1).

Pi;j;m D
�
pi;j;m

�2
q�

pi;j;R
�2 C �

pi;j;G
�2 C �

pi;j;B
�2 I for

i D 1; 2; : : : ;L
j D 1; 2; : : : ;C
m D R;G;B

(1)

where pi;j;m represents the pixel .i; j/ of the m channel in the image, C is the number
of columns in the RGB matrix and L is the number of rows. Once performed
the weighted average above defined (1), a non-normalized image is obtained.
This results in an irregular distribution of the pixel intensities which leads to the
creation of a blind region. As it can be observed in Fig. 1b, there may be some
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Fig. 1 Color transformation and rescaling. (a) Original true color RGB image. (b) Weighted
average grayscale. (c) Grayscale final image

important details for the borders veiled in that blind region. In order to recover
that information, while preserving the conversion, a rescaling process is applied to
normalize the image. The final result of the transformation methodology, allows to
compute a gray scale image of the skin lesion and to begin disposing of undesirable
data, as shown in Fig. 1c.

2.2 Removing Brighter Artifacts

To increase the local contrast between neighbor pixels, a Local Normalization .LN/
method is used to improve the overall quality of the image, especially with non-
uniform illumination and shading artifacts. A similar method was used in [16] with
X-ray lung images.

The LN is defined as

LN D I � NIq
.I2/� �NI�2

(2)

where I is the original image and NI is the result between I and a Gaussian kernel.
This kernel affords LN to be a scale sensitive method, as their results will depend
on the chosen Gaussian sigma coefficient. Larger sigma allows to larger objects on
the image to be enhanced over the smaller objects. When applying lower sigma in
LN process, we can observe the opposite, with preferential enhancement of smaller
objects. As the LN methodology is a sensitive method it can be used to solve
the most common problems in segmentation of dermoscopic images, like specific
air bubbles and hair artifacts. Air bubbles are usually smaller and brighter than
other elements on the image, therefore it is possible to identify them with a low
sigma value. With the contrast increment of these bubbles allied with some high
thresholding values (the brighter spots are symptomatic of high intensity values),
the removal of these areas is possible from the original data. In this process some
few details may be lost, as shown in Fig. 2b. This absence occurs out of the
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Fig. 2 Local Normalization transformation. (a) Real RGB image. (b) Image after LN and
thresholding

border boundaries of the image, and they can be recovered later, after the proper
segmentation.

2.3 Region of Interest

The notion of Region Of Interest (ROI) is very useful in several fields of image
processing [4, 10, 22] as it allows to work on a very specific area of the input image.
This process reduces the computational time, a large number of artifacts and non-
productive areas. At the same time, it preserves all the characteristics of the target
object, which in this case is the skin lesion.

When one has an image dataset with the same resolution, it is possible, by
using LN, to compute the ROI for dermoscopy images. Visually, it creates valleys
around the image elements, which allows a simple threshold to compute a region
for each one of them. By assumption, it is assumed that the skin lesions are located
somewhere on the central region of the image data. After thresholding every valley,
only the central one is kept, representing our target object. The final process is given
by morphological operations refinement in order to achieve a more suitable shape
and distinct region. The result can be seen in Fig. 3.
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Fig. 3 Segmentation step
using ROI

3 Multiscale Local Normalization (MLN)

3.1 Borders Candidates Detection and Local Normalization
(LN)

As is known, skin lesions may have several shapes and sizes, so a single scale
method cannot achieve high quality borders definition. If the lesion size is com-
patible with the LN scale, it should present good results, but if the lesion has a
different size order, it may induce errors to the final detection. In order to avoid
these issues and improve the accuracy and universality of this method, the detection
of the borders candidates is performed with the application of a multi-scale approach
of the LN. Based on the previous assumptions, it is assumed that the scale is directly
proportional to the lesion. The larger the target, the higher the scale applied to define
it. In order to acknowledge their size order, the area of the ROI is computed. It is
expected that this area differs from image to image, depending directly on the lesion
size and shape. In the end, the scale used will vary with the area of the ROI; applying
small scales to small ROI, and larger scales to larger regions.

After performing the LN, in order to enhance the target main features, it is also
applied a threshold depending on the maximum intensity of the resulting image,
so it can adapts to every lesions and their image characteristics. This is a very
useful approach, since not every lesion has the same intensity values (color and
illumination features dependence), and consequently the same response level to the
previous LN application. At this stage, the border definition is not completed yet, as
it may contain some image artifacts corrupting the real borders (Fig. 4).
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Fig. 4 Multiscale Local Normalization (MLN) before border smoothing

Fig. 5 Multiscale Local Normalization (MLN) final output

3.2 Borders Morphological Refining

The final step of the algorithm consists in refining the border candidates previously
detected. It begins by applying an average filtering, to the border pixels, in order to
smooth their lines and define a more natural and suitable border shape. This process
also eliminates some noisy artifacts of these areas. This method is finalized, using
morphological operations. Firstly to thin and find the skeleton of the smoothed lines,
which will be the main structure of the borders, and secondly by deleting exterior
branches, that should correspond mainly to cross-border hairs and other possible
artifacts. In Fig. 5 the final segmentation is presented joint with the original image.

In Fig. 6, three more examples of the MLN algorithm performance are presented.
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Fig. 6 Examples of Multiscale Local Normalization (MLN) from images with different morpholo-
gies

4 Conclusions and Further Work

The present work provides a very promising methodology to apply in the context of
the segmentation as the follow-up of suspicious melanocytic skin lesions. Although
it lacks some ground truth comparison with other segmentation techniques, the seg-
mentation output presents great qualitative performance as shown on the presented
examples. These segmentation results are very close to what is assumed to be the
real lesion borders.

These qualitative results substantiate that the MLN is a very suitable method for
this area, beyond their multitasking on almost every steps of the algorithm. The
MLN also showed very good robustness against the common artifacts found in these
images i.e. hairs, air bubbles or even non-uniform illumination, showing promising
results with or without the presence of these artifacts in dermoscopic images.
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Chaotic Dynamics and Synchronization
of von Bertalanffy’s Growth Models

J. Leonel Rocha, Sandra M. Aleixo, and Acilina Caneco

Abstract This chapter concerns dynamics, bifurcations and synchronization prop-
erties of von Bertalanffy’s functions, a new class of continuous one-dimensional
maps, which was first studied in [22]. This family of unimodal maps is propor-
tional to the right hand side of von Bertalanffy’s growth equation. We provide
sufficient conditions for the occurrence of stability, period doubling, chaos and non
admissibility of von Bertalanffy’s dynamics. These dynamics are dependent on the
variation of the intrinsic growth rate of the individual weight, which is given by
r D r.K;W1/, where K is von Bertalanffy’s growth rate constant and W1 is the
asymptotic weight. A central point of our investigation is the study of bifurcations
structure for this class of functions, on the two-dimensional parameter space
.K;W1/. Another important approach in this work is the study of synchronization
phenomena of von Bertalanffy’s models in some types of networks: paths, grids
and lattices. We study the synchronization level when the local dynamics vary and
the topology of the network is fixed. This variation is expressed by the Lyapunov
exponents, as a function of the intrinsic growth rate r. Moreover, we present some
results about the evolution of the network synchronizability, as the number of nodes
increases, keeping fixed the local dynamics, in some types of networks: paths, grids
and lattices. We also discuss the evolution of the network synchronizability as the
number of edges increases. To support our results, we present numerical simulations
for these types of networks.

1 Introduction and Motivation

A variety of growth curves have been developed to model general growth processes,
since the study of population dynamics is one of the major research topics of
the present time. Classical growth models such as logistic, Gompertz, Richards,
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Blumberg and von Bertalanffy equations continue to be widely and frequently
used to describe several demographic, economic, ecological, biological and medical
processes. In particular, one of the most familiar growth equation used to describe
the growth of marine populations, namely fishes, seabirds, marine mammals,
invertebrates, reptiles and sea turtles is von Bertalanffy’s equation, see for example
[11] and references therein. This growth equation remains one of the most popular
flexible growth equations to model fish weight growth, since it was presented by
von Bertalanffy for this aim in 1938, see [28] and [29]. For a certain population,
the growth of an individual, regarded as an increase in its length or weight with
increasing age, is commonly modeled by a mathematical equation that represents
the growth of an “average” individual in the population. One of the most important
functions that have been used to analyze the increase in average length or weight of
fish is von Bertalanffy’s model, see for example [4] and [7].

On the other hand, an important feature of our world is the tendency of different
systems to achieve common rhythms, namely, the tendency for synchronization.
Synchronization is a fundamental nonlinear phenomenon, which can be observed in
many real systems, in physics, chemistry, mechanics, engineering, secure commu-
nications or biology, see for example [1]. It can be observed in living beings, on the
level of single cells, physiological subsystems, organisms and even on the level of
large populations. Sometimes, this phenomenon is essential for a normal functioning
of a system, e.g. for the performance of a pacemaker, where the synchronization
of many cells produce a macroscopic rhythm that governs respiration and heart
contraction. In other cases, the synchrony leads to a severe pathology, e.g. in case of
the Parkinson’s disease, when locking of many neurons leads to the tremor activity.
Biological systems use internal circadian clocks to efficiently organize physiological
and behavioral activity within the 24-h time domain. For some species, social cues
can serve to synchronize biological rhythms. Social influences on circadian timing
might function to tightly organize the social group, thereby decreasing the chances
of predation and increasing the likelihood of mating, see for example [6]. Almost all
seabirds breed in colonies; colonial and synchronized breeding is hypothesized to
reduce predation risk and increases social interactions, thereby reducing the costs of
breeding. Moreover, it is believed that synchronization may promote extinctions of
some species. Full synchronism may have a deleterious effect on population survival
because it may lead to the impossibility of a recolonization in case of a large global
disturbance, see [26]. Understand the aggregate motions in the natural world, such
as bird flocks, fish schools, animal herds, or bee swarms, for instance, would greatly
help in achieving desired collective behaviors of artificial multi-agent systems, such
as vehicles with distributed cooperative control rules.

Motivated by the interest and relevance of the study of growth models and
the synchronization phenomenon, we propose to study in this work the chaotic
dynamics and synchronization of von Bertalanffy’s growth models. The layout
of this paper is as follows. In Sect. 2, we present a new dynamical approach
to von Bertalanffy’s growth equation: a new class of one-dimensional discrete
dynamical systems, a family of unimodal maps which was first studied in [22],
designated by von Bertalanffy’s functions. In Sect. 2.1 at Lemma 1, we provide
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sufficient conditions for the occurrence of stability, period doubling, chaos and
non admissibility of von Bertalanffy’s dynamics. These dynamics are dependent
on the variation of the intrinsic growth rate of the individual weight r, for which
the dynamics remains inside the Œ0; 1� interval. The intrinsic growth rate is given by

r D r.K;W1/ D K
3

� W
2
31 > 0, where K is von Bertalanffy’s growth rate constant

and W1 is the asymptotic weight. Section 2.2 is devoted to the study of bifurcations
structure for the von Bertalanffy functions, on the two-dimensional parameter space
.K;W1/. To support our results, we present fold and flip bifurcations curves and
numerical simulations of the bifurcation diagram.

In Sect. 3, we study the synchronization and desynchronization phenomena of
von Bertalanffy’s models in some types of networks: paths, grids and lattices. In
Sect. 3.1 are given preliminaries notions and results on graph and synchronization
theories. The synchronization interval is presented in terms of the network connec-
tion topology, expressed by its Laplacian matrix and of the Lyapunov exponent of
the network’s nodes. In Sect. 3.2 at Proposition 1 we provide and discuss sufficient
conditions for the decreasing of the amplitude of the network synchronization
interval, for each type of networks considered. In Sect. 4, we give numerical
simulations on some kinds of networks, evaluating its synchronization interval
and amplitude of this interval, for several values of the intrinsic growth rates r.
The networks considered have in each node the same dynamical system, defined
by von Bertalanffy’s functions. Finally, we discuss our results and provide some
relevant conclusions: how the synchronization interval changes with increasing of
the number of vertices in each type of networks and with increasing of Lyapunov
exponent, when fixing the network topology. We also observe and discuss some
desynchronization phenomena.

2 Chaotic Dynamics and Bifurcations in Von Bertalanffy’s
Growth Models

An usual form of von Bertalanffy’s growth function, one of the most frequently used
to describe chick growth in marine birds and in general marine growths, is given by

Wt D W1
�
1 � e�

K
3
.t�t0/

	3
; (1)

where Wt is the weight at age t, W1 is the asymptotic weight, K is von Bertalanffy’s
growth rate constant and t0 is the theoretical age the chick would have at weight
zero, see [4] and [7]. On the other hand, the special case of the Bernoulli differential
equation

g .Wt/ D dWt

dt
D K

3
W

2
3

t

 
1 �

�
Wt

W1

� 1
3

!
; (2)
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it was introduced by von Bertalanffy to model fish weight growth, see [28] and [29].
The per capita growth rate, associated to this growth model, is given by

h .Wt/ D g .Wt/

Wt
D K

3
W
� 13
t

 
1 �

�
Wt

W1

� 1
3

!
: (3)

The following subsections are devoted to the detailed study of dynamics and
bifurcations approaches of von Bertalanffy’s growth models.

2.1 Chaotic Dynamics of Von Bertalanffy’s Functions

In this contribution we consider a new class of one-dimensional discrete dynamical
systems, a family of unimodal maps which was first studied in [22], designated by
von Bertalanffy’s functions, fr W Œ0; 1� ! Œ0; 1�, defined by

fr .x/ D r x
2
3

�
1 � x

1
3

	
; (4)

with x D Wt
W

1

2 Œ0; 1� the normalized weight and r D r.K;W1/ D K
3

�
W

2
31 > 0 an intrinsic growth rate of the individual weight, see some examples

at Fig. 1. This family of functions is proportional to the right hand side of von
Bertalanffy’s equation, Eq. (2). Remark that, the study which we present depends
on two biological parameters: von Bertalanffy’s growth rate constant K and the
asymptotic weight W1. The following conditions are satisfied:

(A1) fr is continuous on Œ0; 1�;
(A2) fr has an unique critical point c D .2=3/3 2 �0; 1Œ;
(A3) f 0r .x/ ¤ 0;8x 2 �0; 1Œnfcg, f 0r .c/ D 0 and f 00r .c/ < 0;
(A4) fr 2 C3 .�0; 1Œ/ and the Schwarzian derivative of fr, given by

S .fr.x// D f 000r .x/

f 0r .x/
� 3

2

�
f 00r .x/
f 0r .x/

�2
;

verifies S .fr.x// < 0;8x 2 �0; 1Œ nfcg and S .fr.c// D �1.

Conditions .A1/–.A4/ are essential to prove the stability of the only positive
fixed point, [25]. The negative Schwarzian derivative ensures a “good” dynamic
behavior of the models: continuity and monotonicity of topological entropy, order
in the succession of bifurcations, the existence of an upper limit to the number of
stable orbits and the non-existence of wandering intervals, [13] and [27]. See [24]
for a topological dynamics approach of unimodal maps. The unimodal maps theory
has proved to be useful in many branches of science. In population dynamics, aiming
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fr(x)
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Fig. 1 Graphics of von Bertalanffy’s functions fr.x/, Eq. (4), for several values of intrinsic growth
rate r (0:5 (magenta), 1:5, 3:5, 5:5 and 6:75 (orange))

to model the growth of a certain species, the use of these families has been frequent.
A similar approach is used for example in [19, 20] and [21].

Von Bertalanffy’s functions have two fixed points, given by

A0 D 0 and AK;W
1

	 Ar D
�

r

r C 1

�3
:

For these models, the extinction region and the semistability curve have no
expressive meaning. We verify that, lim

x!0C

f
0

r .x/ > 1: So, the fixed point A0 D 0

is unstable and the origin’s basin of attraction is empty, except at most a set of
measure zero. For this reason it is difficult to identify for this models per capita
growth rates, Eq. (3), less than one for all densities, to the extinction case, and per
capita growth rates strictly less than one for all densities, except at one population
density, to the semistability case, except at most a set of measure zero.

In the next result we provide sufficient conditions dependent on the variation of
the intrinsic growth rate r, for which the dynamics remains inside the unit interval.

Lemma 1 Let fr.x/ be von Bertalanffy’s functions, given by Eq. (4), with r 2 RC
and satisfying .A1/� .A4/ conditions.

(i) (Stability region of the fixed point Ar) If 0 < r < 5
3
, then there is a linearly

stable fixed point Ar 2 �0; 1Œ whose basin of attraction is �0; 1Œ;
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(ii) (Period doubling and chaotic regions) If 5
3
< r < 33

22
, then the interval

Œf 2r .c/; fr.c/� is forward invariant with basin of attraction �0; 1Œ;

(iii) (Chaotic semistability curve) If r D 33

22
, then Œ0; 1� is invariant and verifies that

[
n�0

f n
r .x/ D Œ0; 1� and lim

n!1
1

n
jDf n

r .x/j > 0;

for Lebesgue almost every x 2 Œ0; 1�.
Proof Consider that the fixed point Ar is given by Ar D �

r
rC1

�3
. If 0 < r < 5

3
, then

jf 0r .Ar/j < 1. Therefore, the fixed point Ar is linearly stable. By Modified Singer’s
Theorem, see [27], the fixed point Ar is the only linearly stable fixed point in �0; 1Œ
and the immediate basin of Ar includes the orbit of the critical point c. So, the
interval Œc; fr.c/� is contained in the immediate basin of Ar. As the point Ar is the
only fixed point in �0; 1Œ, this implies that fr.x/ > x on �0;ArŒ. Thus, the interval
�0; fr.c/� is also contained in the basin of attraction of the fixed point Ar. Considering
that the von Bertalanffy functions fr map the interval Œfr.c/; 1Œ into �0; f 2r .c/� and
�0; f 2r .c/� ��0; fr.c/Œ; then the interval �0; 1Œ is the basin of attraction of the fixed
point Ar.

In the second case, if 5
3
< r < 33

22
, then the fixed point Ar is not linearly stable.

In this case, it is verified that fr.x/ > x for x 2�0; c� and fr has no fixed point at
�0; c�. This implies that all the orbits of every points x 2�0; 1Œ enters on the interval
Œf 2r .c/; fr.c/�, after a finite time of iterations. As f 0r .x/ < 0 for x 2�c; 1�, then fr maps
the interval Œc; fr.c/� into Œf 2r .c/; fr.c/�. On the other hand, considering that fr.x/ > x
for x 2�0; c�, then fr maps the interval Œf 2r .c/; c� into Œf 2r .c/; fr.c/�. Therefore,

fr
�
Œf 2r .c/; fr.c/�

� 
 Œf 2r .c/; fr.c/�;

i.e., the interval Œf 2r .c/; fr.c/� is forward invariant with basin of attraction �0; 1Œ.

Finally, if r D 33

22
, or an equivalent way fr.c/ D 1, then it appears that the

maximum size growth of the population is equal to the critical density at r D 33

22
.

Clearly, the fixed point Ar is linearly unstable. Since it is verified that f 0r .x/ > 0 for
x 2�0; cŒ, then the von Bertalanffy functions fr map �0; c� into �0; fr.c/�. Also, since
f 0r .x/ < 0 for x 2�c; fr.c/� and fr.c/ D 1, then fr maps the interval Œc; fr.c/� into Œ0; 1�.
So, Œ0; 1� is invariant, which is called invariant absorbing segment of level one, see
[15]. To show that this interval admits complex dynamics it suffices to check the
conditions for which the von Bertalanffy functions fr on Œ0; 1� admit an ergodic
absolutely continuous invariant measure, see the results presented in [16]. In fact,
the von Bertalanffy functions satisfy .A1/� .A4/ conditions. Also, it is verified that
f 2r .c/ D 0 and fr.0/ D 0, then it follows that f n

r .c/ ¤ c, 8n > 2. Considering that,

lim
x!0C

f 0r .x/ > 1 and f 2r .c/ D 0;
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the Modified Singer Theorem implies that the von Bertalanffy functions fr on
Œ0; 1� have no attracting periodic points. Therefore, from the theorem presented by
Misiurewicz in [16] and Birkhoff’s Ergodic Theorem follow the properties of .iii/.
Thus, the results are proved. ut

2.2 Bifurcations of Von Bertalanffy’s Functions

In this section we investigate the dynamical complexity of the proposed models
at .K;W1/ parameter plane. The analysis of their bifurcations structure is done
based on the bifurcation diagram, see Fig. 2. We will make use of the fold and flip
bifurcations, related with some cycles of order n 2 N. We recall that an order n

cycle .x1; x2; : : : ; xn/ is stable (or attractive) iff
ˇ̌
ˇ @f n

r
@x .xj/

ˇ̌
ˇ < 1; 8j D 1; 2; : : : ; n:

The fold bifurcation corresponds to the appearance of two order n cycles, one
stable and the other unstable, when it is verified @f n

r
@x .xj/ D 1; 8j D 1; 2; : : : ; n: On

the other hand, the flip bifurcation corresponds to the change of stability of an order
n cycle and the appearance of an order 2n cycle. Before the bifurcation, the order n
cycle is stable, after the bifurcation, the order n cycle is unstable and the 2n cycle
is stable. At the bifurcation it is verified that, @f n

r
@x .xj/ D �1; 8j D 1; 2; : : : ; n: For

more details about bifurcation theory see for example [14] and [15].

Fig. 2 Bifurcation diagram of von Bertalanffy’s functions fr .x/ in the .K;W
1
/ parameter plane.

The blue region is the stability region. The period doubling and chaotic regions correspond to the
cycles shown on top of figure. The gray region is the non admissible region
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In a general way, to von Bertalanffy’s functions fr.x/, defined by Eq. (4), with

r D K
3

� W
2
31 2 RC, the fold and flip bifurcation curves relative to a cycle of order

n are determined as follows. If x 2 Œ0; 1Œ is a point of an order n cycle that satisfies
the equations

f n
r .x/ D x and

@f n
r

@x
.x/ D 1 (5)

then there exists a solution 'n, such that the fold bifurcation curves relative to a
cycle of order n 2 N are given by W1 D 'n.xI K/, and are denoted by&.n/0 . On the
other hand, if x 2 Œ0; 1Œ is such that,

f n
r .x/ D x and

@f n
r

@x
.x/ D �1 (6)

then exists a solution  n, such that the flip bifurcation curves relative to a cycle of
order n 2 N are given by W1 D  n.xI K/, and are denoted by &n.

In particular, to von Bertalanffy’s functions fr.x/, defined by Eq. (4), the fold
bifurcation curve of the fixed points A0 and Ar, corresponding to Eq. (5) for n D 1,
has no meaning at .K;W1/ parameter plane. Because for von Bertalanffy’s growth
models does not exist an extinction region. Note that the fold bifurcation curve&.1/0

is the bifurcation curve which defines the transition between the extinction region
and the stability region, see for example [19] and [23]. A behavior of stability is
defined when a population persists for intermediate initial densities and otherwise
goes extinct. The per capita growth rate of the population, Eq. (3), is greater than
one for an interval of population densities. The lower bound of these densities
correspond to the positive fixed point Ar of each function fr.x/, given by Eq. (4),
see Fig. 1.

The symbolic dynamics techniques prove to be a good method to determine
a numerical approximation to the stability region (in blue), see Fig. 2. For more
details about symbolic dynamics techniques see for example [20]. In the .K;W1/
parameter plane, this region is characterized by the critical point iterates that are
always attracted to the fixed point sufficiently near of the super stable or super
attractive point QAr, defined by fr .c/ D c. Let NAr 2 �0; 1Œ be the fixed points
sufficiently near of QAr, then

lim
n!1 f n

r .c/ D NAr; for

�
3K�1A

1
3
r

�
1 � A

1
3
r

�� 3
2

< W1.K/ < OW1.K/

where OW1.K/ represents the super stable curve of the cycle of order 2, given in
implicit form by f 2r .c/ D c. In this parameter plane, the set of the super stable or
super attractive points QAr defines the super stable curve of the fixed point. In the
region before reaching the super stable curve, the symbolic sequences associated
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to the critical points orbits are of the type CL1. After this super stable curve, the
symbolic sequences are of the type CR1.

On the other hand, the flip bifurcation curve &1 correspondent to Eq. (6), with

r D K
3

� W
2
31 > 0, for n D 1, i.e., the flip bifurcation curve of the nonzero stable

fixed point Ar, is given by

x D
�

r

r C 1

�3
and  1.xI K/ D

�
5

K

� 3
2

: (7)

Note that the flip bifurcation curve &1 is the bifurcation curve which defines the
transition between the stability region and the period doubling region, such as
established in Lemma 1 for r D 5

3
.

The period doubling region corresponds to the parameters values, to which the
population weight oscillates asymptotically between 2n states, with n 2 N. In
period-doubling cascade, the symbolic sequences correspondent to the iterates of
the critical points are determined by the iterations f 2

n

r .c/ D c. Analytically, these
equations define the super-stability curves of the cycle of order 2n. The period
doubling region is bounded below by the curve of the intrinsic growth rate values
where the period doubling starts, OW1.K/, correspondent to the 2-period symbolic
sequences .CR/1. Usually, the upper bound of this region is determined using
values of intrinsic growth rate r, corresponding to the first symbolic sequence with
non null topological entropy. Commonly, the symbolic sequence that identifies the
beginning of chaos is

�
CRLR3

�1
, a 6-periodic orbit, see for example [20] and [21].

On the .K;W1/ parameter plane, at Fig. 2, the region between the blue and the
gray regions corresponds to period doubling region and chaotic region, also stated in
Lemma 1 .ii/. The period doubling region is bounded below by the flip bifurcation
curve of the stable fixed point nonzero Ar, &1. The upper limit of this region is
defined by the accumulation value of the flip bifurcation curves of the cycle of order
2n, of the stable fixed points nonzero, see [14] and [15]. This bifurcation curve is
denoted by &1 and from Eq. (7) we have,

&1 D lim
n!1 2n .xI K/

with x 2 Œ0; 1Œ a fixed point. In Fig. 2 the period doubling regions are well evidenced,
highlighting in particular the cycles of order 2 and 4.

In the chaotic region of the .K;W1/ parameter plane, the evolution of the pop-
ulation size is a priori unpredictable. The maps are continuous on the interval with
positive topological entropy whence they are chaotic and the Sharkovsky ordering
is verified, see [24]. At this case, the populations can persist at a semistable chaotic
interval. The symbolic dynamics are characterized by iterates of the functions fr that
originate orbits of several types, which already present chaotic patterns of behavior.
The topological entropy is a non-decreasing function in order to the parameter r,
until reaches the maximum value ln 2 (consequence of the negative Schwartzian
derivative). In [20] and [21] can be seen a topological order with several symbolic
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sequences and their topological entropies, which confirm this result to others growth
models.

The chaotic region is upper bounded by the chaotic semistability curve, as stated
in Lemma 1 .iii/. This bifurcation curve is denoted by&NA and is given by

&NA D ˚
.K;W1/ 2 R2 W fr.c/ D 1



D


.K;W1/ 2 R2 W W1 D �.K/; with �.K/ D

�
34

4K

	 3
2

�
:

The chaotic semistability curve corresponds to the transition between chaotic region
and no admissible region. In Fig. 2, the gray region is the no admissible region.
At this region the graphic of any von Bertalanffy’s function is no longer totally
in the invariant set Œ0; 1�. Almost all trajectories of fr (besides a hyperbolic set of
zero measure) leave the interval Œ0; 1� and escape to infinity. The maps under these
conditions are not good models for populations dynamics. For more details about the
bifurcation structure on this type of growth models see for example [19] and [23].

3 Synchronization and Desynchronization
of Von Bertalanffy’s Models

The synchronization of coupled chaotic systems depends on several factors, includ-
ing the strength of the coupling, reflected in the value of the coupling parameter,
the network topology and the dynamic characteristics of the system that exists at
each vertex. Given that a network can be mathematically represented by a graph,
the theory of dynamic networks is a combination of graph theory and nonlinear
dynamics. One might think on the behavior of the network according to the local
dynamics at each node, assuming that the network structure is fixed, or to admit
that the network has a dynamic topology that evolves according to certain rules,
but the state of the nodes are fixed. Thus, the emphasis of the study may be placed
on the local dynamic, on the global dynamics or, which is most interesting, on a
combination of both.

The dynamics in the nodes is determined by the intrinsic growth rate parameter
r of von Bertalanffy’s model, which influences the associated Lyapunov exponent.
So, in this work we study the synchronizability when the local Lyapunov exponent
vary and the topology of the network is fixed. Moreover, are present some results
about the evolution of the network synchronizability, when the number of nodes or
the number of edges increase, keeping fixed the local dynamic.
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3.1 Preliminaries

Mathematically, networks are described by graphs, directed and undirected, and
the theory of dynamical networks is a combination of graph theory and nonlinear
dynamics. A graph G is a set G D .V;E/ where V D V.G/ is a nonempty set of N
vertices or nodes (N is called the order of the graph) and E D E.G/ 
 V.G/� V.G/
is the set of m pairs of vertices that are called edges or links eij that connect two
vertices vi and vj. The matrix A D A.G/ D �

aij
�
, is called the adjacency matrix.

For a non weighted graph, it carries an entry 1 at the intersection of the ith row
and the jth column if there is an edge from vi to vj, where vi, vj 2 V.G/. When
there is no edge, the entry will be 0. If the graph is not directed, aij D aji and the
matrix A.G/ is symmetric. The degree of a node vi, represented by ki, is the number
of edges incident on it, i.e., ki D PN

jD1;j¤i aij. Considering the diagonal matrix
D D D.G/ D �

dij
�
, where dii D ki, then L D D � A is called the Laplacian matrix.

The eigenvalues of L are all non negative reals and are contained in the interval
Œ0;min fN; 2�g�, where � is the maximum degree of the vertices. The spectrum of
L may be ordered, �1 D 0 6 �2 6 � � � 6 �N D �max. The second eigenvalue
�2 is know as the algebraic connectivity or Fiedler value and plays a special role
in the graph theory. We will denote by �2.G/ the lower non zero eigenvalue of the
Laplacian of graph G. The larger �2.G/ is, the more difficult it is to separate the
graph G in disconnected parts. The graph is connected if and only if �2 ¤ 0. In
fact, the multiplicity of the null eigenvalue �1 is equal to the number of connected
components of the graph. As we will see later, the bigger �2, the easier the network
synchronizes.

Consider a network of N identical chaotic dynamical oscillators, described by a
connected graph, with no loops and no multiple edges. In each node the dynamics
of the oscillators is defined by Pxi D f .xi/, with f W Rn ! Rn and xi 2 Rn the state
variables of the node i. The state equations of this network, in the discretized form,
are given by

xi.k C 1/ D f .xi.k//C c
NX

jD1
lij xj.k/; (8)

with i D 1; 2; : : : ;N, where c > 0 is the coupling parameter, A D �
aij
�

is the
adjacency matrix and L D �

lij
� D D � A is the Laplacian matrix or coupling

configuration of the network. The network given by Eq. (8) achieves asymptotic
synchronization if x1.t/ D x2.t/ D : : : D xN.t/ ! e.t/ as t ! 1, where e.t/ is
a solution of an isolate node (equilibrium point, periodic orbit or chaotic attractor),
satisfying Pe.t/ D f .e.t//.

In a chaotic system it is important to measure the sensitivity with respect to initial
conditions. One way to do that is to compute the Lyapunov exponents that measure
the average rate at which nearby trajectories diverge from each other. Consider the
trajectories xk and yk, starting from x0 and y0, respectively. If both trajectories are,
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until time k, always in the same linear region, we can write

jxk � ykj D e�kjx0 � y0j; where � D 1

k

k�1X
jD0

ln jf 0r .xj/j:

The Lyapunov exponent of a trajectory xk is defined by

� D lim
k!C1

1

k

k�1X
jD0

ln jf 0r .xj/j; (9)

whenever it exists. The computation of the Lyapunov exponent � gives the average
rate of divergence (if � > 0), or convergence (if � < 0) of the two trajectories
from each other, during the time interval Œ0; k�, see for example [9]. In particular,
for von Bertalanffy’s functions, the Lyapunov exponents depend on one biological
parameters: the intrinsic growth rate r. In Fig. 3 one can observe the behaviour of
the Lyapunov exponent estimate when the intrinsic growth rate increases.

It is known that the network given by Eq. (8), with identical chaotic nodes, is
synchronized if the coupling parameter c belongs to the synchronization interval

1 � e��

�2
< c <

1C e��

�max
(10)

where �2 and �max are, respectively, the smaller non zero and the larger
eigenvalues of the Laplacian matrix L and � is the Lyapunov exponent of each
individual n-dimensional node, see [12].

Note that the synchronization occurs for values of the coupling parameter c
such that 1Ce��

�max
> 1�e��

�2
, which implies that it is a necessary condition for

a) b)

r
2 3 4 5 6
5
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2

1

0
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r

6.30 6.32 6.34 6.36 6.38 6.40
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Fig. 3 Lyapunov exponents for von Bertalanffy’s functions Eq. (4), as a function of the intrinsic
growth rate r. This figure has been obtained by numerical simulations using 5,000 iterations. The
zoom in .b/ show the values of the Lyapunov exponents used in Tables 1 and 2 . (a) Lyapunov
exponents for von Bertalanffy’s functions. (b) Zoom of (a) with r 2 Œ6:3; 6:4�
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synchronization that

� < ln.2K C 1/; where K D �1 � �2

�2 � �max
; (11)

see [12] for more details.
Considering Eq. (10), the amplitude of the network synchronization interval is

given by

˛ D .�2 � �max/C .�2 C �max/e��

�2 �max
;

where �2 and �max are, respectively, the smaller non zero and the larger eigenvalues
of the Laplacian matrix. From Eq. (10) we conclude that fixing the dynamics fr in
the nodes, the amplitude of the synchronization interval will be as larger as much
bigger is the eigenratio R, which is defined by

R D �2

�max
: (12)

3.2 Synchronization of Paths, Grids and Lattices

Since we are studying the phenomenon of synchronization in a population model,
it makes sense to consider the influence in each individual of its closest neighbours.
So, in our work we will pay special attention to some particular types of networks:
paths, grids and lattices.

A path graph PN is a sequence of N vertices such that from each of its vertices
there is an edge to the next vertex in the sequence, see [2]. The eigenvalues of the
Laplacian matrix of the path PN are given by

�i .PN/ D 2 � 2 cos
� .i � 1/

N
D 4 sin2

� .i � 1/

2N
; (13)

with i D 1; : : : ;N, see for example [3] and [17].
Let G be a graph with jV.G/j D N vertices and H a graph with jV.H/j D M

vertices. The cartesian product of graphs G and H, denoted by G�H, is the graph
with vertex set V .G�H/ D V .G/ � V .H/ where there is an edge between two
vertices .u1; u2/ and .v1; v2/ of the cartesian product if and only if u1 D v1 and
u2v2 2 E.H/ or u2 D v2 and u1v1 2 E.G/. The cartesian product of two paths PN

and PM is a N � M grid graph, which is denoted by GN�M D PN�PM . It is known
that the Laplacian eigenvalues of cartesian product G�H, see [18], are

�i.G/C �j.H/; with i D 1; 2; : : : ; jV.G/j and j D 1; 2 : : : ; jV.H/j :
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As a consequence, one has

�2 .G�H/ D min f�2 .G/ ; �2 .H/g ;

and

�max .G�H/ D �max .G/C �max .H/ :

This result allows to determine the Laplacian spectrum of a N � M grid graph. In
the particular case of N D M, one has

�2 .GN�N/ D min f�2 .PN/ ; �2 .PN/g D �2 .PN/ D 4 sin2
�

2N
;

and

�max .GN�N/ D �max .PN/C �max .PN/ D 2�max .PN/ D 8 sin2
�.N � 1/

2N
: (14)

In the case of N < M, considering that �2 .PN/ given by Eq. (13) is a decreasing
function with N, it follows

�2 .GN�M/ D min f�2 .PN/ ; �2 .PM/g D �2 .PM/ D 4 sin2
�

2M
;

and

�max .GN�M/ D �max .PN/C �max .PM/

D 4 sin2
�.N � 1/

2N
C 4 sin2

�.M � 1/

2M
:

The case N > M is similar.
A .N; k/-lattice graph, denoted by L.N;k/, is a 2k-regular graph in which the N

vertices are put in a circle and each vertex is connected to its 2k nearest neighbours.
The eigenvalues of the Laplacian matrix of a .N; k/-lattice are (1 D 0 and

(iC1 D 2k � 2

KX
nD1

cos
2�in

N
D 4

KX
nD1

sin2
�in

N
D 2k C 1 � sin � i.2kC1/

N

sin � i
N

; (15)

with i D 1; 2; : : :N�1. For more details see for example [5] and [10]. Note that these
eigenvalues are not sorted in an ascending order. In fact, (1 D �1 D 0, (2 D �2, but
�max D max

1�i�N
(i. The larger eigenvalue of the Laplacian matrix L is obtained from

Eq. (15), with i D NCb
4

, where b is the smaller integer such that N C b is a multiple
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of 4, with b D 0; 1; 2; 3. Then, denoting the constant 2k C 1 D q, we can write

�max D ( NCb
4 C1 D 2k C 1 � sin .2kC1/.NCb/�

4N

sin .NCb/�
4N

D q � sin q.NCb/�
4N

sin .NCb/�
4N

: (16)

On the other hand, from Eq. (15), for i D 1, we also have

�2 D (2 D 2k C 1 � sin �.2kC1/
N

sin
�
�
N

� D q � sin q�
N

sin �
N

: (17)

With the above expressions for the eigenvalues of the three kinds of graphs, we
can obtain results about the eigenratio, R, and therefore about the amplitude, ˛, of
the synchronization interval.

Proposition 1 Let G1 and G2 be two graphs of the same type and ˛i be the
amplitude of synchronization interval of the network associated with Gi, with
i D 1; 2. Then ˛2 � ˛1 in the following conditions:

(i) If the two networks are path graphs PNi , with Ni vertices, i D 1; 2 and N2 � N1;
(ii) If the two networks are grid graphs GNi�Mi D PNi�PMi , with Ni and Mi vertices

of each path PNi and PMi , respectively, i D 1; 2 and

(1) Ni D Mi for i D 1; 2, or
(2) Ni ¤ Mi for i D 1; 2, M2 � M1 and N1 D N2, or
(3) Ni ¤ Mi for i D 1; 2, N2 � N1 and M1 D M2;

(iii) If the two networks are lattice graphs L.Ni;k/, with Ni vertices, i D 1; 2 and
N2 � N1.

Proof

(i) Considering the expressions given by Eq. (13) of the eigenvalues of a path PN ,
with N vertices, the eigenratio R in Eq. (12) becomes

RPN .N/ D �2

�max
D sin2 �

2N

sin2 � .N�1/
2N

D tan2
�

2N
;

which is a decreasing function with the number of vertices N, since

R0PN
.N/ D � � tan �

2N

N2 cos2 �
2N

< 0; for N > 1:

So, if N2 � N1 then RPN2
.N2/ � RPN1

.N1/, and consequently ˛2 � ˛1:
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(ii)

(1) Considering the expressions given by Eq. (14) of the eigenvalues of a grid
GN�N , with N � N vertices, the eigenratio R comes

RGN�N .N/ D 1

2
RPN .N/ D 1

2
tan2

�

2N
:

So RGN�N .N/ is also a decreasing function with the number of vertices N.
(2) If N ¤ M one has N < M or N > M. Since the proof is similar, we only

considerer N < M. In this case, the eigenratio is

RGN�M .N;M/ D �2 .PM/

�max .PN/C �max .PM/

D sin2 �
2M

sin2 �.N�1/
2N C sin2 �.M�1/

2M

: (18)

Note that �max .PN/ given by Eq. (13) is an increasing function with N. If
N is fixed and M increases, then �max .PN/ is fixed, �2 .PM/ decreases and
�max .PM/ increases, so RGN�M .N;M/ decreases.

(3) If N ¤ M, N < M, N increases and M is fixed, then �2 .PM/ and
�max .PM/ are fixed and �max .PN/ increases, so RGN�M .N;M/, given by
Eq. (18) decreases.

As mentioned before, the decreasing of R implies the decreasing of ˛.
(iii) Using the expressions given by Eqs. (16) and (17) of the eigenvalues of a

.N; k/�lattice L.N;k/, with N vertices, the eigenratio is

RL.N;k/ .N/ D �2

�max
D

q � sin q�
N

sin �
N

q � sin q.NCb/�
4N

sin .NCb/�
4N

D q � csc �
N sin q�

N

q � csc .NCb/�
4N sin q.NCb/�

4N

:

RL.N;k/ .N/ is a continuous function, such that R0L.N;k/ .q/ < 0 and R0L.N;k/ .N/
has no zeros for N � q. So R0L.N;k/ .N/ < 0 for 8N � q. This is sufficient to
prove that RL.N;k/ .N/, with N 2 N, decreases with the number of vertices N. So,
the amplitude ˛ is also decreasing with N.

ut
In the previous proposition it is stated that when the number of vertices of a graph

decreases, the synchronization improves. On the other hand, one has more results
about the evolution of the network synchronizability. When the number of edges
decreases, maintaining the number of vertices, the synchronization worsens. In fact,
one has the following result.



Chaotic Dynamics and Synchronization of von Bertalanffy’s Growth Models 563

Proposition 2 Considering two networks associated with graphs G1 and G2, such
that G1 and G2 have the same number N of vertices and G1 
 G2, then c2 � c1,
where ci denotes the lower bound of the synchronization interval of the graph Gi,
with i D 1; 2.

This result, see [23], is a consequence of Corollary 3.2. of [8], since under the
conditions stated in Proposition 2, it is verified that �2.G1/ � �2.G2/. The previous
results concern the evolution of the synchronizability when the network topology
evolves and the local dynamics is fixed. If the network topology is fixed and the
local dynamics varies, one has the following result, see also [23].

Proposition 3 Consider a network given by Eq. (8) with N nodes, having in
each node the same chaotic dynamical system, with Lyapunov exponent �. If the
network topology is fixed, then the amplitude of the network synchronization interval
decreases as the local Lyapunov exponent � increases.

4 Numerical Simulations

To support our approaches, we consider some examples of paths, grids and
lattices. In each case we evaluate the eigenvalues of the Laplacian matrix and the
synchronization interval, for a set of values of the local Lyapunov exponent.

4.1 Paths

First are considered the paths PN , with N D 4 and N D 6 nodes, having in each
node the same model, the von Bertalanffy function fr given by Eq. (4). See Fig. 4.

If, for instance, N D 4, see Fig. 4a, the adjacency matrix A, the diagonal matrix
D and the Laplacian matrix L are given by

A D

2
664
0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

3
775 , D D

2
664
1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

3
775 and L D D � A D

2
664
1 �1 0 0

�1 2 �1 0

0 �1 2 �1
0 0 �1 1

3
775 :

1 2 3 4 5 6

1 2 3 4

b)

a)

Fig. 4 Graphs of paths PN with N D 4 vertices in .a/ and with N D 6 vertices in .b/
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So, the network correspondent to the graph in Fig. 4a, according to Eq. (8), is defined
by the system

8̂
<̂
ˆ̂:

Px1 D fr.x1/C c.x1 � x2/
Px2 D fr.x2/C c.�x1 C 2x2 � x3/
Px3 D fr.x3/C c.�x2 C 2x3 � x4/
Px4 D fr.x4/C c.�x3 C x4/

:

For this path graph the eigenvalues of the Laplacian matrix are �1 D 0, �2 D 2�p
2,

�3 D 2 and �4 D 2 C p
2. Considering Eq. (11), there is desynchronization if

� < 0:347. In Table 1 we present a list of some Lyapunov exponents obtained
by numerical simulation using 5,000 iterations, for several values of the intrinsic
growth rate r. For all the values of r in this Table, the Lyapunov exponent � are
such that, there is a synchronization interval for P4. We evaluate the synchronization
interval and its amplitude for each of these values of �. If, for instance, we consider
r D 6:320, the Lyapunov exponent of fr.x/ is �  0:098, Eq. (9). Then, concerning
Eq. (10), this graph synchronizes if 1�e�0:098

2�p2 < c < 1Ce�0:098

2Cp2 , 0:160 < c < 0:558

and the amplitude of the synchronization interval is 0:398. In Table 1 are presented
the results obtained for the other values of r.

For the path P6 of Fig. 4b, the eigenvalues of the Laplacian matrix are �1 D 0,
�2 D 2 � p

3, �3 D 1, �4 D 2, �5 D 3 and �6 D 2 C p
3. With these values,

similar calculations were made, which are presented in Table 1. For P6 there are
several values of �, such that the lower bound of the synchronization interval is
larger then the upper bound, so the desynchronization phenomena occurs. These

Table 1 Lyapunov exponent, �, synchronization interval,
i
1�e��

�2
; 1Ce��

�max

h
, and amplitude of this

interval, for several intrinsic growth rates r, for the paths (a) and (b) of Fig. 4

Synchronization interval of paths Amplitude ˛

r � P4 P6 P4 P6
6:305 0:043 �0:072; 0:573Œ �0:158; 0:525Œ 0:501 0:367

6:310 0:064 �0:106; 0:568Œ �0:231; 0:519Œ 0:462 0:288

6:320 0:098 �0:160; 0:558Œ �0:349; 0:511Œ 0:398 0:162

6:330 0:095 �0:154; 0:559Œ �0:337; 0:512Œ 0:405 0:175

6:335 0:122 �0:196; 0:552Œ �0:428; 0:505Œ 0:356 0:077

6:340 0:141 �0:225; 0:547Œ �0:492; 0:501Œ 0:322 0:009

6:350 0:173 �0:272; 0:539Œ .�/ 0:267 .�/
6:355 0:169 �0:266; 0:540Œ .�/ 0:275 .�/
6:360 0:095 �0:155; 0:559Œ �0:338; 0:512Œ 0:405 0:174

6:365 0:186 �0:290; 0:536Œ .�/ 0:246 .�/
6:370 0:177 �0:277; 0:538Œ .�/ 0:261 .�/
6:375 0:169 �0:266; 0:540Œ .�/ 0:274 .�/

In the cases denoted by .�/ the desynchronization phenomenon occurs, see Eq. (11)
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cases are denoted by .�/ in Table 1 there is no synchronization interval in these
cases.

4.2 Grids

In this subsection are considered the grid graphs GN�M , with N�M D 2 � 3; 2 � 4,
3 � 3; 4 � 4 presented in Fig. 5, having in each node the same von Bertalanffy
function.

For the grid graph G2�3, Fig. 5a, the eigenvalues of the Laplacian matrix are �1 D
0, �2 D 1, �3 D 2, �4 D 3, �5 D 3 and �6 D 5. Then, concerning Eq. (11), there
is synchronization if � < 0:405. For the grid graph G2�4, Fig. 5b, the eigenvalues
of the Laplacian matrix are �1 D 0, �2 D 2 � p

2, �3 D 2, �4 D 2, �5 D 4 � p
2,

�6 D 2 C p
2, �7 D 4 and �8 D 4 C p

2. Then, considering Eq. (11), there is
synchronization if � < 0:217. For the grid graph G3�3, Fig. 5c, the eigenvalues of
the Laplacian matrix are �1 D 0, �2 D 1, �3 D 1, �4 D 2, �5 D 3, �6 D 3,
�7 D 4, �8 D 4 and �9 D 6. Then, concerning Eq. (11), there is synchronization
if � < 0:336. For these three grid graphs, the desynchronization phenomena do not

c) d)

a) b)
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Fig. 5 Graphs of grids GN�M , with N �M D 2� 3 in .a/, N �M D 2� 4 in .b/, N �M D 3� 3
in .c/ and N �M D 4� 4 in .d/



566 J.L. Rocha et al.

occurs for any value of r considered in Table 2. For the grid graphs G4�4, Fig. 5d,
the Laplacian matrix is

L D D � A D

2
66666666666666666666666666664

2 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

�1 3 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0

0 �1 3 �1 0 0 �1 0 0 0 0 0 0 0 0 0

0 0 �1 2 0 0 0 �1 0 0 0 0 0 0 0 0

�1 0 0 0 3 �1 0 0 �1 0 0 0 0 0 0 0

0 �1 0 0 �1 4 �1 0 0 �1 0 0 0 0 0 0

0 0 �1 0 0 �1 4 �1 0 0 �1 0 0 0 0 0

0 0 0 �1 0 0 �1 3 0 0 0 �1 0 0 0 0

0 0 0 0 �1 0 0 0 3 �1 0 0 �1 0 0 0

0 0 0 0 0 �1 0 0 �1 4 �1 0 0 �1 0 0

0 0 0 0 0 0 �1 0 0 �1 4 �1 0 0 �1 0

0 0 0 0 0 0 0 �1 0 0 �1 3 0 0 0 �1
0 0 0 0 0 0 0 0 �1 0 0 0 2 �1 0 0

0 0 0 0 0 0 0 0 0 �1 0 0 �1 3 �1 0

0 0 0 0 0 0 0 0 0 0 �1 0 0 �1 3 �1
0 0 0 0 0 0 0 0 0 0 0 �1 0 0 �1 2

3
77777777777777777777777777775

:

The eigenvalues of the Laplacian matrix are �1 D 0, �2 D 2�p
2, �3 D 2�p

2,
�4 D 2.2 � p

2/, �5 D 2, �6 D 2, �7 D 4 � p
2, �8 D 4 � p

2, �9 D 2 C p
2,

�10 D 2 C p
2, �11 D 4, �12 D 4, �13 D 4, �14 D 4 C p

2, �15 D 4 C p
2 and

�16 D 2.2Cp
2/. Then, considering Eq. (11), there is synchronization if� < 0:172,

which occurs for r D 6:350, r D 6:365 and r D 6:370 considered in Table 2.

4.3 Lattices

In this subsection are considered the lattices L.N;k/, with .N; k/ D .4; 1/; .6; 1/ and
.6; 2/ presented in Fig. 6, having in each node the same von Bertalanffy function.
Note that the lattice L.4;1/ is the grid G2�2. For the lattice L.6;2/, see Fig. 6c, the
adjacency matrix A and the Laplacian matrix L are

A D

2
66666664

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

3
77777775

and L D D � A D

2
66666664

4 �1 �1 0 �1 �1
�1 4 �1 �1 0 �1
�1 �1 4 �1 �1 0

0 �1 �1 4 �1 �1
�1 0 �1 �1 4 �1
�1 �1 0 �1 �1 4

3
77777775
:
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a) c)b)

1

23

4
1

2

34

5

6 1

2

34

5

6

Fig. 6 Lattices L.N;k/, with .N; k/ D .4; 1/ in .a/, .N; k/ D .6; 1/ in .b/ and .N; k/ D .6; 2/ in
.c/. From .a/ to .b/ the total number of vertices of the network increases maintaining the number
of neighbors of each node, and from .b/ to .c/ increases the number of neighbors of each node,
but the total number of vertices of the network remains the same

Table 3 Lyapunov exponent, �, synchronization interval,
i
1�e��

�2
; 1Ce��

�max

h
, and amplitude of this

interval, 1Ce��

�max
� 1�e��

�2
, for several intrinsic growth rates r, for the lattices (a), (b) and (c) of Fig. 6

Synchronization interval of lattices Amplitude ˛
r � L.4;1/ L.6;1/ L.6;2/ L.4;1/ L.6;1/ L.6;2/
6:330 0:095 �0:045; 0:477Œ �0:090; 0:477Œ �0:0225668; 0:318Œ 0:432 0:387 0:295

6:350 0:173 �0:080; 0:460Œ �0:159; 0:460Œ �0:040; 0:307Œ 0:380 0:301 0:267

6:400 0:206 �0:093; 0:453Œ �0:186; 0:453Œ �0:047; 0:302Œ 0:360 0:267 0:255

6:500 0:297 �0:128; 0:436Œ �0:257; 0:436Œ �0:064; 0:291Œ 0:308 0:179 0:226

6:550 0:347 �0:147; 0:427Œ �0:293; 0:427Œ �0:073; 0:285Œ 0:280 0:134 0:211

6:600 0:377 �0:157; 0:421Œ �0:314; 0:421Œ �0:079; 0:281Œ 0:264 0:107 0:202

6:650 0:406 �0:167; 0:417Œ �0:334; 0:417Œ �0:083; 0:278Œ 0:250 0:083 0:194

6:700 0:463 �0:185; 0:407Œ �0:371; 0:407Œ �0:093; 0:272Œ 0:222 0:037 0:179

6:730 0:506 �0:199; 0:401Œ �0:397; 0:401Œ �0:099; 0:267Œ 0:202 0:003 0:168

6:740 0:533 �0:207; 0:397Œ .�/ �0:103; 0:265Œ 0:190 .�/ 0:161

6:750 0:598 �0:225; 0:388Œ .�/ �0:112; 0:258Œ 0:163 .�/ 0:146

In the cases denoted by .�/ the desynchronization phenomenon occurs, see Eq. (11)

For the lattice L.6;2/ the eigenvalues of the Laplacian matrix are �1 D 0, �2 D �3 D
�4 D 4 and �5 D �6 D 6. If we consider, for instance, r D 6:60, the Lyapunov
exponent of fr.x/ is 0:377, Eq. (9). Then, taking into account Eq. (10), this lattice
synchronizes if 1�e�0:377

4
< c < 1Ce�0:377

6
, 0:079 < c < 0:281 and the amplitude

of the synchronization interval is 0:202. For more examples see Table 3. The lattice
L.6;1/ correspondent to the Fig. 6b has eigenvalues of the Laplacian matrix �1 D 0,
�2 D �3 D 1, �4 D �5 D 3 and �6 D 4. Thus, for the same r D 6:600, the
lattice synchronizes if 0:314 < c < 0:421 and the amplitude of this interval is
0:107. Moreover, to the lattice L.4;1/ in Fig. 6a, the eigenvalues of the Laplacian
matrix are �1 D 0, �2 D �3 D 2 and �4 D 4. For the same r D 6:600, the lattice
synchronizes if 0:157 < c < 0:421 and the amplitude of this interval is 0:264.
In Table 3 are presented more examples, where we computed the synchronization
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interval for several values of the intrinsic growth rate r, for all these lattices (a), (b)
and (c) of Fig. 6.

5 Discussions and Conclusions

In the first part of this work we study the dynamical behaviour and the bifurcations
structure of von Bertalanffy’s functions. For this class of functions, we prove
sufficient conditions, in Lemma 1, for the initial population densities to which
the stability, period doubling, chaos and non admissibility occur. We provide the
bifurcation analysis of von Bertalanffy’s functions, in the two-dimensional param-
eter space .K;W1/. Fold and flip bifurcations curves and numerical simulations
of the bifurcation diagram for von Bertalanffy’s functions are presented. As von
Bertalanffy’s functions are used to model population dynamics, it makes sense to
consider the influence in an individual of its neighbors. Therefore, in this study, we
consider some particular types of networks such as paths, grids and lattices. So,
it was studied the synchronizability of these networks, having in each node a von
Bertalanffy’s function, in terms of the r parameter and also in terms of the network
topology. It was concluded that:

• The amplitude of the synchronization interval decreases if one consider two
networks of the same type, in the following cases: the two networks are paths
PN , with increasing number N of vertices; the two networks are grids GN�M ,
with the increasing of one of the indexes N or M, maintaining fixed the other; or
the two networks are lattices L.N;k/, with increasing number N of vertices;

• The synchronizability improves if an edge is added to the network graph;
• The amplitude of the network synchronization interval decreases if the local

Lyapunov exponent increases, when fixing the network topology.

Note that in the case of grids, it is false to assume that the increasing of the
number of vertices implies the decreasing of the amplitude of the synchronization
interval. See for example grids G2�4 and G3�3 in Table 2.

Considering values of the parameter r in the chaotic region some numerical
simulations were performed. Observing Tables 1, 2 and 3, all previous results can
be confirmed.

In future works we will study growth models of von Bertalanffy’s type, which
incorporate Allee effect. In fact, species extinction is currently a major focus of
ecological research. It is believed that synchronization may promote extinctions of
some species. Full synchronism may have a deleterious effect on population survival
because it may lead to the impossibility of a recolonization in case of a large global
disturbance. So, it is our aim to investigate the relation between synchronization and
Allee effect in new types of von Bertalanffy’s models.
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Three Dimensional Flows: From Hyperbolicity
to Quasi-Stochasticity

Alexandre A.P. Rodrigues

Abstract In the present survey, we give an overview of some recent developments
on examples of differential equations whose flows have heteroclinic cycles and
networks; we fit some properties of their nonwandering sets into the classic theory
of hyperbolic and pseudo-hyperbolic sets.

1 Introduction

The existence of heteroclinic cycles in systems with symmetry is no longer a
surprising feature. There are several examples of cycles arising in differential
equations symmetric under the action of a specific compact Lie group [27].
Similarities among them and the identification of some strange attractors in their
flows are the purpose of the present survey.

Several definitions of heteroclinic cycles and networks have been given in the
literature. Throughout the present survey, we use the following definition valid for
a finite dimensional system of ordinary equations (ODE):

Definition 1 A heteroclinic cycle is a finite collection of invariant saddles
f�1; : : : ; �ng of the ODE together with a set of heteroclinic connections f�1; : : : ; �ng
where �j is a solution of the ODE such that:

lim
t!�1 �j D �j and lim

t!C1 �j D �jC1

and �nC1 	 �1. When n D 1, we say that the set f�1; �1g is a homoclinic cycle.
A heteroclinic network is a connected union of heteroclinic cycles.

We start with a chronological perspective on the subject.

A.A.P. Rodrigues (�)
Centro de Matemática da Universidade do Porto and Faculdade de Ciências da Universidade
do Porto, Rua do Campo Alegre 687, 4169–007 Porto, Portugal
e-mail: alexandre.rodrigues@fc.up.pt

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Dynamics, Games and Science, CIM Series
in Mathematical Sciences 1, DOI 10.1007/978-3-319-16118-1_31

573

mailto:alexandre.rodrigues@fc.up.pt


574 A.A.P. Rodrigues

1.1 A Chronological Perspective

One of the goals of Dynamical Systems is to describe the asymptotic behavior of
systems for which an evolution rule is known. For continuous-time systems, the
evolution rule is given generically by a differential equation. Since mathematical
models given by differential equations are simplifications of the real world, one aims
to understand whether the asymptotic behavior remains the same if the differential
equation is slightly perturbed. The first attempt in tackling the problem is naturally
to solve the differential equations, which turns out to be impossible in most cases.
In the nineteenth century, Poincaré proposed to combine methods from other
subjects to find qualitative information on the dynamics without finding explicitly
the solutions. This qualitative analysis attained full maturity in his remarkable
contribution to the Celestial Mechanics [50] which is considered to be the birth
of Dynamical Systems as a mathematical discipline.

In the 1930s, in the context of diffeomorphisms, the Poincaré’s direction has
been followed by Birkhoff [15, 16] in the phenomenon of transverse homoclinic
points. Nowadays, we recognize the existence of transverse homoclinic points as a
paradigm of chaos. This phenomenon has been completely explained by Smale [66]
in the sixties with the geometric concept of horseshoe, a simple two-dimensional
model containing infinitely many periodic orbits in a compact manifold. The
horseshoe as well as the hyperbolic toral automorphism were unified by the notion
of hyperbolicity [66, 67]: an invariant subset of the phase space such that the tangent
space at each point splits into two transverse directions that are uniformly contracted
under forward and backward iterations, respectively.

The notion of structural stability of systems introduced by Andronov and
Pontryagin [7] (in the thirties) is connected with the uniform hyperbolicity together
with a transversality condition of the invariant manifolds of the critical points—
more details in Sect. 2. The theory of hyperbolic systems was developed from
the sixties to the eighties and gave a mathematical foundation that deterministic
systems may present chaos in a robust fashion. Nevertheless, uniform hyperbolicity
is “less universal” than one might think: in fact strict uniform hyperbolicity rarely
occurs in applications. This leads to the study of different classes of systems that
are “robust” and non-hyperbolic. The study of differential equations whose flows
have homo and heteroclinic cycles provide remarkable challenges for this view. The
complete taxonomy of these sets is an open problem; an informal overview of the
corresponding chaotic systems is being done in the present paper.

1.2 The Chaos

One of the most important findings in science in the twentieth century was the
discovery of dynamical chaos, characterized by the high sensitivity to initial
conditions.
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Many modern problems associated with systems involving high energies, veloc-
ities, game theory, geomagnetic field are modeled by multidimensional nonlinear
differential equations—see for instance [2, 11, 17, 43, 52] and references therein.
The study of such systems has revealed numerous new concepts in nonlinear
dynamics. Dynamical chaos has also been characterized and studied by statistical
and ergodic methods, including experimental analysis of correlation functions.

The simplest attractors are the ones consisting of a simple equilibrium or a
periodic solution. In the hyperbolic case, the other extreme corresponds to attractors
consisting of the whole ambient manifold, like the one induced by hyperbolic toral
automorphisms [24] and also the geodesic flows on surfaces of negative curvature
[8]. At this point, it would be interesting to find examples of differential equations
whose flows contain (hyperbolic or not) attractors that do not cover the whole
manifold. The existence of heteroclinic structures in the flow is a crucial step
towards this subject.

1.3 The Role of Examples

The majority of mathematicians were not led to their results by a process of
deduction from general features of the vector field, but rather by a scrupulous
examination of properly chosen particular examples and observations of concrete
numerical simulations. The generalizations come later since it is easier to generalize
an established result than to discover new arguments.

Since the work by E. Noether and H. Weyl in the first half of twentieth century,
symmetries play a major theoretical role in mathematics. In some examples, the
complex nature of the geometry can be described analytically because they are close
to a highly symmetric differential equation which, by construction, exhibits special
features.

There is a vast catalog of exotic phenomena associated with heteroclinic
connections. Possibilities include connections among chaotic saddles, connections
between chaos and non-chaos, cycling chaos and complex networks of connections
with “random switching” [5, 43].

Along this survey, we briefly outline some valuable facts about hyperbolic and
pseudo-hyperbolic sets, following the classification of Shilnikov [58, 62]. The main
purpose of the author is to fit some examples of regular and chaotic dynamics
involving heteroclinic cycles into the folklore theory of hyperbolic and pseudo-
hyperbolic sets in three-dimensional manifolds. We do not aim to define rigorously
all the concepts and terminology. On the way, we will suggest some references to
the reader.
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2 Global Perspective of Hyperbolicity

In an attempt to identify which features are common among stable systems, Smale
introduced the notion of hyperbolicity. Remarkably it turned out that structurally
stable systems are essentially the hyperbolic ones plus a transversality condition. In
the sixties and in the seventies, a complete theory of hyperbolic dynamical systems
has been developed, culminating with the proof of the C1-Stability Conjecture in
the nineties [31, 42]. Based on [18], in what follows we present some classic results
on this theory together with some terminology and notation.

2.1 Uniform Hyperbolicity

Let M be a n-dimensional compact riemannian smooth manifold (possibly without
boundary) and& � M be a compact and invariant set.

According to the reference [49], a diffeomorphism f W M ! M is called
uniformly hyperbolic on & if there is a decomposition of the tangent bundle of M
at &,

T&M D Es ˚ Eu;

such that df jEs and df�1jEu are uniform contractions.
For a smooth vector field X, define the associated global flow as the family of

diffeomorphisms .Xt/t2R satisfying:

(1) X0 is the identity map;
(2) XtCs D Xt ı Xs for all t; s 2 R and
(3) d

dt X
t.q/jtDt0 D X.Xt0.q/// for all q 2 M and t0 2 R.

Conversely, a given flow .Xt/t2R determines a unique vector field X whose associ-
ated flow is precisely .Xt/t2R.

A flow fXtgt2R generated by a vector field X is hyperbolic if there exists a
decomposition

T&M D Es ˚ Ec ˚ Eu

where Ec is one-dimensional and tangent to the flow X (outside the equilibria, which
we assume to be finite) for which the following conditions hold:

jjdXtjEs jj < Ce�t and jjdX�tjEu jj < Ce�t; (1)
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for t 2 R, C > 0 and � 2 .0; 1/. We may adapt the Riemannian metric in order to
get C D 1—see [64]. In the cases where such decompositions occur in the whole
manifold, we refer to such globally hyperbolic diffeomorphisms or flows as Anosov
ones.

Associated to the solutions of a hyperbolic set there are stable and unstable
manifolds, corresponding to the contracting and expanding sub-bundles by the
action of df (dX in the case of a flow). In what follows dist denotes the distance
on M induced by the Riemannian norm.

If & � M is a hyperbolic set, by the Invariant Manifold Theory [33], it follows
that for every p 2 & the sets:

Ws.p/ D



q 2 M W lim
t!C1 dist.Xt.q/;Xt.p// D 0

�

and

Wu.p/ D
n
q 2 M W lim

t!�1 dist.Xt.q/;Xt.p// D 0
o

are invariant manifolds tangent to Es
p and Eu

p respectively, at p.
A hyperbolic set & � M is a basic set if it is topologically transitive and isolated

(i.e. & D T
t2R Xt.U/ for some neighbourhood U of &). We refer to a hyperbolic

system as satisfying Axiom A when its non-wandering set is hyperbolic and the
closure of the non-wandering points of f coincides with the set of its periodic points.

A diffeomorphism f is C1-structurally stable (or simply robust), if for any C1

arbitrarily small perturbation g of f , there is a homeomorphism h of the phase space
such that:

8x 2 M; h ı f .x/ D g ı h.x/:

For flows, we require the existence of a homeomorphism h (close to the Identity
map) sending trajectories of the initial flow to the trajectories of any small C1-
perturbation.

2.2 Examples

Hyperbolic attractors are the sets for which the Axiom A of Smale is valid, and
hence, they are structurally stable. In the context of diffeomorphisms, for hyperbolic
attractors, periodic orbits as well as homo/heteroclinic cycles are everywhere
dense. An important property is that “inside” hyperbolic connected attractors all
trajectories have the same Morse index, i.e. the stable (respectively, unstable)
manifold of all periodic orbits have the same dimension.
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C 1
C 2

Σ

...

Fig. 1 In a three-dimensional topological sphere, the authors of [56] exhibit an explicit example
of a heteroclinic network associated to three hyperbolic (non-trivial) periodic solutions, whose
neighborhood contains a uniformly hyperbolic suspended horseshoe. If ˙ is a section transverse
to the cycle, the shape of the suspended horseshoe is depicted and is consistent with the geometrical
structure given in [61]

Classic examples of chaotic hyperbolic attractors include Anosov’s systems [24],
Smale-Williams’ solenoid [21, Ch. 2.5], Plykin’s attractors, etc. In the context
of continuous-time dynamics, the first examples of a non-trivial hyperbolic set
(different from an equilibrium point or a periodic solution) was the geodesic flow
on a Riemannian manifold with negative curvature studied by Anosov [8].

Based on the works [6, 61], restricted to a three-dimensional topological sphere,
Rodrigues et al. [56] presented an example of a heteroclinic network associated to
three hyperbolic (non-trivial) periodic solutions, whose neighbourhood contains a
robustly transitive hyperbolic set where the first return map (to a section transverse
to the cycle) is topologically conjugated to a Bernoulli shift with infinitely many
symbols—see Fig. 1.

The results of [56] are consistent with the work of Doering [22] which says
that on a three-dimensional compact manifold, an invariant compact set without
equilibria is robustly transitive if it is Anosov. Furthermore, the theory developed
in [56] allows us to conclude that the dynamics near the heteroclinic network
exhibits:

• heteroclinic switching: there are trajectories that visit neighbourhoods of the
saddles following all the heteroclinic connections of the network in any given
order;

• chaotic double cycling: there are trajectories that follow each cycle on the
network making any prescribed number of turns near the saddles, for any given
bi-infinite sequence of turns.

Other type of dynamical behaviour might occur but they are probably far from the
network. More details in [5, 56].
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Realizations of hyperbolic attractors in the form of maps or differential equations
are difficult to find in specific applications. The attractors reported in the next
sections fit beyond (strict) uniform hyperbolicity.

3 Strange Attractors: Pseudo-Hyperbolicity

The hyperbolic attractors are robust and, historically, were the only ones known to
be robust until the appearance of the Lorenz attractor. In this section, we start by
describing this classic example, emphasizing the type of pseudo-hyperbolicity in
its flow. We introduce the concept of stochasticity of Sinai [65] and we refer some
examples of continuous-time differential equations whose non-wandering solutions
do not fill the whole manifold.

3.1 The Classic Lorenz Attractor

The phenomenon known (nowadays) as the butterfly effect was discovered by the
meteorologist Edward Lorenz in 1961 while working on a simplified model of
convection in the atmosphere. He published his findings in [40], but:

it took some time before they [the results] were appreciated by meteorologists or known to
mathematicians.

Ian Stewart [68], 2011

The system of differential equations under consideration is the following:

8<
:

Px D �.y � x/
Py D rx � y � xz
Pz D xy � bz

: (2)

Based on a computer assisted proof, Tucker [70] proved that for the Saltzman values
� D 10, r D 28 and b D 8

3
, there is an attractor, called Lorenz butterfly, containing

(see Fig. 2a):

• an equilibrium point at the origin, where its linearization has eigenvalues �u, �1s
and �2s satisfying:

�2s < �
1
s < 0 < �u and �u C �1s > 0I (3)

• periodic solutions accumulating on the equilibrium;
• a dense orbit.
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(a) (b)

Fig. 2 Case (a)—classic Lorenz attractor: the sum of the leading eigenvalues of the linearization
of (2) at the origin is positive. Case (b)—Lorenz-Rovella attractor: the sum of the leading
eigenvalues of the linearization of (2) at the origin is negative

Attractors with such characteristics are called Lorenz-like attractors. Although
the technical definition of “Lorenz-attractor” is more complicated, following [68]
we give an heuristic definition:

Definition 2 An attractor is a region A of the phase space such that any initial
condition starting near A converges towards a trajectory that lies on A .

If A is neither an equilibrium point nor a periodic solution, this property means
that although distinct trajectories on A may diverge, they remain on A . So A is
a Lyapunov-stable object. The behaviour on A is robust under perturbations in the
following sense: if the system is subjected to a small modification, the trajectory can
change dramatically; nevertheless, it still lies on A , and in general densely fills A
over infinite time. This is the notion of robust transitivity stated in [9, Section 3].

The classic theory of hyperbolic systems cannot be applied to compact flow-
invariant sets containing equilibria accumulated by regular trajectories because the
hyperbolic splitting Eu

p ˚ Ec
p ˚ Es

p cannot be extended continuously from regular
trajectories to equilibria.

3.2 A New Theory Emerges

Although the Lorenz attractor is not uniformly hyperbolic, a peculiarity of Lorenz-
type attractors is their “quasi”-similarity to the hyperbolic ones in terms of
robustness. A weak form of hyperbolicity has been required and it became the
source of the term pseudo-hyperbolicity used by Shilnikov and co-authors.
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About ten years after Lorenz’s work, a number of concrete Lorenz-like attractors
were exhibited by Afraimovich, Bykov and Shilnikov [1] and Guckenheimer and
Williams [30], for which the authors provided mathematical proofs that the models
are sensitive to initial conditions, robust and non-hyperbolic. These are often called
geometric models. Several papers describing the classic Lorenz attractor have been
written—see [18, Ch. 9] and references therein.

Bautista [13] proved that if & is the geometric Lorenz attractor and p 2 & is a
point lying in a hyperbolic periodic solution of &, then & D Wu.p/. Moreover, &
is a homoclinic class i.e., it can be seen as the topological closure of the transverse
intersection of the invariant manifolds of a hyperbolic periodic solution in &. More
formally:

& D Wu.p/\ Ws.p/:

Starting in the nineties, the systematic theory that explains the coexistence of
robust flow-invariant sets containing equilibria and non-trivial sets of closed trajec-
tories accumulating on them, has been developed. In three dimensions, Morales et
al. [45] proved that robust sets containing equilibria are singular hyperbolic sets, i.e.,
they share the main properties of the geometric Lorenz attractor. The eigenvalues of
the equilibria should be real and satisfy condition (3)—see [9, Lemma 3.22].

3.3 No Stable Solutions and Stochasticity

In the eighties, Sinai [65] introduced the following notion of attractor, very different
from the usual one.

Definition 3 A stochastic attractor is an invariant closed set A in the phase space
with the following properties:

1. There exists a neighbourhood U;A � U, such that if q 2 U, then

lim
t!C1 dist.Xt.q/;A / D 0

2. For any initial probability distribution P0 on A , its shift as t ! C1 converges
to an invariant distribution P on A , independently of P0.

3. The probability distribution P is mixing, i.e. the autocorrelation function tends to
zero as t ! C1.

Both hyperbolic and Lorenz-type attractors are stochastic attractors and hence
classical ergodic results may be used for their characterization. Small random
perturbations essentially do not influence these attractors because the dynamic
stochasticity tends to dominate the noise. The mixing condition 3. excludes the
existence of attracting solutions. We refer the reader to [10, 41] for the ergodic
theory of singular hyperbolic sets.
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3.4 Examples

Now we give a brief discussion on examples of non-hyperbolic attractors that share
some properties with the Lorenz-like sets. We refer the reader the source where a
complete description of their dynamical properties is given. A good survey about
these examples may be found in [35].

3.4.1 The Lorenz-Rovella Attractor

A new kind of attractor in three dimensions, the contracting Lorenz attractor
or Lorenz-Rovella attractor, which is probability persistent but not robust, was
obtained in [57] after two previous works by Arnéodo, Coullet and Tresser [11, 12].
It contains a hyperbolic equilibrium with real eigenvalues but now the sum of the
leading eigenvalues is negative. It is persistent in terms of Lebesgue probability but
not robust:

Persistence: there is a codimension two submanifold in the space of all vector
fields, whose elements are full density points for the set of vector fields that
exhibit an attractor of the same type in a generic family.

Non Robustness: for an open and dense set of perturbations, the attractors breaks
into one or two stable periodic solutions, the equilibrium, a transitive and isolated
set and heteroclinic connections between them.

This attractor combines a fold type behavior interacting with the dynamics
associated to the presence of an equilibrium [18]—see the shape of its flow in
Fig. 2b.

3.4.2 Cycles Involving at Least One Saddle-Focus

The theory concerning spiraling strange attractors containing saddle-foci is far from
being completely understood; important examples have been described by Shilnikov
[59, 60, 63], Tresser [69], Aguiar et al. [3], Rodrigues [52] and Rodrigues and
Labouriau [55]. Although these spiralling sets are not robustly transitive, the three
later examples may be persistent under symmetric perturbations.

The systematic study of the dynamics near a saddle-focus homoclinic cycle was
pioneered by Shilnikov in the sixties. Hereafter, we assume that the eigenvalues of
the linearization of the vector field at the equilibrium are given by: E and �C ˙ i!,
where E;C; ! 2 RCnf0g—see Fig. 3. Under the eigenvalue condition E > C,
infinitely many periodic solutions appear in any small neighborhood of the cycle
[60, 63] . These periodic solutions are contained in suspended horseshoes and
accumulate on the cycle.

Attractors with a spiral structure are expectable for perturbations of differential
equations with two coexisting cycles. The periodic solutions near two symmetric
saddle-focus homoclinic cycles are known to span every possible knot and link type.
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Σ

Σ

Fig. 3 Homoclinic cycle associated to a saddle-focus where the real expanding eigenvalue
dominates the complex conjugate contracting eigenvalues. In any cross section to the cycle, we
may find a Smale horseshoe leading to the occurrence of infinitely many periodic solutions of
saddle-type. These periodic solutions accumulate on the cycle

The attractors associated to Shilnikov homoclinic cycles are characterized by
the lack of uniform hyperbolicity, by the existence of a trajectory with positive
Lyapunov exponent and by the existence of an open set in their basin of attraction.
Under the condition C < E < 2C, Homburg [34] proved the existence of a dense
set of homoclinic tangencies to hyperbolic periodic solutions and 2-periodic sinks
nearby; see also [48].

Tresser [69, Section V] considered a heteroclinic cycle involving a saddle-focus
and a saddle (non-focus) and obtained similar results, suggesting that the relevant
part of the dynamics only depends on the presence of a saddle-focus—see Fig. 4.
Motivated by the Lotka-Volterra systems, the author precised and generalized some
of the Shilnikov conclusions for cycles involving not only saddle-foci.

After the classical homoclinic cycles associated to a single saddle-focus, Bykov
cycles are the simplest heteroclinic cycles between two saddle-foci where one
heteroclinic connection is structurally stable and the other is not. These cycles,
also called by T[erminal]-points, are codimension two bifurcation cycles that
involve two equilibria of different Morse indices. They have been first studied by
Glendinning and Sparrow [25, 26] and later by Bykov [19]. Recently there has been
a renewal of interest of this type of heteroclinic bifurcation in different scenarios—
see for instance [23, 37, 53, 54] and references therein.

The authors of [3, 55] constructed explicit examples of vector fields containing a
Bykov cycle on an attracting three-sphere. The construction has been amenable to
the analytic proof of features that guarantee the existence of chaos. The explicit
example consists of a vector field whose flow has a heteroclinic network with
two saddle-foci, and a spiraling structure containing a hyperbolic transitive set.
The cycle is structurally stable within the class of symmetric vector fields. It
contains a two-dimensional connection that persists as a transverse intersection of
invariant surfaces under symmetry-breaking perturbations.



584 A.A.P. Rodrigues

Σ
Fig. 4 Heteroclinic cycle studied in [69], involving a saddle-focus and a saddle (non-focus).
Although Tresser did not present explicit examples, he made more precise some of Shilnikov’s
conclusions and generalized Shilnikov’s results

Compact set

Σ
Fig. 5 Bykov cycle reported in [55]: heteroclinic cycle associated to two saddle-foci of different
Morse indices, in which the one-dimensional invariant manifolds coincide and the two-dimensional
invariant manifolds intersect transversely. There exists an increasing chain of suspended uniformly
hyperbolic compact sets topologically conjugate to a full shift over a finite number of symbols,
which accumulates on the cycle

Based on [37], by breaking the symmetry in a two-parameter family, the authors
of [55] proved the existence of a wide range of dynamical behavior near the cycle: an
attracting periodic trajectory; homoclinic orbits; heteroclinic connections that turn n
times around the original cycle; suspended horseshoes and cascades of bifurcations
of periodic trajectories near an unstable homoclinic cycle [38]. The coexistence of
linked homoclinic orbits at the two saddle-foci has codimension 2 and takes place
arbitrarily close to the cycle. Any invariant compact set in a section ˙ transverse
to the cycle, far from the invariant manifolds, is uniformly hyperbolic (for the first
return map) [4]—see Fig. 5. This result is consistent with [9, Proposition 3.9].
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Suggested by A. J. Homburg, Rodrigues [53] also proved that near the cycle, the
shift dynamics does not trap most trajectories in the neighborhood of the network.

The example presented in [55] has an interesting relation with the works of [25,
26] about homoclinic cycles and T-points. The latter authors studied the existence of
multiround heteroclinic cycles in a two-dimensional parameter diagram and found
a logarithmic spiral of homoclinic cycles and more complicated Bykov cycles. In
[26], the authors do not break the one-dimensional heteroclinic connection.

3.4.3 A Cycle Involving a Saddle-Focus and a Periodic Solution

Labarca and Pacífico [36] constructed a special case of robust non-hyperbolic flow
whose first return map to a cross section resembles the Smale horseshoe map: the
authors call it a singular horseshoe. It has been introduced as a model for stable non
hyperbolic flows in the context of manifolds with boundary—see Fig. 6. In higher
dimension than 3, the authors of [17] explored the dynamics near a heteroclinic
network and showed that some cycles are preferred (under some conditions on the
parameters). Some singular horseshoes could also coexist near the network.

We finish this section by noticing that the examples constructed in [3, 5, 55] are
restrictions of symmetric polynomial vector fields in R4 and possess heteroclinic
networks exhibiting heteroclinic switching [4, 5]. A simple polynomial form makes
computations easier and allows the authors to prove the transverse intersection of
two-dimensional invariant manifolds. All these heteroclinic networks are robust
under any perturbation that does not break the symmetry of the system.

c

p

boundary

Σ

Fig. 6 A singular cycle and a singular horseshoe reported in [36]: the first return map for a singular
horseshoe maps wedge-shaped regions to vertical strips, roughly contracting horizontal directions
and expanding vertical directions (depicted here in a two-dimensional section ˙)
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4 Wild Sets: Quasi-Stochastic Attractors

Like E. Lorenz, Hénon [32] provided computational arguments suggesting the
existence of an attractor for a two-parameter family of quadratic maps of the plane—
see details in [18]. Numerically, Hénon observed three important properties:

• the existence of folds,
• expansion along lines in the attractor and
• a fractal structure in a transversal direction.

After these numerical findings, the challenge was to provide a formal proof for the
existence of a chaotic attractor with some “degree” of persistence.

4.1 Wild Attractors

First of all, let us define a wild attractor according to [62]. Suppose that the flow of
a ODE possesses an attracting region embracing a hyperbolic (basic or not) set in
which the stable and unstable manifolds are tangent. If it is so, such a hyperbolic set
is called wild [46, 47].

By the last part of the seventies and going into the eighties, there were a series of
very intriguing results that gave rise to new insights on how dynamics could develop
in the future. Firstly, there was the work by Hénon [32], proposing a new kind of
attractor. Following that, there was the work by Coullet and Tresser [20], concerning
period doubling bifurcations for quadratic families of interval maps. The latter work
forms part of a contribution that:

: : : sparkles a much more robust development than before.

Jacob Palis [49], 2005

The paper [32] has been a key to the remarkable work by Benedicks and Carleson
[14] showing the existence of a probability persistent Hénon-like attractor, for
some parameters. Mora and Viana [44] showed that Hénon-like attractors occur
in the unfolding of quadratic homoclinic tangencies associated to dissipative fixed
or periodic hyperbolic points. This result has been extended to higher dimensions,
when the unstable manifold of the associated fixed or periodic point has dimension
one (in the sectionally dissipative case). The suspension of this kind of sets is what
Gonchenko [28, 29] calls quasi-stochastic attractors.

The term quasi-stochastic attractor denotes the limiting set enclosing periodic
solutions of different Morse indices and structurally unstable homoclinic cycles,
which may not be transitive. These attractors have not been sufficiently studied,
particularly in the case where the dimension of the phase space is greater than 3.
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4.2 Examples

Until a few years ago, Lorenz and hyperbolic attractors were the only ones that
were classified as “genuine” attractors, which do not allow the appearance of
periodic sinks under small perturbations. In [71], Turaev and Shilnikov provided a
description of a wild hyperbolic spiral attractor that must be regarded as an attractor
with irremovable sinks. There are not many explicit examples of this kind of sets.
Recently, the authors of [39] found a mechanism to construct quasi-stochastic
attractors—details in [51, Chapter 5].

In the context of Bykov cycles (see definition above), there are two different
possibilities for the geometry of the flow around the cycle, depending on the
direction trajectories turn around the heteroclinic connection of the one-dimensional
invariant manifolds. In [3, 5, 37, 38, 53], the authors assumed (sometimes implicitly)
that in the neighborhood of the two saddle-foci trajectories wind in the same
direction around a heteroclinic connection.

In [39], the authors exhibit an example of a Bykov cycle where the different
orientation of the flow around the one-dimensional manifolds has profound effects
on the dynamics near the cycle; moreover, the authors of [39] proved that this
phenomenon implies lack of uniform hyperbolicity near the cycle (for the first return
map)—see Fig. 7. They found a condition defining an open subset in the space of
parameters that determine the linear part of the vector field at the equilibria, inside
which non-transverse intersections of the two-dimensional invariant manifolds of
the two equilibria are dense. Such tangencies have been recognised as a mechanism

Ta
ngency

wild 
attractors

Σ

Fig. 7 Bykov cycle reported in [39]: heteroclinic cycle associated to two saddle-foci of different
Morse indices, in which the one-dimensional invariant manifolds coincide and the two-dimensional
invariant manifolds intersect transversely. For a full Lebesgue measure set of parameters that
determine the linear part of the vector field at the equilibria, the authors found the coexistence of
tangencies and transverse intersections of the two-dimensional invariant manifolds of the saddle-
foci
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for instability and lack of hyperbolicity in surface diffeomorphisms. Tangencies of
invariant manifolds are associated to Newhouse phenomena: bifurcations leading
to the birth of infinitely many asymptotically stable/unstable periodic solutions
[46, 47].

The features of the invariant set constructed in [39, Section 6] fit in the properties
of the quasi-stochastic attractors studied in [28]. The heteroclinic tangencies give
rise to attracting periodic solutions which coexist with a basic set; the basins of
attraction of some sinks lie in the gaps of the hyperbolic basic set. The transitive
non-isolated set surrounds periodic solutions of different Morse indices, in sharp
contrast to what is expected of attractors that are either uniformly hyperbolic or
Lorenz-like. Hyperbolic sets and a countable set of stable solutions coexist in a set
whose properties are far from being completely understood.

In this context, Shilnikov finishes the paper [62] with the opinion that:

one should refrain from the fruitless ideology of complete description and turn to the study
of some special but typical properties of the system.

L.P. Shilnikov [62], 1997

Finding “typical” properties will surely depend on the nature of the problem.

5 Final Remarks

In this survey, three types of chaotic sets have been identified: hyperbolic, Lorenz-
type and quasi-attractors. Hyperbolic attractors are the limit sets of Smale’s Axiom
A systems and are structurally stable. Lorenz-type attractors are robustly transitive
but are not structurally stable. Both types of attractors are stochastic in the sense
that they have a mixing invariant measure. Quasi-stochastic attractors have periodic
solutions of different Morse indices, where hyperbolic horseshoes and a countable
set of Lyapunov-stable solutions may coexist.

In general, it is difficult to find explicit examples for which one can prove that the
above attractors are present. Examples with simple polynomial forms of low degree
are natural in symmetric contexts which implies the existence of flow-invariant
submanifolds on which it is easier to find “fragile” homo/heteroclinic connections.
Based on the vast catalog of exotic phenomena associated with heteroclinic cycles,
we referred some examples of equivariant differential equations whose flows exhibit
these structures and we characterized their non-wandering sets.

The theory of non-hyperbolic sets, even in dimension 3, is far from being
understood. The study of quasi-stochastic attractors is almost untouched. We hope
that this survey with the state of the art on the theory of hyperbolic and pseudo-
hyperbolic attractors could be a starting point for a better understanding of the
taxonomy of these sets.
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Dengue in Madeira Island

Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F.M. Torres,
Ana Clara Silva, Carla Sousa, and Cláudia Conceição

Abstract Dengue is a vector-borne disease and 40 % of world population is at
risk. Dengue transcends international borders and can be found in tropical and
subtropical regions around the world, predominantly in urban and semi-urban
areas. A model for dengue disease transmission, composed by mutually-exclusive
compartments representing the human and vector dynamics, is presented in this
study. The data is from Madeira, a Portuguese island, where an unprecedented
outbreak was detected on October 2012. The aim of this work is to simulate the
repercussions of the control measures in the fight of the disease.

1 Introduction

During the last decades, the global prevalence of dengue increased considerably.
Madeira’s dengue outbreak of 2012 is the first epidemics in Europe since the
one recorded in Greece in 1928 [16]. Local transmission was also reported, for
the first time, in France and Croatia in 2010 [15, 20] and the threat of possible
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outbreaks of dengue fever in Europe is increasing. According to a recent study
[3], 390 million dengue infections occur per year worldwide, of which 96 million
with clinical symptoms. Methods considered by authorities for disease prevention
include educational and vaccination campaigns, preventive drugs administration and
surveillance programs.

Mathematical modeling plays a fundamental role in the study of the evolution of
infectious diseases [1, 33, 36]. When formulating a model for a particular disease, a
trade-off between simple and complex models is always present. The former, omit
several details and are generally used for short-term and specific situations, but have
the disadvantage of possibly being naive and unrealistic. The complex models have
more details and are more realistic, but are generally more difficult to solve and
analyze or may contain parameters whose estimates cannot be obtained [8]. Here
we are interested in a dengue model defined by a system of ordinary differential
equations, which enables the evaluation of the infectious disease transmission
patterns.

The text is organized as follows. Section 2 presents some details about dengue,
such as disease symptoms and vector transmission issues. The outbreak on Madeira
island and measures to fight against the epidemics are described in Sect. 3. In
Sect. 4 the mathematical model for the interaction between humans and mosquitoes
is formulated, while numerical experiments using distinct levels of control are
presented in Sect. 5. We end with Sect. 6 of conclusions and ideas for future work.

2 Dengue and the Aedes Mosquito

Dengue is a vector-borne disease transmitted from an infected human to an Aedes
mosquito, commonly Aedes aegypti or Aedes albopictus, during a female blood-
meal [4]. Then, the infectious mosquito, that needs regular meals of blood to
mature their eggs, bites a potential healthy human and transmits the disease, thus
completing the extrinsic cycle of the virus. Four dengue serotypes are known,
designated as DEN-1, 2, 3 and 4, which cause a wide spectrum of human disease,
from asymptomatic cases to classic dengue fever (DF) and more severe cases,
known as dengue hemorrhagic fever (DHF). Symptoms include fever, headache,
nausea, vomiting, rash, and pain in the eyes, joints, and muscles. Symptoms may
appear up to two weeks after the bite of an infected mosquito and usually last for
one week. In severe cases, symptoms may include intense stomach pain, repeated
vomiting, and bleeding from the nose or gums and can lead to death. Recovery
from infection by one virus provides lifelong immunity against that virus but only
confers partial and transient protection against subsequent infection by the other
three serotypes. There is good evidence that a sequential infection increases the risk
of developing DHF [39].

Unfortunately, there is no specific treatment for dengue. Activities, such as triage
and management, are critical in determining the clinical outcome of dengue. A
rapid and efficient front-line response not only reduces the number of unnecessary
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hospital admissions but also saves lives. Although there is no effective and safe
vaccine for dengue, a number of candidates are undergoing various phases of clinical
trials [40]. With four closely related serotypes that can cause the disease, there is a
need for an effective vaccine that would immunize against all four types; if not, a
secondary infection could, theoretically, lead to a DHF case. Another difficulty in
the vaccine production is that there is a limited understanding of how the disease
typically behaves and how the virus interacts with the immune system. Research to
develop a vaccine is ongoing and the incentives to study the mechanism of protective
immunity are gaining more support, now that the number of outbreaks around the
world is increasing [6]. Several mathematical models, including a few taking into
account vaccination and optimal control, have been proposed in the literature: see
[27–31] and references therein.

The life cycle of the mosquito has four distinct stages: egg, larva, pupa and adult.
The first three stages take place in water, whilst air is the medium for the adult
stage. Aedes females have a peculiar oviposition behavior: they do not lay all the
eggs of an oviposition at once, in the same breeding site, but rather release them
in different places, thus increasing the probability of successful births [23, 35]. In
urban areas, Aedes aegypti breed on water collections in artificial containers such
as cans, plastic cups, used tires, broken bottles and flower pots. With increasing
urbanization and crowded cities, environmental conditions foster the spread of the
disease that, even in the absence of fatal forms, breed significant economic and
social costs (absenteeism, immobilization, debilitation and medication) [7].

It is very difficult to control or eliminate Aedes mosquitoes because they are
highly resilient, quickly adapting to changes in the environment and they have the
ability to rapidly bounce back to initial numbers after disturbances resulting from
natural phenomena (e.g., droughts) or human interventions (e.g., control measures).
We can safely expect that transmission thresholds will vary depending on a range
of factors. Reduction of vector populations, both adult mosquitoes and in immature
states, is currently the only way to prevent dengue.

3 Madeira’s Dengue Outbreak

An outbreak of dengue fever, that lasted about 21 weeks between early October 2012
and late February 2013, occurred in Madeira, a Portuguese island, whose capital is
Funchal. As March 12th, 2013, 2,168 probable cases of dengue fever have been
reported, of which 1,084 were laboratory confirmed. All reported cases refer to the
resident population of the island and no deaths or severe cases were reported. On
the same day, according to the data available, the outbreak was considered finished
by the Portuguese Health Authorities, since there was no autochthonous cases in the
island [9]. The notified dengue fever cases in Madeira, by week, are in Fig. 1. Note
that the number of confirmed dengue cases is lower than the notified ones.

In Fig. 2 it is possible to see the cumulative incidence of dengue cases along the
island, by parish. Santa Luzia parish is the one that recorded the highest proportion
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Fig. 1 Notified dengue fever cases in Madeira, by week, from October 2012 to February 2013
(Source: Instituto de Administração da Saúde e Assuntos Sociais, Região Autónoma da Madeira)

Fig. 2 Cumulative incidence of dengue in Madeira, by parish, from October 2012 to February
2013 (Source: Instituto de Administração da Saúde e Assuntos Sociais, Região Autónoma da
Madeira)
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of patients. As the mosquito lives mainly in urban areas with high human population
density, and the vast majority of human cases were observed in this civil parish of
the Funchal council, our study is constrained to this area.

The mosquito Aedes aegypt was detected in Madeira, for the first time, in
2005. The National Institute of Health Doutor Ricardo Jorge (INSA) performs
reference laboratory diagnosis of dengue in Portugal. INSA conducted confirmatory
laboratory diagnosis and identified the presence of DEN-1 virus in human samples
[19]. Molecular analyses reported that the virus in Madeira island could have origin
in Brazil or Venezuela, where the virus presents similar features and with whom
there are intensive movements of trade and people [19].

After the acknowledgement of the presence of the dengue mosquito in Madeira,
local Health authorities implemented several strategies to control this invasive
specie of mosquitoes. However, the results showed small effects. Aedes aegypti in
Madeira present a high resistance level to DDT, permethrin and deltamethrinm, the
common tools allowed by the World Health Organization (WHO) [34]. Therefore,
local measures changed to educational campaigns and entomological surveillance,
to monitor the vector spread using traps, both for eggs and adult forms. Educational
campaigns appealed the population to apply repellent and wear large clothes to avoid
mosquito bites. Moreover, all recipients that could serve to breed the mosquito, like
water collections in artificial containers (e.g., cans, plastic cups, used tires, broken
bottles and flower pots), were asked to be removed or covered. Media-based tools
were used to inform the population. These included newspapers, TV programs, TV
spots, radio programs, radio spots, flyers, internet sites, announcements and specific
talks in public places. A medical appointment dedicated to the dengue disease was
also implemented in a health unit in Funchal, and a program for the monitoring
of traps implemented. The number of eggs per trap, dispersedly placed along the
island, with emphasis on the southern slope, were counted in order to understand
their spatial distribution. Weekly entomological reports of Aedes aegypti in Madeira
island were, and still are, broadcasted to sectorial partners. The application of
insecticide was only applied in strategic places, such as the central hospital, the
health unit dedicated to the attendance of dengue cases and a school identified as a
transmission area [37].

4 The Mathematical Model

Taking into account the model presented in [10, 11] and the considerations of [25,
26], a temporal mathematical model to study Madeira’s dengue outbreak is here
proposed. It includes three epidemiological states for humans:

Sh.t/—susceptible (individuals who can contract the disease);
Ih.t/—infected (individuals who can transmit the disease);
Rh.t/—resistant (individuals who have been infected and have recovered).
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These compartments are mutually-exclusive. There are three other state variables,
related to the female mosquitoes (male mosquitos are not considered because they
do not bite humans and consequently do not influence the dynamics of the disease):

Am.t/—aquatic phase (includes egg, larva and pupa stages);
Sm.t/—susceptible (mosquitoes that can contract the disease);
Im.t/—infected (mosquitoes that can transmit the disease).

In order to make a trade-off between simplicity and reality of the epidemiological
model, some assumptions are considered:

• There is no vertical transmission, i.e., an infected mosquito cannot transmit the
disease to their eggs;

• Total human population Nh is constant: Sh.t/C Ih.t/C Rh.t/ D Nh at any time t;
• The population is homogeneous, which means that every individual of a com-

partment is homogeneously mixed with the other individuals;
• Immigration and emigration are not considered during the period under study;
• Homogeneity between host and vector populations, that is, each vector has an

equal probability to bite any host;
• Humans and mosquitoes are assumed to be born susceptible.

To analyze the disease evolution, two control measures are considered in the model:

cm.t/—proportion of insecticide (adulticide), 0 � cm.t/ � 1;
1� ˛.t/—proportion of ecological control, 0 < ˛.t/ � 1.

The application of adulticides is the most common control measure. However, its
efficacy is often constrained by the difficulty in achieving sufficiently high coverage
of resting surfaces and the insecticide resistance by the mosquito. Besides, the
long term use of adulticide comports several risks: it can affect other species, it
is linked to numerous adverse health effects, including the worsening of asthma
and respiratory problems. The purpose of ecological control, that is, educational
campaigns, is to reduce the number of larval habitat areas available to mosquitoes.
The mosquitoes are most easily controlled by treating, cleaning and/or emptying
containers that hold water, since the eggs of the specie are laid in water-holding
containers. The ecological control must be done by both public health officials
and residents in the affected areas. The participation of the entire population in
removing still water from domestic recipients and eliminating possible breeding
sites is essential [40].

Our dengue epidemic model makes use of the parameters described in Table 1
and consists of the system of differential equations

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

dSh.t/

dt
D �hNh �

�
Bˇmh

Im.t/

Nh
C �h

�
Sh.t/

dIh.t/

dt
D Bˇmh

Im.t/

Nh
Sh.t/ � .�h C �h/Ih.t/

dRh.t/

dt
D �hIh.t/ � �hRh.t/

(1)
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Table 1 Parameters in the epidemiological model (1)–(2)

Range of values Value

Parameter Description in literature used Source

Nh Total population 112,000 [18]

B Average daily biting (per day) 1/3 [12]

ˇmh Transmission probability from Im (per
bite)

[0.25, 0.33] 0.25 [12]

ˇhm Transmission probability from Ih (per bite) [0.25, 0.33] 0.25 [12]

1=�h Average lifespan of humans (in days) 1=79� 365 [18]

1=�h Average viremic period (in days) [1/15, 1/4] 1/7 [5]

1=�m Average lifespan of adult mosquitoes (in
days)

[1/45, 1/8] 1/15 [14, 17, 22]

' Number of eggs at each deposit per capita
(per day)

6 [32]

1=�A Natural mortality of larvae (per day) 0.2363 [2]

�A Maturation rate from larvae to adult (per
day)

[1/11, 1/7] 1/9 [24]

k Number of larvae per human 0.9 [13, 38]

coupled with the nonlinear control system

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

dAm.t/

dt
D '

�
1 � Am.t/

˛.t/kNh

�
.Sm.t/C Im.t// � .�A C �A/Am.t/

dSm.t/

dt
D �AAm.t/ �

�
Bˇhm

Ih.t/

Nh
C �m C cm.t/

�
Sm.t/

dIm.t/

dt
D Bˇhm

Ih.t/

Nh
Sm.t/ � .�m C cm.t// Im.t/

(2)

subject to the initial conditions

Sh.0/ D Sh0; Ih.0/ D Ih0; Rh.0/ D Rh0;

Am.0/ D Am0; Sm.0/ D Sm0; Im.0/ D Im0:

Note that the differential equation related to the aquatic phase does not involve the
control variable cm, because the adulticide does not produce effects in this stage of
mosquito life. Figure 3 shows a scheme of the model.

In the next section we study the reality of Madeira’s outbreak, using the most
reliable information about the mosquito and the infected people. For a mathematical
analysis of the model, in particular the analysis of equilibrium points and the basic
reproduction number, we refer the reader to [28].
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Fig. 3 Epidemiological model SIR (1)C ASI (2)

5 Numerical Experiments

In this section, numerical results are presented. Our aim is to show a simulation of
the possible evolution of the dengue outbreak occurred on Madeira island, using
parameterized and validated epidemiological and entomological data. The human
data was adapted to the Madeira region through official data [9, 18]. Despite the
research efforts, some information required for the model parametrization still lacks,
especially entomological. This is due to the difficulty of obtaining it by laboratory
assays. Even when experiments are possible, sometimes the mosquito behavior
presents distinct features when in a controlled environment or in nature [21]. For
this reason, a range of values for mosquito parameters were analyzed (see Table 1
for details). The initial values for the system of differential equations (1)–(2) are:

Sh.0/ D 111991; Ih.0/ D 9; Rh.0/ D 0;

Am.0/ D 111900� 6; Sm.0/ D 111900� 3; Im.0/ D 1000:

The software used in the simulations was Matlab, with the routine ode45. This
function implements a Runge–Kutta method with a variable time step for efficient
computation. Figure 4 shows different simulations for educational campaigns,
without application of insecticide. This was the major control measure to fight the
disease. It is possible to see that educational campaigns have an important role in
the decrease of infected human and the best curve that fits the real data has an
implementation of ecological control between 50% and 75%. Table 2 presents
the total number of infected human individuals for the simulations done. Without
any control measure, about 12 % of all population of Funchal would be infected.
A common sense conclusion is that when we increase the proportion of control
measures, the number of infected decreases considerably. In the same manner, the
application of even small quantities of insecticide, seems to increase the effects of
ecological control (compare simulations C and E). The explanation for this lies in
the fact that, when an outbreak occurs, the application of an efficient adulticide
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Fig. 4 Number of infected individuals without insecticide usage (i.e., cm D 0) but with distinct
levels of educational campaigns (continuous line) versus observed real data (dotted line)

Table 2 Total number of infected individuals

Simulations Control values Total number of infected

A No control, i.e. 1� ˛ D cm 
 0 13,677

B 1� ˛ 
 0:25 and cm 
 0 7,719

C 1� ˛ 
 0:50 and cm 
 0 4,827

D 1� ˛ 
 0:75 and cm 
 0 3,388

E 1� ˛ 
 0:5 and cm 
 0:01 3,073

F 1� ˛ 
 0:5 and cm 
 0:02 2,210

G 1� ˛ 
 0:5 and cm 
 0:05 1,179

Real data 2,168

will immediately affect the transmission rate of the virus. Educational campaigns,
even being a good strategy for the ecological control of the mosquito, imply time
to promote the necessary motivation for the people to react to the disease. The
graphs with education campaigns at 50 % and a variation of insecticide application
are shown in Fig. 5. The curves that better illustrate the peak of the epidemics use
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Fig. 5 Number of infected individuals for a constant educational campaign of 1 � ˛ 
 0:5 and
distinct levels of insecticide (continuous line) versus observed real data (dotted line)

between 0 % and 1 % of insecticide. However, when compared to the table of total
infected cases (Table 2), the nearest simulation is F (˛ D 50% and cm D 2%).
In fact, this difference can be explained by the fact that the simulation is made by
comparing the total infected cases with the notified ones. It is well known by Health
Authorities that, besides the asymptomatic cases, some patients do not go to the
Health Centers: not only because they have light symptoms but also because their
relatives or neighbors had already had dengue and they think they can handle the
situation by themselves, at home.

Remark 1 A simple tuning of the control parameters ˛ and cm, by using some
optimization technique like least square or curve fitting, does not seem appropriate
here. Using the least square method to choose the best combination of the two
controls, we obtained the proportion of adulticide cm D 0:0280 and the value for
educational campaigns 1�˛ D 0. This last value implies that the ecological control
has no influence whatsoever in the system, which is not in agreement with the case
under study.
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6 Conclusions

One of the most important issues in epidemiology is to improve control strategies
with the final goal to reduce or even eradicate a disease. In this paper a dengue model
based on two populations, humans and mosquitoes, with educational and insec-
ticide control measures, has been presented. Our study provides some important
epidemiological insights about the impact of vector control measures into dengue in
Madeira island. The work was done with collaboration of the Instituto de Higiene e
Medicina Tropical, which provided us with valuable information about the disease
characteristics and entomologic aspects, and Instituto de Administração da Saúde
e Assuntos Sociais from Madeira, which gave us specific information about the
outbreak, namely real numbers of the disease, affected areas and what kind of
control was done in the island. Such cooperation and discussions with entomologists
and doctors, was crucial to tune the parameter values of the mathematical model.
Our results show how dengue burden can decrease with the help of vector control
measures such as insecticide and ecological control. We concluded that small
quantities of insecticide have a considerable impact in the short time intervention
when an outbreak occurs. The application of educational campaigns decreases the
disease burden and can act as a long time prevention. As future work, we intend to
add an optimal control analysis to decide whether a given combination of control
values is the best. Such analysis will be important for policy makers to know the
optimal combination of the control strategies.
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The Number of Saturated Numerical
Semigroups with a Determinate Genus

J.C. Rosales, M.B. Branco, and D. Torrão

Abstract In this work we describe the saturated numerical semigroups, and
characterize the SAT system of generators for them. We see how we can arrange
them in a tree rooted in N and describe the sons of any vertex of this tree. Finally,
we present an algorithm for computing the set of saturated numerical semigroups of
a given genus

1 Introduction

Let Z and N be the set of integers and nonnegative integers, respectively. A
numerical semigroup is a subset S of N that is closed under addition, 0 2 S and
generates Z as a group. This last condition is equivalent to gcd(S) = 1 (where gcd
denotes the greatest common divisor). It is well known that if S is a numerical
semigroup then NnS has finitely many elements (see for instance [6]). The greatest
integer not belonging to S is called Frobenius number of S, usually denoted F(S),
and the cardinality of NnS is called the genus of S, denoted by g(S). Moreover,
S admits a unique minimal system of generators {n1 < � � � < np} (see [1, 3, 6]).
The integers n1 and p are called multiplicity and embedding dimension of S, and
denoted by m(S) and �(S), respectively. For A
 N, denote by hAi the submonoid of
N generated by A, that is, hAi D f�1x1 C � � � C �nxn j n 2 Nnf0g; x1; : : : ; xn 2 A;
and �1; : : : ; �n 2 Ng, which is a numerical semigroup if and only if gdc(A)=1.
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The goal of this work is to describe the saturated numerical semigroups and give
an algorithmic method that computes the set of all saturated numerical semigroups
with a given genus g.

2 Saturated Numerical Semigroups

In this section we start giving a characterization of the subsets of N that are saturated
numerical semigroups.

A numerical semigroup S is saturated if the following condition holds: if s,
s1,: : :, sr 2 S are such that si � s for all i 2 {1,: : :,r} and z1; : : : ; zr 2 Z are such that
z1s1 C � � � C zrsr � 0, then s C z1s1 C � � � C zrsr 2 S.
For A 
 N and a 2 A, set

dA.a/ D gcdfx 2 Ajx � ag

The next results are known and can be founded in [5], as their proofs and they
give some important properties of the saturated numerical semigroups.

Lemma 1 Let S be a saturated numerical semigroup and let s 2 S. Then s + dS(s)
2 S.

Lemma 2 Let A be a nonempty subset of N such that gcd.A/ D 1 and a C dA.a/ 2
A for all a 2 A. Then a C kdA.a/ 2 A for all k 2 N.

Lemma 3 Let A a nonempty subset of N such that gcd.A/ D 1 and a C dA.a/ 2 A
for all a2 A. Then A [ f0g is a numerical semigroup.

From the previous results we can obtain the following theorem:

Theorem 1 Let A be a nonempty subset of N such that gcd.A/ D 1. The following
conditions are equivalent:

(1) A is a saturated numerical semigroup.
(2) a C dA.a/ 2 A for all a 2 A.
(3) a C kdA.a/ 2 A for all a 2 A and k 2 N .

As we saw before, if S is a numerical semigroup, then NnS has finitely many
elements. This implies that the set of numerical semigroups containing S is also
finite. Let X be a subset of N such that gcd.X/ D 1, then every saturated numerical
semigroup containing X also contains hXi, and thus, there are finitely many of them.
We call the intersection of all saturated numerical semigroups containing X the
saturated closure of X, and denote it by Sat(X). Observe that Sat(X) = Sat(hXi), and,
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as consequence, we have that Sat(X) is the smallest saturated semigroup containing
X. The following result gives us the guarantee that intersecting saturated numerical
semigroups we obtain again a saturated numerical semigroup.

Proposition 1 Let S1 and S2 be two saturated numerical semigroups. Then S1 \ S2
is a saturated numerical semigroup.

If S is a saturated numerical semigroup and X is a subset of N such that gcd.X/ D
1 and Sat.X/ D S, then we will say that X is a SAT system of generators of S. We
say that X is a minimal SAT system of generators if in addition no proper subset of X
is a SAT system of generators of S. We already know that every numerical semigroup
is finitely generated (as a semigroup). Hence, for a given numerical semigroup
S, there exists {n1; : : : ; npg � N such that S D hn1; : : : ; npi. If S is a saturated
numerical semigroup, then, it is obvious that Sat.n1; : : : ; np/ D Sat(S/ D S, and
thus every saturated numerical semigroup admits a finite SAT system of generators.

The arrow in A D fa; � � � ; b;!g, with a and b integers, is used to express that
the elements b C k are also in A for all k 2 N.

Next, we give a formula that allows us to compute the elements of a saturated
numerical semigroup.

Theorem 2 Let n1 < n2 < � � � < np be positive integers such that
gcd.n1; : : : ; np/ D 1. For every i 2 f1; : : : ; pg, set di D gcd.n1; : : : ; ni/ and
for all j 2 f1; : : : ; p � 1g define kj D maxfk 2 N j nj C kdj < njC1g.
Then Sat.n1; : : : ; np/ D f0; n1; n1 C d1; : : : ; n1 C k1d1; n2; n2 C d2; : : : n2 C
k2d2; : : : ; np�1; np�1 C dp�1; : : : ; np�1 C kp�1dp�1; np; np C 1;!g.

Example 1 Let fn1; n2; n3g D f4; 6; 13g. Then d1 D 4; d2 D 2; d3 D 1; k1 D 0;

k2 D 3. Hence
Sat (4,6,13) = {0,4,6,8,10,12,13,!}.

Moreover, it’s easy to prove that every saturated numerical semigroup has a
unique minimal SAT-system of generators (see again [5]).

Lemma 4 Let S be a saturated numerical semigroup. Then

fs1; : : : ; srg D fs 2 Snf0gjdS.s/ 6D dS.s
0/for alls0 < s; s0 2 Sg

is the unique minimal SAT system of generators of S.

Example 2 Let S be the saturated numerical semigroup

S D f0; 4; 7;!g

It follows that dS(4) = 4, dS(7) = 1 = dS(7 + n), for all n 2 N. By the previous
theorem the minimal SAT system of generators is {4,7}.



610 J.C. Rosales et al.

3 The Tree of Saturated Numerical Semigroups

A graph G is a pair .V;E/, where V is a nonempty set whose elements are called
vertices, and E is a subset of f.v;w/ 2 V � Vjv ¤ wg. The elements of E are
called the edges of G. A path of length n connecting the vertices x and y of G is a
sequence of distinct edges of the form .v0; v1/; .v1; v2/; : : : ; .vn�1; vn/ with v0 D x
and vn D y. A graph G is a tree if there exists a vertex r (known as the root of G
such that for every other x of G, there exists a unique path connecting x and r. If
.x; y/ is an edge of a tree, then we say that x is a son of y.

The next result also appears in [5, Proposition 17].

Lemma 5 Let S be a saturated numerical semigroup different from N. Then S [
fF.S/g is also a saturated numerical semigroup.

Now, we are able to construct recursively the tree containing the set L of all
saturated numerical semigroups. In fact, we define the graph G.L / in the following
way: the set of vertices of G.L / is L and .T; S/ 2 L � L is an edge of G.L / if
and only if T [ fF.T/g D S.

Lemma 6 The graph G.L / is a tree with a root equal to N. Furthermore, the sons
of a vertex S 2 L are Snfx1g; : : : ; Snfxrg where x1; : : : ; xr are the elements of the
minimal SAT-system of generators of S which are greater than F.S/.

We can deduce from Lemma 5, the following result.

Lemma 7 Let S be a numerical semigroup with minimal SAT-system of generators
A D fn1; : : : ; npg and let X D fni 2 Ajni > F.S/g. Then fnpg 
 X 
 fnp�1; npg.
Furthermore, np�1 2 X if and only if np�1 D np � 1.

Example 3
1) Let S D Sat.f3; 6; 11g/ D f0; 3; 6; 8; 10; 11;!g. Then 11 is the unique element

in the minimal SAT-system of generators of S greater than F(S). Hence S 2 L
has a unique son, that is, Snf11g.

2) Let S D Sat.f6; 18; 20; 21g/ D f0; 6; 12; 18; 20; 21;!g. Then 20 and 21 are the
elements in the minimal SAT-system of generators of S greater than F(S). Hence
the sons of S 2 L are Snf20g and Snf21g.

4 A Method for Computing the Set of All Saturated
Numerical Semigroups of a Given Genus

Our aim in this section os to describe the minimal SAT-system of generators of the
sons of a given saturated numerical semigroup from its minimal SAT-system.

Proposition 2 Let S be a saturated numerical semigroup with minimal SAT-system
of generators fn1; � � � ; npg and let dp�1 D gcdfn1; : : : ; np�1g. Then the minimal
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SAT-system of generators of Snfnpg is equal to:

1) fn1; : : : ; np�1; np C 2g if dp�1jnp C 1;
2) fn1; : : : ; np�1; np C 1g if gcdfdp�1; np C 1g D 1;
3) fn1; : : : ; np�1; np C 1; np C 2g in other cases.

Example 4
1) If S D Sat.f3; 6; 17g/ then Snf17g D Sat.f3; 6; 19g/.
2) If S D Sat.f3; 6; 15g/ then Snf15g D Sat.f3; 6; 16g/.
3) If S D Sat.f3; 6; 16g/ then Snf16g D Sat.f3; 6; 17; 18g/.

From Lemmas 6 and 7, we can deduce that, if S is a saturated numerical
semigroup with minimal SAT-system of generators fn1 < � � � < npg then Snfnpg
is always a son of S. Moreover, S has another son, that is Snfnp�1g if and only if
np�1 D np � 1.

Proposition 3 Let S be a saturated numerical semigroup with minimal SAT-system
of generators fn1; � � � ; npg such that np�1 D np � 1. Then the minimal SAT-system
of generators of Snfnp�1g is equal to:

a) fn1 C 1; n1 C 2g if p D 2;
b) if p � 3 and dp�2 D gcdfn1; : : : ; np�2g then:

b.1) fn1; : : : ; np�2; npg if gcdfdp�2; npg D 1;
b.2) fn1; : : : ; np�2; np; np C 1g if other cases;

Example 5
1) If S D Sat.f4; 5g/ then Snf4g D Sat.f5; 6g/.
2) If S D Sat.f5; 10; 11g/ then Snf10g D Sat.f5; 11g/.
3) If S D Sat.f6; 14; 15g/ then Snf14g D Sat.f6; 15; 16g/.

5 An Algorithm to Compute the Set of All Saturated
Numerical Semigroups of a Given Genus

In this section we describe an algorithm to compute all the elements in L (g),
that is the set of all saturated numerical semigroups with genus g. Clearly N D
Sat({1}) has a unique son, which is Sat({2,3}) = f0; 2;!g. If we know L (g � 1)
then we can compute L (g), simply computing all the sons of L (g � 1). For
that, we need to know dp�1, and, in some cases, dp�2 (see Propositions 2 and 3).
To avoid repeating some calculus, and improve the efficiency of the algorithm
we introduce the concept of ˛-representation of a saturated numerical semigroup.
Let S 6D N be a saturated numerical semigroup, an ˛-representation of S is
Œ.n1; n2; : : : ; np/; .x1; x2; : : : ; xp�1/� such that fn1; n2; : : : ; npg is the minimal SAT-
system of generators of S and xi D gcdfn1; : : : ; np�ig for all i 2 f1; : : : ; p �1g. Note
that x1 D gcdfn1; : : : ; np�1g D dp�1 and x2 D gcdfn1; : : : ; np�2g D dp�2.

As an immediate consequence of Proposition 2, we have the next result.
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Lemma 8 Let Œ.n1; : : : ; np/; .x1; : : : ; xp�1/� be an ˛-representation of a saturated
numerical semigroup S 6D N. Then the ˛-representation of .Snfnpg/ is equal to:

1) Œ.n1; : : : ; np�1; np C 2/; .x1; : : : ; xp�1/� if x1jnp C 1;
2) Œ.n1; : : : ; np�1; np C 1/; .x1; : : : ; xp�1/� if gcdfx1; np C 1g D 1;
3) Œ.n1; : : : ; np�1; np C 1; np C 2/; .gcdfx1; np C 1g; x1; : : : ; xp�1/� if other cases.

Example 6
1) If S D Sat.f3; 6; 17g/ then the ˛-representation of S is Œ.3; 6; 17/; .2; 3/�. Hence

the ˛-representation of Snf17g is Œ.3; 6; 19/; .2; 3/�.
2) If S D Sat.f3; 6; 15g/ then the ˛-representation of S is Œ.3; 6; 15/; .2; 3/�. Hence

the ˛-representation of Snf15g is Œ.3; 6; 16/; .2; 3/�.
3) If S D Sat.f3; 6; 16g/ then the ˛-representation of S is Œ.3; 6; 16/; .2; 3/�. Hence

the ˛-representation of Snf17g is Œ.3; 6; 17; 18/; .2; 3/�;

And from Proposition 3 we deduce the following result.

Lemma 9 Let Œ.n1; : : : ; np/; .x1; : : : ; xp�1/� be an ˛-representation of a saturated
numerical semigroup S 6D N such that np�1 D np � 1. Then the ˛-representation of
.Snfnp � 1g/ is equal to:

1) Œ.n1 C 1; n1 C 2/; .n1 C 1/� if p D 2;
2) Œ.n1; : : : ; np�2; np/; .x2; : : : ; xp�1/� if p � 3 and gcdfx2; npg D 1;
3) Œ.n1; : : : ; np�2; np; np C 1/; .gcdfx2; npg; x2; : : : ; xp�1/� if other cases.

Example 7
1) If S D Sat.f4; 5g/ then the ˛-representation of S is Œ.4; 5/; .4/�. Hence the ˛-

representation of Snf4g is Œ.5; 6/; .5/�.
2) If S D Sat.f5; 10; 11g/ then the ˛-representation of S is Œ.5; 10; 11/; .2; 5/�.

Hence the ˛-representation of Snf10g is Œ.5; 11/; .5/�.
3) If S D Sat.f6; 14; 15g/ then the ˛-representation of S is Œ.6; 14; 15/; .2; 6/�.

Hence the ˛-representation of Snf14g is Œ.6; 15; 16/; .3; 6/�;

Finally, we are able to give the announced algorithm which shows us how to
compute L (g).

Algorithm 1 Input: g a positive integer.
Output: L (g) (the set of all saturated numerical semigroups with genus g)

1) A D fŒ.2; 3/; .2/�g; i D 1;B D ;:
2) If i D g then return A.
3) For each Œ.n1; : : : ; np/; .x1; : : : ; xp�1/� 2 A do

3.1) If x1jnp C 1 then
B D B [ fŒ.n1; : : : ; np�1; np C 2/; .x1; : : : ; xp�1/�g and go to Step 3.4).

3.2) If gcdfx1; np C 1g D 1 then
B D B [ fŒ.n1; : : : ; np�1; np C 1/; .x1; : : : ; xp�1/�g and go to Step 3.4).

3.3) B D B [ fŒ.n1; : : : ; np�1; np C 1; np C 2/; .gcdfx1; np C 1g; x1; : : : ; xp�1/�g.
3.4) If np�1 6D np � 1 go to Step 4).
3.5) If p D 2 then B D B [ fŒ.n1 C 1; n1 C 2/; .n1 C 1/�g and go to Step 4).
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3.6) If gcdfx2; npg D 1 then
B D B [ fŒ.n1; : : : ; np�2; np/; .x2; : : : ; xp�1/�g and go to Step 4).

3.7) B D B [fŒ.n1; : : : ; np�2; np; np C1/; .gcdfx2; npg; x2; : : : ; xp�1/�g and go to
Step 3.4).

4) A D B; i D i C 1;B D ; and go to Step 2).

Example 8 Let us compute all saturated numerical semigroups with genus 10.
First, and using the previous Algorithm, we compute the ˛-representation of all

saturated numerical semigroup with genus less than 10 (denoted by Ai).

� A1 D fŒ.2; 3/; .2/�g;
� A2 D fŒ.2; 5/; .2/�; Œ.3; 4/; .3/�g;
� A3 D fŒ.2; 7/; .2/�; Œ.3; 5/; .3/�; Œ.4; 5/; .4/�g;
� A4 D fŒ.2; 9/; .2/�; Œ.3; 7/; .3/�; Œ.4; 6; 7/; .2; 4/�; Œ.5; 6/; .5/�g;
� A5 D fŒ.2; 11/; .2/�; Œ.3; 8/; .3/�; Œ.4; 6; 9/; .2; 4/�; Œ.4; 7/; .4/�; Œ.5; 7/; .5/�;
Œ.6; 7/; .6/�g;

� A6 D fŒ.2; 13/; .2/�; Œ.3; 10/; .3/�; Œ.4; 6; 11/; .2; 4/�; Œ.4; 9/; .4/�; Œ.5; 8/; .5/�;
Œ.6; 8; 9/; .2; 6/�; Œ.7; 8/; .7/�g;

� A7 D fŒ.2; 15/; .2/�; Œ.3; 11/; .3/�; Œ.4; 6; 13/; .2; 4/�; Œ.4; 10; 11/; .2; 4/�;
Œ.5; 9/; .5/�; Œ.6; 8; 11/; .2; 6/�; Œ.6; 9; 10/; .3; 6/�; Œ.7; 9/; .7/�; Œ.8; 9/; .8/�g;

� A8 D fŒ.2; 17/; .2/�; Œ.3; 13/; .3/�; Œ.4; 6; 15/; .2; 4/�; Œ.4; 10; 13/; .2; 4/�;
Œ.4; 11/; .4/�; Œ.5; 11/; .5/�; Œ.6; 8; 13/; .2; 6/�; Œ.6; 9; 11/; .3; 6/�; Œ.6; 10; 11/;

.2; 6/�; Œ.7; 10/; .7/�; Œ.8; 10; 11/; .2; 8/�; Œ.9; 10/; .9/�g;
� A9 D fŒ.2; 19/; .2/�; Œ.3; 14/; .3/�; Œ.4; 6; 17/; .2; 4/�; Œ.4; 10; 15/; .2; 4/�;
Œ.4; 13/; .4/�; Œ.5; 12/; .5/�; Œ.6; 8; 15/; .2; 6/�; Œ.6; 9; 13/; .3; 6/�; Œ.6; 10; 13/;

.2; 6/�; Œ.6; 11/; .6/�; Œ.7; 11/; .7/�; Œ.8; 10; 13/; .2; 8/�; Œ.8; 11/; .8/�; Œ.9; 11/; .9/�;

Œ.10; 11/; .10/�g.

And from the Ai we get the minimal SAT-system of generators of the set of
saturated numerical semigroups with genus 10.

ff2; 21g; f3; 16g; f4; 6; 19g; f4; 10; 17g; f4; 14; 15g; f5; 13g; f6; 8; 17g;
f6; 9; 14g; f6; 10; 15g; f6; 13g; f7; 12g; f8; 10; 15g; f8; 12; 13g; f9; 12; 13g;

f10; 12; 13g; f11; 12gg

which are the sons of elements in A9.

A procedure to compute the set of saturated numerical semigroups with a given
genus can be done by calculating first all the numerical semigroups with this genus
and then see which one of them are saturated. The problem is that even for small
genus, this set can be very large. With the method presented in this paper the
computation becomes much more efficient. The algorithm has been implemented
in GAP (see [2, 4]). Next we give some timings.
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For Genus 10,

gap> Length(SaturatedNumericalSemigroupsWithFixed
Genus(10));16

takes 0 ms, while computing the set of all saturated numerical semigroups with
genus and then filtering those that are saturated takes 62 ms.

gap> Length(Filtered(NumericalSemigroupsWithGenus
(10), IsSaturatedNumericalSemigroup)); 16

As for 15, we get also 0 ms for

gap> Length(SaturatedNumericalSemigroupsWithFixed
Genus(15)); 40

while it takes 1,154 ms for

gap> Length(Filtered(NumericalSemigroupsWithGenus
(15), IsSaturatedNumericalSemigroup)); 40

For 25, we still get 0 ms with

gap> Length(SaturatedNumericalSemigroupsWithFixed
Genus(25)); 130

while it takes 289,803 ms with

gap> Length(Filtered(NumericalSemigroupsWithGenus
(25), IsSaturatedNumericalSemigroup)); 130

For genus 30 the time with this algorithm is 16 ms while with the filtering was
not possible to calculate because it gets an error message: “Error, exceeded
the permitted memory”.

In the following table there are the results obtained for genus up to 150. For each
positive integer g we wrote the number of saturated numerical semigroups (ng) of
the given genus (g).
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Modern Forecasting of NOEM Models

Manuel Sánchez Sánchez

Abstract In this paper we estimate a small structural model, in order to forecast
the key macroeconomic variables of output growth and underlying inflation.
In contrast to models with purely statistical foundations, the Bayesian Vector
Autoregressive Dynamic Stochastic General Equilibrium (BVAR-DSGE) model,
uses the theoretical information of a DSGE model to offset insample overfitting. We
compare the forecast performance of BVAR-DSGE model with Minesota VAR and
independently estimates DSGE model. The open economy DSGE model of Lubik
and Schorfheide (2007) is implemented to provide prior information for the VAR.

1 Bayesian Vector Autoregression (BVAR)

The main difference with standard VAR models, lies in the fact that the model
parameters are treated as random variables, and prior probabilities are assigned to
them. We impose a prior distribution on a set of parameters that summarizes beliefs
or knowledge about these parameters prior to observing the data. Priors reduce the
sample variability in the parameter estimates by “shrinking” them toward a specific
point in the parameter space—forecasting accuracy—In many BVARs the priors
arise from statistics. The Minnesota prior shrinks the VAR parameters toward a unit
root process.

2 DSGE Model Like a Prior

The DSGE model parameters describe the preferences of agents (tastes), the pro-
duction function (technology), and other features of the economy. These parameters
are called “deep parameters”—parameters that do not vary with policy—Lucas [18]
critique implies that only models in which the parameters are deep—that is, models
in which the parameters do not vary with policy—are suited to evaluate the impact
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of policy changes. Therefore BVAR-DSGE approach devises a framework which
tries to imitate the forecasting accuracy of the BVAR(statistical) models, and
simultaneously be immune to the Lucas critique [18]. Using general equilibrium
models as priors—see, DeJong et al. [3]—means that the restrictions stemming from
economic theory are imposed loosely instead of rigidly.1 A key hyperparameter �
determines the weight attached to the theoretical DSGE model.

The approach to estimate the BVAR model has several steps:

2.1 Estimating the DSGE Model

The DSGE model is estimated using Bayesian methods. A fundamental result used
in Bayesian analysis is that the posterior distribution is proportional to the likelihood
function multiplied by the prior distribution—Bayes theorem:

P

�
�

Y

�
/ P.Y=�/P.�/ (1)

Where: Y represents observed data, �are the unknown parameters, P.�/are
generic density functions.

2.2 A VAR Approximation to the DSGE Model

The log-linearized DSGE model—see, e.g., Lubik and Schorfheide [16]—can be
written as a rational expectations (LRE) system of the form:


 0 .�/Xt D 
 1 .�/Xt�1 C 
 � .�/ �t C 
 �.�/�t (2)

The solution can be expressed in state-space form as:

Xt D A.�/Xt�1 C B.�/�t

Yt D C.�/Xt C D.�/�t

Where: Xt: state vector, �t: vector of structural shocks, � : vector of non-policy
parameters. The matrices A,B,C and D, are non-linear functions of the structural
parameters in the DSGE model.

1It allows incorporate subjective information about the parameters to be utilized in estimation
Fukac and Pagan [8]. For details in Bayesian methods and state-space form see, Geweke [11] and
Hamilton [12] respectively.
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It is necessary to have the eigenvalues of A � BD�1C to be strictly less than one
in modulus in order to have yt with a infinite order VAR representation given by2:

yt D
1X

jD1
C.A � BD�1C/j�1BD�1yt�j C D�t (3)

If the largest eigenvalue is not close to unity, a low order VAR is likely to be a
good approximation.3

2.3 Constructing a Prior for BVAR

We want to use a DSGE model to provide information about the parameters of the
VAR.

One way of doing this is to simulate data from the DSGE and to combine it
with the actual data when estimating VAR. However rather than literally simulating
the artificial data, we can use the Theoretical Moments of the DSGE model instead
of moments from simulated data, in order to avoid sampling variation. The prior
distribution of the BVAR parameters:

P

 
˚;
X

u

=�

!
D c�1 .�/

ˇ̌
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ˇ
X

u

ˇ̌
ˇ̌
ˇ

��TCnC1
2
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�1X
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.˝/

#)
(4)

Where:
˝ =

�

 �yy .�/ �˚ 0


 �xy .�/ � 
 �yx .�/ ˚ C˚
0


 �xx .�/ ˚
	

; 
 �yy,
 �xy , 
 �yx,
 �xx be

the theorist second-order moments of the variables in Yand X implied by the DSGE
model.4

2This is the “poor man’s invertibility condition” given in Fernandez-Villaverde et al. [7].
Previously, Wold [19] demonstrated that covariance-stationary processes have an infinite order
moving average (MA) representation.
3The rate at which the autoregressive coefficients converge to zero is determined by the largest
eigenvalue of A � BD�1C. If this eigenvalue is close to unity, a low order VAR is likely to be
a poor approximation to the infinite-order VAR implied by the DSGE model. If one or more of
the eigenvalues of A � BD�1C are exactly equal to one in modulus, yt does not have a VAR
representation, i.e, the autoregressive coefficients do not converge to zero as the number of lags tend
to infinity. Often, roots on the unit circle indicate that the observables have been overdifferenced.
4A VAR approximation of the DSGE model can be obtained from restriction functions that relate
the DSGE model parameters to the VAR parameters: ˚� .�/ D 
 ��1

xx .�/ 
 �

xy .�/,
P

�

u .�/ D

 �

yy .�/� 
 �

yx .�/ 

��1
xx .�/ 
 �

xy .�/.
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The role of the hyperparameter � is to determine the weight attached to
the theoretical DSGE model. We can then formulate the prior for the BVAR
parameters P.˚;

P
u =�/, as conjugate, Inverted Wishart–Normal form:

P
u =�

0IW;
˚=

P
u; �
0N

The joint prior density of both sets of parameters is then given by5:

P

 
˚;
X

u

; �

!
D P.˚;

X
u

=�/P.�/ (5)

2.4 Posterior Distribution

The posterior distribution of the BVAR parameters ˚and
P

u; P.˚;
P

u =Y; �/—
from which we will draw parameters when forecasting—Is obtained by combining
the prior with information from the data, namely the likelihood function. We assume
that the observable data vector yt follows a vector autoregressive process of order p:
Y D X˚ C U

The likelihood function of the VAR model can be expressed as:

L.Y=˚;
X

u
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(The likelihood function of the data is function of ˚ ,
P

u/

Following Bayes Rule, the posterior is proportional to the likelihood times the
Prior:

P

 
˚;
X

u

; =Y

!
/ L.Y=˚;

X
u

/P.˚;
X

u

=�/P.�/

Since DSGE model prior and the likelihood function are conjugate, it is straight
forward to show that the posterior distribution of ˚and

P
u is also Inverted

Wishart—Normal form.

5Our prior has hierarchical structure. We conduct a posterior predictive analysis in the spirit of
Gelman et al. [10].
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3 Optimal Mixture Model

The optimal mixture model, is the one associated with the value of�6: that
maximizes the marginal likelihood for the data, O�:

P .Y=�/ D
Z
˚;
P

u;�

P.Y=�;˚;
X

u

/P.�; ˚;Âă
X

u

=�/d.
X

u

; ˚; �/ (7)

The lowest value is 0, and in this case , the best representation for the data is the
unrestricted VAR; The highest � is 1, i.e, the data are better fitted by the DSGE
model. If O� is large, the theoretical model fits the data well, otherwise if O� tends to
zero, the theoretical model does not describe the data.

4 A Small Open Economy Model

We use an open economy DSGE model with theoretical foundations closely related
to the papers by Gali and Monacelli [9] and Lubik and Schorfheide [17] to provide
prior information for the VAR.

DSGE models describe the general equilibrium allocations and prices of a model
economy in which agents (households, firms, etc.) dynamically maximize their
objectives (utility, profits, and so on) subject to their budget and resource constraints.
The behaviour of actual and optimal policies in this kind of models has been a key
focus of many papers, such as Benigno [2], Del Negro and Schorfheide [5].

4.1 General Modeling Features

The analysis is performed using a DSGE model for a small open economy integrated
in a monetary union. Continuum of countries with a continuum of firms producing
differentiated goods, in a monopolistically competitive environment. Firms set
prices according to Calvo staggered pricing, production function is linear in labour,
and Technology is assumed to follow a unit root process and is common to
both the domestic and world economies. Consumers have constant intertemporal
elasticity of substitution, and they aggregate consumption goods using Dixit-Stiglitz

6This � represents the weight of the restrictions from the model imposed by the econometrician
and it tells how much the economic model DSGE, is able to explain the real data.
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aggregation. Monetary policy is specified by a flexible Taylor Rule. Financial
markets are assumed to be perfect enabling risk-sharing between domestic and
foreign consumers.

4.2 Household

A representative household maximizes utility given by E0
P1

tD0 ˇ
t�

.Ct=At/
1���1

1�� � N
1C'
t
1C'

�

Where, � : household’s risk aversion, ': labour supply aversion, Nt: hours
worked, At: world technology process, Ct: composite consumption index.

The composite good C is a Dixit-Stiglitz aggregator of goods produced at home

and abroad and defined as: Ct 	
h
.1 � ˛/

1
� .CH;t/

��1
n C ˛

1
� .CF;t/

��1
�

i �
��1

Where, 0 � ˛ � 1 is a share of imports in GDP (degree of openness),
� > 0 is the substitutability between domestic and foreign goods from standpoint
of domestic consumer., CH;t: index of consumption of domestic goods given by the
CES function, CF;t: index of consumption of imported goods given by the CES
function.

Under rational expectations, the household maximizes its utility subject to a
borrowing constraint: PtCt C Dt � RtDt�1 C WtNt C Tt . Where, Pt W consumer price
index (CPI), Rt W return on investment Dt�1 held at the end of period t � 1(including
shares in firms), Wt W nominal wage, Tt W lump-sum transfers.

4.3 Firms

A typical firm in the home economy produces a differentiated good with a linear
technology represented by the production function: Yt D AtNt. Where: at D logAtis
described by the AR(1) process7: at D 	aat�1 C ( t. All firms face identical
demand curves and take the aggregate price level and aggregate consumption index
exogenously. Firms are price setting. However, each firm may change its price with
probability 1� � every period, irrespective of the last time of adjustment. Therefore
each period a fraction 1 � � of firms reoptimizes its price, whereas the rest � keep
their prices unchanged. This price stickiness, � is an important feature of the model
because it allows monetary policy to affect real variables in the short run.

7A consequence of this is that some of the real variables (such as output) are normalized by
technology before the log-linearisation.
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4.4 Key Final Log-Linearised Equations

IS Equation8: yt D EtytC1�� .Rt � Et� tC1/C�	zztC˛�Et�qtC1C
��
�

� 1
�

Et�y�tC1
New Keynesian Phillips curve9: � t=ˇEt� tC1 C ˛ˇEt�qtC1 �˛�qt C 

�
.yt � Nyt/

4.5 Monetary Policy

Monetary policy are controlled by the ECB which sets the nominal interest
rate according to the Taylor rule evaluated at the observed values of euro area
variables10:

Rt D 	RRt�1 C .1 � 	R/
�
 1�

EA
t C  2y

EA
t

�C �Rt

4.6 Rest of the World

By assumption, the rest of the world corresponds to the rest of the monetary union,
and therefore the nominal effective exchange rate is irrevocably set to unity, as all
trade and financial flows are performed using the same currency.

Exogenous Processes11:
The exogenous processes are defined for the foreign output y�t , the change in

terms of trade �qt, the worldwide technology shocks zt,12 and the foreign inflation
��t respectively as: y�t D 	y� y�t�1 C �y�

t
; ��t D 	����t�1 C ���

t
;�qt D 	�q�qt�1 C

��qt
; zt D 	zzt�1 C �zt

8Implying that output depends on the expectations of future both home and abroad, the real interest
rate, the expected changes in terms of trade and technology growth.
9Movements in the output gap (yt � Nyt/, affect inflation as they are associated with changes in real
marginal costs. Changes in the terms of trade enter the Phillip curve reflecting the fact that some
consumer goods are imported.
10We assume Spain is too small to have a significant influence on the ECB’s Taylor rule. Thus,
changes in Spanish conditions do not affect Rt, which is determined by the Taylor rule above,
evaluated at the observed values of euro area variables. Justiniano and Preston [14] include output
growth as an additional argument in their policy rule.
11By this specification, we pin down the small open economy as a system affected by foreign data
generating processes but which has no perceptible influence on the rest of the world.
12Technology is assumed to grow ate the rate zt.
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4.7 Data, Priors and Estimation Results

To estimate the structural parameters of the model we use Spanish and European
quarterly (seasonally adjusted) data for real output growth, inflation , the nominal
interest rate and terms of trade changes. All the time series are taken from the
database developed for the REMS model (BDREMS). Sample period: we have
decided to use only the period since the euro area was conceived, that is from 1997
onward.

The time series are made stationary by applying the Hodrick-Prescott Filter with
smoothing parameter �= 1600. By doing so, the analysis focuses on the business
cycle frequencies, however filtering has important implications—see discussion in
Del Negro and Schorfheide [4]. Our priors are selected in part by examining the
results of recent DSGE modeling and by reference to economic theory. Additionally,
we draw on past experience in modeling national economy by the Spanish Central
Bank.

5 Forecasting Performance Comparison

In order to examine the forecasting gain from using priors from a DSGE model, we
test—following Ingram and Whiteman [13]—whether the forecasts from the DSGE-
VAR are competitive with forecasts from some benchmark models—unrestricted
VAR, DSGE and Minnesota VAR—that historically have proven to be useful
forecasting tools.

RMSE of BVAR-DSGE13

2008:Q1-2012:Q4, VAR*(4)

One quarter ahead Four quarters ahead Eight quarters ahead

Quarterly Year-ended Year-ended

Variable Relative to unrestricted VAR

Output growth 0.82 1.03 0.86

Underlying inflation 0.90 1.12 0.94

Relative to DSGE

Output growth 0.88 0.89 1.02

Underlying inflation 0.93 0.91 0.83

Relative to Minnesota VAR

Output growth 0.95 0.87 0.90

Underlying inflation 1.05 1.08 0.88

*We use Akaike information criterion to determine the optimal number of lags for the VAR.

13To interpret this table, note that if the entry in a particular cell is less than one, then the BVAR-
DSGE outperforms the corresponding benchmark model. Diebold and Mariano [6] provide a
general framework for such tests.
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We generate dynamic forecasting14 for horizons of 1 up to 8 quarters—
re-estimating the models each quarter over the out-of sample forecast horizon
(2008–2012)—Forecasting accuracy is measured by univariate root mean squared
forecast error (RMSE). To evaluate the forecasting performance of the models we
construct out-of-sample forecasts and compute their RMSE.15

6 Conclusion

In this paper we evaluated the forecasting performance of a DSGE-VAR model
estimated on Spanish data. We compare the performance of the DSGE-VAR to an
unrestricted VAR, and a Bayesian VAR with Minnesota priors. The combination of
a DSGE with a VAR model increases the number of free parameters, allowing for
better fitting of the data, therefore we find16 the DSGE-VAR model outperforms
benchmark models.17 DSGE priors are indeed useful as a means of improving
the forecasting performance of the VAR. These results suggest that the theoretical
information in the DSGE prior is a useful complement to the purely statistical
Minnesota prior. Overall, the results show that the BVAR-DSGE is competitive at
forecasting inflation and output. A natural extension to future work, would be to
introduce richer DSGE models in order to improve the fit.
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An Overview of Quantitative Continuous
Compound Analysis

Rui Santos, João Paulo Martins, and Miguel Felgueiras

Abstract The application of compound tests in clinical analysis or acceptance
sampling exults in resource savings. Furthermore, quantitative compound tests allow
to infer whether the amount of some substance of any individual in the group is
greater or lower than a prefixed threshold. However, the use of this type of tests
must be done with caution to avoid having a high probability of misclassification.
This work uses the weight of the tails of the underlying distribution as a measure of
the adequacy of the application of continuous compounds tests.

1 Introduction

Compound, group or pooled analysis can be performed in order to reduce clas-
sification (to identify all the infected individuals) and estimation (to estimate the
prevalence rate) costs in low infection prevalence rates in various application
fields, cf. [3]. This work aims to provide an overview of a specific type of
composite analysis, the quantitative continuous compound analysis. Thus, Sect. 2
outlines different possibilities to characterize infected and uninfected individuals.
The implementation of continuous compound tests as well as the main measures
to evaluate its accuracy are described in Sect. 3, which also contains an overview
of the main applications of compound analysis. Two different methodologies to
perform compound tests are described in Sect. 4, one to control the compound
specificity and the other to control the compound sensitivity. Those methodologies
are assessed by simulations (Sect. 5) in order to evaluate its performance under
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several continuous distributions with different right tail weights. Finally, the main
conclusions are summarized in Sect. 6.

2 Infected and Uninfected Individuals in Quantitative
Analysis

Let p be the prevalence rate of an infection which affects a population with N
individuals, and the random variables (r.v.s) Xi denote the presence .Xi D 1/ or
absence .Xi D 0/ of the infection in the i-th individual, hence Xi � Ber.p/,
i D 1; : : : ;N. Qualitative analysis only intended to ascertain the presence or absence
of some substance (e.g. antigenes, antibodies or some bacterial species) in the
analyzed fluid (e.g. blood or urine) which allow to identify the presence of the
infection. Thus, the presence of the substance in the fluid implies Xi D 1 and the
absence entails Xi D 0. In a quantitative analysis the presence of the substance is
not sufficient to classify each individual. Thus, let us suppose that the clinical trial
for identification of the infected individuals is carried out by measuring the amount
Y of a certain substance (e.g. the number of a particular species of bacteria) in a
milliliter (ml) of blood. Moreover, in an infected individual (Xi D 1) the amount Yi

can be described by Yi D YCi � D1.�1/ where D1 is some distribution with support
S1 
 R and parameter vector �1. In an uninfected individual (Xi D 0) the amount
Yi can be characterized by Yi D Y�i � D0.�0/ where D0 denotes some distribution
with support S0 
 R and parameter vector �0. Whenever S0 \ S1 D S D ; the
classification of each individual is straightforward once Yi 2 S1 ) Xi D 1 and
Yi 2 S0 ) Xi D 0 (there is no problem of misclassification). Nevertheless, for most
applications this is not true and S0 \ S1 D S 6D ;, and, therefore, any classification
methodology has a nonzero probability to return an erroneous classification for
those individuals with Yi 2 S, leading to the possibility of misclassification.
Hereinafter it will be assumed that S 6D ;, although the opposite situation can be
addressed analogously.

In addition, let Yi be characterized by some distribution D.�/ for the entire
population, where � denotes the parameter vector, i.e., Yi � D.�/, i D 1; : : : ;N.
Thus, the distribution D.�/ is a convex mixture of the two distributions D0.�0/ and
D1.�1/ with weights 1 � p and p, respectively. Therefore, the distribution function
FY of Y can be written as a convex combination of the distributions functions of FY�

and F
YC

, i.e., through FY .y/ D .1 � p/FY�
.y/C pF

YC

.y/, 8y 2 R.
In order to simplify, let us suppose that the presence of the infection leads to a

high Y value, while the absence of the infection leads to the observation of a low
value of Y (the opposite case is analogous). Hence, if Yi exceeds a prefixed threshold
t 2 S, then the individual is classified as infected (getting a positive test denoted by
X0i D 1), i.e., Yi > t ) X0i D 1. Otherwise, it is considered uninfected (achieving a
negative result X0i D 0), thus Yi � t ) X0i D 0.
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The most commonly used measures to evaluate the single test accuracy are the
sensitivity 's , i.e., the probability of getting a positive result (X0i D 1) from an
infected individual (Xi D 1), thus 's D P

�
X0i D 1j Xi D 1

�
; and the specificity

'e , i.e., the probability of getting a negative result from a not infected individual,
thereby 'e D P

�
X0i D 0j Xi D 0

�
. Besides, 's assesses the test ability to identify an

infected individual, crucial in epidemic cases, while 'e evaluates the test ability to
identify an uninfected individual.

3 Continuous Quantitative Compound Tests

Let n denote the chosen group size. To perform a compound analysis we begin by
randomly choosing n individuals of the population. These individuals, denoted by
the arbitrary indexes j1; : : : ; jn, will form the k-th group, i.e., Gk D fj1; : : : ; jng, for
k D 1; : : : ;

˙
N
n

�
with dxe denoting the smallest integer not less than x (the final

group may contain fewer individuals but, for simplicity, we will assume that all
groups have dimension n and for this specific last group the appropriate adaptations
should be applied). Thus, the r.v.s Xi, for i 2 Gk, are mutually independent and the
number IŒn� of infected members in the group is a binomial r.v., i.e., IŒn� � B.n; p/
with n trials and probability of success equals to p. Consequently, within each group
the r.v.s Yi are independent and identically distributed (i.i.d) to D.�/. After that, one
ml of blood from each one of the n elements is collected and then mixed together
until uniformity is achieved. Hence, the amount of substance in the n ml of pooled
blood is given by Bn D P

i2Gk
Yi. Then, one ml is randomly withdrawn from this

homogeneous pooled blood in order to perform the compound test. Let the r.v. B1
describes the amount of substance in this milliliter of pooled blood.

When D.�/ is a count distribution, then B1 can be modeled using hierarchical
models and B1 � B.Bn;

1
n /. The distribution of B1 for some of the most used count

distributions may be found in [24].
However, hierarchical models cannot be applied when D.�/ is absolutely

continuous. In these cases we can consider a perfect mixed procedure, performed
by some mechanical device, and consequently B1 will be very close to the group
mean, i.e., B1  Yn D 1

n Bn, cf. [25], and then the Yn distribution can be computed
analytically or by simulation.

Finally, if the observed B1 value exceeds the threshold tŒn�, which depends of the
group size n, the group will be classified as infected (a positive compound test),
otherwise the group is classified as uninfected (a negative compound result). A
positive compound result .XŒn� D 1/ means (if misclassification does not occur)
that there is at least one infected individual in the group, i.e., identifies the groups
in which

P
i2Gk

Xi � 1. Let us notice that these tests do not allow the identification
of the infected individuals, but only the identification of the presence of at least
one infected individual in the analyzed group. Insofar, a negative compound result
.XŒn� D 0/ means that no individual is infected within the group, i.e., aims to
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identify the groups in which
P

i2Gk
Xi D 0. Note that to classify all individuals

within the group as uninfected through the performance of individual tests, all Yi,
for i D j1; : : : ; jn, must fulfill Yi � t, and thence Mn D max

�
Yj1 ; : : : ;Yjn

� � t.
Therefore, quantitative compound tests use B1  Yn in order to establish if the group
maximum Mn exceeds the threshold t. The use of the mean to test the maximum of
a group with n i.i.d. r.v.s applying several continuous distributions is investigated in
[25].

Compound tests must be followed by individual tests whenever our main goal
is the identification of all infected individuals in the population (the classification
problem). The first and simplest classification methodology using pooled samples
has been proposed by Dorfman in 1943 [5] for the identification of the syphilis
infected soldiers. Whenever the compound analysis results are positive an individual
test is performed to all the members of the group in this method. The main goal of
compound analysis is to save resources and this is only possible when the large
majority of the groups is not infected, and therefore are classified as uninfected
through a single test (when the compound test is positive the number of required
test are higher than if we only use individual tests). For this purpose, compound
tests are only applied in low prevalence rates. In addition, the group size n is defined
in order to ensure a high probability of getting negative compound tests.

More efficient methodologies in terms of the relative cost (expected number of
tests for the classification per individual) have been developed ([13] provides an
overview of its evolution). There are not only generalizations of Dorfman’s method-
ology (the hierarchical algorithms in which positive groups are repeatedly divided
into smaller non-overlapping subgroups until all members have been individually
tested, cf. [6, 9, 10, 16, 18, 28, 29]), but also more complex sampling strategies
using array-based group testing (which use overlapping pools, cf. [15, 22, 33]) or
even multidimensional array algorithms (an extension to higher dimensional arrays,
cf. [1, 23]).

Compound tests can also be applied without being required subsequent indi-
vidual tests when the main goal is the estimation of the prevalence rate p (the
estimation problem), cf. [27]. The estimators based in compound analysis can attain,
under certain conditions, better performance than the estimators based on individual
tests, allowing not only the reduction of the number of performed tests, but also
the achievement of more accurate estimates with respect to the bias, efficiency as
well as robustness, cf. [4, 7, 17, 20] among others. Moreover, some packages with
applications of several compound testing estimators are available, such as binGroup
for the R software [2].

Nevertheless, the main drawback of compound analysis is its higher probability
of misclassification, mainly due to the dilution effect, cf. [11]. Therefore, in both
cases (classification and estimation) the use of compound tests should only be
performed if the problem of misclassification is monitored, enabling to balance the
effects of cost and accuracy.

The misclassification in compound tests can be measured by the compound
specificity 'Œn�

e
D P.XŒn� D 0jPn

iD1 Xi D 0/ D P.XŒn� D 0jIŒn� D 0/ which is usually
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higher than the single specificity 'e as a consequence of the sample mean getting
closer to the expected value as the group size n increases. On the other hand, the
compound sensitivity 'Œn�

s
is defined as 'Œn�

s
D P.XŒn� D 1jPn

iD1 Xi � 1/ D P.XŒn� D
1jIŒn� � 1/. Moreover, 'Œn�

s
depends on the number of infected elements within the

group due to the dilution factor—if we pool blood from one infected individual
with the blood of many uninfected individuals, the substance will be diluted and the
probability to detect whether there is an infected individual in the group can be quite
low. Thus, the compound sensitivity 'Œj;n�

s
when there are j infected members in the

group, using 'Œj;n�
s

D P.XŒn� D 1jIŒn� D j/ and 'Œn�
s

D Pn
jD1 'Œj;n�s

P.IŒn� D jjIŒn� � 1/,

can be used to model the rarefaction of the substance, cf. [24]. Moreover, 'Œn�
s


P.XŒn� D 1jIŒn� D 1/ D 'Œ1;n�

s
for low prevalence rates, cf. [8, 24], as a consequence

of P.IŒn� D 1jIŒn� � 1/  1 for the usual applied group sizes. In addition, having
just one infected individual in the group corresponds to the worst case scenario, i.e.,
'Œ1;n�

s
� 'Œ2;n�

s
� � � � � 'Œn;n�

s
and consequently 'Œ1;n�

s
� 'Œn�

s
. Let us emphasize that

in most compound analysis applications it is assumed that pooling does not affect
misclassification (see, for instance, [19, 30, 31]), or do not take into account the
number of infected members within the group, cf. [14]. In [32] and [34] hierarchical
models are used to capture the dilution effect in HIV prevalence estimation, but the
probability of misclassification has not been evaluated.

These misclassification measures can be generalized to the classification method-
ology itself, cf. [15, 24]. Hence, the M methodology specificity is the probability
of an uninfected individual being classified as uninfected by the application of
methodologyM and, analogously, the M methodology sensitivity is the probability
of an infected individual being classified as infected by the application of method-
ology M . Therefore, the same definitions as in the individual tests are applied,
but the probabilities are computed taking into consideration the application of the
classification methodology M under investigation. For instance, the Dorfman’s
methodology specificity is given by (cf. [24])

'en
D P

�
X0i D 0j Xi D 0;M

� D
n�1X
jD0

P
�

X0i D 0j Xi D 0; IŒn�1� D j
	

P
�

IŒn�1� D j
	
;

and, analogously, the Dorfman’s methodology sensitivity is given by

'sn
D P

�
X0i D 1j Xi D 1;M

� D
n�1X
jD0

P
�

X0i D 1j Xi D 1; IŒn�1� D j
	

P
�

IŒn�1� D j
	
:

In the simulations (Sect. 5) we will restrict ourselves to the evaluation of
the compound measures of misclassification 'Œn�

e
and 'Œn�

s
(without specifying any

classification or estimation methodology) in the cases in which D.�/ is a continuous
distribution and applying two different methodologies to set up the cut off point tŒn�,
which will be established in Sect. 4.
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4 Methodologies to Set Up the Cut Off Point
of Compound Tests

Two different methodologies to perform the compound tests are described in this
section, following [26]. The underlying principle is to use each method in order to
control the probability of a type of misclassification since it is impossible to improve
both, such as in the usual statistical hypothesis tests.

The first methodology M1 aims to control the compound specificity and matches
to the commonly used in compound tests applications, which can be formalized by
the statistical hypotheses:

H0 W
Xn

iD1 Xi D 0 versus H1 W
Xn

iD1 Xi � 1; ŒMethodology M1�

or, analogously, H0 W IŒn� D 0 versus H1 W IŒn� � 1. In terms of comparison with
the individual analysis, H0 implies Mn � t and H1 entails Mn > t. Moreover,
the test size is given by ˛ D P.XŒn� D 1j Pn

iD1 Xi D 0/ D 1 � 'Œn�
e

. Hence, the
compound specificity is hereby set at 1 � ˛ and the 'Œn�

e
is controlled by setting the

value of the significance level ˛. Nevertheless, it neglects the compound sensitivity,
and therefore the occurrence of false negatives is not monitored in this methodology.
Consequently, the quality of the compound tests performed using this methodology
shall be assessed by the compound sensitivity. In addition, under H0 the group Gk

has no infected individuals, thus the r.v. Yi, i 2 Gk, are i.i.d. to D0.�0/ and the cut
off point tŒn;M1 � is straightforward to compute.

The goal of the alternative methodology M2 is to control the compound
sensitivity and therefore to prevent the occurrence of false negative results, which is
crucial in epidemic situations. It was first proposed in [21] without any examination
and was applied in discrete compound tests simulation in [26]. The M2 methodology
is formalized by the following statistical hypotheses:

H0 W
Xn

iD1 Xi � 1 versus H1 W
Xn

iD1 Xi D 0; ŒMethodology M2�

which in terms of the r.v.s IŒn� corresponds to H0 W IŒn� � 1 versus H1 W IŒn� D 0.
In this methodology the test size ˛ is given by ˛ D P.XŒn� D 0j Pn

iD1 Xi � 1/ D
1 � 'Œn�

s
, and therefore the compound sensitivity is fixed by setting the value of ˛.

Nevertheless, there are different possible scenarios under H0 and consequently the
computation of the cut off point tŒn;M2 � can be quite complex. In practice, a simplified
methodology M?

2 can be implemented in order to easily compute an approximate
value of tŒn;M2 �, performing the following hypothesis test:

H0 W
Xn

iD1 Xi D 1 versus H1 W
Xn

iD1 Xi D 0; ŒMethodology M?
2 �
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i.e., H0 W IŒn� D 1 versus H1 W IŒn� D 0. The main goal is to use the threshold tŒn;M
?
2 �,

as it is a quite good approximation of the cut off point tŒn;M2 � as a consequence
of P.IŒn� D 1jIŒn� � 1/  1, cf. [8, 24], otherwise the use of compound analysis
would not be advised. Thus, the results of applying this simplified M?

2 are quite
similar to M2 for low prevalence rates and the usual applied group sizes. Moreover,
the significance level in M?

2 is given by ˛ D P.XŒn� D 0j Pn
iD1 Xi D 1/ D 1 �

'Œ1;n�
s

, and therefore ˛ will set 'Œ1;n�
s

. Thus, M?
2 controls the compound sensitivity in

the worst case scenario, and consequently controls indirectly the overall compound
sensitivity 'Œn�

s
. Hence, the applied significance level ˛ will set up a lower limit

for the compound sensitivity 'Œn�
s

. In this alternative methodology the compound
sensitivity is fixed and the quality of the test will be measured by the compound
specificity.

5 Simulation

This section aims to evaluate the performance of continuous compound tests via
simulations performed by the statistical software R, mainly its compound sensitivity
'Œn�

s
and compound specificity 'Œn�

e
. Thus, the methodologies M1 and M?

2 were
applied and whereby the group mean Yn was used to identify if the group maximum
Mn exceeds the threshold t D F 

Y
.1 � p/ with F 

Y
being the generalized inverse

function of FY , i.e., F .y/ WD inffx W F.x/ � yg.
In fact, the performance of those misclassification measures in continuous

compound analysis depend decisively on the prevalence rate p, the group size n
and mainly on the properties of the distribution D.�/. Hence, in the simulations we
used different prevalence rates p 2 f0:05; 0:01; 0:001; 0:0001g. For each prevalence
rate p it was applied the most efficient group size n in Dorfman’s classification
methodology, cf. [5, 24].

The continuous distributions used were the standard Gaussian distribution
(denoted by N ), the Student’s t distribution with m degrees of freedom (t

.m/), the
chi-squared distribution with m degrees of freedom (�2

.m/
), the standard exponential

distribution (Exp), the Pareto distribution with shape parameter ˛ and density
f .x/ D ˛ x�1�˛ for x > 1 (P

.˛/
), the standard log-Normal distribution (lnN ),

the Weibull distribution with shape parameter � (W
.�/

), the slash normal distribution
(SN), which is obtained by dividing a standard Gaussian r.v. by another independent
r.v. with standard uniform distribution, and the standard Lévy distribution (Lévy).
Moreover, the absolute value of some r.v.s was also used in order to avoid a bilateral
heavy-tailed distribution because, in these cases, a large negative value can hide a
large positive value in the compound analysis.

In [24] it is shown that the correlations r
�
Yn ;Mn

�
between the group mean Yn

and the group maximum Mn are indeed crucial for the quality of this type of tests.
We also compute an approximate value of these correlations using simulations with
103 replicas of 104 groups. The mean and the standard deviation (within brackets)
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of the correlation coefficient for each case are shown in Tables 1 and 2. Another
important factor highlighted in [24], although not measured, is the right tail weight
of the distribution D.�/. Thus, in this work we computed the right tail index �R

defined by (cf. [12])

�R D
 

F�1
D
.0:99/� F�1

D
.0:5/

F�1
D
.0:75/� F�1

D
.0:5/

!�
˚�1.0:99/� ˚�1.0:5/
˚�1.0:75/� ˚�1.0:5/

��1
;

which compares the right tail weight of the distribution D with the right tail weight
of the Gaussian distribution. Thus, for the Gaussian distribution �R D 1 and heavier
is the right tail of D higher is the �R index value of D.

The simulations results are displayed in Tables 1 and 2 in which the distributions
have been ordered in ascending order of the right tail index �R . All the simulations
presented, using 106 groups in each case, have been done considering the signifi-
cance level ˛ D 0:05, however the results are representative of the general behaviour
for other significance level values.

The results show that the correlations r
�
Yn ;Mn

�
steadily increase with the right

tail index �R . The exceptions lie in the bilateral heavy-tailed distributions (such
as SN and t

.1/
) in which an individual with a quite negative value can hide other

individual with a large positive value in the group mean computation. Nevertheless,
when positive r.v.s are applied the association between r

�
Yn ;Mn

�
and �R is obvious.

Thus, r
�
Yn ;Mn

�
are significant with low standard deviation for distributions with

high right tail index �R (except in bilateral heavy-tailed distributions). It can also be
inferred that correlations r

�
Yn ;Mn

�
decrease with the group size n, with a higher

rate for low right tail distributions. For high right tail distributions the correlations
r
�
Yn ;Mn

�
continues to attain very high values even for groups with quite higher

dimensions, such as in the Lévy distribution with n D 100.
It is equally clear that methodology M1 can be actually applied to control

the compound specificity and M?
2 to control the compound sensitivity, with high

accuracy. In all simulations 'Œn�
e

 0:95 in M1 and also 'Œn�
s

 0:95 in M?
2 , in

agreement with our use of the significance level ˛ D 0:05.
The compound sensitivity 'Œn�

s
in M1 and the compound specificity 'Œn�

e
in M?

2
have analogous performance. It performs poorly for distributions with low right
tail index (as Table 1 clearly shows) and achieve high-quality accuracy in heavy
right tail distributions (see Table 2). In addition, for low right tail distributions the
performance gets worse very quickly when the group size n increases. For heavy
right tail distributions the performance continues to attain quite good results even
with a high group size n.

Table 3 shows the correlation between r
�
Yn ;Mn

�
and each of the non-controlled

misclassification measure ('Œn�
s

in the methodology M1 and 'Œn�
e

in M?
2 ) including all

the distributions analyzed in the previous tables, and in the second case excluding
the bilateral heavy tailed distributions SN and t

.1/
. The observed correlations are

impressively high, mainly when the bilateral heavy tailed distributions are removed.
Therefore, the correlations r

�
Yn ;Mn

�
(and consequently the right tail index �R ) are
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Table 3 Correlations between r
�
Yn ;Mn

�
and each of the non-controlled misclassification measure

p D 0:05 p D 10�2 p D 10�3 p D 10�4

M1 M?
2 M1 M?

2 M1 M?
2 M1 M?

2

All distributions 0.7273 0.9777 0.7813 0.9455 0.8176 0.8260 0.8432 0.8430

Without SN nor t.1/ 0.9435 0.9751 0.9366 0.9624 0.9267 0.9326 0.9073 0.9037

crucial to assess the suitability of applying continuous compound tests in order to
control the probability of misclassification.

6 Final Remarks

Continuous compound analysis can be applied for classification and estimation
purposes with high-quality accuracy in low prevalence rates whenever the distri-
bution underlying the analyzed substance is an unilateral heavy-tailed distribution.
Moreover, different methodologies to compute the cut off point of the compound
analysis can be applied, in order to control the compound sensitivity or to control the
compound specificity. The non-controlled misclassification measure will also return
quite good results under the specified conditions. Furthermore, the right tail index
can be applied to measure the suitability of continuous compound analysis. The
performed simulations clearly reveal that a high �R value ensures simultaneously
a high compound sensitivity and a high compound specificity in both proposed
methodologies, and consequently a low probability of misclassification in the
continuous compound analysis applications.
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Varying the Money Supply of Commercial
Banks

Martin Shubik and Eric Smith

Abstract We consider the problem of financing two productive sectors in an econ-
omy through bank loans, when the sectors may experience independent demands for
money but when it is desirable for each to maintain an independently determined
sequence of prices. An idealized central bank is compared with a collection of
commercial banks that generate profits from interest rate spreads and flow those
through to a collection of consumer/owners who are also one group of borrowers
and lenders in the private economy. We model the private economy as one in
which both production functions and consumption preferences for the two goods
are independent, and in which one production process experiences a shock in the
demand for money arising from an opportunity for risky innovation of its production
function. An idealized, profitless central bank can decouple the sectors, but for-profit
commercial banks inherently propagate shocks in money demand in one sector into
price shocks with a tail of distorted prices in the other sector. The connection of
profits with efficiency-reducing propagation of shocks is mechanical in character, in
that it does not depend on the particular way profits are used strategically within the
banking system. In application, the tension between profits and reserve requirements
is essential to enabling but also controlling the distributed perception and evaluation
services provided by commercial banks. We regard the inefficiency inherent in the
profit system as a source of costs that are paid for distributed perception and control
in economies.
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1 Preamble

1.1 The Problems of Decoupling Scale and Structure
in Plumbing

Consider a problem faced by designers of plumbing for hotels. Trunk lines supply
hot and cold water to many taps in many guest rooms. Sinks, showers, and toilets
draw water from the trunks in uncoordinated and unpredictable ways. The water
flow demanded from a trunk is a variable that aggregates across users who tap the
trunk, the scale of which is subjected to ongoing shocks in the course of normal
usage. Water also has pressure, and the relative pressure in hot and cold lines allows
the guest taking a shower to set the desired temperature by adjusting two valves.
Pressure might be called a “structural” feature of the plumbing system. In good
circumstances—which even in crude plumbing systems may be approached under
conditions of constant demand—the pressure across the trunk is stable over time and
may even be constant across taps.1 Stability both in space and in time are essential
to the system’s providing its key services.

However, under shocks to the scale of flow, in a plumbing system without well-
designed reservoirs of pressure, scale shocks create pressure shocks. Showering in
hotels a generation or two ago offered a well-known adventure: a guest somewhere
would flush a toilet, and the patron in the shower would briefly scald and then freeze.
This sequence might repeat dozens of times in the course of a single shower in a
large hotel on a busy morning. Plumbing designed with inadequate technology fails
to buffer scale shocks in demand from propagating into the structure variables of the
water flow: the time-dependent sequence of pressure values at all the valves.

1.2 Scale and Structure Problems in Money Supply and Prices

A mathematically analogous problem arises in economies. Multiple sectors demand
funds for ongoing business and to cope with cycles, take risks, and respond to
their unknown outcomes and other surprises. Many of these are uncoordinated and
unpredictable demand shocks to the money supply, which is a scale variable of the
economy. The price system in an economy is a structural property dual to its money
supply [3]. Prices across sectors, or across time within a sector, need not be constant,
but in a well-functioning economy they should reflect a consistent response to
agents’ marginal utilities or other relevant measures of valuation. In particular, it
may be a design objective for a banking system that prices in a sector not be subject
to ongoing ripples or other disturbances that arise purely through financial frictions,

1This is true for taps at the same elevation; we leave aside corrections for gravity which are not
central to the point of this illustration.
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due to demand shocks for money in other sectors. Governments and bankers face
problems of system design of a purely mechanistic nature—meaning that they apply
in a wide range of strategic contexts—analogous to the problems faced by plumbing
engineers who deliver a different quantity (water) also subject to inertia and friction
and by its nature not compressible.

1.2.1 Innovation as a Source of Shocks that Require Economics Beyond
General Equilibrium

A pair of articles by Shubik and Sudderth [6, 7] considers innovation as a process
that creates demand shocks through the problem recognized by Schumpeter [4],
of “breaking the circular flow of funds”. The financial design problems that arise
from contexts with innovation are inherently dynamical. They offer perhaps the
most direct widespread class of economic phenomena that require a robust theory
falling essentially outside the General Equilibrium paradigm.

In this paper we use the cost innovation model of Shubik and Sudderth as a
testbed to study the banker’s problem of decoupling sectors in an economy. Under
idealized theoretical conditions, a model banking system can both function as a
strategic dummy and also decouple production and consumption sectors if they
are not otherwise coupled through substitution effects. However, actual banking
systems do not operate under idealized theoretical conditions. They face uncertainty
throughout the economy, and they require distributed and scalable services of
perception and evaluation. The limited monolithic structure of a central bank that
is easily modeled in theory, is replaced in operation with an ecology of one or
more central banks and a collection of competitive commercial banks operating
in the private sector and responsive to its fluctuating demands for service and its
geographic and demographic distribution [1].

The policy tools used to grant commercial banks the independence they require
to fulfill their functions, while still controlling the quality of risk in their portfolios,
include reserve requirements (set reserve ratios and possibly also minimum reserve
quantities) and profits which guide the banks’ strategic actions and provide a layer of
abstraction between the commercial banks operational decisions and their owners’
preferences. Profits create an incentive to make bank money available, while reserve
requirements control its scarcity. The design problem is to balance the forces of
incentive and constraint to achieve policy objectives for the banking system as a
whole.

Shubik and Sudderth consider the general problem of control in strategic reserve
banking. Here we do not address that higher-level problem, but instead consider
the pre-strategic (more purely mechanical) question of whether the existence of
profits creates inherent limits in the extent to which banking systems can decouple
demands for money from propagation of price shocks. We consider an explicitly
time-dependent economy with many periods of production and consumption, in
which stability of the price system within a sector is essential to planning an optimal
program of output and distribution. We consider only 100 % reserve banking, so that
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profits of commercial banks arise only through the opening of interest rate spreads
between the rates on loans and on deposits.

The paper compares the interface that a simple central bank could present to
an economy if there were no need for perception and control, with the interface
that a comparable for-profit commercial bank presents. In cases where the central
bank can decouple sectors, we find that the introduction of interest rate spreads,
which are needed to create a profit motive, inherently cross-couples sector prices.2

In the comparison, all interest rates are treated as parameters (rather than strategic
variables), so this is a purely mechanistic effect, holding independent of the strategic
context to which profits might be put in more elaborate models that seek to capture
larger-scale regulatory dynamics.

1.2.2 Stock and Flow Distinctions as a Further Measure of Cross-Sector
Propagation of Disturbances

We use a continuous-time analogue of the discrete period innovation model of
Shubik and Sudderth [6, 7] because scaling analysis on the approach to this limit
makes precise the distinction between stocks and flows. Stocks include outstanding
(revolving) loan levels and inputs to production, while flows include streams of
interest payment, velocity of money, and consumption rates of goods. We show
below that in an idealized economy where money demands and prices are buffered
between systems, the inter-sector loan levels within the economy, and the overall
money supply and its exchange with the banks, are also distinguished in their scaling
behavior. Inter-sector loans scale as stocks that remain finite in the continuous-time
limit, while total money supply and net private-sector credits or debts on which
interest payments change the money supply, go to zero in the continuous-time
limit as the velocity of money (a flow variable) becomes the regular property of
that limit.

The introduction of profits that couples cross-sector production decisions also
couples inter-sector and aggregate debt levels, breaking their independent scaling
behavior in the idealized efficient economy. Thus profits that couple scale shocks to
structure shocks do so in several dimensions.

2 Innovation, Chance, Growth, Cycle and the Money Supply

2.1 Efficiency, Arbitrage and Equilibrium

The no arbitrage and the efficiency conditions do not coincide with incomplete
markets, but the property of no arbitrage can still be defined and reflects the

2The coupling is in linear proportion to the spread at sufficiently small spreads.
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individualistic behavior property of the noncooperative equilibrium. Once we give
up the comforting fiction of complete markets we still have the definition of Pareto
Optimality as an ideal and a clean picture of efficiency; but we have no individual-
istic solution that guarantees its attainment. A welter of theoretical problems appear
in the construction of indices to measure efficiency with incomplete markets. It is
well known that one can construct comparative measures between two mechanisms
and possibly decide that one is more efficient than the other over a given parametric
range. There is also the important empirical problem of trying to measure just how
inefficient is a market structure with incomplete markets when compared with the
same structure with complete markets.

If we accept the position that any market mechanism requires resources to operate
it, then even Pareto optimality is challenged.

2.2 No Arbitrage and Varying the Money Supply

If prices in a monetary economy are to be consistent with competitive markets3

there are several scenarios that call for the variation of the money supply. They are
exogenous uncertainty, strategic uncertainty, the presence of growth and cycles in
the economy. All call for a flexible money supply if cash flow constraints are to
be avoided. Possibly the most interesting scenario involves innovation where the
financing of the risk involved in innovation calls for a flexible money supply. We
use this as the context for much of the investigation below. We note that the ability
to vary the money supply confers considerable economic power on the agent able to
do so.

We address specifically cost innovation and the breaking of the circular flow of
funds.

2.3 A Closed Economy with Producers, Consumers,
Commercial and Investment Banks and a Central Bank

We preface our mathematical analysis with a verbal discussion of both the modeling
problems, simplifications and basic questions.

The minimal number of agent types we need to illustrate a mechanism that varies
the money supply is three. They are an aggregate set of consumers; producers and a
central bank.

3An added condition is that prices are stationary when the real goods distribution is stationary. This
raises further complications involving incentives and information conditions in an economy where
all laws are not indexed against inflation or deflation. This problem is not considered further here.
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The consumer/stockholder/passive saver is the one set of natural legal persons
required. The others are corporate legal persons all owned by the “natural persons”.
They are the firms, and possibly a collection of commercial banks.
The central bank differs from the other legal persons as being part of government.
We first describe the central bank.

2.3.1 The Central Bank

The central bank’s powers may be modeled in many ways. The simplest is as a
strategic dummy endowed with the ability to accept deposits or to make loans with
unlimited issue of the only legal money in the system. A formal game can be defined
if either the central bank sets interest rates at which it will lend or pay on deposits,
or it sets a limit on the amount of money it offers in net supply.

• In virtually all of the existing national monetary systems, not only do central
banks exist, but so do commercial banks. This raises the question: Why do
commercial banks exist, if the central bank can vary the money supply by
itself? As Bagehot noted [1] the commercial banks (and bill jobbers) perform as
perceptors and evaluators of the state of business and the need for credit over
the whole space of a nation. The Soviet Union did not utilize a commercial
banking system internally. It utilized bureaucratically run branches. We do not
consider their perception functions here; but observe that we may formulate the
construction of a four agent model where there are consumers, producers, the
central bank and commercial banks where the central bank has delegated much
of the variation of the money supply to the commercial, for-profit banks. With
this structure several questions must be answered:

• Can the commercial banking system be competitive?
• If so, in what dimensions do they compete?
• Can they be designed to transmit fully the policy of the central bank?
• Do reserve requirements play a role?
• What are the permitted strategies of the commercial banks?
• How are the banks’ profits defined?

In our belief in the virtue of separating out problems we limit our analysis here
to the influence of the commercial banks on shock transmission.

3 The Flexibility of Commercial Banks

In an enterprise economy the central bank may delegate the detailed adjustments
of the money supply to a commercial banking system. The problems of economic
coordination need to be resolved. The particular instruments and rules of this
delegation, require a set of minimal models to demonstrate this systematically. For
simplicity, to begin with, we consider the commercial banking system as a strategic
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dummy designed to provide a flexible money supply for an economy with variable
monetary needs.

4 Preliminaries

“The doorkeeper laughs and says: ‘If you are so drawn to it, just try to go in despite my
veto. But take note: I am powerful. And I am only the least of the door-keepers. From hall
to hall there is one doorkeeper after another, each more powerful than the last. The third
doorkeeper is already so terrible that even I cannot bear to look at him.’ ”

– Franz Kafka, Before the Law

Above we have presented a brief verbal sketch of why one may need a flexible
money supply. We now provide a formal model to achieve this goal.

What might appear to be relatively simple mechanisms require computation or
simulation of specific examples in order to illustrate even behaviorally simplistic
economics.

We offer a quote from Kafka that we deem apposite in dealing with economic
models where the equations of motion can be tightly defined over the whole state
space.

The task of abstracting the reason why a variable money supply is needed, and
the construction of the minimal institutions that fill that need, is to acknowledge
the diversity of instantiations both have taken historically. The rise of fractional
reserve banking in London in the last half of the ninetieth century, and the real bills
doctrine in a range of conceptions from Jean-Baptiste Say to Adam Smith, were
formulations of parts of this problem. Contemporary discussions of the feasibility
(and consequences) of control of the money supply through interest rates versus
open-market operations, and of desirable reserve levels for banks, are different
mechanistically but should be understood as addressing the same fundamental
questions in an age where money and credit diversity are much larger than they
were in the age of Smith.

5 Varying the Money Supply with Credit

5.1 Sources of Need for a Flexible Money Supply

The different needs for a flexible money supply can be captured in formal models
in a variety of ways. Often one-period models suffice to illustrate limitations in the
quantity or distribution of money. In these cases, the difference between efficient and
inefficient function of the financial system may be defined in terms of the alternative
between interior and boundary solutions.
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5.2 Separating Scale from Structure

We abstract the need for a variable money supply as a need to separate scale from
structure in production and exchange economies. All societies undergo variations
in the desired volumes of trade. These may be cyclical as in harvest seasonalities,
episodic driven by good or bad harvests, immigration and emigration, innovation,
etc., or progressive driven by growth or decline of population or productivity.
All these variations in the capacity for production and consumption, which drive
variations in the desirable volume of trade, we regard as scale fluctuations. A
well-functioning economy also must converge on a range of price systems, both
inter-sectorial and inter-temporal, including interest rates for money loans. These
we regard as properties of the structure characterizing equilibria or near-equilibria.
The stability of these price systems and the extent to which they can approximate
reservation prices of agents determine the efficiency of the economy in extracting
surplus, and are essential to any program of rational planning.

In its most basic abstraction, the goal of monetary policy is to accommodate
the needs for scale fluctuations in an economy, without causing scale shocks to
propagate to cause disruptions of structure where such propagation can be avoided
by monetary design or regulation. Obviously, many scale shocks inherently result
in shocks to prices, production, or consumption, as when innovations in substitute
goods change which consumption bundles are preferred. We regard as “avoidable”
propagations those that result entirely from limits on the volume and distribution of
money, across sectors in which production technologies or consumption preferences
are not inherently coupled.4 Informally, a money supply that is too “rigid” or
“incompressible”, such as a fixed stock of gold in circulation, will generically
propagate shocks in the production or consumption volume in any sector into ripples
of price change across all sectors and through time, until money can be redistributed
to approximate a new equilibrium for the circular flow. Alleviating this rigidity is a
goal of varying the money supply that can be recognized in a variety of monetary
mechanisms across societies and in different eras.

An important and general hazard and technical challenge for institutions that
provide a variable money supply is ensuring consistency in the quality of credit and
the pricing of risk. These are essential to the stability particularly of intertemporal
price systems. The problem of credit risk evaluation is not easily centralized, and is
a primary driver to grant the status of legal tender to privately created bank credit.
The Real Bills Doctrine of Adam Smith may be understood as an early mechanism
to permit open-ended variability in bank credit while providing criteria for credit
quality that could be used by banks evaluating a range of distinct contracts. Reserve
levels in modern central banking and commercial banking systems are another
mechanism that attempts to regulate credit quality implicitly through lending prices
and leverage.

4This abstraction is easy to define in models. Validating the abstraction for actual economies may
be more or less difficult depending on the sectors considered.
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5.3 A Class of Minimal Models

As in previous work comparing the functionality of alternative money systems [8, 9],
we construct a single underlying model of production, consumption, and trade,
which creates a template for a family of strategic market games (differing in
their financial system models) for which explicit non-cooperative equilibria can be
computed. A formal specification of the models is given below; here we give a brief
summary in order to explain the main purpose of the construction. Two kinds of
storable goods define two production sectors. Production in each sector occurs by a
simple input/output function, which converts an initial stock of the good into more
of the same good at a rate that depends on the size of the working stock.5 Working
stocks are ideally storable, though they can be wasted (so that the constraint on the
quantity of goods available is an inequality rather than an equality). Each good is
also consumable. In solutions without waste, goods persist from the time they are
produced until the time they are consumed.

Production within each sector is performed by competing firms which are
jointly owned by individuals who are also consumers of the produced goods.
Production, trade, and consumption all occur in a sequence of many simply-
structured, equivalent periods, and the establishment of a circular flow is a feature
of time-stationary non-cooperative equilibria that balance output rates by the firms
against marginal utilities of consumption by the consumer/owners.

Innovation is modeled as the possibility for one group of firms to attempt to
change the production function in a single (particular) period, at the cost of one-time
consumption of a fraction of their working stock. The attempted change succeeds
with a probability � < 1. Although the cost of production is reduced and the
limiting output rate is raised for firms that successfully innovate, the initially-
reduced working stock cuts their output rates until that stock can be rebuilt from
the output, which may require many periods. Firms that attempt to innovate and
fail suffer the stock reduction but retain the pre-innovation production function. The
problem of whether innovation is desirable can be posed in either of the two goods-
sectors independently,6 and the general structure of solutions for the depletion and

5Our models resemble the von Neumann growth model, restricted to a single good. However, in
our production function the rate of output is a non-linear rather than a linear function of the input
stock.
6We do not digress to derive the solution for Robinson Crusoe here, because its important features
are subsumed in the solutions we demonstrate. A more systematic introduction to this class of
models, including a separate solution for Robinson Crusoe as a reference, will be given elsewhere.

There are essentially three levels of models that require consideration for a complete exposition
of basic distinctions. They are

• Crusoe without money,
• the price-taking individual firm with money,
• the oligopolistic firm without money.
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subsequent restoration of productive stocks serves as a reference for these sectors in
a monetary economy.

The specific feature of this real-goods economy that allows us to measure
efficiency of money and banking systems is that only one good undergoes the
opportunity for innovation. The other good has time-stationary production and
consumption parameters, which we choose to be separable. Therefore it has no
intrinsic reason to be influenced by innovation in other sectors. We demonstrate,
however, that buffering the two sectors in the economy becomes difficult if models
are not permitted an unrealistic degree of fine-tuning, and this is a basis of the need
for substructure within the banking sector.

5.3.1 Many-Period Models, and the Passage to Continuous-Time Limits

The Bellman equations for many-period strategic market game models, in which
the non-cooperative equilibria are non-stationary, are generally difficult to solve
if the periods cover non-infinitesimal quantities of goods produced, traded, and
consumed (that is, if they correspond to non-infinitesimal intervals of real time).7

Some of these difficulties diminish if we take model periods to correspond to
infinitesimal time periods, and scale production, trade, and consumption to be
infinitesimal accordingly. We will refer to this scaling limit as the continuous time
(or “continuum”) limit for a many-period strategic market game.

Singular events, such as the choice to innovate a firm’s production function and
the required consumption of stocks, remain events that occur within a single period,
so in the continuum limit they become singular, but this creates no difficulties as
long as the continuum is defined as a limit of discrete-period models.

5.3.2 Continuous Time Defined Through Equivalence Classes

Formally, we treat economic processes that occur in continuous time as processes
that may be modeled with any of a sequence of discrete-time models, with time
intervals �t that go to zero along the sequence. One performs calculations in
discrete time so that definitions of moves in the game are unambiguous, but then
requires that all economically relevant structure in the solution does not depend
on �t. More formally: the continuous-time limit is defined if there is a scaling of
the other quantities in the model with �t for which observables evaluated at two
different times t1 and t2, which are held fixed as �t is varied, converge on finite

The first two should produce the same physical allocations but differ in the presence or absence of
money.
7The source of the simplification is that difference equations and discrete series reduce to
differential equations and integrals, though the structure and meaning of the Bellman equations
remains unchanged.
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limiting values as �t ! 0. Therefore a continuous-time limit is associated with an
equivalence class of discrete-time models.

The formalization of continuous time in terms of scaling and limits provides
a systematic way to partition stocks from flows. Within any single discrete-time
model, all quantities may be represented as stocks within periods or changes of
stocks between periods. When an equivalence relation over �t is introduced, those
changes in stocks that are to be interpreted as flows are required to vanish in linear
proportion to�t. The constant of proportionality in this scaling relation– the rate of
the flow—is held fixed and is one of the parameters that defines the equivalence
class. By such scaling relations, in continuous-time models, stocks, flows, and
shocks are distinguished mathematically as well as descriptively.

5.3.3 The Economic Meaning of Continuous-Time Limits: How Many
Timescales Represent Economically Significant Commitments
of a Model?

It is possible to take a more conceptual view of continuous-time limits than merely
technical tricks that simplify Bellman equations. In conventional discrete-period
models, the period length is a dynamically important time interval in the model.
It interacts with other model features such as non-linear production functions or
utilities, and this interaction is one source of complexity in Bellman equations.
In a continuous-time limit, since stocks and flow converge on regular limits as
�t ! 0, the period length ceases to be a model property that influences economic
dynamics. For problems such as shock and recovery in production, consumption,
and the circular flow of funds, the natural timescales of economic dynamics are
determined by production functions, utilities, and interest rates, and only by these
model properties.

5.3.4 The Use of Continuum Limits to Separate Dimensions of Economic
Dynamics

It is not necessary to use continuous-time limits only at the limit point�t ! 0. The
existence of a well-defined and regular limit ensures that solutions to discrete-period
models at small but nonzero�t also exist and that they are approximated (to various
orders in�t) by properties of the limiting solution. For many applications it is useful
to approximate these short-period solutions in terms of the structural parameters at
the limit point.

The most important pair of economic quantities in short-period models are the
money supply and the money velocity. In the continuous-time limit, with production
and consumption per period scaled in linear proportion to �t, solutions with stable
prices also have regular continuum limits for the velocity of money, and solutions for
the money supply that scale as �t times this velocity (by definition of the velocity
of money).
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When banks are introduced that can both inject or extract money in circulation,
and also mediate loans between agents, the two quantities will generally scale
differently. Changes in the money supply, in efficient or nearly-efficient solutions,
scale as O.�t/, like the original money supply. Interest streams between agents
in steady circular flows are rates, which thus approach regular limits as �t ! 0.
Hence any inter-agent balances at the bank likewise scale as O.1/; that is: the
debts accumulated between agents at the bank can become arbitrarily larger than
the money in circulation, in efficient solutions.

A second way in which a money system can be inefficient is that it can couple
inter-agent lending to changes in the whole-economy money supply. If such a
coupling arises, it creates a severe instability. A drain of O.1/ can deplete the money
in circulation in a time of O.�t/. Conversely, an addition of money at O.1/ can lead
to prices that grow to O.1=�t/. The continuum limit therefore offers ways to test the
monetary system’s capacity to buffer quantities with different natural dependence on
turnover time, as well as different sectors.

5.3.5 Relation of Consumer/Owners to Firms and Banks

The models provide a minimum level of distinction sufficient to define economic
sectors for goods production, and centralized versus distributed banking activities.
In order to make all strategic actors price-takers, each type is modeled on a
continuum. In order to minimize strategic complexity in the relation of ownership
to control, with respect to the risk of failed innovation, we distribute ownership
through uniformly-distributed shares of firms or banks. We do, however, retain a
distinction between owners of firms of the two types, so that the economy creates
income consequences from innovation, which bear on the role the banks play.

The specific structure of firms, consumer/owners, and banks is:

Firms: The economy has two goods, and we index production or consumption
associated with these with subscripts i 2 f1; 2g. For each of the two goods, a
continuum of firms exist, which we index with a coordinate in the continuous
interval Œ0; 1�. (We will not denote this index explicitly to reduce notational clutter;
any production function, consumption utility, working stock, etc., with subscript
i 2 f1; 2g implicitly refers to a particular firm or individual.)
Consumer/owners: Each type of good is also associated with a group of con-
sumer/owners, also indexed with a coordinate in the continuous interval Œ0; 1�. All
owners of a given type own equal shares of all firms of that type, and no shares
of firms of the other type. Share ownership determines how firms deliver profits to
owners, and in the case of firms that can engage in risky innovation, uniform share
distribution leads to the same decision (to innovate or not to innovate) for all firms
of the same type, and distributes the profit risk over all owners of that type.
The central bank: In economies with a central bank, the central bank is an atomic
actor and a strategic dummy. It is not owned by any agents in the economy, and
does not define or deliver profits. Its function is both to define the rules of monetary
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function, and to control the injection or extraction of money (either directly, or
through commercial banks).
Commercial banks: In economies with a commercial banking sector, a single
kind of commercial bank exists. Commercial banks are in some cases modeled as
strategic dummies acting according to fixed rules, but the purpose for which they
are introduced ultimately requires that they be strategic profit-maximizers, so that
the profit incentive in a context of regulatory constraint guides their function within
the economy. Therefore from the start we introduce commercial banks (in the cases
where they occur) as a continuum of competitive corporations, again indexed with
a coordinate in the continuous interval Œ0; 1�. All consumer/owners (so, the owners
of both types of firms) jointly own the commercial banks. Again each owner owns a
uniform distribution of shares of all banks, so that each bank’s profits are distributed
uniformly among all owners.

5.3.6 The Different Models to be Considered

1. Fixed money supply: The minimal solution in the absence of banking assumes
a fixed supply of money in circulation, without reserves. The money could be
gold or government fiat. Its fixed supply causes the shock from innovation in
one good to strongly impact prices and output levels in the other good. The non-
cooperative equilibrium in this game is an inefficient outcome corresponding to
the pre-institutional (with respect to banking) economy.

2. An idealized central bank: If the economy does not require distributed com-
mercial banking, a benevolent central bank can vary the money supply and
mediate borrowing and lending among agents internal to the economy without
interest rate spreads or leveraging. We show that this solution, with finely tuned
parameters, can perfectly decouple the two goods sectors, so that the shock
from innovation in one sector does not affect output in the other. This outcome
defines the efficient function of the monetary system, and shows that it is
achievable in a constructive solution. The buffering of the two production sectors
is possible despite the fact that agents of different types experience relative
wealth variations, so their consumption of goods is altered by innovation.

3. Commercial banks with interest rate spreads and 100 % reserves: In a first
step toward defining a profit-seeking commercial banking sector, we introduce
commercial banks that borrow “fiat money” from the central bank, and are
permitted to issue bank credit to consumers in 1:1 ratio8 to their holdings of
fiat. The commercial banks can still enable steady-state production outcomes
with many of the scaling properties of the efficient solution, if interest rates are
finely tuned. However, they necessarily transmit shocks from the innovated to the
non-innovated good, in proportion to the size of the interest rate spread.

8We could introduce a k:1 gearing ratio here with a little extra work, but our illustration does not
need it.
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We formalize this model as though the central bank has set the spread
parametrically thereby reducing the commercial banks to strategic dummies. We
suggest that it is the unmodeled evaluation function followed by the decision to
lend or not to lend where important competition enters into banking.

5.4 Formal Definition: The Production and Consumption
Problem

This section defines the scaling relations for production and for utility of consump-
tion, in which rates of production and consumption give the invariant functional
relations.

All discrete-period games, from which the continuum limit is defined, consist of
a long sequence of periods with a time index t. The index is incremented by �t,
and the maximal value taken by t is some number T, which is the last period of the
game. (We will return below to the way this period is selected, in order to address
problems of robustness and interpretation of terminal conditions.) The period in
which innovation occurs is indexed t D 0. Dynamically equivalent games can be
defined either by initiating the sequence of periods at some time t D tinit � 0, and
allowing the economy to converge to a steady state by t D 0 (because the dynamics
to be defined below does produce such convergence, as we will demonstrate), or
we could take the starting period as t D 0. For simplicity we will use t D 0 as the
initial period, and as initial conditions we will provide firms with working stocks
of goods, and agents with quantities of money in hand, which equal the fixed-point
values with pre-innovation production functions.

5.4.1 Production Functions in Continuous Time, and a Sell-Surplus
Market for Goods

In order to associate a quantity of goods production with intervals of real time
Œt1; t2�, across a class of models which may have variable period length �t, it is
necessary to separate well-defined stock variables from well-defined flow variables.
For any firm, we use a variable st (with further indices as needed to specify the firm’s
type, introduced in the next sub-section) to denote the firm’s working stock at the
beginning of the period indexed t. The firm’s output is characterized fundamentally
by a rate of production, which depends on the working stock, which we denote
by f .st/ (with other indices as required to distinguish types). In discrete-period
models with period length �t, the amount of the good produced within a single
period is therefore f .st/�t. We take the incremental increase of goods through
production to happen at the beginning of the period, following which firms may sell
some of the goods, to be purchased and consumed by consumers within the same
period.
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Each firm chooses a quantity qt�t of goods to offer at a buy-sell trading
post [2], in which consumers bid money to purchase the good. This quantity is
a strategic variable, and can be varied over the range qt�t 2 Œ0; st C f .st/�t�.
However, we denote it with the factor �t made explicit, because in non-
cooperative equilibria, the quantity qt will have a regular limit as an offer rate as
�t ! 0.

5.4.2 Two Production Sectors; One Can Innovate

Goods of types 1 and 2 are produced by firms having production functions denoted
respectively f1 and f2. If we denote by si;t the stock of a firm producing good i in
period t, the forms we will assume for the production rates are9:

fi.si;t/ 	 fi;1 � 	�e�2si;t : (1)

fi has dimensions of a rate, so both fi;1 and 	� are rates. We will choose 	� to equal
the discount rate from the definition of firms’ discounted profits (introduce below,
after the market clearing rule has been defined), to simplify the forms of solutions
in worked examples. Nothing apart from simplifying presentation depends on this
choice. Well-defined models require that we choose fi;1 > 	� so that production is
non-negative for all si;t > 0. In order to use certain small-deviation approximations
in examples below, we will set fi;1=	� & 1, but nothing in the model depends on
finely tuning the values of these parameters.

The production rate f2 is assumed to be a fixed function at all periods in all
models. The production function f1 is eligible to change, in period t D 0, into a new
production function

Qf1.s1;t/ 	 .1C �/ f1.s1;t/ ; (2)

for all periods t > 0, with � > 0 a fixed parameter. This change of form is the
game’s representation of successful innovation.10

If firms of type 1 try to innovate in period t D 0, they must consume a quantity
s.cost/ from their stocks s1;t at t D 0. Innovation succeeds with probability � < 1.

9These forms are smoothed versions of a linear production function with a limiting output and
corner solutions, developed by Shubik and Sudderth [6, 7]. Corner solutions provided a convenient
way to truncate discrete-period models to a single period, but in the continuous-time setting, the
smoothed production rate produces a simple decomposition of solutions.
10The form (2) is the smoothed counterpart to a combination of “cost innovation” and “capacity
innovation” in the terminology introduced by Shubik and Sudderth [6, 7]. The rate of production
for s1;t . 1=2 is larger by the factor .1C �/, generating the same output at less input cost. The
saturation level f1;1 likewise increases by the factor .1C �/, so that maximum output capacity
likewise increases. This combination is simpler, for the smoothed production function, than either
cost innovation or capacity innovation alone.
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Firms that attempt to innovate and fail still consume the stock s.cost/, but are left with
the previous production function f1.

5.4.3 The Carry-Forward of Goods by Firms

The carry-forward equation for the working stock si;t held by any firm of type i, at
all values of i and t aside from the innovation event by firms of type-1, is

si;tC�t 6 si;t C fi.si;t/�t � qi;t�t: (3)

The inequality indicates that the working stock could be wasted but cannot increase
except by means of production.

The continuous-time limit is obtained from Eq. (3) by dividing by �t, and
replacing the difference .si;tC�t � si;t/ =�t by the derivative dsi=dt, to obtain a
differential equation relating stocks to flows:

dsi

dt
! fi.si/ � qi: (4)

We return to the definition of firms’ profits after defining the consumption and
trade problem for consumers.

5.4.4 Consumption Utilities in Continuous Time

We first introduce the functional form of utility. As a dummy index, let c1 (without
further subscripts) be the rate of consumption of good-1 by any consumer in any
particular time period, and let c2 be the rate of consumption of good-2, by that
consumer.11 Utility for the period’s consumption must likewise be defined in terms
of a rate in order to permit a well-defined continuous-time limit. The utility rate
is a function of the two consumption rates. In this cascade of models we take the
separable form

u.c1; c2/ D �	 �e�c1=�1 C e�c2=�2
�
: (5)

	 is a constant related to the natural rate of discount, which we define below, needed
to provide the correct dimensions for u,12 and �1 and �2 are two scale factors that
determine the relative price elasticities of the two goods. Note that since c1 and c2

11Thus, in the discrete-period model, the amounts consumed in one period are c1�t and c2�t.
12The absolute magnitude of this constant does not matter for the definition of u.c1; c2/; only the
dimension of a rate is required. We use the rate 	 in the discount factor as this avoids introducing
a further arbitrary parameter.
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are rates, �1 and �2 must likewise have dimensions of rates, since the input to the
exponential function must be a pure number.

From this base form, which is the same for all consumers, we can introduce an
indexed notation for utilities of each of the two types of consumers, in terms of the
goods produced by the firms they own and the goods produced by the firms they do
not own.

For a consumer of type i, we denote by ci;t the rate of consumption of the good
that his own firms produce (now indexing the good relative to the consumer’s type),
and Qci;t the rate of consumption of the good produced by firms of the other type.13

To define a notation that will allow us to refer to agents of either type, denote by ui

the utility rate for a consumer of type i. In terms of Eq. (5), u1;2 are given by

u1.c1; Qc1/ 	 u.c1; Qc1/
u2.c2; Qc2/ 	 u.Qc2; c2/ : (6)

The variables that define any consumer’s state at the beginning of each period are
a supply of money-in-hand mi;t, and in cases where consumers may make deposits
or take out loans with either a central bank or a commercial bank, a balance ai;t at
the bank. The account balance ai;t may be of either sign as long as the conditions on
money and credit permit.

The consumer’s strategic variables within any period are quantities bi;t�t of
money to bid on goods made by the firms of his own type, and Qbi;t�t to bid on
goods of the other type, along with deposits di;t�t to make to the bank. (We refer to
them as “deposits” to define the sign convention for the transfer of money between
the consumer and the bank; if some di;t is negative it is a withdrawal.) Therefore,
like consumption levels, bi;t, Qbi;t, and di;t are denominated as rates.

5.4.5 Market Clearing

The rate at which total bids are made on good i in the buy-sell trading post in any
period t is related to the rates of bidding by the two agent types as

Bi;t D bi;t C QbQ{;t: (7)

The price of good i in period t is denoted pi;t. From the clearing rule for the Dubey-
Shubik buy/sell model [2], it is given by

pi;t D Bi;t�t

qi;t�t
D Bi;t

qi;t
D bi;t C QbQ{;t

qi;t
: (8)

13To express this more didactically,Q is used to indicate exclusion, or opposition in binary sets: Q{
means whichever value in f1; 2g that is not the value taken by index i. Qci indicates the consumption
rate of the good that is not the consumption rate ci.
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The price is defined either as a ratio of per-period bid and offer quantities, or as a
ratio of their corresponding rates, since factors of �t cancel in the ratio. Thus price
level can converge to a regular continuous-time limit if the bid and offer rates do so.

The rates at which goods are delivered to consumers from trading posts are their
consumption rates, which evaluate in the buy/sell game to

ci;t D bi;t

pi;t

Qci;t D
Qbi;t

pQ{;t
: (9)

5.4.6 Profit Rates for Firms and (When Applicable) Commercial Banks

Firms are defined in these games to carry forward goods between periods to use as
working stocks, and thus they have no money expenses.14 Their profits equal their
proceeds from sale. The amount of profit made by a firm of type i in period t is
denoted

�i;t�t D pi;tqi;t�t D �
bi;t C QbQ{;t

�
�t; (10)

in which �i;t is the corresponding profit rate.
Each firm of type i distributes its profits uniformly among consumer/owners

of type i as a source of income for those owners. Since both firms and owners
are indexed on the same continuous interval Œ0; 1�, the rate �i;t at which profit is
delivered by a firm of type i is the same as the rate of income to the consumer of
type i.

The firm’s total discounted profit, which it seeks to maximize, is the sum

˘i D
TX

tD0
ˇt=�t
� Œ�i;t�t � �i;t .si;tC�t � si;t ��tfi.si;t/C qi;t�t/� : (11)

The Lagrange multipliers �i;t enforce the inequality (3), and the profit discount
factor ˇ� is given in terms of the profit rate of discount 	� by

ˇ� 	 1

1C 	��t
: (12)

This is the same 	� used to set a scale in the production rate functions (1), for
reasons explained where these were introduced.

14This construction avoids most of the concerns with corporate financing.
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Bank profits, when they are defined, will be particular to models, so at present
we simply introduce a notation �.B/i;t for the rate of income delivered from bank
profits to owners of type i. In models without banking or without bank profits, this
term is zero. (Recall that commercial banks, when introduced, will be indexed on a
continuous interval Œ0; 1�, but they will distribute profits to two types of consumers,
each type also indexed on an interval Œ0; 1�. Therefore we will need to be careful
with factors of 2 in relating banks’ income to profits delivered to owners.)

From the foregoing definitions and the clearing rules (8), (9), the update equation
for a consumer of type i’s money-in-hand between the beginnings of two successive
rounds is

mi;tC�t D mi;t � di;t�t � �
bi;t C Qbi;t

�
�t C

�
�i;t C �

.B/
i;t

	
�t: (13)

5.4.7 The Consumer’s Utility Maximization Problem

Trading posts and banks both transact in explicitly represented money (whether
gold, fiat, or bank notes). Therefore bids on consumables, and bank deposits, are
limited by a budget constraint, which takes the form for a consumer of type i in
period t

di;t�t C �
bi;t C Qbi;t

�
�t 6 mi;t: (14)

The consumer maximizes a discounted utility across all periods’ consumption
against the sequence of constraints (14) at each period t.

To define terminal conditions for the multi-period game, and to produce a salvage
value for money, we introduce a “day of reckoning” at period t D T C�t, in which
any negative bank balance is penalized with a linear deduction ˘ min .ai;TC�t; 0/

from the total utility. The linear default penalty is enforced by means of a Kuhn-
Tucker multiplier on a finite interval &i 2 Œ0;˘�, as in [9]. We return in Sect. 5.4.9
to discuss information conditions, including when agents know the value of T.

The Lagrangian for the optimization problem of a consumer of type i contains a
discounted sum of utilities from the rates defined in Eq. (6), constraint terms for the
budget constraints, and constraint terms for final conditions. An appropriate form to
produce a regular continuous-time limit is given by

Ui 	
TX

tD0
ˇt=�t

˚
ui.ci;t; Qc1;t/�t C �i;t

�
mi;t � di;t�t � �

bi;t C Qbi;t
�
�t
�

C ˇ.TC�t/=�t&iai;TC�t: (15)

In models where banking does not exist, the terms di;t and aTC�t are omitted. Note
that the factor &iai;TC�t is discounted by ˇ.TC�t/=�t.

We also have not incorporated any terms constraining ai;t at intermediate times,
such as might arise from limits on reserve requirements.
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The per-period discount factor ˇ in the utility function (15) is related to the period
length�t and the natural rate of discount 	 by

ˇ 	 1

1C 	�t
: (16)

This convention leads to regular limits for the utility in continuous time. The
increment �t becomes a measure dt, and the sum over index t becomes an integralR

dt. The integrand will be a function only of rate-valued quantities, which in
the continuous-time limit take piecewise-smooth trajectories. The ratio mi;t=�t
must likewise scale as a rate-valued quantity, which has the interpretation of the
contribution from an agent of type i to the velocity of money, as the money supply
scales linearly toward zero with �t.

5.4.8 The Consumer’s Bank-Balance Dynamics

The first two banking models demonstrated here permit unlimited revolving loans.
Technically this means two things. The first is that the bank keeps an account,
the balance of which is updated at a pre-specified interest rate within each period.
The second is that the amount consumers deposit or withdraw is an unconstrained
variable, apart from the penalty on unrepaid bank debts in the terminal conditions.

The bank’s carry-forward equation for accounts it thus

ai;tC�t D .ai;t C di;t�t/ .1C 	B;it�t/ : (17)

Deposits or withdrawals are made at the beginning of the period, and interest accrues
at a rate 	B;it.15

The bank may lend or accept deposits at different rates, in which case the interest
rate for either type i is a function of time, evaluated to equal a lending or borrowing
rate according to the rule

	B;it D
(
	B;L if ai;t < 0

	B;D if ai;t > 0:
(18)

To regularize the discontinuity at at D 0, we may adopt some convention such as
	B;t D .	B;L C 	B;D/ =2.16 For a central bank acting as a public service, there is no

15Many alternative rules are well-defined: interest on deposits could accrue one period later than
interest charged on loans, etc. Nothing depends on the intra-temporal order of interest charges and
payments, in the continuous-time limit.
16Under conditions when the bank is actively used, at D 0 occurs only on time intervals of measure
zero, so the results are not sensitive to the way the interest rate is regularized. Because, in this
model, we assume initial conditions prior to the accumulation of bank balances, it is convenient
to choose a regularization condition that will be consistent with the other simplifying assumptions
made in the model.
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need for interest rate spreads, but for a commercial bank a spread 	B;L � 	B;G > 0

will generally be required.
Using the money carry-forward relation (13) to express di;t in terms of the bids,

profits, and changes in agents’ money-holdings, the account-balance carry-forward
relation (17) may be written

ai;tC�t

.1C 	B;it�t/
D ai;t � .mi;tC�t � mi;t/�

�
bi;t C Qbi;t

�
�t C

�
�i;t C �

.B/
i;t

	
�t: (19)

Using Eq. (10) for firms’ profits, dividing Eq. (19) by �t, and then taking �t !
0 produces the continuous-time expression for the bank balance in relation to the
money-in-hand mi of17

�
d

dt
� 	B;i

�
ai ! �QbQ{ � Qbi

� � dmi

dt
C �

.B/
i C O.�t/ : (20)

5.4.9 Terminal Conditions

The handling of terminal conditions in a class of extended-time games of this
form, with lending at interest, a small number of events that can occur, and no
stochasticity, is generally a somewhat artificial exercise as a model of decision
making in real economies. On one hand, the attempt by consumers and firms to
converge to a steady state that permits long-term regular behavior, and the degree
to which monetary flexibility permits or impedes that attempt, is the aspect of
decision making that the model probably captures robustly. On the other hand,
the specification of terminal conditions is a requirement from the standpoint of
experimental gaming, and this generally rules out a steady state. The artificial
feature of a model that requires cancellation of all debts at a finite horizon, in an
economy that has structurally changed in the interim in such a way that revolving
debt permits it to accommodate the change, is that exponential growth of account
balances can lead to sensitive and arbitrary coupling of terminal conditions to
otherwise-negligible differences in interior solutions. A continuum of solutions to
the first-order conditions exist with utilities and profits that differ by exponentially
small factors in 	�T, but which involve very different response of the production
decisions at the terminal conditions.

We resolve these ambiguities by making use of the following observation to
single out the class of non-cooperative equilibria that robustly separate the responses
to initial and terminal conditions in a non-arbitrary manner. These games possess
non-cooperative equilibria that could be called “turnpike solutions”. Consumers and

17The residual terms at O.�t/, which we denote explicitly despite the fact that they approach zero
as �t ! 0, come from time lags between the making of bids and the delivery of profits. As long
as the rates are continuous (differentiable at order one) functions, these effects contribute terms
� .dbi=dt/ �t in Eq. (20).
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firms, after a transient that occupies an interval in 	� t much smaller than 1, can
converge exponentially (in 	� t) toward stable production, trade, and consumption
values that can be preserved indefinitely. In general, these solutions require non-
zero bank balances, as some agents lend to others, with interest flows supporting
asymmetries in their consumption that reflect the real structural changes in the
production sector. These steady-state values are the turnpike values. The games also
possess a class of unstable solutions, in which firms exponentially diverge from the
turnpike values, depleting or hoarding stocks in response to exponentially diverging
price levels created by consumer bidding, as consumers re-direct their money to
return their bank balances to zero. The diverging solutions cannot be extended
indefinitely because they become singular, so they never occur at intermediate times.
They can be chosen, however, to accommodate a terminal condition that eliminates
all debts to the banks. The turnpike solutions require a specific coordinated price-
setting behavior by the two types of consumers, and of production decisions by the
two types of firms (all of which can be computed non-cooperatively by each group
of agents), in order that neither aggregate nor internal debt exist at the terminal time.

In addition to the turnpike solutions, a continuum of other solutions exist, in
which very small uncanceled aggregate debts can grow exponentially, and require
different behavior by the two types of consumers and the two types of firms, relative
to turnpike solution, to cancel aggregate as well as internal debt. The final behavior
of the agents in these solutions is sensitive to uncanceled aggregate debts that may
be of order e�	�T at the end of transient response to the initial conditions, and which
constitute arbitrarily small deviations from the pure turnpike solution.

To isolate the turnpike solutions, the agents are not told the time T of the terminal
round at the beginning of the game. Instead, they are told that, in each period �t,
a binary variable will be sampled. The first time t at which the variable equals
1, the terminal round will be announced to occur at a specified later time, such
as T D t C 5=	� (so five times the discount horizon, out from the present). The
probability to draw value 1 is made sufficiently small that the values of T will be
Poisson distributed with a mean much longer than the discount horizon 1=	� . This
look-ahead declaration provides sufficient time to implement the terminal behaviors
starting from time t, with utility consequences of differing from the turnpike solution
that are bounded above by O

�
e�.T�t/	�

�  O
�
e�5

�
. (We choose the look-ahead

horizon t C5=	� for convenience in examples below; this number may be chosen as
large as desired to decouple the initial terminal intervals to any desired degree.)
As long as the error e�.T�t/	� is made � �t	� , it is a smaller correction than
finite-period discretization effects that we are ignoring. Players who solve the initial
transient to converge to the turnpike produce a solution that is within O

�
e�.T�t/	�

�
of any non-cooperative equilibrium solution for any large T. Any non-cooperative
equilibrium not converging to the turnpike could be one of a range of exact solutions
for a particular T, but which solution this would be would depend on aggregate debt
levels of O

�
e�.T�t/	�

�
, and the initial part of this trajectory would differ from any

non-cooperative equilibrium, for any terminal time different from T by more than
O.1=	�/, at more than O

�
e.T�t/	�

�
.
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We will not develop the full machinery of expected-utility maximization in
this note, but will simply compute properties of the turnpike equilibria, with
the understanding that all deviations from these by more than O

��e.T�t/	�
�

are
incompatible with existence of any non-cooperative equilibrium over ranges of T
where the terminal-condition sampling has large probability, and so will be ruled
out by any generic expected-utility maximization.

We believe that this minimal use of a stochastic variable yields the kinds of
solutions that would arise in an actual economy where money and banking are
available to facilitate regular events of structural change in the production sector,
and in which agents carry persistent debt and respond to new events of innovation
by changing their debt structure as these arise, in ongoing sequences. The addition
of specific finite-horizon debt could, of course, be introduced as a qualitative
modification to these games, but it should then be justified by other criteria (lenders’
limitations, etc.) besides the question whether a flexible money supply can alleviate
constraints on the circular flow of funds, which is the topic addressed by the current
class of games.

5.4.10 The Leading Contributions in .�B	t/ to the Time-Course
of Monetized Private Credit and the Net Account Balance
of Agents at the Bank

Now for the first time we may use small but nonzero�t to distinguish the behavior
of two components of the credit supply. One component comes from lending
effectively by one type of consumers to the other, mediated by the bank. Promises
to pay by consumers (enforced by the default penalty at the day of reckoning) are
privately issued credit. Banks’ promises to pay (whatever interest plus principle
accrues) are met with bank credit. The part of loans and deposits that cancel among
the consumers are effectively private credit from one group to another, monetized
by the bank when it accepts private promises to pay and issues bankers’ promises
to pay. The part of loans or deposits that does not cancel when consumers are
aggregated is the net injection or extraction of money in circulation. Injected money
is also in the form of bank credit, while extraction may be whatever form of money
was given to the consumers in the initial conditions. The two coordinates we use to
represent intra-economy lending, and aggregate-economy lending, are respectively
.a1;t � a2;t/ and .a1;t C a2;t/.

In a continuous-time model with regular prices, the supply of money in circu-
lation scales as O.�t/. If banking is to leave prices regular, the change in money
supply, driven by the sum of balances .a1;t C a2;t/, must also scale linearly in O.�t/.
In contrast, as we show now, the monetized private credit will normally scale as
O.1/ in economies operating at or near monetary efficiency. Thus some agents
have outstanding, at any time, debts that are larger by O.1=�t/ than all money
in circulation.
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Personal Credit Monetized by Bank Accounting

From Eq. (20), the equation for .a1;t � a2;t/ is

�
d

dt
� .	B;1 C 	B;2/

2

�
.a1 � a2/ ! 2

�Qb2 � Qb1
�

C .	B;1 � 	B;2/

2
.a1 C a2/

� d .m1 � m2/

dt
C O.�t/ : (21)

As long as both .a1 C a2/ and d .m1 � m2/ =dt are O.�t/ like the terms that have
been dropped—a requirement if prices are not to diverge in the continuous-time
limit—any O.1/ contribution to .a1 � a2/ can only come from the term in

�QbQ{ � Qbi
�
.

Reducing Eq. (21) to quadrature gives the expression for the credit monetized by
the banks within the economy,

a1;t � a2;t
2

D
Z t

0

dt0 e
R t

t0 dt00.	B;1t00C	B;2t00/=2
�Qb2;t0 � Qb1;t0

�C O.�t/ : (22)

To determine the conditions under which these bank balances can approach a
steady state turnpike solution that can extend indefinitely, we integrate Eq. (22) by
parts to obtain the equivalent expression

a1;t � a2;t
2

D e
R t
0 dt0.	B;1t0C	B;2t0/=2

( �Qb2;0 � Qb1;0
�

.	B;10 C 	B;20/ =2

C
Z t

0

dt0 e�
R t0

0 dt00.	B;1t00C	B;2t00/=2
d

dt0

�Qb2;t0 � Qb1;t0
�

.	B;1t0 C 	B;2t0/ =2

)

�
�Qb2;t � Qb1;t

�
.	B;1t C 	B;2t/ =2

: (23)

Section “Steady Post-Innovation Output and Stable Money Supply Lead to Stable
Bid Levels” in the Appendix shows that the intermediate-time bids

�Qb2;t0 � Qb1;t0
�

converge on steady values as long as the money supply is asymptotically constant,
which is the condition for a non-inflationary solution.18 Hence the time derivative
in the integral in Eq. (23) approaches zero for t0 sufficiently large. We return in

18Without uncertainty it calls for the rate 	 defining the utilitarian rate of discount in Eq. (16) to
equal the average of the two interest rates faced by the agents, as shown in Eq. (42) below. (In
the worked example of the following sections, this will be the average of the borrowing and the
lending rates.) With uncertainty there is a delicate correction depending on the variance.
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Sect. 6.2.3 to the way this solution connects to a terminal transient that returns both
of .a1;t ˙ a2;t/ to zero as t ! T.

The relation (23), which at large t is exponentially well-approximated by the
vanishing of the term in curly braces, determines O� from Eq. (31) and Eq. (30).19

Because this equation is homogeneous of order one in the numéraire, it is not
necessary to know the overall magnitude of the money supply to determine O�.

Aggregate Debt and Change in the Money Supply

The mechanism by which banks may change the money in circulation is lending
to or accepting deposits from consumers at interest. For example, consumers may
borrow an initial stock of money following the event in which innovation occurs,
and over the course of restoring the principle to zero so that the money-in-circulation
converges to a steady value, they pay some quantity of aggregate interest.

Summing Eq. (20) over both agent types gives the equation for .a1;t C a2;t/:

�
d

dt
� .	B;1 C 	B;2/

2

�
.a1 C a2/ ! � d

dt
.m1 C m2/

C
�
�
.B/
1 C �

.B/
2

	
C .	B;1 � 	B;2/

2
.a1 � a2/ :

(24)

In models with interest rate spreads, we face the possibility that the term in
.	B;1 � 	B;2/ in the second line of Eq. (24) could destroy the stability of prices by
coupling the quantity .a1 � a2/ which is O.1/ to the change in the money supply
which must scale as O.�t/ for prices to be stable. In appropriately defined models
this potential instability will be avoided, because the total profits from commercial

banks
�
�
.B/
1 C �

.B/
2

	
will be a revenue � .	B;1a1 C 	B;2a2/, minus a stream paid to

the central bank. As long as the stream to the central bank remains at O.�t/, the
remaining revenue stream recirculates, canceling the term .	B;1 � 	B;2/ .a1 � a2/ =2
to within O.�t/. Any component of � .	B;1a1 C 	B;2a2/ that is O.1/ is also assured
to be positive, because it can only come from a difference .a1 � a2/ that is O.1/,

19 When the term in curly braces is exactly zero, the late-time steady-state relation becomes
�
	B;1t C 	B;2t

�
2

�
a1;t � a2;t

�
2

D �Qb2;t � Qb1;t� :
This expression is simply the interest paid to agents of type-1, plus their share of bank profits
when profits are defined, which balances the deficit in the profits of type-1 firms relative to the bids
made by type-1 agents (who will consume more). Thus a consistent circular flow is restored in the
asymptotic steady state, in a context of asymmetric production, profits, depositing/borrowing, and
consumption.
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and the lending rate (on the negative account balance) will be higher than the rate
on deposits (the positive balance).

The simplest case will be 100 % reserve banking, in which any aggregate
loans a commercial bank makes to consumers cannot exceed supplies of “heavy
money” the commercial bank borrows from the central bank and holds as
reserves. In that case the total profit stream of the commercial bank takes the
form

�
.B/
1;t C �

.B/
2;t D 	C;t .a1;t C a2;t/ � .	B;1ta1;t C 	B;2ta2;t/ ; (25)

where 	C is the interest rate charged by the central bank.
Substituting this into Eq. (24) gives

�
d

dt
� 	C

�
.a1 C a2/ ! � d

dt
.m1 C m2/ : (26)

Note that, if there is no commercial bank, and the consumers borrow from or deposit
into the central bank directly, Eq. (26) results directly from Eq. (24).

In the simplifying case where 	C is constant, Eq. (26) is integrated to give the
result

.a1;t C a2;t/ D e	Ct



.a1;0 C a2;0 C m1;0 C m2;0/�

Z t

0

dt0 	Ce�	Ct0 .m1;t0 C m2;t0/

�

� .m1;t C m2;t/ : (27)

Both in the model with only a central bank, and in the model with a com-
mercial bank using 100 % reserves, we will set ai;0 D 0 as initial condition, and
.m1;0 C m2;0/ 	 2m0 to define the initial money supply. Agents may borrow an
amount of money that scales as � m0 from the bank in the period t D 0 when the
innovation event occurs, changing both the initial money supply and the initial debt
abruptly. Under any such borrowing, however, .a1;t C a2;t C m1;t C m2;t/t!0C

D
.a1;0 C a2;0 C m1;0 C m2;0/. Therefore both the initial value and the integral in
Eq. (27) involve no singular terms even in the continuous-time limit.

The vanishing of the steady-state principle � .a1;t C a2;t/ owed by the
agents to the banks in Eq. (27) determines the initial borrowed amounts
.m1;t C m2;t/t!0C

� 2m0 D � .d1;0 C d2;0/�t, because these set the scale for
the quantity .m1;t0 C m2;t0/ in the integral and the final term .m1;t C m2;t/ relative to
the initial term .a1;0 C a2;0 C m1;0 C m2;0/ D 2m0, which is fixed. The vanishing
of the term in curly braces in Eq. (27), taken as t ! 1, given a value of O� fixed
by vanishing of the similar term in curly braces in Eq. (23), defines the turnpike
response to the initial shock created by the innovation opportunity and the need to
borrow.
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5.5 First-Order Conditions

5.5.1 The Consumer’s Goods-Consumption Problem

The first-order condition for consumption results from variation of bi;t and Qbi;t in
Eq. (15), and takes the form

1

pi;t

@ui

@ci;t
D 1

pQ{;t
@ui

@Qci;t
D

TX
t0Dt

ˇ.t
0�t/=�t�i;t0 : (28)

Irrespective of how the Kuhn-Tucker multipliers for these constraints are set,20

the ratios of first-order conditions (28) imply relations of relative consumption
between the two types of agents, who purchase against a shared price system. In
the remainder of this sub-section, we suppress the explicit time index, because the
relations hold period-by-period at each t.

The two ratios of marginal utilities of consumption are both given in terms of
prices by

@u1=@c1
@u1=@Qc1 D p1

p2
D @u2=@Qc2
@u2=@c2

: (29)

To solve for the consequences of this relation, we introduce a pair of coordinates to
relate the consumption of the two types of agents to the offer levels qi;t. Define

c1 	 q1
2

C �1 Qc2 	 q1
2

� �1

Qc1 	 q2
2

C �2 c2 	 q2
2

� �2: (30)

The model choice of a separable exponential utility (5) leads to the result that the
offsets �1;2 from even division for the two goods are in a fixed proportion determined
by the relative elasticities,

�1

�1
D �2

�2
	 O�: (31)

The output rate qi will always appear scaled by the factor �i in the utility, so we
introduce a shorthand

Oqi 	 qi

�i
: (32)

20These multipliers are always nonzero, as the budget constraint is always tight.
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Because prices are ratios of total bids to total outputs, Eq. (29) together with the
condition (31) implies that

B1
B2

D Oq1e�Oq1=2
Oq2e�Oq2=2 : (33)

The relation of the bid level for either good to the total money supply is then

Bi

B1 C B2
D Oqie�Oqi=2

Oq1e�Oq1=2 C Oq2e�Oq2=2 : (34)

Therefore prices are given in relation to the total money rate of circulation B1CB2 by

pi D 1

�i

e�Oq1=2

Oq1e�Oq1=2 C Oq2e�Oq2=2 .B1 C B2/ : (35)

5.5.2 Consumer’s Banking Problem (When Applicable)

If the economy is one in which borrowing and lending are possible, a second
condition for deposits or withdrawals results from variation of di;t. It there is no limit
on consumers’ account balances, the only two classes of Kuhn-Tucker multipliers
come from the per-period budget constraint (�i;t) and the terminal conditions (&i).21

The first-order condition for deposits is then

TX
t0Dt

ˇ.t
0�t/=�t�i;t0 D &i

TY
t0Dt

Œˇ .1C 	B;it0�t/� : (36)

Combining Eq. (28) with Eq. (36), and taking �t ! 0, we arrive at the
continuous-time relation among prices, output, interest rates, and a single Kuhn-
Tucker multiplier for the terminal constraint:

1

pi;t

@ui

@ci;t
D 1

pQ{;t
@ui

@Qci;t
! e

R T
t dt0.	B;it0�	/&i: (37)

Using the relations (29), (30), which hold at each time, we can evaluate the
consumption first-order conditions (37) for the two types explicitly, to give

1

p1;t�1
e�Oq1;t=2 D 1

p2;t�2
e�Oq2;t=2 ! eO�tC

R T
t dt0.	B;1t0�	/&1

	
;

21If bounds were placed on the account balances, additional multipliers could arise within each
period as shadow prices associated with these constraints.
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1

p1;t�1
e�Oq1;t=2 D 1

p2;t�2
e�Oq2;t=2 ! e�O�tC

R T
t dt0.	B;2t0�	/ &2

	
: (38)

The consumption asymmetry O� must then satisfy

O�t D O�T � 1

2

Z T

t
dt0 .	B;1t0 � 	B;2t0/ : (39)

The Kuhn-Tucker multipliers for the two types of agents are related to the final-time
value O�T as

eO�T&1 D e�O�T&2 	 &: (40)

A Note on the Setting of the Default Penalty

We will show that, in general, O�T cannot equal zero, because consumers of different
types have different incomes and consume at different levels. Therefore the shadow
prices &1 and &2 cannot both be equal; hence, even in a game with artificially
fine-tuned parameters, they could not both be set equal to the limiting value ˘ of
the default penalty. Interior solutions can therefore only be obtained when at least
one of &1 < ˘ or &2 < ˘ holds, and when both a1;T D 0 and a2;T D 0. This
permits us to set ˘ “sufficiently large” that both &1 < ˘ and &2 < ˘ , and to
consider interior solutions without default and also with no savings at the day of
reckoning. These two requirements define the terminal conditions for interior solu-
tions with banking. We will illustrate their consequences for prices and production
in Sect. 6.2.3.

The pair of first-order conditions (38) evaluate to a relation between the two
prices and output levels to a single multiplier & (jointly determined by the agents’
non-cooperative equilibria) and the (possibly time-dependent) interest rates of the
two types:

1

p1;t�1
e�Oq1;t=2 D 1

p2;t�2
e�Oq2;t=2 ! e

R T
t dt0Œ 12 .	B;1t0C	B;2t0/�	� &

	
: (41)

It was necessary that the relation between the output level of either good and its
price in Eq. (41) be the same for the two goods, because by Eq. (35) either of these
equals a relation between both output levels and the total money supply. Combining
the two equations gives

Oq1e�Oq1=2 C Oq2e�Oq2=2
B1 C B2

! e
R T

t dt0Œ 12 .	B;1t0C	B;2t0/�	� &
	
: (42)
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Taking logarithms, and then differentiating with respect to t, then gives the relation
between outputs, money supply, and interest rates

d

dt
log

 
Oq1e�Oq1=2 C Oq2e�Oq2=2

B1 C B2

!
D
�
	 � 	B;1 C 	B;2

2

�
: (43)

5.5.3 The Firms’ Output Levels in Response to Prices

Firms attempt to maximize profits (11) in which the price sequences pi;t appear as
parameters from Eq. (10).

Firms may respond to prices in either of two ways. Either

pi;t 6 �i;t; (44)

and they set qi;t ! 0, or else qi;t > 0, and

�i;t��t D �i;tˇ�
�
1C f 0i .si;t/

�
(45)

The former case can be realized by successfully-innovating firms in the early
periods following innovation, in which they are better off to sit out of markets
and rebuild their working stocks, while the type-1 firms that attempted to innovate
and failed, provide the total supply in markets. Firms that failed in innovating can
maintain market prices lower than the reservation prices of the successful firms,
because their steady-state allocations at late times are not as high (we demonstrate
this below), so that using their entire output to rebuild stocks is not as valuable to
them as it is to the successful firms.

In the latter case, faced by all firms at sufficiently late times, by the type-1 firms
that try and fail to innovate, and by all type-2 firms all the time, these firms optimize
their output against the particular sequence of prices.

The recursive relation (45) among K-T multipliers becomes, in the continuous-
time limit,

�i;t D �i;T e
R T

t dt0Œf 0

i .si;t0/�	� �: (46)

When pi;t D �i;t, Eq. (46) dictates an intertemporal relation between prices and
output which is the consequence of the profit-maximization criterion.

Setting pi;t D �i;t in Eq. (46), combining this with the consumers’
price/output/interest relations (41), taking logarithms, and differentiating with
respect to t, produces a three-way relation among output levels, the stocks of all
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firms that are active offering in markets, the interest rates faced by consumers of
both types, and the total money supply, in the form

d

dt
log

 
Oq1e�Oq1=2 C Oq2e�Oq2=2

B1 C B2

!
D �1

2

d

dt
Oqi C �

f 0i .si/� 	�
�

D
�
	 � 	B;1 C 	B;2

2

�
: (47)

The equality in the second line applies only in the case that consumers set prices by
varying the money in circulation through borrowing and lending.

5.5.4 Equation (47) Is the Main Relation

Equation (47) is the main relation that links output decisions by firms to the
dynamics of the money supply. The right-hand side of the first equality is a
second-order differential response function of the working stocks and aggregate
output of firms of a given type, to a source term (the left-hand side of the first
equality) which involves the output levels of both goods, and the total money supply
.B1;t C B2;t/. The Oqi on the right-hand side represents a total output variable,22 and
originates in the separable exponential utility of consumption (5). In this respect
the separability between the left and right-hand sides in an exact relation depends
on the specific assumption of exponential utility, which we introduced in order to
make the production/consumption model a sharp test case for monetary efficiency.
If the second equality in Eq. (47) applies, it determines both the dynamics of the
total money supply, and the source term for output decisions, in terms of the
interest rates faced by the two kinds of consumers in relation to the natural rate of
discount.

Working stock and output decisions for both firms are coupled to the same
source term which is an aggregate property of the whole economy. Moreover, the
production decisions in the two sectors are independent of one another except for
this shared source term, and except for any initial and terminal conditions created,
respectively, by the innovation-induced shock to the supplies of working stocks, and
the requirement to nullify bank debts on the day of reckoning. The form imposed on
these equations by a particular monetary system therefore determines whether that
system can insulate production decisions in the two sectors from one another, and if
it cannot, the manner and strength with which they are coupled.

22This term must be corrected with a measure term to relate it to individual firms’ output levels if
not all firms are active in markets, as we show below.
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5.5.5 The Criterion of Monetary Efficiency

We may thus sharply define the criterion for efficiency of the monetary system.
If the banking system makes the supply of money in circulation sufficiently
flexible that the money supply .B1;t C B2;t/ can exactly track the numerator term�

Oq1e�Oq1=2 C Oq2e�Oq2=2
	

, then the production decisions in the sectors for good-1

and good-2 are completely decoupled. Supply shocks in one sector do not affect
production in the other. Scale in the overall economy has been separated from
the structure of production and consumption, with the result that intertemporal
coordination of production may be optimized for each good through a price
system, delivering the same production profiles as if the two goods occupied two
separate economies. Note that, in economies with banking, this is possible only if
	 � .	B;1t C 	B;2t/ =2 is constant.

Although production decisions are decoupled in an efficient economy, the relative
consumption levels of both types of agents, for both goods, may become responsive
to the innovation shock because their relative incomes differ due to the dependence
of profit rates �i;t on supply rates qi;t, even in cases where the two price systems are
decoupled.

The feature that production rates are coupled only through the total money supply
and not through its instantaneous distribution depends on the exponential utility (5),
through the cancellation (31) of .�1=�1 � �2=�2/. This kind of modeling choice is
similar in spirit to the choice of strictly symmetric production technologies in the
one-period models of [8]. It is a minimal form that permits the many functions of the
price system as a separating hyperplane to be performed independently. The overall
production sector is separated from the dynamics of consumption due to wealth
effects by one variable (the total money supply), whether or not the production
decisions by firms of different types are also separated from each other.

5.5.6 Expansions in Small Deviations About the Fixed-Point Production
Rate

In order to produce simple approximate demonstrations of the behavior of models in
this class, we consider innovation shocks that are small compared with background
stock and production levels, and evaluate responses to leading order in small
perturbations.

The steady-state condition for production stocks, with production function fi and
embedded in an economy with steady prices, is given by Eq. (46) as

f 0i .Nsi/ 	 	�: (48)

Whenever all firms of type i are offering in markets, the offer rate equals the total
output rate for good i, so we can abuse notation and use qi;t for both quantities. If
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only a measure .1 � �/ of firms are offering in markets, then the output level per
firm equals .1 � �/ times the offer rate of the active firms.

The offer rate is approximated at leading linear order in small departures si�Nsi by

qi  fi.Nsi/C
�

f 0i .Nsi/ � d

dt

�
.si � Nsi/ D Nfi C

�
	� � d

dt

�
.si � Nsi/ : (49)

The first-order expansion for the marginal productivity appearing in Eq. (46) is

f 0i .si/� 	�  f 00i .Nsi/ .si � Nsi/ 	 Nf 00i .si � Nsi/ : (50)

Using Eq. (49) to approximate qi, and Eq. (50) to approximate the marginal
productivity, in the first line of Eq. (47) gives

d

dt
log

 
Oq1e�Oq1=2 C Oq2e�Oq2=2

B1 C B2

!
 �i

2�i

d

dt

�
d

dt
� 	�

�
.si � Nsi/C Nf 00i .si � Nsi/ (51)

Here we have introduced a measure term �i, which equals unity when all firms of
type i are active in markets, and equals .1 � �/ in the case when a measure � of
type-1 firms that have successfully innovated are sitting out of markets.

The right-hand side of Eq. (51) is a linear second-order differential response
function, which means that the responses to different source terms or within
different time intervals can be constructed independently and added to produce the
full solution for .si � Nsi/. Complex matching conditions only arise at points where
the solution for the non-cooperative equilibrium changes structure in some way, as
when a subset of firms first enters markets, or when a type of consumers switch from
being borrowers to being lenders. These are economically meaningful changes that
only occur at a few points in a continuous time interval corresponding formally to
an infinite number of periods (each of infinitesimal duration), in contrast with period
boundaries in discrete-period models, which create complex matching conditions in
every period. This feature explains our statement that the continuous-time limit may
be seen as one in which the model period length does not reflect an economically
significant timescale, and therefore should not affect the structure of solutions.

6 Example Solutions

6.1 Exchange with Gold Money Only

In a gold economy without banking or any other reserve supply of gold, the
circulation rate .B1;t C B2;t/ is constant in every period. Consumers spend all money
in their possession. Therefore the time derivative on the left-hand side of Eq. (47)
cannot be zero if q1;t experiences the shock of the investment in innovation. The
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production decisions of the two goods that can appear on the right-hand side of
Eq. (47) must be coupled. The failure of decoupling—which defines our criterion
of optimal monetary performance—is the main result which shows that gold or
any money with fixed supply provides poor support to an exchange economy
in which the production functions and consumption utilities could otherwise be
optimized separately. It is another realization of Schumpeter’s general observation
about difficulties in breaking the circular flow of funds.

6.2 Innovation and Recovery in Utopia

Having established in Sect. 6.1 that a fixed money supply couples the shock in
good-1 to production decisions in good-2, we now consider the opposite case of
banking that creates any required level of bank money and monetized private credit,
to show that such a system can realize the ideal efficiency of decoupling the two
production sectors by making the left-hand side of Eq. (51) equal zero. We call this
economy “Utopia” because the constraint-functions of money and default penalties
serve to coordinate the efficient allocation of goods, but money has no other explicit
utility. Banking is likewise a public service, with the policy objective of maximizing
monetary efficiency, no requirement for strategic action, and thus no need to produce
profits.

6.2.1 Consumer Lending and Borrowing with a Central Bank
that is a Strategic Dummy

A minimal bank for the Utopia model is an atomic central bank, which is a strategic
dummy. It produces any desired quantity of central-bank credit (or effectively
distributes government fiat), which is accepted in trading posts on par with gold,
and it provides accounting services for both its own debt and private debt without
cost. Its behavior is defined by two parameters, the central-bank interest rate 	C and
the default penalty ˘ , which we take to be sufficiently severe to support whatever
shadow price on consumption is required for solutions without strategic default.

The following two subsections show numerical solutions for 1) the initial
transient that converges to the turnpike steady state with fixed bank balances and
part of the circular flow conducted through interest payments, and 2) the terminal
divergence from the turnpike that cancels bank balances.

The Utopia solution fully decouples the two production sectors only during
the initial transient from the innovation shock to the long-term turnpike solution.
The terminal transient, combined with a requirement (forced by our probabilistic
announcement of the terminal time T) for agents to converge to the turnpike, breaks
the decoupling of the two sectors. In order to cancel the intra-economy debts by one
type of consumers to the others, without incurring a net debt of the consumers to
the central bank, both types of consumers must bid in a way that induces both types
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of firms to alter their output levels, rather than just type-1 firms that experienced the
innovation opportunity.23 This is an economically appropriate solution property: the
conditions of production are permanently changed in this economy; if the terminal
conditions require the termination of bank loans under such changed production
conditions, they cannot avoid distorting production because they create a condition
of inflexible money supply and distribution. However, this distortion is limited to
a finite horizon before the day of reckoning, and decouples from the main solution
property of buffering the circular flow of funds.

6.2.2 Initial Transient: From the Innovation Shock to the Turnpike

The first-order conditions in Utopia begin with the general solutions derived in
Sect. 5.5.

In order to permit a non-inflationary/non-deflationary price system, the central
bank interest rate must be tuned relative to the utilitarian discount factor ˇ D
1= .1C 	�t/ so that

ˇ .1C 	C�t/ ! 1; (52)

or 	C D 	. Since the central bank is a public good, and the rate of discount is known,
this is consistent with other assumptions of fine-tuning that define Utopia.

The parameter O� determining the asymmetry in consumption by Eq. (30), (31) is
constant in this model, and determined by the turnpike condition, which is vanishing
of the two terms in curly braces in Eq. (23) and (27) for t ! 1.

The shadow price on money from consumer purchases of goods is determined
from Eq. (42), in the case where borrowing and lending rates are equal and both
equal 	C D 	. Since .B1;t C B2;t/ D .m1;t C m2;t/ in steady-state where outputs
take their stationary production values (set by f 0i .si/ D 	� ), the shadow price is then
given by

Oq1e�Oq1=2 C Oq2e�Oq2=2
B1 C B2

D &

	
: (53)

23A continuum of solutions to the first-order conditions exists, in which the type-1 and type-2 firms
deplete or hoard stocks in differing degrees so as to cancel the intra-economy debt

�
a1;T � a2;T

�
.

This continuum includes a solution in which the type-2 firms continue to produce at the pre-
innovation level, so they are buffered at all times. That solution, however, does not lead to a net
aggregate balance

�
a1;T C a2;T

� D 0, if
�
a1;t C a2;t

�
starts from a zero aggregate balance at t� T.

Therefore the solution with s2;t D Ns2; 8t can only be reached by leaving a finely tuned non-zero
aggregate balance

�
a1;t C a2;t

�
of O

�
e�.T�t/	�

�
at early times t following the transient. Such an

initial condition would lead to a different terminal solution than (s2;t D Ns2; 8t) at any slightly
different value for T, and would be incompatible with any non-cooperative equilibrium solution at
a value of T differing by more than O.1=	� / from the value for T which

�
a1;t C a2;t

�
was tuned.
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The constancy of this ratio (equal to a constant shadow price), in Eq. (47),
together with the initial condition s2;tD0 D Ns2 then gives s2;t D Ns2; 8t as the unique
turnpike solution, completing the proof that banking in Utopia buffers production of
good-2 from the innovation shock in good-1.

A similar evaluation, starting from Eq. (41), produces the relation between prices
and output levels in Utopia of

1

p1;t�1
e�Oq1;t=2 D 1

p2;t�2
e�Oq2;t=2 ! &

	
: (54)

A Numerical Example

The following example evaluates the integrals (22), (27) and non-cooperative equi-
librium conditions from in the preceding sections, to show how the characteristic
recovery structure following innovation is realized and determines the monetary
properties of the economy.

Input parameters are: asymptotic production rate f1;1=	� D 2; �1=	� D 1=2;
the probability of success for firms that try to innovate is � D 1=5; the innovation
cost j D 0:1, and the innovation output multiplier � D 1=5. For convenience, to
avoid introducing new parameters, we set f2;1 D f1;1 and �2 D �1. The pre-
innovation steady-state of supply is therefore Oq1 D Oq2 D .f1;1 � 	�=2/ =�1 D 3.
Section “Solutions for the Utopia Economy” in the Appendix computes details of
the time constants and structure of the recovery trajectories.

The natural timescale in the model is set by the profit rate 	� , which determines
the dynamics of production stocks and output levels by Eq. (47). Since revolving
loans are permitted in any amount that agents demand, the bank interest rate 	C

does not determine a dynamical timescale, though it does affect the quantities of
borrowed money. For simplicity in the numerical example we also set 	C D 	� .

The asymmetry of consumption (30), (31) generated by the non-cooperative
equilibria of this game as a consequence of innovation evaluates numerically to
O�  0:0075751. Relative to the similarly scaled pre-innovation rates of production
Oq1 D Oq2 D 3, O� provides a measure of the utilitarian asymmetry introduced by
innovation in one good.

Properties of the solution are shown in the following series of figures.

The Two-Stage Recovery Involving Stocks of Successful and Failed Innovators

Figures 1 and 2 show that the type-1 firms undergo a two-stage recovery following
the innovation event. Before period t D 0, all type-1 firms are equivalent, so
when the average outcome of innovation leads to higher output, all firms attempt
to innovate. The fraction .1� �/ that fail continue to offer goods at market in all
periods t > 0, and in an initial interval their offer rates exceed their production rates,
so they deplete their working stocks s.�/1 . The profit incentive for this strategy comes
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Fig. 1 The two-stage recovery associated with the cost and risk of failure in innovation. Firms
of type-1 that try to innovate and fail follow recovery trajectories s.�/

1 (blue) that initially deplete
stocks while offering at an unsustainable rate in order to capture market share, by keeping prices
below a level at which successful firms are willing to enter. When the stocks s

.C/
1 of successful

firms (green) have grown and their shadow prices have decreased to equal market prices, both
firms switch to offering at sustainable rates and converge with a fixed offset toward their late-time
steady states (respectively red and cyan). Because of the choice (1) of functional form for fi, the red
curve is also the stock level Ns2, which is unaffected by innovation. Left-hand panel shows recovery
over a long interval; right-hand panel gives a close-up of the interval following the innovation
event

Fig. 2 Same timeseries as Fig. 1 with time 	� t shown on log scale to make the initial phase more
visible and to compress the subsequent recovery phase

from maintaining a price below the shadow price of the successfully-innovating
firms, which will ultimately converge to a higher output level. The successful firms
sit outside markets and accumulate stocks s.C/1 , until their shadow prices fall to
intersect the (rising) market prices maintained by the failed-innovation firms. After
the two prices intersect, all firms offer in the markets, and the successful and
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failed type-1 firms both restore stocks to their (respective) steady-state production
levels.

In the production functions (1), the steady-state stock is the same for both type-1
and type-2 firms, so the asymptotic level Ns1 to which failed-innovation type-1 firms
recover is also the stock Ns2 maintained by type-2 firms throughout.

Rates at which Goods Are Delivered to Market for Consumption

Figure 3 shows the offer rates of the two groups of firms. Type-2 offer rates are
constant. Type-1 offer rates are aggregated from the successful and failed-innovation
firms. In the early interval, only a measure .1 � �/ of firms offer in markets, whereas
in the later interval all firms offer. The discontinuous derivative in the stock s.�/1

visible in Fig. 1 exactly compensates for this jump in measure so that all of s.�/1 ,

s.C/1 , and q1 are continuous through the transition.

Bid Levels and Money Supply in the Post-Innovation Interval

Figure 4 shows the bid levels on both types of goods by both groups of con-
sumer/owners following the innovation shock. Total money supply in circulation
.B1;t C B2;t/�t is also shown (black curve) in the right-hand panel of the figure.

The amount of money in circulation per period is initially greater than 2m0

because agents of both types take out loans from the central bank. They borrow the
maximum that they will be able to repay under the non-cooperative equilibrium tra-
jectory. The money in circulation crosses (downward) through the pre-equilibrium
value of 2m0 at 	Bt  0:70050 and continues to descend, as agents gradually pay
down the principle.

Fig. 3 Timeseries of the total
rates q1;t=�1 and q2;t=�2
delivered to markets for
consumption. q2;t (green) is
constant at the pre-innovation
solution over all time. q1;t
(blue) begins in deficit
relative to the pre-innovation
solution, and ends in surplus
relative to that solution
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Fig. 4 Bid levels normalized by the pre-innovation money supply, bi�t=m0, Qbi�t=m0, aggregated
in several ways. Left panel: by agents. Blue and green are bids on good-1 by consumers of
types 1 and 2, respectively. Red and cyan are bids on good-2 by consumers of types 1 and 2
respectively. Type-1 consumers consume more of both goods, but in each period they pay out
more than they receive in profits, a deficit that must be compensated by interest on bank savings.
Right panel: by consumer-type or goods-type. Here blue and green are total expenditures by type-
1 and type-2 consumers, respectively. Red and cyan are total bids offered on type-1 and type-2
goods, respectively. The black curve is .B1 C B2/�t=2m0 , which is the total money in circulation
normalized by the pre-innovation value

Monetized Credit From a Persistent Internal Loan

Figure 5 shows the solution to Eq. (21) for .a1;t � a2;t/ =2 in relation to the excess
of payment rates made by type-1 agents over payment rates by type-2 agents�Qb1;t � Qb2;t

�
. The scale for the numéraire in this model is set by m0, a quantity

that scales � �t, whereas the bid rates and inter-agent bank interest payment
rates are regular quantities in the continuous-time limit. In order to normalize
them to the numéraire, we compare the interest payments-per-period, which are
	B .a1;t � a2;t/�t=2, to m0, and we likewise compare the excess bid amounts-
per-period by type-1 over type-2 agents, which are

�Qb1;t � Qb2;t
�
�t, to m0. These

normalized curves are independent of �t as �t ! 0. The convergence of the two
curves in Fig. 5 at late time verifies that the consumers converge to steady account
balances at which interest payments via the bank provide part of the circular flow
allowing type-1 agents to purchase and consume both goods at a constant excess
rate � over the rate of consumption by type-2 agents.

Aggregate Loan and Change in the Money Supply

Figure 6 shows the economy’s aggregate balance with the banks .a1 C a2/ relative to
the initial money supply of either agent type m0. It also shows the excess money-in-
circulation over the amount possible with the initial money supply, .B1 C B2/�t �
2m0, which is made possible by aggregate loans. Initially the two values are equal,
but as the economy pays off the borrowed principle and also loses net money-in-
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Fig. 5 Bank balance
�
a1;t � a2;t

�
=2 reflecting monetized private credit, normalized as

	B

�
a1;t � a2;t

�
�t=2m0 (blue), which is the interest paid from type-2 agents to type-1 agents per

period relative to the pre-innovation cash-per-agent, and excess bids per period of type-1 agents
over type-2 agents similarly normalized,

�Qb1;t � Qb2;t��t=m0 (green), following the innovation
event. The two converge to the same non-zero late-time steady state, as payment flows in the
markets compensate interest flows through the bank. Note that the level of loans scales as�
a1;t � a2;t

�
=2 � �Qb1;t � Qb2;t� =	B, a quantity independent of �t, which may be made arbitrarily

larger than the money-in-circulation on the approach to the continuous-time limit

circulation to the payment of compounded interest, the money in circulation drops
below 2m0. At late times, the principle is exactly repaid, and a new circular flow is
established with asymptotically steady money supply .B1;t C B2;t/�t for 	� t � 1.

6.2.3 Terminal Conditions: Exiting the Turnpike to Cancel Bank Balances

A corresponding set of solutions for a terminal transient, which begins in the
turnpike solutions for stocks, output, and prices, and terminates at a time T with zero
bank balances, is shown in the next four figures. The overall behavior of the terminal
transient is that type-1 consumers deplete their savings by increasing bids on goods,
while type-2 consumers reduce their bids on goods to repay their outstanding
account balances. These bids continue to respect all the non-cooperative equilibrium
conditions, though now on an unstable diverging trajectory. In response to these
changes in bidding behavior, the two types of firms either deplete or accumulate
working stocks, altering their outputs to continue to maximize profits.

Working Stocks of the Firms

Figure 7 for the terminal transient may be compared with Fig. 1 for the behavior
of stocks from the initial transient. Type-2 firms and failed-innovation type-1 firms
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Fig. 6 Aggregate account balance the consumers hold at the bank, normalized as .a1 C a2/ =m0

(blue), and compared to total rate of money circulation in markets in excess of the circulation
that would be possible with the initial gold-in-hand 2m0. The excess is normalized and plotted as
Œ2m0 � .B1 C B2/�t� =m0 (green). The amount borrowed in the period t D 0when the innovation-
cost is paid equals the excess of bids on goods over 2m0 (green and blue curves are equal at t! 0

up to numerical imprecision). This loan amount is set using Eq. (27) so that the agents pay the
principle to zero by time T. Note that

�
B1;T C B2;T

�
�t < 2m0, so gold has left the private economy

and is being held by the bank. Note also that the net loan .a1 C a2/ is a few percent of m0 � �t,
whereas the difference of balances .a1 � a2/ in Fig. 5, which is credit from one agent type to the
other monetized by the bank, is several percent of m0= .	B�t/

Fig. 7 Working stocks of the three types of firms in the terminal transient. Time is plotted as
	� .t� T/, which terminates at value 0. Trajectory s.�/

1 (blue) and s2 (red) begin at the same

values but diverge in opposite directions. Trajectory s
.C/

1 of successful type-1 firms (green) moves

in parallel to s
.�/
1 for unsuccessful type-1 firms. The initial working stocks of the terminal transient

are the turnpike values to which the solutions in Fig. 1 converge at late times
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both start with the same stocks Ns2 D Ns1, while successful innovation firms begin
with stocks Qs1. Because all type-1 firms optimize output against the same price
system, both successful- and failed-innovation firms deplete stocks by the same
amount, increasing output levels and lowering prices. Type-2 firms do the opposite,
accumulating stocks and reducing outputs, and boosting prices.

Output Rates

Figure 8 shows the output rates produced by the stock trajectories from Fig. 7. Type-
1 firms increase output rates, while type-2 firms reduce them. Recall that prices are
given by Eq. (54).

Elimination of Intra-Economy Lending

Figure 9 shows the intra-economy debt, due to type-2 consumer borrowing from the
central bank and type-1 consumer lending to the bank. The quantity .a1;t � a2;t/ is
plotted. Recall that this quantity is O.1/ and thus generally much larger than the
money in circulation. Hence, within O.�t/, .a1;t � a2;t/ =2  a1;t  �a2;t.

In the initial steady state, the interest stream to/from the bank, 	B .a1;t � a2;t/
�t=2, equals the excess bids by type-1 agents per period relative to bids from type-
2 agents,

�Qb1;t � Qb2;t
�
�t. The interest stream from bank accounts exactly provides

the excess bids by type-1 agents to support their higher consumption levels. As the
terminal transient develops, the bid excess by type-1 agents increases to deplete the

Fig. 8 Output rates q1;t=�1 (blue) and q2;t=�2 (green) delivered to markets for consumption in the
terminal transient. The initial output levels for the terminal transient are the turnpike values to
which the solutions in Fig. 3 converge, shown as dashed lines
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Fig. 9 Difference of bank
balances scaled as
	B

�
a1;t � a2;t

�
�t=2m0

(blue), and excess bids per
period of type-1 agents over
type-2 agents similarly
normalized,�Qb1;t � Qb2;t��t=m0 (green).
The turnpike value of steady
intra-economy loans�
a1;t � a2;t

�
to which the

solutions in Fig. 5 converge is
returned to zero in the
terminal transient

principle in their account, at the same time as type-2 agents repay principle. These
differences continue to respect the consumption relations (30) at fixed O�, because
changes in the output levels by firms have adjusted the price levels consistently with
the changes in bids.

Non-Accrual of Aggregate Debt by Either the Economy or the Bank

Finally, Fig. 10 shows the aggregate account balance .a1;t C a2;t/ through the
terminal transient. Because innovation has made the collection of type-1 firms
distinct from the type-2 firms, it is not possible for them to maintain an exactly
fixed money supply through the entire terminal transient. Therefore, the bids by the
two types of agents, and the output levels by the two types of firms, must be adjusted
so that any non-zero aggregate balance acquired early in the transient is repaid by
time T, leading in general to a change in the money-in-circulation from the turnpike
value. Because the innovation shock we have assumed in this example is small, the
two types of firms remain broadly similar. In order for their net contribution to debt
to cancel, their output levels must be roughly mirror images, and this is the reason
for the opposite behavior of the stock transients in Fig. 7 and the output transients
in Fig. 8. The changes in money supply throughout the transient therefore remain
small relative to money-in-circulation.

Further properties of the economy in the terminal transient can be computed,
along the same lines as those presented for the initial transient.

6.2.4 Summary of Banking in Utopia

The preceding model has used a context in which a rigid money supply leads
to a failure of output efficiency, to illustrate how a simple banking scheme can
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Fig. 10 Aggregate account balance the consumers hold at the bank, normalized as .a1 C a2/ =m0

(blue), and compared to total rate of money circulation in markets, now in excess of the turnpike
money supply from the late-time asymptote in Fig. 6, which we denote .B1 C B2/TP�t. The money
supply is plotted as Œ.B1 C B2/� .B1 C B2/TP� �t=m0 (green). The total balance

�
a1;T C a2;T

� D
0 as a property of the non-cooperative equilibrium solution

restore this efficiency. The main features of the Utopia model are that a single bank
can change the money-in-circulation both transiently and persistently when this is
required to stabilize the price system against which producers optimize, and can
also monetize personal credit within the society to support emergent differences in
purchasing power. The outcome of a many-period game is economically realistic:
the owners of a technology that undergoes an innovative improvement in output
capacity can become net holders of the debt of other members of the society, and
the interest on this debt can support an indefinite increase in their relative purchasing
power. It is an important feature of the banking model that members of the society
can arrive at non-cooperative equilibria in which new steady states of money supply
and the circular flow of funds are established, in which the bank withdraws from
participation in the economy except as a keeper of its internal accounts.

6.3 Commercial Banking, Profit, and the Consequences
of Interest Rate Spreads

In economies with distributed banking sectors, a criterion governing strategic action
by the banks is profit maximization. Profits may come either from interest rate
spreads or from permitting the banks to issue credit that receives the protection of
law but is backed by only a fraction of its value in reserves of some form of “heavy
money”, which could be gold, government fiat, or central-bank credit. We consider
first the introduction of interest rate spreads as a sole modification to the Utopia
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model, the resulting problems in the definition of profits, and the consequences
of spreads for efficiency, which may be expressed in terms of the spread values
independently of how (or whether) they are used strategically by the banks.

A non-zero spread exists whenever 	B;L > 	B;D in Eq. (18), for the banks that
serve consumers. In this section we consider the spread a fixed parameter and do
not yet consider strategic action by banks.

The main features of (both transient and persistent) change in the money supply
and monetization of private credit can be retained by profitable banks (if they
are owned by the consumers and distribute their profits to consumers), but the
efficiency of Utopia is lost in proportion to sizes of the spreads. We will show that
the introduction of interest rate spreads inherently couples the innovation shock in
good-1 to production and output decisions in good-2, with a strength proportional
to the spread. Profit increases with increasing spreads, but so does cross-coupling
among sectors and the consequent inefficiency. Therefore any regulatory system that
requires spreads as a control mechanism carries an inherent efficiency cost.

6.3.1 The Continued Need for a Central Bank Even at 100 % Reserves

Even in the absence of fractional-reserve lending, purely mechanistic problems of
defining profits from interest, using bank credit to vary the money supply, while also
permitting asymptotically steady states in the absence of innovation, will require
that we regard the banks with which consumers interact directly as commercial
banks, and that we retain a central bank as a distinct entity.

In Utopia, it was important that the central bank not be merely a publicly-owned
pass-through entity. One of its main functions was the injection or withdrawal
of net quantities of money from the supply-in-circulation. This was achieved by
accumulation of interest payments on (fully-repaid) net initial deposits or loans by
the consumers. A feature of the Utopia model that makes a non-pass-through bank
into a problem, however, when interest rate spreads are introduced, is that consumers
in a two-good economy asymptotically make revolving loans from one type to the
other, mediated by the bank, as shown in Fig. 5. If the bank collects a steady stream
of payments proportional to .	B;L � 	B;D/ from these loans, and those are not passed
back into the economy, no steady-state money supply and price system are possible.
Yet the game must not pass all interest payments back to consumers, or else the
banks lose the capability to vary the money supply.

To preserve both essential functions of the Utopian central bank when interest
rate spreads are introduced, we must define one component of the net interest
stream paid by consumers to the commercial bank as profit which is returned to
the consumers, and a remainder that is not profit (because it is passed through to the
central bank), with this remainder used to vary the money supply in circulation. The
net interest paid by consumers to commercial banks will be � .	B;1ta1;t C 	B;2ta2;t/.
The net interest paid by the commercial banks to the central bank, on money it must
borrow to change the total money-in-circulation, is �	C;t .a1;t C a2;t/. The profit
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rate, which is a sum of two equal streams �.B/1;t C�.B/2;t paid to the two types of agents,
is then given in Eq. (25). As long as 	B;L > 	C > 	B;D, profits are never negative. In
this section, we take the central bank rate 	C to be constant, as in Utopia.

For convenience of exposition here, since 	B;L and 	B;D are parameters, we take
their average to equal the central bank rate, .	B;L C 	B;D/ =2 D 	C. The central
bank continues to be a public service, so we will set 	C D 	 (the utilitarian rate
of discount) to enable non-inflationary/non-deflationary turnpike solutions. More
general solutions with steady-state production rates, but inflating or deflating prices,
are also well-defined through Eq. (47), but are more complicated. The single new
parameter for the commercial banks is then .	B;L � 	B;D/ =2.

6.3.2 Interest Rate Spreads and Efficiency

For the single, simple event of innovation used in this class of games, the interest
rates make a single transition at a time we may denote tsplit. In terms of this transition
time, instead of setting the left-hand side of Eq. (51) equal to zero as it is in Utopia,
the equation satisfied by s2;t becomes

�
d

dt

�
d

dt
� 	�

�
C 2�2Nf 002

�
.s2 � Ns2/ D ˙��tsplit � t

�
�2 .	B;L � 	B;D/ : (55)

(� denotes the Heaviside function, which takes value one for t < tsplit and zero
otherwise.) The boundary conditions for this second-order equation are that s2 D Ns2
at t D 0 and again at t ! 1. For the production function f2 from Eq. (1),
Nf 002 D �2	� .24 The value of tsplit must be determined self-consistently with the
signs of the bank balances in the solution that it yields. For small spreads, it is
well approximated from the Utopia solutions shown in Fig. 5 and Fig. 6. We return
to the determination of tsplit in Sect. 6.3.3.

The solution to Eq. (55) is a sum of growing and decaying exponentials on the
interval 0 6 t 6 tsplit, and a decaying exponential for t > tsplit. The magnitude of

24 Firms of type-1, in the period when both are offering in the markets, have equations identical
in form to Eq. (55), for the deviations of their stocks from the Utopia solutions. For the firms that

attempt to innovate and fail, we denote these deviations ı
�

s.�/
1 � Ns1

	
, and for the firms that attempt

to innovate and succeed, the corresponding quantity is ı
�

s
.C/
1 � Qs1

	
. In the initial period, when

firms that successfully innovated are sitting outside the markets, their inventory growth is governed
only by internal production and they do not optimize against prices. The type-1 firms that failed to
innovate satisfy a slightly modified equation given by

�
.1� �/ d

dt

�
d

dt
� 	�

�
C 2�1Nf 00

1

�
.s1 � Ns1/ D ˙��tsplit � t

�
�1
�
	B;L � 	B;D

�
;

because their measure is .1� �/ and the level of output than can contribute scales by the same
factor.
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Fig. 11 Response of stocks and offers of good-2 to a discontinuity in interest rate by an
amount ˙��tsplit � t

� �
	B;L � 	B;D

�
=2. Left panel: the response descaled by the strength of the

spread, given by .s2 � Ns2/� .2	�/ = �	B;L � 	B;D

�
, with a range of times 	� tsplit (markers) from

0.1 to 3.1 in increments of 0.5. Right panel: the response of offers descaled by the spread, given
by .q2 � Nq2/� 2= �	B;L � 	B;D

�
, for the same cases

the excursion can be determined by the condition that both the stocks and offer level
be continuous through the transition. The matching conditions can always be met
because the growing solution has a shorter time constant than the decaying solution.

Figure 11 shows the excursion in stock levels and offer rates by the type-2 firms
in response to such a shock, at a sequence of increasing values of tsplit. The quantities
plotted in the figure are � .s2 � Ns2/ � .2	�/ = .	B;L � 	B;D/, and � .q2 � Nq2/ �
2= .	B;L � 	B;D/. The � sign corresponds to the ˙ sign in Eq. (55), and thus
determines the direction of the excursion in stocks and offers.

The Sign of the Excursion

If, in the immediate aftermath of the innovation, both types borrow from the bank,
then 	B;1 D 	B;2 D 	B;L, and the sign in Eq. (55) is negative. The effect is that
good-2 firms try to optimize production against a larger discount rate than 	� ,
which means increasing the target s2. This is done transiently by reducing offers
and accumulating. Later, when the bank rates split, and one group lends while the
other borrows, the target stock level returns to Ns2, and offer rates are increased to
return toward it.

6.3.3 Approximating the Effect on Output Using a Small-Parameter
Expansion

We will not pursue a full self-consistent solution to the production/trade model with
interest rate spreads. The major qualitative features that result from the introduction
of spreads may be illustrated with an approximate solution. The approximation
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is valid if the spread .	B;L � 	B;R/ =	 � 1. In this limit, output, prices, and
consumption allocation are dominated by the properties of the Utopia solution. If we
choose a small but nonzero period length 	��t � 1, then the money in circulation
.B1;t C B2;t/�t (along with all changes in that money supply) scale as � 	��t
relative to the long-term indebtedness within the economy .a1;t � a2;t/, for 	� t � 1.

Solution Part I: Relating Money Supply to Outstanding Private Debt and
Determining tsplit

In this solution, 	��t is used to relate the quantity 	��t .a1;t � a2;t/ =2m0 from
Fig. 5, to .a1;t C a2;t/ =m0 from Fig. 6. From these two, values a1=m0 and a2=m0

are obtained. The leading order approximation for the crossing time tsplit is then
its value in the Utopia solution. This approximation is then used in Eq. (55) and its
counterparts for successful and failed innovating firms of type-1, to obtain the linear-
order corrections to the production stocks and output rates. In an iterative solution,
these profiles could then be fed back into equations for prices and allocations to
update tsplit, and the process could be repeated, but for this example we will stop
with the leading-order approximation.

A Numerical Example

To provide a numerical example, we take a very coarse discretization 	��t D 0:1

to scale the money supply relative to the acquired internal debt. This number is of
course much too large to be well-approximated with the continuous-time recovery
trajectory in the Utopia example, and we use it only to produce effects in the plots
that are large enough to see. The same methods we illustrate here continue to apply
as 	��t is made arbitrarily smaller, and the response sizes scale in proportion.

With this large value of 	��t, the crossing time when a1 passes through zero
(consumers of type-1 change from being net borrowers to net lenders) is given
by 	� tsplit  0:099. The corresponding values of a1=m0 and a2=m0, and the
perturbations in the goods-stocks, are shown in Fig. 12.

The solution combines three distinct output programs. Type-2 firms and type-1
firms that try to innovate and fail follow nearly the same trajectories of accumu-

lation of goods .s2 � Ns2/ and ı
�

s.�/1 � Ns1
	

(see Footnote 24). Type-1 firms that

successfully innovate do not optimize against the price system initially, so their
accumulation of stocks is unaffected. After they enter markets, they follow a similar

but less-extensive period of accumulation for ı
�

s.C/1 � Qs1
	

, shown in the figure in
cyan.

Correcting Stocks and Outputs, and Checking for Consistency

The modified stock trajectories for the three types of firms are shown in Fig. 13. For
simplicity we take f2;1 D f1;1 in Eq. (1), so that the two goods are completely
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Fig. 12 Bank balances a1=m0 (blue) and a2=m0 (green) from Figs. 5 and 6 taking 	�t D 0:1.
Magenta curve shows the change in response ı .s� Ns/ due to the interest rate discontinuity, which
applies both to s2 and to s.�/

1 , since both types of firms optimize output against the price system

at all times. Cyan curve shows the response ı
�

s.C/
1 � Qs

	
, which is zero in the interval when the

successfully innovating firms are not optimizing their output against the price system, and nonzero
when these firms enter the market. The two curves are shown to scale, and normalized so that the
maximum of ı .s2 � Ns/ is set to 0.1 for viewing purposes. The time when a1 crosses through zero,
and the interest rate 	B;1 changes from 	B;L to 	B;D is the time used for the matching conditions
of both stock si and output qi, marked with a black cross. Left panel is an extended recovery
interval; right panel is a close-up of the initial interval following the innovation shock, during
which balances are accumulated

Fig. 13 Time-course of goods-stocks for the three kinds of firms. The Utopia solution of Fig. 1
is the leading order approximation for s

.�/
1 (blue), s

.C/
1 (green), and (in the simple case where

f1;1 D f2;1) s2 (red). The perturbed stock levels taking
�
	B;L � 	B;D

�
=2	 D 0:25 are shown

in cyan for both of s
.˙/
1 , and in magenta for s2. Profile s

.C/
1 shows no change while successfully-

innovating firms sit out of the market, and then undergoes a smooth deviation in output between the
time it enters and the time the interest rates shift to their asymptotic late-time values. (Although the
interest rate spread is set very large in order to produce a visible effect on output, the corrections
to s2 remain small, justifying the small-parameter approximations used)
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equivalent in their production characteristics before the innovation event. The
production-stock trajectories are obtained by adding the corrections from Eq. (55)
(and its counterparts for type-1 firms) to the Utopia solution.

In the figure, we have again chosen a very coarse perturbation, .	B;L � 	B;D/ =

2	 D 0:25, so the interest rate spread is fully one half of the average rate charged
by the central bank. Again we do this to obtain results that are large enough to see
easily in plots; for more realistic spreads the corrections scale proportionally. Even
so, the figure shows that the perturbations to the histories of maintained stocks are
small. A plot of the same recovery solutions with time on a logarithmic scale is
shown in Fig. 14.

The offer levels, which depend on the time derivatives of the stocks, show
coarser perturbations, in keeping with this large interest rate spread, as shown in
Fig. 15. The most important feature is the initial drop in output (and therefore
consumption) of good-2 (shown in magenta), which in the Utopia solution was
unaffected by the innovation event in good-1. The output of good-1 also falls
(shown in cyan in the figure) relative to its Utopia trajectory. Here we see the
first feature of the small-parameter approximation indicating its incompleteness as a
solution. In an initial post-shock interval, only failed-innovation type-1 firms offer,
and they have measure .1 � �/. When prices have risen suitably, the successfully-
innovating type-1 firms enter (as in Utopia and in the previous chapters), so
that all type-1 firms are offering. Simply adding these two corrections to the
Utopia solution produces a discontinuity that is an approximation error. In a full
solution, adjustment of the matching conditions would absorb this correction (which

Fig. 14 Same recovery trajectories as in Fig. 13, with 	� t plotted on logarithmic scale as in Fig. 2



Varying the Money Supply of Commercial Banks 693

Fig. 15 Offer levels for the two goods in the Utopia solution and with nonzero interest rate
spread under the parameters of Fig. 13. Utopia offer rates from Fig. 3 are Oq1 (blue) and Oq2 (green).
Perturbed output due to the interest-rate discontinuity for Oq1 is cyan and for Oq2 is magenta. Left
panel is the full relaxation trajectory (post-innovation asymptote for Oq1 shown in red); right panel
expands the interval following the innovation shock. Unlike the stocks from Fig. 13, which show
only a small perturbation, the consumption rates Oq show the larger effect that might have been
expected for the large interest rate spread

�
	B;L � 	B;D

�
=2	 D 0:25 chosen to make the effects

visible. The small discontinuity in Oq1 visible in the right-hand panel comes from the fact that
the perturbations in output levels were not fed back—in this leading-order approximation—to the
leading-order optimization problem; doing so would have lead to a correction in the matching
conditions for the offer levels of the type-1 firms by a small fraction of its Utopia solution value,
to absorb this discontinuity

is only  0:3% even for a wide spread) and restore continuity to the offer
rates.25

6.3.4 Further Properties

Solutions for bank balances, bid levels, and other properties, can be carried through,
and are qualitatively like those in the Utopia model. The equations for both
intra-economy and aggregate account balances have already been presented in
Sect. 5.4.10 in a form compatible with this model. The change in total money supply
is responsive only to the central bank rate 	C, and initial loans can be fully repaid
to converge to a turnpike solution, as in Utopia. The structure of intra-economy
lending differs from that in the Utopia solution because borrowers and lenders pay
at different rates, while bank profits are distributed to both types of consumers
in equal measure. These differences change the quantitative properties of account

25In a true small-parameter expansion with both 	��t� 1 and
�
	B;L � 	B;D

�
=2	� 1, the value

tsplit would be shorter than the natural recovery time for stocks s
.˙/
1 , so that the output of the

successfully-innovating firms would never even respond to the interest-rate spread. The resulting
solution would be simpler in structure than the one presented here, as well as smaller in magnitude.
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dynamics and their steady state values, but not their qualitative character. The
terminal transient differs minimally from the Utopia solution, because the account
balances do not change sign, so one type of consumers remains a lender with a fixed
rate throughout the transient, while the other remains a borrower also with a fixed
rate throughout the transient.

6.3.5 Concluding Comments Regarding Interest Rate Spreads

At small spreads, the introduction of bank profits creates small quantitative change
but no qualitative change to the Utopia solution. This result demonstrates that
the independent scaling between money supply and private debt (with respect to
powers of 	B�t) is not a fragile or fine-tuned property of Utopia, and can be
retained in more institutionally complex models. The functions of varying the
money supply and monetizing private debt are likewise robust. However, any active
response by banks to consumer demand, which either limits the money supply or
makes consumers’ discounting of money time-dependent, in the sense of Eq. (47),
propagates shocks from innovation across sectors and impairs optimal planning of
production schedules.

6.3.6 A Note on Fractional-Reserve Lending

Although we do not present a formal model of banking with fractional reserves we
conjecture that many of the basic qualitative aspects the models deliver the same
message. In particular an official currency, a central bank and commercial banks
are all artifacts to deal with evaluation, perception and substitutes for trust needed
to promote and protect trade. The lack of natural physical laws for creating and
destroying money call for the apparatus of sociopolitical laws to replace the laws
for the creation and consumption of physical goods. The specifics of reserve ratio
banking, reserves and excess reserves are discussed elsewhere [5].

Although we have presented an analysis on varying the money supply when there
is, in essence no basic uncertainty in our models beyond one innovation decision,
this is only the tip of an iceberg. We did not deal with the presence of a stream of
random events that more closely characterizes ongoing innovation. The modeling
considerations indicate that there is a welter of worthwhile case distinctions that
depend on factors other than the mechanism of varying the money supply. In
particular it is our belief that a key factor in the existence of a two tiered mechanism
involving both a central bank and commercial banks is (as Bagehot observed) the
importance of the banking system as a distributed perception device. Our efforts
were devoted to variation of the money supply. In doing so we were able to illustrate
how the failure to so adequately can cause considerable fluctuation that might be
otherwise avoided.
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Appendix: Supporting Algebra for Non-Cooperative
Equilibria of Game Models

Steady Post-Innovation Output and Stable Money Supply Lead
to Stable Bid Levels

This section shows from the first-order conditions for consumption that, if output
levels converge to steady late-time values, and if the money supply converges to
a steady value, then bid levels by both type-1 and type-2 agents also converge
to steady values. This condition is not an accounting identity, but part of the
optimization problem that agents must solve. It requires only one strategic degree
of freedom to be met, which is the overall consumption asymmetry O� that governs
agents’ bid levels throughout the post-innovation consumption schedule.

From the notation of Eq. (30) in the main text, for the consumption asymmetries
�1 and �2, and the fact that consumption rates ci and QcQ{ are related to bid rates bi and
QbQ{ through the same prices pi, the ratios of consumption levels of the same good by
the two types of agents may be written in terms of the Oqi and O� as

c1
Qc2 D b1

Qb2
D 1C 2 O�=Oq1
1� 2 O�=Oq1

Qc1
c2

D
Qb1
b2

D 1C 2 O�=Oq2
1� 2 O�=Oq2 : (56)

Introducing two further notational abbreviations

x1 	 2 O�
Oq1 x2 	 2 O�

Oq2 ; (57)

the bid rates by either agent type are written in terms of the total bid rates B1 and
B2 as

b1 D 1C x1
2

B1 Qb2 D 1 � x1
2

B1

Qb1 D 1C x2
2

B2 b2 D 1 � x2
2

B2 (58)

The bid rates B1 and B2 are then related to the total money supply by Eq. (34) in the
main text.
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As long as the values of the late-time interest rates are well-defined, O�t at late
t has a fixed value, by Eq. (40). Then, as long as production levels qi converge to
steady values, the ratios of both Bi to the total money supply converge to steady
values by Eq. (34). Finally, under these two conditions, the relations of all bi and Qbi

to the total money supply also converge, by Eq. (58).
This completes the result, and shows that steady credit and debt balances for the

two agents a1;T and a2;T can be attained with a suitably chosen O� by Eq. (23).

Solutions for the Utopia Economy

This section provides solutions for the non-cooperative equilibria of the Utopia
model of Sect. 6.2. We begin with the output equations for good-2, which does not
undergo an innovation shock.

The Unshocked Good Remains at Steady State Unperturbed

The main Eq. (51) for the response of output decisions to prices, under the
condition (40) on shadow prices, becomes

�
d

dt

�
d

dt
� 	�

�
C 2�2Nf 002

�
.s2 � Ns2/ D 0: (59)

Since the initial condition from the pre-shock equilibrium was s2;0 D Ns2, the unique
bounded solution is s2;t D Ns2 for all t.

Recovery of the Shocked Good

s.�/1;t denotes the stock of the type-1 firms that tried to innovate and failed, and s.C/1;t
denotes the stock of the type-1 firms that succeeded. The initial conditions for both
stocks in the periods immediately following the innovation are s.˙/

1;0C

! Ns1 � j. The
steady-state stock for failed-innovation firms is Ns1 	 .1=2/ log 2, and the steady-
state stock for successfully-innovating firms is Qs1 D Ns1 C .1=2/ log .1C �/.

In an initial interval following the shock, only a measure .1 � �/ of firms offer in
markets. The recovery equation (51) for these firms becomes

.1 � �/

2�1

d

dt

�
d

dt
� 	�

��
s.�/1 � Ns1

	
 �Nf 001

�
s.�/1 � Ns1

	
: (60)

This solution will govern offers q1;t until the shadow prices of successfully-
innovating firms fall to intersect market prices. Thereafter the successfully-
innovating firms also begin to offer.
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Once both firms have entered, both relax to the new steady states with the
converging solution to the equation

1

2�1

d

dt

�
d

dt
� 	�

��
s.�/1 � Ns1

	
 �Nf 001

�
s.�/1 � Ns1

	
: (61)

These are both second-order linear equations, which possess growing and
decaying solutions. We first introduce notations for characteristic rates in the two
regimes:

!2C 	 �2�1Nf 001 evaluates on Eq. (1) to 4�1	�

!2� 	 � 2�1

.1 � �/
Nf 001 D 	2C

.1 � �/ (62)

In terms of these, the solutions for the relaxation time constants are

1

�
D ˙

r
!2� C 	2�

4
� 	�

2
t 6 t1

1

�
D ˙

r
!2C C 	2�

4
� 	�

2
t > t1: (63)

Both the positive and negative roots are needed in the initial transient for t 6 t1. Only
the positive root is required for relaxation toward the turnpike solution in the initial
transient for t > t1. The negative root in the second line of Eq. (63) will become
important again, however, for the growing solution in the terminal transient.

Equivalent expressions exist for production by type-2 firms. In the numerical
example, where the production and consumption parameters are set to equal values
for the two types, the type-2 dynamics will depend on the same time constants as
the dynamics for type-1 firms in the interval t > t1.

Relaxation and Matching Conditions

The timescale for relaxation shared among models is the discount rate in the profit
criterion 	� . Therefore introduce a dimensionless coordinate

z 	 	� t: (64)

Two scale factors that define local timescales relative to z are given shorthand
notations

p˙, which denote

p
+ 	

s
1C 4	2C

	2�
D
s
1C 8�1Nf 001

	2�
D
s
1C 16�1

	�
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p
- 	

s
1C 4	2�

	2�
D
s
1C 16�1

.1 � �/ 	�
: (65)

The two trajectories in the initial interval after the innovation event are

s.C/1;z � Qs1 D �j � 1

2
log .1C �/C f1;1 .1C �/

	�
.ez � 1/

s.�/1;z � Ns1 D ez=2
h
�jch

� z

2

p
-
	

C �sh
� z

2

p
-
	i
: (66)

The trajectory for s.C/1;z is fully determined by the production function because these

firms are not responsive to markets. The trajectory for s.�/1;z is determined by its
initial conditions up to a single parameter � which will be determined by matching
conditions when successful innovators enter the markets.

The market prices and the shadow prices of successful type-1 firms become equal
at some time z1, which we will identify numerically. (The existence of a unique
intersection is assured because the shadow prices of successful firms are falling
while the market prices that can be maintained by the unsuccessful firms are rising,
during the initial post-innovation interval.)

When the successful type-1 firms have entered the markets, their stocks relax
with a fixed offset equal to the difference of late-time steady-state stocks, according
to the functions

s.C/1;z � Qs1 D s.�/1;z � Ns1 D
�

s.�/1;z1
� Ns1

	
e.z�z1/.

p
+�1/=2 (67)

The undetermined parameter � in Eq. (66) is set by the requirement that the total
offering q1;t be continuous through the transition at z D z1, because continuity of q1
is required for continuity of the price against which firms perform their discounting.

In the numerical solutions of Sect. 6.2.2, the radicals determining the relaxation
time constants (65) evaluate to

p
+ D 3 and

p
- D p

11  3:3166. The resulting

time constants (63) are given by 1=	�� D
�
˙p

11 � 1
	
=2 for t 6 t1; 1=	�� D 1

for t > t1. The matching parameter that makes both prices and quantities continuous
is �  �0:14536. The remaining features of these solutions are presented as plots
in the main text.

Terminal Transient

A terminal transient is solved in terms of the divergences of the three working stocks
from their steady-state turnpike values. The functional forms (using properties of
non-cooperative equilibria previously derived for stocks when all firms optimize
against a shared price system) are given by

s.C/1;t � Qs1 D s.�/1;t � Ns1 D
�

s.�/1;T � Ns1
	

e.t�T/=�
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s2;t � Ns2 D .s2;T � Ns2/ e.t�T/=� : (68)

When (as is the case in the numerical example) �1 D �2 D 	�=2, the time
constant in both divergences is given by the negative root in the second line of
Eq. (63), which evaluates to

1

�
D �

�pC C 1
�

2
	� D �2	�: (69)

The two parameters in the solution (68), s.�/1;T and s2;T , are determined by the
requirements that .a1;T � a2;T/ D 0 and .a1;T C a2;T/ D 0. Initial conditions are
.a1;t C a2;t/ D 0 as t ! �1, and 	C .a1;t � a2;t/ D Qb1 � Qb2 of the turnpike solution
for t ! �1. Results of numerical solution are shown in the figures of Sect. 6.2.3.
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Optimal Control of Tuberculosis: A Review

Cristiana J. Silva and Delfim F. M. Torres

Abstract We review the optimal control of systems modeling the dynamics of
tuberculosis. Time dependent control functions are introduced in the mathematical
models, representing strategies for the improvement of the treatment and cure of
active infectious and/or latent individuals. Optimal control theory allows then to find
the optimal way to implement the strategies, minimizing the number of infectious
and/or latent individuals and keeping the cost of implementation as low as possible.
An optimal control problem is proposed and solved, illustrating the procedure.
Simulations show an effective reduction in the number of infectious individuals.

1 Introduction

Mycobacterium tuberculosis is the cause of most occurrences of tuberculosis (TB)
and is usually acquired via airborne infection from someone who has active TB. It
typically affects the lungs (pulmonary TB) but can affect other sites as well (extra-
pulmonary TB). Only approximately 10 % of people infected with M. tuberculosis
develop active TB disease. Therefore, approximately 90 % of people infected remain
latent. Latent infected TB people are asymptomatic and do not transmit TB, but
may progress to active TB through either endogenous reactivation or exogenous
reinfection [52, 53]. Following the World Health Organization (WHO), between
1995 and 2011, 51 million people were successfully treated for TB in countries
that adopted the WHO strategy, saving 20 million lives [60]. However, the global
burden of TB remains enormous. In 2011, there were an estimated 8.7 million
new cases of TB (13 % co-infected with HIV) and 1.4 million people died from
TB [60]. The increase of new cases has been attributed to the spread of HIV,
the collapse of public health programs, the emergence of drug-resistant strains of
M. tuberculosis [19, 37, 38] and exogenous re-infection, where a latently-infected
individual acquires a new infection from another infectious (see [6, 12, 17] and
references cited therein). In the absence of an effective vaccine, current control
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programs for TB have focused on chemotherapy. Lack of compliance with drug
treatments not only may lead to a relapse but to the development of antibiotic
resistant TB, called multidrug-resistant TB (MDR-TB), which is one of the most
serious public health problems facing society today [27]. The progress in responding
to multidrug-resistant TB remains slow. There are critical funding gaps for TB care
and control, which is critical to sustain recent gains, make further progress and
support research and development of new drugs and vaccines [60].

Mathematical models are an important tool in analyzing the spread and control
of infectious diseases [26]. Understanding the transmission characteristics of the
infectious diseases in communities, regions and countries, can lead to better
approaches to decrease the transmission of these diseases [25, 43, 49]. There are
many mathematical dynamic models for TB, see, e.g., [4, 8, 13, 14, 21, 48, 58].
Most models consider that there are two different ways to progress to active disease
after infection: “fast progressors” and “slow progressors”. It is also considered
that only 5–10 % of the infected individuals are fast progressors. The remaining
are able to contain the infection (latent infected individuals) and have a much
lower probability to develop active disease by endogenous reactivation. More
recent models also consider the possibility of latent and treated individuals being
reinfected, since it was already recognized that infection and/or disease do not
confer full protection [57]. Models show that reinfection can be an important
component of TB transmission and can have impact on the efficacy of interventions
[13, 21, 40, 58]. Here we focus on TB models that consider: development of
drug resistant TB [7]; exogenous reinfection [5, 6, 16, 17, 22, 35]; fast and slow
progression to infection [5, 6, 16, 22]; post-exposure interventions [22]; immigration
of infectious individuals [35]; and time-dependent parameters [59]. These models
can be particularly useful in comparing the effects of various prevention, therapy
and control programs [25, 32]. Since a variety of these programs are available, it
is a natural objective to design optimal programs in terms of some pre-assumed
criterion. This calls for the application of optimal control tools [33].

Optimal control has a long history of being applied to problems in biomedicine,
particularly, to models for cancer chemotherapy [15, 29–32, 34, 54–56]. But until
recently, little attention has been given to models in epidemiology [3, 20, 32,
41, 42, 44, 46]. In this paper we review the application of optimal control to
TB mathematical models. The first paper appeared in 2002 [27], and considers a
mathematical model for TB based on [7] with two classes of infected and latent
individuals (infected with typical and resistant strain TB) where the aim is to
reduce the number of infected and latent individuals with resistant TB. Two control
strategies are proposed to achieve the objective: a case finding control measure,
referring to the identification of individuals latently infected with typical TB and
who are at high risk of developing the disease and who may benefit from prevention
therapy (reducing the number of latent individuals that develop the disease) [27, 39];
and a case holding control, representing the effort that prevents the failure of the
treatment in the typical TB infectious individuals and referring to activities and
techniques used to ensure regularity of drug intake for a duration adequate to
achieve a cure (reducing the incidence of acquired drug-resistant TB) [11, 27].
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In [24] the authors consider the problem of minimizing the number of infectious
individuals with a control intervention representing the effort on the prevention
of the exogenous reinfection. The authors of [35] propose the implementation of
a case finding control, representing the fraction of active infectious individuals
that are identified and will be isolated in a facility, for an effective treatment
and prevention of contact with susceptible and latent individuals, and a control
measure based on the medical testing/screening of new immigrants before they are
allowed into the population. In [59] three control interventions are studied with the
aim of reducing the number of latent and active infectious individuals: distancing
control, representing the effort of reducing susceptible individuals that become
infected, such as, isolation of infectious individuals or educational campaigns; case
finding control applied to latent individuals; and case holding control for infectious
individuals. In [5, 6] case finding and case holding control measures are proposed
for the minimization of the number of active infected individuals. In [16] the authors
propose optimal control strategies for reducing the number of individuals in the
class of the lost to follow up individuals. In [47, 50], optimal strategies for the
minimization of the number of active TB infectious and persistent latent individuals
are proposed.

The study of optimal control strategies produce valuable theoretical results,
which can be used to suggest or design epidemic control programs. Depending on a
chosen goal (or goals), various objective criteria may be adopted [5]. Although the
implementation of the control policies, suggested by the mathematical analysis, can
be difficult, they can be a support for the public health authorities and simulation of
optimal control problems applied to mathematical models may become a powerful
tool in their hands (see [5] and references cited therein).

The manuscript is organized as follows. In Sect. 2 mathematical models for TB
dynamics are reviewed. They form, after introduction of the control functions,
the control system of the optimal control problems on TB epidemics under
consideration. The models with controls are presented in Sect. 3. A general optimal
control problem is formulated in Sect. 4, where we explain how to obtain the analytic
expression for the optimal controls, using the Pontryagin minimum principle [36].
In Sect. 5 we recall the numerical methods used to compute the optimal controls
and associated dynamics. The main conclusions, derived from the numerical
simulations, are resumed. Finally, in Sect. 6, an example is given, illustrating the
effectiveness of the implementation of the control strategies on a TB control disease.
We end with Sect. 7 of conclusions and future research.

2 Uncontrolled TB Models

Mathematical models have become important tools in analyzing the spread and
control of infectious diseases [25]. In this section we present different mathematical
TB models which are, after some modifications, the control system of optimal
control problems on TB epidemics (see Sect. 3).



704 C.J. Silva and D.F.M. Torres

In an infectious disease model, the total population is divided into epidemio-
logical subclasses. Some of the standard classes are: susceptible individuals (S),
latently infected individuals (infected but not infectious) (E), infectious (I), and
the recovered and cured individuals (R). Eight possible compartmental models,
described by their flow patterns, are: SI, SIS, SEI, SEIS, SIR, SIRS, SEIR and SEIRS.
For example, in a SEIRS model, susceptible become exposed in the latent period,
then infectious, then recovered with temporary immunity and then susceptible again
when the immunity wears off [25]. Here, we choose to denote the class of latently
infected individuals by L and the class of recovered and cured individuals by T.

In [7] the authors present a SEIRS model for TB. The latently infected and
infectious individuals with typical TB are denoted by L1 and I1, respectively. The
model is given by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS.t/ D &� ˇcS.t/ I1.t/
N.t/ � �S.t/;

PL1.t/ D ˇcS.t/ I1.t/
N.t/ � .�C k1 C r1/L1.t/C �ˇcT.t/ I1 .t/

N.t/ ;

PI1.t/ D k1L1.t/ � .�C r2 C d1/I1.t/;

PT.t/ D r1L1.t/C r2I1.t/ � �ˇcT.t/ I1.t/
N.t/ � �T.t/;

(1)

where N denotes the total population, N.t/ D S.t/ C L1.t/ C I1.t/ C T.t/, & is
the recruitment rate, ˇ and �ˇ are the probabilities that susceptible and treated
individuals become infected by one infectious individual I1 per contact per unit of
time, respectively, c is the per-capita contact rate, � is the per-capita natural death
rate, k1 is the rate at which an individual leaves the latent class L1 by becoming
infectious, d1 is the per-capita TB induced death rate, and r1 and r2 are per-capita
treatment rates for latent and infectious individuals, respectively. It is assumed that
an individual can be infected only through contacts with infectious individuals.

In the same paper [7], a two-strain model is presented which considers resistant
TB strain. Two subclasses of the total population are added: L2 (latent) and I2
(infectious), representing the developmental stages of resistant strains. It is assumed
that I2 individuals can infect S, L1 and T individuals. The model is given by the
following system:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

PS.t/ D & � ˇcS.t/ I1.t/
N.t/ � �S.t/ � ˇ�cS.t/ I2.t/

N.t/ ;

PL1.t/ D ˇcS.t/ I1.t/
N.t/ � .�C k1 C r1/L1.t/C �ˇcT.t/ I1 .t/

N.t/ C pr2I1.t/

�ˇ�cL1.t/
I2.t/
N.t/ ;

PI1.t/ D k1L1.t/ � .�C r2 C d1/I1.t/;

PL2.t/ D qr2I1.t/ � .�C k2/L2.t/C ˇ�c .S.t/C L1.t/C T.t// I2.t/
N.t/ ;

PI2.t/ D k2L2.t/ � .�C d2/I2.t/;

PT.t/ D r1L1.t/C .1 � p � q/r2I1.t/ � �ˇcT.t/ I1.t/
N.t/ � �T.t/ � ˇ�cT.t/ I2.t/

N ;

(2)
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with N.t/ D S.t/ C L1.t/ C I1.t/ C L2.t/ C I2.t/ C T.t/ and where ˇ� is the
probability that treated individuals become infected by one resistant-TB infectious
individual I2 per contact per unit of time, d2 and k2 have similar meanings as d1
and k1 for resistant-TB, and p C q is the proportion of those treated infectious
individuals who did not complete their treatment. The proportion p modifies the
rate that departs from the latent class, and qr2I1.t/ gives the rate at which individuals
develop resistant-TB due to an incomplete treatment of active TB. Therefore, p � 0,
q � 0 and p C q � 1.

The results of [17] suggest that exogenous reinfection has a drastic effect on the
qualitative dynamics of TB. If we introduce into model (1) the term 	ˇcL1I1=N,
which represents exogenous reinfection, we obtain the exogenous reinfection
tuberculosis model developed in [17]. The parameter 	 represents the level of
reinfection. A value of 	 2 .0; 1/ implies that reinfection is less likely than a new
infection. In fact, a value of 	 2 .0; 1/ implies that a primary infection provides
some degree of cross immunity to exogenous reinfections. A value of 	 2 .1;1/

implies that TB infection increases the likelihood of active TB. The authors take the
conservative view that 0 < p < 1 (see (6) in Sect. 3 for the model with controls).

In [35] a mathematical model is presented, which takes into account immigration
of infectious individuals as well as isolation of the infectious individuals for
treatment. The model without controls is an extension of that of [17]: one subclass
of the total population, the class of isolated infectious individuals with typical TB,
is added. The corresponding controlled model is given in Sect. 3, by (7).

In [5, 6, 16] fast and slow progression to the infectious class are considered
and both models consider exogenous reinfection, chemoprophylaxis of latently
infected individuals and treatment of active infected individuals. In [6] a SEI model
is proposed, where the infective class is divided into two subclasses: diagnosed
infectious (those who have an active TB confirmed after an examination in a
hospital) and undiagnosed infectious (i.e., those who have an active TB but not
confirmed by an examination in a hospital), denoted by I1 and I2, respectively. The
model in [6] is given by the following system of ordinary differential equations:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS D &� ˇ I1
N S � �S ;

PL1 D .1 � g/ˇ I1
N S C r2I1 C r3I2 � .1 � r1/��L1 � Œ�C k1.1 � r1/�L1 ;

PI1 D gfˇ I1
N S C h.1 � r1/.k1 C �ˇ I1

N /L1 � .�C d1 C r2/I1 ;

PI2 D g.1 � f /�S C .1 � h/.1� r1/.k C ��/E � .�C d3 C r3/J ;

(3)

where the fraction g of newly infected individuals are assumed to undergo a fast
progression directly to TB, while the remainder is latently infected and enter the
latent class L1. Among the newly infected individuals that undergo a fast progression
to TB, a fraction f of them is detected, and will enter the diagnosed infectious
class I1, while the remaining 1 � f is undetected and will be transferred into
the undiagnosed infectious class I2. In this model r2 is the rate of effective per
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capita therapy of diagnosed infectious individuals I1. It is assumed that undiagnosed
infectious individuals can naturally recover and will be transferred into the latent
class L1 at a constant rate r3 < r2. Here � is the factor reducing the risk of
infection as a result of acquiring immunity for latently infected individuals L1.
Among latently infected individuals who become infectious, the fraction h of them
is diagnosed and treated, while the remaining 1 � h is not diagnosed and enters the
undiagnosed infectious class I2. The parameter d3 is the per capita TB induced death
rate for undiagnosed infectious individuals. If we consider f D 1, h D 1, r3 D 0

and d3 D 0, then we obtain the model proposed in [5].
In [22] the authors present a model for TB that considers exogenous reinfection

and post-exposure interventions. The class L3 denotes the fraction of early latent
individuals, that is, individuals that were recently infected (less than 2 years) and
are not yet infectious; while L4 denotes the class of persistent latent individuals who
where infected and remain latent. The other classes are S, I1 and T, with the same
meaning has in the previous models. The model of [22] is given by the following
system:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS.t/ D �N � ˇ

N I1.t/S.t/� �S.t/;
PL3.t/ D ˇ

N I1.t/ .S.t/C �L4.t/C �RT.t// � .ı C �1 C �/L3.t/;
PI1.t/ D k1ıL3.t/C !L4.t/C !RT.t/ � .�0 C �/I1.t/;
PL4.t/ D .1 � k1/ıL3.t/ � �

ˇ

N I1.t/L4.t/ � .! C �2 C �/L4.t/;
PT.t/ D �0I1.t/C �1L3.t/C �2L4.t/ � �R

ˇ

N I1.t/T.t/ � .!R C �/ T.t/ :

(4)

Here � has the same meaning has in the model (3) but applies to persistent latent
individuals, L4, and �R represents the same parameter factor but for treated patients;
ı denotes the rate at which individuals leave the L3 compartment; ! is the rate of
endogenous reactivation for persistent latent infections (untreated latent infections);
!R is the rate of endogenous reactivation for treated individuals (for those who have
undergone a therapeutic intervention); �0 is the rate of recovery under treatment
of active TB (assuming an average duration of infectiousness of 6 months); �1 and
�2 apply to latent individuals L3 and L4, respectively, and are the rates at which
chemotherapy or a post-exposure vaccine is applied. In this model it is assumed that
the total population is constant, i.e., the rate of birth and death, �, are equal and
there are no disease-related deaths.

3 Controlled TB Models

The model (2) is the basis of the work developed in [27], where two control
functions, u1 and u2, are introduced, representing control strategies for the two-
strain TB model. The control system is given by
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8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

PS.t/ D & � ˇcS.t/ I1.t/
N.t/ � �S.t/ � ˇ�cS.t/ I2.t/

N.t/ ;

PL1.t/ D ˇcS.t/ I1.t/
N.t/ � .�C k1 C u1.t/r1/ L1.t/C �ˇcT.t/ I1 .t/

N.t/

C.1 � u2.t//pr2I1.t/ � ˇ�cL1.t/
I2.t/
N.t/ ;

PI1.t/ D k1L1.t/ � .�C r2 C d1/I1.t/;

PL2.t/ D .1� u2.t//qr2I1.t/ � .�C k2/L2.t/C ˇ�c .S.t/C L1.t/C T.t// I2.t/
N.t/ ;

PI2.t/ D k2L2.t/ � .�C d2/I2.t/;

PT.t/ D u1.t/r1L1.t/C .1 � ..1 � u2.t///.p C q// r2I1.t/ � �ˇcT.t/ I1.t/
N.t/

��T.t/ � ˇ�cT.t/ I2.t/
N.t/ :

(5)

The control u1 represents the fraction of typical TB latent individuals, L1, that is
identified and put under treatment (to reduce the number of individuals that may be
infectious). The coefficient 1 � u2.t/ represents the effort that prevents the failure
of the treatment in the typical TB infectious individuals (to reduce the number of
individuals developing resistant TB). When the control u2 is near 1, there is low
treatment failure and high implementation costs.

In [24] the authors consider the exogenous reinfection TB model presented in
[17] and introduce a control which simulates the effect of exogenous reinfection,
that is, they consider a fixed value for 	, 	 D 0:4, and multiply the term 	ˇcL1I1=N
by 1 � u. The coefficient 1 � u represents the effort that prevents the exogenous
reinfection in order to reduce the contact between the infectious and exposed
individuals, thus decreasing the number of infectious individuals. The exogenous
reinfection TB model with control, proposed in [24], is given by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS.t/ D & � ˇcS.t/ I1.t/
N.t/ � �S.t/;

PL1.t/ D ˇcS.t/ I1.t/
N.t/ � pˇc.1 � u.t//L1.t/

I1.t/
N.t/ � .�C k1/L1.t/C �ˇcT.t/ I1.t/

N.t/ ;

PI1.t/ D pˇc.1� u.t//L1.t/
I1.t/
N.t/ C k1L1.t/ � .�C r2 C d1/I1.t/;

PT.t/ D r2I1.t/ � �ˇcT.t/ I1 .t/
N.t/ � �T.t/;

(6)

with N.t/ D S.t/C L1.t/C I1.t/C T.t/.
In [35] the model takes into account immigration of infectious individuals as well

as isolation of the infectious for treatment. Two control functions are considered: u1
and u2. The control u1 accounts for medical testing/screening of new immigrants,
before they are allowed into the population, while the coefficient 1� u1 is the effort
that sustains such a testing policy. The control u2 is a case finding control that
represents the fraction of active individuals that are identified and will be isolated in
a special facility, like a hospital, for effective treatment and prevention of contacts
with susceptible and latent individuals. Hence, the term 1C u2 represents the effort
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that sustains the isolation policy. The model with controls is given by

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

PS D &� C .1 � .1 � u1.t//.p� C q�//A � ˇcS I1ClJ
N � �S;

PL1 D .1 � u1.t//p�A C .1 � m/ˇcS I1ClJ
N � pˇcL1

I1ClJ
N C �ˇcT I1C�J

N

�.k1 C �/L1;

PI1 D .1 � u1.t//q�A C mˇcS I1ClJ
N C pˇcL1

I1ClJ
N C k1L1 � .�C d3 C r2/I1

�.1C u2.t//�I1;

PJ D .1C u2.t//�I1 � .r3 C �C d4/J;

PT D r2I1 C r3J � �ˇcT I1C�J
N � �T:

(7)

The constant A represents the number of new members arriving into the population,
per unit of time; p� is the fraction of A arriving infected with latent TB; and q� is the
fraction of A arriving infected with active TB, so that 0 � p�Cq� � 1. It is assumed
that 1 � .p� � q�/A individuals are free from the disease. The parameter &� is the
recruitment rate. Here the population is replenished from births and immigration;
d3 and d4 are the typical TB-induced mortality rates for active TB individuals, that
were not isolated from the population, and for isolated TB cases, respectively; r3 is
the treatment rate for isolated infectious individuals. The parameter l is the isolation
level and lies in the range 0 � l � 1, where l D 0 indicates absolute isolation for
active infectious TB cases and l D 1 indicates no effective isolation. The parameter
0 � �� � 1 determines the level of contact that treated individuals have with
isolated individuals. The authors assume that �� < l and that the treated individuals
have a reduced contact with the isolated infectious group, as some of the treated
individuals are from the J class. By m, 0 < m < 1, it is denoted the fraction of
persons with new infections who develop to TB fast, per unit of time, while � is the
rate of isolation. The parameters�, ˇ, c, �ˇ, k1, p, � and r2, have the same meaning
as in the previous models (see Table 1).

In [59] the authors modified a model from [2] in order to study the transmission
dynamics for TB in South Korea in the 40 years period from 1970 to 2009. The total
population, N, is divided into susceptible individuals (S), high-risk latent (L1) that
are recently infected but not infectious, active-TB infectious (I) and permanently
latent (L5) with low risk. The main difference from the other TB models is the
incorporation of time-dependent parameters. The birth and mortality rates are
assumed as the time-dependent functions b.t/ and �.t/, respectively. The time-
dependent function k.t/ is the per-capita rate of progression to active-TB from
the recently latent class L1. Individuals who do not progress from the class L1 to
the class I and those who are treated in the class L1, are moved to the class L5 at
the per-capita rate ˛ and r.t/, respectively. The time-dependent function s.t/ is the
proportion of treated infectious individuals who did not complete their treatment;
1 � s.t/ is the treatment success rate for active tuberculosis. As previously, the
parameter ˇ is the number of new infections with active-TB per unit of time. The
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Table 1 Parameters that are used in the mathematical models for TB transmission (with and
without controls)

Symbol Description

& Recruitment rate

� Per-capita natural death rate

b Effective birth rate

d1 Per-capita typical TB induced death rate

d2 Per-capita resistant TB induced death rate

ˇ Rate at which susceptible individuals become infected by an infectious individual

with typical TB

ˇ� Rate at which susceptible individuals become infected by one resistant-TB

infectious individual

�ˇ Rate at which treated individuals become infected by an infectious individual

with typical TB

c Per-capita contact rate

k1 Rate of progression to active TB

k2 Rate of progression to active resistant TB

r Per-capita treatment rate

r1 Treatment rate of individuals with latent typical TB

r2 Treatment rate of individuals with infectious typical TB

r3 Treatment rate of undiagnosed infectious individuals

1� s Treatment success rate

p Level of exogenous reinfection

uC v Proportion of treated infectious individuals who did not complete their treatment

g Fraction of newly infected individuals that undergo a fast progression

to the infectious class

f Fraction of newly infected individuals that undergo a fast progression to TB

h Fraction of infectious individuals that are diagnosed and treated

� Factor reducing the risk of infection as a result of acquiring immunity

for latently infected individuals

�R Factor reducing the risk of infection as a result of acquiring immunity

for treated individuals

ı Rate at which individuals leave L3 compartment

˛ Non-progress rate from L1 to I

! Rate of endogenous reactivation for persistent latent infections

!R Rate of endogenous reactivation for treated infections

�0 Rate of recovery under treatment of active TB

�1 Rate of recovery under treatment of latent individuals L3
�2 Rate of recovery under treatment of latent individuals L4
N Total population

authors propose optimal control treatment strategies of TB in South Korea, for the
period from 2010 to 2030, for various possible scenarios. Since it is not feasible to
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have the mortality data or the total population data for the future, the authors used the
averaged constant values from the year 2001–2009 instead of using b.t/, �.t/, s.t/
and r.t/. The estimated time-dependent k.t/ from the year 1970–2009 is, however,
used to find the optimal treatment strategy for the future. Three time-dependent
controls are introduced into the TB system. The control u1.t/ is the distancing
control and the coefficient 1 � u1.t/ represents the effort of reducing susceptible
individuals that become infected by infectious individuals, such as isolation of
infectious people or educational programs/campaigns for healthy control. The case
finding control, u2.t/, represents the effort of decreasing the number of individuals
that may be infectious, such as identification through screening of latent individuals
who are in high risk of developing TB and who may benefit from prevention
intervention. The case holding control, 1 � u3.t/, represents the effort of reducing
the reinfection individuals, such as taking care of patients until they complete their
treatment. The control system is given by

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS.t/ D bN.t/ � �S.t/ � .1 � u1.t//ˇ
S.t/
N.t/ I.t/ ;

PL1.t/ D .1 � u1.t//ˇ
S.t/
N.t/ I.t/ � .k.t/C u2.t/˛ C �/ L1.t/C .1 � u3.t//srI.t/;

PI.t/ D k.t/L1.t/ � .r C �/I.t/ ;

PL5.t/ D .1 � .1 � u3.t//s/rI.t/C u2.t/˛L1.t/ � �I.t/ ;

where N.t/ D S.t/C L1.t/C I.t/C L5.t/.
In [5] the author formulates an optimal control problem where one control, u,

is introduced in the TB model. The control represents the effort on the chemo-
prophylaxis parameter (r1) of latently infected individuals to reduce the number
of individuals that may develop active TB. The model with control is given by (3)
with 1 � u1r1 instead of 1 � r1 and considering f D h D 1 and d2 D r3 D 0. In [6],
additionally to the control u1, a second control u2 is included in the model (3), which
represents the effort on detection (h) of infectious, to increase the treatment rate of
infectious and, consequently, to reduce the number of infectious and the source of
infection. The model with controls is given by (3) with 1 � u1r1 instead of 1 � r1
and u2h instead of h.

In [16] the authors propose a model adapted to Africa, in particular to Cameroon.
A new class of individuals, called the lost to follow up individuals, is introduced.
The individuals in this class are active infectious individuals who didn’t take the
treatment until the end, due to a brief relief of a long time treatment. Some of the lost
to follow up individuals can transmit the disease without presenting any symptom.
The authors present control measures for the reduction of the number of individuals
that progress to the class of the lost to follow up individuals, L.

In [47, 50] two control functions, u1 and u2, and two real positive constants,
�1 and �2, were introduced in the model (4). The control u1 represents the effort
in preventing the failure of treatment in active TB infectious individuals I1 (case
holding), and the control u2 governs the fraction of persistent latent individuals L4
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that is put under treatment (case finding). The parameters �i 2 .0; 1/, i D 1; 2,
measure the effectiveness of the controls ui, i D 1; 2, respectively, i.e., these
parameters measure the efficacy of treatment interventions for active and persistent
latent TB individuals, respectively. In [47] the model is applied to Angola.

In [27, 47, 50] it is assumed that the total population N is constant, that is, the
recruitment rate is equal to �N, & D �N, and the TB induced death rates are
equal to zero. In [5, 6, 16, 24, 35, 59] the total population is not considered to be
constant.

4 Optimal Control Problems

The control strategies for the reduction of infectious and/or latent individuals imply
a cost of implementation. This implementation cost depends on many factors, for
example, costs for activities to facilitate case holding. Those activities can be
challenging because of the fact that chemotherapy must be maintained for several
months to ensure a lasting cure, but patients usually recover their sense of well-
being after only a few weeks of treatment and may often stop taking medications
[27, 39]. For case finding, the control policies consider actions for the prevention of
disease development with preventive therapy of latently infected individuals, which
can be done in different ways, for example, identifying TB cases where the first
initiative patient/provider contact is taken by health providers (active case finding)
or by the patient (passive case finding), and screening activities among population
groups at high risk of TB (for example, immigrants from high prevalence countries)
[27, 35]. The implementation cost is taken into account in the formulation of an
optimal control problem and is mathematically traduced by a functional.

Let L and I denote the latent infected and infectious individuals, respectively,
without any specific characteristic, and u D .u1; : : : ; un/, with n 2 f1; 2; 3g for the
models described in Sect. 3, be the bounded Lebesgue measurable control function.
Different cost functionals have been considered on the previously cited works on
optimal control applied to TB models:

C1.u/ D
Z tf

0

"
A1I.t/C A2L.t/C

nX
iD1

Bi

2
u2i .t/

#
dt ;

C2.u/ D
Z tf

0

"
A1I.t/C

nX
iD1

Bi

2
u2i .t/

#
dt ;

and

C3.u/ D
Z tf

0

"
A2L.t/C

nX
iD1

Bi

2
u2i .t/

#
dt :
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It is assumed that the cost of the treatments are nonlinear and take a quadratic form.
The coefficients, Aj, j 2 f1; 2g, and Bi, i 2 f1; 2; 3g, are balancing cost factors due
to the size and importance of the three parts of the objective functional.

For the cost functional C2 and C3, the aim is to minimize the infectious and
latent individuals, respectively, while keeping the cost low. For the cost functional
C1, both infectious and latent individuals are wished to be minimized, keeping the
cost of control interventions low.

A cost functional of type C1 is adopted by Jung et al. [27], Silva and Torres
[47, 50], and Whang et al. [59], C2 is chosen in [5, 6, 24, 35] and C3 is the objective
functional in [16].

Let .S / denote a mathematical model for TB with controls (see Sect. 3) given by
a finite number, m, of differential equations. Assume that the control system .S /

is given by PX D f .X; u/, where f is a Lipschitz continuous function with respect
to the state variable X, X 2 Rm, on the time interval Œ0; tf � and X.0/ D X0 be the
initial condition. Moreover, let g.X; u/ denote the integrand of the cost functional C
under consideration and assume that g is convex with respect to the control u. The
optimal control problem consists in finding a control u� such that the associated
state trajectory X� is solution of the control system .S /, in the time interval Œ0; tf �
with initial conditions X�.0/, and minimizes the cost functional C,

C.u�/ D min
˝

C.u/ ; (8)

where ˝ is the set of admissible controls (bounded and Lebesgue integrable
functions) given by

˝ D ˚
u 2 L1.0; tf / j 0 � ui � 1 ; i D 1; : : : ; n


:

According to the Pontryagin minimum principle [36], if u�.�/ 2 ˝ is optimal
for the optimization problem (8) subject to the control system .S / with fixed
initial conditions X0 and fixed final time tf , then there exists a nontrivial absolutely
continuous mapping � W Œ0; tf � ! Rm, called the adjoint vector, such that

PX D @H

@�
(9)

and

P� D �@H

@X
; (10)

where the function H defined by

H D H.X; �; u/ D g .X; u/C h�; f .X; ui
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is called the Hamiltonian, and the minimality condition

H.X�.t/; ��.t/; u�.t// D min
0�u�1H.X�.t/; ��.t/; u/ (11)

holds almost everywhere on Œ0; tf �. Moreover, the transversality conditions

�i.tf / D 0; i D 1; : : : ;m ; (12)

hold. This approach was considered in [6, 16, 24, 27, 35, 47, 59] for obtaining an
analytic expression of the optimal control u�. In [5] the analytical expression of
the optimal control u� is derived, using an algebraic approach, by solving a Riccati
equation.

5 Numerical Methods and Simulations

In [27] the optimal treatment strategy is obtained by solving the optimality system,
consisting of 12 ODEs from (5) and adjoint equations (10). An iterative method
is used for solving the optimality system. The authors start to solve the state
equations with a guess for the controls over the simulated time using a forward
fourth order Runge–Kutta scheme. Because of the transversality conditions (12),
the adjoint equations are solved by a backward fourth order Runge–Kutta scheme
using the current iteration solution of the state equations. Then, the controls are
updated by using a convex combination of the previous controls and the value
from the characterizations derived by (11). This process is repeated and iteration
is stopped if the values of unknowns at the previous iteration are close enough
to the ones at the present iteration. The same numerical procedure is applied in
[16, 35, 59]. In [47, 50] the authors use also the software IPOPT (https://projects.
coin-or.org/Ipopt), the Matlab Optimal Control Software PROPT (http://tomdyn.
com) and the algebraic modeling language AMPL (http://www.ampl.com). See, for
example, [1] for details on numerical simulations of optimal control applied to life
sciences using Matlab. In [24] the authors apply a semi-implicit finite difference
method developed by Gumel et al. [23] and presented in [28]. For a gentle overview
see [45].

In [27] different optimal control strategies are presented, which depend on the
population size, cost of implementing treatment controls and the control parameters.
The authors conclude that programs that follow the proposed control strategies can
effectively reduce the number of latent and infectious resistant-strain TB cases.
In [24] the numerical results show the effectiveness to introduce the control that
prevents the exogenous reinfection, which reactivates the bacterium tuberculosis at
the latent individuals. Analogously, in [5, 6] the results emphasize the importance of

https://projects.coin-or.org/Ipopt
https://projects.coin-or.org/Ipopt
http://tomdyn.com
http://tomdyn.com
http://www.ampl.com
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controlling exogenous reinfection using chemoprophylaxis and detection methods
in reducing the number of actively infected individuals with tuberculosis. The
numerical simulations in [35] show that the proposed control interventions can
effectively reduce the number of latent and infectious TB cases. More precisely, the
optimal control results show that a cost effective combination of screening/medical
testing of immigrants, as well as isolation of infectious persons for treatment, may
depend on cost of implementation of the controls and the parameters of the model,
specially, the rate of isolation �, isolation level l, fraction of immigrants with latent
TB p, and fraction of immigrants with active TB q.

6 Example: Optimal Control for the TB SEIRS Model

In this section we introduce a case finding control function u to the SEIRS
mathematical model for TB (1) from [7]. The coefficient 1 � u.t/ represents the
effort that sustains the success of the treatment of latent individuals L1. We assume
that the total population N is constant, that is, d1 D 0. This assumption is appropriate
when the time period is short or when the natural deaths or the immigration balances
the emigration (see [25]).

The controlled model is given by (see Table 1 for the meaning of the parameters)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

PS.t/ D &� ˇ

N cS.t/I1.t/ � �S.t/;

PL1.t/ D ˇ

N cS.t/I1.t/ � .�C r1/L1.t/ � .1 � u.t//k1L1.t/C �
ˇ

N cT.t/I1.t/;

PI1.t/ D .1 � u.t//k1L1.t/� .�C r2 C d1/I1.t/;

PT.t/ D r1L1.t/C r2I1.t/ � �
ˇ

N cT.t/I1.t/ � �T.t/:

(13)

Our aim is to minimize the number of infectious individuals I1, while keeping the
cost of control strategies implementation low, that is, (we choose a cost functional
of type C2 of Sect. 4)

C.u/ D
Z tf

0

�
AI1.t/C B

2
u2.t/

�
dt : (14)

In this example we propose to solve the optimal control problem that consists
in finding a control u� such that the associated state trajectory .S�;L�1 ; I�1 ;T�/ is
solution of the control system (13) in the time interval Œ0; tf � with initial conditions
.S.0/;L1.0/; I1.0/;T.0// and minimize the cost functional C,

C.u�/ D min
˝

C.u/ ; (15)
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where˝ is the set of admissible controls given by

˝ D fu 2 L1.0; tf / j 0 � u � 1 g :

Theorem 1 The optimal control problem (13), (15) with fixed initial conditions
S.0/, I1.0/, L1.0/ and T.0/ and fixed final time tf , admits an unique solution�
S�.�/; I�1 .�/;L�1 .�/;T�.�/

�
associated to an optimal control u�.�/ on Œ0; tf �. Moreover,

there exists adjoint functions ��1 .�/, ��2 .�/, ��3 .�/ and ��4 .�/ such that

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

P��1 .t/ D ��1 .t/
�
ˇ

N cI�1 .t/C �
	

� ��2 .t/ ˇN cI�1 .t/;
P��2 .t/ D ��2 .t/..�C r1/C .1 � u�.t//k1/� ��3 .t/.1 � u�.t//k1 � ��4 .t/r1;
P��3 .t/ D �A C ��1 .t/

ˇ

N cS�.t/ � ��2 .t/
�
ˇ

N cS�.t/C �
ˇ

N cT�.t/
	

C��3 .t/.�C r2 C d1/� ��4 .t/
�

r2 � � ˇN cT�.t//
	
;

P��4 .t/ D ���2 .t/� ˇ

N cI�1 .t/C ��4 .t/
�
�
ˇ

N cI�1 .t/� �
	
;

(16)

with transversality conditions

��i .tf / D 0; i D 1; : : : ; 4 :

Furthermore,

u�.t/ D min



max



0;

k1
B

L�1 .t/
�
��3 .t/ � ��2 .t/

��
; 1

�
: (17)

Proof Existence of an optimal solution
�
S�;L�1 ; I�1 ;T�

�
, associated to an optimal

control u�, comes from the convexity of the integrand of the cost functional (14)
with respect to the control u and the Lipschitz property of the state system with
respect to state variables .S;L1; I1;T/ (see, e.g., [10, 18]). System (16) is derived
from the Pontryagin minimum principle (see (10), [36]) and the optimal control (17)
comes from the minimality condition (11). The optimal control given by (17) is
unique along all time interval due to the boundedness of the state and adjoint
functions, the Lipschitz property of systems (13) and (16) and the fact that the
problem is autonomous.

We end by presenting some numerical simulations with the following parameter
values: � D 0:0143, c D 1, ˇ D 13, � D 1, r1 D 2, and r2 D 1 (see [7]). The
initial conditions are: S.0/ D .76=120/N, L1.0/ D .38=120/N, I1.0/ D .5=120/N,
and T.0/ D .1=120/N (see [27]). We start showing that the implementation of the
control has a positive impact on the reduction of infectious individuals. In Fig. 1
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Fig. 1 Fraction of infectious individuals, with and without control, and optimal control (for k1 D
1, A D 1, B D 100 and N D 10;000). (a) I1=N; (b) Optimal control u
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Fig. 2 Fraction of infectious individuals and optimal control for k1 2 f0:25; 0:5; 0:75; 1g (with
B D 100, A D 1 and N D 10;000). (a) I1=N; (b) Optimal control u

we observe that the fraction of infectious individuals decreases significatively when
control strategies are implemented. If our aim is to reduce the number of infectious
individuals giving special attention to keep the cost of implementation of the control
measures low, then the weight constant B should take bigger values than A. Take,
without loss of generality, A D 1 and B � 50. In this case, we observe that the
fraction of infectious individuals I1=N and the optimal control u depend on the
rate of progression to active TB (see Fig. 2) and the size N of total population
(see Fig. 3). The period of time that the optimal control attains its maximum value
decreases with B (see Fig. 4). However, contrary to what is desired, the fraction of
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Fig. 3 Fraction of infectious individuals and optimal control for N 2 f5000; 10;000; 15;000g
(with B D 100, A D 1 and k1 D 1). (a) I1=N; (b) u
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Fig. 4 Fraction of infectious individuals and optimal control for B 2 f50; 100; 250; 500g (with
A D 1, N D 10;000 and k1 D 1). (a) I1=N; (b) u

infectious individuals starts increasing after some specific period of time. This can
be avoided if the rate k of progression to active TB is low (see Fig. 2), or if we
give more importance to the decrease of the number of infectious individuals than
to the cost of implementation of the control policies, that is, if we increase the value
of the weight constant A. In fact, for A � B the fraction of infectious individuals
never increases in all treatment period, regardless the size of the population N or the
value of k (see Fig. 5). On the other hand, the optimal control attains the maximal
value almost all the treatment period, which implies a higher cost implementation
of control measures (see Fig. 6).
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Fig. 6 Optimal control for A D B D 100 (with k1 2 f0:25; 0:5; 0:75; 1g and N 2
f5000; 10;000; 15;000g). (a) u; (b) u

7 Conclusion

A state of the art of uncontrolled and controlled mathematical models for tubercu-
losis (TB) has been presented. In particular, the paper reviews the works on optimal
control of various models for the disease transmission dynamics of TB. Several
results related to the dynamics and optimal control of TB have been reviewed and
summarized. Two control strategies, “case finding” and “case holding”, are used to
demonstrate the optimal control analysis.

The topics covered do not provide an exhaustive survey but rather an illustrative
overview. For instance, a TB vaccine called BCG (Bacillus of Calmette and Guérin)
has been used especially for children for several decades, and in some papers a
dynamical system with vaccination has been formulated and analyzed (see, e.g.,
[9]), but the subject has not been covered here. The example provided (see Sect. 6) is
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also very simple: only a single-strain TB dynamics with SEIRS model is presented.
The reader interested in a model to study the optimal control of a two-strain (drug-
sensitive and drug-resistant) TB dynamics is referred to [27].

Current research includes the development of co-infection mathematical models
for TB and human immunodeficiency virus (HIV) transmission dynamics [51]. The
novelty of [51], with respect to available results in the literature, is considering both
TB and acquired immune deficiency syndrome (AIDS) treatment for individuals
with both infectious diseases. Results show that TB treatment for individuals with
only TB infection reduces the number of individuals that become co-infected with
TB and HIV/AIDS, and reduces the diseases (TB and AIDS) induced deaths.
They also show that the treatment of individuals with only AIDS also reduces the
number of co-infected individuals. Further, TB-treatment for co-infected individuals
in the active and latent stage of TB disease, implies a decrease of the number of
individuals that passes from HIV-positive to AIDS. Application of optimal control
to such combined TB-HIV/AIDS co-infection models poses a number of numerical
challenges and is under investigation. This will be addressed in a forthcoming
paper.
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A Bayesian Modelling of Wildfires in Portugal

Giovani L. Silva, Paulo Soares, Susete Marques, M. Inês Dias,
M. Manuela Oliveira, and José G. Borges

Abstract In the last decade wildfires became a serious problem in Portugal due
to socieconomic and climate change trends. In order to analyse wildfire data, we
employ beta regression for modelling the proportion of burned wild area, under a
Bayesian perspective. Our main goal is to find out fire risk factors that influence the
proportion of area burned and what may make a wild area susceptible or resistant to
fire. Then, we analyse wildfire data in Portugal during 1990–1994 through Bayesian
normal and beta regression models that use Markov chain Monte Carlo methods for
estimating quantities of interest.

1 Introduction

In Portugal, wildfires (related to natural forests and other plant areas) have been
increasing in the last years. Fire is indeed an important issue in Mediterranean
region affecting namely the ecological and economic aspects of forest areas and
causing loss of human life. Many factors have contributed to the increasing number
of wildfires, e.g., climate change [7]. Some studies have identified changes in the
number of fires, burned area and fire size distribution depending on topographical
variables and vegetation type, e.g., in the Spanish region Catalonia [10] and
Portugal [13].

Gomes [9] pointed out many causes and consequences of forest fires in Portugal,
e.g., currently, rural and forest areas in Portugal are considerably deserted due to
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population migrations from these areas to the main cities, which began in the 1950s.
Fernandes et al. [5] proposed a fuel modelling and fire hazard assessment, used
to evaluate and compare the fire hazard potential between forest types defined by
their composition and structure. They found that potential fire behaviour is primarily
driven by stand structure, rather than by cover type.

Marques et al. [13] presented an approach of the characterisation fire occurrence
in Portugal, combining the use of geographic information systems (GIS) and gener-
alised linear models (GLM). They emphasised the relationship between ecological
and socioeconomic features on the proportion of area burned, recording also the
number of fires and fire size for three 5-year periods, including the period 1990–
1994. Descriptive statistics indicated variations in the distribution of fires over recent
decades, with a significant increase in number of very large fires. Regression models
underlined the impact of the forest cover type and the proximity to roads on the
proportion of area burned.

For modelling wildfires, GLM [1, 14] have been often adopted, even as that is
based on the Gaussian distribution by transforming the response [13]. Ferrari and
Cribari-Neto [6] proposed a regression model where the response is beta distributed
using a parameterisation of the beta law that is indexed by mean and dispersion
parameters. Beta regression can be used for modelling the proportion of area
burned that is restricted to the interval (0, 1). The regression parameters of the beta
regression model are interpretable in terms of the mean of the response and, when
the logit link is used, of an odds ratio, unlike the parameters of a linear regression
that employs a transformed response [6].

This work proposes to model the proportion of burned area due to wildfires in
Portugal, based on beta regression and under a Bayesian perspective (see e.g. [8, 17]
for some Bayesian GLMs). The rest of the article is organised as follows. Section 2
succinctly describes the motivation of this work and the different modelling of wild-
fires. In Sect. 3 we present Bayesian beta regression for modelling the proportion of
area burned, taking the use of Markov chain Monte Carlo (MCMC) methods for
estimating quantities of interest. Some results of Bayesian beta regression related
to the wildfire data analysis in the entire Portuguese mainland between 1990 and
1994, and concluding remarks are done respectively in Sects. 4 and 5, including the
identification of the fire risk factors.

2 Motivation and Methods

In Portugal, burned area mapping, obtained by semi-automated classification of
high-resolution remote sensing data from Instituto Superior de Agronomia (ISA)—
Universidade de Lisboa, identified 35,198 fire perimeters with burned areas equal to
or greater than 5 ha in the period 1975–2007 and the corresponding area burned is
about 3:8 � 106 ha that is equivalent to nearly 40 % of the country area [13].
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Fig. 1 Fire perimeters between 1990 and 1994 in Portugal (left), a zoom over a burned area is
shown in the right, based on the classes of the covariates: (a) land use, (b) altitude, (c) slope,
(d) slope orientation (aspect), (e) road proximity, (f) population density, (g) temperature, (h) pre-
cipitation, (i) layer indicating the fire perimeters

In the period 1990–1994, Marques et al. [13] pointed out that: (1) 5706 Por-
tuguese wildfires were recorded and the total burned area extended over 442,745 ha,
burning about 4.97 % of the country area, (2) the average area burned per wildfire
was 77 ha, (3) 149 wildfires extended over 500 ha, accounting for 44 % of the
burned area, (4) none extended over 10,000 ha. Figure 1 (left side) exemplifies the
distribution (frequency) of these fires identifying high and critical fire zones that are
specially located in the northern and central interior of Portugal.

In order to analyse variations in Portuguese wildfires in 1990–1994, the areas
burned were included as map layers in the GIS database according to eight fire
features (covariates), which were initially categorised, based on extensive prelimi-
nary data analysis and referred in the paper [13], into several classes: altitude (m),
slope (%), slope orientation, population (hab/km2), roads proximity (m), number of
days with precipitation greater than 1 mm in the fire season (from May to October),
number of days with maximum temperature higher than 25 ıC in the fire season, and
land cover (Table 1), including the observed proportion of the each land use classes
in parentheses. Theses classes were also chosen based on some studies using the
same data such as Moreira et al. [15] and Pereira et al. [19].

Figure 1 illustrates the fire perimeters used for constructing burned area data
from related map layers. Notice that land cover map used in this study further
included a map at the scale 1/25,000 (Carta de Ocupação do Solo—COS’90)
produced by Instituto Geográfico Português using cartographic information from
aerial photography mostly dated from 1990 [13], as well as that road proximity
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Table 1 Description of the classes of the eight fire features used in the wildfire data

Roads Precipitation Temperature

proximity Population Slope Altitude Slope (number of days (number of days

(m) (hab/m2) (%) (m) orientation �1 mm)a >25 ıC)a

�1000 <25 0–10 < 200 Flat 0–6 0–3

<1000 25–100 10–20 200–400 North 7–13 4–48

>100 20–30 400–700 East 14–18 49–71

>30 >700 South 19–22 72–92

West 23–26 93–112

�27 �113

Land cover: annual crop (5.3 %); eucalyptus (10.9 %); hardwoods (7 %); hardwoods
and softwoods mixed with eucalyptus (HSME) (8.9 %); agro-forestry (5.8 %);
permanent crop (3.5 %); shrubs (27.4 %); resinous or softwoods (RS) (18.8 %);
softwoods mixed with eucalyptus (SME) (8.6 %); others (e.g. social areas) (3.8 %)
aNumber of days in the fire season (from May to October)

included trails and was defined (1000 m distance) based on previous work e.g.
Catry et al. [3]. Although continuous covariates as temperature and precipitation
could be better explored in their natural form, we chose to categorize them because
of a matter of simplicity and interpretation for the data collection and the model
parameters, respectively.

For the modelling of wildfires, we record the observed proportion of burned area,
denoted by ri that is the burned area out of total area for the ith combination of
levels for the covariates in study, i D 1; : : : ; k. We propose to model the proportion
of burned area from these eight underlying covariates by assuming beta distribution
for ri, i.e.,

• Beta model: ri � Beta.�i�; .1��i/�/, with mean E.ri/ D �i and variance
Var.ri/D �i.1��i/

�C1 .

Alternative GLM can model the proportion ri, for instance:

• Gaussian model: logit.ri/ 	 log.ri=.1�ri// � Normal.�i; �
2/;

• Gamma model: � log.ri/ � Gamma.�; �=�i/, with E.ri/D�i and Var.ri/D �2i
�

.

These two models and other GLM based on transformations of ri, such as
arcsin.

p
ri/ and Box-Cox transformation, are discussed and developed in [1, 14].

Figure 2 displays histograms of the observed proportion of area burned without and
with logit transformation in Portugal during the period 1990–1994, indicating that
transforming response may not be the best way of wildfire modelling, what happens
in the proportions close to one in Fig. 2 and notice that the beta model does not
transform the response.
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Fig. 2 Histograms of the observed proportion of area burned without (right) and with (left) logit
transformation in Portugal during the period 1990–1994

3 Bayesian Beta Regression

Let r1; : : : ; rk be random variables, where ri follows a beta distribution with mean
�i and unknown precision �, whose probability density function is

f .rij�i; �/ D 
 .�/


 .�i�/
 ..1��i/�/
r�i��1

i .1� ri/
.1��i/��1; 0 < ri < 1; (1)

where 
 .�/ is the gamma function, 0<�i<1 and �>0, iD1; : : : ; k. Notice that the
parameterisation of the beta distribution (1) was suggested by Ferrari and Cribari-
Neto [6] in order to model response variable that is continuous and restricted to the
interval (0, 1) and is related to other variables through a regression structure.

The beta regression model is obtained from Eq. (1) by assuming that the mean �i

can be written as

g.�i/ D zT
i ˇ 	 �i; (2)

where ˇ D .ˇ1; : : : ; ˇp/
T is the regression parameter vector associated with the

covariate vector zi D .zi1; : : : ; zip/
T for the ith observation, iD1; : : : ; k, and g.�/ is a

logit link function g.�/ D logŒ�=.1 � �/� (for other link functions, see [1, 6, 14]).

3.1 Posterior Distribution

For the likelihood, we can assume different sampling distributions for the proportion
ri, e.g., beta distribution defined in Eq. (1) or normal distribution for the transformed
proportion, as referred in Sect. 2. Based on the former distribution with logit link
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function in Eq. (2), the likelihood function is given by

L.ˇ; �jx/ D
kY

iD1


 .�/


 .�i�/ 
 ..1��i/�/
r�i��1

i .1�ri/
.1��i/��1; (3)

where x D friI zi; iD1; : : : ; kg is the data, and �i D ezT
i ˇ=.1CezT

i ˇ/, iD1; : : : ; k.
In Bayesian analysis, we also consider information a priori that here consists of

assuming independent normal distributions with zero mean and variances v2j for the
regression coefficients, j D 1; : : : ; p, and inverse gamma distribution with shape a
and scale b parameters for the precision parameter � (or gamma distribution with
shape a and scale b parameters for the variance �2 related to normal regression).
In fact, we assigned non-informative prior distribution, i.e., highly dispersed, but
proper normal and inverse gamma prior distributions for the model parameters ˇ

and � (or 1=�2), respectively. In that case, one expects that inferential results on the
model parameters are not too different from those ones under a frequentist approach.

Assuming a priori independence amongst the model parameters, we can construct
the joint posterior density related to the beta regression model (2), which is
denoted by

�.ˇ; �jx/ 	 L.ˇ; �jx/�1.ˇ/�2.�/R R
L.ˇ; �jx/�1.ˇ/�2.�/ dˇd�

; (4)

where �1.ˇ/ and �2.�/ are the normal and inverse gamma prior distributions of ˇ

and �, respectively, being the distribution (4) proportional to

kY
iD1


 .�/ r�i��1
i .1�ri/

.1��i/��1


 .�i�/ 
 ..1��i/�/
e�

1
2

Pp
jD1.ˇ

2
j =v

2
j / ��.aC1/e�b=� : (5)

Notice that the mean �i is a function of the linear predictor �i D zŤ , iD1; : : : ; k.
The joint posterior distribution (5) is awkward to work with, since the marginal

posterior distributions of some parameters are not easy to obtain explicitly. These
posteriors can be evaluated using MCMC methods (see e.g. [8, 11, 17]). In particular
Gibbs sampling that works by iteratively drawing samples for each parameter from
the corresponding full conditional distribution, which is friendly implemented in
software WinBUGS [12]. Other MCMC method, proposed by Hoffman and Gelman
[11], is the No-U-Turn Sampler (NUTS) that is a variant of the Hamiltonian Monte
Carlo (HMC), also known as hybrid Monte Carlo. Neal [16] presented HMC method
in order to avoid a long time to converge to the posterior distribution as e.g. in Gibbs
sampling by using a clever auxiliary variable scheme that transforms the problem of
sampling from a posterior distribution into the problem of simulating Hamiltonian
dynamics.
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3.2 Evaluating and Comparing Models

An important issue in Bayesian data analysis is to choose among postulated sub-
models of a statistical model, e.g. the beta regression model (2). Some summary
measures of model comparison, such as the posterior mean of Deviance D.�/, where
� is the model parameter vector, are easily evaluated with MCMC methods. Other
two measures of predictive accuracy are Deviance Information Criterion (DIC) and
Watanabe-Akaike Information Criterion (WAIC) (see [8, 21]). DIC is here defined as

DIC D D.�/C Var.D.�//; (6)

where � and Var.D.�// denote the posterior mean of model parameter � and the
posterior variance of the deviance, respectively, whereas WAIC is defined by

WAIC D D.�/C 2

kX
iD1

Var.Di.�//; (7)

where Var.Di.�// denotes the posterior variance of the ith term of the deviance.
DIC and WAIC handle Bayesian models of any degree of complexity, and models
with smaller (6) and (7) should be preferred to models with larger ones.

4 Wildfire Data Analysis

For the wildfire data described in Sect. 2, we fitted several regression models based
on the response, proportion of the burned area in Portugal during the period 1990–
1994, as in Marques et al. [13], but now focusing on the beta regression instead of
normal regression, and under a Bayesian perspective. One of the eight covariates
presented in Table 1, i.e. slope orientation, was removed from the analysis by not
showing any difference among its categories.

Let M1 and M3 denote regression beta model (1) with eight covariates showed in
Table 1, apart from the covariate slope orientation, whereas M2 and M4 represent the
corresponding normal models. Table 2 lists these sub-models of the beta and normal
model with only main covariate effects, M1 and M2, and also with interactions
between two covariates. Based on the comparison model measures DIC (6) and
WAIC (6), fitted models with interactions had better evaluation than models with
only main effects for both beta and normal models. These evaluating values were
calculated taking into account the same response ri=.1�ri/ (so-called odd), which
generates a sampling log-normal and second-kind beta distributions for normal and
beta distributions, respectively. So, normal regression had better fitting than beta
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Table 2 Model comparison measures of four fitted regression models for wildfire data

Regression models WAIC DIC

M1: beta regression with only main effects �10,161.37 �10,165.68

M2: normal regression with only main effects �14,593.76 �14,605.28

M3: beta regression with interactions between two covariates �10,723.74 �10,728.94

M4: normal regression with interactions between two covariates �15,263.72 �15,285.41

regression, and that can namely be associated with the large number of observations
(k D 25;388). However, we chose to select model M3 in order to illustrate the beta
regression model that has not been employed in the analysis of wildfire burned areas,
even as it can be considered the natural choice.

For all models showed in Table 2, we assumed prior normal distribution with
mean zero and variance 104 for the regression parameters and prior inverse gamma
and gamma distributions with shape parameter 1 and scale parameter 0.01 for the
precision parameter � (beta regression) and the variance �2 (normal regression),
respectively. That is, highly dispersed, but proper prior distributions. MCMC
samples of size 5000 were obtained for all models, after 2500 iterations of burn-
in, implemented in software Stan [20]. A study of convergence of the samples was
carried out with no worrying features.

For selected beta model M3, Table 3 displays the model parameter estimates:
posterior mean, standard deviation (SD) and 95 % highest posterior density (HPD)
credible intervals (CI) for the model parameters. Note that related to the proportion
of area burned in Portugal during the period 1990–1994:

1. There is no significant effect of annual and permanent crops in contrast to the
other categories of land cover;

2. The land covers with larger likelihood to have wildfires are (in increasing
order) agro-forestry, hardwoods, hardwoods and softwoods mixed with euca-
lyptus (HSME), resinous or softwoods (RS), eucalyptus, softwoods mixed with
eucalyptus (SME), and shrubs (the most likelihood).

3. The proportion increases for larger categories of slope and altitude, whereas
population and roads proximity display a decreasing effect in the proportion.

4. Because temperature and precipitation had an unexpected negative effect in
the proportion, we decided to look for a potential interaction effect between
the two covariates. We found significant interaction between temperature and
precipitation in model M3, even as that is not clear for the smaller categories of
both covariates.

5. As large the categories of temperature and precipitation as large is the odd of
burned area (interaction effect). Notice that the largest category did not have
observation enough for confirming that.

6. The estimates in Table 3 also indicates that there is some dispersion in the
proportion of area burned (see 95 % HPD credible interval of �).
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Table 3 Estimates of the regression parameters and dispersion parameter (�) for model M3

95 % CI 95 % CI

Parameter Mean SD Lower Upper Parameter Mean SD Lower Upper

Roads proximity (ˇ17) Temperature (ˇ25; : : : ; ˇ29)

<1000 �0:05 0.01 �0:08 �0:02 4–48 �2:63 0.12 �2:87 �2:39
Population (ˇ18; ˇ19) 49–71 �2:63 0.13 �2:87 �2:38
25–100 �0:09 0.02 �0:12 �0:05 72–92 �2:67 0.13 �2:92 �2:43
�100 �0:15 0.02 �0:19 �0:11 93–112 �2:94 0.16 �3:24 �2:63

Slope (ˇ14; ˇ15; ˇ16) �113 �2:78 0.20 �3:18 �2:41
10–20 0:21 0.02 0:18 0:24 Land cover (ˇ2; : : : ; ˇ10)

20–30 0:66 0.02 0:61 0:70 Annual crop �0:04 0.04 �0:11 0:03

�30 2:16 0.06 2:05 2:27 Eucalyptus 0:49 0.04 0:42 0:56

Altitude (ˇ11; ˇ12; ˇ13) Hardwoods 0:18 0.04 0:11 0:25

200–400 0:12 0.02 0:08 0:16 HSME 0:32 0.04 0:24 0:39

400–700 0:15 0.02 0:11 0:19 Agro-forestry 0:08 0.04 0:00 0:15

�700 0:40 0.02 0:35 0:44 Permanent crop �0:05 0.04 �0:13 0:02

Precipitation (ˇ20; : : : ; ˇ24) Shrubs 0:61 0.03 0:54 0:68

7–13 �0:58 0.13 �0:83 �0:30 RS 0:48 0.04 0:42 0:55

14–18 0:08 0.18 �0:29 0:43 SME 0:59 0.04 0:51 0:66

19–22 0:43 0.19 0:06 0:80

23–26 �0:62 0.17 �0:96 �0:29 Intercept (ˇ1) 0:81 0.13 0:57 1:05

�27 �2:72 0.96 �4:62 �0:84 � 1:36 0.01 1:34 1:39

(ˇ30) Temperature (4–48) � Precipitation (7–13) 0:70 0.14 0:40 0:95

(ˇ31) Temperature (4–48) � Precipitation (14–18) 0:03 0.19 �0:33 0:40

(ˇ32) Temperature (4–48) � Precipitation (19–22) �0:11 0.19 �0:46 0:29

(ˇ33) Temperature (4–48) � Precipitation (23–26) 0:62 0.18 0:28 0:98

(ˇ34) Temperature (4–48) � Precipitation (�27) 2:70 0.96 0:79 4:57

(ˇ35) Temperature (49–71) � Precipitation (7–13) 0:54 0.14 0:27 0:82

(ˇ36) Temperature (49–71) � Precipitation (14–18) �0:15 0.19 �0:53 0:21

(ˇ37) Temperature (49–71) � Precipitation (19–22) �0:35 0.19 �0:72 0:04

(ˇ38) Temperature (49–71) � Precipitation (23–26) 0:73 0.18 0:39 1:09

(ˇ39) Temperature (49–71) � Precipitation (�27) 2:96 0.96 1:09 4:88

(ˇ40) Temperature (72–92) � Precipitation (7–13) 0:47 0.15 0:19 0:75

(ˇ41) Temperature (72–92) � Precipitation (14–18) �0:04 0.19 �0:42 0:34

(ˇ42) Temperature (72–92) � Precipitation (19–22) �0:35 0.19 �0:72 0:04

(ˇ43) Temperature (72–92) � Precipitation (23–26) 0:85 0.18 0:49 1:21

(ˇ44) Temperature (72–92) � Precipitation (�27) 3:41 0.96 1:50 5:30

(ˇ45) Temperature (93–112) � Precipitation (7–13) 0:60 0.18 0:25 0:96

(ˇ46) Temperature (93–112) � Precipitation (14–18) 0:70 0.23 0:27 1:17

(ˇ47) Temperature (93–112) � Precipitation (19–22) 1:38 0.26 0:88 1:89

(ˇ48) Temperature (93–112) � Precipitation (23–26) 3:26 0.23 2:81 3:73

(ˇ49) Temperature (�113) � Precipitation (7–13) 0:57 0.22 0:10 0:98
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5 Concluding Remarks

This analysis of wildfire data in Portugal allow us to figure out the influence of
the observed combinations of eight fire risk features on the proportion of burned
area. Our results of beta regression are essentially consistent with those ones
of normal regression, presented in Marques et al. [13], whose analysis did not
include the explanatory variables: slope orientation, precipitation, temperature and
the interaction between the last two ones. In fact, our model and conclusions bring
improvements on the results reported by them based on a similar data set. So, we
also identified changes in the proportion of burned area depending on topographical
variables and vegetation type. Pereira et al. [18] pointed out that some variability
of the burned area in Portugal is partly due both to the amount of precipitation in
the fire season and in the preceding late spring season and to the occurrence of
atmospheric circulation patterns that induce extremely hot and dry spells.

In addition, our intuition about interaction between precipitation and temperature
was corrected, and we also believe that some latent variables can explain some
unobserved heterogeneity in these wildfire data, e.g. spatial extra-variation across
fire regions. For instance, Amaral-Turkman et al. [2] proposed a spatio-temporal
model to analyse jointly the probability of ignition and fire sizes in Australia and
New Zealand. Further research is being developed for capturing the spatio-temporal
effects on the proportion of burned area, more proper sampling distributions and link
functions. Notice that 4 % of observed burned areas were 0 or 1 being replaced by
10�10 and 1 � 10�10, respectively, for simplicity, We intend to include that issue in
future work, as well as to do a full sensitivity analysis of our prior options (see e.g.
[8]) and some simulation to clarify the impact of a big data as our wildfires in the
results. For the our choice of beta regression instead of normal regression, we also
believe that a comprehensive simulation study must be done in order to verify the
second choice, as well as the residual analysis for understanding that unexplained
situation of the observed proportions close to one (see e.g. Espinheira et al. [4]).

Acknowledgements This paper was partially supported by the project PEst-OE/MAT/UI0006/
2014 of the Fundação para a Ciência e a Tecnologia (FCT). We also thank FCT for funding the
Post-Doctoral fellowship of Susete Marques “SFRH/BPD/96806/2013”. In addition the authors
would like to thank the two referees for the valuable and comprehensive comments that have
improved the final version of the paper.

References

1. Amaral-Turkman, M.A., Silva, G.L.: Modelos Lineares Generalizados - da teoria à prática.
SPE Edition, Lisbon (2000)

2. Amaral-Turkman, M.A., Turkman, K.F., Le Page, Y., Pereira, J.M.: Hierarchical space-time
models for fire ignition and percentage of land burned by wildfires. Environ. Ecol. Stat. 18,
601–617 (2011)



A Bayesian Modelling of Wildfires in Portugal 733

3. Catry, F., Rego, F., Bação, F., Moreira, F.: Modelling and mapping wildfire ignition risk in
Portugal. Int. J. Wildland Fire 18, 921–931 (2009)

4. Espinheira, P.L., Ferrari, S.L.P., Cribari-Neto, F.: On beta regression residuals. J. Appl. Stat.
35, 407–419 (2008)

5. Fernandes, P., Luz, A., Loureiro, C., Ferreira-Godinho, P., Botelho, H.: Fuel modelling and
fire hazard assessment based on data from Portuguese National Forest Inventory. For. Ecol.
Manage. 234S, S229 (2006)

6. Ferrari, S.L.P., Cribari-Neto, F.: Beta regression for modeling rates and proportions. J. Appl.
Stat. 31, 799–815 (2004)

7. Flannigan, M.D., Amiro, B.D., Logan, K.A., Stocks, B.J., Wotton, B.M.: Forest fires and
climate change in the 21st century. Mitig. Adapt. Strat. Glob. Chang. 11, 847–859 (2005)

8. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data
Analysis, 3rd edn. CRC Press, London (2014)

9. Gomes, J.F.P.: Forest fires in Portugal: how they happen and why they happen. Int. J. Environ.
Stud. 63, 109–119 (2006)

10. González, J.R., Pukkala, T.: Characterization of forest fires in Catalonia (Northeast Spain). Eur.
J. For. Res. 126, 421–429 (2007)

11. Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. arXiv 1111, 4246 (2011). http://arxiv.org/abs/1111.4246

12. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBUGS – a Bayesian modelling
framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)

13. Marques, S., Borges, J.G., Garcia-Gonzalo, J., Moreira, F., Carreiras, J.M.B., Oliveira, M.M.,
Cantarinha, A., Botequim, B., Pereira, J.M.C.: Characterization of wildfires in Portugal. Eur.
J. For. Res. 130, 775–784 (2011)

14. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. CRC Press, Boca Raton
(1989)

15. Moreira, F., Rego, F.C., Godinho-Ferreira, P.: Temporal (1958–1995) pattern of change in a
cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc. Ecol. 16
557–567 (2001)

16. Neal, R.: Handbook of Markov Chain Monte Carlo, Chap. 5: MCMC Using Hamiltonian
Dynamics. CRC Press, Chichester (2011)

17. Paulino, C.D., Amaral-Turkman, M.A., Murteira, B.: Estatística Bayesiana. Fundação Calouste
Gulbenkian, Lisboa (2003)

18. Pereira, M.G., Trigo, R.M., da Camara, C.C., Pereira, J.M.C., Leite, S.M.: Synoptic patterns
associated with large summer forest fires in Portugal. Agr. Forest. Meteorol. 129, 11–25 (2005)

19. Pereira, J.M.C., Carreiras, J.M.B., Silva, J.M.N., Vasconcelos, M.J.: Alguns conceitos básicos
sobre fogos rurais em Portugal. In: Pereira, J.S., Pereira, J.M.C., Rego, F.C., Silva, J.M.N.,
Silva, T.P. (eds.) Incêndios Florestais em Portugal, pp. 133–161. ISA Press, Lisboa (2006)

20. Stan Development Team.: Stan: A C++ Library for probability and sampling, Version 2.2.
(2014). http://mc-stan.org/

21. Watanabe, S.: Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3591 (2010)

http://arxiv.org/abs/1111.4246
http://mc-stan.org/


Minimum H-Decompositions of Graphs
and Its Ramsey Version: A Survey

Teresa Sousa

Abstract The subject of H-decompositions of graphs was first introduced by Erdős,
Goodman and Pósa in 1966. Given graphs G and H, an H-decomposition of G
is a partition of the edge set of G, such that, each part is either a single edge or
forms a graph isomorphic to H. Let �.n;H/ be the smallest number �, such that,
any graph G with n vertices admits an H-decomposition with at most � parts. The
exact computation of �.n;H/ for an arbitrary H is still an open problem. In this
paper we will survey recent results about H-decompositions of graphs and we will
also introduce its Ramsey or coloured version together with recent results on this
problem.

1 Introduction

All graphs in this paper are finite, undirected and simple. For standard notation and
terminology the reader is referred to [3].

Given two graphs G and H, an H-decomposition of G is a partition of the edge
set of G such that each part is either a single edge or forms an H-subgraph, i.e., a
graph isomorphic to H. We allow partitions only, that is, every edge of G appears
in precisely one part. Let �.G;H/ be the smallest possible number of parts in an
H-decomposition of G.

An H-packing of a graph G is a set of pairwise edge disjoint H-subgraphs of G.
The H-packing number of G, denoted by pH.G/, is the maximum cardinality of an
H-packing of G. It is easy to see that, for non-empty H, we have

�.G;H/ D e.G/� pH.G/.e.H/� 1/;

where e.G/ denotes the number of edges in G. Dor and Tarsi [4] showed that if H
has a component with at least three edges then the problem of checking whether an
input graph G is perfectly decomposable into H-subgraphs is NP-complete. Thus, it
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is NP-hard to compute the function �.G;H/ for such H. Nonetheless, many results
were proved about the extremal function

�.n;H/ D maxf�.G;H/ j v.G/ D ng;

which is the smallest number such that any graph G of order n admits an H-
decomposition with at most �.n;H/ parts. Here v.G/ denotes the number of vertices
in the graph G.

This function was first studied, in 1966, by Erdős, Goodman and Pósa [5], who
were motivated by the problem of representing graphs by set intersections. They
proved that �.n;K3/ D t2.n/, where Ks denotes the complete graph (clique) of
order s, and tr�1.n/ denotes the number of edges in the Turán graph of order n,
Tr�1.n/, which is the unique complete .r � 1/-partite graph on n vertices where
every partition class has either b n

r�1c or d n
r�1e vertices. A decade later, Bollobás [2]

proved that �.n;Kr/ D tr�1.n/, for all n > r > 3.
General graphs were only considered recently by Pikhurko and Sousa [18], who

studied �.n;H/ for arbitrary graphs H. They have determined the asymptotic value
of �.n;H/ for any fixed graph H as n tends to infinity (see Theorem 3). In the special
case when H is a bipartite graph, they were able to determine �.n;H/with a constant
additive error term. Furthermore, their proof provides an algorithm returning the
exact value of �.n;H/with running time polynomial in log n (see Theorem 1). Since
then, a few papers have been published about this problem. In Sect. 2 we will present
recent results about H-decompositions of graphs. In Sect. 3 we will introduce the
Ramsey or coloured version of this problem and state some new results.

2 H-Decompositions of Graphs

Let Ks denote the complete graph (or clique) on s vertices and let Tr�1.n/ denote
the Turán graph of order n. Tr�1.n/ is the unique complete .r � 1/-partite graph on
n vertices where every partition class has either b n

r�1c or d n
r�1e vertices. Turán’s

Theorem [27] states that Tr�1.n/ is the unique graph on n vertices that has the
maximum number of edges and contains no complete subgraph of order r.

Let ex.n;H/ denote the maximum number of edges in a graph on n vertices not
containing H as a subgraph, that is,

ex.n;H/ D maxfe.G/ j v.G/ D n;H 6� Gg:

The function ex.n;H/ is usually called the Turán function for H. Recall that for
a complete graph on r vertices we have ex.n;Kr/ D tr�1.n/.

In 1966, Erdős, Goodman and Pósa [5] proved that �.n;K3/ D t2.n/. A decade
later, Bollobás [2] proved that �.n;Kr/ D tr�1.n/, for all n > r > 3. General graphs
have been considered recently by Pikhurko and Sousa and since then a few papers
have been published about this problem. In this section we will bring together all
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results about H-decompositions of graphs. We will start with the case when H is a
bipartite graph and then consider the case when H is non-bipartite.

Let Km;n denote the complete bipartite graph with parts of size m and n. For a
bipartite graph H it is easy to determine the asymptotic value of the function �.n;H/
(see Sousa [22]):

Lemma 1 ([22]) For any non-empty graph H with m edges and any integer n, we
have

�.n;H/ 6 1

m

 
n

2

!
C m � 1

m
ex.n;H/: (1)

In particular, if H is a fixed bipartite graph with m edges and n ! 1, then

�.n;H/ D
�
1

m
C o.1/

�  
n

2

!
: (2)

Proof To prove (1) remove greedily one by one the edge-sets of H-subgraphs of a
given graph G and then remove the remaining edges. The bound (1) follows as at
most ex.n;H/ parts are single edges.

The upper bound in (2) follows from (1) and the equality

ex.n;Kt;t/ D O.n2�1=t/; (3)

of Kővari, Sös and Turán [12]. The lower bound in (2) follows from �.n;H/ >
�.Kn;H/ > 1

m

�n
2

�
. ut

Pikhurko and Sousa [18] managed to determine �.n;H/ for any fixed bipartite
graph H with an O.1/ additive error (see Theorem 1 below). Furthermore, their
proof gives a procedure for computing the exact value of �.n;H/ for all large n, that
runs in polylogarithmic time.

For a non-empty graph H, let gcd.H/ denote the greatest common divisor of
the degrees of H. For example, gcd.K6;4/ D 2 while for any tree T with at least 2
vertices we have gcd.T/ D 1. We have the following result.

Theorem 1 ([18]) Let H be a bipartite graph with m edges and let d D gcd.H/.
Then there is n0 D n0.H/ such that for all n > n0 the following statements hold.

If d D 1, then if
�n
2

� 	 m � 1 .mod m/,

�.n;H/ D �.Kn;H/ D
�

n.n � 1/

2m

�
C m � 1; (4)

otherwise,

�.n;H/ D �.K�n ;H/ D
�

n.n � 1/

2m

�
C m � 2 (5)
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where K�n denotes any graph obtained from Kn after deleting at most m � 1 edges
in order to have e.K�n / 	 m � 1 .mod m/. Furthermore, the only graph attaining
�.n;H/ is either Kn or K�n .

If d > 2, then

�.n;H/ D nd

2m

�jn

d

k
� 1

	
C 1

2
n.d � 1/C O.1/: (6)

Moreover, there is a procedure with running time polynomial in log n which
determines �.n;H/ and describes a family D of n-sequences such that a graph G of
order n satisfies �.G;H/ D �.n;H/ if and only if the degree sequence of G belongs
to D . (It will be the case that jD j D O.1/ and each sequence in D has n � O.1/
equal entries, so D can be described using O.log n/ bits.)

Later, Sousa [24] determined the exact value of �.n;C4/ for n sufficiently large,
where C4 denotes the cycle on 4 vertices.

Theorem 2 ([24]) There is n0 D n0.C4/ such that for all n > n0 the following
statements hold.

(i) If n is even then �.n;C4/ D n2

8
C n

4
C 1:

(ii) If n 	 1 .mod 8/ then �.n;C4/ D n2

8
C n

8
C 14

8
:

(iii) If n 	 3 .mod 8/ then �.n;C4/ D n2

8
C n

8
C 3

2
:

(iv) If n 	 5 .mod 8/ then �.n;C4/ D n2

8
C n

8
C 10

8
:

(v) If n 	 7 .mod 8/ then �.n;C4/ D n2

8
C n

8
C 2:

We will now consider the case when H is not a bipartite graph. Recall that the
chromatic number of a graph G, denoted by �.G/, is the minimum number of
colours needed to colour the vertices of G, such that, no edge joins two vertices
with the same colour. Observe that �.G/ D 2 if and only if G is a bipartite graph
and �.G/ � 3 otherwise. Pikhurko and Sousa [18] proved the following result about
H-decompositions of graphs for a fixed non-bipartite graph H.

Theorem 3 ([18]) Let H be any fixed graph of chromatic number r > 3. Then,

�.n;H/ D tr�1.n/C o.n2/:

The lower bound follows from the trivial inequalities �.n;H/ � ex.n;H/ �
tr�1.n/. To prove the upper bound one needs more sophisticated tools. In outline,
Pikhurko and Sousa proof is the following. First, they apply Szemerédi’s Regularity
Lemma [26] to the graph G that they want to decompose. The regularity partition
of G gives a weighted graph K with large but bounded number k of vertices.
By generalizing the method of Bollobás [2] they were able to decompose K into
weighted copies of Kr and K2 with aggregate weight at most tr�1.k/C o.k2/. Then,
the graph G is splitted into subgraphs that correspond to the cliques from the above
decomposition of K. Finally, each of the obtained r-partite subgraphs of G can be
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almost perfectly decomposed into copies of H by using a theorem of Pippenger and
Spencer [19].

Pikhurko and Sousa [18] also made the following conjecture.

Conjecture 1 ([18]) For any graph H of chromatic number r > 3, there exists n0 D
n0.H/ such that �.n;H/ D ex.n;H/ for all n > n0.

The exact value of the function �.n;H/ is far from being known, however, this
conjecture has been verified for some special graphs. Sousa [22, 23, 25] verified the
conjecture for the cycles of length 5 and 7 and for clique-extensions. Her results are
the following.

Theorem 4 ([22, 25]) Let Ct denote the cycle on t vertices. Then,

(i) �.n;C5/ D t2.n/ D bn2=4c, for all n � 6;
(ii) �.n;C7/ D t2.n/ D bn2=4c, for all n � 10.

For r � 3, a clique-extension of order r C 1 is a connected graph that consists
of a Kr plus another vertex, say x, adjacent to at most r � 1 vertices of Kr . For
i D 1; � � � ; r � 1, the Hr;i be the clique-extension of order r C 1 that has deg x D i.

Theorem 5 ([23]) For all n � 4 and i D 1; 2 we have

�.n;H3;i/ D t2.n/ D bn2=4c:

Theorem 6 ([23]) Let r � 4 and let H be any clique-extension of order r C 1. For
all n � r C 1 we have

�.n;H/ D tr�1.n/:

A graph H is edge-critical if there exists an edge e 2 E.H/ such that �.H/ >
�.H � e/. Özkahya and Person [17] verified Conjecture 1 for all edge-critical
graphs with chromatic number r � 3, extending the results obtained previously
by Sousa for the cycles of length 5 and 7 and for clique-extensions. Their result is
the following.

Theorem 7 ([17]) For any edge-critical graph H with chromatic number r � 3,
there exists n0 D n0.H/ such that �.n;H/ D ex.n;H/, for all n � n0. Moreover, the
only graph attaining ex.n;H/ is the Turán graph Tr�1.n/.

Recently, Allen, Böttcher, and Person [1] improved the error term obtained by
Pikhurko and Sousa in Theorem 3, this result is also an extension of the result of
Özkahya and Person in Theorem 7. Before stating the result we need the following
definition.

Given a graph H with �.H/ D r, the decomposition family FH of H is the set of
bipartite graphs which are obtained from H by deleting r � 2 colour classes in some
r-colouring of H. Observe that FH may contain graphs which are disconnected, or
even have isolated vertices. Let F�H be a minimal subfamily of FH , such that, for
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any F 2 FH , there exists F0 2 F�H with F0 
 F. We define

biex.n;H/ WD ex.n;FH/ D ex.n;F�H /:

Allen, Böttcher, and Person main result states that the o.n2/ error term in
Theorem 3 can be replaced by O.biex.n;H//, which is O.n2��/ for some � > 0

by the result of Kövari, Sós and Turán [12]. Furthermore, they also proved that this
error term has the correct order of magnitude.

Theorem 8 ([1]) For every integer r � 3 and every graph H with �.H/ D r there
are constants c D c.H/ > 0 and C D C.H/ and an integer n0 such that for all
n � n0 we have

ex.n;Kr/C c � biex.n;H/ � �.n;H/ � ex.n;Kr/C C � biex.n;H/:

Observe that for every edge-critical graph H and every n we have biex.n;H/ D 0,
therefore, Allen, Böttcher, and Person result is indeed an extension of the result of
Özkahya and Person.

Finally, Liu and Sousa [14] verified Conjecture 1 for the k-fan graph. The k-
fan graph, denoted by Fk, is the graph on 2k C 1 vertices consisting of k triangles
which intersect in exactly one common vertex, called the centre of Fk. Observe that
�.Fk/ D 3 and for k � 2 the graph Fk is not edge-critical.

In 1995, Erdős, Füredi, Gould, and Gunderson [6] have determined the value
of the function ex.n;Fk/ as well as the Fk-extremal graphs for every fixed k and n
sufficiently large. They have proved the following result.

Theorem 9 ([6]) Let Fn;k be the following family of graphs.

– If k is odd and n > 4k � 1, then a member of Fn;k is a Turán graph T2.n/ with
two vertex-disjoint copies of Kk added into one class.

– If k is even and n > 4k �3, then a member of Fn;k is a T2.n/ with a graph having
2k � 1 vertices, k2 � 3

2
k edges and maximum degree k � 1 added into one class.

For k > 1 and n > 50k2, we have

ex.n;Fk/ D
jn2

4

k
C g.k/ D

( �
n2

4

˘C k2 � k if k is odd,�
n2

4

˘C k2 � 3
2
k if k is even.

(7)

Moreover, the only Fk-free graphs with ex.n;Fk/ edges are the members of Fn;k.

Liu and Sousa [14] proved the following result.

Theorem 10 ([14]) For k > 1, there exists n0 D n0.k/, such that, for all n > n0 we
have

�.n;Fk/ D ex.n;Fk/:

Moreover, the only graphs attaining ex.n;Fk/ are the members of Fn;k.
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3 Monochromatic Decompositions of Graphs

Motivated by the recent work published about H-decompositions of graphs, a
natural problem to consider is the Ramsey or coloured version of this problem. More
precisely, let G be a graph on n vertices whose edges are coloured with k colours,
for some k � 2 and let H D .H1; : : : ;Hk/ be a k-tuple of fixed graphs, where
repetition is allowed. A monochromatic H -decomposition of G is a partition of its
edge set, such that, each part is either a single edge or forms a monochromatic copy
of Hi in colour i, for some 1 6 i 6 k. Let �k.G;H / be the smallest number, such
that, for any k-edge-colouring of G there is a monochromatic H -decomposition of
G with at most �k.G;H / elements. The aim is to study the function

�k.n;H / D maxf�k.G;H / j v.G/ D ng; (8)

which is the smallest number such that, any k-edge-coloured graph of order n admits
a monochromatic H -decomposition with at most �k.n;H / elements. In the case
when Hi Š H for every 1 6 i 6 k, we simply write �k.G;H/ D �k.G;H / and
�k.n;H/ D �k.n;H /.

The first open instance of this problem is the case when we want to decompose
our graph G into monochromatic copies of a fixed Kr, with r � 3. The function
�k.n;Kr/, for k > 2 and r > 3, has been studied by Liu and Sousa [15], who
obtained results involving the Ramsey numbers and the Turán numbers.

Recall that for r � 3 and k > 2, the Ramsey number for Kr, denoted by
Rk.r/, is the smallest value of s for which every k-edge-colouring of Ks contains a
monochromatic Kr . The Ramsey numbers are notoriously difficult to calculate, even
though, it is known that their values are finite for all r � 3 and k > 2 [21]. In fact,
for the Ramsey numbers Rk.r/, only three of them are currently known. In 1955,
Greenwood and Gleason [7] were the first to determine R2.3/ D 6, R3.3/ D 17 and
R2.4/ D 18.

We will also consider ‘blow-up’ versions of k-edge-colourings. A more precise
definition of a ‘blow-up’ is as follows. For s > 2, let G be an s-partite graph with
partition classes V1; : : : ;Vs, let f be a k-edge-colouring of G, and let f 0 be a k-edge-
colouring of Ks. We say that f , or G, is a blow-up of f 0 if the vertices of Ks can be
labelled v1; : : : ; vs such that, for all x 2 Vi and y 2 Vj with 1 6 i ¤ j 6 s, we have
f .xy/ D f 0.vivj/. We can easily prove a lower bound on the value of �k.n;Kr/ for
all r � 3 and k � 2.

Lemma 2 ([15]) Let r � 3, k � 2 and n > Rk.r/. Then,

�k.n;Kr/ � tRk.r/�1.n/: (9)

Proof By the definition of Rk.r/, there exists a k-edge-colouring f 0 of the com-
plete graph KRk.r/�1 with no monochromatic Kr. Now, consider the Turán graph
TRk.r/�1.n/with a k-edge-colouring f which is a blow-up of f 0. The graph TRk.r/�1.n/
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with the k-edge-colouring f has no monochromatic Kr and thus we have

�k.n;Kr/ > �k.TRk.r/�1.n/;Kr/ D tRk.r/�1.n/:

ut
Liu and Sousa [15] proved that the lower bound of tRk.r/�1.n/ is asymptotically

correct for k � 4 and r D 3 (see Theorem 11 below), and exact for k D 2; 3

and r D 3 (see Theorem 13) and for k � 2 and r � 4 (see Theorem 14), with n
sufficiently large in both cases.

Theorem 11 ([15]) For all k > 2, we have

�k.n;K3/ D tRk.3/�1.n/C o.n2/: (10)

In particular, it is known that R2.3/ D 6 and R3.3/ D 17. Indeed, for two colours,
it is easy to see that the only 2-edge-colouring of K5 not containing a monochromatic
K3 is the one where each colour class induces a cycle of length 5, as shown in Fig. 1.
Let f2 denote this 2-edge-colouring of K5. For three colours, the Ramsey number
R3.3/ D 17 was first determined, in 1955, by Greenwood and Gleason [7]. Later, in
1968, Kalbfleisch and Stanton [11] considered the structures of all possible 3-edge-
colourings of K16 not containing a monochromatic K3. Their result is stated in terms
of the Clebsch graph, which is a well-known 5-regular, Hamiltonian, K3-free graph
on 16 vertices and 40 edges.

Theorem 12 ([11]) There exist exactly two different 3-edge-colourings of K16 with
no monochromatic K3. In each case, each colour class induces the Clebsch graph.

Let f3 and f 03 be the two 3-edge-colourings of K16 as stated in Theorem 12. Liu
and Sousa [15] improved the upper bound in (10) for the cases k D 2; 3, as follows.
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Fig. 1 The 2-edge-colouring of K5, and its blow-up
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Theorem 13 ([15]) There is an n0 such that, for all n � n0, we have the following

�2.n;K3/ D t5.n/;

�3.n;K3/ D t16.n/:

Moreover, the only graph attaining �k.n;K3/ is T5.n/, with a blow-up of the 2-
edge-colouring f2 for k D 2, or T16.n/ with a blow-up of the 3-edge-colourings f3
or f 03 for k D 3.

The authors also make the following conjecture for monochromatic K3-
decompositions.

Conjecture 2 ([15]) Let k � 4. Then �k.n;K3/ D tRk.3/�1.n/ for n > Rk.3/.

For larger cliques Liu and Sousa [15] have also determined the exact value of the
function �k.n;Kr/ for all k � 2 and r � 4, provided that n is sufficiently large.

Theorem 14 ([15]) Let r � 4, k > 2. There is an n0 D n0.r; k/ such that, for all
n � n0, we have

�k.n;Kr/ D tRk.r/�1.n/: (11)

In particular, �2.n;K4/ D t17.n/.
Moreover, the only graph attaining �k.n;Kr/ is the Turán graph TRk.r/�1.n/ with

a k-edge-colouring that does not contain a monochromatic copy of Kr.

The proof of Theorem 14 is simple and requires few results, therefore it will be
included. Let us first introduce the necessary tools.

For r � 3, a Kr-cover in a graph is a set of edges meeting all Kr’s, that is, the
removal of a Kr-cover results in a Kr-free graph. A Kr-packing in a graph is a set
of pairwise edge-disjoint Kr’s. The Kr-covering number of a graph G, denoted by
�r.G/, is the minimum size of a Kr-cover of G and the Kr-packing number of G,
denoted by �r.G/, is the maximum size of a Kr-packing of G.

One can easily observe that

�3.G/ � �3.G/ � 3�3.G/: (12)

In 1981, Tuza [28] conjectured that the second inequality of (12) is not optimal.

Conjecture 3 ([28]) For every graph G, we have �3.G/ � 2�3.G/:

Conjecture 3 remains open, although many partial results have been proved. By
using the earlier results of Krivelevich [13], and Haxell and Rödl [10], Yuster [29]
proved the following theorem, which states that, asymptotically, Tuza’s conjecture
holds, and he also extended the result to larger cliques.
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Theorem 15 ([10, 13, 29]) Let G be a graph on n vertices. Then,

(i) �3.G/ 6 2�3.G/C o.n2/;
(ii) �r.G/ 6

�
r2

4

˘
�r.G/C o.n2/, for r � 4.

Next, we recall the following result of Győri [8, 9] about the existence of edge-
disjoint copies of Kr in graphs on n vertices with more than tr�1.n/ edges.

Theorem 16 ([8, 9]) Let r > 3 and G be a graph on n vertices with e.G/ D
tr�1.n/C m, where m D o.n2/. Then G contains m � O.m2

n2
/ D .1 � o.1//m edge-

disjoint copies of Kr.

We are now able to present the proof of Theorem 14.

Proof (Proof of Theorem 14) The lower bound was proved in Lemma 2. Let us now
prove the upper bound. Let G be any k-edge-coloured graph on n vertices and for
the sake of simplicity let R D Rk.r/. We will show that �k.G;Kr/ � tR�1.n/ with
equality if and only if G D TR�1.n/.

Let e.G/ D tR�1.n/ C m, where m is an integer. If m < 0, we can
decompose G into single edges and there is nothing to prove. If m D 0 and G
contains a monochromatic copy of Kr then G admits an edge-monochromatic Kr-
decomposition with at most

tR�1.n/�
 

r

2

!
C 1 < tR�1.n/

parts and we are done. If G does not contain a monochromatic Kr, then the definition
of the Ramsey number implies that G does not contain a copy of KR. Therefore,
G D TR�1.n/, by Turán’s Theorem. Now, let m > 0 and let ` be the maximum
number of edge-disjoint monochromatic Kr’s in G. If ` > m

.r
2/�1

, then

�k.G;Kr/ � `C e.G/ �
 

r

2

!
` < tR�1.n/: (13)

Therefore, it suffices to show that ` > m
.r
2/�1

.

Consider first the case m D o.n2/. By Theorem 16 the graph G contains .1 �
o.1//m edge-disjoint copies of KR. Since each KR contains a monochromatic copy
of Kr, this implies that ` > m

.r
2/�1

and we are done.

Finally, assume that m > Cn2, for some constant C > 0. In order to get a
contradiction, suppose that ` � m

.r
2/�1

. For 1 � i � k let Gi be the subgraph of

G on n vertices that contains all edges coloured with colour i. By Theorem 15, our



Minimum H-Decompositions of Graphs and Its Ramsey Version: A Survey 745

assumption implies that

kX
iD1

�r.Gi/ �
kX

iD1

jr2

4

k
�r.Gi/C o.n2/

�
jr2

4

k
`C o.n2/

�
jr2

4

k m�r
2

� � 1
C o.n2/ (14)

� 4

5
m C o.n2/; since r � 4:

That is, by deleting at most 4
5
m C o.n2/ edges from G, we obtain a subgraph G0

that does not contain a monochromatic copy of Kr. But then we have

e.G0/ � e.G/� 4

5
m � o.n2/ � tR�1.n/C 1

5
m � o.n2/ > tR�1.n/:

Therefore, Turán’s Theorem implies that G0 must contain a copy of KR which
contains a monochromatic copy of Kr . This is a contradiction and the proof is
complete. ut

As an extension of the monochromatic Kr-decomposition problem Liu, Pikhurko
and Sousa considered the problem when the clique Kr is replaced by a fixed k-tuple
of cliques C D .Kr1 ; : : : ;Krk/. Their results involve the Turán numbers and the
(generalized) Ramsey numbers. Let us recall the latter.

For k > 2 and integers r1; : : : ; rk > 3, the Ramsey number for Kr1 ; : : : ;Krk ,
denoted by R.r1; : : : ; rk/, is the smallest value of s, such that, whenever Ks is given
a k-edge-colouring, there exists a monochromatic Kri in colour i, for some 1 6
i 6 k. For the case when r1 D � � � D rk D r, for some r > 3, we simply write
Rk.r/ D R.r1; : : : ; rk/. Since R.r1; : : : ; rk/ does not change under any permutation
of r1; : : : ; rk, without loss of generality, we may assume throughout that 3 6 r1 6
� � � 6 rk. The Ramsey numbers are notoriously difficult to calculate, even though, it
is known that their values are finite for all k > 2 and 3 6 r1 6 � � � 6 rk [21]. To this
date, the values of R.3; r2/ have been determined exactly only for 3 6 r2 6 9, and
these are shown in the following table [20].

r2 3 4 5 6 7 8 9

R.3; r2/ 6 9 14 18 23 28 36

The remaining Ramsey numbers that are known exactly are R.4; 4/ D 18,
R.4; 5/ D 25, and R.3; 3; 3/ D 17 [20]. The gap between the lower bound and
the upper bound for the Ramsey numbers is still quite large.
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Liu, Pikhurko and Sousa [16] proved the following theorem, which extends the
results obtained previously by Liu and Sousa [15]. Furthermore, it also verifies
Conjecture 2 provided that n is sufficiently large.

Theorem 17 ([16]) Let k � 2, 3 6 r1 6 � � � 6 rk, and R D R.r1; : : : ; rk/. Let
C D .Kr1 ; : : : ;Krk /. Then, there is an n0 D n0.r1; : : : ; rk/ such that, for all n � n0,
we have

�k.n;C / D tR�1.n/: (15)

Moreover, the only order-n graph attaining �k.n;C / is the Turán graph TR�1.n/
(with a k-edge-colouring that does not contain a colour-i copy of Kri for every 1 6
i 6 k).

In particular, when all the cliques in C are equal to K3, Theorem 17 completes
the results obtained previously by Liu and Sousa in Theorem 11. In fact, one can
easily extract the following corollary from Theorem 17.

Corollary 1 ([16]) Let k � 2, r > 3 and n be sufficiently large. Then,

�k.n;Kr/ D tRk.r/�1.n/:

Moreover, the only order-n graph attaining �k.n;Kr/ is the Turán graph
TRk.r/�1.n/ (with a k-edge-colouring that does not contain a monochromatic copy
of Kr).
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5. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Can. J.
Math. 18, 106–112 (1966)
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Appendix A: CIM International Planet Earth
Events DGS II, 2013

In 2013 the CIM organized the International Conference on the Mathematics of
Planet Earth: DGS II, 2013—International Conference Planet Earth, Dynamics,
Games and Science, 2–4 September 2013. Furthermore, the CIM organized the
Advanced School Planet Earth directly before and after the International Confer-
ence: School DGS II, 2013—Advanced School Planet Earth, Dynamics, Games and
Science, 26–31 August and 5–7 September 2013.

The CIM Mathematics of Planet Earth events stemmed from the CIM’s role
as a partner institution of the International Program Mathematics of Planet Earth
2013 (MPE 2013). We were pleased that the CIM-MPE events were announced,
for example, in the ICIAM newsletter for January 2013 and the EMS newsletter for
March 2013.

These events were enthusiastically supported by many Portuguese institutions,
including: the SPM; SPE; APDIO; CEMAPRE; CEAUL; CMA-UNL; CMAF-
UL; CMUP; INESCTEC; ISR; IT; UECE FCUL; ISEG; Calouste Gulbenkian
Foundation (FCG) and Ciência Viva (CV).

The International Conference DGS II, 2013 was hosted by the Calouste Gul-
benkian Foundation.

The Advanced School Planet Earth, Dynamics, Games and Science was hosted
by the Escola Superior de Economia e Gestão, Universidade Técnica de Lisboa
(ISEG-UTL).

In addition, the CIM would especially like to thank Irene Fonseca for her scien-
tific guidance, João Paulo Almeida for his guidance and coordination of the events,
Antónia Turkman for her assistance in coordinating with the Calouste Gulbenkian
Foundation, Telmo Parreira for organizing and compiling the proceedings, and
Paulo Mateus, Pedro Baltazar and Telmo Parreira for developing and maintaining
the conference website. The CIM would like to thank the CGF staff and members of
the local organizing committee as well as the Calouste Gulbenkian Foundation for
their incredible hospitality throughout the event and for providing to speakers and
participants the opportunity to experience the beautiful city of Lisbon in a friendly
ambiance.

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Dynamics, Games and Science, CIM Series
in Mathematical Sciences 1, DOI 10.1007/978-3-319-16118-1

749



750 Appendix A: CIM International Planet Earth Events DGS II, 2013

The CIM would like to thank the following 18 keynote speakers of DGS II, 2013
for their insightful lectures:

• Elvio Accinelli, UASLP, Mexico
• Michel Benaïm, Université de Neuchâtel, Switzerland
• Fabio Chalub, Universidade Nova de Lisboa, Portugal
• Jim Cushing, University of Arizona, USA
• João Lopes Dias, Universidade Técnica de Lisboa, Portugal
• Pedro Duarte, Universidade de Lisboa, Portugal
• Marta Faias, Universidade Nova de Lisboa
• Lorens Imhof, University of Bonn, Germany
• Yunping Jiang, City University of New York, USA
• José Martins, I.P. Leiria, Portugal
• Bruno Oliveira, Universidade do Porto, Portugal
• Jorge Pacheco, Universidade do Minho, Portugal
• Joana Pais, ISEG/Technical University of Lisbon, Portugal
• Alberto A. Pinto Universidade do Porto
• Martin Shubik, Yale University, USA
• Renato Soeiro, Universidade do Porto, Portugal
• Satoru Takahashi, National University of Singapore
• Jorge Zubelli, IMPA, Brasil.

The CIM would also like to thank the 120 invited speakers for their valued
presentations, as well as the 29 session organizers, who contributed their hard work
and dedication to make the event a success:

• Elvio Accinelli, Facultad de Economia de la UASLP
• João Paulo Almeida, Instituto Politécnico de Bragança
• Mário Bessa, Universidade de Beira interior
• Domingos Cardoso, Universidade de Aveiro
• Marta Faias, FCT-UNL
• Sara Fernandes, Universidade de Évora
• Jorge Freitas, Universidade de Porto
• José Pedro Gaivão, ISEG, UTL
• Orlando Costa Gomes, ISCAL/IPL
• Clara Grácio, Universidade de Évora
• Fátima Leite and Antonio Pascoal, UC and UTL
• Alberto A. Álvarez López, UNED
• José Martins, Polytechnic Institute of Leiria
• Célia Moreira, Universidade de Porto
• Cláudia Nunes, IST/CEMAT
• Bruno Oliveira, FCNA, Universidade de Porto
• Isabel Pereira, Universidade de Aveiro
• Edgard Pimentel, Universidade Técnica de Lisboa
• Alberto Pinto, Universidade do Porto
• Ana Margarida Ribeiro and Rita Ferreira, FCT-UNL and IST-UTL
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• José Leonel Rocha, Instituto Superior de Engenharia de Lisboa
• Alexandre Rodrigues, Universidade de Porto
• Ricardo Serrão Santos, Universidade de Açores
• Luís Silva, Universidade de Açores
• Luís Silva, ISEL
• Nico Stollenwerk, Universidade de Lisboa
• Ricardo Teixeira, Universidade de Açores
• Paulo B. Vasconcelos, Universidade de Porto
• Juha Videman and Gonçalo Dias, CAMGSD/IST.

The CIM would like to thank the members of the local organizing committee of
DGS II, 2013 for their outstanding support: Michel Benaïm (Université de Neuchâ-
tel), Henrique Silveira (IST), Renato Soeiro (FCUP), Filipe Martins (FCUP), João
Passos Coelho (FCUP), Joana Becker (FCUP), João Paulo Almeida (IPB), Carla
Azevedo (FCUP), Ricardo Cruz (FCUP), José Martins (IPL), Renato Fernandes
(FCUP), Isabel Figueiredo (FCUP), Telmo Parreira (UM) and Joel Teixeira (FCUP).

The book of abstracts of DGS II, 2013 can be found in the link:
http://www.alunos.dcc.fc.up.pt/~up200405927/cim/bookDGS.pdf

President of CIM Alberto Adrego Pinto

http://www.alunos.dcc.fc.up.pt/~up200405927/cim/bookDGS.pdf
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CIM thanks the participants Elvio Accinelli (UASLP, Mexico), Alberto Álvarez-
López (UNED, Spain), Michel Benaïm (Université de Neuchâtel, Switzerland),
Mário Bessa (Universidade da Beira interior), Fabio Chalub (Universidade Nova
de Lisboa, Portugal), Ana Dias (Universidade do Porto, Portugal), Orlando Gomes
(ISCAL/IPL, Portugal), Clara Grácio (Universidade de Évora, Portugal), Filipe
Martins (LIAAD INESC TEC, Portugal), Bruno Oliveira (Universidade do Porto,
Portugal), Joana Pais (Universidade de Lisboa, Portugal), Alexandre Rodrigues
(Universidade do Porto, Portugal), Luís Filipe Silva (CIBIO Universidade dos
Açores, Portugal), Luís Silva (ISEL Lisboa, Portugal), and Paulo Vasconcelos
(Universidade do Porto, Portugal) of the International Conference and Advanced
School Planet Earth, Dynamics, Games and Science II (DGS II), Portugal, 28
August to 6 September 2013, for sharing their ideas and points of view with us
in this interview.

The questions presented here are based on several interviews; in particular, the
interviews published in previous CIM bulletins. CIM thanks Renato Araujo and
Alberto Pinto for organizing this interview (see also CIM Bulletin 35).

On the meeting

What is your general impression of the meeting?

Elvio Accinelli: These kinds of meetings are of great interest for making progress
in different areas of applied mathematics, and they create networks on research
topics of common interest.

Alberto Álvarez-López: I can talk about the DGS meetings II and III, held in
Lisbon and in Porto, respectively. I found them very interesting. I met people who
work in areas similar to mine, and I could hear some colleagues’ opinions about my
own work. In addition, I enjoyed them very much for their social aspects.

© Springer International Publishing Switzerland 2015
J.-P. Bourguignon et al. (eds.), Dynamics, Games and Science, CIM Series
in Mathematical Sciences 1, DOI 10.1007/978-3-319-16118-1
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Michel Benaïm: Very good. It was very friendly and gave me the opportunity to
meet and discuss with researchers having different backgrounds and mathematical
cultures.

Mário Bessa: It was a good opportunity to meet several mathematicians working
in related areas and develop some connections. I think that the Portuguese mathe-
matical community should be more involved in this event.

Ana Dias: I found the meeting very interesting.
Orlando Gomes: The International Conference on Dynamics, Games and Sci-

ence is, in my view, an extremely useful forum to discuss ideas and progress in
research in a variety of fields concerning applied mathematics. In the events in
which I have been present I have learned a lot about subjects on multiple areas
ranging from evolutionary games to chaotic dynamics, stochastic optimization, and
network analysis, just to cite a few.

Clara Grácio: I think this congress was an enjoyable opportunity to fulfill
the objectives that I described in other questions as important for students and
researchers who attended this event. I participated in the meeting held in September
at the Calouste Gulbenkian Foundation. This meeting allowed us to talk to other col-
leagues, presenting our works in progress and discussing possibilities for continuing
and improving that work, as well as future projects.

Filipe Martins: I think the Dynamics, Games and Science II conference was an
amazing meeting featuring a wide range of topics and keynote speakers. My general
opinion is that it was very well organized and featured many brilliant presentations.
I think these kinds of conferences are very important. For me, as a student, it was
a huge boost in terms of encouragement to pursue a Ph.D., as I was finishing my
Master’s thesis at the time.

Bruno Oliveira: It was an excellent meeting where I had the opportunity to
exchange ideas with many colleagues and learn from them.

Joana Pais: Very well organized. Amazing capacity of the organizers to put
together an extremely interesting program, with a substantial group of well-known
researchers. Very interesting talks, even though, in my opinion, they covered topics
that were probably too diverse. Filipe Silva: The importance of these types of
meetings is the possibility of joining researchers who use mathematical tools in
very different contexts, contributing to the transferability of knowledge between the
different fields.

Luís Silva: The meeting was very interesting, bringing together an outstanding
group of researchers, both domestic and foreign, in a fantastic and inspiring place.

Paulo Vasconcelos: The overall quality of the papers presented was great. The
location was attractive, and the group lunches were full of life.

Something you would like to highlight?

Elvio Accinelli: These kinds of meetings are of great interest for making progress
in different areas of applied mathematics and creating networks on research topics
of common interest.
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Alberto Álvarez-López: People from different “countries” of the world of math-
ematical applications could meet there, from pure mathematicians to biologists,
economists, and engineers: a very interesting mixture. In addition, I would like to
highlight the format of the sessions: short talks related to each other, which is perfect
for cultivating interplay among senior and junior scholars. In fact, these events were
a good opportunity for young researchers: they could show their own work and also
listen to very relevant opinions from senior colleagues.

Ana Dias: The quality of the talks, the variety of the themes addressed at the
talks, and the event location, the Calouste Gulbenkian Foundation, all made these
meetings very pleasant to experience.

Orlando Gomes: I believe that the strong feature of the Dynamic, Games and
Science meetings is their interdisciplinary nature. With the use of mathematical
methods as a unifying force, conferences offer a large variety of studies in a large
variety of fields. Applications to economics and finance coexist with studies in
themes relating to biology, ecology, or physics.

Luís Silva: I would like to highlight the quality of the plenary talks.
Paulo Vasconcelos: The intensive preparation by the organizing committee

resulted in a smooth learning experience for the participants in a very pleasant
setting.

How important do you think that events like this are for students and researchers?

Elvio Accinelli: Students in the process of completing their theses can find places
to develop their research and to finish their work.

Mário Bessa: These types of meetings are quite important both for students and
researchers because we have the chance of contact with related fields of expertise,
thus gaining a deeper perspective on the application of our theoretical models in
several different contexts.

Ana Dias: Very important not only for learning about new mathematical studies,
but also for interchanging ideas, sometimes between mathematicians with different
backgrounds.

Orlando Gomes: These events are a very good opportunity to share ideas, to
learn, and to create networks among researchers. They are, of course, particularly
important for young researchers who are starting a career by allowing them to
present their work and establish the contacts they need to progress in their research
effort. Graduate and undergraduate students have the opportunity at these events to
have their first contact with the world of science.

Clara Grácio: In my opinion the scientific meetings are an excellent opportunity
for researchers to present their work to their colleagues in order to receive feedback
at an early stage of their research and are therefore an integral part of the process
of science. These presentations also serve as informal reviews by peers, which may
help researchers to develop, clarify, and improve their work and will no doubt help
in the final phase of writing and submission to final publication. Also, and very
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important, the meetings allow researchers to hear about what others are studying,
to develop relations with related disciplines by talking to colleagues from different
institutions around the world, and to learn about new tools and research techniques
that can be relevant to their work, other programs, and projects in common. These
are truly scientific meetings arising in an academic environment where the questions
and answers are natural, objective, honest, and fearless, and where the only goals
are help, cooperation, and the development and dissemination of knowledge.

Bruno Oliveira: Events like this give researchers an opportunity to report their
results to the scientific community. More importantly, in my opinion, they also
open channels of communication between researchers, which enhances the work
we develop. Regarding students, I think that these events give them a wonderful
way of obtaining state-of-the-art knowledge from experts in these subjects.

Joana Pais: Very important. Research dissemination and networking are essen-
tial.

Filipe Silva: This might broaden their views, and make them see their daily
research with different eyes.

Luís Silva: These kinds of events are extremely important both for students and
for researchers. For the students they provide an excellent opportunity to make
contact with senior researchers, learn about the most current issues, and even
help them to decide about their future topics of research. These events allow the
researchers to publicize their work and to exchange ideas with their colleagues.

Paulo Vasconcelos: The advanced school is an important meeting point for
students with high level researchers, which can be a rare opportunity. Researchers
enjoy the outstanding opportunity to publish proceedings within a prestigious and
exigent editorial brand as well as participate in a book series devoted to applied
mathematics.

How do you see the impact of this meeting on your field and outside of your field?

Michel Benaïm: This type of meeting allows people with different backgrounds
(game theory, dynamical systems, probability) but common interests (in the present
case “dynamics in games”) to meet and is a good opportunity for cross-fertilization
of ideas.

Fabio Chalub: Most of the meetings in the field of mathematics are “technique-
based”; i.e., a number of professionals who have mastered the same techniques get
together and discuss problems where these techniques were applied. This was a
different kind of meeting in the sense that we had a large number of problems but
no predefined mathematical technique. All areas of mathematics were represented
in the conference, and the researchers could see where their expertise and abilities
were required. This can forge a new generation of students who are more “problem-
oriented” and who necessarily will learn more subjects, as opposed to the precocious
specialization we see today.

Ana Dias: A good impact due, also, to the fact that some of the works will be
published in a Springer book, which is a very good way of reaching readers from
other fields.
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Orlando Gomes: There are not many international quality scientific conferences
or series of conferences in Portugal. This is a good example of a well-organized
series of conferences that, I believe, has a good impact in promoting applied
mathematics. As I see it, it is an interdisciplinary meeting with repercussions that go
beyond mathematics; for instance, it is also an important event in my own research
field, i.e., economics.

Joana Pais: I believe that, even though the impact on the field may be substantial,
the outside impact is limited. This is not an exclusive feature of this particular
event, but it is common to most (if not all) of the events of this nature. Clearly,
it is a difficult exercise to translate the language of science into a language that the
general public can understand. In fact, while there is no ambiguity in mathematics,
when we translate mathematical language into words, our messages are probably
not perceived the way we meant it. Still, disseminating scientific knowledge in the
public sphere, particularly in the domain of social sciences, is important. It makes
us think about why we believe that our research is necessary and useful.

Luís Silva: I think that this meeting may have a significant impact in the
field, especially because this subject is relatively recent, and a meeting with this
dimension of topics is not very common. In the particular case of Portugal, I think
it presented a lot of subjects to several people.

What would you say is, generally, the impact of these events on specific areas,
as they relate to and on the interplay between different areas or fields of knowledge?

Elvio Accinelli: These events are of great importance for creating networks
between groups of different countries; consequently, they have a great impact on
the work area as they allow one to learn about progress elsewhere.

Ana Dias: Good impact.
Orlando Gomes: This type of meeting is, as stated in previous answers, a

way to promote the cross-fertilization of knowledge in various fields where game
theory and dynamic processes matter. It is an extremely helpful event for all those
who want to develop competence and explore new territories in applied science.
New research projects, of an interdisciplinary nature, will certainly arise from the
contacts researchers make in these conferences.

Bruno Oliveira: Of benefit to both students and researchers was the fact that this
meeting covered a broad area of subjects in mathematics, in particular dynamical
systems and game theory, and an even broader area of applications in the sciences,
presenting research in several distinct topics of, for instance, economics and biology.
This diversity can build bridges between different problems, allowing the attendees
to further improve their work.

On your research

Did you always want to be a mathematician?
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Alberto Álvarez-López: Well, when I was a child, besides math I also liked
language (I mean grammar and so on). But to tell you the truth, I always wanted to
be a mathematician. Anyway, upon finishing my Bachelor’s degree in Mathematics,
I landed a position in a faculty of economics. Through the years I have discovered
a wonderful field in which to apply mathematics that is very rich and interesting by
itself!

Fabio Chalub: In fact, I graduated and received my Master’s degree in Physics.
During this time, I followed as many disciplines in mathematics as I could, and I got
the impression that the most fundamental results in physics could only be entirely
appreciated with a deep understanding of the mathematics behind them. In the end,
I decided to do my Ph.D. in Mathematics involving the work on the border between
math and physics.

Ana Dias: Looking back, my answer is yes.
Orlando Gomes: I am an economist, with research interests related to the

mathematical modeling of economic phenomena. Economic processes have always
fascinated me, and I believe that mathematics is necessarily the language through
which economic events can be rigorously addressed and explained. My interest
in modeling socio-economic events goes back to my undergraduate studies in
economics (more than 20 years ago).

Clara Grácio: As we know, mathematics can be, sometimes, frustrating indeed,
but it is in this struggle where the challenge itself lies. You experience a sense
of accomplishment, even contentment, when you discover the missing piece of
the puzzle, and mentally exclaim: That was it! Also, when you can establish
unsuspected relationships between different areas of mathematics and/or other
sciences, the coherence, connection, and immensity of mathematics emerge. I
always liked the interconnection between the various areas of knowledge, from
language or history to physics or biology, the wealth that allows us to move forward.
And in order to advance in this way, mathematics is essential and indispensable.
To the question of whether I always wanted to study mathematics, the answer is
that mathematics has always been the first choice as long as the studies allow the
monitoring of other areas.

Filipe Martins: I only thought of being a mathematician very recently. I decided
to study mathematics as an undergraduate just two months before the start of the
academic year. It was a pretty quick decision. I was trying to choose between
mathematics and physics. The decision was taken completely by impulse, in 5
minutes.

Bruno Oliveira: It’s a yes and no answer. Ever since I was young I had a fondness
for mathematics. Later I gained an interest in physics, informatics and astronomy
(from watching the TV series Cosmos by Carl Sagan). So, mathematics was always
there, but linked to other sciences.

Alexandre Rodrigues: No, I did not always want to be a mathematician. In fact,
I do not consider that I am a mathematician. I prefer to say that I am a researcher
in mathematics. After completing my undergraduate degree I was convinced that
I would like to be a high school teacher, but my desired career direction became
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clear while I was pursuing my M.Sc. degree. Even during that stage I considered
exploring a different subject and switching to physics.

Filipe Silva: No, I always wanted to be a biologist, considering that life is
probably the most complex and evolved form of matter/energy in the universe.
However, during my research and teaching activities, I became progressively aware
of the importance of using mathematical and statistical tools in biology, and in
science in general.

Luís Silva: No. During most of my time in secondary school I was convinced that
I wanted to be a psychologist.

Paulo Vasconcelos: Not always . . . but almost always!

How did you start working in this area? What was the motivation? Could you
tell us about your mathematical beginnings and subsequent career development?

Elvio Accinelli: Motivated by social problems, I felt a vocation for economics.
In the last year of primary school my teacher made me see that mathematics could
be an excellent tool for thought. Later, when I was in prison as a political prisoner,
I met José Luis Massera, who greatly influenced my thinking. Some years later, in
the IMPA I had the opportunity to learn mathematical economics. Since then I feel
real pleasure working in this area.

Michel Benaïm: I have always worked at the interface of probability and
dynamics. My interest in game theory started in Nefeli Cafe, a coffee shop located
in Berkeley, near the math department, 20 years ago. At this time I was working
with Moe Hirsch on some applications of topological dynamics for investigating
the long-term behavior of certain stochastic processes called “stochastic approx-
imations.” A friend of mine, Paolo Ghirardato, at this time a Ph.D. student in
economics, suggested that I look at a preprint by Drew Fudenberg and David Kreps
on “stochastic fictitious play.” It turned out that the techniques I was developing
with Moe Hirsch proved to be very useful for analyzing stochastic fictitious play
and more generally leaning processes in game theory.

Mário Bessa: After I finished my Bachelor’s in Mathematics at the University
of Porto, a colleague of mine asked me if I would like to go to some informal
conversations about mathematics, taking place once a week, with Professor Jorge
Rocha at the University of Porto. Since Jorge Rocha is a dynamicist, I started
learning about this area, and immediately I began to enjoy dynamics. Then, I
finished my Master’s thesis in dynamical systems with Jorge Rocha and I went to
IMPA for a Ph.D. program with a thesis also in dynamical systems, supervised by
Marcelo Viana. Finally, I returned to Portugal where I completed six years of a
post-doc program and taught at the Polytechnic Institute of Coimbra. Now, I am an
associate professor at the University of Beira Interior.

Fabio Chalub: During my Ph.D. study, I followed a course in the mathematical
models used in ecology and, immediately after that, some colleagues and I started a
discussion group in math-biology. I became fascinated with the topic and decided to
work on it during my post-doc, in Vienna. I studied models for cell motility and had
some relevant results during that time. I also enjoyed the fact that the math-biology
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group in Vienna is very well established, and I could learn new topics. At a meeting
in Vienna, I met Jose Francisco Rodrigues, from the Lisbon University, and he told
me about a post-doc position in Lisbon and his particular interest in starting a group
in mathematical biology. I went to Lisbon intending to stay 2 years, but after a few
months my wife and I were seeking opportunities for a longer stay. This was 12
years ago! In 2005, I got a position at Universidade Nova de Lisboa, and since then
I have been there, first as an assistant professor, then as an associate professor, and
now as an “investigador FCT” researcher.

Ana Dias: Professor Isabel Labouriau introduced me to the area of dynamical
systems for my Master’s thesis. I would say that the contact with Professor
Isabel Labouriau in the Applied Mathematics Department and the job I got at the
University of Porto were the main starting points in my becoming a mathematician.
Any trip to any place for work has a story, and when we return we bring memories.
For sure my period at Warwick University during my Ph.D. study was the most
important period of my research, because during that time I found out what I really
liked to work on, and my supervisor, Professor Ian Stewart, had a fundamental role
in that discovery.

Orlando Gomes: My work in theoretical economic research started with my
Master’s course (1995–1996). The possibility of approaching economic processes
through the use of mathematical tools, namely dynamic systems (linear and non-
linear, deterministic and stochastic, in discrete and in continuous time), fascinated
me, and I have pursued studies in this area ever since. The first models that I
approached related economic growth processes. Economic growth was the theme
of my Master’s thesis and of my Ph.D. thesis (which I completed in 2002). Later,
I diversified my studies to areas that involve business cycles, monetary policy,
international trade, individual decision-making, social interaction, and others. The
common denominator of all this research is related to the use of tools of dynamic
analysis and dynamic optimization.

Filipe Martins: After my undergraduate studies I had no real idea about the
nature of research in mathematics, but after three years as an undergraduate, I
decided to undertake a Master’s degree in Mathematics, specializing in statistics
and probability. Really, I only became more aware of research in mathematics
when I was working on my Master’s thesis. I liked it very much and noticed
that to continue research in mathematics could be a good idea, and then I started
thinking about taking a Ph.D. in the subject, and, happily, I got a Ph.D. scholarship.
I would describe my areas of interest concisely as applied mathematics, which is
what I like. What I studied for my Master’s thesis was financial mathematics. Now
I’m continuing on that topic, but I am also working on applications of dynamical
systems to biology and economics. Again, the best way to designate it is applied
mathematics. There is a wide range of topics for future work in this area. The rate
at which work possibilities arise in applied mathematics is far greater than the rate
at which you solve them. For each one you work on, a lot more appear as possible
continuations. My favorite theorem in mathematics is possibly Banach’s fixed point
theorem.
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Bruno Oliveira: After my degree in Astronomy, I completed a Master’s degree
in Applied Mathematics and, later, a Ph.D. in Applied Mathematics. My motivation
has been a desire to understand how things work: from the universe to quantum
mechanics, passing through humans in diverse subjects such as immune responses
by T cells, price formation in random markets, firms competing with investment
in R&D, children’s growth, dietary patterns, or obesity treatment. And the tools
that I have been using are rooted in mathematics, in particular, dynamical systems,
game theory, and statistics, with links to computer modeling, and also requiring my
knowledge of physics when studying interaction phenomena. In my career, I have
taught subjects in astronomy, physics, and biostatistics. In particular, in these latter
years I have been teaching biostatistics applied to nutrition and food sciences, which
led me to do a Habilitation in Basic Sciences of Clinical Nutrition.

Alexandre Rodrigues: I really started my work in this area during my Ph.D.
study, as after my M.Sc. it became clear to me that I really wanted to do research
in dynamical systems. At the beginning, the motivation was the challenge of
completing a Ph.D. in Mathematics. I remember quite well that I had two main
concerns. (i) Could I discover something new in mathematics? (ii) Could I develop
some important step towards an open problem? In fact, I do not know if I have
achieved these goals. The main motivation was to complete a Ph.D. in Mathematics
in a subject that I tried to pursue during my M.Sc. At the time, it seemed
unattainable.

Filipe Silva: Working mostly in quantitative ecology, I became more and more
interested in the use of statistical models to describe ecological phenomena. I
became aware that statistical thinking evolved in close connection with biology and
other sciences, and that its historical evolution had a parallel in the development of
the other sciences. I also became involved in teaching biostatistics and quantitative
methods to different student at levels, which further developed my interest in the
area.

Luis Silva: My main motivation came from J. Sousa Ramos. He taught
Introduction to Computation in my first year, and he had an uncommon point
of view about that (and any other) discipline. He strongly believed that the students
should be challenged from the beginning, so in the first classes he presented us with
some of the most important math problems of that time: Fermat’s theorem, Collatz,
P/NP, and Poincaré’s conjecture, etc., then he taught us Pascal and stimulated us to
start exploring Julia sets, Mandelbrot sets, the Lorenz attractor, and so on. I think
that he was mainly responsible for my decision of trying to be a mathematician
instead of a high school teacher. Then I finished my undergraduate work and
immediately got a job as assistant professor at FMH-UTL. At the same time I
started a Master’s study at IST-UTL and made my thesis with Sousa Ramos, then
changed to the University of Évora, then finished my Ph.D. with Sousa Ramos
again, and after ten years came back to Lisbon, to ISEL, where I am now.

How would you describe the essence of your own research to a young student?
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Elvio Accinelli: Mathematical economics is both an intellectual challenge and an
important tool for understanding the economy, for better social development.

Mário Bessa: Well, first I would describe how dynamical systems is not exactly
an area but a confluence of several areas and so offers a good opportunity to study
different aspects of mathematics. Then, I will emphasize that dynamical systems
problems are often easy to formulate and to understand, although they are usually
hard to solve. I would also like to say that working in dynamics is quite amusing,
because our objects are continuously changing when time evolves and we should
be aware that intuition frequently tricks us. Finally, I really like to work with my
co-authors, because we then enjoy enormous creativity. Indeed, when we try to
explain to each other the questions, problems, solutions, and arguments that we are
interested in, again and again we say to each other, ‘Imagine that. . . .

Fabio Chalub: I work in applied mathematics; therefore, I decide the problems
I want to solve, but I do not decide the mathematical techniques necessary to solve
them. My general interest is in population dynamics, and currently I work on two
fronts: population genetics and epidemiology. In the former case, I am interested
in exploring the mathematical richness of widely used models. In the latter case,
we study the interaction between deterministic models and human behavior, in
particular, how the course of an outbreak is affected by changes of behavior in
the society. Sometimes, we find predictions in models that were not known; other
times we find that some consequences do not follow from the models, contrary to
the general belief; finally, we provide solid grounds for the models that appear in
the literature and explicitly show their limitations. Our main goal is related to the
conceptual understanding of the area, not to providing better models for specific
problems.

Ana Dias: When we have interactions between units that are evolving with time,
there are consequences for the dynamics that come just from the fact that there are
interactions.

Orlando Gomes: I would say that economics is the field of knowledge where
one can most successfully apply mathematical rigor to human decision and human
action and that this is a fascinating combination independently of the type of
phenomena under examination, this being of a micro or of a macroeconomic nature.
Furthermore, I would say as well that my studies address dynamic processes in
economics, because time is the most fundamental variable in this science; all
economic issues necessarily involve a temporal dimension.

Alexandre Rodrigues: I work with dynamical systems. Roughly speaking, a
dynamical system is a concept in mathematics where a rule describes how a point
evolves (in time) in a geometrical space. The evolution rule may be given by the
solution of a differential equation. Finding the explicit solutions of these equa-
tions is, in general, impossible. Sometimes these equations have some additional
structures: algebraic symmetries which might help us to understand the qualitative
behavior of the system. Heteroclinic cycles are a common feature of symmetric
differential equations and persist under perturbations that preserve the symmetry.
The dynamics near a heteroclinic cycle are well known and it is characterized by
intermittency: a solution remaining near the cycle spends long periods of time
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close to a particular kind of sets and makes fast transitions among them. The
rigorous analysis of the intermittent dynamics associated to the structure of the sets
close to heteroclinic cycles is an exciting and challenging field of research. The
characterization of the dynamics near these kinds of cycles is what I have been
studying.

Filipe Silva: The fascinating idea of being able to see parts of the complexity
of biological entities reflected in much more simple models, resulting from the
systematic but creative activity of human mind.

Luís Silva: I work in symbolic dynamics; basically, I study the combinatorial
aspects of dynamical systems.

Which would you say are the most interesting/challenging open (or recently
solved) problems in your area, and what do you think the future holds in your area
and in your line of research?

Elvio Accinelli: I think that understanding how the markets work could be helpful
to obtain a sustainable development of mankind. The mathematical economy is a
path toward that goal.

Alberto Álvarez-López: Roughly speaking, I work in elaborating mathematical
models to describe some aspects of economic behavior, especially in the presence
of uncertainty. Of course, there are many problems under this umbrella to be studied.
I point out a very general one: we agree that the economic agent (a consumer,
a firm, etc.) is not rational; well, I think a new non-rational theory describing
his/her behavior is necessary—I mean a completely new theory, with a very different
approach.

Mário Bessa: My preference goes to the well-known “closing lemma” problem.
This is a question that dates back to seminal works of Poincaré on celestial
mechanics. Like I told before, this is a good example of a problem that is easy
to formulate as you will see: if an orbit returns near to a place where it was before,
is it possible to perturb the system in order to close the orbit? Of course, several
aspects should be clarified; for example, what do we mean by “perturb”? Indeed,
closing orbits requiring coarse approximations are well established; however, the
problem is very hard when we demand finer approximations. If the requirements on
the approximation increase too much, then it is known that the closing lemma has
no solution!

Ana Dias: In my line of research on dynamics of coupled cell networks, I would
say that it is important to have a theory for coupled cell networks like there is one
for symmetric dynamical systems based on representation group theory.

Orlando Gomes: Since I study economic problems in general, I believe that
although this is a very active science that has produced many meaningful results
and advances in the last few decades, there are still many open questions. In
macroeconomics, for instance, the permanent conflict between neoclassical and
Keynesian economics and the difficulty in handling concrete aggregate problems
(such as high rates of unemployment and deep recessions) reveal that much work
still has to be developed in order to reach a unifying macroeconomic theory. At the
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micro level, a well-established theory of decision and individual behavior based on
revealed preferences is now being challenged by advances in neuroscience, which
indicate that one must go beyond the effective choices of economic agents and focus
on the processes inside the human brain that trigger the decisions.

Alexandre Rodrigues: We do not know persistent classes of dynamical systems
for which there is a set of positive measure which consists of initial points of orbits
with historic behavior. For special dynamical systems, i.e., with boundary or with
symmetry, historic behavior may persist. The main problem, however, remains open
for dynamical systems without such constraints. In this context, R. Bowen described
a system of differential equations on the plane whose flow has a heteroclinic
cycle consisting of a pair of saddle equilibria connected by two trajectories. The
eigenvalues of the derivative of the vector field at the two saddles are such that the
cycle attracts solutions that start inside it. In this case each solution in the domain
has historic behavior. Breaking the cycle, the flow loses this feature. This type of
behavior may become persistent for dynamical systems in manifolds with boundary
or in the presence of symmetry.

Filipe Silva: There is considerable excitement about the growing use of Bayesian
statistics in different fields of biology. But, the future might bring new conceptual
developments that will link or eventually merge frequentist and Bayesian statistics.

How do you see your area in terms of its importance in mathematics and in other
fields of knowledge, the impact on and from other areas, and how do you expect this
interplay to develop further?

Elvio Accinelli: I think that economic theory is in actuality a source of challenges
for mathematics, whose resolution can achieve progress of both sciences. I would
venture to say that economic theory, at present, can be as important for mathematics
as it was physical in the nineteenth and early twentieth centuries.

Mário Bessa: Since the area of dynamical systems is a junction of several areas,
there is intrinsically a large connection between mathematical subjects that are
sometimes apparently unrelated. Moreover, its relation with other sciences (life,
exact, social, computer, etc.) greatly enlarge these types of interactions. I believe
that nowadays the classical nomenclature of dynamical systems is also used in other
areas and turns out to be part of the language of these fields.

Fabio Chalub: The importance is growing a lot, in the world in general and
in some particular countries like the USA, UK, France, the Netherlands, Spain,
Germany, Sweden, and others. Fortunately, Portugal is no exception. It is still
difficult to go from the theory to real applications, as this cannot be done by the
same person or even the same groups. We have to talk to people with completely
different backgrounds, and this is not easy. Generally, it is not difficult to get funding
from government agencies, but for young Ph.D. graduates it is still difficult to find
positions, as most of the mathematicians do not see “mathematical biology” as an
area differently from “mathematical physics.” It is seen as a topic of research, but
not as a division of mathematics, like algebra, geometry, or analysis.
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Ana Dias: As most real-world applications are governed by dynamics that can be
interpreted as units interacting, any theory for coupled cell networks that develops
model-independent kinds of results is important and of interest for science in
general.

Orlando Gomes: The nineteenth century philosopher Stanley Jevons once stated
that if economics is to acquire the status of science, it needs to be a mathemat-
ical science. In fact, since then, the studies that contributed to the undeniable
self-affirmation of economics as an autonomous scientific field have essentially
adapted tools, concepts, and techniques from mathematics. Game theory, differential
calculus, linear algebra, recursive analysis, optimal control, and other powerful
instruments provided by mathematics have contributed to build what economic sci-
ence is today. Moreover, some mathematical concepts were created and developed
as specific tools of the economic theory and then served other fields of knowledge
as well. The interplay between mathematics and economics is a fruitful one, and it
will certainly be explored in more depth in the future.

Paulo Vasconcelos: Computational mathematics is crucial for applied
mathematics. Bringing mathematics to solve problems is the ultimate purpose
of our research. Other fields of knowledge depend on the knowledge transfer, and
there is nothing like computers to help simulate natural, physical, chemical, or even
human processes.

Do you have a favorite result, your own and/or from others?

Elvio Accinelli: Yes, my favorite result is the explanation of the economic
crisis as the result of small perturbations on the fundamentals of so-called singular
economies.

Ana Dias: My favorite result is on ODE-equivalent networks and concerns the
idea of different graphs leading to the same kinds of dynamics—they just have be
linearly equivalent: a nonlinear result that has a linear question. The part that I like
more in my work is the fact that every time we have a problem, we have a challenge
in hand that we try to address. When we have success, it is a good feeling: the feeling
of contributing to science with something, even if it is a small contribution.

Orlando Gomes: There are many powerful and appealing results in economics.
Personally, I am a fan of the so-called Ramsey growth model: a simple and
elegant optimal control problem that indicates how a representative agent chooses,
in an intertemporal perspective, how to optimally allocate resources between
consumption and savings, in order to maximize expected utility.

Is it difficult to get funding for research in your area?

Ana Dias: Until now not so difficult. The amounts asked are not so much
compared with other research areas, so that might help.

Orlando Gomes: In the last few years in Portugal it became, in my view, difficult
to get funding for doing research in any scientific area.
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Clara Grácio: Research and higher education have been maltreated in recent
years, for decades, with an unacceptable government underfunding which trans-
lates into immense difficulties for both higher education institutions and research
centers and institutes of state laboratories. Even with the dedication of Portuguese
researchers, integrated or not, this policy did not allow the scientific development
that would have been possible, resulting in wasted potential and resources. Com-
bined with a real reduction in funds invested in vacancies for teachers or researchers
in institutions of higher education, laboratories, and others, there has been a lack of
coordination and a lack of transparency and programming in resources invested.
Mathematics is no exception, and in this sense is not easy to get funds for the
development of scientific work.

Filipe Silva: Yes, it’s easier to get funding for applied research, such as the study
of forest resources, than for more fundamental research, for instance that devoted to
new methods. We thus try to mix both.

Luís Silva: Yes, but unfortunately that problem is not restricted to my specific
area. On the contrary, in Portugal it is generalized to the majority of scientific
activities.

Paulo Vasconcelos: Since part of my research depends on new computer
architectures, yes, it is very difficult, especially in Portugal, where we do not
have state laboratories or research centers with high-end machinery.

On research, more generally

What would you say are the most important things to keep a research group
going?

Elvio Accinelli: A common interest in the research topics and the possibility for
all team members to develop their lines of work.

Alberto Álvarez-López: Keeping in contact (personal if possible) for discussion,
holding brain-storming sessions, a good coordination among members, deadlines to
have the work done. . . I do not know if they are the most important things, but they
are useful.

Fabio Chalub: All members should be engaged in the research, so it is crucial to
find a topic of general interest that involves everybody in the production of results.
We cannot think of our colleagues, even if we are leading the group, as a bunch of
employees. Everybody should have autonomy to produce their own results, and be
judged by the quality of the output produced. This is the case in mathematics and
other more theoretical subjects; however, I am perfectly aware that we cannot apply
this policy to run a lab.

Ana Dias: Not to stop and to have people that really like what they are doing.
Another thing is that people have to respect each other’s work.

Orlando Gomes: A common goal, the capacity to work with others and to accept
their criticisms, and gaining the notion that one is contributing to the advancement
of science.
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Clara Grácio: Respect for the successes obtained by each of the elements of this
group but fundamental support at certain times, less good, that each of the elements
can benefit by. Transparency, quality, and consistency are important in defining the
group’s strategic line, making it a key element. When these features come together,
the group is a team, it is a school. I had the privilege of belonging to one of those
rare schools, coordinated by the very bright (in all these respects) Professor Sousa
Ramos.

Bruno Oliveira: Motivation. People should like what they are doing and feel that
their work is recognized within the group.

Filipe Silva: Leadership, commitment, cohesion.
Luís Silva: In the first place, people must trust and respect each other; then I think

it is very important to define a leader for each task.
Paulo Vasconcelos: Focus, dynamics, and a good working environment.

How do you see the relation between traveling and research?

Elvio Accinelli: It is very important to travel and see the results that other people
have obtained. Travel expenses are one of the better investments in research, even if
the results are not displayed immediately.

Alberto Álvarez-López: Well, if you do not have an assistant to arrange the
details. . . organizing travel consumes energy. Anyway, I find traveling a very good
way to meet colleagues and interchange ideas. In some workshops social aspects
are very important: scholars are persons in the end, and they need to talk and share
opinions and ideas with other persons.

Michel Benaïm: Traveling is a good way to meet people and develop new
research. It’s often much easier to talk with someone in front of a blackboard rather
than to read a math paper. However, with emails, skype, and other communication
technologies things are changing rapidly, and traveling is not as important as it used
to be.

Ana Dias: It is important, although now there ways to interact without having to
travel that are also good, not expensive, and save time.

Orlando Gomes: Research is many times an individual and solitary effort that
we make in our offices or homes, but no meaningful research contributions gain life
without a discussion with others. Our colleagues can help us improve our original
ideas and assist us in transforming them into relevant scientific results. The meeting
between researchers in the same or in related fields is a fundamental stage of any
scientific endeavor. Therefore, it is my opinion that the participation in conferences
in seminars and conferences around the world is a key step for the progress of
science.

Bruno Oliveira: Traveling to meet other researchers and present our results is the
best way to get feedback from our research. I have made big steps in my work after
speaking with others about what I have found and after hearing from others what
they have found. The positive input can come from new results by others, different
methodologies to apply to our work, or a simple change of perspective that will
allow new insight into a problem.
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Joana Pais: Even though technology for communicating with other researchers is
available nowadays, so that communicating is extremely easy and virtually costless,
I believe that traveling, whether to attend conferences or to visit other researchers,
is essential. Luís Silva: Particularly for young researchers, the contact with different
research teams can be particularly beneficial, particularly when different skills can
be developed in this way.

Filipe Silva: It is extremely important. Nowadays we have easy access to a huge
quantity of information, but there are lots of things that are much easier to learn in
a good conversation than by reading books or papers.

Paulo Vasconcelos: It is good in a very natural way. Research is widespread. A
researcher needs to communicate with others, not only to share his research and to
broadcast, but also to gather expertise from other colleagues in the field.

On teaching

What do you think about the relation between teaching and researching?

Alberto Álvarez-López: I think there are three main aspects to our task as
scholars: research, teaching, and simply studying (knowledge in itself). Every one of
us shares these three aspects in some proportion. The system should allow someone
with a strong proportion in one of them (any of them, with no prevalence) to feel
comfortable. However, this is not always true. On the other hand, we sometimes
have a fourth task: the administrative labor—and this is often the first task. Anyway,
I do find that my courses are richer if there is a research related to them.

Ana Dias: Good.
Orlando Gomes: They are, undoubtedly, complements. The creation and the

diffusion of knowledge are two sides of the same coin: without research, no
knowledge would be available to pass to students; without any one to teach, research
would be simply useless.

Joana Pais: I used to believe that research helped to improve the quality of
teaching. While I still believe this can be true when we talk about teaching at the
advanced/graduate level, it is certainly not the case at the undergraduate level, where
we have very good teachers that do not do research. The positive effects of teaching
on research are even more difficult to grasp.

Filipe Silva: It’s crucial; it really is a dialectic relationship, with many ideas and
skills developed in one activity, easily transferable to the other.

Luís Silva: I think that the majority of the fundamental research should be done
in the universities and that all university teachers must do research and that the
majority of the researchers also should teach. On the other hand, I think that the
university career should be more flexible in the sense of permitting large periods for
doing just one of these two things. Nowadays we feel permanently pressed to do
both things simultaneously, and I don’t think that this is good for either of the two
activities.
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Paulo Vasconcelos: A teacher without research cannot convey a message of
future, of challenge.

Any thoughts on what’s crucial for a university teacher and or student?

Alberto Álvarez-López: You have to find pleasure in studying. And you have to
learn to say “wait a moment, and let me analyze that,” instead of giving a quick
“yes” or “no.”

Ana Dias: A good and enthusiastic teacher and a good and enthusiastic student.
Orlando Gomes: For both, the curiosity, the will to learn, and not being afraid to

make mistakes.
Filipe Silva: A never-ending curiosity and the will to continue learning.
Luis Silva: Planning.
Alexandre Rodrigues: In a few words, I would say that a teacher should view

a classroom as a pool of potential researchers and honor students. Students bring
enthusiasm and a fresh perspective to our research. There is always the possibility
that questions that come up in class will inspire new directions for our research. I
find that stimulating interaction, encouraging independent thought, and accepting
criticism are crucial in a classroom. And one should have a sense of humor—
students love it. Technically, I believe that a teacher should give to the student
a sense of the field, its past, present, and future directions, and the origins of its
ideas and concepts. He/she should present facts and concepts from related fields.
Theoretically, these are achievable goals; nevertheless, I realize that combining all
these points might be difficult.

Paulo Vasconcelos: The duality research/teacher is difficult to keep equilibrated.
In reality, usually teaching hours may be counterproductive for academic
progression.

What are your thoughts on the relation between high school and university in
terms of education?

Alberto Álvarez-López: I do not find them, at least in my country, as close as
they should be. In mathematics, for instance, there is a gap between the level in high
school and the requirements in university, especially in some grades. This causes a
delay in the correct evolution of students. The high school teacher is not necessarily
the guilty party: from the university we must better connect with him/her. Anyway,
a deep change in the educational scheme should be considered.

Ana Dias: So and so. There is not a smooth transition between the two.
Orlando Gomes: The university should, more than any other school level, be

capable of showing to students that what they learn, how they learn, and what use
they make of this learning are essentially in their own hands and dependent on their
own will.

Bruno Oliveira: In Portugal, university admission is based on high school grades,
and the method of evaluation places too much emphasis on memorization to the
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detriment of problem-solving skills. I think that the system should aim to guide the
students to the degree that is more fitted to their skills.

Filipe Silva: In Portugal I presently feel a considerable gap between those two
levels. It’s probably not a matter of the amount of knowledge that students have,
but it is the way that they face their studies. It takes them all of the first year at
the university to adapt to their new habits and to eventually develop a new, more
independent way of studying.

Luís Silva: Particularly in mathematics, the relation was too bad for too long.
Over a long time, the high school programs changed, and the university programs
for the first years took too long to adapt. At the same time students arrived at the
university poorly prepared, and people from the two school systems have had great
difficulty in getting together to talk about what to do.

Paulo Vasconcelos: Completely wrong. Schools tend to prepare their students
to take exams so that they can enroll in good universities. But critical thinking and
creativity are neither exploited nor encouraged.

Do you have any advice for students starting their research?

Elvio Accinelli: Courses must be completed within the scheduled time, and then
one should begin and continue working on the thesis without interruption until it is
finalized. In general, those who leave their thesis for a time will fail to finish.

Alberto Álvarez-López: Yes: prepare a question (or a list of questions) to be
answered. The question should be interesting. The answer should be relevant as
well as technically correct.

Mário Bessa: Be persistent, resilient, curious, patient, and especially be able
to scribble through large amounts of paper with flaws, mistakes, and wrong
computations. Never believe that your supervisor has a magic wand to answer your
questions and solve all your problems. It is you who should make the magic wand!

Ana Dias: They should try to work in what they like.
Orlando Gomes: Enjoy it. If you plan to go into research thinking only about

career or monetary rewards, do not do it. You will need to have a passion for
knowledge, or else you will feel frustrated.

Bruno Oliveira: Having a degree or a Ph.D. in an area does not mean that you
will do the same thing for the rest of your life. You can use the expertise you have
obtained in one area and apply it to a different one. The interface you create can be
extremely rich in content and very motivating to explore.

Alexandre Rodrigues: The four years of Ph.D. work can be very frustrating—
you need real determination to stick to a handful of projects and get the job done.
You should be completely sure that you love doing research in that specific field.
You will enjoy it sometimes, but other times it will be very frustrating. It is, in
general, solitary work; you speak to a few people including your advisor, but it is
still solitary. The results will be unconvincing many times; basically, you will end
up with a thesis for which only a few individuals in the world can assess the exact
value. If you have started your Ph.D., do not give up. Make an effort to make the
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difference; be really good. Even when the proof of a result is already given, try to
do it by yourself.

Filipe Silva: I consider it a privilege to be able to devote our lives, or at least a
part of them, to research, that is to try to better understand our world. Also, research
activities have the potential to develop scientific reasoning and many other skills
(e.g., persistence, creativity, statistical reasoning) that can be useful in other fields
of activity.

And for the ones who are hesitating between pursuing a Ph.D. and looking for a
different job?

Alberto Álvarez-López: Well, If you like to study, if you really like to work hard
studying, go ahead with your Ph.D. The job of a scholar is one of the best you
can choose, in the sense that almost everything you do is a direct “investment” in
yourself. There are, of course, several contras: the wages are usually low, labor
promotion is sometimes difficult, you work a lot of hours, bureaucratic tasks often
feed you. . . .

Ana Dias: They should try to do what they prefer.
Orlando Gomes: It is a matter of vocation. There are many appealing and well-

paid jobs that do not require a Ph.D. It is all a matter of making the choices that we
are most comfortable with.

Filipe Silva: I don’t like to push students into academic activities, since the path
to the Ph.D. is as important as the final result, so they have to be fully committed to
endure (and enjoy) their own research voyage.

Have all of your research students chosen academic careers?

Alberto Álvarez-López: Most of them. I have to say that a few students were
part-time students; they were also working out of the university.

Mário Bessa: Since academic jobs, in the area of mathematics, experienced a
large decrease in supply in the last decade, Ph.D. students, after finishing their Ph.D.
program, try to find business and finance jobs. Fortunately, my former students
(Master and Ph.D.) are working as risk analysts in a bank. I point out that their
employers are very satisfied with their skills and competence.

Ana Dias: I just have two and both are academics, although not yet with stable
jobs.

Filipe Silva: No, several students have professions as teachers or in areas related
to the environment. I think that the society, namely the private sector, should interact
much more closely with researchers and they should eventually think how their
skills can be put to work for the common interest, even if they are not directed
to pure research. But it seems that we are still at a considerable distance from a
complete integration of researchers in the society as a whole.

Luís Silva: Three out of four.
Paulo Vasconcelos: No, mainly lately they are finding jobs outside of academia.
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On other issues

Do you have hobbies?

Alberto Álvarez-López: I very much enjoy good literature, and reading and
writing in general.

Ana Dias: Right now, maybe just cooking, due to the lack of time.
Orlando Gomes: I like to take long walks and to enjoy the company of my family.
Filipe Martins: I am a proud Portuguese, and enjoy my country very much. My

main hobbies are reading, music, and playing the piano and watching Boavista F.C.
play. I am an avid reader.

Filipe Silva: Jogging and swimming in the ocean. Fortunately, I can do it all the
year round in the Azores.

Luís Silva: I am a big fan of enduro mountain biking.

Do you have a connection to Portugal? How do you see its development?

Elvio Accinelli: I have an excellent relationship with Portugal, especially with the
group of applied mathematics from Porto. With my work group in México we could
make many joint projects with the group led by Alberto Pinto. The development of
joint work with this group is of particular interest to us.

Alberto Álvarez-López: I feel as if I had a brother in Portugal. My visits to this
brother are not very frequent, but when I am with him, I always feel exactly as if I
were at home.

Ana Dias: I am working at the University of Porto. I see that Portugal is
progressing with many people working hard, and I hope they will not lose their
enthusiasm.

Orlando Gomes: I am Portuguese. I think Portugal is a victim of a drifting
European Union and of the poor quality of its own economic policies. Visible
setbacks in the areas of culture and science are, for me, the most painful.

Filipe Silva: Living in the Azores islands, I am aware of the consequences
that can arise from unplanned development. Development without knowledge will
hardly be development at all, and surely not sustainable. That’s why universities
and other innovation/research institutions play a crucial role in training the new
generations and in contributing to a development that will not compromise Earth’s
resources and future generations.
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