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Abstract. Various methods for analyzing networks have been proposed. Among
them, methods for community detection based on network structures are impor-
tant for making networks simple and easy to understand. As an attempt to incor-
porate background knowledge of given networks, a method known as constrained
community detection has been proposed recently. Constrained community detec-
tion shows robust performance on noisy data since it uses background knowledge.
In particular, methods for community detection based on constrained Hamilto-
nian have advantages of flexibility in output results. In this paper, we propose a
method for accelerating the speed of constrained community detection based on
Hamiltonian. Our optimization method is a variant of Blondel’s Louvain method
which is well-known for its computational efficiency. Our experiments showed
that our proposed method is superior in terms of computational time, and its
accuracy is almost equal to the existing method based on simulated annealing
under the same conditions. Our proposed method enables us to perform con-
strained community detection in larger networks compared with existing meth-
ods. Moreover, we compared the strategies of adding constraints incrementally in
the process of constrained community detection.

1 Introduction

There are emerging needs for understanding the structures of huge data due to the grow-
ing advancement of information technologies. Many of them can be represented as
networks, such as friendship networks of social media or hyperlink networks of Web
pages. Several attempts have been made for community detection [POM09][For10]; ex-
tracting dense subnetworks from given networks. Community detection is important for
analyzing and visualizing given networks from mesoscopic viewpoints.

One of the most popular metrics for community detection is modularity [NG04]. It is
often used for evaluating the qualities of detected communities compared with the null
model. Many community detection methods optimize modularity in order to search for
partitions of given networks [CNM04][For10][PKVS12]. As the method for optimizing
modularity of large-scale networks, Louvain method [BGLL08] is often employed.

One of the promising directions of community detection is to incorporate constraints
on communities to be detected, which is called constrained community detection. In
many cases, humans already have some background knowledge on the structure of
given networks. Such knowledge should be incorporated in the process of community
detection in order to find better communities.
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Among the approaches of constrained community detection, Reichardt and Born-
holdt [RB06] introduced Hamiltonian as a generalization of modularity. Eaton et al. pro-
posed a method for optimizing constrained Hamiltonian [EM12]. Although the method
is theoretically good, it is slow since it employs simulated annealing [KJV83] for
optimizing constrained Hamiltonian.

This paper extends Louvain method, and proposes a method for fast optimization
of constrained Hamiltonian. It is often said that there is a tradeoff between accuracy
and speed, but our optimization method satisfies both. It is effective not only for pro-
cessing large-scale networks but also for performing interactive community detection
since users often put some additional constraints after they watched the results of ob-
tained communities. There are many strategies for giving constraints incrementally in
the process of community detection, hence we performed experiments comparing some
of them.

2 Related Works

This section introduces some basic metrics and notations that are necessary for explain-
ing our proposed method.

2.1 Modularity

Modularity introduced by Newman and Girvan [NG04] is one of the most popular met-
rics for evaluating the quality of communities extracted from a given network. The
metric is computed from the difference between the number of actual edges within
communities in a network and the expected value of its null model. Null model of a
network is generated by rewiring edges of the network while degrees of all vertices are
kept the same as those of the original network. Modularity shows the amount of devi-
ation of the number of edges within communities from random partitions. Therefore,
partitions of high modularity are regarded as good from the viewpoint of community
detection. The value of modularity Q is defined as follows:

Q =
1

2m ∑
i, j

(Ai j −Pi j)δ (Ci,Cj) , (1)

where i and j are indices of nodes, A is an adjacency matrix of the network, Pi j =
(kik j)/2m is a null model of the network, ki is the degree of node i, m = ∑i ki/2 is the
number of edges in the network, Ci is the index of the community which node i belongs
to, and δ is the Kronecker’s delta. In order to detect communities, partitions of high Q
values are searched, and it is often called modularity optimization.

3 Generalization of Modularity

Hamiltonian H [RB06], which is a generalization of modularity (expression (1)), is
expressed as follows:



Fast Optimization of Hamiltonian for Constrained Community Detection 81

H =−∑i, j ai jAi jδ (Ci,Cj)

+∑i, j
bi j(1−Ai j)δ (Ci,Cj)

+∑i, j
ci jAi j(1− δ (Ci,Cj))

−∑i, j
di j(1−Ai j)(1− δ (Ci,Cj)).

(2)

We have to keep in mind that in contrast to modularity, smaller Hamiltonian value
means better network partition. In expression (2), Hamiltonian (a) rewards intra-
community edges (the first term), (b) penalizes the lack of intra-community edges (the
second term), (c) penalizes inter-community edges (the third term), and (d) rewards the
lack of inter-community edges (the fourth term), and each is weighted by parameters
a,b,c and d, respectively.

If the parameters are set appropriately (ai j = ci j = 1− γPi j, bi j = di j = γPi j), expres-
sion (2) can be transformed as follows:

H =−2∑
i, j
(Ai j − γPi j)δ (Ci,Cj)+ 2m(1− γ). (3)

The second term on the right side, 2m(1− γ), can be ignored because it is independent
of the result of community detection. Then the expression is equal to the definition
of modularity (expression (1)) times constant value. This means that Hamiltonian is a
generalization of modularity.

3.1 Constrained community detection

As a method for performing constrained community detection, Eaton et al. [EM12]
proposed an optimization for constrained Hamiltonian, in which a constrained term
is added to the above-mentioned Hamiltonian (expression (3)). Constrained term U is
composed of (a) ui j which means that a pair of nodes should be in the same community,
and (b) ui j which means that a pair of nodes should be in different communities:

U = ∑
i, j
(ui j (1− δ (Ci,Cj))+ ui jδ (Ci,Cj)) . (4)

Settings for the values of ui j and ui j are discussed in section 5. Constrained Hamiltonian
H ′ is expressed as follows:

H ′ =H + μU

=−2∑
i, j
((Ai j − γPi j + μΔUi j)δ (Ci,Cj))+K, (5)

where μ is a parameter for balancing Hamiltonian H and constrained term U , ΔUi j =
(ui j −ui j)/2, K = 2m(1− γ)+μ ∑i, j ui j, respectively. K is a constant independent from
extracted communities.

Eaton et al. employed simulated annealing [KJV83] in order to optimize expression
(5). They claimed that noise-tolerant and accurate constrained community detection is
achieved [EM12].
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3.2 Louvain Method

Louvain method [BGLL08] is a method known for its fast optimization of modular-
ity. Although Louvain method is a straightforward greedy method, it experimentally
showed high accuracy. Louvain method consists of the following two phases:

1. Each node is moved to one of its adjacent communities, and the gain of modularity
value after the move is computed. The move that will increase modularity the most
will be employed and the node is assigned to the new community, but only if the
gain is positive. This process is repeated for every node until no more increase of
modularity can be obtained.

2. Each community obtained in step 1 is aggregated to a node, and a new network of
aggregated nodes is generated.

The above two phases are repeated iteratively until convergence. In phase 1, only the
difference of modularity before and after the move (ΔQ) is computed in order to speedup
the computation. When node x is moved from community Y to community Z, the
difference of modularity value ΔQ is as follows:

ΔQ =
1
m

(
∑
i∈Z

(Aix −Pix)−∑
i∈Y

(Aix −Pix)

)
, (6)

where ki in Pi j = (kik j)/2m is the sum of weights of all edges that are connected to
node i.

In phase 2, each community obtained in phase 1 is regarded as a node and a new
network of the nodes is generated. The weight of an edge that connect two nodes in
the new network is the sum of the weights of all edges that connect nodes between
corresponding two communities before aggregation. The weight of self-loop edge in a
new network is equal to the double of the sum of all edges within the community.

4 Fast Optimization of Hamiltonian for Constrained Community
Detection

Eaton et al. claimed that optimization of constrained Hamiltonian is good for con-
strained community detection, although they used slow simulated annealing for the
optimization. We extended Louvain method (which was originally for optimizing mod-
ularity) for the optimization of constrained Hamiltonian in order to speedup constrained
community detection.

Our method for optimization is similar to Louvain method, except ΔH ′ is com-
puted in phase 1 in section 3.2 instead of ΔQ. The difference of constrained Hamilto-
nian H ′ before and after node x is moved from community Y to community Z (ΔH ′) is
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represented as follows; where Cy is the network partition before the move (when node
x belongs to community Y ), and Cz is the network partition after the move (when node
x belongs to community Z):

ΔH ′ =

(
−2∑

i, j

(
(Ai j − γPi j + μΔUi j)δ (Cz

i ,C
z
j)
)
+K

)

−
(
−2∑

i, j

(
(Ai j − γPi j + μΔUi j)δ (Cy

i ,C
y
j )
)
+K

)
. (7)

Since the communities of other nodes except x is the same (if i �= x and j �= x then
δ (Cz

i ,C
z
j) = δ (Cy

i ,C
y
j )), the following equation holds:

ΔH ′

2
=−∑

i

((Ai j − γPi j + μΔUix)δ (Cz
i ,C

z
x))

−∑
j

(
(Ai j − γPi j + μΔUx j)δ (Cz

x,C
z
j)
)

+∑
i

(
(Ai j − γPi j + μΔUix)δ (Cy

i ,C
y
x)
)

+∑
j

(
(Ai j − γPi j + μΔUx j)δ (Cy

x ,C
y
j )
)
.

(8)

Since A, P and ΔU are symmetric matrices1, the following equation holds:

ΔH ′

2
=−2∑

i
((Ai j − γPi j + μΔUix)δ (Cz

i ,C
z
x))

+ 2∑
i

(
(Ai j − γPi j + μΔUix)δ (Cy

i ,C
y
x)
)
.

(9)

If nodes i and x are in different communities, δ (Ci,Cx) = 0. Otherwise, if they are in
the same community, δ (Ci,Cx) = 1. Therefore the following equation holds:

ΔH ′ =−4

(
∑
i∈Z

(Ai j − γPi j + μΔUix)−∑
i∈Y

(Ai j − γPi j + μΔUix)

)
. (10)

Expression (10) is computed in our proposed method in order to perform constrained
community detection. If the parameter μ is set to μ = 0, the term ΔU is cancelled
out in expressions (5) and (10), and our method is the same as the normal community
detection without considering constraints. If the parameter μ is set to a large value, ΔU
dominates the behavior of H ′, and the communities that only focus on constraints will
be extracted.

Since computational cost of expression (10) is almost the same as that of expression
(6), the efficiency of our proposed method for optimizing constrained Hamiltonian is
expected to achieve the same level as Louvain method.

1 In the case of an undirected network, A and P are always symmetric. Blondel’s original Louvain
method is basically for undirected networks.
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Table 1. Networks used in our experiments

Network #nodes #edges #communities
Karate [Zac77] 34 78 2
Polbooks [Kre] 105 441 3

Polblogs [AG05] 1,222 16,714 2

5 Experiments

Table 1 shows the networks that were used for our experiments. Correct communities
are known in advance as the ground-truth labels for each of them. Parameters are set as
follows: μ = 2, γ = 1, and Pi j = kik j/2m.

We focus on the constraints of assigning a positive integer li (as community label) to
node i. A label of an unconstrained node is assigned as li = −1. Values of ui j and ui j

are set as follows:

ui j =

{
1 (when li = l j �=−1),

0 (otherwise),
(11)

ui j =

{
1 (when li �= l j ∧ li �=−1∧ l j �=−1),

0 (otherwise).
(12)

As a metric for measuring the similarity between extracted communities C and cor-
rect communities C′, normalized mutual information (NMI) [SG03] is used:

NMI(C,C′) =
∑
c

∑
c′

ncc′ log
ncc′ ·n
nc·nc′√(

∑
c

nc log nc
n

)(
∑
c′

nc′ log
nc′
n

) , (13)

where c and c′ are indices of communities C and C′, n is the number of nodes, ncc′ is the
number of nodes that belong to both c and c′, and nc and nc′ are the number of nodes
that belong to c and c′, respectively. The more C and C′ are similar, the larger their NMI
is. C is set to the extracted communities and C′ is set to the correct communities in order
to measure the accuracy of community detection.

5.1 Comparison of Our Proposed Method, Simulated Annealing Method and
Louvain Method

We can consider two cases for constrained community detection: (1) all constraints are
given in advance, and (2) constraints are given incrementally. This subsection discusses
the former case for comparing our proposed method, simulated annealing method, and
Louvain method.

Figure 1 shows comparisons of accuracy using Karate network, Polbooks network
and Polblogs network. X axis is the ratio of randomly added/deleted edges (as noise)
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Fig. 1. Accuracies of our proposed method, simulated annealing method and Louvain method
using Karate network (top left), Polbooks network (top right), and Polblogs network (bottom).

with keeping the degree distributions, and Y axis is NMI. In our proposed method and
simulated annealing method, 20% of nodes are randomly selected and their ground-
truth labels are given as constraints. Error bars show standard errors.

As Figure 1 shows, our proposed method is almost as accurate as simulated annealing
method, if the number of communities is not given. In [EM12], the number the of
ground-truth communities is given to simulated annealing method (triangular solid line
in Figure 1). We also performed experiments with simulated annealing method without
giving the number of communities (reversed-triangular dotted line in Figure 1), in order
to compare it with our proposed method in the same condition. It was already pointed
out that Louvain method is effective for optimizing modularity compared with other
optimization methods [BGLL08], which is consistent with this result.

Figure 2 shows the comparisons of computational times of three methods. X axis is
the same as Figure 1, and Y axis is the computational time (seconds). This showed that
our proposed method is significantly faster than simulated annealing.

These results showed that our proposed method is almost as accurate as simulated
annealing, and is much faster. This enables us to process large-scale networks.

5.2 Experiments on Large-Scale Networks

Table 2 shows the large-scale networks which we experimented with. Because there was
no ground-truth label for them, it is impossible to give constraints from ground-truth
labels or to measure the accuracy with NMI. However we tried to detect communities
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Fig. 2. Computational times of our proposed method, simulated annealing method and Louvain
method using Karate network (top left), Polbooks network (top right) and Polblogs network
(bottom)

from them with our proposed method and simulated annealing method without giving
constraints in order to check the computational costs of them.

The results are shown in Table 3. It implies that our proposed method is very fast on
large-scale networks.

5.3 Incremental Constrained Community Detection

This section discusses how to give constraints incrementally during the optimization of
constrained Hamiltonian. Suppose there are no constraints at the initial stage, and con-
straints are given one by one and then constrained community detection is performed
based on the constraints given so far. Since giving too many constraints manually is

Table 2. Large-scale networks used in our experiments

Network #nodes #edges #communities
Power [WS98] 4,941 6,594 unknown

Dblp [YL12] 317,080 1,049,866 unknown2

2 Dblp network has the overlapping and nested ground-truth communities, but that is not suitable
because we assume that each node must belong to exactly one community.
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Table 3. Computational times (second) for large-scale networks of our proposed method and
simulated annealing method

Annealing Proposed
Power 3.016 0.056

Dblp 143.111 12.720
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Fig. 3. Incremental addition of constraints and corresponding NMI using Karate network (top
left), Polbooks network (top right) and Polblogs network (bottom)

unrealistic, we have to think about the strategies for selecting nodes that should be con-
strained.

Figure 3 shows the results of incremental addition of constraints and corresponding
NMI values after constrained community detection was performed with our proposed
method. X axis is the number of constraints, and Y axis is NMI. Lines in the Figure
correspond to the following strategies for giving constraints:

random: Nodes are selected randomly.
hub: Nodes are selected in descending order of their degrees.
DeltaH contribution: Nodes are selected in descending order of expression (10).
betweenness: Nodes are selected in descending order of betweenness.
pagerank: Nodes are selected in descending order of PageRank[PBMW99].
boundary: Nodes adjacent to different communities are selected.

The top left of Figure 3 shows that the performances of DeltaH contribution and
boundary are good when the number of constraints are less than ten. Among them,
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boundary strategy is the best since it quickly reaches the highest NMI value. The top
right and bottom of Figure 3 also shows that boundary is the best strategy. The results
show that the order of adding constraints matters for an accurate constrained community
detection. Based on the above results, we can conclude that the boundary strategy is the
best in our list of surveyed strategies. This strategy gives constraints to the nodes that
are located at the boundaries of different communities. It makes sense because giving
constraints to such marginal nodes is expected to enhance the accuracies of community
detection.

As for the strategy for adding constraints to nodes, the uncertain sampling [LG94]
is often employed. The strategy is to select nodes whose degree of “wrongness” are
the biggest. It has been pointed out that humans’ strategies are often superior to un-
certain sampling. This means that the performance of humans’ interactive constrained
community detection is expected to be better than the results shown in Figure 3.

6 Conclusion

This paper extends Louvain method for optimizing constrained Hamiltonian. Our pro-
posed method is much faster than the existing simulated annealing method, without any
compromise in accuracy. In addition, we performed some experiments on incremental
constrained community detection and compare the strategies for giving constraints.

The followings are left for our future work.
Firstly, appropriate values of parameters such as γ , μ , u, u should be discussed fur-

ther. We have used the same values that are used in Eaton’s paper [EM12]. But the-
oretical and experimental optimization for these parameters have yet to be solved. μ
controls the strength of overall constrained term, and u, u controls the strength of each
constraint. Hence u, u can be set to the degree of user’s confidence on each constraint.
Another direction of this research is to set the weight of each constraint automatically.

Secondly, good strategies for giving constraints should be discussed further. It might
be good to observe and imitate humans’ heuristic strategies for accurate constrained
community detection. The final goal of our research is to develop an environment of
network analysis that would allow an interactive feedback from users, and this would
give more insights into the performance of interactive community detection.
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