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Abstract. Many studies use community detection algorithms in order to under-
stand complex networks. Most papers study node communities, i.e. groups of
nodes, which may or may not overlap. A widely used measure to evaluate the
quality of a community structure is the modularity. However, sometimes it is also
relevant to study link partitions rather than node partitions. In order to evaluate a
link partition, we propose a new quality function: Expected Nodes. Our function
is based on the same inspiration as the modularity and compares, for a given link
group, the number of incident nodes to the expected one. In this short note, we
discuss the advantages and drawbacks of our quality function compared to other
ones on synthetics graphs. We show that Expected Nodes is able to pass some
fundamental sanity criteria and is the one that best identifies the most relevant
partition in a more realistic context.
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1 Introduction

In the past years, complex networks were extensively studied because of the broad range
of systems they can model, from protein-protein interactions to social networks. One
question of interest is the detection of communities. Despite the important literature
that covers the detection of classical, overlapping or even dynamic communities, most
works focus on grouping nodes. On the other hand, the question of link communities
has received less attention [4,1,8]. Intuitively, partitioning a network’s links is very
relevant in some contexts. For example, in a social network, most individuals belong to
multiple communities such as families, friends, and co-workers, while the links between
individuals usually exist for a dominant reason. In this context, a link community would
be a group of interactions on one topic.

In this paper, we address the problem of evaluating the quality of a link partition.
After a review of previous works (Section 2), we introduce a novel measure: Expected
Nodes (Section 3). It is based on the assumption that a link community corresponds
to less individuals than expected while its surroundings links correspond to more indi-
viduals than expected. We use several test cases (Section 4) to study how this measure
behaves when compared to other quality functions.
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2 Related Work

We introduce some notations used throughout this paper. Let G = (V,E) ge a graph,
d(u) denotes the degree of node u in G. A link partition in k groups is noted L =
(L1,L2, . . . ,Lk) with Li ⊆ E ∀i, Li ∩ Lj = /0 ∀i �= j and

⋃
i Li = E . For a given link

group L ∈ L , let Vin(L) = {u ∈ V,∃(u,v) ∈ L} be the group of nodes inside L and
Vout(L) = {u ∈V \Vin(L),(u,v) ∈ E \L∧ v ∈Vin(L)} be the nodes adjacent to L.

Ahn et al. [1] were among the first to propose a method to detect link communities.
Their method link clustering is a hierarchical clustering method constructing a dendro-
gram by iteratively merging groups of links according to a similarity measure based on
the Jaccard index. To decide where to cut the dendrogram in order to create a partition,
they use a density based measure: the partition density. For a given link partition L ,
the partition density is given by:

D(L ) =
2
|E| ∑

L∈L ,|L|>2

|L| |L|− (|Vin(L)|− 1)
(|Vin(L)|− 1)(|Vin(L)|− 2)

. (1)

However, the partition density cannot be easily generalized to weighted networks. An
attempt in this direction has been made by Kim [5].

Evans et al. [4] propose three quality functions to evaluate link partitions. Their qual-
ity functions can be computed and optimized on the original graph but also on specific
weighted line graphs (LG1, LG2, LG3) using existing algorithms such as the Louvain
method [3]. A line graph of an undirected graph is a graph where each node represents
a link from the original graph and two nodes are connected if the corresponding links
share a node.

To define these particular line graphs LG1, LG2 and LG3, let B denote the incidence
matrix of a network G: the elements Biα of this |V |× |E| matrix are equal to 1 if link α
is connected to node i and 0 otherwise. Matrices LG1, LG2 and LG3 are defined as:

x = 1 x = 2 x = 3

LGx(α,β ) BiαBiβ (1− δαβ) ∑i∈V,dG(i)>1
Biα Biβ

d(i)− 1
∑i, j∈V,d(i)dG( j)>0

Biα Ai jB jβ

d(i)d( j)

Let kx(α)=∑β LGx(α,β ) be α’s weighted degree in LGx and Wx =∑α ,β∈|E| LGx(α,β ).
For x ∈ {1,2,3}, the quality function Evansx is:

Evansx(L ) =
1

Wx
∑

Li∈L
∑

e1,e2∈L2
i

LGx(e1,e2)− kx(e1)kx(e2)

W
. (2)

Kim et al. [6] explored the extension of the concept of Minimum Length Description
introduced by Rosvall et al. [10] which is an information-theoretic framework. This
extension directly considers link partitions. An advantage of their method is the ability
to compare link and node partitions.

3 Our Quality Function: Expected Nodes

One commonly accepted assertion for node communities is: a community should have
more internal connections than the expected number of connections in a random null
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model where no community structure exists. This assertion is at the core of the mod-
ularity introduced by Newman and Girvan [9]. In the same way, to evaluate a link
community, we compare the number of nodes to its expected number of nodes. Like
modularity, the measure can be decomposed, for each group L, into two components: in-
ternal quality and external quality. Like modularity, we use the configuration model [2]
for a null model. In this model, the links are created by choosing random pairs of half-
link (or stubs), each node having as many stubs as is degree in the original graph.

We start by describing the internal quality. Intuitively, a group of links L is a relevant
community if it consists of a large number of links adjacent to few nodes, i.e. if Vin is
small compared to what would be expected in the configuration model. By definition, a
node is an internal node of L if one of its stubs (half-links) is in L. Therefore, to compute
the expected number of internal nodes in the configuration model, we choose randomly
2|L| stubs among a total of 2|E| stubs. A node u has therefore d(u) ways to be picked.
The expected number of internal nodes for a given link group L, denoted by μG(|L|), is
then:

μG(|L|) = ∑
u∈V

P(u picked at least once) = ∑
u∈V

1−
(2|E|−d(u)

2|L|
)

(2|E|
2|L|

) . (3)

Note that the function μG only depends on the degree sequence {d(v)}v∈V . Note
also that if |L|= 1, then μG(|L|)≤ 2; this is because the configuration model allows self
loops. A group L has a good internal quality if it has less internal nodes than expected.
We therefore choose to define the internal quality function Qin for a given group L as
the variation between the actual number of internal nodes and its expectation:

Qin(L) =
μG(|L|)−|Vin(L)|

μG(|L|) . (4)

With this definition, for a given |L|, the fewer nodes a group of links involves, the
higher Qin will be.

We now describe the external quality of a group L. The process to evaluate the neigh-
bourhood Vout(L) of a group L is similar to the process for the internal nodes. However
in this case, we consider that L has a bad neighbourhood if it has fewer external nodes
than expected. Indeed if there are many external links and few external nodes, these
external links should be included in the community. Let d̄(L,u) = ∑v∈V �(u,v)∈E\L be
the degree of u restricted to links not in L and d̄(L) = ∑u∈Vin(L) d̄(L,u). The expec-
tation of the number of adjacent nodes is evaluated as the number of nodes that are
picked when d̄(L) stubs are chosen randomly in the configuration model where the
links of L have been removed. The corresponding degree sequence is {dG\L(u)}u∈V

where G\L = (V,E \L) . Only one half link is chosen randomly because the other half
has to remain attached to an internal node of L. Thus, we have the following equation:

E[d̄(L)] = μG\L(
¯d(L)/2). (5)

Since we are interested in penalizing groups that have few external nodes, but do not
consider that a group is particularly good if it has a large number of external nodes, we
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bound the external quality by 0:

Qext(L) = min

(

0,
|Vout(L)|− μG\L(d̄(L)/2)

μG\L(d̄(L)/2)

)

. (6)

Finally, we define Expected Nodes for a group L as:

Q(L) = 2
|L|Qin(L)+ |Lout |Qext(L)

|L|+ |Lout | . (7)

Notice that the trivial group containing all links has a null quality because Qin and Qout

will be equal to 0. The other trivial decomposition where each link belongs to its own
group has a negative quality. However, in some cases a group containing a single link
might be the best choice. It is the case when the link is a bridge between dense groups.
Finally, we define Expected Nodes for a given link partition L as the weighted sum of
the quality of each group:

QG(L ) =
∑L∈L |L|Q(L)

|E| . (8)

4 Comparison with Existing Methods

In order to study the relevance of Expected Nodes, we use two test cases.We also com-
pare it to acknowledged quality functions: partition density [1] and the quality functions
developed by Evans et al. [4] denoted by Evans1, Evans2 and Evans3.

4.1 Complete Graph

We start with a simple case in order to check that Expected Nodes satisfies some impor-
tant and fundamental properties. We study a complete graph of 100 nodes (we obtained
similar results with different sizes). On this graph, we define the trivial partition with
one group containing all links, and two partitions families: one with two groups and one
with three groups. Given a parameter p < |V |, let V ′ be a set of p nodes. Both partitions
place all links in V ′ ×V ′ in one group. The 2-groups partition places all other links in
the second group. The 3-groups partition places all links in V ×V \V ′ in a second group
and all remaining links in the third. These assignment rules are illustrated in Figure 1

As the graph is a single complete graph, the best solution is to capture only one
group with all the links, i.e. the trivial partition should have the highest ranking. Fig-
ure 2 shows the results. For each value of p and each quality function, we present the
values for the corresponding partitions in 2 and 3 groups and for the trivial partition.
Surprisingly, quality functions Evans1 and Evans2 fail this simple test because they
evaluate the 2- or 3-groups partitions as better than the trivial one. According to parti-
tion density, Expected Nodes and E3, the trivial partition is best. The quality function
Evans3 differs because of its small amplitude (≈ 10−3).
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(a) (b)

Fig. 1. Two different link partitions of a complete graph with p = 5: (a) in two link groups and
(b) in three link groups. The dark nodes corresponds to V ′ and the color of a link corresponds to
its group.
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Fig. 2. Evaluation of 5 quality functions on a complete graph of 100 nodes for 3 different parti-
tions. The tested partitions are presented in Section 4.1. The results for quality functions Evans1
and Evans2 are identical. The gray line, black line and dashed line represent respectively the
1-group partition, the 2-groups partition and the 3-groups partition.
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4.2 Overlapping LFR Benchmark

We now discuss results obtained by comparing the quality functions on random net-
works with a known community structure. To the best of our knowledge, there is no
graph generator based on link partitions. We use the benchmark proposed by Lanci-
chinetti et al. [7] which generates graphs based on a known node cover. We introduce
two transformations of this overlapping community structure into link partitions de-
noted by TA and TB (see Figure 3). Given u,v ∈ V , let Cu,v denote the intersection
between the communities of u and v in the node cover and Uu,v their union. We define
the group of a link (u,v) ∈ E in the partitions as follows:

intra-community if |Cu,v|= 1 then (u,v) is in community Cu,v;
inter-community if |Cu,v|= 0 then in TA, (u,v) belongs to its own community. In T B

it belongs to community Uu,v which contains all links (u′,v′) such that Uu′,v′ =Uu,v;
overlapping if |Cu,v|> 1 then (u,v)’s community is chosen randomly in Cu,v.

Fig. 3. Construction of TA and T B from a node cover. Link colours denote groups.

We describe the results averaged over 30 graph generations with 500 nodes, an av-
erage degree of 25, 10 overlapping nodes and a mixing parameter of 0.11. There are on
average 5620 intra-community links, 625 inter-community links and only 5 overlapping
links. For each generation, the partition TA, T B, the partition LC found by link cluster-
ing [1] and the partition E2 found by the second method of Evans et al. [4] (based on the
optimization of Evans2)2 are evaluated using Partition Density, Evans2 and Expected
Nodes.

In TA (resp. T B), there are 650 (resp. 70) groups on average. Manual investiga-
tions show that the E2 partitions are very close to the ground truth (TA or TB) if
inter-community links are not considered. Indeed in E2, inter-community links are ran-
domly distributed among adjacent larger link communities. The LC partitions contain
720 groups on average and intra-community links are split into many small groups. No-
tice that neither TA nor T B get the best evaluation according to Evans2 and Partition
density even though they are considered as ground truth.

1 Remaining parameters with original notations: kmax = 50, t1 =−2, t2 =−1, Cmin = 20, Cmax =
100.

2 The results are similar for the algorithms using E1 and E3.
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(a) Partition density (b) Evans2 (c) Expected Nodes

Fig. 4. Boxplots of the three quality functions values for the different link partitions. The box
shows lower and upper quartiles and the median. The whiskers extend to 1.5 time the interquartile
range. Flier points are those past the end of the whiskers.

The following observations can be made. First, Expected Nodes (Fig. 4c) behaves
differently than both other measures (Fig. 4a and 4b). This shows that our measure
brings something new to the picture. Moreover, its values are usually higher for TA and
T B than for the partitions found using the two algorithms, which corresponds to our
expectations. Second, the Expected Nodes values are significantly different for TA and
T B. It is not the case for quality functions E2 and Partition density. Indeed, external
links between the same community are likely to form a group of isolated links in TB.
This situation is highly penalized by our measure. It also explains why Expected Nodes
evaluates LC partitions better than E2 partitions. For those reasons, we believe that
maximizing Expected Nodes would result in partitions close to TA in this benchmark.

4.3 Conclusion

In this paper, we propose a new quality function, Expected Nodes, to evaluate the quality
of a link partition of a graph3. It compares the number of nodes adjacent to a link
group to its expectation, in the same way as the modularity evaluates the relevance of a
node group by comparing the number of adjacent links to its expected value. To show
the relevance of Expected Nodes, we compared it to existing quality functions. The
main perspective of our work is to design an algorithm for maximizing Expected Nodes
in order to detect relevant link partitions. More detailed comparisons between quality
functions may also be performed. For instance, it would be interesting to evaluate their
behaviour to detect whether they are likely to present local maxima such as the one
observed in Figure 2c or not.
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3 The code used to compute each quality function is available:
https://github.com/ksadorf/ExpectedNodes

https://github.com/ksadorf/ExpectedNodes
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