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Abstract. Scientists have shown that network motifs are key building block of
various biological networks. Most of the existing exact methods for finding net-
work motifs are inefficient simply due to the inherent complexity of this task. In
recent years, researchers are considering approximate methods that save compu-
tation by sacrificing exact counting of the frequency of potential motifs. However,
these methods are also slow when one considers the motifs of larger size. In this
work, we propose two methods for approximate motif finding, namely SRW-rw,
and MHRW based on Markov Chain Monte Carlo (MCMC) sampling. Both the
methods are significantly faster than the best of the existing methods, with com-
parable or better accuracy. Further, as the motif size grows the complexity of the
proposed methods grows linearly.

1 Introduction

Studying the local topology is an important step for modeling the interaction among
the entities in a network. In a seminal work around a decade ago, Shen-orr et al. [14]
hypothesized that network motifs play an important role in carrying out the key func-
tionalities that are performed by the entities in a biological network. Since then, re-
searchers have also discovered that network motifs are building block for complex
networks from many diverse disciplines including biochemistry, neurobiology, ecology,
engineering [11], proteomics [1], social sciences [6] and communication [5].

Finding network motifs is computationally demanding. To identify whether a given
subgraph topology is a motif, we need to count the topology’s frequency in the input
network as well as in many randomized networks. Counting a topology’s frequency in
a single network is a challenging task as it requires solving subgraph isomorphism, a
known NP-complete problem. As the size of the motif grows, the number of candidate
motifs increases exponentially, and the task becomes more challenging. To cope with
the enormous computation cost of exhaustive counting of the frequency of candidate
motifs, researchers consider various sampling based methods that obtain an approxima-
tion of relative frequency measure (which we call concentration) over all the candidates
of a given size. Most notable among these methods are MFinder [8], MODA [12], and
RAND-ESU [16]. Besides these approximate methods, exact motif counting methods
are also available, such as, GTrieScanner [13], ESU [16], Grochow-Kellis algorithm [4],
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Kavosh [7], and NetMODE [9]; However, their application is limited to small networks
only. In this work, our focus is on finding concentration of prospective motifs using a
novel sampling based method.

The quality of a sampling based method depends on three critical performance met-
rics: accuracy, convergence, and execution time. Existing sampling based methods are
poor in one or more of the above performance metrics. For instance, MFinder is costly
and it scales poorly with the size of the desired motifs. Authors in [16] have shown that
the cost of subgraph sampling of MFinder increases exponentially with the size (num-
ber of vertex) of the subgraph. It is also poor in terms of accuracy and convergence.
A similar method, RAND-ESU [16] is significantly faster than MFinder and yet its
scalability is also not that satisfactory. Besides, its sampling accuracy and convergence
behavior are also poor.

Another important fact about the existing sampling based methods is that they re-
quire random access to any of the vertices or the edges in the networks. This becomes
a severe limitation for networks for which such unrestricted access is not available. For
an instance, consider the Web network or a hidden network, a user may not have access
to any arbitrary vertex/edge in the input network for security reason; rather, the desired
node can only be accessed from another node which is one-hop away from it; such sce-
narios are common in real-life and are considered in the task of snowball sampling [3].
None of the existing methods can be used for finding motifs in a graph that only allows
restricted access, such as crawling.

In this work, we propose two random walk based methods, namely MHRW
(Metropolis-Hastings random walk) and SRW-RW (Simple Random Walk with Re-
weighting) for approximating the concentration of arbitrary-sized pattern graphs in
a large network. The underlying mechanism of both the methods is a Monte Carlo
Markov Chain (MCMC) sampling over the candidate motif space, which is guaranteed
to compute an unbiased estimate of concentration of all the candidate motifs of a given
size simultaneously. Since, our methods are based on random walk over the edges of
the input graph, they only require a restricted access over the network such that at any
given time of the walk the one-hop neighboring nodes of currently visiting candidate
are accessible. Besides, the methods are scalable and are significantly faster than the
existing methods. They also have better convergence property and small memory foot-
print. While preparing for the final manuscript of this work, we have found another
work [15], where the authors propose methodologies that are similar to our work.

2 Background

2.1 Graph, Subgraph, Induced Subgraph

Let G(V,E) is a graph, where V is the set of vertex and E is the set of edges. Each
edge e ∈ E is denoted by a pair of vertices (vi,v j) where, vi,v j ∈V . A graph without a
self-loop or multi edge is a simple graph. In this work, we consider simple, connected,
and undirected graphs.

A graph G′ = (V ′,E ′) is a subgraph of G (denoted as G′ ⊆ G) if V ′ ⊆V and E ′ ⊆ E .
A graph G′ = (V ′,E ′) is a vertex-induced subgraph of G if G′ is a subgraph of G, and for
any pair of vertices va,vb ∈ V ′, (va,vb) ∈ E ′ if and only if (va,vb) ∈ E . In other words,
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a vertex-induced subgraph of G is a graph G′ consisting of a subset of G’s vertices
together with all the edges of G whose both endpoints are in this subset. In this paper,
we have used the phrase induced subgraph for abbreviating the phrase vertex-induced
subgraph. If G′ is an induced subgraph of G and |V ′| = p, we call G′ a p-subgraph of
G. An embedding of a graph G′ in another graph G is a subgraph S of G such that S and
G′ are isomorphic;

3-node subgraph patterns 4-node subgraph patterns

5-node subgraph patterns

Fig. 1. All 3, 4 and 5 node topologies

For a given vertex count,
the number of distinct graph
topologies is fixed. We use
the symbol Λp to denote
the set of all such topolo-
gies. To denote one specific
topology in Λp we use the
symbol ωp,q, where q is the
order of that topology (con-
sidering an arbitrary but
fixed ordering) among all
the size p topologies. The
set of induced embeddings
of all graphs in Λp in graph G is the collection of p-subgraphs of G. Figure 1 shows all
the elements of the sets Λ3, Λ4 and Λ5. Using the order of the topologies in this figure,
ω3,1 is the 3-node line graph.

2.2 Subgraph Concentration

The frequency of a particular p-subgraph topology g in an input graph G is the number
of times it appears in G. We denote it by fG(g). The concentration of g in G is CG(g),
which is defined as the normalized frequency over the cumulative frequency of all the
subgraph topologies in the set Λp. Mathematically,

CG(g) =
fG(g)

∑
h∈Λp

fG(h)
(1)

2.3 Motif

A Motif is a subgraph topology which occurs in an input network at a significantly
higher frequency than it occurs in a set of random networks with identical character-
istics. For this purpose, the random networks are generated from the input network by
imposing the constraint that the vertices of a random network has the identical degree
distribution as that of the input network. There are several methods for generating ran-
dom networks with identical degree distribution, but the most popular is the switching
algorithm [10], which we use in this work. The significance of frequency deviation
between the input network and the set of random networks is typically measured us-
ing z-score and p-value. If fGr (g) is the mean frequency of g in a set of randomized
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graphs Gr (constructed from G), and σGr(g) is the corresponding standard deviation,
then z-score of g for the input network G is defined as:

zG(g) =
fG(g)− fGr(g)

σGr (g)
(2)

If the z-score of g is greater than some pre-specified threshold then we call g a motif.
Since, setting this threshold requires domain expertise, all the existing motif finding
methods consider it as a run-time parameter; we also follow the same in our work. For
sampling based solution, we use concentration of subgraph instead of their frequency.
Hence, z-score is defined as below:

ẑG(g) =
̂CG(g)− ̂CGr(g)

σ̂Gr (g)
(3)

In equation 3, we use ̂CG, and σ̂G to denote that they are statistics obtain from random
sample of size-p embeddings.

2.4 Markov Chains, and Metropolis-Hastings (MH) Method

A Markov chain is the sequence of Markov process over the state space S. The state-
transition event is guided by a matrix, T , called transition probability matrix. The chain
is said to reach a stationary distribution π , when the probability of being in any particu-
lar state is independent of the initial condition, it is reversible if it satisfies the reversibil-
ity condition π(i)T (i, j) = π( j)T ( j, i),∀i, j ∈ S and it is ergodic if it has a stationary
distribution. The main goal of the MH is to draw samples from some distribution π(x),
called the target distribution, where, π(x) = f (x)/K; here K is a normalizing constant
which may not be known and difficult to compute. It can be used together with a random
walk to perform MCMC sampling. For this, the MH algorithm calculates the acceptance
probability using the following equation:

α(x,y) = min

(

π(y)q(y,x)
π(x)q(x,y)

,1

)

(4)

3 Methods

Given a graph G (which we refer as input graph) and an integer p, a sampling based
method samples a small set of p-subgraphs of G. From this set, it approximates the
concentration of each topology in Λp as shown in section 2.3. To measure the exact
concentration, one must perform unbiased sampling, where each of the p-subgraphs
has an uniform probability to be sampled. This is not an easy task, as the sample space
is very large. Besides, a direct sampling method is not applicable because for that we
need to enumerate all the p-subgraphs (to obtain the size of the sample space), which we
want to avoid. So, an indirect sampling strategy must be followed. Both MFinder [8]
and RAND-ESU [16] adopt indirect sampling; however, they differ in the sampling
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1 5,6,7,8,9,10

2 5,6,7,8,10

3 5,6,7,8,9,10

4 5,6,8,9

(b)

(a) Left: A graph G with the current state of
random walk; Right: Neighborhood informa-
tion of the current state (1,2,3,4)
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(a)

1 4,9

2 4,5,6,9,12

3 4,9

8 4,5,6,9

(b)

(b) Left: The state of random walk on G
(Figure 2(a)) after one transition; Right: Up-
dated Neighborhood information

Fig. 2. Neighbor generation mechanism

methodologies. MFinder’s sampling is biased which requires post-adjustment of con-
centration for correcting the bias; on the other hand, RAND-ESU guaranty a uniform
sampling which requires no correction. For large p, both MFinder and RAND-ESU are
costly.

MHRW(G, p, N)

G: Input Graph
p: Subgraph Size
N: Size of the sample set, |S|

1 g = Starting State
2 M = φ
3 i = 0
4 dg = Neighbor count of g
5 while i < N
6 h = Any neighbor of g chosen

uniformly at random from (1, |dg|)
7 dh = Neighbor count of h
8 accp val = dg/dh

9 accp probablility = min(1,accp val)
10 if uni f orm(0,1)≤ accp probability
11 g = h
12 dg = dh

13 i = i+ 1
14 Generate the Canonical code of g
15 Insert the code into the set M

and update the count
16 Normalize the frequency using equation 5,

∀i ωp,i ∈ M
17 return M.

Fig. 3. MHRW Pseudocode

In this paper, we propose
MHRW, and SRW-RW for sam-
pling p-subgraphs of a graph us-
ing Markov chain Monte Carlo
(MCMC) sampling. As a
Metropolis-Hasting based method
(discussed in sec: 2.4), they per-
form a random walk over the
state space so that the stationary
distribution of the random walk
converges to a desired target dis-
tribution. For our task, the state
space are the set of p-subgraphs.
Since, we want to approximate
the concentration of each of the
topologies in Λp, our target dis-
tribution is uniform, i.e., we want
to sample each of the p-subgraphs
with an identical probability. If P
is the set of the p-subgraphs in the
input graph G, and π is the tar-
get distribution, we want π(g) =
1/|P|,∀g ∈ P .

For the random walk of both MHRW and SRW-RW, a neighbor of a p-subgraphs
(say, g) is obtained by simply replacing one of its existing vertices of g with another
vertex which is not part of g and find the subgraph induced by the new vertex-set.
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While replacement, the methods ensure that the new set of vertices induce a connected
p-subgraph. At every iteration, all possible neighbors are populated using the above
strategy. For a state, the number of neighboring states are called its degree.

Example: Suppose our sampling method (MHRW or SRW-RW) is sampling a 4-
subgraph from the graph G shown in Figure 2(a)(Left). Let, the 4-subgraph 〈1,2,3,4〉
(shown in bold lines) is the existing state of this random walk. One of it’s neighbor
state is 〈1,2,3,8〉, which can be obtained by replacing the vertex 4 by the vertex 8. In
Figure 2(a)(Right) we show the information of all its neighbors. Box labeled by x con-
tains all the vertices that can be used as a replacement of vertex x to get a neighbor. If
the random walk transition chooses to go to the neighbor state 〈1,2,3,8〉, it can do so
simply by adding the vertex 8 (a vertex in the box labeled by 4) and deleting the vertex
4. The updated state of the random walk along with the updated neighbor-list is shown
in Figure 2(b). The degree of a state is the number of neighbors, which is simply the
sum of the entries in each of the boxes; thus the degree of state 〈1,2,3,4〉 is 21, and the
degree of the state 〈1,2,3,8〉 is 13.

To apply MH algorithm, we also need to decide on a proposal distribution, q. For
MHRW random walk, we choose the proposal distribution to be uniform, i.e., in the
proposal step MHRW chooses one of g’s neighbors uniformly. If h ∈ P and h is a
neighbor of g based on our neighborhood definition, using proposal distribution, the
probability of choosing h from g, q(g,h) = 1/dg, where dg is the degree of the state
g. Also note, if m ∈ P , but m is not a neighbor of g, q(g,m) = 0, i.e., transitions are
allowed among neighboring states only.

Using the proposal (q) and target (π) distributions, MHRW method is simply an
implementation of the algorithm that we discussed in Section 2.4. A pseudo-code of
MHRW is given in Figure 3. At the beginning of the sampling for each topology in Λp,
we assign a counter which is initialized to 0. As the sampling progress, for each state we
identify the specific topology that the state represents, and increment its counter by 1.
Thus, if S is the sample set, the concentration equation defined in 1 for g where g ∈ Λp

becomes:
̂C(g) =

1
|S| ∑

x∈S
1(x==g) (5)

At any iteration from the current stage g, the method chooses one of its neighbors,
(say, h) using the proposal distribution (uniform), and either accept or reject the pro-
posed move using Equation 4 i.e. MHRW adjusts the transition probability by accept-
ing or rejecting the proposed transition so that the target distribution is guaranteed to be
uniform.

On the other hand, an iteration of SRW-RW (simple random walk with re-weighting)
simply chooses one of the neighbors uniformly and make this transition. Thus the dif-
ference between MHRW and SRW-RW is that the latter chooses the proposed tran-
sition with 100% probability. This does not guarantee uniform sampling of the states
(p-subgraphs); rather the states are sampled in proportional to their degree values. In
other words, the target distribution of simple random walk is directly proportional to
the degree value of the p-subgraphs. So, the concentration of the topologies in Λp

is also biased in proportional amount. To obtain an unbiased estimate of concentra-
tion, the estimated concentration should be re-weighted, which gives the name simple
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random walk with re-weighting or in short SRW-RW. After re-weighting the concen-
tration equation (Equation 1) of SRW-RW takes the following form:

̂C(g) =
1

W ∑
x∈S

(1/dx)(x==g) (6)

where, W is the sum of the total weights, i.e., W = ∑x∈S (1/dx). Such an idea of re-
weighting has been used in [2] for approximating degree distribution of a large network
by sampling.

Pseudo-code of SRW-RW is similar to the pseudo-code of Figure 3, the only differ-
ence is that, there is no acceptance rejection step and in Line 12, instead of incrementing
the frequency count by 1, we increment the concentration by 1/dg. Finally, we normal-
ize in Line 13 using equation 6 instead of equation 5.

Claim: For a given p and an input graph G, both MHRW and SRW-RW returns an
unbiased estimate of the concentration of a topology in Λp.

Proof: Assume g ∈ Λp is an arbitrary topology and S is a set of induced subgraph

sampled from G. The expectation of g’s concentration in G is E
[

̂C(g)
]

=

E
[

1
|S| ∑x∈S 1(x∼=g)

]

= E [Pu(x ∼= g)]. Here, Pu(x ∼= g) is the probability that a graph x in

the sample set S is isomorphic to the topology g when it is sampled under uniform dis-

tribution. But, this value is the exact concentration value of g. So, E
[

̂C(g)
]

= E [Cg] =

CG. So, MHRW returns an unbiased estimate of the concentration of a topology in Λp.
By construction, the stationary distribution π for SRW-RW’s random walk is pro-

portional to the degree of a p-subgraph. Thus, for an arbitrary p-subgraph, w, its sta-
tionary probability π(w) = dw/K where K is a normalizing constant. For a topol-
ogy g ∈ Λp, before re-weighting the expected value of its concentration is equal to

∑w∈P π(w) ·1(w∼=g) =∑w∈P
dw
K ·1(w∼=g). However if each sample w of type g contributes

only 1/dw instead of 1 in the counter of g, the expected value of concentration be-
comes ∑w∈P

dw
K · ( 1

dw
)(w∼=g) =

1
K ∑w∈P 1(w∼=g) =

1
K C(g), which is the unbiased concen-

tration scaled by a multiplicative constant. Since the concentration of all the topologies
in Λp sums to 1, the expected value of the concentration returned by equation 6 after
normalization is an unbiased estimate of the true concentration.

3.1 Implementation issues

Starting State. When we start the random walk on G, both MHRW, and SRW-RW

starts from an arbitrary p-subgraph. To find it, the methods randomly choose an edge
(of G) and include other adjacent edges to form an induced subgraph of desired size.
As the input graph is connected, this process returns a p-subgraph of G.

Canonical Label of a Graph. We use min-dfs-code [17] for canonical labeling of the
graph to unify different isomorphic forms of the same graph.



20 T.K. Saha and M.A. Hasan

4 Results and Discussion

Table 1. Dataset Statistics

Graph Vertex Edge Average
Degree

Yeast 2,224 6,609 5.94
Jazz 198 2,742 27.49

ca-GrQc 4,158 13,422 6.43
ca-HepTh 8,638 24,806 5.74
ca-AstroPh 17,903 196,972 22.0

We implement MHRW and SRW-
RW in C++ language and perform
a set of experiments for evaluating
their performance. We run all the ex-
periments in a computer with 2.60
GHz processor and 4 GB RAM run-
ning Linux operating system. For ex-
periments, we use graphs of different
sizes from different domains. Table 1
lists the graphs along with the vertex
count, the edge count and the aver-
age degree. Since the existing imple-
mentation of our methods only consider undirected graphs, all the input graphs are made
undirected if necessary. The graphs are available from the following two web sites1.

Experimental results in the earlier works show that RAND-ESU is the best among
these three methods. In [16], Wernicke have shown that RAND-ESU is significantly
faster than MFinder with a better accuracy. Another recent work [12] shows that RAND-
ESU is the fastest among a set of methods including MODA. In this paper, we compare
the performance of our methods with RAND-ESU to show that our methods are better
than RAND-ESU in different performance metrics. We also considered MODA [12] for
a comparison, but we found that its available implementation is unstable; the same fact
was also reported by the authors of [9]. Note that we do not compare our methods with
existing exact algorithm as they do not scale with the size of motif and also with the
size of the input graph. For comparison with RAND-ESU, we use the implementation
by authors that is available in the FANMOD library. Note that, in this implementation,
the algorithm supports subgraph size up to 8. Besides a user need to set some probability
values, which we set using the recommendation in FANMOD’s documentation. In the
result section, we will refer RAND-ESU as FANMOD following the convention in the
earlier works.

We use three performance metrics: runtime, error, and convergence to compare our
method with others. To compute the error value for a topology g, we first find the ex-
act concentration of g using an exact method, then we find the approximate concen-
tration using the sampling based method; the absolute difference between the above
two concentration normalized by the actual concentration is the error for the topology
g. However, since the sampling method is a randomized process, instead of using the
approximate concentration of a single run, we take the average of the approximate con-
centration of 10 different runs. We represent the error as percentage and use the symbol
PE(g) (percentage error of g) for this metric.

1 http://snap.stanford.edu/data/index.html
and http://www-personal.umich.edu/˜mejn/netdata

http://snap.stanford.edu/data/index.html
http://www-personal.umich.edu/~mejn/netdata
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Fig. 4. Comparison of Percentage Error value for various methods. The dataset name, motif size,
and the number of samples (in parenthesis) are given in figure sub-title.

4.1 Error Comparison

We compare the error percentage (PE) of various topologies using SRW-RW, MHRW,
and FANMOD algorithms on all the datasets for different size values (p). Instead of
showing the PE for all the topologies, we only show it for the topologies that are likely
to be motifs, i.e., for these topologies, the ẑG(g) value in Equation 3 is the highest
among all the topologies. For this experiment, we fixed the number of samples to 10000
for all of the experiments except for the experiment of Ca-AstroPh dataset, where we
use 40000 samples.

For all the datasets, we see that our methods are significantly better than the FAN-
MOD method based on the PE metric. Specifically, the performance gap between our
method and FANMOD is very high for the Ca-AstroPh dataset, which is the largest
among all our datasets. The performance of SRW-RW and MHRW are comparable.
However, we observe that for topologies for which the concentration is high, MHRW’s
approximation is better than SRW-RW. On the other hand for graphs for which the con-
centration is small (see the dense topologies in Figure 4(b)), SRW-RW’s approximation
is better than MHRW. There are a few occasions where the PE of SRW-RW are as
bad as FANMOD; nevertheless, the plots clearly demonstrate the superiority of Markov
Chain based techniques over FANMOD in terms of percentage error.

4.2 Runtime Comparison

The runtime performance comparison of our methods with FANMOD is shown in
Table 2. Here, we have fixed the sample count to 10000 for all the methods. To highlight
the poor scalability of FANMOD with the size of the motif, we show some of the num-
bers in bold font. If we carefully observe the table we can see that as the size increases
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by unity the runtime of FANMOD increases more than 10 times. For the Ca-AstroPh
dataset which is the densest, for generating 10000 samples, FANMOD takes 180s, on
the other hand both of our methods take about 5 seconds only. For this metric also, the
performance gap between our methods and FANMOD increases as the dataset or the
motif size increases.

Table 2. Runtime comparison of our methods with
FANMOD

Dataset Motif MHRW SRW-rw FANMOD
Size (s) (s) (s)

Yeast
5 2.73 3.13 2.73
6 4.78 5.43 50

Jazz
5 5.08 5.71 3.45
6 9.68 10.92 52

Ca-GrQC

3 0.79 1.06 0.026
4 2.11 2.79 0.275
5 7.03 10.53 2.79
6 25.36 32.30 34

Ca-Hepth

3 0.60 0.75 0.43
4 1.43 1.72 0.413
5 3.03 3.30 5.37
6 4.98 5.13 70.41

Ca-Astroph
3 3.20 4.48 3.35
4 7.90 9.80 180.38

We also show the runtime per-
formance of the algorithms with the
increasing number of samples in
Figure 5(a) for yeast dataset and for
subgraph size 5. The time increases
mostly linearly for all the datasets;
however, both of our methods have
much smaller runtime than FAN-
MOD. We also compare the runtime
performance of the algorithms for
motif sizes from 6 to 10. The result
is shown in Figure 5(b) (note that y-
axis is in logarithm scale). It is clear
from the plot that our methods scale
well with the increasing subgraph
size. But, for FANMOD the runtime
grows exponentially with the sub-
graph size; for example, to sample
10000 graphs from the yeast dataset,
for subgraph size 7 and 8, it takes 616 seconds and 3 hours respectively. On the other
hand, for size 8 our methods sample identical number of graphs in only 50 seconds.
Also note that, FANMOD runs only for subgraph size up to 8.
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Fig. 5. Runtime performance for different sample sizes and for different subgraph sizes

4.3 Convergence Comparison

In this experiment, we study the convergence using the negative log (KL) metric by
varying the number of samples. Figure 6(a) and 6(b) show that as we increase the
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number of samples both the Markov chain based techniques approximate the concen-
tration distribution more accurately (increasing value of − log(KL)), on the other hand,
for FANMOD the curve is almost flat, i.e. with an increasing number of samples FAN-
MOD does not converge to the true concentration.
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Fig. 6. Comparison of convergence trend of our methods with FANMOD using KL Divergence

5 Conclusion

In this paper, we propose two methods MHRW, and SRW-RW for approximating the
concentration of p-subgraphs in a host network for any given value of p. Our experi-
mental results demonstrates that both of our proposed methods are significantly faster
than the best of the existing methods. Moreover, our methods do not require full access
over the networks. This makes our method useful for very large network (such as, Web)
which can only be crawled.

References

1. Albert, I., Albert, R.: Conserved network motifs allow protein–protein interaction prediction.
Bioinformatics 20(18), 3346–3352 (2004)

2. Gjoka, M., Kurant, M., Butts, C.T., Markopoulou, A.: Walking in Facebook: A Case Study
of Unbiased Sampling of OSNs. In: Proc. of IEEE INFOCOM, pp. 1–9 (2010)

3. Goodman, L.A.: Snowball sampling. Ann. Math. Statist. 32, 148–170 (1961)
4. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and

symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI),
vol. 4453, pp. 92–106. Springer, Heidelberg (2007)

5. Itzkovitz, S., Alon, U.: Subgraphs and network motifs in geometric networks. Physical Re-
view E, Statistical, Nonlinear, and Soft Matter Physics

6. Juszczyszyn, K., Kazienko, P., Musiał, K.: Local topology of social network based on motif
analysis. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part II. LNCS (LNAI),
vol. 5178, pp. 97–105. Springer, Heidelberg (2008)

7. Kashani, Z., Ahrabian, H., Elahi, E., Nowzari-Dalini, A., Ansari, E., Asadi, S., Mohammadi,
S., Schreiber, F., Masoudi-Nejad, A.: Kavosh: a new algorithm for finding network motifs.
BMC Bioinformatics 10(1), 318 (2009)



24 T.K. Saha and M.A. Hasan

8. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating
subgraph concentrations and detecting network motifs. J. Bioinformatics 20(11), 1746–1758
(2004)

9. Li, X., Stones, D.S., Wang, H., Deng, H., Liu, X., Wang, G.: Netmode: Network motif de-
tection without nauty. PLoS One 7(12) (December 2012)

10. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the uniform generation
of random graphs with prescribed degree sequences (May 2004)

11. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs:
simple building blocks of complex networks. Science 298, 824–827 (2002)

12. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for network mo-
tif discovery in biological networks. Genes and Genetic Systems 84(5), 385–395 (2009)

13. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In:
Proc. ACM Symp. on Applied Computing, pp. 1559–1566 (2010)

14. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regu-
lation network of escherichia coli. Nature Genetics 31, 1061–4036 (2002)

15. Wang, P., Lui, J., Ribeiro, B., Towsley, D., Zhao, J., Guan, X.: Efficiently estimating motif
statistics of large networks. ACM Trans. Knowl. Discov. Data 9(2) (2014)

16. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 3(4), 347–359 (2006)

17. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of 2nd Interna-
tional Conference on Data Mining, pp. 721–724. IEEE Computer Society (2002)


	Finding Network Motifs Using MCMC Sampling
	1
Introduction
	2
Background
	2.1
Graph, Subgraph, Induced Subgraph
	2.2
Subgraph Concentration
	2.3
Motif
	2.4
Markov Chains, and Metropolis-Hastings (MH) Method

	3
Methods
	3.1
Implementation issues

	4
Results and Discussion
	4.1
Error Comparison
	4.2
Runtime Comparison
	4.3
Convergence Comparison

	5
Conclusion




