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Abstract. We introduce a new method to characterize the network re-
liability polynomial of graphs — and hence the graph itself — using only a
few parameters. Exact evaluation of the reliability polynomial is almost
impossible for large graphs; estimating the polynomial’s coefficients is
feasible but requires significant computation. Furthermore, the informa-
tion required to specify the polynomial scales with the size of the graph.
Thus, we aim to develop a way to characterize the polynomial well with
as few parameters as possible. We show that the error function provides
a two-parameter family of functions that can closely reproduce reliability
polynomials of both random graphs and synthetic social networks. These
parameter values can be used as statistics for characterizing the struc-
ture of entire networks in ways that are sensitive to dynamical properties
of interest.

Keywords: Network reliability, Error function, synthetic social
networks.

1 Introduction

1.1 Motivation

It has been more than 50 years since Moore and Shannon introduced the net-
work reliability polynomial to study the performance of electronic circuits with
“crummy” relays [1]. Since then, the concept has been widely applied in designing
reliable circuits and other networks delivering commodities between source and
destination locations. Early studies showed the effect of network topology on the
overall performance of the network for simple commodity flow between a source
vertex and a sink vertex [2,3]. This problem is well-known as the Two-Terminal
reliability rule. Another common performance measure is the probability that a
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randomly selected set of edges connects all the vertices of the original graph, of-
ten referred to as the All-Terminal reliability rule. Furthermore, the K -Terminal
reliability rule — the probability that a randomly selected subgraph contains a
predefined set of vertices of size K — has been also studied. For a comprehen-
sive review of the reliability polynomial, we refer the reader to the book by
C. J. Colbourn [4].

Network reliability polynomials are not limited to Two-Terminal reliability,
K-Terminal reliability or All-Terminal reliability rules. There are many features
of percolation processes that the network reliability polynomial can reflect. In
previous studies, the concept of reliability polynomial was successfully applied
to study the spread of the infectious diseases in social networks [5,6].

The classical concept of network reliability provides a rich theoretical ba-
sis, supported by computational estimation procedures, to study the effect of
structural properties on the diffusion of dynamics. Although evaluation of the
reliability polynomial coefficients is usually intractable and its complexity is #-P
hard [4], estimating the coefficients to within a practically important confidence
interval is feasible. This paper aims at shrinking the wide gap between theo-
retical analysis of reliability problems and our ability to apply the conceptual
framework to practical problems for large and non-trivial graphs. The estimation
procedure relies on the random selection of subgraphs from the main graph un-
der study. The reliability rule, which is chosen based on the dynamical features
of interest, is applied to every subgraph to determine whether it exhibits the
desired feature. For example, in this paper, the feature we are interested in is
the probability that a certain fraction a (the “attack rate”)of the population will
be infected during an outbreak of disease, as a function of its person-to-person
transmissibility.

The reliability polynomial describes the system’s behavior. We would like
to use it to characterize the system itself, and to that end, we need a way
to summarize the information it contains. We can take advantage of the fact
that, for rules that satisfy a simple criterion, the reliability polynomials are
monotonic increasing sigmoidal functions from the interval [0, 1] to itself. This
suggests representing the polynomial as the cumulative distribution function of
a continuous probability density.

1.2 Contribution

In this paper, we represent the network reliability polynomial in terms of well-
known two-parameter functions. Here, we test two functions, the error function
and the binomial cumulative distribution function. We fit reliability polyno-
mials for several random graphs and synthetic social networks to these func-
tions, note the values of the best-fit parameters, and evaluate the goodness of
fit using the statistical coefficient of determination. The error function provides
better fits than the binomial CDF fits and provides a very close fit to all the
examples. Thus the two parameters of the error function, the mean and devia-
tion of the corresponding Gaussian, were sufficient to characterize the reliability
polynomial.
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We observe that, for random graphs, the values of these two parameters are
weakly correlated with the size of the graph. The values also depend on the
reliability rule. Lastly we exploit this method to characterize differences among
synthetic social networks for the New River Valley in Virginia, Mexico City,
Sierra Leone and Liberia [7]. We conclude that we can reconstruct the network’s
reliability using just a few parameters.

The paper is organized as follows: Section 2 introduces the definition of net-
work reliability and reliability rules. Section 3 elaborates on fitting the reliabil-
ity polynomial to two parameterized functions. The numerical evaluations are
described in Section 4. Finally, the conclusions are discussed in Section 5.

2 Network Reliability Polynomial

Moore and Shannon introduced the concept of the network reliability polyno-
mial in the 1950’s to evaluate the performance of electrical circuits composed
of crummy relays. Given that every relay has a probability of failure, Moore
and Shannon showed that the probability the circuit functioned as desired could
be expressed as a polynomial. In addition, they evaluated the circuit reliability
given that the relays are connected in series, in parallel, and in certain com-
binations of series and parallel. In this paper, we use the reliability concept to
analyze social networks. In particular, we tie the concept of network reliability to
network epidemiology by evaluating the probability of obtaining a given attack
rate as a function of transmissibility.

2.1 Mathematical Definition

Given a graph composed of N vertices and F edges and a criterion that clearly
defines the acceptance or the rejection of a subgraph-represented as the reliability
rule r: 7(g) € {0,1}-in a binary form, we introduce a damage model that assigns
a probability to each subgraph. The network reliability is then:

Ra(x) =) r(9)pa(g) (1)

gCcG

where g is a subgraph, r(g) is 1 if the subgraph g is accepted by the rule 7, and
D« (g) is the probability to obtain the subgraph g under the damage model. In this
paper, the damage model includes each edge with probability x, corresponding
to bond percolation. The probability of obtaining a subgraph with & edges is
2¥(1—2)P~*. We denote the number of subgraphs with &k edges that are accepted
by the reliability rule r(g) as Rj. The network reliability can be written as a
polynomial:

k=F
Ro(z) = > Reak(1—x)" " (2)
k=0

The term Ry is called the reliability coefficient, and its computation is, in
general, intractable. However, we know that there are (f) subgraphs with k
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edges in the graph, and that some fraction between 0 and 1 of them is accepted
by the reliability rule. Therefore, the reliability coefficient can be written as

follows: -
I .

where Py is the fraction of with k edges that is accepted. Hence:

k=E
Rg(z) = Z Py (f)l‘k(l — x)E_k. (4)
k=0

Computing the coefficients Py is straightforward. Simply select a subgraph with
k edges randomly and evaluate the reliability rule. The estimate for Py is the
number of accepted subgraphs divided by the total number of subgraphs sam-
pled. The random selection of subgraphs is repeated until the sampling error for
Py is within the desired confidence interval. The number of edges in the small-
est accepted subgraph is called ki, while the number of edges in the largest
unaccepted subgraph is called k4. [8]. Thus the Py curve has values between 0
and 1 between ky,in and kpq., respectively. The reliability R(z) is a smoothed
version of Py, as can be seen from Equation 4, where (f)xk(l —x)P=F plays the
role of a sharply peaked smoothing kernel.

We use the following reliability rule: a graph g is accepted if and only if the
mean square size of connected components in g is greater than oN. This rule
creates a mapping between an interesting epidemiological problem and the reli-
ability polynomial as follows: x represents the transmission probability, o rep-
resents the attack rate, and R(z) represents the probability that the attack rate
is at least a. We denote this rule as EzpX — a.

The motivation of this work was to characterize the reliability polynomial
R(z) using a small set of parameters. Since R(z) has the properties of a cumula-
tive distribution function (CDF), we propose to fit the Py values to the binomial
CDF and the error function.

3 Two-Parameter Characterization of Network
Reliability

3.1 Binomial CDF Method

The cumulative distribution function (CDF) of a binomial distribution is given
as

k
N —m
cor =Y () -pr 6
m=0
R(z) has a similar form (Eqn. 4). Thus, we fit the right hand side of Eqn.(5)
to the Py of Eqn.(4) and plot it with respect to the k estimates Py by taking
p as a parameter. They are truncated between the k., and k.. The k data
points are re-scaled to give the values of m such that it runs from 0 to N as
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Fig. 1. Plot of P and binomial CDF fit with k* for (a)N = 20, M = 50 (left panel),
(b)N = 2000, M = 50,000 (middle panel) and (c)N = 153,036, M = 4,152,739 (right
panel)

integers with an increment of 1. That is it runs from 0 to the total number of
data points. Here, N is chosen to be the maximum of m. We find the value
of p € [0,1] for which the binomial CDF best fits the Py values. We use the
coefficient of determination R? as a measure of goodness-of-fit as follows:

2 (yi —y fit)2
r ! zz: (yi - ymean)2 (6)
where y; are the data points, ymean is the mean of the data points and ys; are
the fitted data. The best fit is obtained when R? is closest to 1.

Figure 1 shows the binomial CDF fit to three sets of random networks gen-
erated by choosing a specific number of edges M uniformly at random over a
specific number of vertices N. These are (a)N = 20, M = 50, (b)N = 2000,
M = 50,000 and (¢)N = 153036, M = 4,152,739. As the size of the graph
increases the fit becomes better as observed from the R? value, which increases
from 0.8846 to 0.9074.

3.2 Error Function Method

We show the fit of R(z) to the error function:

1 X b2
erf(X) = / 5 gt (7)
aJo
Here, a changes the width of the underlying Gaussian and is related to the
variance whereas b shifts the position of the mean of the Gaussian. The error
function is defined between —1 and 1 for positive and negative values of X. The
R(z) and Py, have values only between 0 and 1 and « lies between 0 and 1. Thus,
we rescale the error function such that both of them are in the same range. For
this we fit R(z) and Py to }(erf(az — b) 4 1). Also, we normalize the z values

to x* given by

Tmax — Tmin
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Table 1. Comparison between fits to the error function method and the Binomial CDF

Size of Graph Two-parameter method Binomial CDF method
N =20, M =50 0.9830 0.8846
N =100, M = 450 0.9508 0.8808
N =500, M = 35750 0.9976 0.8983
N = 2000, M = 50,000 0.9993 0.9068
N = 10,000, M = 40,000 0.9916 0.9627
N = 35,000, M = 750, 000 0.9975 0.9142
N = 125,000, M = 500, 000 0.9986 0.8843
N = 153,036, M = 4,152,739 0.9999 0.9075

R(zx) shows a sharp transition when plotted against = for large systems. This
means that the values of z,,;, and x,,,, are closer for larger systems compared
to a small size network. To look at the behaviour of R(z) in the region of the
sharp transition we re-scale the axis from x to x*.

4 Numerical Evaluation

We generate random Erd8s-Rényi G(N, M) graphs each having N vertices and
M edges. We estimate the reliability polynomial for these graphs, and we use the
coefficient of determination R? as a metric to determine the closeness of fitting
the reliability curve using the error function and the Binomial CDF method.
The graphs that have been used in this analysis are summarized in Table 1.
The last GNM graph in the table is generated with the same number of vertices
and edges as an estimated social contact for the New River Valley region near
Blacksburg, Virginia. We use the reliability rule ExpX = 0.2. We use both k,
the number of edges in the sub-graph and z, the ratio of k to the total number of
edges F in our analysis. We also use the k,,;,, or alternatively x,,, and kp,q, or
Tonaz Values to normalize our data. Table 1 shows a comparison between the two-
parameter method based on the error function and the Binomial CDF method
for different graphs. Based on R? values, the error function is a better fit than
the Binomial CDF. Therefore, in the rest of the numerical evaluation, we use
the error function to represent the reliability polynomial.

An exhaustive search was done in the parameter space to find out the values
of a and b with R? as a metric of goodness-of-fit for both R(z) and Py. Figures
2 and 3 show the fits to the error function for both Py and R(z) for the GNM
graphs.

We clearly observe that the parameters a and b decrease as the graph size
increases. Meanwhile, the value of R? indicates that a better fit is obtained as the
graph size increases for fitting P, and R(z). Next, we change the reliability rule
from EzpX = 0.2 to 0.4, 0.6, and 0.8 and repeat the analysis. The parameters
a and b and R? are reported in Table 2.

We evaluate the reliability polynomials for the NRV, Mexico City, Liberia, and
Sierra Leone synthetic social networks. The Sierra Leone and Liberia synthetic
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Fig. 2. Plot of Py and fit to the error function for GNM graphs with k* for (a)N = 20,
M = 50 (left panel), (b)N = 2000, M = 50,000 (middle panel) and (c)N = 153, 036,
M = 4,152,739 (right panel)
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Fig. 3. Plot of R(z) and the fit to the error function for GNM graphs with z* for
(a)N = 20, M = 50 (left panel), (b)N = 2000, M = 50,000 (middle panel) and
(¢)N = 153,036, M = 4,152, 739 (right panel)

Table 2. Fitting the reliability polynomial R(z) of GNM graphs for different reliability
rule FxpX — «

Graph a=04: R*ab a=06: R?ab aa=0.8 R*ab
N =20, M =50 0.9992,1.81,0.52 0.9999,2.21,0.70 0.9999,2.69,0.70
N =100, M = 450 0.9998,1.53,1.24 0.9997,1.27,1.01 0.9994,3.67,1.28
N =500, M = 35750 0.9999,2.28,1.16 0.9994,2.22,1.03 0.9986,3.28,1.43
N = 2000, M = 50, 000 0.9996,1.88,1.09 0.9999,2.43,1.07 0.9999,3.57,1.63

N =10,000, M = 40,000 0.9999,2.61,1.20 0.9999,3.14,1.60 0.9999,3.60,1.58
N = 35,000, M = 750,000  0.9999,2.32,1.24 0.9999,2.61,1.33 0.9999,3.24,1.47
N = 125,000, M = 500,000 0.9999,2.56,1.21 0.9999,2.73,2.32 0.9999,3.39,1.63
N =153,036, M = 4,152,739 0.9999,2.39,1.14 0.9999,2.65,1.41 0.9999,3.46,1.75

social networks are available for public use' as part of studying the spread of
Ebola in Africa. The fitting of R(x) is reported in Figures 4-7. The R? values
are close to 1 with minimum value of 0.9984 and maximum value of 0.9999
showing that the error function matches the reliability polynomial well and the
parameters a and b are thus suitable for characterizing the reliability polynomial
and, by extension, the structure of graphs.

! http://vbi.vt.edu/ndssl/ebola
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Fig. 4. Plot of R(z) and the error function fit with «* for the NRV social network for
reliability rules (a) ExpX — 0.1 (left panel), and (b) ExzpX — 0.2 (right panel)
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Fig. 5. Plot of R(z) and the error function fit with z* for Mexico City social network
for reliability rules (a) ExpX — 0.05 (left panel), (b) ExpX — 0.1 and (c) ExpX — 0.2
(right panel)
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Fig. 6. Plot of R(z) and the error function fit with 2™ for the Liberia social network
for reliability rules (a) ExpX — 0.05 (left panel), and (b) ExzpX — 0.1 (right panel)
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Fig. 7. Plot of R(z) and the error function fit with z* for Sierra Leone social network
for reliability rules (a) ExpX — 0.05 (left panel), (b) ExpX — 0.1 and (c) ExpX — 0.2
(right panel)

5 Conclusions

We have compared a set of reliability polynomials with both the cumulative dis-
tribution function (CDF) of a binomial and the error function. We have reported
that the error function yields a better fit to the Py, values than the binomial CDF.
We suggest using the parameters of the best-fit error function to characterize
R(z). The parameters a and b in the error function change the width and shift
the position of the mean of the corresponding Gaussian function, respectively.
These values increase with the size of the graph, for several different rules. Fi-
nally, we use this method to study the nature of the reliability polynomials of the
synthetic social networks for NRV, Mexico City, Sierra Leone and Liberia. We
conclude that these two parameters and the values of k,,;, and k4., Or equiv-
alently or T, and x4z, for a particular network, summarize the reliability of
the network.

We suggest several ways to use the analyses presented here. First, we can
use the values T.nin, Tmaz, a, and b as descriptive statistics for a network that
are more informative for many purposes than the usual statistics such as degree
distribution, assortativity, etc. Second, they form a set of sufficient statistics
for a given feature of diffusive dynamics on a network. Understanding the rela-
tionship between network structure and these statistics provides insight into the
structure-to-function problem for networks. Finally, this parameterized form for
the reliability polynomial can be useful for studying critical point phenomenology
in finite-size systems. Here we have described its use for phenomena related to
the epidemic transition, but this is just one instance of a percolation transition.
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