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Preface

The International Workshop on Complex Networks – CompleNet (www.complenet.org)
was initially proposed in 2008 with the first workshop taking place in 2009. The initia-
tive was the result of efforts from researchers from the BioComplex Laboratory in the
Department of Computer Sciences at Florida Institute of Technology, USA, and from
the Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università di
Catania, Italia.

CompleNet aims at bringing together researchers and practitioners working on ar-
eas related to complex networks. In the past two decades we have been witnessing an
exponential increase on the number of publications in this field.

From biological systems to computer science, from social systems and language to
science of science, complex networks are becoming pervasive in many fields of sci-
ence. It is this interdisciplinary nature of complex networks that CompleNet aims at
addressing.

CompleNet 2015 was the sixth event in the series and was hosted by the New York
Hall of Science, New York City, US, on March 25–27, 2015.

This book includes the some of the peer-reviewed works presented at CompleNet
2015. This year we received a record number of submissions in the history of Com-
pleNet, 113 between abstracts and papers. Each submission was reviewed by at least
3 members of the Program Committee. Acceptance was judged based on the relevance
to the symposium themes, clarity of presentation, originality and accuracy of results
and proposed solutions. After the review process, 13 papers and 10 short papers were
selected to be included in this book.

The 23 contributions in this book address many topics related to complex networks
and can be categorized in the following major groups: (1) Analysis and models that
focus on social systems, including social networks and social media; (2) Dynamical
processes on networks such as diffusion, transportation and search processes; (3) New
theory, models, and metrics of complex network, from network structure to growth
to communities; (4) Biological networks and other health-related networks, and (5)
Innovative applications of network science to other domains such as crime, terrorism,
and more.
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Abstract. Most community detection algorithms from the literature
work as optimization tools that minimize a given quality (or fitness)
function, while assuming that each node belongs to a single community.
Although several studies propose fitness functions for the detection of
communities, the definition of what a community is is still vague. There-
fore, each proposal of fitness function leads to communities that reflect
the particular definition of community adopted by the authors. Besides,
such communities not always correspond to the real partition observed
in practice. This paper proposes a new flexible fitness function for com-
munity detection that allows the user to obtain communities that reflect
distinct characteristics according to what is needed. This new fitness
function was combined with an adapted version of the immune-inspired
optimization algorithm named cob-aiNet[C] and applied to identify (both
disjoint and overlapping) communities in a set of artificial and real-world
complex networks. The results have shown that the partitions obtained
with the optimization of this new metric are more coherent (when com-
pared to the real, known, partitions) than those obtained with one of the
most adopted function from the literature: modularity.

1 Introduction

Complex problems from a wide range of fields can be theoretically modeled
and described as complex networks [1–3]. In such networks, nodes that present
similar properties often tend to be linked to each other, thus forming consis-
tent subgraphs with dense interconnections that are called communities [4]. The
detection of communities in complex networks is an important step in the multi-
tude of possible analyses that can be performed to such models. When a complex
problem is modeled as a network, the identification of communities may allow
both the comprehension of characteristics that are specific to subgroups of nodes
and of how such nodes interact with each other [5].

Several researchers devised theories to explain the emergence of communities
in complex networks [6, 7]. However, in 2005, such studies about the emergence

c© Springer International Publishing Switzerland 2015 1
G. Mangioni et al. (eds.), Complex Networks VI,
Studies in Computational Intelligence 597, DOI: 10.1007/978-3-319-16112-9_1
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of communities converged to a general theory known as Preferential Attach-
ment [8]. According to Preferential Attachment, the emergence of a complex
network starts with a single node, new nodes are introduced into the network it-
eratively and the probability that a given node will attach itself to another node
is directly proportional to the importance of the latter (given by the number of
connections it has).

Although communities play an important role in the network analysis, as they
allow the identification of functional properties of a group of nodes and also of
the ways complex behaviors emerge from simple individual functions, the formal
definition of communities is still vague in the literature. Therefore, one of the
challenges associated with the development of community detection algorithms
is to select which metric should be used to properly evaluate whether a given set
of nodes actually represent a community with characteristics that are relevant to
the context of the problem [4]. Such metrics become even more important when
considering that a large part of algorithms for community detection are based
on the optimization of quality functions (or fitness functions, in the context of
this paper).

Distinct quality functions were proposed in the literature, such as Surprise [9],
the metric of Chira et al. [4] and Modularity [3]. From all metrics described in
the literature, Modularity, which assumes that a community is a module of the
network and that two nodes belonging to the same community tend to have
much higher probability of being connected to each other than that of two nodes
belonging to different communities [2], is one of the most adopted.

Given that each quality function may be intended to identify a set of communi-
ties according to one of the existing different definitions, the resulting partition
of the original complex network invariably reflects the characteristics of such
definitions. Besides, it is known that the optimization of some of these quality
functions may lead to partitions of the network that do not correspond to the
real partition observed in practice [10, 11].

The above scenario is even worse when overlapping communities are consid-
ered. Contrary to disjoint communities of complex networks, in which each node
belongs to a single community, the partition of the network into overlapping
communities allows some nodes (known as bridge nodes) to belong to different
communities at the same time. In this context, aspects such as the clustering
coefficient1 of the network and the number of edges connecting a given node
to its neighbors (both in and out of its community) may have different impacts
when choosing a bridge node in complex networks that model different real-world
situations.

Therefore, in this paper a new flexible fitness function for community de-
tection is proposed. This new metric, named Flex, allows the user to predefine
which characteristics should be present in the communities that will be obtained

1 Clustering coefficient is a metric that evaluates the tendency of a given node being
grouped with the other nodes of the network. It corresponds to the relation between
the number of triangles formed by a given node and its neighbors and the number
of all possible triangles that could be formed.
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by the optimization process, thus allowing the identification of distinct sets of
communities for the same complex network by simply adjusting a few intuitive
parameters. Flex was combined with an adapted version of the immune-inspired
optimization algorithm named cob-aiNet[C] [12] and applied to identify (both
disjoint and overlapping) communities in a set of eight artificial and four real-
world complex networks. The obtained results have shown that the partitions
obtained with the optimization of this new metric are more coherent with the
known real partitions than those obtained with the optimization of modularity.

This paper is organized as follows. The new flexible objective function for
community detection will be presented in Section 2, together with some insights
about how this objective function can be applied to identify overlapping com-
munities and a brief description of the optimization algorithm adopted in this
paper. The experimental methodology and the obtained results will be discussed
in Section 3. Finally, some concluding remarks and indications for future work
will be given in Section 4.

2 A Flexible Objective Function for Community
Detection

In a broader definition, a community structure of a network is a partition of the
nodes so that each partition is densely connected. The modularity metric [3] tries
to capture this definition by analyzing the difference between the number of edges
inside a community and the expected number of edges that would be observed
if this community was formed in a random network. Although modularity is
widely adopted by the complex network community, its structure may lead to
the false assumption that the number of edges between two groups decreases as
the network size increases. Therefore, for larger networks, a simple connection
between two nodes of different communities may result in the merging of these
two communities, in order to increase (maximize) modularity. This aspect is
known as the resolution limit of the metric [13].

Additionally, in a situation in which a given node has few links connecting it to
a small community and most of its links connecting it to a large community, the
optimization of modularity will often include such node into the larger community,
without considering the local contribution of this node to the smaller communitiy.
This can be a drawback if, for example, the node has a higher clustering coefficient
with respect to the smaller community than to the larger one.

With that in mind, a new quality function for community detection, hereby
called Flex, is proposed. The optimization of Flex tries to balance two objectives
at the same time: maximize both the number of links inside a community and
the local clustering coefficient of each community. Additionally, it also penalizes
the occurrence of open triangles (i.e., it minimizes the random model effect [14]).
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The first step to calculate Flex for a given partition of the network is to define
the Local Contribution of a node i to a given community c:

LC(i, c) = α ∗ �(i, c) + (1− α) ∗N(i, c)− β ∗ ∧(i, c), (1)

where �(i, c) is the ratio between the transitivity of node i (number of triangles
that i forms) inside community c and the total transitivity of this node in the
full network, N(i, c) is the ratio between the number of neighbors node i has
inside community c and its total number of neighbors, and ∧(i, c) is the ratio
between the number of open triangles in community c that contain node i and
the total participation of i in the whole network. Variables α and β are weights
that balance the importance of each term.

Since �(i, c) and N(i, c) are related and their optimization tends to lead
towards the generation of the same type of community, their contribution to
Eq. 1 is balanced by an weighted average. By doing so, the user can specify
which characteristics are more important when a node does not clearly belongs
to any community. The penalization term avoids merging two communities that
are connected by just a few edges.

Given the Local Contribution of all nodes to each community, it is also pos-
sible to define the Community Contribution (CC) of a community c in a given
partition:

CC(c) =
∑

i∈c

LC(i, c)− |c|
|V |

γ

, (2)

where |.| is the number of elements in a set, V is the set of nodes of a network
and γ is the penalization weight. The penalization in this equation is devised to
avoid the generation of a trivial solution, in which the entire network forms a
single community.

Finally, the Flex value of a given partition p is given by:

Flex(p) =
1

|V |
∑

c∈p

CC(c) (3)

The weight parameter α directly dictates whether the optimization process
will tend to insert a given node into a clustered community or into a community
that contains the majority of this node’s neighbors. It is important to consider
both transitivity and the neighborhood of each node in the optimization, as both
concepts are not necessarily related (i.e. a given node will not necessarily have
high transitivity with the majority of its neighbors). Therefore, by weighting
these two criteria, the user can emphasize each of them according to what is
desirable in a given practical situation.

Finally, it is also important to highlight that the penalization term of Eq. 1
ensures that the convergence to the random model is penalized, even if α favors
only the number of neighbors (i.e., α = 0) in the definition of the communities.
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2.1 Applying Flex to Identify Overlapping Nodes

The Flex fitness metric also provides insights about overlapping nodes. As the
importance of transitivity and neighborhood is balanced by parameter α, this
characteristic can be exploited to infer whether a given node should belong or
not to more than one community.

When using Flex as an optimization function for community detection, some
nodes may be more sensible than others to the weight α. This happens when,
for example, a node has a fraction of its neighbors on a clustered community
and the remaining neighbors spread across one or more communities with lower
transitivity.

Therefore, a simple heuristic that allows the identification of overlapping
nodes is to search for nodes that do not make significant contribution to one
of the α-weighted factors (transitivity and neighborhood), i.e., nodes that are
sensible to changes of α. After finding these nodes, we can allocate them to other
communities that share a certain fraction of neighbors with them. This heuristic
is summarized in Alg. 1.

Algorithm 1. Heuristic to find overlapping nodes

Data: thresholds thr� and thrN for the contribution to transitivity and
neighborhood, respectively, and threshold thrSh of shared neighbors
between communities.

Result: New set of communities with overlapping nodes.

for each node i do
c = community that contains i
if �(i, c) < thr� or N(i, c) < thrN then

for cj �= c do
if N(i, cj) > thrSh then

Add i to community cj

2.2 The Cob-aiNet[C] Algorithm

As previously mentioned, an adaptation of the cob-aiNet[C] algorithm (Concen-
tration-based Artificial Immune Network for Combinatorial Optimization – [12])
was adopted in this paper to obtain a set of communities for complex networks
that maximize the new proposed quality function (Flex).

The cob-aiNet[C] algorithm, which was originally proposed to solve combi-
natorial optimization problems [12], was previously adapted to identify both
disjoint and overlapping communities in complex networks [5]. As most of the
adaptations proposed in [5] were adopted here as well, only a brief explanation of
the general aspects of cob-aiNet[C] will be presented here, together with details
about those aspects that differ from the adaptation proposed in [5]. For further
details, the reader is referred to [12, 5].
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The cob-aiNet[C] is a bioinspired search-based optimization algorithm that
contains operators inspired in the natural immune system of vertebrates. There-
fore, it evolves a population of candidate solutions of the problem (cells or possi-
ble partitions of the complex network), through a sequence of cloning, mutation
and selection steps, guided by the fitness of each individual solution.

Besides these evolutionary steps, all the cells in cob-aiNet[C] population are
compared to each other and, whenever a given cell is more similar to a better
one than a given threshold, its concentration (a real value assigned to each cell)
is reduced. This concentration can also be increased according to the fitness of
the cell (higher fitness leads to higher concentration). Such concentration-based
mechanism is an essential feature of the algorithm, as it controls the number
clones that will be generated for each cell at each iteration, the intensity of the
mutation process that will be applied to each clone and when a given cell should
be eliminated from the population (when its concentration becomes null).

When compared to the adaptations made in [5], the only differences are asso-
ciated with the new hypermutation operator, which will be discussed next, and
the new approach to obtain overlapping communities described in Sect. 2.1.

The New Hypermutation Operator. To properly explain the new hypermu-
tation operator, it is important to know that each cell in the population of the
algorithm is represented as an array of integers with length equal to the number
N of nodes of the complex network. Each position i of the array corresponds to
a node of the network and assumes value j ∈ {1, 2, . . . , N} that indicates that
nodes i and j belong to the same community.

The new hypermutation operator, which is applied to all cells in the population
at a given iteration, is basically a randommodification of the integer values in nmut

positions of the array that corresponds to a cell, being nmut given by Eq. 4:

nmut = max [round(β(t) · e−fAg
i (t)·Ci(t)), 1], (4)

where fAg
i (t) ∈ [0, 1] is the normalized fitness of cell i at iteration t, Ci(t) is the

concentration of cell i at iteration t, β(t) is a parameter and round(·) returns
the closest integer.

The nmut positions of the cell that will suffer mutation are randomly selected,
and so are the values that will be inserted into these positions. However, the
probability that a given value k (associated with node k) replaces the current
value in position i is directly proportional to |N(i) ∩ N(k)|, where N(i) is the
set of nodes that are neighbors of i.

3 Experimental Results

In order to assess whether Flex is able to lead to gains in community detec-
tion, when compared to Modularity, an extensive experimental setup composed
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of 8 artificial and 4 real world networks were devised here. The artificial net-
works, which were generated by the toolbox provided by Lancichinetti [15], are
composed of 4 networks formed by high density communities (i.e. with a high
number of internal edges), which facilitates the identification of the optimal par-
tition, and 4 networks with noisy communities (i.e. with higher probability of
presenting edges connecting them to other communities).

The artificial networks were generated with 50, 100, 200 and 500 nodes, being
these nodes with average degree of 10 and maximum degree of 15. Such net-
works were generated with a maximum of 10 communities, 3 overlapping nodes
belonging to an average of 2 communities and average clustering coefficient of
0.7. The mixing parameter, which introduces noise to the network structure, was
set as 0.1 for the first set of networks (labeled Network 50− 500 in the tables
that follow) and 0.3 for the second set (labeled Noise Network 50− 500).

The real world networks (with known partitions) that were chosen for the
experiments were: Zachary’s Karate Club, a social network of friendships be-
tween 34 members of a Karate Club [16]; Dolphins Social Network, a social net-
work based on frequent associations between 62 New Zealandese dolphins [17];
American College Football, network of American College Football games during
season Fall 2000 [18]; and a network of co-purchasing of books about US politics
compiled by Krebs [19].

A total of 20 repetitions of the experiments were performed for each network
for each fitness function adopted here (Flex and Modularity). The cob-aiNet[C]
algorithm was empirically adjusted with the following parameters for all the ex-
periments: σS = 0.2, maximum number of iterations equal to 1, 500, αIni = 10,
αEnd = 1, initial population with 4 candidate solutions and maximum popula-
tion size of 6. After each run, the heuristic presented in Alg. 1 was applied to
the best solution returned by cob-aiNet[C].

The results were evaluated by the average Normalized Mutual Information,
which indicates how close a given partition of the network is from the real par-
tition (ground truth) [5, 11]. In this work, the solutions with non-overlapping
(labeled NMI in the tables that follow) and overlapping (labeled NMI OVER.)
partitions were evaluated. Besides, the obtained results for overlapping parti-
tions were also compared to those obtained with the technique proposed in [5]
(labeled NMI MULTIMODAL).

The following tables (Tables 2 to 4) also report the evaluated fitness of the re-
turned solutions (labeled FIT), the number of overlapping communities obtained
with the proposed heuristic (labeled # Over.) and with the technique described
in [5] (labeled # Over. Multimodal), the number of communities found (labeled
# Comm.) and the total time taken to obtain the results (labeled TIME)2.

3.1 Parameters

All the parameters required by Flex, presented in Table 1, were empirically
defined here for groups of networks. Notice though that, in practice, these

2 All the experiments were performed on an Intel Core i5 with 2.7GHz, 8GB of RAM
and OSX 10.9.2.
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Table 1. Weight parameters and heuristic thresholds for each dataset

Network α β γ thr� thrN thrSh
Network 50, Karate 0.8 0.3 2 0.3 0.6 0.25

Network 100-500, Krebs 0.8 0.3 4 0.3 0.7 0.25
Noise Network 50-500 0.5 1.0 4 0.3 0.7 0.45

Football 0.8 0.6 4 0.3 0.6 0.25
Dolphins 0.4 0.3 4 0.3 0.6 0.25

parameters should be set depending on the goal of the network analysis (e.g.
if partitions with highly clustered communities are required, α should be set
with higher values).

Also, if the partition structure of the network is known a priori, the calibration
of such parameters in order to obtain the known partition could indicate some
characteristics of the network dynamics, such as, for example, the way that the
connections of each node were established.

The results were statistically verified by means of the Kruskal paired test
with significance < 0.05. Those that differ significantly are marked in bold in
the tables.

3.2 Artificial Networks with Overlapping Communities

As expected, for the first set of networks (results given in Table 2), both Flex
and Modularity obtained the same values of NMI for every experiment. This is
due to the lower rate of noise adopted in the creation of such networks, which
makes the identification of the real partitions trivial for most fitness functions.
Notice though that the overlapping detection heuristic proposed here resulted in
partitions with perfect NMI score (equal to 1.0) for every network considered,
except Network 100. In this particular dataset, one of the overlapping nodes did
not attend the criteria established by the heuristic, thus the obtained NMI was
slightly lower than 1.0.

The results for the second set of networks, which were generated with higher
noise, are reported in Table 3. In this scenario, the differences between Flex and
Modularity become much more evident. In every situation the heuristic com-
bined with Flex was able to find most of the overlapping nodes of each problem,
as pointed out by the higher values of NMI. On the other hand, the method
proposed in [5] obtained lower values of NMI by introducing many more (false)
overlapping nodes into the partition. It is also noticeable that, in the presence of
noise, Modularity also tends to find partitions with much less communities than
Flex, which is due to the resolution limit discussed in Sect. 2.

3.3 Real-World Social Networks

Regarding the real-world social networks, the obtained results (given in Table 4)
show that, again, Flex leads to a significant improvement over Modularity. How-
ever, it is important to notice that the ground truths of such networks are related
to the classification of the nodes of these datasets according to their respective
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Table 2. Results for the artificial networks with overlap and low level of noise

Flex Modularity
FIT: 0.81 0.60
NMI: 0.94 0.94
NMI OVER.: 1.00 1.00
NMI MULTIMODAL: 0.87 0.93
# Comm.: 5.00 5.00
# Over.: 3.00 3.00
# Over. Multimodal: 4.50 0.95
TIME (in seconds): 48.52 32.73

(a) Network 50

Flex Modularity
FIT: 0.81 0.59
NMI: 0.95 0.95
NMI OVER.: 0.98 0.98
NMI MULTIMODAL: 0.96 0.95
# Comm.: 4.00 4.00
# Over.: 2.10 2.00
# Over. Multimodal: 1.05 0.50
TIME (in seconds): 224.33 146.19

(b) Network 100

Flex Modularity
FIT: 0.85 0.64
NMI: 0.97 0.97
NMI OVER.: 1.00 1.00
NMI MULTIMODAL: 0.98 0.97
# Comm.: 5.00 5.00
# Over.: 3.00 3.00
# Over. Multimodal: 0.65 0.00
TIME (in seconds): 406.03 113.93

(c) Network 200

Flex Modularity
FIT: 0.87 0.80
NMI: 0.99 0.99
NMI OVER.: 1.00 1.00
NMI MULTIMODAL: 0.99 0.99
# Comm.: 11.95 12.00
# Over.: 2.95 3.00
# Over. Multimodal: 0.00 0.00
TIME (in seconds): 590.99 332.31

(d) Network 500

domains, so it does not necessarily mean that they actually correspond to the
true partitions of the networks. Therefore, it is practically impossible to reach a
perfect NMI score. It is also important to notice that those ground truths were
originally devised without overlapping, so the NMI score with overlapping will
always be smaller than the original NMI score.

Some interesting characteristics of each of these networks can be identified
through a combination of visual inspection of the obtained partitions together
with an analysis of the weights (α and β) adopted for Flex that led to the best
values of NMI. From the obtained results, it is possible to infer that both the
Karate Club and Krebs networks are formed by highly clustered communities
(α = 0.8), which makes sense as the Karate Club is a small social network prone
to mutual friendships and the Krebs network, on the other hand, captures the
interest of readers about particular subjects and, as such, they tend to buy only
books that are related to their political views.

The Football network required the same value for α but a much higher value
for β, which means that this particular network does not allow open triangles.
The reason for that is due to the organization of tournaments that limit the
occurrence of intra-cluster relationships. Finally, for the Dolphins network the
required weights are more favorable to the establishment of inter-community
relationships instead of clustering, which might be related to the hierarchy in
their society that favors the creation of several hubs inside a community [17],
thus raising the number of open triangles.

In order to illustrate the overlapping communities obtained by the combina-
tion of Flex and the proposed heuristic, Fig. 1 depicts the best partitions with
overlapping nodes for each problem. In Fig. 1, the colors represent the commu-
nities found by the optimization of Flex, the shapes represent the communities
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Table 3. Results for the artificial networks with overlap and high level of noise

Flex Modularity
FIT: 0.47 0.55
NMI: 0.77 0.43
NMI OVER.: 0.78 0.43
NMI MULTIMODAL: 0.69 0.42
# Comm.: 6.00 3.00
# Over.: 3.00 0.00
# Over. Multimodal: 12.80 1.60
TIME (in seconds): 58.77 73.34

(a) Noise Network 50

Flex Modularity
FIT: 0.51 0.49
NMI: 0.93 0.58
NMI OVER.: 0.94 0.58
NMI MULTIMODAL: 0.82 0.43
# Comm.: 6.00 4.30
# Over.: 0.40 1.45
# Over. Multimodal: 15.60 35.40
TIME (in seconds): 143.46 200.52

(b) Noise Network 100

Flex Modularity
FIT: 0.51 0.50
NMI: 0.93 0.60
NMI OVER.: 0.94 0.62
NMI MULTIMODAL: 0.81 0.47
# Comm.: 6.00 4.00
# Over.: 2.00 5.50
# Over. Multimodal: 34.65 40.55
TIME (in seconds): 655.99 657.93

(c) Noise Network 200

Flex Modularity
FIT: 0.50 0.63
NMI: 0.89 0.55
NMI OVER.: 0.91 0.56
NMI MULTIMODAL: 0.73 0.40
# Comm.: 13.95 7.65
# Over.: 10.30 6.70
# Over. Multimodal: 145.70 194.00
TIME (in seconds): 1818.17 2619.40

(d) Noise Network 500

Table 4. Results obtained for the real world networks

Flex Modularity
FIT: 0.82 0.41
NMI: 0.95 0.40
NMI OVER.: 0.79 0.45
NMI MULTIMODAL: 0.91 0.55
# Comm.: 1.95 3.95
# Over.: 1.90 2.90
# Over. Multimodal: 0.55 16.30
TIME (in seconds): 39.36 50.24

(a) Karate Club

Flex Modularity
FIT: 0.68 0.53
NMI: 0.86 0.46
NMI OVER.: 0.82 0.46
NMI MULTIMODAL: 0.82 0.46
# Comm.: 2.30 4.00
# Over.: 1.90 7.00
# Over. Multimodal: 4.60 0.00
TIME (in seconds): 63.88 27.61

(b) Dolphins

Flex Modularity
FIT: 0.77 0.60
NMI: 0.74 0.67
NMI OVER.: 0.72 0.66
NMI MULTIMODAL: 0.74 0.67
# Comm.: 11.25 9.60
# Over.: 2.25 2.05
# Over. Multimodal: 0.00 0.00
TIME (in seconds): 23.36 26.31

(c) Football

Flex Modularity
FIT: 0.72 0.53
NMI: 0.45 0.32
NMI OVER.: 0.43 0.37
NMI MULTIMODAL: 0.45 0.32
# Comm.: 2.25 4.95
# Over.: 7.30 11.90
# Over. Multimodal: 6.20 0.75
TIME (in seconds): 126.01 47.33

(d) Krebs

in the ground truth and the larger nodes are the overlapping nodes. It is visually
noticeable that the structure of communities found using Flex makes sense, given
the weights for each network. Also, every overlapping node is clearly positioned
between two or more distinct groups.
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Fig. 1. Results obtained by cob-aiNet[C] with Flex for the real-world networks

4 Conclusion

In this paper a novel fitness function for community detection in complex net-
works was introduced, together with a heuristic that allows the identification
of overlapping nodes, based on particular characteristics of this function, and a
novel mutation operator for the immune-inspired algorithm adopted in the opti-
mization process. This new fitness function, called Flex, is parametrized in such a
way that it can be adapted to obtain communities with different characteristics.

Through an extensive experimental setup, it was possible to verify that this
new fitness function and heuristic are capable of leading to partitions close to
the ground truth of a set of networks with different characteristics.

As for future investigations, we intend: (i) to explore Flex with other search-
based algorithms, such as the Louvain Method; (ii) to perform further compar-
isons with other overlapping community detection algorithms, in order to
evaluate possible differences among the identified overlapping nodes; and (iii) to
devise a thorough complexity analysis of the metric and evaluate its performance
in large-scale networks.

Acknowledgment. This research is funded by FAPESP 2014/06331-1.
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Abstract. Scientists have shown that network motifs are key building block of
various biological networks. Most of the existing exact methods for finding net-
work motifs are inefficient simply due to the inherent complexity of this task. In
recent years, researchers are considering approximate methods that save compu-
tation by sacrificing exact counting of the frequency of potential motifs. However,
these methods are also slow when one considers the motifs of larger size. In this
work, we propose two methods for approximate motif finding, namely SRW-rw,
and MHRW based on Markov Chain Monte Carlo (MCMC) sampling. Both the
methods are significantly faster than the best of the existing methods, with com-
parable or better accuracy. Further, as the motif size grows the complexity of the
proposed methods grows linearly.

1 Introduction

Studying the local topology is an important step for modeling the interaction among
the entities in a network. In a seminal work around a decade ago, Shen-orr et al. [14]
hypothesized that network motifs play an important role in carrying out the key func-
tionalities that are performed by the entities in a biological network. Since then, re-
searchers have also discovered that network motifs are building block for complex
networks from many diverse disciplines including biochemistry, neurobiology, ecology,
engineering [11], proteomics [1], social sciences [6] and communication [5].

Finding network motifs is computationally demanding. To identify whether a given
subgraph topology is a motif, we need to count the topology’s frequency in the input
network as well as in many randomized networks. Counting a topology’s frequency in
a single network is a challenging task as it requires solving subgraph isomorphism, a
known NP-complete problem. As the size of the motif grows, the number of candidate
motifs increases exponentially, and the task becomes more challenging. To cope with
the enormous computation cost of exhaustive counting of the frequency of candidate
motifs, researchers consider various sampling based methods that obtain an approxima-
tion of relative frequency measure (which we call concentration) over all the candidates
of a given size. Most notable among these methods are MFinder [8], MODA [12], and
RAND-ESU [16]. Besides these approximate methods, exact motif counting methods
are also available, such as, GTrieScanner [13], ESU [16], Grochow-Kellis algorithm [4],

� This research is supported by Mohammad Hasan’s NSF CAREER Award (IIS-1149851).
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Kavosh [7], and NetMODE [9]; However, their application is limited to small networks
only. In this work, our focus is on finding concentration of prospective motifs using a
novel sampling based method.

The quality of a sampling based method depends on three critical performance met-
rics: accuracy, convergence, and execution time. Existing sampling based methods are
poor in one or more of the above performance metrics. For instance, MFinder is costly
and it scales poorly with the size of the desired motifs. Authors in [16] have shown that
the cost of subgraph sampling of MFinder increases exponentially with the size (num-
ber of vertex) of the subgraph. It is also poor in terms of accuracy and convergence.
A similar method, RAND-ESU [16] is significantly faster than MFinder and yet its
scalability is also not that satisfactory. Besides, its sampling accuracy and convergence
behavior are also poor.

Another important fact about the existing sampling based methods is that they re-
quire random access to any of the vertices or the edges in the networks. This becomes
a severe limitation for networks for which such unrestricted access is not available. For
an instance, consider the Web network or a hidden network, a user may not have access
to any arbitrary vertex/edge in the input network for security reason; rather, the desired
node can only be accessed from another node which is one-hop away from it; such sce-
narios are common in real-life and are considered in the task of snowball sampling [3].
None of the existing methods can be used for finding motifs in a graph that only allows
restricted access, such as crawling.

In this work, we propose two random walk based methods, namely MHRW
(Metropolis-Hastings random walk) and SRW-RW (Simple Random Walk with Re-
weighting) for approximating the concentration of arbitrary-sized pattern graphs in
a large network. The underlying mechanism of both the methods is a Monte Carlo
Markov Chain (MCMC) sampling over the candidate motif space, which is guaranteed
to compute an unbiased estimate of concentration of all the candidate motifs of a given
size simultaneously. Since, our methods are based on random walk over the edges of
the input graph, they only require a restricted access over the network such that at any
given time of the walk the one-hop neighboring nodes of currently visiting candidate
are accessible. Besides, the methods are scalable and are significantly faster than the
existing methods. They also have better convergence property and small memory foot-
print. While preparing for the final manuscript of this work, we have found another
work [15], where the authors propose methodologies that are similar to our work.

2 Background

2.1 Graph, Subgraph, Induced Subgraph

Let G(V,E) is a graph, where V is the set of vertex and E is the set of edges. Each
edge e ∈ E is denoted by a pair of vertices (vi,v j) where, vi,v j ∈V . A graph without a
self-loop or multi edge is a simple graph. In this work, we consider simple, connected,
and undirected graphs.

A graph G′ = (V ′,E ′) is a subgraph of G (denoted as G′ ⊆ G) if V ′ ⊆V and E ′ ⊆ E .
A graph G′ = (V ′,E ′) is a vertex-induced subgraph of G if G′ is a subgraph of G, and for
any pair of vertices va,vb ∈ V ′, (va,vb) ∈ E ′ if and only if (va,vb) ∈ E . In other words,
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a vertex-induced subgraph of G is a graph G′ consisting of a subset of G’s vertices
together with all the edges of G whose both endpoints are in this subset. In this paper,
we have used the phrase induced subgraph for abbreviating the phrase vertex-induced
subgraph. If G′ is an induced subgraph of G and |V ′| = p, we call G′ a p-subgraph of
G. An embedding of a graph G′ in another graph G is a subgraph S of G such that S and
G′ are isomorphic;

3-node subgraph patterns 4-node subgraph patterns

5-node subgraph patterns

Fig. 1. All 3, 4 and 5 node topologies

For a given vertex count,
the number of distinct graph
topologies is fixed. We use
the symbol Λp to denote
the set of all such topolo-
gies. To denote one specific
topology in Λp we use the
symbol ωp,q, where q is the
order of that topology (con-
sidering an arbitrary but
fixed ordering) among all
the size p topologies. The
set of induced embeddings
of all graphs in Λp in graph G is the collection of p-subgraphs of G. Figure 1 shows all
the elements of the sets Λ3, Λ4 and Λ5. Using the order of the topologies in this figure,
ω3,1 is the 3-node line graph.

2.2 Subgraph Concentration

The frequency of a particular p-subgraph topology g in an input graph G is the number
of times it appears in G. We denote it by fG(g). The concentration of g in G is CG(g),
which is defined as the normalized frequency over the cumulative frequency of all the
subgraph topologies in the set Λp. Mathematically,

CG(g) =
fG(g)

∑
h∈Λp

fG(h)
(1)

2.3 Motif

A Motif is a subgraph topology which occurs in an input network at a significantly
higher frequency than it occurs in a set of random networks with identical character-
istics. For this purpose, the random networks are generated from the input network by
imposing the constraint that the vertices of a random network has the identical degree
distribution as that of the input network. There are several methods for generating ran-
dom networks with identical degree distribution, but the most popular is the switching
algorithm [10], which we use in this work. The significance of frequency deviation
between the input network and the set of random networks is typically measured us-
ing z-score and p-value. If fGr (g) is the mean frequency of g in a set of randomized
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graphs Gr (constructed from G), and σGr(g) is the corresponding standard deviation,
then z-score of g for the input network G is defined as:

zG(g) =
fG(g)− fGr(g)

σGr (g)
(2)

If the z-score of g is greater than some pre-specified threshold then we call g a motif.
Since, setting this threshold requires domain expertise, all the existing motif finding
methods consider it as a run-time parameter; we also follow the same in our work. For
sampling based solution, we use concentration of subgraph instead of their frequency.
Hence, z-score is defined as below:

ẑG(g) =
ĈG(g)− ĈGr(g)

σ̂Gr (g)
(3)

In equation 3, we use ĈG, and σ̂G to denote that they are statistics obtain from random
sample of size-p embeddings.

2.4 Markov Chains, and Metropolis-Hastings (MH) Method

A Markov chain is the sequence of Markov process over the state space S. The state-
transition event is guided by a matrix, T , called transition probability matrix. The chain
is said to reach a stationary distribution π , when the probability of being in any particu-
lar state is independent of the initial condition, it is reversible if it satisfies the reversibil-
ity condition π(i)T (i, j) = π( j)T ( j, i),∀i, j ∈ S and it is ergodic if it has a stationary
distribution. The main goal of the MH is to draw samples from some distribution π(x),
called the target distribution, where, π(x) = f (x)/K; here K is a normalizing constant
which may not be known and difficult to compute. It can be used together with a random
walk to perform MCMC sampling. For this, the MH algorithm calculates the acceptance
probability using the following equation:

α(x,y) = min

(
π(y)q(y,x)
π(x)q(x,y)

,1

)
(4)

3 Methods

Given a graph G (which we refer as input graph) and an integer p, a sampling based
method samples a small set of p-subgraphs of G. From this set, it approximates the
concentration of each topology in Λp as shown in section 2.3. To measure the exact
concentration, one must perform unbiased sampling, where each of the p-subgraphs
has an uniform probability to be sampled. This is not an easy task, as the sample space
is very large. Besides, a direct sampling method is not applicable because for that we
need to enumerate all the p-subgraphs (to obtain the size of the sample space), which we
want to avoid. So, an indirect sampling strategy must be followed. Both MFinder [8]
and RAND-ESU [16] adopt indirect sampling; however, they differ in the sampling
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1 5,6,7,8,9,10

2 5,6,7,8,10

3 5,6,7,8,9,10

4 5,6,8,9

(b)

(a) Left: A graph G with the current state of
random walk; Right: Neighborhood informa-
tion of the current state (1,2,3,4)
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(a)

1 4,9

2 4,5,6,9,12

3 4,9

8 4,5,6,9

(b)

(b) Left: The state of random walk on G
(Figure 2(a)) after one transition; Right: Up-
dated Neighborhood information

Fig. 2. Neighbor generation mechanism

methodologies. MFinder’s sampling is biased which requires post-adjustment of con-
centration for correcting the bias; on the other hand, RAND-ESU guaranty a uniform
sampling which requires no correction. For large p, both MFinder and RAND-ESU are
costly.

MHRW(G, p, N)

G: Input Graph
p: Subgraph Size
N: Size of the sample set, |S|

1 g = Starting State
2 M = φ
3 i = 0
4 dg = Neighbor count of g
5 while i < N
6 h = Any neighbor of g chosen

uniformly at random from (1, |dg|)
7 dh = Neighbor count of h
8 accp val = dg/dh

9 accp probablility = min(1,accp val)
10 if uni f orm(0,1)≤ accp probability
11 g = h
12 dg = dh

13 i = i+ 1
14 Generate the Canonical code of g
15 Insert the code into the set M

and update the count
16 Normalize the frequency using equation 5,

∀i ωp,i ∈ M
17 return M.

Fig. 3. MHRW Pseudocode

In this paper, we propose
MHRW, and SRW-RW for sam-
pling p-subgraphs of a graph us-
ing Markov chain Monte Carlo
(MCMC) sampling. As a
Metropolis-Hasting based method
(discussed in sec: 2.4), they per-
form a random walk over the
state space so that the stationary
distribution of the random walk
converges to a desired target dis-
tribution. For our task, the state
space are the set of p-subgraphs.
Since, we want to approximate
the concentration of each of the
topologies in Λp, our target dis-
tribution is uniform, i.e., we want
to sample each of the p-subgraphs
with an identical probability. If P
is the set of the p-subgraphs in the
input graph G, and π is the tar-
get distribution, we want π(g) =
1/|P|,∀g ∈ P .

For the random walk of both MHRW and SRW-RW, a neighbor of a p-subgraphs
(say, g) is obtained by simply replacing one of its existing vertices of g with another
vertex which is not part of g and find the subgraph induced by the new vertex-set.
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While replacement, the methods ensure that the new set of vertices induce a connected
p-subgraph. At every iteration, all possible neighbors are populated using the above
strategy. For a state, the number of neighboring states are called its degree.

Example: Suppose our sampling method (MHRW or SRW-RW) is sampling a 4-
subgraph from the graph G shown in Figure 2(a)(Left). Let, the 4-subgraph 〈1,2,3,4〉
(shown in bold lines) is the existing state of this random walk. One of it’s neighbor
state is 〈1,2,3,8〉, which can be obtained by replacing the vertex 4 by the vertex 8. In
Figure 2(a)(Right) we show the information of all its neighbors. Box labeled by x con-
tains all the vertices that can be used as a replacement of vertex x to get a neighbor. If
the random walk transition chooses to go to the neighbor state 〈1,2,3,8〉, it can do so
simply by adding the vertex 8 (a vertex in the box labeled by 4) and deleting the vertex
4. The updated state of the random walk along with the updated neighbor-list is shown
in Figure 2(b). The degree of a state is the number of neighbors, which is simply the
sum of the entries in each of the boxes; thus the degree of state 〈1,2,3,4〉 is 21, and the
degree of the state 〈1,2,3,8〉 is 13.

To apply MH algorithm, we also need to decide on a proposal distribution, q. For
MHRW random walk, we choose the proposal distribution to be uniform, i.e., in the
proposal step MHRW chooses one of g’s neighbors uniformly. If h ∈ P and h is a
neighbor of g based on our neighborhood definition, using proposal distribution, the
probability of choosing h from g, q(g,h) = 1/dg, where dg is the degree of the state
g. Also note, if m ∈ P , but m is not a neighbor of g, q(g,m) = 0, i.e., transitions are
allowed among neighboring states only.

Using the proposal (q) and target (π) distributions, MHRW method is simply an
implementation of the algorithm that we discussed in Section 2.4. A pseudo-code of
MHRW is given in Figure 3. At the beginning of the sampling for each topology in Λp,
we assign a counter which is initialized to 0. As the sampling progress, for each state we
identify the specific topology that the state represents, and increment its counter by 1.
Thus, if S is the sample set, the concentration equation defined in 1 for g where g ∈ Λp

becomes:

Ĉ(g) =
1
|S| ∑

x∈S
1(x==g) (5)

At any iteration from the current stage g, the method chooses one of its neighbors,
(say, h) using the proposal distribution (uniform), and either accept or reject the pro-
posed move using Equation 4 i.e. MHRW adjusts the transition probability by accept-
ing or rejecting the proposed transition so that the target distribution is guaranteed to be
uniform.

On the other hand, an iteration of SRW-RW (simple random walk with re-weighting)
simply chooses one of the neighbors uniformly and make this transition. Thus the dif-
ference between MHRW and SRW-RW is that the latter chooses the proposed tran-
sition with 100% probability. This does not guarantee uniform sampling of the states
(p-subgraphs); rather the states are sampled in proportional to their degree values. In
other words, the target distribution of simple random walk is directly proportional to
the degree value of the p-subgraphs. So, the concentration of the topologies in Λp

is also biased in proportional amount. To obtain an unbiased estimate of concentra-
tion, the estimated concentration should be re-weighted, which gives the name simple
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random walk with re-weighting or in short SRW-RW. After re-weighting the concen-
tration equation (Equation 1) of SRW-RW takes the following form:

Ĉ(g) =
1

W ∑
x∈S

(1/dx)(x==g) (6)

where, W is the sum of the total weights, i.e., W = ∑x∈S (1/dx). Such an idea of re-
weighting has been used in [2] for approximating degree distribution of a large network
by sampling.

Pseudo-code of SRW-RW is similar to the pseudo-code of Figure 3, the only differ-
ence is that, there is no acceptance rejection step and in Line 12, instead of incrementing
the frequency count by 1, we increment the concentration by 1/dg. Finally, we normal-
ize in Line 13 using equation 6 instead of equation 5.

Claim: For a given p and an input graph G, both MHRW and SRW-RW returns an
unbiased estimate of the concentration of a topology in Λp.

Proof: Assume g ∈ Λp is an arbitrary topology and S is a set of induced subgraph

sampled from G. The expectation of g’s concentration in G is E
[
Ĉ(g)

]
=

E
[

1
|S| ∑x∈S 1(x∼=g)

]
= E [Pu(x ∼= g)]. Here, Pu(x ∼= g) is the probability that a graph x in

the sample set S is isomorphic to the topology g when it is sampled under uniform dis-

tribution. But, this value is the exact concentration value of g. So, E
[
Ĉ(g)

]
= E [Cg] =

CG. So, MHRW returns an unbiased estimate of the concentration of a topology in Λp.
By construction, the stationary distribution π for SRW-RW’s random walk is pro-

portional to the degree of a p-subgraph. Thus, for an arbitrary p-subgraph, w, its sta-
tionary probability π(w) = dw/K where K is a normalizing constant. For a topol-
ogy g ∈ Λp, before re-weighting the expected value of its concentration is equal to

∑w∈P π(w) ·1(w∼=g) =∑w∈P
dw
K ·1(w∼=g). However if each sample w of type g contributes

only 1/dw instead of 1 in the counter of g, the expected value of concentration be-
comes ∑w∈P

dw
K · ( 1

dw
)(w∼=g) =

1
K ∑w∈P 1(w∼=g) =

1
K C(g), which is the unbiased concen-

tration scaled by a multiplicative constant. Since the concentration of all the topologies
in Λp sums to 1, the expected value of the concentration returned by equation 6 after
normalization is an unbiased estimate of the true concentration.

3.1 Implementation issues

Starting State. When we start the random walk on G, both MHRW, and SRW-RW

starts from an arbitrary p-subgraph. To find it, the methods randomly choose an edge
(of G) and include other adjacent edges to form an induced subgraph of desired size.
As the input graph is connected, this process returns a p-subgraph of G.

Canonical Label of a Graph. We use min-dfs-code [17] for canonical labeling of the
graph to unify different isomorphic forms of the same graph.
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4 Results and Discussion

Table 1. Dataset Statistics

Graph Vertex Edge Average
Degree

Yeast 2,224 6,609 5.94
Jazz 198 2,742 27.49

ca-GrQc 4,158 13,422 6.43
ca-HepTh 8,638 24,806 5.74
ca-AstroPh 17,903 196,972 22.0

We implement MHRW and SRW-
RW in C++ language and perform
a set of experiments for evaluating
their performance. We run all the ex-
periments in a computer with 2.60
GHz processor and 4 GB RAM run-
ning Linux operating system. For ex-
periments, we use graphs of different
sizes from different domains. Table 1
lists the graphs along with the vertex
count, the edge count and the aver-
age degree. Since the existing imple-
mentation of our methods only consider undirected graphs, all the input graphs are made
undirected if necessary. The graphs are available from the following two web sites1.

Experimental results in the earlier works show that RAND-ESU is the best among
these three methods. In [16], Wernicke have shown that RAND-ESU is significantly
faster than MFinder with a better accuracy. Another recent work [12] shows that RAND-
ESU is the fastest among a set of methods including MODA. In this paper, we compare
the performance of our methods with RAND-ESU to show that our methods are better
than RAND-ESU in different performance metrics. We also considered MODA [12] for
a comparison, but we found that its available implementation is unstable; the same fact
was also reported by the authors of [9]. Note that we do not compare our methods with
existing exact algorithm as they do not scale with the size of motif and also with the
size of the input graph. For comparison with RAND-ESU, we use the implementation
by authors that is available in the FANMOD library. Note that, in this implementation,
the algorithm supports subgraph size up to 8. Besides a user need to set some probability
values, which we set using the recommendation in FANMOD’s documentation. In the
result section, we will refer RAND-ESU as FANMOD following the convention in the
earlier works.

We use three performance metrics: runtime, error, and convergence to compare our
method with others. To compute the error value for a topology g, we first find the ex-
act concentration of g using an exact method, then we find the approximate concen-
tration using the sampling based method; the absolute difference between the above
two concentration normalized by the actual concentration is the error for the topology
g. However, since the sampling method is a randomized process, instead of using the
approximate concentration of a single run, we take the average of the approximate con-
centration of 10 different runs. We represent the error as percentage and use the symbol
PE(g) (percentage error of g) for this metric.

1 http://snap.stanford.edu/data/index.html
and http://www-personal.umich.edu/˜mejn/netdata

http://snap.stanford.edu/data/index.html
http://www-personal.umich.edu/~mejn/netdata
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Fig. 4. Comparison of Percentage Error value for various methods. The dataset name, motif size,
and the number of samples (in parenthesis) are given in figure sub-title.

4.1 Error Comparison

We compare the error percentage (PE) of various topologies using SRW-RW, MHRW,
and FANMOD algorithms on all the datasets for different size values (p). Instead of
showing the PE for all the topologies, we only show it for the topologies that are likely
to be motifs, i.e., for these topologies, the ẑG(g) value in Equation 3 is the highest
among all the topologies. For this experiment, we fixed the number of samples to 10000
for all of the experiments except for the experiment of Ca-AstroPh dataset, where we
use 40000 samples.

For all the datasets, we see that our methods are significantly better than the FAN-
MOD method based on the PE metric. Specifically, the performance gap between our
method and FANMOD is very high for the Ca-AstroPh dataset, which is the largest
among all our datasets. The performance of SRW-RW and MHRW are comparable.
However, we observe that for topologies for which the concentration is high, MHRW’s
approximation is better than SRW-RW. On the other hand for graphs for which the con-
centration is small (see the dense topologies in Figure 4(b)), SRW-RW’s approximation
is better than MHRW. There are a few occasions where the PE of SRW-RW are as
bad as FANMOD; nevertheless, the plots clearly demonstrate the superiority of Markov
Chain based techniques over FANMOD in terms of percentage error.

4.2 Runtime Comparison

The runtime performance comparison of our methods with FANMOD is shown in
Table 2. Here, we have fixed the sample count to 10000 for all the methods. To highlight
the poor scalability of FANMOD with the size of the motif, we show some of the num-
bers in bold font. If we carefully observe the table we can see that as the size increases
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by unity the runtime of FANMOD increases more than 10 times. For the Ca-AstroPh
dataset which is the densest, for generating 10000 samples, FANMOD takes 180s, on
the other hand both of our methods take about 5 seconds only. For this metric also, the
performance gap between our methods and FANMOD increases as the dataset or the
motif size increases.

Table 2. Runtime comparison of our methods with
FANMOD

Dataset Motif MHRW SRW-rw FANMOD
Size (s) (s) (s)

Yeast
5 2.73 3.13 2.73
6 4.78 5.43 50

Jazz
5 5.08 5.71 3.45
6 9.68 10.92 52

Ca-GrQC

3 0.79 1.06 0.026
4 2.11 2.79 0.275
5 7.03 10.53 2.79
6 25.36 32.30 34

Ca-Hepth

3 0.60 0.75 0.43
4 1.43 1.72 0.413
5 3.03 3.30 5.37
6 4.98 5.13 70.41

Ca-Astroph
3 3.20 4.48 3.35
4 7.90 9.80 180.38

We also show the runtime per-
formance of the algorithms with the
increasing number of samples in
Figure 5(a) for yeast dataset and for
subgraph size 5. The time increases
mostly linearly for all the datasets;
however, both of our methods have
much smaller runtime than FAN-
MOD. We also compare the runtime
performance of the algorithms for
motif sizes from 6 to 10. The result
is shown in Figure 5(b) (note that y-
axis is in logarithm scale). It is clear
from the plot that our methods scale
well with the increasing subgraph
size. But, for FANMOD the runtime
grows exponentially with the sub-
graph size; for example, to sample
10000 graphs from the yeast dataset,
for subgraph size 7 and 8, it takes 616 seconds and 3 hours respectively. On the other
hand, for size 8 our methods sample identical number of graphs in only 50 seconds.
Also note that, FANMOD runs only for subgraph size up to 8.
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Fig. 5. Runtime performance for different sample sizes and for different subgraph sizes

4.3 Convergence Comparison

In this experiment, we study the convergence using the negative log (KL) metric by
varying the number of samples. Figure 6(a) and 6(b) show that as we increase the
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number of samples both the Markov chain based techniques approximate the concen-
tration distribution more accurately (increasing value of − log(KL)), on the other hand,
for FANMOD the curve is almost flat, i.e. with an increasing number of samples FAN-
MOD does not converge to the true concentration.
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Fig. 6. Comparison of convergence trend of our methods with FANMOD using KL Divergence

5 Conclusion

In this paper, we propose two methods MHRW, and SRW-RW for approximating the
concentration of p-subgraphs in a host network for any given value of p. Our experi-
mental results demonstrates that both of our proposed methods are significantly faster
than the best of the existing methods. Moreover, our methods do not require full access
over the networks. This makes our method useful for very large network (such as, Web)
which can only be crawled.
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Abstract. Research on network analysis, which is used to analyze large-scale
and complex networks such as social networks, protein networks, and brain func-
tion networks, has been actively pursued. Typically, the networks used for net-
work analyses will contain multiple errors because it is not easy to accurately
and completely identify the nodes to be analyzed and the appropriate relation-
ships among them. In this paper, we analyze the robustness of centrality measure,
which is widely used in network analyses, against missing nodes, missing links,
and false links. We focus on the stability of node rankings based on degree cen-
trality, and derive Topm and Overlapm, which evaluate the robustness of node
rankings. Through extensive simulations, we show the validity of our analysis,
and suggest that our model can be used to analyze the robustness of not only de-
gree centrality but also other types of centrality measures. Moreover, by using our
analytical models, we examine the robustness of degree centrality against random
errors in graphs.

1 Introduction

Research on network analysis, which is used to analyze large-scale and complex net-
works such as social networks, protein networks, and brain function networks, has been
actively pursued [1,6,8,20–22]. In network analysis, relationships among entities in the
real world are represented by a graph. In social network analysis (SNA), individuals are
represented as nodes in a graph, and the social ties among them, such as similarities,
social relations, interactions, and flows, are represented as links [6, 22]. In brain func-
tion network analysis, brain regions are represented as nodes, and temporal correlations
in activity among them are represented as links [20].

Among various indices proposed for network analysis, centrality measures (e.g., de-
gree centrality, betweenness centrality, closeness centrality, and eigenvector central-
ity) [4, 11] have been widely used in actual analyses [3, 5, 25]. Centrality measures
are indices that express the influence of one node on others, and such measures have
been used for various purposes, such as discovering which person plays a central role
in a community [3, 5] and inferring which brain regions are important for the task of
interest [25].

Typically, the graphs used for network analyses will contain multiple errors because
it is not easy to accurately and completely identify the entities to be analyzed and the ap-
propriate relationships among them [7, 9, 14–16, 19]. For instance, graphs used in SNA

c© Springer International Publishing Switzerland 2015 25
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can contain several errors of different types, such as missing nodes, missing links, and
false links. In traditional SNA, graphs are generated from the results of questionnaires,
and so non-responses and inaccurate answers will cause such errors [24]. Even in recent
SNA used for analyzing online social networks, such errors can be present due to sam-
pling bias and restrictions on social network data, which is typically accessed by means
of application programming interfaces. In biological network analyses, such as analy-
ses of protein interaction networks and gene regulatory networks, graphs often contain
errors such as missing links and false links as a result of measurement errors [19, 23].

Several analyses on the robustness of centrality measures used for network analyses
against errors in the graphs (simulated as noise created by random addition and deletion
of nodes and links) have been performed [7,9,12–17,19]. In [7,16], how centrality mea-
sures of nodes in networks are affected by the random addition and deletion of nodes
and links is experimentally investigated. Robustness of centrality measures against link
weight noises has also been experimentally investigated, such as in [13, 17].

Most existing studies use an experimental approach to understand the robustness
of centrality measures, but some recent studies adopt a theoretical approach.
Ghoshal et al. [12] analyze node-ranking stability based on the PageRank algorithm
against random rewiring of links. Platig et al. [19] develop an analytical model to
quantify the robustness of degree centrality against link errors (i.e., missing links and
false links). They derive correlation coefficients r between the degree measures of the
ground-truth graph and those of graphs with errors.

Our study builds on prior work and contributes to developing an analytical model
that can be used to quantify the robustness of centrality measures. Since one of the
most typical errors in network analysis is missing nodes [7,9,24], we extend the model
of [19] to include these, and analyze the robustness of degree centrality against missing
nodes as well as against missing links and false links. As discussed in the previous
works [7,19], centrality measures are used mainly for node ranking. We therefore focus
on the stability of node ranking and derive Topm and Overlapm, which evaluate the
robustness of node rankings [7, 16, 17, 19]. Through extensive simulations, we show
the validity of our analysis. Moreover, by using our analytical models, we examine the
robustness of centrality measures against random errors in graphs.

The remainder of this paper is organized as follows. Section 2 introduces related
work. In Section 3, we analyze the robustness of degree centrality against three types of
errors (i.e., missing nodes, missing links, and false links). Section 4 examines the valid-
ity of our analysis through comparison between numerical examples of our analysis and
results of simulations, and also discusses the robustness of centrality measures against
random errors in graphs. Finally, Section 5 contains our conclusions and a discussion
of future work.

2 Related Work

Most existing studies use a simulation to understand the robustness of centrality mea-
sures by adding errors to a ground-truth graph and investigating the relation between
the centrality measures of the ground-truth graph and those of the graphs with er-
rors [7, 9, 14–16]. In contrast, some recent studies use a theoretical approach [12, 19].
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Ghoshal et al. [12] analytically derive the conditions under which node ranking accord-
ing to PageRank is stable against random rewiring of links. Platig et al. [19] investigate
the robustness of centrality measures against link errors (i.e., missing links and false
links) through simulations and theoretical analysis. In their analysis, the correlation co-
efficients r of degree centrality between a ground-truth graph and graphs with errors are
derived.

The only type of error studied in Ghoshal et al. [12] is link rewiring, and typical
errors such as node and link addition and deletion are not considered. Platig et al. [19]
investigate the robustness of centrality measures against link errors typical in network
analysis, but the effect of node deletion, which is also a typical error in network anal-
ysis [7, 9, 24], is not studied. Moreover, the stability of node ranking based on cen-
trality measures is investigated in their simulations, but a theoretical analysis of the
node ranking stability is not performed. The correlation coefficients r of centrality mea-
sures, which are theoretically analyzed in [19], and Topm and Overlapm, which are stud-
ied in this paper, exhibit different tendencies [19]. In this paper, we extend the model
of [19] and use this extended model to analyze the robustness of centrality measures, as
measured by node ranking stability based on degree centrality, against missing nodes,
missing links, and false links.

3 Analysis

We analyze the consistency of node ranking based on degree centrality, comparing an
undirected unweighted graph G = (V,E) with a graph Ge that is a copy of G with ran-
dom errors introduced. We analyze the robustness of degree centrality against three
types of errors, which correspond to the following operations: link deletion, node dele-
tion, and link addition. The link deletion error independently deletes each link of graph
G with probability α; the node deletion error independently deletes each node in graph
G and all links associated to that node with probability β ; and the link addition error
randomly adds γ |E| links to graph G, where |E| is the number of links in graph G. We
assume that the graph G has an arbitrary degree distribution [18], and that the degree
of each node in graph G (k1,k2, . . . ,k|V |) is known, where |V | is the number of nodes in
graph G.

We rank all the nodes in graphs G and separately in Ge by sorting the nodes in de-
scending order of their degree centrality, and we analyze the node ranking consistency
between graphs G and Ge. We particularly focus on the ranking of highly ranked nodes,
and derive expected values of Topm and Overlapm, which are used to evaluate the ro-
bustness of node ranking. Topm is the probability that the most central node in graph
G is ranked in the top m most central nodes in graph Ge [7, 16, 17]. Overlapm is the
overlap between the top m most central nodes in graph G and those in graph Ge. More
specifically, let Um(G) be the set of the m most central nodes in graph G; then, Overlapm
is defined as |Um(G)∩Um(Ge)|/m [7, 16, 17, 19]. These measures are used in the sim-
ulation studies [7, 16, 17, 19] to evaluate the robustness of centrality measures. Table 1
shows the definitions of symbols used in this paper.

Let p(l|k) be the probability that a node with degree k in graph G has degree l in
graph Ge. We derive Topm and Overlapm by using p(l|k). In what follows, vi denotes a
node whose degree is the ith largest in graph G, and ki denotes the degree of node vi.
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Table 1. Definitions of symbols used in this paper

G Unweighted undirected graph
Ge Unweighted undirected graph with errors
V Set of nodes in graph G
E Set of links in graph G
ki Degree of a node whose degree is the ith largest in graph G
vi Node whose degree is the ith largest in graph G
Vi Subset of V defined as V −{vi}
α Probability of deleting each link in graph G
β Probability of deleting each node in graph G
γ Ratio of links added to graph G
p(l|k) Probability that a node with degree k in graph G has degree l in graph Ge

P(l|k) Probability that a node with degree k in graph G has degree l or less in graph Ge

P(l|k) Probability that a node with degree k in graph G has degree more than l in graph Ge

ti, j Probability that node vi has the jth largest degree in graph Ge

Topm Probability that node v1 is ranked in the top m most central nodes in graph Ge

Overlapm Overlap between the top m most central nodes in graph G and those in graph Ge

To obtain Topm and Overlapm, we first obtain the probability that node vi has the jth
largest degree in graph Ge, which is denoted as ti, j. First, let us consider ti,1, which is
the probability that node vi has the largest degree in graph Ge. Node vi has the largest
degree in graph Ge if and only if the degree of each node is less than or equal to ki, and
therefore ti,1 is given by

ti,1 =
|V |−1

∑
l=0

p(l|ki)∏
r �=i

P(l|kr), (1)

where P(l|k) is the probability that a node with degree k in graph G has degree l or less
in graph Ge; this is given by the following equation.

P(l|k) =
l

∑
s=0

p(s|k) (2)

Next, let us consider the case with j > 1. Node vi has the jth largest degree in graph
Ge if and only if ( j − 1) nodes have a higher degree than node vi in graph Ge and all
other nodes have a weakly lower degree than node vi. Here, we define the following
symbols.

P(l|k) = 1−P(l|k) (3)

Q(l,ki,S) =

{
P(l|ki) vi ∈ S ⊂V

P(l|ki) otherwise
(4)

Vi = V −{vi} (5)
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Then, ti, j is given by

ti, j =
|V |−1

∑
l=0

p(l|ki) ∑
X∈( Vi

j−1)
∏
r �=i

Q(l,kr,X), (6)

where
(Vi

K

)
is the set of all subsets of Vi which have a given size K.

Topm is the sum of the probability that node v1 has the largest degree in graph Ge,
the probability that node v1 has the second largest degree in graph Ge, . . ., and the
probability that node v1 has the mth largest degree in graph Ge. Symbolically,

Topm =
m

∑
j=1

t1, j. (7)

Additionally, we define Ti, j as follows.

Ti, j =
j

∑
s=1

ti,s (8)

Since the expected number of overlapping nodes between the top m most central nodes
in graph G and those in graph Ge is ∑m

i=1 Ti,m, Overlapm is then given by

Overlapm =
∑m

i=1 Ti,m
m . (9)

We next derive p(l|k), the probability that a node with degree k in graph G has degree
l in graph Ge.

First, let us consider the case with link deletion. A node with degree k in graph
G has degree l in graph Ge if and only if (k− l) links are deleted from the node. The
probability distribution of the number of deleted links follows the binomial distribution,
and therefore, as also shown in [19], the probability that a node with degree k in graph
G has degree l in graph Ge is given by

pD(l|k) =
(

k
k− l

)
(1−α)lαk−l . (10)

Next, let us consider the case with node deletion. In this case, similarly to the case
with link deletion, the probability that s links are deleted from a node with degree k
follows the binomial distribution. Hence, the probability that a node with degree k in
graph G has degree l in graph Ge is given by

pv(l|k) =
{
(1−β )

( k
k−l

)
(1−β )lβ k−l l > 0

β +(1−β )β k l = 0.
(11)

Next, let us consider the case with link addition. The probability that s links are
added to a node with degree k is approximated by the Poisson distribution when the
number of nodes |V | is sufficiently large. Hence, as shown in [19], the probability that
a node with degree k in graph G has degree l in graph Ge is approximated by

pa(l|k)� ul−k

(l − k)!
e−u, (12)

where u is the average number of added links per node, and is defined as u = 2|E|γ/|V |.
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Next, let us consider the case with both link deletion and link addition. The proba-
bility that a node with degree k in graph G has degree l in graph Ge is derived in [19],
and given by

pda(l|k) = ∑
r

ure−u

r!

(
k

k+ r− l

)
(1−α)l−rαk+r−l . (13)

Finally, we consider the case with all of link deletion, link addition, and node dele-
tion. A node with degree k in graph G has degree l in graph Ge if and only if r links are
added, s adjacent nodes are deleted, and (k+ r− s− l) links are deleted from the node.
Hence, combining Eqs. (11) and (13), the probability that a node with degree k in graph
G has degree l in graph Ge is given by the following equation.

p(l|k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1−β )∑r
ure−u

r! ∑s

(k
s

)
(1−β )k−sβ s

×( k−s
k+r−s−l

)
(1−α)l−rαk+r−s−l l > 0

β+
(1−β )e−u ∑s

(k
s

)
(1−β )k−sβ sαk−s l = 0

(14)

Note that we can also obtain a correlation coefficient r between degrees in graph G
and those in graph Ge by using Eq. (14) and the model in [19].

4 Numerical Examples and Simulation Results

In this section, we examine the validity of our analysis by comparison between numer-
ical examples of our analysis and the results of simulations. Moreover, we also discuss
the effects of missing nodes, missing links, and false links on node rankings that are
based on degree centrality.

As the ground-truth graph G, we use random graphs generated with the ER (Erdös–
Rényi) model [10] and scale-free graphs generated with the BA (Barabási–Albert)
model [2]. The number of nodes is 200, and the average degree of a node is 5 in the
ER model and 2 in the BA model. In our simulations, we obtain graph Ge by deleting
each link with probability α , deleting each node with probability β , and adding γ |E|
links between randomly selected pairs of unlinked nodes. For each graph G, we ob-
tain 200 graphs for Ge, and calculate Topm and Overlapm. We generate 100 different
initial graphs G, and obtain averages of Topm and Overlapm. We also obtain Topm and
Overlapm by using our analytical models from degrees of nodes in graph G and the
parameters α , β , and γ . In what follows, lines in the figures represent the results of
analysis, and dots represent results of simulation.

We first investigate Topm and Overlapm when only a single type of error is contained
in the graphs. Namely, we obtain Topm and Overlapm while two of α , β , and γ are
fixed at 0 and the other parameter is changed. Figures 1, 2, and 3 show the results when
changing α , β , and γ , respectively; Top1, Top3, and Overlap3 are used to characterize
the results. From these results, we can confirm that the results of analysis are in good
agreement with the simulation results. These results show the validity of our analysis.
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Fig. 1. Link deletion probability α vs. Top1, Top3, and Overlap3
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Fig. 2. Node deletion probability β vs. Top1, Top3, and Overlap3

We next investigate Topm and Overlapm when multiple types of errors are contained
in graphs. We focus on two cases: a case with both missing links and false links, and
a case with missing links and missing nodes. A typical example of the first case is
the case of constructing protein interaction networks, where measurement error causes
both missing links and false links. A typical example of the latter case is the case of
constructing a social network, where incomplete data causes both missing links and
missing nodes. Figure 4 shows Top1, where errors of both missing links and false links
are contained in graphs, and Fig. 5 shows Top1, where errors of both missing links and
missing nodes are contained in graphs. These figures show that analytical results and
simulation results coincide closely. These results show the validity of our analysis when
multiple types of errors are contained in graphs.
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Fig. 3. Link addition ratio γ vs. Top1, Top3, and Overlap3
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From these results, as previously shown in the simulation studies [7, 16, 19], we can
observe non-negligible effects of random errors in graphs on node rankings based on de-
gree centrality. Graphs generated according to the BA model are more robust than those
generated according to the ER model, but in the particular case with missing nodes,
Top1, Top3, and Overlap3 decrease almost linearly. Thus, our analysis gives theoretical
confirmation of the results from previous works.

We further analyze the robustness of degree centrality by using analytical models.
We differentiate Top1 with respect to the error rates α , β , and γ , and investigate the
effects of each type of error on the node ranking. Figure 6 shows the derivation of Top1
with respect to the error rates α , β , and γ . These figures show the relation between
an increase in the error rate and a decrease in the accuracy of detecting most central
node according to degree centrality. From these figures, we can find that, for instance,
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Fig. 6. Derivation of Top1 with respect to α , β , and γ : in the panels, one parameter is changed
and the other two parameters are fixed to 0

in graphs generated from the BA model, a 1% increase in the rate of missing nodes
causes an approximately 2% decrease in Top1 when the node deletion probability is
less than 0.1. Our models reveal the relation between the increase of the error ratio and
the decrease in accuracy of centrality.

Finally, we investigate the robustness of other types of centrality measures (specifi-
cally, betweenness, closeness, and eigenvector centralities) through simulations. Due to
space limitation, we show the results of Overlap3 only. Figures 7 and 8 show Overlap3
of different types of centrality measures when α , β , and γ are changed in the BA model
(Fig. 7) and the ER model (Fig. 8), respectively. For comparison purposes, the analyti-
cal results of Overlap3 of degree centrality are also shown on the graphs.
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Fig. 7. Overlap3 of the four types of centrality measures (degree, closeness, betweenness, and
eigenvector centralities) in graphs generated according to the BA model: Overlap3 of degree cen-
trality is obtained by our analysis, and values with the other measures are obtained by simulation
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Fig. 8. Overlap3 of the four types of centrality measures (degree, closeness, betweenness, and
eigenvector centralities) in graphs generated according to the ER model: Overlap3 of degree cen-
trality is obtained by our analysis, and values with the other measures are obtained by simulation

Figure 7 shows that Overlap3 of the four types of centrality is similar among graphs
generated with the BA model. Figure 8 shows that in the ER model, the magnitudes of
Overlap3 are different, but the curves of Overlap3 are of similar shape for the four types
of centrality measures. We observed (not shown here) that Top1 and Top3 also exhibit
similar tendencies. These results indicate that the four types of centrality measures have
similar robustness, particularly in graphs generated according to the BA model. This
suggests that analytical models of degree centrality can be used to predict the robustness
of other types of centrality measures. The cause of the similar robustness among the
four types of centrality measures can be attributed to the high correlation among the
centrality measures.

5 Conclusion and Future Works

We analyzed the robustness of degree centrality against missing nodes, missing links,
and false links. We extended the model of [19], and derived Topm and Overlapm, which
were used to evaluate the robustness of node rankings, and showed the validity of the
analysis. Moreover, through extensive simulations, we showed that the four types of
popular centrality measures (degree, closeness, betweenness, and eigenvector centrali-
ties) exhibit similar robustness, which suggests that our model can be used to analyze
the robustness of not only degree centrality but also other types of centrality measures.

As future work, we plan to analyze the robustness of centrality measures other than
degree centrality. Investigating the effects of other types of errors is also important
future work. This paper focuses on uniform errors, but in actual network analyses, non-
uniform errors arise. As an example, biased sampling is a known cause of non-uniform
errors, and such types of errors are of interest to network researchers.
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Abstract. A common assumption when collecting network data is that
objects can be uniquely identified. However, in many scenarios objects
do not have a unique label giving rise to ambiguities since the map-
ping between observed labels and objects is not known. In this paper we
consider the ambiguity problem that emerges when objects appear with
more than one label in the context of social networks. We first propose a
probabilistic model to introduce ambiguity in a network by duplicating
vertices and adding and removing edges. Second, we propose an simple
label-free algorithm to remove ambiguities by identifying duplicate ver-
tices based only in structural features. We evaluate the performance of
the algorithm under two classical random network models. Results indi-
cate that network structure can indeed be used to identify ambiguities,
yielding very high precision when local structure is preserved.

Keywords: network ambiguity, social networks, network structure,
disambiguation.

1 Introduction

During the past decade, networks have increasingly been used to encode re-
lationships between objects, from interactions among proteins, to friendship
among people, to hyperlinks between webpages. Underlying this abstraction is
the premise that objects can be uniquely identified when observing relationships
among them. For example, user accounts in Facebook have a unique number
identifier that is used when crawling the friendship graph.

However, in many scenarios objects do not exhibit a unique identifier when
relationships among them are observed. In particular, a single object may have
different labels that appear in reference to the object, or alternatively, a single
label may appear in reference to different objects. For example, in the context
of social networks, a person (object) may be known by various names (labels),
or a single name (label) may be given to different people (objects). Thus, when
observing relationships among labels of objects we are faced with ambiguity, since
the mapping between observed labels and objects may not be known a priori. In
a nutshell, network disambiguation refers to the problem of removing ambiguities

� This research received financial support through grants from FAPERJ and CNPq
(Brazil).
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among nodes of network that is constructed by observing relationships among
ambiguous labels. A more precise formulation is given in Section 3.

In this work we are interested in understanding ambiguity arising when a
single object can appear with different labels in the context of social networks.
We call this the “Brazilian Ambiguity Problem” (BAP) in allusion to the fact
that Brazilians tend to have many first and last names which then appear in
many different forms and combinations. Towards this direction, we make the
following contributions:

1. Ambiguity model for BAP: based on intuition and empirical observations
of real data, we propose a probabilistic model that introduces ambiguity in
a social network. The model has three intuitive parameters used for tuning
the desired amount and structure of ambiguity and can operate over any
original social network. This model is presented in Section 4.

2. Disambiguation algorithm for BAP: again, based on intuition and empirical
observations of real data, we propose a simple and efficient label-free algo-
rithm for removing ambiguity in the context of BAP. Our algorithm uses
only the structure of the network of observed labels but not the labels them-
selves to identify nodes (labels) that refer to the same person. We present
an extensive analysis of the performance (precision and recall) of algorithm
when applying the proposed ambiguity model to random graph models. The
algorithm and its evaluation are presented in Sections 5 and 6, respectively.

Identifying ambiguities among nodes of a network of observed labels is an
important problem, as one is usually interested in the network of objects. In
particular, the network of objects and not labels is the one that is used to
characterize and make statements about relationships or other phenomena that
depends on the structure. Nevertheless, the problem of name disambiguation has
been studied for more two decades, as discussed in Section 2. Our contributions
as enumerated above indicates that structure alone in the network of observed
labels can contribute to addressing the BAP.

2 Related Work

The problem of network disambiguation is considered a difficult and relatively
open problem [2,4]. Author name disambiguation was initially studied in the In-
formation Sciences using manual and intuitive methods [2], but also in Computer
Science using sophisticated algorithms [3,4].

Most approaches found in literature consider label and textual information as
main features to remove ambiguities in the network, which might not be available
in several contexts. We believe that structural features are fundamental to solve
ambiguity in networks in agreement with other recent works [1,5,7].

The problem of more than two people being represented in one node (appear
with the same name) has been addressed using a supervised classification algo-
rithm (SVM) considering as features the structural information of the network
[5], and also using an unsupervised learning algorithm [7]. The BAP (one person
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appearing with multiple names) has also been addressed using a machine learn-
ing approach with structure and textual features [1]. Our work contribution is
an ambiguity model for the BAP and a disambiguation algorithm that does not
use machine learning.

3 Problem Statement

In this section we formalize the network ambiguity problem. Consider a graph
G = (O,E) where the vertex set O = {o1, . . . , on} represents objects and the
edge set E represents pairwise relationships among the objects. Lets assume that
objects have labels and in particular, let Li = {li,1, . . . , li,si} denote the set of
labels that can be assigned to object oi. Note that objects have one or more label
that are not necessarily unique. Thus, labels of different objects can be identical.

Consider an observation process of relationships among objects that reveals
object labels. Thus, a relationship (oi, oj) ∈ E is observed as (li, lj) where li ∈
Li and lj ∈ Lj . Let L =

⋃n
i=1 Li denote the set of all different labels. The

observation process applied to many (possibly all) relationships (oi, oj) ∈ E will
then yield a graph G′ = (L′, E′) where the vertex set L′ ⊂ L represents all
observed labels and the edge set E′ represents all observed relationships among
labels. Note that a given l ∈ L′ can refer to two or more objects while a given
l1, l2 ∈ L′ can refer to the same object.

The network disambiguation problem is to recoverG (network of objects) hav-
ing observed G′ (network of labels). In the context of the “Brazilian Ambiguity
Problem” (BAP) studied in this paper, labels of different objects are different,
thus, li �= lj for any li ∈ Li and lj ∈ Lj and for any i �= j. However, we also
assume there is no information on the labels themselves (i.e., labels are random
numbers), and no information on the number of labels assigned to each object.

4 Ambiguation Model

In this section we present a novel probabilistic model that introduces ambiguity
in a network. The model is mostly tailored for social networks and its workings
are based on intuition and empirical observations. The idea is to duplicate nodes
and add and remove edges to neighbours of the original node. A duplicated node
represents a second label for the original node. Therefore, one object (node) of
the original network can be represented by two nodes (labels) in the ambiguous
network and relationships among the original object (node) can be copied to its
duplicate and removed from itself.

Consider a network represented as a graph G = (V,E) in which V is the
vertices set (e.g. people), and E is the set of edges (e.g. friendship relationship).
In this graph, each vertex uniquely identifies an object in the network. The
proposed model has three phases, each with a parameter:
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1. Vertex duplication: with probability p a vertex is duplicated;
2. Edge addition: with probability q an edge between a neighbour of the

original vertex and the duplicated vertex is created;
3. Edge removal: with probability r an original edge that was copied to a

duplicated vertex is removed.

(a) (b) (c)

Fig. 1. Parameters of the probabilistic model for create ambiguity in a network.
In (a) vertex duplication phase, (b) edge addition phase, and (c) edge removal phase.

In the vertex duplication phase, the vertices are duplicated creating ambigu-
ity. Each vertex u ∈ V , sampled with probability p independently, to generate
another graph with a duplicate vertex, u′, as shown in Figure 1(a). Note that p
controls the amount of ambiguity introduced in the network, so that with p = 1
all vertices will have a duplicate in a network.

In the edge duplication phase, the neighbours from the original vertex are
copied to the duplicated vertex. For each neighbour v ∈ Nu(neighbours of u) of
an original vertex u that has been duplicated, with probability q independently,
an edge e = (u′, v) is created as illustrated in Figure 1(b). Note that with q = 1
all neighbours from u will become neighbours of u′.

In the edge removal phase, edges between an original vertex u and a neigh-
bour v, that has become a neighbour of u′ is removed with probability r, inde-
pendently, as shown in Figure 1(c). Note that for r = 1 all edges between the
original vertex u and its neighbours that became neighbours of the duplicate
vertex u′ will be removed. The algorithm for this ambiguity model is described
in Algorithm 1.

5 Algorithm for Removing Ambiguities

In this section we present a simple algorithm to identify ambiguities in the
context of BAP in a social network. In particular, we consider just the case
where a single object, due to ambiguities, can be represented in the observed
label network by more than one vertex. Our algorithm will identify network
nodes that represent the same entity without resorting to label information -
thus, only structure information will be used.

We develop several structure-based heuristics to identify nodes in the label
network that might represent the same entity. For example, we consider that two
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nodes might refer to the same entity if they are at distance 2, since it is unlikely
that a node will have a relationship with itself using two different labels. More-
over, the same is considered if the common neighbourhood between two vertices
strongly overlaps, and is contained in one another. We aim in developing a con-
servative approach to merge nodes, in order to minimize false-positives, allowing
greater applicability of the algorithm. The proposed algorithm is described in
Algorithm 2.

Algorithm 1: Model to introduce ambiguity with parameters: p, q, r.

Data: G = (V,E), p, q, r
Result: G′ = (V ′, E′)
E′ ←− E ; Vd ←− ∅ ; Ed ←− ∅
for v in V do

with probability p, duplicate v into v′ and Vd ←− Vd ∪ v′

for v’ in Vd do
v ←− original(v′)
N ←− neighbours(v)
for u in N do

with probability q, create e′ = (v′, u) and Ed ←− Ed ∪ e′

if e′ in Ed then
with probability r, remove e = (v, u) from E′

V ′ ←− V ∪ Vd ; E′ ←− E′ ∪Ed

Algorithm 2: Algorithm - Remove ambiguity

Data: G = (V,E), α
for v in V do

P ←− ∅ ; Nv ←− neighbours(v) ; D2
v ←− {u|distance(u, v) = 2}

for u in D2
v do

if degree(v) ≥ α and degree(v) ≤ degree(u) then
Nu ←− neighbours(u)
if Nv ⊆ Nu then

P ←− P ∪ u

if sizeOf(P) = 1 then /* Ambiguity found! Unify v and P.first() */
merge(v,P.first())

6 Evaluation

In this section we present an extensive evaluation of the performance of the
proposed algorithm to remove ambiguities when applied to networks generated
by the ambiguity model.

The steps evaluation has the following steps: (i) generate the networks,
(ii) introduce ambiguity using the model proposed in Section 4, (iii) apply the
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Fig. 2. Evaluation in Erdos-Renyi network with ambiguity. In (a,c,e) precision and in
(b,d,f) recall. The pair of values in the legend correspond to p, q, r with the exception
of the value appearing in x-axis.

algorithm to remove ambiguity proposed in Section 5 and (iv) measure the pre-
cision and recall of the algorithm.

In order to generate the networks, we use two models, Erdos-Renyi model, that
generates graphs connecting nodes randomly, and Watt-Strograts model, that
generates graphs with small-world properties [6]. Both networks were generated
with n = 100, 000 vertices and average degree of eight (rewiring probability of
two percent was used in the Watts-Strogats model).

Next, we introduce ambiguity into the two networks created. We apply the
probabilistic model with different values for the parameters p, q and r aiming
to evaluate how these parameters affect the identification of duplicated vertices.
The values used for each parameter are 0.1, 0.3, 0.5, 0.7 and 0.9. We apply the
algorithm to remove the duplicated vertices, with parameter α = 0, and we eval-
uate the performance by measuring the precision and recall of the algorithm.
For each parameter configuration, we perform thirty independent runs and re-
port the sample average of performance metrics. The algorithm performance in
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Fig. 3. Evaluation in Watts-Strogatz network with ambiguity. In (a,c,e) precision and
in (b,d,f) recall. The pair of values in the legend correspond to p, q, r with the exception
of the value appearing in x-axis.

the Erdos-Renyi and in the Watts-Strogatz network models with ambiguity are
shown in Figures 2 and 3 respectively for all combinations of model parameters.

The precision and recall for the Erdos-Renyi model are shown in Figures 2(a)
and 2(b), respectively. Note that the parameter p is not critical to the algorithm,
when ten or ninety percent of the vertices are duplicated the performance of the
algorithm remains roughly the same. This occurs because in the Erdos-Renyi
network model lacks local structure and, therefore, any duplication of vertices
and edges creates a local structure that is detected by the algorithm. In these
Figures the lines are grouped by the parameter r, so that with smaller values of
r we get around 100% of precision and 50% of recall.

In Figures 2(c) and 2(d) we observe an inflexion point with respect to pa-
rameter q, with precision and recall growing and then o decrease. This occurs
because the number of edges that are removed from the original grows with q.
However, for lower values of q the duplicated vertex has a small degree and thus
there are many vertices that are candidates to be its original and the algorithm
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fails to make a decision yielding a lower precision and recall. The inflexion point
changes with the value of r because the expected number of removed edges is
duqr where du is the degree of the node u.

Figures 2(e) and 2(f) shows the precision and the recall as a function of
parameter r, respectively. Clearly, r is the most sensitive parameter for the
performance of the algorithm. Note that precision is more than 90% for values
of r lower than 0.5, independent of the other parameters p and q. As r grows
the precision and the recall decrease as more original edges are removed and the
algorithm fails to find the original vertex that corresponds to the duplicated one.

Results under the Watts-Strogatz network model is shown in Figure 3. In
general, results have the same qualitative trends as for the Erdos-Renyi model,
with a higher sensitivity in the parameter r. For example Figures 3(e) and 3(f)
illustrate that performance degrades quickly as r increses. This occurs due to the
local structure present in the Watts-Strogatz model, which makes the algorithm
fail if few edges are removed.

7 Conclusion

In this work we addressed the problem of disambiguation in networks when
different labels (vertices) can represent the same object. We proposed a proba-
bilistic model that introduces ambiguity in the context of social networks using
three parameters for tuning the desired amount of structural ambiguity. We also
propose a simple disambiguation algorithm that uses only structure to identify
duplicate nodes. Through simultaneous, we extensively evaluate the performance
of the algorithm using random graphs subject to ambiguation introduced by the
proposed ambiguity model. Results indicate that the structure of a network can
successfully be used to identify ambiguities and does not strongly depend on the
amount (fraction) of objects with double identity (duplicated nodes), but on the
local structure between the main and the alternative labels. In particular, local
network features such as absence of direct edge and common neighbourhood play
a key role in disambiguation of social networks.
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4. Ferreira, A.A., Gonçalves, M.A., Laender, A.H.: A brief survey of automatic methods
for author name disambiguation. SIGMOD Rec. 41(2), 15–26 (2012)

5. Hermansson, L., Kerola, T., Johansson, F., Jethava, V., Dubhashi, D.: Entity dis-
ambiguation in anonymized graphs using graph kernels. In: CIKM (2013)

6. Newman, M.: Networks: An Introduction. Oxford University Press (2010)
7. Zhang, B., Saha, T.K., Hasan, M.A.: Name disambiguation from link data in a

collaboration graph. In: ASONAM (2014)



Measuring the Generalized Friendship Paradox

in Networks with Quality-Dependent
Connectivity

Naghmeh Momeni and Michael G. Rabbat

Department of Electrical and Computer Engineering
McGill University, Montréal, Canada
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Abstract. The friendship paradox is a sociological phenomenon stating
that most people have fewer friends than their friends do. The general-
ized friendship paradox refers to the same observation for attributes other
than degree, and it has been observed in Twitter and scientific collabo-
ration networks. This paper takes an analytical approach to model this
phenomenon. We consider a preferential attachment-like network growth
mechanism governed by both node degrees and ‘qualities’. We introduce
measures to quantify paradoxes, and contrast the results obtained in our
model to those obtained for an uncorrelated network, where the degrees
and qualities of adjacent nodes are uncorrelated. We shed light on the
effect of the distribution of node qualities on the friendship paradox.
We consider both the mean and the median to measure paradoxes, and
compare the results obtained by using these two statistics.

1 Introduction

The friendship paradox, introduced by Feld [1], is a sociological observation that
says most people are less popular than their friends on average. It is called a
‘paradox’ because, while most people believe that they are more popular than
their friends [2], Feld observed that the converse is actually true. There are more
recent observations agreeing with Felds’, that study online environments. For
example on Twitter, people you follow and also your followers have, on average,
more followers than you do. They also follow more people than you do [3]. On
Facebook, your friends have, on average, more friends than you do [4].

The friendship paradox is about the inter-nodal inequality of the degrees.
What happens if we consider other attributes? This is the focus of the ‘General-
ized Friendship Paradox’ [5,6]. For example on Twitter, your friends on average
tweet more and also share more viral content than you [3,7]. In the scientific
collaboration networks your collaborators have on average more publications,
more citations and more collaborators than you do [5].

The friendship paradox has applications in spotting influential nodes. In [8], it
is used for finding high-degree nodes for efficient vaccination. In order to sample
a node with above average degree, a node is chosen uniformly at random and
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one of their neighbours will be sampled. In [9], the friendship paradox is used for
the early detection of flu outbreaks among college students. In [10], it is utilized
to derive early-warning sensors during catastrophic events such as hurricanes.

In this paper, first we explain a quality-dependent preferential attachment
scheme introduced in [12]. Then, we introduce measures to quantify the mean and
the median paradoxes. In Section 4 these measures are computed numerically on
the networks generated with the quality-dependent model and also uncorrelated
networks. We compare the results obtained in these networks using both the
mean and the median statistics. Furthermore, we study the effect of node quality
distribution on the quality and friendship paradoxes.

2 Model, Notation and Terminology

We consider a quality-based preferential attachment (QPA) model, identical to
the model proposed and analysed in [12]. It is similar to the Barabasi-Albert
model [11], but incorporates node qualities. Each incoming node has β links,
and a discrete quality θ drawn from a distribution ρ(θ) that is assigned to it
upon birth. The probability of an existing node x with degree kx and quality θx
(at the instant) receiving a new link is proportional to kx + θx.

Once assigned, the quality of a node does not change. We denote the mean
of the quality distribution by μ. Following [12], as the number of nodes tends to
infinity, P (k, θ), the fraction of nodes with degree k and quality θ is given by:

P (k, θ) = ρ(θ)
(
2 +

μ

β

)Γ (k + θ)

Γ (β + θ)

Γ
(
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)
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In [12] the nearest-neighbor distribution, i.e., the fraction of neighbors of a node
with degree k and quality θ who has degree � and quality φ is given by:
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3 Measures of Friendship and Quality Paradoxes

By marginalizing the joint distribution P (k, θ) we can find the degree distribu-
tion, denoted by P (k). Also, from the nearest-neighbor distribution (2), we can
find the expected value of the qualities of neighbors of a node with quality θ
and also the expected value of the degrees of neighbors of a node with degree k.
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This allows us to investigate when the quality paradox (hereinafter QP) and the
friendship paradox (hereinafter FP) are in force, and which nodes in the network
exhibit the paradox.

Let us also define the ‘median’ version of the paradoxes, following [7]. In the
median version, instead of the average values of quality or degree of neighbors,
we use the median values. A node experiences the median QP (FP), if its quality
(degree) is less than the quality (degree) of at least half of its neighbors.

Throughout the paper, the superscript NN denotes Nearest-Neighbor. Let us
denote the median operator by M{·}. For example, M{φNN |θ} denotes the me-
dian value of φ under the distribution P (φ|θ), and is a function of θ. Also note
that every measure we introduce here is by nature a function of the parameters
of the quality distribution. For example, if the exponential decay quality distri-
bution is considered, the measures will depend on the decay factor. We denote
the parameter of the quality distribution by x. Using this notation, we define
the critical values for the mean and the median paradoxes as follows:

mean:

⎧
⎪⎪⎨

⎪⎪⎩

θ̃c(x)
def
= max

{
θ
∣∣∣θ < E{φNN|θ}

}

k̃c(x)
def
= max

{
k
∣∣∣k < E{�NN|k}

} ,median:

⎧
⎪⎪⎨

⎪⎪⎩

θ̂c(x)
def
= max

{
θ
∣∣∣θ < M{φNN|θ}

}

k̂c(x)
def
= max

{
k
∣∣∣k < M{�NN|k}

} . (3)

In other words, θ̃c(x) is the highest quality that a node can have, given that

its quality is lower than the average quality of its neighbors. Similarly, k̃c(x)
is the highest degree that a node can have, given that it exhibits the mean
FP. For the median version of the paradox, we have θ̂c(x) and k̂c(x). So θ̂c(x)
is the highest quality that a node exhibiting the median QP can have. Let us
also emphasize that we use the following convention with regards to the median
throughout the paper: the median of the probability distribution g(x) (with
CDF G(x)) is the minimum value of x for which G(x) ≥ 1

2 . For example, for
g(x) = 1

2δ[x] +
1
2δ[x− 5], the median is x = 0.

We now define similar quantities for an ‘uncorrelated network’. In this network
the qualities are assigned to nodes in an identical way to the QPA model, but the
attachment of new nodes to existing nodes depends on neither the degrees nor
the qualities of the existing nodes. In this network the properties of a node are
uncorrelated with the properties of its neighbors. We denote this case by super-
script u. For this network we have Pu(�, φ|k, θ) = P (�, φ) and Pu(φ|θ) = ρ(φ).
For the critical values of the mean and the median paradoxes, we have:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ̃uc (x)
def
= max

{
θ
∣∣∣θ < E{φNN|θ}

}
= max

{
θ
∣∣∣θ < E{φ}︸ ︷︷ ︸

=μ

}
= μ(x) − 1

θ̂uc (x)
def
= max

{
θ
∣∣∣θ < M{φNN|θ}

}
= max

{
θ
∣∣∣θ < M{φ}︸ ︷︷ ︸

= θ̂

}
= θ̂(x)− 1

. (4)

Similarly, for degrees we have: k̃uc (x) = k(x)− 1 and k̂uc (x) = k̂(x)− 1.
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We are also interested in the fraction of all nodes that experience each type
of paradoxes. This is equal to the fraction of nodes with their attribute below
the corresponding critical value. We denote these quantities by:

mean:

⎧
⎪⎪⎨

⎪⎪⎩

F̃θ(x) =
∑

θ≤θ̄c(x)

ρ(θ)

F̃k(x) =
∑

k≤k̄c(x)

P (k)
, median:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F̂θ(x) =
∑

θ≤θ̂c(x)

ρ(θ)

F̂k(x) =
∑

k≤k̂c(x)

P (k)
. (5)

4 Results and Discussion

In this paper we consider two quality distributions for expository purposes. The
first one is the Bernoulli distribution, where nodes have quality 0 (with proba-
bility p) or quality θmax (with probability 1− p). The other one is the discrete
exponential distribution, with decay factor q. The probability of quality θ is
proportional to qθ, and the maximum value of θ is denoted by θmax. Figure 1
depicts these quality distributions for four example values of p and q. Note that
for q < 1, the exponential distribution is a decreasing function of quality and
μ > θ̂, and for q > 1, the distribution is increasing function of quality and μ < θ̂.
Also for the Bernoulli distribution note that, with the convention we use for the
median, the value of the median is zero if p ≥ 1

2 , and the median is equal to θmax

if p < 1
2 . For each distribution, we have numerically computed all the introduced

measures for four different values of β and four different values of θmax.
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and p = 1 correspond to conventional
Barabasi-Albert and shifted-linear prefer-
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Fig. 1. Examples of the quality distributions used in this paper with θmax = 8. Four
instances of each type is depicted.
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(e) Exponential, β = 2 θmax = 16
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(f) Exponential, β = 8 θmax = 16
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Fig. 2. Critical values for quality and degree as defined in (3) and (4) computed for
Bernoulli and exponential quality distributions
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Critical values obtained for two distributions are presented in Figure 2. These
values are computed using the closed form expressions mentioned in Section 2.
From Figure 2a we can learn about the differences between the networks that the
QPA model generates and an uncorrelated network. In an uncorrelated network
the probabilities of a random node being connected to a neighbor with quality 0
and θmax are equal to p and 1− p, respectively (regardless of the quality of the
node). If the majority of the neighbors have quality zero (p ≥ 0.5), the median is
zero. Similarly, if the majority have quality θmax (p < 0.5), the median is θmax.
So if p < 0.5, nodes with qualities up to θmax − 1 experience the median QP and
θ̂uc = θmax − 1. Conversely, if p ≥ 0.5, θ̂uc = 0. This explains the abrupt drop

in θ̂uc in Figure 2a. On the other hand, in the QPA model, this transition takes
place at a p greater than 0.5. This means that upto some point beyond p = 0.5,
although the probability of θ = 0 is higher than that of θ = θmax, the majority of
the friends of each node have quality θmax. There is a region for p > 0.5, where
the majority of the network have quality zero, but the majority of the neighbors
of most nodes have quality θmax. This indicates quality disassortativity, since
low quality nodes are mostly connected to nodes with high qualities.

For the mean version of the QP, we consider the example case of p = 0.2 for
discussion. In an uncorrelated network, each node (with any quality) is connected
to neighbors with quality 0 and θmax with probabilities 0.2 and 0.8, respectively.
So the average of the qualities of its neighbors is 0.8 θmax. So nodes with quality
less than 0.8 θmax experience the mean QP. On the other hand, in the QPA
model θ̃c < θ̃uc at p = 0.2. This means that nodes whose qualities are between

θ̃c and θ̃uc , do not experience the mean QP in the QPA model (while they do
experience this paradox in the uncorrelated case). We deduce that these nodes
are connected to quality zero nodes with a higher probability than 0.2. This
reduces the average quality of their niehgbors. Now consider the example case
of p = 0.8. In this case, θ̃uc < θ̃c. This means that nodes with quality between

θ̃c and θ̃uc experience the mean QP in the proposed model, while they do not
experience it in the uncorrelated case. In an uncorrelated network these nodes
would be connected to zero and θmax quality nodes probabilities 0.8 and 0.2,
respectively. However, in the QPA model, these nodes are connected to nodes
with quality θmax with a probability higher than 0.2, and this increases the
average quality of their neighbors, making them subject to the mean QP.

Comparing Figure 2b with 2a we observe the curves are similar, but the differ-
ence between the QPA model and the uncorrelated case is smaller in Figure 2b.
For example, the drop in the θ̂c curve is closer to the drop in θ̂uc for the uncor-
related case. We conclude that increasing β decreases the difference between the
QPA model and the uncorrelated case.

In Figure 2c, critical degrees are depicted. It can be observed that as p in-
creases, k̃c increases. Comparing Figures 2c and 2d, we observe that all the
critical degrees are greater in the case of β = 8 than β = 4. Also the range of
node degrees experiencing any type of paradoxes is wider in the β = 8 case.

From Figure 2e, we observe that for fixed decay factor, θ̃c ≥ θ̃uc and θ̂c ≥
θ̂uc . This means that there exist values of θ that in the uncorrelated network
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experience QP, but in the proposed model they do not. So the range of possible
values of quality that experience the QP is wider in the QPA model than in un-
correlated networks. This argument holds for both mean and median paradoxes.

We also observe from Figure 2e that for q < 1, θ̃c ≥ θ̂c and θ̃uc ≥ θ̂uc . Both
of these inequalities flip in the case of q > 1. The main cause of this change of
regime is the difference between the shape of the quality distribution for q > 1
and q < 1. When q < 1, the median paradox is stronger (using the terminology
of [7]), that is, the median paradox applies to a smaller range of qualities than
the mean paradox (for both the uncorrelated network and the QPA model).
However, when q > 1, the median of the distribution is greater than the mean.
As it can be observed in Figure 2e, there are values of θ that are subject to the
median version of the paradox, but not to the mean version. This means that
the term ‘strong paradox’ introduced in [7] is not applicable to this case, because
the mean version provides a tighter range of qualities in paradox, as compared
to the median version.

Another observable trend in Figure 2e is that the critical values of quality are a
non-decreasing functions of q. This can be intuitively explained as follows. When
q is low, the majority of the network is constituted by low quality nodes. The
majority of the neighbors of a low quality node will also have low quality. So the
node does not experience the paradox with high probability. When q increases,
the number of nodes with higher quality increases, and a low quality node has a
higher probability of being connected to those high quality nodes, which gives it a
higher probability of experiencing paradox. Comparing Figure 2f with Figure 2e,
we observe that as β varies θ̃uc and θ̂uc do not change, while the critical values of
the QPA model get closer to those of the uncorrelated case. These figures only
depict the results for two values of β, due to space limitations. The trend holds
for the omitted figures. We conclude that as β gets larger, the correlation of the
quality of a node with the quality of its neighbors diminishes.

In Figure 2g, the critical degrees (as defined in (3) and (4)) are depicted. It

can be observed that as q increases, k̃c decreases. Comparing Figures 2g and 2h,
we observe that all the critical degrees are greater in the case of β = 8 than
β = 2. Also the range of the degrees who experience paradox (of any type) is
wider when β = 8. In both figures, we observe that the mean FP is more sensitive
to changes in the quality distribution than the median FP.

Figure 3 depicts the fraction of nodes in the quality and friendship paradoxes
(as defined in (5)) when quality distribution is exponential. From Figure 3a we
observe that, as q increases in the vicinity of zero, F̃θ, the fraction of nodes
experiencing the mean QP (with qualities lower than θ̃c) decreases, because
increasing q increases the fraction of nodes with high qualities. The fraction F̃θ

has discontinuities at the values of q at which θ̃c is incremented by one. So all
the nodes whose qualities where equal to the new θ̃c are taken into account as
those who experience the mean QP, hence the abrupt jump.

The fraction of nodes in the median QP is depicted in Figure 3b. It can be seen
that F̂θ has a similar behavior to that of F̃θ. Each discontinuity pertains to a value
of q at which θ̂c increments. The main difference between Figures 3a and 3b is the
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0 0.5 1 1.5
0.62

0.64

0.66

0.68

0.7

0.72

0.74

q

F̂
k

θ
max

=8

θ
max

=16

θ
max

=24

θ
max

=32

(f) median friendship paradox, β = 6

Fig. 3. The fraction of nodes in the quality and friendship paradoxes when the quality
distribution ρ(θ) is exponential

behavior near q = 0. In the mean QP, when almost all nodes have quality zero,
even one non-zero quality neighbor elevates the average above zero, so all those
zero-quality nodes experience the mean QP. However, in the median version, at
least half of the friends of a zero-quality node must have non-zero quality. Also
observe that for q < 1, we have F̃θ ≥ F̂θ, i.e, the fraction of nodes in the mean QP
is higher than the fraction of nodes in the median QP. But, for q > 1 the inequality
changes sides.
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(c) median friendship paradox, θmax = 16
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Fig. 4. The fraction of nodes in the friendship paradox when the node quality distri-
bution ρ(θ) is Bernoulli

In Figures 3c and 3d, it can be observed that for all values of β and θmax, the
majority of the nodes (over 80%) experience the mean FP. Also, as q increases,

F̃k decreases. It means that the quality distribution affects the FP that depends
solely on degrees. Through the quality-dependant network growth mechanism,
the degree distribution, and hence the conditions under which a node experiences
the FP, depend on the quality distribution. Also, it is observed in Figure 3c that
as β increases, the sensitivity of F̃k to variations of q decreases. This means that
as the initial degree of nodes increases, the effect of the quality distribution on
the FP diminishes. Because as β increases the final degrees of nodes increase,
and for larger degrees k + θ is dominated by k; varying θ has less of an effect.
Conversely, in Figure 3d, as θmax increases, the sensitivity of F̃k to variations of
q increases. As the range of possible qualities becomes wider, the probability of
having high values of θ that have significant roles in k + θ increases.

In Figures 3e and 3f, we observe that as q increases, F̂k (the fraction of nodes
experiencing the median FP) decreases. This is similar to the trend observed

for F̃k in Figures 3c and 3d. From Figure 3e we observe that F̂k increases as β
increases. From Figure 3f we observe that for a range of decay factors (up to
around q = 0.7), θmax does not have a significant effect on F̂k, but beyond that
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point, F̂k decreases as θmax increases. Also, comparing Figures 3e and 3f with
Figures 3c and 3d, we assert that F̂k ≤ F̃k. In other words, the median FP is
always stronger than the mean FP, regardless of the quality distribution.

The fraction of nodes experiencing the FP when the quality distribution is
Bernoulli are depicted in Figure 4. From Figures 4a and 4b we observe that as p
increases, F̃k (the fraction of nodes experiencing the mean FP) increases. From

Figure 4a we deduce that as β increases, the sensitivity of F̃k to variations of p
decreases. Also, in Figure 4b it is observed that as θmax increases, the sensitivity
of F̃k to variations of p increases (similar to Figures 3c and 3d).

From Figure 4c we observe that as β increases, F̂k (the fraction of nodes ex-
periencing the median FP) increases. From Figure 4d we observe that as θmax

increases, the sensitivity of F̂k to the variations of p increases. Comparing Fig-
ures 4a and 4b with Figures 4c and 4d we deduce that for each value of p, we
have F̂k ≤ F̃k, i.e., the fraction of nodes experiencing the mean FP is higher than
nodes in the median FP regardless of the quality distribution.

5 Summary and Future Work

In this paper we studied the friendship and the generalized friendship paradoxes
on networks grown under a quality-based preferential attachment scheme. To
this end, we introduced measures, such as quality and degree critical values, and
fraction of nodes that experience each paradox. In each case, we considered the
mean and the median to characterize the paradox. We compared the results to
the uncorrelated network where the qualities and degrees of neighbors are un-
correlated. We considered Bernoulli and exponential distributions for qualities.

For the exponential quality distribution, the critical quality of the uncorre-
lated case is always smaller than that of the QPA model. This means that the
range of possible values of the quality that experience paradox is wider in the
QPA model than in the uncorrelated case. We also observed that as β increases,
the nearest-neighbor quality correlation decreases. In other words, the critical
values of the proposed model converge to those of the uncorrelated case. For the
exponential quality distribution we also observe that when q < 1 (which makes
the median smaller than the mean), the median QP is stronger than the mean
QP for both the QPA model and the uncorrelated case. The converse is true for
q > 1. For all values of β, θmax, over 80% of nodes experience the mean FP. We
observed that changing the distribution of qualities affects the FP (in addition
to the QP). This effect is strengthened when β decreases or when θmax increases.
Also, it was observed that regardless of the quality distribution, the median FP
is always stronger than the mean FP.

Plausible extensions of the present contribution are as follows. We can apply
the measures introduced here to real networks, and compare the results, and also
compare them with networks synthesized with arbitrary quality distributions.
This enables us to investigate what type of quality distribution best characterizes
a given network.
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Abstract. Many studies use community detection algorithms in order to under-
stand complex networks. Most papers study node communities, i.e. groups of
nodes, which may or may not overlap. A widely used measure to evaluate the
quality of a community structure is the modularity. However, sometimes it is also
relevant to study link partitions rather than node partitions. In order to evaluate a
link partition, we propose a new quality function: Expected Nodes. Our function
is based on the same inspiration as the modularity and compares, for a given link
group, the number of incident nodes to the expected one. In this short note, we
discuss the advantages and drawbacks of our quality function compared to other
ones on synthetics graphs. We show that Expected Nodes is able to pass some
fundamental sanity criteria and is the one that best identifies the most relevant
partition in a more realistic context.

Keywords: complex networks, community detection, link partition, quality
measure.

1 Introduction

In the past years, complex networks were extensively studied because of the broad range
of systems they can model, from protein-protein interactions to social networks. One
question of interest is the detection of communities. Despite the important literature
that covers the detection of classical, overlapping or even dynamic communities, most
works focus on grouping nodes. On the other hand, the question of link communities
has received less attention [4,1,8]. Intuitively, partitioning a network’s links is very
relevant in some contexts. For example, in a social network, most individuals belong to
multiple communities such as families, friends, and co-workers, while the links between
individuals usually exist for a dominant reason. In this context, a link community would
be a group of interactions on one topic.

In this paper, we address the problem of evaluating the quality of a link partition.
After a review of previous works (Section 2), we introduce a novel measure: Expected
Nodes (Section 3). It is based on the assumption that a link community corresponds
to less individuals than expected while its surroundings links correspond to more indi-
viduals than expected. We use several test cases (Section 4) to study how this measure
behaves when compared to other quality functions.

c© Springer International Publishing Switzerland 2015 57
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2 Related Work

We introduce some notations used throughout this paper. Let G = (V,E) ge a graph,
d(u) denotes the degree of node u in G. A link partition in k groups is noted L =
(L1,L2, . . . ,Lk) with Li ⊆ E ∀i, Li ∩ Lj = /0 ∀i �= j and

⋃
i Li = E . For a given link

group L ∈ L , let Vin(L) = {u ∈ V,∃(u,v) ∈ L} be the group of nodes inside L and
Vout(L) = {u ∈V \Vin(L),(u,v) ∈ E \L∧ v ∈Vin(L)} be the nodes adjacent to L.

Ahn et al. [1] were among the first to propose a method to detect link communities.
Their method link clustering is a hierarchical clustering method constructing a dendro-
gram by iteratively merging groups of links according to a similarity measure based on
the Jaccard index. To decide where to cut the dendrogram in order to create a partition,
they use a density based measure: the partition density. For a given link partition L ,
the partition density is given by:

D(L ) =
2
|E| ∑

L∈L ,|L|>2

|L| |L|− (|Vin(L)|− 1)
(|Vin(L)|− 1)(|Vin(L)|− 2)

. (1)

However, the partition density cannot be easily generalized to weighted networks. An
attempt in this direction has been made by Kim [5].

Evans et al. [4] propose three quality functions to evaluate link partitions. Their qual-
ity functions can be computed and optimized on the original graph but also on specific
weighted line graphs (LG1, LG2, LG3) using existing algorithms such as the Louvain
method [3]. A line graph of an undirected graph is a graph where each node represents
a link from the original graph and two nodes are connected if the corresponding links
share a node.

To define these particular line graphs LG1, LG2 and LG3, let B denote the incidence
matrix of a network G: the elements Biα of this |V |× |E| matrix are equal to 1 if link α
is connected to node i and 0 otherwise. Matrices LG1, LG2 and LG3 are defined as:

x = 1 x = 2 x = 3

LGx(α,β ) BiαBiβ (1− δαβ) ∑i∈V,dG(i)>1
Biα Biβ

d(i)− 1
∑i, j∈V,d(i)dG( j)>0

Biα Ai jB jβ

d(i)d( j)

Let kx(α)=∑β LGx(α,β ) be α’s weighted degree in LGx and Wx =∑α ,β∈|E| LGx(α,β ).
For x ∈ {1,2,3}, the quality function Evansx is:

Evansx(L ) =
1

Wx
∑

Li∈L
∑

e1,e2∈L2
i

LGx(e1,e2)− kx(e1)kx(e2)

W
. (2)

Kim et al. [6] explored the extension of the concept of Minimum Length Description
introduced by Rosvall et al. [10] which is an information-theoretic framework. This
extension directly considers link partitions. An advantage of their method is the ability
to compare link and node partitions.

3 Our Quality Function: Expected Nodes

One commonly accepted assertion for node communities is: a community should have
more internal connections than the expected number of connections in a random null
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model where no community structure exists. This assertion is at the core of the mod-
ularity introduced by Newman and Girvan [9]. In the same way, to evaluate a link
community, we compare the number of nodes to its expected number of nodes. Like
modularity, the measure can be decomposed, for each group L, into two components: in-
ternal quality and external quality. Like modularity, we use the configuration model [2]
for a null model. In this model, the links are created by choosing random pairs of half-
link (or stubs), each node having as many stubs as is degree in the original graph.

We start by describing the internal quality. Intuitively, a group of links L is a relevant
community if it consists of a large number of links adjacent to few nodes, i.e. if Vin is
small compared to what would be expected in the configuration model. By definition, a
node is an internal node of L if one of its stubs (half-links) is in L. Therefore, to compute
the expected number of internal nodes in the configuration model, we choose randomly
2|L| stubs among a total of 2|E| stubs. A node u has therefore d(u) ways to be picked.
The expected number of internal nodes for a given link group L, denoted by μG(|L|), is
then:

μG(|L|) = ∑
u∈V

P(u picked at least once) = ∑
u∈V

1−
(2|E|−d(u)

2|L|
)

(2|E|
2|L|

) . (3)

Note that the function μG only depends on the degree sequence {d(v)}v∈V . Note
also that if |L|= 1, then μG(|L|)≤ 2; this is because the configuration model allows self
loops. A group L has a good internal quality if it has less internal nodes than expected.
We therefore choose to define the internal quality function Qin for a given group L as
the variation between the actual number of internal nodes and its expectation:

Qin(L) =
μG(|L|)−|Vin(L)|

μG(|L|) . (4)

With this definition, for a given |L|, the fewer nodes a group of links involves, the
higher Qin will be.

We now describe the external quality of a group L. The process to evaluate the neigh-
bourhood Vout(L) of a group L is similar to the process for the internal nodes. However
in this case, we consider that L has a bad neighbourhood if it has fewer external nodes
than expected. Indeed if there are many external links and few external nodes, these
external links should be included in the community. Let d̄(L,u) = ∑v∈V �(u,v)∈E\L be
the degree of u restricted to links not in L and d̄(L) = ∑u∈Vin(L) d̄(L,u). The expec-
tation of the number of adjacent nodes is evaluated as the number of nodes that are
picked when d̄(L) stubs are chosen randomly in the configuration model where the
links of L have been removed. The corresponding degree sequence is {dG\L(u)}u∈V

where G\L = (V,E \L) . Only one half link is chosen randomly because the other half
has to remain attached to an internal node of L. Thus, we have the following equation:

E[d̄(L)] = μG\L(
¯d(L)/2). (5)

Since we are interested in penalizing groups that have few external nodes, but do not
consider that a group is particularly good if it has a large number of external nodes, we
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bound the external quality by 0:

Qext(L) = min

(
0,
|Vout(L)|− μG\L(d̄(L)/2)

μG\L(d̄(L)/2)

)
. (6)

Finally, we define Expected Nodes for a group L as:

Q(L) = 2
|L|Qin(L)+ |Lout |Qext(L)

|L|+ |Lout | . (7)

Notice that the trivial group containing all links has a null quality because Qin and Qout

will be equal to 0. The other trivial decomposition where each link belongs to its own
group has a negative quality. However, in some cases a group containing a single link
might be the best choice. It is the case when the link is a bridge between dense groups.
Finally, we define Expected Nodes for a given link partition L as the weighted sum of
the quality of each group:

QG(L ) =
∑L∈L |L|Q(L)

|E| . (8)

4 Comparison with Existing Methods

In order to study the relevance of Expected Nodes, we use two test cases.We also com-
pare it to acknowledged quality functions: partition density [1] and the quality functions
developed by Evans et al. [4] denoted by Evans1, Evans2 and Evans3.

4.1 Complete Graph

We start with a simple case in order to check that Expected Nodes satisfies some impor-
tant and fundamental properties. We study a complete graph of 100 nodes (we obtained
similar results with different sizes). On this graph, we define the trivial partition with
one group containing all links, and two partitions families: one with two groups and one
with three groups. Given a parameter p < |V |, let V ′ be a set of p nodes. Both partitions
place all links in V ′ ×V ′ in one group. The 2-groups partition places all other links in
the second group. The 3-groups partition places all links in V ×V \V ′ in a second group
and all remaining links in the third. These assignment rules are illustrated in Figure 1

As the graph is a single complete graph, the best solution is to capture only one
group with all the links, i.e. the trivial partition should have the highest ranking. Fig-
ure 2 shows the results. For each value of p and each quality function, we present the
values for the corresponding partitions in 2 and 3 groups and for the trivial partition.
Surprisingly, quality functions Evans1 and Evans2 fail this simple test because they
evaluate the 2- or 3-groups partitions as better than the trivial one. According to parti-
tion density, Expected Nodes and E3, the trivial partition is best. The quality function
Evans3 differs because of its small amplitude (≈ 10−3).
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(a) (b)

Fig. 1. Two different link partitions of a complete graph with p = 5: (a) in two link groups and
(b) in three link groups. The dark nodes corresponds to V ′ and the color of a link corresponds to
its group.
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Fig. 2. Evaluation of 5 quality functions on a complete graph of 100 nodes for 3 different parti-
tions. The tested partitions are presented in Section 4.1. The results for quality functions Evans1
and Evans2 are identical. The gray line, black line and dashed line represent respectively the
1-group partition, the 2-groups partition and the 3-groups partition.
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4.2 Overlapping LFR Benchmark

We now discuss results obtained by comparing the quality functions on random net-
works with a known community structure. To the best of our knowledge, there is no
graph generator based on link partitions. We use the benchmark proposed by Lanci-
chinetti et al. [7] which generates graphs based on a known node cover. We introduce
two transformations of this overlapping community structure into link partitions de-
noted by TA and TB (see Figure 3). Given u,v ∈ V , let Cu,v denote the intersection
between the communities of u and v in the node cover and Uu,v their union. We define
the group of a link (u,v) ∈ E in the partitions as follows:

intra-community if |Cu,v|= 1 then (u,v) is in community Cu,v;
inter-community if |Cu,v|= 0 then in TA, (u,v) belongs to its own community. In T B

it belongs to community Uu,v which contains all links (u′,v′) such that Uu′,v′ =Uu,v;
overlapping if |Cu,v|> 1 then (u,v)’s community is chosen randomly in Cu,v.

Fig. 3. Construction of TA and T B from a node cover. Link colours denote groups.

We describe the results averaged over 30 graph generations with 500 nodes, an av-
erage degree of 25, 10 overlapping nodes and a mixing parameter of 0.11. There are on
average 5620 intra-community links, 625 inter-community links and only 5 overlapping
links. For each generation, the partition TA, T B, the partition LC found by link cluster-
ing [1] and the partition E2 found by the second method of Evans et al. [4] (based on the
optimization of Evans2)2 are evaluated using Partition Density, Evans2 and Expected
Nodes.

In TA (resp. T B), there are 650 (resp. 70) groups on average. Manual investiga-
tions show that the E2 partitions are very close to the ground truth (TA or TB) if
inter-community links are not considered. Indeed in E2, inter-community links are ran-
domly distributed among adjacent larger link communities. The LC partitions contain
720 groups on average and intra-community links are split into many small groups. No-
tice that neither TA nor T B get the best evaluation according to Evans2 and Partition
density even though they are considered as ground truth.

1 Remaining parameters with original notations: kmax = 50, t1 =−2, t2 =−1, Cmin = 20, Cmax =
100.

2 The results are similar for the algorithms using E1 and E3.
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(a) Partition density (b) Evans2 (c) Expected Nodes

Fig. 4. Boxplots of the three quality functions values for the different link partitions. The box
shows lower and upper quartiles and the median. The whiskers extend to 1.5 time the interquartile
range. Flier points are those past the end of the whiskers.

The following observations can be made. First, Expected Nodes (Fig. 4c) behaves
differently than both other measures (Fig. 4a and 4b). This shows that our measure
brings something new to the picture. Moreover, its values are usually higher for TA and
T B than for the partitions found using the two algorithms, which corresponds to our
expectations. Second, the Expected Nodes values are significantly different for TA and
T B. It is not the case for quality functions E2 and Partition density. Indeed, external
links between the same community are likely to form a group of isolated links in TB.
This situation is highly penalized by our measure. It also explains why Expected Nodes
evaluates LC partitions better than E2 partitions. For those reasons, we believe that
maximizing Expected Nodes would result in partitions close to TA in this benchmark.

4.3 Conclusion

In this paper, we propose a new quality function, Expected Nodes, to evaluate the quality
of a link partition of a graph3. It compares the number of nodes adjacent to a link
group to its expectation, in the same way as the modularity evaluates the relevance of a
node group by comparing the number of adjacent links to its expected value. To show
the relevance of Expected Nodes, we compared it to existing quality functions. The
main perspective of our work is to design an algorithm for maximizing Expected Nodes
in order to detect relevant link partitions. More detailed comparisons between quality
functions may also be performed. For instance, it would be interesting to evaluate their
behaviour to detect whether they are likely to present local maxima such as the one
observed in Figure 2c or not.

Acknowledgements. This research was supported by a DGA-MRIS scholarship, by a
grant from the French program "PIA – Usages, services et contenus innovants" under
grant number O18062−44430 and by the CODDDE project ANR-13-CORD-0017-01.

3 The code used to compute each quality function is available:
https://github.com/ksadorf/ExpectedNodes

https://github.com/ksadorf/ExpectedNodes
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Abstract. Hyperbolicity is a global property of graphs that measures
how close their structures are to trees in terms of their distances. It
embeds multiple properties that facilitate solving several problems that
found to be hard in the general graph form. In this paper, we investigate
the hyperbolicity of graphs not only by considering Gromov’s notion of
δ-hyperbolicity but also by analyzing its relationship to other graph’s
parameters. This new perspective allows us to classify graphs with re-
spect to their hyperbolicity, and to show that many biological networks
are hyperbolic. Then we introduce the eccentricity-based bending property
which we exploit to identify the core vertices of a graph by proposing two
models: the Maximum-Peak model and the Minimum Cover Set model.

1 Introduction

Using graph-theoretical tools for analyzing complex networks aids identifying
multiple key properties as well as explaining essential behaviors of those systems.
A common structure in many network disciplines is the core-periphery structure
which suggests partitioning the graph into a dense core and sparse periphery.
Vertices in the periphery interact through a series of core vertices. This pattern
of communication (where traffic tends to concentrate on a subset of vertices) has
been observed in trees where distant nodes communicate via the central nodes.
δ-Hyperbolicity, which is a measure that shows how close a graph is to a tree,
suggests that any shortest path between any pair of vertices bends (to some
extent) towards the core. This phenomenon has been justified by the negative
curvature which in case of graphs can be measured using hyperbolicity [24].

Multiple complex networks such as the Internet [28,14], data networks at the
IP layer [24], and social and biological networks [4,2] show low δ-hyperbolicity
(low hyperbolicity suggests a structure that is close to a tree structure [14,3]).
Also, it has been observed that networks with this property have highly con-
nected cores [24]. Generally, the core of a graph is specified according to one
or more centrality measures. For example, the betweenness centrality and the
eccentricity centrality. The δ-hyperbolicity of graphs embeds multiple properties
that facilitate solving several problems that found to be difficult in the gen-
eral graph form; for example, diameter estimation [9] and compact distance and
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routing labeling schemes [10,12]. In this paper, we investigate implications of the
δ-hyperbolicity of a graph and exploit them for the purpose of partitioning the
graph into core and periphery parts. Our main contributions can be summarized
as follows.

(a) We study the hyperbolicity of several biological networks and show that
the hyperbolicity of almost all the networks in our dataset is small. This confirms
the results in [4]. However, unlike previous efforts, we analyze the relationship
between the hyperbolicity and other global parameters of the graph. We find in
most of our networks that the hyperbolicity is bounded by the logarithm of the
graph’s diameter and the logarithm of the graph’s size. Based on this we classify
graphs into: strongly-hyperbolic, hyperbolic, and non-hyperbolic.

(b) We formalize the notion of the eccentricity layering of a graph and employ
it to introduce a new property that we find to be intrinsic to hyperbolic graphs:
the eccentricity-based bending property. Unlike previous work, we investigate the
essence of this bending in shortest paths by studying its relationship to the
distance between vertex pairs.

(c) We exploit the eccentricity-based bending property by proposing two core-
periphery separation models. We apply both models to our datasets. In contrast
to what was observed in [18], we find that biological networks exhibit a clear-cut
core-periphery structure. Some details were omitted in this conference version
of the paper. Interested readers can refer to [1].

2 Theoretical Background and Related Work

Preliminaries on Graph Theory. A simple undirected graph G = (V,E)
naturally defines a metric space (V, d) on its vertex set V . The distance d(u, v)
is defined as the number of edges in a shortest path ρ(u, v) that connects two
vertices u and v. We define the size of the graph denoted as size(G) as size(G) =
|V |+|E|. The diameter of the graph diam(G) is the length of the longest shortest
path between any two vertices u and v, i.e., diam(G) = maxu,v∈V {d(u, v)}. The
eccentricity of a vertex u is ecc(u) = maxv∈V {d(u, v)}, i.e., the distance between
u and any of its farthest neighbors v. The minimum value of the eccentricity
represents the graph’s radius : rad(G) = minu∈V {ecc(u)}. The set of vertices
with minimum eccentricity are considered the center of the graph C(G). In
other words, C(G) = {u ∈ V : ecc(u) = rad(G)}.
δ-Hyperbolicity. The δ-hyperbolicity measure of a metric space was proposed
by Gromov [17]. It measures how close the metric structure is to a tree structure.
A connected graph G can be viewed as a metric space with the graph distance
metric d. There are multiple equivalent definitions (up to constant factors [9])
for Gromov’s hyperbolicity. Here we use the four-point condition definition.

Given a graph G = (V,E), x, y, u, and v ∈ V are four distinct vertices, and
the three sums: d(x, y)+d(u, v), d(x, u)+d(y, v), and d(x, v)+d(y, u) sorted in a
non-increasing order, the hyperbolicity of the quadruple x, y, u, v is defined as:
δ(x, y, u, v) = ((d(x, y) + d(u, v))− (d(x, u) + d(y, v)))/2. The δ-hyperbolicity of
the graph G denoted as δ(G) (or simply δ) is δ(G) = maxx,y,u,v∈G δ(x, y, u, v).
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For finite graphs δ-hyperbolicity is finite. Consequently, one can think of all
finite graphs as hyperbolic except that the value of δ decides how hyperbolic the
graph is. On the other hand, when no finite δ exists (which may be the case
for infinite graphs), the graph is considered non-hyperbolic [3]. Generally, the
smaller the value of δ the closer the graph is to a tree (metrically).

Core-Periphery and Network Centrality in Complex Networks. In [6],
the authors formalize the core-periphery structure by developing two models:
the discrete model where vertices belong to one of two classes (core and periph-
ery) and the continuous model which includes three classes or more of vertices.
Holme in [18] introduces a coefficient that measures if a network has a clear
core-periphery structure based on the closeness centrality. Structure analyses of
some biological networks have detected the presence of the core-periphery orga-
nization. [13] proposes a parameter that detects the existence of a core-periphery
structure in a metabolic network based on the closeness centrality. [16] studies
recognizing the central metabolites in a metabolic network. In [21], the authors
identify the central metabolites using degree and closeness centrality.

In the study of communication networks, the core is usually identified by
the small dense part that carries out most traffic under shortest path routing
[5,24]. It is quite natural to associate the concepts of the network’s core and
its center. In [6], the authors argue that each central vertex is a core vertex;
consequently, all coreness measures are centrality measures. The notion behind
centrality is identifying vertices that are high contributors. There are multiple
centrality measures in the literature. The betweenness centrality expresses how
much effect each vertex has in the communication. Given a connected finite graph
G = (V,E), the betweenness centrality of a vertex u ∈ V measures the total
number of shortest paths between every pair of vertices x and y that pass through
u. The eccentricity centrality suggests that the center of the graph includes the
vertex (or vertices) that has the shortest distance to all other vertices.

3 Datasets

We analyze the protein interaction networks of Budding yeast [7], Escherichia
coli [8], Yeast [11], Saccharomyces cerevisiae [19], and Helicobacter Pylori [26].
Also, we analyze two brain area networks of the macaque monkey [25] [23];
and the metabolic networks of the Escherichia coli [20] and the Caenorhabditis
elegans [15]. Finally, we analyze the yeast transcription network [22]. In this
work, we consider unweighted graphs, and we only consider the largest connected
component of each network. The size of this component for each network is
presented in Table 1. We also ignore the directions of the edges.

4 δ-Hyperbolicity of Networks

For the purpose of investigating the hyperbolicity of networks, it seems natural to
analyze and classify them based on their hyperbolicity. The classification should
reflect how strong (evident) the tree-likeness is in the graph’s structure.
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Table 1. Graph datasets and their parameters: number of vertices |V |; number of
edges |E|; graph’s size size(G); average degree d̄; diameter diam(G); radius rad(G);
hyperbolicity δ(G); and the average hyperbolicity δ

′
(G)

Network Category Network |V | |E| log2(size(G)) d̄ diam(G) rad(G) δ(G) δ
′
(G)

PI Networks

B-yeast-PI 1465 5839 12.8 7.97 8 5 2.5 0.299
E-coli-PI 126 581 9.5 9.2 5 3 2 0.251
Yeast-PI 1728 11003 13.6 12.7 12 7 3.5 0.322

S-cerevisiae-PI 537 1002 10.5 3.7 11 7 4 0.419
H-pylori-PI 72 112 7.5 3.1 7 5 3 0.368

Neural Networks Macaque-brain-1 45 463 9 11.3 4 2 1.5 0.231
Macaque-brain-2 350 5198 12.4 29.7 4 3 1.5 0.203

Metabolic Networks E-coli-metabolic 242 376 9.3 3.1 16 9 4 0.483
C-elegans-metabolic 453 4596 12.3 8.9 7 4 1.5 0.133

Transcription
Networks Yeast-transcription 321 711 10 4.4 9 5 3 0.365

Hyperbolicity of Biological Networks. We measure δ-hyperbolicity using
Gromov’s four-point condition. For each network, we identify a bi-connected
component with the maximum value of δ since the hyperbolicity of a graph
equals the maximum hyperbolicity of its bi-connected components [14].

Table 1 shows that almost all networks in our datasets have small hyper-
bolicity. Even though the definition of δ-hyperbolicity considers the difference
between the largest two distance sums among any quadruples and takes into
account only the maximum one, this absolute analysis is deficient. Similar to
[14,3], closer analysis to the distribution of the value of δ (see Figure 1) shows
that only a very small percent of the quadruples have the maximum value of δ
while most quadruples have δ = 0. This observation makes it equally important
to calculate the value of the average delta δ′(G) (see Table 1).

Fig. 1. The distribution of the quadruples
over different values of δ

Fig. 2. Classification of the graph
datasets based on their hyperbolicity

Analysis and Discussion. Our goal is to categorize graphs with respect to
their hyperbolicity into three classes: strongly-hyperbolic, hyperbolic, and non-
hyperbolic. Studying the tree-like structure of graphs based solely on the value
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of the hyperbolicity may not be sufficient for two reasons. First, the hyperbolicity
is a relative measure. For example, for a given graph, a value of δ(G) = 10 can
be seen as too large when size(G) � 102. However, when size(G) � 107, the
hyperbolicity δ(G) = 10 looks much smaller. Second, small graph size and (or)
small diameter directly yield low hyperbolicity. In other words, small δ(G) does
not always suggest a graph with a tree-like structure; other graph attributes
that might impact the hyperbolicity must be investigated. We find size(G) and
diam(G) play an important role in deciding how hyperbolic a given graph is.

Since finite graphs will always have a finite value for δ such that the four-point
condition is true, it is natural to think that the non-hyperbolic class includes only
infinite graphs. However, in this study, we only consider finite graphs; accord-
ingly, a non-hyperbolic graph in our sense is a graph with too large δ with respect
to the logarithm of the graph’s size, i.e., when it violates δ(G) ≤ log2(size(G)).

In cases where δ(G) ≤ log2(size(G)), we move on and compare δ with the
diameter. To guarantee that the value of the diameter is not directly impacted
by the graph’s size, first we require that diam(G) ≤ log2(size(G)). Multiple
previous works have analyzed the relationship between δ(G) and the diameter.

Lemma 1 ([27]). For any graph G with diameter diam(G) and hyperbolicity
δ(G), δ(G) ≤ diam(G)/2.

Interestingly, for most of the networks in our graph datasets, we find that
δ(G) ≤ log2(diam(G)). Therefore, we say that a graph is strongly-hyperbolic if
it exhibits (1) diam(G) ≤ log2(size(G)) and (2) δ(G) ≤ log2(diam(G)) (small-
world), hyperbolic when it violates either (1) or (2), and non-hyperbolic whenever
it has a large δ, i.e., δ > log2(size(G)). As Table 1 shows, all networks in the
datasets, with the exception of S-cerevisiae-PI and E-coli-metabolic, ex-
hibit the small-world property. Also, it shows that δ(G) ≤ log2(diam(G)) in all
graphs except for the S-cerevisiae-PI and the H-pylori-PI networks. As a re-
sult, those three graphs have been classified as hyperbolic graphs, and their δ(G)
and δ

′
(G) values are on the larger side. In Figure 2, we show this classification.

Quantifying "small" and "large" for δ is not straightforward simply because
it is relative. Therefore, we judge according to the difference between δ and
log2(log2(size(G))). The more substantial this difference is the closer the graph’s
structure to a tree structure. For example network C-elegans-metabolic is
metrically closer to a tree than network Yeast-PI.

5 Core-Periphery Models Based on δ-Hyperbolicity

In this section, we formalize the notion of bending in shortest paths by intro-
ducing the eccentricity-based bending property. Then we use the implication of
this property to aid the partitioning of a graph into core and periphery parts.

Eccentricity Layering of a Graph. The eccentricity layering of a graph
G = (V,E) denoted as EL(G) partitions its vertices into concentric circles or
layers �r(G), r = 0, 1, ... . Each layer r is defined as �r(G) = {u ∈ V :
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ecc(u)− rad(G) = r}. Here r represents the index of the layer. The inner-most
layer (layer 0) encloses the graph’s center C(G). Then the first layer includes
all vertices with eccentricities equal to rad(G) + 1, and so on. The vertices in
the last layer (outer-most) have eccentricities equal to the diameter. Any vertex
v ∈ �r(G) has level (or layer) level(v) = r. Figure 3 gives an illustration. We
noticed that the vertices’ population is denser in the middle layers in almost all
networks.

Fig. 3. Eccentricity layering of a graph.
Darker vertices belong to lower layers.

Table 2. The effect of the distance k be-
tween vertex pairs on the bending property.
Out of all vertex pairs with distance at least
k, we show the percentage of those that
bend for three networks.

C-elegans B-yeast Yeast
k -metabolic -PI -transcription

(diam(G) = 7) (diam(G) = 8) (diam(G) = 9)

2 96.99% 93.10% 96.65%
3 99.89% 94.87% 97.77%
4 100% 98.43% 99.11%
5 100% 99.93% 99.88%
6 100% 100% 100%
7 100% 100% 100%
8 100% 100%
9 100%

5.1 Eccentricity-Based Bending Property of δ-Hyperbolic Networks

Let G = (V,E) be a δ-hyperbolic graph, EL(G) be its eccentricity layering, and
C(G) be its center. In [9], the following useful metric property of δ-hyperbolic
graphs was proven.

Lemma 2 ([9]). Let G be a δ-hyperbolic graph and x, y, v, u be its four arbi-
trary vertices. If d(v, u) ≥ max{d(y, u), d(x, u)}, then d(x, y) ≤ max{d(v, x),
d(v, y)}+ 2δ.

We use this property to establish the following few interesting statements.
The proofs are omitted in this version. We direct interested readers to [1].

Proposition 1. Let G be a δ-hyperbolic graph and x, y, s be arbitrary vertices
of G. If d(x, y) > 4δ + 1, then d(w, s) < max{d(x, s), d(y, s)} for any middle
vertex w of any shortest (x, y)-path.

Proposition 2. Let G be a δ-hyperbolic graph and x, y be arbitrary vertices of
G. If d(x, y) > 4δ + 1, then on any shortest (x, y)-path there is a vertex w with
ecc(w) < max{ecc(x), ecc(y)}.

We define the bend in shortest paths between two distinct vertices u and
v with d(u, v) ≥ 2, denoted by bend(u, v), as follows ∀ u, v ∈ V bend(u, v) =
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min{level(z) : z ∈ V and d(u, z) + d(z, v) = d(u, v)}. Here level(z) = r iff
z ∈ �r(G). We say that shortest paths between u and v bend if and only if
a vertex z with ecc(z) < max{ecc(u), ecc(v)} exists in a shortest path between
them. In this case we say also that pair of vertices u and v bends. The parameter
bend decides the extent (or the level) to which shortest paths curve towards the
center. Note that in some cases bend(u, v) will be assigned either ecc(u) or ecc(v),
whatever is smaller. For example, see ρ(u, v) in Figure 3.

Now we investigate the effect of the distance between a vertex pair on its
bend. Our findings in this context are summarized in the following statements.

(A) Despite their distances, most vertex pairs bend. Moreover, among those
bending pairs, the majority are sufficiently far from each other.

(B) There is a direct relation between the distance among vertex pairs and
how close to the center a shortest path between them bends.

Motivation and Empirical Evaluation of (A). In light of Proposition 2,
we investigate how vertex pairs of various distances act with respect to the
eccentricity-based bending property. Interestingly, we noticed the bend in the
majority of shortest paths. A quick look at Table 2 shows that a big percent of
vertex pairs of distance at least two bend.

To quantify the distances at which the bend happens, we define two parame-
ters: the absolute curvity and the effective curvity. Let k be the distance between
a pair of vertices (2 ≤ k ≤ diam(G)), the absolute curvity k∗ is the minimum k
such that all pairs with distance ≥ k bend. The effective curvity k̃ is the mini-
mum k such that more than 90% of the pairs with distance ≥ k bend. When the
values of k∗ and k̃ of each graph are represented as a function of δ to compare
it with the upper bound 4δ + 1, we find that the networks have their k∗ either
equal to 2δ + 1 or to 2δ, and δ − 2 ≤ k̃ ≤ 2δ. Also, all networks (except for
Macaque-brain-1) have their k̃ less than their k∗.

Motivation and Empirical Evaluation of (B). Here we examine the im-
pact of the distance on the level to which vertex pairs bend. Let k be the
distance between two vertices such that 2 ≤ k ≤ diam(G). Consider μk as
the lowest layer that all vertex pairs of distance ≥ k bend to. We define it as:
μk = max{bend(u, v) : ∀u, v ∈ V with d(u, v) ≥ k}. This allows us to look at
how the bends of the vertex pairs behave with respect to different distances
(see Figure 4). As expected, we found a direct relation between the distance
of vertex pairs and their bend. For example, in network yeast-pi, vertex pairs
with distances 3, 6, and 9 bend to layers 4, 3, and 2 respectively.

5.2 Core-Periphery Identification Using the Eccentricity-Based
Bending Property

A well-defined center of a graph is a good starting point for locating its core.
According to the pattern of data exchange discussed earlier, we identify the
core using the eccentricity centrality measure. Even though the center contains
all vertices that are closer to other vertices, this subset is not sufficient. More
vertices should be added to the core according to their participation in routing
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Fig. 4. μk values for each network in the
graph datasets

Fig. 5. Illustration of the eccentricity
layering of a graph and the Maximum-
Peak model. �r(G) represents each
layer r. The peaks of ρ(x, y) and ρ(u, v)
are w and z.

the traffic. We decide the participation of each vertex based on its eccentricity
and whether or not it lies on a shortest path between a vertex pair.

Graphs follow the core-periphery structure with different extents with respect
to the quality of their cores. We identify a good graph’s core as the one that (1)
includes a small number of layers with respect to the eccentricity layering; and
(2) has a size (with respect to the number of vertices) that is small compared to
the total number of vertices in the graph. The core should also contain vertices
that participate in the majority of interactions among other vertices. In the
following subsections, we discuss two core-periphery separation models.

Model I: The Maximum-Peak Model. Given a δ-hyperbolic graph G =
(V,E) along with its eccentricity layering EL(G), the Maximum-Peak model
identifies a separation layer index p ≥ 0 and defines the core as the subset of
vertices formed by layers �0(G), �1(G), ..., �p(G).

In light of the eccentricity-based bending property, each bend(x, y) for a pair
of vertices x and y represents a peak for ρ(x, y). In this model, we are locating
the index of the lowest layer p over all layers that vertex pairs bend to. Index p
represents the separation point where the layers can be partitioned to a core and
a periphery. See Figure 5 for an illustration. After identifying all peaks, the core
will include all vertices starting at �0(G) until �p(G), i.e., core(G) =

⋃p
r=0 �r(G).

Then the periphery will include the vertices in the remaining layers.
Again, to avoid the impact that outlier vertices may impose, we define two

types of p. The absolute separation index p∗ is the lowest layer that all vertex
pairs bend to; we call the core defined by this index the absolute core set C∗

core.
The effective separation index p̃ is the lowest layer where 90% of the vertex pairs
bend to, and the core defined by this index is the effective core set C̃core. Table 3
shows the cores for the networks in our datasets according to this model.

Table 3 shows a big difference in the sizes of the absolute core and the effective
core in the majority of the networks. Closer analysis to C̃core suggests that
deciding the core according to this notion generates good cores (number of layers
in the core is small and the number of vertices is about 25% of the total number
of vertices) for some networks such as the Yeast-PI. Also, networks with core
sizes between 25% - 50% can be considered good as well; such as the core of
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the S-cerevisiae-PI. On the other hand, networks like E-coli-PI have too
large core sizes compared to the overall graph size. This model is highly affected
by the distribution of vertices over the layers. For example, the core of graph
B-yeast-PI has two layers (out of four). This can be considered as a balanced
core-periphery separation. However, considering the distribution of the vertices
in the four layers, which is 90, 902, 465, and 17, explains the increase in the size
of the core. This issue can be resolved by using the second model.

Table 3. The cores of the graph datasets based on the Maximum-Peak model. |V | is
the number of vertices; |Layers| is the number of layers; C∗

core-lyr and |C∗
core| are the

number of layers and number of vertices in the absolute core set; C̃core-lyr and |C̃core|
are the number of layers and number of vertices in the effective core set.

Network |V | |Layers| C∗
core-lyr |C∗

core| |C∗
core| to |V | C̃core-lyr |C̃core| |C̃core| to |V |

B-yeast-PI 1465 4 3 1448 ≈ 99% 2 902 ≈ 62%
E-coli-PI 126 3 2 93 ≈ 74% 2 93 ≈ 74%
Yeast-PI 1728 6 5 1725 ≈ 100% 2 472 ≈ 27%

S-cerevisiae-PI 537 5 5 537 100% 2 223 ≈ 42%
H-pylori-PI 72 3 2 56 ≈ 78% 2 56 ≈ 78%

Macaque-brain-1 45 3 2 31 ≈ 69% 2 31 ≈ 69%
Macaque-brain-2 350 2 2 350 100% 2 350 100%
E-coli-metabolic 242 8 7 240 ≈ 99% 3 102 ≈ 42%

C-elegans-metabolic 453 4 3 439 ≈ 97% 1 17 ≈ 4%
Yeast-transcription 321 5 4 314 ≈ 98% 2 62 ≈ 19%

Model II: The Minimum Cover Set Model. Consider a graph G = (V,E)
with the eccentricity layering EL(G) and with the center C(G). The way this
model works is to start the core as an empty set and expand it to include vertices
which have smaller eccentricity, are closer to the center, and participate in the
traffic. This expansion should be orderly, first incorporating the vertices that
have higher priority, and then vertices who are less eligible. For each vertex
v ∈ V , we define three parameters according to which we prioritize the vertices.

– The eccentricity ecc(v). Vertices with smaller eccentricities have higher pri-
ority to be in the graph’s core.

– The distance-to-center, denoted as f(v), which expresses the distance be-
tween v and its closest vertex from the center C(G), i.e., f(v) = d(v, C(G)).
Vertices with small f(v) have higher priority of being in the core. For exam-
ple, in Figure 5, vertex y is closer to the center than u.

– The betweenness b(v). The betweenness measures how many pairs of dis-
tant vertices x and y have v in one of their shortest paths (versus
counting all shortest paths in the classic definition of the betweennes).
It quantifies the participation of a vertex v in the traffic flow process,
and we define it as: b(v) = number of pairs x, y ∈ V with v �= x, v �=
y, d(x, y) ≥ 2 and d(x, v)+d(v, y) = d(x, y). According to the core-periphery
organization, the betweenness of a vertex should increase as its eccentricity
decreases.
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Our goal in this model is to identify the smallest subset of vertices that par-
ticipate in all traffic throughout the network. The algorithm for this model com-
prises two stages. First, in a priority list T we lexicographically sort the vertices
according to the three attributes: ecc(v), f(v), and b(v). T now has the vertices
in the order that they should be considered to become part of the core. The
goal is to ensure that there exists at least one vertex v ∈ core(G) such that
v ∈ ρ(x, y) for each pair of vertices x, y ∈ V . In such case, we say that a shortest
path ρ(x, y) is covered by v (a shortest path from y to x is also covered by v
since we are dealing with undirected graphs).

The second stage starts with a vertex v at the head of T being removed from
T and added to an initially empty set C∗

core that represents the absolute core
set. This vertex must cover at least one pair. After this initial step, the process
continues by repeatedly removing the vertex v at the head of T and adding it
to C∗

core if and only if v covers an uncovered yet pair x and y (when there is at
least one vertex v ∈ C∗

core that covers a pair (x, y), then it becomes covered).
This step should run until all pairs are covered. Note that we consider the core
set C∗

core as absolute since all vertex pairs must be covered by a vertex in it.
Now the vertices in set C∗

core represent the core of the graph while the remaining
vertices represent the periphery. The number of vertices in the absolute and the
effective core sets of each graph in our datasets is listed in Table 4.

Table 4. The cores of the graph datasets based on the Minimum Cover Set model. |V |
is the number of vertices; δ(G) is the hyperbolicity; |C∗

core| is the number of vertices in
the absolute core set; |C̃core| is the number of vertices in the effective core set; C∗

MaxLyr

is the largest index layer found among vertices in C∗
core; and C̃MaxLyr is the largest

index layer found among vertices in C̃core.

Network |V | δ(G) |C∗
core| |C∗

core| to |V | C∗
MaxLyr |C̃core| |C̃core| to |V | C̃MaxLyr

B-yeast-PI 1465 2.5 1117 ≈ 76 % 3 117 ≈ 8 % 1
E-coli-PI 126 2 65 ≈ 52 % 2 13 ≈ 10 % 1
Yeast-PI 1728 3.5 902 ≈ 52 % 5 318 ≈ 18 % 2

S-cerevisiae-PI 537 4 438 ≈ 82 % 4 114 ≈ 21 % 1
H-pylori-PI 72 3 54 ≈ 75 % 2 15 ≈ 21 % 1

Macaque-brain-1 45 1.5 20 ≈ 44 % 2 7 ≈ 16 % 1
Macaque-brain-2 350 1.5 197 ≈ 56 % 1 31 ≈ 9 % 0
E-coli-metabolic 242 4 208 ≈ 86 % 7 66 ≈ 27 % 2

C-elegans-metabolic 453 1.5 202 ≈ 45 % 2 12 ≈ 3% 0
Yeast-transcription 321 3 155 ≈ 48 % 4 40 ≈ 12% 1

Close analysis of Table 4 shows that each produced absolute core C∗
core is

of a size between 44% to 86% of the original number of vertices in the graph.
It is important to note that vertices in the core are expected to have different
contributions (some vertices cover more vertex pairs than others). Figure 6 shows
how many vertex pairs are remained uncovered after the orderly addition of
vertices to the absolute core. For example, in the network B-yeast-PI, 80% of
vertex pairs are uncovered after adding the first vertex to C∗

core. However, after
adding 20 vertices, only 35% of the vertex pairs are uncovered. It is also clear
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that many of the vertices that have been added later to the absolute core set
cover a very small percentage of vertex pairs.

To keep only vertices that are considered higher contributors we define the
effective core set C̃core. The effective core is the subset of the core that is sufficient
to cover 90% of the vertex pairs in the graph. To obtain C̃core, we examine the
vertices of the core C∗

core in the same order in which they were added. A new
vertex is added to current C̃core only if more than 10% of the vertex pairs remain
uncovered. The results on the core according to both concepts in this model are
presented in Table 4. Note that the index of the layer of the last vertex added
to the core in each network has significantly decreased.

Because hyperbolic graphs adhere to the property of having shortest paths
that bend to the core, it was natural to think that hyperbolic graphs with lower
δ(G) should have even smaller cores. A quick comparison between the C̃core of
each graph with its δ(G) supports this idea.

Fig. 6. The percentage of the un-
covered vertex pairs after the or-
derly addition of vertices to the
core set C∗

core. Number i indicates
the cardinality of the current core.

Table 5. Summary of the graph datasets’ parame-
ters and cores. C̃core is the effective core according
to the Minimum Cover Set model.

Network log2(size) diam δ δ′ C̃core

Strongly-
hyperbolic
Networks

1 C-elegans-metab. 12.3 7 1.5 0.133 3%
B-yeast-PI 12.8 8 2.5 0.299 8%

2

Macaque-brain-2 12.4 4 1.5 0.203 9%
E-coli-PI 9.5 5 2 0.251 10%

Yeast-transcr. 10 9 3 0.365 12%
Macaque-brain-1 9 4 1.5 0.231 16%

Yeast-PI 13.6 12 3.5 0.322 18%

Hyperbolic
Networks

S-cerevisiae-PI 10.5 11 4 0.419 21%
H-pylori-PI 7.5 7 3 0.368 21%
E-coli-metab. 9.3 16 4 0.483 27%

6 Concluding Remarks

The structure of several biological networks has been often described as a tree-
like topology in molecular biology [4]. This motivates investigating if those net-
works also admit tree-like structures based on their distances. In Section 4, we
observed that most biological networks appear to have low hyperbolicity. Since
strongly-hyperbolic graphs have a structure that is closer to a tree, this moti-
vates the following hypothesis: do strongly-hyperbolic graphs have more concise
cores compared to other hyperbolic graphs? It is clear from Tables 5 that hyper-
bolic networks have larger cores when compared to strongly-hyperbolic networks
(which confirms our hypothesis). Here we only consider cores according to the
Minimum Cover Set model. The sizes of the cores in strongly-hyperbolic graphs
are less than 20% of the number of vertices of each network.
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We also observed two patterns in strongly-hyperbolic networks named groups
1 and 2 in Table 5. The networks in group 1 have δ(G) < 3 and in the same time
δ(G) is sufficiently smaller than the value of half the diameter. The cores for
those networks are very small. The second group has networks that are either
with higher hyperbolicity, or low hyperbolicity with value of δ(G) very close to
diam(G)/2. The cores for group 2 are larger than those in group 1.
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Abstract. Various methods for analyzing networks have been proposed. Among
them, methods for community detection based on network structures are impor-
tant for making networks simple and easy to understand. As an attempt to incor-
porate background knowledge of given networks, a method known as constrained
community detection has been proposed recently. Constrained community detec-
tion shows robust performance on noisy data since it uses background knowledge.
In particular, methods for community detection based on constrained Hamilto-
nian have advantages of flexibility in output results. In this paper, we propose a
method for accelerating the speed of constrained community detection based on
Hamiltonian. Our optimization method is a variant of Blondel’s Louvain method
which is well-known for its computational efficiency. Our experiments showed
that our proposed method is superior in terms of computational time, and its
accuracy is almost equal to the existing method based on simulated annealing
under the same conditions. Our proposed method enables us to perform con-
strained community detection in larger networks compared with existing meth-
ods. Moreover, we compared the strategies of adding constraints incrementally in
the process of constrained community detection.

1 Introduction

There are emerging needs for understanding the structures of huge data due to the grow-
ing advancement of information technologies. Many of them can be represented as
networks, such as friendship networks of social media or hyperlink networks of Web
pages. Several attempts have been made for community detection [POM09][For10]; ex-
tracting dense subnetworks from given networks. Community detection is important for
analyzing and visualizing given networks from mesoscopic viewpoints.

One of the most popular metrics for community detection is modularity [NG04]. It is
often used for evaluating the qualities of detected communities compared with the null
model. Many community detection methods optimize modularity in order to search for
partitions of given networks [CNM04][For10][PKVS12]. As the method for optimizing
modularity of large-scale networks, Louvain method [BGLL08] is often employed.

One of the promising directions of community detection is to incorporate constraints
on communities to be detected, which is called constrained community detection. In
many cases, humans already have some background knowledge on the structure of
given networks. Such knowledge should be incorporated in the process of community
detection in order to find better communities.

c© Springer International Publishing Switzerland 2015 79
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Among the approaches of constrained community detection, Reichardt and Born-
holdt [RB06] introduced Hamiltonian as a generalization of modularity. Eaton et al. pro-
posed a method for optimizing constrained Hamiltonian [EM12]. Although the method
is theoretically good, it is slow since it employs simulated annealing [KJV83] for
optimizing constrained Hamiltonian.

This paper extends Louvain method, and proposes a method for fast optimization
of constrained Hamiltonian. It is often said that there is a tradeoff between accuracy
and speed, but our optimization method satisfies both. It is effective not only for pro-
cessing large-scale networks but also for performing interactive community detection
since users often put some additional constraints after they watched the results of ob-
tained communities. There are many strategies for giving constraints incrementally in
the process of community detection, hence we performed experiments comparing some
of them.

2 Related Works

This section introduces some basic metrics and notations that are necessary for explain-
ing our proposed method.

2.1 Modularity

Modularity introduced by Newman and Girvan [NG04] is one of the most popular met-
rics for evaluating the quality of communities extracted from a given network. The
metric is computed from the difference between the number of actual edges within
communities in a network and the expected value of its null model. Null model of a
network is generated by rewiring edges of the network while degrees of all vertices are
kept the same as those of the original network. Modularity shows the amount of devi-
ation of the number of edges within communities from random partitions. Therefore,
partitions of high modularity are regarded as good from the viewpoint of community
detection. The value of modularity Q is defined as follows:

Q =
1

2m ∑
i, j

(Ai j −Pi j)δ (Ci,Cj) , (1)

where i and j are indices of nodes, A is an adjacency matrix of the network, Pi j =
(kik j)/2m is a null model of the network, ki is the degree of node i, m = ∑i ki/2 is the
number of edges in the network, Ci is the index of the community which node i belongs
to, and δ is the Kronecker’s delta. In order to detect communities, partitions of high Q
values are searched, and it is often called modularity optimization.

3 Generalization of Modularity

Hamiltonian H [RB06], which is a generalization of modularity (expression (1)), is
expressed as follows:
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H =−∑i, j ai jAi jδ (Ci,Cj)

+∑i, j
bi j(1−Ai j)δ (Ci,Cj)

+∑i, j
ci jAi j(1− δ (Ci,Cj))

−∑i, j
di j(1−Ai j)(1− δ (Ci,Cj)).

(2)

We have to keep in mind that in contrast to modularity, smaller Hamiltonian value
means better network partition. In expression (2), Hamiltonian (a) rewards intra-
community edges (the first term), (b) penalizes the lack of intra-community edges (the
second term), (c) penalizes inter-community edges (the third term), and (d) rewards the
lack of inter-community edges (the fourth term), and each is weighted by parameters
a,b,c and d, respectively.

If the parameters are set appropriately (ai j = ci j = 1− γPi j, bi j = di j = γPi j), expres-
sion (2) can be transformed as follows:

H =−2∑
i, j
(Ai j − γPi j)δ (Ci,Cj)+ 2m(1− γ). (3)

The second term on the right side, 2m(1− γ), can be ignored because it is independent
of the result of community detection. Then the expression is equal to the definition
of modularity (expression (1)) times constant value. This means that Hamiltonian is a
generalization of modularity.

3.1 Constrained community detection

As a method for performing constrained community detection, Eaton et al. [EM12]
proposed an optimization for constrained Hamiltonian, in which a constrained term
is added to the above-mentioned Hamiltonian (expression (3)). Constrained term U is
composed of (a) ui j which means that a pair of nodes should be in the same community,
and (b) ui j which means that a pair of nodes should be in different communities:

U = ∑
i, j
(ui j (1− δ (Ci,Cj))+ ui jδ (Ci,Cj)) . (4)

Settings for the values of ui j and ui j are discussed in section 5. Constrained Hamiltonian
H ′ is expressed as follows:

H ′ =H + μU

=−2∑
i, j
((Ai j − γPi j + μΔUi j)δ (Ci,Cj))+K, (5)

where μ is a parameter for balancing Hamiltonian H and constrained term U , ΔUi j =
(ui j −ui j)/2, K = 2m(1− γ)+μ ∑i, j ui j, respectively. K is a constant independent from
extracted communities.

Eaton et al. employed simulated annealing [KJV83] in order to optimize expression
(5). They claimed that noise-tolerant and accurate constrained community detection is
achieved [EM12].
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3.2 Louvain Method

Louvain method [BGLL08] is a method known for its fast optimization of modular-
ity. Although Louvain method is a straightforward greedy method, it experimentally
showed high accuracy. Louvain method consists of the following two phases:

1. Each node is moved to one of its adjacent communities, and the gain of modularity
value after the move is computed. The move that will increase modularity the most
will be employed and the node is assigned to the new community, but only if the
gain is positive. This process is repeated for every node until no more increase of
modularity can be obtained.

2. Each community obtained in step 1 is aggregated to a node, and a new network of
aggregated nodes is generated.

The above two phases are repeated iteratively until convergence. In phase 1, only the
difference of modularity before and after the move (ΔQ) is computed in order to speedup
the computation. When node x is moved from community Y to community Z, the
difference of modularity value ΔQ is as follows:

ΔQ =
1
m

(

∑
i∈Z

(Aix −Pix)−∑
i∈Y

(Aix −Pix)

)
, (6)

where ki in Pi j = (kik j)/2m is the sum of weights of all edges that are connected to
node i.

In phase 2, each community obtained in phase 1 is regarded as a node and a new
network of the nodes is generated. The weight of an edge that connect two nodes in
the new network is the sum of the weights of all edges that connect nodes between
corresponding two communities before aggregation. The weight of self-loop edge in a
new network is equal to the double of the sum of all edges within the community.

4 Fast Optimization of Hamiltonian for Constrained Community
Detection

Eaton et al. claimed that optimization of constrained Hamiltonian is good for con-
strained community detection, although they used slow simulated annealing for the
optimization. We extended Louvain method (which was originally for optimizing mod-
ularity) for the optimization of constrained Hamiltonian in order to speedup constrained
community detection.

Our method for optimization is similar to Louvain method, except ΔH ′ is com-
puted in phase 1 in section 3.2 instead of ΔQ. The difference of constrained Hamilto-
nian H ′ before and after node x is moved from community Y to community Z (ΔH ′) is
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represented as follows; where Cy is the network partition before the move (when node
x belongs to community Y ), and Cz is the network partition after the move (when node
x belongs to community Z):

ΔH ′ =

(
−2∑

i, j

(
(Ai j − γPi j + μΔUi j)δ (Cz

i ,C
z
j)
)
+K

)

−
(
−2∑

i, j

(
(Ai j − γPi j + μΔUi j)δ (Cy

i ,C
y
j )
)
+K

)
. (7)

Since the communities of other nodes except x is the same (if i �= x and j �= x then
δ (Cz

i ,C
z
j) = δ (Cy

i ,C
y
j )), the following equation holds:

ΔH ′

2
=−∑

i

((Ai j − γPi j + μΔUix)δ (Cz
i ,C

z
x))

−∑
j

(
(Ai j − γPi j + μΔUx j)δ (Cz

x,C
z
j)
)

+∑
i

(
(Ai j − γPi j + μΔUix)δ (Cy

i ,C
y
x)
)

+∑
j

(
(Ai j − γPi j + μΔUx j)δ (Cy

x ,C
y
j )
)
.

(8)

Since A, P and ΔU are symmetric matrices1, the following equation holds:

ΔH ′

2
=−2∑

i
((Ai j − γPi j + μΔUix)δ (Cz

i ,C
z
x))

+ 2∑
i

(
(Ai j − γPi j + μΔUix)δ (Cy

i ,C
y
x)
)
.

(9)

If nodes i and x are in different communities, δ (Ci,Cx) = 0. Otherwise, if they are in
the same community, δ (Ci,Cx) = 1. Therefore the following equation holds:

ΔH ′ =−4

(

∑
i∈Z

(Ai j − γPi j + μΔUix)−∑
i∈Y

(Ai j − γPi j + μΔUix)

)
. (10)

Expression (10) is computed in our proposed method in order to perform constrained
community detection. If the parameter μ is set to μ = 0, the term ΔU is cancelled
out in expressions (5) and (10), and our method is the same as the normal community
detection without considering constraints. If the parameter μ is set to a large value, ΔU
dominates the behavior of H ′, and the communities that only focus on constraints will
be extracted.

Since computational cost of expression (10) is almost the same as that of expression
(6), the efficiency of our proposed method for optimizing constrained Hamiltonian is
expected to achieve the same level as Louvain method.

1 In the case of an undirected network, A and P are always symmetric. Blondel’s original Louvain
method is basically for undirected networks.



84 K. Nakata and T. Murata

Table 1. Networks used in our experiments

Network #nodes #edges #communities
Karate [Zac77] 34 78 2
Polbooks [Kre] 105 441 3

Polblogs [AG05] 1,222 16,714 2

5 Experiments

Table 1 shows the networks that were used for our experiments. Correct communities
are known in advance as the ground-truth labels for each of them. Parameters are set as
follows: μ = 2, γ = 1, and Pi j = kik j/2m.

We focus on the constraints of assigning a positive integer li (as community label) to
node i. A label of an unconstrained node is assigned as li = −1. Values of ui j and ui j

are set as follows:

ui j =

{
1 (when li = l j �=−1),

0 (otherwise),
(11)

ui j =

{
1 (when li �= l j ∧ li �=−1∧ l j �=−1),

0 (otherwise).
(12)

As a metric for measuring the similarity between extracted communities C and cor-
rect communities C′, normalized mutual information (NMI) [SG03] is used:

NMI(C,C′) =
∑
c

∑
c′

ncc′ log
ncc′ ·n
nc·nc′

√(
∑
c

nc log nc
n

)(
∑
c′

nc′ log
nc′
n

) , (13)

where c and c′ are indices of communities C and C′, n is the number of nodes, ncc′ is the
number of nodes that belong to both c and c′, and nc and nc′ are the number of nodes
that belong to c and c′, respectively. The more C and C′ are similar, the larger their NMI
is. C is set to the extracted communities and C′ is set to the correct communities in order
to measure the accuracy of community detection.

5.1 Comparison of Our Proposed Method, Simulated Annealing Method and
Louvain Method

We can consider two cases for constrained community detection: (1) all constraints are
given in advance, and (2) constraints are given incrementally. This subsection discusses
the former case for comparing our proposed method, simulated annealing method, and
Louvain method.

Figure 1 shows comparisons of accuracy using Karate network, Polbooks network
and Polblogs network. X axis is the ratio of randomly added/deleted edges (as noise)
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Fig. 1. Accuracies of our proposed method, simulated annealing method and Louvain method
using Karate network (top left), Polbooks network (top right), and Polblogs network (bottom).

with keeping the degree distributions, and Y axis is NMI. In our proposed method and
simulated annealing method, 20% of nodes are randomly selected and their ground-
truth labels are given as constraints. Error bars show standard errors.

As Figure 1 shows, our proposed method is almost as accurate as simulated annealing
method, if the number of communities is not given. In [EM12], the number the of
ground-truth communities is given to simulated annealing method (triangular solid line
in Figure 1). We also performed experiments with simulated annealing method without
giving the number of communities (reversed-triangular dotted line in Figure 1), in order
to compare it with our proposed method in the same condition. It was already pointed
out that Louvain method is effective for optimizing modularity compared with other
optimization methods [BGLL08], which is consistent with this result.

Figure 2 shows the comparisons of computational times of three methods. X axis is
the same as Figure 1, and Y axis is the computational time (seconds). This showed that
our proposed method is significantly faster than simulated annealing.

These results showed that our proposed method is almost as accurate as simulated
annealing, and is much faster. This enables us to process large-scale networks.

5.2 Experiments on Large-Scale Networks

Table 2 shows the large-scale networks which we experimented with. Because there was
no ground-truth label for them, it is impossible to give constraints from ground-truth
labels or to measure the accuracy with NMI. However we tried to detect communities
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Fig. 2. Computational times of our proposed method, simulated annealing method and Louvain
method using Karate network (top left), Polbooks network (top right) and Polblogs network
(bottom)

from them with our proposed method and simulated annealing method without giving
constraints in order to check the computational costs of them.

The results are shown in Table 3. It implies that our proposed method is very fast on
large-scale networks.

5.3 Incremental Constrained Community Detection

This section discusses how to give constraints incrementally during the optimization of
constrained Hamiltonian. Suppose there are no constraints at the initial stage, and con-
straints are given one by one and then constrained community detection is performed
based on the constraints given so far. Since giving too many constraints manually is

Table 2. Large-scale networks used in our experiments

Network #nodes #edges #communities
Power [WS98] 4,941 6,594 unknown

Dblp [YL12] 317,080 1,049,866 unknown2

2 Dblp network has the overlapping and nested ground-truth communities, but that is not suitable
because we assume that each node must belong to exactly one community.
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Table 3. Computational times (second) for large-scale networks of our proposed method and
simulated annealing method

Annealing Proposed
Power 3.016 0.056

Dblp 143.111 12.720
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Fig. 3. Incremental addition of constraints and corresponding NMI using Karate network (top
left), Polbooks network (top right) and Polblogs network (bottom)

unrealistic, we have to think about the strategies for selecting nodes that should be con-
strained.

Figure 3 shows the results of incremental addition of constraints and corresponding
NMI values after constrained community detection was performed with our proposed
method. X axis is the number of constraints, and Y axis is NMI. Lines in the Figure
correspond to the following strategies for giving constraints:

random: Nodes are selected randomly.
hub: Nodes are selected in descending order of their degrees.
DeltaH contribution: Nodes are selected in descending order of expression (10).
betweenness: Nodes are selected in descending order of betweenness.
pagerank: Nodes are selected in descending order of PageRank[PBMW99].
boundary: Nodes adjacent to different communities are selected.

The top left of Figure 3 shows that the performances of DeltaH contribution and
boundary are good when the number of constraints are less than ten. Among them,
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boundary strategy is the best since it quickly reaches the highest NMI value. The top
right and bottom of Figure 3 also shows that boundary is the best strategy. The results
show that the order of adding constraints matters for an accurate constrained community
detection. Based on the above results, we can conclude that the boundary strategy is the
best in our list of surveyed strategies. This strategy gives constraints to the nodes that
are located at the boundaries of different communities. It makes sense because giving
constraints to such marginal nodes is expected to enhance the accuracies of community
detection.

As for the strategy for adding constraints to nodes, the uncertain sampling [LG94]
is often employed. The strategy is to select nodes whose degree of “wrongness” are
the biggest. It has been pointed out that humans’ strategies are often superior to un-
certain sampling. This means that the performance of humans’ interactive constrained
community detection is expected to be better than the results shown in Figure 3.

6 Conclusion

This paper extends Louvain method for optimizing constrained Hamiltonian. Our pro-
posed method is much faster than the existing simulated annealing method, without any
compromise in accuracy. In addition, we performed some experiments on incremental
constrained community detection and compare the strategies for giving constraints.

The followings are left for our future work.
Firstly, appropriate values of parameters such as γ , μ , u, u should be discussed fur-

ther. We have used the same values that are used in Eaton’s paper [EM12]. But the-
oretical and experimental optimization for these parameters have yet to be solved. μ
controls the strength of overall constrained term, and u, u controls the strength of each
constraint. Hence u, u can be set to the degree of user’s confidence on each constraint.
Another direction of this research is to set the weight of each constraint automatically.

Secondly, good strategies for giving constraints should be discussed further. It might
be good to observe and imitate humans’ heuristic strategies for accurate constrained
community detection. The final goal of our research is to develop an environment of
network analysis that would allow an interactive feedback from users, and this would
give more insights into the performance of interactive community detection.
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Abstract. This paper proposes a method for solving influence maximization
problem in a dynamic network. In our method, a node that increases its influ-
ence most will be searched and it is added to the seed nodes incrementally. Since
exact computation of influence of a node is #P-Hard, we employ heuristics for
approximate computation. The results of our experiments show that our method
is more effective than the methods based on centralities for dynamic networks,
especially when the networks exhibit community structures.

1 Introduction

Influence maximization problem is a problem of selecting the set of k nodes that is the
most influential for propagating information (or diseases) to other nodes in a network.
Solving this problem is important for minimizing disease propagation or maximizing
the effect of advertisement in viral marketing. Since this problem is proved to be NP-
Hard[KKT03], obtaining exact answer to the problem is intractable for large networks.
Therefore, several methods such as Monte-Carlo simulation and heuristic-based meth-
ods have been proposed [CSH+13] [CWW10] [JSC+11] [JHC12]. These research are
basically for static networks. Only few attempts have been made for influence maxi-
mization on dynamic networks whose edges are dynamically added or deleted.

Naive methods for solving influence maximization problem in dynamic networks
are centrality-based methods, which select top k nodes of high centrality values. There
are several definitions of centrality for dynamic networks, such as closeness centrality
[HS12] and broadcast centrality [GPHE11]. One of the weaknesses of centrality-based
methods is that nodes of high centrality might propagate information to adjacent nodes
that overlap with each other.

Suppose we are going to select two nodes that are the most influential to the network
shown in Figure 1. The number shown at the upper left of each node is its closeness
centrality. For the sake of convenience, selected nodes will propagate information to all
reachable nodes. Although two nodes of the largest closeness centralities in Figure 1 are
nodes D and B, reachable nodes from them are exactly the same (A, B, C, D, and E).
This means that selecting node B in addition to node D does not increase the power of
influence of seed nodes. In this example, selecting node D and F will be a good choice
because all other nodes in the network are reachable from these two. Therefore, just
selecting nodes of high centrality values may not be a good method. This is also true in
a dynamic network.

c© Springer International Publishing Switzerland 2015 91
G. Mangioni et al. (eds.), Complex Networks VI,
Studies in Computational Intelligence 597, DOI: 10.1007/978-3-319-16112-9_9
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Fig. 1. An example of influence maximization

This paper proposes a method for solving influence maximization problem in dy-
namic networks. Our proposed method starts with an empty node set S = /0. Then a
node n is added to S incrementally so that the influence of S ∪ {n} will be maxi-
mized. Since the computation of exact influence is time consuming, the approximated
power of influence of node set is computed. Experimental results show that our method
is effective especially when a network exhibits community structures.

2 Related Works

2.1 Dynamic Networks

We focus on a network whose edges will appear or disappear dynamically and its nodes
are static throughout its period. Such a dynamic network can be represented as a list of
adjacency matrices: G=(A1,A2, . . . ,AT )where At is an adjacency matrix of a network at
time t. T is the period of the dynamic network, and we assume that T is finite. An edge be-
tween node i and j at time t is represented as a triplet (t, i, j). A walk of length k−1 from
node n1 to node nk is defined as a sequence of edges: (t1,n1,n2),(t2,n2,n3), . . . ,(tk−1,
nk−1,nk), where t1 < t2 < · · · < tk−1 should be satisfied. A walk of no node revisit
(∀i, j(i �= j) ni �= n j) is called as a path. The period of a path is the duration of time
from the start to the end of the path, which is defined as tk−1 − t1 + 1. A path of mini-
mum period is the shortest path, and its period is the shortest period.

An aggregate network Gagg of a dynamic network G = (A1,A2, . . . ,AT ) is a static
network: Gagg = ∑T

t=1 At , in which times of all edges in G are ignored.

2.2 SI Model for Information Propagation

We focus on SI model [BZW07] as a model for information propagation. In SI model,
state S (susceptible) or state I (infected) is assigned to each node. A node in state S does
not have information, and a node in state I has information and is ready to propagate.
At the initial stage of information propagation (t = 1), only seed nodes are assigned to
state I and others are assigned to state S. At t = 1,2, . . . ,T , information is propagated
in the following steps:

1. For each edge (t, i, j) at time t, the following operation is done:
a. If node i is in status I and if node j is in status S, then node j will be in status I

with probability λ at time t + 1 .
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b. If the network is undirected, information is propagated to both directions. In
other words, if node j is in status I and if node i is in status S, then node i will
be in status I with probability λ at time t + 1.

2. Information propagation is terminated at time T + 1.

λ is a parameter for the ratio of infection. We assume that T is finite so the above
steps will be terminated within finite time.

2.3 Formalization of an Influence Maximization Problem

For SI model, we define the power of influence of node set S as the expected num-
ber of nodes in status I at time T + 1 when seed nodes are given as S , and express it
as σ(S ). Influence maximization problem is a problem of selecting the node set of
size k that maximize σ(S ). In SIR model, which is a generalization of SI model,
exact computation of σ for static networks is proved to be #P-Hard[PS12]. Based
on this result, we can assume that exact computation of σ for dynamic networks is
also #P-Hard.

2.4 Selecting Seed Nodes of the Maximum Influence

2.4.1 Centrality-Based Method
As a naive method for influence maximization, we can compute centralities of all nodes
and select k biggest nodes. Closeness centrality in a dynamic network is defined based
on an assumption that a node is central if the shortest periods from the node to all
other nodes are small, which is expressed as follows[HS12]: CC

i = N−1
∑ j di j

, where N is

the number of nodes, di j is the shortest period from node i to node j, respectively. In
the process of information propagation, not only the shortest path but also other longer
paths will play important roles. Since closeness centrality focuses on the shortest path
only, it may not be a good metric for information propagation.

Grindrod et al. extend Katz centrality[Kat53] to dynamic networks, and propose
broadcast centrality[GPHE11]. Broadcast centrality takes all walks between two nodes
into consideration, which is defined as follows: CB

i = ∑N
k=1 Qik,where

Qik =
[
(I− aA1)

−1(I − aA2)
−1 · · · (I− aAT )

−1
]

ik and a is an attenuation parameter for
discounting longer walks. If the maximum value of the largest eigenvalue of all adja-
cency matrices is λmax, parameter a has to satisfy a < 1

λmax
. The definition of walks by

Grindrod et al. is a little bit different from the definition in the last section. In the last
section, a walk (t1,n1,n2),(t2,n2,n3), . . . ,(tk−1,nk−1,nk) should satisfy t1 < t2 < · · · <
tk−1, whereas a walk by Grindrod’s definition should satisfy t1 ≤ t2 ≤ ·· · ≤ tk−1 only.
In other words, the number of move at each time step in a walk in the last section is
limited up to one, whereas there is no such limitation to a walk by Grindrod’s definition.
Grindrod’s definition allows walks that cannot be the paths for information propagation
of SI model, so it may not be a good metric for information propagation, either.

2.4.2 A Method Based on Monte-Carlo Simulation
Berger-wolf et al. propose a greedy method for solving influence maximization prob-
lem which approximates the power of influence of node set in SI model by Monte-Carlo
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simulation[BW07]. However, the method needs much computational time for better
approximation. Our proposed method uses fast heuristic instead of Monte-Carlo simu-
lation to approximate the power of influence of node set.

3 Proposed Method for Selecting Seed Nodes

This section proposes a method for selecting seed nodes that starts from empty node set
S = /0. In our method, node n that maximizes σ̂(S ∪{n}), where σ̂(·) is approximated
power of influence of node set, is added to S incrementally. σ̂(S ) is calculated in the
following way.

1. Let p̂i(t) the approximated probability that node i is in status I at time t. p̂i(1) is
initialized as follows:

p̂i(1) =

{
1 i ∈S

0 i /∈S .

2. At time t = 2,3, . . . ,T +1, p̂i(t) is computed in the following way:p̂i(t) = 1− (1−
p̂i(t − 1))Ri(t − 1), where Ri(t) is the approximated probability that none of the
neighbors of node i at time t propagates information, which are expressed as fol-
lows: Ri(t) = ∏ j∈neighbors(i,t)(1− p̂ j(t)λ ), where neighbors(i, t) is the set of neigh-
bors of node i at time t.

3. σ̂(S ) is calculated as the expected number of I nodes at time T + 1 in terms of
approximated probability p̂i(T + 1), i.e. σ̂(S ) = ∑N

i=1 p̂i(T + 1).

An example of exact value and its approximate value of σ are shown in Figure 2.
A label of an edge in Figure 2 shows the time that the edge appears. Suppose the seed
nodes at time 1 is S = {A}, and we are going to compute the probability pB(4) that
node B is in status I at T = 4. In exact computation, pB is affected by edge (1,A,B)
only, so the final probability is pB(4) = λ . It seems that pB is also affected by edge
(3,C,B), but this is not true. If node C is in status I at time t = 3, node B is already in
status I, so pB will not be affected with the edge from C to B. In this way, we have to
judge whether each edge actually affect the probability in status I in order to perform
exact computation. However, this procedure is computationally expensive.

We propose a method for approximating this computation shown above. In this
method, all edges that are connected to a node are assumed to affect the probability that
the node is in status I. Based on this method, the above probability pB(4) in Figure 2
is computed as pB(4) = λ +(1−λ )λ 3, which is (1−λ )λ 3 more than true probability.
Our approximation method overestimates the probability of a node to be in status I on
networks having cycles.

As for computational complexity of our method, computational time for updating p̂i

needs time that is proportional to the number of edges m in a network. So the compu-
tational time for the update is O(m). In order to select k nodes that should be added to
S , approximate computation of σ is repeated N times, where N is the number of nodes
in the network. Therefore, the total computational time will be O(Nmk).
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Fig. 2. Approximate computation of pB(4)

Table 1. Statistics of dynamic networks

nodes edges time period modularity density
Hospital 75 2,424 5,792 0.367 0.410

Infectious 200 943 469 0.883 0.036
TI model 500 308,000 3,000 0.892 0.006

4 Experiments

4.1 Experimental Settings

We have performed experiments using some dynamic networks and compare the per-
formances of proposed method and some other methods. Three dynamic networks that
we used for our experiments are shown in Table 1. Hospital network [VBC+13] shows
dynamic proximities of patients and workers in a French hospital. Infectious network
[ISB+11] also shows dynamic proximities at a science gallery in Ireland. TI model net-
work is a synthetic network generated by Triad-enhanced Interaction model which is
proposed by Jo et al. [JPK11].

As baseline methods, the following three methods are attempted: (1) a method of
selecting nodes of top-k closeness centrality values (closeness method), (2) a method
of selecting nodes of top-k broadcast centrality values (broadcast method) and (3) the
greedy method based on Monte-Carlo simulation proposed by Berger-wolf et al. (greedy
method).

In this experiment, we fix the number of seed nodes k = 5 and set infection rate
λ = 0.001,0.005,0.01,0.05 to observe behaviors of methods for values of λ . As for
the parameters for broadcast centrality a, for our proposed method λ and for greedy
method λ , the same value as infection rate λ is used.

Based on the seed nodes that are selected with our proposed method and the base-
line methods, simulations of information propagation based on SI model are performed
1,000 times to calculate the power of influence of seed nodes selected by methods,
which is used to evaluate the quality of them.

4.2 Results

Results for each network are shown in Figure 3. In this Figure, X axis is infection rate
λ , and Y axis is the power of influence of seed nodes selected by each method. For
most of values of λ , our proposed method successfully select seed nodes that are more
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(a) Hospital Network (b) Infectious Network
]
(c) TI model Network

Fig. 3. The power of influence for values of λ in each network

(a) Hospital network (b) Infectious network (c) TI model network

Fig. 4. Computational time for each network

influential than those selected by two centrality-based methods. But in Hospital network
(Figure 3(a)), the power of influence of them are almost equal when λ = 0.05, and all
methods can propagate the information to more than 90% of nodes in the network. On
the other hand, in Infectious network and TI model network, the advantage of proposed
method becomes larger as the value of λ increases. In TI model network, broadcast
centrality cannot be calculated because of the irregularity of matrix (I−aAt). Compared
with greedy method, our proposed method can select seed nodes as influential as the one
selected by greedy method even though our proposed method is quite faster than it as
shown below.

Computational times for all methods are shown in Figure 4. X axis of the Figure
is the number of seed nodes, and Y axis is the computational time. Since closeness
method and broadcast method need to compute centralities of all nodes in a network,
their computational times are the same regardless of the value of k. On the other hand,
computational times of our proposed method and greedy method are proportional to
the number of seed nodes k. In all of our cases, the closeness method is the fastest and
greedy method is the slowest. Our proposed method is the second or third slowest, but
its computational time is still practical even though its performance is almost equal to
greedy method which is 500 times slower than the proposed method.

In summary, we can claim that our proposed method can select seed nodes that is as
influential as the one obtained with greedy method, which is the most accurate method
in the comparison and more accurate than two centrality-based methods, in most of
our parameter settings. Computational time of proposed method is slower than two
centrality-based methods but is still practical and 500 times faster than greedy method.
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5 Discussion

Experimental results in the last section show that for some networks and parameter set-
tings, our proposed method does not outperform two centrality-based methods. One of
the reasons for this is that such networks are too dense and they have no community
structures. There is no clear definition of community structures especially for dynamic
networks. For the sake of convenience, we define “the existence of community struc-
tures in a dynamic network” as “the existence of partitions of high modularity[New06]
for its aggregated static network”. Modularity Q is a function that takes a network and
its partition as its input, and a value for showing the goodness of the partition as it
output, which is defined as follows:

Q =
1

2m ∑
i, j
(Ai j − kik j

2m
)δ (Ci,Cj),

where A is an adjacency matrix of a network, ki is the degree of node i, Ci is a com-
munity that node i belongs to, m = 1

2 ∑i, j Ai j is the number of edges, respectively. High
modularity values will be obtained for the partitions whose intra-community densities
are high and whose inter-community densities are low. As a method for optimizing
modularity, Louvain method [BGLL08] is used.

Modularity values and density for each static aggregate network are shown in
Table 1. Modularities of Infectious network and TI model network are very high, while
that of Hospital network is not. As for the densities of these static aggregated networks,
density of Hospital network is quite high compared with those of other two networks.

If a network is dense and exhibits no community structure, each node in the network
can propagate information to many others especially when λ is high. Therefore all
methods including centrality-based methods can select very influential seed nodes. On
the other hand, if a network is sparse and exhibits community structure, information
tends to stay within the communities in which the seed nodes are. In this case, selecting
seed nodes from the same communities will be ineffective for information propagation
because they may have many overlapping adjacent nodes as we pointed it out as one of
the problems of centrality-based influence maximization methods.

6 Conclusion

This paper proposes a method for selecting seed nodes in a dynamic network that are
the most influential in information propagation. Experimental results show that our pro-
posed method is effective for some networks compared with the strategies based on cen-
tralities for dynamic networks. In comparison between proposed method and greedy
method, it is shown that proposed method is as effective as greedy method for some
networks, and consistently 500 times faster than it. Our proposed method is especially
good for the networks exhibiting community structures.
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Abstract. We investigate the potential for using neighbourhood at-
tributes alone, to match unidentified entities across networks, and to
classify them within networks. The motivation is to identify individuals
across the dark social networks that underly recorded networks. We test
an Enron email database and show the out-neighbourhoods of email ad-
dresses are highly distinctive. Then, using citation databases as proxies,
we show that a paper in CiteSeer which is also in DBLP, is highly likely to
be matched successfully, based on its (uncertainly labelled) in-neighbours
alone. A paper in SPIRES can be classified with 80% accuracy, based on
classification ratios in its in-neighbourhood alone.

Keywords: local structure, neighbourhoodmatching, instancematching.

1 Introduction

There are many sets of large databases that contain overlapping and comple-
mentary information. For instance, a social network example is the Twitter,
Facebook and LinkedIn databases and a bibliographic example is the CiteSeer,
DBLP, Google Scholar and Scopus databases.

Sometimes the same entity appears in multiple databases but with a different
description, either due to errors or to the data having inherent differences, such
as user names within different social media databases. Matching across databases
at the instance level (also termed reference reconciliation), that is, matching dif-
ferent individual descriptions referring to the same real-world entity, is important
for both discovery and database management.

Our focus here is discovery: sometimes entities represent humans or organ-
isations operating incognito or under several aliases, for either legal or illegal
reasons. From this perspective it is natural to investigate the context of an en-
tity: those entities in a database that are directly linked or related to it [6], and
further, to investigate their interlinkages (eg. [14, Figure 1]). In network terms
this is the set of nodes directly surrounding such a node, together with the edges
between them. In an undirected network this is the (open) neighbourhood of a
node: the subgraph induced by the neighbours of the node. In social network
terms, this is the ego-network without the ego.

Our interest in this idea arises from a security analysis problem in communi-
cation networks. An example of a real scenario where discovery is important and
the neighbourhood may help, is when a person of interest to authorities uses
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an unidentified mobile phone in order to remain untraceable, but still makes
calls to other phones that are identified. Similarly, by using a publicly accessi-
ble Internet terminal the individual may intend to remain unidentifiable, but is
likely to access sites that are identified. The two dark social networks underly-
ing these communication networks will have other people in common. Can we
match an individual in both communication networks if sufficiently many nodes
in his neighbourhoods can be identified across both networks, or, failing that,
if the two neighbourhoods match structurally sufficiently well? A less specific
question to ask is whether nodes can be classified into broad types according to
features of their neighbourhoods. For instance in the affiliation subnetwork of
the Noordin Top terrorist group [10], actors are classified into six categories (op-
erations, logistics, organizations, training, finance and meetings) inferred from
their mention together in public reports in newspapers and elsewhere.

There is a long history of characterising and modelling networks by the local
structure around their nodes. In social network analysis the triad census for
a network was introduced in [12] and counts of connected triads, and 4-node
motifs, are used as summary statistics in the seminal motifs paper [16]. Motif
profiling in networks is now a well accepted technique, though there is criticism
of its reliance on a null-model [3]. More general subgraph features have been
used to describe the emergence of symmetry [22] and as explanatory variables
in the exponential random graph model, which seeks to model global network
structure better, as a function of local features [20].

Similarly, there is an extensive literature on database alignment, on name
disambiguation and on approximate graph matching for de-anonymising social
networks. In [17] it is shown that if a seed set of nodes has been pre-matched
between two networks, structural features of node neighbourhoods such as num-
ber of nodes, number of edges, and clustering coefficient, that are independent
of node labels, can be used to propagate further node matches between the
networks with good accuracy. The algorithm in [18] avoids using a seed set by
starting from the highest degree node in each of two equal-sized networks.

If we focus on the local level alone, the potential for characterising the ego-
network or the two-hop neighbourhood of a single node by using subgraph mea-
sures is assessed in [8]. The Wikipedia edit network example suggests quality
classification of article nodes based on features of their two-hop networks is pos-
sible. In [13] the in-neighbourhood of papers in a CiteSeer citation network is
shown to be highly distinctive.

We report here case studies of whether an arbitrary node can be matched
ab initio across two unequal networks, or typed within a network, based solely
on features of its neighbourhood. For the first problem we require networks in
which we can be certain some of the the same entities will appear, even if they are
uncertainly labelled, and for the second we require networks in which nodes are
assigned to types. We use bibliographic databases for our experiments, since for
both problems we require publicly available databases in which information, an
idea or influence travels from a node to its neighbourhood. In the derived citation
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networks, each node corresponds to a paper and each directed edge corresponds
to a citation. An edge points from the citing paper to the cited paper.

We first check our approach with an Enron email database, since it is a pub-
licly available directed communication network in which a subset of people in
the underlying social network were acting illegally. We select the CiteSeer and
DBLP networks for testing the first question, since both mostly consist of com-
puter science papers, so we can hope to find many nodes in common, even if
they are not identically labelled. They also have nodes in common with other
databases, such as Google Scholar and Scopus. We select the high-energy physics
network SPIRES for testing the second question, since in it most nodes are typed
into one of five categories.

There are other useful similarities of citation networks as proxies for the dark
social networks of interest, though we do not take advantage of them here. Reli-
able information about nodes can often be extracted from their neighbourhood
in the presence of missing information or significant errors. For instance, if the
publication date for a paper is missing or wrong, an approximate publication date
can be inferred as being slightly earlier than the publication dates of papers that
cite it. As another example, it is often difficult to determine the subject area of
a paper from its title, but the papers which cite it can provide this information
by repetition of keywords or classifications.

In the citation networks we concentrate on the subgraph induced by the in-
neighbours. Our first contribution is to show that the node sets of in-neighbour-
hoods of papers in CiteSeer and in DBLP are sufficiently distinctive that it
is very likely that a paper which appears in both databases will be matched
successfully. It is very likely that the node sets of the in-neighbourhoods of
two different papers appearing in both databases will not match. Our second
contribution is to show that a node in SPIRES can be correctly categorised by
features of its in-neighbourhood alone about 80% of the time.

2 Neighbourhoods

In this section we briefly describe the communication and citation networks
we use and detail basic properties of the directed neighbourhoods that were
extracted.

The cleaned, directed Enron network that we use is accessible online [9]. It
has 22,477 nodes and 53,285 edges. The complete CiteSeer archive database is
accessible online [7]. Cleaning and processing involves removal of all papers with
no references. The resulting citation network has 383, 535 vertices and 1, 740, 303
edges. The average indegree is 4.5. The DBLP V3 dataset is already cleaned and
publicly available in citation network form [21]. Node labels in DBLP and Cite-
Seer for the same paper often have slightly different syntax, so a pure string
match on paper titles will fail to capture the match between them. This is a case
of uncertain labelling. The SPIRES dataset we use is that studied in [15], where
papers are assigned to five categories: Theoretical, Experimental, Phenomenol-
ogy (papers coded as being both Theoretical and Experimental), Review and
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Instrumentation, or else are unassigned. After cleaning and conversion, a net-
work with 353,954 vertices and 3,921,382 edges is created.

Formally, the in-neighbourhood of a node v ∈ V in a directed network G =
(V,E) is the subgraph Nin(v) := (Vin(v), Ein(v)) induced by the in-neighbours
of v, where

Vin(v) = {w ∈ V | (w, v) ∈ E,w �= v}, Ein(v) = {(u,w) ∈ E |u,w ∈ Vin(v)}.

The out-neighbourhood Nout(v) of a node v is analogously defined. We explicitly
exclude the node v itself. In a citation network this condition is superfluous,
since a paper cannot cite itself. In a citation network the in-neighbourhood of
a paper corresponds to the subnetwork of papers that were directly influenced
by the paper. In a communication network the out-neighbourhood of a sender
corresponds to the subnetwork of receivers that were directly influenced by the
communication.

Close to half (49%) the nodes in the CiteSeer database and over one third
(35%) of the nodes in the SPIRES database have no citations and will be in-
distinguishable via their in-neighbourhoods. They are removed from study. The
remaining papers were partitioned by citation number (indegree) into ranges that
increased exponentially, see Table 1. The smaller Enron database was similarly
partitioned by outdegree, for comparison.

From now on, “neighbourhood” will mean out -neighbourhood for the Enron
network and in-neighbourhood for the citation networks.

Table 1. Partitioning of the databases by number of recipients (Enron) or citations
(CiteSeer and SPIRES)

Partition k Range Enron CiteSeer SPIRES

1 1 8711 51949 44652

2 2-3 3270 50823 46928

3 4-7 1320 40313 45010

4 8-15 528 26669 38152

5 16-31 214 14510 27104

6 32-63 98 6700 15663

7 64-127 56 2543 7549

8 128-255 41 793 3023

9 256-511 9 207 945

10 512-1023 1 43 273

11 ≥ 1024 0 8 81

We used the igraph package in R to extract neighbourhoods. Examination of
visualisations of neighbourhoods reveals that they have a large range of different
structural features. For example, in Figure 1 we illustrate the neighbourhoods of
two papers classified in different categories in SPIRES. Visually their structures
are very different. Some examples for CiteSeer appear in [13].
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Fig. 1. SPIRES neighbourhoods of Phenomenology paper [11] (left) and Experimental
paper [1] (right)

In order to measure the distinctiveness of neighbourhoods it is necessary to
have a measure of either the similarity or difference of graphs. If the nodes are
labelled, as here, then the simplest measure of difference is a node-based score.
In essence this is the ground truth. If the nodes are uncertainly labelled then
metrics which are structural or fuzzy would be necessary.

We use the Jaccard distance of the neighbours (the relative set difference)
to measure dissimilarity of neighbourhoods. That is, if A and B denote the
neighbour sets of nodes va and vb respectively, their Jaccard distance d is:

d(A,B) = 1− |A ∩B|/|A ∪B|
where | | is set cardinality. Compared with other strictly node-based scores, the
Jaccard distance has relatively good discriminatory performance on a selection
of databases [23].

To test the likelihood that neighbourhoods in a communication network and
in a proxy citation network are distinctive, we first ran two experiments on both
the Enron network and the CiteSeer network. For the first experiment, 100 nodes
were selected from each of the partitions listed in Table 1 (with replacement if
necessary). Each node was paired with 1,000 nodes, randomly selected from the
whole database excluding the node itself, and the Jaccard distance between them
was calculated. In both cases, the cumulative relative frequency drops from 1
very rapidly. For the Enron network, out of the 1,000,000 random pairings only
15 pairs are found with Jaccard distance 0, all in Partition 2, only 858 pairs
with Jaccard distance below 0.7 and only 8968 pairs below 0.9. For the CiteSeer
network, out of the 1,100,000 random pairings 0 pairs are found with Jaccard
distance 0, only 6 below 0.7 and only 46 pairs below 0.9.

For our second experiment we look at worst-case matching, where neighbour-
hoods are guaranteed to overlap. Again, we chose 100 nodes randomly from each
partition, and then matched each of the nodes to all of the nodes in the database
that had at least one common neighbour with the selected node. This means only
node pairs which are most likely to have a low Jaccard distance are tested. For
the Enron network, out of the 531,714 nearby pairings only 759 pairs are found
with Jaccard distance of 0, and all of these are in Partitions 1 and 2. There are
only 3781 pairs with Jaccard distance below 0.7 and 30,957 pairs with Jaccard
distance below 0.9. For the CiteSeer network, out of the 537,932 nearby pairings
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0 pairs are found with Jaccard distance of 0, only 54 pairs with Jaccard distance
below 0.7 and 1163 pairs with Jaccard distance below 0.9.

The cumulative distributions are shown in Figure 2. We conclude the neigh-
bourhoods are highly distinctive in each of these databases, and distinctive in
similar ways.

Jaccard distance

(c) CiteSeer random false matches (d) CiteSeer nearby matches
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Fig. 2. Distinctiveness of neighbourhoods within Enron and CiteSeer networks

3 Matching CiteSeer Neighbourhoods in DBLP

For this experiment, we first corrected for uncertain labelling. All the paper
titles in both the DBLP and Citeseer databases were converted to lower case only,
stripped of all punctuation and stripped of white spaces at each end. For example,
the title “Computer Science: Science of the Future! ” became “computer science
science of the future”. After this processing and string matching, the number
of nodes with identical titles in Citeseer and DBLP is 115,803. This is 7% of
the DBLP node set and 16.84% of the Citeseer node set. This processing did
not remove all syntactical differences between representations of the same paper
in the two databases, so we can expect that some true matches have not been
included.

We extracted neighbourhoods for all papers in CiteSeer, and restricted to the
51,473 with neighbourhoods of size ≥ 8 (see Table 1). We found 13,555 matching
papers in DBLP and extracted the neighbourhoods for these.
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Any nodes in a neighbourhood from DBLP that did not appear in Citeseer
were removed when calculating scores. We did not perform the symmetric re-
striction of CiteSeer neighbourhoods with respect to DBLP, because our focus is
on whether a node in CiteSeer can be identified with one in DBLP, though this
would be expected to improve matching scores. If a DBLP node had an empty
neighbourhood as a result of this node removal, it was excluded from the DBLP
set. After this restriction, there were 12,582 DBLP nodes, all of which matched
nodes in CiteSeer with neighbourhoods of size ≥ 8.

For each of the 12,582 papers appearing in both CiteSeer and DBLP, we
calculated the Jaccard distance between its in-neighbour set in CiteSeer and its
in-neighbour set in DBLP. This gave a distribution of genuine scores.

A distribution of imposter scores was generated by taking 200,000 random
different pairings between the databases. A node was chosen at random from
the 12,582 DBLP nodes, then paired at random with a node from the 51,473
Citeseer nodes. The paired node in Citeseer need not have a match in DBLP.
The Jaccard distance was calculated between the in-neighbour set of a node in
DBLP and that of its paired node in CiteSeer.

The separation of genuine from imposter scores is very good, and we report
only summary results of correct decision and error rates at a threshold of 0.95
in Table 2, representing a choice to minimise the False Match Rate.

Table 2. Matching rates at Jaccard distance threshold = 0.95

True (T) False (F)

Match Rate (MR) 0.99993 0.00007

Non-Match Rate (NMR) 0.85670 0.14330

Increasing the decision threshold will shift choice towards minimising the False
Non-Match Rate. A threshold of 0.999 minimises the sum of errors (FNMR =
0.001, FMR = 0.051).

This shows that (uncertainly labelled) nodes in CiteSeer can be reliably identi-
fied with nodes in DBLP, based on their neighbours alone. Furthermore, nodes in
CiteSeer can reliably be distinguished from non-matching nodes in DBLP, based
on their neighbours alone. Because the nodes are labelled, it was always possible
that the True Match and True Non-Match rates based on neighbour sets alone
would be as good as this, without requiring any more complex graph-matching
techniques to be applied to the neighbourhoods. These are very encouraging re-
sults for the instance matching problem, in cases where enough nodes in each
neighbourhood can be identified.

In the next section we remove node labels and try matching based on more
general neighbourhood attributes.

4 Classifying by Neighbourhood in SPIRES

In this section we describe SVM (support vector machine) experiments to de-
termine whether neighborhoods for papers are sufficiently distinctive to permit
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classification of papers into categories. In the SPIRES database 56,116 (15.4%)
of the neighbourhoods have ≥ 16 nodes, and their distribution into categories is
given in Table 3.

Table 3. Distribution of papers with neighbourhood size ≥ 16 in SPIRES categories

Category # % Category # %

Theoretical 28244 51.69 Experimental 5495 10.06

Phenomenology 17618 32.25 Instrumentation 444 0.82

Review 3059 2.89 Unclassified 1256 2.29

We inspected visualisations of many neighbourhoods to inform our feature
selection, and eventually selected 14 features: five based solely on attributes of
the set of neighbours (the ratios of the number of nodes labelled Theoretical,
Experimental, Phenomenology, Instrumentation and Review, respectively, to the
number of nodes in the neighbourhood); and 9 based on structural properties of
the neighbourhoods.

The first five structural features are: edge density (for a directed network);
transitivity ratio (or global clustering coefficient); ratio of isolated nodes in the
neighbourhood; ratio of the number of nodes in the largest connected component
in the neighbourhood; and disconnectedness, a measure introduced here. The
disconnectedness Δ(G) of a non-empty graph G = (V,E) is Δ(G) = 0 if G is
connected and Δ(G) = Gc

|V | otherwise, where Gc be the number of connected

components in the graph. It takes a value between 0 and 1 where 0 corresponds
to a connected network and 1 to a collection of isolated vertices.

The remaining structural features are the four possible 3-node motifs (pic-
tured in Figure 3). Three of them (Motifs 2, 3 and 4) have been shown to be
distinctive within the two largest categories (Theoretical and Phenomenology)
of the SPIRES network as a whole [5]. The motif features were computed as fol-
lows. For each neighbourhood H , we counted the number of occurrences of each
of the four subgraphs in Figure 3. We generated 1,000 random directed acyclic
networks with the same number of nodes and edges as H (degree distribution
was not taken into account) and computed the z-score for each subgraph. Com-
putational constraints meant that it was only possible to use a linear kernel when
building a multiclass SVM model. We used 5-fold cross validation once, on all
56,116 neighbourhoods using all 14 features, and again using only the 9 structural
features. The corresponding Test set misclassification rates for three standard

1 2 3 4

Fig. 3. Structural features 11, 12, 13, 14: the possible 3-node motifs in a citation
network
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parameter values are given in Table 4. Feature reduction may further improve
classification accuracy, as may using a different kernel. It seems clear that any
feature reduction should be through removal of structural features since, using
them alone, the classification performance for a binary decision deteriorates to
little better than chance. To double-check this, Information Gain (IG) [19] was
calculated for each of the 14 features for the entire database of neighbourhoods,
see Table 5. Of the motif features, only the feedforward loop (Motif 3) shows
any possibility of contributing to classification; the low IG score for the others
indicates they could be removed from the model.

Table 4. Misclassification rates for all in-neighbourhoods, using a linear kernel

Parameter Features 1–14 Features 6–14

C = 0.1 0.2085 0.4705
C = 1 0.2084 0.4704
C = 10 0.2084 0.4705

Table 5. Information Gain (IG) for 14 features for all SPIRES in-neighbourhoods

Feature IG Feature IG

1. Theoretical Ratio 0.44595 8. Edge Density 0.02565
2. Experimental Ratio 0.26950 9. Disconnectedness 0.02160
3. Phenomenology Ratio 0.33539 10. Largest Component Ratio 0.02284
4. Instrumentation Ratio 0.05903 11. z-score of Motif 1 0.00259
5. Review Ratio 0.03638 12. z-score of Motif 2 0.00723
6. Isolated Nodes Ratio 0.02543 13. z-score of Motif 3 0.01914
7. Clustering Coefficient 0.01186 14. z-score of Motif 4 0.00647

After removing unclassified papers, we repeated the experiment on the first 10
features with a Gaussian kernel, again using 5-fold cross-validation, training us-
ing several smaller training sets sizes and optimising with n = 500 in the training
set and 100 in the validation subset. Random selection ensures distribution of
the papers belonging to each category is approximately represented in the train-
ing set and validation subset. In order to reduce sample variation, the model
was trained and validated 100 times. For each training set, an independent Test
set of size 2,000 was chosen randomly from the set of available neighbourhoods.
Again, testing was repeated 100 times. A simple wrapper was run to find the
smallest, best performing feature set. IG scores applied to each feature confirmed
the feature selection. The models trained using features 2, 3, 4 slightly outper-
form the models trained using the first ten features (t(198) = 6.77, p < 0.001).
Results appear in Table 6. They suggest that classification using attributes of
the in-neighbour set as a whole is successful in 78.3% of cases, when applied to
the test set.
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Table 6. Performance comparison of the smallest, best performing feature set

Feature Set V Misclass T Misclass

1–10 0.1652 ± 0.0239 0.2262 ± 0.0093

2, 3, 4 0.1963 ± 0.0185 0.2173 ± 0.0093

In this experiment the category of the paper does not seem to be related
to the structure of the neighbourhood, nor to the non-structural feature which
had highest IG (Theoretical paper ratio), but this could be because this local
citation behaviour is typical of scholarly articles in general and is independent
of category.

5 Conclusions and Future Work

On the small Enron network which represents the type of network of interest,
we have demonstrated that neighbourhoods are very distinctive, especially if
they contain 4 or more out-neighbours. In the much larger CiteSeer network,
we have demonstrated that neighbourhoods are very distinctive, especially if
they contain 8 or more in-neighbours. Figure 2 shows very similar behaviour of
neighbourhood distinctiveness between the two networks, so our use of citation
networks as proxies is reasonable.

We have demonstrated that the neighborhood of a paper in CiteSeer is likely
to match the neighbourhood of the same paper in the DBLP database, based
on its node labels alone. The neighbourhood shows promise for good matching
performance across databases, but requires further study. We have yet to test
how the False Matches and False Non-Matches arise, and whether structural
information can separate True Match and True Non-Match scores further.

The features that were used to classify a node successfully within the SPIRES
network were the classification ratios of the in-neighbours of the node. A paper’s
category does not seem to be related to the structures in its neighbourhood that
we tested, but perhaps other more useful structural features could be found. In
other networks or for other categories the structure might matter more.

The distinctiveness of different node-based scores could be compared with
that of Jaccard distance. Other similarity scores, such as the Adamic-Adar score
[2] and RA and LP scores [23], which have somewhat better performance than
the Jaccard similarity score on a selection of databases [23], can be tested. A
natural generalisation of Jaccard distance which could also be used is the graph
edit distance [4]. This metric measures the minimum cost to alter one graph to
another where there are weighted costs to adding or removing nodes and edges.
The Jaccard distance is the special case of the normalised graph edit distance
where the cost of adding or removing edges is zero. Graph-edit distance based
matching scores [4] allow us to compare the topology of two in-neighbourhoods
directly. For instance, the maximum common subgraph of two in-neighbourhoods
can be found using a graph edit algorithm, and properties based on subgraphs
of the maximum common subgraph can be measured.
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We have demonstrated that neighbourhoods have promise to discover or cat-
egorise uncertainly labelled nodes in citation networks. Ideally, we will be able
to apply these ideas to communication networks containing uncertainly labelled
nodes.

In general there is a continuum of problem types between uniquely labelled
nodes through to unlabelled nodes, and we expect many useful applications to
lie somewhere between the extremes. Many examples are likely to involve nodes
that are partially labelled or labelled with errors, such as we consider here, and
neighbourhood matching is a promising approach to the problem.
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23. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur.
Phys. J. B 71, 623–630 (2009)

http://arnetminer.org/citation


An Efficient Estimation of a Node’s Betweenness

Manas Agarwal1, Rishi Ranjan Singh2, Shubham Chaudhary3, and S.R.S. Iyengar4

1 Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand, India
manasuma@iitr.ac.in

2 Department of Computer Science and Engineering,
Indian Institute of Technology, Ropar, Punjab, India

rishirs@iitrpr.ac.in
3 Department of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand, India

shubhuma@iitr.ac.in
4 Department of Computer Science and Engineering,
Indian Institute of Technology, Ropar, Punjab, India

sudarshan@iitrpr.ac.in

Abstract. Betweenness Centrality measures, erstwhile popular amongst the so-
ciologists and psychologists, have seen wide and increasing applications across
several disciplines of late. In conjunction with the big data problems, there came
the need to analyze large complex networks. Exact computation of a node’s be-
tweenness is a daunting task in the networks of large size. In this paper, we pro-
pose a non-uniform sampling method to estimate the betweenness of a node. We
apply our approach to estimate a node’s betweenness in several synthetic and real
world graphs. We compare our method with the available techniques in the litera-
ture and show that our method fares several times better than the currently known
techniques. We further show that the accuracy of our algorithm gets better with
the increase in size and density of the network.

1 Introduction

Centrality of a node in a network is the quantification of the intuitive notion of im-
portance of a node in a network. Centrality measures have been extensively used in
the analysis of large data available from real world networks. Amongst a plethora of
application specific definitions available in the literature to rank the vertices, close-
ness centrality, betweenness centrality and eigenvector centrality (page-rank) have been
the most important and widely applied ones. For a detailed study of centrality indices
and their applications, one can refer to the books by Newman [23] and Brandes and
Erlebach [6]. We focus on betweenness centrality. It was proposed by Freeman [12]
and Anthonisse [1] independently. Betweenness centrality of a node v is defined as the
relative fraction of shortest paths passing through v. Betweenness centrality has found
several important applications in diverse fields. One can refer [23,6] and the literature
cited in related work section to explore the applications of betweenness centrality.

Real-world networks are generally very large in size, dynamic in nature and keep
changing at a very high rate. In such networks, estimating betweenness centrality score
of a node is of great importance. Consider for example, in the city network of a state,
where nodes are the cities and edges are the roads connecting cities, and government
has limited resources that can be used for the development of only one city. Then, out
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of two cities, the government might want to pick one, developing which will benefit
more to the state. This requires the government to compute and compare the individual
importance (in this case betweenness) of the cities.

There are two reasons why the current state of the art algorithms for exact computa-
tion of a node’s betweenness are not time efficient. Firstly because of the large size and the
dynamicnatureofnetworks. In largedynamicnetworks,wehave torecompute thecentral-
ity scores each time the network changes, which is evidently expensive. Secondly because
of the global characteristics of betweenness centrality. Unlike degree and closeness cen-
tralities, computing betweenness centrality of a node is conjectured to be as expensive as
computing it for all the nodes in any network [18]. Thus, we are motivated to efficiently
estimate a node’s betweenness without computing betweenness of all nodes.

2 Related Work

Algorithms for exact betweenness computation are based on either single source short-
est path (SSSP) computation algorithms from all nodes or all pair shortest path com-
putation algorithms. The most trivial algorithm is a modified version of the all pair
shortest path computation (APSP) algorithm to compute the betweenness scores for all
nodes [12]. But this takes O(n3) time where n is the number of nodes. In year 2001,
Brandes [5] introduced an algorithm based on the computation of single source short-
est path (SSSP) that computes the exact betweenness score of all nodes in unweighted
graphs in O(mn) time, where m is the number of edges. Due to the size of current
real world networks, even the state of art (Brandes’) algorithm was very expensive in
terms of time. This motivated the researchers to develop faster exact or approximation
algorithms. Several exact algorithms for large graphs (Sariyüce et al. [25]) and dy-
namic graphs (Lee et al. [20], Green et al. [16], Kas et al. [17], Goel et al. [15], Nasre
et al. [22]) have been developed. These algorithms improved the computation time ex-
perimentally on special type of graphs but in worst case they all were as expensive as
Brandes’[5]. Several approximation algorithms were also proposed. These algorithms
ran much faster and estimated the centrality scores close to the exact centrality scores.
The approximation approaches in the literature can be grouped into two categories. The
First category consists of algorithms that focus on computing the approximate between-
ness of all nodes together (Brandes and Pich [7], Geisberger et al. [13], Gkorou et al.
[14], Riondato and Kornaropoulos [24]). The second category comprises of algorithms
that estimate the betweenness score of a given node (Bader et al. [2], Chehreghani[9]).
Our goal is to develop an approximation algorithm of second category.

In this paper, we propose a novel non-uniform sampling technique that approxi-
mates very closely the optimal sampling explained in [9]. Our approach outperforms
the estimations provided by Chehreghani’s [9] work that already surpasses the uniform
sampling based approaches ([7,2]). We organize the rest of the paper as follows. In next
section we define basic terms used in the paper and briefly discuss Chehreghani’s work.
In section 4, we develop our model based on the analysis of random networks and some
observations. All the details about simulations, data sets used in simulations, perfor-
mance tools used for evaluation and extensive results in the form of plots and tables are
compiled in section 5. We discuss the possible future directions of work and conclude
the paper in section 6.
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3 Preliminary

In this section, we introduce some basic terms related to the betweenness centrality that
have been used throughout the paper. We also discuss the previous concepts that have
motivated our sampling technique.

3.1 Terminology

We use following terms interchangeably; node or vertex and graph or network. For sim-
plicity, we consider only unweighted undirected graphs until mentioned explicitly. All
the concepts discussed in this paper can be easily generalized for weighted or directed
graphs. Given a graph G = (V,E), V is the set of nodes with |V |= n and E is the set of
edges with |E| = m. A (simple) path is a sequence of edges connecting a sequence of
vertices without repetition of any vertex. . The length of a path is the number of edges
in the path. Shortest paths between two vertices are the smallest length paths between
them. Distance between two nodes i and j, d(i, j), is the length of shortest path between
i and j.

Let σst be the number of shortest paths between s and t, for s, t ∈V . Let σst(v) be the
number of shortest paths between s and t passing through v, for v∈V . Betweenness cen-
trality score of a node v ∈V is calculated as BC(v) = ∑

s �=t �=vεV

σst (v)
σst

. Pair dependency of a

pair of vertices (s, t) on a vertex v is defined as: δst(v)=
σst (v)

σst
. Betweenness centrality of

a vertex v can be defined in terms of pair dependency as BC(v) = ∑
s �=v �=t∈V

δst(v). Let BFTr

be the breadth-first traversal (BFT) of the graph rooted on vertex r. In BFTr, we assume
that r is at level 0 and the next levels are labelled by natural numbers in an increasing
order. Dependency of a vertex s on a vertex v is defined as: δs•(v) = ∑

t∈V\{s,v}
δst(v). Let

us define a set Ps(w) = {v : v ∈ V, w is a successor o f v in BFTs}. Brandes [5] proved
that:

δs•(v) = ∑
w:v∈Ps(w)

σsv

σsw
(1+ δs•(w)). (1)

Algorithm 1. Approximation algorithm to compute betweenness score of a given
node v [9]
1. Input. Graph G, probabilities P = {p1, p2, · · · , pn}, node v.
2. BC(v) = 0.
3. for i=1 to T do
4. Select a node i with probability pi.
5. Compute δi•(v) in the BFTi using equation (1).

6. BC(v)← BC(v)+ δi•(v)
pi

.
7. end for
8. BC[v]← BC(v)/T.
9. Return. BC(v).
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3.2 A Betweenness Approximation Technique Based on Non-uniform Sampling

In this section we will briefly describe the recent work of Chehreghani [9] that provides
motivation for our work. He gave an approximation algorithm to compute between-
ness score of a given node v. The algorithm is summarized as Algorithm 1. For a given
node v, the algorithm takes the sampling probabilities as input and outputs the approx-
imate betweenness score of node v. Step 2 initializes the betweenness score to 0. The
algorithm estimates the betweenness score of node v, T number of times and takes the
average of all T estimations. In each iteration of the algorithm, it samples a pivot node
and computes the dependency of the pivot node on node v using a single iteration of
Brandes’ algorithm [5]. Then it estimates the betweenness score of node v by, dividing
(scaling) the computed dependency by the sampling probability of that pivot node. He
has motivated his paper with the idea of optimal sampling that is stated in the following
theorem.

Theorem 1. [9] Let the sampling probability assigned to each node i be

pi =
δi•(v)

∑n
j=1 δ j•(v)

then, betweenness score of node v can be exactly calculated in O(m) time using single
iteration of Algorithm 1.

We refer the probability defined in Theorem 1 as optimal probability and call a model
optimal model (OPT) if it can generate optimal probabilities. Calculating optimal prob-
abilities is as expensive as computing exact betweenness using Brandes’ algorithm [5].
Thus, a model was desired that can efficiently estimate sampling probabilities close to
the optimal. Chehreghani noted that any such model should satisfy at least the following
relation for most of the vertex pairs (i, j):

pi < p j ⇐⇒ δi•(v)< δ j•(v) (2)

Chehreghani has given a simple distance based model (DBM)[9] to generate the sam-
pling probabilities. He proposed to take the probabilities as the normalized value of
the inverse of distance from node v to node i, pi ∝ 1

d(v,i) . He has shown experimen-
tally that his nonuniform sampling technique reduces the error in the computation of
betweenness score as compared to uniform sampling technique([7,2]). But, he was un-
able to provide a theoretical derivation for DBM. In DBM, many of the nodes j with
δ j•(v) = 0 get same probabilities as nodes i with δi•(v) �= 0 because of being at the same
level in BFTv. We propose a new probability estimation model for nodes that efficiently
approximates the optimal probabilities and outperforms DBM.

4 A New Non-uniform Sampling Model

In this section, for a given node v, we propose a model that generates non-uniform
probabilities for sampling the nodes very close to optimal probabilities. This model can
be incorporated with Algorithm 1 to solve the considered problem. Our model is based
on the inverse of degree and an exponential function in the power of distance, thus, we
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refer it as EDDBM (exponential in distance and inverse of degree based model). We try
assigning larger probability values to the vertices contributing more to the betweeness
of a given node v and smaller to those that contribute less. We perform the analysis on
the random graphs to establish the relation between probabilities and distance. Then,
on the basis of few observations, we tune the probability function. Finally, we describe
the steps to generate the probabilities by our model.

4.1 Analysis of Random Graphs

Let G be a random graph that is generated based on the G(n, p) model given by Erdos
Renyi [11]. We are given a vertex v to compute its betweenness score. We first analyze
how the dependency of a node i on the node v, δi•(v) varies when v lies on different
levels in BFTi. This will help us to establish a relation between δi•(v) and the distance
between i and v. For this, first we need to compute the expected number of nodes at any
level m of a BFS traversal. We present a simpler version of the estimation technique
given by Wang [29] to estimate the number of nodes at any level in BFS traversal. Let
λ be the average degree of the given graph and let p be the probability of an edge’s
existence. The proof of all the Lemmas and Theorem 2 are available in the full version
on the paper. The first lemma approximately estimates the number of nodes at a given
level in a BFS traversal by a recurrence relation.

Lemma 1. Let α j be the number of nodes at level j in the BFSi. Then, based on the
exploration technique in random graphs by Van Der Hofstad [28], the number of nodes
at level m+ 1, αm+1 can be given as:

αm+1 ≈ np(1− ∑m
j=0 α j

n
)αm. (3)

Equation (3) is a recurrence relation to estimate the number of nodes at some level
m+ 1. Using Lemma 1, we can estimate the ratio between the expected number of
nodes at two consecutive levels. The ratio is given in Lemma 2.

Lemma 2. Let αm and αm+1 be the number of nodes at level m and m+1 respectively.

Then we have
αm+1

αm
≈ cm+1λ where cm+1 = (1− ∑m

j=0 α j

n
) and cm+1 ∈ [0,1).

Based on lemma 2, we derive the formula to calculate the expected dependency of a
node i on node v, E[δi•(v)] in next lemma.

Lemma 3. Let v be a node at level m in the BFSi. Then the expected dependency of
node i on node v can be given as

E[δi•(v)] = (
αm−1

αm−2
)(1+ cmλ )≈ cm−1λ (1+ cmλ ). (4)

Now, we can give the theorem stating the ratio between dependencies of root node on
two nodes positioned at two consecutive levels.
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Theorem 2. Let l be the last level in BSTi. Let δi•(vl−k) be the dependency of node i
at a node vl−k at level l − k and let δi•(vl−k+1) be the dependency of node i at a node
vl−k+1 at level l − k+ 1. Then we have

E[δi•(vl−k)]

E[δi•(vl−k+1)]
= cl−k+1(

1
φ
+λ ) (5)

where φ = (cl−k+2)(1+ cl−k+3λ (1+ cl−k+4λ (1+ cl−k+5λ (1+ · · ·(1+ clλ )) · · · ).
It is simple to observe that cm decreases continuously as m increases. So as v becomes
closer to i, E[δi•(v)] increases steeply, proportional to the average degree λ . Therefore,
on the basis of lemma 2, we can assign a probability pi to the node i as in the following
theorem.

Theorem 3. Suppose, we have to compute the betweenness score of node v. Then the
sampling probability assigned to node i is :

pi ∝ (λ )−d(i,v) (6)

where d(i,v) is the distance between v and i.

4.2 EDDBM

Based on few observations we tweak our model. The observations and proposed tweak
are available in the full version on the paper. We generate the final probabilities as
following. First, we generate the probabilities on the basis of distance relation given in
equation (6). Each node i at level d in the BFTv will get following probability value:
pd = (λ )−d

∑ j∈V\{v}(λ )−d . Let Vd be the set of nodes at level d in the BFTv and |Vd| denotes the

number of nodes in set Vd . Then to resolve the problem stated in Observation 1 to best
extent, at each level d, we further tweak the formula and change the assigned probability
to node i at dth level to:

pi =
pd |Vd | ·deg(i)−1

∑ j∈Vd
deg( j)−1 .

5 Experimental Results

In this section, we discuss the experimental results achieved on extensive real world
graphs and synthetic graphs. We have implemented the algorithms in Python Version
2.7.3 and used Networkx library for graph functions. All the simulations were per-
formed on a 32 bit Ubuntu machine with 3.00GHz Intel Core 2 Duo E8400 processor
and 3.4 GB RAM. We have not discussed the execution time of our approach. It is
O(T m), same as for the approach in [9].

5.1 Data Sets

Real Networks. We have picked several real world networks. [4,21,10] can be re-
ferred for the description about the considered networks and data. We have shown
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the betweenness computation results on real graphs in the Table 2. Details about the
considered graphs and source of the data set are mentioned in the table. We have consid-
ered power grid networks, city networks, airline network, road network, random bench-
marked networks and many more.

Synthetic Networks. For synthetic graphs we considered following three types of
graphs: Random Graphs (ER) generated based on the G(n, p) model given by Erdos
Renyi [11]; Scale-free Random Graphs (BA) generated by the Albert Barabasi graph
generation G(n,k) model [3]; Small World Graphs (WS) generated by Watts Strogatz
G(n,k, p) model [30].

5.2 Performance Measurement Tool: Average Error

We use average error as a performance tool for our approach. It is defined as follows.
Let G = (V,E) be a given graph with |V | = n. Let BCe(v) be the exact betweenness
score of node v in the graph G. Let BCa(v) be the betweenness score of the same node v
computed by Algorithm 1 using probabilities generated by our model. Then, we define
error in computation of betweenness score on node v same as Chehreghani[9]: Er(v) =
|BCe(v)−BCa(v)|

BCe(v) ×100. We can define average error E in the computation of betweenness

score of a set of nodes U , U ⊆V , over a graph G as E = ∑i∈U Er(i)
|U | where |U | denotes the

number of nodes in set U . Number of iterations used for computation of betweenness
score is also referred as number of sampled nodes. We denote it by T , where T is the
percentage of total number of nodes n.

We take T = 10% for all the simulations. To find the average error in the betweenness
computation for a node, we take mean of the error over five iterations. We consider every
node of a graph to measure the average error in the betweenness computation on that
graph. For synthetic graphs, we take mean of the average error over five such artificial
graphs.

5.3 Plots

In this section we evaluate the performance of EDDBM through various plots. With
the help of different plots on synthetic networks, we compare the accuracy of EDDBM
with DBM.

Fig. 1. Comparison of probabilities assigned by DBM, EDDBM and optimal model in a Barabasi
Albert graph with n = 200 and k = 5
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(a) DBM vs Optimal Model (b) EDDBM vs optimal model

Fig. 2. Comparison of probabilities assigned by DBM and EDDBM vs the optimal model in a
random graph with n = 200 and p = .05

Comparison of Probabilities Assigned by DBM, EDDBM and Optimal Model.
Plots in this subsection show that EDDBM generates probabilities very close to the
optimal probabilities. These plots also compare EDDBM with DBM. The first plot in
Fig. 1 is drawn for a synthetic scale free graph with n = 200 and k = 5. Here, the x-
axis represents the nodes labelling and the y-axis represent the probabilities assigned
by DBM, EDDBM and the optimal model. The next two plots in Fig. 2 are drawn for
a random synthetic graph with n = 200 and p = 0.05. In both the plots in Fig. 2, the x-
axis represents the nodes sorted in the order of their optimal probabilities and the y-axis
represents the probabilities assigned by DBM / EDDBM and the optimal probabilities.
In both the figures Fig. 1 and Fig.2, it is easy to observe that EDDBM is much better
than DBM. We plot the average error in the computation of betweenness centrality us-
ing EDDBM when the number of sampled nodes were T = X% of the total number of
nodes. We note that the average error reduces very sharply for smaller X . After X = 10,
there is very small change in the average error. Thus, we have set X = 10 to get the
experimental results in this paper. We also plot the average error in the computation of
betweenness score in a graph with respect to the size of graph (number of nodes in that
graph). We note that the average error in computation of betweenness score decreases
with increase in the number of nodes in both cases (constant average degree and con-
stant graph-density). The more details about the above plots are available in the full
version on the paper.

Table 1. Average error in synthetic graphs

Instance AD DBM EDDBM

Barabasi(500,2) 3.98 41.93% 14.6%
Barabasi(500,4) 7.94 39.82% 9.23%
Barabasi(1000,2) 3.99 37.81% 11.42%
Barabasi(1000,4) 7.97 34.65% 6.95%
Erdos renyi(500, 0.016) 7.85 26.5% 4.34%
Erdos renyi(500, 0.008) 3.99 22.5% 6.77%
watts strogatz(500,4,.2) 4 18.41% 20.68%
watts strogatz(500,6,.3) 6 21.12% 8.69%
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Table 2. Average error in real graphs

Instance n m GD AD DBM EDDBM

Gset/G10 [10] 800 19176 .060 47.94 24.62% 3.88%
Gset/G14 [10] 800 4694 .0147 11.74 33.48% 7.13%
Florida Food Web [27, 4] 128 2075 .2553 32.42 38.90% 10.89%
Baydry Food Web [27, 4] 128 2106 .2591 32.91 35.22% 11.45%
Bai/rbsa480 [10] 480 16408 .1427 68.37 22.53% 4.99%
US Air lines [4] 332 2126 .0387 12.81 37.00% 14.50%
World Cities [26] 415 7518 .0875 36.41 24.04% 10.07%
Pajek/Roget [19, 4] 1022 4643 .0089 9.19 69.54% 32.19%
Pajek/SmaGri [4] 1024 4916 .0094 9.6 34.01% 9.48%
Pajek/GD06 C JAVA [4] 1538 7817 .0066 10.17 40.68% 12.08%
Pajek/Yeast [8, 4] 2284 6646 .0025 5.82 19.09% 5.59%
HB/bcsstk08 [10] 1071 5943 .0104 11.1 38.23% 14.14%
Arenas/Email [10] 1133 5451 .0085 9.62 29.14% 7.99%

5.4 Average Error in Graphs

In this section, we discuss and compare the results achieved by Algorithm 1 when it takes
probabilities from our model (EDDBM) and Chehreghani’s model (DBM) on some syn-
thetic graphs and several small and moderate size real graphs. We have not compared
our approach with the other uniform sampling approaches as Chehreghani’s work has
already surpassed them. We considered small and moderate size graphs as we have al-
ready showed that the performance of our approach increases in large size graphs.

Average Error in Synthetic Graphs. In this section, we will analyze the results over
some synthetic graphs. The results are summarized in Table 1. The first column gives the
description of graph considered. Second column contains the average degree (AD) of
nodes in the instance graph. The last two columns contain the average error in computa-
tion of betweenness due to our model (EDDBM) and average error due to Chehreghani’s
model (DBM). We considered four scale free Barabasi Albert graphs, two random Er-
dos Renyi graphs and two small world Watts Strogatz graphs. We generated at least
one sparse and one dense graph from each model. It is easy to observe that EDDBM
performed much better than DBM. Our model performs better in denser graph than
in sparser graphs. In the considered instances we reduced the error due to DBM by a
maximum of 6.11 times and an average of 3.53 times.

Average Error in Real Graphs. This section presents and discusses the extensive simu-
lation on real networks. The real networks were picked from [4,10,21]. After extracting
the networks, we converted the networks into unweighted undirected networks. Then
we removed multi-edges, self-loops and isolated nodes. The results obtained are sum-
marized in the Table 2. The columns are in similar order as in the Table 1 except there
are three more new column entries after the first column. The first new column contains
the number of nodes (n), the second one lists the number of edges (m) in the correspond-
ing networks and the third one lists the graph-density (GD) of the networks. EDDBM
performed again better than DBM. In some considered data sets, we reduced the error
by a maximum of more than 6.3 times and on a average reduction of 3.54 times.
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The formulation of EDDBM is based on the analysis of random graphs. Random
graphs do not posses high clustering coefficient and thus, this model does not perform
well on the graphs with high clustering coefficient.

6 Conclusion and Further Work

In this paper, we considered the problem of approximating the betweenness score of a
given node and provided a better feasible and practical solution to it than the existing
one in literature. We presented the proof of concept of our technique by applying it
to real world graphs as well as synthetic ones. To the best of our knowledge, it is the
first attempt to theoretically derive a sampling function for betweenness computation.
An interesting problem would be to tune our algorithm, so that, the clustering has no
effect on the results. A more efficient approximation of the optimal sampling is another
direction to look.
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Abstract. In recent years, more and more people begin to publish information 
on online social platforms like Sina Weibo. Via the facilities like posting 
tweets, retweeting tweets and making comments provided by Weibo service, 
users can easily express their feelings, giving opinions and make interactions 
with their friends in real time. Sentiment analysis of Weibo messages is impor-
tant for the analysis of human sentiment. The characteristics of Chinese micro-
blogs bring difficulty in sentiment classification. In this paper, an effective  
Chinese microblogs sentiment classification model based on Naive Bayes is 
proposed. Two strategies to do the three sentiment polarities classification are 
compared and the two-step strategy performs better than the one-step strategy. 

Keywords: Sentiment classification, Sina Weibo, Machine learning, Social 
network.  

1 Introduction 

Social networks like Twitter and Weibo play vital roles in people daily online activi-
ties. [1] More and more Chinese people use Sina Weibo network to express their feel-
ings and interact with friends. Besides common users, many organizations, such as 
enterprises, news agencies and government institutions use Sina Weibo to spread 
information.  

Information on Weibo involves many areas. Online social networks are the reflec-
tion of the real networks of people. The contents of the microblogs indicate the senti-
ment of users. [2] Therefore, sentiment information is of much value. Analyzing the 
sentiment of specific microblogs in Weibo, we can obtain the opinions of participated 
users, which can be used to monitor or predict the trend of events, such as political 
elections prediction [3, 4, 5] and user’s review prediction for products marketing [6]. 

However, some difficulties exist in the sentiment analysis of Chinese microblogs. 
The nature of Chinese language brings in the problem of words segmentation, which 
makes the sentiment analysis difficult. Meanwhile, Chinese microblogs with short-
text nature and novelty of the new cyberspeak terms are quite different with normal 
written texts. [7] All of these increase the difficulty of sentiment analysis. The senti-
ment classification model needs to fit the Chinese microblogs characteristics. 
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In this work, we focus on the sentiment classification of Chinese microblogs. First, 
considering the characteristics of Weibo messages, an effective classification model 
based on Naive Bayes is proposed, which fits the characteristics of Chinese micro-
blogs. Second, the two-step classification strategy is proposed for the classification 
process, that is subjective-objective classification in step 1 and positive-negative  
classification in step 2. Third, two classification strategies are compared. Two-step 
classification obtains better performance than that of one-step strategy.  

2 Related Work 

There has been much work on the sentiment analysis of texts of which two classes of 
methods are frequently used. The first one is the machine learning techniques. Pang B 
et al. [8] used Naive Bayes, Maximum Entropy and SVM to classify the film reviews 
into positive and negative which are reported to be superior to the human-produced 
baselines in document level. In their later study, they reviewed the machine learning 
techniques and methods which can be used in opinion-oriented information-seeking 
systems. [9] For Chinese sentiment analysis, Jun LI et al. [10] compared common 
machine learning methods in sentiment classification of Chinese hotel reviews. They 
found Naive Bayes performs best in their study and the feature schemes could affect 
the classification performance.  

The other main method is the lexicon-based approach. Vasileios el al. [11] studied 
the log-linear regression model using the positive and negative semantic orientation 
lexicon to predict the polarity of adjectives. Turney and Littman [12] used SO-PMI and 
SO-ISA to calculate the semantic orientation of terms based on word co-occurrence in 
corpus. Isa Maks and Vossen [13] presented a lexicon model for the description of 
verbs, nouns and adjectives to do sentiment analysis and opinion mining. 

Some researchers focus on sentiment analysis in Twitter or Weibo by considering 
the social networks. Tan et al. [14] found that the performance of sentiment classifica-
tion can be improved significantly by incorporating social network information based 
on SVM. Tang et al. [15] proposed a graphical model to predict users’ sentiment in 
the social network by studying how users’ opinions are influenced by the people they 
follow on Tencent Weibo platform. 

3 Sentiment Classification Model 

Weibo messages have two important characteristics compared to the normal written 
texts. The first one is short-text nature. There is a 140-words limit in Sina Weibo net-
works. Because of the short attention of network activities, most Weibo messages are 
much shorter than 140 words, which is quite different to the normal written texts. This 
will result in the problems of information shortage and the lack of correlation struc-
ture in the sentences. The second characteristic is novelty. The words of Weibo mes-
sages come from daily online writing. The sentence structures of expression vary a  
lot and new online terms emerge continuously, such as new cyberspeak and emoji. 
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This requires the features of machine learning classification methods fit the develop-
ment of the online expression. 

To solve the problems, we built a machine learning model based on Naive Bayes to 
classify sentiment of Sina Weibo messages into three categories, namely positive, 
negative, and neutral. To construct a valid feature space, we used the Hownet senti-
ment dictionary and Ntusd sentiment dictionary as basic features. Since we merged 
two large dictionaries together, the dimension of feature space is too high compared 
with our handedly labeled training cases. And many of the words in the dictionary are 
rarely used in the contexts of tweets, which leads to sparse learning space. 

In this work, ICTCLAS 2013 is used as the word segmentation tool to do the text 
processing. ICTCLAS is one of the most popular Chinese word segmentation tools 
which provide the functions of word segmentation, POS tagging and user defined 
dictionary. [16] 

To reduce the dimension of feature space, we used a validation set to filter out in-
frequent features which are regarded as less important and could be noise that leads to 
sparsity problem. We used a corpus of 400K tweets from Sina Weibo to calculate the 
frequency of the words in our dictionary. Figure 1 gives the distribution of feature 
counts. 

 

Fig. 1. Complementary cumulative distribution function (CCDF) of the feature frequency 

As shown in Figure 1, approximately 90% of the words in feature space have a fre-
quency lower than 100. In practice, feature words of frequency lower than 50 are 
filtered out.  

As the language used in online communities is quite different from that of written 
text. One prominent characteristic is that tweets use more informal words with ab-
breviations and emoji. This lowers the performance of both segmentation of Chinese 
texts and feature selection. To solve this problem, we first crawled many of the popu-
lar online expressions to add to our dictionary. Then we extracted the unidentified 
words in the segmentation of Chinese texts and added them to our feature space. Also, 
the words of text expression for emoji defined by Weibo were added in feature space.  

As a result, 2522 features are selected to build learning models. 
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4 Experiments and Analysis 

To perform a supervised learning, 1584 microblog entries labeled manually are as the 
training set to train the machine learning model. The entries are randomly selected 
from the tweets posted for Weibo messages posted during 2013 and 2014. 

Table 1. Sentiment distribution of training set 

 Positive Neutral  Negative Total 
Number 576 469 539 1584 

Percentage 36.43% 29.61% 33.96% 100% 

To do the classification, we proposed two classification strategies for the classification 
process: 

Strategy 1: One-Step Classification. This strategy classifies messages into three 
polarities: positive, neutral and negative with one step.  

10-fold cross-validation technique is utilized to train and test the Naive Bayes 
model. In 10-fold cross-validation, the original sample is randomly divided into ten 
subsamples. One subsample is the validation data used to test model, and the other 
nine subsamples are training data. Then repeat the process ten times with each of the 
subsample as the validation data. The final performance of the classification is the 
average scores of the results of the ten times. After the training and testing of 10-fold 
cross-validation, the classification model and results were obtained. 

The precision, recall and F1-measure are used as model evaluation metrics.  
F1-measure is a measure of a test's accuracy considering both the precision and 
the recall. It is defined as follows: 

 
1

2
-

precision recall
F measure

precision recall

× ×=
+

  (1) 

The classification performance of Naive Bayes model in one-step strategy is shown 
in Table 2. 

Table 2. Classification performance of one-step strategy 

Sentiment Precision Recall F1-Measure 
Positive 0.786 0.699 0.74 
Neutral 0.709 0.728 0.719 

Negative 0.755 0.809 0.781 
Average 0.751 0.75 0.749 

From the table we can see that the average F1-measure is about 75%. The perfor-
mance of most sentiment classification methods, which classify the texts into positive, 
negative and neutral, ranges from 0.7 to 0.8 for Chinese microblogs. Analyzing the 
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classification result, we find that microblog entries with weak sentiment polarity and 
entries with only a few words are easier to be classified into incorrect polarity.  

Strategy 2: Two-Step Classification. This strategy consists of two steps: step-1, the 
entries are classified into subjective and objective. The objective entries are messages 
with neutral sentiment. They may be the statements of the facts or the tweets which 
just express the neutral sentiment without bias. However, the subjective are the entries 
with positive or negative sentiment. In step-2, the subjective entries are classified into 
positive and negative.  

In step-1, the 1584 microblog entries are labeled as objective or subjective, where 
neutral entries are labeled as objective, positive and negative are labeled as subjective. 
10-fold cross-validation technique is utilized to train and test the first-step Naive 
Bayes model. The performance is shown in Table 3.  

Table 3. Classification performance of step one for two-step strategy  

Sentiment Precision Recall F1-Measure 
Subjective 0.878 0.901 0.889 
Objective 0.893 0.868 0.88 
Average 0.885 0.885 0.885 

We can see that the performance is near to 0.9. The model can effectively classify 
microblogs in two polarities.  

In step-2, the subjective entries are labeled as negative or positive. After 10-fold 
cross-validation, the result of Naive Bayes model is shown in Table 4. 

Table 4. Classification performance of step two for two-step strategy 

Sentiment Precision Recall F1-Measure 
Positive 0.831 0.92 0.873 
Negative 0.91 0.812 0.858 
Average 0.871 0.866 0.866 

We can see that the classification of positive and negative is a little higher than 0.85.  
To compare the performance, we calculate the final result of Strategy 2 as  

Figure 2 shows: 
Except that negative polarity classification is almost same, we can see that the per-

formance of Strategy 2 is much higher than that of Strategy 1 in positive and neutral 
polarity classification. The average F1-measure of Strategy 2 is 0.75 higher than that 
of Strategy 1. This proves that two-step strategy performs better to classify Chinese 
microblogs entries than one-step strategy.  

On the whole Naive Bayes is an effective method to do the sentiment classification 
of Chinese microblog messages. And two-step strategy is the better choice when 
doing the sentiment classification.  
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Fig. 2. Performance comparison between Strategy 1 and Strategy 2. The vertical axis is the  
F1-measure of for polarities. 

5 Conclusions and Future Work 

This paper focuses on the sentiment classification analysis of Chinese microblog net-
work. Considering the characteristics of Weibo messages, we propose a sentiment 
classification model based on Naive Bayes. This model obtains good classification 
performance by fitting the characteristics of Chinese. A two-step strategy for the clas-
sification process is proposed. That is subjective-objective classification in step 1 and 
positive-negative classification in step 2. Compared to the one-step classification 
strategy, two-step classification performs better with the measurement of precision, 
recall and F1-measure. 

In future work, more features of microblogs can be introduced to improve the clas-
sification performance. The structure of networks and user profile may influence the 
sentiment expression of users, these features can be utilized. And the analysis of  
Chinese language context can help to adjust the machine learning model.  
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Abstract. Several methods have previously been proposed for mapping and en-
abling the understanding of the brain’s organization. A widely used class of such
methods consists in reconstructing brain functional connectivity networks from
imaging data, such as fMRI data, which is then analysed with appropriate graph
theory algorithms. If the imaging datasets are acquired at high resolution, the
complexity of the problem both in spatial as well as temporal terms becomes
very high. In this work, brain images were acquired using high-field scanners
that produce very high resolution fMRI datasets. In order to address the resulting
complexity issues, we developed a tool that is able to reconstruct the brain con-
nectivity network from the high resolution images and analyse it in terms of the
network’s information flowing efficiency and also of the network’s organization
in functional modules. We were able to see that, although the networks are very
complex, there is an apparent underlying organization. The corresponding struc-
ture allows the information to flow from one point to another in a very efficient
manner. We were also able to see that these networks have a modular structure,
which is in accordance with previous findings.

Keywords: functional Magnetic Resonance Imaging, brain, network mining,
high resolution, graph theory, functional connectivity.

1 Introduction

The human brain is known to be the most complex organ of the human body. Over
time its study has attracted considerable attention and researchers have come up with
multiple ways to analyse it. One possible way to do that is to build and analyse the brain
functional connectivity (BFC) network from the data provided by functional Magnetic
Resonance Imaging (fMRI). This BFC network allows to study the brain using standard
graph theory algorithms.

This work intends to address this analysis and mapping problem, by starting with
high resolution resting state fMRIs obtained from experimental 7T machine scans, ex-
tracting from them the BFC network and applying network mining techniques to anal-
yse them. Having a high resolution image of the brain we hope will make it possible to
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extract a more accurate and more detailed network. However, the increase in data size is
also a problem as the amount of data can easily be hundreds of times larger than usual
fMRI. Therefore one of the challenges of this work is to find efficient ways to build,
represent and analyse these networks.

fMRI

The fMRI is one of the most widely used brain imaging techniques. It relies on the
magnetic properties of the hemoglobin measuring the Blood-Oxygen Level-Dependent
(BOLD) signal. The brain activity is measured based on the changes in the blood flow
and on the fact that the blood flow in the brain is strongly correlated with neuronal ac-
tivity [1]. The BOLD signal will be more intense in the areas of the brain that are active
at a given time. Thus, the fMRI will provide a spatial map of the 3D brain where each
volume division (voxel) will have associated to it a different BOLD signal fluctuation.
This allows us to know how active that specific volume unit of the brain was through
the time course of the test.

Using a stronger magnetic field makes it possible to get higher quality spatial reso-
lution. That property is consequentially reflected on the size and number of voxels, i.e.,
higher resolution yields more and smaller voxels.

Functional Connectivity

The most commonly accepted definition of functional connectivity describes it as the
temporal correlation between spatially remote neurophysiological events [2, 3]. In other
words the brain functional connectivity network will give us an insight on how the dif-
ferent brain regions are functionally related. Several methods may be used to evaluate
functional connectivity. The evaluated functional connectivity may differ depending on
whether the complete time series is used or just part of it and also on whether one uses
the data from a single subject or the data obtained by averaging across subjects. All
these different approaches may yield different functional connectivity networks even
though the same datasets are being used. The basic elements of this network will be the
voxels the information about voxels functional connectivity will determine if they are
connected or not.

Graph Theory

To perform all the network mining analysis that are required to obtain the previously
described functional network, we resorted to graph theory. A generic graph G consists
of a set of nodes, or vertices, (V) connected to each other through a set of edges (E),
i.e., G = (V,E). These connections can either exist or not based on the pairwise relation
between the nodes.

Often a graph that models the brain functional network can have as vertices the
brain’s regions of interest (ROI), that are usually known from a brain atlas, which is a
three-dimensional map of the human brain. If a more detailed analysis is desired the
vertices can be the voxels that come directly from the fMRI.
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In graph theory there are several metrics that can be computed for a given graph.
In order to understand them there are some baseline concepts that need to be defined
first. One simple concept is that of degree of a vertex, which is the number of edges
that are connected to it. Another important concept is that of a path, that is the sequence
of vertices and edges that are crossed to get from a vertex of the graph to another. The
length of a path can be measured by the number of edges that are crossed and this yields
the concept of distance between two vertices, as the shortest of all paths that connect
them.

2 Methods

In order to analyse the BFC networks using graph theory concepts several metrics were
used to give us an insight on the network’s structure such as the degree distribution
function, clustering coefficient, modularity and small world coefficient, that are defined
in [4, 5, 6, 7].

Building a Network from fMRI Data

In the BFC network each voxel will be a vertex and their pairwise functional connec-
tivity will be an edge. The most commonly used way to determine if there is an edge
between two vertices is to measure the correlation between them [8]. Having the cor-
relation between all pairs of voxels a threshold is set and only pairs with a correlation
above that level are accepted as functionally connected.

The amount of data that we are dealing with when we compute a matrix that corre-
lates every pair of voxels is a challenging problem, therefore we are going to do some
pre-processing before starting the computation. The most obvious step to do first is, on
each slice, to only consider the voxels that actually belong to the brain, i.e., voxels that
do not have any BOLD signal are no considered. Additionally, we also want to avoid
making the computation of the whole correlation matrix at once, an instead do it in
chunks. Each of those chunks is then processed to extract the pairs of voxels whose cor-
relation is above the chosen threshold. Those are stored and all other data is discarded.
The procedure is as follows: Initially the data matrix is divided in chunks of equal size
where each matrix Yi has dimensions m× t, with m being the number of voxels and t the
number of different time points (Equation 1); Then each of the chunks is correlated with
all the other chunks yielding the correlation matrix that is formed by the sub-matrices
of the chunks pairwise correlations (Equation 2). All of these sub-matrices will have
the same size m×m, m being the number of voxels that are present in each of the data
chunks Yi.

Y =
[

Y1 Y2 ... Yn
]

(1) R =

⎡

⎢⎢⎢⎢⎣

R11 R12 ... R1n

R21
. . .

...
. . .

Rn1 Rn2 ... Rnn

⎤

⎥⎥⎥⎥⎦
(2)
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Community Detection

We performed a modularity analysis that was intended to find separate modules on the
network. The best partition is the one that concentrates more edge density within its
modules. The optimization of modularity measure defined by Newman [5] is a hard
problem, thus we must rely on efficient greedy algorithms. Even though we are not able
to achieve optimal partitionings, we obtain reasonably good ones in linear time. To do
so we used a parallel algorithm developed by Boldi et al. [9] called Layered Label Prop-
agation (LLP) that is based on well known label propagation algorithms but with the
ability to tune the vertex resistance to change label leading to a hierarchical clustering.
The conclusions regarding the different functional modules drawn from these datasets
were then compared with a different state of the art analysis. The most commonly used
approach to analyse resting state fMRI is the Independent Component Analysis (ICA),
and we will therefore be interested in comparing with it. These Independent Compo-
nents (ICs) can then be compared with our results, to check for their validity. This
validation was made by measuring the overlap between the ICs and the modules found
by the community detection algorithm. The ICA analysis was conducted using FSL
version 5.0.6 with MELODIC version 3.14 [10] generating 20 ICs.

3 Results

The resting-state fMRI datasets were collected from a group of six healthy volunteers
on a 7T Siemens machine yielding data with 1.1mm3 isotropic voxels. As the size of
the brain varies from one person to another, each of the subjects has a different number
of nodes in their BFC network. These are presented in Table 1.

Table 1. Total number of nodes in the
BFC network of each subject

Subject Slices Number of nodes

1 144 1 365 082
2 120 1 080 702
3 133 1 282 836
4 138 1 305 160
5 145 1 365 120
6 135 1 262 244

Average 136 1 276 857

Table 2. Number of created edges for
each subject using different thresholds

Edge average Edge density

0.40 668 989 847 8.2067e-04
0.45 302 385 481 3.7095e-04
0.50 136 909 022 1.6795e-04
0.55 61 017 717 7.4852e-05
0.60 26 350 364 3.2325e-05
0.65 10 887 184 1.3356e-05
0.70 4 263 328 5.2300e-06

For each subject, a different correlation threshold yields a different BFC network.
This difference can be easily observed when computing the number of edges. The lower
the threshold the more voxel pairs are considered as functionally connected thus result-
ing in a higher number of edges for the lower thresholds.

As one can observe from Table 2, for all the thresholds the edge density is very low,
which makes the network sparse. This was an expected result since in previous state of
the art works all the BFC networks were found to be sparse. [11, 7]
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Connected Components and Degree Distribution

In order to choose an appropriate threshold it is required to check how much information
about the network is lost when going from a low threshold to a higher one. In order to
evaluate this, the size of the giant connected component of the network was computed
and compared with the total number of nodes in the network. The results regarding
these computations are presented in Table 3.

Table 3. Percentage of the total nodes that are in the giant component of the network

Subject
T 1 2 3 4 5 6

0.40 100% 100% 100% 100% 100% 100%
0.45 98% 100% 99% 100% 99% 100%
0.50 77% 100% 91% 100% 88% 99%
0.55 53% 96% 58% 99% 58% 92%
0.60 37% 77% 44% 94% 35% 71%
0.65 26% 48% 32% 74% 23% 55%
0.70 16% 28% 22% 46% 14% 42%

From the results presented it is easy to conclude that if the threshold is too high then
the network loses its connectivity and the amount of information lost is also too high.
We could infer that, on average, for a correlation threshold between 0.4 and 0.5 little
information seems to be lost, whereas above that we will start to have is a significant
loss of information.

Regarding the vertex degree distribution for the BFC networks it is also dependent
on the chosen correlation threshold. To check if our BFC networks exhibit properties
similar to the ones already studied in other state of the art works, their degree distri-
bution should follow a power law, with an exponent between 2 and 3. For each subject
and for each threshold the degree distribution function was computed and fitted with a
power law and the results of the power law exponent that fits each degree distribution
function are shown on Table 4.

Table 4. Value of the exponent from the fitting function of the degree distribution

Subject
T 1 2 3 4 5 6

0.40 2.09 2.04 2.15 2.16 2.04 2.28
0.45 2.00 1.92 2.04 2.06 1.97 2.18
0.50 1.92 1.83 1.95 1.95 1.89 2.09
0.55 1.85 1.66 1.86 1.84 1.77 1.96
0.60 1.80 1.64 1.79 1.72 1.77 1.88
0.65 1.77 1.63 1.74 1.66 1.75 1.70
0.70 1.73 1.60 1.66 1.59 1.73 1.65
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It is possible to see from Table 4 that the networks whose degree distribution is closer
to the ones reported in other state of the art works are the ones corresponding to lower
thresholds. This is expected as the edge density for the networks with higher correlation
thresholds is very low.

Small Worldness

Based on the obtained results, the only networks that were considered for further anal-
ysis were the ones obtained with a correlation threshold between 0.4 and 0.5.

To prove the small-world topology we need to compute the minimum average path
in all the BFC and respective random equivalent networks, and also the clustering co-
efficient for both cases. With this information we are now able to compute the λ and
γ coefficients as presented in [7]. All the results regarding these computations are pre-
sented on Table 5 and Table 6.

Table 5. Average characteristic path for
the BFC networks, their respective random
equivalents and value of the λ coefficient

T BFC rand λ
0.4 4.113 3.251 1.265
0.45 5.650 3.509 1.610
0.5 7.487 4.698 1.498

Table 6. Average clustering coefficient of
the BFC networks, their respective random
equivalent networks and value of the γ
coefficient

T BFC rand γ
0.4 0.213 0.053 4.102
0.45 0.197 0.042 4.690
0.5 0.173 0.039 4.436

As one can see from Table 5 the minimum average path of all the BFC networks is
almost as low as the one from their random equivalents, which is exactly what usually
happens in small-world networks [4]. This is an important property of the networks that
have a small-world topology, it is possible to go from any vertex to any other with a
small number of steps. Regarding the clustering coefficient results, presented in Table
6, we were able to see that these networks have a higher cluster coefficient than its
random equivalent. From the previous results it is possible to estimate the σ coefficient,
presented in [7] with the results shown in Table 7.

Table 7. Average small-worldness coefficient of all the BFC networks

T γ λ σ
0.4 4.102 1.265 3.243
0.45 4.690 1.610 2.913
0.5 4.436 1.498 2.961

With these final results of the σ coefficient we are now able to postulate that all
the studied BFC networks have a small-world topology, since for all of them the σ
coefficient is higher than 1, which, as shown in the work of van den Heuvel et al. [7], is
enough to prove our assertion of small-worldness.
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Community Detection

For each of the three different BFC networks of all the subjects a community detection
algorithm was applied with the purpose of finding functional modules of the brain. In
order to validate these results, the found clusters were compared with the resulting data
provided by independent component analysis (ICA).

For the graph cluster analysis only the six major modules were represented because
on average the other modules were very small when compared with the average size of
the IC. There was some significant overlap between some modules found by LLP and
IC found by ICA, with some of these values up to 90%. This is a very relevant result as
it proves that our analysis made with the LLP algorithm has very likely found relevant
modules of the brain because it is supported by the results of ICA. It was also possible
to see that there is a significant overlap of the modules with the ICs in almost every
subjects’ networks at all three chosen threshold levels; however some thresholds had
better results than others. In Figure 1 three modules from the BFC network of subject
3 are represented and also the ICs where those modules are contained. As can be seen,
both images are very similar, with the modules that have a higher overlap with the IC
being the ones that seem almost the same.

Fig. 1. 1 - Three modules found with LLP for subject 3 at a correlation threshold of 0.45;
2 - Three IC found with ICA for subject 3 at a correlation threshold of 0.45

After measuring the overlap between the modules found with LLP and the ICA, we
computed their normalized mutual information (NMI). The results showed that almost
all the modules and ICs that were chosen have an NMI between 0.3 and 0.5. This may
seem an unexpected result because of the high percentage of vertices from the modules
that are contained in the ICs. However it is important to stress the fact that the size of
the modules sometimes is quite different from the size of the ICs, which means that
although the majority of the vertices from the module overlaps the IC there is still a
number of vertices from the IC that is outside of that given module.
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4 Conclusions and Future Work

The results of our work were very interesting, as far as reconstructing the BFC network
from high resolution fMRIs is concerned, because to the best of our knowledge no
tool has been presented that allows a reconstruction of such high resolution networks.
Furthermore, our results also showed that the structural properties of the networks are
similar to the ones found in low resolution networks. Thus, even at high resolution, we
found that there is an evident ability of the brain’s network to flow information in a very
efficient way.

Regarding the BFC network analysis, more advanced metrics can be computed and
more detailed modularity analysis can be made. For instance, for each cluster that we
found another modularity analysis can be performed and checked for clusters within the
clusters, i.e., check for some hierarchical information.

It is also important to stress that better and more advanced methods to pre-process the
data will yield more interesting and accurate the results. However, all these techniques
are also complex specially in datasets that cover areas such as the brainstem, that are
very exposed to noise.
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Abstract. We introduce a new method to characterize the network re-
liability polynomial of graphs – and hence the graph itself – using only a
few parameters. Exact evaluation of the reliability polynomial is almost
impossible for large graphs; estimating the polynomial’s coefficients is
feasible but requires significant computation. Furthermore, the informa-
tion required to specify the polynomial scales with the size of the graph.
Thus, we aim to develop a way to characterize the polynomial well with
as few parameters as possible. We show that the error function provides
a two-parameter family of functions that can closely reproduce reliability
polynomials of both random graphs and synthetic social networks. These
parameter values can be used as statistics for characterizing the struc-
ture of entire networks in ways that are sensitive to dynamical properties
of interest.

Keywords: Network reliability, Error function, synthetic social
networks.

1 Introduction

1.1 Motivation

It has been more than 50 years since Moore and Shannon introduced the net-
work reliability polynomial to study the performance of electronic circuits with
“crummy” relays [1]. Since then, the concept has been widely applied in designing
reliable circuits and other networks delivering commodities between source and
destination locations. Early studies showed the effect of network topology on the
overall performance of the network for simple commodity flow between a source
vertex and a sink vertex [2,3]. This problem is well-known as the Two-Terminal
reliability rule. Another common performance measure is the probability that a
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randomly selected set of edges connects all the vertices of the original graph, of-
ten referred to as the All-Terminal reliability rule. Furthermore, the K-Terminal
reliability rule – the probability that a randomly selected subgraph contains a
predefined set of vertices of size K – has been also studied. For a comprehen-
sive review of the reliability polynomial, we refer the reader to the book by
C. J. Colbourn [4].

Network reliability polynomials are not limited to Two-Terminal reliability,
K-Terminal reliability or All-Terminal reliability rules. There are many features
of percolation processes that the network reliability polynomial can reflect. In
previous studies, the concept of reliability polynomial was successfully applied
to study the spread of the infectious diseases in social networks [5,6].

The classical concept of network reliability provides a rich theoretical ba-
sis, supported by computational estimation procedures, to study the effect of
structural properties on the diffusion of dynamics. Although evaluation of the
reliability polynomial coefficients is usually intractable and its complexity is #-P
hard [4], estimating the coefficients to within a practically important confidence
interval is feasible. This paper aims at shrinking the wide gap between theo-
retical analysis of reliability problems and our ability to apply the conceptual
framework to practical problems for large and non-trivial graphs. The estimation
procedure relies on the random selection of subgraphs from the main graph un-
der study. The reliability rule, which is chosen based on the dynamical features
of interest, is applied to every subgraph to determine whether it exhibits the
desired feature. For example, in this paper, the feature we are interested in is
the probability that a certain fraction α (the “attack rate”)of the population will
be infected during an outbreak of disease, as a function of its person-to-person
transmissibility.

The reliability polynomial describes the system’s behavior. We would like
to use it to characterize the system itself, and to that end, we need a way
to summarize the information it contains. We can take advantage of the fact
that, for rules that satisfy a simple criterion, the reliability polynomials are
monotonic increasing sigmoidal functions from the interval [0, 1] to itself. This
suggests representing the polynomial as the cumulative distribution function of
a continuous probability density.

1.2 Contribution

In this paper, we represent the network reliability polynomial in terms of well-
known two-parameter functions. Here, we test two functions, the error function
and the binomial cumulative distribution function. We fit reliability polyno-
mials for several random graphs and synthetic social networks to these func-
tions, note the values of the best-fit parameters, and evaluate the goodness of
fit using the statistical coefficient of determination. The error function provides
better fits than the binomial CDF fits and provides a very close fit to all the
examples. Thus the two parameters of the error function, the mean and devia-
tion of the corresponding Gaussian, were sufficient to characterize the reliability
polynomial.
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We observe that, for random graphs, the values of these two parameters are
weakly correlated with the size of the graph. The values also depend on the
reliability rule. Lastly we exploit this method to characterize differences among
synthetic social networks for the New River Valley in Virginia, Mexico City,
Sierra Leone and Liberia [7]. We conclude that we can reconstruct the network’s
reliability using just a few parameters.

The paper is organized as follows: Section 2 introduces the definition of net-
work reliability and reliability rules. Section 3 elaborates on fitting the reliabil-
ity polynomial to two parameterized functions. The numerical evaluations are
described in Section 4. Finally, the conclusions are discussed in Section 5.

2 Network Reliability Polynomial

Moore and Shannon introduced the concept of the network reliability polyno-
mial in the 1950’s to evaluate the performance of electrical circuits composed
of crummy relays. Given that every relay has a probability of failure, Moore
and Shannon showed that the probability the circuit functioned as desired could
be expressed as a polynomial. In addition, they evaluated the circuit reliability
given that the relays are connected in series, in parallel, and in certain com-
binations of series and parallel. In this paper, we use the reliability concept to
analyze social networks. In particular, we tie the concept of network reliability to
network epidemiology by evaluating the probability of obtaining a given attack
rate as a function of transmissibility.

2.1 Mathematical Definition

Given a graph composed of N vertices and E edges and a criterion that clearly
defines the acceptance or the rejection of a subgraph–represented as the reliability
rule r: r(g) ∈ {0, 1}–in a binary form, we introduce a damage model that assigns
a probability to each subgraph. The network reliability is then:

RG(x) ≡
∑

g⊂G

r(g)px(g) (1)

where g is a subgraph, r(g) is 1 if the subgraph g is accepted by the rule r, and
px(g) is the probability to obtain the subgraph g under the damage model. In this
paper, the damage model includes each edge with probability x, corresponding
to bond percolation. The probability of obtaining a subgraph with k edges is
xk(1−x)E−k. We denote the number of subgraphs with k edges that are accepted
by the reliability rule r(g) as Rk. The network reliability can be written as a
polynomial:

RG(x) =

k=E∑

k=0

Rkx
k(1− x)E−k. (2)

The term Rk is called the reliability coefficient, and its computation is, in
general, intractable. However, we know that there are

(
E
k

)
subgraphs with k
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edges in the graph, and that some fraction between 0 and 1 of them is accepted
by the reliability rule. Therefore, the reliability coefficient can be written as
follows:

Rk = Pk

(
E

k

)
(3)

where Pk is the fraction of with k edges that is accepted. Hence:

RG(x) =

k=E∑

k=0

Pk

(
E

k

)
xk(1 − x)E−k. (4)

Computing the coefficients Pk is straightforward. Simply select a subgraph with
k edges randomly and evaluate the reliability rule. The estimate for Pk is the
number of accepted subgraphs divided by the total number of subgraphs sam-
pled. The random selection of subgraphs is repeated until the sampling error for
Pk is within the desired confidence interval. The number of edges in the small-
est accepted subgraph is called kmin, while the number of edges in the largest
unaccepted subgraph is called kmax [8]. Thus the Pk curve has values between 0
and 1 between kmin and kmax, respectively. The reliability R(x) is a smoothed
version of Pk, as can be seen from Equation 4, where

(
E
k

)
xk(1−x)E−k plays the

role of a sharply peaked smoothing kernel.
We use the following reliability rule: a graph g is accepted if and only if the

mean square size of connected components in g is greater than αN . This rule
creates a mapping between an interesting epidemiological problem and the reli-
ability polynomial as follows: x represents the transmission probability, α rep-
resents the attack rate, and R(x) represents the probability that the attack rate
is at least α. We denote this rule as ExpX − α.

The motivation of this work was to characterize the reliability polynomial
R(x) using a small set of parameters. Since R(x) has the properties of a cumula-
tive distribution function (CDF), we propose to fit the Pk values to the binomial
CDF and the error function.

3 Two-Parameter Characterization of Network
Reliability

3.1 Binomial CDF Method

The cumulative distribution function (CDF) of a binomial distribution is given
as

CDF (k) =

k∑

m=0

(
N

m

)
pm(1− p)N−m. (5)

R(x) has a similar form (Eqn. 4). Thus, we fit the right hand side of Eqn.(5)
to the Pk of Eqn.(4) and plot it with respect to the k estimates Pk by taking
p as a parameter. They are truncated between the kmin and kmax. The k data
points are re-scaled to give the values of m such that it runs from 0 to N as
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Fig. 1. Plot of Pk and binomial CDF fit with k∗ for (a)N = 20, M = 50 (left panel),
(b)N = 2000, M = 50, 000 (middle panel) and (c)N = 153, 036, M = 4, 152, 739 (right
panel)

integers with an increment of 1. That is it runs from 0 to the total number of
data points. Here, N is chosen to be the maximum of m. We find the value
of p ∈ [0, 1] for which the binomial CDF best fits the Pk values. We use the
coefficient of determination R2 as a measure of goodness-of-fit as follows:

R2 = 1−
∑

i

(yi − yfit)
2

(yi − ymean)2
(6)

where yi are the data points, ymean is the mean of the data points and yfit are
the fitted data. The best fit is obtained when R2 is closest to 1.

Figure 1 shows the binomial CDF fit to three sets of random networks gen-
erated by choosing a specific number of edges M uniformly at random over a
specific number of vertices N . These are (a)N = 20, M = 50, (b)N = 2000,
M = 50, 000 and (c)N = 153036, M = 4, 152, 739. As the size of the graph
increases the fit becomes better as observed from the R2 value, which increases
from 0.8846 to 0.9074.

3.2 Error Function Method

We show the fit of R(x) to the error function:

erf(X) =
1

a

∫ X

0

e−( t+b
a )

2

dt (7)

Here, a changes the width of the underlying Gaussian and is related to the
variance whereas b shifts the position of the mean of the Gaussian. The error
function is defined between −1 and 1 for positive and negative values of X . The
R(x) and Pk have values only between 0 and 1 and x lies between 0 and 1. Thus,
we rescale the error function such that both of them are in the same range. For
this we fit R(x) and Pk to 1

2 (erf(ax − b) + 1). Also, we normalize the x values
to x∗ given by

x∗ =
x− xmin

xmax − xmin
(8)
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Table 1. Comparison between fits to the error function method and the Binomial CDF

Size of Graph Two-parameter method Binomial CDF method

N = 20, M = 50 0.9830 0.8846
N = 100, M = 450 0.9508 0.8808
N = 500, M = 35750 0.9976 0.8983
N = 2000, M = 50, 000 0.9993 0.9068
N = 10, 000, M = 40, 000 0.9916 0.9627
N = 35, 000, M = 750, 000 0.9975 0.9142
N = 125, 000, M = 500, 000 0.9986 0.8843
N = 153, 036, M = 4, 152, 739 0.9999 0.9075

R(x) shows a sharp transition when plotted against x for large systems. This
means that the values of xmin and xmax are closer for larger systems compared
to a small size network. To look at the behaviour of R(x) in the region of the
sharp transition we re-scale the axis from x to x∗.

4 Numerical Evaluation

We generate random Erdős-Rényi G(N,M) graphs each having N vertices and
M edges. We estimate the reliability polynomial for these graphs, and we use the
coefficient of determination R2 as a metric to determine the closeness of fitting
the reliability curve using the error function and the Binomial CDF method.
The graphs that have been used in this analysis are summarized in Table 1.
The last GNM graph in the table is generated with the same number of vertices
and edges as an estimated social contact for the New River Valley region near
Blacksburg, Virginia. We use the reliability rule ExpX = 0.2. We use both k,
the number of edges in the sub-graph and x, the ratio of k to the total number of
edges E in our analysis. We also use the kmin or alternatively xmin and kmax or
xmax values to normalize our data. Table 1 shows a comparison between the two-
parameter method based on the error function and the Binomial CDF method
for different graphs. Based on R2 values, the error function is a better fit than
the Binomial CDF. Therefore, in the rest of the numerical evaluation, we use
the error function to represent the reliability polynomial.

An exhaustive search was done in the parameter space to find out the values
of a and b with R2 as a metric of goodness-of-fit for both R(x) and Pk. Figures
2 and 3 show the fits to the error function for both Pk and R(x) for the GNM
graphs.

We clearly observe that the parameters a and b decrease as the graph size
increases. Meanwhile, the value of R2 indicates that a better fit is obtained as the
graph size increases for fitting Pk and R(x). Next, we change the reliability rule
from ExpX = 0.2 to 0.4, 0.6, and 0.8 and repeat the analysis. The parameters
a and b and R2 are reported in Table 2.

We evaluate the reliability polynomials for the NRV, Mexico City, Liberia, and
Sierra Leone synthetic social networks. The Sierra Leone and Liberia synthetic
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Fig. 2. Plot of Pk and fit to the error function for GNM graphs with k∗ for (a)N = 20,
M = 50 (left panel), (b)N = 2000, M = 50, 000 (middle panel) and (c)N = 153, 036,
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Table 2. Fitting the reliability polynomial R(x) of GNM graphs for different reliability
rule ExpX − α

Graph α = 0.4: R2,a,b α = 0.6: R2,a,b α = 0.8: R2,a,b

N = 20, M = 50 0.9992,1.81,0.52 0.9999,2.21,0.70 0.9999,2.69,0.70
N = 100, M = 450 0.9998,1.53,1.24 0.9997,1.27,1.01 0.9994,3.67,1.28
N = 500, M = 35750 0.9999,2.28,1.16 0.9994,2.22,1.03 0.9986,3.28,1.43
N = 2000, M = 50, 000 0.9996,1.88,1.09 0.9999,2.43,1.07 0.9999,3.57,1.63
N = 10, 000, M = 40, 000 0.9999,2.61,1.20 0.9999,3.14,1.60 0.9999,3.60,1.58
N = 35, 000, M = 750, 000 0.9999,2.32,1.24 0.9999,2.61,1.33 0.9999,3.24,1.47
N = 125, 000, M = 500, 000 0.9999,2.56,1.21 0.9999,2.73,2.32 0.9999,3.39,1.63
N = 153, 036, M = 4, 152, 739 0.9999,2.39,1.14 0.9999,2.65,1.41 0.9999,3.46,1.75

social networks are available for public use1 as part of studying the spread of
Ebola in Africa. The fitting of R(x) is reported in Figures 4-7. The R2 values
are close to 1 with minimum value of 0.9984 and maximum value of 0.9999
showing that the error function matches the reliability polynomial well and the
parameters a and b are thus suitable for characterizing the reliability polynomial
and, by extension, the structure of graphs.

1 http://vbi.vt.edu/ndssl/ebola
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Fig. 4. Plot of R(x) and the error function fit with x∗ for the NRV social network for
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5 Conclusions

We have compared a set of reliability polynomials with both the cumulative dis-
tribution function (CDF) of a binomial and the error function. We have reported
that the error function yields a better fit to the Pk values than the binomial CDF.
We suggest using the parameters of the best-fit error function to characterize
R(x). The parameters a and b in the error function change the width and shift
the position of the mean of the corresponding Gaussian function, respectively.
These values increase with the size of the graph, for several different rules. Fi-
nally, we use this method to study the nature of the reliability polynomials of the
synthetic social networks for NRV, Mexico City, Sierra Leone and Liberia. We
conclude that these two parameters and the values of kmin and kmax, or equiv-
alently or xmin and xmax, for a particular network, summarize the reliability of
the network.

We suggest several ways to use the analyses presented here. First, we can
use the values xmin, xmax, a, and b as descriptive statistics for a network that
are more informative for many purposes than the usual statistics such as degree
distribution, assortativity, etc. Second, they form a set of sufficient statistics
for a given feature of diffusive dynamics on a network. Understanding the rela-
tionship between network structure and these statistics provides insight into the
structure-to-function problem for networks. Finally, this parameterized form for
the reliability polynomial can be useful for studying critical point phenomenology
in finite-size systems. Here we have described its use for phenomena related to
the epidemic transition, but this is just one instance of a percolation transition.
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Abstract. To perform cooperative tasks in a decentralized manner, multi-robot
systems are often required to communicate with each other. For that reason, main-
taining the communication graph connectivity is a fundamental issue. In this pa-
per, we analyse the effects of communication time delay upon a connectivity
maintenance control strategy for robotic agents. The results show that the con-
nectivity strategy is resilient to the negative effects of such disturbance only at
small values in the communication delay. However, the inherent inertial charac-
teristics of most terrestrial and aquatic robots opens the perspective of applying
the connectivity maintenance strategy to adaptive schemes that consider, for in-
stance, autonomous adaptation to constraints other than the connectivity itself,
e.g. communication efficiency and energy harvesting.

1 Introduction

We analyse here the effects of communication delays upon the control strategy for con-
nectivity maintenance first introduced in [1], evaluating its impact in multi-robot sys-
tems. As this is a decentralized strategy that requires local communication between
agents, the main requirement is to keep the agents always connected during communi-
cation, not only for connectivity maintenance per se, but also for other tasks that require
connectivity among agents, e.g. information exhange.

The control strategy considered here is a representative of the so-called global con-
nectivity techniques, allowing possible elimination of redundant links and creation of
new ones as needed, a typical feature of a mobile network. This is in opposition with
local connectivity techniques as proposed by [2], [3] and [4], which ensure that once
two agents exchange information through a communication link at time t = 0, this link
will be active ∀t > 0, hence creating an initial path from the outset. Imposing the main-
tenance of each single communication link is costly from an Engineering point of view,
and a more convenient scheme can be achieved guaranteeing that redundant links are
removed and additional links are generated as needed. Indeed, information exchange
among all the agents is guaranteed under global connectivity of the communication
graph.

The control strategy introduced in [1] ensures that global connectivity is maintained
in a system of agents, even in the presence of an obstacle set. This approach is inspired
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in the strategy previously defined in [6] and introduces a way of obtaining, in a dis-
tributed way, the value of the second smallest eigenvalue of the Laplacian matrix, that,
as shown in [7], measures the connectivity of a graph. Regarding other estimate proce-
dures that can be found in [8] and [9], one of the principal advantages of the method
described in [1] is that it provides, besides the Fiedler eigenvalue, estimations of its own
gradients that are useful in real-time computations, as we will see.

2 Background on Graph Theory

The connectivity scheme is based on graph-theoretical considerations that we outline in
this section. Further background details can be found in [10].

Given N mobile robots, we model the instantaneous communication links among
them as edges in an undirected graph where each robot corresponds to a node. Commu-
nication is assumed to be local, in the sense that each robot i communicates only with
a topological neighbourhood, defined as Ni, i.e. the set of robots that can exchange in-
formation with it. The complete communication graph is represented by the adjacency
matrix A ∈ R

N×N , where each ai j is defined as the weight of the edge between robots
i and j, and is positive if j ∈Ni, zero otherwise. This value needs to be computed in
order to allow the local Laplacian evaluation, as we’ll see next. As we are considering
undirected graphs, ai j = a ji.

Finally, consider the Laplacian matrix of the graph, defined as L = D − A where

D= diag({di}), and di =
N
∑
j=1

ai j is the degree of the i-th node of the graph. L holds some

important properties, among which a remarkable relationship between its eigenvalues
and the graph connectivity. Namely, let λi, i = 1, . . . ,N be the eigenvalues of L. Then

– The eigenvalues can be ordered such that

0 = λ1 ≤ λ2 ≤ . . .≤ λN (1)

– λ2 > 0 if and only if the graph is connected: λ2 is then defined as the algebraic
connectivity of the graph.

This means that any procedure that keeps λ2 at positive values guarantees graph
connectivity, i.e., guarantees a communication path between any pair of nodes.

3 Connectivity Maintenance

In this section we initially summarize a control strategy that assumes that each agent
can compute the actual value of λ2. In the sequence, this hypothesis will be removed
with the description of the distributed procedure.

3.1 Centralized Connectivity Maintenance

For the sake of clarity, we present here a summary of the estimation and connectivity
maintenance procedures introduced in [1]. Basically, each agent applies a control law
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that guarantees connectivity with a value of λ2 that is kept larger than a predefined lower
bound ε .

Let pi ∈ R
m be the state vector describing the position of the i-th agent and ui be its

control input. Considering a group of N single integrator agents (that is, whose motion
model is described by ṗ = u), we have:

uc
i = ṗi (2)

where p =
[
pT

1 . . . pT
N

]
and uc

i , defined as:

uc
i = csch2(λ2 − ε).

∂λ2

∂ pi
(3)

is a control law that guarantees connectivity in a centralized framework (that is, as-
suming that the real value of the partial derivative of the algebraic connectivity w.r.t.
the agent’s state is somehow calculated and informed to each agent). This assumption,
however, will be removed in Section 3.2.

Now consider that the neighborhood of agent i is denoted by Ni and the maximum
communication range for each agent is denoted by R. Each j-th agent is inside Ni if
||pi − p j|| ≤ R. Also, let υ2 be the eigenvector corresponding to the eigenvalue λ2, and

let υk
2 be the k-th component of υ2. According to [6], ∂λ2

∂ pi
can then be computed as:

∂λ2

∂ pi
= ∑

jεNi

−ai j

(
υ i

2 −υ j
2

)2
.
pi − p j

σ2

where the edge-weights ai j are defined as in Eq. 4:

ai j =

{
e− (||pi − p j ||)2/(2.σ 2) , i f ||pi − p j|| ≤ R

0 , otherwise

and the scalar parameter σ is chosen to satisfy the boundary condition e
−(R2)
(2.σ2) = Δ , in

which Δ is a small defined threshold.

3.2 Decentralized Connectivity Maintenance

The control law we use as a basis in this work was presented in [11] and is an extension
of the one presented in Eq. 2, by adding a bounded control term ud in order to obtain
some desired formation behaviour:

ṗi = uc
i + ud

i (4)

where uc
i being now given by a variation of Eq. 3 that considers local estimates of

eigenvalues and their variations:

uc
i = csch2(λ2 − ε̃).

∂ λ̃2

∂ pi
(5)



152 V.A. Battagello and C.H.C. Ribeiro

with λ̃2 being now computed by each agent from an estimate of υ i
2, given by υ̃ i

2. Let

υ̃2 =
[
υ̃1

2 . . . υ̃N
2

]T
, thus λ̃2 is the second smallest eigenvalue that the Laplacian matrix

would take if υ̃2 were the corresponding eigenvector.
From [11], λ̃2 can be expressed according to:

λ̃2 =
k3

k2
.
[
1−Ave({(υ̃ i

2)
2})] (6)

where k3 and k2 are control gains and Ave(.) is the averaging operation.
Notice that the actual value of λ̃2 cannot be computed by each agent (because, actu-

ally, the real value of Ave({(υ̃ i
2)

2}) cannot be calculated in a distributed way), however
an estimate of this average is available to each agent through a consensus procedure
(see [6] for further details). Let us call this estimate zi

2, thus we have for each agent the
(calculated) estimate of λ i

2:

λ̃ i
2 =

k3

k2
.
[
1− zi

2

]
(7)

Following the procedure proposed by [11], each agent also computes:

∂ λ̃2

∂ pi
= ∑

jεNi

−ai j

(
υ̃ i

2 − υ̃ j
2

)2
.
pi − p j

σ2 (8)

As shown in [11], λ i
2 is a good estimate of both λ2 and λ̃2. Specifically, given a

positive Ξ value, it is possible to ensure that, for every agent i, the absolute difference
between the real value assumed by λ2 and its estimate (given by λ i

2) is bounded from
0 by Ξ . Furthermore, given another positive Ξ ′ value, the absolute difference between
the second smallest eigenvalue of L (that can be computed distributedly and denoted by
λ̃2) and λ i

2 is bounded from 0 by Ξ ′.
That is, given a positive Ξ ′′ (given by Ξ +Ξ ′), the absolute difference between the

value assumed by λ2 and λ̃2 is bounded from 0 by Ξ ′′. Put differently, each agent is able
to locally compute using λ̃2 instead of λ2 and still be able to obtain a valid measure of
the global system connectivity.

Then, although the actual value of λ̃2 is not available to each agent, its value and
partial derivatives can be obtained in a decentralized manner, using Eqs. 7 and 8, and
then using 5 to keep λ2 > 0.

3.2.1 Formation Control Strategy
We will now summarize the main notions of the control strategy used in this work to
deal with formation control problems among a set of agents, for more details please
refer to [11]. Basically, each agent now implements its own version of Eq. 4 to simulta-
neously deal with connectivity maintenance and formation control.

As each agent can have a different formation control strategy, a vector form for the
connectivity control must be defined. From [11], Eq. 4 is rewritten as:

ṗ =−L̄.p+ ud (9)
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where ud is a vector containing the formation control laws for each one of the N agents,
and L̄ is the modified Laplacian, defined as L̄= D̄−Ā. Here, D̄= diag({d̄i}), where d̄i =

N
∑
j=1

āi j and each āi j is a modified edge-weight for the vector form of the connectivity

maintenance, as defined in [11].

Consensus Based Formation Control

As stated in [13], the following control law can be used:

ud =−L∗.p+ bi(p) (10)

where

bi(p) =

⎧
⎨

⎩

∑
jεNi

(
1+ āi j(λ i

2)
)
.(p̄i − p̄ j) , i f λ i

2 > k.ε̃

∑
jεNi

(1+ āi j(k.ε̃)) .( p̄i − p̄ j) , otherwise

for some k > 1, where p̄i represents the desired relative position for robot i in the for-
mation. This way, when the estimate of the algebraic connectivity is sufficiently greater
than ε̃ (i.e., λ i

2 > k.ε̃), the bias term is computed with the Laplacian matrix L̃ = L̄+L∗.
Otherwise, when the value of the estimate of the algebraic connectivity falls and ap-
proaches ε̃ , the bias term of the second case in Eq. 11 ensures ud is bounded and guar-
antees the connectivity maintenance among the agents.

In this arrangement, the multi-robot system was involved in a formation control task,
analogous to the described in [11], in which agents were supposed to converge to a
regular formation, and move along the x-axis while collisions with randomly placed
point obstacles were avoided.

4 The Disturbance Model

In this work we propose a model that adds communication delay as a source of cor-
ruption into the arrangement proposed by [11]. The model studied here can be repre-
sented then by the block diagram in Fig. 1, in which f (·) is given by the expression in
Eq. 8. Basically, each agent i computes its own υ2 estimate, given by υ i

2, and from it

obtains the spatial variation of the corresponding eigenvalue, given by ∂ λ̃2
∂ pi

as explained
in Section 3.2.

f δ
υ i

2
∂ λ̃2
∂ pi

Fig. 1. Block Diagram of the Model with Communication Delay
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4.1 Modelling Communication Delay

A key process to keep the system connected is the local estimation of υ2. Errors in this
estimate automatically imply incorrect values of λ̃2, which may result in λ2 = 0. Given
N agents interacting in an unknown environment, we consider communication delay in
data reception. As a result, each agent computes with information that reflects the past
of the system. Let υ i′

2 (t) be the estimate of υ2 made by agent i in a given instant t. Then:

υ i′
2 (t) = υ i

2(t − δ ) , f or t > 0 (11)

where δ is the communication delay in seconds.

4.2 Control Strategy in the Presence of Communication Delay

Consider λ ′
2 as the algebraic connectivity of a graph and λ i′

2 as the estimate of λ ′
2 made

by agent i in the presence of communication delay. If we assume that the disturbance
effect of communication delay is limited (that is, information is delivered sometime),
then we have, similarly to what was seen in the absence of disturbances, that λ i

2 is a
good estimate of both λ ′

2 and λ̃ ′
2.

Under this condition, we notice that the estimation error of λ ′
2 (the connectivity mea-

sure in the presence of communication delay) is limited (that is, ∃Ξ > 0 such that
|λ i′

2 −λ2| ≤ Ξ ,∀i = 1, . . . ,N). Likewise, we find that the difference between the connec-
tivity estimates and the second smallest eigenvalue of L is also limited (in other words,
∃Ξ ′ > 0 such that |λ i′

2 − λ̃2| ≤ Ξ ′,∀i = 1, . . . ,N). Hence, we find that we can use λ ′
2 to

locally estimate the real value of λ2, inaccessible to the agents.

5 Computer Simulations

The results of the main simulations and experiments presented in this work are available
online1. In Section 5.1 we make an analysis of the performance of ideal agents facing
the impact of communication delay in their interactions, evaluating the evolution of λ2

against the value assumed by uc in order to maintain λ2 > 0. The agents are modeled as
ideal in the sense that the response to high and low frequencies of the control effort is
expected to be not attenuated.

A formation control problem with a varying number of agents ranging from N = 3 to
N = 10 in an environment with Nobst = 0,1, . . . ,150 obstacles was considered for our
experiments. Simulations have been carried out by considering the following parameter
set: δ = {0 s,10−5 s,5.10−5 s, . . . ,0.5 s}.

For the sake of simplicity, from now on we refer to the connectivity measure, its esti-
mates and the control effort in the presence of communication delay (represented until
now as λ ′

2, λ i′
2 e uc′ ) simply as λ2, λ i

2 e uc, and for reference purposes, the connectivity
measure in the absence of communication delay will be represented as λ̄2.

The results consider a typical execution of the connectivity maintenance algorithm
described in [11]. Typical runs of five agents performing formation control correspond
to the robots starting at random initial positions and supposed to converge to a pentagonal
configuration, while deviating from randomly placed point obstacles along the path.

1 At http://goo.gl/7HbaAu
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Fig. 2. λ2 and λ i
2 f or δ = 0.001 s with Nobst = 150

5.1 Communication Delay in Ideal Agents

In Fig. 2 we can find the connectivity and its estimates evolution for N = 5 ideal agents
interacting with δ = 5.10−3 s on an environment with Nobst = 150 obstacles.

Even despite the existence of communication delay, the results in Fig. 2 show that the
system kept itself connected during the interaction. The connectivity (λ2 ≈ 3.92 in t = 0)
declines initially and is followed by the estimates after they achieve its highest value
(λ imax

2 = 15.89 in tmax ≈ 0.03 s). Agents cross the obstacles set between tobst0 ≈ 0.84 s
and tobst1 ≈ 3.30 s, which separates temporarily the group of robots (what can be noticed
by the two valleys in the value of λ2 in Fig. 2).

As we can notice, adding communication delay in the agents interaction did not
modify substantially the results observed in [11] regarding the connectivity dynamics,
once both λ2 and λ i

2 remained positive in the interaction. In this case, the estimates
reasonably follow λ2 in Fig. 2 and interaction ends with λ i

2 ≈ 2.35 e λ2 ≈ 2.05 in
t = 5 s.

In Fig. 3 we can find the value of uc relative to this dynamics. Initially, uc reaches
its highest value (ucmax ≈ 5.09.105 in tmax ≈ 0.05 s) referring in Fig. 2 to the moment in
which the estimates reach their minimum value (λ i

2 ≈ 0,69) after its initial overshoot.
After that, estimates rise and become greater than the connectivity (λ i

2 > λ2 for t >
0.16 s), before the agents cross the obstacles set (between tobst0 and tobst1 ). As can be
seen, connectivity is maintained throughout the dynamics.

The analysis of the amplitude spectrum of uc (not shown here) indicates that the
existence of communication delays enhances the contribution of frequency components
up to 1.4 KHz. This increased participation of high-frequencies in the control effort can
be explained by the obstacle avoidance role against the communication delay, as the
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algorithm must act in an increasingly shorter time as robots deviate from the obstacles
with the delayed information.

The analysis here made was based in the parameter set tipically used in other refer-
ences (as in [11] and [1]). For ideal agents with δ > 5.10−3 s, the global connectivity is
lost as a consequence of the obstacle avoidance process, what happened slightly earlier
for greater values of δ (in not shown results). For δ ≤ 5.10−3 s, connectivity mainte-
nance was always observed (just like in Section 5.1, everything happened as if there
was not any lag in data).

6 Conclusion

In this work, we made an analysis of the effect of communication delay over a con-
trol algorithm that, through a decentralized estimation of the algebraic connectivity in
a communication graph, guarantees the connectivity maintenance in a multi-robot sys-
tem. In this analysis, the group connectivity was always maintained for small values of
δ in agents with ideal controllers (with an equitable response both for high and low fre-
quencies of the control effort). However, for a sensible delay in information exchange,
connectivity was not maintained in any studied case.

As the connectivity maintenance is a necessary condition to the estimation procedure
described in [11], once it is lost, it is not possible to rely on the local estimates (λ i

2) made
by agents in the presence of any sensible value of δ > 0 in the communication.

As future work, we can relate the analysis of the algorithms described in [17] and
[18], that propose a solution to deal with time delay in the communication between
agents. Other approaches involve a) evaluate the model dependence upon different sets
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of parameters and b) validating the results here proposed in real robots, investigating
the pertinence of the assumptions to verifiable realistic situations.

Acknowledgement. The authors thank CAPES. Carlos H. C. Ribeiro thanks
FAPESP (proc. nr. 2013/13447-3).
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Abstract. The multiplex network growth literature has been confined
to homogeneous growth hitherto, where the number of links that each
new incoming node establishes is the same across layers. This paper
focuses on heterogeneous growth in a simple two-layer setting. We first
analyze the case of two preferentially growing layers and find a closed-
form expression for the inter-layer degree distribution, and demonstrate
that non-trivial inter-layer degree correlations emerge in the steady state.
Then we focus on the case of uniform growth. We observe that inter-layer
correlations arise in the random case, too. Also, we observe that the
expression for the average layer-2 degree of nodes whose layer-1 degree
is k, is identical for the uniform and preferential schemes. Throughout,
theoretical predictions are corroborated using Monte Carlo simulations.

1 Introduction

Multiplex networks are tools for modeling networked systems in which units have
heterogeneous types of interaction, making them members of distinct networks
simultaneously. The multiplex framework envisages different layers to model dif-
ferent types of relationships between the same set of nodes. For example, we can
take a sample of individuals and constitute a social media layer, in which links
represent interaction on social media, a kinship layer, a geographical proximity
layer, and so on. Examples of real systems that have been conceptualized so far
using the multiplex framework include citation networks, online social media,
airline networks, scientific collaboration networks, and online games [9].

Theoretical analysis of multiplex networks was initiated by the seminal
papers [1,2] that invented and introduced theoretical measures for quantify-
ing multiplex networks. Consequently, multiplex networks were utilized for the
theoretical study of phenomena such as epidemics [3], pathogen-awareness inter-
play [4], percolation processes [5], evolution of cooperation [6], diffusion
processes [7] and social contagion [8]. For a thorough review, see [9].

In the present paper we focus on the problem of growing multiplex networks.
In [13], the case where two layers are homogeneously growing (that is, the num-
ber of links that each newly-born node establishes is the same for both layers)

c© Springer International Publishing Switzerland 2015 159
G. Mangioni et al. (eds.), Complex Networks VI,
Studies in Computational Intelligence 597, DOI: 10.1007/978-3-319-16112-9_16



160 B. Fotouhi and N. Momeni

according to preferential attachment is considered, and it is shown that �(k)
(which is the average layer-2 degree of nodes whose layer-1 degree is k) is a
function of k.

Previous results on growingmultiplex networks are confined to homogeneously-
growing layers [9,11,13]. In thepresentpaper,we consider heterogeneously-growing
layers: each incoming node establishes β1 links in layer 1 and β2 links in layer 2.
We also solve the problem for the case where growth is uniform, rather than pref-
erential. We demonstrate that, surprisingly, the expression for �(k) is identical to
that of the preferential case. We verify the theoretical findings with Monte Carlo
simulations.

2 Setup and Notation

The two-layer multiplex network we consider in the present paper possesses one
set of nodes and two distinct sets of links. The network comprises two layers,
corresponding to the two sets of links. Each node resides in both layers. The
degree of node x in layer 1 is denoted by kx, and its degree in layer 2 is denoted
by �x. The number of nodes at time t is denoted by N(t) and the number of
links at layer i is denoted by Li(t), and Nk�(t) is the number of nodes that have
degrees k and � at time t. We denote the fraction of these nodes by nk,�(t). Each
incoming node establishes β1 links in layer 1 and β2 links in layer 2.

At the inception, there are L1(0) links in the first layer and L2(0) links in the
second layer. The network grows by the successive addition of new nodes. Each
node establishes m links in each layer. So the number of links in layer i at time
t is Li(0) + βit.

3 Model 1: Preferential Attachment

In the first model, incoming nodes choose their destinations according to the pref-
erential attachment mechanism posited in [10]. The probability that an existing
node (call it x) receives a layer-1 link from the newly-born node is proportional
to kx, and similarly, the probability for it to receive a layer-2 link is proportional
to �x. Note that to obtain the normalized link-reception probabilities at time t
, the former should be divided by L1(0) + 2β1t and the latter should be divided
by L2(0)+2β2t—the number of links in the first and second layers, respectively.

The addition of a new node at time t can alter the values ofNk,�. If a node with
layer-1 degree k−1 and layer-2 degree � receives a layer-1 link, its layer-1 degree
increments to k, and Nk� increments as a consequence. If a node with layer-1
degree k and layer-2 degree � − 1 receives a link, its layer-2 degree increments
and consequently, Nk,� increments. There are two events which would result in
a decrease in Nk,�: if a node with layer-1 degree k and layer-2 degree � receives a
link in either layer. Finally, each incoming node has an initial layer-1 degree and
layer-2 degree of β, and increments Nβ1,β2 when it is introduced. The following
rate equation quantifies the evolution of the expected value of Nk,� upon the
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introduction of a single node by addressing the aforementioned events with their
corresponding probabilities of occurrence:

Nk,�(t+ 1) = Nk,�(t) + β1
(k − 1)Nk−1,�(t)− kNk�(t)

L1(0) + 2β1t

+ β2
(�− 1)Nt(k, �− 1)− �Nt(k, �)

L2(0) + 2β2t
+ δkβ1δ�β2 . (1)

Alternatively, we can write the rate equation for nk�. Using the substitution
Nk� = (N(0) + t)nk�, we obtain

[
N(0) + t

][
nk,�(t+ 1)− nk,�(t)

]
+ nt+1(k, �) =

β1
(k − 1)Nk−1,�(t)− kNk�(t)

L1(0) + 2β1t

+ β2
(�− 1)Nt(k, �− 1)− �Nt(k, �)

L2(0) + 2β2t
+ δkβ1δ�β2 . (2)

Now we focus on the limit as t → ∞, when the values of nk� reach steady
states, and we have

⎧
⎪⎪⎨

⎪⎪⎩

lim
t→∞ β1

N(0) + t

L1(0) + 2β1t
=

1

2

lim
t→∞ β2

N(0) + t

L2(0) + 2β2t
=

1

2

. (3)

In this limit (2) transforms into

nk� =
(k − 1)nk−1,� − knk�

2
+

(�− 1)nk,�−1 − �nk�

2
+ δkβ1δ�β2 , (4)

Rearranging the terms, this can be equivalently expressed as follows

nk� =
k − 1

k + �+ 2
nk−1,�

�− 1

k + �+ 2
nk,�−1 +

2δkβ1δ�β2

2 + β1 + β2
. (5)

This difference equation is solved in Appendix A. The solution is

nk,� =
2β1(β1 + 1)β2(β2 + 1)

(2 + β1 + β2)k(k + 1)�(�+ 1)

(
β1+β2+2

β1+1

)
(
k+�+2
k+1

)
(
k − β1 + �− β2

k − β1

)
. (6)

This is depicted in Figure 1a. As a measure of correlation between the two
layers, we find the average layer-2 degree of the nodes whose layer-1 degree is k.
Let us denote this quantity by �̄(k). To calculate �̄(k), we need to perform the
following summation:
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�̄(k) =
∑

�

�n�|k =
∑

�

�
nk,�

nk

=
∑

�

�

2β1(β1+1)β2(β2+1)
(2+β1+β2)k(k+1)�(�+1)

(β1+β2+2
β1+1 )

(k+�+2
k+1 )

(
k−β1+�−β2

k−β1

)

2β1(β1+1)
k(k+1)(k+2)

=
∑

�

β2(β2 + 1)(k + 2)

(2 + β1 + β2)(� + 1)

(
β1+β2+2

β1+1

) (
k−β1+�−β2

k−β1

)
(
k+�+2
k+1

)

=
∑

�

β2(β2 + 1)

(2 + β1 + β2)

(
β1+β2+2

β1+1

) (
k−β1+�−β2

k−β1

)
(
k+�+2

�

) (7)

In Appendix B, we perform this summation. The answer is

�̄(k) =
β2

β1 + 1
(k + 2). (8)

In the special case of β1 = β2 = m, this reduces to m(k+2)
1+m , which is consistent

with the previous result in the literature [13].
Note that (8) if we take the expected value of (8), we obtain

∑

k

�(k)p(k) =
β2

β1 + 1
(k + 2) =

β2

β1 + 1
(2β1 + 2) = 2β2, (9)

which coincides with the mean degree in layer 2.
Now let us analyze how adding a layer affects inequality in degrees. We ask,

what is the probability that a node has higher degree in layer 2 than in layer 1 (on
average)? That is, we seek P (k < �(k)). Analyzing the inequality k < β2

β1+1 (k+2),
we observe that if β2 < β1, then for every k the inequality holds, if β2 > β1,
then k must be less than kc = 2β2

β1+1−β2
. So a node with degree below kc is on

average more connected in layer 2 than in layer 1. Note that since the minimum
degree in layer 1 is β1, we should impose an additional constraint on kc, namely,
kc ≥ β1. This leads to β2 ≤ β1 − β1

β1+2 . Since β1 and β2 can only take integer
values, since yields β2 < β1. So in order for a node with degree k to have greater
expected degree in layer 2 than its given degree in layer 1, first we should have
β2 < β1, and second, k ≤ kc. In short, there are three distinct cases to discern:
(a) If β2 > β1, the inequality holds for all k, that is, on average, every node is
more connected in layer 2 than in layer 1. (b) If β2 < β1, then the inequality
never holds. That is, everyone is on average more connected in layer 1. (c) If
β1 = β2 = m, then for nodes whose degree in layer 1 is smaller than 2m (which
coincides with k), the inequality holds, and for others it does not. So in the
case of homogeneous growth, nodes whose degree in one layer is below the mean
degree are on average more connected in the other layer, and nodes with degree
higher 2m are on average less connected in the other layer. These three cases
are depicted in Figure 1b. The purple area pertains to case (a), where curves are
�(k) are always below k, regardless of β1 and β2. The green area corresponds to
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(a) The inter-layer joint degree distribu-
tion for preferential growth with β1 = 2
and β2 = 4, as given by Equation (6).
The function decays fast in k and �, so
we have depicted the logarithm of the in-
verse of this function, for better visibility.
Note the skew in the contours. Had β1 and
β2 been equal, the distribution would be
symmetric. The function attains its max-
imum at k = β, 1 and � = β2.

(b) �(k) for all combinations of 1 ≤
β1, β2 ≤ 10. There are three distinct re-
gions. In the green region, �(k) > k re-
gardless of k, β1, β2. In the purple region,
the converse is true. In the yellow re-
gion, �(k) > k up to some critical degree
kc(β1, β2), and above the critical degree,
�(k) < k. The top boundary corresponds
to the case of β2 = 2, β1 = 1 and the bot-
tom one pertains to β1 = β2 = 1.

Fig. 1. Inter-layer joint degree distribution for preferential growth. The left figure also
applies to the case of uniform growth. symmetric.

case (c), where k is always above �(k). The middle region is the one that �(k)
curves for the cases of β1 = β2 = m reside in. Those curves are depicted in red.
It is visible that for each red curve, there is a cutoff degree above which �(k) < k.

4 Model 2: Uniform Attachment in both Layers

In this model, we assume that each incoming node establishes links in both
layers by selecting destinations from existing nodes uniformly at random. The
rate equation (2) should be modified to the following:

[
N(0) + t

][
nk,�(t+ 1)− nk,�(t)

]
+ nt+1(k, θ, �) =

β1
Nk−1,�(t)−Nk�(t)

N(0) + t
+ β2

Nt(k, θ, �− 1)−Nt(k, θ, �)

N(0) + t
+ δkβ1δ�β2. (10)

Using the substitution nk,�(t) =
Nk�(t)
N(0)+t , this becomes

[
N(0) + t

][
nk,�(t+ 1)− nk,�(t)

]
+ nt+1(k, θ, �) =

β1
Nk−1,�(t)−Nk�(t)

N(0) + t
+ β2

Nt(k, θ, �− 1)−Nt(k, θ, �)

N(0) + t
+ δkβ1δ�β2. (11)



164 B. Fotouhi and N. Momeni

In the steady state, that is, in the limit as t → ∞, this becomes

nk� = β1
nk−1,� − nk,�

1
+ β2

nk,�−1 − nk,�

1
+ δk,β1δ�,β2. (12)

This can be simplified and equivalently expressed as follows

nk,� =
β1

1 + β1 + β2
nk−1,� +

β2

1 + β1 + β2
nk,�−1 +

δk,β1δ�,β2

1 + β1 + β2
. (13)

This difference equation is solved in Appendix C. The solution is

nk,� =
βk−β1

1 β�−β2

2

(
k−β1+�−β2

k−β1

)

(1 + β1 + β2)k−β1+�−β2+1
(14)

To find the conditional average degree, that is, �̄(k), we first need the degree
distribution of single layers in order to constitute the conditional degree distri-
bution. This is found previously for example in [13,14]. The degree distribution

in the first layer is nk = 1
β1

(
β1

β1+1

)k−β1+1

. We need to compute

�̄(k) =
∑

�

�n�|k =
∑

�

�
nk,�

nk
=

∑

�

�

βk−β1

1 β�−β2

2

(
k−β1+�−β2

k−β1

)

(1 + β1 + β2)k−β1+�−β2+1

1
β1

(
β1

β1+1

)k−β1+1

=
(β1 + 1)k−β1+1

(β1 + β2 + 1)k−β1+1

∑

�

�
β�−β2

2

(
k−β1+�−β2

k−β1

)

(1 + β1 + β2)�−β2
(15)

We have performed this summation in Appendix D. The result is

�̄(k) =
β2

β1 + 1
(k + 2). (16)

This is identical to (8).

5 Simulations

We performed Monte Carlo simulations to verify the results. Figure 2a depicts
�̄(k) as a function of k for both uniform and preferential attachment for β1 =
2, β2 = 4. The two curves are visibly linear and overlapping. Figure 2b depicts
�̄(k) for both uniform and preferential attachment for β1 = β2 = m for the
cases m = 1, 2, 4, 8. It can be observed from Figure 2b that in all cases the
curves for preferential and uniform growth overlap, and that the slope increases
as m increases. This is consistent with the predictions of (16) and (8), where the
slope is given by m

m+1 . This attains its minimum at m = 1, and reaches unity
for m → ∞.
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(a) β1 = 2, β2 = 4.
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(b) β1 = β2 = m, for m = 1, 2, 4, 8.

Fig. 2. �(k) for preferential and uniform growth. The left figure depicts �(k) for an ex-
ample configuration of heterogeneous growth (i.e., β1 �= β2). The right figure represents
results for homogeneous growth. It depicts different �(k) curves obtained for different
values of m, where β1 = β2 = m (the top line is for m = 8, and the bottom-most line
is for m = 1). It can be seen that the slope of �(k) increases as m increases. The results
are averaged over 500 Monte Carlo Trials.

6 Summary and Future Work

We studied the problem of duplex network growth, where the two layers were
heterogeneously growing. We considered the cases of preferential and uniform
growth separately. We obtained the inter-layer joint degree distribution for both
settings. We calculated �(k), and observed that it is identical in both scenarios.
We corroborated the theoretical findings with Monte Carlo simulations.

While the average degree �(k) are calculated to be the same in Eqs. (8) and
(16), it does not mean the two cases have entirely the same correlation properties.
Note, for example, that it was obtained in [12] that the two cases have different
inter-degree correlation coefficients.

Plausible extensions of the present analysis are as follows. First, there is no
closed-form solution in the literature for the inter-layer joint degree distribution
of growing multiplex networks with nonzero coupling, where the link reception
probabilities in one layer depends on the degrees in both layers. Second, it would
be informative to analyze the growth problem in arbitrary times, to grasp the
finite size effects and to understand how �(k) evolves over time, and how the
time evolution differs in the preferential and uniform settings. Third, it would
plausible to endow the nodes with initial attractiveness, that is, to consider
a shifted-linear kernel for the preferential growth mechanism. Fourth, a more
realistic and practical model would require intrinsic fitness values for nodes, so
it would be plausible to analyze the multiplex growth problem with intrinsic
fitness. Finally, since most real systems are multi-layer, it would be plausible to
extend the bi-layer results to arbitrary M > 2 layers.
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A Solving Difference Equation (5)

We need to solve

nk� =
k − 1

k + �+ 2
nk−1,�

�− 1

k + �+ 2
nk,�−1 +

2δkβ1δ�β2

2 + β1 + β2
. (17)

We define the new sequence

mk�
def
=

(k + �+ 2)!

(k − 1)!(�− 1)!
nk�. (18)

The following holds
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k − 1

k + �+ 2
nk−1,� =

(k − 1)!(�− 1)!

n k�
(k + �+ 2)!mk−1,�

� − 1

k + �+ 2
nk,�−1 =

(k − 1)!(�− 1)!

n k�
(k + �+ 2)!mk,�−1.

(19)
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Plugging these into (17), we can recast it as

mk� = mk−1,� +mk,�−1 + 2
(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!
δkβ1δ�β2 . (20)

Now define the Z-transform of sequence mk,� as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ψ(z, y)
def
=

∑

k

∑

�

mk,�z
−ky−�

mk,� =
1

(2πi)2

∮ ∮
ψ(z, y)zk−1y�−1dzdy.

(21)

Taking the Z transform of every term in (20), we arrive at

ψ(z, y) =z−1ψ(z, y) + y−1ψ(z, y) + 2
(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!
z−β1y−β2 . (22)

This can be rearranged and rewritten as follows

ψ(z, y) =
2

1− z−1 − y−1

(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!
z−β1y−β2 (23)

The inverse transform is given by

mk,� =
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

∮ ∮
zk−β1−1y�−β2−1dzdy

(−4π2)(1 − z−1 − y−1)

=
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

∮ ∮
zk−β1y�−β2dzdy

(−4π2)(zy − z − y)

=
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

∮ ∮
zk−β1y�−β2dzdy

(−4π2)(y − 1)
[
z − y

y−1

] . (24)

First we integrate over z. We get

mk,� =
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

∮
(

y
y−1

)k−β1

y�−β2dy

(2πi)(y − 1)

=
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

∮
yk−β1+�−β2dy

(2πi)(y − 1)k−β1+1
. (25)

Now note that the residue of
f(y)

(y − 1)n
for positive integer equals

f (n−1)(1)

(n− 1)!
,

where the numerator denotes the (n− 1)th derivative of the function f(y), eval-
uated at y = 1. Also, note that the m-th derivative of the function yn, for integer

n and m, equals
m!

(n−m)!
yn−m. Combining these two facts, we obtain

mk,� =
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

(
k − β1 + �− β2

k − β1

)
. (26)
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Using (18), we arrive at

nk,� =
2(β1 + β2 + 1)!

(β1 − 1)!(β2 − 1)!

1

k(k + 1)�(�+ 1)

(
k−β1+�−β2

k−β1

)
(
k+�+2
k+1

) . (27)

This can be equivalently expressed as follows:

nk,� =
2β1(β1 + 1)β2(β2 + 1)

(β1 + β2 + 2)k(k + 1)�(�+ 1)

(
β1+β2+2

β+1

)
(
k+�+2
k+1

)
(
k − β1 + �− β2

k − β1

)
. (28)

B Performing the Summation in (7)

We need to calculate

�̄(k) =
∑

�

β2(β2 + 1)

(2 + β1 + β2)

(
β1+β2+2

β+1

) (
k−β1+�−β2

k−β1

)
(
k+�+2

�

) . (29)

We use the following identity: 1

(n
m)

= (n + 1)
∫ 1

0
tn(1 − t)n−mdt, to rewrite the

binomial reciprocal of the coefficient as follows
1(

k+�+2
�

) = (k + �+ 3)

∫ 1

0

t�(1− t)k+2dt. (30)

Also, from Taylor expansion, it is elementary to show that

S1(x, n)
def
=

∑

m

xm

(
m

n

)
=

xn

(1− x)n+1
. (31)

This identity will be used in the steps below. Plugging (30) into (33), we have

�̄(k) =
∑

�

β2(β2 + 1)

(2 + β1 + β2)

(
β1+β2+2

β+1

) (
k−β1+�−β2

k−β1

)
(
k+�+2

�

)

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∑

�

(k + �+ 3)

(
k − β1 + �− β2

k − β1

) ∫ 1

0

t�(1− t)k+2dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∫ 1

0

(1− t)k+2t−k−2
∑

�

(k + �+ 3)tk+�+2

(
k − β1 + �− β2

k − β1

)
dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∫ 1

0

(1− t)k+2t−k−2 d

dt

[
∑

�

tk+�+3

(
k − β1 + �− β2

k − β1

)]
dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

)∫ 1

0

(1− t)k+2t−k−2 d

dt

[
t3+β1+β2

∑

�

tk−β1+�−β2

(
k − β1 + �− β2

k − β1

)]
dt.

(32)
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Using (31), this becomes:

�(k)=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∫ 1

0

(1− t)k+2t−k−2 d

dt

[
t3+β1+β2

tk−β1

(1 − t)k−β1+1

]
dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∫ 1

0

(1− t)k+2t−k−2 d

dt

[
tk+β2+3

(1− t)k−β1+1

]
dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

) ∫ 1

0

(1− t)β1tβ2 [k + β2 + 3− (1 + β1 + β2)t] dt

=
β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

)[
(k + β2 + 3)

∫ 1

0

(1 − t)β1tβ2dt− (1 + β1 + β2)

∫ 1

0

(1− t)β1tβ2+1dt

]

(30)
=

β2(β2 + 1)

(2 + β1 + β2)

(
β1 + β2 + 2

β1 + 1

)[
(k + β2 + 3)

β1!β2!

(β1 + β2 + 1)!
− (1 + β1 + β2)

β1!(β1 + 1)!

(β1 + β2 + 2)!

]

=
β2(β2 + 1)β1!β2!

(2 + β1 + β2)(1 + β1 + β2)!

(
β1 + β2 + 2

β1 + 1

)
[(k + β2 + 3)− (β2 + 1)]

=
β2

β1 + 1
(k + 2) (33)

C Solving Difference Equation (13)

Let us repeat the equation we need to solve for easy reference

nk,� =
β1

1 + β1 + β2
nk−1,� +

β2

1 + β1 + β2
nk,�−1 +

δk,β1δ�,β2

1 + β1 + β2
. (34)

Let us define the following quantities from brevity:

q1
def
=

β1

1 + β1 + β2
, q2

def
=

β2

1 + β1 + β2
(35)

Taking the Z transform from both sides of (34), we get

ψ(z, y) = q1z
−1ψ(z, y) + q2y

−1ψ(z, y) +
z−β1y−β2

1 + β1 + β2
. (36)

This can be rearranged and recast as

ψ(z, y) =
1

1− q1z−1 − q2y−1

z−β1y−β2

1 + β1 + β2
. (37)

This can be inverted through the following steps

nk� =
1

(1 + β1 + β2)(2πi)2

∮
ψ(z, y)zk−1y�−1dzdy

=
1

(1 + β1 + β2)(2πi)2

∮ ∮
zk−β−1y�−β−1

1− q1z−1 − q2y−1
dzdy

=
1

(1 + β1 + β2)(2πi)2

∮ ∮
zk−β1y�−β2

zy − yq1 − zq2
dzdy

=
1

(1 + β1 + β2)(2πi)2

∮ ∮
zk−β1y�−β2

z − yq1
y−q2

1

y − q2
dzdy. (38)
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There is a single simple pole at z = yq1
y−q2

, which renders the integral trivial:

nk� =

∮
y�−β2

y−q2

(
yq1
y−q2

)k−β1

dzdy

(1 + β1 + β2)(2πi)
=

qk−β1

1

∮
yk−β1+�−β2

(y − q2)k−β1+1
dzdy

(1 + β1 + β2)(2πi)

=
qk−β1

1 (k − β1 + �− β2)!

(1 + β1 + β2)(k − β1)!(� − β2)!
q�−β2

2 =
qk−β1

1 q�−β2

2

(1 + β1 + β2)

(
k − β1 + �− β2

k − β1

)
.

(39)

After inserting the expressions for q1, q2 from (35), this becomes

nk,� =
βk−β1β�−β2

2

(
k−β1+�−β2

k−β1

)

(1 + β1 + β2)k−β1+�−β2+1
. (40)

D Performing the Summation in (15)

We need to perform the following summation:

�̄(k) =
(β1 + 1)k−β1+1

(β1 + β2 + 1)k−β1+1

∑

�

�
β�−β2

2

(
k−β1+�−β2

k−β1

)

(1 + β1 + β2)�−β2
(41)

Let us denote k− β1 by k′ and �− β2 by �′. Also let us denote β2

1+β1+β2
by x.

We need to evaluate the following sum:
∑

�′(�
′ + β2)x

�′
(
k′+�′
k′

)
. Let us use (31)

and define S1(x, n)
def
=

∑
m xm

(
m
n

)
= xn

(1−x)n+1 . We have:

∑

�′
(β2 + �′)x�′

(
k′ + �′

k′

)
= β2x

−k′
S1(x, k

′) + x
∑

�′
�′x�′−1

(
k′ + �′

k′

)

= β2x
−k′

S1(x, k
′) + x

d

dx

(
x−k′

S1(x, k
′)
)
= β2x

−k′ xk′

(1 − x)k′+1
+ x

d

dx

( xk′

(1 − x)k′+1

)

=
1

(1 − x)k′+2

[
β2 + x(k′ + 1− β2)

]
. (42)

Replacing x with β2

1+β1+β2
and inserting this result into (41), we get

1

[1− ( β2

1+β1+β2
)]k−β1+2

[
β2 +

β2

1 + β1 + β2
(k − β1 + 1− β2)

]

=
(1 + β1 + β2)

k−β1+2

(1 + β1)k−β1+2

[
β2 + 2 +

β2

1 + β1 + β2
(k − β1 + 1− β2)

]

=
(1 + β1 + β2)

k−β1+2

(1 + β1)k−β1+2

[ β2(k + 2)

1 + β1 + β2

]
(43)

Plugging this into (41), we get

�̄(k) =
β2(k + 2)

1 + β1
(44)
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Abstract. This paper analyzes two proposed models for simulating opinion dy-
namics in social networks where beliefs might be considered to be competing. 
In both models agents have a degree of tolerance, which represents the extent to 
which the agent takes into account the differing beliefs of other agents, and a 
degree of conflict, which represents the extent to which two beliefs are consi-
dered to be competing. In this paper, we apply different tolerance and conflict 
degrees to different groups in a network, and see how these groups affect each 
other. Simulations show that the groups having different tolerance degrees do 
not have significant effect upon each other in both Models I and II. On the other 
hand, the group perceiving a conflict causes more diversity in the agents based 
on Model I, but introduces a higher consensus level among agents when the 
fraction becomes larger in Model II. 

Keywords: Opinion dynamics, Social network, Conflicting beliefs, Bounded 
confidence. 

1 Introduction 

Computer simulations have been employed successfully in the study of agent-based 
opinion dynamics in social networks for a long time from a wide range of perspec-
tives, e.g., sociology, physics and philosophy [1,2,3,4,5,6]. In these models of opinion 
dynamics, a group of agents who hold beliefs about a given topic interact with each 
other to seek truth or reach consensus. Multidimensional opinion dynamics have re-
cently become an active research area [7,8,9,10,11], where agents interact with each 
other based on their opinions on several topics, e.g., sports and politics. Following the 
ideas on multidimensional opinion dynamics, we have proposed two models for simu-
lating the scenarios where the beliefs of agents about two (or more) topics may be 
perceived to be competing, e.g. two explanations of a given phenomenon [12].  

The proposed models consider two competing beliefs, i.e., two dimensions, and 
they both consist of two updating steps. In the first step, the agents update their beliefs 
via network interaction by talking to their neighbors whose opinions are similar to 
theirs, and the similarity is decided by bounded confidence (tolerance degree) of each 
agent. The second step involves an internal update process allowing agents to update 
their beliefs based on the perceived conflict between beliefs. In the previous simula-
tions, all of the agents in the network were assumed to have the same tolerance  
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degrees with respect to two beliefs and the same conflict degree between the beliefs. 
In reality, however, the conflict and tolerance degrees of the agents may well differ 
from each other in most cases. It is therefore interesting and worthwhile to investigate 
how different groups of agents with different conflict and tolerance degrees affect 
each other during the belief update process.  

The rest of this paper is structured as follows. We give an overview of the two be-
lief update models in Section 2. Computer simulations and analysis are provided in 
Section 3 to investigate the impact of a fraction of the group having a particular con-
flict or tolerance degree on the belief update in the proposed models. Conclusions and 
discussions are presented in Section 4. 

2 The Models 

Assume that we have a network of n vertices, representing agents. Each agent holds 
two, possibly conflicting, beliefs about two topics, denoted as A and B, and the de-
grees of both beliefs may change along a set of discrete time points according to a 
given update mechanism. Both of the proposed models consist of two steps where the 
first step is to update the belief degrees of agents via network interaction and the 
second step involves an internal agent update process by taking the perceived conflict 
into consideration [12].  

2.1 Network Update 

For the first step (network update), we extend the well-known Hegselmann-Krause 
(HK) model [4,5,8,13] to include two-dimensional beliefs. The HK model involves a 
complete graph but the agents are only influenced by the neighbors who have similar 
opinions to theirs, where the similarity is decided by so-called bounded confidence. 
Suppose that Ai(t) and Bi(t) are the degrees of beliefs on two topics A and B of the ith 
agent at time t, where Ai(t), Bi(t) ∈ [0, 1], with 0, 1, 0.5 corresponding to total disbe-
lief, total belief, and indifference respectively, for all i and t, then the new belief  
degrees for agent i at time t+1 based on the HK model are 
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Here })()(:{),( AjiA tAtAjtiI ε≤−=  and })()(:{),( BjiB tBtBjtiI ε≤−=   are 

epistemic neighborhoods of agent i at time t with respect to A and B correspondingly, 
that is, the sets of agents whose belief degree in A or B at t is close to that of the  
corresponding belief of agent i at that time [8]. The parameters Aε  and Bε , called 

tolerances [14], decide the bounded confidence intervals for the two beliefs, and 

),( tiI A  and ),( tiIB  represent the cardinalities of the corresponding sets.  
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2.2 Internal Update 

To consider conflict between the two beliefs, two models have been proposed at the 
internal update step, which represent different attitudes of people towards conflict 
between beliefs [12]. The degree of conflict is denoted as ci ∈ [0, 1], where 0 and 1 
correspond to no perceived conflict and total conflict respectively.  

The first model (Model I) suggests that if there is no perceived conflict or if  
Ai(t) ≤ 0.5 and Bi(t) ≤ 0.5, then the internal agent update will result in no change in 
both beliefs. Further, if one, or both of the belief degrees are greater than 0.5 and ci > 
0, then the perceived conflict will decrease the degree of the lesser held belief, but not 
increase the degree in the other. Specifically, if ci = 1 then the lesser held belief 
should be rejected, i.e., its degree should be set to zero. It means that Model I 
represents the attitude of a group of people who incline to accept only one of the be-
liefs with larger degree but reject the other one if there is conflict between them.  
A rule for achieving this is 

*
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with a corresponding rule for belief B, where the * superscript signifies an internal 
agent update. It is noted that the last rule contains the assignment at probability of p to 
prevent a ‘stalemate’ at equality, i.e., we randomly pick one of the beliefs to decrease. 
We usually set p = 0.5 based on the assumption that there is no bias between the two 
beliefs.  

Different from Model I, which decreases the degree of the lesser held belief if there 
is a perceived conflict, the second model (Model II) tries to make the sum of the two 
belief degrees closer to 1, reaching unity when there is maximum conflict (ci = 1).  
It also assumes that the beliefs will not change if there is no perceived conflict,  
i.e. ci = 0. A rule that achieves this can be given as 

* ( )
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i i i i
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A t B t
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,                            (3) 

with a corresponding rule for belief B. This model is more appropriate for cases where 
the agent is unlikely to reject or accept both beliefs and might apply, for example, in 
contexts where an explanation is needed and there are only two plausible competing 
explanations. 

The two proposed models represent two possible strategies for agents to update 
their beliefs when there is perceived conflict between them. The previous simulations 
have shown that, when there is a conflict between the two beliefs, Model I is more 
likely to partition the agents into several distinct groups with one of the beliefs being 
rejected, while Model II is highly likely to make the agents reach consensus in both 
beliefs. 
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3 Simulations and Results 

The simulations are implemented in a complete network with a fixed number of 100 
agents. The initial degrees of the two beliefs are both generated randomly (uniformly 
distributed) for each agent, as in most of the existing multidimensional models based 
on the assumption that there is no pre-defined bias between the two beliefs. Given 
randomly generated initial belief degrees, simulations might show variant results even 
with the same settings. We therefore implement 100 runs with all the other conditions 
being the same and study the average performance. 

As a measure of consensus we use the average standard deviation. The standard 
deviation is calculated after each run with respect to the obtained belief degrees of 
agents, and the average standard deviation is then obtained across 100 runs. It is then 
not difficult to see that the larger the average standard deviation is, the more diverse 
the agents are, i.e., the lower consensus level the agents can achieve. The average 
standard deviation being zero means that there is a total consensus among the agents 
in the corresponding belief. We explore these two quantities in the simulations: the 
average degree of beliefs and the average standard deviation of beliefs. 

3.1 Fraction of Tolerance 

In previous work fixed tolerance degrees were used for two beliefs [12], i.e., a larger 
tolerance degree ( 0.25Aε = ) for belief A and a smaller degree ( 0.05Bε = ) for belief 

B. It was also assumed that all the agents hold the same tolerance degrees for the cor-
responding beliefs. Here, we divide the agents into two groups holding different toler-
ance degrees to see how the different groups affect each other during the belief update 
process. 

The division of agents is realized by a fraction of tolerance either in belief A or B. 
Suppose that the fraction is 0.6, this means that 60% of agents take the predefined 
tolerance degree in belief A or B, while the remaining 40% take a small tolerance 
degree 0.05, which means they are highly intolerant. We fix both the degree of con-
flict and the fraction of conflict to be 1 in this subsection to avoid confusion. The 
tolerance degrees of the two beliefs are assumed to be equal to each other and we 
consider two possible degrees of tolerance, 0.2 and 0.4. 

Model I 

Fig. 1 shows the simulation results using Model I for average degree and average 
standard deviation of belief A across different fractions of tolerances about two be-
liefs. It can be seen that the agents maintain a high level of diversity (large average 
standard deviation value) in belief A across the fraction of tolerances when the toler-
ance degrees are small (=0.2). This is caused by the nature of Model I accepting only 
one of the beliefs with larger degree but rejecting the other one when there is per-
ceived conflict between them, and this makes the agents highly likely to partition into 
distinct groups. When the tolerance degrees are high enough (=0.4), the agents can 
reach consensus in belief A at the borderline where the fraction of tolerance of belief 
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introducing more agents holding conflicting beliefs in Model II lowers the consensus 
threshold from around 0.3 to 0.2.  

For another scenario where the tolerance degree of belief A is fixed at 0.3, and the 
tolerance degree of belief B is 0.05, Fig. 4 show the results of the impact of fraction of 
conflict in the two models. It can be seen from Fig. 4 (a) that the increase of the frac-
tion of conflict from 0 to 1 in Model I decreases the consensus in the belief with larg-
er tolerance degree (belief A), and this is also the case for the belief with smaller  
tolerance degree (belief B) although the decrease is less dramatic. On the other hand, 
Fig. 4 (b) shows that introducing more conflicting agents in Model II has little impact 
on the belief with larger tolerance degree (belief A), but makes the agents increase 
consensus in the belief with the smaller tolerance degree (belief B). These results 
further verify the natures of the two models on conflict between beliefs. When there is 
perceived conflict between the two beliefs, the agents in Model I are more likely to 
accept only one of the beliefs but reject another, while Model II makes the agents to 
reach consensus in both beliefs if they can reach consensus in one of the beliefs. 

 

(a)     (b) 

Fig. 4. Simulation results for (a) Model I and (b) Model II. Average belief degrees and average 
standard deviations of both beliefs with respect to fraction of conflict with tolerance degree of 
belief A being 0.3 and that of belief B being 0.05 

4 Conclusions 

Based on the two proposed models on two-dimensional opinion dynamics when there 
is perceived conflict between the two beliefs, this paper has examined the effect of 
varying the fraction of the population having given tolerance and conflict degrees to 
investigate group behavior. Simulation results show that the groups having different 
tolerance degrees do not have significant effect upon each other in both Models I and 
II, because one of the groups is ‘intolerant’ whose agents reject interaction with  
the other agents. On the other hand, the fraction of the group holding perceived con-
flict causes more diversity in the agents based on Model I, but introduces a higher 
consensus level among agents when the fraction becomes larger in Model II. 
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This paper considers two competing beliefs, but the ideas contained herein are gene-
ralizable to cases where there are a larger set of beliefs. The current paper considered 
the case that the agents only update their beliefs according to the beliefs of their neigh-
bors. In future work this will be extended so that the agents can take reported informa-
tion, external to the network, into consideration when updating their beliefs. Different 
network structures will also be explored to see the impact of network topology on the 
conflicting opinion dynamics. 
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Abstract. We constructed a product network based on the sales data
collected and provided by a major nationwide retailer. The structure of
the network is dominated by small isolated components, dense clique-
based communities, and sparse stars and linear chains and pendants. We
used the identified structural elements (tiles) to organize products into
mini-categories—compact collections of potentially complementary and
substitute items. The mini-categories extend the traditional hierarchy
of retail products (group–class–subcategory) and may serve as building
blocks towards exploration of consumer projects and long-term customer
behavior.

Keywords: retailing, product network, mini-category, category man-
agement.

1 Introduction

Consumer projects are large and major customer undertakings, often involving
a considerable amount of money, effort, and emotions. Examples of consumer
projects include porch renovation, Christmas decoration, wedding planning, and
moving into a college dorm. For each project, customers often make multiple
cross-category purchases through multiple shopping trips. Such projects, in light
of their significant relevance to retailers’ financial outcomes and customer rela-
tionship [1], are subject to thorough academic and managerial investigations.

Theoretically, customer project management represents the frontier of the
category management domain, which is considered crucial by 72% of retailers
surveyed by Kantar Retail in 2011. For years, most retailers have been using only
standard market research tools, mostly for within-transaction product associa-
tions (e.g., market basket analysis [2]) and only from the functional or manufac-
turers’ perspectives for understanding product categories [3]. Few studies have
explored product association at the consumer project level.

The criticality of category management and the dearth of understanding of
consumers’ project purchase behaviors serve as the impetus of this research.
This study aims to answer a key question: how to categorize purchased products
properly to prepare for project detection? Equipped with the new advancements
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in complex network analysis techniques [4,5], we expect our study to discover
product associations from the customers’ view point, identify mini-categories
that serve as building blocks of project material list, and provide guidance on
managing project-level shopping behaviors. In particular, we use Product Net-
work Analysis (PNA) as the primary analytical tool for this study. PNA applies
Social Network Analysis (SNA) algorithms to category management and is the
automated discovery of relations and key products within a product portfolio.

Methodologically, our research applies network analysis methods to catego-
rize products based on community discovery, a novel and potentially insightful
approach to the retailing field. Managerially, findings of this study will facili-
tate improving consumer-centric category management beyond the traditional
market basket analysis [6]. Our results will also provide guidance on designing
customized recommendation and promotion systems based on identified project
shopping behaviors [7].

The rest of the paper is organized as follows. We overview prior work in
Section 2. In Section 3, we describe the data set. In Section 4, we explain the
product network construction algorithm. We explore the structure of the con-
structed network and introduce mini-categories in Section 5. We conclude and
outline future work in Section 6.

2 Prior Work

Raeder and Chawla [8] are among the pioneers of product network-leveled analy-
sis. The authors follow an intuitive approach to constructing a network of prod-
ucts from a list of sales transactions: each node in the network represents a
product, and two nodes are connected by an edge if they have been bought
together in a transaction. Many real-world interaction networks contain com-
munities, which are groups of nodes that are heavily connected to each other,
but not much to the rest of the network. It is logical to expect that product
networks contain communities as well. Detecting communities in complex net-
works is known as “community discovery”[9]. In recent years, it has been one of
the most prolific sub-branches of complex network analysis, with dozens of algo-
rithms proposed and the agreement within the scientific community that there
is no unique solution to this problem given the many different possible defi-
nitions of “community” for different applications [10]. Raeder and Chawla [8]
focus on community discovery in product networks and show how communities
of products can be used to gain insight into customer behavior.

Pennacchioli et al. [10] compare two community discovery approaches: a par-
titioning approach, where each product belongs to a single community, and an
overlapping approach, where each product may belong to multiple communities.
The authors apply the approaches to a data set of an Italian retailer and find
that the former is useful to improve product classification while the latter can
create a collection of different customer profiles. Xie et al. [7] provide a review
and comparative study of overlapping community discovery techniques. Videla-
Cavieres and Rı́os [11] propose a community discovery approach based on graph
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mining techniques that distinguishes two forms of overlapping: crisp overlapping,
where each product belongs to one or more communities with equal strength;
and fuzzy overlapping, where each product may belong to more than one com-
munity but the strength of its membership in each community may vary. Kim
et al. [6] extend the idea of using only sales transaction data to build product
networks by utilizing customer information as well. The authors construct two
types of product networks: a market basket network (MBN), which spatially
expands the relationship between products purchased together into relationship
among all products using network analysis; and a co-purchased product network
(CPN), which is extracted from customer-product bipartite network obtained
using transaction data. The topological characteristics and performances of the
two types of networks are compared.

3 The Data Set

The data set provided to us through the Wharton Customer Analytics Initiative
(WCAI) [12], consists of product descriptions and purchase descriptions.

The product part includes descriptions of ca. 111,000 material items, 351
non-material items (such as gift cards, warranties, deposits, rental fees, and
taxes), and 71 Sell, Furnish, and Install (SF&I) items that combine materials
and services. Since the descriptions of the non-material items are generic and
not easy to associate with particular customer projects, we excluded them from
our analysis.

The products are organized into a three-level hierarchy of 1,778 subcategories
(e.g., shrub/landscape), 235 classes (e.g., live goods), and 15 groups loosely cor-
responding to departments (e.g., grd/outdoor). The members at each level in the
hierarchy are non-overlapping.

The purchase part contains the information of about 11,631,000 sales1 and
545,000 returns. For each sale and return, we know the product ID, the buyer
ID, and the location (store ID and register ID), date, time, quantity, and price
of the sale, and discounts, if applicable. The sales recorded in the data set took
place over two years between 05/03/2012 and 02/03/2014. 99.6% of the sales
were initiated and completed in stores; the remaining sales were made online.

The members at each level in the product hierarchy significantly vary in size.
The variance can be estimated in terms of the observed entropyH1 versus the en-
tropyH0 of a uniform, homogeneous distribution of member sizes (higher entropy
means higher homogeneity). The data set group sizes range from 6 to 25,888
(H1=3.57 vs. H0=3.91); class sizes—from 1 to 21,167 (H1=4.37 vs. H0=7.88);
subcategory sizes—from 1 to 12,355 (H1=4.55 vs. H0=10.79). The striking het-
erogeneity of the hierarchy members makes it hard to treat them as first-order
building blocks for further research.

The data set product hierarchy reflects the store organization by departments,
sections, and subsections/shelves. While this grouping makes perfect sense from

1 For the purpose of this study, all items with the same product ID, purchased by the
same customer at the same register at the same time, are considered one sale.
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the functional perspective (items performing similar functions or intended for
similar purposes, such as nails and screws, are shelved together), it does not
reveal latent task-oriented connections between products. For example, 91% of
screws are in the hardware and electrical groups, but 82% of screwdrivers are
in the tools group, another 18% are in the electrical group, and none are in
the hardware. The assignment of screws and screwdrivers to different groups
(and, therefore, different departments) ignores the fact that both are required
for screwdriving. As a consequence, by observing the purchase of screws as an
item from the hardware group and a screwdriver as an item from the tools
group, a researcher may not be able to detect that the customer is about to
start a screwdriving “project.”

To circumvent the problems of heterogeneity and lack of support for task-
or project-orientated classification, we introduce another level in the data set
hierarchy—mini-categories.We later define the mini-categories as structural sub-
networks within the overall product network. The product network construction
algorithm is described in the next Section.

4 Product Network Construction

A product network [3,6,10] is a graph G reflecting the product co-occurrences
in a customer’s “basket” [6,8,11]. The graph nodes represent individual material
items purchased by customers. Two nodes A and B are connected with an edge
if the products A and B are frequently purchased together (not necessarily by
the same customer). The existence of an edge between two products suggests a
purposeful connection between the products, such as co-suitability for a certain
task, as in the screws and screwdriver example above.

A product network graph G is undirected (if A is connected to B then B
is connected to A). It does not contain loops (a node cannot be connected to
itself) or parallel edges (A can be connected to B at most once). The graph
in general is disconnected—it consist of multiple components, one of which, the
giant connected component (GCC ), may have a substantially bigger size than
the others.

Depending on the construction procedure, the graph G can be unweighted or
weighted. In the former case, the existence of an edge indicates that the strength
of the connection between the two incident nodes (e.g., the likelihood of the two
items to be in the same “basket”) is simply at or above certain threshold T .
In the latter case, the strength of the connection is treated as an attribute of
the edge; this way, some edges are stronger than others. A weighted graph can
be converted to an unweighted graph by eliminating weak edges and treating
strong edges as unweighted. An unweighted, undirected graph with no loops and
parallel edges is called a simple graph.

While weighted graphs are more detailed, simple graphs are easier to visualize
and comprehend. Many graph processing algorithms (and applications) are opti-
mized for simple graphs. In our quest for mini-categories, which are ambiguously
defined, we believe that the benefits of having a more detailed representation of
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product interconnections are offset by the fuzzy mini-category detection tech-
niques, and do not outweigh the added complexity of handling weighted graphs.
That is why we chose simple graphs as the representation of the product network.

At the first stage of the network construction, we create a graph node for
each material item that has been purchased by a customer at least once over the
observation period, to the total of 85,865 nodes.

At the second stage, two nodes are connected if the corresponding items have
been purchased together at least N times. To quantify the concept of together-
ness, we first observed that the customers are more likely to visit the store every
k = 1, 2, 3 . . . weeks (Fig. 1), which must be caused by the weekly work cycle.
We use one week as a natural window span and consider two purchases by the
same customer to be in the same “basket” if they were made within seven days
(not necessarily within one calendar week).
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Fig. 1. Days between consecutive purchases by the same customer

The choice of N controls the density and the connectedness of the product
network. A bigger N results in a sparse network with many tiny isolated compo-
nents that cannot be efficiently grouped into mini-categories. A smaller N yields
a very dense network, dominated by the GCC and unsuitable for community
detection algorithms.

Table 1 presents product network statistics for N=1, 5, 10, and 20: numbers
of edges, nodes, isolated single nodes, isolated pairs of nodes, and components;
the size of the giant connected component, and the relative volume of sales of the
GCC items. The two least dense networks (N=10 and 20) have a subtle GCC
and many isolates. The densest network (N=1) essentially consists only of a
very dense, nonclusterable GCC. The transition from N=1 to N=5 substantially
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Table 1. Product network statistics forN=1, 5, 10, 20. See Section 4.1 for the explanation
of 5∗.

N 1 5 5∗ 10 20

Edges 8,066,192 104,643 28,760 26,187 7,126
Nodes 85,865 85,865 85,053 85,865 85,865
Isolated nodes 1,026 67,007 69,619 78,283 82,982
Isolated pairs 71 682 953 494 244
Components 1,107 67,989 71,069 79,051 83,352
Absolute GCC size 84,669 16,215 11,164 5,296 1,677
Relative GCC size 98.6% 18.9% 13.1% 6.2% 2.0%
Sales in the GCC 99.9% 70.0% 51.3% 45.0% 26.0%

reduces the GCC size while preserving its relative sales volume, thus making it
possible, without the loss of generality, to disregard the sales of the isolated
items. For this reason, we adopted N=5.

4.1 Staples

The resulting product network is a power-law graph with a long-tail degree dis-
tribution with α≈−1.25 (Fig. 2). The distribution of sales volumes for individual
items also follows the power law2 with α≈−1.06. Most items are isolated nodes
or have fewer than 10 connections. However, there is a number of staples [14]
in the tails of the distributions that are (a) frequently purchased from the store
and (b) frequently purchased together with other items.

The top 20 staples in the product network are shown in Table 2.
The staples are either not related to any specific projects or are generic and can

be related to a multitude of projects. Since staples belong to many “baskets,”
they lay on many network shortest paths and connect nodes that otherwise
would probably be disconnected. The shortest paths induced by the staples,
increase graph coupling and lower its modularity, thus eroding potential mini-
communities. To minimize the influence of the staples, we eliminate, in the spirit
of market basket analysis, 5% of the GCC nodes with the highest degrees—that
is, 812 nodes with the degree d > 45. The product networkG∗ with the truncated
tail is referenced in Table 1 as 5∗.

5 Network Structure and Mini-Categories

A visual inspection of G∗ reveals rich internal structure of the product network.
In particular, we noticed three major types of structural tiles: dense clique-
based communities, sparse stars, and linear chains and pendants—and randomly
structured connecting matter. Often, the tiles overlap (e.g., a node can be a leaf

2 In fact, node degrees and the corresponding sales volumes are correlated with ρ ≈
0.867.
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Fig. 2. Node degrees (circles) and item sales volumes (boxes) in the product network
for N=5

Table 2. Top 20 most connected products (staples)

Product Degree Sales

2×4-96” premium kd whitewood stud 1,410 3,305
5gal homer bucket 1,333 3,344
9 in plastic tray liner—white 1,049 3,078
e/o bonnie eco prem peatveg herb 5in 1,031 3,756
1/2”×260” ptfe thrd seal tape 986 2,491
20 oz classic coca-cola 943 3,407
scotch blue 1.88” painters 2090 897 2,258
20 oz diet coke 810 2,897
chip 2.0 flat brush 715 2,241
1/2”×4’×8’ usg ultralight drywall 681 1,395
better 9 in tray set—8 piece 677 2,051
40 lb topsoil 674 3,498
e/o vegetable peat pot red 5in 634 2,706
16oz gaps & cracks great stuff 613 2,103
plastic bag goods 593 2,529
alex plus white 587 1,453
1 cu ft mg flower & veg garden soil 586 2,753
20oz dasani water 556 2,523
better 9 × 3/8 in knit poly roll 3pk 549 1,524
42gal 3mil contractor trashbag 32pk 549 2,057
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of a star and a member of a dense community). We propose an automated
procedure for the structural tile extraction.

5.1 Tile Extraction

At the pre-processing stage, all small unconnected components (having fewer
than five nodes) are removed from the network. The new network has 12,416
nodes and 26,943 edges.

We define an imperfect star as a connected subgraph of G∗ that consists of
at least four nodes of degree ≤ 2, connected to a common central node. We
allow for a modest number (n/2) of chords in an n-node star, because the graph
G∗ was constructed through a binarization procedure with an arbitrary chosen
threshold and an absence of a connection between two nodes does not imply a
zero co-occurrence.

A chain/pendant is a linear sequence of nodes that is connected to an-
chor nodes at one (pendant) or both (chain) ends. We define an imperfect
chain/pendant (a linear tile) as a connected subgraph of G∗ that consists of
nodes of degree 1 through 3. The nodes of degree 3 introduce defects (chords
and mini-stars) but do not significantly distort the linear structure of the
subgraphs.

An anchor node is a node that is shared by a linear tile and the rest of G∗.
We attached anchor nodes to the incident linear tiles. As a result, we get 5,197
small linear tiles with < 5 nodes and 375 large linear tiles with ≥ 5 nodes. In
the spirit of restricting the size of individual tiles to ≥ 5 nodes, we combined the
small linear tiles with their larger immediate neighbors.

We used CFinder [5] for the extraction of dense communities. CFinder is based
on the Clique PercolationMethod: it builds k-cliques—fully connected subgraphs
of G∗ of size k—and then computes the union of all k-cliques that share k − 1
nodes pairwise. Clique-based communities have an important advantage over
k-cliques: they are less rigidly defined and can absorb more potentially related
nodes than a clique, thus improving the tile coverage of G∗ and reducing the
number of required tiles.

We eliminated communities with < 5 nodes to be consistent with the previ-
ously adopted approach to small tiles.

5.2 Coverage Optimization

As a result of the network decomposition, we constructed 5,035 possibly overlap-
ping tiles of three different types: stars (3,553), dense clique-based communities
(1,107), and chains/pendants (375). The union of all tiles contains 12,370 prod-
uct network nodes, with the average coverage of 2.45 nodes per tile. Table 3
shows the summary of the tile coverage (before and after optimization).

The amount of overcoverage (average number of tiles that a node belongs
to) can be reduced by optimizing the coverage, identifying essential tiles, and
discarding redundant tiles. For optimization, we chose a variant of a greedy
maximum coverage algorithm [13]. We start with an empty set of covering tiles.
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Table 3. Structural tiles of the product network before and after coverage optimization

Tile type Count Node Coverage Mean Size

Original Optimized Original Optimized Optimized

Stars 3,553 289 10,486 5,589 30
Dense communities 1,107 216 5,457 8,123 47
Pendants/chains 375 313 2,065 4,278 17

Total: 5,035 818 12,370 12,274

At each iteration, we select an unused tile that, if added to the coverage set,
minimizes the number of uncovered nodes and increases the number of covered
nodes. The process stops when no such tile exists.

The optimization reduced the number of essential tiles to 818—16% of the
original tile set (see Table 3). Only 142 nodes remained uncovered by any essen-
tial tile. As a result, the average number of nodes per tile increased to 15, and
the amount of overcoverage was dramatically reduced (Fig. 3).
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Fig. 3. Overcoverage (number of structural tiles per node) of product network nodes

Figure 4 shows the outlines of three randomly selected average-sized sample
tiles of each type.

5.3 Mini-Categories

The optimized tile set contains a reasonable number of members and has a good
uniformity. The entropy of the tile size distribution for the set isH1 ≈ 8.92 versus
H0 ≈ 9.68 for the uniform, homogeneous distribution. The collection of essential
tiles forms a good structural basis for further research of customer behavior and
customer-driven projects.
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Fig. 4. Outlines of sample tiles: (a) star “Ice melt and shovels” (top), (b) commu-
nity “Alarms and smoke detectors” (bottom left), and (c) chain “Zinc screws” (bot-
tom right). Node size represents item sale volume, edge thickness—the number of
co-occurrences.

From a retailing perspective, different types of structural tiles correspond
to different relationships between the products associated with the tile nodes.
We call these building blocks mini-communities and suggest that they reflect
consumers’ view on the product hierarchy.

A cliques-based community (and especially a generating k-clique) is charac-
terized by homogeneity and complete or almost complete connectivity between
the nodes. In other words, any product in a community is commonly purchased
together with all other products in the community. The products in a com-
munity form a topical complementary group [14,15,16], e.g., alarms and smoke
detectors—elements of home security.

On the contrary, a star is heterogeneous. The nodes in a star form two different
groups: the high-degree hub (the lead product) and small-degree spokes (the
peripheral products). The lead product is frequently purchased together with
one or few peripheral products. However, the peripheral products are never or
almost never purchased together. The hub with the peripherals form a group of
substitutes [14,15,16], e.g., snow removal tools and materials: ice melt bag as the
lead and shovels, rock salt, and sand as the peripherals (Figure 4a).

Chains/pendants (linear tiles) are perhaps the hardest mini-category to inter-
pret. They describe a set of products that are almost never purchased together,
but often purchased pairwise. An almost perfect example of a chain is shown in
(Figure 4c): all products in the tile are zinc flat head philips wood screws and



Building Mini-Categories in Product Networks 189

differ only in length and number (diameter). Most of the screws are #8 and
#10. Any two neighbors differ either in diameter (#8 vs. #10) or length, and
the difference between the neighbors is always smaller than between any non-
neighbors. We hypothesize that a customer buys a pair of items if she is not
sure about the precise values of certain attributes (such as screw dimensions).
In other words, a linear tile represents substitutes by ignorance, as opposed to
substitutes by choice.

6 Conclusion and Future Work

The goal of this research is to pave the road to the automated identification
of consumer projects, based on the available retail data. One possible direction
that we explored is to deconstruct the product network into structural tiles that
correspond to groups of products—mini-categories.

We built a product network from the purchase data provided by a major na-
tionwide retailer through the Wharton Customer Analytics Initiative (WCAI).
A visual inspection of the network revealed three major types of structural
blocks: dense clique-based communities, stars, and linear structures (chains and
pendants).

We developed a procedure for the automated tile extraction and coverage
optimization. As a result, we produced a reasonably uniform in size collection
of ca. 800 tiles of all three types that cover the majority of the giant connected
component of the product network. We associate each tile type with the nature
of the products in the tile: either complements or substitutes.

We believe that the extracted mini-categories represent consumer view on the
retail product hierarchy and can be used as an efficient managerial and research
tool.

In the future, we plan to study mini-categories as first-class objects, rather
than building blocks for possible consumer projects. That way, there will be
no need to minimize their count and lump mini-chains into adjacent stars and
cliques, thus preserving relative cleanness of the stars and cliques and making
them easier to analyze.

We hope that the planned use of structural role extraction algorithms [17] will
uncover more tile categories, that, in turn, would yield more retailing-related
mini-categories.

Finally, we will look into validating our complement/substitute tile theory
using Amazon Mechanical Turk [18] crowdsourcing platform.

Acknowledgments. The authors would like to thank Wharton Customer An-
alytics Initiative (WCAI) for the provided data set that made this research
possible and an anonymous reviewer for the suggestion to use role extraction
algorithms.
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Abstract. Organizational network modeling can exhibit complexity in many forms 
to embrace the reality of an organization’s processes and capabilities. Networks 
enable modelers to account for many structural and attributional elements of 
organizations in ways that can be more powerful than statistical data mining 
methods or stochastic models. However, the price paid for this increased modeling 
strength can come in the form of increased complexity, sensitivity and fragility.  
Traditional network methods and measures can be sensitive to changing, unknown, 
or inaccurate topology; fragile to dynamic and algorithmic processing; and 
computationally stressed when incorporating high-dimensional data. Sensitivity 
and fragility of network models can be managed by setting boundaries around 
network states, within which specific geometries and topologies can be robustly 
measured.  We propose a categorical framework that identifies such boundaries 
and develops appropriate modeling methodology and measuring tools for various 
categories of organizational networks. Categorization of networks along important 
dimensions such as type, size, layers, dynamics and dimensions provide boundaries 
of paradigm shifts (from a social scientific perspective) or phase transitions (from 
physical sciences) -- points at which the fundamental properties or dynamics of the 
networks change. Not adjusting for these categorical issues can lead to poor 
methodology, flawed analysis, and deficient results. The purpose of our work is to:  
1) develop a framework to enable the construction of a network organizational 
modeling theory, and 2) identify measures, methods and tools that are appropriate 
for specific categories (and inappropriate for others) within this field of study.  We 
believe that such a framework can help guide underlying theory and serve as a 
basis for further formalization of network studies. 

1 Background 

Network science research has matured rapidly and has moved beyond simple graph 
models to investigate more realistic and complex models (Brandes, Robins, McCranie, 
Wasserman, 2013).  Through this process, the science of networks wrestles between its 
development of universal principles and its rapidly increasing array of specialized 
methodological tools and measures.  Many previous sciences have had to resolve these 
kinds of issues as they matured and grew in utility.  Often categorical frameworks 
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helped these scientific developments, either temporarily until the science unified its 
theory and application or as more permanent elements.   

In the 1830’s, Schleiden and Schwann's discovery that plant and animals were 
all made of simple units that functioned both as distinct entities and as building 
blocks capable of self-assembly led to major advances in biological insights 
(Schwann and Schleiden, 1847). Classification schema went from one where living 
forms are made up of unique forms of tissues to one that can be reduced to 
common ‘basic units of life’. Not unlike networks, simple recombination of cellular 
material and connections with other cells result in vastly different appearances 
and functions. Modern cell theory was born, enabling the science to shift focus 
from the specific forms of living material, to exploration of common cellular 
processes such as homeostasis, energy production, and reproduction. Similarly, the 
‘discovery’ that all networks share basic building blocks and are governed by 
common forces in their construction produced powerful geometric and topological 
insights that enable us to characterize general processes of networks.   

Like the biological sciences though, deeper insights can arise after more 
sophisticated classification systems are developed to account for the parameters 
within which these generalized phenomena are meaningful such as the 
distinctions between plants, animal, fungus, etc. In the next decade, we expect to see 
network classification schemas that resemble biological taxonomic ranks, with 
network measures to determine the equivalents of domains, kingdoms, a n d  
phylum, to distinguish fundamentally different types of network systems.  The 
work presented here is an incremental step towards that goal.   

Like other fields, models for social or organizational networks struggle with the 
tension between holistic approaches that can capture the appropriate network 
dynamics and the fidelity achieved in modeling contextually rich information 
associated with social processes.  This bifurcation has lead to a disconnection 
between theoretical and methodological approaches used to study networks.   On 
the one hand, efforts largely led by physicists and computer scientists focus on the 
phenomenology and topology of networks – where the goal is to develop a 
unifying framework to model structural linkages among entities (Barabasi & 
Albert, 1999; Barabasi, 2009; West, 2011).  This search for universality leads to 
the development and use of general models and methods.   Social scientists on the 
other hand focus on understanding drivers of social processes under specific 
conditions of influence, learning, and supportive roles of social ties (Borgatti, 
Mehra, Brass, & Labianca, 2009). This produces a specialization of methodology 
and can result in complex models.  One approach leads to generalizable network 
properties that result from inherent mathematical relationships, while the other 
generates a formalization of mechanisms meaningful within specific contexts and 
exogenous elements. 

The two perspectives have contributed to important advances in the new science 
of networks over the last two decades. We argue here that the field is ready to 
evolve from these two approaches to one that lies somewhere in between.  One of 
the important consequences of this unresolved tension is that it is not clear in what 
contexts it is appropriate to apply which network measures and dynamical 
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assumptions.  For instance, the role of high degree nodes or the capabilities of a 
highly centralized network will be very different in dense verses sparse, layered 
verses flat, networks.  What do measures like centrality or density, or topologies 
like small world or scale-free mean differentially for networks of ten, thousand, 
million, or a billion nodes? This line of inquiry is not new, but systematic solutions 
have not yet been developed. We present a framework that can begin to resolve the 
dilemma.  The critical aspect is to identify points at which models shift from one 
set of properties and dynamics to another set (analogous to taxonomic 
classifications in life sciences).  These are often called phase transitions (by 
physicists) and paradigm shifts (by social scientists). A t  t h e s e  b o u n d a r y  
p o i n t s ,  the rules governing the formation and growth of the network are 
transitioned to a different set of network forces.  Our goal is to organize these 
transitions into a classification system that will guide the use of appropriate 
network methodologies. 

Using organizational networks as a prototype, we present a framework to reflect 
transitional phases that distinguish the role of structural elements, processing 
functions, and nodal attributes.  We present an outline for a framework that seeks 
to bridge context-rich processes and generalized phenomena of networks to help 
build a more trans-disciplinary science. To date, there have been only a few efforts 
to build a generalizable framework that explicitly attempts to integrate both the 
social and physical approaches (see Carley, 2003).   In our schema, we  sho w 
categorizations across properties of the network model which may require 
differing methodologies, measures or tools. This approach recognizes the need for 
categorizations, but identifies less discrete boundaries than the phenomenologist 
approach. We seek to identify such categorizations appropriate for organizational 
networks to include type, layers, dimensionality, size and dynamics.  The next step 
in this research will be to use the various features in this classification system to 
identify network measures and network dynamical relationships that are 
appropriate or feasible for those categories. 

2 Organizational Networks 

The power of network models for managing organizations is affected by a lack of a 
historical record of successful test cases and the lack of valid (comparable and 
benchmarked) data.  The few data sets and formal assessments that do exist are not 
satisfying. On the micro scale of organizational analysis, centrality measures can 
offer meaningful insights into the structure of subgroups and the identity of power-
players within the formal organization  but often lack details about what these 
metrics mean for communication, diffusion, or innovation (Borgatti, Carley, and 
Krackhardt, 2006; Borgatti, 2006).  On the macro scale, the dynamics of the 
topology and the statistics of the nodal or link attributes ca n  help to characterize 
the overall capabilities of the organization, but the lack of granularity reduces the 
rigor of the analysis and questions the validity of results, particularly for a 
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decision-maker in an organizational setting.  Depending on the categorization of 
the model, traditional centrality measures of the known elements of an organization 
may provide little meaning to understanding the real issues involved with 
managing an organization.  As an example, dark (hidden) organizations and agents 
are characterized by their ability to coalesce and metastasize subgroups to produce 
unpredictable events, appear in unanticipated places, and create considerable 
confusion for outside analysis.   Bell (2014) developed a subgroup centrality 
measure that deals with the specific considerations of dark networks.  Nonlinearity 
is present in most of the properties of dark organizations: high volatility, 
appearance of randomness, and considerable asymmetry (Taleb, 2012; Xu and 
Chen, 2008).  In many cases, the dark network is embedded within a light network 
such that differences between legitimate connections and those designed for deceit 
are often treated together.  Ignoring ties between the dark and light components or 
treating them uniformly are poor strategies for handling these data in a meaningful 
way.  Bell’s subgroup centrality measure takes both micro and macro level settings 
into account by allowing for the division of the network into local (targeted) and 
global (untargeted) influence. This technique generates centrality rankings that 
differ substantially from the traditional approaches and therefore are relevant to 
this type of network. This is an example of developing network measures that are 
appropriate for specific type of network because it accounts for its unique features. 
If the network were to move from dark to light, this measure would no longer be 
appropriate. 

3 Organizational Network Classification Schema 

Some of the most compelling properties of organizational networks stem from their 
type, layers, dimensionality, size and dynamics.  Examples of these elements are: 

•  Types:  Hierarchical, flat, bright, dark, cooperative team, competitive team 
•  Size: Number of nodes or links 
•  Layers:  Single or multiple 
•  Dynamics: Discrete events, continuous evolution, adaptations, resources flows, 

attribute spreading, controlled 
•  Dimensionality:  Kinds of nodes and links (scalar or vectors), number of 

attributes of each node and link 
 
Other potential elements to include in such a framework are:  Functions of the 

organization, eg, business, government, service (non-profit), sports, recreational, 
entertainment, and topology, eg, templated, random, small-world, scale-free, scale-rich,  
core- periphery, cellular, modular. Sometimes these categories are generalized by 
modelers into schema such as meta-networks (multi-modal and multi-layered), which 
can lead to confusion.  
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3.1 Network Type 

Contrasts among types of networks can be characterized in terms of their structure, 
process, and attributes across organizational function. For instance, dark verses 
light organizations, cooperative verses competitive teams, and hierarchical verses 
flat communication will have very different structural properties and will evolve 
based on distinct dynamical processes.  Information about various cognitive and 
psychological elements of the network, such as types of leadership and decision- 
making, roles of central actors and individuals on the edge, information flow and 
influence are also incorporated in the characterization of each category.  Proper 
categorization of these structures and processes c a n  help determine which 
network measures and concepts can be used effectively (Salas, Cooke, and Rosen 
2008; and Stokols et al. 2008).   As an example, Table 1 shows a framework for 
understanding structural and processing elements and potential attributes for 
organizational networks of several types. 

Table 1. Network implications for structural, processing and attributional elements across 
network types 

Net- 
work 
Ele- 
ments 

Network Type 

 Hierar- 
chical 
Organiza- 
tions 

Flat 
Organi- 
zations 

Bright 
Net- 
works 

Dark 

Networks 

Coopera- 
tive 
Teams 

Competi- 
tive 
Teams 

Structural Properties 

Com- 
mand/ 
leader- 
ship 

Role by 
position, 
not by 
talent or 
need 

Roles 
can be 
earned 
but 
changed 
as need- 
ed 

Through 
compe- 
tence 

and need 

Ephemer- 
al, hidden 
and lim- 
ited, 
sometimes 
fragile 

Shared 
responsi- 
bility 
(coach 
coordinat- 
ed) 

Central- 
ized con- 
troller 
(coach or 
manager) 

Individ- 
uals on 
the 

Edge 

Con- 
strained, 
limited 

Emerge 
as need- 
ed 

Empow- 
ered, not 
con- 
strained, 
produces 
anti- 
fragility 

Valued 
and em- 
powered, 
only when 
needed 

Team 
relies on 
all mem- 
bers 

Roles are 
designated 
but valued 

Infor- 
mation 

Redun- 
dant, 
stored in 
many 
layers 

Unstruc- 
tured and 
possibly 
hidden 
and 
unavail- 
able 

Shared 
and 
highly 
valued 

Hidden 
and pro- 
tected 

Valued 
and 
shared 

Valued 
and dis- 
seminated 
as needed 
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Table 1. (Continued) 

Processing Functions 

Control/ 
influ- 
ence 

By di- 
rective 

Emerges 
as need- 
ed 

Through 
emer- 
gence of 
need and 
skill 

Only as 
necessary 

Emergent, 
with em- 
phasis on 
influence 
by the 
coach 

As deter- 
mined by 
the coach/ 
manager 

Deci- 
sion- 
making 

Only by 
leaders 

By 
many, 
but pos- 
sibly 
conflict- 
ing 

By eve- 
ryone, as 
appro- 
priate 

Uneven, 
by leader 
only if 
necessary 

As deter- 
mined by 
the coach/ 
manager 
with input 
from 
everyone, 
as appro- 
priate 

As deter- 
mined by 
the coach/ 
manager 

Opera- 
tional 
pro- 
cessing 

Pre- 
scribed, 
sequen- 
tial, doc- 
trinal 

Emer
- gent 

Dynam- 
ic, con- 
current 

Scattered, 
incom- 
plete 

Dynamic, 
concurrent 

Efficiency 
is para- 
mount 

Com- 
munica- 
tion 

Ineffi- 
cient, thru 
Chain of 
Cmd, as 
necessary 

Varied in 
form and 
in avail- 
ability 

Shared 
and 
Efficient 

Uneven, 
limited 
and coded 

Shared 
and Effi- 
cient 

Shared 
and Effi- 
cient 

Attributes 

Intelli- 
gence/ 
wisdom 

As valued 
by leaders 

Shared, 
but risky 

Adapta- 
ble and 
eclectic 

Hoarded 
and secret 

Coach led 
with some 
sharing 

Coach is 
the prima- 
ry source 

Security As re- 
quired 

Very 
difficult, 
often 

As 
need- 
ed 

Highly 
valued 

Mixed, 
fragile 

Mixed, 
fragile 

3.2 Network Size and Layers 

Organizations come in many sizes, from small partnerships to giant conglomerates.  
So it is not surprising that one methodology does not fit all sizes. Similarly, number 
of layers in an organizational network mo d e l  can dramatically change the 
methodology and measures as well.  This next example shown in Figure 2 provides 
tools and measures to calculate nodal influence in a network with varying size and 
layers.  For this framework, we choose a flat, bright, organization with a scale-free 
topology, and single mode. 
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Table 2. Network measures of influence by number of layers and size of network 

 Size 

Layers 10 103
 106

 109
 

 

 
 

1 

 
Traditional cen- 

trality/ centraliza- 
tion measures 

 
Traditional cen- 

trality/ centraliza- 
tion measures 

Limited centrali- ty
measures (degree) 
& cen- tralization 

(densi- ty) 

Specialized 
criteria counts and 

streaming data 
accumula- tions 

 

 
 

2 

 
Average of tradi- 
tional centrality/ 

centralization 
measures 

 
Average of tradi- 
tional centrality/ 

centralization 
measures 

Average of lim- 
ited centrality 

measures (de- gree)
& centrali- zation 

(density) 

Specialized 
criteria counts and 

streaming data 
accumula- tions 

 

 
 

3-10 

 
Vector of tradi- 
tional centrality/ 

centralization 
measures 

 
Vector of tradi- 
tional centrality/ 

centralization 
measures 

Vector of limited 
centrality measures

(de- gree) & 
centrali- zation 

(density) 

 
 

Probably not 
feasible 

 

 
 
 

11-∞ 

 
Weighted measure 

of the vector of 
traditional central- 
ity/ centralization 

measures 

 
Weighted measure 

of the vector of 
traditional central- 
ity/ centralization 

measures 

Weighted meas- 
ure of the vector of
limited cen- trality
measures (degree) 
& cen- tralization 

(densi- ty) 

 

 
 
 

Not yet feasible 

3.3 Multi-Layered Networks 

Complexity must be included in the basic theories of network science, especially in 
the multilayered modeling. Network complexity often rises from the numerous 
interdependent components interacting in nonlinear, random or disordered ways.  
Complexity is reflected by 1) many components and layers, 2) interdependency of 
these components and layers, and 3) interactions that are nonlinear causing the 
nature of the relationships to be noncumulative or unpredictable. Like many 
systems, organizational “systems include multiple subsystems and layers of 
connectivity, and developing a deep understanding of multilayer systems 
necessitates generalizing traditional network theory” (Kivela et al, 2013).  For 
example, human-capital layers can connect with other dimensions including 
information flow and informal influence layers of the organization.  This layered 
complexity makes network analysis for organizations a challenging venture that is 
much like Silver’s (2012) description of finding the signal through the noise. In 
this case, the signal consists of the functionally performing elements of the 
organization while the noise is the disruption.  Our framework accepts the idea that 
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“the study of multilayer networks has become one of the most important directions in 
network science” (Kivela et al, 2013). 

3.4 Network Dynamics and Dimensions 

Capturing the performance effects of network dynamics in an organization is an 
important element of organizational management.  Decision makers are often basing 
their decisions on predictions and movement toward performance optimality. The next 
example framework seeks to describe organizational performance measures as 
categorized by the type of dynamics and the dimension of the nodes and links.  Often 
modelers include multiple modes in organizational models (e.g., employees, units, 
systems, facilities).   Table 3 shows tools to obtain good performance measures for 
these categories of network models. 

Table 3. Organizational performance by dynamics and dimension 

 
 

Dynamics 

Dimension 

 
Single Mode 

 
Multi-modal 

Hypergraph (vector of 
links) 

 
 

Discrete  
event 

 
Time series of a 

performance meas- 
ure at event inter- 

vals 

Time series of a 
performance measures

of various modal 
accumulations at event

intervals 

 
Time series of a 

specialized perfor- 
mance measure at 

event intervals 

 

 
Continuous 
evolution 

Sequence of ap- 
proximations of a 

performance meas- 
ure 

Sequence of approx- 
imations of a per- 

formance measure for 
various modes 

Sequence of approx- 
imations of a special- 

ized performance 
measure 

 
Adaptation 
(learning 
network) 

Measure of compar- 
ison of performance 

measures at learn- ing
stages 

Measure of compari- 
son of performance 
measures at learning 

stages 

Measure of compari- 
son of performance 
measures at learning 

stages 

Flow of 
physical 
resource 

(conserved) 

 
 

Rate of flow output 

 
Rate of flow output 
and other network 

attributes 

Heuristic measures for 
the rate of flow output 

and other network 
attributes 

Spreading of 
an attrib- ute

 
Rate of attribute 

adoption 

 
Rate of attribute 

adoption 

 
Rate of attribute 

adoption 

 
Controlled 
dynamics 

Measure of compar- 
ison of performance 

measures 

Measure of compari- 
son of performance 

measures 

Measure of compari- 
son of performance 

measures 
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3.5 Topology and Function 

Including structural topology is an evolving element in our framework.   Many 
network structures are either not part of an existing topology or fall into more than 
one category. Therefore, rigorous use of this element in our framework is 
problematic. Similarly, network function is both overlapping and incomplete and 
therefore not yet useful.  While we would like to include these elements in our 
framework, we will hold back their inclusion until more appropriate categorizations 
are available. 

4 Conclusion 

There are at least two levels of modeling density to resolve -- the underlying 
purpose of the model and the methodology in building the model.   While good 
modeling often seeks simplification to enable clear explanation and clarification, 
the actual goal of the modeler is to find the appropriate level of resolution for the 
utility and purpose of the model.  Models that are too simple miss the necessary 
detail and nuance of the organization and unnecessarily restrict the functionality 
and reality of the model.  Models that are too detailed, lead to poor solutions or 
produce entangled results which do not resolve the phenomena being modeled.  
The best models make difficult ideas easier to understand without missing 
important ideas caused by over simplifying.    

While this paper only introduces some of the ideas and elements of an 
organizational network modeling framework, it also raises the conversation of the 
utility of classification as a step in the development of network science as an 
interdisciplinary science. Using such a framework, we seek to both understand and 
embrace the resolution in structure, process, data attributes of organizations; to 
examine the sensitivity, fragility and complexity of network models through 
adjustments in categorical methodology based on type, topology, function, layers, 
dimension, size, and dynamics.  Ultimately, our goal is to develop a construct to 
better understand and discover the science of networks. 
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Abstract. Currently, mobile phone calling is one of most widely used
communication mode. The records of calls among users can show much
about human communication pattern and this pattern can help us to
infer about interpersonal relationships. In this work we use CDR (call
details record) data for modelling the whole network and choose random
nodes for a deep study of their ego networks. In each ego networks we
study and discuss the reciprocity of the weight of connections and the
correlation between time spend per relationship, number of calls per
relationship and their respective reciprocity index.

1 Introduction

Phone calls are one of the main ways in which our contemporary society commu-
nicate. Information about phone calls traffic in a phone carrier may hide much
information about communication pattern and human relationship. It is known
that the behaviour expressed by an individual in specific medium is useful to
understand the behaviour in the other media [4].

This work aims at the study of reciprocity in the communication of users of
mobile phone based on two measures of interaction: intensity of communication
(sum of all phone calls in a month, peer to peer) and frequency of communication
(number of phone calls performed in a month, peer to peer). Thus, networks
considered in this work are weighted. More specifically, we are interested in the
reciprocity index of specific individuals. With this purpose, we will consider the
so called ego networks.

We define ego networks as networks consisting of a single actor (ego) connected
to alters and the links among those alters. These networks are also known as the
neighbourhood networks or first order neighbourhoods of ego. The attraction of
ego networks is the ease of collection of data compared with collecting data on
whole networks. Information on the alters, including how they are connected, is
usually obtained entirely from ego. Such structures can be sampled from large
populations and can be used to make statistically significant conclusions about
the whole population. There are many areas in which such networks have been
studied empirically, for example social support or reciprocity.

c© Springer International Publishing Switzerland 2015 201
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According to Tilburg et al [9], reciprocity in relationships can be interpreted
as an indicator of the level of intimacy of such relationship. Tilburg et al [9] also
affirm that the unbalancing in the support provided by the individuals involved
in a relationship is related to low levels of welfare.

The main goal of this work is to investigate different ego networks, calculating
the reciprocity contained in the dyads in order to obtain an index of reciprocity
of the relationships ego node in each network. This index enables a comparative
study between the level of support that an ego provides and receives. Some
insights about the network can be performed based on this index. For instance,
one can predict the extinction of a relationship by observing a lack of reciprocity
in it.

2 Basic Concepts

Ego networks consist of a focal node (“ego”) and the nodes to whom ego is
directly connected to (these are called “alters”) plus the ties, if any, among the
alters. In this paper ego networks will be extracted from the complete network
of CDR data.

Assortativity, or assortative mixing is a preference for a network’s nodes to
attach to others that are similar in some way. Though the specific measure of
similarity may vary, network theorists often examine assortativity in terms of a
node’s degree [6],[7]. In this work we will use the assortativity degree and the
assortativity strength for two metrics: #calls strength and duration strength of
a node.

The weighted reciprocity for networks is studied in [10] and [2]. However, the
reciprocity as originally stated, is only about the dyadic. In order to represent
the support received by “Ego”, we will take into consideration the mean of the
reciprocity metric observed for several nodes.

In the formulation proposed by Wanget al. [10], reciprocity of a dyad is given
by Equation 1:

Rij = |ln(pij)− ln(pji)| (1)

where pij =
wij

wi+
and wij is the weight corresponding to the directed edge i → j,

and wi+ is the output strength of the ith node, as stated by Barrat et al. [1].
The formulation is symmetric, since Rij = Rji.

The correlation between the reciprocities was calculated with Spearman’s rank
correlation coefficient, because we can not guarantee this correlation is linear.
The Sperman’s coefficient is a nonparametric measure of statistical dependence
between two variables. It assesses how well the relationship between two variables
can be described using a monotonic function. Using distinct data values, a perfect
Spearman correlation of +1 or −1 occurs when each of the variables is a perfect
monotone function of the other.
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3 Experiments and Discussion

3.1 Dataset

The dataset used in this work consists of phone call records obtained by a phone
carrier. The data is composed by a list of the observed interactions between
the users of the carrier at each month. Each record shows the anonymized user
that performed the phone call(s), the anonymized user that received the phone
call(s), the aggregated number of calls performed in a month and the aggregated
duration of calls performed in a month. The dataset also contains information
about the interaction between the users of the studied carrier and the users of
other carriers. However, the interactions involving only the users of the other
carriers can not be investigated, limitating a broader view of the network, which
can be considered as another motivation in the use of ego networks.

In order to perform the experiments, a graph G = (V,E) was constructed, in
which v ∈ V is a node that represents a user of mobile phone and e ∈ E is a
directed edge, which represents a connection between two nodes, such that the
source node is the caller user and the target node is the called user. The edges
have two important attributes: total number and total duration of the phone calls
performed from each node vi ∈ V to each node vj ∈ V . These attributes are used
for the analysis of reciprocity and distribution of time in the communication of
the nodes, in order to understand the behaviour of the relationship involving the
individuals.

3.2 Information about the Complete Network

The complete network has 408309 nodes connected by 62214482 edges and,
among all the nodes, 113611 correspond to users from the carrier that provided
the data. The remainder nodes correspond to users from other carriers that in-
teract to users of the carrier that provided the data. Table 1 shows some global
metrics of the network.

We can observe from Table 1 that the measures of maximum indegree and
maximum outdegree are very high, and it is unlikely for a person to keep 60000
contacts.

The maximum duration and number of calls associated to an edge is also
way beyond what can be expected. These values allowus to conclude that these
relationships are not associated to people, but to organizations that use a single
phone number shared with several users, which is not explicit in the dataset. The
maximum duration is 183598.9 minutes, which is impossible to be associated to
a relationship between two common users, since it represents 127 days of phone
calls. The same observation can be made when the maximum number of calls
(9976) is analysed, since it leads to 332 average daily calls from one individual
to one other. These values suggest, in both cases, that these relationships can
be associated to telephone stations of two organizations.

The average degree (in/out) of the network is 152, very close to the Dunbar
number [3], based on the theory of social brain which states that a person is able
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Table 1. Properties of the complete directed network

Max degree in 69466
Max degree out 74252
Mean degree 304

Average degree in/out 152
Max duration 183598.9
Min duration 0.01

Average duration 6.33
Max # calls 9976.0
Min # calls 1.0

Average # calls 4.76
Binary reciprocity 0.349

ĈC 0.008
Average shortest paths 2.96
Assortativity degree -0.008

Assortativity strenght duration 0.052
Assortativity strenght # calls -0.011

to manage, at most, about 150 “friends”. The average aggregated call duration
between pairs of vertices in the network is 6.33 minutes in 4.76 calls per month,
resulting in 45 seconds per average call. The clustering coefficient (ĈC) presented
by the network can be considered high and the shortest path distance is low.

Unlike the assortativity values found in social networks studied in other works
[7], the correlation found is null for both degree assortativity and strength as-
sortativity (considering number and duration of calls).

The ratio of reciprocal edges in the directed network is nearly 34%, thus, to
better understand the reciprocity we also analysed the measures presented in
Table 1 for the mutual undirected version of the network. The mutual network
was constructed from the directed version previously presented, removing the
direction of the relationship. Thus, an edge between nodes A and B only exists
if the both edge, from A to B and from B to A exists. The properties of this
new edge are calculated by the sum of the properties of the original edges. I.e.,
the weight of the number(duration) of calls of the undirected edge is the sum of
the weight of the number(duration) of calls represented by the edge ĀB to the
number(duration) of calls represented by the edge B̄A.

Some metrics, extracted from the giant component of the mutual undirected
network are presented in Table 2.

In the mutual network, still, the maximum degree (1873) indicates that some
nodes do not represent a single person, but organizations, since it is avery high
value for any single individual. The average degree of the network shows that
the relations are closer in the mutual network and the observed value (58) is
consistent to the theory of groups sizes of Dunbar [5], that suggests that an
average individual have about 50 distant friends.

The maximum value of call durations is still high (17996), even it is unlikely,
the communication of two mobile phones for 10 hours a day. The maximum
number of calls does not differ from the values previously observed, since the
mutual version represents the sums of the edges.

The assortativity coefficients show that the mutual network is disassortative
regarding to the degree, which is not observed in social networks. The network
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Table 2. Properties of the complete undirected network

Max degree 1873
Average degree 58

Max duration (min) 17996.36
Min duration (min) 0.01

Average duration (min) 18.50
Max # calls 17796.0
Min # calls 2.0

Average # calls 18.28
Assortativity degree -0.195

Assortativity strenght duration -0.088
Assortativity strenght # calls -0.138

ĈC 0.005
Average shortest paths 3.316

is also disassortative regarding strength considering thenumber of calls. On the
other hand, the assortativity is almost null considering the strength of duration
of calls. The clustering coefficient ĈC is still low and the shortest distance is
slightly higher when the non-mutual edges are removed.

After observing Tables 1 and 2, we chose to study the dyads in the ego net-
works, due to the lack of some properties of networks in the complete directed
network and also in the mutual undirected network.

3.3 Probability Ratio Distribution

The probability ratio distribution is the probability of communication from A
to B and it is given by the ratio of the total duration of calls in months (or
# of calls in month) in calls from A to B, over the total duration of calls (or
# of calls ) from B. This distribution, like in [8], refers to how ego distribute
their attention among several alters. In Fig. 1 the distribution of this ratio is
illustrated.

(a) Duration (b) # Calls

Fig. 1. Probability ratio distribution

In Fig. 1, we can see that both distributions are very similar, one can think
in a strong correlation between the two metrics. In other words, “if people talks
with other for long time, these people call for this others several times”, but
Spearman correlation show us that it is not true.
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For each list of probability ratio, we rank the alters by the weighed # of calls
probability ratio and duration calls probability ratio, calculate the coefficient
between two ranked list. We can observe that the set of people that a certain node
talk for a large duration is not the same set of people that this node talk with
more frequency. For a sample of 2000 nodes in network the average correlation
coefficient is very low, only 0.09, which shows almost a null correlation between
both probability ratios.

3.4 Reciprocity

The binary reciprocity is not enough to state, considering a specific individual, if
his contacts are reciprocal regarding the dedication to the relation. For instance,
if an individual A calls an individual B for 300 minutes per month in average,
and the individual B calls the individual A for 10 minutes, it can lead us to a
misinterpretation that the individual A invests much more to the relation than
individual B. However, this simplification can be unfair if the individual A spends
1000 minuter per month in phone calls, while the individual B spends only 60
minutes.If we take this into account, the individual A dedicates 1% of his time
to his relation with the individual B, while B dedicates more than 16% of his
call time to the individual A.

For a sample of 2000 nodes we plot the distribution of the reciprocity index
of them in a graph, represented by Figure 2. Again, we can see that both distri-
butions are very similar, but Spearman correlation coefficient shows us that the
correlation between them is not strong.

(a) Duration Reciprocity (b) # Calls Reciprocity

Fig. 2. Reciprocity Distribution

For each list of reciprocity, we rank the alters by the weighed # calls reci-
procity and duration calls reciprocity and calculated the coefficient between two
ranked list. From these results, we observe that the person that a certain node
is reciprocal in aggregated duration in month is not usually the some person
that this node is reciprocal in frequency. For the whole sample, the average cor-
relation of reciprocity is 0.145, which can be considered as a weak correlation.
In other hand, the average coefficient with other metrics present lower values,
which will be discussed in the following sections.
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3.5 Reciprocity vs. Probability Ratio

We analyse the correlation coefficient between the reciprocity using two metrics
and the probability ratio in the same metric and we observe that there is no
significant correlation. For reciprocity and probability ratio using the duration
of calls the average of calls was only 0.03 and for reciprocity and probability ratio
using number of calls the correlation coefficient was considerably low 0.002. This
coefficients show that the reciprocity of the chosen metrics is not correlated to
the respective probability ratio. In others words, egos are not reciprocal with
alters who he talks for a long time nor with alters to which he talks with more
frequency.

4 Conclusions and Future works

In this work we study the reciprocity in the communication of users of mobile
phone based on two measures of interaction: intensity of communication (sum
of all phone calls in a month, peer to peer) and frequency of communication
(number of phone calls performed in a month, peer to peer). The networks
considered in this work are weighted and we use a sample of 2000 ego networks
to calculate the reciprocity.

We calculate and discuss the correlation between reciprocity and two mea-
sures and conclude that the reciprocity in call duration is weakly correlated to
reciprocity in number of calls peer to peer.

The probability ratio of communication between two nodes is not correlated
to the reciprocity neither in number of call nor call duration. And unlike the
reciprocity using two measures, the probability ratio distributions using the two
measures are not correlated.

We find a lack of a metric of the reciprocity index of a node, which could help
us to understand people behaviour but we can confront the results extracted from
the networks to social and psychological theories. Because that, for future work
we intend to propose a new metric in order to measure the reciprocity received
by a node, observing the probability ratio for distinguish closer contacts from
distant contacts.
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Abstract. We present NetSci High, our NSF-funded educational outreach pro-
gram that connects high school students who are underrepresented in STEM 
(Science Technology Engineering and Mathematics), and their teachers, with 
regional university research labs and provides them with the opportunity to 
work with researchers and graduate students on team-based, year-long network 
science research projects, culminating in a formal presentation at a network 
science conference. This short paper reports the content and materials that we 
have developed to date, including lesson plans and tools for introducing high 
school students and teachers to network science; empirical evaluation data on 
the effect of participation on students’ motivation and interest in pursuing 
STEM careers; the application of professional development materials for teach-
ers that are intended to encourage them to use network science concepts in their 
lesson plans and curriculum; promoting district-level interest and engagement; 
best practices gained from our experiences; and the future goals for this project 
and its subsequent outgrowth.  

Keywords: Network science and education, educational outreach, teaching and 
learning network science, high school student research, NetSci High. 

1 Introduction  

Educational systems worldwide are not keeping up with the explosion in the big data 
and data-driven sciences that inform us about vital trends, have the potential to em-
power us to solve our greatest social and environmental challenges, and increasingly 
affect our lives. This gap is coinciding with an escalation in the complexity of the 
kinds of biomedical, socio-economic, environmental, and technological problems 
science is addressing, along with the ability to gather and store the subsequent vast 
amounts of data (American Association for the Advancement of Science (AAAS) 
1990, Watts 2007). The skills needed by the 21st century STEM workforce include: 
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• The ability to interact with large amounts of data. Facility with visual metaphors 
and granularity for both static and dynamic data streams is needed in order to see 
patterns in complex data. 

• The ability to understand the changing role of models. The higher-order thinking 
associated with model development allows both exploratory and inductive skills to 
be used to identify general patterns and characterize their behavior across a wide 
range of differing environments and processes. 

Students in the STEM “pipeline” need to be prepared for this new reality as they enter 
the modern day workforce and higher education. However, exposure to these data-
driven science skills is unavailable to most primary and secondary school students. 
Furthermore, summer or academic year research experiences for high school students 
under researchers’ guidance are often inaccessible to disadvantaged young learners. 
Such lack of access sends students down a path that is devoid of opportunities to fully 
participate in advances in our modern society. 

Network science has emerged as a possible solution. It is a promising way to address 
data-intensive real-world problems, employing graph theory, statistical analysis and 
dynamical systems theory to large, complex data sets, seeking patterns and leveraging 
them against large-scale knowledge management and discovery in business, medicine, 
policymaking, and virtually all complex science disciplines today. Network science is 
being used to understand everything from the human brain, to the origins of cancer, to 
the growth of cities, to our impact on the environment (Barabasi 2002, Pastor-Satorras 
and Vespignani 2001, Lazer et al 2013). Network science demands that we revise our 
thinking about what kinds of technical and process skills are needed to design, create 
and explore these emerging and accumulating data and technological structures. 

We believe that network science can provide a novel pathway for high school stu-
dents to learn about traditional topics across many disciplines, including social stu-
dies, science, computer science and technology. Many of the problems explored 
through a network science approach are in the everyday experience of students, such 
as the network flow of air traffic, interconnectivity of coupled networks in political 
and social systems, and human networks as seen through technology activities such as 
Facebook and Twitter. 

To test this solution – using network science to close the skills gap – we have de-
veloped and are running “NetSci High”, a regional educational outreach program 
designed to empower high school students and teachers to harness the power of net-
work modeling and analysis, resulting in a more holistic, dynamic understanding of 
the “interdependence” among components and the evolution of relationships among 
various things around us. NetSci High provides interventions in STEM teaching and 
learning that directly address the need for twenty-first century skills while targeting 
female, minority and economically disadvantaged students. It provides an advanced, 
alternative pathway to developing rigorous skills-based curricula, resources and pro-
grams that utilize the rapidly growing science of complex networks as a vehicle 
through which students can learn computational and analytical skills for network-
oriented data analysis, as well as how these skills can lead to breakthroughs in solving 
large-scale, real-world problems. NetSci High explores innovative approaches that, as 
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our work demonstrates, can capture the interest and imagination of underrepresented 
populations to explore science research problems using computational tools and  
methods (Buldyrev et al. 1994, Cohen et al. 2000, Trunfio et al. 2003). 

2 What Is NetSci High? 

NetSci High began as a small pilot project in 2010 with financial support from the 
Office of International Science and Engineering at the US National Science Founda-
tion (NSF) as well as a corporate donation from BAE Systems. The first year of 
NetSci High (2010-2011) was run as a competition for high school research posters. 
Seven student projects were conducted through collaboration between participating 
high schools and their local research labs in New York City, Boston, and Bingham-
ton, NY. Their posters were reviewed by the Scientific Committee, and the students 
and teachers of the two winning posters were supported to attend the NetSci 2011 
conference in Budapest, Hungary, in June 2011. All of the seven posters were pre-
sented at the poster sessions of the conference. The posters were also displayed at the 
Eighth International Conference on Complex Systems in Boston on June 26-July 1, 
2011. The second year of NetSci High (2011-2012) was run as scholarships offered to 
high school student teams. Two student teams participated from the Binghamton area. 
Those teams were offered a scholarship to attend the NetSci 2012 conference in 
Evanston, IL, in June 2012, and to present their posters. 

This pilot program paved the way to a much larger NSF-funded ITEST Strategies 
project, “Network Science for the Next Generation,” or NetSci High. Since 2012, Bos-
ton University, the New York Hall of Science, SUNY Binghamton and United States 
Military Academy at West Point have been collaborating on this ITEST Strategies 
project, which provides opportunities for disadvantaged high school students to partici-
pate in cutting-edge network science research. This project bridges information technol-
ogy practice and advances in network science research to provide career and technical 
education opportunities for young people underrepresented in data-driven STEM.  

The goals of NetSci High are the following: 

1. Improve computational and statistical thinking and stimulate interest in computer 
programming and computational scientific methods by providing students and 
teachers with opportunities to create and analyze network models for real-world 
problems through a mentoring and training program. 

2. Increase students’ potential for success in STEM in a technical career or college 
through applied problem solving across the curriculum using tested units of in-
struction that clarify complex STEM topics and provide new applied approaches 
for critical thinking in STEM. 

3. Prepare learners for 21st century science and engineering careers through the use of 
data-driven science literacy skills, and motivate them to elucidate social and scien-
tific problems relevant to the disciplines and to their lives. 

4. Develop curricular resources that help learners achieve the following set of basic 
skills that are crucially needed to succeed in the data-driven work environment in 
the 21st century: 
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─ Ability to synthesize, seek and analyze patterns in large-scale data systems; 
─ Gain facility with data visualization, filtering, federating, and seeking patterns 

in complex data; 
─ Understand the changing role of models, higher-order thinking, emphasizing 

exploratory skills to identify and characterize behavior of patterns in differing 
environments;  

─ Use network science and statistical approaches to break down traditional silos 
in order to compare and contrast processes across domains;  

─ Build data fluency to be able to identify, clean, parse, process and apply appro-
priate analysis skills to large quantities of data; 

─ Gain facility with data mining and manipulation with increasingly semantic and 
statistical approaches, superseding logic models for searching and comparing 
data; and 

─ Understand the role of data sharing, collaboration, interoperability of tools and 
data types, along with skills in using collaborative tools and methods to maximize 
data discovery.  

3 Contents and Materials 

NetSci High has developed and implemented a rich, experiential, research-based pro-
gram for disadvantaged high school students, science research graduate student men-
tors, and high school STEM teacher mentors throughout New York State and Boston, 
Massachusetts. This project works to close the gap between the teaching and learning 
of STEM disciplines and STEM practice, and to prepare the next generation of the 
STEM workforce to conduct a mode of research that differs markedly from that  
currently mandated by K-12 curricula and educational practice. 

The program includes a 2-week intensive summer workshop and an academic year 
research program utilizing collaborative IT tools, plus periodic special workshops, 
industry lab tours, and participation in the International School and Conference on 
Network Science (NetSci).  

Organizers have assembled teams of high school students from New York State and 
Boston area Title 1 schools, plus their science teachers and graduate students from net-
work science research labs, to spend a year collaborating on cutting-edge research on a 
network science topic of their choosing. The research component of this project focuses 
on the efficacy of intensive training and support of high school student teams and an 
academic year of research with cooperating university-based network science research 
labs; the labs’ participation is facilitated by a graduate student who learns valuable men-
torship skills as part of the experience. Because the network science field is relatively 
new, much of this research is novel, with practical implications.  

Each yearly cohort of students begins their experience by participating in a summer 
residency-workshop led by network science faculty and researchers (Fig. 1). This 
summer workshop is an intensive two-week experience, at which student teams, their 
teachers and graduate student mentors are immersed in learning network science con-
cepts and programming languages such as Python, NetLogo and JavaScript; applying 
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network analysis tools such as NetworkX and Gephi; attending hands-on workshops 
and talks given by top network science researchers; and collaboratively brainstorming 
about research questions that will form the basis of the year’s research projects.  

During the academic year students refine their coding and programming skills, 
conduct their research, visit their host research labs, and have regular weekly meet-
ings with graduate student mentors. Layers of support and mentoring throughout the 
academic year come from graduate students in partnering labs, high school teachers 
and project staff, as well as online and face-to-face field trips, meetings, seminars and 
work sessions. After their research is complete the teams prepare their findings for 
publication and presentation. 

 
Fig. 1. NetSci High New York teams gather for a conference at the close of the July 2014 
workshop at Boston University 

Evaluation of this model to date has indicated that it is extremely effective for stu-
dents in incentivizing and achieving success in mastering and applying data-driven 
STEM skills to real problem solving. It is an empowering and engaging pathway into 
data and computational literacy and computer programming skills. Further planned 
evaluation will aim to assess participants’ higher education and career choices  
and their relevance to STEM fields. The subsequent evaluative results will provide 
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substantive evidence of the return on investment (ROI) for funding priorities and 
future growth of the project. 

More information can be found at the NetSci High websites (https://sites.google. 
com/a/nyscience.org/netscihigh/ and http://www.bu.edu/networks/). Professional 
development and workshop resources including curricular modules can be found at 
the workshop website (http://www.bu.edu/networks/workshop/). Additional resources 
for network science education can be found on the NetSciEd website (https://sites. 
google. com/a/nyscience.org/netscied/). 
4 Accomplishments 

Over the past four years, high school students have worked on a wide variety of  
research projects through the NetSci High program. Table 1 shows the list of project 
titles, listed in chronological order. 

Table 1. List of titles of NetSci High student research projects 

2010-11 
• A Comparative Study on the Social Networks of Fictional Characters 
• Academic Achievement and Personal Satisfaction in High School Social 

Networks 
• Does Facebook Friendship Reflect Real Friendship? 
• Inter-Species Protein-Protein Interaction Network Reveals Protein Interfaces 

for Conserved Function 
• The Hierarchy of Endothelial Cell Phenotypes 
• Preaching To The Choir? Using Social Networks to Measure the Success of 

a Message 
• Identification of mRNA Target Sites for siRNA Mediated VAMP Protein 

Knockdown in Rattus Norvegicus 

2011-12 
• A Possible Spread of Academic Success in a High School Social Network: A 

Two-Year Study 
• Research on Social Network Analysis from a Younger Generation 

2012-13 
• Interactive Simulations and Games for Teaching about Networks 
• Mapping Protein Networks in Three Dimensions 
• Main and North Campus: Are We Really Connected? 
• High School Communication: Electronic or Face-to-Face?  
• An Analysis of the Networks of Product Creation and Trading in the Virtual 

Economy of Team Fortress 2 

2013-14 
• A Network Analysis of Foreign Aid Based on Bias of Political Ideologies  
• Comparing Two Human Disease Networks: Gene-Based and System-Based 

Perspectives 
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• How Does One Become Successful on Reddit.com? 
• Influence at the 1787 Constitutional Convention 
• Quantifying Similarity of Benign and Oncogenic Viral Proteins Using 

Amino Acid Sequence 
• Quantification of Character and Plot in Contemporary Fiction 
• RedNet: A Different Perspective of Reddit 
• Tracking Tweets for the Superbowl 

 
NetSci High has facilitated sending a group of high school students and teachers 

from New York City to NetSci 2011 in Budapest, Hungary; a group from Endwell 
and Vestal, NY to NetSci 2012 in Evanston, IL; and a group from Vestal, NY to 
NetSci 2014 in Berkeley, CA. The high school student teams presented their work at 
poster sessions at all of these conferences. High school student research has also been 
published in peer-reviewed journals such as PLOS ONE (Blansky et al. 2013).  

During the Spring 2014 semester, professional development training in network 
science concepts and tools was provided to the entire 9th grade faculty at Chelsea 
CTE High School in New York City and faculty from Newburgh Free Academy. The 
faculty were then encouraged to apply these concepts to meet objectives in their  
current lesson plans.  

Historically each of the program elements have been initiated by network science 
researchers approaching school district administrators and teachers with ideas for 
research programs, professional development, workshops, and events all to bring 
network science concepts, tools and resources into the high school as an apparatus for 
learning. While the districts appreciated the successes realized by the participating 
students and teachers, the districts had not developed a deep enough understanding of 
network science to grasp the full potential of using network science as a curriculum 
tool. In Fall 2014 district administrators reached out to mentor teachers requesting 
development of a high school level network science elective course. This request 
represents a fundamental shift at the district level. The districts are now reaching out 
to the network science community seeking more resources to bring to their students.  

 To more widely disseminate the success of this program and to meet the demand 
for expanding the role of network science in education (a demand coming both from 
the high school educational community as well as the community of network scien-
tists), the partners initiated a symposium at NetSci 2012 called Network Science in 
Education (NetSciEd). Since then these symposia have been held annually in the U.S. 
and Europe and have led to a significant rise in interest in educational and learning 
applications of network science and the subsequent formation of the NetSciEd com-
munity. The NetSciEd community undertook the development and articulation of a 
set of Network Literacy Essential Concepts that all citizens should know by the time 
they graduate from high school. These can be found on the NetSciEd website 
(https://sites.google.com/a/nyscience.org/netscied/). Moreover, for the first time, 
Networks and Education will be an official strand at the 2015 International NetSci 
Conference to be held in Zaragoza, Spain, in June 2015 (http://netsci2015.net/).  
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5 Conclusions and Future Work 

As described above, NetSci High has made significant educational impacts on region-
al high school students and teachers, and is also prompting strong social commitments 
from the Network Science community as a whole (Harrington et al 2013, Sanchez and 
Brandle 2014). It aims to address the challenge of transforming the way we educate 
our citizens in order to keep pace with not only the amount of data we collect, but to 
appreciate how network science identifies, clarifies, and solves complex 21st century 
challenges in the environment, medicine, agriculture-urbanization, social justice and 
human wellbeing. This project provides a pathway to integrate science research and 
programming skills for high school students who would not otherwise have these 
opportunities. Additionally, this project encourages high school teacher mentors to 
broaden their STEM understanding and informs their current teaching in terms of 
content and practice. 

Through evaluation and remediation in our current NetSci High project, we have 
identified the following successful strategies for bringing network science into high 
school teaching and learning: 

• Original student and teacher research projects are not only possible, but form an 
essential incentive and commitment for participants to remain engaged in and to 
bring projects to completion. 

• While there is significant interest in broad collaboration among teachers in differ-
ent domains, they prefer to start with small, easily definable curriculum units or 
lessons that can be implemented within a class.  

• It is possible to train a broad spectrum of students and teachers in enough computer 
programming (e.g., Python or R) to use sophisticated network analysis tools within 
programming environments. 

• A supportive community and consistent mentorship are essential to success.  
• Teachers can and have assumed an active leadership role in mentoring students 

who are engaged in network science research, provided the right supports are in 
place.  

• Students and teachers are remarkably innovative in terms of how they develop and 
pursue project-based learning approaches in network science. 

• It became immediately apparent in the first year of the project that participating 
teachers were most effective if they had the same level of training as their students: 
they want to be active mentors, rather than co-learners side by side. As the project 
progressed and interactions with teachers became deeper and more meaningful and 
teachers took on new roles and pursued their own interests and took ownership of 
network science approaches, a path to scalability began to emerge.   
NetSci High is still developing, and there are a number of aspects on which further 

development and expansions are needed. To accomplish this, we are looking for sup-
port and collaboration from the entire Network Science community. Over the next 
few years, we plan to achieve the following in order to make this successful program 
more organized, more scalable and more accessible to everyone on the globe: 
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• Refine our learning materials, publish a Network Science Workshop Training Ma-
nual, and develop network science mobile teaching kits. Such field resources will 
be a blueprint for future training of participants as well as disseminating and repli-
cating our work. 

• Expand on successful live network science professional development workshops 
for high school teachers and develop interdisciplinary network science curriculum.  

• Promote new projects on data mining of educational data and using network 
science to understand the performance of educational institutions. There is an in-
creasing amount of work looking at the organizational structure of education 
through a network science lens, particularly at how we might mine student data and 
use network analysis to determine the impact of churn on organizational structure 
and efficaciousness in schools and districts.  

• Finalize the Network Literacy Essential Concepts that all citizens should know. 
This will be used to create a framework for developing curriculum that can better 
support data-driven STEM than is currently possible, and will support Next Gener-
ation Science Standards (NGSS Lead States 2013) and Common Core standards 
(National Governors Association Center for Best Practices 2010). 

• Expand the professional development, student research and curriculum develop-
ment projects that benefit from a global community of scientists and policymakers 
who see network science as an accessible entry point for vital computational, data 
literacy and algorithmic skills. 

• Maintain and increase dialog with the private sector to expand support for initia-
tives in network science in teaching and learning and engage STEM professionals 
in awareness and participation in this work.  

• Author an accessible network science e-book for general readership. 
• Establish a network science e-badging system for the entire network science teach-

ing, learning and research community. 
• Host a network and data science festival for the public. 
• Develop international partnerships with network science researchers and educators 

outside the US and promote similar educational activities at international scales. 
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Abstract. We have never lived in a safer world. After peaking around 1985, both
violent crime (homicide, robbery, assaut and rape) and property crimes (burglary,
larceny and vehicle theft) are on a downward trend; from 1993 and 2012 crime
activity has dropped by more than 40% (total number of crimes). Despite the
good news, crime is still prevalent in most large cities. FBI reports that in 2013
there were about 3,098 crimes per 100,000 habitants in the USA, with 2,730
of them being property crimes and 367 violent. What most people can agree is
that one preventable crime is one crime that should not have taken place. The
unveiling of the structure of criminal activity can lead to a better understanding
of crime as a whole which in turn can help us provide better protection to our
citizens. We demonstrate in this paper that crime follows a very intersting spatial
community pattern regardless of the type of crime, criminal activity aggregates
in communities of well defined sizes. We believe the results of this paper is a first
step towards a theory of crime modeling using network science.

Keywords: Crime Networks, Crime Structure, Crime Analysis, Community
Structure.

1 Introduction

The understanding of crime activity has for a long time puzzled government officials,
law-enforcement officers, and researchers. A well-performed study on crime structure
may have direct benefits to people’s lives as it can lead to safer cities. According to
the FBI Annual Crime Report [28], the USA is today much safer than it used to be in
the 80s and 90s with about half of the number of crimes per 100,000 inhabitants, but
still higher than the levels we enjoyed in the 60s and also higher than many countries
in Europe. Indeed crime rate is dropping but the understanding of crime as a complex
system can lead to further gains in public safety.

Law enforcement tends to be reactive and many times a step behind criminal activity.
What if we could change this “game”? What if we could give the police an edge by
making them understand criminal structure and perhaps prevent some activity before
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it takes place? This is becoming reality in this big-data world we live in. The change
in crime rate from the 60s to today can probably be explained by a technology lag. In
the 60s, we had a smaller population and hence crime was easier to understand and
prevent with “manual” approaches. As the population grew, our ability to effectively
keep track of what was going on diminished and consequently crime rate ramped up.
More recently, we have seen technology catching up via the use of data analysis and
mining. What if we could do more? Like many complex systems we believe there is a
structure that governs the interactions of criminals. This paper is an initial step towards
the understanding of this structure.

Most of the works in crime structure start from the premise that crime is a conse-
quence of factors such as wealth (or lack of) [14], education levels [17], age [19], and
many others. However, more recently we have seen scientist starting to look at structure
in particular social networks, as a way to explain the existence of crime in certain neigh-
borhoods [7,8] but to our knowledge scientist are yet to look at the structure of spatial
distributions of crime. Few have attempted to look at spatial data and analysis in the
context of crime control [1] with most of the studies being related to understanding the
emergence of hotspots of crime [11,25]. In this paper we show that the use of hotspots
to understand crime spatial structure misses important features that can be better rep-
resented and analyzed using networks. In fact, we show that crime networks built from
spatial data about crime location appears to reveal social structures when the spatial
resolution is high. Our results show that hidden in the distribution of crime (hotspots)
is a social structure that may be related to the social network of criminals or the social
network of people affected by crimes. In this paper we show how we can uncover this
structure.

2 Related Work

Crime is a complex issue and many factors affects its occurrence including: sociologi-
cal, economic, psychological, biological, philosophical and even religious factors [12].

With regards to crime structure two theories in criminology can be highlighted: the
routine activity and social disorganization theories. The former argues that criminal ac-
tivity occurs at the convergence of three things: a potential offender, a lack of guardian-
ship or supervision, and a target [5]. The latter contends that criminal activity is the
result of the social and physical environments of the neighborhood at hand [32]. Both
theories seek to model crime phenomena using spatial and geographical context.

The aforementioned opportunistic nature of the routine activity theory supports that
criminal activity typically occurs in the sphere of familiarity of the criminal. Despite
this sphere of familiarity being peculiar to the individual, areas of high traffic, such as
downtown areas, lie within the sphere of familiarity of many individuals; it is feasible
that these criminals with the same sphere of familiarity are aware of each other. This
aspect is also related to the fact that criminals typically commit crimes within a short
distance from their home [15].

Metropolitan areas are typically organized by regions of different land uses such
as: residential, commercial, and industrial use. The presence of types of crimes differs
between these land uses; neighborhoods with residential housing and no commercial
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businesses are perceived as safe and non-residential land uses are correlated with an in-
crease in criminal activity [10]. Non-residential areas are typically found to have higher
traffic in comparison to residential areas, consequently they witness to more crime [31].
Non-residential land use, such as shopping centers or public parks, coincides with an
increase in foreign or non-residential presence. This presence of such strangers nega-
tively impacts a neighborhood’s social structure [24].

Street network (from layout) are not only correlated with an increase in crime inci-
dence but additionally have a relationship with the typical journey-to-crime length of
an offender [15]. Roadways and public transportation link together different areas of a
criminal’s sphere of familiarity and facilitate travel outside of a criminal’s immediate
neighborhood. The type of crime can affect the journey-to-crime length. For example,
violent crime trips are shorter in length than property crime trips [15].

Despite the understanding we have of crime activity, its causes and consequences,
recent studies continue to look at spatial crime analysis using approaches related to the
formation of hotspots [20]. Additionally, there has been many efforts that tries to ana-
lyze crime activity in light of the existence of social networks. Many studies have looked
into characteristics of ties such as their strength [23], the frequency of ties [6], and the
race and gender of those with more ties [30,22]. Yet, these studies rarely consider the
structure of the overall network and they assume the existence of some information
regarding the social structure of criminals. However, this is not always possible and,
in fact, such structure may not be available. Law enforcement datasets rarely include
information about criminals acquaintances and when they do, the reliability of such
information is doubtful.

The approach we propose then is to focus on the journey-to-crime [15] and build
networks out of the distance between crimes. Rather than social networks we have
crime networks where nodes represents actual crimes and links between crimes related
to a distance (or sphere) between the crimes. Our results are important because we
demonstrate that a spatial networks of crime appear to contain information about the
social structure of the people involved in the criminal activity.

3 Constructing Network of Crimes

The network creation mechanism is based on the geographical proximity between
crimes. Two events are connected if they occurred within a certain distance. This net-
work creation model is as simple as possible. In fact, the mechanism is the same as used
to generate random geometric graphs [9].

Notice that the connection definition we are using here is basically the same as in
the context of geometric graphs and does no presume any actual relationship between
the events other than their proximity. Therefore, the network structures are going to be
fully determined by the spatial distribution of the crimes. Each point in our dataset can
be seen as the location of a person—in this particular case, an offender— at a given
moment, in a similar manner as checkins in geolocated social networks [21] or mobile
phone activities in Call Detail Records datasets [29,26]. The main difference however
is that in our data there is no individual-level identification.

Although such data could evidently yield a higher-resolution analysis, we decided
to focus on the coarse-grained spatial distribution of crimes. The rationale for this is
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twofold: (1) in this paper we aim to uncover network structures (possibly) embedded
within the spatial distribution of crimes; (2) for practical reasons, we based our analysis
exclusively on publicly available data and hence we do not use any individual-level
information.

That said, the theoretical basis supporting our approach are grounded mainly on two
principles, both very well documented in the criminology literature:

1. For most crime trips, the distance from the offender’s home to the crime location is
relatively short and the probability of an offender committing a crime decays with
the distance from their home [13,15];

2. Offenders tend to live near to their associates and long-distance ties are rare [18].

Not surprisingly, these characteristics conform to two behaviors largely observed in
general human dynamics: (1) most of our trips are for short distances and very long
jumps are less likely to occur [27,29] and (2) the probability of finding a social tie be-
tween two individuals decays as a power function of the distance [16,2,29]. Therefore,
it is plausible to assume that patterns on spatial distribution of crimes should emerge
from the convolution of both the individual and social level dynamics.

4 Experimental Results

4.1 Spatial Distribution of Crimes

Hot spots of crimes do not occur uniformly in a region. This aspect of the criminal ac-
tivity can be visualized in the heatmaps depicted in Figures 1(a-c) from the Los Angeles
area. This type of map, which shows the places where most crimes were committed, is
widely used as a tool to understand the emergence of hot spots as well as to elaborate
law enforcement strategies. These heatmaps are geolocalized histograms that allow a
prompt analysis of the crime frequency in a specific region. For example, as stated, the
aforementioned maps show that there are certain sub-regions with high criminal activi-
ties placed across the Los Angeles area. These maps in Figure 1(a), 1(b) and 1(c) depict
the placement of the hot spots regarding assaults, burglaries and thefts, respectively.
Their analyses suggest that these types of crime have particular arrangements in the
region and that they may occur due to different kinds of crime activity dynamics.

However, such maps do not allow analyses beyond the criminal activity frequency of
a region. An example of this insufficient data description is that although these visual-
izations make possible to see many different hot spots together, there is no information
about their relationships nor the overall structure that may enable the emergence of the
hot spots. Actually, this structural analysis is carried out more by the viewer of the map
than brought by the heatmap as a tool. Nevertheless, this structural information can be
useful to understand underlying mechanisms in criminal phenomena. For instance, al-
though the examination of Figure 1(a), 1(b) and 1(c) suggests that these particular kind
of criminal activities have different dynamics across the region, this comparison may
neglect similar underlying mechanisms related to the emergence of hot spots.

In order to capture the similarity of different types of crimes to subsequently anal-
yses, Figure 1(d) is elaborated in such way that only the hottest spots of each kind of
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Table 1. The criminal hot-spot mixing in the Los Angeles metropolitan area presents the coex-
istence of different criminal activities regions. This mixing reveals that the hot spots of thefts
usually happen in companion to burglaries and assaults. On the other hand, the other two seem
to be less linked to other crimes, resulting in more independent hot spots. In the table below the
letters indicate the types of crime, hence A & B represents the region of the overlap of assauts
and burglaries.

Assault (A) Burglary (B) Theft (T) A & B A & T B & T A & B & T
(green) (red) (blue) (yellow) (cyan) (magenta) (white)

20% 24% 3% 26% 3% 5% 19%

(a) (b) (c)

(d)

Fig. 1. The places where crimes occur are not uniformly distributed in a region. The heatmaps
of these events, in the Los Angeles metropolitan area, for different types of crime, assault (a),
burglary (b) and theft (c), help the realization that hot spots of crime exist, but the approach is
not adequate to carry out structural analysis of the crimes. These heatmaps together can help us
visualize the different placements of the hot spots when different crimes are taken into account.
The coincidence map (d), an overlap of the hottest spots from these heatmap, shows that thefts
tend to happen in places where other crimes are also intensively happening, while burglaries and
assault may occur more independently.
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crime are considered. The hottest spots are the ones that the crime frequency is two
standard deviations higher than the average frequency of this type of criminal activity,
thus the map does not present any intensity interval. The intersections between these
spots are shown in the map by different colors, as described in the map legend. The
rationale of this visualization is to understand the hot-spot mixing in the region, i.e. the
places where different crimes are concentrated. In the Los Angeles metropolitan area
the mixing of the criminal activities coexistence are related to the colors in the map and
their percentage is shown in Table 1.

The hot-spot mixing indicates that assaults, burglaries and thefts tend to coexist as
hot spots in Los Angeles area. This finding may hint to the existence of some similarities
in possible underlying mechanisms that lead to the emergence of these hot spots. Con-
versely, assault and burglary do present some particularities that allow them to occur
more independently across the area considered. In other words, these results suggest
that these different types of crime seem to have a core behavior as well as particular
behaviors. Regardless of this analysis, heatmaps look at crime frequency and are not
enough to assess such underlying mechanisms.

4.2 Microinteractions and the Spatial Distribution of Crimes

Complex networks of a particular class often share several common topological fea-
tures. For example, a social network is expected to have a high coefficient of clustering
while having a short average path length. On the other hand, technological networks
such as the Internet tend to have a hierarchical topology.

The existence of such structural and topological patterns plays a central role in order
to have a better understanding of the various phenomena and real dynamics driven by
one or more network structures. This is especially important when the complex network
underlying a particular phenomenon can not be observed directly.

In this section, we seek to extract and identify possible network structures beyond
the spatial geometric network itself that we built. When we build a network by simply
connecting points geographically close to a distance d, this network will have features
of a spatial or geometric network.

4.2.1 Clustering Coefficient
Many complex networks are characterized by a high clustering coefficient. That is spe-
cially true for geographically constrained networks where the characteristic link length
is bounded up to a distance d. In a spatial network, the global clustering coefficient
is expected to increase as a function of the distance d from fully disconnected nodes
(when d = 0) to a single clique of size N (when d → ∞) where N is the population
size. However, neither of these two extremes are of much help in understanding a com-
plex phenomenon such as the dynamics behind criminal activities. Hence, there must
be a characteristic radius d (or a function f(d)) where the underlying networks unvail
themselves.

In such spatial geometric networks, the clustering coefficient is a function of the
connection threshold d and should increase monotonically with it. To test this hypoth-
esis we analyzed the changes in the structure of the network for small increments in d
starting from d = 0.02 miles to d = 3.2.
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Fig. 2. The plots depict the evolution of the global clustering coefficients by the different link-
ing distance threshold d. The top row shows the clustering coefficient for each type of crime,
assault, burglary and theft. The bottom row shows the clustering coefficient for each of the three
metropolitan areas. The correlation between d and the clustering coefficient suggest a marked
structural change in the network with a critical point 0.4 ≤ d ≤ 0.8 miles. Even though the
actual shape of the curves varies over different networks, in all of them, the minimum clustering
degree was reached in the region close to d ≈ 0.6.

What was unexpected however is a gradual decrease observed in the clustering co-
efficient for a particular range of d (as in Figure 2), deviating from the characteristics
of a spatial network [4,33] whose clustering coefficient should increase monotonically
with d once the spatial boundaries are growing and the longer links are becoming more
frequent.

It is also noteworthy the fact that the clustering coefficient reached its minimum for
0.4 ≤ d ≤ 0.8, for different cities and crime types suggesting that the networks are
undergoing a phase transition for some critical value of d ≈ 0.6. This behavior could
be related to the case in which for very small values of d, the spatial constraints does
not play a role anymore and therefore the remaining network structure could result from
some other dynamic factor. To test such hypothesis, we investigate what other structural
characteristics are also changing with d by comparing their properties for d < 0.4 and
d > 0.4.

4.2.2 Degree Distribution
One next natural step would be an analysis to the degree distribution of the networks,
assessing how good they fit to a heavy-tailed distribution. The rationale here is that
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Fig. 3. The cumulative degree distribution of the networks exhibit a strong pattern accross differ-
ent cities and crime types. In all the networks we investigated, the degree distribution exhibited
a heavy tail but only up to a critical value of d = δ. Beyond this point the heavy tail vanishes.
On the other hand, for d < δ almost all the networks had degree distribution in agreement with a
power law with exponent α ≈ 2.1. Straight lines are shown as a guide.
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Fig. 4. Kolmogorov-Smirnov distance from the empirical degree distribution to a theoretical
power law for different metropolitan areas and crime types. The KS statistic supports our claim
that the degree distributions of the crimes networks follow a power-law distribution up to a certain
value d = δ.

a heavy tailed degree distribution is a key signature of some interesting complex net-
works such as social networks [3]. On the other hand, this property does not hold for
other classes of networks, including spatial networks [4] which could indicate that the
networks are not just undergoing structural transformations but also their signatures are
transitioning from of one class of network to another.

From Figure 3, the linking threshold capable of producing networks with heavy-
tailed degree distribution happens when d = 0.1. Another interesting result is that the
power-law exponents of most of the networks have an exponent α ≈ 2.1 in agreement
to the characteristic exponent of scale-free networks.

Although the cumulative degree distributions were consistent with the findings about
the clustering coefficients in Section 4.2.1, this analysis is not sufficient to assess the
correlation between the value of d and the goodness of fit of a power law to the degree
distribution. For this task we used the Kolmogorov-Smirnov test to check for which
ranges of d the power-law distribution presents a good fit to the degree distribution.
Figure 4 depicts the KS distance from nodes degree cumulative distribution function
to a theoretical power-law distribution. However, it is important to emphasize that our
focus is not to determine whether the degree distribution is indeed a power law but rather
to assess the intervals for the parameter d for which the degree distribution agrees to or
deviates from a heavy tailed.

The KS test confirmed our hypothesis that the degree distribution for values of d
beyond a certain point have no interesting feature. Based on the test results with KS,
for d > 0.8 we witness an abrupt increase in the distance from the degree distribution
to the power law, in agreement with the results previously found.

It is clear that these tests are not sufficient to prove that the networks emerging for
small d are actually the social networks of criminals. In fact, what we are arguing in-
stead is that the dynamics that produced the spatial distribution of crimes result from a
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combination of influences of two complex systems: the social dynamics and spatial con-
straints. However, when analyzing the network of crimes in a high resolution where the
characteristic edge length is very short, our results suggest that the observed network no
longer behaves as a spatial network and starts to display characteristics observed also
in social networks.

5 Conclusion and Future Work

In this paper we looked at the structure of crime in urban environments and demon-
strated that one may be able to use spatial networks [4] to extract social information.
This seems to be quite clear to case of crime. Our results show that in higher spatial
resolutions (less than a mile), network of crimes appear to contain information of the
social structure of the individuals involved in the criminal activity. One questions that
arrises here is do other spatial networks could also contain social information. We are
currently working on other datasets.

In addition to the contribution of showing that social information may be extracted
from spatial networks, Our work may be used in the decision-making process of law
enforcement officials. We have mentioned earlier that in many instances, the law en-
forcement agencies may not have in their datasets social information about the crimi-
nals and that sometimes the information is incomplete. We believe further work on our
approach may lead to the ability of reconstructing these structures. As is, the work can
already help decision making because theories from network science can tell us which
nodes to focus if we want to disrupt the network; the social structure of crime can be
used as a way to understand where the police should focus.

There are several points that need to be studied further. One of the main points is the
possibility of defining a scaling law for different types of crimes. Our results appear to
show that the social structure emerges at slight different scales depending on the type
of crime. However one needs to understand the other variables that may play a role in
this such as city demographics and city layout, to name a few.

The test on other cities may also be useful. We tested with 3 cities in the USA. We
have not used any variable that is particular to the USA and we have no reason to believe
the approach would not be applicable to other places. However we intend to apply the
same approach to cities in South America and Europe.
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