Chapter 4
Counteracting Inferences from Sensitive Value
Distributions

At a first sight, excluding sensitive data from the release (i.e., releasing only a
collection of non sensitive data), might seem a safe approach for protecting data
confidentiality. Unfortunately, the possible correlations and dependencies existing
among data can introduce inference channels in the data release process, causing
sensitive information to be leaked even if such information is not explicitly released.
In this chapter, we consider a scenario where data are incrementally released and we
address the privacy problem arising when sensitive and non released information
depend on (and can therefore be inferred from) non sensitive released data. We
propose a model capturing this inference problem, where sensitive information is
characterized by peculiar value distributions of non sensitive released data. We
then describe how to counteract possible inferences that an observer can draw
by applying different statistical metrics on released data. Finally, we perform an
experimental evaluation of our solution, showing its efficacy.

4.1 Introduction

The problem of releasing data ensuring privacy to sensitive information is compli-
cated by the fact that the release of a data collection might expose information that is
not explicitly included in the release. As a matter of fact, assuming absence of cor-
relations or dependencies among data (as assumed by traditional privacy-preserving
techniques) does not fit many real-world scenarios, where data dependencies can be
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quite common. Data dependencies can cause inference channels to arise, allowing
a recipient to either precisely determine, or reduce the uncertainty about, the values
of sensitive, not released, information that is somehow dependent on the released
one. This problem has been under the attention of researchers for decades and has
been analyzed from different perspectives, resulting in a large body of research that
includes: statistical databases and statistical data publications (e.g., [1]); multilevel
database systems with the problem of establishing proper classification of data,
capturing data relationships and corresponding inference channels (e.g., [35, 66]);
ensuring privacy of respondents’ identities or of their sensitive information when
publishing macro or micro data (e.g., [24, 25]); protection of sensitive data
associations due to data mining (e.g., [2]). Several approaches have been proposed
addressing all these aspects, and offering solutions to block or limit the exposure
of sensitive or private information. However, new scenarios of data release, coupled
with the richness of published data and the large number of available data sources,
raise novel problems that still need to be addressed.

In this chapter, we address a specific problem related to inferences arising from
the dependency of sensitive (not released) information referred to some entities on
other properties (released) regarding such entities. In particular, we are concerned
with the possible inferences that can be drawn by observing the distribution of
values of non sensitive information associated with these entities. As an illustrating
example, the age distribution of the soldiers in a military location may permit to
infer the nature of the location itself, such as a headquarter (hosting old officials) or
a training campus (hosting young privates), which might be considered sensitive.
Such a problem of sensitive information derivation becomes more serious as
the amount of released data increases, since external observations will tend to
be more representative of the real situations and the confidence in the external
observations will increase. Although this problem resembles in some aspects the
classical problem of controlling horizontal aggregation of data, it differs from it
in several assumptions. In particular, we assume a scenario where an external
observer could gather the data released to legitimate users and inference is due to
peculiar distributions of data values. Also, we are concerned not only with protecting
sensitive information associated with specific entities, but also with avoiding
possible false positives, where sensitive values may be improperly associated (by
the observers) with specific entities.

The contributions of this chapter are multi-fold. First, as mentioned above, we
identify and characterize a novel inference problem. We then introduce several
metrics to assess the inference exposure due to data release. Our metrics are based
on the concepts of mutual information, which has been widely used in several
security areas ranging from the definition of distinguishers for differential side-
channel analysis (e.g., [8, 17, 57, 105]) to data-hiding and watermarking security
(e.g., [20]), and of distance between the expected and the observed distribution of
values of non sensitive information. According to these metrics, we characterize and
define a safe release with respect to the considered inference channel. We describe
the controls to be enforced in a scenario where tuples are released one at a time, upon
request, and we also present an experimental evaluation proving the effectiveness of
our solution.
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4.1.1 Chapter Outline

The remainder of this chapter is organized as follows. Section 4.2 introduces our
reference scenario of inference in data release, raised from a real case study that
needed consideration. Section 4.3 formally defines the problem of releasing a
dataset without leaking (non released) sensitive information due to the dependency
existing between the frequency distribution of some properties of the released
dataset and the not released information. Section 4.4 describes two possible
strategies that use the mutual information and distance between distributions for
counteracting the considered inference problem. Section 4.5 illustrates how the two
strategies proposed can be concretely implemented by adopting different metrics
that determine when a data release is safe with respect to inference channels that
may leak sensitive information. Section 4.6 describes how to control the on-line
release of the tuples in a dataset. Section 4.7 discusses the experimental results
proving the effectiveness of our solution. Finally, Sect. 4.8 gives our conclusions.

4.2 Reference Scenario and Motivation

We consider a scenario (see Fig. 4.1) where a data holder maintains a collection of
records stored in a trusted environment. Each record contains different attributes
and pertains to a unique data respondent, who is the only authorized party that
can require its release. While the records individually taken are not sensitive,
their aggregation is considered sensitive since it might enable inferring sensitive
information not appearing in the records and not intended for release. We assume

trusted environment external world

request I'I

DATA HOLDER —
777777777 -~ 1 RESPONDENT /

I : ‘
| | '
request
request
release control u‘ ﬂﬂ
H———

module

i; RESPONDENT i

1,

! I
I

request '
ah

In RESPONDENT /2

A o public statistics

Fig. 4.1 Reference scenario



108 4 Counteracting Inferences from Sensitive Value Distributions

all requests for records to be genuine and communication to data respondents
of responses to their record release requests to be protected. As a consequence,
malicious observers are aware neither of the requests submitted by respondents nor
of the data holder answers. We also assume that the number of records stored at the
data holder site is kept secret. However, once records are released, the data holder
has no control on them and therefore external observers can potentially gather all
the records released. This may happen even with cooperation of respondents, in the
case of external servers where released data may be stored.

The data holder must ensure that the collection of records released to the external
world be safe with respect to potential inference of sensitive (not released) infor-
mation that could be possible by aggregating the released records. We consider a
specific case of horizontal aggregation and inference channel due to the distribution
of values of certain attributes with respect to other attributes. In particular, inference
is caused by a distribution of values that deviates from expected distributions, which
are considered as typical and are known to the observers. In other worlds, a record
is released only if, when combined with records already released, does not cause a
deviation of the distribution of the records released from the expected distribution.

In the reminder of this chapter, we refer our examples to a real case scenario
characterized as follows. The data holder is a military organization that maintains
records on its personnel. Each record refers to a soldier and reports attributes Name,
Age, and Location where the soldier is on duty. Some of the military locations
are headquarters of the army. The information that a location is a headquarter is
considered sensitive and neither appears in the soldiers’ records nor it is released
in other forms. Soldiers’ records can be released upon request of the soldiers. In
addition, the age distribution of soldiers is a distribution that can be considered
common and widely known to the external world and, in general, typically expected
at each location. However, locations where headquarters are based show a different
age distribution, characterized by an unusual peak of soldiers of middle age or older.
Such a distribution clearly differs from the expected age distribution, where the
majority of soldiers are in their twenties or thirties. The problem is therefore that,
while single records are considered non sensitive, an observer aggregating all the
released records could retrieve the age distribution of the soldiers in the different
locations and determine possible deviations from the expected age distribution for
certain locations, thus inferring that a given location hosts a headquarter. As an
example, consider an insurance company offering special rates to military personnel.
If all the soldiers subscribe to a policy with this company to take advantage of
the discount, the insurance company (as well as any user accessing its data) has
knowledge of the complete collection of released records and can therefore possibly
discover headquarter locations. Our problem consists in ensuring that the release of
records to the external world be safe with respect to such inferences. The solution we
describe in the following provides a response to this problem by adopting different
metrics to assess the inference exposure of a set of records and, based on that, to
decide whether a record (a set thereof) can be released.
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4.3 Data Model and Problem Definition

We provide the notation and formalization of our problem. Our approach is
applicable to a generic data model with which the data stored at the data holder
site could be organized. For concreteness, we assume data to be maintained as a
relational database. Consistently with other proposals (e.g., [94]), we consider the
data collection to be a single relation R characterized by a given set A of attributes;
each record in the data collection is a tuple ¢ in the relation. Among the attributes
contained in the relation, we distinguish a set Y C A of attributes whose values
represent entities, called targets.

Example 4.1. In our running example, relation R is defined on the set A={Name,
Age, Location} of attributes, with Y={Location}. We assume that the
domain of attribute Location includes values Ly, L,, L3, L4, L5, representing
five different military locations.

While targets, that is, the entities identified by Y (locations in our example), are
non sensitive, they are characterized by sensitive properties, denoted s(Y'), which
are not released. In other words, for each y € Y the associated sensitive information
s(y) does not appear in any released record. However, inference on it can be caused
by the distribution of the values of a subset of some other attributes X C A for the
specific y. We denote by P(X) the set of relative frequencies p(x) of the different
values x in the domain of X which appear in relation R. Also, we denote by P(X|y)
the relative frequency of each value in the domain of X appearing in relation R and
restricted to the tuples for which Y is equal to y. We call this latter the y-conditioned
distribution of X in R.

Example 4.2. In our running example, s(Y) is the type of location (e.g.,
headquarter). The sensitive information s(y) of whether a location y is a
headquarter (L,, in our example) can be inferred from the distribution of the
age of soldiers given the location. Figure 4.2a shows how tuples stored in relation
R are distributed with respect to the values of attributes Age and Location.
For instance, of the 10000 tuples, 2029 refer to location L, 72 refer to soldiers
with age lower than 18. Figure 4.2b reports the corresponding relative frequencies
of age distributions. In particular, each column L;,i = 1,...,5, reports the L;-
conditioned distribution P(Age|L;) (for convenience expressed in percentage). For
instance, 3.55 % of the tuples of location L refer to soldiers with age lower than
18. The last column of the table reports the distribution of the age range regardless
of the specific location and then corresponds to P(Age) (expressed in percentage).
For instance, it states that 2.56 % of the tuples in the relation refer to soldiers with
age lower that 18. Figure 4.2¢ reports the distribution of soldiers in the different
locations regardless of their age (again expressed in percentage). For instance,
20.29 % of the 10000 soldiers are based at L.
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Number of tuples
a  Age [ L1 L2 L3 L4 L5] Total
<18 72 26 38 47 73 256
18-19 151 53 82 140 223 649
20-24 539 147 449 505 736 | 2376
25-29 452 114 370 418 613 | 1967
30-34 335 213 234 318 501 1601
35-39 321 238 277 332 538 | 1706
40-44 128 219 122 162 220 851
45-49 20 205 50 49 76 400
50-54 9 71 28 34 31 173
>55 2 13 2 2 2 21
Total ([ 2029 1299 1652 2007 3013 | 10000

b P(Age|L) c
Age || L1 L2 L3 L4 L5| P(Age) | | L, | P(L) |
<18 3.55 2.00 2.31 2.34 2.42 2.56 L] 20.29
18-19 7.44 4.08 4.96 6.98 7.40 6.49 L, | 12.99
20-24 || 26.56 11.32 27.18 25.16 24.44 23.76 Ly | 16.52
25-29 || 22.28 8.78 2240 20.83 20.35 19.67 Ly | 20.07
30-34 16.51 1640 14.16 1584 16.63 16.01 Ls | 30.13
35-39 15.82 18.32 16.77 16.54 17.86 17.06
40-44 6.31 16.86 7.38 8.07 7.30 8.51
45-49 0.99 15.78 3.03 2.44 2.52 4.00
50-54 0.44 5.46 1.69 1.69 1.03 1.73
>55 0.10 1.00 0.12 0.11 0.05 0.21

Fig. 4.2 Number of tuples in relation R by Age and Location (a), L;-conditioned distributions
P(age| L;),i = 1,...,5, over relation R (b), and location frequencies (c)

The existence of a correlation between the distribution of values of attributes X
for a given target y and the sensitive information s(y) is captured by the definition
of dependency as follows.

Definition 4.1 (Dependency). Let R be a relation over attributes A, let X and
Y be two disjoint subsets of A, and let s(Y) be a sensitive property of Y.
A dependency, denoted X~»Y, represents a relationship existing between the
conditional distribution P (X |y) and the value of the sensitive property s(y), for
anyy €Y.

The existence of a dependency between the y-conditioned distribution of X and
the sensitive property s(y) introduces an inference channel, since the visibility
on P(X|y) potentially enables an observer to infer the sensitive information
s(y) even if not released. For instance, with respect to our running example,
Age~Location.

Definition 4.1 simply states the existence of a dependency but does not address
the issue of possible leakages of sensitive information. In this chapter, we consider
the specific case of leakage caused by peculiar value distributions that differ
from what is considered typical and expected. We then start by characterizing the
expected distribution, formally defined as baseline distribution as follows.
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Definition 4.2 (Baseline Distribution). Let A be a set of attributes, and X be
a subset of A. The baseline distribution of X, denoted B(X), is the expected
distribution of the different values (or range thereof) of X.

The baseline distribution is the distribution publicly released by the data holder
and can correspond to the real distribution of the values of attributes X in relation R
(i.e., B(X) = P(X)) at a given time or can be a “reference” distribution considered
typical. We assume the data holder to release truthful information and, therefore,
that the baseline distribution resembles the distribution of the values of X in R ata
given point in time (note that R may be subject to changes over time, for example,
due to the enrollment of new soldiers and the retirement of old soldiers). This being
said, in the following, for simplicity, we assume the baseline distribution B(X) to
coincide with P(X). When clear from the context, with a slight abuse of notation,
we will use P(X) to denote the baseline distribution.

Example 4.3. The baseline distribution P(Age) corresponds to the values
(expressed in percentage) in the last column of Fig. 4.2b, which is also graphically
reported as a histogram in Fig. 4.3a. Figures 4.3b—f report the histogram
representation of the L;-conditioned distributions for the different locations in
R. As clearly visible from the histograms, while locations L1, L3, L4, and Ls
enjoy a value distribution that resembles the expected baseline, location L, (the
headquarter) shows a considerably different distribution.

Our goal is to avoid the inference of the sensitive information caused by unusual
distributions of values of X, with respect to specific targets y, in Y that the
observer can learn from viewing released tuples (i.e., the y-conditioned distributions
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Fig. 4.3 Histogram representation of the baseline distribution (a) and of the L;-conditioned
distributions P(Age| L;),i = 1,...,5,inFig. 4.2b. (a) P(Age), (b) P(Age|L,), (¢c) P(Age|L,),
(d) P(age|Ls). (e) P(age|Ly). (f) P(nge|Ls)
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computed over released tuples present some peculiarities that distinguish it from
the baseline distribution). To this purpose, in the following sections we illustrate a
solution that the data holder can adopt for verifying whether the release of a tuple
referred to a target y, together with the previously released tuples, may cause the
inference of the sensitive property s(y) and then whether the release of such a tuple
can be permitted or should be denied.

4.4 Characterization of the Inference Problem

In our characterization of the problem, X and Y can be intended as two dependent
random variables, meaning that there is a correlation between the values of X and
Y. Due to this dependency, a potential observer can exploit the distribution of values
of X for a given target y (i.e., the y-conditioned distribution) for inferring sensitive
property s(y). To counteract this type of inference, we obfuscate the dependency
between X and Y in the released dataset, by adopting one of the following two
strategies: (1) make X and Y appear as two statistically independent random
variables; or (2) minimize the distance between the y-conditioned distribution
P(X|y) and the baseline distribution P (X).

Statistical Independence The first strategy ensures that the joint probability
P(X,Y) be “similar” to P(X)P(Y). Since when X and Y are two independent
variables the joint probability P(X,Y) is equal to P(X)P(Y), this strategy aims
at releasing tuples such that the correlation between X and Y is not visible. As a
consequence, the knowledge of the distribution of X does not give any information
about the sensitive property s(y) for each target y in Y. A classical measure of
the dependency between two random variables is the mutual information, denoted
I1(X,Y). It expresses the amount of information that an observer can obtain on Y
by observing X, and viceversa. The mutual information /(X,Y) of two random
variables X and Y is defined as follows.

p(x|y)
p(x)

The lower the mutual information in the released dataset, the more random variables
X and Y resemble statistical independent variables.

I(X,Y) = erx.yey p(»)p(x|y) log,

Example 4.4. Consider the distributions of the Age values for the different loca-
tions and P(Age) in Fig. 4.2b, and the values p(L;),i = 1,...,5, reported in

Fig. 4.2c. We have: I(Age, Location) = p(L;)[p(< 18|L;)log, pI8IL)

p(<18)
<+ p(= 55|L1) log, ZEZIL 4 4 p(Ls)[p(< 18|Ls)log2”‘7+?§;)+ L+

p(z 55|Ls) log, Z2ZIL)] = 0.063285

Distance Between Distributions The second strategy ensures that when tuples
are released, the y-conditioned distribution of all targets y in ¥ be “similar” to
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the baseline distribution. Intuitively, this strategy aims at hiding the peculiarities
of the distribution of variable X with respect to a specific y so that an observer
cannot infer anything about sensitive property s(y). This strategy is then based on
the evaluation of the distance between the baseline distribution P(X) and the y-
conditioned distribution P(X|y). The distance between two distributions can be
computed in different ways. The metrics that will be considered in the following
section adopt either the classical notion of Kullback-Leibler distance between
distributions, denoted A, or the Pearson’s cumulative statistic, denoted F.

The Kullback-Leibler distance nicely fits our scenario since it has a straightfor-
ward interpretation in terms of Information Theory. In fact, it represents a possible
decomposition of the mutual information [54]. Given two distributions P(X) and
P(X|y) their Kullback-Leibler distance is defined as follows.

p(xly)
AX.y) =) oy Pl logy Z

It is easy to see that the mutual information represents the weighted average of
the Kullback-Leibler distance for the different targets, where the weight corresponds
to the frequency of value y.

Example 4.5. Consider the distributions of Age values for the different locations
and the baseline distribution P (Age) in Fig. 4.2b. We have:

Adge. L) = p(< 18|L1)logy Z58E) 4 4 p(= 55|L,) log, LE5I0 =
0.047349.

Similarly, we obtain: A(Age, L,;) = 0.358836, A(Age,L3) = 0.013967,
A(Age, Ly) = 0.007375, and A(Age, Ls) = 0.010879.

The Pearson’s cumulative statistic is a well known measure, traditionally used in
statistics for evaluating how much two probability distributions are similar. Given
two distributions P(X) and P(X|y), their Pearson’s cumulative statistic is defined
as follows.

0: - Ex 2
FX.y) =) (0= E) - )

where O3 is the frequency of value x for X with respect to y (i.e., the number of
tuples in R such that x = ¢[X] and y = ¢[Y]), and E, is the expected frequency
distribution of the same value x for X according to the baseline distribution P (X).

Example 4.6. Consider the distributions of the Age values for the different loca-
tions and the baseline distribution P (Age) in Fig. 4.2b. We have:

2 2
<0£118 - E<18) (Oéfss - EzSS)
Wi I O v

F(Age, L) =
(age. L) E_i3 Esss

= 104.532750
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Similarly, we obtain: F(Age,L,) = 878.201780, F(Age, L;) = 30.837391,
F(age, Ly) = 17.340740, and F(Age, Ls) = 39.875054.

The lower the distance between P(X|y) and P(X) in the released dataset, the
more the correlation between variables X and Y has been obfuscated. To determine
when the distance between the y-conditioned distribution P (X|y) and the baseline
distribution P(X) can be considered significant (and then exploited to infer a
possible dependency between X and Y), we can adopt either an absolute or a
relative approach. The absolute approach compares the distance between P(X|y)
and P(X) for each value y of Y with a fixed threshold. The relative approach
compares instead the distance between P (X |y) and P (X) for a given value y, with
the distances obtained for the other values of Y.

Both the strategy based on statistical independence and the strategy based on
minimizing the distance between distributions described above for obfuscating the
correlation between X and Y can be concretely applied through specific metrics.
Before describing such metrics in the following section, it is important to note that
an external observer can only see and learn the distribution of values computed
on tuples that have been released. In the remainder of this chapter, we will then
use R,.; to denote the set of tuples released to the external world at a given point
in time, and P,.; to denote the value distributions observable on R,.; (in contrast
to the P observable on R). The knowledge of an external observer includes the
different observations P,.;(X|y) she can learn by collecting all the released tuples
(i.e., Rye1), and the baseline distribution P (X) publicly available.

4.5 Statistical Tests for Assessing Inference Exposure

In this section, we describe four statistical tests that can be adopted for verifying
whether the release of a set of tuples is safe, that is, a potential observer can
neither identify the entities associated with a sensitive value (e.g., an observer
cannot identify that L, is a headquarter), nor improperly associate sensitive values
with released entities in the dataset (i.e., false positives). Figure 4.4 summarizes
such tests, classifying them depending on the strategy they follow to obfuscate the
dependency between statistical variables X and Y, as illustrated in Sect. 4.4.

The statistical tests described in this section are based on the definition of a
metric to measure how much the release of a subset R,.; of tuples of R is exposed

|| Test | Safe release control |
Statistical Independence ||MIS (Section 4.5.1) |1,(X,Y) < I,

Absolut KLD (Section 4.5.2) [Vy € Y, A1 (X,y) < Are(¥)
Distance | 0 ¢ CST (Section 4.5.3) [Vy €Y, F,;(X,y) < Fre
Relative DQT (Section 4.5.4) [Q,,(X)< 0O,

Fig. 4.4 Statistical tests and safe release control



4.5 Statistical Tests for Assessing Inference Exposure 115

to inferences (inference exposure), and on the computation of a threshold that this
measure should not exceed to guarantee that the data release is safe. In the following,
we define different properties that the released dataset should satisfy to guarantee
that a potential observer cannot infer the existence of a dependency between the
random variables X and Y.

4.5.1 Significance of the Mutual Information

This statistical test aims at ensuring that mutual information I,.;(X, Y) character-
izing the released dataset R,.; is statistically not significant. The rationale is that
the mutual information between X and Y, as illustrated in Sect. 4.4, measures the
average amount of knowledge about Y that an observer acquires looking at X (and
vice-versa). In other words, the mutual information /,.;(X,Y) between X and Y
quantifies the (linear or non linear) dependency between the considered statistical
variables. When [,.;(X,Y) is close to zero an observer does not have enough
confidence on the existence of a dependency between X and Y in the released
dataset R,.;. Hence, the observer cannot infer anything about the sensitive property
s(y) associated with a target y that belongs to the released dataset.

From a practical point of view, to verify when the release of a given subset R,;
of R can be considered safe, it is sufficient to check whether the mutual information
I..;(X,Y) of R, is below a predefined threshold /,. close enough to zero. For
instance, the release of a set R,.; of tuples related to a subset of the soldiers in our
running example does not disclose information on the dependency between Age
and Locationif I,.(Age, Location) < I,.. A safe release is formally defined
as follows.

Definition 4.3 (Safe Release w.r.t. Mutual Information—MIS). Let R be a
relation over attributes 4, X and Y be two subsets of A such that X~>Y, R,.; be a
subset of tuples in R, and I, be the critical value for the mutual information. The
release of R,,; is safe iff I,.;(X,Y) < I,..

The problem becomes now how to compute /.. The solution we propose is based
on the following property [22].

Property 4.1. Let R be a relation over attributes A, X and Y be two subsets of
A such that X~>Y, and R,.; be a subset of tuples in R. Under the independence
hypothesis between X and Y:

2N, 10g(2) 101 (X,Y) ~ x*((Nx,,, — 1)Ny,,,)

where N,.;=|R,.;| is the number of released tuples, Ny,,, is the number of values of

X in R/, and Ny, , is the number of values of ¥ in R,,;.
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Fig. 4.5 Comparison between the chi-square distribution with 45 degrees of freedom and the
distribution of 2N, log(2) I,.;(Age, Locat ion)

Property 4.1 states that under the hypothesis of independence between X and Y,
2Nyerlog(2)1,0(X, Y) is asymptotically chi-square distributed with (Ny,,, —1)Ny,,,
degrees of freedom.!

Example 4.7. Figure 4.5 compares the distribution of the rescaled” mutual infor-
mation /,.;(Age, Location) of our dataset, with the chi-square distribution with
(10 — 1)5 = 45 degrees of freedom, where 10 is the number of different values
for attribute Age and 5 is the number of different values for attribute Location.
The histogram in the figure has been obtained with 10000 Monte Carlo iterations,
considering the baseline distribution P(Age) and the distribution P(Location)
of the sensitive information of our running example. From the figure, it is easy to
see that the approximation of our rescaled mutual information to the chi-square
distribution nicely holds.

Since, by Property 4.1, I,.;(X, Y) is distributed as a chi-square distribution with
(Nx,,, — 1)Ny,,, degrees of freedom, we propose to compute the critical value

'In [22] the mutual information was computed by comparing each y-conditioned distribution
P(X|y) with a sample distribution P(X) estimated on the same dataset. Hence, the number of
degrees of freedom was (Ny,,, — 1)(Ny,,, — 1). In this chapter, the baseline distribution P (X) is
assumed to be known to the observer. Coherently, Property 4.1 is derived under the assumption that
the observer tests the mutual information at hand by comparing it to the case where samples (x,y)
are drawn from the distribution P(X,Y) = P(X)P(Y). Then, the number of degrees of freedom
increases to (Ny,,, — 1) Ny,,,.

2Rescaled by factor 2N,; log(2), with N,.; = 5000.
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I, for the mutual information by selecting a significance level o (i.e., a residual
probability) and imposing P(I,.;(X,Y) > [,.) = « (i.e., the probability that
I01(X,Y) is greater than threshold /,. should be equal to ). As a consequence, /.
can be obtained by constraining [ @ y2[(Ny,,, — )Ny, J(x)dx = 1 —a.
The significance level o represents the confidence in the result of a statistical
analysis. Indeed, the higher the value of «, the more restrictive the condition that
a release must satisfy to be considered safe. In fact, a lower value for o represents a
low probability of error in drawing conclusions starting from the mutual information
measured on the data. The value of the significance level ¢ must be chosen in
such a way to limit the confidence that an observer can have in the test results,
thus preventing the observer from exploiting this test for drawing inferences. For
instance, if an observer can evaluate the statistical test with significance level
o = 5 %, the inference she can draw from the result obtained has a high probability
of being right (i.e., a high mutual information is due to chance only in 5 % of the
cases). The value chosen for o by the data holder should then be higher than the
risk that an observer is willing to take when trying to guess the sensitive property
s(y) of a target y in Y. If the cost of the observer for her attack is low (e.g., the
observer is interested in detecting which location is a headquarter for curiosity), she
will be probably willing to take a high risk of making a wrong guess and she will
therefore choose a high significance level for her analysis. In this case, o should be
high to guarantee a better protection of the sensitive property (e.g., 15-20 %). On
the other hand, if the cost of an observer for her attack is high (e.g., the observer
wants to destroy headquarters), she will be probably willing to take a low risk of
error, and o could be lower, thus permitting the release of a larger subset of tuples
(e.g., 5 % represents the typical value adopted in statistical hypothesis testing). Since
it is unlikely for the data holder to know the significance level considered by a
possible observer in the analysis, the data holder should estimate it and choose a
value for « trying to balance the need for data protection on one side and the need
for data release on the other side. In fact, the released dataset is protected against
those analyses that assume a risk of error lower than «.

Once the data holder has fixed the significance level and computed the critical
value I, for the mutual information, she can decide whether to release a tuple when
its respondent requires it. Let R,.; be a safe set of released tuples and ¢ be a tuple in
R that needs to be released. To decide whether to release ¢, it is necessary to check
if the mutual information /,.; (X, Y) associated with R,.;U{¢} is lower than critical
value I,.. If this is the case, tuple ¢ can be safely released; otherwise tuple ¢ cannot
be released since it may cause leakage of sensitive information.

Example 4.8. Consider the military dataset in Fig. 4.2a, the release of the subset
R, of tuples in Fig. 4.6a, and assume that the data holder chooses a significance
level @« = 20%. The mutual information /I,.;(Age,Location) of R, is
0.025522, while the critical value I, is 0.025527. Since I,.;(Age, Location) <
I,., the release of R, is safe.

Consider the release of the whole dataset R in Fig. 4.2a, and assume that the data
holder adopts a less restrictive significance level « = 5 %. The mutual information
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Number of tuples
A Age |[[L1_12 13 14 L5] Total]
<18 9 5 7 8 11 40
18-19 23 11 12 19 29 94
20-24 80 30 68 70 109 357
25-29 71 18 55 58 88 290
30-34 51 30 43 47 74 245
35-39 55 28 46 50 76 255
40-44 25 24 23 25 38 135
45-49 2 10 11 11 13 47
50-54 2 8 4 5 6 25
>55 1 1 0 0 0 2
Total [[ 319 165 269 293 444 | 1490

b P,,/(Age|Li) c

Age |[ 11 12 13 14 15]P,Ag9)] [L]BaL)]
<18 |[ 2.82 3.03 260 273 248 2.68 L, | 2141
18-19 || 7.21  6.67 446 649 653 6.31 L,| 11.08
20-24 || 25.08 18.18 2528 23.89 24.55 23.96 Ly | 18.05
25-29 || 22.26 1091 20.45 19.80 19.81 19.46 L, | 19.66
30-34 || 1599 18.18 1598 16.04 16.67 16.44 Ls | 29.80
3539 || 17.24 1697 17.10 17.06 17.12 17.11

40-44 || 7.84 1455 855 853 856 9.07

45-49 || 0.63 6.06 409 375 293 3.15

50-54 || 0.63 485 149 171 135 1.69

>55 || 030 0.60 0.0 000 0.00 0.13

Fig. 4.6 Number of tuples by Age and Location in a safe dataset R,,; w.r.t. mutual information
significance with &« = 20 % (a), L;-conditioned distributions P.;(Age| L;),i = 1,...,5, over
R, (b), and location frequencies (c)

I(Age, Location) of the whole dataset is 0.063285 (see Example 4.4) and its
critical value 7,. is 0.004448. Therefore, as expected, the release of the whole
dataset is not safe.

4.5.2 Significance of the Distance Between Distributions

The evaluation of the significance of the distance between distributions aims at
verifying whether there are specific targets in the released dataset that can be
considered as outliers, that is, whose y-conditioned distribution is far from the
expected distribution represented by the baseline P(X). The rationale is that
peculiarities of the y-conditioned distribution can be exploited for inferring the
sensitive property s(y). This statistical test, operating on the single values y of
Y, works at a finer granularity level than the previous one, based on the mutual
information.

As already noted in Sect. 4.4, a possible way for the data holder to verify whether
the y-conditioned distribution presents some peculiarities consists in computing
the Kullback-Leibler distance A,.;(X, y) between the y-conditioned distribution
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P,..;(X]y) of the released dataset and the baseline distribution P (X). Following an
approach similar to that illustrated in Sect. 4.5.1, the disclosure of the sensitive
property s(y) can be prevented by ensuring that A,.; (X, y) is statistically not
significant, for all targets y in the released dataset.

From a practical point of view, we can verify if the release of a given subset
R,.; of R can be considered safe by checking whether the distance A,.; (X, y)
is smaller than a predefined threshold A,.(y) for all targets y. A safe release is
formally defined as follows.

Definition 4.4 (Safe Release w.r.t. KL Distance—KLD). Let R be a relation over
attributes A, X and Y be two subsets of A such that X~>Y, R,.; be a subset of tuples
in R, and A,.(y) be the critical value for A,.;(X, y), for all values y of Y in R,,;.
The release of R,.; is safe iff for all values y of Y in R, Arei (X, y) < A (¥)-

According to Definition 4.4, if A,.;(X,y) < A,.(y) for all released targets y, the
release of R,.; is safe. If there exists at least a target y’ such that A,.;(X,y’) >
Are(y'), the release of R,.; is not safe and y’ is considered exposed.

The approach we propose to compute threshold A,.(y) is based on the
observation that the mutual information I,.;(X,Y) by definition equals to
Zer p(¥)Are(X,y), and that Property 4.1 can be adapted for the Kullback-
Leibler distance A,.; (X, y) as follows.

Property 4.2. Let R be a relation over attributes A, X and Y be two subsets of A
such that X~»>Y, y be a value of Y, and R,,; be a subset of tuples in R. Under the
independence hypothesis between X and Y':

2Nrel(y) lOg(z)Arel(X, Y) ~ XZ(NXrel - 1)

where N, () is the number of released tuples with Y = y, and Ny, , is the number
of values of X in R,.;.

Property 4.2 states that under the hypothesis of independence between X and Y,
2Ny (¥)1log(2) Ao (X, y) is asymptotically chi-square distributed with (N, ,, —1)
degrees of freedom.

Example 4.9. Figures 4.7a—e compare the distribution of the rescaled (by fac-
tor 2N,1(y)log(2) with Nyei(Ly) = 1014, Nyei(La) = 649, Ny(L3) =
826, N,.(L4) = 1003, and N, (Ls) = 1506) Kullback-Leibler distance
Aer(Age, L;), i = 1,...,5, with the chi-square distribution with 10 — 1 = 9
degrees of freedom. The histograms in the figures have been obtained with 10000
Monte Carlo iterations, considering the baseline distribution P(Age) and the
distribution P(Location) of the sensitive information of our running example.
From the figures, it is easy to see that our rescaled A,.;(Age, L;) fit the considered
chi-square distribution.

For each target y, Property 4.2 can be used to compute the critical value
Ac(y) for A, (X,y) by selecting a significance level o and requiring
P(A;(X,y) > A(y)) = a. A;o(y) can then be obtained by constraining
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Fig. 4.7 Comparison between the chi-square distribution with 9 degrees of freedom
and the distribution of 2N, (Li)log(2)A(Age, L) (a), 2N,;(Ly)log(2)A.(Age, L)
(b), 2Nrc'1(L3) log(z)An’l (Age, L?) (C), 2Nrc’I(L4) log(z)Arel (Age, L4) (d)7 and
2Nrel(L5) lOg(z)Arel (Age, LS) (e)

fozN,ez(y)log(z)A’” (X.7) 1?(Nx., — 1)(x)dx = 1 — a. As already observed for the

mutual information, higher values of « guarantee better protection against inference
exposure of the sensitive property.

Once the data holder has fixed the significance level and computed the critical
values A,.(y) for each target y, she can decide whether to release a tuple when its

rel
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Number of tuples
A Age [T 12 13 14 15] Total]
I8 12 4 6 5 16] &
1819 || 25 11 18 18 43| 115
2024 || 8 29 90 72 141 | 418
2529 || 66 19 65 67 112| 329
3034 || 56 31 37 49 94| 267
3539 || 57 29 55 51 115 | 307
4044 || 19 18 19 27 47| 130
4549 9 8 8 4 13| 4
sos4l| 2 4 6 2 7| 21
>55 o 1 1 1 0 3
Total || 332 154 305 296 388 | 1675

b P, (Age|Li) c
Age [ LI L2 L3 L4 L5 PuAge)] [ L, [ P L)]
<18 361 260 197 169 272 257 [Z,] 1982
18-19 || 753 714 590 608 731 687 | | L, | 9.20

20-24 || 25.90 18.83 29.51 2432 2398 24.96 Ly | 18.21
25-29 || 19.89 1234 2131  22.64 19.05 19.64 L, | 17.67
30-34 || 16.87 20.13 12.13 16.55 15.99 15.94 Ly | 35.10
35-39 || 17.17 1883 18.03 17.23  19.56 18.33

40-44 572 11.69 6.23 9.12 7.99 7.75
45-49 2.71 5.19 2.62 1.35 2.21 2.51
50-54 0.60 2.60 1.97 0.68 1.19 1.25
>55 0.00 0.65 0.33 0.34 0.00 0.18

Fig. 4.8 Number of tuples by Age and Location in a safe dataset R,,; w.r.t. Kullback-Leibler
distance with @ = 20 % (a), L;-conditioned distributions P.;(Age| L;), withi = 1,...,5, over
R, (b), and location frequencies (c)

respondent requires it. Let R,.; be a safe set of released tuples and ¢ be a tuple in
R whose release has been requested. To decide whether to release ¢, it is necessary
to check if the distance A,.;(X, y) for target y = ¢[Y], computed on R,,;U{t}, is
lower than the critical value A,.(y). If such a control succeeds, the release of ¢, that
is, the disclosure of T,.;U{t}, is considered safe. Otherwise, target y is considered
exposed (i.e., y is an outlier) and the release of ¢ is blocked. Note that condition
Are1(X,¥) < Ac(p) is certainly satisfied for all the targets different from #[Y]
because R,.; is assumed to be safe.

Example 4.10. Consider the military dataset in Fig. 4.2a and the release of the
subset R,.; of tuples in Fig. 4.8a, and assume that the data holder adopts a
significance level « = 20 %. The distances between each L;-conditioned distri-
bution P,.;(Age|L;), i = 1,...,5, and the baseline distribution P(Age) are:
Arei(BAge, L)) = 0.026582, A,.(Age,L,) = 0.056478, A,.i(Age,L3;) =
0.028935, A,.(Age,Ls) = 0.029818, and A,.(Age,Ls) = 0.014996. The
critical values are: A,.(L;) = 0.026599, A,.(L,) = 0.057343, A,.(L3) =
0.028954, A,.(Ly) = 0.029834, and A,.(Ls) = 0.015018. Since the distance
A,e1(Bge, L;) computed for each location L;, i = 1,...,5, is lower than the
corresponding critical value, the release of R,.; is safe.
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Consider the release of the whole dataset R in Fig. 4.2a and assume that the data
holder adopts a less restrictive significance level &« = 5 %. The distances between
each L;-conditioned distribution and the baseline distribution are: A(age, L) =
0.047349, A(Age, L,) = 0.358836, A(Age, L3) = 0.013967, A(age, Ly) =
0.007375, and A(Age, Ls) = 0.010879 (see Example 4.5). Their critical values
are: A,.(L1) = 0.006015, A,.(L,) = 0.009395, A, (L3) = 0.007388, A,.(Lg) =
0.006081, A,.(Ls) = 0.004051. Since the distance A(Age, L;) of each location
L;,i =1,...,5, exceeds the corresponding critical value, the release of R is, as
expected, not safe.

By comparing the two metrics discussed so far, it is easy to see that the metric
based on the mutual information does not distinguish the exposures of the different
targets. Hence, if for a given y, p,.;(y) represents a small portion of the released
dataset, a high value for A,.; (X, y) has a limited influence on the decision of
whether the release of R,.; is safe or not, since the contribution of A,.; (X, y)
in the computation of [,.;(X,Y) is limited. On the contrary, the test based on
the Kullback-Leibler distance results more restrictive than the evaluation of the
significance of the mutual information since the safety control is performed at the
level of each single target y of Y.

4.5.3 Chi-Square Goodness-of-Fit Test

The chi-square goodness-of-fit test aims at verifying, like the statistical test
described in Sect. 4.5.2, whether the released dataset includes a target y that can
be considered an outlier. The chi-square goodness-of-fit test [90] is a well known
statistical test, traditionally used to determine whether a probability distribution
(Pre;(X]y)) fits into another (theoretical) probability distribution (P (X)), that is, if
the two probability distributions are similar. The test is based on the computation of
Pearson’s cumulative statistic F,.;(X, y) that measures how “close” the observed
y-conditioned distribution P,.;(X]|y) is to the expected (baseline) distribution
P(X). When F,.(X,y) is close to zero, P,.;(X|y) appears as a distribution
that fits P(X) (i.e., the values of P,.;(X|y) appear as randomly extracted from
the baseline distribution P (X)) and therefore nothing can be inferred about the
sensitive property s(y) associated with target y.

From a practical point of view, we verify if the release of a given subset R,;
of R can be considered safe by checking whether the Pearson’s cumulative statistic
F,.1(X, y) is smaller than a predefined threshold F,.. Formally, a safe release is
defined as follows.

Definition 4.5 (Safe Release w.r.t. Chi-Square Goodness-of-Fit—CST). Let R
be a relation over attributes A, X and Y be two subsets of A such that X~>Y, R,.;
be a subset of tuples in R, and F,. be the critical value for F,.;(X, y). The release
of R,.; is safe iff for all values y of Y in R,.;, Fre1(X,y) < Fpc.
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According to Definition 4.5, if all the released targets y satisfy condition
Frei(X,y) < Fy, the release of R,,; is safe; if there exists at least a target y’
that violates the condition, the release of R,.; is not safe and y’ is considered
exposed.

The threshold F,. is computed by exploiting the following statistical property
enjoyed by the chi-square goodness-of-fit test [90].

Property 4.3. Let R be a relation over attributes A, X and Y be two subsets of 4
such that X~»Y, y be a value of Y, and R,.; be a subset of tuples in R. Under the
independence hypothesis between X and Y:

(0! — E,)’

2
~ x*(Nx -1
E_X X ( rel (y) )

Frel(va) = Z

X€X

where Ny, , () is the number of values of X for the tuples in R,,; with Y = y.

Property 4.3 states that, under the hypothesis of independence between X and Y,

the Pearson’s cumulative statistic F,.; (X, y) is asymptotically chi-square distributed

with (Ny,,, () — 1) degrees of freedom. Like for the metrics already discussed,

we compute the critical value F,.(y) for the Pearson’s cumulative statistic by

selecting a significance level « and requiring P(F,.; (X, y) > F..(y)) = a. Asa
(o))’

. .. Yiex — & 2
consequence, F,.(y) can be obtained by constraining |, x (Nx,,,(y)—
1)(x)dx = 1 — «. It is important to note that the number of degrees of freedom of
the chi-square distribution depends on the number Ny, , of values of variable X that
have been released for target y, which may be different from the number of values
in the domain of attribute X (for more details see Sect. 4.6).

Once the data holder has fixed the significance level and computed the critical
value F;., she can decide whether to release a tuple when its respondent requires it.
Let R,.; be a safe set of tuples and ¢ be a requested tuple in R. To evaluate whether
the release of tuple ¢ is safe, it is necessary to check whether the Pearson’s cumulate
statistic F,.;(X, y) for target y = t[Y], computed on R,.;U{t} is lower than the
fixed threshold F;.. If this is the case, tuple ¢ can be safely released; otherwise the
release of ¢ is blocked since it reveals that y is an outlier. We note that it is not
necessary to check the Pearson’s cumulate statistics of the other targets in R,
since they are not affected by the release of ¢, and their associated F,.;(X, y) are
lower than F,., as R,.; is supposed to be safe.

Example 4.11. Consider the military dataset in Fig. 4.2a and the release of the
subset R,.; of tuples in Fig. 4.9a and assume that the data holder adopts a sig-
nificance level @ = 20 %. The Pearson’s cumulative statistics for the five locations
are: F,.;(Age, L) = 8.550683, F,.(2ge, L) = 0.961415, F,.;(Age, L3) =
9.717669, F,.;(Age, Ly) = 8.293681, and F,.;(Age, L5) = 8.554984. The critical
values are: F,.(L;) = 8.558059, F,.(L;) = 1.642374, F,.(L3;) = 9.803249,
F,.(Ls) = 11.030091, and F,.(L5;) = 8.558059. It is immediate to see that
Fr(nAge,L;) < F,.(L;), foralli = 1,...,5. As a consequence, the release of
R,.; is safe.
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a Number of tuples
Age |[ L1 12 13 14 L5] Total]
<18 13 0 38 6 4 31
1819 25 1 13 35 35| 109
2024 || 92 0 80 100 135| 407
2529 || 74 o 76 94 117| 36l
30-34 || 65 3 55 63 98| 284
3539 || 64 38 48 71 94| 315
40-44 | 32 7 21 29 41| 130
45-49 33 11 13 18 48
50-54 0 0 3 8 4 15
>55 0 0 0 0 0 0
Total || 368 52 315 419 546 | 1700
b Prz’/(Age‘Li) C
Age |[ LI L2 13 14 15][P,Ae9] [L [PuL)]
<18 353 000 253 143 0.73 182 [L, | 21.65
18-19 6.79 192 413 835 6.4l 6.41 L,| 3.06

20-24 || 25.00 0.00 254 2387 2473 23.94 Ly| 18.52
25-29 (| 20.11 0.00 2413 2243 2143 21.24 L, | 24.65
30-34 17.66 577 17.46 15.04 17.95 16.71 Ls| 32.12
35-39 17.39  73.08 1524 1695 17.21 18.53

40-44 8.70  13.46 6.67 6.92 7.51 7.65
45-49 0.82 5.77 3.49 3.10 33 2.82
50-54 0.00 0.00 0.95 1.91 0.73 0.88
>55 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 49 Number of tuples by Age and Location in a safe dataset R, w.r.t. Chi-Square
Goodness-of-Fit with « = 20 % (a), L;-conditioned distributions P,;(2ge| L;),i = 1,...,5,
over R, (b), and location frequencies (c)

Consider the release of the whole dataset R in Fig. 4.2a and assume that the
data holder adopts a less restrictive significance level @ = 5 %. The Pearson’s
cumulative statistics for the five locations are: F(Age,L;) = 104.532750,
F(age, L,) = 878.201780, F(Age, L3) = 30.837391, F(age, L4) = 17.340740,
and F(age,Ls) = 39.875054 (see Example 4.6). The critical values are:
F,.(Ly) = 15.507313, F,.(L;) = 16.918978, F,.(L3) = F,.(Ly) = F,c(Ls) =
15.507313. Therefore, P(Age|L;), i = 1,...,5, is not close enough to P(Age)
and the release of the whole dataset is not safe. This result is not surprising since
none of the L;-conditioned distribution P(Age|L;),i = 1,...,5, in our running
example exactly fits the baseline distribution P(2age).

4.5.4 Dixon’s Q-Test

The Dixon’s Q-test, similarly to the statistical tests described in Sects. 4.5.2 and
4.5.3, aims at verifying whether there is one target in the released dataset that can
be considered an outlier. The Dixon’s Q-test is a well-known solution for outlier
detection in a given dataset that can be adopted whenever there is at most one outlier
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and at least three targets in the considered dataset [48]. This statistical test differs
from the ones illustrated in Sects. 4.5.2 and 4.5.3 since, instead of comparing each
distance between P,.;(X|y) and P(X) against a fixed threshold, it evaluates if one
of the distances between P,.;(X|y) and P (X) is significantly higher than the others.
The Dixon’s Q-test can be applied considering any definition of distance between
distributions (e.g., Kullback-Leibler distance, or Pearson’s cumulative statistic). In
line with the rest of the chapter, we apply the Dixon’s Q-test to the Kullback-Leibler
distance A,.; (X, y) between P,.;(X|y) and P(X). We note that different versions
of this test have been proposed in the literature, and we adopt rjy [48]. This test
assumes the presence of at most one outlier at the upper hand of the dataset (i.e.,
one outlier characterized by a high value for the distance between distributions) and
no outlier at the lower hand of the dataset (i.e., no outlier is characterized by a low
distance between distributions).

The Dixon’s Q-test requires to first organize the values on which it needs to be
evaluated (i.e., A,.;(X, y) in our scenario) in ascending order. Starting from the
last two values in the ordered sequence (i.e., the two highest values), it computes
coefficient Q,.;(X) as their relative distance. More formally, Dixon’s coefficient is
computed as:

Aot (X, yn) — Arer (X, Yu—1)

rel(X) = s
Q l( ) Arel(X»yn)_Arel(val)

where A0 (X, y1),...,A7(X, y,) is the sequence, in ascending order, of distance
values.

The Dixon’s Q-test is not able to identify any outlier in the dataset if Q,.;(X)
is close enough to zero, since the distance between each pair of subsequent values
in the sequence is almost the same. In this case, there is no target y such that the
distance between its y-conditioned distribution P,.;(X|y) and the baseline P(X)
stands out from the other distances.

From a practical point of view, we verify if the release of a given subset R,.;
of R can be considered safe by checking whether the Dixon’s coefficient Q,.;(X)
is smaller than a predefined threshold Q,.. The critical value Q,. is computed by
fixing a significance level a and imposing P(Q,.(X) > Q,.) = «. Figure 4.10
summarizes the critical values Q. when the number of distinct values in the domain
of Y ranges between 3 and 10 and the significance level is fixed to 20 %, 10 %, 5 %,

Number of elements

Significance || 3 4 5 6 7 8 9 10 |
20% 0.78T 0560 0.451 0.386 0.344 0314 0290 0.273
10% 0.886 0.679 0.557 0.482 0.434 0399 0.370 0.349
% 0.941 0.765 0.642 0.560 0.507 0468 0.437 0.412
1% 0.988 0.889 0.780 0.698 0.637 0.590 0.555 0.527

Fig. 4.10 Critical values Q. for the Dixon’s Q-test with significance levels 20 %, 10 %, 5 %, 1 %
and [3-10] distinct values in Y domain [49]
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and 1 %, respectively. If Q,(X) < Q,., the release of R,,; does not reveal the
presence of any outlier and the release of R,.; is safe. A safe release is formally
defined as follows.

Definition 4.6 (Safe Release w.r.t. Dixon’s Q-Test—DQT). Let R be a relation
over attributes A, X and Y be two subsets of A such that X~>Y, R,,.; be a subset of
tuples in R, and Q,. be a critical value for Q,.;(X). The release of R,.; is safe iff

0r(X) < Qre-

If condition Q,(X) < Q,. does not hold, an observer can infer that the target y
characterized by the maximum distance A,.; (X, y) between P,.;(X|y) and P(X)
is an outlier.

Once the data holder has fixed the significance level and computed the critical
value Q. for the Dixon’s Q-test, she can decide whether to release a tuple when its
respondent requires it. Let R,.; be a safe set of released tuples and ¢ be a requested
tuple in R. To decide whether to release ¢, it is necessary to check if Dixon’s
coefficient Q,(X) associated with R,.;U{t} is lower than critical value Q,.. If this
is the case, tuple ¢ can be safely released; otherwise tuple ¢ is not released since it
may cause leakage of sensitive information.

Example 4.12. Consider the military dataset in Fig. 4.2a and the release of the
subset R,.; of tuples in Fig. 4.11a, and assume that the data holder adopts a
significance level « = 20%. The distance values between P,. (Age|L;), i =
1,...,5, and the baseline P(Age) are equal to: A, (Age,L;) = 0.209188,
Arei(Bge, Ly) = 0.361504, A, (Age,L;) = 0.037932, A,.;(Age,Ls) =
0.018421, and A,.(Age, Ls) = 0.021103. To apply the Dixon’s Q-test, these
distance values are considered in ascending order and the Dixon’s coefficient is
computed as Q. (X) = % = 0.443963. Since attribute Location
has 5 distinct values in its domain, we consider the third column in the table in
Fig. 4.10 for the definition of critical value Q,.. In particular, the critical value
is fixed to 0.451 for the considered significance level. Since Dixon’s coefficient is
lower than the critical value, the release of R,,; is safe.

Consider the release of the whole dataset R in Fig. 4.2a and assume that the data
holder adopts a less restrictive significance level « = 5 %. The distance values in
Example 4.5 are considered in ascending order and Dixon’s coefficient is computed
as Qe (X) = $2383800BY — 0.886263, which is greater than 0.642. Therefore,
the release of the whole dataset of our running example is not safe, since it discloses

that L, is an outlier.

4.6 Controlling Exposure and Regulating Releases

We now illustrate how the incremental release of tuples is controlled and regulated
according to the metrics discussed in the previous section.
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Number of tuples
@ Age [ L1 12 13 14 L5] Total]

<18 14 3 5 8 15 45
18-19 36 10 10 34 43 133
20-24 || 104 30 77 84 176 471
25-29 9% 18 73 76 134 397
30-34 69 50 48 77 109 353
35-39 64 32 49 64 120 329
40-44 0 36 18 30 42 126
45-49 0 34 17 10 18 79
50-54 3 14 5 6 4 32
>55 1 3 0 1 0 5
Total || 387 230 302 390 661 | 1970

b P,.(Age|Li) C
Age | L1 12 13 14 L5[P,Ag9] [L [P,L)]
<18 3.62 1.30 1.66 2.05 2.27 2.28 L | 19.64
18-19 9.30 4.35 3.30 8.72 6.51 6.75 L, | 11.68

20-24 || 26.87 13.04 2550 21.54 26.63 2391 Ly | 1533
25-29 || 24.81 7.83 2417 1949 2027 20.15 L, | 19.80
30-34 (| 17.83  21.75 15.89 19.74 16.49 17.92 Ls | 33.55
35-39 16.54 1391 16.23 1641 18.15 16.70

40-44 0.00  15.65 5.96 7.69 6.35 6.40
45-49 0.00 14.78 5.63 2.56 2.72 4.01
50-54 0.78 6.09 1.66 1.54 0.61 1.63
>55 0.25 1.30 0.00 0.26 0 0.25

Fig. 4.11 Number of tuples by Age and Location in a safe dataset R,; w.r.t. Dixon’s Q-test
with @ = 20 % (a), L;-conditioned distributions P,,;(Age| L;),i = 1,...,5, over R,; (b), and
location frequencies (c)

The data holder first chooses the metric and the significance level o she wants to
adopt. Every time a tuple 7 is requested, it is necessary to check if the release of 7,
combined with all the tuples already released and potentially known to an observer
R,.;, may cause the unintended disclosure of sensitive information. In particular,
if R, U{t} satisfies the definition of safe release for the considered metric (see
Sect. 4.5), t is released. If tuple 7 cannot be released when it is requested, its release
might simply be denied. However, this choice represents a restrictive solution, since
it does not take into consideration the fact that if a tuple cannot be released when it
is requested, it may be safely released at a later time (i.e., after the release of other
tuples in the dataset). Indeed, the grant or denial of the release of a tuple depends
on the set of tuples that has already been released. Exploiting this observation, we
propose to insert the tuples that cannot be released when requested into a queue.
Every time a tuple ¢ is released, the tuples in the queue are analyzed to check
whether a subset of them can be safely released.

Particular attention has to be paid on the release of the first few tuples because
they will produce random value distributions that usually do not resemble the actual
distributions existing in the dataset. Such random distributions may characterize the
data release as not safe, thus blocking any further release and raising many false
alarms (since also targets that are not outliers will have a random initial distribution
that will differ from the baseline). However, no observer could put confidence on
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statistics computed over a few releases as they cannot be considered accurate and
their distribution can be completely random. With reference to the release of the
first few tuples, it is also important to note that the metrics illustrated in Sect. 4.5 are
based on approximation properties that hold only when a sufficient number of tuples
has been released. There is therefore a starting time at which the data holder should
define an alternative condition for determining if a release should be considered
safe. In the following we discuss, for each of the metrics in Sect. 4.5, how to check
whether the release of a tuple ¢ is safe when only few tuples have been released.

Significance of the Mutual Information and Significance of the Kullback-
Leibler Distance Between Distributions The definition of the critical value for
the mutual information described in Sect. 4.5.1 is based on Property 4.1, which is
an asymptotic approximation of /,.;(X,Y) to a chi-square distribution that holds
only if a sufficient number of tuples has been released. Using the traditional Monte
Carlo approach, we propose to compute the critical value of the mutual information
for the release of a small number #n of tuples as the «-th percentile of the mutual
information obtained by extracting a sufficient number of samples (10000 in our
experimental evaluation) of n tuples each from a simulated dataset composed of
| R| tuples, where X is distributed following P(X), and X and Y are statistically
independent. Indeed, if the mutual information of the released dataset is close to the
mutual information of a sample of the same size extracted from a dataset where
X and Y are statistically independent, the observer cannot exploit the released
tuples for drawing inferences. The remaining aspect to consider is when to start
adopting the critical value computed exploiting Property 4.1. A nice approximation
is represented by 2Ny Ny tuples (100 in our example), which is confirmed by our
experimental evaluation illustrated in Fig. 4.12. In this figure, the curve representing
the critical value for the mutual information, corresponding to the value computed
through the Monte Carlo method in the interval [0-100] and exploiting Property 4.1
in interval [100-10000], presents a smooth trend. This result also confirms that
Property 4.1 holds in our framing of the problem.

The same approach can be adopted for the metric based on the Kullback-Leibler
distance since Property 4.2 derives from Property 4.1, and the mutual information
is a weighted average of the Kullback-Leibler distances for the different targets y in
the dataset.

Chi-Square Goodness-of-Fit Test The approximation on which this statistical test
is based holds on a data collection only if, for each target y and for each x € X,
a sufficient number of tuples (typically 5 [90]) has been released. In other words,
considering a target y, for each x € X, there must be at least 5 tuples in R,.; with
t[Y] = y and t[X] = x. If, for a given target y, there are less than 5 tuples with
value x for attribute X, we can combine x with either its preceding or subsequent
value in the domain of X and sum their relative frequencies. With reference to our
example, if only 2 soldiers located at L, in the age range [20-24] have been released,
range [20-24] for L, can be combined either with [18—19] or with [25-29] for the
same location. Suppose now that the relative frequency for age range [25-29] is 4.
By merging [20-24] with [25-29] for location L,, we obtain a new value [20-29]
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of the domain of attribute Age for location L,, with relative frequency equal to 6.
This process is iteratively applied, possibly combining a set of contiguous values
for attribute X, until all the relative frequencies of the values in the domain of X
are greater than or equal to 5. If all the values in X are combined in a unique value,
the test cannot be applied and the release is considered safe. If at least 2 values
in the domain of X are maintained, the test can be evaluated. We note however that
when multiple original values of X are combined, the approximation in Property 4.3
should be revised to consider the correct number of degrees of freedom, which is
equal to the number of values in the domain of X in R,.; after the possible merge
operation. For instance, with reference to our example, suppose that the values for
attribute Age for location L, have been combined obtaining the following domain
values: < 24, [25-39], [40-44], [45,49], > 50. The critical value of Pearson’s
cumulative statistic for L, should be computed considering a chi-square distribution
with 4 (instead of 9) degrees of freedom.

Dixon’s Q-Test As already noted, this statistical test can be applied only on data
collections that include at least 3 elements [48]. In our scenario, it can then be used
only if 3 different distances between the y-conditioned distributions and the baseline
can be computed. Consequently, datasets with less than 3 different distance values
are considered safe since an observer could not gain any information.

4.7 Experimental Results

To evaluate the behavior of the metrics presented in Sect. 4.5, we implemented
the data release strategy described in Sect. 4.6 with a Matlab prototype and
executed a series of experiments. For the experiments, we considered the dataset
R introduced in Example 4.2, which has been obtained by randomly extracting
10000 tuples from the baseline distribution P (Age) of the age of soldiers of the UK
Regular Forces as at 1 April 2006 [103] (Fig. 4.3a). The experiments evaluated the
inference exposure (computed as the mutual information, Kullback-Leibler distance
between distributions, Pearson’s cumulative statistic, or Dixon’s coefficient), and the
information loss (i.e., the number of tuples not released upon request) caused by our
privacy protection technique. We also compared the results obtained adopting the
different metrics.

4.7.1 Inference Exposure

We evaluated how the metrics discussed in Sect. 4.5 vary with the release of tuples
and compared them with the corresponding critical values. The experiments have
been conducted on 20 randomly extracted sequences of 10000 requests each. For
the sake of readability, in this section we illustrate the graphs showing the evolution
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number of released tuples

Fig. 4.12 Evolution of the mutual information and its critical value

of the inference exposure and of its critical value for one of the 20 sequences; the
results obtained with the other sequences present a similar trend.

Mutual Information Figure 4.12 shows the evolution of both the mutual infor-
mation, and the corresponding critical value, varying the number of released tuples
(the scale of the axis in Fig. 4.12 is logarithmic). The two curves are close to each
other and their distance decreases as the number of released tuples increases. It is
easy to see that the mutual information of released data is always lower than the
critical value. The figure also shows a smooth trend for the curve representing the
critical value, confirming that the approximation in Property 4.1 nicely holds in our
scenario. In fact, the discontinuity in the critical value of the mutual information
when the 100th tuple is released, due to the fact that the critical value is computed
using the Monte Carlo based approach in the interval [1-100] and the approach
using Property 4.1 in the interval [100—10000], is small and cannot be noticed in the
figure.

Kullback-Leibler Distance Figures 4.13a—e show the evolution of both the
Kullback-Leibler distance between P, (Age|L;) and P(Age), i = 1,...,5,
and the corresponding critical values, varying the number of released tuples (the
scale of the axis in Figs. 4.13a—e is logarithmic). It is not surprising that the trends
shown in these figures are similar to that illustrated in Fig. 4.12. Indeed, the mutual
information is the weighted average of the Kullback-Leibler distance values of all
the locations in the dataset. It is interesting to note that all the locations present a
similar trend for the evolution of both the Kullback-Leibler distance and its critical
value. Also, like for the mutual information, Figs. 4.13a—e present a smooth trend in
the curves representing the critical values for the five locations, confirming that the
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Fig. 4.13 Evolution of the Kullback-Leibler distance between P,;(Age|L;) and P(Age) and its
critical value for each location. (a) Ly, (b) L,, (¢) L3, (d) L4, (e) Ls

approximation in Property 4.2 holds. In fact, the discontinuity in the critical value
of the Kullback-Leibler distance when the 100th tuple is released cannot be noticed
from the figure.

Chi-Square Goodness-of-Fit Figures 4.14a—e show the evolution of both the
Pearson’s cumulative statistic of each location, and the corresponding critical values,
varying the number of released tuples. As discussed in Sect. 4.5.3, when a sufficient
number of tuples have been released the critical value F,. is the same for all the
locations. On the contrary, when a limited number of tuples have been released, the
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critical value may be different for each location, depending on the number of distinct
values in the domain of attribute X for each location. As it is visible from Fig. 4.14,
the curve representing the critical value has different steps. Each step corresponds
to a change in the number of values in the domain of X and therefore a different
(higher) number of degrees of freedom of the chi-square distribution in Property 4.3.
When the number of released tuples does not permit to correctly evaluate if the
Chi-square goodness-of-fit test is passed or not, the release is considered safe since
an observer cannot gain knowledge by looking at the released data. This is the
reason why the Pearson’s cumulative statistic and its critical value are not computed
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Fig. 4.15 Evolution of the Dixon’s coefficient and its critical value

for the first few (about 10) released tuples in Figs. 4.14a—e. For all the locations,
the value of the Pearson’s cumulative statistic increases while tuples are released.
In particular, this growing trend is more visible when less than 100 tuples have
been released. Also in this case, as expected, the distance between the Pearson’s
cumulative statistic and its critical value decreases while data are released.

Dixon’s Q-Test Figure 4.15 shows the evolution of both the Dixon’s coefficient
and the corresponding critical value, varying the number of released tuples. The
distance between Dixon’s coefficient and the critical value decreases while tuples
are released. As it is visible from Fig. 4.15, the Dixon’s coefficient and its critical
value are not reported for the first 5 tuples released. This is due to the fact that, for
the first 5 tuples, it is not possible to compute 3 different distance values between y-
conditioned distributions and the baseline. The curve representing the critical value
presents three steps. Each step corresponds to the release of a tuple that permits to
compute an additional difference. In other words, it corresponds to the release of a
tuple ¢ such that ¢[Y] is a target that either was not represented in R,.; or that was
characterized by a distance from the baseline equal to the distance of another target.

We note that, for all the considered metrics, the distance between the exposure
and its critical value decreases as more data are released, since the fluctuations in
the value distribution characterize the release of the first few tuples. In fact, as the
number of tuples in the released dataset increases, the impact of the release of a
single tuple on the distribution of released values decreases.
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a |[Original | MIS | KLD | CST | DQT |
Ly 2029{1156.00 (56.97%)| 871.85 (42.97%)| 994.55 (49.02%)|1935.85 (95.41%)
Ly 1299| 705.20 (54.29%)| 697.65 (53.71%)| 255.35 (19.66%)|1262.65 (97.20%)
L3 1652(1119.00 (67.74%)|1549.75 (93.81%)|1300.00 (78.69%)|1565.45 (94.76%)
Ly 2007]1256.95 (62.63%)|1874.75 (93.41%)[1361.85 (67.86%)[1990.20 (99.16%)
Ls 3013(1876.65 (62.299%)|2415.65 (80.17%)]1899.25 (63.04%)|3013.00 (100.00%)
[Total]]  10000[6095.78 (60.96%)[7408.67 (74.09%)[5119.88 (51.20%)[9631.55 (96.32%)|
|[Original | MIS [ KLD [ CST [ DQT |

L 2029(1187.55 (58.53%)| 918.35 (45.26%)|1021.85 (50.36%)[1996.90 (98.42%)

Ly 1299 720.05 (55.43%)| 713.30 (54.91%)| 322.30 (24.81%)|1275.80 (98.21%)

Ls 1652(1145.90 (69.36%)|1576.20 (95.41%)|1151.90 (69.73%)[1571.80 (95.15%)

Ly 2007{1283.50 (63.95%)(1951.85 (97.25%)|1698.15 (84.61%)[1996.25 (99.46%)

Ls 3013(1907.85 (63.329%)]2530.20 (83.98%)|2344.55 (77.81%)(2996.75 (99.46%)
[Total]] 10000[6290.58 (62.91%)[7757.14 (77.57%)]|6478.14 (64.78%)[9846.14 (98.46%)]

Fig. 4.16 Average number of requested tuples released by each metric for the different locations
with o = 20% (a) and @ = 5% (b)

4.7.2 Information Loss

To evaluate the quality of the results obtained adopting our metrics, we consider the
number of released and discarded tuples. Figures 4.16a,b summarize the average
number of tuples released by each of our metrics with significance level « equal to
20 % and 5 %, respectively, for the 20 sequences of 10000 requests that we generated
for our experiments, distinguishing also how many requests for each location have
been fulfilled.

Comparing the results in Figs. 4.16a,b we note that, as expected, a lower
significance level permits to release a higher number of tuples for all the considered
metrics. Indeed, most of the cells in the table in Fig. 4.16b have higher values than
the corresponding cells in Fig. 4.16a. It is also easy to see that there is not a metric
that is always better than the others in terms of the number of tuples released. For
instance, Dixon’s Q-test is less restrictive that the other metrics, since it releases the
highest number of tuples as a whole and for each locations when o« = 20 %, and
as a whole and for each locations but L3 when @ = 5 %. From our analysis of the
results reported in the two tables, we can conclude that the considered metrics adopt
a different approach to protect the released data: CST and KLD block the release of
the tuples of the outlier, while MIS and DQT block the release of the tuples from all
the locations.

The location with the fewest released tuples is L, for both MIS and CST metrics,
and for DQT in the case ¢ = 20 %. This is a non-surprising result, since L, is the
headquarter (i.e., the outlier that needs to be protected). On the contrary, metric
KLD blocks more tuples from L, than from L,, and DQT, for « = 5 %, blocks
more tuples from location L3 than from L,. The location that enjoys the largest



4.7 Experimental Results 135

250

200

3

§ 150 +

kS

I} [J Exposed
€ W Affordable
£ 1004

P4

50

<18 18-19 20-24 25-29 30-34 34-39 40-44 45-49 50-54 55 over

Age

Fig. 4.17 Fitting the baseline distribution within the L,-conditioned distribution

number of tuples released with « = 20 % is L3 for all the metrics but DQT, which
privileges location Ls. With @ = 5 %, the location with the highest percentage of
released tuples is L4 for all the metrics but MIS, which privileges location L.

It is interesting to note that all the metrics proposed in this chapter to evaluate if a
release is safe permit to release a considerable number of tuples, especially if com-
pared with the (more intuitive) approach of fitting the baseline distribution within
each L;-conditioned distribution. Fitting the baseline within an L;-conditioned
distribution forces a maximum number of tuples that could be released for each
age range in L;, since the relative frequency of the tuples in each age range must be
exactly that of the baseline for each location in the released dataset. For instance,
in the baseline distribution almost 19.67 % soldiers are in the range [25-29], while
in L, only 8.78 % of tuples (140 tuples) fall in such range. Respecting the baseline
distribution requires, even in the case where all tuples in the range [25-29] of L, are
released to not release tuples in other ranges (so that the 140 tuples above actually
correspond to 19.67 %). Figure 4.17 graphically depicts this reasoning of fitting the
baseline distribution (in black) within the L,-conditioned distribution (gray going
over the black). For each value range, no more than the number reached by the
baseline distribution should be released. Figure 4.18 summarizes the number of
tuples for each location that would be released adopting the approach of fitting the
baseline within each L;-conditioned distribution, i = 1,...,5. Itis easy to see that
this approach is far more restrictive than our solution and blocks the release of a
larger number of tuples. Each of the proposed metrics permits to release a higher
number of tuples for most of the locations (but for CST in the case of location L4
with ¢ = 20 % and L3 with o« = 5 %). In particular, our approach permits to release
in most cases more than twice the number of tuples that would be released by fitting
the baseline distribution within each L;-conditioned distribution. This is mainly due
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Fig. 4.18 Number of |[Original| Released |
requested tuples released L, 2029 500 (24.6%)
fitting the baseline L, 1299( 580 (44.6%)

Ly 1652| 952 (57.7%)
Ly 2007| 952 (47.5%)
Ls 3013| 952 (31.6%)

[Total [ 10000]3937 (39.37%)]

Fig. 419 Number of |[MIS KLD CST DQT]|
datasets obtained adopting a MIS [[ 100 0 0 54
metric that are safe also with KLD 1 100 1 61
respect to the other metrics CST 0 0 100 45
DQT 0 0 0 100

to the fact that, when fitting the baseline within each P(Age|L;), the presence of a
low number of tuples in an age-range for a location (e.g., 2 soldiers with age greater
than 55 in L3, L4, and Ls) hardly constraints the release of the tuples in all the
other age ranges. In our example, the two tuples representing soldiers older than 55
must represent the 0.21 % of all the tuples released for locations L3, L4, and Ls. As
a consequence, the data holder can release at most 952 tuples of L3, Ly, and Ls.
Our metrics try to loosen this constraint, by evaluating the distance (or its average)
between the distributions, instead of the value that the distribution has at each age
value.

4.7.3 Comparison

To further compare the behavior of the metrics proposed, we have randomly
generated 100 request sequences of 5000 tuples each, out of the 10000 in our dataset
of the UK Regular Forces. For each of the metrics proposed in the chapter, and for
each of the 100 random request sequences, we run our algorithm. For this series
of experiments, we fixed the significance level o to 20 %, which represents the
most restrictive release scenario. We then checked, for each of the metrics, how
many of the 100 safe releases obtained running our algorithm with the considered
metric represents a safe release also with respect to each of the other three metrics.
Figure 4.19 summarizes the number of datasets obtained adopting each metric (on
the row) that are safe also with respect to the other metrics (on the column). It
is immediate to see that DQT is the less restrictive metric, confirming the results
illustrated in the previous subsection. In fact, none of the 100 datasets obtained
adopting DQT metric is safe with respect to the other three metrics (fourth row in
Fig. 4.19). On the contrary, 54 (61 and 45, respectively) datasets obtained using
MIS metric (KLD and CST metrics, respectively) also satisfy the definition of
safe release of Dixon’s Q-test. The most restrictive metric is instead KLD, since
no dataset obtained adopting a different metric resulted safe with respect to KLD
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metric (second column in Fig. 4.19) while at least one dataset obtained adopting
KLD metric is safe with respect to each of the other three metrics (second row in
Fig. 4.19). It is interesting to note that this result is different from the conclusions
drawn in the previous subsection, where we noted that MIS and CST are the metrics
that minimize the release of tuples. It is however not surprising since the analysis
illustrated in Fig. 4.19 is different from the one summarized in Figs. 4.16a,b. In fact,
the results illustrated in Fig. 4.19 are obtained analyzing a dataset that is considered
safe by one metric with respect to the other metrics introduced in Sect. 4.5. On
the contrary, the results in Figs. 4.16a,b are obtained analyzing the safe datasets
produced by each of the metrics of interest, starting from the same original data
collection and considering the same order in the request of tuple. The results in
Fig. 4.19 confirm the fact that the considered metrics measure the exposure of the
released dataset in different ways and that the considered metrics obtain a different
result if applied to the same sequence of tuple requests. Each metric is therefore
suited for protecting a different statistical characteristic of the data that could be
exploited for inference purposes. For instance, MIS metric is the ideal solution to
protect the released data against attacks that exploit the mutual information between
X and Y (i.e., their statistical dependency) to gain information about the sensitive
property. To decide the metric and the value for « to be adopted for protecting the
release of her dataset, the data holder needs to estimate the attacks that a possible
observer could exploit to gain sensitive information. If the data holder wants to
achieve a higher protection for her data, she can combine (a subset of) the metrics
introduced in Sect. 4.5. This approach, while better preserving privacy of sensitive
data, has the drawback of limiting the number of tuples released, since the released
dataset must satisfy all the conditions in Fig. 4.4 (or a subset thereof). Analogously,
to take a safe approach, the data holder can choose a high value for the significance
level.

4.8 Chapter Summary

In this chapter, we considered the problem of protecting sensitive information in an
incremental data release scenario, where the data holder releases non sensitive data
on demand. As more and more data are released, an external observer can aggregate
such data and infer the sensitive information by exploiting the dependency between
the distribution of the non sensitive released data and the sensitive information itself.
We presented an approach for characterizing when data can be released without
incurring to such inference. To this purpose, we defined different metrics that can
be considered to determine when the released data can be exploited for inference,
and introduced the concept of safe release according to such metrics. We also
discussed how to enforce the information release control at run-time, and provided
an experimental evaluation of the proposed solution, proving its efficacy.
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