
© Springer International Publishing Switzerland 2015
S.A. Fricker and K. Schneider (Eds.): REFSQ 2015, LNCS 9013, pp. 132–147, 2015.
DOI: 10.1007/978-3-319-16101-3_9

How Artifacts Support and Impede
Requirements Communication

Olga Liskin()

Leibniz University Hannover, Hannover, Germany
olga.liskin@inf.uni-hannover.de

Abstract. [Context & motivation] Requirements artifacts, like specifications,
diagrams, or user stories, are often used to support various activities related to
requirements. How well an artifact can support a specific activity depends on
the artifact’s nature. For example, a plain text document can be adequate to
provide contextual information, but is not well suited in terms of documenting
changes. [Questions / problem] We wanted to understand how practitioners in
various roles use requirements artifacts, how they manage to work with mul-
tiple artifacts at a time, and whether they use current practices for linking re-
lated artifacts. [Principal ideas / results] We have conducted an interview
study with 21 practitioners from 6 companies. The interviews indicate that often
a variety of artifact types is needed to successfully conduct a project. At the
same time, using multiple artifacts causes problems like manual translation ef-
fort and inconsistencies. Mapping mechanisms that explicitly relate different
artifacts are needed. However, existing methods are often not used. We investi-
gate why these methods challenge developers in practice. [Contribution] We
show challenges and chances of requirements artifacts. Our findings are
grounded on true experiences from the industry. These experiences can support
software developers in planning and improving their processes with regard to
better requirements communication and researchers in making mapping me-
thods more applicable in industry.

Keywords: Requirements artifacts · Requirements communication · User stories

1 Introduction

When Cockburn described the temperature of different communication channels [1],
the hottest communication channel was not talking face-to-face, but talking face-to-
face at a whiteboard. The reason is that writing down things helps clarify them. This
is only one of many important powers of requirements artifacts. Moreover, they can
help documenting information for later look-up, enable splitting requirements into
explicit individual items for efficient management, and much more.

However, not all artifacts types are equally suited for all activities in software and
requirements engineering. Artifacts like specifications, user stories, or GUI mockups
foreground certain aspects of the set of requirements and hide others. This influences,
for example, which information gets concretized or how well relations come into

 How Artifacts Support and Impede Requirements Communication 133

view. Moreover, artifacts are used by many different persons, with various roles and
different requests based on their individual work throughout the project. More and
more companies strive to employ an iterative approach in the day-to-day develop-
ment, requiring the appropriate artifacts. At the same time, teams following an agile
approach realize with an increasing frequency that user stories and a backlog are not
always enough. Especially in larger projects, having additional artifacts to integrate
overall information, allow early general decisions, or meet regulatory needs, pans out.

Often, there is not one perfect kind of artifact that will serve the needs of all partic-
ipants so that the project needs to deploy a whole variety of different artifacts. This, in
turn, carries the risk of inconsistencies or inefficiencies emerging from the dependen-
cies between multiple artifacts. Successful integration of requirements artifacts is an
important matter in requirements engineering. In order to advance in this field, more
research is needed to understand the challenges and chances of requirements represen-
tations. With the presented study, we contribute to improving this understanding.

2 Related Work

Several empirical studies have been conducted to study requirements communication.
Bjarnason et al. [2], [3] and Abelein and Paech [4] have conducted interview studies on
requirements communication in practice. They report on communication gaps in re-
quirements engineering in general and on gaps in user-developer communication,
respectively. Marczak et al. [5] conducted a field study where they regarded the com-
munication network of developers working on related requirements. Knauss et al. [6]
have developed a systematic scheme of requirements clarification patterns and report
on a case study in which they investigated the patterns occurring in practice. Our paper
extends this work on investigating requirements communication in practice by analyz-
ing the facet of communication aided by artifacts.

Research on requirements artifacts addresses how they can be used to support
software engineering activities and communication. Kumar and Wallace [7] describe
communication patterns – including artifact facilitated discussion – and their out-
come. Fernandez and Penzenstadler [8] research artifact based RE methods in contrast
to activity based ones. They have designed and evaluated various artifact based RE
models and then combined them into a domain-independent approach (AMDiRE).
Gross and Doerr [9] analyze how artifacts and their contents should be constituted in
order to support the needs of different roles in software engineering. Sharp et al. [10]
use the distributed cognition approach to investigate the role of physical artifacts on
communication within agile teams. Gallardo-Valencia et al. [11] explore whether
agile requirements artifacts are sufficient for development and show that adding use
cases can be beneficial.

The mapping of requirements artifacts has been repeatedly discussed in literature.
Patton [12] describes techniques for (implicitly) mapping different story artifacts to
each other. Imaz and Benyon [13] present an approach for enhancing relations be-
tween user stories and use cases. Antonino et al. [14] suggest a method for
lightweight linking of requirements and development artifacts, which includes the

134 O. Liskin

mapping between user stories and individual requirements. Further research focuses
on mapping requirements to more abstract items that are related to them. Abelein and
Paech [15] describe the mapping of requirements to decisions. Rashid et al. [16] ana-
lyze how early aspects can be brought into requirements engineering and the accord-
ing artifacts. Gotel et al. [17] describe how, in general, visualization of requirements
and their connections could be used to improve software development. Creighton
et al. [18] use sequences of video clips to visualize requirements in a user understand-
able way and then map these to more formal specification elements such as use case
models and sequence diagrams. We investigate which of the available methods are
actually applied in current practice and how they are working out. Our analysis con-
tributes new knowledge to the field of mapping requirements artifacts by pointing out
experiences and problematic areas.

The field of tracing provides many techniques to map requirements artifacts to
subsequent project artifacts, like design artifacts, code, and tests. Boullion et al. [19]
present scenarios in which requirements traceability is relevant in practice. Ben Char-
rada et al. [20] analyze code changes and then employ tracing tools to automatically
identify outdated requirements. Research on improving tracing has many facets. For
example, Anderson and Sherba [21] enhance automated management of traceability
links by using open hypermedia techniques. Huffman-Hayes et al. [22] use informa-
tion retrieval techniques to improve requirements tracing. Tracing mainly focuses on
links between requirements artifacts and subsequent development artifacts, like archi-
tectural components, code, and tests. In contrast to that, we focus on enhancing links
among requirements artifacts of the same or different kinds.

3 Study Design

Our objective is to study the usage of different artifacts in practice. We did this in two
steps. First, we examined artifacts themselves and their support of development tasks.
Then, we looked at the work with multiple types of artifacts at a time.

In the first phase of this study, our goal was to get an overview of how require-
ments artifacts are used in practice. We wanted to understand the values and impedi-
ments of different artifact types and the consequences of working with multiple
artifacts at a time. The first two research questions guided this phase:

RQ1: What are the values and impediments practitioners see in different require-
ments artifacts? Throughout a project, different roles come into contact with
requirements and perform different activities based on these. The requirements’ repre-
sentations can be more or less suited to support these activities. In conjunction with
this research question, we create an overview of relevant activities and show which
artifacts can or cannot support these.

RQ2: Which problems do practitioners face when using multiple different require-
ments artifacts within a project? Our study shows that oftentimes multiple different
artifacts are used in order to support different activities. Often, artifacts have overlap-
ping content, which can lead to inconsistencies. We want to find out which problems
practitioners have actually experienced and consider relevant.

 How Artifacts Support and Impede Requirements Communication 135

When working with multiple artifacts, many problems could be diminished if related
parts within artifacts were explicitly mapped to each other. In the second phase, we
focused on whether mapping methods are used in practice and what reasons prevent
developers from implementing mapping methods. While still seeking insights and vali-
dation for the first two questions, we added the following two research questions:

RQ3: Which methods are used in industry to link multiple different requirements
artifacts? Linking from one artifact to another one – for example simply by referring
to the other artifact’s ID – can help identify related content. This can be used to avoid
inconsistencies when documenting changes. A more sophisticated method is to use
clickable links that bring up additional content from a related artifact right away.
Moreover, two artifacts could directly operate on the same content – serving as two
views to the same content. It is not well known which of these methods are actually
known or even used in industry. We want to close this gap with this research question.

RQ4: What challenges arise when linking multiple requirements artifacts? Often,
only simple methods for artifact mapping are used. At the same time, developers find
it challenging to work with multiple requirements artifacts. We want to find out what
prevents practitioners from using more sophisticated requirements mapping methods.
We want to know whether it is the creation of links that confronts them with problems
or whether they see too little value in using links afterwards.

Table 1. Interview participants

Company Type Company Size ID Role
IT Service Provider C1 500

- 1000
I1 Project Manager

C2 1000
- 1500

I2 PO & Project Manager

In-House IT C3 100
- 500

I3
I4
I5
I6

Developer
Project Manager
Customer Rep.
Application Owner

I7
I8

Project Manager
Customer Rep.

I9 Architect
I10 Customer Rep.
I11
I12
I13

Customer Rep.
Project Manager
Developer

C4 1000
- 1500

I14 Process Engineer
I15
I16

Team Leader
Developer

I17
I18

Developer
Developer

Standard Software
Producer

C5 <100 I19 Team Leader
C6 <100 I20

I21
Team Leader
Team Leader

136 O. Liskin

Data Gathering and Analysis: We interviewed 21 practitioners from 6 companies.
Table 1 shows an overview of the companies, projects, and roles of the participants.
The company type influences the relation to the customer and therewith also require-
ments communication. Therefore, we interviewed persons from different company
contexts. To ensure coverage of a wide range of requirements related activities, we
interviewed people in different roles. We used semi-structured interviews, which
mostly lasted about 75 minutes. We recorded and transcribed the interviews, and then
coded and categorized the statements.

4 Results

4.1 Classification of Requirements Artifacts

The variety of requirements artifacts used in software projects is very high. Our inter-
viewees mentioned mainly three types of artifacts: containers, individual elements,
and solution models. In the course of the interviews, we found further characteristics
of the artifacts that influenced their handling. We subdivide our artifact categories
accordingly to accommodate these differences in the further analyses. Figure 1
depicts the categories of artifacts we found and the concrete artifacts that the practi-
tioners reported to use.

Fig. 1. Classification of used artifacts

Containers are characterized by their value to hold everything together in one
place. We found that it makes a difference whether a container consists only of other
artifacts (individual elements and solution models) or enables to include generic con-
tent. Generic elements make it easier to enter any important information quickly but
at the same time carry the risk of the information being unsuitable for later tasks.

Requirements Artifact

Container Individual Element Solution Model

GUI Mockup

Artifact
Container

Generic
Document

User-Oriented
Element

Technical
Element

Concrete
Model

Abstract
Model

Specification
document

System Inter-
face Descr.

Data Model

Process
Model

Calculation
Diagram

Use Case

User Story

Mini
Specification

User
Requirement

Virtual Project
Environment

Excel
Workbook

Specification
document

Backlog

Issue

System
Requirement

User Story
Step Epic

 How Artifacts Support and Impede Requirements Communication 137

Virtual project environments and backlogs are artifact containers, while specifica-
tion documents and excel workbooks can come in both forms. Generally, text docu-
ments are very generic and allow information to be entered in a variety of ways.
Blocks of plain text can include one or several requirements at a time and mix them
with goals, background information, or relevant policies. At the other end of the spec-
trum, documents can have a very strong formal structure, only consisting of elements
that have a defined type and ID. Excel workbooks also provide very generic elements
and could potentially be used to enter generic information. However, we have only
seen it being used as an artifact container with each content element being a defined
artifact like a user story, GUI mockup, or process model.

For individual elements, we found the most important aspect to be whether they are
user oriented or not. It determines how well the users can contribute to the creation
and assessment of that artifact. An element is considered user-oriented if it is clear to
the user what will change with the completion of that element.

Elements referred to as user stories occurred in both forms, as user-oriented and
technical elements. While user stories describe what users do as part of their job,
technically oriented stories often describe smaller steps on the way towards a user
story. A user can see, test, and comment them, but not understand them by herself
(without translation by developers) because they do not clearly relate to the actual
business tasks in the user’s daily work. To distinguish such technical stories, we refer
to them as user story steps.

Mini specifications are smaller specifications that describe just a part of a system
instead of the whole system. They are used to gradually elaborate requirements details
in iterative development or enhancement projects. The interviewees described mini
specifications as easy to handle. Challenges emerge because a system possesses many
such specifications, which are in addition interrelated. Therefore we classified them as
elements instead of containers.

Solution models illustrate aspects of the future solution in the form of formal or
graphical models. Concrete models directly relate to concrete situations a system’s
users experience. In contrast, abstract models show more universal generalizations of
different concrete manifestations. For example, process models often show general
abstract workflows spanning multiple roles and phases, while the step-by-step de-
scription of one specific partial path within this workflow is a concrete instantiation
for a specific person. Our interviewees stated that they had experienced some user
representatives to struggle with thinking in an abstract way. This influenced the mod-
els’ effectiveness for aiding communication.

4.2 Values and Impediments of Different Requirements Artifacts (RQ1)

The main values of a requirements artifact lie in its ability to support a software engi-
neering activity. We asked our participants which activities related to requirements
they perform in their role throughout a project and which artifacts, if any, they use for
them. Then, we inquired whether they had experienced an artifact to be supportive or
troublesome for that activity.

138 O. Liskin

Table 2 shows the activities that had come up in the interviews. In each cell, it dis-
plays how many interviewees mentioned that an artifact was supportive or trouble-
some for that activity. To better understand what led to the interviewees’ assessments
we also asked them about the relevant properties that made an artifact supportive or
hindering. These properties are collected in Table 3.

One of the most strongly discussed activities was the clarification of requirements
details. Many of the interviewees were struggling to find the right form of artifact for
communication with the users. Although there are many templates and diagrams that
are suggested for this activity, the interviewees reported that their customers could not
work with most of them. It was considered helpful to use very concrete model arti-
facts for this communication. Users and user representatives were found to be best
able to assess and contribute to requirements representations in the form of GUI-
mockups or very concrete usage scenarios. Abstract models like flow charts of a
process were considered helpful for some customers but dangerous for others. Cus-
tomers who did not fully understand the notion or the abstract contents of such a
model (and due to time pressure did not have time to address such problems), were

Table 2. Activities performed by interviewees. Numbers indicate number of interviewees who
mentioned that artifact was suited for activity or could lead to problems, respectively.

 How Artifacts Support and Impede Requirements Communication 139

sometimes found to check it too superficially and to accept a presented model too
quickly. This resulted in wrong assumptions and a false sense of security for the de-
velopers.

Interestingly, in most cases where user stories were employed, they were not well
understandable for the users. Often, they were sliced in a way that they were not relat-
ing to the user’s job tasks, but were too much on a system level. The team had drifted
off to user story steps instead of user stories and lost some potential on involving
users into the development and, most importantly, prioritization. This was partly
compensated by communication, however at the price of additional translation effort
(for explanation of user story steps).

Often, details also need to be clarified beyond the analysis phase, i.e. during im-
plementation or testing. In these situations, very quick forms of communication and
documentation, like emails or phone calls, were considered well suited. However this
made later activities like reconstructing a requirement’s history much harder or even
impossible. Similarly, some interviewees stated that this activity was hard when
working with a specification document. Besides the difficulties of finding a specific
requirement within a document, relevant information like a requirement’s creator or
updater, the release it was shipped with, or the rationale behind it often simply were
not recorded per requirement when using a specification document.

Table 3. Positive and negative properties of artifacts referred to by interviewees

Artifact Positive Properties

Int. Negative Properties

Int.

collects everything in one central place 6

acceptable 4

Artifact
Container

new tool that needs to be learned 5

universal (everybody understands office
documents)

1 difficult to search 6

permits many ways to write down things 2 contents are too vague, generic 4

contents are too detailed 4

divides big items into small manageable
pieces

9 relations to overarching elements unclear 5

good granularity for clarifying details 4 relations to other elements unclear 3

easy to attach attributes (like author,
release) 4

difficult to understand structure for
persons who do not work with the
elements regularly

3

User-Oriented
Element

understandable for users 3 too coarse for development 2

good granularity for checking whether all
necessary information is available

3 not understandable for users 6

exact scope not clear 2

little room for interpretation 4 limited expressive power 1

good for finding information quickly 4

Concrete Model best understood by customers 8

Abstract Model not understood by all customers 4

Container

Generic
Document

Individual
Element

Technical
Element

Solution Model

140 O. Liskin

Planning and controlling implementation was reported to be well supported by
elementary artifacts. Dividing the specification into elementary artifacts allows to
attach additional information per artifact. Further, through the divide and conquer
principle, it makes each element more tangible and manageable. This mostly aligns
itself with what is known from literature on agile methods.

However, we also found activities that were considered problematic when only
working with elements like user stories. The reported problems mostly relate to situa-
tions, which require more of an overall view on requirements. First, some intervie-
wees mentioned that it was important to understand and document the vision of a
project. They reported that sometimes, a requirement itself looked fine – for example,
it was clear, self-contained, and had acceptance tests attached to it. However it was
not making sense on a more general level because it was not solving the users’ actual
needs. To identify such situations, developers needed to understand the context of a
story, like related stories or goals, which they not always were able to establish from
their requirements artifacts.

A second important activity was to develop tests that go beyond the scope of a sin-
gle element like a user story. For example, developers need to write automated tests
that cover the collaboration of multiple stories. Similarly, acceptance testing for a
release required additional information about general user goals. When just working
with what was written on elementary requirements, they missed some connecting test
cases. A third mentioned aspect was the inclusion of strategic goals. Strategic goals
were mainly found to influence prioritization of work or introduce new requirements.

It was important to document such overarching information so that it does not get
overlooked in the later project phases. However, it was considered difficult to docu-
ment them just with elementary artifacts like user stories or use cases. Here, specifica-
tion documents were considered helpful because of the high freedom they gave the
author to note information. Sometimes, also slides with concrete or abstract models
were kept as a reference for the overall vision and goals.

4.3 Problems Practitioners Face When Using Multiple Different Requirements
Artifacts Within a Project (RQ2)

As the results in RQ1 indicate, many participants work with multiple different arti-
facts in order to be able to better support different activities. Another mentioned bene-
fit was that displaying the same ideas in two different ways allowed the participants to
better check whether they had interpreted requirements correctly. However, using
multiple artifacts comes at the price of additional effort for creating, maintaining,
translating, and preventing artifacts from inconsistencies. Table 4 shows the problems
that were mentioned by the interviewees, as well as their reinforcers and effects. # Int.
depicts the number of interviewees who mentioned an item. Some participants men-
tioned multiple items within a topic. Therefore, # Int. in the lines reinforcers, prob-
lems and effects displays the total number of interviewees who had talked about the
according topic.

 How Artifacts Support and Impede Requirements Communication 141

Table 4. Benefits and problems observed by interviewees when working with multiple artifacts

 # Int.
Reinforcers 5
R1 Some contents overlap, others are disjoint 2

R2 Non-trivial relations between (parts of) artifacts 5

Problems 15
Pr1 (R1 ->) Duplication of effort for creating multiple artifacts 3
Pr2 (R2 ->) Uncertainty about completeness of translation 6
Pr3 (R1 ->) Changes must be documented in multiple places 4
Pr4 (R1, R2 ->) Inconsistencies 3

Pr5 (R1, R2 ->) More difficult to find relevant information in multiple places 4

Effects 5
E1 Higher costs for performing tasks or preventing problems 2
E2 Higher costs when problems occur (mistakes, misunderstandings) 1
E3 Decreased trust in up-to-dateness of artifacts 2

We found that more than 70% of our interviewees had experienced problems when

working with a variety of artifacts. Besides the extra effort for documenting and find-
ing information in multiple places (Pr1, Pr3, Pr5), they had struggled with inconsis-
tencies (Pr4). Further, they reported that it was difficult to check whether all (rele-
vant) elements from one artifact type had been recorded in the other one (Pr2). Prob-
lems led to extra effort for preventing them (E1), but could not always be mitigated. If
an inconsistency or other information was overlooked, misunderstandings or wrong
assumptions occurred, which in turn potentially led to higher costs through mistakes
(E2). Another reported effect was that people very quickly lost trust in a document
(E3) – and hence stopped using it – if they repeatedly had found the contents to be not
up-to-date or inconsistent.

In practice, two circumstances make working with multiple requirements artifacts
particularly challenging. The artifacts do not just describe disjoint information, but
various aspects of the same requirements (R1). Therefore, some – but also not all –
information is contained in multiple artifacts. Further, artifacts are not always in a
simple hierarchical one-to-many relationship, like when dividing a story into tasks
(R2). For example, a process model and a set of user stories can have complex rela-
tions with the process model depicting the interaction of multiple stories, while at the
same time, a subset of activities illustrating one user story.

4.4 Methods Used in Industry to Link Multiple Different Artifacts (RQ3)

We found different ways to map requirements artifacts that are used in industry. We
have classified them into four kinds of mapping. Table 5 shows the kinds of mappings
we found.

142 O. Liskin

Table 5. Categories of mapping methods used in practice

ID Mapping Method # Int.
M1 Manual textual reference 6
M2 Attachment 10

M3 Link 3
M4 Generated artifact 1

The simplest way was to manually reference a related element by mentioning its

ID in a textual way. This technique was mostly used to refer to parts of a specification
document. For example, a change request contained the specification’s chapter with
the original requirements. Similarly, a developer who had translated a specification
into User Stories, added the chapter with the original requirements to the stories. She
reported that the specification’s structure was changing, however, which rendered
some of the references obsolete. In another project, the participants simply textually
referred from User Stories to an overall GUI mockup and an overall flow chart.

Another common technique we found was to attach an element to another element.
When working with the container element, the attachment can be directly accessed
which makes it easy to obtain detailed information. However, the attached element
only exists within the container element and cannot be accessed otherwise. Therefore,
this technique is beneficial for hierarchical structures. Often, tools can create this kind
of mapping automatically during the attachment process.

Linking two elements that exist by themselves was also used in the discussed
projects, but only in very few cases. The direct link between the two elements allows
to directly open one element from a referencing element. In one reported case, devel-
opers were managing their work iteratively, but based on technical tasks. They added
a special type of artifact to represent user goals and linked the goal with all technical
tasks that were necessary to fulfill it. This allowed the customers to see how the
project was progressing on their goals, while the developers were still able to struc-
ture their work based on dependencies between development tasks.

Another mentioned technique is generating or constructing one artifact from mul-
tiple other artifacts. This technique is mostly used to create specification documents
from requirements elements and models. It avoids the duplication of content by keep-
ing the content in one place and just displaying it in another place. In order to use this
technique, special attention to the arrangement of the elements must be paid.

4.5 Challenges of Linking Multiple Requirements Artifacts (RQ4)

We found indications for both, the effort for the creation of artifact links being
perceived as too high as well as a too low perceived value. Table 6 presents chal-
lenges that interviewees mentioned to encumber or even prevent them from linking
artifacts.

 How Artifacts Support and Impede Requirements Communication 143

Table 6. Challenges of linking multiple requirements artifacts

ID Challenge # Int.
C1 Time pressure 5
C2 Interruption of other tasks 4

C3 Requires clear guidelines 1
C4 Difficult if requirements are not isolated from each other 2
C5 Manual links can become obsolete 2

When asked why they had not established an explicit link between particular arti-

facts, the interviewees’ most common answer was that they had no time. We tried to
find out more precisely, what it was that drove them not to want to spend time with
such a task. One mentioned problem was that often the persons worked with related
artifacts when they were in the middle of a different task. They were working on code
or other artifacts when they had searched for additional information in artifacts. In
this situation, they did not want to interrupt that task to create artifact links.

One interviewee, who had worked with links before, mentioned that clear guide-
lines are needed in order to establish a good linking structure. For example, it must be
specified that each story has to be linked to a user goal. Thinking through such guide-
lines is an additional barrier that prevents practitioners from using linking structures.

Further, linking was considered challenging when the parts to link were not iso-
lated. For example, if requirements are just contained in a block of plain text, or if a
model element cannot be addressed isolated from the whole model, it is more chal-
lenging and imprecise to denote related elements. Whether it is easy to link parts of a
model to other artifacts, mainly depends on the tooling used for creating the models.
This is especially a problem in enhancement projects, where the developers have to
build upon existing documentation.

Another mentioned demotivating factor was the high chance of breaking links on
changes. One team had tried to maintain a set of links from user stories to detail chap-
ters in a specification document. However, the chapters changed from time to time –
rendering the links useless – so that the team ultimately gave up.

5 Discussion

Handling multiple requirements artifacts is challenging. Our results indicate that
only one kind of requirements artifacts often is not enough for a software project. In
most projects, multiple artifacts are used to support different requirements communi-
cation activities. However, our results also indicate that requirements artifacts often
are not well integrated. Relations and dependencies between artifacts are not visible.
If developers or customers do not keep them in mind or spend extra time to search
artifacts, they miss important information.

Requirements communication with customers is not supported well. We see a strong
need for more work on supporting customers or business analysts in communicating
requirements. Customers are forced to create or accept artifacts in formats suited for

144 O. Liskin

developers. They cannot understand most of these languages and time pressure does
not leave them the time anymore to learn them. Instead, they should communicate
requirements in a form that is tangible for them and developers should be able to inte-
grate these forms into later work items. User stories answer the purpose of making it
easier for customers to communicate requirements and even participate in guiding
development. However, often they are not used for this purpose. We have seen user
stories being used as a means for developers to split work items and make work more
manageable, having to be translated permanently for customer communication. In
order to support the needs of both, developers and users, stories at different levels of
granularity are needed. As suggested by interviewees, it makes sense to work with
business user stories and technical user stories in combination.

Mapping requirements artifacts has a high potential. We have seen many problems
that could be mitigated if requirements artifacts were used. A lot of effort could be
saved for manually checking items for consistency, or proving that all items have
been translated. In addition, several requirements engineering activities could also be
improved. For example, developers could be warned about dependencies before they
implement a story card or when user oriented elements are changed. If abstract mod-
els could be linked with concrete models or requirements elements, the requirements
engineer could also use complex abstract models for customer communication. Parts
of the abstract model could be directly translated to concrete models, providing an
understandable view on the details. In the interviews, we got the impression that many
of the potential benefits of mapping seem vague to most practitioners.

Good lightweight requirements communication is working well. Many interviewees
reported that they were solving many tasks through direct communication. As Table 2
illustrates, many of the discussed activities were aided by direct communication.
Many interviewees stated that they had intensified verbal communication between
different roles – mostly through weekly or biweekly meetings – only in the last few
years. They reported to have experienced many improvements since the introduction
of such meetings. This is a good advancement. Lacking communication between the
customer and development sites has been a problem for several years. However, we
also saw new problems come up in the interviews when the reliance on verbal com-
munication was too high. Interviewees reported that sometimes, the only way to
detect a dependency or misunderstanding was when one particular person - who often
was the only one having the necessary knowledge - brought it up in the according
planning meeting. This strategy has worked out in many cases but is quite incidental.
The described situations raise questions, like whether more means are needed to im-
prove knowledge distribution in teams, and how such communication-reliant
approaches can be scaled.

6 Threats to Validity

This section discusses threats to validity based on Runeson and Höst [23].

 How Artifacts Support and Impede Requirements Communication 145

A threat to construct validity arises because the information provided by the partic-
ipants is interpreted by the researcher to form categories. This categorization is not
unique. The interview character of the study implied that not all questions were posed
explicitly. By using interviews (in contrast to surveys, for instance) we were able to
counteract misunderstandings with the participants.

Various aspects could influence the internal validity of our results. The types of a
project and its customers greatly influence requirements communication and there-
with the success of requirements engineering activities and utilized artifacts. To miti-
gate this threat, we interviewed practitioners from different types of companies and
different projects. The participants were self-selected, i.e. they knew in advance that
the interview would cover requirements artifacts and had agreed to participate in the
study. We cannot rule out the possibility that they had a higher interest in require-
ments engineering practices and the usage of artifacts than the majority of software
engineers. The methods they apply in requirements engineering, the artifacts they use
and their perceptions of the benefits of those artifacts could be influenced by their
general interest in RE.

The number of participants could influence external validity. We have interviewed
only 21 practitioners, so it is likely that we have not covered all situations in require-
ments communication. Also, the participants are all from German companies. How-
ever, since we have spoken to people within different company settings, different
projects, and different roles, the variety of covered perspectives is very high. In addi-
tion, we have reached a state in which answers were repetitive to insights from pre-
ceding interviews and further interviews lead to a diminishing number of results for
our research questions (similar to theoretical saturation in Grounded Theory [24]).

Reliability is affected by the number of participants, which is too low to claim sta-
tistical significance, and the fact that the interviews and their analysis were conducted
by one person. A different researcher could convey the questions and also interpret
the answers differently.

We have used a qualitative research approach, which reflects subjective opinions
and experiences of the participants. These cannot be generalized. Despite this and the
above limitations, we believe that our results have a value for researchers and also for
practitioners. They provide insights into the practice, increase the understanding of
the employment of requirements artifacts, and indicate possible challenges.

7 Conclusions

We have interviewed 21 practitioners about their handling of requirements artifacts
and report on their experiences, named challenges, and advances in using mapping
techniques. We have found that various artifacts are needed. Developers require de-
tailed items of fine granularity but also need to keep an eye on overarching aspects
like the product vision and goals. Customers need very concrete artifacts to express
their expectations. Project managers need a way to see the connections to the total
amount of upcoming work.

146 O. Liskin

The employment of multiple different artifacts imposes challenges like scattering
of information, incomplete translations, or inconsistencies between artifacts. For these
reasons, methods for mapping and linking requirements artifacts should be common
proficiencies in requirements engineering. However, we have seen it rarely employed
in practice. Most participants stated that they found explicit mapping or linking of
artifacts too costly in their project context. Indeed, mapping is not necessary in all
situations. However, if the methods and tools could be improved to better facilitate
artifact mapping, this would assist in many software projects.

With our results, practitioners can get an increased understanding of an artifact’s
utility for different activities, get an overview on mapping techniques and understand
what might prevent project members from using them. Researchers gain insights into
the handling of requirements artifacts in practice and into challenges that need to be
solved as well as investigated further.

In the future, we would like to work on improving facilitation of requirements
mapping by building on the insights from this study. Further, we have seen that arti-
fact mapping is not crucial in all kinds of projects. It would be interesting to investi-
gate which project aspects constitute a need for mapping. Another interesting aspect is
how to determine – especially in early project phases – which linking techniques and
also which artifacts will be helpful in the project

Acknowledgments. I would like to thank all interview participants for their time, all the valua-
ble insights, and the exceedingly interesting conversations.

References

1. Cockburn, A.: Agile Software Development. Addison Wesley (2002)
2. Bjarnason, E., Wnuk, K., Regnell, B.: Requirements are slipping through the  gaps - a

case study on causes & effects of communication gaps in large-scale software develop-
ment. In: Requirements Engineering Conference (RE) (2011)

3. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? a case
study on causes and effects of overscoping in large-scale software engineering. Informa-
tion and Software Technology 54(10), 1107–1124 (2012)

4. Abelein, U., Paech, B.: State of practice of user-developer communication in large-scale IT
projects. In: Salinesi, C., van de Weerd, I. (eds.) REFSQ 2014. LNCS, vol. 8396, pp. 95–111.
Springer, Heidelberg (2014)

5. Marczak, S., Damian, D., Stege, U., Schroter, A.: Information brokers in requirement-
dependency social networks. In: Requirements Engineering Conference (RE) (2008)

6. Knauss, E., Damian, D., Cleland-Huang, J., Helms, R.: Patterns of continuous require-
ments clarification. Requirements Engineering Journal (2014)

7. Kumar, S., Wallace, C.: A tale of two projects: a pattern based comparison of communica-
tion strategies in student software development. In: Frontiers in Education Conference.
IEEE (2013)

8. Fernandez, D.M., Penzenstadler, B.: Artefact-based requirements engineering: the AMDiRE
approach. Requirements Engineering Journal (2014)

9. Gross, A., Doerr, J.: What you need is what you get!: the vision of view-based require-
ments specifications. In: Requirements Engineering Conference (RE) (2012)

 How Artifacts Support and Impede Requirements Communication 147

10. Sharp, H., Robinson, H., Petre, M.: The role of physical artefacts in agile software devel-
opment: Two complementary perspectives. Interacting with Computers 21(12), 108–116
(2009)

11. Gallardo-Valencia, R.E., Olivera, V., Sim, S.E.: Are use cases beneficial for developers us-
ing agile requirements?. In: Fifth International Workshop on Comparative Evaluation in
Requirements Engineering (CERE) (2007)

12. Patton, J.: User Story Mapping. O’Reilly Media (2014)
13. Imaz, M., Benyon, D.: How stories capture interaction. In: INTERACT 1999, pp. 321–328.

IOS Press (1999)
14. Antonino, P.O., Keuler, T., Germann, N., Cronauer, B.: A non-invasive approach to trace

architecture design, requirements specification and agile artifacts. In: 23rd Australian
Software Engineering Conference (ASWEC), pp. 220–229 (2014)

15. Abelein, U., Paech, B.: A proposal for enhancing user-developer communication  in large
IT projects. In: 5th International Workshop on Cooperative and Human Aspects of Soft-
ware Engineering  (CHASE), pp. 1–3 (2012)

16. Rashid, A., Sawyer, P., Moreira, A., Araujo, J.: Early aspects: a model for aspect-oriented
requirements engineering. In: Requirements Engineering Conference (RE) (2002)

17. Gotel, O.C.Z., Marchese, F.T., Morris, S.J.: On requirements visualization. In: 2nd Inter-
national Workshop on  Requirements Engineering Visualization (REV) (2007)

18. Creighton, O., Ott, M., Bruegge, B.: Software cinema – video-based requirements engi-
neering. In: Requirements Engineering Conference (RE) (2006)

19. Bouillon, E., Mäder, P., Philippow, I.: A survey on usage scenarios for requirements tra-
ceability in practice. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830,
pp. 158–173. Springer, Heidelberg (2013)

20. Ben Charrada, E., Koziolek, A., Glinz, M.: Identifying outdated requirements based on
source code changes. In: Requirements Engineering Conference (RE) (2012)

21. Anderson, K.M., Sherba, S.A.: Using open hypermedia to support information integration.
In: Reich, S., Tzagarakis, M.M., De Bra, P.M.E. (eds.) AH-WS 2001, SC 2001, and OHS
2001. LNCS, vol. 2266, pp. 8–16. Springer, Heidelberg (2002)

22. Hayes, J.H., Dekhtyar, A., Osborne, J.: Improving requirements tracing via information re-
trieval. In: Requirements Engineering Conference (RE) (2003)

23. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

24. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Observations (Chicago, Ill.). Aldine de Gruyter (1967)

	How Artifacts Support and Impede
Requirements Communication
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results
	4.1 Classification of Requirements Artifacts
	4.2 Values and Impediments of Different Requirements Artifacts (RQ1
	4.3 Problems Practitioners Face When Using Multiple Different Requirements
Artifacts Within a Project (RQ2)
	4.4 Methods Used in Industry to Link Multiple Different Artifacts (RQ3)
	4.5 Challenges of Linking Multiple Requirements Artifacts (RQ4)

	5 Discussion
	6 Threats to Validity
	7 Conclusions
	References

