
Chapter 3
Bonus Results: Some Hidden Statements

The reader has, evidently, noticed that an essential percentage of the problems of
the main text is formed by purely topological statements some of which are quite
famous and difficult theorems. A common saying among Cp-theorists is that any
result on Cp-theory contains only 20% of Cp-theory; the rest is general topology.

It is evident that the author could not foresee all topology which would be needed
for the development of Cp-theory; so a lot of material had to be dealt with in the
form of auxiliary assertions. After accumulating more than seven hundred such
assertions, the author decided that some deserve to be formulated together to give a
“big picture” of the additional material that can be found in solutions of problems.

This section presents 100 topological statements which were proved in the solu-
tions of problems without being formulated in the main text. In these formulations
the main principle is to make them clear for an average topologist. A student could
lack the knowledge of some concepts of the formulation; so the index of this book
can be used to find the definitions of the necessary notions.

After every statement we indicate the exact place (in this book) where it
was proved. We did not include any facts from Cp-theory because more general
statements are proved sooner or later in the main text.

The author considers that most of the results that follow are very useful and have
many applications in topology. Some of them are folkloric statements and quite a
few are published theorems, sometimes famous ones. For example, Fact 2 of U.086
is a famous result of Efimov (1977), Fact 1 of U.071 is a result of Arhangel’skii
(1978b). Fact 1 of U.190 is a theorem of Yakovlev (1980) and Fact 4 of U.083 is a
result of Shapirovsky (1974).

To help the reader find a result he/she might need, we have classified the material
of this section according to the following topics: standard spaces, metrizable spaces,
compact spaces and their generalizations, properties of continuous maps, covering
properties, normality and open families, completeness and convergence properties,
ordered, zero-dimensional and product spaces, and cardinal invariants and set
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theory. The author hopes that once we understand in which subsection a result
should be, then it will be easy to find it.
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3.1 Standard Spaces

By standard spaces we mean the real line, its subspaces and it powers, Tychonoff
and Cantor cubes as well as ordinals together with the Alexandroff and Stone–Čech
compactifications of discrete spaces.

U.074. Fact 1. Given a regular uncountable cardinal � suppose that � < � and
C˛ � � is a club for any ˛ < �. Then C D TfC˛ W ˛ < �g is also a club.

U.074. Fact 2. Let � be an uncountable regular cardinal. Then

(i) if A � � is stationary then jAj D �;
(ii) if A � B � � and A is stationary then B is also stationary;

(iii) if A � � is stationary and C � � is a club then A \ C is stationary;
(iv) given a cardinal � < � suppose that A˛ � � for all ˛ < � and

SfA˛ W ˛ < �g
is stationary. Then A˛ is stationary for some ˛ < �.

U.074. Fact 3. Suppose that � is a regular uncountable cardinal and A is a
stationary subset of �. Assume that f W A ! � and f .˛/ < ˛ for any ˛ 2 A.
Then there is ˇ < � such that the set f˛ 2 A W f .˛/ D ˇg is stationary.

U.074. Fact 4. For any ordinal � the space �C1 is compact and scattered and hence
Cp.� C 1/ is a Fréchet–Urysohn space.

U.074. Fact 5. If � is any ordinal then any closed non-empty F � � is a retract of
� , i.e., there exists a continuous map r W � ! F such that r.˛/ D ˛ for any ˛ 2 F .

U.074. Fact 6. If � is an ordinal such that cf.�/ > ! then, for any second countable
space M and a continuous map f W � ! M there is z 2 M and � < � such that
f .˛/ D z for any ˛ 2 Œ�; �/.
U.074. Fact 8. Given an ordinal � assume that � D cf.�/ � ! and � 2 � . Then
there exists a map f W � ! Œ�; �/ such that ˛ < ˇ < � implies f .˛/ < f .ˇ/, the
set F D f Œ�� is closed in � and f W � ! F is a homeomorphism. In particular, �
embeds in Œ�; �/ as a closed subspace.

U.074. Fact 9. For any ordinal ˛ there exists a unique n.˛/ 2 ! and a unique limit
ordinal �.˛/ such that ˛ D �.˛/C n.˛/.

U.086. Fact 2. If � is a regular uncountable cardinal and ' W D
� ! I

� is a
continuous onto map then there is a closed F � D

� such that F ' D
� and 'jF is

injective.

U.174. Fact 2. Given an infinite set A and n 2 ! let �n.A/ D fx 2 D
A W jx�1.1/j �

ng. Then �n.A/ is a scattered compact space.

U.176. Fact 1. Suppose that A � !1 is a stationary set such that !1nA is also
stationary and let T .A/ D fF � A W F is closed in !1g. Then all elements of
T .A/ are countable and hence compact; given F;G 2 T .A/ say that F � G

if F is an initial segment of G, i.e., for the ordinal ˛ D max.F /, we have
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G \ .˛ C 1/ D F . Then .T .A/;�/ is a tree which has no uncountable chains and
no dense � -antichains.

U.176. Fact 2. Given an infinite set T consider the set ŒP;Q� D fx 2 D
T W x.P / �

f1g and x.Q/ � f0gg for any disjoint finite sets P;Q � T . Suppose additionally
that we have a family U D fŒPa;Qa� W a 2 Ag such that the set A is infinite and
supfjPa [Qaj W a 2 Ag < !. Then U is not disjoint.

U.342. Fact 4. Given an infinite cardinal � let Sn D fx 2 D
� W jx�1.1/j � ng for

any n 2 !. Then Sn is a continuous image of .A.�//n for any n 2 !.

U.342. Fact 5. If � � c is an infinite cardinal thenA.�/ is weakly metrizably fibered.
As a consequence, if A is a set such that jAj � c then any compact subspace of
�0.A/ is weakly metrizably fibered.

U.362. Fact 1. Let u 2 K D .A.!1//
! be the point with u.n/ D a for all n 2 !.

Then the space Knfug is not metacompact.

U.370. Fact 1. If A � !1 is a stationary set then A is not discrete as a subspace
of !1.

U.415. Fact 1. For any space Z the set QZ is uniformly dense in R
Z , i.e., for any

f 2 R
Z there is a sequence ffn W n 2 Ng � Q

Z which converges uniformly to f .

U.426. Fact 1. Suppose that � is a cardinal with �! D � and A is a set such
that jAj D �. Then the space I

A has a strongly � -discrete dense subspace of
cardinality �.

U.463. Fact 1. There exists a surjective map � W D! ! !! such that ��1.U / is an
F� -set in D

! for any open U � !! .

U.471. Fact 1. The topology of the double arrow space is zero-dimensional and
generated by its lexicographical order. In particular, the double arrow space is
a linearly ordered zero-dimensional perfectly normal, hereditarily separable non-
metrizable compact space.

U.481. Fact 3. Suppose that A is a set and p 2 I
A. Assume that, for some n 2 N,

we have subspaces K0; : : : ; Kn�1 � I
A such that every Ki is homeomorphic to

A.!1/ and p is the unique non-isolated point of Ki ; let Di D Finfpg. Then, for
any family fU0; : : : ; Un�1g � 	.IA/ such that Di � Ui for all i < n, we have
U0 \ : : : \ Un�1 ¤ ;.

U.490. Fact 1. The space A.!1/ does not embed in a linearly ordered space.

U.493. Fact 1. For any set A both spaces RA and I
A are connected.

U.497. Fact 2. The space ˇR is not metrizable and there are no non-trivial
convergent sequences in ˇRnR.
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3.2 Metrizable Spaces

The results of this Section deal with metrics, pseudometrics or metrizable spaces in
some way. We almost always assume the Tychonoff separation axiom; so our second
countable spaces are metrizable and hence present here too.

U.050. Fact 1. Given a metric space .M; 
/ a family C � 	.M/ is a base in M if
and only if, for any " > 0 there is a collection C0 � C such that

S C0 D M and
mesh.C0/ � ".

U.050. Fact 2. Suppose that Z is an arbitrary space. Then

(1) for any pseudometrics d1 and d2 on the space Z, the function d D d1 C d2 is a
pseudometric on the space Z;

(2) if d is a pseudometric on the space Z then a �d is a pseudometric on Z for any
a > 0;

(3) for any pseudometrics d1 and d2 on the space Z, the function d D maxfd1; d2g
is a pseudometric on the space Z;

(4) if d1 is a pseudometric on the spaceZ and a > 0 then the function d W Z�Z !
R defined by d.x; y/ D minfd1.x; y/; ag for all x; y 2 Z is a pseudometric
on Z;

(5) if, for any i 2 !, a function di is a pseudometric on the spaceZ and di .x; y/ �
1 for any x; y 2 Z then d D P

i2! 2�i � di is a pseudometric on Z;
(6) if f W Z ! R is a continuous function then the function d W Z � Z ! R

defined by d.x; y/ D jf .x/� f .y/j for any x; y 2 Z is a pseudometric on the
space Z;

(7) if d1 is a metric and d2 is a pseudometric on the space Z then d D d1 C d2 is
a metric on the space Z.

U.062. Fact 1. LetA be a non-empty closed subspace of a metrizable spaceM . Then
there exists a continuous linear map e W Cp.A/ ! Cp.M/ such that e.f /jA D f

for any f 2 Cp.A/.
U.062. Fact 2. Suppose that M is a metrizable space and A � M is a non-empty
closed subset of M ; let IA D ff 2 Cp.M/ W f jA � 0g. Then there exists a linear
homeomorphism between Cp.M/ and Cp.A/�IA and, in particular, Cp.A/ embeds
in Cp.M/ as a closed linear subspace.

U.094. Fact 1. For any second countable spaceZ there is a countable space T such
that Z embeds in Cp.T / as a closed subspace.

U.138. Fact 1. If a space has a dense metrizable subspace then it has a � -disjoint
�-base. For first countable spaces the converse is also true, i.e., a first countable
space Z has a dense metrizable subspace if and only if it has a � -disjoint �-base.

U.318. Fact 1. A space Z can be condensed onto a metrizable space if and only if
it has a Gı-diagonal sequence fUn W n 2 !g such that UnC1 is a star refinement of
Un for any n 2 !.
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U.347. Fact 1. Suppose that Z is a space, .M; 
/ is a metric space and we have a
map f W Z ! M . Then

(a) for any " > 0 the set O" D fz 2 Z W osc.f; z/ < "g is open in Z;
(b) the map f is continuous at a point z 2 Z if and only if osc.f; z/ D 0.
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3.3 Compact Spaces and Their Generalizations

This Section contains some statements on compact, countably compact and pseudo-
compact spaces.

U.039. Fact 1. Any perfect preimage of a countably compact space is countably
compact.

U.071. Fact 1. If MAC:CH holds then any compact space X of weight at most !1
is pseudoradial. In particular, D!1 is pseudoradial under MAC:CH.

U.072. Fact 1. Let � be an infinite cardinal. If X is a dyadic space such that the set
C D fx 2 X W ��.x;X/ � �g is dense in X then w.X/ � �. In particular, if X
has a dense set of points of countable �-character then X is metrizable.

U.072. Fact 2. Under CH every pseudoradial dyadic space is metrizable.

U.077. Fact 1. IfK is an infinite compact space then jC.K/j � w.K/. In particular,
for any metrizable compact K the family of all clopen subsets of K is countable.

U.080. Fact 1. If K is a compact !-monolithic space of countable tightness then
K is Fréchet–Urysohn and has a dense set of points of countable character. This is
true in ZFC, i.e., no additional axioms are needed for the proof of this Fact.

U.086. Fact 1. Given a regular uncountable cardinal � if K is a compact space
such that ��.x;K/ � � for any x 2 K then there is a closed P � K which maps
continuously onto D

� and hence K maps continuously onto I
� .

U.086. Fact 3. If K is a dyadic space and w.K/ > � for some infinite cardinal �
then D

�C embeds in K.

U.104. Fact 1. Suppose that K is a non-empty compact space with no points of
countable character. Then K cannot be represented as a union of � !1-many
cosmic subspaces.

U.104. Fact 1. Suppose that K is a non-empty compact space with no points of
countable character. Then K cannot be represented as a union of � !1-many
cosmic subspaces.

U.174. Fact 1. Let X be a countably compact � -discrete space, i.e., X D S
n2! Xn

where each Xn is a discrete subspace of X . Then X is scattered.

U.185. Fact 1. Suppose that Z is a compact space, F is non-empty and closed in Z
and, additionally, there is a point-countable open cover U of the set ZnF such that
U � ZnF for any U 2 U . Then F is a W -set in Z.

U.222. Fact 1. Suppose thatK is a compact space and some x 2 K is not a �-point.
Then Knfxg is pseudocompact and K is canonically homeomorphic to ˇ.Knfxg/,
i.e., there exists a homeomorphism ' W ˇ.Knfxg/ ! K such that '.y/ D y for any
y 2 Knfxg.
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U.337. Fact 1. Let K be an infinite compact space with jKj D �. Suppose that U is
an open subset of K and F is a closed subset of the subspace U . Then there exist
families fS.˛; n/ W ˛ < �; n 2 !g and fV.˛; n/ W ˛ < �; n 2 !g with the following
properties:

(i) the set S.˛; n/ is compact and S.˛; n/ � F for any ˛ < � and n 2 !;
(ii) V.˛; n/ is open in K and S.˛; n/ � V.˛; n/ � U for any ˛ < � and n 2 !;

(iii)
SfS.˛; n/ W ˛ < �; n 2 !g D F ;

(iv) if ˛ < ˇ < � then S.ˇ; n/ \ V.˛;m/ D ; for any m; n 2 !.

U.342. Fact 1. Suppose that K is compact and K D SfKn W n 2 !g where Kn is
weakly metrizably fibered and closed in K for any n 2 !. Then K is also weakly
metrizably fibered.

U.342. Fact 2. If Kn is a compact weakly metrizably fibered space for any n 2 !

then K D Q
n2! Kn is also weakly metrizably fibered.

U.342. Fact 3. Any closed subspace and any continuous image of a compact weakly
metrizably fibered space is weakly metrizably fibered.

U.417. Fact 1. If Z is a pseudocompact space and  .z; Z/ � ! for some z 2 Z

then �.z; Z/ � !.

U.417. Fact 2. If Z is a pseudocompact first countable space then, for any Y � Z

with jY j � c there is Y 0 � Z such that jY 0j � c, the space Y 0 is pseudocompact
and Y � Y 0.

U.481. Fact 1. Given compact spacesX and Y suppose that ' W Cp.X/ ! Cp.Y / is
a continuous linear map. Then the map ' W Cu.X/ ! Cu.Y / is continuous as well.

U.497. Fact 1. If Z is a space and Y is a dense locally compact subspace of Z then
Y is open in Z.



3.4 Properties of Continuous Maps 467

3.4 Properties of Continuous Maps

We consider the most common classes of continuous maps: open, closed, perfect
and quotient. The respective results basically deal with preservation of topological
properties by direct and inverse images.

U.074. Fact 11. Given spaces Y and Z assume that f W Y ! Z is a continuous
map such that there is P � Y for which f .P / D Z and f jP W P ! Z is a
quotient map. Then f is quotient. In particular, any retraction is a quotient map.

U.077. Fact 2. Given spaces Z; T and a continuous map f W Z ! T , for any
B � T , the set G.f;B/ D f.z; f .z// W z 2 f �1.B/g � Z � B is closed in Z � B .

U.093. Fact 2. Suppose that 't W Et ! Mt is a compact-valued upper
semicontinuous onto map for any t 2 T . Let E D Q

t2T Et ; M D Q
t2T Mt

and define a multi-valued map ' D Q
t2T 't W E ! M by '.x/ D Q

t2T 't .x.t//
for any x 2 E. Then ' W E ! M is a compact-valued upper semicontinuous onto
map.

U.481. Fact 4. Given a space X suppose that F � X is C �-embedded in X and
we have a continuous map f W F ! I

A for some A. Then there exists a continuous
map g W X ! I

A such that gjF D f . In particular, if the space X is normal
and F is closed in X then any continuous map from F to a Tychonoff cube can be
continuously extended to the whole space X .

U.481. Fact 6. Let U D fUn W n 2 !g be disjoint family of non-empty open subsets
of a space Z. Assume that fn 2 C �.Z/ and fn.ZnUn/ � f0g for all n 2 !.
If, additionally, the sequence fjjfnjj W n 2 !g converges to zero then the function
f D P

n2! fn is continuous on Z.

U.493. Fact 2. Any continuous image of a connected space is connected. As a
consequence, if X is connected, Y is zero-dimensional and f W X ! Y is a
continuous map then f .X/ is a singleton.
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3.5 Covering Properties, Normality and Open Families

This section contains results on the covering properties which are traditionally
considered not to be related to compactness, such as the Lindelöf property,
paracompactness and its derivatives.

U.082. Fact 1. If Z is a space and l.Z/ � � for some infinite cardinal � then any
indexed set Y D fy˛ W ˛ < �Cg � Z has a complete accumulation point, i.e., there
is z 2 Z such that jf˛ < �C W y˛ 2 U gj D �C for any U 2 	.z; Z/.
U.093. Fact 3. If Z! is Lindelöf then Z! � T is also Lindelöf for any K-analytic
space T .

U.095. Fact 1. Assume that we have an uncountable space Z such that w.Z/ �
c and there is a countable Q � Z such that Z is concentrated around Q, i.e.,
jZnU j � ! for any U 2 	.Q;Z/. Then the Continuum Hypothesis (CH) implies
that there is an uncountable T � Z such that Q � T and T n is Lindelöf for any
n 2 N.

U.102. Fact 1. Given a space Z, any � -locally finite open cover of Z has a locally
finite refinement.

U.102. Fact 2. Suppose thatZ is a space and F is a discrete family of closed subsets
of Z. If there exists a locally finite closed cover C of the space Z such that every
C 2 C meets at most one element of F then the family F is open-separated, i.e., for
any F 2 F we can choose OF 2 	.F;Z/ such that the family fOF W F 2 Fg is
disjoint.

U.175. Fact 1. If Z is an uncountable space which is a continuous image of a
Lindelöf k-space then there is an infinite compact K � Z.

U.177. Fact 1. In a Lindelöf space Z every uncountable A � Z has a condensation
point, i.e., there is z0 2 Z for which jA\U j > ! for any U 2 	.z0; Z/. In addition,
if Z is a space with l.Z/ � !1 then Z is Lindelöf if and only if every uncountable
A � Z has a condensation point.

U.177. Fact 2. If Z is a space with strong condensation property and l.Z!/ � !1
then Z! is Lindelöf.

U.188. Fact 1. Given a space Z suppose that U is an open cover of Z such that U
is Lindelöf for any U 2 U . Then U can be shrunk, i.e., for any U 2 U there is a
closed set FU � U such that fFU W U 2 Ug is a cover of Z.

U.193. Fact 3. A space Z is hereditarily normal if and only if any pair of separated
subsets of Z are open-separated.

U.271. Fact 1. Given a space Z and a family U � 	�.Z/ there is a discreteD � Z

such that
SfU 2 U W D \ U ¤ ;g D SU .
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U.271. Fact 2. Suppose that � is an infinite cardinal,Z is a space and B � 	�.Z/ is
a family with ord.z;B/ < � for any z 2 Z. Then there exists a family fD˛ W ˛ < �g
of discrete subspaces of Z such that, for the set D D SfD˛ W ˛ < �g, we have
D\B ¤ ; for anyB 2 B. In particular, if B is point-finite then there is a � -discrete
subset of Z which is dense in B.

U.284. Fact 1. Suppose that Z is a Lindelöf ˙ -space, Y � Z and there is a
countable family A of Lindelöf ˙ -subspaces of Z that separates Y from ZnY .
Then Y is a Lindelöf ˙ -space.

U.285. Fact 5. Suppose that X is a Lindelöf ˙ -space and F is a fixed countable
network with respect to a compact cover C of the space X . Assume additionally
that F is closed under finite intersections and f W X ! Y is a continuous onto
map. If A � X is a set such that f .A \ F / is dense in f .F / for any F 2 F then
f .A/ D Y .

U.363. Fact 1. Suppose that a space X has an open � -point-finite cover U such that
U is compact for any U 2 U . Then X is � -metacompact.
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3.6 Completeness and Convergence Properties

This Section deals mainly with Čech-complete spaces. Some results on convergence
properties are presented as well.

U.061. Fact 1. If Z is a sequential space, A � Z and z 2 AnA then z has a
countable �-network in Z which consists of infinite subsets of A.

U.074. Fact 10. For any space Z, if Cp.Z/ is Fréchet–Urysohn and Y ¤ ; is an
F� -subset of Z then Cp.Y / is also Fréchet–Urysohn.

U.421. Fact 3. If X is Čech-complete and  .x;X/ � ! for some x 2 X then
�.x;X/ � !. In particular, any splittable Čech-complete space is first countable.

U.421. Fact 7. IfX is a Čech-complete paracompact space with aGı-diagonal then
X is metrizable.

U.429. Fact 1. For any Čech-complete space X there exists a dense paracompact
subspace Y � X such that Y is a Gı-set in X (and hence Y is Čech-complete).
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3.7 Ordered, Zero-Dimensional and Product Spaces

The space Cp.X/ being dense in R
X , the results on topological products form

a fundamental part of Cp-theory. The main line here is to classify spaces which
could be embedded in (or expressed as a continuous image of) a nice subspace of a
product.

U.003. Fact 1. If dim Zt D 0 for any t 2 T and Z D LfZt W t 2 T g then
dim Z D 0.

U.067. Fact 1. For an infinite cardinal � let 	 be the lexicographic order on the set
D� D � � Z, i.e., for any a; b 2 D� such that a D .˛; n/; b D .ˇ;m/ let a 
 b if
˛ < ˇ; if ˇ < ˛ then we let b 
 a. Now if ˛ D ˇ then a 	 b if n � m and b 	 a

if m � n. Then 	 is a linear order on D� and the space .D�; 	.	// is discrete.
Besides, if � > ! then jfa 2 D� W a 	 bgj < � for any b 2 D� . In particular, any
discrete space X is linearly orderable.

U.067. Fact 2. Suppose that, for every t 2 T , the topology of a space Xt can be
generated by a linear order 	t which has a maximal and a minimal element. Then
the space X D LfXt W t 2 T g is linearly orderable.

U.067. Fact 3. Suppose that X D fxg [ fx˛ W ˛ < �g where � is an infinite regular
cardinal, the enumeration of X is faithful and x is the unique non-isolated point
of X . For every ˛ < � let O˛ D fxg [ fxˇ W ˇ � ˛g. If the family fO˛ W ˛ < �g is
a local base at x in X then there is a linear order 	 on X such that 	.	/ D 	.X/,
the point x is the maximal element of .X;	/ and x0 is its minimal element.

U.104. Fact 2. Suppose that Nt is a cosmic space for each t 2 T and take any point
u 2 N D QfNt W t 2 T g. If jT j � !1 then ˙.N; u/ is a union of � !1-many
cosmic spaces.

U.190. Fact 1. Any subspace of a � -product of second countable spaces is
metacompact.

U.359. Fact 4. Suppose that a zero-dimensional first countable X is strongly
homogeneous, i.e., any non-empty clopen subset of X is homeomorphic to X . Then
X is homogeneous.

U.366. Fact 4. Any � -product of compact metrizable spaces must have a closure-
preserving cover by metrizable compact subspaces.
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3.8 Cardinal Invariants and Set Theory

To classify function spaces using cardinal invariants often gives crucial information.
This Section includes both basic, simple results on the topic as well as very difficult
classical theorems.

U.003. Fact 2. Given an infinite cardinal � a space Z is zero-dimensional and
w.Z/ � � if and only if Z is homeomorphic to a subspace of D� .

U.027. Fact 1. For any space T and a closed F � T we have  .F; T / � l.T nF /.
In particular,  .t; T / � l.T nftg/ for any t 2 T .

U.074. Fact 7. For any space Z we have jCp.Z/j � w.Z/l.Z/.

U.083. Fact 1. Given a space Z and an infinite cardinal � suppose that  .Z/ � 2�

and l.Z/ � t .Z/ � �. Assume additionally that jAj � 2� for any A � Z with
jAj � �. Then jZj � 2� .

U.083. Fact 2. Given a space Z let R.Z/ be the family of all regular open subsets
of Z, i.e., R.Z/ D fU 2 	.Z/ W U D Int.U /g. Then jR.Z/j � �w.Z/c.Z/.

U.083. Fact 3. For any space Z we have �w.Z/ � ��.Z/ � d.Z/.
U.083. Fact 4. For any space Z we have w.Z/ � ��.Z/c.Z/.

U.127. Fact 1. If a space Z is �-monolithic and s.Z/ � � for some infinite cardinal
� then hl.Z/ � �.

U.274. Fact 1. If Z is a space with a unique non-isolated point then Z ˚ ftg ' Z

for any t … Z.

U.337. Fact 2. If n is a natural number and T is an infinite set then for any family
N D fNt W t 2 T g such that jNt j � n for any t 2 T , there is a setD and an infinite
T 0 � T such that Ns \Nt D D for any distinct s; t 2 T 0.

U.381. Fact 1. For any n; l 2 ! there exists a number g.n; l/ 2 ! such that, for
any family N D fNt W t 2 T g with jNt j � n for any t 2 T , if jT j � g.n; l/ then
there is S � T such that jS j � l and fNt W t 2 Sg is a 
-system, i.e., there is a set
D such that Ns \Nt D D for any distinct s; t 2 S .

U.418. Fact 1. If Z is a space then jZj � nw.Z/ .Z/.
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