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Preface

This is the third volume of the series of books of problems in C),-theory entitled
“A Cp-Theory Problem Book”, i.e., this book is a continuation of the two volumes
subtitled Topological and Function Spaces and Special Features of Function Spaces.
The series was conceived as an introduction to C,-theory with the hope that each
volume could also be used as a reference guide for specialists.

The first volume provides a self-contained introduction to general topology and
C-theory and contains some highly non-trivial state-of-the-art results. For example,
Section 1.4 presents Shapirovsky’s theorem on the existence of a point-countable -
base in any compact space of countable tightness and Section 1.5 brings the reader
to the frontier of the modern knowledge about realcompactness in the context of
function spaces.

The second volume covers a wide variety of topics in C,-theory and general
topology at the professional level, bringing the reader to the frontiers of modern
research. It presents, among other things, a self-contained introduction to Advanced
Set Theory and Descriptive Set Theory, providing a basis for working with most
popular axioms independent of ZFC.

This present volume basically deals with compactness and its generalizations in
the context of function spaces. It continues dealing with topology and C,-theory
at a professional level. The main objective is to develop from scratch the theory of
compact spaces most used in Functional Analysis, i.e., Corson compacta, Eberlein
compacta, and Gul’ko compacta.

In Section 1.1 of Chapter 1, we build up the necessary background presenting the
basic results on spaces C,(X) when X has a compact-like property. In this section,
the reader will find the classical theorem of Grothendieck, a very deep theorem of
Reznichenko on w-monolithity, under MA+—CH, of a compact space X if C,(X)
is Lindelof, as well as the results of Okunev and Tamano on non-productivity of the
Lindelof property in spaces C,(X).

The main material of this volume is placed in Sections 1.2—1.4 of Chapter 1. Here
we undertake a reasonably complete and up-to-date development of the theory of
Corson, Gul’ko, and Eberlein compacta. Section 1.5 develops the theory of splittable
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spaces and gives far-reaching applications of extension operators in both C,-theory
and general topology.

We use all topological methods developed in the first two volumes, so we refer
to their problems and solutions when necessary. Of course, the author did his best
to keep every solution as independent as possible, so a short argument could be
repeated several times in different places.

The author wants to emphasize that if a postgraduate student mastered the
material of the first two volumes, it will be more than sufficient to understand every
problem and solution of this book. However, for a concrete topic much less might
be needed. Finally, let me outline some points which show the potential usefulness
of the present work.

* the only background needed is some knowledge of set theory and real numbers;
any reasonable course in calculus covers everything needed to understand this
book;

* the student can learn all of general topology required without recurring to any
textbook or papers; the amount of general topology is strictly minimal and is
presented in such a way that the student works with the spaces C,(X) from the
very beginning;

» what is said in the previous paragraph is true as well if a mathematician working
outside of topology (in functional analysis, for example) wants to use results or
methods of C,-theory; he (or she) will find them easily in a concentrated form
or with full proofs if there is such a need;

* the material we present here is up to date and brings the reader to the frontier of
knowledge in a reasonable number of important areas of C,-theory;

* this book seems to be the first self-contained introduction to C,-theory.
Although there is an excellent textbook written by Arhangel’skii (1992a), it
heavily depends on the reader’s good knowledge of general topology.

Mexico City, Mexico Vladimir V. Tkachuk
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Introduction

The term “C ,-theory” was invented to abbreviate the phrase “The theory of function
spaces endowed with the topology of pointwise convergence”. The credit for the
creation of C,-theory must undoubtedly be given to Alexander Vladimirovich
Arhangel’skii. The author is proud to say that Arhangel’skii also was the person
who taught him general topology and directed his PhD thesis. Arhangel’skii was the
first to understand the need to unify and classify a bulk of heterogeneous results
from topological algebra, functional analysis, and general topology. He was the
first to obtain crucial results that made this unification possible. He was also the
first to formulate a critical mass of open problems which showed this theory’s huge
potential for development.

Later, many mathematicians worked hard to give C,-theory the elegance and
beauty it boasts nowadays. The author hopes that the work he presents for the
reader’s judgement will help to attract more people to this area of mathematics.

The main text of this volume consists of 500 statements formulated as problems;
it constitutes Chapter 1. These statements provide a gradual development of many
popular topics of C),-theory to bring the reader to the frontier of the present-day
knowledge. A complete solution is given to every problem of the main text.

The material of Chapter 1 is divided into five sections with 100 problems in each
one. The sections start with an introductory part where the definitions and concepts
to be used are given. The introductory part of any section never exceeds two pages
and covers everything that was not defined previously. Whenever possible, we try
to save the reader the effort of ploughing through various sections, chapters, and
volumes, so we give the relevant definitions in the current section not caring much
about possible repetitions.

Chapter 1 ends with some bibliographical notes to give the most important
references related to its results. The selection of references is made according to
the author’s preferences and by no means can be considered complete. However,
a complete list of contributors to the material of Chapter 1 can be found in our
bibliography of 400 items. It is my pleasant duty to acknowledge that I consulted
the paper of Arhangel’skii (1998a) to include quite a few of its 375 references in my
bibliography.

Xiii



Xiv Introduction

Sometimes, as we formulate a problem, we use without reference definitions and
constructions introduced in other problems. The general rule is to try to find the
relevant definition not more than ten problems before.

The first section of Chapter 1 deals with the spaces C,(X) for a compact X.
It includes the classical theorem of Grothendieck, a deep result of Reznichenko
on w-monolithity, under MA+4-—CH, of any compact space X such that C,(X) is
Lindelof, as well as the examples of Okunev and Tamano on non-productivity of the
Lindelof property in function spaces.

Sections 1.2—1.4 of Chapter 1 represent the core of this volume; they constitute
a development of the theory of Corson, Gul’ko, and Eberlein compacta. These
classes of compact spaces are of utmost importance not only in topology but also
in functional analysis. These sections include all classical results (characterizations
via families of retractions, categorical and topological properties of these compact
spaces, etc.) together with comparatively new material on Sokolov spaces and a
radical generalization of a cornerstone result of Gul’ko on the Corson property of
any compact space X whose C,(X) is Lindelof X

It is worth mentioning that Section 1.3 features a detailed description and proof
of the properties of a famous example of Reznichenko of a Talagrand compact space
X such that X = B(X \ {a}) for some point a € X. This example has never been
published by the author; since it disproves quite a few conjectures in both topology
and functional analysis, the respective paper circulated as a preprint for more than
20 years before the example was described in a monograph on Functional Analysis.

Every Section of Chapter 1 has numerous topics that are developed up to the fron-
tier of the present-day knowledge. In particular, Section 1.2 introduces the reader to
the technique of adequate sets for constructing Corson compact spaces, Section 1.3
contains the results on domination of C,(X) by second countable spaces, and
Section 1.4 gives a Gruenhage’s characterization of Eberlein compactness of X in
terms of a covering property of (X x X)\A.

The complete solutions of all problems of Chapter 1 are given in Chapter 2.
Chapter 3 begins with a selection of 100 statements which were proved as auxiliary
facts in the solutions of the problems of the main text. This material is split into 8
sections to classify the respective results and make them easier to find. Chapter 4
consists of 100 open problems presented in 8 sections with the same idea: to classify
this bulk of problems and make the reader’s work easier.

Chapter 4 also witnesses an essential difference between the organization of our
text and the book of Arhangel’skii and Ponomarev (1974): we never put unsolved
problems in the main text as is done in their book. All problems formulated in
Chapter 1 are given complete solutions in Chapter 2, and the unsolved ones are
presented in Chapter 4.

There is little to explain about how to use this book as a reference guide. In this
case, the methodology is not that important and the only thing the reader wants is
to find the results he (or she) needs as fast as possible. To help with this, the titles
of chapters and sections give the first approximation. To better see the material of a
chapter, one can consult the second part of the Contents section where a detailed
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summary is given; it is supposed to cover all topics presented in each section.
Besides, the index can also be used to find necessary material.

To sum up the main text, I believe that the coverage of C,-theory will be
reasonably complete and many of the topics can be used by postgraduate students
who want to specialize in C,-theory. Formally, this book can also be used as
an introduction to general topology. However, it would be a somewhat biased
introduction, because the emphasis is always given to C,-spaces and the topics are
only developed when they have some applications in C,-theory.

To conclude, let me quote an old saying which states that the best way for one to
learn a theorem is to prove it oneself. This text provides a possibility to do this. If
the reader’s wish is to read the proofs, there they are concentrated immediately after
the main text.



Chapter 1
Behavior of Compactness in Function Spaces

The reader who has found his (or her) way through the first thousand problems of
this book is fully prepared to enjoy working professionally in C,-theory. Such a
work implies choosing a topic, reading the papers with the most recent progress
thereon and attacking the unsolved problems. Now, the first two steps are possible
without doing heavy library work, because Chapter 1 provides information on the
latest advances in all areas of C,-theory, where compactness is concerned. Here,
many ideas, results and constructions came from functional analysis giving a special
flavor to this part of C,-theory, but at the same time making it more difficult to
master. I must warn the reader that most topics, outlined in the forthcoming bulk
of 500 problems, constitute the material of important research papers—in many
cases very difficult ones. The proofs and solutions, given in Chapter 2, are complete,
but sometimes they require a very high level of understanding of the matter. The
reader should not be discouraged if some proofs seem to be unfathomable. We still
introduce new themes in general topology and formulate, after a due preparation,
some non-trivial results which might be later used in C,,-theory.

Section 1.1 contains general facts on “nice” behavior of C,(X) and its subspaces
when X has some compactness-like property. There are two statements which
deserve to be called the principal ones: Arhangel’skii’s theorem on compact
subspaces of C,(X) for X Lindelof, under PFA (Problem 089) and Okunev’s
theorem on Lindelof subspaces of C,(X) for a compact separable space X, under
MA-+—CH (Problem 098).

Section 1.2 deals with Corson compact spaces and their applications. The most
important results include a theorem of Gul’ko, Michael and Rudin which states that
any continuous image of a Corson compact space is Corson compact (Problem 151),
Sokolov’s example of a Corson compact space which is not Gul’ko compact
(Problem 175) and Sokolov’s theorem on Lindelof property in iterated function
spaces of a Corson compact space (Problems 160 and 162).

In Section 1.3 we present the latest achievements in the exploration of Lindelof
X -property in X and C,(X). Many results of this section are outstanding. We would

© Springer International Publishing Switzerland 2015 1
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2 1 Behavior of Compactness in Function Spaces

like to mention Gul’ko’s theorem which says that every Gul’ko compact is Corson
compact (Problem 285), Okunev’s theorems on Lindel6f X'-property in iterated
function spaces (Problems 218 and 219), Leiderman’s theorem on existence of dense
metrizable subspaces of Gul’ko compact spaces (Problem 293) and Reznichenko’s
example of a Gul’ko compact space which is not Preiss—Simon (Problem 222).
Section 1.4 outlines the main topics in the theory of Eberlein compact spaces.
Here, the bright results are also numerous. It is worth mentioning a theorem of Amir
and Lindenstrauss on embeddings of Eberlein compact spaces in X, (A) (Problem
322), Rosenthal’s characterization of Eberlein compact spaces (Problem 324), a
theorem of Benyamini, Rudin, Wage and Gul’ko on continuous images of Eberlein
compact spaces (Problem 337), Gruenhage’s characterization of Eberlein compact
spaces (Problem 364) and Grothendieck’s theorem on equivalence of the original
definition of Eberlein compact spaces to the topological one (Problem 400).
Section 1.5 is devoted to the study of splittable spaces and embeddings which
admit nice extension operators. It has two main results: Arhangel’skii and Shakh-
matov’s theorem on pseudocompact splittable spaces (Problem 417) and a theorem
of Arhangel’skii and Choban on compactness of every ¢-extral space (Problem 475).
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1.1 The Spaces C,(X) for Compact and Compact-Like X

Given an infinite cardinal «, call a space X «-monolithic if, for any ¥ C X with
|Y| < «k, we have nw(Y) < k. A space is monolithic if it is k-monolithic for any
k. A space X is zero-dimensional if it has a base whose elements are clopen. The
space X is strongly zero-dimensional (this is denoted by dimX = 0) if any finite
open cover of X has a disjoint refinement. If we have topologies  and  on a set Z
then t is stronger than p if T O . If T C u then t is said to be weaker than L.

Given a space X and A C C(X), denote by cl,(A4) the set { f € C(X) : there
exists a sequence {f, : n € w} C A such that f,= f}. If X is a space, call a
set A C C(X) an algebra, if A contains all constant functions and f + g € A,
f g € A whenever f,g € A. If we have spaces X and Y say that a set A C
C(X,Y) separates the points of X if, for any distinct x, y € X, thereis f € A with
f(x) # f(y). The set A separates the points and the closed subsets of X if, for any
closed F C X and any x € X\ F thereis f € A suchthat f(x) ¢ f(F).

The space D is the two-point set {0, 1} endowed with the discrete topology. If T’
isasetand S C T then )(g : T — D is the characteristic function of S in T defined
by x%(x) = 1forall x € S and x% (x) = 0 wheneverx € T\S. If the set T is clear
we write yg instead of )(g. Amap f : X — Y is finite-to-one if f~1(y) is finite
(maybe empty) forany y € Y.

If X isaspaceand A, B C Cp(X) let MIN(A4,B) = {min(f,g) : f € A, g €
B} and MAX(A, B) = {max(f,g) : f € A, g € B}.Forany n € N consider the
set G,(A) = {af +bg :a,b € [-n,n], f,g € A}. Given Y C C,(X) we let
S1(Y) = {Y}. If we have S¢(Y) for some k € N, let Sp41(Y) = {MIN(A, B) :
A, B eS(Y)UMAX(A,B): A,B e S (Y)}U{G,(A): Ae S (Y), n e N}
This defines a family S, (Y) for every n € N;let S(Y) = (J{S,(Y) : n € N}

The expression X ~ Y says that the spaces X and Y are homeomorphic. If P
is a topological property then = P is to be read “has P”. For example, X + P
says that a space X has the property P. For a space X, the class £(X) consists of
all continuous images of products X x K, where K is a compact space. A class
‘P of topological spaces is called k-directed if it is finitely productive (i.e., X,Y €
P = XxY € P)and X € P implies that £(X) C P. A k-directed class P is sk-
directed if P is closed-hereditary, i.e., if X € P then Y € P for any closed Y C X.
A property (or a class of spaces) Q is weakly k-directed if any metrizable compact
space has Q (belongs to Q) and Q is preserved (invariant) under continuous images
and finite products.

Given a space X and an infinite cardinal «, the space 0,(X) = (X x D(x))* is
called the k-hull of X. The space X is called k-invariant if X ~ o0,(X). A class
P is called k-perfect if, for every X € P, we have o,(X) € P, £(X) C P and
Y € P forany closed Y C X.If P is a class of spaces, then P, consists of the
spaces representable as a countable union of elements of P. The class Ps contains
the spaces which are countable intersections of elements of P in some larger space.
More formally, X € P, if X = | J{X, : n € w} where each X,, € P. Analogously,
X e Ps if there exists a space Y and ¥, C Y such that ¥, € P foralln € w and
({Y, :n € w} >~ X. Then Pys = (Py)s.




4 1 Behavior of Compactness in Function Spaces

A space is called k-separable if it has a dense o-compact subspace; the space X
is Hurewicz if, for any sequence {{4, : n € w} of open covers of X, we can choose,
foreach n € w, a finite V, C U, such that | J{V, : n € w} is a cover of X. We say
that X is an Eberlein—Grothendieck space (or EG-space) if X embeds into C,(Y)
for some compact space Y. A space X is radial if, forany A C X and any x € A\ A4,
there exists a regular cardinal x and a transfinite sequence S = {x, : ¢ <k} C A4
such that § — x in the sense that, for any open U > x, there is ¢ < k such
that, for each 8 > o, we have xg € U. The space X is pseudoradial it A C X
and A # A implies that there is a regular cardinal x and a transfinite sequence
S ={xy : @ <k} C Asuchthat S — x ¢ A. A subset A of a space X is
called bounded if every f € C(X) is bounded on 4, i.e., there exists N € R such
that | f(x)] < N for all x € A. A family U is an w-cover of a set A, if, for any
finite B C A, there is U € U such that B C U. A Luzin space is any uncountable
space without isolated points in which every nowhere dense subset is countable. An
analytic space is a continuous image of the space P of irrational numbers. Given a
space X, let vet(X) < « if, for any x € X and any family {4, : @« <k} CexpX
with x € ﬂ{Za ;o < k}, we can choose, for each o < «, a finite B, C A, such
that x € m The cardinal vet(X) = min{k > w : vet(X) < k}is
called fan tightness of the space X.

It is also important to mention that the wizards of set theory invented an axiom
which is called PFA (from Proper Forcing Axiom). Any reasonably comprehensive
formulation of PFA is outside of the reach of this book. However, any professional
topologist must know that it exists and that it is consistent with the usual system of
axioms (referred to as ZFC) of set theory provided there exist some large cardinals.
I am not going to give a rigorous definition of large cardinals because we won’t need
them here. However, we must be aware of the fact that it is absolutely evident for
everybody (who knows what they are!) that their existence is consistent with ZFC
notwithstanding that this consistence is not proved yet. So, it is already a common
practice to use nice topological consequences of PFA. The one we will need is the
following statement: “If X is a compact space of weight w; and 1(X) > w then
w; + 1 embeds in X”.

Given a space X a continuous map r : X — X is called a retraction if
ror = r.If f is a function then dom( f) is its domain; given a function g
the expression f C g says that dom(f) C dom(g) and g|dom(f) = f.If
we have a set of functions {f; : i € I} such that f;[(dom(f;) N dom(f;)) =
fil(dom( f;) N dom( f;)) for any indices i, j € I then we can define a function f
with dom(f) = J,;¢; dom( f;) as follows: given any x € dom(f), find any i €
with x € dom(f;) and let f(x) = f;(x). It is easy to check that the value of f at
x does not depend on the choice of i so we have consistently defined a function f
which will be denoted by | J{ f; : i € I}.
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Prove that, if X is a normal space and dimX = 0 then dimBX = 0 and hence
BX is zero-dimensional.

Let X be a zero-dimensional compact space. Suppose that ¥ is second
countable and f : X — Y is a continuous onto map. Prove that there exists
a compact metrizable zero-dimensional space Z and continuous onto maps
g:X—>Zandh:Z — Y suchthat f =hog.

Prove that there exists a continuous map k : K — I such that, for any compact
zero-dimensional space X and any continuous map f : X — I, there exists a
continuousmap g5 : X — Ksuch that f =kogy.

Prove that, for any zero-dimensional compact X, the space C,(X,I) is a
continuous image of C, (X, D).

Given a countably infinite space X prove that the following conditions are
equivalent:

(i) Cp(X, D) is countable;
(i) Cp(X, D) = Q;
(iii) X is compact.

For an arbitrary space X prove that

(i) for any P C C,(X) there is an algebra A(P) C C,(X) such that
P C A(P) and A(P) is minimal in the sense that, for any algebra
A CCp(X),if P C Athen A(P) C 4;
(ii) A(P) is a countable union of continuous images of spaces which belong
to H(P) = {P" x K for some m € N and metrizable compact K}.
(iii) if Q is a weakly k-directed property and P = Q then A(P) - Q,, i.e.,
A(P) is a countable union of spaces with the property Q;

Given a compact space X suppose that A C C,(X) is an algebra. Prove that
both A and cl, (A) are algebras in C,(X).

Let X be a compact space. Suppose that A C C,(X) separates the points
of X, contains the constant functions and has the following property: for each
fge Aanda,b € Rwehaveaf +bg € A, max(f, g) € A, min(f, g) € A.
Prove that every f € C,(X) is a uniform limit of some sequence from A.
Let X be a compact space and suppose that ¥ C C,(X) separates the points
of X . Prove that

(i) for any algebra A C C,(X) with Y C A, we have cl,(4) = C,(X);
(ii) if Y contains a non-zero constant function then cl, (| S(Y)) = C,(X).

For a space X, suppose that Y C C,(X) and cl,(Y) = C,(X). Prove that
Cp(X) € (E(Y))s.

Prove that every k-directed non-empty class is weakly k-directed. Give an
example of a weakly k-directed class which is not k-directed.

Prove that any class K € {compact spaces, o-compact spaces, k-separable
spaces} is k-directed. How about the class of countably compact spaces?
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1 Behavior of Compactness in Function Spaces

Let P be a weakly k-directed class. Prove that, for any ¥ C C,(X) such that
Y e P,wehave S(Y) C P.

Given a k-directed class Q and a compact space X suppose that some set
Y C C,(X) separates the points of X and ¥ € Q. Prove that C,(X) € Qgs,
i.e., there is a space Z such that C,(X) C Z and C,(X) = ({C, : n € 0}
where every C, C Z is a countable union of spaces with the property Q.

For a compact space X suppose that ¥ C C,(X) separates the points
of X. Prove that there exists a compact space K and a closed subspace
F Co0,(Y) x K such that C,,(X) is a continuous image of F.

Prove that, for any compact space X, there exists a compact space K and a
closed subspace I C (C,(X))” x K such that C,(X®) is a continuous image
of F.

Let X be a compact space such that (C,(X))® is Lindelof. Show that C,(X®)
is Lindelof. As a consequence, C,(X") is Lindelof for each n € N.

Assume that X is compact and P is an w-perfect class. Prove that it follows
from C,(X) € P that C,(X“) € P.

Let P be an w-perfect class of spaces. Prove that the following properties are
equivalent for any compact X:

(i) the space C,(X) belongs to P;
(ii) there exists Y C C,(X) such thatY is densein C,(X) and Y € P;
(iii) there exists Y C C,(X) which separates the points of X and belongs
to P;
(iv) the space X embeds into C,(Z) for some Z € P.

Prove that the class L(X) of Lindelof X'-spaces is w-perfect. As a conse-
quence, for any compact X, the following properties are equivalent:

(i) the space C,(X) is Lindelof X;
(ii) there exists Y C C,(X) suchthat Y isdensein C,(X) andY € L(X);
(iii) there exists Y C C,(X) which separates the points of X and belongs
to L(X);
(iv) the space X embeds into C,(Y) for some Lindeldf X'-space Y .

Let X be a compact space such that C,(X) is Lindelof X'. Show that C,(X®)
is a Lindelof X'-space and so is C,,(X") for eachn € N.

Prove that the class K(A) of K-analytic spaces is w-perfect. Thus, for any
compact X, the following properties are equivalent:

(i) the space C,(X) is K-analytic;
(ii) there exists Y C C,(X) suchthatY is densein C,(X) and Y € K(A);
(iii) there exists ¥ C C,(X) which separates the points of X and belongs
to K(A);
(iv) the space X embeds into C,(Y) for some K-analytic space Y.

Let X be a compact space such that C,(X) is K-analytic. Show that C,(X®)
is a K-analytic space and so is C,,(X") foreachn € N.
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Observe that any K -analytic space is Lindelof X'. Give an example of a space
X such that C,(X) is Lindel6f X but not K-analytic.

Give an example of X such that C,(X) is K-analytic but not K.

Let X be a Lindelof X'-space. Prove that C,, (X)) is normal if and only if C,,(X)
is Lindelof. In particular, if X is compact then C,(X) is normal if and only if
it is Lindelof.

Suppose that X is a Lindelof X-space such that C,(X)\{f} is normal
for some f € C,(X). Prove that X is separable. In particular, if X is
w-monolithic and C,(X)\{f} is normal for some f € C,(X) then X has
a countable network.

Let X and C,(X) be Lindelof X-spaces and suppose that C,(X)\{f} is
normal for some f € C,(X). Prove that X has a countable network.

Let M, be a separable metrizable space for all # € T'. Suppose that Y is dense
inM =[[{M, : t € T} and Z is a continuous image of Y. Prove that, if
Z x Z is normal then ex?(Z) = w and hence Z is collectionwise normal.
Prove that, for any infinite zero-dimensional compact space X, there exists a
closed F' C C,(X,D*) C C,(X) which maps continuously onto (C,(X))®.
Prove that, for any infinite zero-dimensional compact space X, there exists a
closed F C C,(X,D*) C C,(X) which maps continuously onto C,(X*).
Prove that the following conditions are equivalent for an arbitrary zero-
dimensional compact X:

(i) Cp(X,D?) is normal;
(ii) Cp(X,I) is normal;
(iii) C,(X) is normal;
(iv) Cp(X) is Lindelof;
(v) (Cp(X))“ is Lindelst;
(vi) C,(X*?)is Lindelof.

Observe that C,(X) is monolithic for any compact X . Using this fact prove
that, for any compact space X, each compact subspace ¥ C C,(X) is a
Fréchet—Urysohn space.

Prove that, for any metrizable space M, there is a compact space K such that
M embeds in Cp,(K).

Prove that the following conditions are equivalent for any compact X:

(i) there is a compact K C C,(X) which separates the points of X;
(ii) there is a o-compact Y C C,(X) which separates the points of X;
(iii) thereis a o-compact Z C C,(X) which is dense in C,(X);
(iv) X embeds into C,(K) for some compact K;

(v) X embeds into C,(Y) for some o-compact Y.

Suppose that X is compact and embeds into C, (Y') for some compact Y. Prove
that it is possible to embed X into C,(Z) for some Fréchet—Urysohn compact
space Z.
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1 Behavior of Compactness in Function Spaces

Give an example of a compact space X embeddable into C,(Y) for some
compact Y but not embeddable into C,(Z) for any compact first countable
space Z.

Suppose that X embeds into C,(Y) for some compact Y. Prove that it is
possible to embed X into C,(Z) for some zero-dimensional compact space Z.
Suppose that X embeds into C,(Y) for some countably compact Y. Prove that
it is possible to embed X into C,(Z) for some zero-dimensional countably
compact space Z.

Give an example of a space ¥ which embeds in C,(X) for a pseudocompact
space X but does not embed in C,(Z) for any countably compact Z.

Prove that a countable space ¥ embeds into C,(X) for some pseudocompact
space X if and only if ¥ embeds into C,(Z) for some compact metrizable
space Z.

Give an example of a space ¥ which embeds into C,(X) for a countably
compact space X but does not embed into C,(Z) for a compact space Z.

Let £ € Bw\w. Prove that the countable space wz = w U {£}, considered
with the topology inherited from Bw, does not embed into C,(X) for a
pseudocompact X .

(Grothendieck’s theorem). Suppose that X is a countably compact space and
B C C,(X) is a bounded subset of C,(X). Prove that B is compact. In
particular, the closure of any pseudocompact subspace of C,(X) is compact.
Prove that there exists a pseudocompact space X for which there is a closed
pseudocompact ¥ C C,(X) which is not countably compact.

Let X be a o-compact space. Prove that any countably compact subspace of
C,(X) is compact.

Let X be a space and suppose that there is a point xo € X such that
¥ (x0,X) = w and xo ¢ A for any countable A C X. Prove that there is
an infinite closed discrete B C C,(X) such that B is bounded in C, (X).
Prove that there exists a o-compact space X such that C,(X) contains an
infinite closed discrete subspace which is bounded in C,(X).

Prove that there exists a o-compact space X such that C,(X) does not embed
as a closed subspace into C,(Y) for any countably compact space Y .

Given a metric space (M, p) say that a family U C exp M \{@} is p-vanishing
if diam,(U) < oo for any U € U and the diameters of the elements of U
converge to zero, i.e., the family {U € U : diam,(U) > ¢} is finite for any
& > 0. Prove that, for any separable metrizable X, the following conditions
are equivalent:

(i) X is a Hurewicz space;
(i) for any metric p which generates the topology of X, there is a p-vanishing
family & C t(X) such that JU = X;
(iii) for any metric p which generates the topology of X, there exists a
p-vanishing base B of the space X;
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(iv) there exists a metric p which generates the topology of X, such that, for
any base B of the space X, there is a p-vanishing family &/ C B for which
Uu =X;

(v) for any metric p which generates the topology of X and any base 5 of the
space X there is p-vanishing family B’ C B such that B’ is also a base
of X;

(vi) every base of X contains a family which is a locally finite cover of X.

051. Prove that X is a Hurewicz space if and only if X is compact.

052. Prove that any separable Luzin space is a Hurewicz space.

053. Prove that any Hurewicz analytic space is o-compact.

054. Give an example of a Hurewicz space which is not o-compact.

055. Prove that, under CH, there exists a Hurewicz space whose square is not
normal.

056. Prove that X" is a Hurewicz space for every n € N, if and only if, for any
sequence {yx : k € w} of open w-covers of the space X, we can choose, for
each k € w, a finite yy C yx such that the family [ J{ux : k € w} is an
w-cover of X.

057. Let X be any space. Prove that X" is a Hurewicz space for all n € N if and
only if vet(C, (X)) < w.

058. Prove that if C,,(X) is Fréchet-Urysohn then vet(C,(X)) < .

059. Prove that, under MA+—CH, there exists a second countable space X such
that X" is a Hurewicz space for each natural n, while X is not o-compact.

060. Say that a space is subsequential if it embeds in a sequential space. Prove that
every sequential space has countable tightness and hence each subsequential
space also has countable tightness.

061. For any point £ € Bw\w prove that the countable space w U {£} is not
subsequential.

062. Prove that C,(I) is not subsequential.

063. Prove that the following are equivalent for any pseudocompact X :

(i) Cp(X) is a Fréchet—Urysohn space;
(ii) Cp(X) embeds in a sequential space;
(iii) X is compact and scattered.

064. Prove that radiality is a hereditary property; show that pseudoradiality is
closed-hereditary. Give an example showing that pseudoradiality is not
hereditary.

065. Prove that any quotient (pseudo-open) image of a pseudoradial (radial) space
is a pseudoradial (radial) space.

066. Prove that any radial space of countable tightness is Fréchet—Urysohn.

067. Prove that a space is radial (pseudoradial) if and only if it is a pseudo-open
(quotient) image of a linearly ordered space.

068. Prove that any radial space of countable spread is Fréchet—Urysohn.

069. Prove that any radial dyadic space is metrizable.

070. Prove that Bw\w is not pseudoradial.



10

071.

072.

073.

074.

075.

076.

077.

078.

079.

080.

081.

082.

083.

084.

08s.

086.

1 Behavior of Compactness in Function Spaces

Prove that D“' is not pseudoradial under CH and pseudoradial under
MA+—-CH.

Prove that it is independent of ZFC whether every dyadic pseudoradial space
is metrizable.

Prove that, for any space X, the space C,(X) is radial if and only if it is
Fréchet—Urysohn.

An uncountable cardinal « is called w-inaccessible if A” < « for any cardinal
A < k. Recall that, if £ is an ordinal then cf(§) = min{|A| : A is a
cofinal subset of £}. Prove that, for an infinite ordinal &, the space C,(£) is
pseudoradial if and only if either cf(§) < w or £ is an w-inaccessible regular
cardinal (here, as usual, £ is considered with its interval topology). Observe
that w-inaccessible regular cardinals exist in ZFC and hence there exist spaces
X such that C,(X) is pseudoradial but not radial.

Let X be a compact space. Prove that, if C,(X) is pseudoradial then it is
Fréchet—Urysohn (and hence X is scattered).

Let X be any space such that C,(X,D) x »® is not Lindelof. Prove that the
space C,(X,D?) is not Lindelof.

Suppose that X is a compact space such that a countable set M C X is open
and dense in X . Assume also that the set of isolated points of ¥ = X\M is
uncountable and dense in Y. Prove that ex?(C, (X, D) x 0®) > w.

Suppose that X is a compact space such that a countable set M C X is open
and dense in X . Assume also that the set I of isolated points of Y = X\ M is
uncountable and dense in Y'; let F = Y\ /. Prove that, under MA+—CH, any
uncountable subset of the set £ = {f € C,(X,D) : f(F) = {0}} contains
an uncountable set D which is closed and discrete in C,(X, D).

Let X be a compact space of weight w; in which we have a countable dense set
L and a nowhere dense closed non-empty set F'. Assuming MA+—CH prove
that there exists M C L such that M\ M = F and all points of M are isolated
in the space M U F.

Prove that, under MA+—CH, if X is a compact space such that C,(X) is
normal, then X is Fréchet-Urysohn, w-monolithic and has a dense set of
points of countable character.

Assume MA+—CH. Show that, if a compact space X has the Souslin property
and C,(X) is normal then X is metrizable.

Prove that w(X) = I(C,(X)) for any linearly orderable compact space X . In
particular, if C,(X) is Lindelof then X is metrizable.

Given an infinite compact space X prove that we have |Y| < 2/)<() for any
Y C Cp(X).

Suppose that X is a compact space with the Souslin property and C,(X) has
a dense Lindelof subspace. Prove that w(X) < |C,(X)| < 2.

Prove that, for any uncountable regular cardinal «, if Z C C,(x + 1) separates
the points of ¥ + 1 then /(Z) > «.

Prove that, if X is a dyadic space and Y C C,(X) then aw(Y) = I(Y). In
particular, any Lindelof subspace of C,(X) has a countable network.
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Prove that, if X is a dyadic space and C,(X) has a dense Lindelof subspace
then X is metrizable.

Given a space X suppose that K C C,(X) is a compact space of uncountable
tightness. Show that there exists a closed X; C X such that C,(X) contains
a compact subspace of weight and tightness w;.

Prove that the axiom PFA implies that, for any Lindel6f space X and any
compact K C C,(X), we have 1(K) < w.

Given a space X and a set A C X denote by 74 the topology on X generated
by the family t(X) U exp(X\A) as a subbase; let X[A] = (X,t4). In
other words, the space X[A] is constructed by declaring isolated all points
of X\ A and keeping the same topology at the points of A. Prove that, for
any uncountable Polish space M and A C M the following conditions are
equivalent:

(i) the space (M [A])? is Lindelof;
(i) if F is a countable family of finite-to-one continuous maps from the
Cantor set K to M then (\{f~1(A) : f € F} # 0;
(iii) if F is a countable family of injective continuous maps from the Cantor
set Kto M then N{f~'(A): f € F} # 0.

Deduce from this fact that, for any uncountable Polish space M there is a
disjoint family {A, : o < ¢} of subsets of M such that (M [A4,])® is Lindelof
forany o < c.

Given a space X and a set A C X denote by 74 the topology on X generated
by the family 7(X) Uexp(X\A) as a subbase; let X[A] = (X, t4). Prove that,
if M is a Polish space, A C M and n € N then the following conditions are
equivalent:

(i) the space (M [A])" is Lindelof;
(i1) if F is a family of finite-to-one continuous maps from the Cantor set K
to M and |F| < nthen {f~'(A): f € F} # 0;
(iii) if F is a family of injective continuous maps from the Cantor set K to M
and | F| <nthen N{f~'(A): f € F} # 0.

Deduce from this fact that, for any uncountable Polish space M there is a
disjoint family {4, : o < c} of subsets of M such that for every & < ¢ the
space (M[A4])¥ is Lindelof for any k € N while (M [A,])® is not Lindelof.
Suppose that P is an sk-directed class of spaces and ¥ € P. Prove that if
X C C,(Y) and the set of non-isolated points of X is o-compact then C;(X)
belongs to the class Pys.

Prove that there exist separable, scattered o-compact spaces X and Y such
that both (C,(X))® and (C,(Y))® are Lindelof while C,(X) x C,(Y) is not
normal and contains a closed discrete set of cardinality c.

Show that there is a separable scattered o-compact space X and a countable
space M such that the space (C,(X))® is Lindelof while we have the equality
ext(Cp(X) x Cp(M)) = cand C,(X) x C,(M) is not normal.
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1 Behavior of Compactness in Function Spaces

Prove that, under CH, there exists a separable scattered compact space X
such that (C,(X, D))" is Lindelof for any natural n, while (C,(X,D))® is
not Lindelof.

Prove that there is a scattered, separable, zero-dimensional o-compact space
X with (C,(X, D))" Lindelof for each natural n, while (C,(X,D))® is not
Lindelof.

Assume MA+—CH. Let X be a space with [*(X) = . Prove that any
separable compact subspace of C,(X) is metrizable.

Assume MA+—CH. Let X be a separable compact space. Prove that, for any
Y C Cp(X) with [*(Y) = w, we have nw(Y) = w.

Prove that there exists a separable o-compact space X such that (C,(X))“ is
Lindelof and s(X) > w.

Assume MA+—CH. Prove that there is a separable o-compact space X such
that C,(X) does not embed into C,(Y') for a separable compact space Y.
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1.2 Corson Compact Spaces

All spaces are assumed to be Tychonoff. For a product X = [[{X, : t € T} of the
spaces X; and x € X, let Y(X,x) ={ye X : {t e T : y(t) # x(1)}| < ow}.
The space X' (X, x) is called the X-product of spaces {X; : t € T} with the center
x. Again,ifx e X = [[{X;:t e Thleto(X,x) ={y e X:|{t eT:y@t) #
x(t)}| < w}. The space o (X, x) is called the o-product of spaces { X, : t € T} with
the center x. If some statement about X'-products or o-products is made with no
center specified, then this statement holds (or must be proved) for an arbitrary center.
The symbols X' (A) and o (A) are reserved for the respective X'- and o-products of
real lines with the center zero, i.e., ¥(4) = {x e R4 : [{a € A : x(a) # 0}| < w}
and 0(A) = {x e R4 : [{a € A : x(a) # 0}| < w}. Now, Xx(4) = {x € R* :
forany ¢ > O the set {a € A : |x(a)| > &} is finite}. A family U C exp A4 is called
w-continuous if | J{U, : n € w} € U whenever U, € U and U, C U,4, for all
n € w. The family U is w-cofinal if, for every countable B C A, there exist U € U
suchthat B C U.If B C Aand x € Y (A), let rg(x)(a) = x(a) ifa € B and
rg(x)(a) = 0 otherwise. Clearly, rp : X (A) — X(A) is a continuous map. Call a
set Y C X (A) invariant if the family {B C A : rp(Y) C Y} is w-continuous and
w-cofinal.

A compact space X is Corson compact if it embeds into X'(A) for some A. Given
a space X and an infinite cardinal «, the space (X x D(k))" is called the k-hull of
X and is denoted by o, (X). The space X is called k-invariant if X ~ 0,(X). For a
space X, the class £(X) consists of all continuous images of products X x K, where
K is a compact space. Define a class P to be k-perfect if, for any X € P, we have
0k(X)eP, E(X)ePandY € P foranyclosed Y C X.

Let T be an infinite set. An arbitrary family A C exp T is called adequate if
UA=T, expA C Aforany A € A, and A € A whenever all finite subsets of
A belong to A. Given A C T, let y4(¢t) = 1ift € A and y4(t) = 0ift ¢ A.
The map y4 : T — {0, 1} is called the characteristic function of A in the set T .
The symbol D denotes the two-point discrete space {0, 1}. If we have a set T and an
adequate family Aon T let K4 = {y4 € D : A € A}. Another object associated
with A is the space T} whose underlying set is 7" U {£}, where £ ¢ T, all points
of T are isolated in 7' and the basic neighbourhoods of £ are the complements of
finite unions of elements of .A. A subspace X C D7 is called adequate if X = K 4
for some adequate family A on 7.

Given an uncountable cardinal «, a space X belongs to M (k) if there exists a
compact K such that X is a continuous image of a closed subset of L(k)* x K.
The space X is called primarily Lindelof if X is a continuous image of a closed
subspace of L(x)“ for some uncountable cardinal «.

Suppose that S, is homeomorphic to @ + 1 for each @ < «. In the space
S = P{S, : @ <k} let F be the set of non-isolated points. Introduce a topology ©
onthe set S/F = {F} U (S\F) declaring the points of S\ F isolated and defining
the local base at F as the family of all sets {F} U (U\ F) where U is an open set
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(in S) which contains F'. The space V (k) = (S/F, t) is called the Fréchet~Urysohn
k-fan. A family U C exp X is Ty-separating in X if, for any distinct x, y € X, there
exists U € U such that [U N {x, y}| = 1. A continuous surjective map f : X — Y
is irreducible if, for any closed F C X with F' # X, we have f(F) # Y.

Let X be a space. Denote by AD(X) the set X x{0, 1}. Given x € X, letuo(x) =
(x,0) and u;(x) = (x,1). Thus, AD(X) = uo(X) U u;(X). Declare the points of
u; (X) isolated. Now, if z = (x,0) € AD(X) then the base at z is formed by the sets
up(V) U (u; (V)\{u1(x)}) where V runs over the open neighbourhoods of x. The
space AD(X), with the topology thus defined, is called the Alexandroff double of
the space X . Recall that, if we haveamap f : X — Y thenthemap /" : X" — Y"
isdefined by f"(x) = (f(x1),..., f(x,)) forany x = (x;,...,x,) € X". A space
X is called Sokolov space, if, for any family {F,, : n € N} such that F, is a closed
subset of X" for each n € N, there exists a continuous map f : X — X such
that nw(f(X)) < w and f"(F,) C F, for all n € N. Given a space X, we let
Cpo(X) = X and Cp,41(X) = Cp(Cpu(X)) forall n € w. The spaces Cp,,(X)
are called iterated function spaces of X .

In this section, we make use of a two-player game with complete information
introduced by G. Gruenhage. In this game (which we call the Gruenhage game or
W -game), there are two players (the concept of “player” is considered axiomatic),
who play a game of w moves on a space X at a fixed set H C X. The first
player is called OP (for “open”) and the second one’s name is PT (for “point”).
The n-th move of OP consists in choosing an open set U, D H. The player PT
responds by choosing a point x,, € U,,. After  moves have been made, the sequence
P = {(Uy,x,) : n € N} is called a play of the game; for any n € N, the set
{Ui,x1,...,Uy, x,} is called an initial segment of the play P.

Now, if P = {(U,,x,) : n € N} is a play in the W-game at H in the space
X then the set {x, : n € N} is taken into consideration to determine who won the
game. If x, — H in the sense that any open U D H contains all but finitely many
points x,, then OP wins. If not, then PT is the winner.

A strategy for the player OP is any function s, whose domain is the family
dom(s) = {QYU{F : F = (U, x1,...Uy,x,), n € N, H C U; € 1(X) and
x; € U; foralli < n} and s(F) is an open set containing H for any F € dom(s).
If P = {(Uy,x,) : n € N} is a play, we say that OP applied the strategy s in
P, if Uy = s(9) and, for any n > 2, we have U, = s(Uy, x1,...,U,—1, Xp—1).
The strategy s is called winning if any play in which s is applied, is favorable for
the player OP, i.e., OP wins in every play where he/she applies the strategy s. A set
H C X isa W-set (or has the W -property) if OP has a winning strategy in the game
on X with the fixed set H. If every point of X is a W-set, X is called W-space (or
a space with the W -property). A family U of subsets of X is called point-countable
if, for any x € X, the family {U € U : x € U} is countable. A space X is
metalindelof if any open cover of X has a point-countable open refinement. A space
X is metacompact if any open cover of X has a point-finite open refinement.
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Let M, be a metrizable space for each t € T'. For an arbitrary pointa € M =
[1{M; : t € T}, prove that X (M, a) is a Fréchet-Urysohn space. In particular,
X' (A) is a Fréchet—Urysohn space for any A.

Let M, be a metrizable space for each t € T'. For an arbitrary pointa € M =
[I{M; : t € T}, prove that ¥ (M, a) is a collectionwise normal space. In
particular, X' (A) is a collectionwise normal space for any A.

Let M, be a second countable space for each ¢+ € 7. For an arbitrary point
a €M =TJ[{M, : t € T}, prove that ext(X(M,a)) < w. In particular,
ext(X(A)) = w for any set A.

Let M, be a second countable space for any t € T. Take any pointa € M =
[1{M; : t € T}. Prove that, if a compact space X is a continuous image of a
dense subspace of X' (M, a) then X is metrizable. In particular, if a compact
X is a continuous image of o(M, a) or ¥ (M, a) then X is metrizable.

Prove that, if |[A] = k > o then the space Yy (A) is homeomorphic to
C,(A(x)).

Prove that, if |[A] = k > o then the space X (A) is homeomorphic
to Cp(L(x)).

Prove that, for any «, there is a compact subspace of C, (A («)) which separates

the points of A(k). As a consequence, C,(A(k)) and X4 (x) are Kys-spaces
and hence Lindelof X'-spaces.

Prove that 0(A) is a o-compact space (and hence a Lindel6f X'-space) for
any A.

Prove that, for any uncountable set A, there is a closed countably compact
non-compact subspace in X'(A) and hence X' (A) is not realcompact.

Prove that, for any infinite A, every pseudocompact subspace of Xy (A) is
compact.

Prove that any metrizable space M embeds in X, (A) for some A.

Observe that any pseudocompact continuous image of X, (A) is compact and
metrizable for any infinite A. Give an example of a countably compact non-
compact space which is a continuous image of X (w;).

Prove that, for any uncountable A, the space X'(A4) is not embeddable into
Y«(B) for any set B.

Prove that, for any uncountable A, the space X« (A) is not embeddable into
o (B) for any set B.

Prove that, for any uncountable A, neither of the spaces X' (A) and X.(A)
maps continuously onto the other.

Prove that, for any A, the space X (A) embeds in a countably compact Fréchet—
Urysohn space.

Show that, if A is an uncountable set, then X,(A) cannot be embedded in
a o-compact space of countable tightness. In particular, neither X' (A) nor
Y« (A) are embeddable in a compact space of countable tightness if |4| > w.
Let X be a compact space. Prove that X is Corson compact if and only if X
has a point-countable Ty-separating family of open Fj-sets. Deduce from this
fact that any metrizable compact space is Corson compact.
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1 Behavior of Compactness in Function Spaces

Let M, be a second countable space for any t € T. Prove that, for any point
a € M = []{M, : t € T}, every compact subset of ¥ (M, a) is Corson
compact.

Prove that any Corson compact space is monolithic, Fréchet—Urysohn and has
a dense set of points of countable character. As a consequence, @; + 1 is not
Corson compact.

Prove that d(X') = w(X) for any Corson compact space. Thus, the two arrows
space is not Corson compact.

Let X be a Corson compact space such that C,(X)\{ f} is normal for some
f € C,(X). Prove that X is metrizable. In particular, if C,(X) is hereditarily
normal, then X is metrizable.

Prove that any linearly ordered and any dyadic Corson compact space is
metrizable.

Let X be a Corson compact space. Prove that the Alexandroff double A D(X)
is also Corson compact. In particular, AD(X) is Corson compact for any
metrizable compact X .

Let X; be a Corson compact space for any ¢+ € T. Prove that the one-point
compactification of the space @{X; : t € T} is also Corson compact.

Prove that, under CH, there exists a compact space of countable spread which
is not perfectly normal.

Let X be a Corson compact space such that s(X) = w. Prove that X is
perfectly normal.

Let X be an w-monolithic compact space such that s(C,(X)) = w. Prove
that X is metrizable. In particular, a Corson compact space X is metrizable
whenever s(C,(X)) = .

Let X be a compact space of countable tightness. Prove that X maps
irreducibly onto a Corson compact space.

Given spaces X and Y assume that there exists a closed continuous irreducible
ontomap f : X — Y.Provethat d(X) = d(Y) and ¢(X) = ¢(Y).

Prove that, under the Jensen’s axiom (<>), there is a perfectly normal non-
metrizable Corson compact space X . Therefore, under <>, a Corson compact
space X need not be metrizable if c(X) = w.

Prove that any Corson compact space X, with w; precaliber of X, is
metrizable.

Assuming MA+4—CH, prove that any Corson compact space X, with
¢(X) = w, is metrizable.

Prove that a compact space X can fail to be Corson compact being a countable
union of Corson compact spaces.

Prove that there exists a compact space X which is not Corson compact being
a union of three metrizable subspaces.

Suppose that X is compact and X is a countable union of Corson compact
subspaces. Prove that X is Corson compact.

Prove that any countable product of Corson compact spaces is Corson
compact. In particular, X“ is Corson compact whenever X is Corson compact.
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Let X be a Corson compact space. Prove that X has a dense metrizable
subspace if and only if it has a o-disjoint 7-base.

Prove that M (k) is an w-perfect class for any k.

Prove that for any Corson compact space X the space C,(X ) belongs to M (k)
for some uncountable «.

Prove that if « is an uncountable cardinal and Y € M (k) then Y * is Lindelof.
In particular, (C,(X))* is Lindeldf for any Corson compact space X.

Prove that any countable union of primarily Lindelof spaces is a primarily
Lindelof space.

Prove that any countable product of primarily Lindelof spaces is a primarily
Lindelof space.

Prove that any continuous image as well as any closed subspace of a primarily
Lindelof space is a primarily Lindelof space.

Prove that any countable intersection of primarily Lindelof spaces is a
primarily Lindeldf space.

Prove that primarily Lindelof spaces form a weakly k-directed class.

Given a space X let r : X — X be a retraction. For any f € C,(X) let
ri(f) = f or.Provethatr : C,(X) — C,(X) is also a retraction.

Given an uncountable cardinal ¥ and a set A C L(k) define a map py :
L(k) — L(x) by therule py(x) = aif x ¢ Aand py(x) = x forall x € A
(recall that L(k) = x U {a} and a is the unique non-isolated point of L(x)).
Prove that

(1) p4isaretraction on L(k) onto A U {a} forany A C L(«x);

(i) if B C L(x) and F is a closed subset of (L(x))® then there exists
A C L(k) suchthat B C A, |A| <|B|-wand (p4)”(F) C F.Here, as
usual, the map g4 = (p4)® : (L(x))® — (L(x))* is the countable power
of the map p4 defined by g 4(x)(n) = p4(x(n)) forany x € (L(x))® and
neE .

Prove that, for any primarily Lindelof space X, the space C,(X) condenses
linearly into X'(A) for some A.
Prove that the following conditions are equivalent for any compact space X:

(i) X is Corson compact;
(ii) C,(X) is primarily Lindeldf;
(iii) there is a primarily Lindelof P C C,(X) which separates the points
of X;
(iv) X embeds in C,(Y) for some primarily Lindelof space Y.

Prove that a continuous image of a Corson compact space is Corson compact.
Observe that Y4 (A) and o(A) are invariant subsets of X' (A); prove that, for
any infinite cardinal ¥ and any closed F' C X'(A) we have

(i) if By C A,rp,(F) C Fforanyo < k and o < 8 < k implies B, C Bg
then rg(F) C F where B = | J,,_, Ba;

(ii) for any non-empty D C A with |D| < « there is a set E C A such that
|E| <k, D C Eandrg(F)CF.
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1 Behavior of Compactness in Function Spaces

In particular, F is invariant in X' (A).
Prove that the following properties are equivalent for any X:

(i) X is a Sokolov space;

(i1) if, forany n € N, a set B,, C X" is chosen then there exists a continuous
map f : X — X such that nw(f(X)) < w and f"(B,) C B, for each
neN;

(iii) if F,,, is a closed subset of X" for all n,m € N, then there exists a
continuous map f : X — X such that nw(f (X)) < w and f"(F,,) C
F,,, foralln,m € N.

Prove that if X is a Sokolov space then X x w is a Sokolov space and every
closed F' C X is also a Sokolov space.

Given a Sokolov space X and a second countable space E, prove that
C,(X, E) is also a Sokolov space.

Prove that X is a Sokolov space if and only if C,(X) is a Sokolov space.

Let X be a Sokolov space with ¢*(X) < w. Prove that C,(X, E) is Lindel6f
for any second countable space E.

Prove that

(i) any R-quotient image of a Sokolov space is a Sokolov space;
(i1) if X is a Sokolov space then X is also a Sokolov space;
(iii) a space with a unique non-isolated point is Sokolov if and only if it is
Lindelof.

Let X be a space with a unique non-isolated point. Prove that the following
properties are equivalent:

1) (X)) fwand t*(X) < w;

(ii) X is a Sokolov space and t*(X) < w;
(iii) C,,(X) is Lindelof for all n € N;
(iv) C,(X) is Lindeldf.

Let X be an invariant subspace of X'(A4). Prove that X is a Sokolov space.
Deduce from this fact that every Corson compact space is Sokolov.

Prove that every Sokolov space is collectionwise normal and has countable
extent. Deduce from this fact that ext(C,, (X)) < o for any Sokolov space
X andn € N.

Let X be a Sokolov space. Prove that

(i) if t*(X) < o then C) 2,+1(X) is Lindelof for any n € w.
(ii) if /*(X) < w then C),,(X) is Lindelof for any n € N;
(iii) if /*(X) - t*(X) < w then C,,(X) is Lindelof for any n € N.

Prove that every Sokolov space is w-stable and w-monolithic. Deduce from
this fact that every Sokolov compact space is Fréchet—Urysohn and has a dense
set of points of countable character.

Prove that a metrizable space is Sokolov if and only if it is second countable.
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Let X be a Sokolov space with [*(X) - t*(X) = w. Prove that

(1) if X has a small diagonal then nw(X) = w;
(ii) if w; is a caliber of X then nw(X) = w.

Prove that if X is a Sokolov space with a Gs-diagonal then nw(X) = w.

Let X be a Lindelof X' -space. Prove that if X is Sokolov then #(X) < w and
C, . (X) is Lindelof for any n € N. In particular, if K is Sokolov compact (or
Corson compact) then C, ,(K) is Lindelof for any n € N.

Let T be an infinite set. Prove that, if A is an adequate family on 7" then K 4
is a compact space.

Let 7' be an infinite set. Suppose that A is an adequate family on 7'. Prove that
K 4 is a Corson compact space if and only if all elements of A are countable.
Let T be an infinite set; suppose that A is an adequate family on 7" and u is
the function on K 4 which is identically zero. For any ¢ € T lete,(f) = f(¢)
forany f € 4. Observe that Z = {e; : t € T} U {u} C C,(K4,D);
let 9(§) = uand ¢(t) = ¢, forany ¢t € T. Provethatp : T} — Zisa
homeomorphism and Z is closed in C,(K 4, D). In particular, the space T’} is
homeomorphic to a closed subspace of C, (K 4, D).

Suppose that T is an infinite set and A is an adequate family on 7. Prove that
the spaces C,(K 4,D) and C,(K 4) are both continuous images of the space
(Th x w)”.

Let T be an infinite set. Suppose that A is an adequate family on 7'. Prove the
space C,(K 4) is K-analytic if and only if 7% is K-analytic.

Let T be an infinite set. Suppose that A is an adequate family on 7'. Prove the
space Cp(K 4) is Lindelof X if and only if 7% is Lindelof X

Observe that every adequate compact space is zero-dimensional. Give an
example of a zero-dimensional Corson compact space which is not homeo-
morphic to any adequate compact space.

Let T be a subspace of R of cardinality w;. Consider some well-ordering <
on T and let < be the order on T induced from the usual order on R. Denote
by A; the family of all subsets of 7" on which the orders < and < coincide
(i.e., A € A; if and only if, for any distinct x, y € A, we have x < y if and
only if x < y). Let A, be the family of all subsets of 7" on which the orders <
and < are opposite (i.e., A € A, if and only if, for any distinct x, y € A, we
have x < y if and only if y < x). Check that A = A; U A; is an adequate
family and that X = K 4 is a Corson compact space for which C,(X) is
not a continuous image of any Lindel6f k-space. In particular, C,,(X) is not a
Lindelof X'-space.

Give a ZFC example of a Corson compact space without a dense metrizable
subspace.

Give an example of a compact space X for which (C,(X))® is Lindelof while
X is not Corson compact.

Prove that any Corson compact space is a continuous image of a zero-
dimensional Corson compact space.

Prove that every first countable space is a W-space and every W-space is
Fréchet—Urysohn.
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1 Behavior of Compactness in Function Spaces

Suppose that f : X — Y is an open continuous onto map. Prove that if X is
a W-space thensois Y.

Suppose that X is a separable space and a closed set /' C X has an outer base
of closed neighbourhoods (i.e., for any U € t(F, X) there is V € t(F, X)
such that V' C U). Prove that if F is a W-set in X then y(F,X) < . In
particular, if X is a separable W-space then y(X) = w.

Show that there exist W-spaces which are not first countable and Fréchet—
Urysohn spaces which are not W -spaces.

Prove that any subspace of a W-space is a W -space and any countable product
of W-spaces is a W-space.

Prove that any X'-product of W -spaces is a W-space. Deduce from these facts
that if X is a Corson compact space then every non-empty closed FF C X is a
W -set; in particular, X is a W-space.

Prove that, if X is a compact space of countable tightness, then a non-empty
closed H C X is a W-set if and only if X\ H is metalindelof.

Let X be a compact scattered space. Prove that a non-empty closed H C X is
a W-set if and only if X'\ H is metacompact.

(Yakovlev’s theorem) Prove that any Corson compact space is hereditarily
metalindelof.

Prove that the following are equivalent for any compact space X:

(i) X is Corson compact;
(i) every closed subset of X x X isa W-setin X x X;
(iii) the diagonal A = {(x,x) : x € X} of the space X isa W-setin X x X;
(iv) the space (X x X)\A is metalindelof;
(v) the space X x X is hereditarily metalindelof.

Give an example of a compact W-space X such that some continuous image
of X is not a W-space.

Suppose that X is a compact space which embeds into a o-product of second
countable spaces. Prove that the space X2\ A is metacompact; here, as usual,
the set A = {(x,x) : x € X} is the diagonal of the space X.

Observe that any countably compact subspace of a Corson compact space is
closed and hence compact. Deduce from this fact that there exists a countably
compact space X which embeds into X'(A4) for some A but is not embeddable
into any Corson compact space.

Let M, be a separable metrizable space for any ¢ < ;. Prove that a dense
subspace Y of the space [[{M, : @ < w;} is normal if and only if Y is
collectionwise normal.

Prove that if 2! = ¢ then there exists a dense hereditarily normal subspace
Y in the space D such that ext(Y) = w;. Deduce from this fact that it is
independent of ZFC whether normality implies collectionwise normality in
the class of dense subspaces of D°.

Let X be a monolithic compact space of countable tightness. Prove that any
dense normal subspace of C,(X) is Lindelof. In particular, if X is a Corson
compact space and Y is a dense normal subspace of C,(X) then Y is Lindeldf.
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195. Let X be a Corson compact space. Prove that there exists a o-discrete set
Y C C,(X) which separates the points of X.

196. Prove that, under CH, there exists a compact space X such that no o-discrete
Y C C,(X) separates the points of X .

197. Let X be a metrizable space. Prove that there is a discrete ¥ C C,(X) which
separates the points of X.

198. Prove that, for each cardinal «, there exists a discrete ¥ C C,(I) which
separates the points of I*.

199. Prove that C,(Bw\w) cannot be condensed into X'« (A) for any A.

200. Prove that, for any Corson compact X and any n € N, the space C,,(X)
linearly condenses onto a subspace of X'(A) for some A.
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1.3 More of Lindelof X -Property. Gul’ko Compact Spaces

All spaces are assumed to Tychonoff. Given two families .A and 5 of subsets of a
space X, say that A is a network with respect to B if, for any B € B and any open
U D B, thereis A € Asuchthat B C A C U. A space X is a Lindeldf X -space, if
X has a cover C such that all elements of C are compact and there exists a countable
family F which is a network with respect to C. The class of Lindelof X'-spaces is
denoted by L(X).

Given a space X, denote by A the set C(X,I) and, for each f € A, let
B<(f) = f(x). Then By : A — I and the subspace X = {f : x € X} C [ is
homeomorphic to X . Identifying the spaces X and X, we consider that X C I4.
Denote by X the closure of X in I*. The space X is called the Cech-Stone
compactification of the space X. Let vX = {y € X : HN X # 0 for any
non-empty Gs-set H C BX such that y € H}. The space vX is called the Hewitt
realcompactification of the space X. The space X is realcompact if X = vX.If
¢ : X — Y is a continuous mapping then its dual map ¢* : C,(Y) — Cp(X) is
defined by ¢*(f) = f o forany f € C,(Y).

Given a space X, we let C,o(X) = X and C,,11(X) = C,(C, (X)) for all
n € w. The spaces C), , (X) are called iterated function spaces of X . A space X hasa
small diagonal if, for every uncountable A C (X x X)\ A, there is a neighbourhood
U of the diagonal A = {(x,x) : x € X} such that A\U is uncountable. A space
Y is Eberlein—Grothendieck if it can be embedded into C,(K) for some compact
space K. Say that a space X is K,; if there exists a space Y such that X C Y and
X = ({Y» : n € w}, where each Y, is a o-compact subset of Y. A K-analytic
space is a continuous image of a K,s-space.

A family U C exp X is said to be point-finite at x € X if {U e U : x € U} is
finite. The family U is weakly o-point-finite if there exists a sequence {U, : n € w}
of subfamilies of ¢/ such that, for every x € X, we have Ul = | J{U, : n € M.}
where M, = {n € w : U, is point-finite at x}. The family U is Ty-separating if,
for any distinct x, y € X, there exists U € U such that |U N {x,y}| = 1. AsetU
is a cozero set in a space X if thereis f € C,(X) such that U = X\ f71(0). The
spaces which have a countable network are called cosmic.

Say that X is a Gul’ko space if C,(X) is a Lindel6f X'-space. A compact Gul’ko
space is called Gul’ko compact. The space X is Talagrand if C,(X) is K-analytic.
A compact Talagrand space is called Talagrand compact.

A space X is called d-separable, if it has a dense o-discrete subspace. If X is
a space and U,V C t*(X), we say that V is a w-base for U if, for every U € U,
there is V' € V such that V' C U. The point-finite cellularity p(X) of a space X
is the supremum of cardinalities of point-finite families of non-empty open subsets
of X. A space X is k-stable if, for any continuous onto map f : X — Y, we have
nw(Y) < k whenever iw(Y) < k. Given a cardinal «, a space X is x-monolithic if
A C X and |A| < k implies nw(A) < k. Now, X is a Preiss—Simon space if, for any
closed ' C X and any non-isolated x € F, there exists a sequence {U, : n € w}
of open non-empty subsets of F' such that U, — x, i.e., any neighbourhood of x
contains all but finitely many of U, ’s.
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An uncountable regular cardinal « is a caliber of a space X if, for any family
U C t*(X) of cardinality «, there exists i’ C U such that || = k and (U’ # @.
An uncountable regular cardinal « is called a precaliber of a space X if, for any
family U C t*(X) of cardinality «, there exists 4/’ C U such that |U{'| = « and
U’ is centered (=has the finite intersection property, i.e., (|V # @ for any finite
v cu.

The symbol P stands for the space of the irrationals which is identified with »®;
in particular, if p,q € P, we say that p < q if p(n) < g(n) for any n € w. Let
@® = {0} and 0=* = | J{w" : n € w}. Usually, when considering @ <®, we identify
n = 0 with the empty set and every n € N with the set {0,...,n — 1}.If s € ®=%
andn € wthent = s7n € w=? is defined as follows: there is a unique k € w with
s e lettlk =sandt(k) = n.

Say that a space X is P-dominated if there is a compact cover {K, : p € P} of
the space X such that p,q € Pand p < g imply K, C K,. In other words, the
space X is P-dominated if it has a P-directed compact cover. A space X is said to
be strongly P-dominated if it has a P-directed compact cover C such that, for any
compact K C X there is C € C such that K C C, i.e., C “swallows” all compact
subsets of X.

Given a space Z, the family of all compact subsets of Z is denoted by K(Z).
A space X is dominated by a space Y if there is a compact cover { Fx : K € K(Y)}
of the space X such that K, L € K(Y) and K C L imply Fx C Fi.

Given a set A and a point x € R4, let supp(x) = {a € A : x(a) # 0}.If we have
afamilys = {4, :n € w} CexpAand| Js = Athen N, = {n € w : A,Nsupp(x)
is finite} for any x € R4, Let X;(A4) = {x € X(A4) : A = |J{A, : n € N,}}; here,
as usual, ¥(4) = {x € R* : |supp(x)| < o} and Zx(A) = {x € R4 : for any
e > 0,the set {a € A : |x(a)| > &} is finite}. The spaces X'(A) (or X, (A)) will
be called X'-products (X-products) of real lines. If X is a space and M C X, let
1 be the topology generated by t(X) U {{x} : x € X\ M }. The space (X, pp) is
usually denoted by X .

The statement CH (called Continuum Hypothesis) says that the first uncountable
ordinal is equal to the continuum, i.e., ; = ¢. The statement “t = 2¢ for any
infinite cardinal «” is called Generalized Continuum Hypothesis (GCH).
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1 Behavior of Compactness in Function Spaces

Suppose that X = vY and Z is a subspace of R¥ such that C,(X) C Z.
Prove that there exists Z’' C RY such that C,,(Y) C Z’ and Z’ is a continuous
image of Z.

Suppose that X is o-compact. Prove that there exists a K;s-space Z such that
C,(X) C Z CRX.

Suppose that vX is o-compact. Prove that there exists a K-analytic space Z
such that C,(X) C Z C RY,

Prove that X is pseudocompact if and only if there exists a o-compact space
Z such that C,(X) C Z C R,

Give an example of a Lindelof space X for which there exists no Lindelof
space Z such that C,(X) C Z C R¥.

Prove that vX is a Lindelof X-space if and only if C,(X) C Z C R for
some Lindelof XY'-space Z. In particular,

(i) if C,(X) is a Lindelof X-space, then vX is a Lindelof X-space;
(i) (Uspenskij’s theorem) if X is a Lindelof X'-space then there exists a
Lindel6f X-space Z such that C,(X) C Z C R¥;
(iii) if v(Cp(X)) is a Lindeldf X'-space then vX is Lindelof X.

Given a natural n > 1, suppose that there exists a Lindelof X'-space Z such
that C,,,(X) C Z C R 1) Prove that there exists a Lindelof X-space Y
such that C,(X) C Y C R,

Suppose that C,(X) is a Lindelof X'-space. Prove that C,, (X) is w-stable
and w-monolithic for any natural n.

Prove that a space X is dominated by a space homeomorphic to the irrationals
if and only if X is P-dominated.

Suppose that X is dominated by a second countable space. Prove that there
is a countable family F of subsets of X which is a network with respect to a
cover of X with countably compact subspaces of X .

Suppose that a space X has a countable family F which is a network with
respect to a cover of X with countably compact subspaces of X. Prove that
vX is a Lindelof X-space.

Prove that the property of being dominated by a second countable space is
preserved by countable unions, products and intersections as well as by closed
subspaces and continuous images.

Show that every Lindel6f X'-space is dominated by a second countable space.
Prove that X is a Lindelof X -space if and only if X is Dieudonné complete
and dominated by a second countable space.

Prove that, for any space X, the space C,(X) is dominated by a second
countable space if and only C,(X) is Lindelof X.

Prove that, for any space X, the space C,(X) is P-dominated if and only if
C,(X) is K-analytic.

Prove that, for any space X, the space C,(X) is strongly P-dominated if and
only if X is countable and discrete.
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Observe that there exist spaces X for which C,(X,I) is Lindelof X while
C,(X) is not Lindelof. Supposing that vX and C,(X,I) are Lindelof
X -spaces prove that C,(X) is a Lindelof X-space. In particular, if X is
Lindelof X then the space C,(X) is Lindelof X' if and only if C,(X,1) is a
Lindelof X'-space.

(Okunev’s theorem). Suppose that X and Y are Lindelof X'-spaces such that
Y C Cp(X). Prove that C,(Y) is a Lindelof X-space.

Let X and C,(X) be Lindelof X-spaces. Prove that, for every natural n, the
space C,, ,(X) is a Lindelof X'-space. In particular, if X is compactand C,(X)
is Lindelof X' then all iterated function spaces of X are Lindelof X'-spaces.
For an arbitrary Lindel6f Y-space X, prove that every countably compact
subspace Y C C,(X) is Gul’ko compact.

Suppose that C,(X) is a Lindelof X-space. Prove that every countably
compact ¥ C C,(X) is Gul’ko compact.

(Reznichenko’s compactum) Prove that there exists a compact space M with
the following properties:

(i) Cp(M)is a K-analytic space, i.e., M is Talagrand compact;
(i) there is x € M such that M \{x} is pseudocompact and M is the Stone—
Cech extension of M \{x}.

As a consequence, there is an example of a K -analytic space X such that some
closed pseudocompact subspace of C,(X) is not countably compact.
Suppose that, for a countably compact space X, there exists a condensation
f:X —>Z cCC,(Y),where C,(Y) is a Lindelof X'-space. Prove that f is a
homeomorphism and X is Gul’ko compact.

Give an example of a pseudocompact non-countably compact space X which
can be condensed onto a compact K C C,(Y), where C,(Y) is Lindelof X.
Give an example of a space X such that C,(X) is Lindelof X and some
pseudocompact subspace of C,(X) is not countably compact.

Observe that if there exist spaces X such that C,(X) is a Lindelof X'-space
while #(C,(X)) > w. Prove that, if C,(X) is Lindelof ¥ and ¥ C C,(X) is
pseudocompact then Y is Fréchet—Urysohn.

Show that there exists a space X such that C,(X) is a Lindelof X'-space and
t(Y) > w for some o-compact subspace ¥ C C,(X).

Let X be an arbitrary space. Denote by 7 : C,(vX) — C,(X) the restriction
map. Prove that, for any countably compact Y C C,(X), the space 7~ 1(Y) C
C,(vX) is countably compact.

Give an example of a space X such that 7#~!(Y) is not pseudocompact for
some pseudocompact ¥ C Cp,(X). Here m : C,(vX) — Cp,(X) is the
restriction map.

Assume that vX is a Lindelof ¥-space and 7 : C,(vX) — C,(X) is the
restriction map. Prove that, for any compact Y C C,(X), the space 7~ 1(Y) C
C,(vX) is also compact.
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1 Behavior of Compactness in Function Spaces

Assume that vX is a Lindelof ¥-space and 7w : C,(vX) — C,(X) is the
restriction map. Prove that, for any Lindelof X-space Y contained in C,(X),
the space 7~ 1(Y) C C,(vX) is Lindelof X.

Let X be a pseudocompact space and denote by 7 : C,(8X) — C,(X)
the restriction map. Prove that, for any Lindelof X'-space (compact space)
Y C Cp(X), the space 7~ '(Y) C C,(BX) is Lindeldf ¥ (or compact,
respectively).

Give an example of a pseudocompact X such that 7 ~'(Y) C C,(BX) is not
Lindel6f for some Lindelof Y C C,(X). Here 7w : C,(BX) — Cp,(X) is the
restriction map.

Observe that C,(X) is a Lindelof X-space if and only if C,(vX) is Lindelof
X ; prove that, for any X, the space C,(X) is K-analytic if and only if C,(vX)
is K-analytic. In other words, X is a Talagrand space if and only if vX is
Talagrand.

Suppose that C,(X) is a Lindeldf X'-space. Prove that C, , (vX) is a Lindelof
XY'-space for every n € N.

Given an arbitrary space X let ¥ : C,(vX) — C,(X) be the restriction
mapping. Let 7*(¢) = ¢ o 7 for any function ¢ € RX) and observe that
the map 7* : R — RE®Y) is an embedding. Identifying the space
v(C,(CH(X))) with the subspace {¢p € R : ¢ is strictly »-continuous
on C,(X)} of the space RE»X) (see TFS-438) prove that

() 7*(Cp(Cp(X))) C " (W(CH(Cp(X)))) C Cp(Cp(vX));
(ii) if C,(X) is normal then 7*(v(C,(C,(X)))) = C,(C,(vX)) and hence
the spaces v(C,(C,(X))) and C,(C,(vX)) are homeomorphic.

Suppose that C,(X) is a Lindelof X-space. Prove that C),»,(vX) is homeo-
morphic to v(Cp2,(X)) foreveryn € N.

Suppose that C,(X) is a Lindelof X'-space. Prove that Cp,»,((vX) can be
condensed onto C),»,+1(X) forevery n € w.

Suppose that C,, »¢+1(X) is a Lindelof X'-space for some k € . Prove that
Cpont1(X) is a Lindelof X-space every n € w.

Suppose that Cp(X) is a Lindelof X-space for some k € N. Prove that
Cp2n(X) is a Lindelof X-space every n € N.

Give an example of a space X such that C,(X) is not Lindel6f while C), 5, (X)
is a Lindelof X'-space for every n € N.

Give an example of a space X such that C,C,(X) is not Lindel6f while
Cpont1(X) is a Lindelof X'-space for every n € .

Prove that, for any space X, only the following distributions of the Lindelof
XY -property in iterated function spaces are possible:

(i) Cpn(X) isnota Lindelof X'-space for any n € N;
(ii) Cpn(X) is a Lindelof X-space for any n € N;
(iii) Cpan+1(X) is a Lindelof X-space and Cp,+42(X) is not Lindelof for
any n € w;
(iv) Cpan42(X) is a Lindelof X-space and Cj5,41(X) is not Lindelof for
any n € .
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Suppose that Cp, 5x+1(X) is a Lindel6f X'-space for some k € w. Prove that,
if Cp242(X) is normal for some / € w, then C,,(X) is a Lindelof X'-space
foranyn € N.

Suppose that Cp, 5x4+2(X) is a Lindel6f X'-space for some k € w. Prove that,
if Cpo41(X) is normal for some / € w, then C,,(X) is a Lindelof X'-space
foranyn € N.

Prove that, if C,(X) is a Lindelof X'-space, then v(C,C,(X)) is a Lindelof
X' -space.

Prove that, if X is normal and v(C,(X)) is a Lindel6f X-space, then
v(C,Cp,(X)) is a Lindelof X'-space.

Prove that, if X is realcompact and v(C,(X)) is a Lindelof X'-space, then
v(C,Cp(X)) is a Lindelof X'-space.

Let w; be a caliber of a space X. Prove that C,(X) is a Lindelof X-space if
and only if X has a countable network.

Prove that there exists a space X such that w; is a precaliber of X, the space
Cp.(X) is a Lindelof X-space for all n € w, while X does not have a
countable network.

Let X be a Lindelof X'-space with w; a caliber of X. Prove that any Lindelof
X -subspace of C,,(X) has a countable network.

Prove that a Lindelof X'-space Y has a small diagonal if and only if it embeds
into C,(X) for some X with w, a caliber of X.

Prove that, if C,(X) is a Lindelof X-space and has a small diagonal then X
has a countable network.

Suppose that a space X has a dense subspace which is a continuous image of
a product of separable spaces. Prove that any Lindelof X'-subspace of C,(X)
has a countable network.

Prove that any first countable space is a Preiss—Simon space.

Prove that any Preiss—Simon space is Fréchet—Urysohn.

Give an example of a compact Fréchet—Urysohn space which does not have
the Preiss—Simon property.

Let X be a space which has the Preiss—Simon property. Prove that each
pseudocompact subspace of X is closed in X.

Suppose that X is a Preiss—Simon compact space. Prove that, for any proper
dense Y C X, the space X is not the Cech-Stone extension of Y.

Prove that the following properties are equivalent for any countably compact
space X:

(i) X is a Preiss—Simon space;
(i) each pseudocompact subspace of X is closed in X;
(iii) for each closed F C X and any non-isolated x € F, the space F\{x} is
not pseudocompact.

Let X be a Lindelof X'-space. Suppose that Y C C,(X) and the set of non-
isolated points of Y is Lindelof X'. Prove that C, (Y, 1) is Lindelof X.

Let X be an Eberlein—Grothendieck space. Suppose that the set of non-isolated
points of X is o-compact. Prove that C,, (X, I) is Kos.
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1 Behavior of Compactness in Function Spaces

Let X be a second countable space. Prove that, for any M C X, the space
C,(Xum. 1) is Lindelof X

Let X be a o-compact Eberlein—-Grothendieck space. Prove that C,(X) is a
K,s-space.

Give an example of a Lindelof space X such that C, (X, I) is Lindelof X and
X x X is not Lindelof.

Suppose that X is a space such that v(C,(X)) is Lindelof ¥ and we have the
equality s(C, (X)) = w. Prove that nw(X) = w.

Suppose that C,,(X) is hereditarily stable and vX is a Lindel6f X' -space. Prove
that nw(X) = w.

Show that if C,(X) is hereditarily stable then nw(Y) = o for any Lindelof
X-subspace Y C X.

Suppose that v(C,(X)) is a Lindelof X'-space and w; is a caliber of C,(X).
Prove that nw(Y') = w for any Lindelof X -subspace Y C X.

Give an example of a space X which has a weakly o-point-finite family
U C t*(X) such that I/ is not o-point-finite.

Let X be an arbitrary space with s(X) < k. Prove that any weakly o-point-
finite family of non-empty open subsets of X has cardinality < k.

Give an example of a non-cosmic Lindelof X'-space X such that any closed
uncountable subspace of X has more than one (and hence infinitely many)
non-isolated points.

Suppose that C,(X) is a Lindelof X-space. Prove that, if all closed uncount-
able subspaces of C,(X) have more than one non-isolated points, then C,(X)
has a countable network.

Let X be a Lindelof X¥'-space with a unique non-isolated point. Prove that any
subspace of C,(X) has a weakly o-point-finite 7y-separating family of cozero
sets.

Let X be a space of countable spread. Prove that C,(X) is a Lindelof X'-space
if and only if X has a countable network.

Show that, under CH, there exists a space X of countable spread for which
there is a Lindelof X-space Y C C,(X) with nw(Y) > w.

Let X be a space with a unique non-isolated point: X = {a} U Y, where all
points of Y are isolated and a ¢ Y. Prove that, for every infinite cardinal «,
the following conditions are equivalent:

@) p(Cp(X)) =«k;
(i) if {4, : @ < k) is a disjoint family of finite subsets of Y then there is
an infinite S C «* such thata ¢ | J{A, : @ € S};
(iii) if {4, : & < kT }is a family of finite subsets of Y then there is an infinite
S CkT suchthata ¢ | J{Ay : @ € S}.

Let X be a space with a unique non-isolated point. Prove that, if X has no
non-trivial convergent sequences, then the point-finite cellularity of C,(X) is
countable.
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Call a family y of finite subsets of a space X concentrated if there is no
infinite 4 C y such that | J p is discrete and C*-embedded in X. Prove that,
if every concentrated family of finite subsets of X has cardinality < «, then
P(Cy(X)) <&

Prove that there exists a Lindelof X'-space X with a unique non-isolated point
such that C,(X) is a Lindelof X-space, p(C,(X)) = w, all compact subsets
of X are countable and nw(X) = .

Prove that there exists a space X such that C,(X) is Lindelof X-space,
nw(X) =cand p(X) = w.

Prove that any continuous image and any closed subspace of a Gul’ko compact
space is a Gul’ko compact space.

Prove that any countable product of Gul’ko compact spaces is a Gul’ko
compact space.

Let X be a Gul’ko compact space. Prove that for every second countable M,
the space C,(X, M) is Lindelof X

Prove that if C,(X) is a Lindelof X-space then X can be condensed into
a Y'-product of real lines. Deduce from this fact that every Gul’ko compact
space is Corson compact.

Prove that if X is Corson compact then the space C,(X) condenses linearly
into a ¥'-product of real lines. As a consequence, for any Gul’ko compact X
the space C,(X) condenses linearly into a Xx-product of real lines.

Let X be a Corson compact space. Prove that, if p(C,(X)) = w then X is
metrizable. Therefore if X is a Gul’ko compact space and p(C,(X)) = w
then X is metrizable.

Suppose that X and C,(X) are Lindelof X -spaces and p(C,(X)) = . Prove
that | X| <.

Prove that a compact space X is Gul’ko compact if and only if X has a weakly
o-point-finite Ty-separating family of cozero sets.

Prove that a compact X is Gul’ko compact if and only if there exists a set A
such that X embeds into X(A) for some family s = {4, : n € w} of subsets
of Awith s = A.

Suppose that X is a space, n € N and a non-empty family &/ C t*(X) has
order < n, i.e., every x € X belongs to at most n elements of U. Prove that
there exist disjoint families Vi, ..., V, of non-empty open subsets of X such
that V = | J{V; :i < n}is am-base forl{.

Suppose that a space X has the Baire property and I/ is a weakly o-point-finite
family of non-empty open subsets of X. Prove that there exists a o-disjoint
family V C *(X) which is a r-base for U.

Prove that every Gul’ko compact space has a dense metrizable subspace.

Let X be a Gul’ko compact space. Prove that w(X) = d(X) = ¢(X). In
particular, each Gul’ko compact space with the Souslin property is metrizable.
Let X be a pseudocompact space with the Souslin property. Prove that any
Lindelof X'-subspace of C,(X) has a countable network.

Let X be a Lindelof X -space. Suppose that Y is a pseudocompact subspace
of C,(X). Prove that Y is compact and metrizable if and only if ¢(Y) = .
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1 Behavior of Compactness in Function Spaces

Prove that every Gul’ko compact space is hereditarily d -separable.

Let X be a compact space. Prove that C,(X) is a K -analytic space if and only
if X has a Ty-separating family U/ of open F,-subsets of X and subfamilies
{Us : s € =?} of the family U with the following properties:

(@) Up = U andUs; = J{Us~k : k € o} forany s € ©=?;
(b) for every x € X and every f € w®, there exists m € w such that the
family U |, is point-finite at x for all n > m.

Let X be a compact space. Prove that C,(X) is a K -analytic space if and only
if X can be embedded into some X' (A) in such a way that, for some family
{A; 1 5 € @=?} of subsets of A, the following conditions are fulfilled:

(a) Ag = Aand A; = | J{As~ : k € w} forany s € ©=?;
(b) for any point x € X and any f € w®, there exists m € w such that the set
A £l N supp(x) is finite for alln > m.

(Talagrand’s example) Show that there exists a Gul’ko compact space X such
that C,(X) is not K-analytic. In other words, not every Gul’ko compact space
is Talagrand compact.
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1.4 Eberlein Compact Spaces

All spaces are assumed to be Tychonoff. Given an arbitrary set A, we will need the
spaces X(A) = {x e R : [{a € A : x(a) # 0} < w}, Tu(A) = {x € R* : for
any ¢ > 0, the set {a € A : |x(a)| > &} is finite} and 6(A) = {x € R? : the set
{a € A : x(a) # 0} is finite}. Suppose that we have a product X = [[{X, : ¢t € T}
andx € X.Let Y(X,x) ={y e X : |{t € T : y(t) # x(t)}| < w}. The space
Y (X, x)iscalled the X¥-product of { X, : t € T} centered at the point x and the point
X is the center of the relevant X'-product. If we have a product X = [[{X, : 7 € T}
and x € X,theno(X,x) = {y € X : |{t € T : y(t) # x(t)}| < w}. The
set 0(X, x) is called the o-product of {X, : t € T} centered at the point x and
the point x is the center of the relevant o-product. If no center of a X-product
or a o-product is specified, then the formulated statements are valid (or must be
proved) for any center of the mentioned X'-product or o-product. If X is a set, then
A=Ay ={(x,x) : x € X} is the diagonal of X.

The space D is the two-point set {0, 1} with the discrete topology. A space X
is called functionally perfect if there is a compact K C C,(X) which separates
the points of X. A functionally perfect compact space is called Eberlein compact.
A compact space K is called a uniform Eberlein compact 1if, for some set A, the
space K embeds into X«(A) in such a way that there exists a function N : Rt — N
such that |[{a € 4 : |x(a)| > €}| < N(¢)forall x € K and e > 0. Here R™ is the set
of all positive real numbers. Call X strong Eberlein compact if it is homeomorphic
to a compact subspace of 0p(A4) = {x € D* : |x~'(1)| < w} for some A. A space
is called k-separable if it has a dense o-compact subspace. The expression X ~ YV
says that X and Y are homeomorphic. Given a locally compact non-compact X, let
a(X) = X U{ap}, whereap ¢ X.Let u = t(X) U {{ap} UU : X\U is compact}.
The space («(X), u) is called the one-point compactification of the space X .

If P is a class of spaces, then P, consists of spaces representable as a countable
union of elements of P. The class Ps contains the spaces which are countable
intersections of elements of P in some larger space. More formally, X € P, if
X = U{X, : n € w} where X, € P for any n € w. Analogously, X € P;s
if there exists a space ¥ and Y, C Y such that ¥, € P foralln € w and
(VY. : n € o} ~ X. Then Pys = (Py)s. Say that X is a Kys-space if X € Koys
where K is the class of compact spaces.

Let T be an infinite set. An arbitrary family A C expT is called adequate if
UA=T, expA C Aforany A € A, and A € A whenever all finite subsets of
A belong to A. Given A C T, let y4(¢t) = 1ift € Aand y4(t) = 0ift ¢ A.
The map x4 : T — {0, 1} is called the characteristic function of A in the set T . If
we have a set 7 and an adequate family A on T, let K4 = {y4 € DT : A € A}.
Another object associated with A, is the space 73 whose underlying setis 7 U {£},
where £ ¢ T, all points of T are isolated in 73 and the basic neighbourhoods of
£ are the complements of finite unions of elements of A. A subspace X C D7 is
called adequate if X = K 4 for some adequate family A on 7.
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A family y of subsets of X is Ty-separating if, for any distinct x, y € X, there
is A € y such that |[A N {x, y}| = 1. Now, y is T;-separating if, for any distinct
x,y € X, there are A, B € y suchthat A N {x,y} = {x}and B N {x,y} = {y}.
Aset U C X is cozero if there is f € C,(X) such that U = f~1(R\{0}). Say
that X is a Preiss—Simon space if, for any closed F C X and for any non-isolated
x € F, there exists a sequence {U, : n € w} of open non-empty subsets of F
such that U, — x, i.e., any neighbourhood of x contains all but finitely many
of U,’s. A space X is called homogeneous if, for every x,y € X, there exists a
homeomorphism f : X — X such that f(x) = y. A space X is o-metacompact if
any open cover of X has a o-point-finite open refinement, i.e., a refinement which
is a countable union of point-finite families.

All linear spaces in this book are considered over the space R of the reals. Let
L be a linear topological space. A set M C L is called a linear subspace of L if
ax + By € M whenever x,y € M and o, 8 € R. A linear space L, equipped
with a topology T, is called linear topological space if (L, t) is a T}-space and the
linear operations (x, y) — x 4+ y and (¢, x) — tx are continuous with respect to 7.
A subset A of a linear space L is called convexif x,y € A impliestx + (1 —¢)y €
A for any number ¢t € [0, 1]. A convex hull conv(A) of a set A C L is the set
{tixi+...+tyxy:neN, x,...,x, €A, t1,....t, €[0,1], 1 + ...+, = 1}.
A linear topological space L is called locally convex if it has a base which consists
of convex sets. If L is a linear space and A C L then the linear span of A in L is
the intersection of all linear subspaces of L which contain 4. A real-valued function
x — ||x||, defined on a linear space L, is a norm if it has the following properties:

(N1) ||x]] = 0 forany x € L; besides, ||x|| = 0 if and only if x = 0;
(N2) |lax|| = || -||x|| forany x € L and @ € R;
(N3) [lx + yll < [lx|[ + |[y]| forany x, y € L.

If || - || is a norm on a linear space L, the pair (L, ||-||) is called a normed space.
If the norm is clear, we write L instead of (L, ||-||). If L is a normed space, then the
function dy (x, y) = ||x — y|| is a metric on L. Every normed space L is considered
to carry the topology generated by the metric d. If (L, d;) is a complete metric
space, L is called a Banach space. Given a linear space L, a function f : L — Riis
called a linear functional if f(ax + By) = af(x) + Bf(y) forany x,y € L and
a, B € R; the functional f is called zrivial if f(x) = O for any x € L. The set of
all continuous linear functionals on L is denoted by L*; clearly, L* C C(L). Given
aset X and F C RY, let 7+ be the topology generated by the family { f ~1(U) :
f e F, U e 1(R)} as a subbase. We call tr the topology generated by F. If L is
a linear topological space, denote by L,, the space (L, t.=). We call 7.+ the weak
topology of L. Given a topological property P, a set K C L is called weakly P if
the topology, induced in K from L,,, has the property P. For example, a set K C L
is weakly compact if the topology, induced in K from L,,, is compact.
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Prove that the following conditions are equivalent for any space X:

(1) X is functionally perfect;

(ii) X condenses onto a subspace of C,(Y') for some compact Y';

(iii) X condenses onto a subspace of C,(Y") for some o-compact Y;

(iv) there exists a o-compact H C C,(X) which separates the points of X;
(v) the space C,(X) is k-separable.

Show that neither X'(A4) nor R* is functionally perfect whenever the set A is
uncountable.

Prove that the spaces (A) and X (A) are functionally perfect for any set A.
Prove that C), (1) is functionally perfect.

Show that, if a space condenses onto a functionally perfect space, then it is
functionally perfect.

Prove that any subspace of a functionally perfect space is functionally perfect.
Prove that a countable product of functionally perfect spaces is a functionally
perfect space. In particular, a countable product of Eberlein compact spaces is
Eberlein compact.

Prove that any o-product of functionally perfect spaces is a functionally
perfect space.

Prove that any product of k-separable spaces is k-separable.

Prove that a space X is hereditarily k-separable (i.e., every ¥ C X is
k-separable) if and only if X is hereditarily separable.

Suppose that f : X — Y is an irreducible perfect map. Show that the space
X is k-separable if and only if sois Y.

Prove that, for any k-separable X, the space C,(X) is functionally perfect. In
particular, the space C,(X) is functionally perfect for any compact X .

Give an example of a non-k-separable space X for which C,(X) is function-
ally perfect.

Prove that, for an arbitrary space X, the space C,(X) is a continuous image
of C,(C,(Cp(X))).

Prove that C,(X) is k-separable if and only if C,C,(X) is functionally
perfect. As a consequence, X is functionally perfect if and only if C,(C,(X))
is functionally perfect.

Prove that any metrizable space is functionally perfect. In particular, any
second countable space is functionally perfect and hence any metrizable
compact space is Eberlein compact.

Let X be a metrizable space. Prove that C,(X) is functionally perfect if and
only if X is second countable.

Prove that any paracompact space with a Gs-diagonal can be condensed onto
a metrizable space. Deduce from this fact that any paracompact space with a
Gs-diagonal is functionally perfect.

Observe that any Eberlein—Grothendieck space is functionally perfect. Give an
example of a functionally perfect space which is not Eberlein—Grothendieck.
Prove that every metrizable space embeds into an Eberlein compact space.
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1 Behavior of Compactness in Function Spaces

Prove that C,(X) is a Ks-space for any Eberlein compact X . In particular,
each Eberlein compact space is Gul’ko compact and hence Corson compact.
Prove that a compact space X is Eberlein if and only if it embeds into X, (A4)
for some A.

Prove that a compact space is metrizable if and only if it has a 7-separating
o-point-finite family of cozero sets.

Prove that a compact space X is Eberlein compact if and only if X has a
Ty-separating o-point-finite family of cozero sets.

Give an example of a scattered compact space which fails to be Corson
compact and has a Ty-separating o-point-finite family of open sets.

Suppose that a compact X has a Ty-separating point-finite family of open sets.
Prove that X is Eberlein compact.

Prove that a non-empty compact X is Eberlein if and only if there is a compact
F C C,(X) which separates the points of X and is homeomorphic to A(x)
for some cardinal «.

Say that a (not necessarily continuous) function x : I — I is increasing
(decreasing) if x(s) < x(¢) (or x(s) > x(¢) respectively) whenever s,¢ € 1
and s < t. A function x : [ — [ is called monotone if it is either increasing
or decreasing. Prove that the Helly space X = {x € I' : x is a monotone
function} is closed in I and hence compact. Is it an Eberlein compact space?
Prove that a compact space X is Eberlein compact if and only if C,(X) is a
continuous image of (A(k))® x w® for some infinite cardinal «.

Prove that a compact space X is Eberlein compact if and only if there is a
compact space K and a separable space M such that C,(X) is a continuous
image of K x M.

Prove that any infinite Eberlein compact space X is a continuous image of
a closed subspace of (A(k))® x M, where k = w(X) and M is a second
countable space.

Prove that each Eberlein compact space is a Preiss—Simon space.

Prove that, if a pseudocompact space X condenses onto a subspace of C,(K)
for some compact K, then this condensation is a homeomorphism and X is
Eberlein compact. In particular, any functionally perfect pseudocompact space
is Eberlein compact.

Prove that a zero-dimensional compact space X is Eberlein compact if and
only if X has a Ty-separating o-point-finite family of clopen sets.

Let X be a zero-dimensional compact space. Prove that X is Eberlein if and
only if C, (X, D) is o-compact.

Prove that any Eberlein compact space is a continuous image of a zero-
dimensional Eberlein compact space.

Prove that any continuous image of an Eberlein compact space is Eberlein
compact.

Prove that there exists a compact X such that X is a union of countably many
Eberlein compact spaces while C, (X) is not Lindelof. In particular, a compact
countable union of Eberlein compact spaces need not be Corson compact.
Prove that it is consistent with ZFC that there exists a Corson compact space
which does not map irreducibly onto an Eberlein compact space.
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Suppose that P is a class of topological spaces such that, for any X € P,
all continuous images and all closed subspaces of X belong to P. Prove that
it is impossible that a compact space X be Eberlein compact if and only if
C,(X) € P, ie., either there exists an Eberlein compact space X such that
C,(X) ¢ P or there is a compact ¥ which is not Eberlein and C,(Y) € P.
Let X be a Gul’ko compact space. Prove that there exists a countable family
F of closed subsets of X suchthat( JF = X and K, = (\{4d:x € A € F}
is Eberlein compact for any x € X.

Let X be an Eberlein compact space with |X| < c. Prove that there exists
a countable family F of closed subsets of X such that | JF = X and the
subspace Ky = [{A : x € A € F} is metrizable for any x € X.

Observe that ¢(X) = w(X) for any Eberlein compact space X . Prove that, for
any infinite compact X, we have c¢(X) = sup{w(K) : K C Cp(X) and K is
compact}.

Given a pseudocompact space X and functions f, g € C(X), letd(f,g) =
sup{| f(x) — g(x)| : x € X}. Prove that d is a complete metric on the set
C(X) and the topology of C,(X) is generated by d .

Prove that, for any pseudocompact X, the space C,(X) is separable if and only
if X is compact and metrizable.

Suppose that X is a compact space and let || f|| = sup{| f(x)| : x € X}
for any f € C(X). Assume additionally that » € C(X), r > Oand H =
{h, : n € w} C C(X) is a sequence such that ||h,|| < r forall n € w and
h,(x) — h(x) forany x € X (i.e., the sequence H converges to / in the space
C,(X)). Prove that h belongs to the closure of the convex hull conv(H) of the
set H in the space C,(X).

Suppose that X is a Cech-complete space and we are given a continuous map
¢ 1 X — C,(K) for some compact space K. Prove that there exists a dense
Gs-set P C X such that¢ : X — C,(K) is continuous at every point of P.
Prove that any Eberlein-Grothendieck Cech-complete space has a dense
Gs-subspace which is metrizable.

Prove that if X is an Eberlein-Grothendieck Cech-complete space then
c(X) = w(X).

Let X be a compact space. Assume that X = X;U...UX,, where every X; is
a metrizable (not necessarily closed) subspace of X . Prove that X, Nn...nX,
is metrizable. In particular, if all X;’s are dense in X then X is metrizable.
Suppose that X is a compact space which is a union of two metrizable sub-
spaces. Prove that X is Eberlein compact which is not necessarily metrizable.
Observe that there exists a compact space K which is not Eberlein while being
aunion of three metrizable subspaces. Suppose that X is a compact space such
that X x X is a union of its three metrizable subspaces. Prove that X is Eberlein
compact.

Prove that, if X is compact and X “ is a union of countably many of its Eberlein
compact subspaces then X is Eberlein compact.

Give an example of an Eberlein compact space which cannot be represented
as a countable union of its metrizable subspaces.
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1 Behavior of Compactness in Function Spaces

Let X be a Corson compact space such that X is a countable union of Eberlein
compact spaces. Prove that C,(X) is K-analytic and hence X is Gul’ko
compact.

Let X be a o-product of an arbitrary family of Eberlein compact spaces. Prove
that C,(X) is a Ks-space.

Prove that the one-point compactification of an infinite discrete union of non-
empty Eberlein compact spaces is an Eberlein compact space.

Prove that the Alexandroff double of an Eberlein compact space is an Eberlein
compact space.

Recall that a space X is homogeneous if, for any x,y € X, there is a
homeomorphism 2 : X — X such that 2(x) = y. Construct an example
of a homogeneous non-metrizable Eberlein compact space.

Give an example of a hereditarily normal but not perfectly normal Eberlein
compact space.

Let X be an Eberlein compact space such that X x X is hereditarily normal.
Prove that X is metrizable.

Prove that there exists an Eberlein compact space X such that X2\ A is not
metacompact.

Prove that any Eberlein compact space is hereditarily o-metacompact.

Prove that, for any compact X, the subspace X2\ A C X? is o-metacompact
if and only if X is Eberlein compact.

Prove that a compact space X is Eberlein compact if and only if X x X is
hereditarily o-metacompact.

Prove that a compact space X has a closure-preserving cover by compact
metrizable subspaces if and only if it embeds into a o-product of compact
metrizable spaces. In particular, if X has a closure-preserving cover by
compact metrizable subspaces then it is an Eberlein compact space.
Construct an Eberlein compact space which does not have a closure-preserving
cover by compact metrizable subspaces.

Observe that every strong Eberlein compact is Eberlein compact. Prove that
a metrizable compact space is strong Eberlein compact if and only if it is
countable.

Prove that a compact X is strong Eberlein compact if and only if it has a
point-finite 7p-separating cover by clopen sets.

Prove that every o-discrete compact space is scattered. Give an example of a
scattered compact non-o-discrete space.

Prove that every strong Eberlein compact space is o-discrete and hence
scattered.

Prove that a hereditarily metacompact scattered compact space is strong
Eberlein compact.

Prove that the following conditions are equivalent for any compact X:

(1) X is o-discrete and Corson compact;
(i) X is scattered and Corson compact;
(iii) X is strong Eberlein compact.



1.4 Eberlein Compact Spaces 37

374.

375.

376.

3717.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

Prove that any continuous image of a strong Eberlein compact space is a strong
Eberlein compact space.

Prove that any Eberlein compact space is a continuous image of a closed subset
of a countable product of strong Eberlein compact spaces.

Let X be a strong Eberlein compact space. Prove that the Alexandroff double
of X is also strong Eberlein compact.

Suppose that X; is strong Eberlein compact for each ¢ € T. Prove that the
Alexandroff one-point compactification of the space P{X; : r € T} is also
strong Eberlein compact.

Observe that any uniform Eberlein compact is Eberlein compact. Prove that
any metrizable compact space is uniform Eberlein compact.

Observe that any closed subspace of a uniform Eberlein compact space is
uniform Eberlein compact. Prove that any countable product of uniform
Eberlein compact spaces is uniform Eberlein compact.

Prove that if X is a uniform Eberlein compact space then it is a continuous
image of a closed subspace of (A(k))® for some infinite cardinal «.

Prove that any continuous image of a uniform Eberlein compact space is
uniform Eberlein compact. Deduce from this fact that a space X is uniform
Eberlein compact if and only if it is a continuous image of a closed subspace
of (A(x))® for some infinite cardinal k.

Given an infinite set 7 suppose that a space X; # @ is uniform Eberlein
compact for each ¢ € T. Prove that the Alexandroff compactification of the
space P{X; : t € T} is also uniform Eberlein compact.

Let 7' be an infinite set. Suppose that A is an adequate family on 7. Prove that
the space K 4 is Eberlein compact if and only if 7'} is o-compact.

Let 7' be an infinite set. Suppose that A is an adequate family on 7. Prove that
the space K 4 is Eberlein compact if and only if there exists a disjoint family
{T; :i € w}suchthat T = | J{T; : i € w}and x~'(1) N T; is finite for every
xe€ Kqandi € w.

Let T be an infinite set and .A an adequate family on 7'. Prove that the adequate
compact K 4 is uniform Eberlein compact if and only if there exists a disjoint
family {T; : i € w} and a function N : ® — w such that T = (J{T; :€ w}
and |[x"'(1) N T;| < N(i) forany x € K4 and i € w.

For the set T = w; x w let us introduce an order < on T declaring that
(a1, B1) < (a2, B2) if and only if @1 < ap and B; > B,. Denote by A the
family of all subsets of 7" which are linearly ordered by < (the empty set and
the one-point sets are considered to be linearly ordered). Prove that A is an
adequate family and X = K 4 is a strong Eberlein compact space which is not
uniform Eberlein compact.

(Talagrand’s example) For any distinct s, € ®, consider the number
8(s,t) = min{k € w : s(k) # t(k)}. Foreachn € w,let A, = {A C w® : for
any distinct s, € A we have §(s,1) = n}. Prove that A = [ J{A, : n € w} is
an adequate family and X = K 4 is a Talagrand compact space (i.e., C,(X) is
K-analytic and hence X is Gul’ko compact) while X is not Eberlein compact.
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1 Behavior of Compactness in Function Spaces

Given a compact space X let || f|| = sup{| f(x)| : x € X} forany f € C(X).
Prove that (C(X), || - ||) is a Banach space.

(Hahn-Banach Theorem) Assume that M is a linear subspace of a normed
space (L, || - ||) and suppose that f : M — R is a linear functional such
that | f(x)| < ||x]|| for any x € M. Prove that there exists a linear functional
F: L — Rsuchthat FIM = f and |F(x)| < ||x]|| forall x € L.
Given a normed space (L, ||-||) let S = {x € L : ||x|| < 1} be the unit ball of
L. Prove that a linear functional f : L — R is continuous if and only if there
exists k € N such that | f(x)| < k forany x € S.

Given a normed space (L, || - [|),let S = {x € L : ||x|| < 1} and consider
theset S* = {f € L* : f(S) C [-1, 1]}. Prove that S* separates the points
of L.

Let L be a linear space without any topology. Suppose that F is a family
of linear functionals on L which separates the points of L. Prove that the
topology on L generated by F, is Tychonoff and makes L a locally convex
linear topological space.

Let L be a linear space. Denote by L’ the set of all linear functionals on L.
Considering L' a subspace of RZ, prove that L’ is closed in R,

Given a normed space (L, || - ||), consider the sets S = {x € L : ||x]| < 1}
and S* = {f € L* : f(S) C [—1, 1]}. Prove that, for any point x € L, the
set S*(x) = {f(x): f € S*}is bounded in R.

Given a normed space (L, || - ||),let S = {x € L : ||x|| < 1} and consider
the set S* = {f € L* : f(S) C [-1,1]}. Denote by L,, the set L with
the topology generated by L*. Observe that S* C C(L,,) and give S* the
topology t induced from C,(L,,). Prove that (S*, ) is a compact space.
Prove that L,, is functionally perfect for any normed space (L, || - ||). As a
consequence, any compact subspace of L,, is Eberlein compact.

Let L be a linear topological space. Given a sequence {x, : n € w} C L,
prove that x, — x in the weak topology on L if and only if f(x,) — f(x)
forany f € L*.

For an arbitrary compact space K let || f|| = sup{|f(x)| : x € K} for
any f € C(K). Denote by C,,(K) the space C(K) endowed with the weak
topology of the normed space (C(K), ||:||). Prove that 7(C,,(K)) D ©(C,(K))
and show that, in the case of K = I, this inclusion is strict, i.e., T(C,,(I)) #
2(C, ().

Suppose that K is a compact space and let || f|| = sup{| f(x)| : x € K} for
any f € C(K). Denote by C,,(K) the space C(K) endowed with the weak
topology of the normed space (C(K), || - ||). Prove that, forany X C C(K,1I),
if X is compact as a subspace of C,(K) then the topologies, induced on X
from the spaces C,(K) and C,,(K), coincide.

(The original definition of an Eberlein compact space) Prove that X is an
Eberlein compact space if and only if it is homeomorphic to a weakly compact
subset of a Banach space.
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1.5 Special Embeddings and Extension Operators

A space X is called splittable if, for every f € R¥, there exists a countable set
A C Cp(X)suchthat f € A (the closure is taken in R¥). Splittable spaces are also
called cleavable, but we won’t use the last term in this book. A space X is weakly
splittable if, for every function f € R¥, there exists a o-compact A C C »(X) such
that f € A (the closure is taken in R¥). A compact weakly splittable space is called
weak Eberlein compact.

A space X is strongly splittable if, for every f € RX, there exists a sequence
S ={fy:n€w} CCyX)suchthat f, — f.A space X is functionally perfect
if there exists a compact K C C,(X) which separates the points of X. Given a
space X let L ,(X) be the set of all continuous linear functionals on C,(X) with the
topology induced from C,(C,(X)).

A space X has a small diagonal if, for any uncountable set A C (X x X)\A,
there exists an uncountable B C A such that B N A = §. Here, as usual, the set
A = {(x,x) : x € X} C X x X is the diagonal of the space X. A subspace
Y C X is strongly discrete if there exists a discrete family {U, : y € Y} C ©(X)
such that y € U, foreach y € Y. A space is strongly o-discrete if it is a union of
countably many of its closed discrete subspaces. The space D is the two-point set
{0, 1} endowed with the discrete topology.

An uncountable regular cardinal « is a caliber of a space X if, for any family
U C t*(X) of cardinality «, there exists U’ C U such that || = k and (U # @.
An uncountable regular cardinal « is called a precaliber of a space X if, for any
family U C t*(X) of cardinality «, there exists 4/’ C U such that |U'| = « and
U’ has finite intersection property, i.e., [V # @ for any finite V C U’. Now,
p(X) = sup{|U]| : U is a point-finite family of non-empty open subsets of X}.
The cardinal p(X) is called the point-finite cellularity of X. Given a space X and
x € X, call a family B C t*(X) a w-base of X at x if, for any U € t(x, X),
there is V' € B such that V' C U. Note that the elements of a w-base at x need
not contain the point x. Now, 7y (x, X) = min{|B| : B is a w-base of X at x} and
wx(X) = sup{my(x,X) : x € X}. Letiw(X) = min{|«| : there is a condensation
of X onto a space of weight < k}. The cardinal iw(X) is called the i -weight of X.

A subspace Y of a space X is C-embedded in X if, for any function f € C(Y),
there is g € C(X) such that g|Y = f. If any bounded continuous function on Y
can be extended to a continuous function on X, we say that Y is C*-embedded in
X.

If X isaspace,Y C X and E C C,(Y),say thatamap ¢ : E — C,(X) is
an extender if o(f)|Y = f forany f € E. AsetY C X is t-embedded in X, if
there exists a continuous extender ¢ : C,(Y) — C,(X). Note that any 7-embedded
subspace of X is C-embedded in X. It is said that Y is [-embedded in X if there
exists a linear continuous extender ¢ : C,(Y) — C,(X). Note that any /-embedded
subspace of X is t-embedded in X .

A space X is called extendial or [-extendial if every closed subspace of X is
[-embedded in X. If every closed subspace of X is f-embedded in X, then X is
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t-extendial. A space X is extral or [-extral if, for any space Y which contains X
as a closed subspace, X is /-embedded in Y. Analogously, X is z-extral if, for any
space Y which contains X as a closed subspace, X is z-embedded in Y. Given a
space X and a subspace F' C X, we say that F is a retract of X if there exists a
continuous map f : X — F such that f(x) = x for any x € F. The map f is
called retraction of X onto F. A compact space is called dyadic if it is a continuous
image of the Cantor cube D* for some k. A compact space X is [-dyadic if it is
/-embedded in some dyadic space. If X can be t-embedded in some dyadic space,
it is called #-dyadic.

Recall that a space X is radial if, for every A C X and every x € A, there exists a
transfinite sequence s = {x, : @ < k} C A such that s — x. A space is k-separable
if it has a dense o-compact subspace. The symbol ¢ denotes the cardinality of the
continuum. A space X is Baire if any countable intersection of open dense subsets of
X is dense in X . The space X is Cech-complete if X is a G;-set in BX. A sequence
{U, : n € w} of covers of X is called complete if, for any filter F on the set X such
that F N U, # @ foralln € w, we have (\{F : F € F} # 0.

A family U of subsets of a space X is weakly o-point-finite if there exists a
sequence {U, : n € w} of subfamilies of I/ such that, for every x € X, we have
U= J{U :ne M} where M, = {n € w : U, is point-finite at x}.
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Prove that every subspace of a splittable space is splittable.

Prove that every second countable space is splittable.

Prove that ¥ (X) < w for every splittable space X.

Prove that, if X condenses onto a splittable space, then X is splittable. In
particular, any space of countable i -weight is splittable.

Give an example of a splittable space which does not condense onto a second
countable space.

Give an example of a metrizable space which is not splittable.

Give an example of a splittable space whose square is not splittable.

Prove that a space X with a unique non-isolated point is splittable if and only
ify(X) <o.

Let X be a non-discrete space. Prove that, for any f € RX, there exists a
countable A C R¥\C,(X) such that f € A (the closure is taken in R¥).

Let X be a splittable space. Prove that every regular uncountable cardinal is a
caliber of C,(X).

Prove that every splittable space has a small diagonal.

Prove that C,(X) is splittable if and only if it condenses onto a second
countable space.

Show that an open continuous image of a splittable space can fail to be
splittable.

Let X be a space of cardinality < ¢. Prove that X is splittable if and only if
the i-weight of X is countable.

Prove that a space X is splittable if and only if, for every f € DX, there is a
countable A C C,(X) such that f € A (the closure is taken in RY).

Prove that a space X is splittable if and only if, for any A C X, there exists a
continuous map ¢ : X — R such that A = ¢~ '¢(A).

Prove that any pseudocompact splittable space must be compact and
metrizable.

Prove that a Lindelof space X is splittable if and only if iw(X) < w.

Prove that a Lindelof X'-space is splittable if and only if it has a countable
network.

Prove that a Lindelof p-space is splittable if and only if it is second countable.
Prove that any Cech-complete splittable paracompact space is metrizable.

Let X be a complete metrizable dense-in-itself space. Prove that X is splittable
if and only if | X| < c.

Suppose that X = [ J{X, : n € o}, where X, C X+ for each n € w, the
subspace X, is splittable and C *-embedded in X for every n. Prove that X is
splittable.

Prove that any normal strongly o-discrete space is strongly splittable.

Give an example of a strongly o-discrete space which is not splittable.

Show that, for any cardinal «, there exists a normal strongly o-discrete (and
hence splittable) space X with ¢(X) = w and | X| > «.

Show that there exists a splittable space which cannot be condensed onto a
first countable space.
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Assuming the Generalized Continuum Hypothesis prove that, if X is a
splittable space and A C X, |A| < c then |A4| < c.

Prove that any Cech-complete splittable space has a dense metrizable sub-
space.

Prove that every subspace of a weakly splittable space must be weakly
splittable.

Prove that, if X condenses onto a weakly splittable space then X is weakly
splittable.

Give an example of a weakly splittable non-splittable space.

Prove that a separable weakly splittable space is splittable.

Let X be a space with w; caliber of X. Prove that, under CH, X is splittable
if and only if it is weakly splittable.

Show that every functionally perfect space is weakly splittable. In particular,
every Eberlein compact space is weakly splittable.

Prove that every metrizable space is weakly splittable.

Let X be a weakly splittable space of cardinality < ¢. Prove that C,(X) is
k-separable.

Prove that if X is a weak Eberlein compact space and |X| < ¢ then X is
Eberlein compact.

Let X be a weak Eberlein compact space. Prove that w(X) = c¢(X). In
particular, a weak Eberlein compact space is metrizable whenever it has the
Souslin property.

Prove that any weak Eberlein compact space X is w-monolithic, Fréchet—
Urysohn and C,(X) is Lindel6f.

Give an example of a Gul’ko compact space which fails to be weakly
splittable.

Prove that any subspace of a strongly splittable space must be strongly
splittable.

Prove that, if X condenses onto a strongly splittable space then X is strongly
splittable.

Prove that, under MA+—CH, there is a strongly splittable space which is not
o-discrete.

Prove that every subset of a strongly splittable space is a Gs-set.

Show that there exists a space X in which every subset is a Gs-set while X is
not splittable.

Let X be a normal space in which every subset is Gs. Prove that X is strongly
splittable.

Suppose that ¥ C X and ¢ : C,(Y) — C,(X) is a continuous (linear)
extender.For I = {f € C,(X) : f(¥Y) C {0}},defineamap& : C,(Y)xI —
C,(X)by&(f.g) = o(f) + g forany (f,g) € C,(Y) x I. Prove that & is
a (linear) embedding and hence C,(Y') embeds in C,(X) as a closed (linear)
subspace.

Given a space X defineamape : X — C,(Cp(X)) by e(x)(f) = f(x)
forany x € X and f € C,(X). If X is a subspace of a space ¥ prove
that X is r-embedded in Y if and only if there exists a continuous map ¢ :
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Y — C,(Cp(X)) such that ¢|X = e. Deduce from this fact that e(X) is
t-embedded in C,(C,(X)) and hence X is homeomorphic to a ¢-embedded
subspace of C,(Cp(X)).

Prove that, for any space X every t-embedded subspace of X is closed in X.
Prove that fw\w is not t-embedded in fw.

Suppose that Y is f-embedded in a space X. Prove that p(Y) < p(X) and
d(Y) <d(X).

Suppose that Y is -embedded in X and a regular cardinal « is a caliber of X.
Prove that « is a caliber of Y.

Prove that any closed subspace of a z-extendial space is ¢-extendial.

Let X be a t-extendial space. Prove that s(X) = p(X).

Let X be a r-extendial Baire space. Prove that s(X) = ¢(X). In particular, if
X is a pseudocompact ¢-extendial space, then c¢(X) = s(X).

Prove that, for any compact ¢-extendial space X, we have 1 (X) < c(X).
Prove that, under MA+—CH, if X x X is a f-extendial compact space and
¢(X) < o then X is metrizable.

Suppose that X is a z-extendial Cech-complete space such that e, is a caliber
of X. Prove that X is hereditary separable.

Assuming MA+—CH prove that any 7-extendial Cech-complete space with
the Souslin property is hereditarily separable.

Prove that a -extendial compact space cannot be mapped onto I“!.

Prove that the set {x € X : wy(x,X) < w} is dense in any z-extendial
compact space X .

Give an example of a countable space which is not ¢-extendial.

Prove that any strongly discrete subspace A C X is /-embedded in X.

Prove that, if Y is a retract of X, then Y is /-embedded in X .

Given a space X defineamape : X — C,(Cp(X)) by e(x)(f) = f(x)
forany x € X and f € C,(X). Observe that e(X) C L,(X); prove that
e(X) is /-embedded in L ,(X) and hence any space X is homeomorphic to an
[-embedded subspace of L ,(X).

Given a space X defineamape : X — C,(Cp(X)) by e(x)(f) = f(x)
forany x € X and /' € C,(X). Observe that e(X) C L,(X) so we can
consider thate : X — L,(X).If X is a subspace of a space Y prove that X is
[-embedded in Y if and only if there exists a continuous map ¢ : ¥ — L ,(X)
such that | X = e.

Prove that any closed subspace of an extendial space is extendial.

Prove that every metrizable space is extendial.

Prove that, for any zero-dimensional linearly ordered compact space X any
closed F' C X is a retract of X; in particular, the space X is extendial.

Give an example of a perfectly normal, hereditarily separable non-metrizable
extendial compact space.

Give an example of an extendial compact space X such that X x X is not
t-extendial.

Show that there exist extendial compact spaces of uncountable tightness.
Give an example of a non-linearly orderable extendial compact space.
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Prove that every 7-extral (and hence every extral) space X is compact and
every uncountable regular cardinal is a caliber of X .

Prove that X is ¢-extral if and only if it can be f-embedded in I“ for some
cardinal «.

Prove that any retract of a 7-extral space is a f-extral space.

Let X be a r-extral space such that w(X) < c. Prove that X is separable.
Suppose that an w-monolithic space X is f-extral and has countable tightness.
Prove that X is metrizable.

Prove that a r-extral space X is metrizable whenever C,(X) is Lindelof.
Give an example of a 7-extral space which is not extral.

Prove that every metrizable compact space is extral.

Prove that X is extral if and only if it can be /-embedded in I for some
cardinal «.

Prove that any retract of an extral space is an extral space.

Given an extral space X and an infinite cardinal k prove that w(X) > « implies
that D" embeds in X.

Let X be an extral space. Prove that w(X) = #(X) = y(X).

Assuming that ¢ < 2“! prove that any extral space X with |X| < cis
metrizable.

Prove that every extral 7-extendial space is metrizable.

Suppose that every closed subspace of X is extral. Prove that X is metrizable.
Prove that any extral linearly orderable space is metrizable.

Give an example of an extral space which is not dyadic.

Give an example of an extral space X such that some continuous image of X
is not extral.

Prove that any zero-dimensional extral space is metrizable.

Prove that any continuous image of a #-dyadic space is a #-dyadic space.
Prove that any continuous image of an /-dyadic space is an /-dyadic space.
Given an /-dyadic space X prove that, for any infinite cardinal ¥ such that
k < w(X), the space D*" embeds in X.

Prove that, if 8X is an /-dyadic space then X is pseudocompact.

Prove that any hereditarily normal /-dyadic space is metrizable.

Prove that any radial /-dyadic space is metrizable.

Give an example of an /-dyadic space which is not extral.
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Bibliographic Notes to Chapter 1

The material of Chapter 1 consists of problems of the following types:

(1) textbook statements which give a gradual development of some topic;

(2) folkloric statements that might not be published but are known by specialists;
(3) famous theorems cited in textbooks and well-known surveys;

(4) comparatively recent results which have practically no presence in textbooks.

We will almost never cite the original papers for statements of the first three
types. We are going to cite them for a very small sample of results of the fourth type.
The selection of theorems to cite is made according to the preferences of the author
and does not mean that all statements of the fourth type are mentioned. 1 bring my
apologies to readers who might think that I did not cite something more important
than what is cited. The point is that a selection like that has to be biased because
it is impossible to mention all contributors. As a consequence, there are quite a
few statements of the main text, published as results in papers, which are never
mentioned in our bibliographic notes. A number of problems of the main text cite
published or unpublished results of the author. However, those are treated exactly
like the results of others: some are mentioned and some aren’t. On the other hand,
the Bibliography contains (to the best knowledge of the author) the papers and books
of all contributors to the material of this book.

Section 1.1 introduces the technique for representing the whole C,(X') by means
of subspaces which separate the points of a compact space X . A considerable part of
the material of this section is covered in Arhangel’skii’s book [1992a]. The theorem
on equivalence of countability of fan tightness of C,(X) and Hurewicz property
of all finite powers of X (Problem 057) was proved in Arhangel’skii (1986). The
result on w-monolithity of a compact X when C,(X) is normal (Problem 080)
was proved under MA+—CH by Reznichenko (see Arhangel’skii (1992a)). The
fact that PFA implies countable tightness of all compact subspaces of C,(X), for a
Lindel6f X (Problem 089), was established in Arhangel’skii (1992a). A very non-
trivial example of a “big” separable o-compact space X with (C,(X))® Lindelof
(Problem 094) was constructed by Okunev and Tamano (1996).

Section 1.2 brings in the most important results on Corson compact spaces.
Again, the book of Arhangel’skii (1992a) covers a significant part of this section.
The invariance of the class of Corson compact spaces under continuous mappings
(Problem 151) was proved in Michael and Rudin (1977) and Gul’ko (1977). The
Lindeldf property in all iterated C,,’s of any Corson compact space (Problem 167)
was proved in Sokolov (1986). The example of a Corson compact space which is not
Gul’ko compact (Problem 175) was constructed in Leiderman and Sokolov (1984).
A very deep result stating that all iterated function spaces of a Corson compact space
can be condensed into a X-product of real lines (Problem 200) was established in
Gul’ko (1981).

Section 1.3 shows that the class of Lindelof X-spaces is of great importance
in C,-theory. A good coverage of the topic is done in the book of Arhangel’skii
(1992a) and his survey [1992b]. Okunev’s theorem on Lindelof X-property in
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iterated function spaces (Problems 218 and 219) was a crucial breakthrough. It
was published in Okunev (1993a). A complete classification of the distributions
of the Lindelof X -property in iterated function spaces (Problem 243) was given
in Tkachuk (2000). A very subtle example of a Gul’ko compact space which is
not Preiss—Simon (Problem 222) was constructed by Reznichenko]. It is a famous
theorem of Gul’ko (1979) that every Gul’ko compact space is Corson compact
(Problem 285). Finally, it was proved in Leiderman (1985) that every Gul’ko
compact space has a dense metrizable subspace (Problem 293).

Section 1.4 presents the present-day state of knowledge about Eberlein compact
spaces. They were originally defined as weakly compact subsets of Banach spaces.
Amir and Lindenstrauss (1968) proved that a compact X is an Eberlein compact iff it
embeds into X' (A4) (Problem 322). Rosenthal gave in [1974] a topological criterion
in terms of Tp-separating families (Problem 324). The theorem on invariance of
the class of Eberlein compact spaces under continuous maps (Problem 337) was
proved in Benyamini et al. (1977) and Gul’ko [1977]. The characterization of
Eberlein compacta in terms of the topology of X2 (Problem 364) was established
in Gruenhage (1984a). Talagrand constructed in [1979a] an example of a Gul’ko
compact space which is not Eberlein compact (Problem 387). A theorem of
Namioka (1974) on joint continuity and separate continuity has a great number of
applications in functional analysis, topology and topological algebra; an important
consequence of this theorem is formulated in Problem 347. The equivalence of the
original definition of Eberlein compact spaces to the topological one (Problem 400)
was proved by Grothendieck in [1952].

In Section 1.5 we study approximations of arbitrary functions by continuous
ones and the classes of spaces with nice properties for extensions of continuous
functions. Arhangel’skii and Shakhmatov proved in [1988] that any pseudocompact
splittable space is compact and metrizable (Problem 417). Arhangel’skii and
Choban introduced and studied in [1988] the classes of extral spaces and extendial
spaces which could be considered far-reaching generalizations of absolute retracts
and metrizable spaces, respectively.



Chapter 2
Solutions of Problems 001-500

This volume’s background includes 1000 solutions of problems of the main text
as well as more than 500 statements proved as auxiliary facts; some of these facts
are quite famous and highly non-trivial theorems. As in the previous volume, the
treatment of topology and C,-theory is professional. When you read a solution of
a problem of the main text, it has more or less the same level of exposition as a
published paper on a similar topic.

The author hopes, however, that reading our solutions is more helpful than
ploughing through the proofs in published papers; the reason is that we are not
so constrained by the amount of the available space as a journal contributor; so we
take much more care about all details of the proof. It is also easier to work with the
references in our solutions than with those in research papers because in a paper
the author does not need to bother about whether the reference is accessible for the
reader whereas we only refer to what we have proved in this book apart from some
very simple facts of calculus and set theory.

This volume has the same policy about the references as the second one; we
use the textbook facts from general topology without giving a reference to them.
This book is self-contained; so all the necessary results are proved in the previous
volumes but the references to standard things have to stop sometime. This makes
it difficult for a beginner to read this volume’s results without some knowledge of
the previous material. However, a reader who mastered the first four chapters of
R. Engelking’s book [1977] will have no problem with this.

We also omit references to some standard facts of C,-theory. The reader can
easily find the respective proofs using the index. Our reference omission rule can
be expressed as follows: we omit references to textbook results from topology and
C-theory proved in the previous volumes. There are quite a few phrases like “it is
easy to see” or “it is an easy exercise”’; the reader should trust the author’s word and
experience that the statements like that are really easy to prove as soon as one has the
necessary background. On the other hand, the highest percentage of errors comes
exactly from omissions of all kinds; so my recommendation is that, even though you
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should trust the author’s claim that the statement is easy to prove or disprove, you
shouldn’t take just his word for the truthfulness of any statement. Verify it yourself
and if you find any errors communicate them to me to correct the respective parts.
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U.001. Prove that, if X is a normal space and dimX = 0 then dimfX = 0 and
hence BX is zero-dimensional.

Solution. Take any distinct a,b € BX. There is a function ¢ € C,(B8X,[0,1])
such that ¢(a) = 0 and ¢(b) = 1. Therefore U, = ¢~ '([0, %)) € t(a,BX) and
Uy = qo_l((%, 1]) € ©(b, BX). The space X being dense in BX, theset V, = U,NX
is dense in U, and V, = U, N X is dense in Uy. Observe also that U, C F, =
o~ ([0, %]) and U, C Fp = (p_l([%, 1]) (the bar denotes the closure in fX) which
shows that U, N U, C F, N F, = 0.

As a consequence, cly (V) Ncly (V) C U,NU, =0,ie., P, =cly(V,) and
P, = cly(V}) are non-empty disjoint closed subsets of X. We have Ind(X) = 0 by
SFFS-308 so there is a clopen set O in the space X such that P, C O C X\ Pp.
Let g(x) = 0if x € O and g(x) = 1 for every x € X\O. It is immediate
that g : X — D is continuous; so there is a continuous ~# : X — D such that
h|X = g.Sincea € U, = V,and V, C P,, we have a € P,; the function A
is continuous and h(P,) = g(P,) = {0} so h(a) = 0. Analogously, b € P, and
h(Py) = g(Py) = {1}so h(b) = 1.

Thus the set A = C,(BX, D) separates the points of fX. For any x € X let
ex(f) = f(x) forany f € A; this gives a continuous map e : X — D defined
by e(x) = e, for each x € X (see TFS-166). Furthermore, e is injective because A
separates the points of X (see Fact 2 of S.351) so e is an embedding of AX in D*.
Now apply SFFS-303 to conclude that BX is zero-dimensional; since it is compact,
it is also strongly zero-dimensional by SFFS-306.

U.002. Let X be a zero-dimensional compact space. Suppose that Y is second
countable and f : X — Y is a continuous onto map. Prove that there
exists a compact metrizable zero-dimensional space Z and continuous onto maps
g: X —>Zandh:Z — Y suchthat f =hog.

Solution. The space X being zero-dimensional, we can assume that X C D for
some A (see SFFS-303); let ps : D4 — D be the natural projection forany S C A.
By TFS-298 there is a countable B C A and a continuous map / : pg(X) — Y
such that ho pg = f. The space Z = pp(X) is second countable because Z C D2
and |B| = w; besides, Z C D? implies that Z is zero-dimensional (see SFFS-303).
Consequently, the space Z and the maps & and g = pp|X are as promised.

U.003. Prove that there exists a continuous map k : K — 1 such that, for any
compact zero-dimensional space X and any continuous map f : X — L, there
exists a continuous map gy : X — Ksuch that f =kogy.

Solution. Givenaset 7 and S C T define a function y% : T — Dby x5 (1) = 1if
t € Sand y%(1) = 0foranyz € T\S.If Z is a space then C(Z) is the family of
all clopen subsets of Z.

Fact 1. IfdimZ, = Oforanyt € T and Z = @{Z, : t € T} then dimZ = 0.

Proof. We consider that every Z; is a clopen subspace of Z; it suffices to show that
IndZ = 0 (see SFFS-308). To do this, take any closed P C Z and U € ©(P, Z).
Letting P, = PN Z,and U, = U N Z, we have U, € ©(P,, Z,) foreveryt € T.



50 2 Solutions of Problems 001-500

It follows from SFFS-308 that IndZ; = 0; so there is W; € C(Z;) such that P, C
W, C U; foreach ¢t € T. It is immediate that W = (J{W}; : t € T} € C(Z) and
P Cc W C U. Thus IndZ = 0 and hence dimZ = 0 by SFFS-308; so Fact 1 is
proved.

Fact 2. Given an infinite cardinal k a space Z is zero-dimensional and w(Z) < «
if and only if Z is homeomorphic to a subspace of D*.

Proof. If Z C D* then w(Z) < w(D*) = k and Z is zero-dimensional by SFFS-
303; so sufficiency is clear.

Now assume that w(Z) < « and Z is zero-dimensional; fix a base 3’ of the space
Z such that every B € B’ is a clopen set. There is B C B’ for which |B| < « and B
is still a base in Z (see Fact 1 of T.102).

For every B € B the map y% : Z — D is continuous because {B, Z\ B} is an
open cover of Z on the elements of which )(g is constant (see Fact 1 of S.472).

Consequently, ¢ = A{)(g : B € B} : Z — DB is a continuous map; let
Y = ¢(Z). We claim that ¢ : Z — Y is a homeomorphism. In the first place
observe that for any distinct x,y € Z thereis B € Bsuchthatx € Band y ¢ B.
Thus x4 (x) = 1 while y%(y) = 0 which shows that ¢(x) # ¢(y) and therefore ¢
is a bijection. For any B € Blet pp : D® — D be the natural projection of D? onto
its B-th factor.

To see that ¢! is continuous take any y € ¥ and U € (¢~ (y), Z); let x =
@~ '(y). Since B is a base in Z, there is B € B such that x € B C U. The set
W ={z€Y :pg(z) =1} = pz'(1) NY is an open subset of ¥ because p3'(1)
is open in DB. Now, if € W and s = ¢~!(¢) then, by definition of the diagonal
product, I = pp(t) = y%(s) and hence s € B which implies that s = ¢~!(1) € U
forany z € W. Thus ¢~ '(W) C U, i.e., W witnesses continuity at the point y. The
point y has been chosen arbitrarily, so the map ¢! is continuous and hence ¢ is an
embedding of Z in DB. Since |B| < «, the space D® embeds in D* and hence Fact 2
is proved.

1

Returning to our solution denote by F the family of all closed non-empty
subsets of K; it is an easy exercise that |F| = c. For every F € F we have
|Cp(F,1)] = |Cp(F)| = ¢ because nw(C,(F)) = w. An immediate consequence
isthat P = {(F,u) : F € F, u € C,(F,I)} also has cardinality c; take an
enumeration {(Fy,uy) : @ < c} of the family P. Since every zero-dimensional
second countable compact space M is homeomorphic to an element of F by Fact 2,
we conclude that

(1) for any second countable zero-dimensional compact M and any g € C,(M,])
there is ¢ < ¢ and a homeomorphism j : M — F, suchthatg = uy o j.

Observe next that the space @ = P{F, : @ < c} is metrizable because every Fy
is metrizable (see Fact 1 of S.234). Furthermore, F, is zero-dimensional and hence
dimF, = 0 for any « < ¢ (see SFFS-306). Consequently, dim@® = 0 by Fact 1; the
space @ is normal being metrizable, so we can apply Problem 001 to conclude that
dim(8®) = 0 as well.
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Letu = [ J{uy : @ < c}; thenu : @ — Iis acontinuous map such that u| Fy = u,
for any o« < c. There is a continuous v : & — I for which v|® = u. Now apply
Problem 002 to find a second countable compact zero-dimensional space C and
continuous functions ¢ : C — Il and d : & — C for whichc od = v. By
Fact 2, we can consider that C is a closed subspace of K; this implies that there is a
continuous retraction r : K — C (see SFFS-316). We claim that the mapk = cor
is as promised.

Indeed, take a zero-dimensional compact X and a continuous f : X — L.
By Problem 002 there is a zero-dimensional second countable compact M and
continuous functions 7 : M — land g : X — M for whichhog = f. By
(1) there is @ < ¢ and a homeomorphism j : M — F, such that # = u, o j. Then
gr=dojog:X — C;since C C K, we can consider that g : X — K. Now,
if x € X then g/(x) € C and hence r(gs(x)) = gr(x); besides, j(g(x)) € F,
which implies v(j(g(x))) = u(j(g(x))) = (ua © j)(g(x)) = h(g(x)) = f(x) so
we finally obtain

k(gr(x)) =c(r(gr(x)) = c(gs(x)) = c(d(j(g(x))) = v(j(g(x)) = h(g(x)) = f(x).

Since x € X was chosen arbitrarily, this shows that k o gy = f and makes our
solution complete.

U.004. Prove that, for any zero-dimensional compact X, the space C,(X,]) is a
continuous image of C,(X, D).

Solution. Take a map k : D” — I such that for any function f* € C,(X,I) there
is a continuous map g : X — D® for which k o g = f (see Problem 003). For
any function 7 € Cp(X,D”) let ¢(h) = k o h. Then ¢ : C,(X,D*) — C,(X,I) is
a continuous map by TFS-091 and ¢(g ) = f forevery f € C,(X,I). Therefore
p(Cp(X,D?)) = Cp(X, 1) and hence C, (X, I) is a continuous image of C, (X, D*).

U.005. Given a countably infinite space X prove that the following conditions are
equivalent:

(i) Cp(X,D) is countable;

(iii) X is compact.

Solution. Observe first that X has to be zero-dimensional by SFFS-305; so the
family C(X) of all clopen subsets of X forms a base in X.

The implication (ii))==>(i) is evident. If X is a countable compact space then
w(X) = w by Fact 4 of S.307. There exists a countable 3 C C(X) which is a base
in X (see Fact 1 of T.102).

Let B, be the family of all finite unions of the elements of 5; then By C C(X) and
By is countable. Given any U € C(X) we can choose O, € Bsuchthatx € O, C U
for any x € U. The family {O, : x € U} is an open cover of a compact space U’;
so there is a finite A C U for which U = Uy = (J{O, : x € A}. It is evident
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that Uy € By; since U = Uy, we proved that C(X) = By is countable. Since
Cp(X,D) = {y{ : U € C(X)}, the set C,(X, D) is also countable and we proved
that (iii))=(i).

Now if C,(X,D) is countable then w(C,(X,D)) < w(C,(X)) = w. Further-
more, the space C,(X, D) is dense in DX by Fact 1 of S.390; so it has no isolated
points and hence C,(X,D) ~ Q by SFFS-349. This settles (i)==(ii) and hence
(1) <= ().

To see that (i)==(iii) assume that X is not compact and |C,(X,D)| < w; it
follows from | X| = w that X is not pseudocompact and hence there is a faithfully
indexed discrete family {U, : n € w} C t*(X). The family C(X) is a base in
X so we can choose a non-empty V;, € C(X) such that V,, C U, forall n € w.
The family {V,, : n € w} is also discrete; so the set Wy = (J{V,, : n € A} is
clopen in X forany A C w. The family exp w is uncountable, so we have |C(X)| >
w; since f — f71(0) is a surjective map from C,(X,D) onto C(X), we have
|Cp(X,D)| > |C(X)| > w; this contradiction shows that (i)==(iii) and makes our
solution complete.

U.006. For an arbitrary space X prove that

(i) forany P C C,(X) there is an algebra A(P) C C,(X) such that P C A(P)
and A(P) is minimal in the sense that, for any algebra A C Cp,(X), if P C A
then A(P) C A;

(ii) A(P) is a countable union of continuous images of spaces which belong to
H(P) = {P" x K for some m € N and metrizable compact K }.

(iii) if Q is a weakly k-directed property and P = Q then A(P) = Qy, i.e., A(P)

is a countable union of spaces with the property Q;

Solution. Consider the sets U(P) = {fi-...- fu :n €N, fi € P foralli < n}
and W(P)={Ao+A1-g1+...+An-gn :meN, ; e Rand g; € U(P) for
all i < m}. It is straightforward that A(P) = W(P) is an algebra in C,(X) and
P C A(P). To see that A(P) is minimal, take any algebra A D P.Then U(P) C A
because A has to contain all finite products of its elements. Since A also contains all
finite sums of its elements, we have A(P) = W(P) C A so A(P) is minimal and
(i) is proved.

The property (ii) was established in Fact 1 of S.312; it was shown in Fact 2 of
S.312 (in other terms) that if Q is a weakly k-directed property and P has Q then
W(P) is a countable union of spaces with the property Q. Since A(P) = W(P),
we have A(P) F Q,; so (iii) is also proved.

U.007. Given a compact space X suppose that A C C,(X) is an algebra. Prove
that both A and cl,(A) are algebras in Cp(X).

Solution. The set B = cl,(A) contains all constant functions on X because A4 is
an algebra and A C B. Now if f,g € B, fix sequences { f,},{g.} C A such
that f,= f and g,=g. Then {f, + g,} C A because the set A is an algebra and
fu + g.=2f + g by TFS-035. This shows that /' + g € B. The sequence { f, - gu}
also lies in A because A4 is an algebra. We will prove that f, - g,= f - g.
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Let us show first that there exists K € R such that | f(x)| < K, | fu(x)| < K and
|gn(x)] < K foralln € w and x € X. Since f is continuous and X is compact, the
functions f and g are bounded on X, i.e., there exists M € R such that | f(x)| < M
and |g(x)| < M forall x € X. Applying the relevant uniform convergences we can
find m € w suchthat | f,,(x) — f(x)| < l and |g,(x) —g(x)| < 1 forall n > m and
x € X. The functions fi,..., f,, and g1,..., g, are bounded on X which implies
that there is N € R such that | f; (x)| + |g;(x)| < N foralli <mand x € X.Itis
easy to verify that the number K = M + N + 1 is as promised.

Given an arbitrary & > 0, we can find / € w such that | f,(x) — f(x)| < 5% and
|gn(x) — g(x)| < 5% foralln > 1 and x € X. Then

| /o () gn(x) = f(X)g(X)] = [gn () (fu(x) = f (X)) + f(X)(gn(x) — g(x))]
< gnIfa(x) = FOI+ [ fO)lIgn(x) —g(X)| < K- 5 + K- 5 = ¢

foralln > [ and x € X which proves that f, - g,=3 f - g and hence f -g € B. Thus
B =cl,(A) is an algebra.

To prove that the set C = A is an algebra, observe that the addition map s :
Cp(X) x Cp(X) = C,(X) defined by s(f,g) = f + gforall f,g € Cp(X),
is continuous by TFS-115. We also have s(A x A) C A because A is an algebra.
Furthermore, A x A = C x C and hence s(C x C) C s(A x A) C A = C which
shows that s(C x C) C C or, in other words, f + g € C forany f,g € C.

Analogously, the multiplication map m : C,(X) x C,(X) — C,(X) defined
by s(f.g) = f -gforall f,g € C,(X), is continuous by TFS-116. We also have
m(A x A) C A because A is an algebra. Furthermore, A x A = C x C and hence
m(C x C) C m(Ax A) C A = C which shows that m(C x C) C C or, in other
words, f - g € C for any f,g € C. Finally, observe that C contains all constant
function on X because so does A C C. Therefore C = A is also an algebra in
C,(X).

U.008. Let X be a compact space. Suppose that A C C,(X) separates the points of
X, contains the constant functions and has the following property: for each f, g € A
and a,b € R we have af + bg € A, max(f, g) € A, min(f, g) € A. Prove that
every f € C,(X) is a uniform limit of some sequence from A.

Solution. Given any functions fo, ..., f, € Cp(X),let

max( fo, ..., fn)(x) = max{ fo(x),..., fun(x)}

for every x € X. This defines a function max( fo, ..., fu) € C,(X). Analogously,
the expression min( fy, . . ., f,)(x) = min{ fo(x), ..., f4(x)} for any point x € X,
defines the function min( fo, ..., f4) € C,(X). Itis clear that if fo,..., f, € A
then max( fy, ..., fn) € A and min( fo, ..., f;) € A. We will show first that

(1) for any function f € C,(X) and & > 0, there exists a function f; € A such that
| fe(x) — f(x)| < eforany x € X.

To prove (1) observe that, for every pair of distinct points @, b € X we can find a
function & € A such that h(a) # h(b). Since all linear combinations of elements of
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A still belong to A, the function g defined by g(x) = (h(x) —h(a))(h(b) —h(a))™!
for every x € X, belongs to A. It is immediate that g(a) = 0 and g(b) = 1. Now
let fup(x) = (f(b) — f(a))g(x) + f(a) foreach x € X. Of course, f,, € A and
Jap(a) = f(a)and fop(b) = f(D).

The sets
Uip ={xeX: fap(x) < f(x)+e} and V,p ={xe X : fup(x)> f(x)—¢}

are open neighbourhoods of the points a and b respectively. Fix any b € X; by
compactness of X we can extract a finite subcover {U,, , : i € {0,...,n}} from
the open cover {U,; : a € X}. By our hypothesis about the set A, the function
Jp = min(fyop, ..., fa,») belongs to A. It is easy to see that fp(x) < f(x) + ¢
forall x € X and fy(x) > f(x) —eforany x € V, = (\{Vy,5 : i < n}. Since
X is compact, we can choose a finite subcover {V}, : 0 <i < k} of the open cover
{Vs : b € X} of the space X. The function f, = max(fp,. ..., f5 ) belongs to A
and we have | f:(x) — f(x)| < eforall x € X so (1) is proved.

Finally, take an arbitrary f € C,(X) and find, for any n € N, a function f, € 4
such that | £, (x) — f(x)] < % for all x € X. The existence of such f, is guaranteed
by (1). It is obvious that f, = f'; so our solution is complete.

U.009. Let X be a compact space and suppose that Y C C,(X) separates the points
of X. Prove that

(i) for any algebra A C C,(X) withY C A, we have cl,(A) = C,(X);
(ii) if Y contains a non-zero constant function then cl,(|_ S(Y)) = Cp(X).

Solution. For (i), observe that B = cl,(A) is an algebra in C,(X) by Problem 007;
since Y C A C B, the algebra B also separates the points of X and hence B =
C,(X) by TFS-191.

As to (i), let S = |JS(Y); we have af + bg € S for any a,b € R and
f.g € S.If w € Y is a non-zero constant function then w(x) = ¢ # 0 for all
x € X. Therefore, for any a € R, the function w, = ‘Ci,w belongs to S and w, (x) =
a for any x € X. Thus S contains all constant functions on X. It is immediate
from the definition of S that max(f, g) € S and min(f,g) € S forany f,g € S.
Furthermore, S separates the points of X because so does ¥ C §. Therefore we can
apply Problem 008 to conclude that cl,,(S) = C,(X) finishing the proof of (ii).

U.010. For a space X, suppose thatY C C,(X) and cl,(Y) = C,(X). Prove that
Cp(X) € (E(Y))s.

Solution. It was proved in Fact 1 of T.459 that, under our assumptions, we have
Cp(X) = ({Cy : n € N} where C, C R¥ is a continuous image of ¥ x [—1, 1]¥
for every n € N. Therefore C, € £(Y) for alln € N and hence C,(X) € (E(Y))g

U.011. Prove that every k-directed non-empty class is weakly k-directed. Give an
example of a weakly k-directed class which is not k-directed.
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Solution. Let Q be a non-empty k-directed class. If @ € Q then, for every
compact K, the relevant projection maps Q x K continuously onto K. Therefore all
(metrizable) compact spaces belong to Q. Since every k-directed class is preserved
by finite products and continuous images, this proves that every k-directed class is
weakly k-directed.

Now, if Q is the class of all metrizable compact spaces then it is evident that Q
is weakly k-directed. However, the class Q is not k-directed because I € Q and
[t ~ T xI? € £) while [*! ¢ Q.

U.012. Prove that if K € {compact spaces, o-compact spaces, k-separable spaces}
then the class K is k-directed. How about the class of countably compact spaces?

Solution. Observe first that the class K is finitely productive. This is evident for
compact and o-compact spaces; if we have k-separable spaces X and Y and X', Y’
are their respective dense o-compact subspaces then X’ x Y’ is a dense o-compact
subspace of X x Y. Furthermore, /C contains the class of compact spaces and every
continuous image of an element from K also belongs to K. Again, this clear for
compact and o-compact spaces; if X is k-separable and f : X — Y is a continuous
onto map then take a dense o-compact X’ C X and note that the set f(X’) is a
dense o-compact subspace of Y, i.e., Y is k-separable. This implies that any K €
{compact spaces, o-compact spaces, k-separable spaces} is k-directed.

Finally observe that the class of countably compact spaces is not k-directed
because it is not finitely productive (see Fact 2 of S.483).

U.013. Let P be a weakly k-directed class. Prove that, for any Y C C,(X) such
thatY € P, we have S(Y) C P.

Solution. Given a function f € C,(X) let | f|(x) = |f(x)| forany x € X. It
follows from TFS-091 that the map ¢ : C,(X) — C,(X) defined by ¢o(f) = | f]|
for any f € C,(X) is continuous. Besides, it was proved in TFS-115 that the
addition map s : C,(X) x C,(X) — C,(X) defined by s(f. g) = f + g forall
/. g € Cp(X) is also continuous. The multiplicationm : C,(X)xC,(X) — C,(X)
defined by m(f,g) = f - g forall f,g € C,(X) is continuous as well: this was
proved in TFS-116.

An immediate consequence is that the map ¢; : C,(X) x Cp(X) — Cp(X)
defined by ¢1(f, g) = max(f, g) is continuous because max( f, g) = %(f + g+
| f —g|) forall f.g € C,(X). Analogously, if ¢>(f, g) = min(f, g) forall f, g €
C,(X) thenthe map ¢, : C,(X)xCp(X) — C,(X) is continuous because we have
the equality ¢, (f, g) = 5(f + g —|f — g|) forany f, g € C,(X).

Now, observe that S;(Y) = {¥Y} C P and assume that we proved for some
n € Nthat S,(Y) C P.If A, B € §,(Y) then both MIN(A4, B) and MAX(A, B)
are continuous images of A x B by our above remarks. Analogously, G¢(A4) is a
continuous image of A x A x [—k, k] x [—k, k] forany A € S,(Y) and k € N. Since
the class P is weakly k-directed, this shows that MIN(A4, B) € P, MAX(A4, B) € P
and Gy (A) € P for any A, B € S,(Y) and k € N. Therefore S,,+1(Y) C P and
hence our inductive procedure proves that S(Y) = | J{S,(Y) : n € N} C P.
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U.014. Given a k-directed class Q and a compact space X assume thatY C C,(X)
separates the points of X andY € Q. Prove that C,(X) € Qqs, i.e., there is a space
Z such that C,(X) C Z and C,(X) = ({{Cy : n € w} where every C, C Z isa
countable union of spaces with the property Q.

Solution. It is not evident from the definition that weakly k-directed properties and
classes are finitely additive; so let us formulate it for further references.

Fact 1. If R is a weakly k-directed property (or class) and Z = Z, U ... U Z,
where Z; - R (or Z; € R respectively) for alli < n then Z alsohas R (or Z € R
respectively). In particular, if Z\{z} has R for some z € Z then Z |- R.

Proof. Tt suffices to show it forn = 2, so assume that Z = Z; U Z, and Z; - R for
i = 1,2. Since R is a weakly k-directed property, the space T = Z; x Z, has R as
wellas T/ = T xID. For any i € {1, 2} the relevant projection maps 7 continuously
onto Z; so T x {0} maps continuously onto Z; and T x {1} maps continuously onto
Z,. Since T' ~ (T x {0}) @ (T x {1}), the space T’ can be mapped continuously
onto Z; UZ, = Z. The property R is preserved by continuous images; so the space
Z has R. Finally, if Z\{z} F R then Z = (Z\{z}) U {z} and both summands in this
union have R (the first one by hypothesis and the second one because all metrizable
compact spaces have R) so Z - R and Fact 1 is proved.

Returning to our solution observe that Y U { '} has Q for any f € C,(X) (see
Fact 1). This shows that we can assume, without loss of generality, that u € ¥ where
u(x) = 1 forall x € X. It follows from Problems 013 and 011 that S(Y) C Q;
besides, [ J S(Y) is uniformly dense in C,(X) by Problem 009. The family S(Y)
being countable, the set Z = | J S(Y) has Q,. Now apply Problem 010 to conclude
that C,(X) € (£(Z))s. Itis easy to see that £(Z) also has Q,; so C,(X) has Qgs.

U.015. For a compact space X suppose that Y C C,(X) separates the points of X.
Prove that there exists a compact space K and a closed subspace F C 0,(Y) x K
such that C,(X) is a continuous image of F.

Solution. Observe that Z = 0,(Y) = (Y x w)® >~ Y“ x w®. It is easy to see that
@0? = w x M ~ @ x w®; as a consequence,

D) Zxw>Y?XxX0’xw>Y?x0?~Z.
Furthermore,

2) Z° = (Y xw)*)? ~ (Y xw)?** ~ (Y xw)” =Z.
Say that a space T has Q if T is a continuous image of a closed subspace of
Z x P for some compact P. Suppose that we are given a family of spaces
{E; :i € w} where every E; has Q. There is a family {P; : i € w} of compact
spaces and a collection {F; : i € w} such that F; is closed in Z x P; and E; is
a continuous image of F; foreveryi € w.If P = [[{P; : i € w} then the set
F=]{F :i cw}lisclosedin [[{Zx P; :i € o} ~ Z° x P ~ Z x P
by (2); it immediate that £ = [, E; is a continuous image of F so E € Q,
which proves that

(3) Q is countably productive.

i€w
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It is evident that

(4) Qs preserved by continuous images and closed subspaces; so Q is k-directed.
Now, assume that T = (J{T; : i € w}and T; + Q for every i € w; fix a
compact P; and a closed F; C Z x P; which maps continuously onto 7;. Let
P =J[{P: :i € w}. Ttis evident that Z x P; embeds in Z x P as a closed
subset; therefore every F; can be considered to be a closed subset of Z x P.
Thus F = @P{F; : i € w}ishomeomorphic to a closed subset of (ZX P)xw =~
(Z xw) x P >~ Z x P (here we used (1)). It is clear that F' maps continuously
onto 7" so T has Q and hence

(5) Q is countably additive.

Finally, observe that Y has Q and apply Problem 014 to see that there exists a
space C and a family {C, : n € w} of subspaces of C such that C,,(X) = [ {C, :
n € w}and C, - Q, for every n € w. The property (5) implies that C,, - Q for
every n € w; it follows from (3) and (4) that any countable intersection of spaces
with the property Q also has Q (see Fact 7 of S.271); so C,(X) F Q, i.e., there
is a compact space K such that C,(X) is a continuous image of a closed subset of
ZxK=0,Y)xK.

U.016. Prove that, for any compact space X, there exists a compact space K and a
closed subspace F C (C,(X))® x K such that C,(X®) is a continuous image of F.

Solution. Denote by X; a homeomorphic copy of the space X for any i € w; then
X?® =Tlie, Xi- Let pi : X® — X; be the natural projection for every i € w. Then
the dual map p : Cp(X;) = C,(X®) embeds C,(X;) is C,(X*) (see TFS-163).
Since the space Z; = p(C,(X;)) is homeomorphic to C,(X) for all i € w, the
space C,(X) x w maps continuously onto Z = | J,.¢,, Zn-

To prove that Z separates the points of X® take any x,y € X“ such that
x # y. There is n € w for which p,(x) # p.(y). Now, take f € C,(X;) such
that f(pn(x)) # f(pa(¥)); then b = py(f) € Z and h(x) = f(pa(x)) #
S(pn(y)) = h(y).

The space C,(X) is never countably compact; so there is a countably infinite
closed discrete D C C,(X). Since D =~ w, the countable discrete space w embeds
in C,(X) as a closed subspace. The space C,(X) X w maps continuously onto Z
which implies that the space (C,(X) x w) x @ =~ C,(X) x w maps continuously
onto Z X w s0 0,(C,(X)) maps continuously onto 0,(Z). By Problem 015 there
is a compact space K and a closed G C 0,(Z) x K which maps continuously onto
C,(X?). Therefore there is a closed F' C 0,(C,(X))x K which maps continuously
onto G and hence onto C, (X ®).

Since @ embeds in C,(X) as a closed subspace, the space w® embeds in
(Cp(X))“ as a closed subspace; s0 0,(Cp(X)) = (Cp(X))” X w” embeds as a
closed subspace in the space (C,(X))” x (Cp(X))” =~ (Cp(X))”. Consequently,
F can be considered to be a closed subspace of (C,(X))” x K which maps
continuously onto C,(X®).

U.017. Let X be a compact space such that (C,(X))” is Lindelof. Show that
C,(X?) is Lindeldf. As a consequence, C,(X") is Lindelof for eachn € N,
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Solution. It was proved in Problem 016 that there is a compact space K and a closed
F C (Cp(X))® x K which maps continuously onto C,(X®). Since (C,(X))“ is
Lindelof, the space (C,(X))® x K is also Lindelof so F' is Lindelof as well. Hence
C,(X ) is Lindelof being a continuous image of a Lindelof space F.

Now, if n € N then there is a continuous onto map ¢ : X“ — X"; the dual
map ¢* : Cp(X") = Cp(X®) embeds C,(X") in C,(X®) as a closed subspace
because ¢ is a closed map (see TFS-163). Therefore C,(X") is Lindelof being
homeomorphic to a closed subspace of the Lindeldf space C,(X*).

U.018. Assume that a space X is compact and P is an w-perfect class. Prove that,
if Cp(X) € P then Cp(X®) € P.

Solution. We have 0,(C,(X)) € P because P is w-perfect; since (C,(X))* is a
continuous image of 0,(C,(X)), we also have (C,(X))” € P. By Problem 016,
there is a compact space K and a closed ' C (C,(X))” x K which maps
continuously onto C,(X*); since products with compact spaces, continuous images

and closed subspaces of spaces from P are also in P, we have F € P and hence
C,(X®) eP.

U.019. Let P be an w-perfect class of spaces. Prove that the following properties
are equivalent for any compact X :

(i) the space C,(X) belongs to P;

(ii) there exists Y C Cp(X) such thatY is dense in C,(X) andY € P;
(iii) there exists Y C C,(X) which separates the points of X and belongs to P;
(iv) the space X embeds into C,(Z) for some Z € P.

Solution. The implication (i)==-(ii) is trivial; we have (ii))=(iii) because
every dense subset of C,(X) separates the points of X. Now assume that some
Y C C,(X) separates the points of X and ¥ € P. By Problem 015, there is a
compact space K and a closed ' C 0,(Y) x K such that C,(X) is a continuous
image of F. The class P being w-perfect, we have 0,(Y) x K € P and hence
F € P. Every w-perfect class is invariant under continuous images, so C,(X) € P;
this settles (iii)==(i) and shows that we have (i) <= (ii) < (iii).

Since the space X embeds in C,(C,(X)) (see TFS-167), if C,(X) € P then,
letting Z = C,(X), we obtain (i)==(iv). Finally, assume that X C C,(Z) for
some Z € Pandlete,(f) = f(z) foranyz € Z and f € X. Thene, € Cp(X)
for any z € Z and, letting e(z) = e, for every z € Z we obtain a continuous
map e : Z — C,(X) (see TFS-166). The property P being w-perfect, we have
Y = e(Z) € P. Given distinct f, g € X thereis z € Z such that f(z) # g(z); this,
evidently, implies e;( /) # e.(g) and hence Y separates the points of X . We proved,
therefore, that (iv)=—=(iii) and hence all the properties (i)—(iv) are equivalent.

U.020. Prove that the class L(X) of Lindelof X -spaces is w-perfect. As a conse-
quence, for any compact X, the following properties are equivalent:

(i) the space C,(X) is Lindelof X;
(ii) there exists Y C Cp(X) such thatY is dense in C,(X) andY € L(X);
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(iii) there exists Y C C,(X) which separates the points of X and belongs to L(X);
(iv) the space X embeds into C,(Y') for some Lindelof X'-space Y .

Solution. Any compact space is Lindelof X'; besides, the class L(XY') is invariant
under countable unions, continuous images, closed subspaces and countable prod-
ucts (see SFFS-256, SFFS-257, SFFS-243 and SFFS-224). This proves that L(X) is
an w-perfect class; so we can apply Problem 019 to conclude that (i) <= (ii) <=
(iii) <= (v).

U.021. Let X be a compact space such that C,(X) is Lindelof X. Show that C,(X®)
is a Lindelof X -space and so is C,(X") for eachn € N.

Solution. The class L(X) of Lindelof X'-spaces is w-perfect by Problem 020; so we
can apply Problem 018 to conclude that if C,(X) € L(X) then C,(X®) € L(X).
Now, if n € N then there is a continuous onto map ¢ : X“ — X"; the dual
map ¢* : Cp(X") = C,(X®) embeds C,(X") in C,(X*) as a closed subspace
because ¢ is a closed map (see TFS-163). Therefore C,(X") is Lindel6f X' being
homeomorphic to a closed subspace of the Lindelof X' -space C,(X“).

U.022. Prove that the class K(A) of K-analytic spaces is w-perfect. Thus, for any
compact X, the following properties are equivalent:

(i) the space C,(X) is K-analytic;

(ii) there exists Y C Cp(X) such thatY is dense in C,(X) andY € K(A);
(iii) there exists Y C C,(X) which separates the points of X and belongs to K(A);
(iv) the space X embeds into C,(Y') for some K-analytic space Y.

Solution. Any compact space is K -analytic; besides, the class K(.A) is invariant
under countable unions, continuous images, closed subspaces and countable prod-
ucts (see SFFS-343 and SFFS-345). This proves that K(A) is an w-perfect class; so
we can apply Problem 019 to conclude that (i) <= (ii) <= (iii) <= (iv).

U.023. Let X be a compact space such that C,(X) is K-analytic. Show that C,(X*)
is a K-analytic space and so is C,(X") for eachn € N.

Solution. The class K(.A) of K-analytic spaces is w-perfect by Problem 022; so we
can apply Problem 018 to conclude that if C,(X) € K(A) then C,(X®) € K(A).
Now, if n € N then there is a continuous onto map ¢ : X“ — X"; the dual
map ¢* : Cp(X") = Cp(X®) embeds C,(X") in C,(X®) as a closed subspace
because ¢ is a closed map (see TFS-163). Therefore C,(X") is K-analytic being
homeomorphic to a closed subspace of the K-analytic space C,(X*“).

U.024. Observe that any K-analytic space is Lindelof X. Give an example of a
space X such that C,(X) is Lindelof X but not K -analytic.

Solution. Any o-compact space is Lindelof ¥ by SFFS-226; therefore, it follows
from SFFS-258 that any K,s-space is Lindelof X'. Since every continuous image
of a Lindelof X-space is Lindelof ¥ (see SFFS-243), any K-analytic space is
Lindelof X'
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Now, take any § € Bw\w and let X = w U {£}. Then X is a countable space, so
C,(X) is Lindelof X being second countable (see SFFS-228). However, the space
C,(X) cannot be K -analytic because otherwise it would be analytic (see SFFS-346)
which contradicts SFFS-371.

U.025. Give an example of X such that C,(X) is K-analytic but not Ks.

Solution. It was proved in SFFS-372 that there is a countable space X such that
C,(X) is a Borel subspace of R¥ and C,(X) ¢ XJ(RY). It is evident that every
K,s-subspace of R¥ belongs to IT)(RY) c ZJ(R¥) (see SFFS-320). Furthermore,
C,(X) is analytic (and hence K-analytic, see SFFS-346) because all Borel sets are
analytic (see SFFS-334). Consequently, C,(X) is a K-analytic space which fails to
be Kgg.

U.026. Let X be a Lindeldf X-space. Prove that C,(X) is normal if and only if
C,(X) is Lindelof. In particular, if X is compact then C,(X) is normal if and only
if it is Lindelof.

Solution. If C,(X) is normal then ex?(C,(X)) = w by Reznichenko’s theorem
(TFS-296) and hence C,(X) is Lindelof by Baturov’s theorem (SFFS-269). Since
every Lindelof space is normal, this proves that normality of C,(X) is equivalent to
[(Cp(X)) = o for any Lindel6f X'-space X (and hence for any compact space X).

U.027. Suppose that X is a Lindelof X-space such that C,(X)\{ f} is normal for
some f € C,(X). Prove that X is separable. In particular, if X is w-monolithic
and C,(X)\{ f'} is normal for some [ € C,(X) then X has a countable network.

Solution. Since the space C,(X) is homogeneous, the space C,(X)\{g} is normal
for any g € C,(X); in particular, if u(x) = 1 for all x € X then C,(X)\{u} is
normal. Observe that for Z = C,(X,I) we have Z' = Z\{u} = Z N (Cp(X)\{u})
so Z' is normal being a closed subspace of the normal space C,(X)\{u}.

Another important observation is that Z’ is a convex subset of I¥: indeed, if we
are given h,g € Z' and ¢ € [0, 1] then, for the function v = tg + (1 — t)h, we
have [v(x)| < t|g(x)] + (1 —1)|h(x)] <t + (1 —t) = 1sov € Z. Assume that
v = u; thent € (0, 1) because {g,h} C Z\{u}. Besides, there is x € X for which
g(x) < 1 and hence v(x) = tg(x) + (1 —t)h(x) <t + (1 —¢t) = 1 whichis a
contradiction. Therefore v € Z’ and hence Z’ is a dense convex subspace of I*¥.
This makes it possible to apply Reznichenko’s theorem (TFS-294) to conclude that
ext(Z') = w and hence [(Z’) = w by Baturov’s theorem (SFFS-269).

Fact 1. For any space T and a closed F C T we have y(F,T) < I(T\F). In
particular, ¥ (¢, T) < I[(T\{t}) foranyt € T.

Proof. If k = I[(T'\ F) then choose, for any z € T\ F aset U, € 7(z, T) such that
U, C T\F. The family {U, : z € T\F} is an open cover of the space T\ F; so
there is a set A C T\ F for which |A| < x and | {U, : z € A} = T\F. We also
have the equality | J{U, : z € A} = T\F and therefore F = ({T\U, : z € A}
which shows that W (F, T) < |A| < k = [(T\ F) and finishes the proof of Fact 1.
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Returning to our solution apply Fact 1 to conclude that ¥ (4,Z) = wo.
Consequently, ¥ (C,(X)) = ¥ (u,Z) = o (see Fact 3 of S.398 and Fact 1 of
T.448) and hence X is separable by TFS-173.

U.028. Let X and C,(X) be Lindeldf X-spaces and suppose that C,(X)\{ f} is
normal for some [ € C,(X). Prove that X has a countable network.

Solution. Observe that C,(X) is stable being a Lindelof X-space (see SFFS-266);
so X is w-monolithic by SFFS-152. Now apply Problem 027 to conclude that X is
separable and hence nw(X) = w.

U.029. Let M; be a separable metrizable space for all t € T. Suppose that Y is
densein M = [[{M; : t € T} and Z is a continuous image of Y. Prove that, if
Z x Z is normal then ext(Z) = w and hence Z is collectionwise normal.

Solution. For every S C T the map ps : M — Mg = [[,cs M; is the natural
projection and Y5 = pgs(Y); we will also need the map gs : M x M — Mg x Mg
defined by gs(a,b) = (ps(a), ps(b)) foranya,b € M.

Fix a continuous onto map ¢ : ¥ — Z and assume that ext(Z) > w and
hence there is a faithfully indexed closed discrete set D = {z, : @ < w1} C Z.
The set D x D is closed and discrete in Z x Z;s0 A = {(z4,2¢) : @ < w;} and
B = {(zv,28) 1 @, < w1 and a # B} are disjoint closed subsets of Z x Z. By
normality of Z there is a continuous function u : Z — R such that u(4) = {0} and
u(B) = {1}.

Choose a point y, € ¢~ !(z,) for any ordinal @ < w; and consider the sets 4’ =
{(VasYa) s < @i} and B = {(yo, y) : @, B < w1 and o # B}. For any element
(a,b) € Y xY letn(a,b) = (p(a),¢b)) € ZxZ.Thenn:Y xY - ZxZ
is a continuous onto map for which n(4’) = A and n(B’) = B. Consequently,
v=uon:Y xY — Ris a continuous function such that v(4") = {0} and
v(B') = {1}.

The space Y x Y is dense in M x M which is still a product of second countable
spaces; so there is a countable S C 7 for which there exists a continuous map
h:YsxYs — Rsuchthat i o (¢gs|(Y x Y)) = v (see TFS-299).

We have h(gs(A’)) = {0} and h(gs(B’)) = {1}; so the sets A; = gs(A’) and
By = ¢qs(B’) are separated in Mg x Ms, i.e., AiNB =0@and BN A =@
(the bar denotes the closure in Mg x Mg). For any o < w; let x4, = ps(yy); since
(Xq» Xo) ¢ By, there is W, € t(x,, M) such that (W, x W,) N B; = @.

The space My is second countable; so the set P = {x, : @ < w1} C Mg cannot
be discrete. Therefore there is ¥ < w; such that x, is an accumulation point for P.
In particular, there are distinct ordinals o, 8 € w1 \{y} such that x,, xg € W,. As a
consequence, b = (¥, yg) € B’ and ¢5(b) = (xa, xg) € Bi N (W, x W,) which is
a contradiction with the choice of W,,. This proves that ex?(Z) = w and hence Z
is collectionwise normal by Fact 3 of S.294.

U.030. Prove that, for any infinite zero-dimensional compact space X, there exists
aclosed F C Cp(X,D”) C C,(X) which maps continuously onto (C,(X))*.



62 2 Solutions of Problems 001-500

Solution. Since X is compact, we have C,(X) = (J{C,(X,[-n,n]) : n € N}.
Every C,(X,[-n,n]) is homeomorphic to C,(X,I); so C,(X) is a continuous
image of C,(X,I) x w. The space C,(X,]) is, in turn, a continuous image of
C,(X,D*) by Problem 004 which shows that C,(X) is a continuous image of
C,(X,D*) x w. The space X being infinite it cannot be a P-space (see Fact 2
of T.090) so C,(X,I) is not countably compact by TFS-397. As a consequence,
the space C,(X,D®) is not countably compact either; so we can find a countably
infinite closed discrete D C C,(X,D?).

Observe that C,(X,D”) ~ C,(X,([D*)?) = (C,(X,D?))* (see TFS-112);
since w is homeomorphic to a closed subspace of C, (X, D), the space C,, (X, D?) x
o is homeomorphic to a closed subspace of C, (X, D) x C,(X,D?) =~ C,(X,D?).
Thus some closed G C C, (X, D*) maps continuously onto C,(X). Then F = G*
is a closed subspace of (C,(X,D?))* =~ C,(X,D?) C C,(X) which maps
continuously onto (C,(X))“.

U.031. Prove that, for any infinite zero-dimensional compact space X, there exists
aclosed F C Cp(X,D”) C C,(X) which maps continuously onto C,(X®).

Solution. If A is a family of sets then \/ A is the family of all finite unions of
elements of .4; analogously, /\ A is the family of all finite intersections of elements
of A.If Z is a space then C(Z) is the family of all clopen subsets of Z.

Observe that C,(X“) = (J{C,(X®,[—n.n]) : n € N} because X is compact.
For every n € N, the space C,(X®,[-n,n]) is homeomorphic to C,(X*“,1);
so C,(X*“) is a continuous image of the space C,(X“,I) x w. Since X¢ is
zero-dimensional (see SFFS-302), the space C,(X“,I) is a continuous image of
C,(X“,D*) by Problem 004; thus

(0) C,(X*) is a continuous image of C, (X, D”) x w.

For anyi € w let p; : X — X be the natural projection of X onto its i-th
factor. Then p; is continuous and onto so its dual map p; : C,(X) — C,(X®) is
an embedding by TFS-163; let Z; = p/(C,(X, D)) forall i € . It turns out that

(1) theset Z = (| J{Z; :i € w} C Cp(X?,D) strongly separates the points in X,
i.e., for any distinct x,y € X“ and i, j € D thereis g € Z with g(x) =i and
g =J.

Since constant functions belong to Z, there is nothing to prove if i = j so
assume that i # j and hence i + j = 1. There is n € w such that x(n) # y(n)
and therefore we can find a clopen set U in the space X such that x(n) € U and
y(n) ¢ U.Ifi = 1thenlet f = yy where yy is the characteristic function of U; if
i =0thenlet f = 1—xy.Then f € C,(X,D)and f(x(n)) =i while f(y(n)) =
1 —i = j.Thus p;(f)(x) = f(x(n)) =i and f(y(n)) = p{(f)(y) = j which
shows that g = p*(f) € Z is as promised, i.e., (1) is proved.

Our next step is to show that

@) VNS ) = f € Z}) =C(X2).
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To prove (2) let C = {f~!(1) : f € Z} and take any non-empty U € C(X®).
Forany x € U and y € X“\U apply (1) to find a function f,, € Z such that
Sey(x) = land f,(y) = 0; then O, = fxfyl(l) € C. Furthermore, ({Oy,, :
y € X®\U} C U so we can apply Fact 1 of S.326 to see that there is a finite
A C X®\U for which W, = ({Ox,, : y € A} C U.Itisclearthatx € W, € AC
for any x € U. The set U being compact there is a finite set B C U such that
(J{W, :€ B} = U which shows that U is a finite union of elements of A C, i.e.,
U € \/(/\C) and hence (2) is proved.

Let M(Z) ={fo-...- fu :n € w, f; € Z, i < n}. Itis easy to see that
(7' - f e M(Z)} = NC. If fig € C,(X?,D) then let (f * g)(x) =
f(x) + g(x) — f(x)g(x) for any x € X“. We have f x g = g % f for any
f.g € C,(X®,D) so, for any n € w, we can define the operation fy * ... * f,
inductively as (fo * ... * f,—1) * f,. It is straightforward that it is associative and
Jox...x fu € Cp(X?,D); besides, (fo*...x f,)7 (1) = f7H(DHU...U f£71(1)
for any fo,..., fu € Cp(X®,D). Thus, for the set S(Z) = {fo*x...x f, 1 n €
o, fi € M(Z)foralli <n},wehave {f~!(1): f € S(Z)} = V(\C) = C(X?)
by (2). An immediate consequence is that S(Z) = C,(X?, D).

For any n € w we will need the maps

my, : (Cp(X?, D))" - C,(X*,D) and a,: (Cp(X*, D))" - C,(X*,D)

defined by m,(fo,..., fu) = fo-...- fu and a,(fo,..., fu) = fox...x fy
for any (fo,..., f») € (C,(X?,D))"*!. All maps m, ad a, are continuous being

arithmetical combinations of sums and products. Recalling the definitions of M (Z)
and S(Z) we can see that M(Z) = U{m,(Z"T") : n € w} and S(Z) =
Ula(M(Z))"™*)) 1 € o).

Given spaces P and Q we will use the expression P > Q to abbreviate the
phrase “some closed subset of P maps continuously onto Q. In particular, if P
maps continuously onto @, or Q is homeomorphic to a closed subset of P then
P> Q0.

Since every Z; is a continuous image of C, (X, D), we have C,(X, D) xw > Z.
Therefore, (C,(X,D) x w)® =~ C,(X,D?) x 0® > Z® > Z"*! for any
n € w. Since X is compact and infinite, the space C,(X,I) is not countably
compact by TFS-397; furthermore, C,(X, D) maps continuously onto C,(X,I)
by Problem 004 so the space C,(X,D®) is not countably compact either. As a
consequence, @ can be considered to be a closed subspace of C,(X,D*) and
hence w® is a closed subspace of the space (C,(X,D?))” =~ C,(X,D*); so
C,(X,D”) x w® is homeomorphic to a closed subset of C,,(X, D) x C,,(X,D¥) =~
C,(X,D”) and hence we obtain

3) C,(XD”) > (C,(XD*)” and C,(XD®) > C,(X.D) x o® >
C,(X,D?) x w.
This shows that C,(X,D®) > Z"*! > m,(Z"*!) for any n € w and therefore

Cp(X,D”) x w > M(Z). By (3), we have C,(X,D*) > C,(X,D”) x w; so
Cp(X,D%) > M(Z).
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Analogously, (C,(X,D®)"*! > (M(Z))"*! > a,(M(Z))"*!) which,
together with (C,(X,D?))"*! ~C,(X,D?) implies C,(X,D?) > a,(M(Z))"*!)
forany n € w and therefore C,(X,D?) > C,(X,D”)xw > S(Z) = Cp(X*, D).
Consequently, C,(X,D?) ~ (Cp(X,D?*))® > (Cp(X?, D)) =~ C,(X*, D).
Finally, apply (0) to conclude that C,(X, D) > C,(X,D”) xw > C,(X“, D) x
o > Cp(X?); this is the same as saying that there is a closed subset of C, (X, D)
which maps continuously onto C,(X ).

U.032. Prove that the following conditions are equivalent for an arbitrary zero-
dimensional compact X :

(i) Cp(X,D?) is normal;
(ii) C,(X,1I) is normal;
(iii) C,(X) is normal;
(iv) Cp(X) is Lindelof;
(v) (Cp(X))? is Lindelof;
(vi) Cp(X®) is Lindelof.

Solution. There is nothing to prove if X is finite; so assume that |X| > w. The
implications (v)== (iv)==(iii) are evident. Since C, (X, I) is closed in C,,(X) and
C,(X,D?)is closed in Cp, (X, I), the implications (iii)==>(ii) and (ii)==(i) are also
clear.

Since C,(X,D?) ~ (C,(X,D))* and C,(X,D) is dense in D* (see Fact 1 of
S.390), the space C,(X,D®) can be considered to be a dense subspace of (D¥)®
so we can apply Problem 029 to conclude that it follows from normality of the
space Cp,(X,D*) =~ Cp(X,D?) x Cp(X,D?) that ext(C,(X,ID”)) = w and hence
C,(X,D?) is Lindelof by Baturov’s theorem (SFFS-269).

By Problem 030, there is a closed F C C,(X,D*) which maps continuously
onto (C,(X))?; the space F is Lindelof being closed in C, (X, D) so (C,(X))®
has also to be Lindelof and hence we settled (i)=—=(v). Therefore all properties
(i)—(v) are equivalent.

The space X is a continuous image of X“; the respective dual map embeds
C,(X) in Cp(X*) as a closed subspace (see TFS-163) so if C,(X®) is Lindelof
then C,(X) is Lindelof as well. This proves that (vi)==(iv). Finally, if (C,(X))®
is Lindelof then C,(X ) is also Lindelof by Problem 017 and hence (v)=>(vi).
Therefore all properties (i)—(vi) are equivalent.

U.033. Observe that C,(X) is monolithic for any compact X . Using this fact prove
that, for any compact space X, each compact subspace Y C C,(X) is a Fréchet—
Urysohn space.

Solution. The space C,(X) is monolithic because X is stable (see SFFS-154). That
every compact ¥ C C,(X) is a Fréchet-Urysohn space was proved in Fact 10 of
S.351.

U.034. Prove that, for any metrizable space M, there is a compact space K such
that M embeds in C,(K).
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Solution. Fix a base B C t*(M) in the space M such that B = | J,,¢,, B, and B,
is a discrete family for every n € w (this is possible because any metrizable space
has a o-discrete base by TFS-221). For any U € B, there is a continuous function
Py + M — [0, =] such that (p}}) ™' (0) = M\U (see Fact 2 of T.080).

Define a function p : M — R by p(x) = Oforall x € M and consider the space
K ={ptu{p},:new, UeB,} CC,(M).Takeany O € t(p, C,(M)); there is
e > Oandafiniteset A C M suchthat W = {f € C,(M) : f(A) C (—&,8)} C O.
Take m ewforwhich% < g; then pj,(x) < #1 < % <eforanyn >m, x e M
and U € B,. In particular, K, = {p}, : U € B,} C W foralln > m.

Now, if n < m then only finitely many elements of B, meet A because B, is
discrete. If U € B, and AN U = @ then p},(4) = {0} and hence p}, € W.
Therefore K,\W is finite for any n < m which shows that K\W D> K\ O is finite

and hence
(1) K\O is finite for any O € t(p, C,(M)).

An immediate consequence of (1) is that the space K is compact. Given x € M
lete.(f) = f(x) forany f € K;thene, € C,(K) and, letting e(x) = e, for any
X € M, we obtain a continuous map e : M — C,(K) (see TFS-166).

Suppose that x € M and G C M is a closed set such that x ¢ G. Since B
is a base in M, thereisn € w and U € B, such that x € U C M\G. For the
function f* = p}, € K wehave f(x) > 0and f(G) = {0};s0 f(x) ¢ f(G). This
proves that K separates the points and closed subsets of M so e is an embedding
(see TFS-166). Thus K is a compact space such that M embeds in C,(K).

U.035. Prove that the following conditions are equivalent for any compact X :

(i) there is a compact K C C,(X) which separates the points of X ;
(ii) there is a o-compactY C C,(X) which separates the points of X ;
(iii) there is a o-compact Z C C,(X) which is dense in C,(X);
(iv) X embeds into C,(K) for some compact K;

(v) X embeds into C,(Y') for some o-compact Y .

Solution. The implication (i)==(ii) is evident. Now if the statement (ii) is true then
let Z = A(Y) where A(Y') is the minimal algebra in C,(X) such that Y C A(Y)
(see Problem 006). It is clear that the class of o-compact spaces is k-directed; so
Z is a countable union of o-compact spaces, i.e., Z is also o-compact. The set Z
is dense in C,(X) by TFS-192; so we proved that (ii)==(iii). It was established
in Fact 3 of S.312 that (iii) <= (i) and, in particular, (iii)==(i) so the properties
(i)—(iii) are equivalent. Besides, it was proved in Fact 12 of S.351 that (i) <= (iv)
50 (1) <= (i1) < (iii) <= (v).

It is immediate that (iv)==(v); now if X C C,(Y) for some o-compact space
Y thenlet e, (f) = f(y) forany y € ¥ and f € X. Thene, € C,(X) and,
letting e(y) = e, for every y € Y, we obtain a continuous map e : ¥ — C,(X)
(see TFS-166). The set T = e(Y) is o-compact and it is an easy exercise that 7’
separates the points of X. Thus some o-compact T C C,(X) separates the points
of X and hence we proved that (v)=—=(ii).
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U.036. Suppose that X is compact and embeds into C,(Y) for some compact Y.
Prove that it is possible to embed X into C,(Z) for some Fréchet—Urysohn compact
space Z.

Solution. We consider that X C C,(Y); for any point y € Y and f € X let
ey(f) = f(y). Then e, € C,(X) and the correspondence y — e, defines a
continuous map e : ¥ — C,(X) (see TFS-166). The space Z = e(Y) C C,(X)
is compact and it is an easy exercise that Z separates the points of X. Besides, Z
is Fréchet-Urysohn by Problem 033; forany f € X andz € Z let us(z) = z(f).
Then us € C,(Z) and letting u(f) = uy for any f € X we obtain a continuous
map u : X — C,(Z). Since Z separates the points of X, the map u is injective by
Fact 2 of S.351; the space X being compact, u is an embedding of X into C,(Z)
and we already saw that Z is a compact Fréchet—Urysohn space.

U.037. Give an example of a compact space X which embeds into C,(Y) for some
compact Y but cannot be embedded into C,(Z) for any compact first countable
space Z.

Solution. If « is a cardinal then A(k) is the Alexandroff one-point compactification
of a discrete space of cardinality «. Fix any cardinal k > 2¢; the space ¥ = A(k)
is compact and it follows from 2° < ¥ = ¢(A(x)) = a(C,(A(x))) (see TFS-181),
that the compact space X = A(2°) embeds in C,(Y).

Now, if the space X embeds in C,(Z) for some compact first countable space Z
then |Z| < ¢ by TFS-329 and hence 2° = w(X) < w(C,(Z)) = |Z| < ¢ which is
a contradiction.

U.038. Suppose that X embeds into C,(Y) for some compact Y. Prove that it is
possible to embed X into C,(Z) for some zero-dimensional compact space Z.

Solution. We can consider that Y C I* for some infinite cardinal « (see TFS-127).
There exists a continuous onto map ¢ : D — I* (see Fact 2 of T.298). The space
Z = ¢~ 1(Y) is zero-dimensional and compact (see SFFS-303) and = ¢|Z maps
Z continuously onto Y. The dual map n* : C,(Y) — C,(Z) embeds C,(Y) in
C,(Z) (see TFS-163) so X can also be embedded in C,(Z).

U.039. Suppose that X embeds into C,(Y) for some countably compact Y . Prove
that it is possible to embed X into C,(Z) for some zero-dimensional countably
compact space Z.

Solution. We can consider that Y C I* for some infinite cardinal « (see TFS-127).
There exists a continuous onto map ¢ : D — I* (see Fact 2 of T.298). The space
Z = ¢~ !1(Y) is zero-dimensional by SFFS-303. Furthermore, = ¢|Z maps Z
continuously onto Y and the map 7 is perfect by Fact 2 of S.261.

Fact 1. Any perfect preimage of a countably compact space is countably compact.

Proof. Let Q be a countably compact space and assume that u : P — Q is a
perfect map. If D is an infinite closed discrete subset of P then D Nu~'(y) is finite
because ™! () is compact for any y € Q. This implies that the set £ = u(D) C Q



2 Solutions of Problems 001-500 67

is infinite. For any E’ C E we have E’ = u(D’) for some D’ C D. The set D is
closed and discrete and the map u is closed so D’ is closed in P and hence E’ has to
be closed in Q. It turns out that £ C Q is infinite and every E’ C E is closed in Q.
As a consequence, E’ is an infinite closed discrete subspace of Q which contradicts
countable compactness of Q; so Fact 1 is proved.

Returning to our solution observe that Z is countably compact by Fact 1. The
dual map n* : C,(Y) — C,(Z) embeds C,(Y) in C,(Z) (see TFS-163); so X
can also be embedded in C,(Z); the space Z being countably compact and zero-
dimensional, our solution is complete.

U.040. Give an example of a space Y which embeds in C,(X) for a pseudocompact
space X but does not embed in C,(Z) for any countably compact Z.

Solution. It was proved in TFS-400 that there exists a pseudocompact non-compact
space X such that every countable A C X is closed and C*-embedded in X. It
follows from TFS-398 that the space Y = C,(X,I) C C,(X) is pseudocompact.

Assume that Y embeds in C,(Z) for some countably compact space Z. We can
consider that ¥ C C,(Z) and hence K = Y is also a pseudocompact subspace of
C,(Z) (see Fact 18 of S.351). Since K is closed in C,(Z), we can apply Fact 2 of
S.307 to conclude that K is compact.

Forany z € Z and f € K lete,(f) = f(2); thene, € C,(K) and the
correspondence z — e gives a continuous map e : Z — C,(K) (see TFS-166).
The space Z' = e(Z) C C,(K) is countably compact; so we can use Fact 18 of
S.351 and Fact 2 of S.307 again to see that M = Z' is compact. It is straightforward
that Z’ separates the points of K and hence so does M. Thus we have a compact
space M C C,(K) which separates the points of K. Consequently, K embeds in
C,(M’) for some compact M’ by Problem 035 and therefore K is Fréchet—Urysohn
by Problem 033.

Now, Y C K implies that the space Y is also Fréchet-Urysohn; since C,(X)
embeds in ¥ = C,(X,]), it has to be Fréchet-Urysohn as well and therefore
t(Cp(X)) = . Thus X is Lindelof which, together with pseudocompactness of
X implies that X is compact. This contradiction shows that Y is a pseudocompact
space which embeds in C, (X) for a pseudocompact X but does notembed in C,(Z)
for any countably compact Z.

U.041. Prove that a countable space Y embeds into C,(X) for some pseudocompact
space X if and only if Y embeds into C,(Z) for some compact metrizable space Z.

Solution. Sufficiency is evident; so assume that ¥ C C,(X) for some pseudocom-
pact X. Forany x € X lete,(f) = f(x) forany f € Y;thene, € C,(Y) and the
correspondence x — e, represents a continuous map e : X — C,(Y) (see TFS-
166); let Z = e(X). The space Z is pseudocompact because the mape : X — Z is
continuous; besides, w(Z) < w(C,(Y)) = |Y| < w so Z is metrizable and hence
compact. The dual map e* : C,(Z) — C,(X) embeds C,(Z) in C,(X) (see TFS-
163) and it is easy to check that e*(C,(Z)) D Y. Thus ¥ embeds in C,(Z) for a
compact metrizable space Z.
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U.042. Give an example of a space Y which embeds into C,(X) for a countably
compact space X but does not embed into C,(Z) for a compact space Z.

Solution. Let X be the ordinal @; with the interval topology. Then X is a countably
compact non-compact space and ¥ = C,(X) embeds in C,(X) (even coincides
with it). However, Y is not embeddable in C,(Z) for a compact space Z because
otherwise #(¥Y) = w which implies that /(X) =  and hence X is compact, a
contradiction.

U.043. Let £ € Bw\w. Prove that the countable space wg = w U {£}, considered
with the topology inherited from Bw, does not embed into C,(X) for a pseudocom-
pact X.

Solution. If w¢ embeds in C,(X) for some pseudocompact X then there is a
metrizable compact K such that wg embeds in C,(K) (see Problem 041). There is a
continuous onto map ¢ : P — K (see e.g., SFFS-328) and hence C,(K) embeds in
C,(P) (see TFS-163). Therefore w: embeds in C, (IP) which is a contradiction with
SFFS-371.

U.044. (Grothendieck’s theorem). Suppose that X is a countably compact space and
B C C,(X) is a bounded subset of C,(X). Prove that B is compact. In particular,
the closure of any pseudocompact subspace of C,(X) is compact.

Solution. The set F = B is also bounded in C »(X) by Fact 2 of S.398. For any
x € X thesetex(F) = {f(x) : f € F} C R is a continuous image of F (TFS-
167); therefore e, (F') is bounded in R by Fact 1 of S.399 and hence there is K, > 0
such that e, (F) C [-K,, Ky]. Itis easy to see that F C Q = [[{[- K., K:] : x €
X }; since Q is compact, it suffices to show that F is closed in R¥.

Suppose not, and fix any f € [F]\F (the brackets denote the closure in RY).
Since F is closed in C,, (X ), the function f must be discontinuous; so take any point
a € X and A C X such that a € cly(A) while f(a) ¢ f(A). Take 0,G € t(R)
such that f(a) € O, f(A) C G and O N G = @. We will construct sequences
{fi i new, CF, {U:necwCrt(,X)and{a, : n € w} C A with the
following properties:

(1) clx(Uy41) C U, and a, € U, forall n € w;
2) fu(U,) Cc Oforalln € w;
(3) fut1(a;) e Gforalln € w andi < n.

Since f € [F], there is fy € F such that fy(a) € O; the function f being
continuous there exists Uy € t(a, X) such that f;(Uy) C O. The point a belongs to
the closure of A so there exists ag € A N Uj. It is evident that (1)-(2) are fulfilled
for ag, fy and Uy. The property (3) is fulfilled vacuously.

Assume that we have a;, f; and U; with the properties (1)—(3) for all i < n.
Since A, = {ap,...,a,} C A we have f(A,) C G; it follows from f € [F] that
there exists f,4+1 € F such that f,4i(a) € O and f,+1(4,) C G. The function
Jfn+1 being continuous there exists U, 4| € 7(a, X) such that cly (U,+;) C U, and
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fu+1(Uy+1) C O. Take any point a,+; € U,41 N A and observe that (1)-(3) are
fulfilled for the sequence {a;, f;, U; : i < (n + 1)}; so our inductive construction
can be carried out for all n € w.

Once we have the sequences {f,, : n € w} C F, {U, : n € w} C 7(a, X) and
S = {a, : n € w} C A with the properties (1)-(3) take an accumulation point b
of the sequence {a, : n € w} (which exists because X is countably compact). Note
that, for any x € X\(({U, : n € w}) we have x € V = X\clx(U,) for some
n € w and hence V is a neighbourhood of x which intersects only finitely many
points of the sequence S so x cannot be an accumulation point of S.

This showsthath € P = (U, :n € o} = [ {clx(Uy) :n € w}. Y = {b} U
S then Y is countable and nry (F) C C,(Y) is a bounded subspace of C,(Y') (here,
as usual, ry : Cp(X) — C,(Y) is the restriction map). Since w(C,(Y)) = w, we
have v(C,(Y)) = C,(Y) and hence the closure of my (F) if C,(Y) is compact by
TFS-415. Therefore there exists an accumulation point g € C,(Y') of the sequence
{gn = ny(fy) : n € w} C 7y (F). Thus g(b) has to be in the closure of the set
{g.(0) :n € w} ={f,(b) : n € w}.But f,(b) € f,(P) C f,(U,) C O for every
new;so{f,(b):new)C O andhence g(h) € O.

On the other hand, it immediately follows from continuity of the function g that
g(b) € {g(a,) : n € w}; since fi(a,) € G for all k > n, we have g(a,) € G for
each n € w. An immediate consequence is that g(b) € G, ie.,gh) € ONG =@
which is a contradiction. We proved that F is closed in R¥; so F is compact.

Finally observe that if £ C C,(X) is pseudocompact then E is bounded in
C,(X) and hence E is compact.

U.045. Prove that there exists a pseudocompact space X for which there is a closed
pseudocompact Y C C,(X) which is not countably compact.

Solution. It was proved in TFS-400 that there exists a pseudocompact non-compact
space X such that every countable A C X is closed and C*-embedded in X. The
set Y = C,(X,I) C Cp(X) is closed in Cp,(X) and it follows from TFS-398 that
Y is pseudocompact.

Now, if Y is countably compact then X is a P-space by TFS-397; since X is
not compact, it has to be infinite, so take a countably infinite A C X. It follows
from Fact 1 of S.479 that A is C-embedded in X. If {a, : n € w} is a faithful
enumeration of A then let f(a,) = n for any n € w. The function f : A — R
is continuous because A is discrete. If g € C,(X) and g|A = f (such a function
g has to exist because 4 is C-embedded in X)) then g is a continuous unbounded
function on X which is a contradiction with pseudocompactness of X. Thus Y is a
closed pseudocompact subspace of C, (X ) which fails to be countably compact.

U.046. Let X be a o-compact space. Prove that any countably compact subspace of
C,(X) is compact.

Solution. If Y C C,(X) is countably compact then ¥ embeds in C,(K) for some
compact space K (see Problem 035). The space F = Y C C,(K) is compact by
Problem 044; so we can apply Fact 19 of S.351 to conclude that Y is compact.
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U.047. Let X be a space and suppose that there is a point xo € X such that
Y(x0, X) = w and xo ¢ A for any countable A C X. Prove that there is an
infinite closed discrete B C C,(X) such that B is bounded in C,(X).

Solution. Fix a sequence {U, : n € w} C t(xo, X) such that U, C U, for any
n € wand({U, : n € o} = {xo}. There exists a function f, € C,(X) such that
fn(x0) = land f,(X\U,) = {0} foralln € w.Let f(x¢) = 1 and f(x) = 0 forall
x € X\{xo}. Then f € R¥\C,(X) and the sequence B = {f, : n € w} converges
to f; an easy consequence is that B is a discrete subspace of C,(X). Now take any
countable A C X;if P = A\{xo} then xo ¢ P so there exists g € C,(X) such that
g(xo) = 1 and g|P = 0. It is immediate that g|A = f and therefore f is strictly
w-continuous.

Denote by Sy the set of all strictly w-continuous real-valued functions on X.
Then Sx can be identified with v(C,(X)) by TFS-438. Since K = BU {f} C Sx
is compact being a convergent sequence, the closure of B in Sy is compact and
hence B is bounded in C,(X) by TFS-415. The equality B = K N C,(X) implies
that B is closed in C,(X) so B is an infinite closed discrete subspace of C,(X)
which is bounded in C,,(X).

U.048. Prove that there exists a o-compact space X such that C,(X) contains an
infinite closed discrete subspace which is bounded in C,(X).

Solution. Consider the space Y = {x € D” : |x"!(1)| < w} C D*'. We have
Y = | {K, : n € w} where K, = {x € D : |x(1)| < n} forevery n € w.
It is easy to see that every K, is compact being closed in D! so the space Y is
o-compact. Let xo(cv) = 1 for any & € w; and consider the space X = Y U {x¢} C
D@1, Tt is clear that X is o-compact and ¥/ (xp, X) < w.

Observe also that Y € ¥ = {x € D! : |x~!(1)| < w} so if A4 is a countable
subset of Y then A C X (the bar denotes the closure in D!, see Fact 3 of S.307).
Thus, for any countable A C X\{xo} = Y we have xy ¢ cly(A4) and therefore
we can apply Problem 047 to conclude that there is an infinite closed discrete
D c C,(X) which is bounded in C,(X).

U.049. Prove that there exists a o-compact space X such that C,(X) does not
embed as a closed subspace into C,(Y') for any countably compact space Y .

Solution. It was proved in Problem 048 that there is a o-compact space X such that
some infinite closed discrete D C C,(X) is bounded in C,(X). Now, if C,(X) is a
closed subspace of C,(Y") for some countably compact space Y then D is a closed
discrete subspace of C,(Y). Besides, D is bounded in C,(Y) (it is evident that a
bounded subset of a space is bounded in any larger space) so the infinite discrete
space D = D must be compact by Problem 044; this contradiction shows that
C,(X) does not embed as a closed subspace in C,(Y') for any countably compact Y.

U.050. Given a metric space (M, p) call a family U C exp M\{@} p-vanishing if
diam,(U) < oo for any U € U and the diameters of the elements of U converge to
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zero, i.e., the family {U € U : diam,(U) > &} is finite for any € > 0. Prove that, for
any separable metrizable X, the following conditions are equivalent:

(i) X is a Hurewicz space;

(ii) for any metric p which generates the topology of X, there is a p-vanishing
SfamilyU C ©(X) such that \JU = X;

(iii) for any metric p which generates the topology of X, there exists a p-vanishing
base B of the space X ;

(iv) there exists a metric p which generates the topology of X, such that, for
any base B of the space X, there is a p-vanishing family U C B for which
Uu = X;

(v) for any metric p which generates the topology of X and any base B of the space
X there is p-vanishing family B' C B such that B’ is also a base of X ;

(vi) every base of X contains a family which is a locally finite cover of X.

Solution. In this solution all spaces are assumed to be non-empty. For the sake of
brevity we will say that p is a metric on a space Z if p generates the topology of Z.
If (M, p) is a metric space and A C exp M, say that mesh(A) < r for some r > 0
if diam,(A4) < r forany 4 € A.

Given a set Z a function d : Z x Z — R is called a pseudometric on Z
if d(x,x) = 0, d(x,y) = d(y,x) > 0and d(x,y) < d(x,z) + d(z,y) for
any x,y,z € Z. In other words, a pseudometric d on a set Z is a function
which has all properties of a metric except that d(x, y) = 0 need not imply that
x = y.If Z is a space and d is a pseudometric on Z then we say that d is a
pseudometric on the space Z if d : Z x Z — R is a continuous function. We
can also define the notion of a diameter with respect to a pseudometric in the same
way it is defined for a metric, i.e., if d is a pseudometric on Z and A C Z then
diamy (A) = sup{d(x,y) : x,y € A}.

Fact 1. Given a metric space (M, p) a family C C (M) is a base in M if and only
if, for any & > 0 there is a collection C’ C C such that | JC' = M and mesh(C’) < .

Proof. The proof of necessity is straightforward and can be left to the reader. To
prove sufficiency, observe that, for any n € N, there is C, C C such that| JC, = M
and mesh(C,) < % If x € U € ©(M) then there is r > 0 such that B,(x,r) C U;
choose n € N for which % < r. There is V € C, such that x € V; we have
p(x,y) < diam,(V) < % < r forany y € V and thereforex € V C B,(x,r) CU
which shows that | J{C, : n € N} C C is a base in X; so Fact 1 is proved.

Fact 2. Suppose that Z is an arbitrary space. Then

(1) for any pseudometrics d; and d; on the space Z, the functiond = d; + dy isa
pseudometric on the space Z;

(2) if d is a pseudometric on the space Z then a - d is a pseudometric on Z for any
a>0;

(3) for any pseudometrics d; and d; on the space Z, the function d = max{d,, d»}
is a pseudometric on the space Z;
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(4) if d, is a pseudometric on the space Z and a > 0 then the functiond : ZxZ —
R defined by d(x, y) = min{d,(x, y),a} forall x, y € Z is a pseudometric on
Z;

(5) if, foranyi € w, a function d; is a pseudometric on the space Z and d; (x, y) <
1 forany x,y € Z thend =), 27" - d; is a pseudometric on Z;

(6) if f : Z — R is a continuous function then the functiond : Z x Z — R
defined by d(x,y) = | f(x) — f(»)| for any x, y € Z is a pseudometric on the
space Z;

(7) if d; is a metric and d, is a pseudometric on the space Z thend = d; + dy isa
metric on the space Z.

Proof. In all items non-negativity of the respective function is evident; so we omit
its proof.

(1) Tt is clear that d is continuous on Z x Z. Given any x,y,z € Z we have
d(x,x) =di(x,x) + da(x,x) =0and

d(x,y) =di(x,y) + da(x,y) = di(y,x) + da(y,x) = d(y, x);
besides,

d(x,y) =di(x,y) + da(x,y) < di(x,2) + di(z,y) + da(x,2) + da(z, y)
=d(x,2) +d(z )

so (1) is proved.

The proof of the property (2) is even more straightforward than (1), so we omit
it. As to the property (3), the function d is continuous by TFS-028. Furthermore, for
any points x, y € Z we have the equalities d (x, x) = max{d;(x, x),d>(x,x)} =0
and d(-xs y) = max{dl (X, y)s dZ(xv y)} = maX{dl (yv X), dZ(ys )C)} = d(ys )C). To
see that the triangle inequality is true take any points x, y,z € Z. Note first that
d(x,y) = di(x,y) < di(x,2) + di(z,y) for some i € {1,2}. Since d;(x,z) <
d(x,z) and d;(z, y) < d(z, y) by the definition of d, we have d(x, y) < d(x,z) +
d(z, y) so (3) is proved.

(4) Again, continuity of d follows from TFS-028. If x, y € Z then we have the
equalities d(x, x) = min{0,a} = 0 and

d(xv y) = min{dl(x’ y)va} = min{dl(yvx)va} = d(y,.X)

To prove the triangle inequality take any x,y,z € Z.If d(x,y) = a and one of
the numbers d;(x, z), di(z, y) is greater than or equal to a then one of the numbers
d(x,z),d(z,y)isequaltoa;sod(x,y) =a < d(x,z)+d(y,z). Ifdi(x,z) < aand
di(z,y) <athend(x,y) = a < di(x,y) < di(x,2)+di(z,y) = d(x,2)+d(z, y).
Now, if di(x,y) < a and one of the numbers d;(x, z), d;(z, y) is greater than
or equal to a then one of the numbers d(x, z),d(z, y) is equal to a and therefore
dx,y) =di(x,y) <a <d(x,z) +d(y,z). If di(x,z) < aand d (z,y) < a then
d(x,y) =d\(x,y) <di(x,2) +di(z,y) = d(x,z) + d(z, y) and (4) is proved.
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(5) Continuity of the function d follows easily from TFS-029 and TFS-030. For
any point x € Z we have d;(x,x) = Oforalli e wsod(x,x) =0.Ifx,y € Z
then d;(x,y) = d;(y,x) for all i € w which implies d(x,y) = d(y, x). Now, if
X,y,z2 € Z then27d;(x,y) <27'd;j(x,z) +27'd;(z, y) for every i € w. Passing
to the sums of the respective series we obtain d(x, y) < d(x,z) + d(z, y).

The proof of (6) is also straightforward and trivial; so we leave it to the reader.
Finally, if d is a metric and d, is a pseudometric on the space Z then d; + d; is a
pseudometric on Z by (1). If x,y € Z and x # y then d,(x, y) > 0 because d; is
a metric; so we have d(x,y) > d;(x,y) > 0 which shows that d is also a metric;
this settles (7) and finishes the proof of Fact 2.

Returning to our solution assume that X is a Hurewicz space and take any metric
p on the space X. If B is a base of X then B; = {B € B : diam,(B) < 27} is
also a base in X for any i € w. Fix any j € w; for any i € w, we can choose a
finite U/ C B;1; in such a way thati; = | J,, U/ is a cover of X. It is clear that
mesh(U;) <27/ forevery j € w; so the family B’ = UjeoU;j C Bisabase of X
by Fact 1.

Now take any & > 0; there is n € w such that 27/ < ¢ for any j > n. Thus
the family & = {B € B’ : diam,(B) > &} is contained in | J; _, U;. Furthermore,

ENU; cJ{U i < n}and hence & NU; is finite for any j < n. Thus £ is finite
and therefore the family B’ is p-vanishing. This proves that (i)==(v).

Now assume that (v) is true and take any base B in X; fix a metric p on the
space X . There exists a p-vanishing family B’ C B8 which is a base of X and hence
(JB’ = X. Since X is paracompact, for any U € B’ there is a closed Fy C U such
that | J{Fy : U € B’} = X and the family F = {Fy : U € B’} is locally finite (see
Fact 2 of S.226).

The family B, = {U € B’ : Fy # @} C B is, clearly, a cover of X. Since F is
locally finite, for any x € X thereis > 0 and a finite C C B such that B,(x,r) N
Fy = @ whenever U € B;\C. The family &€ = {U € B, : diam,(U) > 3} is also
finite. For any U € B;\& we have diam,(U) < 5 so U N B,(x, 5) # @ implies that
U C By(x,r) and hence Fyy C B,(x,r). As a consequence B,(x, 3) N U = @ for
any U € Bi\(C U &). This shows that 3; is locally finite and proves (v)=—=>(vi).

Now assume that (vi) is true; we can consider that X C [”. Choose a metric
d on the space I such that d(x,y) < 1 for any x,y € I“. The metric
p = d|(X x X) is totally bounded on X (see TFS-212 and Fact 1 of S.249);
so we can fix a sequence {F, : n € w} of finite subsets of X such that
p(x, Fy) = min{p(x,y) :y € F,} <2" foranyx € X andn € w.

Now take any base B C 7*(X) of the space X and consider, for every i € w, the
family B; = {U € B:27""! < diam,(U) <27'}.Foralli € wand U € B; choose
x € U and y € F; in such a way that p(x,y) <27 andlet Oy = U U B,(y,27");
then diam,(Oy) < 277 *2.

Let D be the set of all isolated points of X; it is straightforward that the family
C={{x}:xeD}yU{Oy :U € J,¢, Bi} is a base in the space X. By (vi), there
exists a locally finite subfamily of C which covers X . In particular, for every i € w,
there is B/ C B; such that the family ' = (J{{Oy : U € B} : i € w} is locally
finite and covers X\ D.
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Suppose that B; is infinite for some i € w andlet C; = {Oy : U € B/} C C.
Since Oy N F; # @ for any U € B! and the set F; is finite, there is x € F; such
that the family {U € B} : x € Oy} is infinite which is a contradiction with the fact
that C; is locally finite. Thus ! is finite for every i € w and hence the family C’
is p-vanishing. Then C U {{x} : x € D} is also p-vanishing and covers X so we
proved that (vi)=—=(iv).

Let us assume that (iv) holds; denote by D the set of isolated points of the space
X and let D = {{x} : x € D}. Take a sequence {U, : n € w} of open covers of
X; say thataset A C X is U;-small if there is U € U; such that A C U. For any
icwletC ={(x,y) e X xX :27 < p(x,y) <271} Foreveryi € w and
z = (x,y) € C; choose O; € t(x,X) and V; € 7(y, X) such that diam,(0;) <
27, diam,(V;) < 277 and both sets O, V; are f;-small. Let B; = {O,UV; : z € C; };
it is an easy consequence of Fact 1 that the family B = | J{B; : i € w}UD is a base
of the space X. By (iv), there is a p-vanishing 5/ C B such that  JB' = X. The
family B/ = B’ N B; has to be finite for every i € w because diam,(W) > 27" for
any W € B].

Given i € w every element of B; is a union of two Uf;-small sets; so there is a
finite V/ C U; for which (_J B C |JV;. The set D being countable we can choose a
finite V" C U; for every i € w in such a way that  J{V/ : i € w} covers D. Now,
Vi = V/ UV/ is a finite subfamily of U; for every i € w and (J{V; : i € w}isa
cover of X. This proves that X is a Hurewicz space, i.e., (iv)=—=(i).

As a consequence, all properties (i),(iv),(v),(vi) are proved to be equivalent. The
implications (v)==(iii))==(ii) are evident; so, to finish our solution, it suffices to
establish that (ii))==>(i).

Suppose that (ii) holds and {U, : n € w} is a sequence of open covers of X.
Since X is second countable, we can assume that |Uf,| < @ and U, is locally finite
for all n € w. If some U, is finite then there is nothing to prove; so there is no
loss of generality to assume that, for every n € w we have a faithful enumeration
{U!" 1 i € w} of the family U,. Apply Fact 2 of S.226 to find a family {F" : i € w}
of closed subsets of X such that F/" C U/ foralln,i € w and F, = {F/" :i € w}
is a cover of X for every n € w. It follows from normality of the space X that we
can construct a family { /" : n,i € w} C C,(X) with the following properties:

(@) f"(X\U") =0foranyn,i € w;
(b) fOF? =i+ 1foreveryi € w;
(c) f'|F"=1foranyn e Nandi € w.

Since every family U, is locally finite, the function g, = ), /" is continuous.
For every n € w define d, : X x X — R as follows: do(x, y) = |go(x) — go(»)|
and d,(x,y) = min{l, |g,(x) — g»(y)|} foralln € Nand x,y € X. It follows
from Fact 2 that d, is a continuous pseudometric on X for any n € @ and hence
d = do+> {27"d; : i € N} is also a pseudometric on the space X . Take any metric
o on the space X and let p = d 4 0; then p is a metric which generates the topology
of X (see Fact 2).

By (ii) applied to the metric p, there is a p-vanishing family O C ©(X) such
that | JO = X. Consequently, Oy = {O € O : diam,(0) > %} is finite as
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well as the family O; = {O € O : 277! < diam,(0) < 277} foreachi € N.
We have the equality | J{O; : i € w} = O;let W; = |JO, forevery i € w.
Since diam,(0) < oo for every O € O and W, is a finite union of elements of O,
we have diam,(W;) < oo foreveryi € .

Assume first that infinitely many elements of F, meet W,. Then we can choose
a strictly increasing sequence {n; : n € w} C w and z; € Fnok N Wy for any
k € w. The family U, is locally finite; so zo belongs to finitely many elements
of Uy which implies that in(zO) = 0 for all but finitely many i € w. Therefore
p(z0,zk) = d(zo,2¢) > | ni(z()) - ,,i(Zk)| = ny + 1 for all but finitely many k.
Since ny — oo, we have diam, (W) = oo; this contradiction proves that

(do) the set Qo = {n € w : F* N W, # @} is finite.

Now assume that i € N and W; meets infinitely many elements of F;; since
W; = |JO; and O; is finite, there is O € O; which intersects infinitely many
elements of F;. We can choose a strictly increasing sequence {ny : n € w} C w and
Zk € F,fk N O for any k € w. The family U; is locally finite; so zy belongs to finitely
many elements of {; which implies that ' (zo) = 0 for all but finitely many k € w.
Therefore p(z0,2x) > d(z0,2x) = 27| f;}, (z0) — f, (z)] = 27 for all but finitely
many k. Thus diam,(0) > 277; this contradiction proves that

(d) theset Q; = {n € w: F N W; # 0} is finite for any i € N.

It follows from (do) and (d) that the family ¢/ = {Uli 1k € Q;} C U is finite for
anyi € w. ToseethatUf’ = ( J{U] : i € w}isacoverof X take any x € X. Since O
is a cover of X, there isi € w for which x € O € O; and hence x € W;. The family
F; being a cover of X there is F} € F; for which x € F}. Then F/ N W; # @ and
hence k € Q;. Therefore x € Fk’ C U,i S L{i’; so we proved that U/’ is a cover of X
and hence X is a Hurewicz space. Thus (ii))==(i) and our solution is complete.

U.051. Prove that X is a Hurewicz space if and only if X is compact.

Solution. If X is compact then X is also compact and hence Hurewicz. Now,
assume, towards a contradiction, that X is Hurewicz and non-compact. Since X
is Lindelof, it cannot be countably compact; so there is a countably infinite closed
discrete D C X. Therefore D is a closed subspace of X“ homeomorphic to PP.
Every closed subspace of a Hurewicz space is a Hurewicz space; so [P has to be a
Hurewicz space which it is not (see Fact 1 of T.132). This contradiction shows that
X is countably compact and hence compact.

U.052. Prove that any separable Luzin space is a Hurewicz space.

Solution. Take a separable Luzin space X and let D = {d, : n € w} be a countable
dense subspace of X. If {, : n € w} is a sequence of open covers of the space X
then choose U, € U, such thatd, € U, foranyn € w. Then D C U = |, ¢, Un
whence F = X\U is nowhere dense and hence countable; let {x, : n € w} be
an enumeration (with possible repetitions) of the set F'. For every n € o choose
Vi € U, such that x,, € V,; then U, = {U,,V,} is a finite subfamily of U, and
UU), :n € w} = X so X is Hurewicz.
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U.053. Prove that any Hurewicz analytic space is o-compact.

Solution. Let X be a Hurewicz analytic space. If X is not o-compact then there
isaclosed Y C X suchthat Y ~ P (see SFFS-352). Every closed subspace of a
Hurewicz space is a Hurewicz space; so [P has to be a Hurewicz space which is a
contradiction (see Fact 1 of T.132). Therefore X has to be o-compact.

U.054. Give an example of a Hurewicz space which is not o-compact.

Solution. Let X be the Lindelofication of the discrete space of cardinality wy, i.e.,
X = w;U{a}, where a ¢ w is the unique non-isolated point of X and U € 7(a, X)
if and only if U = {a} U (w;\ B) where B is a countable subset of ;. Since every
countable subset of X is closed and discrete, every compact subspace of X is finite
and hence X is not o-compact.

Now, assume that {{/, : n € w} is a sequence of open covers of X. For every
n € w choose U, € U, such that a € U,; then B, = X\U, is countable and
therefore so is the set B = | J{B, : n € w}. Choose an enumeration {b, : n € w}
(with repetitions allowed) of the set B. For each n € w there is V,, € U, for which
by, € V,. The family U, = {U,,V,} C U, is finite for every n € w and (J{JU,, :
n € w} = X which shows that X is a Hurewicz non-o-compact space.

U.055. Prove that, under CH, there exists a Hurewicz space whose square is not
normal.

Solution. If Z is a set and A C expZ then A|Y = {ANY : A € A} for any
Y C Z. Under CH there is a dense Luzin subspace H C R (see Fact 1 of T.046);
let H = {—r :r € Hyand L = H U H,. Observe that, for any dense Y C R, a
set N C Y is nowhere dense in Y if and only if it is nowhere dense in R. Therefore,
if N C L is nowhere dense in L then N is nowhere dense in R and hence both sets
N N H and N N H; are nowhere dense in H and H, respectively. Since both H and
H, are Luzin spaces, we have [N N H| < w and |N N H;| < o whence |N| < w.
This proves that

(1) there is a dense Luzin space L C R such that —r € L forany r € L.

Let 6 be the Sorgenfrey line topology on R (see TFS-165). Recall that the family
B ={[a,b) :a,b € R, a < b} is a base for the space S = (R, #). We claim that
X = (L, 60|L) is a Hurewicz space.

Indeed, let {4, : n € w} be a sequence of open covers of X; we can assume,
without loss of generality, that &4, C B|L for any n € w. Since S is hereditarily
separable, we can find a dense countable A C X;let {a, : n € w} be an enumeration
of the set A. For every n € w we can choose U, € U, such that a, € U,; we have
U, = la,b) N L for some [a,b) € B;let U, = (a,b) N L. It is evident that
U ={U, : n € o} C t(R)|L; besides, it follows from density of L in R that
a, € Fn’ for any n € w (the bar denotes the closure in R).

As a consequence, W = | U’ is an open dense subspace of L; since L is Luzin,
the set L\W is countable. Let {w, : n € w} be an enumeration of W. We can
choose V,, € U, such that w, € V, forevery n € w. Then U, = {U,, V,,} is a finite
subfamily of U, for eachn € w and J{{JU, : n € o} = X which shows that X is
a Hurewicz space.
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To see that X x X is not normal consider the set D = {(r,—r) : r € L} C RxR;
it follows from (1) that D C X x X. Observe that the set D is closed in L x L because
it is a graph of a continuous function f : L — L defined by f(x) = —x for any
x € L (see Fact 4 of S.390). The topology of X is stronger than that of L so D is
also closed in X x X.Forany r € L theset O, = [r,r + 1) x [-r, —r + 1) is open
in S x S and O, N D = {(r,—r)} which shows that D is also discrete in X x X.
We have assumed that CH holds; so |D| = ¢, i.e., X x X is a separable space with
ext(X x X) = c¢. Consequently, X x X is not normal by TFS-164 and our solution
is complete.

U.056. Prove that X" is a Hurewicz space for every n € N, if and only if, for any
sequence {yi : k € w} of open w-covers of the space X, we can choose, for each
k € w, a finite pi C yx such that the family | J{ux : k € w} is an w-cover of X.

Solution. This was proved in Fact 1 of T.188.

U.057. Let X be any space. Prove that X" is a Hurewicz space for all n € N if and
only ifvet(C, (X)) < w.

Solution. This was proved in Fact 2 of T.188.
U.058. Prove that if C,(X) is Fréchet-Urysohn then vet(C,(X)) < w.

Solution. If C,(X) is Fréchet—Urysohn then, for any sequence {{, : n € w} of
open w-covers of X, we can choose U, € U, for every n € w in such a way that
lim{U, : n € o} = X (see TFS-144). This implies that {U, : n € w} is an w-cover
of X so, for any n € w, the family U, = {U,} C U, is finite and | J{U,, : n € w} is
an w-cover of X . Finally, apply Problem 056 to see that X" is a Hurewicz space for
all n € N and hence ver(C,(X)) < w by Problem 057.

U.059. Prove that, under MA+—CH, there exists a second countable space X such
that X" is a Hurewicz space for each natural n, while X is not o-compact.

Solution. Let X C R be any subset with |X| = w;. Then |X| < ¢; so every
compact K C X is countable by SFFS-353; this proves that X is not o-compact.
We have (Cp (X)) < nw(Cp(X)) = nw(X) = wand x(Cp(X)) = |X|=w1 <¢
so SFFS-054 can be applied to conclude that C,(X) is a Fréchet-Urysohn space.
Thus vet(C,(X)) < w by Problem 058 and hence X" is a Hurewicz space for all
n € N (see Problem 057).

U.060. Say that a space is subsequential if it embeds in a sequential space. Prove
that every sequential space has countable tightness and hence each subsequential
space also has countable tightness.

Solution. It was proved in Fact 3 of T.041 that every sequential space has countable
tightness. It is immediate that countable tightness is a hereditary property; so every
space which embeds in a sequential space has countable tightness.

U.061. For any point & € Bw\w prove that the countable space w U {£} is not
subsequential.
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Solution. Given a space Z and a point z € Z call a family A C exp Z\{0} a
m-network at z if, for any U € t(z, Z) there is A € A such that A C U. For any
A C Z denote by Seq(A4) the set of all limits of sequences contained in A. It is
clear that A C Seq(A4) C A. Let So(A) = A and, if we have sets {Sg(4) : f < a}
for some o < wy, let Sy(4) = Seq(lJ{4p : B < a}). Observe that the family
{Sa(A) : @ < w;} has the following properties:

(1) AC Sy(A) Cc Aforalla < wy;
(2) Su(A) C Sp(A)ifa < B < w

and therefore the set S(4) = J{S4(4) : ¢ < w;} also lies between A and the
closure of A.

Fact 1. 1f Z is a sequential space, A C Z and z € A\A then z has a countable
m-network in Z which consists of infinite subsets of A.

Proof. Tt follows from sequentiality of Z that S(4) = A (see Fact 1 of T.041); so
we can use the induction on y(z) = min{e : z € S,(A4)}. If y(z) = 1 then there
is asequence T = {a, : n € w} C A such that z is the limit of 7. Since z ¢ A4,
the sequence T is infinite so we can consider that its enumeration is faithful, i.e.,
an # am ifn # m. Itisevidentthat € = {{ax : k > n} :n € w} CexpAisa
countable -network at z and all elements of £ are infinite.

Now assume that | < & < w; and we proved our Fact for all points 7 € A\A
with y(z) < o. If y(z) = « then z € Sy (A)\(U{Sp(4) : B < «}) and there is a
convergent sequence T = {z, : n € w} C A" = |J{Sp(A) : B < a} such that z is
a limit of 7. The set T N A has to be finite for otherwise there is a sequence in A
which converges to z, a contradiction with y(z) > 1.

Therefore we can apply the induction hypothesis to find a countable family &, C
exp A such that &, is a w-network at z,, and all elements of &, are infinite for every
n € w. Then & = | J{&, : n € w} C exp 4, all elements of £ are infinite and it is
straightforward that £ is a countable w-network at z. Thus our inductive procedure
can be carried out for all @ < w; which shows that every z € A\ A has a countable
m-network with infinite elements; so Fact 1 is proved.

Returning to our solution assume that X = w U {£} can be embedded in some
sequential space Y. Then there is a family £ = {4, : n € w} of infinite subsets of ®
which is a w-network at £ in Y (see Fact 1). It is clear that the notion of 7-network
is hereditary; so £ is a w-network at £ in X.

Take any distinct points ag, by € Ap; assume that 1 < n < w and we have chosen
points {a;, b; : i < n} with the following properties:

(3) a;,b; € A; foralli < n;
4) a; #bj foralli,j <n;
(5) i # j implies a; # a; foralli, j <n.

Since the set B = {a;,b; : i < n} is finite, we can choose distinct
an,b, € A,\B. It is immediate that the properties (3)—(5) still hold for the set
{a;i,b; : i < n};soourinductive construction can be carried out for all n € w giving
ussets P ={a; :i € w}and Q = {b; : i € w} with the properties (3)-(5) fulfilled
foralli € w.
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If £ € P then P U {£} is an open neighbourhood of £ in X (see Fact 1 of S.370)
so there is n € w such that 4, C P which is a contradiction with b, € 4, N Q.
Therefore £ ¢ P and hence (w\P) U {£} is an open neighbourhood of £ in X; so
again there is n € w for which A, C (w\ P). However, this contradicts a, € A,N P
and hence we proved that X = w U {£} cannot be embedded in a sequential space.

U.062. Prove that C, (1) is not subsequential.

Solution. Recall that, for any spaces X and Y, amap ¢ : C,(X) — C,(Y)iscalled
linear if (A f + png) = Ao(f) + ne(g) forany f,g € C,(X)and A, u € R.

Fact 1. Let A be anon-empty closed subspace of a metrizable space M . Then there
exists a continuous linear map e : C,(A4) — C,(M) such thate(f)|A = f for any

f € Cy(A).

Proof. We can choose a metric d on M with t(d) = t(M) and a Dugundji system
{Us,a5 : s € S} for M\ A (see SFFS-103). Apply Fact 4 of T.104 to find a locally
finite (in M\ A) family {F; : s € S} such that F; is closed in M\ A4 and F; C U;
for each s € S. By normality of the space M \ A there exists a continuous function
cs : M\A — [0, 1] such that ¢;(Fy) C {1} and ¢;((M\A)\U;) C {0} for every
ses.

Since the family {U, : s € S} is locally finite in the space M \ 4, the set S(x) =
{s € S : c;(x) # 0} is finite for every x € M\ A and hence the function ¢ =
Y ses Cs is well defined. Given any x € M\ A there is W € t(x, M\ A) such that
S ={s €S :WnU; # @} is finite; it is evident that S(y) C S’ forany y € W
and hence c|W = (D _,c¢ ¢s)|W is continuous. Thus we can apply Fact 1 of S.472
to conclude that ¢ : M\ A — R is continuous.

Note that, forany x € M\ A thereiss € S such that x € F; and hence ¢;(x) = 1;
this shows that ¢(x) > 1 > 0 for any x € M\ A so the function b; = % is well
defined. It is immediate that

(1) Q,esbo)(x) =1forany x € M\ A.

For any function f € C,(A) let e(f)(x) = f(x) for every point x € A and
e(f)(x) = Y cgbs(x) f(as) for each x € M\A. Observe that e(f)(x) makes
sense for any x € M\ A because b;(x) = O forany s € S\S(x). Wehavee(f)|A =
f by our definition of e( f); let us prove that e( /') is continuous. Given any point
x € M\ Athereis W € t(x, M\ A) such thattheset T (x) = {s € S : WNUy # 0}
is finite. As a consequence, S(y) C T(x) for every y € W which shows that
the function e( f)|W = (ZSET(X) f(ay) - by)|W is continuous. Therefore e( f) is
continuous at the point x.

Now take any point a € A and any ¢ > 0. Since f is continuous on A, we
can find § > 0 such that @’ € A and d(a,a’) < § imply | f(a’) — f(a)| < e.
Let U = B(a.%) = {d’ € M : d(a,d’) < §}.Ifx € U N Athen |e(f)(x) —
e(f)@)| = |f(x)— f(a)] < e. Now, if x € U\A then d(x, A) < d(x,a) < %
Besides, if x € Uy then d(as,a) < d(ag,x) + d(x,a) < 2d(x,A) + d(x,a) <
%8 +§ = § (we used the fact that {Uy, a, : s € S} is a Dugundji system and therefore
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d(x,as) <2d(x, A) because x € Uy). As a consequence, | f(as) — f(a)| < ¢ for
any s € S suchthatx € Us. Let S’ = {s € § : x € Us}; then S(x) C S’ and we
have

le(f)(x) —e(/)@)] = | Lses bs(x) fas) = fla)| =
= Lses bs()(fas) = f@)] < & (Xses bs(x)) = &

(we used the equality ) ¢/ bs(x) = 1). Thus we found U € t(a, M) such that
le(f)(x) —e(f)(a)| < e forany x € U so e(f) is continuous at the point a. This
proves that e(f) € C,(M) forany f € C,(A).

Now take any f,g € Cp(A)and A, u € R;leth = Af + ug. Then

e(h)(a) = h(a) = (Af + pg)(a) = Af(a) + pgla) = Ae(f)(a) + pe(g)(a)

forany a € A. If x € M\ A then

e(h)(x) = Y ses be(D)h(as) = Yes b ()AS + ng)las) =
= A ses bs(x) f(a5) + (X ses bs(x)g(as)) = Ae(f)(x) + pe(g)(x).

which shows that e(Af + ug) = Ae(f) + ne(g), i.e., the map e is linear.

Ifa € Aand f € C,(A) then let p,(f) = f(a). Then p, : C,(A) — Ris
continuous for any a € A (see TFS-166). For any x € M let m,(f) = f(x) for
any f € C,(M). To show that e is continuous it suffices to check that 7, o e is
continuous for any x € M (see TFS-102). If x € A then w,(e(f)) = e(f)(x) =
f(x) = px(f)forany f € C,(A);som, oe = p, is a continuous map.

If we are given a point x € M\ A thenlet S’ = {s € S : by(x) # 0}; then S' is
a finite set and 7w, (e(f)) = e(f)(x) = D _;es bs(x) f(a,) forany f € C,(A) and
therefore 7wy 0 e = ) ¢ bs(X) pa, is a continuous map being a linear combination
of continuous maps {p,, : s € S’}. We established that 7, o e is continuous for any
Xx € M so the map e is continuous and Fact 1 is proved.

Fact 2. Suppose that M is a metrizable space and A C M is a non-empty closed
subset of M;let Iy = {f € C,(M) : f|A = 0}. Then there exists a linear
homeomorphism between C,(M ) and C,(A) x I 4 and, in particular, C,(A) embeds
in C,(M) as a closed linear subspace.

Proof. There is a linear continuous map e : C,(A) — C,(M) such that e(f)|A =
S forany f € C,(A) (see Fact 1). For an arbitrary function f € C,(M) we can
define ¢(f) = (f|A. f —e(f|A)) € Cp(A) x C,(M). Now, e(f|A) coincides
with f on the set A so (f — e(f]A))(x) = O for any x € A which shows that
¢(f) € Cp(A) x 14 for any f € C,(M). Therefore we have defined a map ¢ :
C,(M)— Cp(A) x 14.

Take any f € C,(A) and g € 14; itis immediate that h = e(f) + g € C,(M)
and ¢(h) = (. g) so the map ¢ is surjective. If f1, f € C,(M)and ¢( f1) = ¢(f2)
then f = filA = folAand g = fi —e(f) = f» — e(f) which shows that
fi=e(f)+ g = f> and hence ¢ is a bijection.
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The restriction map = : C,(M) — C,(A) defined by n(f) = f|A for any
function f € C,(M) is linear and continuous; this, together with linearity and
continuity of e, implies that the map 6 : C,(M) — C,(M) defined by §(f) =
f —e(@(f)) forall f € C,(M) is also linear and continuous. Therefore ¢ is a
linear continuous map being a diagonal product of linear continuous maps 7 and 8.

Forany (f,g) € Cp(A) x I4letn(f,g) = e(f) + g;thenn: C,(A) x 14 —
C,(M) is also a linear continuous map. Indeed, let i : /4 — I, be the identity
map; thena = e xi : Cp,(A) x I4 — Cp(M) x C,(M) is linear and continuous
because any product of linear continuous maps is linear and continuous (see Fact 1
of S.271). Therefore n is linear and continuous because it is a composition of o
and the addition map in C,(M) which is linear and continuous (see TFS-115). It
is straightforward that 7 is the inverse of ¢ so ¢ is a linear homeomorphism. It
is evident that any factor in a product of topological vector spaces embeds in that
product as a closed linear subspace; so Fact 2 is proved.

Returning to our solution let a = (0,0) € R x R; we will also need the set
Er=1{0,....k—1}x{k} CRxRforanyk € N.Let E = | J{E; : k € N};to
introduce a topology p on the set A = {a} U E we declare that all points of E are
isolated and a € U € p if and only if there is m € w such that |Ex\U| < m for
any k € N. It is easy to see that this defines local bases of a topology u at all points
of A;let X = (A, n). The T)-property of X is clear; since X is also normal (see
Claim 2 of S.018), it is a T4-space.

Recall that a family N' C exp X \{#} is a w-net at a if, forany U € 7(a, X) there
is N € N such that N C U. We claim that

(1) no countable family A of infinite subsets of £ can be a 7-net at a.
Indeed, A = {A, : n € w} C exp E where A, is infinite for any n € w.
Consequently, the set {k € w : A,NE} # 0} is infinite for any n € w and hence
we can choose an increasing sequence {k, : n € w} C w anda, € A, N Ey,
forany n € w. Then U = X \{a, : n € w} is an open neighbourhood of a in X
and a, € A,\U forany n € w, i.e., Ais nota w-net at a. Now we can apply
Fact 1 of U.061 to conclude that

(2) the space X is not embeddable in a sequential space.

LetC = {yy : U € t(a, X)} C D¥X;itis evident thatevery f € C is continuous
on X,ie,C C Cp(X,D). Forany x € X and f € C lete,(f) = f(x); then we
haveamap e : X — C,(C) defined by e(x) = e, for every x € X (see TFS-166).

Suppose that F is a closed subset of X and x ¢ F.If x = a then for the set
U = X\F the function f = yy € C and f(x) = 1 while f(F) C {0}.If x # a
then let U = X\{a}; again, f = yy € C and f(x) = 0 while f(F) C {1}.
Thus C separates the points and closed subsets of X and hence the map e is an
embedding: this was also proved in TFS-166.

Givenn € w,let C, = {f e D¥ : f(a) = land |f~'(0) N Ex| < n
for all k € w}; it is immediate that C = (J{C, : n € w}. Besides, every C,
is compact being closed in DX. As a consequence, C is o-compact; the space X
embeds in C,(C) and hence it can be embedded in C,(K) for some metrizable
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compact K (see Problems 035 and 041). Since the Cantor set K can be continuously
mapped onto K (see TFS-128), the space C,(K) embeds in C,(K). Now, K is
homeomorphic to a closed subset of I which, together with Fact 2, implies that
C,(K) embeds in C,(I). Therefore X embeds in C,(I); so we can apply (2) to
conclude that C,(I) cannot be embedded in a sequential space.

U.063. Prove that the following are equivalent for any pseudocompact X :

(i) Cp(X) is a Fréchet-Urysohn space;
(ii) Cp(X) embeds in a sequential space;
(iii) X is compact and scattered.

Solution. It is evident that (i)==>(ii); the implication (iii)=—>(i) was established in
SFFS-134 so we only have to prove that (ii)==>(iii). Assume that C,(X) embeds in
a sequential space S. Then (C,(X)) < #(S) = w (see Problem 060) and hence X
is Lindelof (even in all finite powers) which, together with pseudocompactness of X
shows that X is compact. If X is not scattered then it can be continuously mapped
onto I by SFFS-133. This implies that C,,(I) embeds in C,(X) and hence C,(I) can
be embedded in our sequential space S. This contradiction with Problem 062 proves
that X is scattered and hence (ii)=—(iii).

U.064. Prove that radiality is a hereditary property; show that pseudoradiality is
closed-hereditary. Give an example showing that pseudoradiality is not hereditary.

Solution. Suppose that X is a radial space and ¥ € X.If A C Y and x €
cly (A)\A then x € cly(A)\A and hence there exists a regular cardinal x and a
k-sequence S = {a, : o < k} C A with § — x. It is evident that the sequence S
witnesses radiality of Y'; so we proved that any subspace of a radial space is radial.

Now assume that X is pseudoradial and Y is a closed subspace of X. I[f A C YV
is not closed in Y then it is not closed in X and hence there a regular cardinal x and
ak-sequence S = {a, : @ < k} C A with § — x for some x € cly(A4)\A. The set
Y being closed in X we have cly(A4) C Y and hence x € cly(A)\ A which proves
that pseudoradiality is closed-hereditary.

Fact 1. Let{S,, : m € w} be a disjoint family of copies of a convergent sequence,
ie, S, = {a : n € w} U {a,,} where the enumeration of S,, is faithful and the
sequence {a!! : n € w} converges to a,, for each m € w. Given k,m € w denote
by S, (k) the set {a,,} U{al :n > k} C Sy andlet S = (J,,c, Sm.- Choose a
pointa ¢ S and let B,,, = {{a))'}} for all m,n € w; to construct a topology on the
set {a} U S we will also need the family B,, = {S,,(k) : k € w} which will be the
future local base at a,, for every m € w.Foranyk € w and f € o®\¥ let O(f.k) =
{ay U (U{Su(f(m)) : m > k}); the family B, = {O(f.k) 1k € w, f € w®¥}is
the future local base at a. Then B = (| J{B, : m,n € o} U (J{By : m € w}) UB,
generates a topology 7 (as a collection of local bases at the relevant points) on the
set{a} U S;let T = ({a} U S, 7). The space T is Tychonoff and sequential while
no sequence from the set A = {a)' : m,n € w} converges to a and, in particular, T
is a sequential space which is not Fréchet—Urysohn.
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Proof. We omit the straightforward proof that the collection B satisfies the condi-
tions (LB1)—(LB3) from TFS-007; so we can, indeed, generate a topology t on the
set {a} U S. Itis evident that T is a Ty-space; since every point of A is isolated in 7',
all elements of B are clopen in 7" so T is zero-dimensional and hence Tychonoff.

To see that T is sequential suppose that P C T and P # P.Ifa, € P\P
for some m € w then P’ = P N S, is infinite and P’ C P is a sequence that
converges to a,,. This shows that we can assume, without loss of generality, that
a, € P implies a,, € P for any m € w. Now, if a € P\P then the set the
N ={m € w: P NS, is infinite} is infinite. We have a,, € P and hence a,, € P
forany m € N so P’ = {a,, : m € N} C P is a sequence that converges to a.

Finally observe that it follows from the definition of 7 thata € A; however, if
some sequence P C A converges to a then S N S, is finite for any m € w (because
otherwise a,, € P\ P) and hence there is a function f € @® such that P N S,, C
{0, ..., f(m)—1} forall m € w; thus U = O(f,0) is an open neighbourhood of a
with U N P = @. This contradiction shows that no sequence from A converges to a
and hence Fact 1 is proved.

Returning to our solution consider the space 7' from Fact 1. It is sequential and
hence pseudoradial. However, the subspace ¥ = {a} U A of the space T is not
pseudoradial. Indeed, assume, towards a contradiction, that ¥ is pseudoradial. The
set A is not closed in ¥ and a € A\A is the unique point of ¥ which is in the
closure of A and not in A. Therefore there is a regular cardinal x and a k-sequence
P = {y, : « < k} such that P — a. The cardinal x must be uncountable
because otherwise P is a convergent sequence which contradicts Fact 1. Since 4 is
countable, there is y € A such that the set Q = {a < « : y, = y} has cardinality «.

However, Y \{y} is an open neighbourhood of @ in Y'; so there is 8 < « such
that y, # y forall « > B and hence Q C {« : o < B}; this contradiction shows
that P does not converge to a and hence Y is not pseudoradial. Consequently, T
is a pseudoradial space such that Y C T is not pseudoradial which shows that our
solution is complete.

U.065. Prove that any quotient (pseudo-open) image of a pseudoradial (radial)
space is a pseudoradial (radial) space.

Solution. Suppose that X is a pseudoradial space and f : X — Y is a quotient
map. If A C Y is not closed in Y then B = f~'(A) is not closed in X; so we
can find a regular cardinal « and a «x-sequence S = {b, : ¢ < k} C B such
that S — x for some x € X\B. Then y = f(x) € Y\A and the «x-sequence
T ={f(by) : @ <k} C A convergesto y. This shows that ¥ is also pseudoradial.
Now, assume that X is radial and the mapping f is pseudo-open. Given a set
ACYandapointy € A\Alet B = f~'(A)and P = f~'(y).IfPNB =0
then U = X\B € t(P,X) and hence y € V = Int(f(U)) so V is an open
neighbourhood of y which does not meet A; this contradiction shows that we can
choose x € B N P. By radiality of the space X there exists a regular cardinal «
and a «x-sequence S = {b, : @ < k} C B such that § — x. It is evident that the
k-sequence T = { f(by) : ¢ < Kk} C A convergesto y so Y is radial as well.
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U.066. Prove that any radial space of countable tightness is Fréchet—Urysohn.

Solution. Suppose that X is a radial space of countable tightness; take any 4 C X
andx € A.If x € Athen S = {{x}} C A is a (trivial) sequence which converges
tox.Ifx € Z\A then there is a countable B C A such that x € B; of course, x €
B\ B so we can apply radiality of X to find a regular cardinal x and a k-sequence
S ={xy 1 <k} C Bsuchthat S — x.

If « = w then our proof is over; if not, then it follows from |B| = w and
regularity of « that there is » € B such that the cardinality of the set £ = {o <
K : xoq = b} is equal to k. However, W = X\{b} is an open neighbourhood of
the point x; so there is B < « such that {x, : « > B} C W which implies that
E C{a:a < B} and hence |E| < k. This contradiction shows that x is countable
and hence S C A is a sequence which converges to x. Therefore X is a Fréchet—
Urysohn space.

U.067. Prove that a space is radial (pseudoradial) if and only if it is a pseudo-open
(quotient) image of a linearly ordered space.

Solution. If (L, <) is a linearly ordered set then, as usual, t(<) is the topology
generated by the order <; for any points a,b € L weleta < b ifand only ifa < b
and a # b. Observe that, to define the order < it suffices to indicate for which
a,b € L wehave a < b. We will need almost all types of intervals in (L, <) so we
define

(a)x={yel:y=<a} («<alx={yel:y=za;
and
(a,b)<x={yeL:a=<y=<b}
Analogously,

(a,=)<={yel:a=<y} [a,>)<={yeLl:a=xy} [a,b)<
={yeL:a<xy=<b}

and (a,b]< ={yel:a<y=<b}

Fact 1. For an infinite cardinal k let < be the lexicographic order on D, = k X Z,
ie., for any a,b € D, such thata = (a,n), b = (B,m) leta < b if a < B;if
B <athenweleth <a. Nowif o« = Bthena <bifn <mandb <aifm <n.
Then < is a linear order on D, and the space (D, t(X)) is discrete. Besides, if
k > wthen |{a € D, : a < b}| < k forany b € D,. In particular, any discrete
space X is linearly orderable.

Proof. 1t is easy to check that < is a linear order on D,; the space (D, 1(X))
is discrete because for any ¢+ = (a,n) € D, the points a = (x,n — 1) and
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b = (a,n + 1) belong to D, and (a,b)< = {t}, i.e, every t € D, is isolated
and hence the space (D,, (X)) is discrete. Now if b = («, n) € D, then

Ly={aeDy:a=xb}C(a+1)xZ

so |Ly| < [(@ + 1) X Z| = max{|a|, w} < .

Finally, assume that X is a discrete space. If X is finite then any well order on X
generates its topology. If X is infinite then, for the cardinal k = | X | take a bijection
f:X — D,.

Using f, we transfer the order < to X, i.e., forany x, y € X weletx C y if and
only if f(x) < f(y). The map f is an isomorphism between (X, C) and (D, <);
so it is a homeomorphism between (X, 7(C)) and (D, 7(=)). Therefore (X, t(T))
is also discrete and Fact 1 is proved.

Fact 2. Suppose that, for every t € T, the topology of a space X, is can be
generated by a linear order <, which has a maximal and a minimal element. Then
the space X = @{X, : ¢t € T} is linearly orderable.

Proof. We identify every X, with the relevant clopen subspace of X. Apply Fact 1
to choose a linear order < on 7 such that (T, (<)) is discrete. For every ¢t € T fix
the minimal element a, of (X;, <;) and its maximal element b, (note that we do not
discard the possibility of a, = b;).

Given distinct x, y € X thereare t,s € T suchthatx € X; and y € X;. If s # ¢
thenletx < yifs <fand y < xift < s. Now, if s = ¢ then x < y if and only if
x <; y. Itis straightforward to verify that < is a linear order on X. Foreveryt € T
fix t;,t, € T for which (#,¢,)< = {t}.

Take any x,y € X withx < y and fixt,s € T for which x € X, and y € X,. If
t = sthen (x,y)< = (x,y)<,;if t # sthent < s and

()C, y)j = (xv_))ft U ((_v y)j U (U{Xu t<u< S}) s

which shows that (x, y)< is openin X for any x, y € X and hence 7(=X) C t(X).

To prove the converse inclusion observe that the family B = | J{z(X;) : t € T}
isabasein X. Takeanyt € T, x € X, and U € t(x, X,). If |X;| = 1 then
(by,a;,)< ={x} CU,ie,wefound W € t(X)suchthatx e W C U.If | X;| > 1
then we have three cases:

(@) a; < x < by; then there are a, b € X, such that x € (a,b)<, C U. However,
W = (a,b)<, = (a,b)< and hence we found W € 7(<X) suchthatx € W C
U.

(b) x = a;; then there is a point b € X, such that [a;, b)<, C U. Observe that we
have W = [a;,b)<, = (b;,b)< € T(=X); so we found a set W € t(=X) such that
xeWcCU.

(c) x = by; then there is @ € X; such that (a, b;]<, C U. Observe that we have
W = (a,b]<, = (a,a;)< € t(X); so we found again a set W € t(=x) such
thatx e W C U.
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Thus we proved that for any x € X and U € t(x, X) there is W € t(X) such
that x € W C U. This shows that t(=) is a base for (X) and hence t(X) C 7(=).
Therefore 7(X) = t(=) and Fact 2 is proved.

Fact 3. Supposethat X = {x}U{x, : & < k} where « is an infinite regular cardinal,
the enumeration of X is faithful and x is the unique non-isolated point of X. For
every o < k let Oy = {x} U {xg : B > a}. If the family {O, : @ < «} is a local
base at x in X then there is a linear order < on X such that 7(=<) = t(X), the point
x is the maximal element of (X, <) and xy is its minimal element.

Proof. If k = w then let x,, < x forany n € w and x, <X X, if and only if n < m.
Then < is a well order on X and (X, <) is order-isomorphic to @ + 1. It is evident
that X is also homeomorphic to w + 1 and hence 7(=<) = t(X). It is evident that x
the maximal element of (X, <) while X, is its minimal element.

Now, if « = |X| > wthenlet Y = X\({x} U {x, : n < w}) and take any
bijection f : Y — D, = k X Z.

Let < be the lexicographic order on D, (see Fact 1) and transfer the order < to
Y using the bijection f, i.e., let x < y if and only if f(x) < f(y). It follows from
Fact 1 that all points of Y are isolated in the topology generated by < on Y. Let
Xq = x forany o < k. For any m,n € w we let x,, < x, if and only if m < n.
Furthermore, x,, < x, forany m < w and ¢ > w.

We omit a simple verification that (X, <) is a linearly ordered set in which all
points of X\ {x} are isolated in 7(=<) while x the maximal element of (X, <) and x
is its minimal element.

To see that (x, X) = {W € t(X) : x € U} take any set U € t(x, X). By our
hypothesis there is an ordinal @ < x such that O, C U. It follows from Fact 1 that
the set Qg = {y € X : y < xp} is countable for any 8 < « so we can choose a
point z € (X\{xP)\(U{Qp : B < }). Itis immediate thatx e W ={y € X 1z <
vy} C U which shows that t(=) is a base for 7(X) and therefore 7(X) C 7(=x).

Now observe that the family {(a, —)< : a € X\{x}} is alocal base at the point x
in (X, 7(x))soif W € (<) and x € W then there is a point a € X \{x} such that
(a,—)< C W.Theset B = (<, a]< is countable by Fact 1 so we can choose & < «
such that xg € B implies B < «. It is immediate that O, C W so t(X) is also a
base for 7(<) and hence 7(<) C t(X) whence t(=) = t(X). Thus X is linearly
ordered by < and x, xo are the maximal and the minimal elements respectively of
the set (X, <) which shows that Fact 3 is proved.

Returning to our solution let (L, <) be a linearly ordered set with the topology
7(=x). Givenaset A C L and a point x € A\ A consider the sets A; = AN (<, x)<
and A, = AN (x,—)<. Since A = A; U A,, we have either x € Zl\Al or
X € Zz\AZ. The further reasonings for both cases are identical; so we consider that
y < x forany y € A.

Choose ay € A arbitrarily and assume that 8 is an ordinal for which we have a
set Ag = {a, : @ < B} C A such that

(1) @ <y < Bimplies a, < a,.
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If x € Zﬂ then our inductive construction stops; if not, then there is a € L such
thata < x and (a,x]< N Ag = @. It follows from x € A and A C (<, x)< that
thereis ag € (a,x)<NA;itis clear that (1) still holds for the set {a, : @ < B} so our
inductive construction can be continued. Of course, it has to end before we arrive to
B = |L|T so assume that x € A, for some ordinal v. Then x = cf(v) = min{« :
there is a cofinal M C v which is isomorphic (with the well order induced from v)
to the ordinal &} is an infinite regular cardinal. Choose aset M = {iy 1 <k} C v
such that @ < y < « implies p, < u, and the set M is cofinal in v; let y, = ay,
for any o < k. Then {y, : @ < k} C A is a k-sequence which converges to x.

Indeed, take any set U € t(x, L); there is a € L such that (a,x]< C U. Since
x € A, we have 4, N (a,x]< # @ and therefore a, € (a,x)< for some y < v.
The set M being cofinal in v there is 8 < « such that ;g > y and hence a < a, <
au, = yp (here we applied (1)). For any o > f we have ug < pu, and therefore
a < yg X Yo < x which shows that {y, : @« > B} C (a,x) C U. Thus we proved
that S — x and hence

(2) any linearly ordered space is radial.

An immediate consequence of (2) and Problem 065 is that any pseudo-open
(quotient) image of a linearly ordered space is radial (or pseudoradial respectively)
so we established sufficiency for both cases.

The proofs of necessity for both radial and pseudoradial spaces are also parallel;
so we will give them simultaneously. Assume that X is a radial (pseudoradial) space;
if X is finite then it is linearly orderable by Fact 1 so there is nothing to prove. Thus
we can assume that | X| = A > w. Let S(X) be the family of all faithfully indexed
k-sequences S = {xy : @ < k} C X such that o < xk = cf(k) < A and the
sequence S converges to some point ug € X\S. Given S = {x, : @ < k} € S(X)
we will also need a topology s on the set S U {ug} (which might be distinct from
the topology induced on S from X) namely, ts = {A: A C S}U{B :us € B
and |S\B| < «}. In other words, all points of S are isolated in ts and the sets
Oy = {us} U {xg : o < B} form a local base at the point ug in the space P[S] =
({us} U S, ts) when « runs over all elements of «.

Denote by / the (discrete) subspace of all isolated points of the space X and let
L=1& (B{P[S]: S € S(X)}). An immediate consequence of Facts 2 and 3 is
that L is linearly orderable; so it suffices to show that there exists a pseudo-open (or
a quotient respectively) map f : L — X. As usual, we identify every summand of
L with its respective clopen subspace.

Take apointx € L;if x € [ thenlet f(x) = xrecallthat/ C X so f(x) € X.If
x € @B{P[S]: S € S(X)}then x € P[S] forsome S € S(X); again, let f(x) = x
and observe that f(x) makes sense and belongs to X because P[S] C X. This gives
usamap f : L — X;letuscheckthat f is pseudo-open (or quotient, respectively).

Suppose first that X is pseudoradial and take any A C X such that B = f~!(A)
is closed. If A is not closed in X then there is a regular cardinal k < A and a
faithfully indexed k-sequence S = {x, : @ < k} C A such that S — x for some
x € A\A. Then S € S(X) and us = x. By definition of f we have f(us) = x
and hence us ¢ B (here we consider that ug € L). It follows from S — x that
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us € clp (B)\ B which is a contradiction. Therefore A4 is closed in X and hence the
map f is quotient. This proves necessity for a pseudoradial space X .

Finally, if the space X is radial and f is not pseudo-open then there is a point x €
X and O € t(f~'(x), L) such that x ¢ Int(f(0O)). This implies that x € X\ f(O)
and hence there is a regular cardinal k < A and a faithfully indexed «-sequence
S ={xy:a <k} C B = X\f(0)such that S — x and hence us € f~!(x).
Observe that S C B implies that S N O = @ (here we consider S C P[S] to be a
subset of L) while ug € clz(S) N O which is again a contradiction. Therefore f is
a pseudo-open map if X is radial; this settles necessity for a radial X and makes our
solution complete.

U.068. Prove that any radial space of countable spread is Fréchet-Urysohn.

Solution. Let X be a radial space with s(X) = w. If X is not Fréchet—Urysohn
then there is A C X and x € A\A such that no sequence from A converges to x.
Since the space X is radial, there is a regular cardinal k and a k-sequence S = {x :
a < k} C A such that S — x. The cardinal k has to be uncountable for otherwise
§ C A is a sequence which converges to x.

Let U C t*(A) be a maximal disjoint family such that x ¢ U for any U € U.
It is easy to see that W = | JU is dense in A and hence x € W. It follows from
s(X) < w thatU is countable; so S’ = S N U has cardinality « for some U € U.
However, x ¢ U implies that there is 8 < k such that x, ¢ U for all @ > B.
Therefore S’ C {x, : @ < B} and hence |S’| < |B| < «; this contradiction shows
that X is a Fréchet—Urysohn space.

U.069. Prove that any radial dyadic space is metrizable.

Solution. Suppose that X is a radial dyadic space and fix a continuous onto map
f : D - X for some cardinal k. If k < w then D" is metrizable and hence
so is X (see Fact 5 of S.307). Thus we can assume, without loss of generality,
that k > . We will need the subspaces 0 = {s € D* : |[s7'(1)] < w} and
Y ={seD":|s7(1)| < w} of the space D*.

Observe that o = | J, ¢, 0n Where 0, = {s € D“ : |s~!(1)| < n} is a compact
subspace of D* for each n € w. Besides, o is dense in D* and hence Y = f(o) is
dense in X . Fix an arbitrary x € X \Y; there is a regular cardinal A and a A-sequence
S={yy:a<A}CY withS — x.

If A > o then it follows from Y = | J,¢,, f(0,) that there is m €  for which
T = SN f(o0,) has cardinality A. The space K = f(0,,) is compact;so W = X\ K
is an open neighbourhood of x. Therefore there is § < A such that y, € W and
hence y, ¢ K for all @ > B. Consequently, T C {yy : @ < f} which shows that
|T| < |B| < A; this contradiction proves that A = w. Thus we can take a countable
set A C o such that f(4) D S and hence x € f(A) = f(A) (the last equality is
true because the map f is closed).

However, A C X by Fact 3 of S.307 and therefore x € f(X). Since the point
x € X\Y was chosen arbitrarily, we proved that f(X) D X\Y; moreover Y =
f(o) C f(X¥)aswellso f(X) = X.Finally apply Fact 6 of S.307 to conclude that
X is metrizable.
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U.070. Prove that Bw\w is not pseudoradial.

Solution. The space Bw\w is infinite and compact (see Fact 1 of S.370 and Fact 1
of S.376) so we can find a countable non-closed set A C fw\w by Fact 2 of T.090. If
the space Bw\w is pseudoradial then there is a regular cardinal ¥ and a k-sequence
S = {xy : @ < k} C A suchthat § — x for some x € (Bw\w)\A. It can be
left to the reader as an easy exercise to prove that k¥ cannot be uncountable; so S
is a non-trivial convergent sequence in Sw. However, Bw does not have non-trivial
convergent sequences by Fact 2 of T.131; this contradiction proves that Sw\w is not
pseudoradial.

U.071. Prove that D*' is not pseudoradial under CH and pseudoradial under
MA+-CH.

Solution. If CH holds then w(Bw\w) = ¢ = w; (see TFS-368 and TFS-371) so
Bw\w embeds in [! and hence 1! is not pseudoradial by Problems 070 and 064.
The space D“! can be continuously mapped onto I! by Fact 2 of T.298. The relevant
map has to be closed and hence quotient; so if D*! is pseudoradial then so is I*! (see
Problem 065); this contradiction shows that D“! is not pseudoradial. To finish our
solution it suffices to prove that

Fact 1. If MA+—CH holds then any compact space X of weight at most w; is
pseudoradial. In particular, D“! is pseudoradial under MA+—CH.

Proof. Suppose that A C X is not closed in X . If there is a countable B C A such
that B\ A # @ then take a point x € B\ A and consider the space ¥ = {x} U B.
We have y(x,Y) < w(X) < w; < cand |B| < o so SFFS-054 is applicable to
conclude that there is a sequence S = {x, : n € w} C B with § — x. Itis evident
that the sequence S witnesses pseudoradiality of X .

Thus we can assume that B C A for any countable B C A and hence 4 is
countably compact (see Fact 1 of S.314); fix any point x € A\A. It is impossible
that y(x, X) = w because then there is a sequence in A which converges to x; thus
x(x,X) = w;. Take a local base B = {U, : @ < w;} at the point x and choose
V, € t(x, X) such that V,, C U, for any o < .

If P C w is countable then take any enumeration {¢, : n € w} of the set P
and observe that W, = ("), , Vu, is a neighbourhood of x; so F, = W,NA * 0
for any n € w. By countable compactness of A we have F = (), F, # @ and
therefore ((Nyep Ux) N A D (Nyep V) N A = F # @ which proves that

(1) (Ngep Ux) N A # @ for any countable P C w;.

Finally apply (1) to choose a point x, € (({Up : B < a})N A forevery o < w;.
It is immediate that the w;-sequence S = {x, : ¢ < w;} C A convergesto x so X
is pseudoradial and Fact 1 is proved.

U.072. Prove that it is independent of ZF C whether every dyadic pseudoradial space
is metrizable.
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Solution. Given a set 7 and A C T, the map =] : DT — D" is the natural
projection; if the set T is clear we write 74 instead of ]TZ{. We say thataset Z C D7
does notdependon A C T if n;'ns(Z) = Z. AsetU € (D7) is called standard
ifU =J[{U; : t € T} and the set supp(U) = {t € T : U; # D} is finite.

Fact 1. Let A be an infinite cardinal. If X is a dyadic space such that the set C =
{x € X : my(x,X) < A}is dense in X then w(X) < A. In particular, if X has a
dense set of points of countable x-character then X is metrizable.

Proof. Fix a continuous onto map f : D* — X for some infinite cardinal «; if
k < A then there is nothing to prove, so we assume that k > A. We will show first
that

(1) for any x € C there is a non-empty A, C « such that |A,| < A and there is a
point s, € D4 for which JTZXI (sx) C f7H(x).

If x € C is an isolated point of X then K = f~!(x) is a clopen subset of D¥
s0, being the closure of itself, it depends on countably many coordinates, i.e., there
is a non-empty countable A, C k such that n;xl w4, (K) = K (see Fact 6 of T.298).
Thus we can take any s, € 4, (K) to satisfy (1).

Now, if x € C is not isolated in X fix a w-base 5 at x in X such that |B| < A;
it is easy to see that we can choose B so that x ¢ U for any U € B. It is an easy
consequence of Fact 1 of S.226 that the family V = { f ~'(U) : U € B} is a m-base
of the set K = f~!(x) in D¥, i.e., for any O € t(K,DD¥) thereis V € V such that
V C O. Since D* is a normal space, the family V.; = {V : V € V} is a w-net for
the set K, i.e., forany O € t(K,D") thereis V € V such that V C O.

For every V € V) the set V depends on countably many coordinates, i.e., there is
a non-empty countable Sy C k such that V = nS_VI s, (V) (see Fact 6 of T.298). If
Ay = U{Sv : V € V} then |A,| < A; let us prove that A is as promised.

Observe first that, for every V' € )V, we have n;j A, (V) = V because Sy C A,.
The set F = 74, (K) is compact; assume that, for any point s € F, there is a point
Us € n;j (s)\K. Take H, € t(uy, D) for which H; N K = 0; then G, = mwa, (Hy)
is an open neighbourhood of the point s for any s € F. There is a finite Q C F such
that G = (J{G, :s € Q} D F.Theset P = | J{H, : s € Q} is closed and disjoint
from K ; since V,; is a w-net for K, thereis V € V suchthat V C (D\ P) ﬂn;j (G).
Consequently, 74, (V) C G and hence 74, (V) N G, # @ for some s € Q. The set
V does not depend on A4,; so VN H; # 0; this contradiction with the choice of V'
shows that (1) is proved.

For any x € C take a point w, € n;} (sy) and let C' = {w, : x € C}; observe
that w, € f~!(x) and hence f(w,) = x forany x € C.

Take a point d € C arbitrarily and let Dy = {d}, By = Ag. Proceeding by
induction assume that m € N and we have constructed sets Dy, ..., D,,—; and
By, ..., B,,—; with the following properties:

2) Dyc Dy C...CDy—y CCand|D;| <Aforanyi < m;

(3) BC By C...C By—1 Ckand|B;| <Aforanyi < m;

4) if0<i <m—1then Ay C B, forany x € D;;

(5) if0 <i <m—1then g, ({wy : x € D;4}) is dense in 7, (C’).
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Observe that (2)—(5) are satisfied for m = 1 with (5) fulfilled vacuously. Since
7, ,(C’) C DB, we have w(rp, ,(C’)) < A so thereis a set C C C such that
|C|] < A and, for Cy = {w, : x € C}, the set 7g,_,(Co) is dense in 7p, ,(C');
letting D, = Dp—1 U C and B,, = \J{Ax : x € Dy} U B,—; we obtain sets
D,, and B,, such that (2)—(5) are still fulfilled for the families {B; : i < m} and
{D; : i < m}. Therefore our inductive construction can be continued to obtain
families {B; : i € w} and {D; : i € w} with the properties (2)—(5) satisfied for all
m e .

Let B = \J,c, Bn and D = |J,c,, Dn- Consider also the set F = C’ and
E = {w, : x € D};itis evident that f(F) = X. We claim that the map g = f|F
factorizes through the face D2, i.e., there exists a continuous maph : wg(F) - X
such that g = h o (| F). To prove this we will first establish that

©6) if U,V e t(D) and mp(U) N g (V) N wp(E) # @ then f(U) N f(V) # O.

To do it take a point u € E with wp(u) € 7p(U) N (V). By definition of E
there is x € D such that u = w, and hence 5!(s,) C n;j (sx) € f~Y(x). Thus it
follows from 7' (sy) NU # @ and 5" (sy) NV # @ that f~'(x) N U # @ and
F7N(x) NV # @ whence x € f(U)N f(V),ie., (6)is proved.

Now assume that s, € F and ng(s) = mp(t). If f(s) # f(¢) then there
are disjoint sets U’, V' € 7(X) such that f(s) € U’ and f(¢) € V’. Therefore
U = f~'(U’) and V; = f~1(V’) are disjoint open neighbourhoods in D* of s and
t respectively. It follows from u = 7 (¢t) = 7p(s) that there are sets U, V € t(D¥)
suchthats e U C U, t € V C Viand W = ng(U) = wp(V). There is a finite
B’ C B and a standard open set G in the space D? such thatu € G C W. The set
K = supp(G) C B being finite, there is n € @ such that K C B,. It follows from
(5) that g, (E) is dense in 7, (C’); furthermore, u € wp(F) = wp(C’) which
implies that ng” (u) € wp,(C’) C mp,(E) and therefore 7, (G) Nmwp, (E) # 0. We
have (]Tgn)_l(G) =G song(E)NG # @ and hence ng(E) NW 5# @. This makes
it possible to apply (6) to conclude that f(U) N f(V) # @ which is a contradiction
with f(U)N f(V) C f(U) N f(V) =U' NV’ = @. We finally proved that

(7) forany s,z € F if mp(s) = mp(¢) then f(s) = f(¢).

Thus, for any u € wp(F) there is x € X for which f(n;l(u) N F) = {x}; we
let h(u) = x. Let p = n|F : F — wp(F); it is immediate that # o p = g. The
space F being compact the map p is closed and hence R-quotient (see TFS-153 and
TFS-154) so we can apply Fact 1 of T.268 to conclude that / is continuous. It turns
out that X = h(mwp(F)) is a continuous image of the compact space p(F) with
w(mp(F)) < A sow(X) < A (see Fact 1 of T.489) and Fact 1 is proved.

Returning to our solution observe that under MA+—CH the space D*! is non-
metrizable, pseudoradial and dyadic (see Problem 071); so it suffices to prove that

Fact 2. Under CH every pseudoradial dyadic space is metrizable.

Proof. Assume CH and let f : D — X be a continuous onto map for some infinite
cardinal k and a non-metrizable pseudoradial space X. Since CH holds, the space
D®! is not pseudoradial (see Problem 071); this, together with Problem 064 implies
that
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(8) no closed subspace of X can be continuously mapped onto D“!.

Suppose that U € t*(X) and wy(x, X) > w forany x € U. Take V € 7*(X)
such that V' C U.If x € V and U is a countable -base at the point x in V then
the family {W NV : W € U} is a countable w-base at x in X which contradicts
the choice of U. Therefore wx(x,V) > w for any x € V so we can apply Fact 5
of T.298 to see that some closed subspace of V' maps continuously onto D'; this
contradiction with (8) shows that the set C = {x € X : wy(x, X) < w} is dense
in X and hence we can apply Fact 1 to conclude that X is metrizable obtaining the
final contradiction to finish the proof of Fact 2 and our solution.

U.073. Prove that, for any space X, the space C,(X) is radial if and only if it is
Fréchet—Urysohn.

Solution. It is evident that every Fréchet—Urysohn space is radial; so sufficiency is
clear. To settle necessity assume that C,(X) is radial and fix an w-cover U of the
space X. Consider the set A = { f € C,(X) : f~'(R\{0}) C U for some U € U}.
Observe first that

(1) the set A is dense in Cp,(X).

Indeed, take any function f € C,(X) and O € t(f,Cp(X)). There is a finite
set K C X ande > Osuchthat W = {g € C,(X) : |g(x) — f(x)| < & for any
x € K} C O. Since U is an w-cover of X, thereis U € U such that K C U. It is
easy to construct a function g € C,(X) such that g|K = f|K and g(X\U) C {0}.
It is immediate that g € A N W C A N O which proves that any neighbourhood of
f meets A, ie., f € Aand (1) is proved.

Let p(x) = 1 for all x € X and consider a maximal disjoint family V C t*(A4)
such that p ¢ V forany V € V. It is an easy exercise that B = (JV is dense in
A and hence p € B. Furthermore, V is countable because c¢(4) = ¢(C (X)) = ow.
By radiality of the space C,(X) there is a regular cardinal ¥ and a k-sequence
S ={fy:a <k} C BsuchthatS — p.

If k > w then |S N V| = k for some V € V. However, p ¢ V and hence there is
B < k for which f;, ¢ V forany o > B. Thus SNV C {f, : « < B} and therefore
|S N V] < |B| < k; this contradiction shows that k = w, i.e., we have a sequence
S ={f, :n € o} C A which converges to p. By the choice of A, there is U, € U
such that £,"'(R\{0}) C U, forevery n € .

We have p € A so, for any finite set K C X thereis n € w such that f,(x) > 0
for every x € K. This implies K C f, '(R\{0}) C U, and therefore the family
{U, : n € w} C U is an w-cover of X. We established that every w-cover of X has
a countable w-subcover; so t(Cp, (X)) = w by TFS-148 and TFS-149. Thus C,(X)
is a radial space of countable tightness which shows that we can apply Problem 066
to conclude that C,(X) is Fréchet—-Urysohn.

U.074. An uncountable cardinal k is called w-inaccessible if A < « for any
cardinal A < k. Recall that, if £ is an ordinal then cf(§) = min{|A| : A is a cofinal
subset of £}. Prove that, for an infinite ordinal &, the space C,(§) is pseudoradial
if and only if either cf(§) < w or & is an w-inaccessible regular cardinal (here,
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as usual, & is considered with its interval topology). Observe that w-inaccessible
regular cardinals exist in ZFC and hence there exist spaces X such that Cp(X) is
pseudoradial but not radial.

Solution. If Z is a set then Fin(Z) is the family of all non-empty finite subsets of
Z . We will develop some methods of working with stationary sets in cardinals larger
than w;; however, all proofs and concepts here are analogous to the ones given in
SFFS-064 and SFFS-067. All cardinals and ordinals carry the interval topology of
their natural well ordering. Any ordinal « is identified with the set {8 : § < «}. It
will be always clear from the context what we mean except one situation in dealing
with maps when confusion is possible.

To remedy this, we introduce the following notation: if f : @« — Z is a map and
B < athen f(B) € Z is the respective image of § as an element of & and f[f] =
{f(y) 1y < B} C Z.If o and B are ordinals then [, 8] = {y : @« < y < B} and
(o, B) = {y : « <y < B}; we will also need the intervals (o, 8] = {y 1o <y <
B}and [, B) = {y : @« < y < B}. As usual « is a limit ordinal if there exists no
ordinal 8 such that @ = B + 1; observe that this definition says that @ = 0 is a limit
ordinal.

Given a regular uncountable cardinal « say that C C « is (a) club if C is closed
and unbounded (=cofinal) in k. A set A C « is called stationary if AN C # @ for
any club C. If Z is a space say that a set A C Z is radially closed in Z if, for any
regular cardinal A and A-sequence S = {z, : ¢ < A} C Aif § — zthenz € A.
If £ is an ordinal, call a A-sequence S = {8, : @ < A} C & strictly increasing if
a <o < Aimplies By < Bor.

Fact 1. Given a regular uncountable cardinal « suppose that A < x and C, C k is a
club forany @ < A. Then C = [{C, : @ < A} is also a club.

Proof. The intersection of any number of closed sets is closed; so C is closed in «.
Thus we only have to prove that C is cofinal in k. Observe first that,

(1) for any B < « there exists a strictly increasing A-sequence {iy : ¢ < A} C k
such that 8 < o and pu, € C, forevery o < A.

The proof of (1) can be done by making use of cofinality of each C, by a trivial
transfinite induction; so it can be left to the reader as an exercise. Fix an arbitrary
ordinal y < « and apply (1) to construct inductively a collection {S, : n € w} of
A-sequences with the following properties:

(2) Sy ={ul:a<A}and u, € Cy, foreveryn € w and o < A;
3y <,u8 and ul <ug whenever o < 8 and n € w;
4) ug<ug’foranyn<m<a)anda,,3</\.

In other words, all our A-sequences are strictly increasing and lie in '\ y; besides,
each one has elements larger the all elements of the preceding one. If p, = sup S,
forall n € w and u = sup, ¢, i, then p = lim, o p; since C, is closed, we
have u € C, forevery @ < A,i.e., u € C. Thus, for any y < « thereis u € C with
@ > y. Therefore C is unbounded and Fact 1 is proved.
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Fact 2. Let k be an uncountable regular cardinal. Then

(i) if A C k is stationary then |A| = «;
(i) if A C B C « and A is stationary then B is also stationary;
(iii) if A C « is stationary and C C « is a club then A N C is stationary;
(iv) given a cardinal A < x suppose that A, C « forall @ < A and [ J{4, : ¢ < A}
is stationary. Then A, is stationary for some o < A.

Proof. If |A| < k then, by regularity of «, the set A is not cofinal in « and hence
there is B < « such that « < B for all @ € A. Thus C = «\p is a club with
A N C = @; this contradiction proves (i). The property (ii) is evident; as to (iii), let
A'=ANC.If D Ckisaclubthen C N DisalsoaclubbyFact1so A ND =
AN (C N D) # ¢ and hence A’ is also stationary. Finally, if A = [ J{Ay : ¢ < A}
and every A, is non-stationary then there is a club C, C «k such that AN C, = 0.
Then C = ({Cy : @ < A} is aclub by Fact 1 while A N C = @ which shows that
A is not stationary and proves (iv). Fact 2 is proved.

Fact 3. Suppose that « is a regular uncountable cardinal and A is a stationary subset
of k. Assume that f : A — « and f(¢) < « for any & € A. Then there is f < «
such that the set {& € A : f(«) = B} is stationary.

Proof. 1f the statement of this Fact is false then, for any 8 < « there is a club Cg
such that Cg N f~1(B) = 0. We claim that the set

(5) C ={a<k:aeCCgforany B <o}

is a club. To see that C is closed take any o € «\C; then there is 8 < « such that
o ¢ Cg. Since Cg is closed, there is o’ < o such that § < o’ and (o, ]NCp = @. It
is clear that, for every y € (¢/,a] wehave < y and y ¢ Cg,ie., (@, 0] NC =0
which proves that C is closed in k.

To see that C is cofinal fix any y < « and let B_; = y. By Fact 1 the set
Dy = (N{Cg : B < y} is aclub; so we can pick By € Do with y < Bo. Assume
that m € N and we have club sets Dy, ..., D,—; and ordinals By, ..., B,,—1 with
the following properties:

©6) y<PBo<...<PBpn—1andB; € D; foranyi < m;
(7) Diy1=({Cp:B < pBi}foralli <m—1.

The set D,, = ({Cp : B < Bm—1} is a club by Fact 1; so we can choose
Bm € Dy, such that B, < B,. It is clear that the conditions (6) and (7) are
still satisfied; so our inductive construction can be continued to obtain sequences
{D, :n € w}and {B, : n € w} for which (6) and (7) hold for all m € w. It is
straightforward that 8 = sup,,¢,, B» € C and B > y so C is, indeed, a club.

Finally observe that C N A = @ because, given any « € A, we have § = f(«) <
o and it follows from Cg N f~!(B) = @ thata ¢ Cp and hence @ ¢ C. This shows
that A is not stationary and gives a contradiction which finishes the proof of Fact 3.

Fact 4. For any ordinal § the space £ + 1 is compact and scattered; so C,(§ 4 1) is
a Fréchet—Urysohn space.
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Proof. The space £ + 1 is well ordered and has a largest element; so it is compact
by TFS-306. If @ # A C & + 1 then the point @ = min(A) is isolated in A which
proves that every non-empty A C £ + 1 has an isolated point and hence & + 1 is
scattered. Thus C,(§) is Fréchet—Urysohn by SFFS-134 and Fact 4 is proved.

Fact 5. If & is any ordinal then any closed non-empty F C £ is a retract of &, i.e.,
there exists a continuous map r : § — F such that r(¢) = « forany ¢ € F.

Proof. Let yo = sup(F') (it is possible that yp = & and hence yy ¢ ). If ¢ < & and
a > Yo thenlet r (o) = yo. If @ < y, then the ordinal (@) = min{pf € F : o« < f}
is well defined; thus we have amap r : £ — F and it is evident that r (o) = « for
anya € F.

To see that r is continuous observe first that r|(yy, §) is constant on the open set
(0, &) so r is continuous at every o > ). Note next that r(«) > « for any o < yy.
Given an arbitrary @ < yp let § = r(a). f @« ¢ F then (o, ) N F = @; since
F is closed, there is @’ < « such that (¢/,a] N F = @. The set U = (¢/, ] is a
neighbourhood of & and r(U) = {f} which shows that r is continuous at the point
a. Now, if @ € F then r(a) = «; take any U € (e, §). There is ' < « such that
(¢/,a] C U; givenany 8 € V = (¢/, ] we have o > r(8) > B > o’ which shows
that (V) C V C U, i.e., the neighbourhood V' of the point o witnesses continuity
of r at . We showed that r is continuous at all point of £ so r : § — F is, indeed,
a retraction and hence Fact 5 is proved.

Fact 6. If £ is an ordinal such that cf(§) > w then, for any second countable space
M and a continuous map f : § — M thereisz € M and 5 < £ such that (@) = z
for any o € [, £).

Proof. If A C £ is countable then there is B < & such that A C 8 + 1 and hence
f(A) C f[B + 1]. However, B + 1 is a scattered compact space (see Fact 4); so
f[B + 1] is countable by SFFS-129. Thus f(A) C f[B + 1] is countable for any
countable A C £. Since f[£] is separable, we conclude that | f[£]| < w. It follows
from cf(§) > w that, for some z € M the set K, = f~!(z) is cofinal in £. Suppose
thatt # zand K, = f~'(¢) is also cofinal in .

By an easy induction we can construct sequences {&, : n € w} C K, and
{B,:n €w}C K;suchthatwa, < B, < a,41 foralln € w. Since £ is not w-cofinal,
the ordinal @ = sup,,¢,, ®, = sup, ¢, B belongs to £ and hence to K, N K; because
K, and K, are closed in £&. However, K, N K, = @; this contradiction shows that, for
everyt € R = f[£]\{z} thereisa;, < & suchthat f~'(t) C ;. Recalling once more
that cf(£) > w we conclude that there is 7 < & for which  J{f~'(t) : t € R} C
and therefore f(«) = z for all « > 5 as promised. Fact 6 is proved.

Fact 7. For any space Z we have |C,(Z)| < w(Z)!?).

Proof. Fix a base B of the space Z such that |B| = « = w(Z). Let A = [(Z) and
consider the family A = {B’ C B : |B| < A}. Itis clear that | A| = «* and hence
|A®] = (k*)® = k*® = k*. Choose an enumeration {/, : n € w} of all non-trivial
rational intervals in R. If /' € C,(Z) then U, = f~'(1,) is an F,-subset of Z; so
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1(U,) < A and hence we can choose a family C,(f) C B such that | JC,(f) = U,
and |C,(f)| < A forevery n € w. Letting ¢(f)(n) = C,(f) forall f € C,(Z)
andn € @ we obtainamap ¢ : C,(Z) — A”.

Now, given distinct f, g € C,(Z) thereisn € w and z € Z such that f(z) € I,
and g(z) ¢ I,. There is B € C,(f) such that z € B; since g(B) > g(2) ¢ I,,
we have g(B) ¢ I, and hence C,(g) # C,(f) which implies ¢( ) # ¢(g). Thus
¢ : C,(Z) — A“ is an injection and therefore |C,(Z)| < |A®| = k* so Fact 7 is
proved.

Fact 8. Given an ordinal £ assume that « = c¢f(§) > w and u € &. Then there exists
amap f 1k — [, &) suchthate < B < k implies f(a) < f(B), theset F = f[«]
isclosedin £ and f : k — F is a homeomorphism. In particular, ¥ embeds in [u, £)
as a closed subspace.

Proof. Fix a strictly increasing k-sequence {{4, : & < k} C & such that A is cofinal
in £ and let f(0) = max{u, (o}. Proceeding inductively assume that y < x and we
defined f(x) € [, &) forany o < y in such a way that

(8) the map f : y — £ is continuous;

) o < B < yimplies f(o) < f(B);

(10) f() > g for any successor ordinal o < y.

If y is a successor, i.e., y = y’ + 1 then let f(y) = max{u,, f(y')} + 1. It
is immediate that (9) and (10) still hold for all «, 8 < y. Besides, the point y is
isolatedin y 4+ 1;s0 f : (y + 1) — [u, &) is continuous at the point y and hence f
is continuous on y + 1. Thus the properties (8)—(10) are fulfilled for all o, B < y.

Now, if y is a limit ordinal then let f(y) = sup{f(@) : @ < y}. Since the set
f[y] has cardinality less than k, the ordinal f(y) belongs to &. The property (10)
does not require anything for limit ordinals, so it is still fulfilled for all @ < y; it
is obvious that (9) also holds for all «, 8 < y. As to (8), we only have to check
continuity at the point y; so take any 8 < f(y). Thereis v < y such that f(v) > B;
so it follows from (9) that f((v,y]) C (B, f(y)], i.e., the neighbourhood (v, y]
witnesses continuity of f at the point y.

Therefore our inductive construction can be continued to provide a mapping f :
Kk — [u, &) with the properties (8)—(10) satisfied for all y < «. In particular, f is
continuous; let F = f[«]. It follows from (9) that f is a bijection; the space y + 1
is compact, so f|(y + 1) is a homeomorphism for any y < «. It follows from (10)
that f(k) is cofinal in &. If « € &€\ F then there is y < k such that f(y) > « and
hence f(v) > o forany v > y. Since f[y + 1] is compact, there is f < « such
that (8,a] N f[y 4+ 1] = @; it is immediate that also (8,«] N F = @ and hence F
is closed in £.

Observe that a set H C £ is closed in £ if and only if H N (v + 1) is compact
forany v < £. Given aclosed G C « and v < & there is y < « such that f(y) > v
and hence the set f(G)N(v+1) = f(GN(y+1))N(v+1)is compact because
f:(y+1)— fly+1]isaclosed map. Thus f(G) is a closed subset of £ for any
closed G C k and hence f : k — F is a homeomorphism; so Fact 8 is proved.
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Fact 9. For any ordinal « there exists a unique n(«) € w and a unique limit ordinal
u(a) such that @ = p(o) + n(w).

Proof. Let P = {f € @ + 1 : forsome n € w we have B +n = «}. The set P is
non-empty because 0 € P. Let ;(v) be the minimal element of P; by definition of
M(o) we have @ = p(a) + n(o) for some n(«) € w. The ordinal p(e) is limit for
otherwise u(¢) = f+ 1 and hence B + (n(e) + 1) = a,ie., f € P and B < pu(x)
which is a contradiction. If « = B + n for some limit ordinal § and n € @ we
have § € P and hence (o) < B by the choice of u(x). Now, if () # B then
w(@) < B < u(a) + n(o) which is a contradiction with the fact that 8 is a limit
ordinal. Thus 8 = u(a) and n = n(w); so Fact 9 is proved.

Fact 10. For any space Z, if C,(Z) is Fréchet-Urysohnand Y # @ is an F,-subset
of Z then C,(Y) is also Fréchet—Urysohn.

Proof. We have Y = Unew Y, where Y, C Y,+1 and Y, is closed in Z for every
n € w. Let U, be an open w-cover of Y for every n € w. Given n € w, for any
Ueclytake U e t(Z) withU'NY = U andletU, = {U’' : U € U,}. It is easy
to see that V, = {V U (Z\Y,) : V € U/} is an open w-cover of Z for every n € w.

Since C,(Z) is Fréchet—Urysohn, we can choose, for any n € w, aset W, € V),
in such a way that W = {W, : n € w} converges to Z, i.e., any z € Z belongs to
all except finitely many elements of WV (see TFS-144). By definition of V), there is
Vu € U for which W, = V,, U (Z\Y,). Then U, = V, NY € U, foreveryn € w
and it is straightforward that the sequence {U, : n € w} converges to Y. Applying
TFS-144 again we conclude that C,(Y') is Fréchet-Urysohn and hence Fact 10 is
proved.

Fact 11. Given spaces Y and Z assume that f : Y — Z is a continuous map such
that there is P C Y for which f(P) = Z and f|P : P — Z is a quotient map.
Then f is quotient. In particular, any retraction is a quotient map.

Proof. Consider the function g = f|P;if U C Z and the set f~!(U) is open in
Y then W = f~1(U) N P = g~ !(U) is an open subset of P. The map g being
quotient, U is open in Z and hence f is also quotient. Finally, if Z is a space,
F C Zandr : Z — F is a retraction then the map r|F : F — F is quotient
(even a homeomorphism); so r is quotient by what we established above. Fact 11 is
proved.

Returning to our solution let us prove first that C,(«) is pseudoradial for any
regular w-inaccessible cardinal k. Let u(o) = 0 for any o < «; given d € R and
a <kletC(a,d) ={f € Cp(x): f(B) =d forany B > a}. If K € Fin(k) and
e>0let[K,e] ={f € Cplk): f(K) C(—¢,¢)}.

Take a radially closed set A C C,(x); we must prove that A4 is closed in C,(k),
ie., f € Aimplies f € A. By homogeneity of C, (k) it suffices to show that u € A
implies u € A; so assume that u € A.

Claim. For any finite F C « and ¢ > O there is a function f = fr. € A and
n = nre < k such that | f(«)| < e forevery ¢ € F and f € C(n,d) for some
d =dr. €[-¢¢].
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Proof of the Claim. It follows from w® > w; that x > w;; denote by L the set
{a <k :cf(a) = w}.

Given a club C C «k we can choose, by an evident transfinite induction, a strictly
increasing w;-sequence {{ty : ¢ < w1} C C. Since k = cf(k) > w, the ordinal
W = sup{ity : @ < w1} belongs to k and hence to C because C is closed in k. Thus
n € C N L which proves that L is a stationary subset of «.

It is easy to see that the set B’ = {f € Cp(k) : | f(«)| < e forany o € F} is
closedin Cp(k),s0 B = B’ N A is radially closed; since B’ is a neighbourhood of u,
we still have u € B. Foreacha € L thereis f, € Asuchthatd, = f,(a) € (—¢, €).
By Fact 6 there exists 1, < « such that f,,(8) = d, for any B € [y, «]. Letting
¢(a) = n, for all @ € L we obtain a function ¢ : L — « such that p(«) < « for
any o € L. By Fact 3 there is acofinal S C L and n = nr, < k suchthat n, = n
for any o € S. We also have |R| = 2 < « which shows that there is d € (—¢, €)
such that d, = d for k-many @ € S.

Furthermore, |C,(n + 1)| < |n|® < « (see Fact 7) which proves that there is
S'"cSandg e Cp(n+1)suchthat [S'| =k, dy =d =dp.and fo|(n+1) =g
foralla € S’. Let fr.(x) = g() forany o < nand fr.(x) = d forall @ > 1.

Choose by an evident transfinite induction a set {8, : @ < k} C S’ such that
o < o < k implies B, < B . Letting go = fp, for all @ < k we obtain a
k-sequence S = {gy : o« < k} C A.Itid clear that g4|(n + 1) = g forall @ < k.
Besides, the set {8, : @ < «} is cofinal in k; so for any v € «\(n + 1) there is
y < k such that 8, > v for any & > y. This implies g,(v) = d forall « > y; so
we proved that

(11) forany v < k thereis y < « for which g, (v) = fr(v) foralla > y,

which shows that the k-sequence S converges to fr. whence fr. € A and our
Claim is proved.

Let e, = 27" for any n € w; for arbitrary n € w and F € Fin(k) choose a
function gr, = fre, € A and an ordinal ur, = nr, < k whose existence is
granted by the Claim.

Let vy = w; proceeding inductively assume that m € » and we have ordinals
Vo < ... <V, <k such that,

(12) forevery i < m, we have g, < v;4+ forany F € Fin(v;) and n € w.

The set M = {up, : F € Fin(v,) and n € w} has cardinality < «; so there is
Vm+1 < k such that @ < v,,4+; for all @ € M. Itis clear that (12) still holds for the
ordinals {v; : i < m 4+ 1}; so our inductive construction can be continued giving
us a strictly increasing sequence {v; : i € @} C k such that (12) holds for every
m € w. It is immediate that for the ordinal v = sup; ¢, v; we have

(13) pwpn <vforany F € Fin(v) andn € w.

Consider the set T = {gr,, : F € Fin(v) and n € w} C A. By definition of v,
forany h € T we have h € C(v,d) for some d € R, i.e., the function 4 is constant
on [v, k). Now, take any finite K C « and ¢ > 0. Making K larger if necessary
we can consider that F = K N (n 4+ 1) # 0. Take n € w for which ¢, < ¢; then
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g = grn € T and g(@) € [gy, 4] C (—¢,¢) for all @ € F. By definition of g we
have g € C(v,d) where d € [g,,&,] C (—¢,¢) and hence g(«) € (—¢,¢) for all
o € K. The family £ = {[K,¢] : K € Fin(k), ¢ > 0} is a base at u in C,(x); since
ONT #@forany O € &, we have u eT.

The space C, (v + 1) is Fréchet-Urysohn by Fact 4; so there is a sequence £ =
{h, : n € w} C T such that h,|(n + 1) converges to u|(n + 1). In particular,
hy(n) — 0; since h, (o) = h,(n) for any « > n we have h, (o) — 0 for any o > 1.
Therefore i, (o) — 0 for any @ < x which shows that 4, — u and hence u € A.
We finally proved that

(14) the space C, (k) is pseudoradial for any w-inaccessible regular cardinal «.
Let us show next that

(15) for any uncountable regular cardinal « the space C, (k +«) is not pseudoradial;
here « + « is the ordinal addition.

Forany « € (0,«) letn = n(c) (see Fact 9) and define a function f, € C,(k+«)
as follows: f,(B) = O forany B € [0,0] U [¢ + 1,k + «]; if B € (o, k] then
Jo(B) = 27" and fo(B) = 1forall B € (k + o,k + k). Let us show that the set
A ={f, :a < k}isradially closed.

Assume, towards a contradiction, that A is a regular cardinal and we are given
a A-sequence S = {hy : @ < A} C Asuchthat S — f € Cp(k + k)\A. We
have hy = fy@ forany @ < A.If h € A and h, = h for A-many «’s then
S — h € A; this contradiction shows that, passing to an appropriate subsequence
of S if necessary, we can assume, without loss of generality, that the enumeration
of S is faithful and ¢ < &’ < A implies y (&) < y(a').

Consider first the case when A < «; then i = sup{y(«) : « < A} < k. Therefore
he(k + 1) = 1foralle < A and hence f(k + ) = 1. However, for any g € [1, n)
there is &’ < A such that y(a) > B for any « > «’ and hence we have the equality
ho(k + B) = fy@(x + B) = 0 which shows that f(k + B) = 0. It turns out that
f+p+1)=0forany 8 < u while f(k + ) = 1, i.e., f is not continuous at
the point k + p which is a contradiction.

The case of A < k being settled, assume that A = «. Since ¥ > w, we can choose
a k-subsequence S’ of our k-sequence S again to assure that, for some n € ®
we have n(y(«)) = n whenever h, € S’ (see Fact 9); so we can assume that
n(y(«x)) = n for any @ < k. But then, for any ¢ < k we have ho(f) = r = 27"
for any § € (y(a),«] and hence h, (k) = r whence f(x) = r. Besides, for any
B < k there is v < k such that y(«) > B for all @ > v and therefore #,(8) = 0
for all § > v. This implies f(8) = O for all < « and hence f[«x] = {0} while
f(k) =r #0,1ie., f isdiscontinuous at the point x. This contradiction concludes
our proof that A is radially closed.

Finally, observe that the function u which is identically zero on « + « is in the
closure of A (this is an easy exercise which we leave to the reader). Thus u € A\ A
and hence A is a radially closed non-closed subset of C,(k + «) which shows that
C,(k + k) is not pseudoradial and completes the proof of (15).
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Our next step is to establish that

(16) if k > w is a regular not w-inaccessible cardinal then C,(x) is not
pseudoradial.

Fix an infinite cardinal v < « such that v® > k. Observe first that,
(17) if F eFin(v+ D and Ir ={f € Cp(v+ 1) : f|F = 0} then |[r| = v*.

Indeed, /r C C,(v + 1) and hence |Ir| < |C,(v + 1)| < v® (see Fact 7).
Furthermore C,(v + 1) is homeomorphic to Ir x R¥ (see Fact 1 of S.494) which
implies that |Cp, (v + 1)| = max{|/F|, ¢} = |IF| because, obviously, |/r| > c.

Now observe that the family {[0, @] : @ < v} consists of distinct clopen subsets
of v 4 1 and has cardinality v; taking the respective characteristic functions we can
see that |C,(v + 1,D)| > v. Thus

v < |(Cp(v + 1,D))?| = |Cp(v + 1,D?)| < |Cp(v + 1),

ie., |Cp(v + 1)| = |Ir| = v as promised; so we proved (17).

Choose an enumeration {F, : v < o < k} of the family Fin(v + 1) such that
o : Fy = F}| =k forany F € Fin(v + 1). Applying (17) and a trivial transfinite
induction construct a family {f, : v < o < k} C C,(v + 1) such that f, # fgif
a # Band f, € If, forany «a € (v, k).

For any o € (v, k) define a function g, € C,(«) as follows: g,|(v + 1) = fu;
if v < B < «then g4(B) = 0 and go(B) = 1 for any B € (o, k). We claim that
the set A = {g, : v < o < k} is radially closed. Indeed, assume that A is a regular
cardinal such that some A-sequence S = {hy, : ¢ < A} converges to a function
f € Cp(k)\A. We have hy = gy« for every a < A. It is impossible that, for some
h € A wehave h, = h for A-many «’s for otherwise S — h € A. Therefore we can
substitute S by a relevant subsequence of S to guarantee that « < &’ < A implies
y(@) < y(@).

If A = « then it follows from convergence of S that " = {hy|(v + 1) : @ < K}
also converges to & = f|(v + 1). Since nw(v + 1) = nw(C,(v + 1)) = v, we
have ¥ (h, Cp(v + 1)) < v. Take a family U C ©(C,(v + 1)) with U = {h}.
For any U € U there is ay < k such that h,|(v + 1) € U for all @ > ay. Since
k > v is a regular cardinal, there is 8 < « such that oy < B for all U € U and
hence hy|(v + 1) € U = {h}, ie., hy|(v + 1) = h forall @« > B which is a
contradiction with the fact that o« # o implies y(«) # y(«’) and hence

hol(v +1) = fy(a) # fy(a’) = he'|(v +1).

Thus it is impossible that A = «.

Now, if A < « then u = sup{y(«) : @ < v} < k and hence A, () = 1 for all
a < A; this implies f(u) = 1. If B < u then there is op < A such that y(«) > B
for all @ > «g and therefore h,(B) = 0 for all B > «p. Thus f(B) = O for any
B € (v, ) which shows that f is discontinuous at the point . This contradiction
proves that the case A < « is also impossible and hence A is radially closed.
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Finally, let u(e) = O for all @ < k. If F is a finite subset of x then consider
the set F/ = F N (v + 1); making F larger if necessary, we can consider that
F’ # §. Since there are k-many «’s for which F, = F’, there is « € (v, k) such
that F’ = F, and F\F’' C «. An immediate consequence is that g,|F = u| F; the
finite set F C k was chosen arbitrarily so # € A\ A and hence A is a radially closed
non-closed subset of C,(«x) which proves that C, (k) is not pseudoradial, i.e., (16)
is settled.

Now take an arbitrary ordinal &. If £ is a successor then the space C,(£) is
Fréchet-Urysohn by Fact 4; so from now on we consider that £ is a limit ordinal. If
cf(§) = wthené = J{(5& + 1) : n € w} where §, < & for every n € w. Since
every &, + 1 is compact, the set £ is an F-subset of £ 4+ 1. Since C,(§ + 1) is
Fréchet—Urysohn by Fact 4, the space C,(§) is also Fréchet—Urysohn by Fact 10.

The case of w-cofinal ordinals being settled, assume that k = cf(§) > w. If
& = k then § is a regular cardinal; so the space C,(§) is pseudoradial if and only
if £ is w-inaccessible by (14) and (16). Now, if k < & then we can apply Fact 8 to
embed « in [k + 1, £) as a closed subspace F; it is immediate that k U F is a closed
subspace of & which is homeomorphic to ¥ + k. By Fact 5 there is a retraction
r : & — (k U F); so there is quotient map of £ onto ¥ + « (see Fact 11). Therefore
C,(k +«) embeds in C, (&) as a closed subspace (see TFS-163). Since C,,(x +«) is
not pseudoradial by (15), the space C,(£) is not pseudoradial either by Problem 064.
This settles all possible cases for £.

Finally observe that ¢ is a regular w-inaccessible cardinal; so if X = ¢ then
X is a countably compact space such that C,(X) is pseudoradial by (14). To see
that C,(X) is not radial note that otherwise it is Fréchet-Urysohn by Problem 073;
this implies 7(C,(X)) = w whence X is Lindel6f and hence compact. However, ¢
does not have a largest element; so it is not compact by TFS-306. Thus we obtained
a contradiction which shows that C,(X) is a pseudoradial non-radial space, i.e., our
solution is complete.

U.075. Let X be a compact space. Prove that, if C,(X) is pseudoradial then it is
Fréchet—Urysohn (and hence X is scattered).

Solution. Let us show first that C,(I) is not pseudoradial. It was proved in
Problem 062 that C,(I) is not embeddable in a sequential space and, in particular,
C,(I) is not sequential. Thus we can find a sequentially closed non-closed A C
C,(D), ie., for any sequence S = {f, : n € w} C Aif § - f € C,(I) then
f € A. We claim that A is also radially closed, i.e., for any regular cardinal « and a
k-sequence S = {fy :a <k} CAif S — f € Cp(I) then f € A.

This is, of course, clear for w-sequences; so assume towards a contradiction that
k > o and some k-sequence S = {f, : @ < k} C A converges to some [ €
C,(M\A. We have ¥ (C,(I)) < nw(Cp(I)) = w; so there is a countable family
U C t(C,(I)) such that U = {f}. Forevery U € U there is ay < « such that
fo € U forall @ > ay. Since « is an uncountable regular cardinal, there is < k
such that oy < f for all U € U. As a consequence, fg € U forany U € U,
i.e., fg = f which contradicts f ¢ A. Therefore A is a radially closed non-closed
subset of C,(I) which proves that C,(I) is not pseudoradial.
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Finally, assume that X is a compact space such that C,(X) is pseudoradial. If X
is not scattered then there exists a continuous onto map ¢ : X — I (see SFFS-133).
The dual map ¢* embeds C,(I) in C,(X) as a closed subspace (see TFS-163) and
hence C,(I) has to be pseudoradial by Problem 064. This contradiction shows that
X is scattered and hence C,(X) is Fréchet—Urysohn by SFFS-134.

U.076. Let X be any space such that C,(X, D) x 0 is not Lindeldf. Prove that the
space C,(X,D*) is not Lindelof.

Solution. Assume, towards a contradiction, that C,(X,ID”) is Lindelof. We have
Cp,(X,D”) =~ (Cp(X,D))”; so Cp(X,D) embeds in C,(X,D”) as a closed
subspace. If C,, (X, D) is countably compact then, being Lindel6f, it is compact; so
C,(X,D) is compact as well. But then C,(X,D) x »® is Lindelof being a perfect
preimage of the Lindeldf space w® (see Fact 5 of S.271). This contradiction proves
that C,(X, D) is not countably compact and hence we can choose a countably
infinite closed discrete D C C,(X,D”). Then D® =~ w® is homeomorphic
to a closed subspace of the space (C,(X,D?”))” ~ C,(X,D”). Consequently,
w® x C,(X,D) is homeomorphic to a closed subspace of

C,(X.D") x Cp(X.D) = (Cp(X.D))” x C,(X.D) ~ (C,(X.D))* ~ Cp(X,D*)

and therefore w® x C,(X,D) is Lindelof which is again a contradiction. Thus
C,(X,D®) is not Lindeldf.

U.077. Suppose that X is a compact space such that a countable set M C X is
open and dense in X. Assume also that the set of isolated points of Y = X\M is
uncountable and dense in Y . Prove that ext(C,(X,D) x 0*) > w.

Solution. Given a space Z denote by C(Z) the family of all clopen subsets of
Z. The expression Z T T is an abbreviation of the phrase “the space Z can be
embedded in the space T as a closed subspace”.

Fact 1. If K is an infinite compact space then |C(K)| < w(K). In particular, for
any metrizable compact K the family of all clopen subsets of K is countable.

Proof. Let B be a base of K such that |[B| = k = w(K). If i/ is the family of all
finite unions of elements of B then || = k. Given any W € C(K) thereis B C B
such that W = | JB’; since W is compact, there is a finite 8”7 C B’ such that
W = |JB” and hence W € U. We showed that every W € C(K) belongs to I/ and
hence |C(K)| < |U| = k. Fact 1 is proved.

Fact 2. Given spaces Z, T and a continuous map f : Z — T, forany B C T, the
set G(f.B) ={(z, f()) :z€ f~Y(B)} C Z x Bisclosedin Z x B.

Proof. The graph G(f) = {(z, f(2)) : z € Z} of the function f isclosedin Z x T
(see Fact 4 of S.390) and G(f) N (Z x B) = G(f, B); so G(f, B) is closed in
Z x B and Fact 2 is proved.
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Returning to our solution denote by I the set of isolated points of ¥ and let
F = Y\I.Foreverya € I thereis U € t(a, X) such that U N'Y = {a}; take
V € t(a, X) for which V c U. Since the set U is countable and compact, it is zero-
dimensional; so there is a clopen subset O, of the space U such thata € O, C V.
The set O, is open in U so it must be open in V' and hence in X; besides, O, is
compact being closed in U. As a consequence, we proved that

(1) foreverya € I thereis O, € C(X) suchthat O, N Y = {a}.

If f, = xo, is the characteristic function of the set O, for every a € I then
the set D = {f, : a € I} is discrete and all of its accumulation points belong to
theset P = {f € C,(X,D) : f(¥Y) = {0}}. Indeed, all accumulation points of
D belong to C,(X, D) because DccC »(X,D); if g is an accumulation point of D
then, forany a € I if g(a) # Othentheset U = {f € C,(X) : f(a) # O} is an
open neighbourhood of g with U N D C { f,} while every neighbourhood of g must
contain infinitely many elements of D. This contradiction shows that g(a) = 0 for
all a € I and hence g(Y) = {0} because / isdensein Y.

Since the set P is closed in C,,(X), we proved that 0 = P U D is a closed subset
of C,(X) and all points of D are isolated in Q. Since M is countable, the set Y is
Gs in X and hence x(Y, X) = w (see TFS-327). Choosing a countable decreasing
outer base of Y in X and passing to the complements of its elements we obtain a
sequence {K, : n € w} of compact subsets of M such that K, C K, for any
n € w and, for any compact K C M thereis n € o for which K C K,,. Every K, is
metrizable; so C(K,) is countable by Fact 1. Observe that every f € P is uniquely
determined by the clopen compact set K, = f~!(1) C M; there is n €  such
that Ky C K, and hence Ky € C(K},). It turns out that f — K is an injection of
P in the countable family | J, ¢, C(K}) which shows that P is countable.

Let 7 : Q — DM be the restriction map. Since M is dense in X, the map m
is injective. Letting B = DY\ (P) and noting that D = 7~ !(B) we can apply
Fact 2 to conclude that the set D’ = {(h,n(h)) : h € D} C Q x B is a closed
subspace of Q x B. Since the projection of Q x B onto Q maps D’ bijectively and
continuously onto D, the set D’ is discrete.

We proved that D T Q x B. Since 7 (P) is countable, B is a Gs-subspace of
DM; let B = (,e, On Where O, € ©(DM) for every n € w. It is evident that
D® C w® and hence DM T ®. The space DM being compact, metrizable and
zero-dimensional, every O, is an F,-subset of D™ ; so we can apply Fact 5 of S$.390
to see that 0, T DM x w C w® x w C w® foreachn € w.

Consequently, B C [], e, On T (@?)® =~ @® (see Fact 7 of S.271); since Q is
a closed subset of C,(X,D), wehave D E O x B E Q x w” CE Cp(X,D) x 0®
whence ext(C,(X,D) x 0*) > |D| > w, so our solution is complete.

U.078. Suppose that X is a compact space such that a countable set M C X is
open and dense in X. Assume also that the set 1 of isolated points of Y = X\M
is uncountable and dense in Y ; let F = Y \I. Prove that, under MA+—CH, any
uncountable subset of the set E = {f € C,(X,D) : f(F) = {0}} contains an
uncountable set D which is closed and discrete in C,(X, D).
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Solution. If Z is a space then C(Z) is the family of all clopen subsets of Z.

Fact 1. Given a space Z and f, g € C,(Z,D) define a function h = f * g € D?
as follows: for any z € Z let h(z) = 1if f(z) # g(z) and let h(z) = O whenever

f(z) = g(z). Then

(i) fxgeCy(Z,D)forany f,g € C,(Z,D);
(ii) ifg € Cp,(Z, D) and s, : Cp(Z,D) — C,(Z,D) is defined by 5,(f) = f *¢q
forany f € C,(Z,D), then s, is a homeomorphism.

Proof. Theset O = (f~'(0) N g~1(1)) U (f~(1) N g~'(0)) is, evidently, clopen
in Z; since f = g is precisely the characteristic function of O, we have f *x g €
C,(Z,D),1i.e., (i) is proved.

As to (ii), to see that s, is a continuous map observe that s, (f) = f+g—2- f-q
for any f € C,(Z,D); so continuity of s, follows from TFS-115 and TFS-116.
Another easy observation is that the map s, is inverse to itself, i.e., 5,(s,(f)) = f
forany f € C,(Z,D); so s, is a homeomorphism and Fact 1 is proved.

Returning to our solution let S(f) = f~'(1) N [ forany f € C,(X,D) and
take an arbitrary uncountable set P C E;if f € P and S(f) is infinite then, by
compactness of Y, there is a point z € S(f) N F and therefore f(z) = 1 which
contradicts f|F = 0. Thus S(f) is finite for any f € P. Apply the A-lemma
(SFFS-038) to find an uncountable set P; C P for which there exists a finite A C 1
such that S(f) N S(g) = A for any distinct f, g € P;.

Since M is countable, the set Y is Gs in X and hence y(Y,X) = w (see
TFS-327). Choosing a countable decreasing outer base of ¥ in X and taking the
complements of its elements we obtain a sequence {K,, : n € w} of compact subsets
of M such that K,, C K, 4+ for any n € w and, for any compact K C M there is
n € w for which K C K,,. Every K,, is metrizable; so C(K,,) is countable by Fact 1
of U077.Let E' = {f € C,(X,D) : f(Y) = {0}}; for any f € E’ the set
Ky = f7(1) is compact, clopen and contained in M. There is n € w such that
Ky C K, and hence Ky € C(K,). Since f is uniquely determined by the set K /, it
turns out that f — K ¢ is an injection of E’ into the countable family |, ¢, C(K,)
which shows that E’ is countable; thus P, = P\ E’ is uncountable.

Fix any ¢ € P, and consider the set Q = {f *q : f € P,}. Itis clear that
Q C Eand S(f)N S(g) = @ for any distinct f, g € Q. We have Q = s5,(P>) (see
Fact 1); since s, is a homeomorphism of C,(X, D) onto itself, it suffices to show
that O has an uncountable subset which is closed and discrete in C,, (X, D).

Now, take an accumulation point g of the set Q. If a € I and g(a) # O then the
set W ={f € C,(X,D) : f(a) = 1} is an open neighbourhood of g in C,(X, D)
and W N Q has at most one element because {S(f) : f € Q} is disjoint and hence
f(a) = 1 for at most one function f € Q. Since every neighbourhood of g must
contain infinitely many elements of Q, we obtained a contradiction which shows
that g(a) = 0 for any a € [ and hence g(Y) = {0} because [ is dense in Y. Thus
gEeE.

An accumulation point g of the set Q was chosen arbitrarily so we proved that
all accumulation points of Q belong to E’. Since E’ is closed in C,(X,D), the

new
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set H = Q U E’ is also closed in C,(X, D) while all points of Q are isolated
in H.Letw : Cp(X,D) — DM be the restriction map. Then 7 is continuous and
injective because M is dense in X. Therefore p = n|H : H - G = p(H) is a
condensation. The space G is second countable and B = p(Q) is an uncountable
subset of G. Applying MA+—CH we can find a disjoint family 7 = {F, : @ < w;}
of closed subsets of G such that F, N B is uncountable for any & < w; (see Fact 1
of T.063).

The set p(E’) is countable; so it is impossible that every element of the disjoint
uncountable family F intersect p(E’). Take @ < w; for which F, N p(E’) = @.
Then F, = F, N B C B is uncountable and closed in G. Therefore D' = p~'(F,)
is uncountable and closed in H. Since D’ C Q and Q is discrete, the set D’ is
closed and discrete in H; the set H is closed in C,(X,D); so D’ is closed and
discrete in C,(X, D) as well. Consequently, D = s,(D’) is an uncountable subset
of P which is closed and discrete in C,(X, D); so our solution is complete.

U.079. Let X be a compact space of weight w; in which we have a countable dense
set L and a nowhere dense closed non-empty set F. Assuming MA+—CH prove that
there exists M C L such that M\M = F and all points of M are isolated in the
space M U F.

Solution. Since F is nowhere dense in X, the set Ly = L\ F is still dense in the
space X. Now, y(X) < w(X) = w; < c; so, for any point x € F, we have x € Lo
and y(x,{x} U Lo) < x(X) < c. Thus we can apply SFFS-054 to see that there is
a sequence Sy C Lo that converges to x.

Observe also that y(F,X) = v (F,X) < w(X) = w; < ¢ (see TFS-327);
so we can find an outer base U of the set F in the space X such that || < «c.
Since d(F) < w(F) < w(X) < w, there exists P C F for which P = F and
|P| =w;.Let A={Sy:x € P}and B={(X\U)N Ly :U €U}. This gives us
families .4 and B on the countable set Ly (which we can identify with @) such that
|A| < ¢, |B] < cand A\ |J B is infinite for any 4 € A and finite B’ C B. Indeed,
BN F = @forany B € B, so the complement of |_J B’ is a neighbourhood of F;
since A is a sequence which converges to a point of F, the set A N (| J B’) is finite
and hence A\ | J B’ is infinite.

An immediate consequence of SFFS-051 is that there is a set M C L such that
M N A is infinite for any A € Aand M N B is finite forany B € B.If x € P then
A, € Aand hence M N A, is infinite which implies x € M. As a consequence,
F=PcCMandhence F C M\M.

Now take an arbitrary accumulation point x of the set M ; if x € X\ F' then there
isaset U € U such that x ¢ U. Then W = X\U is a neighbourhood of the point
x forwhich WNM C K =M N ({(X\U)N Ly) while the set K is finite because
B = (X\U) N Ly € B. Since every neighbourhood of x must contain infinitely
many points of M, we obtained a contradiction which shows that M\M = F. We
also proved that no point of M is an accumulation point of M ; so all points of M
are isolated in the space M U F.
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U.080. Prove that, under MA+—CH, if X is a compact space such that C,(X) is
normal, then X is Fréchet—Urysohn, w-monolithic and has a dense set of points of
countable character.

Solution. If Z is a set and A C Z then the characteristic function y 4 of the set A
in Z is defined by y4(z) = 1 if z € A and y4(z) = 0 otherwise.

Fact 1. If K is a compact w-monolithic space of countable tightness then K is
Fréchet—Urysohn and has a dense set of points of countable character. This is true
in ZFC, i.e., no additional axioms are needed for the proof of this Fact.

Proof. If A C K and x € A then w(A4) = nw(A) = w because K is w-monolithic
(see Fact 4 of S.307). In particular, {x} U A is second countable and hence
metrizable. Thus there is a sequence {a, : n € w} C A which converges to x.
This proves that K is a Fréchet—Urysohn space.

Observe that a point x € K is of countable character in K if and only if {x}
is a Gg-subset of K (see TFS-327); so we will call such x a Gs-point of K. Thus
E ={x € K : x(x,K) < w} coincides with the set of all Gs-points of K. To
see that £ is dense in K, take any U € 7*(K) and apply Fact 2 of S.328 to find a
non-empty closed Gs-set F C U.

Next, apply Fact 4 of T.041 to the compact space F' to find a countable set A C F
such that there is a non-empty Gs-set H in the space F such that H C clg(A); pick
any x € H. It follows from Fact 2 of S.358 that H is also a Gs-subset of K;
besides, cl(A) = A because F is closed in K. By w-monolithity of K the set A
is second countable and hence so is H; thus x is a Gg-point of H and hence it is
also a Gs-point of K (here we used Fact 2 of S.358 again). As a result, we found a
Gs-point x € U, ie., ENU # @ forany U € t*(K). Thus E is dense in K and
Fact 1 is proved.

Fact 2. Under MA+—CH, if K is a separable compact space of weight < w; such
that C,,(K) is Lindel6f then K is perfectly normal.

Proof. If K is not perfectly normal then s(K) > w by SFFS-061; so take a discrete
D’ C K with |D’| = wy. Let L be a countable dense subset of K. The set I of all
isolated points of K is contained in L; so the set D = D’\ L has cardinality w; and
no point of D is isolated in K.

As a consequence, Y = D is a nowhere dense closed non-empty subset of K; so
we can apply Problem 079 to find a set M C L such that M\ M = Y and all points
of M are isolatedin M U Y. The set M UY is compact; so C,(M UY) is Lindel6f
being a continuous image of C,(K). Furthermore, the space Y’ = M U Y satisfies
all assumptions of Problem 078; thus, for the set F = D\ D and any uncountable
ACP ={feCyY' D): f(F) = {0}} we have an uncountable B C A which
is closed and discrete in Cp(Y’, D).

For every point d € D thereis aset Uy € t(d,Y')suchthat Uy NY = {d};
an immediate consequence is that U, is clopen in the space Y, so the characteristic
function f; of the set U, belongs to P. It is evident that d # d’ implies f; # fu;
so A = {fs : d € D} is an uncountable subset of P. Therefore we can apply
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Problem 078 to find an uncountable set B C A which is closed and discrete in the
space C,(Y’, D). As a consequence, ext(C,(Y’)) > ext(C,(Y',D)) > |B| > w,
while C,(Y’) is Lindelof being a continuous image of C,(K). This contradiction
shows that Fact 2 is proved.

Fact 3. Under MA+4—CH, if K is a separable compact space such that C,(K) is
Lindelof then K is metrizable.

Proof. If K is not metrizable then it can be mapped continuously onto a compact
space K’ of weight w; (see SFFS-094). It is immediate that C,(K’) is also Lindelof;
besides, K’ is separable so, to obtain a contradiction, we can assume that K = K’,
i.e., K is a separable compact space of weight w; such that C,(K) is Lindelof.

If K x K is perfectly normal then the diagonal A = {(z,z7) :z€ K} C K x K
of the space K is a Gs-subset of K x K; so K is metrizable by SFFS-091. This
contradiction shows that K x K is not perfectly normal and hence we can apply
SFFS-061 to find a discrete D’ C K x K with |D’| = w;. The space K is
perfectly normal by Fact 2; so D’ N A is countable because A ~ K. It follows
from separability of K that the set / of isolated points of K x K is countable; so the
set D = D’\(A U I) is uncountable.

Fix a countable dense set L in the space K x K; since ¥ = D is nowhere dense,
we can apply Problem 079 again to obtain a set M C L such that Y = M\M and
all points of M are isolatedin Z = M UY;let F = 5\D.

Denote by u the function which is equal to zero at all points of K and let
o+ (f) = max(f,u), ¢o_(f) = max(— f,u) for every f € C,(K). The mappings
¢, 90— 1 Cp(K) — C,(K) are continuous by TFS-082. Let ¢, : K x K — K
be the natural projection of K x K onto its i-th factor for i = 1,2. The dual
maps ¢ : Cp(K) - C,(K x K) are embeddings by TFS-163. Furthermore, the
multiplication map m : C,(K x K) x C,(K x K) — C,(K x K) is continuous
by TFS-116. Now define ¢(f) = m(q](¢+(f)),q5(p-(f))) for any function
f € C,(K); then the map ¢ : Cp,(K) — C,(K x K) is continuous being a
composition of continuous maps. Note that, given a point (x, y) € K x K we have
e(f)x,y) =@ (x)-@o_(y) forany f € C,(K).If 7 : C,(K x K) = C,(Z) is
the restriction map then the map £ = w o ¢ : C,(K) — C,(Z) is also continuous.

The set D is discrete; so for every d = (x,y) € D thereis W; € 7(d, K x K)
such that W, N'Y = {d}. Therefore W, N Z is a compact space with the unique
non-isolated point d. An immediate consequence is that

(1) it W, W" € t(d, W) then (W' N Z)\(W" N Z) is finite.

Since D N A = @, we can take disjoint sets U; € t(x, K) and V; € 7(y, K)
such that Uy x V; C W.Thereexist G € t(x, K), H € t(y, K) forwhich G C U,
and H C V;. By (1), theset T = (U; x V3) N Z)\((G x H) N Z) is finite; so
q1(T) C Uy is also finite as well as ¢>(T) C V. Itis easy to find G', H' € 7(K)
such that ¢;(T) C G’ € G' C Uy and ¢o(T) C H' € H’ C V. It is immediate
that for the sets G; = G U G’ and H; = H U H' we have

(2) Gg C Uy, Hy C Vg while (Ug x Vg) NY = {d} and
UgxVa)NZ =(GygxHy)NZ.
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The space K is compact and hence normal; so there are fy, gs € C,(K) such
that f;|Gq = 1, fa|(K\Uyz) = O and g;|Hys = 1, gq|(K\Vy) = 0. Let hy =
Ja — gaq forevery d € D and consider the set Q = {hy : d € D} C C,(K).

Foranyd € Handz = (x,y) € G4 x Hq we have f;(x) = 1 and g4(y) =
1 which implies hy(x) = 1 and hy(y) = —1; 50 p+(x) = 1 and p_(y) = 1
which shows that §(h4)(z) = ¢@(hg)(z) = 1. If, on the other hand, z = (x,y) €
Z\(U; x V) then either x ¢ Uy and hence ¢4 (hg)(x) = 0 or y ¢ V; which
implies ¢—(hy)(y) = 0. In both cases we have £ (h4)(z) = ¢(hg)(z) = @+ (hg)(x)-
¢—(hg)(y) = 0. Thus it follows from (2) that & (k) is the characteristic function
of the set B; = (Uy; x Vz) N Z which is clopen in Z. Besides, for the function
na = &(hg), we have n;l(l)ﬂY = {d} which proves that d # d’ implies ny # 1y’
andng € Ir ={f € C,(Z,D) : f(F)={0}} foreveryd € D.

Consequently, £ = {n;s : d € D} C £(Q) C &§(C,(K)); since E is an
uncountable subset of Iy we can apply Problem 078 to conclude that there is an
uncountable £/ C E which is closed and discrete in C,,(Z, D) and hence in C,(Z).
Thus E’ is an uncountable closed and discrete subset of a Lindeldf space £ (C, (K)).
This contradiction shows that K is metrizable; so Fact 3 is proved.

Returning to our solution observe that C,(X) is actually Lindelof (see TFS-295
and SFFS-269) and therefore 1 (X) = w (see TFS-189). Given a countable A C X
the compact space A is separable and C » (A) is Lindelsf being a continuous image
of C,(X). Thus Fact 3 is applicable to conclude that A is metrizable, ie., X is
w-monolithic. We proved that X is a compact w-monolithic space of countable
tightness; so X is Fréchet-Urysohn and has a dense set of points of countable
character (see Fact 1), which means that our solution is complete.

U.081. Assume MA+—CH. Show that, if a compact space X has the Souslin
property and C,(X) is normal then X is metrizable.

Solution. Observe first that C,(X) is Lindelof (see TFS-295 and SFFS-269) and
therefore 1(X) = o (see TFS-189). Now apply SFFS-288 to see that w; is a
precaliber of X and hence w; is a caliber of X by SFFS-279. It follows from TFS-
332 that the space X has a point-countable w-base B. Since w; is a caliber of X, any
point-countable family of non-empty open subsets of X is countable; so |B] < w
and hence d(X) < nw(X) < w. The space X is w-monolithic by Problem 080; so
w(X) = nw(X) = w (see Fact 4 of S.307) and hence X is metrizable.

U.082. Prove that w(X) = [(C,(X)) for any linearly orderable compact space X.
In particular, if C,(X) is Lindelof then X is metrizable.

Solution. If Z is a set and A C exp Z then ord(z,. 4) = [{A € A:z € A}| and
ord(A) = sup{ord(z, A) : z € Z}. The cardinal ord(A) is called the order of the
family A.

Fact 1. If Z is a space and [(Z) < « for some infinite cardinal « then any indexed
set Y = {y, : @ < kT} C Z has a complete accumulation point, i.e., there is z € Z
such that [{& < k¥ : y, € U}| = kT forany U € ©(z, Z).
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Proof. If this is false then every z € Z has an open neighbourhood O, such that
the set A, = {a < k" : y, € O.} has cardinality at most «. Since [(Z) < «
and {O, : z € Z} is an open cover of Z, we can choose a set P C Z for which
|P| <«kand|J{O,:z€ P} = Z. As aconsequence, | J{4, : z € P} =« which
is impossible because the cardinal K is regular, i.e., it cannot be represented as a
union of < kT -many sets of cardinality < « ™ each. Fact 1 is proved.

Now, let k = I(C, (X)) and take an order < on the set X which generates 7(X).
The case of a finite X is evident; so we assume that | X | > w. We will have the usual
notation for the intervals in (X, <), i.e., forany a,b € X we let

(a,b)=4{xeX:a<x<b}, |a,b)={xe X :a<x<b},
(a,b]={xeX:a<x<b}and[a,b]={x € X :a <x <b}.

Furthermore,

[a,>)={xeX:a<x}and (a,—) ={x € X :a < x} while
(«.bl={xeX:x<b}and («,b)={x e X :x < b}foranya,b € X.

The space X being compact, it has a minimal element a4 and a maximal element
b« (see TFS-305). It is clear that k < nw(C,(X)) = nw(X) < w(X); so it suffices
to prove that w(X) < k. We will show first that

(1) the cardinal k™ is a caliber of X, i.e., || < « for any family &/ C t*(X) such
that ord(Uf) < k.

Assume, towards a contradiction, that (1) is false and hence there exists a family
U = {Uy:a < kt} C t*(X) such that the set K, = {a < k* : z € Uy} has
cardinality < « for any z € X. Making every U, smaller we obtain a family with the
same properties; so we can assume that each U, is an element of the standard base
of X,i.e., U, = (a,b) for some a,b € L or there is a € L such that U, = (a,—)
or U, = («,a).

There are at most x-many elements of I/ that intersect the set {ax, b« }; so we can
throw them away and still have a family which witnesses that « ™ is not a caliber
of X. Thus we can assume, without loss of generality, that U, C (a«, bs) for every
o < k+ and hence U, = (aq, by) for some aq, by € X.

Forany o < k™ the sets P, = (<, a4] and Q,, = [b,, —) are closed and disjoint
in X; so there is f, € C,(X) such that f,(P,) C {0} and f,(Q.) C {1}. For the
indexed set E = {f, : @ <k} C C,(X) we must have a complete accumulation
point & (see Fact 1).

If there is x € X such that i(x) ¢ Dthen O = {f € C,(X) : f(x) ¢ D}
is an open neighbourhood of 4; if f, € O then x € U,, so @ € K, and hence
o @ fo € O} < |Ky| < k, i.e., h is not a complete accumulation point which
is a contradiction. Thus & € C,(X,D); since fy(ax) = 0 and f,(b«) = 1 for all
a < kt, we have h(ax) = 0and h(by) = 1.
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The sets Hy = h~'(0) and H, = h~'(1) are clopen, disjoint, non-empty and
X = Hy U H;. Let b = min H; (this minimal element exists by TFS-305). The set
G = [a«, b) is non-empty because ax € Hj and hence a, < b; since G C Hy, we
have G C Hy and hence a ¢ G. Therefore G C [ax,b] N Hy = [ax,.b) N Hy C G,
i.e., the set G is closed in X. Apply TFS-305 once more conclude that G has a
maximal element a. It is clear that ¢ < b and (a,b) = @. Theset W = {f €
C,(X) : f(a) < 1and f(b) > 0} is an open neighbourhood of / in C,(X). If
fo € Wthena, < banda < by.

If by < b anda < a, then (ay, by) C (a,b) which is a contradiction because
(a,b) = @ and U, = (ay,by) # @. Thus either a, < b < by ora, < a < by and
therefore U, N {a,b} # @. Consequently, {& < «* : f, € W} C K, U K, and
hence |W N E| < |K,U K}| < k. This proves that / is not a complete accumulation
point for E and provides a contradiction which shows that « is a caliber of X, i.e.,
(1) is proved.

Call x € X a jump point if there exists s, > x such that (x, sy) = @. It turns out
that

(2) the set J of all jump points of X has cardinality at most «.

To obtain a contradiction assume that P = {x, : @ < «T} C J and the
enumeration of P is faithful; it is evident that we can assume that P C (ax, b«).
Let go(x) = 1forall x > s,, and go(x) = 0 whenever x < x,. Itis clear that g, :
X — Dis continuous on X forany o < kT.LetG = {g, 1@ <k*} C C,(X,D);
since C,(X,D) is closed in C,(X), we have /(C,(X,D)) < «; so the set G has a
complete accumulation point g € C,(X, D) (see Fact 1). We have g, (a«) = 0 and
gu(bs) = 1foralla < k™ so g(asx) = 0and g(bs) = 1.

Let b = min g~!(1); this point is well defined because g~!(1) is non-empty and
closed in X (see TFS-305). The set R = [a«, b) is non-empty because a. < b;
besides, R C g~'(0) and hence R C g~'(0) which implies that R C g~'(0) N
[a+,b] = g7'(0) N [a«,b) C R and hence R is closed in X. Apply TFS-305 once
more to take a point @ = max[ax, b); it is clear that a € g~'(0), b € g~'(1) and
(a,b) = 0.

The set W = {f € C,(X,D) : f(a) = 0 and f(b) = 1} is an open
neighbourhood of g in C,(X, D). Assume that g, € W for some & < k. Then
go(a) = 0 and hence a < xq; furthermore, g,(b) = 1 implies that s,, < b which
shows that (x,,sy,) C (a,b). Since the interval (a, b) is empty, we have x, = a
and therefore at most one element of G belongs to W. Thus g is not a complete
accumulation point of G; so we obtained a contradiction which completes the proof
of (2).

Now observe that #(X) < k by TFS-189; this implies that X has a 7-base B with
ord(B) < «k (see TFS-332). The cardinal k™ being a caliber of X we have |B| < «
by (1); so d(X) < aw(X) < |B| < k. Fix adense D C X such that |D| < « and
let J' = {s,:x € J};thentheset E = D U J U J' U {ax, b} also has cardinality
atmost k. If N = {[a,b) :a,b € E}U{(a,b]:a,b € E} then |N| < k. We claim
that NV is a network in X.
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Indeed, take any point x € X and U € t(x,X). We have several cases to
consider.

(@) x e J;then N = [x,5,) ={x} e Nandx e N CU.

(b) x € J'; then thereis y € J such that x = 5,;s0 N = (y,x] = {x} € N and
xeNCU.

(¢) x € (E\J)N (<, bs); thenthereis b € X suchthat[x,b) C U and (x,b) # @.
Since D is dense in X, we can find a point d € D N (x, b). It is immediate that
N=[x,dyeNandx e N CU.

(d) x € (E\J)N(ax, —);thenthereisa € X suchthat (a,x] C U and (a, x) # 0.
Since D is dense in X, we can find a pointd € D N (a, x). It is immediate that
N=(Wd,x]e Nandx e N CU.

(e) x € X\E; then there are a, b € X such that x € (a,b) C U while (a,x) # 0
and (x, b) # 0. Since the set D is dense in X, we can choose d € (a,x) N D
andd’ € (x,b)N D.Then N = [d,d’) e Nandx € N C U.

We proved that, in all possible cases, if x € X and x € U € 7(X) then there is
N € N suchthat x € N C U and hence N is a network in X. As a consequence,
w(X) = nw(X) < |N]| < k (see Fact 4 of S.307); so w(X) = [(C,(X)) and our
solution is complete.

U.083. Given an infinite compact space X prove that |Y| < 2/0<X) for any
Y C Cp(X).

Solution. LetexpZ = {A: A C Z}andexp,(Z) = {A C Z : |A| < k} for any
set Z and any infinite cardinal «.

Fact 1. Given a space Z and an infinite cardinal k suppose that ¥(Z) < 2* and
I(Z)-t(Z) < k. Assume additionally that |A| < 2 forany A C Z with |4] < k.
Then |Z| < 2°.

Proof. Forevery z € Z fix a family B, C ©(Z) such that |B,| < 2¢ and () B, = {z}.
Choose any point zp € Z and let Zy = {zo}. To proceed inductively, assume that
B < kT and we have a family {Z, : & < B} C exp Z with the following properties:

(1) Z,isclosedin Z and |Z,| < 2* for any o < f3;

(2) a <o’ < Bimplies Z, C Zy .

(3) LetUy, = U{B, : z € Z,} forany @ < B. Then @ < y < B implies that, for
any U C exp,(Uy) withU = JU # Z, wehave Z, N (Z\U) # 0.

It follows from (1) and (3) that the set T = (J{Z, : @ < B} and the family
Br = \U{B; : t € T} have cardinalities that do not exceed 2. Therefore the
collection A = {V C exp,(Br) : UV # Z} also has cardinality at most 2*. For
every V € A choose apointa(V) € Z\(|JV) andlet Zg = T U {a(V):V € A}.

We have to verify that (1)—(3) still hold for all @ < B and the only non-trivial
thing to check is that |Zg| < 2. Let T’ = T U {a(V) : V € A}. Since t(Z) < «,
we have T/ = |J{C : C € exp,(T’)}. By our hypothesis, |C| < 2 for any
C € exp (T’); s0 |Zg| < SH|IC| : C € exp(T')} < 2¢.2° = 2¢ whence
|Zg| < 2 and therefore (1)—(3) are fulfilled for all o < .
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Thus our inductive procedure can be accomplished for all B < k™ giving us a
family {Z, : @ < «T} with the properties (1)—(3). It follows from (1) that Z’ =
U{Zs : @ < «T} has cardinality at most 2¢; so it suffices to prove that Z' = Z.

To obtain a contradiction, assume that there is x € Z\Z’. An easy consequence
of (1) and t(Z) < k is that Z’ is closed in Z and hence [(Z') < k. Forany z € Z’
there is W, € B, for which x ¢ W,. Since {W, : z € Z’} is an open cover of Z’,
we can find P C Z’ such that |P| < k and Z’ C (| J{W, : z € P}. The condition
(2) implies that there is & < k™ such that P C Z, and hence V = {W, : 7 €
P} € exp,.(Uy); besides, x ¢ V = [JV; so we can apply (3) to conclude that
Zy+1 N (Z\V) # @ which is a contradiction because Z,1 C Z' C V. Therefore
|Z| = |Z’| <2 and Fact 1 is proved.

Fact 2. Given a space Z let R(Z) be the family of all regular open subsets of Z,
ie,R(Z) ={U € t(Z) : U = Int(U)}. Then |R(Z)| < nw(Z)?.

Proof. Fix a m-base B in Z with |B| < k = nw(Z). For any U € R(Z) take a
maximal disjoint By C B such that B C U for any B € By. Then |By| < A =
¢(Z) and hence we have a map ¢ : R(Z) — exp, (B) defined by ¢(U) = By for
every U € R(Z). Since B is a w-base in Z, the set | J By is dense in U for any
U € R(Z) (this is an easy exercise); so we have U = Int(|_ By) and therefore the
map ¢ is an injection. As a consequence, |R(Z)| < |exp, (B)| < «* and Fact 2 is
proved.

Fact 3. For any space Z we have aw(Z) < ny(Z) - d(Z).

Proof. Letk = ny(Z) and A = d(Z). Fix a w-base B, with |B,| < k foranyz € Z
and take a dense D C Z such that |D| < A. The family B = | J{B; : z € D} isa
m-base in Z because, forany U € t*(Z) thereis d € U N D and hence we can find
B € B; C Bforwhich B C U. Thus nw(Z) < |B| < k - A and Fact 3 is proved.

Fact 4. For any space Z we have w(Z) < wy(Z)?).

Proof. Let mx(Z) = « and c¢(Z) = A; we will us establish first that d(Z) < «*.
For any z € Z fix a w-base B; at the point z such that |B;| < k. Choose any point
70 € Z and let Zy = {zo}. To proceed inductively, assume that 8 < A+ and we have
a family {Z, : @ < B} C exp Z with the following properties:

(4) |Zy| < k* forany a < B;

(5) a <&’ < Bimplies Z, C Zy .

(6) LetUy, = U{B, : z € Z,} forany @ < B. Then @ < y < B implies that, for
any U C exp, (Uy) with P = W # Z,wehave Z, N (Z\P) # 0.

It follows from (4) and (6) that the set T = (J{Z, : @ < B} and the family
Br = U{B, : t € T} have cardinalities that do not exceed «*. Therefore the
collection A = {V C exp,(Br) : W # Z} also has cardinality at most «*. For
every V € A choose a pointa (V) € Z\(m) andlet Zg =T U {a(V):V € A}.

It is immediate that (4)—(6) still hold for all @ < B; so our inductive procedure
can be accomplished for all 8 < A giving us a family {Z, : @ < «*} with the
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properties (4)—(6). It follows from (4) that Z' = [ J{Z, : @ < «t} has cardinality
at most k*; so it suffices to prove that Z' = Z;let B = | J{B. : z € Z'}.

Assume towards a contradiction that Z\Z’ # @ and choose O € t*(Z) such
that O C Z\Z'. It is evident that the family B’ = {B € B: BN O = @} is still a
7-base at any point z € Z’. If V is a maximal disjoint family of the elements of 5’
and V = |JVthen |V| < X and Z' C V. Indeed, if z € Z'\V then there is B € B,
for which BNV = @; so V U {B} is a disjoint family of elements of V which is
strictly larger than V), a contradiction.

The condition (5) implies that there is an ordinal « < « such that V C U, and
hence V € exp, (Uy); besides, V' N ‘O = 0, so we can apply (6) to conclude that
Zy11 N (Z\V) # @ which is a contradiction because Z,+; C Z’ C V. Therefore
Z'is dense in Z and hence d(Z) < |Z'| < «*.

By Fact 3, we have nw(Z) < d(Z) - nx(Z) < k* -k < k*; so we can apply
Fact 2 to conclude that |R(Z)| < nw(Z)“?) < (k*)* = «*. By regularity of Z the
family R(Z) is a base of Z; so w(Z) < |R(Z)| < «* and Fact 4 is proved.

Fact 5. Suppose that « is an uncountable regular cardinal, @ ¢ « and let L =
k U {a}. For any infinite cardinal A < « let t(k,A) = expk U{Ad:a € A C L
and |«\A| < A}. Then t = 7(x, A) is a Tychonoff topology on L and for the space
L(k,A) = (L,7) wehave [*(L(k, 1)) = A.

Proof. Tt is immediate that 7 is a topology on L such that a is the unique non-
isolated point of 7. Therefore L(x,A) is a Tychonoff (and even normal) space by
Claim 2 of S.018. Every subset of cardinality < A is closed and discrete in L(k, A);
sol(L(k,A)) > A.

We will prove, by induction on n € N, that /((L(k,A))") < A for any n € N.
If n = 1 and U is an open cover of L(k,A) then take a set U € U such that
a € U.Then |L(k,A\)\U| < A; so there is U’ € exp, (U) for which L(k, A)\U is
covered by U’. It is clear that 44’ U {U} is a subcover of U of cardinality < A; so
I(L(k, 1)) < A

Now assume that /((L(k,A))¥) < A for some number k € N and take an open
cover U of the space (L(k, 1))+!. Represent (L (k, A))**! as (L(x,1))* x L(k, A)
and let F = {(x,a) : x € (L(k,A))*} C (L(k,A)FTL. It is immediate that F
is homeomorphic to (L(x,1))* so [(F) < A by the induction hypothesis. For any
point z = (x,a) € F choose U, € t(x,(L(k,A))*) and V, € t(a, L(x, 1)) such
that U, x V, C W, for some W, € U. Since [(F) < A, we can choose a set P C
(L(x,A))F suchthat |[P| <Aand F C (J{U. x V. :z€ P}.

Observe that Q, = L(k, A)\V; has cardinality at most A for any z € P and
hence Q = | J{Q, : z € P} also has cardinality < A. LetU’ = {W, : z € P};if
y = (x,s) ¢ | JU’ then take a point z € P for which x € U,. Then s ¢ V, which
implies z € Q. C Q. We proved that (L (k, 1))**"\ (') is contained in the set
G = (L(k, L))" x Q which is a union of < A-many subspaces homeomorphic to
(L(x,A))¥. This, together with the induction hypothesis, implies that /(G) < A and
hence we can find U” C U such that |[/’| < Aand G C (JU”. ThusU' UU" is a
subcover of U of cardinality < A which proves that /((L(x, 1))*T!) < A.
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The inductive step of our proof has been successfully accomplished; so we
established that /((L(x, A))") < A for all n € N and hence Fact 5 is proved.

Returning to our solution let A = /(Y) - ¢(X). We will establish first that
(7) |A| <|A|® forany A C Cp(X).

Indeed, for any countable B C C,(X) we have nw(B) = w (see Problem 033)
and hence |B| < ¢. Besides, 1(C,(X)) < w; so

4] = [|J{B : B € exp,(A)}] < ¢ |exp, ()] = c- [4]” = |4]°

and hence (7) is proved. Let us show next that
®) y(¥) <2~

Assume, for a contradiction, that we have ¥ (v,Y) > (2)‘)+ for some v € Y.
Then /(Y \{v}) > (2*)* (see Fact 1 of U.027) and hence we can apply Baturov’s
theorem (SFFS-269) to conclude that there is a closed discrete subset D in the space
Y\{v} such that |[D| = k = (2*)*. The set E = D U {v} is closed in Y; so
[(E) < A. As a consequence |[E\U| < A for any U € t(v, E) and therefore the
space E is a continuous image of the space L(k, A) which implies [*(E) < A (see
Fact 5).

For any x € X let ¢(x)(f) = f(x) forany f € E. Then ¢(x) € C,(E) for
every x € X and the map ¢ : X — C,(FE) is continuous by TFS-166. The space
X' = ¢(X) is compact; besides, c(X') < ¢(X) < A and 1(X’) < t(C,(E)) =
[*(E) < A. Furthermore, mx(X’) < t(X’) < A by TFS-331; so we can apply
Fact 4 to see that w(X') < my(X)*X) < 1t =24,

The dual map ¢* : C,(X') — C,(X) defined by ¢*(h) = ho ¢ forany h €
C,(X') embeds C,,(X")is Cp,(X) (see TFS-163) and it is easy to verify the inclusion
E C ¢*(Cp(X"). Thus s(E) < nw(E) < nw(C,(X")) = nw(X') < w(X') <2*
which is a contradiction because D is a discrete subspace of E and | D| > 2*. This
shows that ¥ (Y) < 2*; so (8) is proved.

Apply (7) to see that if A C Y and |[A] < A then |A| < |A|® < A® < 2}
The property (8) shows that we can apply Fact 1 to the space Y to conclude that
|Y| < 2*. Finally apply (7) to see that [Y| < |Y|® < (2*)® = 2* and hence our
solution is complete.

U.084. Suppose that X is a compact space with the Souslin property and C,(X) has
a dense Lindeldf subspace. Prove that w(X) < |Cp(X)| < 2.

Solution. We have w(X) = nw(X) = nw(C,(X)) < |Cp(X)| (see Fact 4 of
S.307); so w(X) < |Cp(X)|. Now, if Z is a dense Lindeldt subspace of C,(X) then
apply Problem 083 to see that |C,(X)| = |Z| < 2/(@)e¢(¥) < oo = 20,

U.085. Prove that, for any uncountable regular cardinal «, if Z C C,(k + 1)
separates the points of k + 1 then [(Z) > k.



2 Solutions of Problems 001-500 115

Solution. To obtain a contradiction, let us assume that A = [(Z) < k. Since the
map f +—— (—f') is a homeomorphism of the space C,(x + 1) onto itself, both sets
—Z ={—f: f € L}and Z U (—Z) have the Lindel6f number < A. This shows
that we can assume that (— f) € Z forany f € Z.

For each @ < « fix rational numbers sy, #, and a function f, € Z such that
fo(a) < sy <ty < foli)or fou(a) > sy >ty > fy(x). However, if we have the
second inequality then, for the function (— f,) € Z, we have the first one. Therefore
we can assume that fy (o) < §¢ < ty < fa(k) for all @ < k. Since each f, is
continuous, there exists B, < « such that f,(y) < s, foreach y € (B4, @]

The map r : k — k defined by r () = B, for all & < k satisfies the hypothesis
of Fact 3 of U.074; so there is 8 < k and a stationary set R C « such that 8, =
forall « € R. Thereis aset R’ C R with |R’| = « for which there are 5,7 € Q such
thats, = s andt, =t foralla € R';let E = {f, : @« € R'}.

Forevery f € Zlet Oy = Z\E if f ¢ E. Then Oy is an open neighbourhood
of fin Z such that Oy N E = @ and hence By = {@ € R': f, € Of} = 0.
If f € E then we have f(k) > ¢ because g(k) > ¢ for all g € E. Choose any
s’ € (s,t) and observe that, by continuity of f', there is y > B such that f(y) >
s" > s.Theset Oy = {g € Z : g(y) > s’} is an open neighbourhood of f in Z.
Ifa >yanda € R then y € (B, ] = (By, ] which implies, by the choice of B,
that f,(y) <s < s whence f, ¢ Oy. Asaconsequence, Oy N E C {fy a0 <y}
and therefore, for the set By = {& € R’ : f, € Oy}, wehave |[Bs| < |y| <«.

Since ! = {Oy : f € Z} is an open cover of the space Z, there is a family
U C U suchthat Z C (JU' and || < A. This implies R = | J{Bs : f e U'},
i.e., the set R’ of cardinality « is represented as a union of < A-many subsets of
cardinality < x. This contradicts regularity of x and proves that [(Z) > «.

U.086. Prove that, if X is a dyadic space andY C Cp(X) thennw(Y) = I(Y). In
particular, any Lindeldf subspace of C,(X) has a countable network.

Solution. For any n € N let M, = {1,...,n}; if A is a set then Fin(A4) is the
family of all finite subsets of A and Fn(4) = |J{D? : B € Fin(4)}; observe that
the unique element of D? is the empty function. If f is a function then dom( f) is
its domain. If f and g are functions then f C g says that dom(f) C dom(g) and
gldom( f) = f. We consider that if g is a function and f = @ then f C g. Given
two functions f and g such that f(x) = g(x) for any point x € dom( ) N dom(g)
the function 7 = f U g is defined by letting 2(x) = f(x) for all x € dom(f) and
h(x) = g(x) for any x € dom(g)\dom(f).

For any i € Fn(A) let [h] = {s € D : h C s}. It is easy to see that the family
{[h] : h € Fn(A)} is a base in the space D*. Given a regular uncountable cardinal «
say that C C k is a club if C is closed and unbounded (=cofinal) in k. Aset A C k
is called stationary if AN C # @ for any club C.

Suppose that we have a family 7 = {F?, F! it € T} of closed subsets of a
space Z.Let Cg = Z and C), = ﬂ{F,h(f) 1t € dom(h)} for any h € Fn(T)\{%}.
We say that the family F is dyadic if F* N F! = @ forevery t € T while C; # 0
for any h € Fn(T). In particular, F/ # @ forany s € T andi € D. A dyadic family
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F = {F°,F! : t € T} will also be called k-dyadic if |T| = . If A is a family
of sets then A A is the family of all non-empty finite intersections of the elements

of A.

Fact 1. Given an infinite cardinal « if K is a compact space such that 7 y(x, K) > «
for any x € K then there is a closed P C K which maps continuously onto D* and
hence K maps continuously onto I*.

Proof. 1f k = w then K has no isolated points and hence there exists a continuous
onto map ¢ : K — I (see SFFS-133). Take a closed ¥ C I homeomorphic to D“
(see TFS-128); then P = ¢~ !(F) is a closed subset of K which maps continuously
onto D*; so K can be continuously mapped onto I* (see Fact 4 of T.298).

From this moment on we consider that « is an uncountable cardinal. Denote by
C the family of all closed non-empty Gs-subsets of K. Each G € C has a countable
outer base Bg in K by TFS-327. This shows that G C U € 7(K) implies that there
isV eBgwithV CU.

Suppose that ' C C and |C’| < k. Given a point x € K, if every U € 7(x, K)
contains some G € C’ then it also contains some V' € B by the previous remark.
This shows that B = | J{Bg : G € ('} is a local -base at x with |B| < k which is
a contradiction. This proves that

(1) for any x € K and any C’ C C such that |C'| < « there is W € 7(x, K) such
that G\W # @ forall G € C'.

Our plan is to construct a k-dyadic family in K; the second step on this way is to
show that

(2) forany C’ C C with |C'| < k there are F,G € C such that F N C # @ and
G N C # @ forany C € C’ but there exists B € C' suchthat FNG N B = @.

To prove (2), apply (1) for every x € K to obtain a set W, € t(x, K) such that
C\W, # @ forevery C € C’. Taking a smaller W, if necessary we can assume that
W, is an Fj;-set and therefore P, = K\ W is a Gs-set for all x € K. Take a finite
subcover {Wy,, ..., Wy, } of the cover {W, : x € K};then P,, N C # @ for any
C €’ andi € M, while P,, N...N P, = @.Letk € M, be the minimal number
for which there exist Q1, ..., Qx € {Py,,..., Py, }suchthat Q1N...NQOxNB =0
forsome B € C'. Thenk > 2 and thesets F = Q1 and G = Q> N ... N Qy are as
promised; so (2) is proved.

Our next step is to establish the following property.

(3) Let A and u be infinite cardinals with u = cf(u) and A < u < k. If F CCisa
A-dyadic system then there is a p-dyadic system G C C such that | F\G| < .

Choose an arbitrary enumeration {F., F! : o < A} of the family 7 which
witnesses that F is A-dyadic. Let [;, = ﬂ{Fofl(a) :a € dom(h)} for any & € Fn(A);
if dom(h) = @ then I, = K. We are going to construct by transfinite induction
a family K = {C?,C}, K0, K} : o < u} C C.If B < pand g € Fn(B) then
J, = CE™ - a € dom(g)}; if dom(g) = @ then J, = K.
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The family .4y = F has cardinality strictly less than « and hence | /\ Ay| < «.
Thus the property (2) is applicable to find K, K} € C such that K} N H # @ for
any H € \ Ay andi € D while thereis F € A\ Ag suchthat KN K} NF = 0.1t
is easy to see that there exists a function sy € Fn(1) such that F = I,;let go = 0
and C} = F N K| foreveryi € D.

Proceeding inductively assume that « is an ordinal with 0 < & < p and we have
afamily Kq = {Cg, Cg, K, K : B < o} with the following properties:

@) if p <aand Ag = FU{C),C) 1y < B} then KyNH # Bforany H € N\ Ag
andi € D;

(5) for every B < o we have functions hg € Fn(A) and gg € Fn(f) such that
Iy N Jg NKRN Ky =0;

(6) if B < « then Cg N Cﬁ1 = @ and Cé =T, N Jg N K/’é foreachi € D.

The family A, = {C?,C ﬂl : B < a} U F has cardinality strictly less than « and

hence | /\ Aq| < «. Thus the property (2) is applicable to find Kg , K! € C such that
K. NH # @ forany H € \ A, and i € D while there is F € /\ A, such that
KON KINF = @.1tis easy to see that there exist i, € Fn() and g, € Fn(«) such
that F = I, N Jg,;let C. = F N K, forevery i € D.

Evidently, the conditions (4)—(6) are now satisfied for all § < «; so our inductive
procedure can be continued to construct the family £ = {C?, C ﬁl, Kg, K é B < u}
for which the properties (4)—(6) hold for all @ < p.

Our promised family G will be contained in the family G’ = {C?,C} : & < p}.
To extract G from G’ we will need the following property.

(7) If h € Fn(A), g € Fn(u) and 1, N J, # @ then there exists a finite set A C A
such that I, N Iy N J, # @ for any i’ € Fn(A\A).

We will prove (7) by induction on the maximal element §, of dom(g); if g = @
then let §, = —1. Observe first that if §, = —1 then we can take A = dom(#). If
h' € Fn(A\A) then I;, N Iy N Jg = I, N Iy = Ihuw # @ because F is A-dyadic.

Now assume that o < p and (7) holds for any g’ € Fn(u) with §o < a. Suppose
that I, N J, # @ for some i € Fn(A) and g € Fn(w) such that §, = «. Define a
function g’ € Fn(u) be letting dom(g’) = dom(g)\{«} and g’(8) = g(B) for any
B € dom(g’). We have the equality 7, N J, = I; N J, N CE® which, together with
(6) implies that I, N J, = I, N Jgr N Iy, N Jg, N K. Thus I, N I, # @ which
shows that h(8) = hq(B) for any B € dom(k) N dom(hy); so the function k2 U Ay
makes sense.

Analogously, the function g’ U g, is also consistently defined; the equalities I;, N
I, = Iun, and Jg/ N ng = Jg’Ugu show that Iup, N Jg’Ugu =Ip,NI, NJyN ng
is a non-empty set. Besides, 8,/u,, < @ and hence our induction hypothesis is
applicable to conclude that there exists a finite set A C A such that, for any function
h' € Fn(A\A) the set Iup, N Iy N Jgrug, is non-empty.

Let us show that the same set A is applicable to make our induction step. Indeed,
if A" € Fn(A\A) then the set P = Ijup, N Iy N Jgug, is non-empty; since P €
A\ Ay, we can apply (4) to see that I N Ijy N Jo=PnN K‘f(a) = 0, so (7) is proved.
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Let p(o) = maxdom(gy); it is clear that p(«) < « for any o < . It follows
from Fact 3 of U.074 that there exists § < p such that the set {& < u : p(«) = B}
has cardinality w. It follows from |Fn(1)| < w and |[Fn(8)| < u that we can choose
aset E C u\(B + 1) and functions 4 € Fn(1), g € Fn(p) such that |E| = u while
hy = h and g, = g forall @ € E. In particular, we have I, N J, N K2 = C? # 0
for any @ € E; as an immediate consequence, /; N J; # @, so we can apply (7) to
find a finite set A C A such that I, N Iy N J, # @ for each ' € Fn(A\ A).

We claim that the set G = {F,F}! : a € 2\A} U{C?,C! : @ € E}is as
promised in (3). It is trivial that |G| = u and F\G is finite; so we must only check
that G is dyadic.

It is sufficient to show that, for any 4’ € Fn(A\A) and g’ € Fn(E) we have
Iy N Jgr # @;so fix relevant &’ and g'. If g’ = @ then Iy N Jy = Iy # @ because
the family F is A-dyadic. Thus we can consider that g’ # @ and hence we can
choose an enumeration {«;, ..., &} of the set dom(g’) such that oy < ... < a; let
i =g'(aj)forall j <k.

Observe that Iy N Jy = [y NCON...NCl = Iy NL,NJ,NKYN...NKM;
since the condition (7) is fulfilled for the set A, the set H = Iy N I, N J, is non-
empty. Furthermore, H € A\ Aqy,; s0 Ho = H N K, (’1% # @ by the property (4).

Proceeding inductively assume that j < kand H; = HNKN.. ﬂKé/j # 0.1t

[&00]
isevidentthat H; € A .ADthrl ; so it follows from (4) that H; 1 = H; ﬂK,;’l:;:l # 0.
Thus our inductive procedure can be continued to establish that [,y NJyr = Hy # 9;
so (3) is proved.

Assume that ¥ > o and « is a regular cardinal; we saw at the beginning of our
proof that there exists a continuous onto map ¢ : K — I[. Take a closed F' C I
homeomorphic to D?; then P = ¢~ !(F) is a non-empty Gs-subset of K which
maps continuously onto D®. Let ¢’ = ¢|P.

By Fact 4 of T.298 there is an w-dyadic system S = {G°,G! : n € w} in
the space F. It is clear that all elements of S are Gs-subsets of F; so if we let
Fl = (¢')""(G}) foralli € Dandn € w then F = {F,F,) : n € w}is an
w-dyadic system of Gs-subsets of P. It follows from P € C that 7 C C and hence
we can apply (3) to construct a k-dyadic family G in the space K.

Finally assume that « is an uncountable cardinal and A = cf(k) < k. Choose a
A-sequence {k, : v < A} of regular cardinals such that k, > A for all v < A and
k = sup{k, : v < A} while k, < kv whenever v < V' < A. It is an easy exercise
that

(8) if p is an infinite cardinal and {H, : o < w} is a u-sequence of dyadic families
such thatw < B < p implies Hy C Hp then H = | J,,_,, Ho is a dyadic family.

A</t
From what was proved for regular cardinals, it follows that we can choose a k-

dyadic family Fy C C. Suppose that & < A and we have a collection {F,, : v < u}
of dyadic families such that

9 F, € Cand |F,)| = k, forany v < g and v/ < v < pu implies that
|]:v’\]:v| <A
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Let G, = ({Fv : v <V < u} forany v < u. It follows from G, C F, that
G, is a dyadic family for all v < u. Besides, it follows from (9) and regularity of A
that |[7,\G,| < A and hence |G,| = k, < k, for each v < p. It is immediate that
v < v’ < pimplies G, C G,; so the family H = [ J{G, : v < u} is dyadic by (8).

Observe also that x;, = cf(k,) > A > p so |H| < «, and hence we can apply
(3) to the family H C C and the cardinals |#| and «,, to find a «,-dyadic family
Fu such that [H\F,| < w. For any v < p we have |[F,\H| < |F,\G,| < A;asa
consequence, |F,\F,| < A; so the property (9) holds for all v < p and hence our
inductive procedure can be continued to construct a collection {F, : v < A} such
that the condition (9) is satisfied for all v < A.

Let F| = ({F. : v < u < A} for each v < A. It follows easily from (9) that
|7, \F)| < A and hence | F|| = k, for all v < A. Furthermore, 7| C F, whenever
v <v" < A For the family 7 =, ., F, we have | | = « and F is dyadic by (8).
Therefore we found a «x-dyadic family in K in all possible cases. Applying Fact 4
of T.298 we conclude that there is a closed P C K which maps continuously onto
D* and hence K maps continuously onto I¥, i.e., Fact 1 is proved.

Fact 2. If k is a regular uncountable cardinal and ¢ : D“ — I* is a continuous onto
map then there is a closed F C D* such that F >~ D* and ¢|F is injective.

Proof. Let O = {[h] : h € Fn(k)} be the standard base of D*. For any A C «
the map 4 : I¥ — I is the natural projection of I* onto its face I4. Analogously,
pa - DX — DA is the natural projection of D* onto its face D4. If A = {a} for
some a < k we write 7, and p, instead of 7y, and py,) respectively. Say that a
set G C D* depends on A C k if G = p;'(p4(G)). Denote by C the family of
all non-empty clopen subsets of D“. Every element of C is compact; so it is a finite
union of elements of O; since every O € O depends on finitely many coordinates,
we proved that

(10) every U € C depends on finitely many coordinates, i.e., there is a finite set
S = Sy CksuchthatU = p5l(ps(U)).

For any elementi € Dand o < « let P} = 7, '(i), QL = ¢ '(P}) and fix a
set O} € ©(PI,T¢) so that 00 N O} = @. It follows from SFFS-303, SFFS-306 and
SFFS-308 that we can find U/ € C such that Q!, C U! C ¢7'(0),) forevery o < k
and i € . Apply (10) to find a finite set S, C « such that pg'(ps, (U,)) = U, for
anyi € Dand o < «.

By the A-lemma (SFFS-038) we can find a set 7' C « and finite S C « such
that | 7’| = k and S, N Sg = S for any distinctw, f € T'.If S = @Flet T = T’ and
choose h!, € ps,(Q.) foranyi € Danda € T.If S # @ then the set D is finite
and D* = | J{[s] : s € D5} so I* = | J{ f([s]) : s € DS} which implies that there is
W e t*(I¥) with W C f([so]) for some sy € DS.

Making W smaller if necessary, we can consider that W is a standard open subset
of I¥ and hence there is a finite B C « such that n;l (rp(W)) = W. An immediate
consequence is that W N P! # @ and hence [so] N Q!, # @ for any « € «x\B and
i €D.Let T = T'\B and choose k', € ps,([so] N Q') foranyi e Danda € T.
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Observe that, in both cases, |T| = « and h% # hl for any element o € T. Let
F ={s € D“:s(\T) C {0} and ps,(s) € Hy, = {hS,hl} forany & € T}. To see
that F is homeomorphic to D¥, it suffices to prove that there is a homeomorphism
g:F > H=][{Hy:a e T}because H ~ D*.

Forany s € F and « € T we have 5|S, = ', for some i € D; let g(s)(ex) = h',.
This givesus amap g : F — H.If h € H then for every « € T we have
h(a) = hi® for some i() € D.Let s() = O forany o € k\T;if @ € Sy\S
then s(«) = hfx(a) (o) and s(o) = so(e) for any o € S. This definition makes sense
because 5o C h', forany o € T and i € D. Itis evident that s € F and g(s) = h; so
the map g is onto.

Now, if s, € F and s # ¢ then s|T # t|T which shows that for some &« € T
we have s|Sy # ]S, i.e., g(s)(e) # g(t)(«) and hence g(s) # g(t) so gis a
bijection. To see that g is continuous, it suffices to prove that sois g4 = g4 © g :
F — H, where q, : H — H, is the natural projection for all « € T. Since
g, '(hi) = [hi] N F, the set g, ' (h,) is open in F for any i € D which, evidently,
implies continuity of g, for every o € T. Therefore g is a condensation of F' onto
H. It is an easy exercise that F is closed in D*; so g is a condensation between
compact spaces F' and H which implies that g is a homeomorphism and hence
F ~ D~

Finally, assume that 5,/ € F and s # t. There is « € T such that s|S, = &,
and t|S, = hl™". Therefore s € [h!] C Ul andt € [hl~'] C U!~". Consequently,
¢(s) € p(UL) and p(t) € p(U™). Since f(U}) N f(UST) C 04N 0L = 0,
we have ¢(s) # ¢(t) and hence ¢| F is injective; so Fact 2 is proved.

Fact 3. If K is a dyadic space and w(K) > « for some infinite cardinal x then Dt
embeds in K.

Proof. Ifthe set C = {x € K : wy(x, K) < k} is dense in K then w(K) < « by
Fact 1 of U.072. Thus there exists U € t*(X) such that 7y (x, K) > k™ for any
x € U.Take V € t*(X) suchthat V. C U.If x € V and U is a 7r-base at the point
x in V with [U| < « then the family ' = {W NV : W € U} is a w-base at x
in K with |i4'| < k which contradicts the choice of U. Therefore my(x,V) > «*
for any x € V; so we can apply Fact 1 to see that some closed subspace of V maps
continuously onto D¥ " and hence there is a continuous onto map f: K - I¥ .

Since K is dyadic, there is an infinite cardinal A and a continuous onto map
g :D* — K.Forany A C Alet p4 : D* — D be the natural projection of D* onto
its face D. Since w(I*") = «*, we can apply Fact 1 of T.109 to find 4 C A such
that |A| < «k and there is a continuous map 4 : D4 — I*" for which hopy = fog.
Since I is a perfect image of D4, we have k* = w(I*") < w(D4) = |A| (see
Fact 1 of T.489) and therefore |A| = .

Let u(a) = O for all @ < A; then the set P = D? x {p\a(u)} C D* is closed
in D* and homeomorphic to D4 ~ D", Given y € I*" there is x € D* such that
(f 0 g)(x) = y and therefore h(pa(x)) = f(g(x)) = y. I x" = pa(x) U py\a(u)
then x’ € P and p4(x’) = p4(x) which shows that f(g(x')) = h(ps(x')) =
h(pa(x)) = y. Therefore
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(11) there exists P C D* such that P ~ D" andg = (fog)|P : P — I  isan
onto map.

By (11) and Fact 2 we can find a closed ' C P such that F ~ D<" and
@o = @|F is injective. The space F being compact, the map ¢y : F — G =
@o(F) is a homeomorphism. Let K’ = g(F); if go = g|F and fo = f|K’ then
Jfo o go = ¢o and hence g is a homeomorphism by Fact 2 of S.337. Thus K’ C K
is homeomorphic to F' =~ D" and Fact 3 is proved.

Fact 4. For any space Z if K C C,(Z) is a dyadic space then w(K) < I(Z).

Proof. Assume for a contradiction that w(K) > k = [(Z). By Fact 3 there is
K’ C K with K’ ~ D*" . Ttis easy to see that w(k ™ + 1) = «T; besides, kT + 1 is
a scattered compact space by Fact 4 of U.074; so it is zero-dimensional (see SFFS-
129 and SFFS-305). Therefore k* + 1 embeds in D"Jr; so there is a closed F C K’
such that F ~ x* + 1 (see SFFS-303).

Forany z € Z let (z)(f) = f(z) forevery f € F.Theng : Z — C,(F) is
a continuous map; let Z' = ¢(Z). It is easy to see that Z’ separates the points of
F and we have [(Z') < I(Z) = k. However, every subspace of C,(x™ + 1) that
separates the points of kT +1 must have the Lindeléf number > k™t by Problem 085.
This contradiction shows that w(K) < «, i.e., Fact 4 is proved.

Fact5. Givenaspace Z and P C C,(Z) let ¢(z)(f) = f(z) forany z € Z and
S € P.Then ¢(z) € Cp(P) foranyz € Z and ¢ : Z — C,(P) is a continuous
map; let Z' = ¢(Z).If * : C,(Z') — C,(Z) is the dual map, i.e., ™ (f) = fop
forany f € C,(Z’) then P C ¢*(C,(Z")).

Proof. It was proved in TFS-166 that ¢(z) € C,(P) forany z € Z and ¢ is a
continuous map; so we only have to establish that P C @ = ¢*(C,(Z")). To do
so, take any g € P;if 7/ € Z’ then7 = ¢(z) forsome z € Z; let () = g(z). We
have to show that this definition is consistent, i.e., for any y € Z if ¢(y) = 7’ then
g(y) = g@).

Indeed, if (y) = 7 = ¢(z) then ¢(y)(h) = ¢(z)(h) for any h € P which
implies that £(y) = h(z) for any & € P and, in particular, g(y) = g(z); so our
function f : Z' — R is well defined. Next observe that f € C,(Z’) because
f(@) =72 (g) forany 7 € Z' (recall that Z' C C,(P)); so f is continuous on Z’
by TFS-166.

Finally, note that 9*(/)(z) = (f 2 ¢)(z) = f(¢(2)) = g(z) for any z € Z by
the definition of f; so g = ¢*(f) € ®. We proved that g € @ for an arbitrary
g € P,ie., P C @ and hence Fact 5 is proved.

Returning to our solution observe that [(Z) < nw(Z) for any space Z; so we
have [(Y) < nw(Y). To convince ourselves that nw(Y) <« = [(Y) let p(x)(f) =
f(x)forany x € X and f € Y;theng : X — C,(Y) is a continuous map (see
TFS-166). The space X' = ¢(X) C C,(Y) is dyadic; so w(X’) < I[(Y) = « by
Fact 4.
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The dual map ¢* : C,,(X’) — C,(X) definedby ¢*(f) = f og for any function
f € Cp(X’) embeds Cp,(X’) in Cp(X) (see TFS-163) and ¥ C ¢*(C,(X")) by
Fact 5. Therefore

nw(Y) < nw(e*(Cp(X"))) = nw(Cp(X")) = nw(X') <w(X') <«

so our solution is complete.

U.087. Prove that, if X is a dyadic space and C,(X) has a dense Lindelof subspace
then X is metrizable.

Solution. If Y C C,(X)isdenseand /[(Y) <wthend(Y) <nw(Y)=IY) < w
by Problem 086. If D is a countable dense subset of ¥ then D is also dense in
C,(X);s0d(Cp(X)) = w and hence X can be condensed onto a second countable
space by TFS-174. Every condensation of a compact space is a homeomorphism; so
w(X) < w and hence X is metrizable.

U.088. Given a space X suppose that K C C,(X) is a compact space of
uncountable tightness. Show that there exists a closed X1 C X such that Cp(X)
contains a compact subspace of weight and tightness w;.

Solution. Given a function f € C,(X), a finite set F C X and a number ¢ > 0 let
O(f.F.e) ={g € Cp(X) : | f(x) — g(x)| < eforall x € F}.Itis clear that the
family {O(f, F,¢) : F is a finite subset of X and ¢ > 0} is a local base at the point
S in Cp(X).

Since ¢ (K) > w, there is a free sequence S = {f, : « < w1} C K (see TFS-
328). The space K being compact, we can find a complete accumulation point f
for the set S (this means that |U N S| = w, forany U € t(f, K), see TFS-118). If
Sy =1{fs:B <a}thenS,NS\S, =@;s0 f ¢ S, forany @ < w;. Thus, for any
o < w there is a finite set F, C X and &, > 0 such that O(f, Ky, &4) N Sy = 0.

The set Y = | J{Ky : @ < @} has cardinality at most w; so X| = Y has density
< w; and therefore C,(X) condenses onto a space of weight < w; (see TFS-173).
If r : Cp(X) = Cp(Xy) is the restriction map then K| = m(K) is a compact
subspace of C,(X1) which implies that w(K) = iw(K) < iw(Cp(X1)) < wi.

Let go = m(fy) forevery o < w3 if T = {go : @ < w1} = 7 (S) then, by
continuity of s, the function g = m(f) belongs to the closure of 7. If G C T
is countable then there is @ < w; suchthat G C T, = {gg : B < a} = 7(Sy).
The map 7 is open by TFS-152; so U, = w(O(f, Kq,&)) is open in C,(X1).
Since K, C X, we have n_l(Ua) = 0, = O(f, Ky, &y) and it follows from
0O, NSy = @ that Uy, N w(S,) = @. Therefore U, is an open neighbourhood of g
which does not meet 7, i.e., g ¢ T, and hence g ¢ G.

Thus ¢ € T C K, is a function which is not in the closure of any countable
G C T,ie., t(K;) > w and therefore K; C C,(X}) is a compact space such that
1(K1) = w(K) = w.

U.089. Prove that PFA implies that, for any Lindeldf space X and any compact
K C Cy(X), we have t(K) < w.
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Solution. Recall that our use of PFA is restricted to applying its topological
consequences. This time the relevant consequence says: “for any compact space
K with t(K) = w(K) = w, the space w; + 1 embeds in K.

Fact 1. If k is an uncountable regular cardinal and Z is a space such that /(Z) < «
then « + 1 cannot be embedded in C,(Z). In particular, w; 4 1 cannot be embedded
in C,(Z) for a Lindelof space Z.

Proof. Assume that FF C C,(Z), where [(Z) <k and F ~ k + 1. Foranyz € Z
and f € F let p(z)(f) = f(z). Then ¢(z) € C,(F) for any point z € Z and the
map ¢ : Z — C,(F) is continuous (see TFS-166); let Z' = ¢(Z). We have the
inequalities [(Z') < I(Z) < «; since Z’ separates the points of F, we can apply
Problem 085 to conclude that /(Z’) > « thus obtaining a contradiction which proves
Fact 1.

Returning to our solution assume that 7 (K) > o for some compact K C C,(X).
By Problem 088, there exists a closed X; C X such that 1 (K;) = w(K;) = w; for
some compact K; C C,(X1). By PFA, the space w; + 1 embeds in K; and hence
w; + 1 embeds in C,(X;) for a Lindelof space X . This contradiction with Fact 1
shows that #(K) < w and finishes our solution.

U.090. Given a space X and a set A C X denote by t4 the topology on X generated
by the family (X)) U exp(X\A) as a subbase; let X[A] = (X, t4). In other words,
the space X [A] is constructed by declaring isolated all points of X\ A and keeping
the same topology at the points of A. Prove that, for any uncountable Polish space
M and A C M the following conditions are equivalent:

(i) the space (M [A])® is Lindeldf;
(ii) if F is a countable family of finite-to-one continuous maps from the Cantor set
Kto M then (\{f~Y(A) : f € F} # 0;
(iii) if F is a countable family of injective continuous maps from the Cantor set K

to M then \{f~Y(A): f € F} #0.

Deduce from this fact that, for any uncountable Polish space M there is a disjoint
Sfamily {Ay : o < ¢} of subsets of M such that (M [Ay])® is Lindeldf for any o < .

Solution. As usual, we let D° = {@} and D=" = [ J{D' : i < n} forany n < w;
furthermore, D<® = [ J{I' : i < w}. For any element s € D<¢ we denote by [s] the
set {t € D : s C t}. Note first that Z[A] is a Tychonoff space for any Tychonoff Z
by Fact 1 of S.293. If we have two topologies T and p on a set Z then 7 is stronger
than p if T D . If T C p then 7 is said to be weaker than (.

Fact 1. 1If Z is second countable and A C Z then Z[A] embeds in C,(S) for some
o-compact space S.

Proof. If Z\ A is countable then it is easy to see that w(Z[A]) = w so Z[A]
is an Eberlein—Grothendieck space by Problem 034. Now assume that Z\A is
uncountable; for any z € Z\A let y.(y) = 0if y € Z\{z} and y,(z) = 1. It is
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evident that y, € C,(Z[A]) for any z € Z\A. Let u(z) = 0 for every z € Z[A];
then the set K = {y; : z € Z\A} U {u} is compact and u is the unique non-isolated
point of K.

Fix a countable base B in the space Z and let C = {(U,V) €e BxB:U C V}.
By normality of Z, for every ¢ = (U, V) € C there is f;, € C,(Z) for which
Jo(U) C {1} and f,(Z\V) C {0}. It is straightforward that the set S = {f; : g €
C} U K separates the points and the closed subsets of Z[A]; so Z[A] embeds in
C,(S) (see TFS-166). It is evident that S is o-compact; so Fact 1 is proved.

Returning to our solution assume, towards a contradiction, that M4 = (M [A])®
is Lindelof and there is a set F = {f, : n € w} C C(K, M) such that every f,
is a finite-to-one map and (\{ f,'(A) : n € w} = 0. Let B, = f,"!(A) for every
neEw.

It is straightforward that the diagonal A = {s € K” : s(i) = s(j) for any
i,j € w} is closed in the space K”. Observe that A = {d; : s € K} where, for
every s € K, the point d; € K® is defined by ds(n) = s for any n € w. Therefore
|A| = c. Let f =[] F : K® - M be the product of the maps of F (recall that
f is defined by f(s)(n) = f,(s(n)) forany s € K* and n € w). The map f is
continuous (see Fact 1 of S.271); so the set D = f(A) is compact and hence closed
in M ®. The topology of M“ is weaker than the topology of M 4; so D is also closed
in My. Let m, : M® — M be the natural projection of M onto its n-th factor.
For any n € o we have n,(D) = f,(K); since f, is finite-to-one, this implies
|, (D) = | fu(K)| = ¢, s0 |D| > ¢ and, in particular, D is uncountable. From now
on we consider that D carries the topology of the subspace of M.

Take an arbitrary point d € D; there is s € K such that d = f(d;);
since ﬂnew B, = @, there is n € w such that s ¢ B, and therefore
x = fu(s) = m,(d) ¢ A. This shows that x is an isolated point of M[A]; so
W = 7 '(x) N D is an open subset of D. The set E = f,~!'(x) is finite and it
is obvious that W C {f(d;) : t € E}. This proves that every d € D has a finite
open neighbourhood in D, i.e., every d € D is isolated in D. Therefore D is
an uncountable closed discrete subset of M 4; this contradiction with the Lindelof
property of M4 shows that (i)==>(ii).

The implication (ii)==-(iii) being evident let us establish that (iii))=—=(1).
Assume that (iii) holds and M 4 is not Lindelof. There is a o-compact space S such
that M[A] embeds in C,(S) by Fact 1. Consequently, M4 embeds in (C,(S))*
which is homeomorphic to C,(S x w) (see TFS-114). The space S x w is also
o-compact and hence Lindelof X' so we can apply Baturov’s theorem (SFFS-269)
to conclude that [(M4) = ext(M,); this makes it possible to find an uncountable
closed discrete set D C My4.

Observe that every countable subspace of M [A] is second countable; we have
D Cc P = [l,e, (D), so if m,(D) is countable for any n € w then D is
an uncountable closed discrete subspace of the second countable space P which
is a contradiction. Thus we can assume, without loss of generality, that o(D) is
uncountable. Choose a complete metric p on the space M such that p(x,y) < 1
for any x,y € M. Call aset Z C M uniformly uncountable if U € t(M) and
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UNZ # @implies |[U N Z| > w. Every uncountable subset of M contains a
uniformly uncountable subset by Fact 1 of S.343. Using this fact it is easy to prove
by an evident induction that

(*) if m € w, € > 0and Py, ..., P, are uncountable subsets of M then there are
uniformly uncountable sets Py, ..., P,, such that P/ C P;, diam,(P/) < ¢ for
eachi < m and cly (P/) N clM(P]f) = () wheneveri # j.

It is easy to find an uncountable set £y C D such that wy|Ey is an injection.
Apply (%) to find an uncountable £y C E, for which the set G = mo(E)) is
uniformly uncountable. Applying (*) again take uniformly uncountable P’, Q' C
G such that cly (P') Nely (Q') = @. The space clyy (Q) is Polish and uncountable;
so there is a set Ky C cly(Q’) with Ky ~ K (see SFFS-353). Take an uncountable
set Dg C Ey N my'(P’) and let £ (@) = 1. It follows from the choice of P’ and
Q' that cly; (mo(Dyg)) N Ky = @. Assume that n < w and we have defined, for any
i <n,amap& : D' — D, aset K;, C M and a family {Dy : s € D'} with the
following properties:

(1) Dy is an uncountable subset of D for any s € D=",

(2) if s, e D=" and s C ¢ then D, C Dy;

(3) K; ~ Kand K; Ncly (m;(Ds)) = @ foranyi < n and s € D;

@) ifi <n, s €D and & (s) = 0 then |7; (Dy)| = 1;

(5) ifi <n, s €D and & (s) = 1 then 7;| Dy is injective;

(6) if j <nands €D’ then diam,(r; (D)) <27/ foranyi < j;

(7) if j <nands € D/ then cly (; (Dg~0)) N clp (m; (Dg~1)) = @ forany i < j
such that &; (s|i) = 1;

(8) ifi <nand§& (1) # @ then the family {cly (7r; (D;)) : s € & 1(1)} is disjoint.

Call a collection {Dy : s € D"} suitable if there is a map £,4+; : D"T! — D
such that (1)—(2) and (4)—(7) are fulfilled for the family {Dy : s € D=""!} and the
maps {& : i < n + 1}. Itis evident that if a collection { Dy : s € D"!} is suitable
and we choose an uncountable D] C D for any s € D"*! then we obtain a suitable
collection {D/ : s € D"*+1}.

Let us construct first a suitable collection {D; : s € D"}, Fix any s € D"; if
7, +1(Dy) is countable then choose an uncountable Ey C Dy such that 7,4+ (Ep) is
a singleton and let §,41 (s~ j) = 0 forevery j € D.

If & (s|li) = O for all i < n then apply the property () successively to choose
an uncountable E) C E, such that diam,(r;(E})) < 277! forall i < n and let
Dy~g = Dy~ = E|.

Iftheset I = {i < n : &(s|li) = 1} is non-empty then apply (*) again to
successively go over all i < n and over all elements of / to obtain uncountable sets
Eg, E{ C Ey such that diam,(7; (E})) < 27" foralli < nand j € D while
cly (i (Eg)) N cly (i (EY)) = @ foralli € 1. Let Dy~; = E', foreach j € D.

Now, if the set 7,41(Djy) is uncountable then it is easy to choose uncountable
Ey, Ey C Dy such that cly (7,41(Eo)) N clps(7my+1(E1)) = @ and the mapping
wy+1|E; is an injection for every i € D. Let £,4,(s™j) = 1 for every j € D.
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If & (s]i) = Oforalli < n then apply (*) successively to choose, for any j € D, an
uncountable E; C E; such that diam, (7; (E;»)) < 2" lforalli <n 4+ 1andlet
Dy~ = E;

Iftheset I = {i < n : &(s|i) = 1} is non-empty then apply (*) again to
successively gooveralli < n+1 and over all elements of / to obtain, forany j € D,
an uncountable set E; C E; such that diam,(7; (E"})) < 27"l foralli <n+1
while cly (77; (E()) N cly (i (E))) = @ foralli € I. Again, let Dy~; = E; for
every j € D.

It is straightforward that, after we construct the sets Ds~o and Ds~; for all s €
D" we obtain a suitable family {D; : s € D"*!} and the relevant map £, ; let
0 = w1 (ULDs 1 s € D).

If &,41(s) = O forevery s € D"*! then it follows from (4) that the set Q is finite;
so M\ Q is an uncountable Polish space and therefore there is K, +; C M\ Q with
K, +1 ~ K. Itis clear that K, 4+; witnesses the property (3).

Now, if the mapping &, 4+ is not identically zero on D" ! then let {s1, ..., s;} bea
faithful enumeration of the set £} +1(1). Apply (x) to find an uncountable D’ C Dy,
and C; C mu41(Dy,) such that ClM(ﬂn+l(Dbl)) N cly(C) = @. Proceedlng
by an evident induction we can construct uncountable sets C; D ... D Cy and
uncountable D; C Dy for all i < k in such a way that cly (7,+1(Dj;)) N
cly(Ci) = 0 for all i < k. As a consequence, cly (m,+1(Dy,)) N clM(Ck) =40
for all i < k. Since m,+1(Dy) is a singleton for any s € §n+1(0) the set Z =
1 (U{Ds @ 5 € &, Jrl(0)}») is finite which shows that cly (Cx)\Q = cly (Cx)\Z
is an uncountable Polish space.

Apply SFFS-353 once more to find a set K,,+1 C clp (Cy)\ Q such that K, >~
K. It is immediate that, for the function &,4, the set K, +; and the family D' =
{D{ i <kjU{Ds:s€g Jil(O)} all properties (1)—(7) are fulfilled. An evident
application of (x) allows to shrink the elements of D’ to get the property (8) fulfilled
as well.

Therefore our inductive procedure can be continued to construct sequences {&, :
n € w}, {K, :n € o} and a family {D; : s € D<“} such that (1)—(8) are satisfied
foralln < w.

For any s € D let Y;(n) = (\{cly(wa(Dy;)) : i € w} for any n € w; the
properties (2) and (6), together with completeness of M imply that Y;(n) # @ and
|Ys(n)| = 1,1i.e., Ys(n) is a singleton. For any s € D® and n € w take y;(n) € M
such that Y;(n) = {y;(n)}. This defines a point y; € M® for every s € D®.

Let J = {i € o : §'(1) # 0} and observe that J # @ because 0 € J. Given
i€ Jands € W, = &1(1) let fi5(t) = y,(i) forany 1 € D” witht D s. It
follows from the property (7) that f;; : [s] — M is an injective continuous map; let
Ci = Ulls] : s € W;}. To define amap f; : C; — M take any ¢ € C;. There is a
unique s € W; such thatz € [s]; let f;(#) = fis(¢). The property (8) guarantees that
fi is still injective; continuity of f follows from continuity of f;s for any s € W;
and the fact that the family {[s] : s € W;} is clopen and disjoint.

Since the set C; is clopen in K, the set K\ C; is also clopen in K (possibly empty);
let g; : K\C; — K; be an embedding (which exists by (3)). The property (3) also
shows that f;(C;) N K; = @ and therefore the map f; = f; Ug : K - M is
injective.
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Apply (iii) to find a point s € (\{f;,71(A4) :i € J};lets; = s|i foranyi € w.
We claim that y; is an accumulation point of D in the space M 4. To prove it take
any U € t(ys, M4); we can find n € w and Oy, ..., 0, € t(M][A]) such that
ys(i) € O; foranyi < nand O = ﬂ{ni_l(Oi) 11 < n} C U. We can consider
that O; € ©(M) whenever y;(i) € A; so there is k € w such that, for every
i <n,if O; € t(ys(i), M) then B; = {x € M : p(x,y,(i)) < 27%} C O;. Let
m = max{k,n} and take any i < n. There are two possible cases:

a) &(s;) = 1. Thens; € W; which shows thats € f;,71(4) N [s;] = ﬁ;l(A) and
therefore fi5;(s) = ys(i) € A. As a consequence, O; € t(y;(i), M) and hence
B; C O;. Furthermore, y,(i) € cly (m;(D;y,)) and diam(sm; (Dy,,)) < 27" <
2% by (6). This implies 7; (D, ) C B; C O;.

b) & (s;) = 0. Then |r; (Dy, )| = 1 and hence 7; (Ds,,) = {ys(i)} C O;.

We proved that 7;(Dy,) C O; for alli < n and hence D,, C O C U. This
shows that |[U N D| > |Dy, | > w, i.e., every neighbourhood U of the point y; in
M 4 contains uncountably many points of D which is a contradiction with the set
D being closed and discrete in M 4. Thus M 4 is Lindelof and we finally established
that (i) <= (ii) < (iii).

To construct the promised disjoint sets A, observe that the collection C of all
countable families of continuous injective maps from K to M has cardinality c; so
we can choose an enumeration {¥g : B < ¢} of the family C such that every ¥ € C
occurs c-many times in this enumeration, i.e., [{f < ¢ : ¥ = Wg}| = ¢ for any
v el.

Take an arbitrary point x) € K and let A) = {{(xJ) : ¥ € ¥}. Assume that
B < cand we have aset K, = {x}, : « < y} C Kforany y < 8 with the following
property

9) if AL = {Y(x)): ¥ € ¥,} whenevera <y < Band A, = {4} : o« < y} for
every y < f then the family A = [ J{A, : y < B} is disjoint.

Since A}, is a countable set for every y < B and @ < y, we have |A| < |B| - < ¢;
so the set P = | J{y~1(A) : ¢ € W, A € A} has cardinality < ¢ because Wy is
countable and every ¥ € Wy is an injection. This makes it possible to pick a point
xg € K\ P. Now, suppose that y < B and we have a set {x,’f ;o < y} such that
the family B = A U {{W(xg) : Y € ¥gt t a < y}is disjoint. All elements of
B are countable and |B| < ¢;sothe set E = | J{y ' (B) : B € B, y € ¥}
has cardinality < ¢ because every ¥/ € Wy is an injection; take any xf e K\E. It
is evident that we can continue this inductive procedure to construct the set Kg =
{xf o < B} such that (9) still holds for all y < S.

Therefore we can construct the set Kg = {xg :a < B} forany B < cso that (9)
is fulfilled for all y < c¢; let Al = {1//()65) cy e Yglforany B < canda < B. An
immediate consequence of (9) is that the family {Ag 1B < ¢, a < B} is disjoint;
soif Ay = U{Ag o < B < c}forall @ < cthen the family {4, : o < ¢} is also
disjoint.
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To see that the collection {4, : o« < ¢} is as promised fix any & < ¢ and take a
countable family ¥ of continuous injective maps from K to M. There is an ordinal
B > o such that ¥ = ¥y. Therefore 1//()65) e A8 c A, for any ¥ € ¥ and
hence (¢~ 1 (4y) : ¥ € ¥} D ﬂ{l//_l(Ag) Y o€ Wg > x5 which shows
that ({¥ 1 (4a) : ¥ € ¥} # 0 for any ¥ € C and hence (M [4,])® is Lindelsf
by (i) <= (iii). Since @ < ¢ was chosen arbitrarily, we proved that (M [A4,])® is
Lindeldf for any @ < ¢ and hence our solution is complete.

U.091. Given a space X and a set A C X denote by t4 the topology on X generated
by the family T(X) Uexp(X\A) as a subbase; let X[A] = (X, t4). Prove that, if M
is a Polish space, A C M and n € N then the following conditions are equivalent:

(i) the space (M[A])" is Lindelof;
(ii) if F is a family of finite-to-one continuous maps from the Cantor set K to M
and |F| < nthen {f~YA): f € F} #0;
(iii) if F is a family of injective continuous maps from the Cantor set K to M and
|F| < nthen {f~YA): f e F}+#0.
Deduce from this fact that, for any uncountable Polish space M there is a disjoint
family {Ay : o < ¢} of subsets of M such that for every o < ¢ the space (M [Aq])*
is Lindeldf for any k € N while (M [Ay])® is not Lindelof.

Solution. As usual, we let D° = {@} and D=F = ( J{D' : i < k} forany k < w;
furthermore, D<¢ = [ J{' : i < w}. Observe also that Z[A] is a Tychonoff space
for any Tychonoff Z by Fact 1 of S.293.

Assume, towards a contradiction, that M4 = (M [A])" is Lindel6f and there is a
set F = {fo,..., fam1} C C(K, M) such that every f; is a finite-to-one map and
{7 (A) :i <n} =0.Let B = f1(A) forevery i < n.Itis straightforward
that the diagonal A = {s € K" : s(i) = s(j) forany i, j < n} is closed in K".
Observe that A = {d; : s € K} where, for every s € K, the point d; € K" is defined
by ds(i) = s for any i < n. Therefore |[A| = ¢. Let f = [[F : K" — M" be
the product of the maps of F (recall that f is defined by f(s)(i) = fi(s(i)) for
any s € K" and i < n). The map f is continuous (see Fact 1 of S.271); so the set
D = f(A) is compact and hence closed in M". The topology of M" is weaker than
the topology of M 4; so D is also closed in M 4. Forany i < nletmw; : M" - M
be the natural projection of M onto its i-th factor; then m; (D) = f;(K); since f;
is finite-to-one, this implies |7; (D)| = | f; (K)| = ¢; so |D| > c¢ and, in particular,
D is uncountable. From now on we consider that D carries the topology of the
subspace of M 4.

Take an arbitrary point d € D; there is s € K such that d = f(d;);
since ();,_,Bi = @, there is i < n such that s ¢ B; and therefore
x = fi(s) =m;(d) ¢ A. This shows that x is an isolated point of M[A]; so
W = n7!'(x) N D is an open subset of D. The set E = f;~!(x) is finite and
it is obvious that W C {f(d;) : t € E}. This proves that every d € D has a
finite open neighbourhood in D, i.e., every d € D is isolated in D. Therefore D is
an uncountable closed discrete subset of M 4; this contradiction with the Lindelof
property of M4 shows that (i)==>(ii).
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The implication (ii)==>(iii) being evident let us establish that (iii))=—=(i).
Assume that (iii) holds and M, is not Lindelof. There is a o-compact space S
such that M [A] embeds in C,(S) by Fact 1 of U.090. Consequently, M4 embeds in
(C,(S))" which is homeomorphic to C,(S x n) (see TFS-114). The space S x n
is also o-compact and hence Lindelof ¥ so we can apply Baturov’s theorem
(SFFS-269) to conclude that [(M4) = ext(M,); this makes it possible to find an
uncountable closed discrete set D C M 4. Therefore it suffices to prove by induction
on n that, if (iii) holds then ext(M,) < w.

If n = 1 and D is an uncountable closed discrete subset of M4 = M[A] then
D N A is countable because w(A) = w; so we can consider that D C M\ A.
Therefore U = M\D € t(M[A]) and A C U. This implies that there is V € t(M)
such that A C V C U and therefore cly (D) N A = @. The space H = cly (D)
is Polish and uncountable; so there is an injective map f : K — M such that
f(K) C H (see SFFS-353). Since f~!(A4) = @, we obtained a contradiction which
proves (iii)==(i) forn = 1.

Now assume that (iii)==(i) is proved for any n < m, the property (iii) holds
while M4 = (M[A])™ is not Lindelof and hence there is an uncountable closed
discrete D C M 4. Note first that the property (iii) also holds for all n < m and
hence (M [A])" is Lindelof for any n < m. This implies that

(1) for any uncountable D’ C D the set 7; (D’) is uncountable for any i < m,

for otherwise there is x € M and i < m such that 77 !(x) N D is uncountable;
since 77, !(x) ~ (M[A])™"", the extent of (M [A])"~! is uncountable which is a
contradiction.

Now it is easy to choose, using (1), a sequence Dy D ... D D,,—; of uncountable
subsets of D such that m;|D; is injective for any i < m. It is clear that ;| D,—;
is injective for all i < m; so we can assume, without loss of generality, that D =
Dy, i.e., m;| D is injective for any i < m.

Choose a complete metric p on the space M such that p(x,y) < 1 for any
points x,y € M. Call a set Z C M uniformly uncountable if U € t(M) and
UNZ # ¢ implies |[U N Z| > w. Every uncountable subset of M contains a
uniformly uncountable subset by Fact 1 of S.343. Using this fact it is easy to prove
by an evident induction that

(*) ifl € w, € > 0and Py, ..., P; are uncountable subsets of M then there are
uniformly uncountable sets Py, ..., P/ such that P/ C P;, diam,(P/) < ¢ for
eachi </ and cly (P/) N clM(P]’.) = () wheneveri # j.

Let Dy = D and assume that k¥ < @ and we have defined, for any i < k, a
family {D; : s € D'} with the following properties:

(2) Dy is an uncountable subset of D for any s € D=k,

(3) ifs,t e D= and s C ¢ then D, C D;;

(4) if j <k and s € D/ then diam,(r;(Dy)) <27/ forany i < m;

(5) the family {cly (7r;(D;)) : s € D/} is disjoint for any i < m and j < k.
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Fix any s € D and apply the property (*) to successively go over all i < m to
obtain uncountable sets Eq, E; C Dj such that cly; (7; (Ep)) N clps (i (Ey)) = @
while diam,(; (E;)) < 27%!foralli < mand j € D. Let Dy~; = E; for each
j €D.

After we construct the sets Ds~¢ and Ds~; for all s € DF, we obtain a family
{Dy : s € D1} with the properties (2)—(5) and hence our inductive procedure can
be continued to construct a family {D; : s € D<*} such that (2)—(5) are satisfied for
all k < w.

For any s € D let Y,(j) = ({cly(w; (Dy);)) 1 i € w} forany j < m; the
properties (3) and (4), together with completeness of M imply that Ys(j) # @ and
|Y;(j)| = 1,ie., Y;(j) is a singleton. For any s € D and j < m take y;(j) € M
such that Ys(j) = {ys(j)}. This defines a point y; € M™ for every s € D“. Let
fi(s) = ys(i) forany s € Kandi < m.]It follows from (4) and (5) that f; : K — M
is an injective continuous map for any i < m.

Apply (iii) to find a point s € ﬂ{fj_l(A) : j < m};lets; = s|i for any
i € w. We claim that y; is an accumulation point of the set D in the space M 4.
To prove it take any U € t(ys, M4); we can find Oy, ..., Oy—; € T(M][A]) such
that y,(j) € O; forany j < mand O = [[{O; : i < m} C U. Besides,
ys(j) = fj(s) € Aforany j < m and therefore the set O; is a neighbourhood of
the point y(j) in the space M . Consequently, we can choose a number k € w such
that, for every i < m we have B; = {x € M : p(x, y;(i)) <27} C O;.

Fix any i < m; it follows from y, (i) € cly (7r; (Dy,)) and diam(r; (D, )) < 27%
(see (4)) that ;(Ds,) C B; C O; and therefore m;(Dy, ) C O; forall i <m
which shows that D, € O C U. Thus |U N D| > |Dy| > o, ie., every
neighbourhood U of the point y; in M4 contains uncountably many points of D
which is a contradiction with the set D being closed and discrete in M 4. Thus M 4
is Lindelof and we finally established that (i) <= (ii) <= (iii).

To construct the promised disjoint sets A, observe that the collection C of all
finite families of continuous injective maps from K to M has cardinality ¢; so we
can choose an enumeration {¥g : B < c} of the family C such that every ¥ € C
occurs c-many times in this enumeration, i.e., [{f < ¢ : ¥ = Wg}| = ¢ for any
v el.

Fix a sequence F = {f, : n € w} of injective continuous maps of K to M such
that the family { f,, (K) : n € w} is disjoint (such a family exists because M contains
a Cantor set K by SFFS-353 and K ~ K x K). For any sets ® C C, P C K and
0 C Mlet &(P) = Ulp(P) : ¢ € ®} and 27(Q) = Ule™'(Q) : ¢ € B}
Let < be the lexicographic order on ¢ X ¢, i.e., (&, B) < (o, 8') if either @ < o’ or
a=caand 8 < f'.

Take an arbitrary point x) € K and let 45 = {y/(x)) : ¥ € ¥J}. Assume that
B < cand we have aset K, = {x : @ < y} C Kforany y < 8 with the following
properties

(6) if Ay ={Y(x)): ¢ € ¥} whenevera <y < fand A, = {4} : a < y} for
every y < f then the family A = (J{A, : y < B} is disjoint.
(7) ifa <y < Bthenx] ¢ ¥, (F(F~'(41))) forany (. &) < (y.@).
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Since A} is finite for every y < B and « < y, we have |A|] < |B] -
@ < ¢ so both sets P = J{y~'(A) : ¢y € ¥, A € A} and
P = U{lIIﬂ_I(F(F_l(Ag))) :a <y < B} have cardinality < ¢ because the set
F is countable and ¥y is finite while every ¥ € Wy is an injection. This makes it
possible to pick a point xg € K\(P U P’). Now, suppose that y < 8 and we have
a set {xa o < y} such that the family B = A4 U {{Iﬁ(x )Y el ia <ylis
disjoint and x% ¢ ' YWF(F~ 1(Aﬁ,))) U (P U P')foranya’ < a.

All elements of the family B are finite and |B| < ¢ so the set E = [ J{y~(B) :
B € B, ¥ € Wg} has cardinality < ¢ because every ¥ € ¥y is an injection. The
same is true for the set £/ = U{lI/ﬁ_l(F(F_l(Af,))) ta’ < a}; so we can take a

point x)’? € K\(E U E’). It is evident that we can continue this inductive procedure
to construct the set Kg = {x,’f ;o < 8} such that (6) and (7) still hold for all y < 8.

Therefore we can construct the set K,g = {xa a < B} forany B < c; so that
(6)—(7) are fulfilled for all y < c; let A = {w(x ): ¥ € llfﬁ} for any B < ¢ and
a < B. An immediate consequence of (6) is that the family {Aa B <c, a<PB}is
disjoint; so if 4, = U{Ag ta < B < c}forall o < cthen the family {4, : o« < ¢}
is also disjoint.

To see that the collection {4, : o < ¢} is as promised fix @ < ¢ and take any
k € N. Let ¥ be family of continuous injective maps from K to M with |¥| < k.
There is an ordinal 8 > « such that ¥ = W¥g. Therefore W(xf ) € A8 ¢ A, for
any ¥ € W and hence (\{¥'(4s) : ¥ € ¥} D Ny~ '(45) : v € e xb
which shows that ({Y~'(4,) : ¥ € ¥} # @ and hence (M [A,])* is Lindelsf
by (i) <= (iii). Since « < ¢ and k € w were chosen arbitrarily, we proved that
(M[Ay))F is Lindelof for any @ < cand k € w.

Finally take any o < ¢; we claim that H = ({f,'(4e) : n € @} =
Indeed, if s € H then f,(s) # fu(s) for distinct m and n because the family
{f2(K) : n € w} is disjoint. For any n € w there is f,, > « such that f,(s) € Al
The set { f,(s) : n € w} is infinite and Ag” is finite for any n € w; so there are
m,n € w such that 8, < B,.

We have f,(s) € A2 and hence s € F~'(4P"); so fu(s) € F(F~'(Al)).
On the other hand, f,(s) € Aﬁ " which implies that there is ¢ € Wg, such that
Y(xh") = fu(s) € F(F7'(AL")). Therefore xi" € Wi'(F(F~'(44"))) which
contradicts (7) and shows that H = @; so (M [A,])? is not L1ndelof by Problem 090.
The ordinal o < ¢ was chosen arbitrarily; so we proved that, for any o < ¢ we have
[*(M[Ay]) = w while (M [A,])? is not Lindeldf, i.e., our solution is complete.

U.092. Suppose that P is an sk-directed class of spaces and Y € P. Prove that
if X C C,(Y) and the set of non-isolated points of X is o-compact then C;‘ (X)
belongs to the class Pys.

Solution. Given ¢ > 0, n € N, apoint y € Y" and f,g € C,(Y) we say that
py(f.g) < eif | f(y(i)) —g(y(i))] < eforany i < n.Let X’ be the set of non-
isolated points of the space X. We have X’ = | J{K; : i € N} where the set K;
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is compact for every i € N. For any /,m,n € N consider the set A(l,m,n) =
{9 € [-n,n]* : there exists y € Y" such that |p(f) — ¢(g)] < % whenever
feK, geXandp,(fg) < %}.Let B(l,m) = J{A(,m,n) : n € N} for any
[, m € N; we claim that

(1) CX(X) = N{B(Wm):l,m €N}

By definition, every element of the set A(/,m,n) is a bounded function for any
I,m,n € N. Take an arbitrary ¢ € (\{B(/,m) : [,m € N}; fix any f € X' and
& > 0. There are /,m,n € N such that f € K, % <egand ¢ € A(l,m,n), ie.,
there is a point y € Y" such that p,(f,g) < + implies |¢(f) — ¢(g)| < + < & for
anyg € X.ThesetU ={ge X :p,(fg) < %} is an open neighbourhood of f in
X such that o(U) C (o(f) —&,9(f) + ¢), i.e., U witnesses continuity of ¢ at f.
Thus ¢ is continuous at any point of X’; continuity of ¢ at the isolated points of X
is clear; so ¢ € C;(X) and we proved that B = (\{B(l,m) : [,m € N} C C;(X).

To prove the converse inclusion take any ¢ € C;(X) and fix [,m € N. The
function ¢ being continuous, for every & € K; there is n(h) € N and y(h) € Y"®
such that p, (g, h) < Tlh) implies |@(h) —p(g)] < ﬁ forany g € X.Itis evident
that the set O, = {g € X : pya(h. 8) < #(h)} is an open neighbourhood of /4 in
X; so there is a finite E C X for which K; C |J{O), : h € E}. It is easy see that

(2) there exists anumbern € N and y € Y" such that p(X) C [-n,n], n > 3n(h)
and y(h)(@) € {y(1),...,y(n—1)} forany h € E and i < n.

We claim that ¢ € A(l,m,n). Indeed, take any f € K; and g € X for which

py(f.8) < % There is a function 4 € E such that f € O, and therefore we have

Py (fih) < %(h) It follows from the property (2) that p,(f, &) < % < Tl(h)

and hence py)(g.h) < pyay (8. f) + Py (fh) < 3 - ﬁ < ﬁ which implies,

by our choice of n(h) and y (), that |p(g) — ¢(h)| < ﬁ and |p(f) —o(h)| < ﬁ
whence [¢(f) — ¢(g)| < ;.

The functions f € K; and g € X with p,(f,g) < % were chosen arbitrarily;
so y € Y" witnesses that |¢(f) — ¢(g)| < % forany f € K; and g € X with
py(f.8) < nl, i.e.,, ¢ € A(l,m,n). Since the choice of [, m € N was also arbitrary,
we showed that ¢ € B and hence C ;‘ (X) C B; so the equality (1) is proved.

For any numbers /,m,n € N consider the set Q(I,m,n) = {(¢.y) € [-n,n]¥ x
Y lo(f) —e(g)] < % whenever f € K;, g € X and p,(f,g) < %}. We will
establish that the set Q(/,m, n) is closed in the space [-n,n]¥ x Y". To do it, take
an arbitrary point w = (¢,y) € ([-n,n]¥ x Y")\Q(l,m,n). There are f € K;
and g € X such that p,(f, g) < % while |p(f) — ¢(g)] > % Observe that the set
O, = {y € [-n,n]* : |¥(f) —¥(g)| > %} is an open neighbourhood of ¢ in
[—n,n]¥ whileU, = {z€ Y": p.(f.g) < %} is an open neighbourhood of y in Y.
It is immediate that W = O, x U, is an open neighbourhood of w in [—n, nX xy”"
such that W N Q(I,m,n) = @. Thus we proved that

(3) the set Q(I,m,n) is closed in [-n,n]X x Y" forany [,m,n € N.
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Let 77 : [-n,n]X xY" — [—n,n]* be the natural projection. It is straightforward
that 7 (Q(I,m,n)) = A(l,m,n) foranyl,m,n € N. The class P being sk-directed,
the set Q(I/,m,n) belongs to P and hence A(/,m,n) also belongs to P for any
I,m.n € N. Thus B(l,m) belongs to Py; so it follows from (1) that C 7 (X)) belongs
to P,s and hence our solution is complete.

U.093. Prove that there exist separable, scattered o-compact spaces X and Y such
that both (C (X)) and (C,(Y))® are Lindelof while C,(X)x C,(Y) is not normal
and contains a closed discrete set of cardinality c.

Solution. Denote by J the set (—1,1) with the topology induced from the real
line R. If Z and T are arbitrary spaces, a multi-valued map ¢ : Z — exp T is often
denotedas ¢ : Z — T; givensets A C Z and B C T let p(A4) = | J{p(z) : z € A}
and 9~ !(B) = {z€ Z : ¢(2) C B}.

If Z is a space and A C Z then Z[A] is the set Z with the topology generated
by the family t(Z) U exp(Z\ A) as a subbase. In other words, the topology of Z[A]
is the same as in Z at all points of A while the points of Z\ A4 are isolated in Z[A].

Fact 1. If Z is a o-compact space then there exists a K,s-space C such that
C,(Z,J)cCcCJ?

Proof. We have Z = | J{K,, : n € N} where the set K, is compact for any n € N.
For technical purposes let a,, = 1 — m+—1 for any m € N; given m,n € N the set
K(m.,n) ={f €1 : f(K,) C [~am.an]} is compact being closed in 1. The set
C(n) = U{K(m,n) : m € N} is o-compact foranyn € N;s0 C = ({{C(n) :n €
N} is Kys.

Givenany f € Cp,(Z,J) andn € Nthe set f(K,) C J is compact; so there is
m € N for which f(K,) C [—au,anl, i.e., f € K(m,n). Therefore f € C(n) for
any n € N, and hence f € (\{C(n) : n € N} = C; the function /' € C,(Z,J)
was chosen arbitrarily, so we proved that C,(Z, J) C C.

Now if f € C then take any z € Z; there is n € N such that z € K,,. It follows
from f € C(n) that f(K,) C [—am,au] C J forsomem € Nandhence f(z) € J.
This shows that f(z) € J forany z € Z and hence f € JZ. Since f € C was
chosen arbitrarily, we have C,(Z,J) C C C J Z.soFact | is proved.

Fact 2. Suppose that ¢, : E; — M, is a compact-valued upper semicontinuous
onto map forany r € T. Let E = [[,ey E;. M = [],ey M; and define a multi-

valued map ¢ = [[,er ¢ 1 E = M by ¢(x) = [[,er ¢:(x()) for any x € E.
Then ¢ : E — M is a compact-valued upper semicontinuous onto map.

Proof. Let m; : E — E, be the natural projection for any ¢ € T. It is evident that
@(x) is compact for any x € E.If y € M then, forany ¢ € T there is x, € E, such
that y(¢) € ¢,(x;). Letting x(t) = x; for any t € T we obtain a point x € E such
that y € ¢(x); this shows that the map ¢ is onto.

To see that the map ¢ is upper semicontinuous fix x € E and U € t(¢(x), M).
By Fact 3 of S.271 there exists a set V = [[,c7 Vi € t©(M) such that the set
S =supp(V) ={t € T : V; # M,} is finite and ¢(x) C V C U. We have
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@:(x(t)) C V; forany ¢t € S; so thereis O; € t(x(¢), E;) such that ¢,(O;) C V;.
The set O = (\{n;'(O;) : t € S} is open in E and it is straightforward that
¢(0) C V C U which proves that the map ¢ is upper semicontinuous at the
point x. Consequently, ¢ is upper semicontinuous by Fact 1 of T.346 and hence
Fact 2 is proved.

Fact 3. If Z* is Lindelof then Z“ x T is also Lindelof for any K-analytic space T .

Proof. Let us establish first that Z“ x P is Lindel6f. If Z is countably compact then
it is compact; so Z“ x [P Lindelof by Fact 2 of T.490. If Z is not countably compact
then w embeds in Z as a closed subspace. Therefore Z“ x w® >~ (Z x w)® embeds
as a closed subspace in (Z x Z)® ~ Z“ which shows that Z” x P embeds as a
closed subspace in Z“; so Z x P is Lindelof.

There exists a compact-valued upper semicontinuous onto map ¢ : P — T (see
SFFS-388). Define a multi-valued map ¢ : Z® x P — Z® x T by ¥ (z,t) = {z} X
@(t) for any (z,t) € Z“ x T. Since any continuous map is upper semicontinuous,
the mapping ¥ is a product of compact-valued upper semicontinuous onto maps; so
Y is also a compact-valued upper semicontinuous onto map by Fact 2. Therefore
I(Z? xT) < I(Z? x P) < w (see SFFS-240). Fact 3 is proved.

Fact4. 1f Z% is Lindelof and T C C,(Z) is o-compact then (C,(T))“ is also
Lindelof.

Proof. Given spaces G and H the expression G > H abbreviates the phrase “G
maps continuously onto H”. Denote by P the class of spaces E such that there is
a compact space K and a closed subset Fr of the space Z x Kg x P such that
Fp > E.If E € Pand E > E’then Fr > E’ and hence E’ € P. It is evident
that the irrationals and all compact spaces are in P and E € P implies ' € P for
any closed F C E.

Now, if E,, € P for any numbern € w then F = ]_[new F, is a closed subspace
of [[{Z® x Kg, xP: n € w} so, for the compact space K = [[{KE, : n € w}, the
space F embeds in Z¢ x K xP? ~ Z“ x K x P as a closed subspace. It is clear that
F> ]_[new E,, and therefore E = ]_[new E, € P.Since E > E, foreveryn € w,
we have £ x w > @newEn' Since E xP € Pand E x P > E X w, we have
E x @ € P and therefore @n co En € P. An evident consequence is that P, = P.
The class P being invariant under countable products and closed subspaces, we have
Ps = P (see Fact 7 of S.271).

Furthermore, Z® x K x P is Lindel6f for any compact space K by Fact 3. An
immediate consequence is that every E € P is Lindelof; since E¢ € P as well, the
space E® is Lindelof for any E € P.

We showed, in particular, the class P is sk-directed; so we can apply Prob-
lem 092 to conclude that C;(T) belongs to Pys = P. The set C, (T, I) is closed in
Cp*(T); so Cp(T,I) also belongs to P. It follows from Fact 1 that there is a K-
space C such that C,(T, J) C C C JT . 1tisevidentthat C NC,(T,1) = C,(T, J);
so C,(T, J) is homeomorphic to a closed subspace of C x C,(T,I) (we used
again Fact 7 of S.271). Thus (C, (T, J))® is homeomorphic to a closed subspace of
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C?x(C,(T,1))?; since C“ is K-analytic, we can apply Fact 3 again to conclude that
C? x (Cp(T,I))“ is Lindelof and hence (C,(T))” ~ (C,(T, J))“ is also Lindelof.
Fact 4 is proved.

Fact 5. Let M be an uncountable Polish space. Suppose that A, B C M are disjoint
sets such that (M [A])® and (M [B])® are Lindel6f. Then M [A]x M [ B] is not normal
and ext(M[A] x M[B]) = c.

Proof. It follows from Problem 091 that M [A] is Lindelof if and only if, for every
K C M such that K ~ K, we have K N A # @. Since M is uncountable, we can
find a set K C M with K ~ K and hence K ~ K x K which shows that we can
consider that K x K C M and hence K = {K x {x} : x € K} is a family of c-many
disjoint copies of Kin M. If |[A| < cor |B| < ¢ then A (or B respectively) cannot
intersect all elements of /C. Thus |A| = |B| = «¢.

Letwq: M = M[A] x M[B] — M[A] and g : M — M B] be the respective
natural projections. The set D = {(x,x) : x € B} has cardinality c; besides, for
any z = (x,x) € D the point x = m4(z) belongs to M\A, i.e., x is isolated in
M [A]. The map 4|D : D — M][A] being continuous and injective, every z € D
is isolated in D, i.e., D is a discrete subspace of M.

Observe next that the diagonal A = {(x,x) : x € M}isclosedin M x M and
hence in M because the topology of M is stronger than ©(M x M). The set B is
closedin M [B]and D = n5'(B)N A; so the set D is also closed in M . This proves
that ext (M [A] x M[B]) = «¢.

If M [A]x M [B] is normal then there is O € 7(D, M) such that O N n;l(A) =0
(the bar denotes the closure in M ). Fix a countable base B in the space M . Since the
family B contains local bases at all points of B in the space M [B], for every x € B
there is U, € Bsuchthat x € U, and {x} x U, C O.

There is an uncountable set B’ C B and U € B such that U, = U for any
x € B'.Fix apointz € U and observe that P = B’ x {z} C O.Theset B' C M\ A
is discrete as a subspace of M [A]; so it cannot be closed in M [A]. Therefore there
isapoint y € A for which y € cly4(B’). Itis immediate thatt = (y,z) € cl; (P)
which shows that t € O N n;l(A) = {J. The obtained contradiction shows that
M [A] x M[B] is not normal; so Fact 5 is proved.

Returning to our solution take disjoint sets A, B C I = [0, 1] such that both
spaces (/[A])® and (/[B])® are Lindelof (see Problem 090). Fix some countable
base B in [ such that U # @ forany U € BandletC = {(U,V) € Bx B :
U C V). By normality of 1, for any ¢ = (U, V) € C, we can choose a function
Jq € Cp(I) such that f,(U) C {1} and f,(/\V) C {0}. It is evident that the set
S = {f4 - q € C} separates the points and closed subsets of /.

For any point x € [ let uy(y) = 0 forany y € I\{x} and u,(x) = 1; denote
by u the function which is identically zero on the set /. It is easy to see that the set
Ka = {u, : x € I\A} U {u} is compact and K4 C C,(I[A]); besides, K4 U §
separates the points and closed subsets of /[A] and K 4N S = §. Choose a countable
S” € C,(I)\{u} which is dense in C,(I) and let S = S U S”; it is evident that
KsiNS =20
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Analogously, K = {u, : x € I\B} U {u} is compact, Kz C C,(I/[B]) and
Kp US separates the points and closed subsets of /[B] while Kz NS = @. Observe
also that u is the unique non-isolated point of both K4 and K. Our promised spaces
are X = (K4 U S)[K4] and Y = (Kp U S)[K3]. In other words, we declare the
points of S isolated,; if this is done in K 4U .S then we obtain X . Doing thisin KgUS
we obtain Y.

It is an easy exercise that the spaces X and Y are o-compact and scattered.
Furthermore, S is a countable dense set of isolated points of both X and Y while
K4 = X\S and Kp = Y\S are uncountable compact spaces with a unique non-
isolated point. Let us show next that

(1) I[A] embeds in C,(X) as a closed subspace and /[B] embeds as a closed
subspace in C,(Y).

Of course, the proofs for /[A] and I [B] are analogous; so let us establish (1) for
I[A]. For any x € I let ¢,(f) = f(x) forany f € §. Then ¢, € C,(S) and
the map ¢ : I — C,(S) defined by ¢(x) = ¢, for any x € I is continuous (see
TFS-166). Since S separates the points and closed subsets of I, the map ¢ is an
embedding; let I’ = (1) C C,(S).

Analogously, let ¥ (f) = f(x) forany f € K4 U S and x € I. Define a map
Y I[A] = Cp(K4 U S) by y(x) = ¥, forany x € /; then ¥ is an embedding
because K4 U S C C,(/[A]) separates the points and closed subsets of /[A]. Let
Iy = Y (I[A]); observe that X has the underlying set K4US but the topology of X is
stronger; so [o C C,(K4US) C Cp(X).If S" is the set S with the discrete topology
then S’ is a subspace of X; since 7(S) C 7(S’), we have I’ C C,(S) C C,(S).

Let w(f) = f|S’ for any function /' € C,(X). This gives us the restriction
map 7 : Cp(X) - Z = n(Cp(X)) C Cp(S’) which is continuous and injective
because S’ is dense in X. It is easy to check that 7(¥,) = ¢, forany x € I and
therefore (1y) = I’; the set I is closed in Z being compact, so Iy = 7~ '(I’) is
closed in C,(X). Since Iy is homeomorphic to /[A], the property (1) is proved.

Forany s € S letry(s) = 1 and ry(x) = O forall x € (K4 U S)\{s}. Itis evident
that ry € Cp(X) forany s € §;let w(x) = 0 forany x € K4 U S. It is evident that
the set L = {w} U {r; : s € S} is compact. Besides, Iy U L generates the topology
of X (see TFS-166); so X embeds in C,(Iop U L). Since Iy ~ I[A] and |L| < w,
the space Iy U L is a continuous image of the space /[A] x w; so (Ip U L)® is a
continuous image of (/[A] x w)® =~ (I[A])® x w® which is Lindel6f by Fact 3.
Therefore (C,(X))* is also Lindelof by Fact 4. Repeating the same reasoning for
Kp U S we conclude that (C,(Y))® is Lindelof as well. It follows from (1) that
I[A] x I[B] embeds in C,(X) x C,(Y) as a closed subspace which implies that
ext(Cp(X) x Cp(Y)) = cand C,(X) x C,(Y) is not normal (see Fact 5); so our
solution is complete.

U.094. Show that there is a separable scattered o-compact space X and a countable
space M such that (C,(X))“ is Lindeldf while ext(C,(X) x C,(M)) = ¢ and the
space C,(X) x C,(M) is not normal.
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Solution. If Z is a space and A C Z then Z[A] is the set Z with the topology
generated by the family 7(Z)Uexp(Z\ A) as a subbase. In other words, the topology
of Z[A] is the same as in Z at all points of A while the points of Z\ A4 are isolated
in Z[A].

Fact 1. For any second countable space Z there is a countable space T such that Z
embeds in C,(T") as a closed subspace.

Proof. Forany B C C,(Z)let P(B) ={f1-...- fu:n €N, f; € Bforalli <n}
and ABB)={fi+...+ fu:neN, f; € P(B) foralli < n}. Fix a countable
base B in the space Z and let C = {(U,V) € B x B : clz(U) C V}. By normality
of the space Z, forany u = (U, V') € C there is a function f,, € C,(Z) such that
Su(U) C {1} and f,.(Z\V) C {0}. For any point ¢ € Q let u,(z) = g for every
ze Z. Theset S = {u, :q € QU {f, : u € C} C Cp(Z) is countable and hence
sois the set M = A(S).

Forany z € Z let ¢,(f) = f(z) forany f € M. Themap¢ : Z — C,(M)
defined by ¢(z) = ¢, forall z € Z is an embedding because M separates the points
and closed subsets of Z (see TFS-166). Thus it suffices to show that Z’ = ¢(Z) is
closed in C,(M). We have &(ug) = Oforany £ € Z';50 Z' C F = {£ € C,(M) :
&(up) = 0} (the bar denotes the closure in C,(M )). Since F is closed in C, (M), it
suffices to show that £ ¢ Z' forany £ € F\Z’

To do it, take an arbitrary £ € F\Z’; since £ is continuous at the point uy € M
there are z;,...,2, € Z and ¢ > O such that £(f) € (—%, %) for any f € M such
that | f(z;)| < e foralli < n. In particular,

(1) if f € M and f(z;) = Oforalli <nthen&(f) € (—1.1).

Since & ¢ {z1,...,2.},itiseasyto find Uy, ..., U,, V1,...,V, € Bsuchthat& ¢
(U{o(V:) 1 i < n}, the family {V; : i < n}isdisjointandz; € U; C clz(U;) C V;
forall i < n. Therefore ; = (U;, V;) € C and hence g; = f,,, € S foralli <n.

Let V.= J{V; : i < n}; for the function h = [[/_,(u1 — g;) € M we have
h(zi) = Oforalli < n and h(z) = 1 for any z € Z\V. This shows that, for any
z € Z\V we have ¢(z)(h) = h(z) = 1 whereas (1) implies that £(h) € (—%,%
because /i(z;) = O for all i < n. Consequently, §¢ ¢ ¢(Z\V) which shows that
£ ¢ Z'. Thus Z' is closed in C,(M) and Fact 1 is proved.

Fact 2. Let Z be an uncountable Polish space. If A C Z, the set Z\A has
cardinality ¢ and Z[A] is Lindel6f then Z[A] x (Z\ A) is not normal and ext (Z[A] x
(Z\A)) = c (in this product the set Z\ A is considered with the second countable
topology induced from Z).

Proof. Let my : Z = Z[A] x (Z\A) — Z][A] be natural projection. Since
|Z\A| = ¢, the set D = {(x,x) : x € Z\A} C Z[A] x (Z\A) has cardinality
¢; besides, for any z = (x,x) € D the point x = m4(z) belongs to Z\A4, i.e., x
is isolated in Z[A]. The map w4|D : D — Z[A] being continuous and injective,
every z € D isisolated in D, i.e., D is a discrete subspace of Z.
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Observe next that the diagonal A = {(x,x) : x € Z} isclosed in Z x Z and
hence in Z[A] x Z because the topology of Z[A] x Z is stronger than t(Z x Z).
Therefore D = A N Z is closed in Z. This proves that ext(Z[A] x (Z\A)) = «.

If Z[A]x (Z\ A) is normal then there is O € (D, Z) such that O Nr'(A) =0
(the bar denotes the closure in Z). Fix a countable base B in the space Z\ A. For
every x € Z\ A thereis U, € B such that x € U, and {x} x U, C O.

Since Z\ A is uncountable, there is an uncountable B C Z\ A and U € B such
that U, = U forany x € B. Fix apoint z € U and observe that P = B x {z} C O.
The set B C Z\ A is discrete as a subspace of Z[A]; so it cannot be closed in Z[A]
because Z[A] is Lindelof. Therefore there is y € A for which y € clzp4(B). It is
clear thatt = (y,z) € cl;(P) which shows that? € ONn;'(A) = 0. The obtained
contradiction shows that Z[A] x (Z\ A) is not normal; so Fact 2 is proved.

Returning to our solution take disjoint sets A, B C I = [0, 1] such that
both spaces (/[A])® and (/[B])® are Lindel6f (see Problem 090). It follows from
Problem 091 that 7 [B] is Lindelof if and only if, for every K C I such that K >~ K,
we have K N B # @. Since [ is uncountable, we can find a set K C [ with K ~ K
and hence K ~ K x K which shows that we can consider that K x K C I and hence

= {K x {x} : x € K} is a family of c-many disjoint copies of Kin /. If |B| < ¢
then B cannot intersect all elements of XC. Thus |B| = ¢ and hence |/ \A| = ¢.

Fix some countable base 5 in I such that U # @ for any U € B and let C =
{(U,V) € BxB:U C V}.By normality of I, forany u = (U, V) € C, we can
choose a function f, € C,([) such that f,(U) C {1} and f,(I\V) C {0}. It is
evident that the set § = { Ju ;o € C} separates the points and closed subsets of /.

For any point x € [ let u,(y) = 0 forany y € I\{x} and u,(x) = 1; denote
by u the function which is identically zero on the set /. It is easy to see that the set

= {u, : x € I\A} U {u} is compact and K4 C C,(/[A]); besides, K4 U S
separates the points and closed subsets of /[A] and K 4N S = §. Choose a countable
S” C C,(I)\{u} which is dense in C,(I) and let S = S U S”; it is evident that
K,NS =49

Let X = (K4 U S)[K4]; this means that we declare the points of S isolated and
leave the same topology at all points of K 4. It is an easy exercise that the space X is
o-compact and scattered. Furthermore, S is a countable dense set of isolated points
of X while K4 = X'\ S is an uncountable compact space with a unique non-isolated
point. Let us show next that

(2) I[A] embedsin C,(X) as a closed subspace.

Forany x € I let ¢, (f) = f(x) forany f € S. Then ¢, € C,(S) and the map
¢ : I — C,(S) defined by ¢(x) = ¢, for any x € I is continuous (see TFS-166).
Since S separates the points and closed subsets of /7, the map ¢ is an embedding;
let I’ = o(I) C Cp(S).

Analogously, let ¥ (f) = f(x) forany f € K4 U S and x € I. Define a map
Y I[A] - Cp(K4 U S) by y(x) = ¥, forany x € /; then ¥ is an embedding
because K4 U S C C,(/[A]) separates the points and closed subsets of /[A]. Let
Iy = Y (I[A]); observe that X has the underlying set K 4US but the topology of X is
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stronger; so [o C C,(K4US) C C,(X).If S"is the set S with the discrete topology
then S’ is a subspace of X; since 7(S) C 7(S’), we have I’ C C,(S) C C,(S).

Let w(f) = f|S’ for any function f € C,(X). This gives us the restriction
map 7 : C,(X) - Z = n(Cp(X)) C Cp(S’) which is continuous and injective
because S’ is dense in X. It is easy to check that 7(¥,) = ¢, forany x € I and
therefore (1y) = I'; the set I’ is closed in Z being compact; so Iy = 7~ ' (I’) is
closed in C,(X). Since Iy is homeomorphic to /[A], the property (2) is proved.

Forany s € S letry(s) = 1 and ry(x) = O forall x € (K4 U S)\{s}. Itis evident
that ry € Cp(X) forany s € §;let w(x) = 0 forany x € K4 U S. It is evident that
the set L = {w} U {r; : s € S} is compact. Besides, Iy U L generates the topology
of X;s0o X embeds in C,(/o U L) (see TFS-166). Since Jy ~ I[A] and |L| < w,
the space Iy U L is a continuous image of the space /[A] X w; so (Ip U L)® is a
continuous image of (/[A] x w)® ~ (I[A])® x w® which is Lindelof by Fact 3 of
U.093. Therefore (C,(X))* is also Lindelof by Fact 4 of U.093.

Apply Fact 1 to find a countable space M such that /\ 4 embeds in C,(M) as a
closed subspace. It follows from (2) that / [A] x (/\ 4) embeds in C,(X)xC,(M) as
a closed subspace; this implies that ex?(C,(X)xC,(M)) = cand C,(X)x C,(M)
is not normal (see Fact 2), so our solution is complete.

U.095. Prove that, under CH, there exists a separable scattered compact space
X such that (C,(X, D))" is Lindeldf for any natural n, while (C,(X,D))* is not
Lindeldf.

Solution. Given a set Z and a family A of infinite subsets of Z we say that A is
almost disjoint if A N B is finite for any distinct A, B € A.

Fact 1. Assume that we have an uncountable space Z such that w(Z) < ¢ and there
is a countable Q C Z such that Z is concentrated around Q, i.e., |Z\U| < w for
any U € 7(Q, Z). Then the Continuum Hypothesis (CH) implies that there is an
uncountable 7 C Z such that Q C T and 7" is Lindelof for any n € N.

Proof. Since CH holds, for any n € N there is a base 3, in the space Z" such that
|B,| < w; and | U € B, for any countable Y C B,. It is clear that Z is Lindelf;
so Z € BB; and hence we can choose an enumeration {U, : o < w;} of the family
(U{B, : n € N} in such a way that Uy = Z. For every < w; there is a unique
mg € N such that Ug € Bmﬁ.

Our first step is to choose a point zo € Z\ Q arbitrarily. Next, assume that v <
and we have a set {z, : @ < v} C Z\ Q with the following properties:

(1) B <a < vimplies zg # z4;
2)ifZy ={zy 1y <a}and T, = Q U Z, for any @ < v, then the conditions
B <a<v,m=mgand Ug DO (To)"\(Zy)" imply (za,,--..2a,) € Up

whenever max{ay,...,q,} = o.
For any m € N the family I}, = {8 < v : Ug € By, and Ug D (T,)"\(Z,)"}
is countable. For each m € N let N, = {1,...,m} and denote by ®,, the set of

functions ¢ : N,, — {& : « < v} such that ¢(i) = v for at least one i € N,.
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For every ¢ € &, define amap g, : X — X" as follows: for any x € X
we let g,(x) = (y1,...,ym) Where y; = z,) if ¢(i) < v and y; = x whenever
@(i) = v. Itis straightforward that g, is continuous for every ¢ € &,,. Furthermore,
if « € I, then U, contains all points of (7,)” which have at least one coordinate
from Q; consequently, g,(Q) C U, for any € I5,.

Therefore W,, = ﬂ{g;l(Ua) 1 € Dy, a € I,}is a Gg-subset of Z such that
Q C W, forevery m € N. Thus W = ("{W,, : m € N} is a Gs-subset of Z which
contains Q; so we can choose a point z, € W\ Z,. It is evident that (1) is still true
for all & < v; to see that (2) is also fulfilled assume that m € N, Ug € B,, and
Ug O (T,)"\(Z,)" for some B < v. If max{oy,...,a,} = v then define ¢ € D,
by ¢(i) = «; foralli € N,. Then g,(z,) = (Zo, ..., %a,) and it follows from
weWcCWw,C g;l(Uﬂ) that g, (z,) € Ug, i.e., (Zays - - - 2a,) € Up as required.

This proves that our inductive procedure can be continued to constructa set ¥ =
{zo : @ < w;} such that (1) and (2) are satisfied forall v < wy;let T = Q UY.
Letting C, = B,|T" for any n € N we obtain a sequence {C, : n € N} of bases in
the respective finite powers of 7' such that

(3) for every m € N the family C,, is closed under countable unions and Y""\U is
countable forany U € C,, with T"\Y™ C U.

The first part of (3) being evident let us verify the second one. If 7"\ Y"” C U for
some U € C,, then thereis U’ € By, suchthat U = U'NT". We have U’ = Ug for
some B < wi. Now, if z = (z4,,...,24,) € Y"\U then let ¢ = max{ai,...,n}.
If « > B then observe that Ug D T"\Y" D (Ty)"\(Z,)" and hence we can
apply (2) to conclude that z € Ug N T™ = U this contradiction shows that @ <
and hence Y"\U C H = {(zay,---2q,) : max{ai,...,o,} < B}. Since H is
countable, so is Y”"\U and hence (3) is proved.

To finally see that 7" is Lindelof for any n € N observe that T is Lindelof
because it is concentrated around the set Q. Next, assume that n > 2 and 7" is
Lindelof for any m < n. To see that 7" is also Lindelof take an open cover U of
the space T". Since C, is a base in T", we can assume, without loss of generality,
thatid C C,. Foreveryi € {1,...,n}letm; : T" — T be the natural projection of
T" onto its i-th factor. It is immediate that T"\Y" = (J{7; '(¢) : ¢ € O, i <n};
since 77;"!(¢) is homeomorphic to 7! forany g € Q andi < n, the space T"\Y"
is a countable union of Lindel6f subspaces of 7"; so [(T"\Y") = w.

Thus we can choose a countable ¢/’ such that U = (JU' D T"\Y". Since
U € C,, the set Y"\U is countable by (3) and hence there is a countable 4" C U
for which Y"\U C |JU". It is immediate that /' U U{” is a countable subcover of
U; so T" is Lindelof. Thus our inductive procedure shows that 7" is Lindelof for
every n € N and hence Fact 1 is proved.

Returning to our solution, let 6(A4) = {s € D* : s7'(1) C A and |s~'(1)| < w}
for any infinite A C w; it is easy to see that 0 (A) is a countable dense-in-itself set.
An easy consequence of CH is that we can choose a family W = {W, : « < w1} C
7(D®) such that 0 = o(w) C ()W and W is an outer base of o in D, i.e., for any
U € 1(0,D?) there is @ < w; such that W, C U. Letting H, = ([{Wp : p < o}
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for any o < w; we obtain a decreasing w;-sequence { H, : o < w;} of Gs-subsets
of D? such that, for any U € 7(0,D?), there is B < w; for which H, C U for all
a > p.

Take an almost disjoint family {4, : ¢ < w;} of infinite subsets of w (such a
family exists in ZFC, see TFS-141). The set G, = {s € H, : s7'(1) C Ay} is G
in D” and it follows from 0 C H, that 0(A4,) C G, and 0(A,) is dense in G,.
Therefore G, is a completely metrizable space without isolated points. This implies
that G, is uncountable; so we can choose a point s, € G, \o. It is evident that the
set S = {5, : @ < w;} is concentrated around o and A = {s;'(1) : & < w} is an
almost disjoint family because 5, !(1) C 4, for any @ < w;. Let S, = s, (1) for
every o < wj.

To associate a point to every S, take an injective map 7 : A — P and let &, =
r(Se); the family B, = {{&,} U (S,\F) : F is a finite subset of w} will be the
respective local base at &, for any & < w;. Onthe set M(A) = {&, 1@ < w1} U w
we generate a topology t by the family ( {B, : @ < w1} U expw as a base. It is
easy to see that in the space M = (M(A), ) all points of w are isolated while S,
is a sequence which converges to &, for any o < w;. The space M is Tychonoff,
locally countable and locally compact; let 2 = {&, : & < w}.

For every ¢ < w; let f,(x) = 1forall x € Sy U {&} and f,(x) = O for all
x € M\(Sy U {&}). It is immediate that f, € C,(M,D) for every o < wy.

For each s € ¢ define a function g; : M — D by requiring that g,(x) = 0 for
any x € M\w and gs|w = s. We will prove that the set F = {f, : ¢ < w;} is
concentrated around the set Q = {g, : s € o} (here both F and Q are considered
as subspaces of C,(M, D).

Let U be an open subset of C,(M,D) such that O C U. For every s € o
choose a finite Py C M suchthat Uy = {f € C,(M,D) : f|P; = gs|Ps} C U;
furthermore, let V; = {f € D* : f|(P; N w) = s|(Ps N w)}. It is evident that
V = U,e, Vs € t(0,D?) so there is f < w; such that s, € V for any o > B.
The set P = (|J{P;s : s € 0}) U w is countable; so there is ¥ < w; such that
y > B and f,|(P; N £2) = 0forany s € o and @ > y. Now, if @ > y then there is
s € o for which s, € Vj; consequently, f,|(Ps Nw) = s|(Ps Nw) = g|(Ps Nw)
while fy|(Ps N £2) = 0 and g;|(P; N 2) = 0. Therefore f,|P;, = gs|Ps, i.e.,
fo € Uy C U. It turns out that f, € U for all « > y; so the set F is, indeed,
concentrated around Q.

It is clear that w(Q U F) < wy; so we can apply Fact 1 to conclude that there is
an uncountable £ C F such that the space (Q U E)" is Lindelof for any n € N. The
space M’ = w U{§, : f, € E} islocally compact; so we can consider its one-point
compactification X; let @ be the unique point of the set X\M’. To see that X is
scattered, take any A C X.If A N w # @ then any point of A N w is isolated in
X and hence in A. If A C X \w then either A is a singleton (in which case there is
nothing to prove) or A N (M'\w) # @. It is evident that any point of (M"\w) N A
is isolated in (M'\w) U {a} and hence in A. Thus X is a scattered compact space.

We will define next an addition operation which is natural for C,(X,D) but
different from the usual addition operation in C,(X). Namely, if f,g € C,(X,D)



142 2 Solutions of Problems 001-500

define h = f+g € C,(X,D) by requiring, for every point x € X, that 2(x) = 0 if
f(x) = g(x) and h(x) = 1 otherwise. It is easy to see that f+g = f + g —2fg;
so this operation is continuous by TFS-115 and TFS-166.

If © : Cp,(M,D) - C,(M’',D) is the restriction map then 7|(Q U E) is a
homeomorphism because M\ M’ is closed in M and f|(M\M’) = 0 forany f €
Q U E.Forevery f € Q U E define a function 2y € C,(X, D) by requiring that
hylM" = fIM'and hy(a) = 0. It is easy to see that the set H = {hy : f €
QUE} C Cp(X,D) is still homeomorphicto Q U E and hence H" is Lindelof for
any n € N.

Theset R, = {fi+...+f, : f; € H foranyi < n} is a continuous image of
H" under an evident map for any n € N (see TFS-115). This implies that (R,)* is
Lindel6f for any k € N. Let us prove that

@ R=U{R,:neN}=1={feCpX.D): f(a) =0}.

It is evident that R C [I; to establish the opposite inclusion take any f € I.
Since f(a) = 0, the set f~'(1) is compact and contained in M’; as a consequence,
there is a finite K C w; such that f~'(1) C {{£&,} U S, : @ € K}. Since A is
almost disjoint, there is a finite set L C w such that the family {S,\L : « € K} is
disjoint. Choose s € o for which s!(1) C L and s|L = f|L. Forevery a € K let
ty(x) = 1foreveryx € LN S, andz(x) = 0if x € X\(L N Sy).

It is immediate that f = Y {hs 41ty : @« € K}+hy;s0 f € R and (4) is proved.
It is easy to see that R, C R, for any n € N which implies that 7% = [ J{(R,)* :
n € N} and therefore I* is a Lindeldf space for any k € N. Now, C (X, D) is
homeomorphic to / x I and hence C,(X, D)* ~ I* x D is Lindelsf for any
k e N.

Finally, assume that (C,(X,D))“ is Lindel6f. Then (C,(X,D))” x o is also
Lindeldf by Fact 3 of U.093. However, X is a space which satisfies the hypothesis
of Problem 077, so C,(X,D) x »® is not Lindeldf; this contradiction shows that
(Cp(X, D)) is not Lindel6f and makes our solution complete.

U.096. Prove that there is a scattered, separable, zero-dimensional o-compact space
X with (C,(X, D))" Lindelof for each natural n, while (C,(X,1D))® is not Lindelof.

Solution. There is a set A C [ = [0, 1] such that (/[A])® is not Lindelof but
[*(I[A]) = o and (see Problem 091). Fix some countable base 3 in / such that
U # @forany U € BandletC = {(U,V) € Bx B : U C V}. By normality
of I, forany u = (U,V) e C, we can choose a function f, € C,(!) such that
fu(U) C {1} and f,(I\V) C {0}. It is evident that the set § = {f, : u € C}
separates the points and closed subsets of 7.

For any point x € [ let u,(y) = 0 forany y € I\{x} and u,(x) = 1; denote
by u the function which is identically zero on the set /. It is easy to see that the set
K4 = {uy : x € I\A} U {u} is compact and K4 C C,(I[A]); besides, K4 U S
separates the points and closed subsets of /[4] and K 4N S = @. Choose a countable
S” € C,(I)\{u} which is dense in C,(I) and let S = S U S”; it is evident that
KsiNS =20
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Let X = (K4 U S)[K4]; this means that we declare the points of S isolated and
leave the same topology at all points of K 4. It is an easy exercise that the space X is
o-compact and scattered. Furthermore, S is a countable dense set of isolated points
of X while K4 = X\ is an uncountable compact space with a unique non-isolated
point. Let us show next that

(1) I[A] embedsin C,(X) as a closed subspace.

Forany x € I let ¢,(f) = f(x) forany f € S. Then ¢, € C,(S) and the map
¢ : I — C,(S) defined by ¢(x) = ¢, for any x € I is continuous (see TFS-166).
Since S separates the points and closed subsets of 7, the map ¢ is an embedding;
let I’ = o(I) C Cp(S).

Analogously, let ¥ (f) = f(x) forany f € K4 U S and x € I. Define a map
Y I[A] - Cp(K4 U S) by y(x) = ¥, forany x € /; then ¥ is an embedding
because K4 U S C C,(/[A]) separates the points and closed subsets of /[A]. Let

= (I [A]); observe that X has the underlying set K 4US but the topology of X is
stronger; so [y C C,(K4US) C C,(X).If S’ is the set S with the discrete topology
then S’ is a subspace of X; since 7(S) C 7(S8’), wehave I’ C C,(S) C C,(S’).

Let n(f) = f|S for any function f € C,(X). This gives us the restriction
map 7 : C,(X) - Z = n(Cp(X)) C C,(S’) which is continuous and injective
because S’ is dense in X. It is easy to check that 7(y,) = ¢, forany x € I and
therefore () = I’; the set I’ is closed in Z being compact; so Iy = 7~ ' (1) is
closed in C,(X). Since I, is homeomorphic to /[A], the property (1) is proved.

An immediate consequence of (1) is that (C, (X)) is not Lindelof.

Fact 1. Suppose that T is a space and Z C C,(T). If the set Z’ of non-isolated
points of Z is compact then C,(Z, D) is a countable union of continuous images of
closed subsets of products of finite powers of 7" with a compact space.

Proof. Forany m,n € N consider the set M(m,n) = {¢ € D? : there exists a point
(ti,...,t,) € T" such that, forany f € Z'and g € Z,if | f(t;) — g(t;)] < % for
alli < nthen ¢(f) = ¢(g)}. We claim that

(2) Cp(Z, D) =M = J{M(m,n) :m,n € N}.

Assume first that ¢ € M ; to see that ¢ is continuous on Z it suffices to show that
it is continuous at every point of Z’; so take any f € Z’. There are m,n € N and
a point (¢1,...,t,) € T" such that |g(t;) — f(#)] < % for all i < n implies that
o(f) = ¢(g). Theset O = O(fitr,....ta,m) = {g € Z : |g(t) — f(1)] < 5
forall i < n} is an open neighbourhood of f in Z and it is immediate that ¢(0) =
{@(f)} which proves that ¢ is continuous at the point f. Since f € Z’ was chosen
arbitrarily, we proved that ¢ is continuous on Z and therefore M C C,(Z, D).

To establish the oppos1te inclusion take any ¢ € C,(Z, D). For any f ez there
existks,ny € Nand (t1 t,,f) € T"/ such that g € Z and |g(t ) — f(t )| <
klf forall i < nf implies (p(g) = o(f).

Since {O(f, t1 Ve t,,f, 3ks) : f € Z'}is an open cover of the compact space

Z’, there is a finite A C Z' such that the family {O(f, tl t,,f,3kf) f e A}
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covers Z'. Letn = Y {ny; : f € A}, m = max{3k; : f € A} and take any
t=(t,....ty) €T" suchthattif ef{t,....ty}forany f € Aandi <ny.

Now, if f € Z', g € Z and |f(t;) — g(;)| < % for all i < n then there
is h € A for which f € O(h,tf,... t" . 3k;) and hence ¢(f) = ¢(h). Since

9 nh’
{tf. ..y C{n.. .. 1}, we have

1 - 1
3kp ki

1
lg!) —h(l)| < gl — Fa + | £al) —hih)| < —+

for every i < nj which implies that ¢(g) = ¢(h) and hence ¢(f) = ¢(g). This
shows that ¢ € M(m,n); so the equality (2) is proved.

Finally, consider the set S(m,n) = {(¢.t) € D? x T" 1 t = (t1,....1ty)
and, forany f € Z'and g € Z,if g € O(f.t1,...,t,,m) then o(f) = ¢(g)}
for any numbers m,n € N. To prove that S(n,m) is closed in D% x T" for any
m,n € N, take a point (¢,1) € D?\S(m,n). Thent = (t,,...,t,) and there exist
f € Z', g € Z for which g € O(f.11,...,t,,m) while p(g) # @(f). Since
the functions f and g are continuous on 7', the set V = {(s1,...,s,) € T" : g €
O(f.s1,....5,,m)}isopenin T"; besides, theset W = {yr € D? : yr(g) # ¥ (f)}
is open in DZ. It is immediate that o € W, t € V and (W x V) N S(m,n) = @; so
any point (¢, 1) € D%\ S(m,n) has a neighbourhood W x V disjoint from S(m, n).
Thus D#\S(m, n) is open in D?\S(m, n), i.e., S(m,n) is closed in D% x T".

It is immediate that the set M (m, n) is the image of S(m, n) under the projection
of DZ x T onto its first factor; so (2) implies that C,(Z, D) is a countable union of
continuous images of the sets S(m, n). Fact 1 is proved.

Returning to our solution, for any s € S, let r;(s) = 1 and r,(x) = 0 for all
points x € (K4 U S)\{s}. Itis evident that ry, € C,(X) forany s € S;let w(x) =0
forany x € K4 U S. It is evident that the set L = {w} U {r; : s € S} is compact.
Besides, /o U L generates the topology of X; so X embeds in C, (/o U L) (see TFS-
166).If T = Iy U L then [*(T') = w. By Fact 1, the space C,(X, D) is a countable
union of continuous images of closed subsets of products of finite powers of T with
a compact space. Observe that [ * (7" x K) = w whenevern € N and K is compact.
As a consequence, if F = | J{F, : n € N} and, for any n € N, the space F, is a
continuous image of a closed subset of 7" x K, for some compact K, and m, € N
then [*(F) = w. This proves that the space (C,(X, D))" is Lindelof for any n € N;
so our solution is complete.

U.097. Assume MA+—CH. Let X be a space with [*(X) = w. Prove that any
separable compact subspace of C,(X) is metrizable.

Solution. If P is a set then Fin(P) is the family of all finite subsets of P. Given
aspace Z and Y C Cp(Z) let ¢(f) = f(x) forany x € Z and f € Y. Then
¢x € Cp(Y) forany x € Z and we have a continuous map ¢ : Z — C,(Y) defined
by ¢(x) = ¢, for any x € Z (see TFS-166). We will call ¢ the Y -reflection map,
or the reflection map of Z with respectto Y .
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Say that a compact space K is a Reznichenko space if w(K) = w, the set I of
isolated points of K is countable and dense in K and there is a discrete D C K \/
such that |D| = w; and D = K\I.

Fact 1. Under MA+—CH, if Z is a separable compact space with w(Z) = w; then
there is a Reznichenko space K C Z x Z.

Proof. Since Z is not metrizable, the diagonal of Z x Z is not a Gs-subset of Z x Z
(see SFFS-091) and hence Z x Z is not perfectly normal. By SFFS-061 there is a
discrete D’ C Z x Z such that |D'| = w.

The space Z x Z is separable; so the set S of isolated points of Z x Z is countable
and hence D = D’\S has cardinality ;. Consequently, M = D is nowhere dense
in Z x Z. Now apply Problem 079 to find a countable / C Z x Z such that
T\I = M and all points of I are isolated in the compact space K = I U M. It is
evident that K C Z x Z is a Reznichenko space; so Fact 1 is proved.

Fact 2. Under MA+—CH, if K is a Reznichenko space and A is uniformly dense
in C,(K) then A is not Lindelof.

Proof. By definition, the set I of isolated points of K is countable and dense in K
and there is a discrete D C K\ such that |[D| = w; and D = K\I.

Let ® = {f € C,(K) : f(K\I) C [-1,1]}; it is evident that @ is a closed
subset of C,(K). We claim that

(1) @ ={f € Cp(K) :theset {x € I : | f(x)| = 1+ L} is finite for any m € N}.

To prove (1) assume that f € C,(K), m € N and there is an infinite set § C [
such that | f(x)] > 1 + % for any x € S. Then there is an accumulation point
y € K\I for the set S and therefore | f(y)| > 1+ % > 1 which shows that f ¢ @.

Now, suppose that f € C,(K) and, theset {x € [ : |f(x)| > 1+ %} is finite
forany m € N.If f ¢ @ thenthereis y € K\I and m € Nwith | f(y)| > 1+ %
which implies that the set {x € [ : |f(x)| > 1 + %} is infinite because it contains
y in its closure. This contradiction shows that f € @ and finishes the proof of (1).

Denote by 7 : C,(K) — C = 7(C,(K)) C R’ the restriction map given by
w(f) = f|I forany f € C,(K).Then r is a condensation because / is dense in K
(see TFS-152). The set P(m, A) = {f € C :{x € I : |f(x)| = 1+ L} C A}is G;
in C for any finite A C I and m € N. To see it observe that, for any x € 7, the set
Or'={feC:|fx)< 1+%}isopeninC and P(m, A) = ({OF : x € I\A}.
It is an immediate consequence of (1) that

(2) (@) = ({U{P(@m,A): A € Fin(I)} : m € N},

and hence (@) is a Borel subset of C. Since all points of D are isolated in K\ 7,
for any d € D, there is a function f; € C,(K,[0,2]) such that f;(d) = 2 and
Ja(x) = 0 for any x € (K\I)\{d}. Since A is uniformly dense in C,(K), we
can find g4 € A such that |gg(x) — f4(x)| < 4—11 forany x € Kandd € D.
The subspace G = {gs : d € D} of the space C,(K) is discrete because the set
Wa={f € Cp(K):|f(d) —ga(d)| < 3} isopeninC,(K)and Wy N G = {ga}
foranyd € D.
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Next observe that G C C,(K)\@ but all accumulation points of G are in @
and hence G U @ is closed in C,(K). Indeed, if d € D then |g.(d)| < i for any
e € D\{d} and hence f € D\D implies | f(d)| < % forany d € D. Since D is
dense in K\ 7, we have | f(x)| < % for every x € K\I, and hence f € ®.

It follows from (2) that £ = C\x(®) is a Borel subset of C and 7(G) is an
uncountable subset of E. Let E’ be a Borel subset of R’ such that E' N C = E
(see Fact 1 of T.319). Since R’ is completely metrizable, the set E’ is analytic (see
SFFS-334) and hence there is a family C = {P; : s € »“} of compact subsets of
R/ such that £’ = | JC and s < ¢ implies P; C P, (see SFFS-391). In particular,
E C |JC and hence, for any d € D there is s(d) € @® such that w(gs) C Ps).
ThesetT = {s(d) : d € D} C o* has cardinality < c; so we can apply MA+—CH
to conclude that there is u € w® for which s(d) <* u for any d € D (see Fact 1
of T.395; recall that if 5,7 € w® then s <* ¢ means that there is m € w such that
s(n) < t(n) for any n > m).

As a consequence, the set Q = {s € w® : s(n) # u(n) for at most finitely many
n € w} is countable and

(3) forany d € D thereis s € Q such that s(d) <.

This implies that P = (J{P; : s € Q} is a o-compact set with 7(G) C P.
Thus there is an uncountable set G’ C G for which 7(G’) C P; for some s € Q;
since Py, N 7 (P) = B, we have cl¢ (m(G’)) N (@) = @ which shows that the set
G' = 7! (cle (7(G"))) N (@ U G’) is closed in C,(K). Since G D G is discrete,
we found an uncountable closed discrete subset G’ in the space A which shows 4 is
not Lindel6f and hence Fact 2 is proved.

Fact 3. Suppose that Z is a compact space such that some ¥ C C,(Z) separates
the points of Z and /*(Y) = w. Then there is a uniformly dense A C C,(Z) such
that [*(A) = w and, in particular, A is Lindel6f. No additional axioms are needed
to prove this Fact.

Proof. Let H = {T : T is a continuous image of Y x M for some m € N and
a metrizable compact space M }. It is immediate that [*(H) = w for any H € H.
If A C Cp(K) is the minimal algebra that contains ¥ then A = |, ¢, A» where
A, € H for any n € w (see Problem 006) and hence /*(A) = w. Since A separates
the points of K, it is uniformly dense in C,(K) by TFS-191; so Fact 3 is proved.

Fact 4. Under MA+—CH, if K is a separable compact space and some Y C C,(K)
with /*(Y) = w separates the points of K then K is metrizable.

Proof. The space K embeds in C,(Y) by TFS-166; so if Y is separable then we
have w(K) = iw(K) < iw(C,(Y)) = d(¥Y) = o and hence K is metrizable.
If Y is not separable then there is a left-separated S C Y such that |S| = )
(see SFFS-004). The space C,(K) is monolithic (see SFFS-118 and SFFS-154); so
nw(?) = w.

Fortheset T = Slete : K — C »(T) be the reflection map of K with respect to
T'; the space K’ = e(K) is separable, compact and non-metrizable because, for the
dual map e* : C,(K') — C,(K) defined by e*(f) = f oe forany f € C,(K'),
we have T C e*(C,(K')) (see Fact 5 of U.086) and hence T embeds in C,(K")
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(see TFS-163). Since e* is an embedding, its inverse j : e*(C,(K’)) = C,(K') is
also a homeomorphism and it is easy to see that T’ = j(T) separates the points of
K’. Thus K’ is a compact space of weight w; such that 7" C C,(K'), [*(T’) = w
and T’ separates the points of K’.

Let 7r; : K’ x K’ — K’ be the natural projection of K’ x K’ onto its i -th factor;
as before, we denote by 7* : C,(K') — C,(K’ x K’) the dual map of m; for each
i €{1,2}. The space Y’ = 7 (T") U nj(T') C C,(K' x K’) separates the points
of K’ x K’ and it is immediate that /*(Y’) = w. Since K’ is not metrizable, we can
apply Fact 1 to find a Reznichenko space M C K' x K'. If ¢ : C,(K' x K') —
C,(M) is the restriction map then Y” = ¢(Y’) separates the points of M and
[*(Y") = w. By Fact 3 there is a uniformly dense Lindeléf A C C,(M) which
contradicts Fact 2 and shows that Fact 4 is proved.

Returning to our solution assume that K is a separable compact subspace of the
space Cp(X) and let ¢ : X — C,(K) be the K-reflection map. The set X' =
¢(X) C Cp(K) separates the points of K (see TFS-166) and [*(X') = w; so K is
metrizable by Fact 4 and hence our solution is complete.

U.098. Assume MA+—CH. Let X be a separable compact space. Prove that, for any
Y C Cp(X) with*(Y) = o, we have nw(Y) = w.

Solution. For any x € X let ¢,(f) = f(x) foreach f € Y. Then ¢, € C,(Y)
and the map ¢ : X — C,(Y) defined by ¢(x) = ¢, for any x € X is continuous
(see TFS-166); let X’ = ¢(X). Since [*(Y) = w and the compact space X' C
C,(Y) is separable, we can apply Problem 097 to conclude that X’ is metrizable.
Another consequence of TFS-166 is that ¥ embeds in the space C,(X’) and hence
nw(Y) < nw(Cp(X')) = nw(X’') <w(X') = w.

U.099. Prove that there exists a separable o-compact space X such that (C,(X))®
is Lindeldf and s(X) > .

Solution. If Z is a space and A C Z then Z[A] is the set Z with the topology
generated by the family 7(Z)Uexp(Z\ A) as a subbase. In other words, the topology
of Z[A] is the same as in Z at all points of A while the points of Z\ A4 are isolated
in Z[A].

Take disjoint sets A, B C I = [0, 1] such that both spaces (/[A])® and ({[B])®
are Lindeldf (see Problem 090). It follows from Problem 091 that /[B] is Lindelof
if and only if, for every K C I such that K ~ K, we have K N B # @. Since [ is
uncountable, we can find a set K C I with K ~ K and hence K >~ K x K which
shows that we can consider that K x K C I and hence K = {K x {x} :x € K} is
a family of c-many disjoint copies of K in /. If | B| < ¢ then B cannot intersect all
elements of /C. Thus | B| = cand hence |/\A| = c.

For any point x € [ let uy(y) = 0 forany y € I\{x} and u,(x) = 1; denote
by u the function which is identically zero on /. It is easy to see that the set K4 =
{ur : x € I\NA} U {u} is compact and K4 C C,(I[A]). Choose a countable S C
C,(I)\{u} which is dense in C,(I); it is evident that K4, N § = @.



148 2 Solutions of Problems 001-500

The space X = K4 U S is separable because the countable set S is dense in X .
Since K 4\{u} is a discrete subspace of X, we have s(X) > |[I\A| = ¢ > w. The
space X C C,(I[A]) is o-compact and (/ [A])* is Lindelof; so (C,(X))* is also
Lindelof by Fact 4 of U.093.

U.100. Assume MA+—CH. Prove that there is a separable o-compact space X such
that C,(X) does not embed into C,(Y) for a separable compact space Y .

Solution. By Problem 099, there exists a separable o-compact space X such that
(Cp(X))“ is Lindelof and s(X) > w. If C,(X) can be embedded in C,,(Y') for some
separable compact space Y then it follows from Problem 098 that nw(C,(X)) = w
and hence we have s(X) < nw(X) = nw(C,(X)) = o which is a contradiction.

U.101. Let M; be a metrizable space for each t € T. For an arbitrary point
ae€ M =][{M; : t € T}, prove that ¥ (M, a) is a Fréchet-Urysohn space. In
particular, ¥ (A) is a Fréchet-Urysohn space for any A.

Solution. Given apointx € ¥ = X¥(M,a) letsupp(x) = {t € T : x(¢) # a(?)};
if we have a set A C X then supp(4) = (J{supp(x) : x € A}. Forany S C T
defineamaprs : ¥ — Xg = {x € ¥ : supp(x) C S} as follows: rg(x)(¢) = x(¢)
ift € S and rs(x)(¢t) = a(t) forallt € T\S. It is an easy exercise that rg is
a continuous retraction of X' onto X'g. Furthermore, if S is countable then Xy is
metrizable being homeomorphic to [[{M; : ¢t € S} (see TFS-207).

Suppose that A C X and x € A. The set Sy = supp(x) is countable; so s, is
metrizable and hence there is a countable set By C A such that rg,(x) € rs,(Bo).
Assume that m € @ and we have constructed countable sets By, ..., B,, C A and
So, ..., S, C T such that

(1) So = supp(x), Bi C Bi+1, Si C Si+1 and supp(B;) C S;4 foralli < m;
(2) rs;(x) ers,(B;) forany i < m.

Let Syi+1 = supp(By,); since X, ., is metrizable, there is a countable B "Cc A
such that rg, , (x) € rs,_, (B’);itis straightforward that if we let By, +1 = B, U B’
then (1) holds for all i < m and (2) is satisfied for every i < m + 1. Therefore
our inductive procedure can be continued to construct families {S; : i € w} and
{B; : i € w} for which (1)~(2) are fulfilled for all m € w.Let S = | J,, S; and
B = Uiew B;. _

To see that x € B take any V' € t(x, X'); we can choose U; € t(x(¢), M;) such
that U = ([[,e; U) N2 C Vand Q = {t € T : U; # M,} is finite. There is a
number m € w such that S N Q = S, N Q; it follows from (2) that thereis y € By,
such that y(z) € U, forany ¢t € Q N S,,. Besides, y(¢) = a(t) forany t € T'\S and
O\S,, C T\S;s0y(t) =a(t) = x(t) forany t € Q\S,,. Therefore y(¢) € U, for
anyt € Q and hence y € U N B C V N B, which proves that x € B.

Finally observe that B C Yg; the set Xy is closed in X'; so the set B C Xgis
metrizable. This, together with x € B, implies that there is a sequence C C B C 4
which converges to x. Therefore X' is a Fréchet—Urysohn space.

i€w
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U.102. Suppose that M, is a metrizable space for each t € T. For an arbitrary point
a€M =T[{M, :t € T}, prove that ¥ (M, a) is a collectionwise normal space. In
particular, X (A) is a collectionwise normal space for any A.

Solution. In this solution all spaces are assumed to be non-empty. We will say that
p is a metric on a space Z if p generates the topology of Z.

Given a set Z a functiond : Z x Z — R is called a pseudometric on Z if
d(x,x) = 0, d(x,y) = d(y,x) > 0and d(x,y) < d(x.z) + d(z, y) for any
X, ¥,z € Z.In other words, a pseudometric d on a set Z is a function which has all
properties of a metric except that d(x, y) = 0 need not imply that x = y. If Z is
a space and d is a pseudometric on Z then we say that d is a pseudometric on the
space Z if d : ZxZ — R s acontinuous function. We can also define the notion of
a diameter with respect to a pseudometric in the same way it is defined for a metric,
i.e., if d is a pseudometric on Z and A C Z then diamy(A4) = sup{d(x,y) : x,y €
A} If Z is a space and A, B C exp Z we say that A is inscribed in B if, for any
A € Athereis B € Bsuchthat A C B.

Fact 1. Given a space Z, any o-locally finite open cover of Z has a locally finite
refinement.

Proof. Take an open cover U of the space Z such thatif = | J{U, : n € o} and U,
is locally finite forany n € w. Let U, = U, and P, = {U\(U,._, Ux) : U € Uy}
foranyn € w.Ifz € Z thenlet m = min{n € w : z € U,} and take U € U,, with
z€ U.Then P = U\(Uy.,, Ux) € Pnandz € P. Thus P = |, ,, P is a cover
of Z; since it is evident that P is inscribed in U/, it is a refinement of /.

To see that P is locally finite take a point z € Z; then z € U, for some n € @ and
hence P N U, = @ forany P € (J{P; : i > n}.Itis obvious that | J{P; : i < n}is
alocally finite family; so there is W € t(z, Z) which intersects only a finite number
of elements of | J{P; : i < n}.Itis clear that W N U, is an open neighbourhood of
z which intersects only finitely many elements of P; so P is, indeed, locally finite
and hence Fact 1 is proved.

Fact 2. Suppose that Z is a space and F is a discrete family of closed subsets of Z.
If there exists a locally finite closed cover C of the space Z such that every C € C
meets at most one element of F then the family F is open-separated, i.e., for any
F € F wecan choose Of € t(F, Z) such that the family {Or : F € F} is disjoint.

Proof. Forany F € Flet O = Z\(J{C € C: C N F = @}). The family C
is closure-preserving (see Fact 2 of S.221); so O € t©(F,Z) forany F € F.If
z € Of N Og for some distinct F, G € F then pick C € C with z € C. Since C can
meet at most one of the sets F, G, we have either CNF =@ orC NG = (. In the
first case C N O = @ and hence z ¢ Of while in the second case C N Og = @ and
hence z ¢ Og; so we get a contradiction in both cases. This shows that the family
{OF : F € F} is disjoint and hence Fact 2 is proved.

Returning to our solution let supp(x) = {t € T : x(¢) # a(t)} for any point
x € ¥ = ¥X(M,a);if A C X then supp(4) = (J{supp(x) : x € A}. For any
S C T defineamaprg : ¥ — Xg = {x € ¥ : supp(x) C S} as follows:
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rs(x)(t) = x(¢t)ift € Sand rg(x)(¢) = a(¢) forallt € T\S. Itis an easy exercise
that rg is a continuous retraction of X' onto Xg. Furthermore, if S is countable
then X is metrizable being homeomorphic to [[{M; : t € S} (see TFS-207); fix a
metric gs on the space X's and let ds(x, y) = os5(rs(x),rs(y)) forany x,y € X. It
is easy to see that d is a pseudometric on the space X for any non-empty countable
S C T. Given a non-empty set S C T,aset U C X is called S-saturated if
U =rg'(U).

Suppose that F is a discrete family of closed subsets of X¥. We start with
the family Uy = {X'}; besides, choose a non-empty countable So C 7 and let
A(X) = Sy, ps = ds. Assume that n € N and we have locally finite open covers
U, . .. ,U,— of the space X' with the following properties:

(1) foreveryi < nand U € U; there is a non-empty countable set A(U) C T such
that U N U’ is A(U)-saturated for any U’ € U;;

(2) foreveryi < n and U € U; a pseudometric py is chosen on the space X
in such a way that py [(X4w) x X)) is a metric on the space X4y and
pu(x.y) = pu(raw)(x), raw)(y)) forany x, y € X

(3) foranyi € {1,...,n — 1} wehave U; = |J{Vu : U € U;_} where, for every
U € U;_,, the family Vy has the following properties:

(3.1) Vy C ©(X) is locally finite in ¥ and | JVy = U;

(3.2) every V € Vy is A(U)-saturated;

(3.3) the set V' meets at most finitely many elements of If;_;;

(3.4) diam,,,, (V) <27 forany V € Vy;

(3.5) forany V € Vy,it WNV # @ forsome W € U;—; then A(W) C A(V);

(3.6) forany V € Vy, if there are distinct Fy, F; € F such that V N F, *0
and V N F) # 0 then a point x{, evn F; is chosen foreachi = 0, 1;

(3.7) supp(x},) C A(V) fori € {0, 1}if xV,, x|, are defined for V.

(3.8) py =dawy + D Apw : W eliyand W NV # @} forany V € Vy.

Take any U € U,—; and consider the family Wy = {W NU : W € U,—1}.
It follows from (1) that r4 (V) = V N Yy forany V' € Wy; so the family
W = {V N X4y : V € Wy} is locally finite in X'. By metrizability of X4
we can choose a locally finite cover V C t(X4v)) of the space X4 such that,
for every G € V we have diam,,,, (G) < 27" and G intersects only finitely many
elements of W'. It is straightforward that the family Vy = {r;(lU)(G NnU):G eV}
is locally finite in X' and the properties (3.1)—(3.4) are fulfilled for Vy and i = n.

For any V' € Vy, if there are distinct Fy, F; € F such that VnFE # @ and
V N F # 0 then choose a point xi, € V N F; for each i = 0, 1; it follows
from (3.3) that, for any V' € Vy, we can choose a countable A(V) C T such that
A(W) C A(V) forany W € U,—; with W NV # @ and supp(x},) C A(V) for
every i € {0, 1} if the points x¥, x|, are defined for V.

Letting py = daoy + D _{ow : W elUy—yand W NV # @} forany V € Vy we
complete the construction of Vy; so the family U, = | J{Vu : U € U,—} satisfies
all conditions and subconditions in (3). It is also easy to check, using Fact 2 of
U.050, that the condition (2) holds for U4, as well.
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To see that (1) is fulfilled for {{, ..., U,} takeany V., V' e U, . EV NV =@
then there is nothing to prove so assume that V N V' # @. There are U, U’ € U,—;
such that V € Vy and V' € Vyr. The family Sy = {W € U, : W NV # @}
is finite; since VNV’ Cc VNU’, we have VN U’ # @,ie, U’ € Sy, so it
follows from (3.5) that A(U’) C A(V). The set V' is A(U’)-saturated by (3.2); so it
is A(V)-saturated (it is an easy exercise that if a set is S-saturated for some S C T
then it is S’-saturated for any S’ O S). The set V is A(U)-saturated by (3.2); so it
is A(V')-saturated as well. It is straightforward that the intersection of two A(V')-
saturated sets is an A(V')-saturated set so V N V' is A(V)-saturated and hence (1)
also holds for {Uy, ..., U,}.

Therefore our inductive procedure can be continued to construct a sequence {4, :
n € w} of locally finite open covers of X' for which the properties (1)—(3) hold for
alln € w. LetU,” = {U € U, : U meets at most one element of F} for each n € w.
It turns out that the family U+ = (J{U," : n € w} is a cover of X.

To see this, assume that x € X\(|JU™) and choose U, € U, such that x € U,
for all n € a) Since every U, intersects at least two distinct elements of F, the
points xU , xU are defined foreveryn € w.Let S = (J{A(U,) : n € w}; it follows
from (3. 5) that A(U,) C A(U,+) for any n € w. An immediate consequence of
(3.8) and (3.5) is that py, < py,,, for any n € w. This, together with the property
(3.4) implies that py, (xy;, , X) < py, (xy, ,x) < 27" for any m > n. Now apply
(3.7) to see that rs(x;, ) = x;, forany n € w and i € D. Therefore

pu, (raw,) (Xt,)s Taw,) (X)) < pu, (raw,) (xg,)s raw,) (X)) < 27"

forany m > n and i € ID. Since py, is a metric on the space X 4y,) by (2), the
sequence {rA(Un)(xb”,) :m € w} converges to r4,)(x) for any n € w and hence
the sequence E; = {xbn 1 n € w} converges to rg(x) for any i € D. The family
F being discrete, there is a set O € t(rg(x), X') which meets at most one element
of F. It follows from Ej, E; — rs(x) that there is n € w such that x?/”,x}jn e 0
which is a contradiction because x{, , x;, belong to distinct elements of F.

Thus the family U™ is a o-locally finite cover of X; there is a locally finite
refinement A of /T (see Fact 1). Then A’ = {A : A € A} is a locally finite closed
cover of X' such that every B € A’ intersects at most one element of F. By Fact 2
the family F is open-separated. Therefore every discrete family of closed sets in X
is open-separated; so X' is collectionwise normal (see Fact 1 of S.302) and hence
our solution is complete.

U.103. Let M, be a second countable space for each t € T. For an arbitrary
pointa € M = [[{M, : t € T}, prove that ext(X(M,a)) < w. In particular,
ext(X(A)) = w for any set A.

Solution. For the space M we have c(M) = w by TFS-109. Since ¥ = X (M, a)
is dense in M, we have c(X) = ¢(M) = w. Now, if D is a closed uncountable
subset of X then, by collectionwise normality of the space X' (see Problem 102),
there is a disjoint family O = {O; : d € D} C 7(X) such thatd € O, forany d €
D.Thus O C t*(X) is uncountable and disjoint; this contradiction with ¢(X) = w
shows that every closed discrete subset of X' is countable, i.e., ext(X) = .
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U.104. Assume that M, is a second countable space for any t € T and take any
pointa € M = [[{M, : t € T}. Prove that, if a compact space X is a continuous
image of a dense subspace of X (M,a) then X is metrizable. In particular, if a
compact X is a continuous image of 0(M,a) or ¥ (M, a) then X is metrizable.

Solution. Recall that a space is cosmic if has a countable network. Forany A C T
let pg : M — My = [[{M, : t € A} be the natural projection of M onto its
face M 4.

Fact 1. Suppose that K is a non-empty compact space with no points of countable
character. Then K cannot be represented as a union of < @;-many cosmic
subspaces.

Proof. To get a contradiction assume that K = (J{N, : « < w;} where N, is
cosmic for each ¢ < w;. Let Fy = K suppose that 0 < o < w; and we have
a family {Fg : B < a} of non-empty closed Gs-subsets of K with the following
properties:

(1) F, C Fg whenever 8 <y <a;
(2) if B <athen FgN N, =@ foranyy < B.

It is evident that F, = ({Fp : p < «} is a non-empty closed Gs-subset of K
and hence y(x, F)) > w for any x € F, for otherwise {x} is a Gs-subset of K (see
Fact 2 of S.358) and hence y(x, K) < w (see TFS-327), which is a contradiction.
In particular, F is not cosmic and therefore we can pick a point x € F,\N,. Since
N, is Lindelof, we can apply Fact 3 of S.358 to see that there is a closed Gs-set
G C K such that x € G C X\N,. It is clear that F, = F, N G is a non-empty
closed Gs-subset of K such that (1) and (2) are fulfilled for the family { Fg : B < «}.
Consequently, we can continue our inductive construction to obtain a family {F :
a < w;} of closed non-empty Gs-subsets of K with the properties (1)—(2) fulfilled
for each & < w;. Since K is compact, the property (1) implies that F = [(\{Fy :
o < w1} # @. It follows from (2) that x ¢ | J{Ny : ¢ < w;} for any x € F, which
is a contradiction. Fact 1 is proved.

Fact 2. Suppose that N; is a cosmic space for each ¢ € T and take any point u €
N =TJ[{N; :t € T} If |T| < w then X (N, u) is a union of < w;-many cosmic
spaces.

Proof. Given any point x € X' (N, u) let supp(x) = {t € T : x(t) # u(t)}. Choose
an enumeration {#y : @ < w;} of the set 7 and let T, = {tg : B < «} for every
a<w. IfE, ={x € X(N,u):supp(x) C T,} then nw(E,) < w foreach o < w,
because E, = [[{N; : t € Ty} x {u|(T\T,)} is homeomorphic to the cosmic space
[T{N; : ¢t € T,}. Tt is evident that X (N, u) = | J{E, : @ < w;}; so Fact 3 is proved.

Returning to our solution take a dense S C M and fix a continuous onto map
¢ . S — X.If X is not metrizable then there is a continuous ontomap § : X — Y
such that w(Y') = w; (see SFFS-094). Denote by C the set of points of countable
character of Y'; since Y is also a continuous image of S, we have nw(C) = w by
TFS-299. If C = Y then w(Y) = nw(Y) = w (see Fact 4 of S.307) which is a
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contradiction. Thus there is x € Y \C. Since C is Lindelof, there is a closed Gs-set
F in the space Y such that x € F C Y \C (see Fact 3 of S.358). No point y € F
can be a Gs-set in F because otherwise ¥ (y, Y) = w by Fact 2 of S.358 and hence
x(»,Y)=1v(y,Y) = w (see TFS-327) which shows that y € C, a contradiction.

Since n = § o ¢ maps S continuously onto Y, we can apply Fact 1 of T.109 to
find a set A C T such that |A| < w; and there is a continuous map 4 : p4(S) - Y
for which n = h o (p4|S). It is easy to see that S4 = p4(S) is contained in
Y (My, pa(a)); so we can apply Fact 2 to conclude that ¥ (M 4, p4(a)) and hence
S4 is a union of < w;-many cosmic subspaces. The class of cosmic spaces is
invariant under continuous maps; so the space Y is a union of < w;-many cosmic
subspaces.

Every subspace of a cosmic space is cosmic, so ' C Y is a union of < w;-many
cosmic subspaces which contradicts Fact 1 and proves that X is metrizable. To finish
our solution observe that o0 (M, a) is dense in X'(M, a); so if S is one of the spaces
o(M,a), ¥(M,a) then any compact continuous image of S is metrizable.

U.105. Prove that, if |A| = k > o then the space X+ (A) is homeomorphic to
Cp(A(K)).

Solution. Suppose that we are given infinite sets D and E and a bijection ¢ :
D — E.If we consider D and E to be discrete topological spaces then ¢ is a
homeomorphism and hence the dual map ¢* : RE — RP? defined by ¢p(f) = fog
for any f € R, is a homeomorphism as well (see TFS-163). It is straightforward
that ¢* (X« (E)) = X« (D) which shows that

(1) if D and E are infinite sets of the same cardinality then X,.(D) is homeomor-
phic to X, (E).

Now assume that D is an infinite set, take a point x ¢ D and let E = D U {x}.
The restriction map 7 : Rf — RP defined by n(f) = f|D for any f € R
is continuous and 7 (X« (E)) = X«(D). Forany f € X.(D) lete(f)(x) = 0
and e(f)(d) = f(d) forany d € D. Itis evident that e : Xy (D) — Yy (E) is
continuous (in fact, it is an embedding but we won’t need that).

Givenr € Rlet u,(x) = r and u,(d) = O forall d € D; then u, € X\ (E).
Forany f € Y. (E) let n(f) = (w(f), f(x)) € Zu(D) x R. Then 5 : X (E) —
Y«(D) x R is a continuous map being the diagonal product of two restrictions.
Furthermore, if (h,r) € X4«(D) x R then let p(h,r) = e(h) + u,. We omit a trivial
verification that y : X, (D) x R — X, (E) is continuous. The maps 1 and pu are
mutually inverse; so they are both homeomorphisms. Since D and E have the same
cardinality, the property (1) implies that X, (D) ~ ¥, (F) ~ X.(D) xR and hence

(2) X« (D) is homeomorphic to X, (D) x R for any infinite set D.

We are now ready to deal with our set A. Choose a point y ¢ A and let A’ =
A U {y}. It is easy to see that the family T = expA U{U C A’ : y € U and
|[A\U| < w} is a topology on A’ and K = (A4’, ) is homeomorphic to A(x).

Let I = {f € Cp(K) : f(y) = 0}; if we have a function f € [ and the
set P(f.e) = {a € A : |f(a)| > &} is infinite for some ¢ > 0 then y € P and
hence | f(y)| > ¢ by continuity of f. This contradiction with f(y) = 0 shows



154 2 Solutions of Problems 001-500

that P(f,¢) is finite for any f € I and ¢ > 0. As a consequence, f|A € X« (A)
for any f € I. On the other hand assume that f € C,(K) and f|4 € Xx(A). If
| f(y)] > & > O then there is U € t(y, K) for which | f(a)| > ¢ forany a € U.
The set U has to be infinite; so P(f,¢) D U is also infinite which is a contradiction.
Therefore f(y) = 0 and we proved that f € [ if and only if f|A € X,(A).
Let 4 : C,(K) — C,(A) = R” be the restriction map. It is immediate that
wall : I — m4(I) = X«(A) is a homeomorphism; so I ~ X, (A). We have
C,(K) =~ I xR by Fact 1 of S.409 and therefore the property (2) implies that
Cp(K) =~ Yy(A) xR =~ X4 (A). Since K is homeomorphic to A(k), we proved that
C,r(A(k)) =~ Cp(K) = Xi(A).

U.106. Prove that, if |A| = k > w then the space X (A) is homeomorphic to
Cp(L(x)).

Solution. Suppose that we are given uncountable sets D and E and a bijection
¢ : D — E.If we consider D and E to be discrete topological spaces then ¢ is a
homeomorphism and hence the dual map ¢* : RE — RP? defined by ¢(f) = fo¢
for any f € R, is a homeomorphism as well (see TFS-163). It is straightforward
that ¢* (X (E)) = X (D) which shows that

(1) if D and E are uncountable sets of the same cardinality then X(D) is
homeomorphicto X' (E).

Now assume that D is an uncountable set, take a point x ¢ D and consider the set
E = D U {x}. The restriction map 7 : R — R? defined by 7(f) = f|D for any
f € R is continuous and 7 (X (E)) = X(D).Forany f € X (D) lete(f)(x) =0
and e(f)(d) = f(d) forany d € D. Itis evident that e : X (D) — X(E) is
continuous (in fact, it is an embedding but we won’t need that).

Givenr € Rletu,(x) = r and u,(d) = Oforall d € D; thenu, € ¥(E). For
any f € Y(E)letn(f) = (w(f), f(x)) € X(D)xR.Thenn: X (E) - X(D)x
R is a continuous map being the diagonal product of two restrictions. Furthermore,
if (h,r) € X(D) x R then let w(h,r) = e(h) + u,. We omit a trivial verification
that u : ¥ (D) xR — X (E) is continuous. The maps 7 and p are mutually inverse;
so they are both homeomorphisms. Since D and E have the same cardinality, the
property (1) implies that ¥ (D) ~ ¥(E) ~ ¥ (D) x R and hence

(2) X (D) is homeomorphic to X' (D) x R for any uncountable set D.

We are now ready to deal with our set A. Choose a point y ¢ A and let A" =
A U {y}. Tt is easy to see that the family t = expA U{U C 4’ : y € U and
|[A\U| < w} is a topology on A" and L = (A’, t) is homeomorphic to L (k).

Let I = {f € Cy(L) : f(y) = 0};if f € I and the set P(f) =
{a € A : f(a) # 0} is uncountable then there is n € N such that Q(f,n) =
{a € A:|f(a) = %} is uncountable. It is clear that y € Q(f,n) and hence
| fOy)| = % by continuity of f. This contradiction with f(y) = 0 shows that
P(f) is countable for any f € [I. As a consequence, f|A € X(A) for any
f € 1. On the other hand assume that f € C,(L) and f|A € X(A). Then
the set W = {y}U{a € A : f(a) = 0} is an open neighbourhood of y
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such that f(W\{y}) = {0}. Therefore f(y) = 0 and we proved that f € [ if
and only if f|A € X(A). Let 74 : C,(L) — C,(A) = RA be the restriction
map. It is immediate that 4|/ : I — w4(I) = X (A) is a homeomorphism; so
I ~ X (A). We have C,(L) ~ I x R by Fact 1 of S.409; so the property (2)
implies that Cp,(L) ~ X(A) x R >~ X¥(A). Since L =~ L(k), we proved that
Co(L(k)) ~ Cp(L) =~ X(A).

U.107. Prove that, for any k, there is a compact subspace of C,(A(x)) which sep-
arates the points of A(k). As a consequence, C,(A(k)) and X« (k) are Kss-spaces
and hence Lindelof X -spaces.

Solution. As usual, we consider that A(k) = « U {a} where a is the unique non-
isolated point of the space A(k). For any o € « let f,(¢) = 1 and f,(x) = O for
every x € A(k)\{a}. Denote by u the function which is identically zero on A(k). It
is an easy exercise that K = {f, : « < «} U {u} is compact (in fact, K >~ A(x))
and separates the points of A(x). The class K of compact spaces is k-directed; so
we an apply Problem 014 to conclude that C,(A(k)) is a K,s-space. The space
Y« (x) is homeomorphic to C,(A(k)) by Problem 105; so X« (k) is a K,5-space as
well. Since any K,s-space is Lindelof X (see SFFS-261), both spaces C,(A(k))
and XY, («) are Lindelof X' -spaces.

U.108. Prove that 6(A) is a o-compact space (and hence a Lindelof X -space) for
any A.

Solution. For any x € R4 let supp(x) = {a € A : x(a) # 0}; then supp(x) is
finite for any x € 0(A). Foreachn € Nlet K, = {x € 0(A) : |supp(x)| < n and
x(a) € [-n,n] forany a € A};itis clear that K, C [-n,n]?. It turns out that every
K, is compact.

To see it take any point z € [-n,n]4\ K,; then |supp(z)| > n and hence we can
choose distinct indices a1, ..., a,+1 € A such that z(a;) # O foralli <n + 1. The
set W = {x € [-n,n]" : x(a;) # Oforalli <n+ 1} is open in the space [-n,n]4
and z € W C [-n,n]*\K,. Thus [-n,n]*\K, is open in [-n,n]* and hence K,
is compact being closed in [-n,n]4. Consequently, 0(4) = | J{K, : n € N} is a
o -compact space.

U.109. Prove that, for any uncountable set A, there is a closed countably compact
non-compact subspace in X (A) and hence X (A) is not realcompact.

Solution. Denote by u the function which is identically zero on the set A and let
C = X (A) NI4; it is evident that C is closed in ¥ (A4).If M, = [ foranya € A
and M = [[{M, : a € A} then it is immediate that C = X(M,u) C I4. Since
A is uncountable, the set C is dense in I and does not coincide with T4. However,
P C C (the bar denotes the closure in I*) for any countable P C C (see Fact 3 of
S.307); this implies that C is countably compact (see Fact 1 of S.310). Thus C is a
countably compact non-compact closed subspace of X'(A4) and hence X' (A) is not
realcompact.

U.110. Prove that, for any infinite A, every pseudocompact subspace of X«(A) is
compact.
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Solution. Let P be a pseudocompact subset of X, (A). Since ¥« (A) =~ C,(A(k))
where k = |A| (see Problem 105), we can apply Problem 044 to see that K = P is
compact (the bar denotes the closure in X« (A)). The space K embeds in C,(A(x));
so we can apply Fact 19 of S.351 to conclude that every pseudocompact subspace
of K is compact and hence closed in K. Consequently, P = P = K and hence P
is compact.

U.111. Prove that any metrizable space M embeds in X« (A) for some A.

Solution. Fix a base B C t*(M) in the space M such that B = |, ., B and B,
is a discrete family for every n € w (this is possible because any metrizable space
has a o-discrete base by TFS-221). For any U € B, there is a continuous function
py M — [0, #] such that (p},)~'(0) = M\U (see Fact 2 of T.080).

Define a function p : M — R by p(x) = Oforall x € M and consider the space
K={pyul{p} :ncw, UeB,} CCyM).Takeany O € t(p, C,(M)); there is
e>0andafiniteset A C M suchthat W = {f € C,(M) : f(A) C (—¢,e)} C O.
Take m € w for which % < g; then pf,(x) < # < % <eforanyn>m, x e M
and U € B,. In particular, K,, = {p}, : U € B,} C W foralln > m.

Now, if n < m then only finitely many elements of B, meet A because B, is
discrete. If U € B, and A N U = @ then p},(A) = {0} and hence p}, € W.
Therefore K,,\W is finite for any n < m which shows that K\W D> K\O is finite
and hence

(1) K\O is finite for any O € t(p, C,(M)).

An immediate consequence of (1) is that the space K is compact. We claim that
every f € K\{p} is isolated in K. Indeed, there is k € w and U € B such
that f = pf,. Pick an point x € U; then § = f(x) > 0 and therefore there is
m € o such that% < % Let H = {h € Cp(K) : h(x) > %}, then H is an open
neighbourhood of f in Cp(K).

Ifn >mand g € K, then g(x) < # < % < %;sog ¢ H.Now,if n < m then
at most one element of 3, contains x because I3, is discrete; besides, if V' € B, and
x ¢ V then p},(x) = 0;s0 p}, ¢ H. As a consequence, the set H N K has at most
m elements; so f is an isolated point of K. It is an easy exercise to see that any
compact space with a unique non-isolated point is homeomorphic to the one-point
compactification of a discrete space; so there is a cardinal k such that K ~ A(x).

Givenx € M lete,(f) = f(x) forany f € K;thene, € C,(K) and, letting
e(x) = e, forany x € M, we obtain a continuous map e : M — C,(K) (see
TFS-166).

Suppose that x € M and G C M is a closed set such that x ¢ G. Since B
is a base in M, thereisn € w and U € B, such that x € U C M\G. For the
function f* = p}, € K we have f(x) > O and f(G) = {0};s0 f(x) ¢ f(G). This
proves that K separates the points and closed subsets of M ; so e is an embedding
(see TFS-166). Thus K is a compact space such that M embeds in C,(K). We have
C)(K) =~ Cp(A(k)) = Xi(k) (see Problem 105); so M embeds in X« (x).
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U.112. Observe that any pseudocompact continuous image of X'« (A) is compact and
metrizable for any infinite A. Give an example of a countably compact non-compact
space which is a continuous image of X (w1).

Solution. The space X'« (A) is Lindelof by Problem 107; so any pseudocompact
continuous image of X« (A) is compact and hence metrizable by Problem 104.

Now, let L = L(wy); then X' (w;) is homeomorphic to C,(L) by Problem 106.
Since L is a P-space, K = C,(L,]) is a countably compact non-compact space
(see TFS-397). By TFS-092 C,(L) maps continuously onto K; so X (w;) maps
continuously onto K as well.

U.113. Prove that, for any uncountable A, the space X (A) is not embeddable into
Y« (B) for any set B.

Solution. By Problem 109, there is a countably compact non-compact subspace K
in the space X' (A). Thus, if X' (A) embeds in some X, (B) then K embeds in X, (B)
which contradicts Problem 110.

U.114. Prove that, for any uncountable A, the space X+« (A) is not embeddable into
o (B) for any set B.

Solution. Assume that A is uncountable and there is a set B such that X (A4)
embeds in o(B); fix aset S C o(B) with § >~ Xy (A). Since 6(B) C X (B), the
space o (B) is Fréchet-Urysohn (see Problem 101). It was proved in Problem 108
that we can find a sequence {K, : n € w} of compact subsets of o (B) such that
0(B) = U,e, Kn-If F, = K, N S then F, is a closed subset of S for every n € ®
and S = (J, ¢, Fn- Now apply SFFS-432 to see that S and hence ¥« (A4) embeds in
F, C K, forsomen € w.

Fix a set T C F, such that T ~ X,(A); the space K = T is compact,
Fréchet-Urysohn, and T is dense in K. Since X« (A) >~ C,(X) for an appropriate
compact uncountable space X (see Problem 105), the cardinal w,; is a precaliber
of T and hence of K (see SFFS-283 and SFFS-278). Since K is compact, @ is
a caliber of K by SFFS-279. Besides, K has a point-countable -base by TFS-
332; this w-base has to be countable because w; is a caliber of K. Therefore K is
separable; it follows from Problem 105 that there is a compact space Y for which
K Co(B) C X«(B) =~ C,(Y) and hence K is w-monolithic (see SFFS-118 and
SFFS-154). This shows that K is metrizable and hence so is X'« (A4) =~ C,(X) which
is a contradiction with TFS-169.

U.115. Prove that, for any uncountable A, neither of the spaces X (A) and X« (A)
maps continuously onto the other.

Solution. Let k = |A|; then X (A4) ~ C,(A(x)) by Problem 105. The space
Y« (A) cannot be mapped continuously onto X'(A) because the space Xy (A) is
Lindelof (see Problem 107) and X' (A) is not (see Problem 109). Now assume that
there exists a continuous onto map ¢ : X (A) — X.(A). Forany B C A let
g : R4 — R2 be the restriction map. Since we have the equality 73(X(4)) = R2
for any countable B C A, the set X (A) is C-embedded in R (see Fact 1 of T.455)
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and hence R* can be identified with v(X(4)) (see Fact 1 of S.438). The space
X, (A) being realcompact there exists a continuous map @ : R4 — X, (A4) with
®|X(A) = ¢ and hence @(R?) = X, (A).

Let K, = [-n,n]* for any n € N; then every K, is a dyadic compact space
and P = | J{K, : n € N} is dense in R*. The space Xx(A) C X(A) is Fréchet—
Urysohn by Problem 101; so the dyadic compact space L, = @(K},) has countable
tightness and hence w(L,) = o for each n € N (see TFS-359). As a consequence,
the space L = |(J{L, : n € N} is separable and hence so is X, (A) because
L = @(P)isdensein X« (A). The space X'« (A) is w-monolithic (see Problem 105,
SFFS-118 and SFFS-154); so w = nw(X«(A4)) = nw(C,(A(k))) = nw(A(k)) =
k > o which is a contradiction. Therefore X'(A4) cannot be continuously mapped
onto Xy (A).

U.116. Prove that, for any A, the space X (A) embeds in a countably compact
Fréchet—Urysohn space.

Solution. If A is countable then the space ¥ (4) = R4 is second countable; so
it can be embedded in the metrizable compact space [”. Now, if [A| = «k >
then ¥ (A) =~ C,(L) where L = L(x) (see Problem 106). Furthermore, it follows
from Fact 1 of S.295 that C,,(L) ~ C,(L,(-1,1)) C C,(L,I) and hence X' (A)
embeds in C,(L,I). Since L is a P-space, C,(L,I) is countably compact by
TFS-397. Besides, C,(L,I) C C,(L) ~ X (A) is a Fréchet—Urysohn space (see
Problem 101). Thus X' (A) embeds in the countably compact Fréchet—Urysohn space
C,(L,I).

U.117. Show that, if a set A is uncountable then X (A) cannot be embedded in a
o-compact space of countable tightness. In particular, neither X (A) nor X« (A) are
embeddable in a compact space of countable tightness if |A| > w.

Solution. Let |A| = «; then ¥4(A) ~ C,(Z) for the space Z = A(x) by
Problem 105. Suppose that Y is a space such that #(Y) = w and Y = {K,, : n € w}
where K, is compact for any n € w. If ¥4(A) embeds in Y then fix S C Y with
S ~ Yu(A).If F, = K, N S then F), is a closed subset of S for every n € » and
S = U,ey Fn- Since X4 (A) >~ C,(Z), we can apply SFFS-432 to see that S and
hence X, (A) embeds in F, C K, for some n € w.

Fixaset T C F, suchthat T ~ X,(A); the space K = T is compact, Fréchet—
Urysohn, and 7 is dense in K. Since T ~ Y, (A) >~ C,(Z), the cardinal w; is a
precaliber of 7" and hence of K (see SFFS-283 and SFFS-278). Since K is compact,
w is a caliber of K by SFFS-279. Besides, K has a point-countable w-base by
TFS-332; this ;r-base has to be countable because w; is a caliber of K. Therefore
7w(K) = w and hence nw(T) = w because T is dense in K (see Fact 1 of T.187).
As a consequence, |Z| = w(C,(Z)) = nw(C,(Z)) = nw(T) = w (see Fact 2 of
T.187) which is a contradiction with TFS-169 because |Z| = k > w.

U.118. Let X be a compact space. Prove that X is Corson compact if and only if X
has a point-countable Ty-separating family of open F,-sets. Deduce from this fact
that any metrizable compact space is Corson compact.
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Solution. Let X be Corson compact; so we can assume that X C X'(A) for some
A.Foranya € Alet p, : ¥(A) — R be the natural projection of X'(A4) onto the
factor of R* determined by a. Let B = {(p.q) : p.q € Q, p < g and p-q > 0}.
Observe that no element of 3 contains zero and B is a countable base in R\{0}. Let
U={p;"(B)NX :a € A, B € B}.Itis evident that every element of / is an open
F,-subset of X. If x € X thentheset S = {a € A4 : x(a) # 0} is countable and
hence the family U, = {p;'(B) : B € B, a € S} is countable as well. For any U €
U\Uy we have U = p;'(B) for some B € Banda € A\S.But p,(x) =0 ¢ B
and hence x ¢ U. This shows that the family {U € U : x € U} C U, is countable;
the point x € X was chosen arbitrarily; so we proved that ¢/ is point-countable.

Now take distinct x, y € X. There is a € A such that x(a) # y(a). One of the
numbers x(a), y(a), say x(a), is not equal to zero and hence there is B € B such
that x(a) € B and y(a) ¢ B.ThenU = p;'(B)N X e Uand U N {x, y} = {x}.
This proves that I/ is a Ty-separating family in X'; so we settled necessity.

To prove sufficiency suppose that there exists a Ty-separating family ¢/ of open
F;-subsets of the space X. For every U € U there exists a continuous function
fu : X — Rsuchthat f~1(0) = X\U (see Fact 1 of S.358). The diagonal product
f=A{fy : U el : X - RY of the family { fy : U € U} is a continuous
map; since U is Ty-separating, the map f is injective; so f : X — X' = f(X)
is a homeomorphism. Given any x € X the family P(x) = {U e U : x € U}
is countable; so f(x)(U) = fy(x) = 0 for any U € U\ P(x). This shows that
at most countably many coordinates of f(x) are distinct from zero and therefore
X' € Y (U). Thus X’ is Corson compact and hence so is X being homeomorphic
to X'.

Finally observe that if compact space X is metrizable then any countable base
of X is Tj-separating, point-countable and consists of F,-subsets of X. Therefore
every metrizable compact space is Corson compact.

U.119. Let M, be a second countable space for anyt € T. Prove that, for any point
aeM =][{M, :t € T}, any compact subset of X (M, a) is Corson compact.

Solution. Suppose that X is a compact subspace of ¥ (M, a). For any ¢t € T let
p: + M — M, be the natural projection. Choose a countable base B; in the space
M\{a(t)} foranyt € T.LetU = {p;"(B)N X : t € T, B € B,}. It is evident
that every element of the family I/ is an open F-subset of X. If x € X then the set
S ={t € A:x(t) # a(t)} is countable and hence Uy = {p;'(B) : B € B;, t €
S} is countable as well. For any U € U\U, we have U = p; ! (B) for some B € B,
andt € T\S.But p,(x) = a(¢) ¢ B and hence x ¢ U. This shows that the family
{U €U : x € U} C Uy is countable; the point x € X was chosen arbitrarily; so we
proved that ¢/ is point-countable.

Now take distinct x, y € X. Thereis ¢t € T such that x(z) # y(¢). One of the
points x(¢), y(t), say x(¢), is not equal to a(¢) and hence there is B € B; such that
x(t) € Band y(t) ¢ B.ThenU = p;'(B)N X € U and U N {x, y} = {x}. This
proves that { is a Ty-separating point-countable family of open F,-subsets of X; so
we can apply Problem 118 to conclude that X is Corson compact.
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U.120. Prove that any Corson compact space is monolithic, Fréchet—Urysohn and
has a dense set of points of countable character. As a consequence, w, + 1 is not
Corson compact.

Solution. Let X be a Corson compact space; we can assume that X C X'(A4) for
some A. The space X' (A) is Fréchet—Urysohn by Problem 101; so X is also Fréchet—
Urysohn. Let u € R* be the function which is identically zero on A. Forany B C A
let pp : R4 — R® be the natural projection.

To see that X is monolithic take any infinite cardinal k and ¥ C X with |Y| =
k. The set supp(y) = {a € A : y(a) # 0} is countable for any y € Y; so
S = U{supp(y) : y € Y} has cardinality at most «. It is immediate that ¥ C
F = RS x {psns(u)} =~ RS. As a consequence, w(F) < |S| < k. Furthermore,
Y C F' = FN X (A);since F'isclosedin ¥ (A), we have Y C F’ (the bar denotes
the closure in X' (A4)) and therefore w(Y) < w(F’) < w(F) < k. This shows that X
is monolithic. Finally, X has a dense set of points of countable character by Fact 1
of U.080. Finally, w; + 1 is not Corson compact because f(w; + 1) = w;.

U.121. Prove that d(X) = w(X) for any Corson compact space. Thus, the two
arrows space is not Corson compact.

Solution. Let x = d(X) and fix a dense set A C X with |A| = «. The space X is
monolithic by Problem 120; so w(X) = nw(X) = nw(A) < |A| = « (see Fact 4 of
S.307). Thus w(X) < d(X); since always d(X) < w(X), we have w(X) = d(X).
Finally observe that two arrows space K is separable and non-metrizable (see TFS-
384) which implies that ® = d(K) < w(K) and hence K is not Corson compact.

U.122. Let X be a Corson compact space such that C,(X)\{ f} is normal for some
f € Cp(X). Prove that X is metrizable. In particular, if C,(X) is hereditarily
normal, then X is metrizable.

Solution. By Problem 027 the space X is separable and hence w(X) = d(X) = w
by Problem 121. Thus X is metrizable. In particular, if C,(X) is hereditarily normal
then C,(X)\{ f} is normal for any /" € C,(X); so X is metrizable.

U.123. Prove that any linearly ordered and any dyadic Corson compact space is
metrizable.

Solution. If X is a Corson dyadic compact space then X is Fréchet-Urysohn by
Problem 120. Since every dyadic compact space of countable tightness is metrizable
(see TFS-359), the space X is metrizable.

Now suppose that X is a linearly ordered Corson compact space. We can assume
that X C C,(L(k)) for some cardinal « (see Problem 106). Since (L(x))“ is
Lindelof (see TFS-354), we can apply Fact 4 of U.093 to see that C,(X) is Lindeldf.
Finally, apply Problem 082 to conclude that X is metrizable.

U.124. Let X be a Corson compact space. Prove that the Alexandroff double AD(X)
is also Corson compact. In particular, AD(X) is Corson compact for any metrizable
compact X.
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Solution. The space AD(X) is compact by TFS-364. By Problem 118 the space X
has a point-countable Ty-separating family ¢/ which consists of open F,-subsets of
X . Recall that X x {0, 1} is the underlying set of the space AD(X). Given x € X let
up(x) = (x,0) and u;(x) = (x,1). Then AD(X) = up(X) U u;(X). The points of
u1(X) are isolated in AD(X); if z = (x,0) € AD(X) then the base at z is formed
by the sets uo(V) U (u1(V)\{u1(x)}) where V runs over t(x, X).

Forany P C X let n(P) = up(P) U u;(P). It is immediate that 7(U) is open
in AD(X) if U € 7(X); besides 7(F) is closed in AD(X) if F is closed in X.
Therefore 7(U) is an open F,-subset of AD(X) for any U € U and hence the
family V = {w(U) : U € U} U {{u1(x)} : x € X} consists of open F,-subsets of
AD(X). The family V, = {#(U) : U € U} is point-countable because so is &{. The
family V>, = {{u;(x)} : x € X} is disjoint so ¥V = V| U V) is point-countable as
well.

To prove that V is Ty-separating take any distinct points z = (x,i) and ¢t = (y, j)
of the space AD(X). If x = y theni # j; letting W = {u;(x)} it is easy to see
that W € V and W N {z,¢} is a singleton. If x # y then there is U € U such that
U N {x, y} is a singleton. Then W = n(U) € V and W N {z, ¢} is a singleton as
well. Thus AD(X) has a point-countable Ty-separating family of open F,-sets and
hence we can apply Problem 118 to conclude that A D(X) is Corson compact.

U.125. Let X; be a Corson compact space for any t € T. Prove that the one-point
compactification of the space @{X; : t € T} is also Corson compact.

Solution. We consider that X; is a clopen subspace of X = @{X, : t € T} for
everyt € T.Let K = {a} U X be the one-point compactification of X; the space
K is compact by Fact 1 of S.387. For every ¢ € T there is a point-countable family
U; C 1(X;) such that every U € U, is o-compact and U, is Ty-separating in X;.
Since V = {X; : t € T} is disjoint, the family &/ = (J{U; : t € T} UV is also
point-countable. It is evident that ¢/ consists of open Fj-subsets of K.

Let x and y be distinct points of K. If some of them, say x, coincides with a then
y € X, forsome t € T. Consequently, W = X, e U and W N {x,y} = {y}isa
singleton. If a ¢ {x, y} then there are two possibilities:

1) thereis t € T such that {x, y} C X,. Since l4; is Tp-separating in X, there is
W e U, for which W N{x, y} is a singleton. We also have W € U; so we found
W e U which Ty-separates x and y.

2) There are distinct s, € T such that x € X; and y € X;. Then W = X, e U
and W N {x, y} = {x} is a singleton.

This proves that I/ is a point-countable family of open F;-subsets of K which
Toy-separates the points of K. Therefore Problem 118 can be applied to conclude
that K is Corson compact.

U.126. Prove that, under CH, there exists a compact space of countable spread
which is not perfectly normal.
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Solution. It was proved in SFFS-099 that, under CH, there exists a compact space
X suchthat y(X) > wand hl(C,(X)) = w. Then s(X) < hd(X) < hl(C,(X)) =
o (see SFFS-017) and X is not perfectly normal because y(X) = w for any
perfectly normal compact X (see TFS-327).

U.127. Let X be a Corson compact space such that s(X) = w. Prove that X is
perfectly normal.

Solution. We will need the following general statement.

Fact 1. 1f aspace Z is k-monolithic and s(Z) < k for some infinite cardinal « then
hl(Z) <«k.

Proof. Fix Y C Z and take an open cover U of the space Y. Since s(Y) < s(Z) <
Kk, we can apply Fact 1 of T.007 to find a discrete D C Y and U’ C U such that
U] < kandY = cly(D) U (IUU’). By k-monolithity of the space Z, we have
nw(cly (D)) < nw(clx(D)) < k. Therefore [(cly (D)) < nw(cly(D)) < k and
therefore there exists a family /" C U such that cly (D) C |JU". It is immediate
that ' U UY” is a subcover of U of cardinality < «. This shows that [(Y) < « for
any Y C Z,i.e., hl(Z) < k and hence Fact 1 is proved.

Returning to our solution observe that X is w-monolithic by Problem 120; since
also s(X) = w, we can apply Fact 1 to conclude that #/(X) = w and hence X is
perfectly normal by SFFS-001.

U.128. Let X be an w-monolithic compact space such that s(C,(X)) = w. Prove
that X is metrizable. In particular, a Corson compact space X is metrizable
whenever s(C,(X)) = w.

Solution. We have s(X x X) < s(C,(X)) < o by SFFS-016; besides, X x X is
w-monolithic by SFFS-114. Therefore we can apply Fact 1 of U.127 to conclude that
hi(X x X) < w and hence X x X is perfectly normal by SFFS-001. Consequently,
the diagonal of X is a Gs-subset of X x X; so X is metrizable by SFFS-091. Finally,
if X is Corson compact and s(C,(X)) = o then X is metrizable because it is
w-monolithic (see Problem 120).

U.129. Let X be a compact space of countable tightness. Prove that X maps
irreducibly onto a Corson compact space.

Solution. By TFS-367 any compact space X of countable tightness admits a
continuous irreducible map onto a space ¥ C X (k) for some cardinal «. The space
Y is compact being a continuous image of X; so Y is Corson compact.

U.130. Given spaces X and Y assume that there exists a closed continuous
irreducible ontomap f : X — Y. Prove that d(X) = d(Y) and ¢(X) = c(Y).

Solution. The equality c(X) = c¢(Y) was proved in Fact 1 of S.228. Next observe
that d(Y) < d(X) (see TFS-157) and assume that d(Y) < k. Pickadense D C Y
with | D| < « and choose a point g(y) € f~'(y) forevery y € D.If E = {q(y) :
y € D}then |E| < k. If E is not dense in X then F = E # X; the map f being
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closed we have f(F) = f(E) = D = Y which is a contradiction because the
map f is irreducible. Therefore E is dense in X and hence d(X) < |E| < « which
shows that d(X) = d(Y).

U.131. Prove that, under the Jensen’s axiom (<), there is a perfectly normal non-
metrizable Corson compact space X. Therefore, under <>, a Corson compact space
X need not be metrizable if c(X) = w.

Solution. It was proved in SFFS-073 that, under <, there exists a hereditarily
Lindel6f non-separable compact space K. Since 1(K) = w, there exists a Corson
compact space X and a continuous irreducible onto map f : K — X (see
Problem 129). We have hl(X) < hl(K) < w; so X is perfectly normal. However,
X is not metrizable because d(X) = d(K) > w (see Problem 130). It is evident
that ¢(X) < s(X) < hl(X) < w so X is a non-metrizable Corson compact space
such that ¢(X) = w.

U.132. Prove that any Corson compact space X, with w; precaliber of X, is
metrizable.

Solution. We have #(X) =  and hence there exists a point-countable r-base 5 in
the space X (see TFS-332). Since w; is a caliber of X (see SFFS-279), the family B
has to be countable; so d(X) < aw(X) < |B| < w. Therefore w(X) = d(X) < w
(see Problem 121) and hence X is metrizable.

U.133. Assuming MA+—CH, prove that any Corson compact space X, for which
c(X) = w, is metrizable.

Solution. Since c(X) = w and we have MA+—CH, the cardinal w; is a precaliber
of X (see SFFS-288); so X is metrizable by Problem 132.

U.134. Prove that a compact space X can fail to be Corson compact being a
countable union of Corson compact spaces.

Solution. Let X be the one-point compactification of the Mrowka space M (see
TFS-142). Then X has a countable dense set D of isolated points while the space
K = X\D is homeomorphic to A(k) for an uncountable cardinal «; let a be the
unique non-isolated point of K. The space K is Corson compact because the family
{{x} : x € K\{a}} is disjoint, Ty-separating in K and consists of open compact
subsets of K (see Problem 118). Since {x} is also Corson compact for any x € D,
the space X = {{x} : x € D} U K is a countable union of its Corson compact
subspaces. However, X is not Corson compact because it is separable and non-
metrizable (see Problem 121).

U.135. Prove that there exists a compact space X which is not Corson compact
being a union of three metrizable subspaces.

Solution. Let X be the one-point compactification of the Mrowka space M (see
TFS-142). Then X has a countable dense set D of isolated points while the space
K = X\D is homeomorphic to A(k) for an uncountable cardinal «; let a be the
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unique non-isolated point of K. Since every discrete space is metrizable, the space
X = DU (K\{a})U {a} is the union of its three metrizable subspaces. However, X
is not Corson compact because it is separable and non-metrizable (see Problem 121).

U.136. Suppose that X is compact and X* is a countable union of Corson compact
subspaces. Prove that X is Corson compact.

Solution. Suppose that X© = | J{K; : i € w} where the space K; is Corson
compact for any i € w. Since the space X has the Baire property, there is i €
suchthat U = Int(K;) # @ (the interior is taken in X ). By definition of the product
topology there is n € w and Uy, ..., U,—; € ©(X) such that V = [[._, Ux %
I1x @V < . Since V is a product in which X is one of the factors, the space X
embeds in V' C U and hence in K;. It is evident that any subspace of a Corson
compact space is Corson compact; so X is Corson compact.

U.137. Prove that any countable product of Corson compact spaces is Corson
compact. In particular, X is Corson compact whenever X is Corson compact.

Solution. Suppose that K, is Corson compact and fix a point-countable family 4,
of open F,-subsets of K, which Tj-separates the points of K, for any n € w (see
Problem 118). For the space K = ]_[nEw K, let 7, : K — K, be the natural
projection for each n € . The family V, = {x,;!(U) : U € U, } is point-countable
forany n € w;so0V = |J,¢, Va is also point-countable; it is clear that V consists
of open Fy-subsets of K. If x,y € K and x # y then p,(x) # p.(y) for some
n € w and therefore there is U € U, such that U N {p,(x), p,(»)} is a singleton.
Then V = 7, '(U) € V and the set V N {x, y} is a singleton. This proves that V
is a point-countable family of open Fj,-subsets of K which is Tj-separating in K;
hence K is Corson compact by Problem 118.

U.138. Let X be a Corson compact space. Prove that X has a dense metrizable
subspace if and only if it has a o-disjoint w-base.

Solution. If Z is a space and A is a family of subsets of Z say that a family 5 C
exp Z is inscribed in A if, for every B € B there is A € A such that B C A. If
A BCexpZandY C Zthen A]Y ={ANY:Ae AlandAAB={ANB:
Ae A, B e B}

Fact 1. If a space Z has a dense metrizable subspace then it has a o-disjoint -
base. For first countable spaces the converse is also true, i.e., a first countable space
Z has a dense metrizable subspace if and only if it has a o-disjoint 7-base.

Proof. There is no loss of generality to assume that all spaces we consider are not
empty. To prove the first part, suppose that M is a dense metrizable subspace of Z.
By TFS-221, we can choose a base B = | J,,¢,, B« C t*(M) of the space M such
that BB, is discrete in M for any n € w. Forevery U € B fix Oy € ©(Z) such that
Oy N M = U. Since M is dense in Z, the family V, = {Oy : U € B, } is disjoint
for any n € w. We claim that the family V = J ., V» is a w-base in Z. Indeed,

new
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take any W € t*(Z); there is W € t*(Z) such that W, C W. Choose any U € B
with U € W, N M.Then Oy € Vand Oy C Oy = U C W C W and hence V
is a o-disjoint wr-base in the space Z.

Now assume that Z is first countable and there is a w-base B in Z such that
B = U, e, B: where B, is a disjoint family for any n € . If we add a non-empty
open set to a w-base, we will still have a w-base; if we take a non-empty open subset
in every element of a w-base we will obtain a rr-base. These observations make it
possible to assume that | J B, is dense in Z and B, is inscribed in B, for any
n € w.Foranyz € Zlet{O; : n € w} be alocal base at z with O | C O;. for each
n € w. For every n € w we will inductively construct a set D, C Z and a number
k(n,z) € w for any z € D, in such a way that

(1) D, C Dy4 foranyn € w;

(2) k(n,z) > nandk(n + 1,7) > k(n,z) foranyn € w and z € D,;

(3) the family U, = {O} : z € Dy} is disjoint and | JU, is dense in Z for any
n € w;

(4) the family 4,4 is inscribed in U, for any n € w;

(5) the family {Oli(n+1,z) 2z € Dy41\D,} is inscribed in B, 4, for any n € w.

k(nyz) °

To construct Dy, take any zo € Z and let n(0,z0) = 0, Dy[l] = {O;?O’ZO)}.
Suppose that B is an ordinal and we have {z, : @ < 8} and {k(0, z,) : @ < B} such
that the family Dy[B] = {Ok(o Wy A< B} is disjoint. If ) Do[B] is dense in Z, then
our construction stops. If not, then we can choose zg € Z\|J Do[f] and k(0, zg) so
that Olffo,zﬁ) C Z\U Do[B]. Tt is clear that the family Do[B + 1] = {O,_ ) :
a < B} is still disjoint; so our construction can be continued until | | Dy[B] is dense
in Z for some ordinal B (evidently, this will happen for some 8 < |Z|*). It is
obvious that the property (3) is fulfilled for the sets Dy = {z, : @ < B} and
{k(0,z4) : ¢ < B}.

Now assume that m € w and we have sets {Dy, ..., D,,} such that for each
i <m anumberk(i,z) € w is chosen for every z € D; in such a way that (3) is true
foralln < m and (1),(2),(4),(5) are satisfied for any n < m.

For any z € D, let k(m + 1,z7) = k(m,z) + 1; it follows from (3) that the
family D,,+1[0] = {Ok(m-H PR D,,} is disjoint. If | J D,,+1[0] is dense in Z
then we let D,,1; = D,,; it is clear that (3) still fulfilled for all » < m + 1 while
(1),(2),(4),(5) are satisfied for any n < m. If | J D,,+1[0] is not dense in Z then it
follows from (3) that we can find B € B,,+; and O € U,, suchthat W = BNO # @
and W N (U Dy+1[0]) = @. Pick zo € W and k(m + 1,z9) > m + 1 such that
O;t()mHZO) C W andlet D,,44[1] = {Ok(m+lz) z€ D, U {0;t(>m+l’m)}.

Suppose that 8 is an ordinal and we have constructed {z, : « < B} and {k(m +
1,zy) : o < B} such that the family

D18l = {0 ny12 1 2 € D} U011, 12 < B}

isdisjointand { O, ., .\ + @ < B}isinscribed in Uy ABy1. If the set | Dyp+1[B]

is dense in Z then our construction stops. If not, then we can find B € B+, and
O € Uy, suchthat W = BN O # @Gand W N (I Dp41[B]) = 0.
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Now choose a point zg € W and a number k(m + 1,zg) > m + 1 in such a
way that OE’zm +1zp) C W . 1t is clear that the family D,,[B + 1] is still disjoint; so
our construction can be continued until | ) D,,,+1[B] is dense in Z for some ordinal
B (evidently, this will happen for some 8 < |Z|*). It is clear that, for the sets
Dy,...,Dy, Dpyt1 = D,y U{zy 1 @ < B}, the property (3) is true foralln < m + 1
and (1),(2),(4),(5) are satisfied for any n < m. Thus our inductive procedure can be
continued to construct the sets {D, : n € w} with the properties (1)—(5).

We claim that the set D = | J,, D is dense in Z and metrizable. Indeed, it
follows from (3) and (4) that D, = U,|D is an open disjoint cover of D; so D,
is a discrete family in D for any n € w. Besides, the property (2) implies that
D = U, e, Dn contains a local base at every z € D; so D is a o-discrete base of D
and therefore D is metrizable.

To show that the set D is dense in the space Z it suffices to prove that DN B # @
for any B € B. There is n € w such that B € B,; it follows from (3) that there is
z€ Dysuchthat V = OE(M) N B # @.1f z € B then there is nothing to prove so
we assume that 7 ¢ B.

Since k (i, 7) — oo wheni — oo and ﬂ{clz(Oi(LZ)) 11 > n} = {z}, the number
m = min{i — 1 : 7 > n and V is not contained in clz(Oi(i’z))} is well defined. It is
easy to see that the set P = (OE(m,z)\CIZ(Oli(m+l,z))) N V is non-empty and hence

thereis d € D,,+ with Olf(mH,d)ﬂP £ @.Butd € D, 1\Dy;s0 Of(mH,d) C B’

for some B’ € B,,+. It follows from B’ N B # @ that B C B and hence d € B.
This proves that D N B # @ forany B € B;so D is dense in Z and Fact 1 is proved.

Returning to our solution observe that Fact 1 implies that if X has a dense
metrizable subspace then it has a o-disjoint r-base; so necessity is clear. Now if
B is a o-disjoint 7r-base in X then the set P of the points of countable character is
dense in X by Problem 120. It is immediate that B| P is a o-disjoint 7-base in P;
so P has a dense metrizable subspace D by Fact 1. It is clear that D is also dense
in X ; this settles sufficiency and makes our solution complete.

U.139. Prove that M (k) is an w-perfect class for any k.

Solution. Given spaces Y and Z say that Y £ Z if Y embeds in Z as a closed
subspace; the fact that Y is a continuous image of Z will be denoted by Z > Y.

Suppose that X € M (k); there is a compact space K and F C L(k)® x K such
that F > X.Then F xw > X xw and (F Xw)® > (X Xw)® = 0,(X). Since any
countable subset of k is clopen in the space L(k), we have L (k) > w and therefore
L(k)x L(k) > L(x) x w which shows that L(k)® > (L(k) X @)® >~ L(k)* X w®.

Furthermore, (F X w)® E (L(k)” x w x K)® >~ L(k)” x o x K®. Besides,
L(k)®? > L(k)® xw®, we have L(k)® x K® > L(x)® x w® x K® and hence there
exists G E L(x)® x K“ such that G > (F x w)® > 0,(X) whence G > 0,(X).
This proves that 0, (X) € M (k).

Now assume that ¥ € £(X) and fix a compact space L such that X x L > Y.
Wehave F XL > XxLand FXL T L(k)”x(KxL).Sincealso FxL > Y,we
have Y € M(k) and hence £(X) C M(«k). Finally, if H is closed in X then there
isaclosed F/ C F suchthat F’ > H; wehave F' C L(k)® x K so H € M (k)
and therefore M (k) is a perfect class.
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U.140. Prove that, for any Corson compact space X the space C,(X) belongs to
M(k) for some uncountable k.

Solution. The space X embeds in C,(L(x)) for some uncountable « by Problem
106. It is clear that L (k) € M (k). The class M (x) being w-perfect by Problem 139,
the space C,(X) belongs to M(x) by Problem 019.

U.141. Prove that if k is an uncountable cardinal and Y € M(k) then Y? is
Lindelof. In particular, (C,(X))® is Lindelof for any Corson compact space X.

Solution. It was proved in TFS-354 that the space L(k)® is Lindelof. As a
consequence, L(k)” x K is also Lindelof for any compact space K (see Fact 2
of T.490 and Fact 3 of S.288). Since any closed subspace and any continuous image
of a Lindelof space is Lindelof, any element of M (k) is Lindelof. Now, it follows
from Y € M(x) that Y € M(k) (see Problem 139) so Y is also Lindelof.

Finally, if X is a Corson compact space then C,(X) € M(A) for some
uncountable cardinal A (see Problem 140) so, by what we proved above, the space
(Cp(X))® is Lindelof.

U.142. Prove that any countable union of primarily Lindeldf spaces is a primarily
Lindelof space.

Solution. Given spaces Y and Z say that Y T Z if ¥ embeds in Z as a closed
subspace; the fact that Y is a continuous image of Z will be denoted by Z > Y.

Suppose that X = |, ¢, X» and X, is a primarily Lindelof space for all n € w.
Fix an uncountable cardinal «, and F, T L(k,)® for which F, > X, for every
n € w.If k = supi{k, : n € w} then F,, T L(x)® for any n € w. Any countable
subset of « is clopen in L (k) so L(k) > w. Thus L(k) x L(k) > L(x) x w which
shows that L(k)® > (L(k) X @)® > L(k)” x w. Itis clear that F = ), , Fn T
L(k)® x w; so thereis G C L(k)® with G > F > X and therefore G > X, i.e.,
X is primarily Lindelof.

U.143. Prove that any countable product of primarily Lindeldf spaces is a primarily
Lindelof space.

Solution. Given spaces Y and Z say that Y T Z if ¥ embeds in Z as a closed
subspace; the fact that Y is a continuous image of Z will be denoted by Z > Y.

Suppose that X =[], ¢, X» and X, is a primarily Lindelof space for all n € w.
Fix an uncountable cardinal «, and F, T L(k,)® for which F, > X, for every
n € w.If Kk = sup{k, : n € w} then F, C L(x)® for any n € w. It is clear that
F =[l,en Fr E (L(k)*)® >~ L(x)® and F > X which shows that X is primarily
Lindelof.

U.144. Prove that any continuous image as well as any closed subspace of a
primarily Lindelof space is a primarily Lindelof space.

Solution. Given spaces Y and Z say that Y T Z if ¥ embeds in Z as a closed
subspace; the fact that Y is a continuous image of Z will be denoted by Z > Y.
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Suppose that X is a primarily Lindelof space and X > Y. Fix an uncountable
cardinal k and F T L(x)® for which F > X; then F > Y and hence Y
is primarily Lindelof. Therefore every continuous image of a primarily Lindelof
spaces is primarily Lindelof. Now, if H is closed in X then there is a closed F' C F
such that F' > H. Since also F’ T L(k)®, the space H is primarily Lindelof.

U.145. Prove that any countable intersection of primarily Lindeldf spaces is a
primarily Lindelof space.

Solution. Suppose that Z is a space and X,, C Z is primarily Lindelof for any
n € . Then X = (),¢, X» embeds in [], ¢, X» as a closed subspace (see Fact 7
of S.271). Applying Problems 143 and 144 we can conclude that X is primarily
Lindelof.

U.146. Prove that primarily Lindeldf spaces form a weakly k-directed class.

Solution. Being primarily Lindelof is preserved by finite products and continuous
images by Problems 143 and 144. Any countable subset of w; is a clopen subset
of L(w;) so L(w;) maps continuously onto w. As a consequence, L(w;)® maps
continuously onto w®, i.e., w® is primarily Lindel6f. Any metrizable compact space
is a continuous image of w® (see SFFS-328); so all metrizable compact spaces are
primarily Lindelof by Problem 144. This proves that primarily Lindel6f spaces form
a weakly k-directed class.

U.147. Given a space X assume thatr : X — X is a retraction. For any f € Cp(X)
letri(f) = for.Provethatr, : Cp(X) — C,(X) is also a retraction.

Solution. Let F = r(X); then F is closed in X and r(x) = x forany x € F
(see Fact 1 of S.351). If np : Cp(X) — C,(F) is the restriction map then nr is
continuous and 7 (C,(X)) = C,(F) because F is C-embedded in X (see Fact 1
of S.398). Furthermore, we can also consider that » : X — F and therefore the dual
map r* : Cp(F) — C,(X) defined by r*(f) = f orforany f € C,(F)is an
embedding by TFS-163. It is evident that r{ = r* o 7f; so r; is a continuous map.

Forany x € F and f € C,(X) we have ri(f)(x) = (f|F)(r(x)) = f(x)
which shows that ri(f)|F = f|F,ie., nr(ri(f)) = nr(f). As a consequence,
for any function f € C,(X) we obtain ri(ri(f)) = r*(@r(ri(f)) =
r*(wr(f)) = ri(f) which proves that ry o r; = ry and therefore ry is a retraction.

U.148. Given an uncountable cardinal k and a set A C L(x) define a map p4 :
L(k) = L(x) by the rule ps(x) = a ifx ¢ Aand ps(x) = x forall x € A (recall
that L(k) = k U {a} and a is the unique non-isolated point of L(k)). Prove that

(i) paisaretraction on L(k) onto A U {a} forany A C L(k);

(ii) if B C L(k) and F is a closed subset of (L(k))® then there exists A C L(k)
such that B C A, |A| < |B|-w and (pa)”(F) C F. Here, as usual, the
map g4 = (pa)® : (L(k))? — (L(k))® is the countable power of the map p 4
defined by qa(x)(n) = pa(x(n)) forany x € (L(k))” andn € .
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Solution. To see that py : L(k) — A U {a} is continuous, it suffices to prove
continuity at the point a. So, take any U € t(a, A U {a}); there exists a countable
A’ C A such that (A\A") U {a} C U. It is evident that V = (x\A4’) U {a} is an
open neighbourhood of a in L(k). Since p4(V) = (A\A") U {a} C U, the set V
witnesses continuity of p4 at the point a. Thus the map p4 is continuous.

Furthermore, A U {a} is closed in L(k) and p4(x) = x forany x € A U {a}.
Therefore p4 is a retraction by Fact 1 of S.351, i.e., (i) is proved.

The proof of (ii) will require more effort. Let 7, : (L(x))® — (L(k))" be the
natural projection for any n € N. Givenn € N and z = (29,...,21—1) € (L(x))"
call a set U C (L(x))" a canonic neighbourhood of z if there is V € t(a, L(k))
suchthat U = Uy x ... x U,—1 where U; = {z;} if z; # a and U; = V whenever
z; = a; such a set U will be denoted by [z, V]. It is easy to see that the family of
canonic neighbourhoods of z is a local base at z in (L(k))". Therefore the family
{7 '([z,V]):n €N, z€ (L(x))" and V € t(a, L(x))} is a base in (L(k))®.

Given a number n € N, a point z € (L(k))" will be called marked if there exists
aset O € 1(z, (L(k))") such that 7,1 (0) N F = @; it is evident that z is marked
if and only if z ¢ m,(F). For every n € N and a marked z € (L(k))" fix a set
0, € t(a, L(x)) such that 7, !([z, 0;]) N F = @. Let Ay = B U {a}; assume that
m € N and we have constructed sets Ag C ... C A,,— such that

(1) |A,| <|B|-w forany n < m;
(2) forany n < m if k < n and, for some points 2, ...,z;—1 € A, the element
2= (20.....2j—1) € (L(k))’ is marked, then L(k)\ O, C A,.

Let P; = {z = (20,...,2j—1) € (L)) : {z0,...,2j—1} C Am— and z is
marked} forany j € N.If P = (J{P; : j € N} then |P| < |A—1| -w < |B|-w
by the property (1). An immediate consequence is that the properties (1) and (2) are
still satisfied for the set A, = Ap—1 U (U{L()\O; : z € P}).

Therefore our inductive procedure can be continued to construct an increasing
sequence {A, : n € w} of subsets of L(k) such that BU{a} C Ao and the properties
(1) and (2) hold for every n € w; let A = | J, ., An. It is evident that B C A and
|Al < |B| - o.

To see that we have g4(F) C F assume that there exists a point x € F such
that y = g4(x) ¢ F. The set F being closed in (L(k))® there is j € N such that
z=m;(y) ¢ 7;(F) and hence the point z is marked; furthermore, we have [z, O;]N
7 (F) = @. By the definition of the map g4 = p¢ all coordinates of the point z =
(zo,...,zj—1) belong to A and hence there is n € w for which zg,...,2;-1 € A4,.

If we show that 77 (x) € [z, O,] then the contradiction with [z, O] N m; (F) = @
will finish the proof. Recall that [z, O;] = Uy x ... x U;—; where Uy = {z} if
7z # a and Uy = O, whenever z; = a.

So, take any k < j; if y(k) # a then y(k) € A and hence we have the
equalities p4(x(k)) = y(k) = x(k). As a consequence, zx = y(k) = x(k)
whence x (k) € Ui. Now, if y(k) = a then we have two possibilities: x(k) € A
orx(k) ¢ A.

If x(k) € A then p4(x(k)) = x(k) = y(k) = zx and hence x (k) € Uy. Finally,
if x(k) ¢ Athen x(k) ¢ A,+1. But L(k)\O, C A+ by the property (2); so we

new
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have x(k) € O, = U;. We proved that, in all cases, x(k) € Uy forall k < j
and therefore 7 (x) € Uy x ... x U;_; = [z, O] which is a contradiction. Thus
qa(F) C F and hence we proved (ii) which shows that our solution is complete.

U.149. Prove that, for any primarily Lindelof space X, the space C,(X) condenses
linearly into X (A) for some A.

Solution. Recall that, for any cardinal A, in the space L(A) = A U {a} all points of
A are isolated, a ¢ A and a set U > a is open if and only if L(A)\U is countable.
This definition also makes sense for A = w, in which case the resulting space is
countable and discrete.

Suppose that a space Y is a continuous image of a closed F C (L(4))? for
some uncountable cardinal A. The respective dual map embeds C,(Y) in C,(F)
as a linear subspace; so if we want to prove that C,(Y) condenses linearly into
some Y (A) it suffices to show the existence of the promised linear condensation
for C,(F). Therefore we can assume, without loss of generality, that X is a closed
subset of (L(A))® for some uncountable cardinal A.

Our proof will proceed by induction on A. For the first step assume that F' C
(L(w))®; then F is separable. If Q is a countable dense subset of F then the
restriction map o condenses C,(F) linearly in R?. Itis an easy exercise to see that
R? condenses linearly into ¥ (w); so C,(F) also condenses linearly into X (w;).
Now suppose that « is an uncountable cardinal and we proved the existence of the
relevant condensations for all cardinals smaller than «. In other words,

(*) for any cardinal A < «, if F is a closed subset of (L(4))® then there exists a
linear condensation of C,(F’) into X'(A) for some uncountable set A.

Take an arbitrary closed X C (L(x))“; for any B C L(x) we will need the
retraction pg : L(k) — B U {a} defined as follows: pp(x) = x forany x € B
and pp(x) = a forevery x € L(k)\B (it was proved in Problem 148 that every pp
is, indeed, a retraction). The map gz = (pp)® : (L(k))” — (L(k))* is defined by
qp(x)(n) = pp(x(n)) forany x € (L(x))* and n € w. It is immediate that gp is a
retraction as well.

Let us prove that for the cardinal i = cf(x) there is a u-sequence { By : o < u}
of subsets of L (k) such that

(1) a € By, By C By+1, Byt+1\By # 0 and |B,| < k forall @ < ;
(2) L(k) = {Bo:a < u};

(3) Bg = |U{B« : @ < B} whenever < p is a limit ordinal;

4) gp,(X) C X forany & < p.

First represent L(k) as | J{M, : @ < u} where |M,| < « for any & < u. By
Problem 148, there exists a set By C L (k) such that By D My U {a}, |By| < k and
qB,(X) C X.If B, C L(«x) is chosen then apply Problem 148 to find B,+; C L(k)
such that My U By C By+1, By+1\Boy # 0, |Ba+1| < k and un+l(X) cX.If
B < pis alimit ordinal let Bg = | J{B, : @ < B}.

Observe that (1)—(3) hold trivially for the p-sequence {B, : o« < p} and the
property (4) is clear for successor ordinals. Now, if § < p is a limit ordinal assume
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that g, (X) is not contained in X . Then there is x € X such that y = gp,(x) ¢ X.

Since X is closed in (L(k))®, there is n € N such that w,(y) ¢ m,(X) where
7, o (L(k))® — (L(x))" is the natural projection.

We have y (i) € Bg foralli < n;the property (3) implies that there is a successor
ordinal @ < B such that y(i) € B, forall i < n. Since the property (4) is satisfied
for «, the point ¢t = ¢p, (x) belongs to X. We claim that w,(f) = 7,(y). Indeed,
ifi < nandx(i) € Bg then x(i) = y(i) € B, and therefore #(i) = x(i) which
implies #(i) = y(i). If, on the other hand, x (i) ¢ Bg then x(i) ¢ B, and hence
t(i) = a; since also y(i) = a, we have (i) = y(i) again. This proves that #(i) =
y(i) for all i < n and hence 7,(y) = m,(t) € m,(X); this contradiction with
7w, (y) ¢ m,(X) shows that the property (4) holds for all &« < .

Let Xy = ¢p,(X) forany o < pu;themapr, = ¢gp,|X : X — X, is aretraction
and X, = X N (By)®. Itis clear that B, is homeomorphic to some L(1) so, for any
a < u, the space X, is a closed subset of (L(A))® for some A < k. The property
() shows that every C,(X,) can be linearly condensed onto a subspace of X'(A4,)
for some set A, .

The dual map ry : C,(Xy) — C,(X) is a linear embedding (see TFS-163); so
the space T, = r} (C, (X)) is linearly homeomorphic to C,,(X,). Therefore we can
consider that there is a linear condensation ¢, : T, — Z, where Z,, is a subspace
of ¥(A,) forany @ < .

Given any ordinal ¢ < p, it is easy to see that X, C X,+1; so we have a
retraction 7o = ro|Xo41 : Xa41 = Xo. The map (7)* : Cp(Xo) = Cp(Xoq1) is
an embedding; let T, = (74)*(C,(X,)). It is straightforward that ry, | (T;) = T,
and hence T, C Tyq1; let my @ Cp(X) — C,(X,) be the restriction map for
any ordinal @ < p. It is clear that the mappings ry o ny : Cp(X) — T, and
Tas1 © Tat1 o Cp(X) — T,y are continuous; this, together with the fact that
To+1 D Ty is alinear subspace of C,(X) implies that ry, | 0 wy+1 — ry © T, Maps
C,(X) continuously into Ty 1; so the mapping uy = @u+10(ryy | © Tat1—7g O Ta)
is well defined, linear and continuous for all @ < .

Consequently, the diagonal product u = A{u, : @ < p} is a linear continuous
map from C,(X) to ¥ = [[{¥(4y) : @ < p}. It is evident that, for the set
A = J{Ay : @ < pu}, we can consider that X is a linear subspace of R4. We will
prove that u is injective and u(C,(X)) C X (A); this will carry out our inductive
step.

To see that u is injective take distinct f, g € C,(X). Observe first that, for any
limit ordinal B < p the space Yg = (J{X, : @ < B} is dense in Xp (here Xg = X
and Bg = L(x) for B = ). Indeed, fix any point y € Xg; we have y = rg(x)
for some x € X and hence y(i) € Bg for any i € w. Given n € w, it follows
from (3) that there exists o, < B for which {y(0),...,y(n — 1)} C B,,. Now, if
Yn = Ta,(y) € X, forevery n € w then y,(i) = y(i) for every i < n and hence
the sequence S = {y, : n € w} convergesto y. Since S C |J{X, : @ < B}, we
proved that y € Y 4 and therefore Y 5 = Xj.

As a consequence, we have f|Y, # g|Y, (see Fact 0 of S.351); so the ordinal
y = min{e < u : f|Xy # g|Xs} is well defined. The ordinal y has to be a
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successor for otherwise we will have f|Y, # g|Y, and hence there exists o < y
such that | X, # g|Xq which is a contradiction. Therefore y = ¢+ 1 and f|X, =
g| Xy while f|Xq41 # g|Xo41. This implies r) (7o (f)) = (f|Xo)ory = (g Xa)o
ro = 1g 0 me(g) while 1y, | (Ta+1(f)) = (f1Xa+1) 0 Tat1 # (gl Xat1) 0 Tog1 =
oy © Mat1(g). Thus (g 0 ety — 1y 0 ) (f) # (ryqy © Tat1 — Iy © e )(8)s
since the map @, 4 is injective, we have u, (f) # uy(g) whence u( f) # u(g); so
u is an injective map.

For every o < p let 0, € X (Ay) be the function which is identically zero on
Aq; we will denote by 0 € C,(X) the function which is identically zero on X. To
prove that u maps C,(X) into X'(A) it suffices to show that, for any f € C,(X), we
have u,(f) = 0, for all but countably many «. Since the map ¢, is linear, it is
sufficient to show that (ry, | o o1 — 7 © 7, )(f) = 0 or, equivalently, f ory+1 =
f ory forall @ < u except countably many of them.

If this is not true then there is an uncountable set M’ C p and a point x, € X
such that f(ro+1(xe)) # f(re(xy)) for any @ € M'. There exist an uncountable
M C M’ and & > 0 such that | f(re+1(xe)) — f(re(x4))] > € foreverya € M.
The space X is Lindelof being a closed subspace of the Lindelof space (L(k))® (see
TFS-354) so, for the set Y = {r,(xy) : &« € M}, there exists a point z € X such
that U N Y is uncountable for any U € 7(z, X).

The function f being continuous on X there exists a set W € t(z, X) such that
diam( f(W)) < e. Making the set W smaller if necessary, we can consider that there
exist V € t(a, L(x)) and a number n € w such that W = 7, !([V,n]) N X; here
[V,n] = Uy x...xU,— where U; = {z(i)}if z(i) # a and U; = V if z(i) = a for
all i < n. By the choice of z, the set N = {& € M : ry(x,) € W} is uncountable.

The set L(x)\V is countable; since the family {By+i\By : @ € N} is
uncountable and consists of non-empty sets, we can choose ¢« € N such that
By+1\By C V.Lett = ry(xy); weclaimthat y = ry41(xy) € W.

Indeed, take any i < n.If xo(i) ¢ By+1 then y(i) = ¢(i) = a. Since t (i) € U;,
we have y(i) € U; in this case. Now, if x4(i) € By+1 then, by the definition of
ry+1, we have y(i) = x4(i); if x4 (i) € By then y(i) = x,(i) = t(i) € U;. If, on
the other hand, x,(i) € By+1\By then t(i) = a and it follows from ¢ € W that
z(i) = a. As a consequence, y(i) € By4+1\By C V = U,. This proves that y(i) €
U; for all i < n and hence y € W. Therefore | f(y) — f(t)| < diam(f(W)) < ¢
which contradicts | f(y) — f(z)| > e. Therefore the map u is a linear condensation
of X into X' (A) which finishes our inductive proof and shows that our solution is
complete.

U.150. Prove that the following conditions are equivalent for any compact space X :

(i) X is Corson compact;

(ii) Cp(X) is primarily Lindelof;
(iii) there is a primarily Lindeldf P C C,(X) which separates the points of X ;
(iv) X embeds in C,(Y) for some primarily Lindelof space Y .
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Solution. If A is a family of sets then \/ A is the family of all finite unions of
elements of .A; analogously, /\ A is the family of all finite intersections of elements
of A.If Z is a space then C(Z) is the family of all clopen subsets of Z.

Fact 1. Givenaspace Zand f,g € Cp,(Z)let (fxg)(2) = f(2)+g(@)— f(2)g(2)
for any point z € Z. Then f * g € C,(Z,D) whenever f,g € C,(Z,D), the
operation * is commutative and associative and the map a, : (C,(Z, D))"+l —

C,(Z,D) defined by a,(fo,..., fu) = fox...* f, for any (fo,...,fs) €
(Cp(Z,D))"*! is continuous for any n € .

Proof. Given f,g € C,(Z,D) thesets A = f~'(1) and B = g~'(1) are clopen in
Z . 1t is straightforward that (f % g)(z) = 1ifze C =AU Band (f xg)(z) =0
for all z € Z\C. Therefore f * g is the characteristic function of the clopen set C,
ie, fxgeC,(Z,D).

It is immediate from the definition that f * g = g * f forany f,g € C,(Z).
Now, if f,g,h € C,(Z) then

(fxg)xh=(f+g—feh=f+g—fe+h—(f+g—foh
=f+g+h—fg—fh—gh+ fgh;

analogously,

fx(gxh)=f+gxh—f(gxh)y=f+g+h—gh—f(g+h—gh)
=f+g+h—fg—fh—gh+ fgh=(f xg) xh,

which proves that * is associative. Continuity of the map a, for any n € w follows
easily from TFS-115 and TFS-116; so Fact 1 is proved.

Fact 2. Suppose that K is a zero-dimensional compact space and A C C,(K,DD)
separates the points of the space K. Consider the sets 49 = AU{l — f : f € A}
and By = {fo-...- fu :n € w, f; € Ap for any i < n}; it turns out that the set
D(A) ={fox...x fu:n €w, fi € Bpforalli <n} coincides with C,(K, D). In
particular, C,(K,D) = (J,e, C» Where every C, is a continuous image of a finite
power of A.

Proof. Observe that
(1) for any distinct x, y € K thereis f € Ag such that f(x) = 1and f(y) = 0.

new

because there is g € A with g(x) # g(»); if g(x) = 1 then f = g works; if
g(x) = 0then f = 1 — g is as promised.
Our next step is to show that

@) VAT (D) 2 f € Ao}) = C(K).

To prove (2) let C = {f~!(1) : f € Ao} and take any non-empty U € C(K).
For any x € U and y € K\U apply (1) to find a function f;, € Ao such that
Jey(x) = land f,(y) = 0; then Oy, = fxfyl(l) € C. Furthermore, ({0, , :
y € K\U} C U; so we can apply Fact 1 of S.326 to see that there is a finite
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P C K\U for which W, = (\{Ox,, : y € P} C U.Itisclear that x € W, € \C
for any x € U. The set U being compact there is a finite set O C U such that
(J{W, : x € Q} = U which shows that U is a finite union of elements of A C, i.e.,
U € \/(/\C) and hence (2) is proved.

Given any set U € /\ C there are n € w and functions fy, ..., f, € Ao such that
U= f'n...nf71(1);itis easy tosee that U = f~1(1) for f = fo-...- fy
which shows that

G ATz fedy C{fT'(1): f € B}

Now fix any f € C,(K,D) andlet U = f~'(1); by (2) there are n € w and
Uy, ...,U, € ACsuchthat U = Uy U ... U U,. It follows from (3) that there are
g0.....8n € By for which U; = g7!(1) for any i < n. Itis easy to check that, for
g=go*...xg, wehaveg~!(1) = UyU...UU, = U;thusg € D(A)and g = f
which shows that D(A4) = C,(K, D).

Consider the class A of spaces representable as a countable union of continuous
images of finite powers of A. It is evident that Ay is a continuous image of A @ 4;
so Ay € A. The class A is invariant under finite products and countable unions; so
Ayt e Aforany n € o.

Letm,(fo,.... fu) = fo-...- fuforany (fo,..., fu) € C,(K,DD); then the map
my, 1 (Cp(K,D))"*! — C,(K,D) is continuous for any n € w by TFS-116. We
have By = U{mn(AgH) :n € w}so By € A and hence B(’)H'1 € Aforanyn € w.

It follows from C,(K,D) = D(A) = U{an(BgH) :n € w} (see Fact 1) that
C,(K,D) € A, ie., Cp(K,D) is representable as a countable union of continuous
images of finite powers of A; so Fact 2 is proved.

Returning to our solution let X be a Corson compact space. By Problem 118,
the space X has a point-countable 7y-separating family ¢/ of open Fy-subsets of X.
For any U € U choose a continuous function fy : X — I = [0,1] C R such
that X\U = f;;'(0) (see Fact 1 of S.358 and Fact 1 of S.499). Then the mapping
f=A{fy:U elU}: X — I"is an embedding. To see it take distinct x, y € X.
There is U € U such that U N {x, y} is a singleton. Then fy(x) # fy(y) and
therefore f(x) # f(y) which proves that f is, indeed, an embedding being an
injection; let X’ = f(X).

Observe that X' C {x € I¥ :theset {U € U : x(U) # 0} is countable} because
ifx € X' thenx = f(y) forsome y € X and x(U) = fy(y) forany U € U which
implies that the family {U € U : x(U) # 0} C{U €U : y € U} is countable.

To simplify the notation we will reformulate the obtained result as follows:

(1) there exists a set 7 such that X embedsin ¥ = {x € IT : |x~'(1\{0})| < w},
so we can assume that X C X'.

Denote by K the Cantor set D?; fix a pointa € K and let I, = [ﬁ, #] clI
for any n € w. Since K is zero-dimensional, there is a local base O = {O,, : n € w}
at the point a in K such that the set O, is clopen in K and O,4+; C O, for any
n € w. Making the relevant changes in O if necessary, we can assume that Oy = K

and K, = 0,\O, 4+ # @ forany n € w.
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Since no point of K is isolated, the same is true for any non-empty clopen
subset of K and hence every non-empty clopen subset of K is homeomorphic to
K (see SFFS-348). This shows that K, is homeomorphic to K and hence there is a
continuous onto map ¢, : K, — I, forany n € w (see TFS-128). Let ¢(a) = 0; if
x € K\{a} then there is a unique n € w such that x € K,;; let p(x) = @,(x). Itis
an easy exercise that ¢ : K — I is a continuous onto map such that ¢~ !(0) = {a}.

Let ® : KT — IT be the product of T-many copies of ¢, i.e., @(x)(t) =
@(x(t)) forany x € K7 andt € T. The map @ is continuous by Fact 1 of S.271
and it is easy to see that @(KT) = IT. The space Y = @~ (X) is compact being
closed in the compact space K”. Take any point y € Y and let x = ®(y). If
y(t) # a then x(¢) = ¢(y(¢)) # 0 and hence

Sy ={teT:y()#a} Csupp(x) ={t T :x(t) #0}.

It follows from X C X that supp(x) is countable; so S, is countable for any
y € Y which shows that Y is a subset of a X -product of 7-many copies of
K. Therefore Y is a Corson compact space by Problem 119. It is clear that @|Y
maps Y continuously onto X. Besides, Y is zero-dimensional because so is K7
(see SFFS-301 and SFFS-302). Therefore Y is a zero-dimensional Corson compact
space which maps continuously onto X .

There exists a Typ-separating point-countable family V of open Fj-subsets of ¥
(see Problem 118). Forany U € V we have U = | J, ., FnU where FnU is compact
for any n € w. The space Y being zero-dimensional and compact, we can apply
SFFS-306 to find a clopen set CY such that FY ¢ CUY C U forany U € V and
n € w. The family {CU : U € V} is point-countable for any n € w because so is V.
Consequently, the family C = {CY : n € w, U € V} is point-countable as well and
it is straightforward that C is Ty-separating.

Denote by u the function which is identically zero on Y and consider the
subspace L = {xc : C € C} U {u} of the space C,(Y, D). The family C being
point-countable, the set L\U is countable for any U € t(u, C,(Y,D)). Thus, for
k = |L|, there is an evident continuous map of L(x) onto L. Therefore the space
L is primarily Lindelof; since C is Ty-separating, the set L separates the points
of Y. It follows from Fact 2 that C,(Y,D) = |J{C, : n € w} where every
C, is a continuous image of a finite power of L. Therefore C,(Y, D) is primarily
Lindeldf by Problems 142, 143 and 144. Apply Problem 143 once more to see that
C,(Y,D?) =~ (Cp(Y,D))* is primarily Lindelof as well.

The space C,(Y,]) is a continuous image of C,(Y,D*) by Problem 004; so
the set C,(Y,1) is also primarily Lindeldf. The space Y being compact, we have
the equality C,(Y) = |J{C,(Y,[-n.n]) : n € N}. Since every C,(Y, [-n,n]) is
homeomorphic to C,(Y, 1), the space C,(Y) is primarily Lindeldf.

Letting ¢ = @|Y we obtain a continuous onto map ¢ : ¥ — X; the dual map ¢*
embeds C,(X) in C,(Y') as a closed subspace (see TFS-163); so C,,(X) is primarily
Lindelof. This proves that (i))=>(ii).

The implication (ii))==(iii) is obvious; so assume that X is compact and there is
a primarily Lindelof P C C,(X) which separates the points of X. For any x € X
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and f € P let ¢.(f) = f(x). Then ¢, € C,(P) for any x € X and the map
¢ : X — C,(P) defined by ¢(x) = ¢, for any x € X, is continuous and injective
(see TFS-166). Since X is compact, the map ¢ embeds X in C,(P) so the space
Y = P is primarily Lindel6f and X embeds in C,(Y'). This shows that (iii))==(iv).
Finally, if X C C,(Y) for some primarily Lindeldf space Y then C,(Y)
condenses onto a subspace of X'(A) for some uncountable set A (see Problem 149).
Consequently, the space X also condenses onto a subset of X'(A). Since every
condensation of a compact space is a homeomorphism, the space X embeds in
Y (A), i.e., X is Corson compact. This settles (iv)==(i) and finishes our solution.

U.151. Prove that a continuous image of a Corson compact space is Corson
compact.

Solution. Suppose that X is a Corson compact space and ¢ : X — Y is a
continuous onto map. The dual map ¢* : C,(Y) — C,(X) defined by ¢*(f) =
fogforany f € C,(Y), is an embedding and T = ¢*(C,(Y)) is closed in
C,(X) (see TFS-163). The space C,(X) is primarily Lindelof by TFS-150; so T is
also primarily Lindel6f by Problem 144. Since C,(Y') is homeomorphic to 7T, it is
also primarily Lindel6f which shows that Y is Corson compact by Problem 150.

U.152. Observe that X'« (A) and o (A) are invariant subsets of X (A); prove that, for
any infinite cardinal k and any closed F C ¥ (A) we have

(i) if B C A,rp,(F) C F foranya < k anda < B < k implies B, C Bg then
rg(F) C F where B =,_, Ba;

(ii) for any non-empty set D C A with |D| < k there exists a set E C A such that
|E| <k, D C Eandrg(F) C F.

In particular, F is invariant in X (A).

Solution. Given a point x € X' (A) let supp(x) = {a € A : x(a) # 0}. It is evident
that if x € X, (A) (or x € 6(A)) then rp(x) € Y« (A) (rp(x) € a(A) respectively)
for any B C A. This proves that ¥, (A4) and o(A) are invariant subsets of X'(A4).
Now assume that F is a closed subset of X' (A) andlet F = {B C A : rp(F) C F}.
Given points @y, ...,a, € A andsets Oy, ..., O, € T(R) consider the set

[ai,...,ay;01,...,0,] ={x € ¥(A) : x(a;) € O; foralli = 1,...,n};

it is evident that the sets [ay,...,a,; Oy,..., O,] form a base in X'(A). By our
definition of F we have B, € F forany a < k. If B ¢ F then take x € F such that
y = rg(x) ¢ F;since F isclosed, therearea,...,a, € Aand Oy,..., O, € t(R)
suchthat y € [a1,...,a,;04,...,0,] C X(A)\F.

The set C = {ay,...,a,} being finite, there is « < « suchthat B,NC = BNC.
The point z = rp,(x) belongs to F; we claim that z(a;) = y(a;) foralli < n.
Indeed, if a; € B, then y(a;) = x(a;) = z(a;);ifa; ¢ B, then a; ¢ B and
therefore y(a;) = 0 = z(a;). Aa a consequence, z € [aj,...,a,;01,...,0,] N F
which is a contradiction with the choice of the set [ay,...,a,; Oy,..., O,]. This
proves (i).
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To prove (ii) let Eg = D; we have w(rg,(F)) < k; so we can find a set Py C F
such that | Py| < «k and rg,(Pp) is dense in rg,(F). Assume that, for some n € o,
we havesets Eg C ... C E, C Aand Py C ... C P, C F with the following
properties:

(1) D C Epand rg, (P;) isdensein rg, (F) forany i < n;
(2) U{supp(x) : x € P;} C E;4; foranyi < n.

Let E,+1 = E, U {supp(x) : x € P,}; then the set E,4; has cardinality at
most k, so there exists a set P,+; C F such that |P,+;| < x and P, C P,4+ while
E, 4, (Poy1) is densein rg,  (F). Itis immediate that the properties (1) and (2) still
hold for the sets {E; :i <n + 1} and {P; : i < n + 1}; so our inductive procedure
can be continued to construct sequences {E, : n € w} and {P, : n € w} for which
the properties (1) and (2) are fulfilled for all n € w. The set E = | J, ¢, E» has
cardinality at most k and D C E. To see that rg(F) C F suppose not. Then there
isx € F suchthat y = rg(x) ¢ F. Since F is closed, there exist ay,...,a, € A
and Oy,...,0, € t(R)suchthat y e U = [ay,...,a,; Oy,...,0,] C X(A)\F.

The set C = {ay,...,a,} being finite, there is k € w such that E; N C =
B N C. The point z = rg, (x) is in the closure of the set rg, (Px) by (1) and we
have z(a;) = x(a;) if a; € Ey. Thus there is t € Py such that f(a;) € O; whenever
a; € Ep.However,a; ¢ Ey impliesa; ¢ E so y(a;) = 0; besides, a; ¢ Ejy+1 while
supp(?) C Er4+1by (2)sot(a;) = 0and hence 0 = t(a;) = y(a;) € O;. We proved
that #(a;) € O; foralli < n and therefore t € U N F. This contradiction shows that
rg(F) C F and hence (ii) is proved. The properties (i) and (ii), evidently, imply
that the set F is invariant in X'(A).

U.153. Prove that the following properties are equivalent for any X :

(i) X is a Sokolov space;
(ii) if, foranyn € N, a set B, C X" is chosen then there exists a continuous map
f X — X such that nw(f (X)) < w and f"(B,) C B, foreachn € N;
(iii) if Fym is a closed subset of X" for alln,m € N, then there exists a continuous
map f : X — X such that nw(f(X)) < w and f"(Fym) C Fum for all
n,meN.

Solution. To deal with finite powers of the space X we will use the following
convention: if we have points x = (x,...,x,) € X" and y = (y1,..., ) € X¥
then (x,y) = (X1,.... X, Y1...., k) € X"T¥,if x € X and k € N then the point
x* = (x,...,x) € X¥is the k-tuple with all its coordinates equal to x.

It is evident that (iii)==(i). If X is a Sokolov space and B, C X" then let
F, = B, for any n € N. There exists a continuous map f : X — X for which
nw(f(X)) < w and f"(F,) C F, for any n € N; an immediate consequence is
that f"(B,) C f"(F,) C F, = B, for any n € N and hence (ii) holds. Therefore
(i)==(ii); it is also clear that (ii))==(i).

Finally, assume that X is a Sokolov space and fix a closed subset F,,, of the
space X" for any n,m € N. It is easy to construct an injection ¢ : N x N — N such
that ¢(n,m) > n + m for any n,m € N. Choose a pointa € X and let P, = @ if
k ¢ (N x N); if k € ¢(N x N) then there is a unique pair (n,m) € N x N with
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@(n,m) = k;let Py = {(x,a"™") : x € F,,}. This gives a closed set P, C X* for
any k € N; so there exists a continuous map f : X — X for which nw(f(X)) < w
and fK(Py) C Py forevery k € N.

Take an arbitrary pair (n,m) € N and let k = @(n, m); since f*(P) C Py, for
any point x = (xi,...,X,) € Fy,, the point f*({(x,a*™")) = (f"(x), f*7"(a))
belongs to P, and therefore we have the equality ( f"(x), f*7(a)) = (y.a"™)
for some point y = (y1,..., V) € Fym. This implies y; = f(x;) for every number
i <nandhencey = f"(x) € Fyp. Thus f"(F,n) C F,y forany n,m € N; so
(iii) is fulfilled for X and hence all properties (i)—(iii) are equivalent.

U.154. Prove that if X is a Sokolov space then X x w is a Sokolov space and every
closed F C X is also a Sokolov space.

Solution. Suppose that we have a closed set F), in the space (X x w)" for each
n € N. Foreveryn € Nand (ky,...,k,) € w" consider the set

Yky,....ky) = {((x1,k1), ..., (xn,kn)) : x; € X foralli <n};

it is straightforward that the family ), = {Y(ky,...,k,) : (k1,...,k,) € 0"}
is disjoint and (X x )" = |JY,. For every n € N and (ki,...,k,) € "
the map ((x1,k1),...,(xy,ky)) — (x1,...,Xx,) is a homeomorphism between
Y(ky,...,k,) and X"; so there exists a closed set G(ky,...,k,) C X" such that

F,NY(kr, ... k) ={((x1, k1), ..., (Xn, kn)) 0 (X1, ..., x0) € Gk, .. ky)}

Since X is a Sokolov space, we can apply Problem 153 to conclude that there
exists a continuous map g : X — X such that nw(g(X)) < w and we have the
inclusion g" (G (ky, ..., k,)) C G(ky,...,k,) foranyn € Nand (ky,...,k,) € 0".
Foreveryt = (x,k) € X xwlet f(t) = (g(x),k);then f : X xw — X X w and
it is evident that f(X x @) C g(X) x @ which implies that nw( f(X x 0)) < w.

Now fix any n € N and y € F,; there exists an n-tuple (ky,...,k,) € 0" and a
point x = (x1,...,x,) € G(ky,...,k,) for which y = ((x1,k1),..., (xn,kn))-
Consequently, the point f"(y) = ((g(x1),k1),...,(g(x,),k,)) belongs to F,
because (g(xi1),...,g(xy)) = g"(x) € G(ky,...,k,). Thus f"(F,) C F, for
any n € N which proves that X X w is a Sokolov space.

Finally, suppose that F is a closed subset of X. Assume that F, is a closed
subset of F" for any n € N; then F, is also a closed subset of X" for any n € N.
It follows from Problem 153 that there exists a continuous map g : X — X such
that nw(g(X)) < w while g(F) C F and g"(F,) C F, foralln e N.If f = g|F
then f : F — F is a continuous map such that nw( f(F)) < nw(g(X)) < w and
g"(F,) = f"(F,) C F, for any n € N. Therefore F is a Sokolov space.

U.155. Given a Sokolov space X and a second countable space E, prove that
C,(X, E) is also a Sokolov space.
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Solution. Let £ be a countable base in the space E. For any xi,...,x, € X and
Bi,...,B, € & the set

(Xt,..o,x0s Br, oo Byl ={f € Cp(X,E): f(x;) € B; foralli <nj}

isopenin Cp(X, E) and the family B = {[x1,...,x,; B1,....By] :neN, x; e X
and B; € Eforalli <n}isabasein C,(X, E).

For any m € N assume that F, is a closed subset of (C,(X, E))™; given m-tuples
I=(,....l) eN"and D = (Dy,..., D) such that D; = (Bf,...,B]) € &"
foreveryi € {1,...,m} (such m-tuple D will be called (I, £)-admissible), take the
numbers [ = 0, n = [ + ... + [, and consider the set

P(,D,n)={x=(x1,...,xy) € X" : (U x...xU; )N F,, =0},

where, for every i = 1,...,m, the set U} is defined by calculating the number
pi=lo+...+1i andlettlng UF = [Xp41s s Xp40;3 Bl,.. B’]

We will prove first that P(/, D, n) is closed in X" forany l = (Iy,...,[,) € N”
and any (/, £)-admissible m-tuple D = (Dy, ..., D,,) where D; = (B’ AU Blii) S
El for every number i < m. Indeed, if x = (x1,...,x,) € X"\ P(l, D,n) and then
thereis f € F, N (U} x...xUy). Wehaven =1, + ... + [, soif [y = 0 and
pi=lo+ ...+ i foralli = 1,...,m then, forevery j € {1,...,n} there are

unique i(j) € {1,...,m} and k(j) € {1,. ,'(j)} such that j = p;;) + k(j)
and therefore f(x;) € B,’{(d; IfO; = f~ (B,'(((j))) for every j € {1,...,n} then

xe€O=01%x...x0,and ON P(,D,n) = @ because y = (y1,...,y,) € O
implies f € F, N (U{ x...x Uy).

For each n € N the family {P(l, D,n) : there exists a number m € N for
which ! = (/1,...,ln) e N", n =1+ ... + 1, and D is (/, £)-admissible} is
easily seen to be countable; so we can apply Problem 153 to find a continuous map
¢ : X — X such that nw(¢(X)) < w and ¢"(P(l, D,n)) C P(l, D,n) for any
I =(y,....L,) e N"with [y +... 4+, = nand any (/, £)-admissible m-tuple D;
letY = p(X).

Let 9*(f) = f o ¢ for any function f € C,(X, E). To see that the map ¢*
C,(X,E) — C,(X, E) is continuous take any function /' € C,(X, E) and a set
U=|[x1,....,xs;By,...,B,] € Bsuchthatp*(f) = fop € U.ThenthesetV =
[@(x1),...,9(xy); By, ..., By] is an open neighbourhood of f in C,(X, E) such
that ¢* (V) C U which shows that ¢* is continuous at the point f. Furthermore,
we can consider that £ C R and hence C,(Y, E) C C,(Y,R?) =~ (C,(Y))*
which shows that nw(¢*(C,(X, E))) < nw(C,(Y, E)) < nw((C,(Y))”) = w so,
to finish our proof it suffices to establish that (¢*)" (F,,) C F,, forany m € N.

Assume, towards a contradiction, that m € N, f = (fi,..., fu) € F, and
g = (@*(f1),...,9*(fm)) does not belong to F,,. Since the set F, is closed in
the space (C,(X, E))", for every i € {1,...,m}, there exist yj,...,y; € X
and Bf,...,Bj € & such that 9*(fi) € D; = [y{,...,y;:Bj,..., B[] for
every number i < m while we have the equality (D; x ... x Dy) N F,, = 0.
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Letlp =0, = (,...,In)and p; = lp+ ...+ [ foreveryi = 1,...,m.
Forn = I} + ... 4+ [, let us construct a point (x1,...,x,) € X" by putting
together all y;. in a row, i.e., for each j € {1,...,n} we find the unique numbers
i(j) e{l,....m}yand k(j) € {1,....lij} such that j = p;;) + k(j) and let
xX; = y]'(((i)) If x = (x1,...,x,) and D = (Dy,..., D,,) then D; = U for any
i=1,....mandx € P(l,D,n).

By our choice of the function ¢, the point z = ¢"(x) = (o(x1),...,9(x,))
still belongs to P (I, D,n). It follows from ¢*(f;) € D; that fi(p(yi)) €
B, for all k < [; and i < m. An immediate consequence is that f; €
o). @(y ) By,.... B[ foranyi <m;so f € (Ui x...xUy) N F, which
is a contradiction with the fact thatz € P(/, D, n). Thus (¢*)" (F,,) C F,, for every
m € N; so C,(X, E) is a Sokolov space and hence our solution is complete.

U.156. Prove that X is a Sokolov space if and only if C,(X) is a Sokolov space.

Solution. If X is a Sokolov space then C,(X) is also a Sokolov space by
Problem 155. If, on the other hand, the space C,(X) is Sokolov then C,,(C,(X)) is
also Sokolov by Problem 155 and hence X is Sokolov as well being homeomorphic
to a closed subset of C,(C, (X)) (see TFS-167 and Problem 154).

U.157. Let X be a Sokolov space with t*(X) < w. Prove that C,(X, E) is Lindeldf
for any second countable space E.

Solution. Fix a countable base £ in the space E. If x = (xq,...,x,) € X" and
B = (By,...,B,) € " thenlet [x,B] = {f € C,(X,E) : f(x;) € B; for
each i < n}. It is evident that the family B = {[x, B] : there is n € N for which
x e X" Bef&"isabasein Cp(X, E).

Observe that, forany n € Nand B = (By, ..., B,) € £",

(1) if A C X" and x = (x1,...,X,) € Athen [x, B] C U{[a, B] : a € A}.

Indeed, if f € [x, B] thenlet O; = f~'(B;) foralli < n. Since f(x;) € B; for
everyi <n,wehavex € O = O x...x O,,. It follows from x € ‘A that there is
a=(ay,...,ay) € AN O.Then f(a;) € B; foralli < n and hence f € [a, B]
which proves (1).

To prove that C, (X, E) is Lindelof take an open cover U of the space C, (X, E);
we can assume, without loss of generality, that/ C B.Foranyn € Nand B € &£"
let F(n,B) = {x € X" : [x, B] € U}. We can also assume that F(n, B) is closed
in X" forany n € Nand B € £" because x € F(n, B) and t*(X) = w imply
that there is a countable P C F(n, B) with x € P and hence [x, B] C |J{[y, B] :
y € P} by (1). Now, if we are able to extract a countable subcover from the cover
U = {[x,B] :thereisn € Nand B € £" such that x € F(n, B]}, then every
U € U'\U can be covered with countably many elements of U/; so U also has a
countable subcover.

The family {F(n, B) : B € £"} is countable; so we can apply Problem 153 to
find a continuous map ¢ : X — X for which nw(¢(X)) < w and ¢"(F(n, B)) C
F(n,B) foranyn € Nand B € £". The set ¢"(F(n, B)) has a countable network;
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so we can take a countable C(n, B) C ¢"(F(n, B)) which is dense in ¢" (F (n, B))
forevery n € Nand B € £". The family

V={[x,B]l:xeC(n,B)forsomen € Nand Be &"} CU

is countable.

Take an arbitrary f € Cp(X, E); then f o ¢ € [x, B] € U for some point x =
(X1,...,%,) € X"and B = (By,...,B,) € £&. Now, if O; = f~!(B;) for any
i <nthen¢"(x) € O x...x 0,.Since x € F(n, B), we have ¢"(x) € C(n, B);
sothereis y = (y1,...,ys) € C(n, B) N O. As a consequence, f(y;) € B; for
alli < n,ie., f € [y,B] € V. The point f € C,(X, E) was taken arbitrarily;
so we proved that the cover U has a countable subcover V. Therefore C,(X, E) is
Lindelof.

U.158. Prove that

(i) any R-quotient image of a Sokolov space is a Sokolov space;
(ii) if X is a Sokolov space then X® is also a Sokolov space;
(iii) a space with a unique non-isolated point is Sokolov if and only if it is Lindelof.

Solution. Suppose that X is a Sokolov space and ¢ : X — Y is an R-quotient
map. Forany f € C,(Y) let *(f) = f o@. Then ¢* : C,(Y) — C,(X) is an
embedding and the set T = ¢*(C,(Y)) is closed in C,(X) (see TFS-163). Since
X is Sokolov, the space C,(X) is also Sokolov by Problem 156. Therefore T is
Sokolov by Problem 154. The space C,(Y') is also Sokolov being homeomorphic to
T; so we can apply Problem 156 again to conclude that Y is a Sokolov space. This
proves (i).

Next, assume that X is Sokolov and observe that there is T C C,(X) such
that C,(X) ~ T x R (see Fact 1 of S.409); so we can apply TFS-177 to see
that C,(C,(X)) =~ (Cp(C,(X)))®; since X embeds in C,(C,(X)) as a closed
subspace, this implies that X also embeds in C,(C,(X)) as a closed subspace.
Applying Problem 156 twice, we can conclude that C,(C,(X)) is a Sokolov space;
so X is Sokolov as well by Problem 154. This settles (ii).

To prove (iii) let X be a space such that a € X is the unique non-isolated point
of X. Assume first that X is a Sokolov space. If X is not Lindelof then D = X\U is
uncountable for some U € t(a, X) and hence D is an uncountable closed discrete
subspace of X; besides, D is Sokolov by Problem 154. Since t*(D) = w, the
space C,(D) = RP is Lindel6f by Problem 157. The space R! embeds in R”
as a closed subspace; so R“! is also Lindelof which contradicts Fact 2 of S.215.
Therefore, Sokolov property of X implies that X is Lindelof.

To establish the converse, suppose that the space X is Lindelof and fix a closed
set F,, C X" for any n € N. Observe that the set X\U is countable for any U €
7(a, X) for otherwise the space X would contain an uncountable closed discrete
subspace. Givenn € N, x = (x,...,x,) € X" and U € t(a, X) consider the set
O(x,U) = O1x...x0, where, foreveryi € {1,...,n},welet O; = {x;}if x; # a
and O; = U if x; = a. Itis immediate that the family {O(x,U) : U € t(a, X)} is
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a local base at the point x in the space X”. Therefore we can fix, for any n € N and
any x € X"\ F,,asetU, € 7(a, X) such that O(x,U,) N F,, = @.

Forany A C X letry(x) = x if x € Aand ry(x) = a if x € X\ A. We omit
a simple verification of the fact that r4 : X — A U {a} is a continuous map for
any A C X. Let Ay = {a} and assume that we have, for some k € w, a collection
Ao, ..., Ax of countable subsets of X with the following properties:

(1) {a} = Ap C ... C Ag;
(2) ifi <k andx € A7\ F, for some n € Nthen X\U, C 4;4,.

It follows from |A;| < w that the set P = [ J{A}\F, : n € N} is countable; so
the set Ax+1 = Ar U (U{X\Uyx : x € P}) is countable as well. It is evident that
(1) and (2) still hold for the sets Ay, ..., Ax+1; so our inductive procedure can be
continued to construct a sequence {4; : i € w} of countable subsets of X such that
(1) and (2) are satisfied for all k € w.

Let A = |U;e, Ak; since r4(X) is countable, we have nw(r4(X)) < w. Our
purpose is to prove that (r4)" (F,) C F, for any n € N. To this end assume, towards
a contradiction, that there existsn € Nsuchthat y = (y1,...,y,) = (ra)"(x) ¢ Fy
for some x = (x1,...,x,) € F,. We have O(y,U,) N F,, = @ by our choice of U,;
we claim, however, that x € O(y, Uy).

To see it observe first that y; € A for all i < n and therefore there is m € w
such that {y1, ..., ya} C Au. By definition, O(y,U,) = O; x ... x O, where, for
everyi < n,wehave O; = {y;}if y; # aand O; = U, if y; = a. Consider first
the case when y; # a. Then x; € A and hence x; = y; € O;. Now, if y; = a and
x; € Athenagainx; = y; € O;. If x; ¢ Athenx; ¢ A,41; besides, y € A} \Fy;
so X\U, C A, +1 by (2). This implies that x; € U, = O;.

We provedthat x; € O; foralli < n and thereforex € O;x...x0, = O(y,U,)
whence x € O(y,U,) N F, which is a contradiction with the choice of U,. Thus
(ra)"(F,) C F, forevery n € N; so the Lindelof property of X implies that X is a
Sokolov space. This completes the proof of (iii) and finishes our solution.

U.159. Let X be a space with a unique non-isolated point. Prove that the following
properties are equivalent:

(i) (X)) <wandt*(X) < w;

(ii) X is a Sokolov space and t*(X) < w;
(iii) Cp,n(X) is Lindelof for alln € N;
(iv) Cp(X) is Lindelof.

Solution. If X is countable then all properties (i)—(iv) hold for X so there is nothing
to prove; we assume, therefore, that X is uncountable. It follows from Problem 158
that (i)=-(i1).

If (ii) holds then X is Lindel6f (this was also proved in Problem 158). If b is
the unique non-isolated point of X then X\U is countable for any U € t(b, X)
for otherwise X has an uncountable closed discrete subspace. Let k = | X| and fix
a surjective map ¢ : L(k) — X such that p(a) = b and ¢(k) = X\{b}. It is
immediate that ¢ is continuous; so X" is Lindelof for any n € N being a continuous
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image of (L(x))" (see TFS-354). The space C,(X) is Sokolov by Problem 156;
it follows from Problem 157 that /*(C,(X)) = w. Furthermore, t*(C,(X)) =
because [*(X) = w (see TFS-149 and TFS-150).

Suppose that n € N and we proved that the space C,,(X) is Sokolov and
*(Cpp(X)) = t*(Cpp(X)) = w. Then C, ,41(X) is Sokolov by Problem 156,
it follows from [*(Cp (X)) = w that t*(C, ,4+1(X)) = w. Applying Problem 157
again we conclude that /*(C,,+1(X)) = . Continuing this inductive procedure
we convince ourselves that [*(C, ,(X)) = t*(Cp(X)) = o forany n € N and
hence (ii)==(iii).

The implication (iii)==(iv) being evident assume that C,(X) is Lindel6f. Then
t*(X) = w by TFS-189. The space X is normal by Claim 2 of S.018; so if D is
an uncountable closed discrete subset of X then the restriction 7p maps C,(X)
onto C,(D) = R? whence R” is Lindelof, which is a contradiction (see Fact 2 of
S.215). Therefore X \U is countable for any U € (b, X); an easy consequence is
that X is Lindelof and hence we proved that (iv)=—(i).

U.160. Let X be an invariant subspace of X (A). Prove that X is a Sokolov space.
Deduce from this fact that every Corson compact space is Sokolov.

Solution. For any x € ¥ = X (A) let supp(x) = {a € A : x(a) # 0}. Call a

set U C X standard if there are ay,...,a, € A and Oy,..., O, € t(R) such that
U=la,...,a,;01,...,0,] ={x € ¥ : x(a;) € O; foralli =1,...,n}. It
is evident that standard sets form a base in X. If U = [ay,...,a,;01,...,0,] is a

standard set then E(U) = {ay, ..., a,}.

Given a set B C A define amap rp : ¥ — X as follows: for any x € X and
ae€ Aweletrg(x)(a) =0ifa ¢ B and r4(x)(a) = x(a) for any a € B. The map
rg : ¥ — X is continuous; to see it let 7, : R* — R be the natural projection onto
the factor determined by a. If a € B then 1, o rg(x) = rg(x)(a) = x(a) = 7,(x)
for any x € X; thus 7, o rp is continuous being equal to 7,|X. If @ ¢ B then
m,orpg(x) = 0forany x € X; so the map i, orp is constant and hence continuous.
Therefore 7, orp is continuous for any a € A whence rp is continuous by TFS-102.
If B C Ais countable then rg(X) ~ R5: so0 w(rp(X)) < w.

The set X being invariant, the family Uy = {B C A : B is countable and
rep(X) C X} is w-continuous and w-cofinal in A. Take a closed set F, C X" for
any n € N. Choose a non-empty set By € Uy since (rp,)" (F}) is second countable,
we can find a countable H, (0) C F, such that (rp,)" (H,(0)) is dense in (rp,)" (£y,)
forall n € N. Suppose that k € @ and we have sets By, ..., Bx € Ux and sequences
{{H,():n € N} :i < k} with the following properties:

(1) ByC...C Byand H,(0) C ... C H,(k) foranyn € N;

(2) forany i < k the set H,(i) C F, is countable and (r5,)" (H,(i)) is dense in
(rg,)"(F,) foralln e N;

(3) given an arbitrary j < k, foreachn € N, if x = (x,...,x,) € H,(j) then
S[x] = U{supp(x;) :i € {l,...,n}} C Bj41.

Let Cry1 = J{S[x] : there is n € N such that x € H,(k)}; it is evident that
Cr+1 C A is countable, so there is By € Uy such that Cy4+1 U B C Bi41. The
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set (rp,,,)" (Fy,) is second countable; so there is a countable H, (k + 1) C F, for
which H, (k) C H,(k + 1) and (rp,,)" (H,(k + 1)) is dense in (rp, )" (Fy) for
anyn € N.

Now, the properties (1)—(3) are satisfied for the collection {By, ..., Bk, Br+1}
and the sequences {{H,(i) : n € N} : i < k + 1}; so our inductive procedure can
be continued to construct a sequence {B; : i € w} C Uy as well as a collection
{{H.(i) :n € N} :i € w} such that (1)-(3) hold for all k € w.Let B = | J,,, Bi;
then B € Uy and hence rp(X) C X. Therefore ¢ = rp|X is a continuous map
from X in X and we have w(¢(X)) < w(rg(X)) < w. Our purpose is to prove that
¢"(Fy) = (rg)"(F,) C F, foranyn € N.

So, fix n € N; the set H, = |, Ha(i) C F, is countable; the property (3)
implies that S[x] C B and therefore (rp)"(x) = x for any x € H,. Now take an
arbitrary y = (y1,...,yn) € Fy; weclaim that z = (z1,...,z,) = (rg)"(y) € H,
(the bar denotes the closure in X"). To prove it take any V € 7(z, X"); there exist
standard sets Uy, ..., U, suchthatz € U = (U; x ... x U,) N X" C V. The set
D ={E(U;) : i < n}is finite; so there is m € w such that B,, N D = BN D.

We have U; = [a},....,a} :0],..., O} ] and there is no loss of generality to
assume that there exists a number p; < k; for which {ai,... ,a;i} C B, and
{a;ﬁl,...,a};i} C D\B, C A\B foralli < n. For any i < n we have

rg,(yi)(@) = yi(a) = zi(a) whenevera € B; sorg,(yi)(a}) = z(a}) € O0;
for any j < p;. Furthermore, z;(a) = 0 forany a € A\B;sorp, (y,-)(a;) =0=
zi(a%) € O foranyi <nand j > p;.

As a consequence, U; is an open neighbourhood of rp, (y;) for any i < n and
hence U is an open neighbourhood of (75, )" (y) in X". The set (rp, )" (H,) is dense
in (rg,)" (F,) by (2), so thereis h = (hy,...,h,) € H, such thatrp, (h;) € U; for
alli < n. Since S[h] C B, we have rg(h) = h. Furthermore rg(h;)(a) = 0 for any
a € A\B and therefore rg(h;)(a’;) = 0 for any j > p; (recall that a; € A\B for
any j > p;)and i < n.Asaconsequence, rp(h;)(a;) = 0 = z(a}) € O} for any
J > Di.

We also have rp(h;)(a}) = hi(a’;) = rp, (hi)(a}) € O} forany j < p; which
implies, together with the observations of the previous paragraph, that if i < n then
rg(hi)(a’) € O} forevery j € {1,...,k;} and hence h = (rp)"(h) €e UN F, C
V N F,. Therefore (r3)"(y) € H, C F, (the last inclusion is true because F, is
closed in X"). This proves that (r3)"(y) € F, forany y € F,,i.e., (rg)"(F,) C F,
for any n € N. Thus we have amap ¢ : X — X such that nw(p(X)) < w(p(X)) <
w and ¢" (F,) C F, for any n € N which shows that X is a Sokolov space.

Finally observe that if X is a Corson compact space then we can consider that
X is a closed subspace of X. By Problem 152, X is invariant in X'; so it is Sokolov
space.

U.161. Prove that every Sokolov space is collectionwise normal and has countable
extent. Deduce from this fact that, ext(C, (X)) < w for any Sokolov space X and
nelN
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Solution. Suppose that Y is a Sokolov space. If D is a closed discrete subspace of
Y then D is Sokolov by Problem 154; since t*(D) = w, we can apply Problem 157
to see that C,(D) = RP? is Lindeldf. If D is uncountable then R®! embeds in R”
as a closed subset; so R®! has to be Lindelof which is a contradiction with Fact 2 of
S.215. This proves that ex?(Y') = w for any Sokolov space Y.

Now, if X is a Sokolov space then C,,(X) is Sokolov by Problem 156 and
therefore ext(Cp (X)) = o forany n € N.

Furthermore, if Y is a Sokolov space and F, G C Y are disjoint closed subsets
of Y then we can let F;, = @ for any n > 2 and apply Problem 153 to find a
continuous map ¢ : Y — Y such that nw(p(Y)) < w while F/ = ¢(F) C F
and G’ = ¢(G) C G;let Z = ¢(Y). We have P = clz(F') ¢ F/ C F and
Q = clz(G') ¢ G’ C G whichshowsthat PN Q C FNG = @. Thus P and Q
are disjoint closed subsets of Z; the space Z is normal because nw(Z) < w; so there
is a continuous function f : Z — [0, 1] such that f(P) C {0} and f(Q) C {1}.
Itis clear that g = f o : Y — [0,1] is continuous while g(F) C {0} and
g(G) C {1}. Therefore Y is normal.

Finally observe that any normal space of countable extent is collectionwise
normal by Fact 3 of S.294; so every Sokolov space is collectionwise normal and
has countable extent.

U.162. Let X be a Sokolov space. Prove that

(i) if t*(X) < w then Cp2,41(X) is Lindeldf for any n € .
(ii) if I*(X) < w then Cp»,(X) is Lindeldf for any n € N;
(iii) if I*(X) - t*(X) < w then Cp,(X) is Lindeldf for any n € N.

Solution. Suppose that X is a Sokolov space. It takes a trivial induction using
Problem 156 to see that C,,(X) is Sokolov for any n € N. If t*(X) = o
then the space (C,(X))” ~ C,(X,R?) is Lindel6f by Problem 157. Assume that
k € w and we proved that (Cp 2 41(X))® is Lindelof. Then the space C) 2 42(X) is
Sokolov and t*(C, 2k +2(X)) = w; so we can apply Problem 157 to conclude that
((Cpor+3(X))® is Lindelof. This inductive procedure shows that ((Cp2,41(X))? is
Lindeldf for any n € w and hence we proved (i).

Now, if /*(X) = w then the space Y = C,(X) is Sokolov and t*(Y) = w.
Therefore (i) can be applied to see that Cp2,2(X) = Cj2,41(Y) is Lindelof for
any n € w; this settles (ii). Finally, (iii) is a trivial consequence of (i) and (ii); so our
solution is complete.

U.163. Prove that every Sokolov space is w-stable and w-monolithic. Deduce from
this fact that every Sokolov compact space is Fréchet—Urysohn and has a dense set
of points of countable character.

Solution. Let X be a Sokolov space. If A C X is countable then the family
{{a} : a € A} is countable and consists of closed subsets of the space X; thus
we can apply Problem 153 to conclude that there is a continuous map ¢ : X — X
such that nw(¢(X)) < w and p({a}) C {a}, ie., ¢(a) = a forany a € A. An
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immediate consequence is that ¢(x) = x for any x € A and hence A C ¢(X)
which implies that nw(A) < nw(p(X)) < w. This proves that every Sokolov space
is w-monolithic.

As a consequence, if X is a Sokolov space then C,(X) is also Sokolov by SFFS-
156; so C,(X) is w-monolithic and hence X is w-stable by SFFS-154.

Finally assume that X is a compact Sokolov space. Then ex?(C,(X)) = w by
Problem 161 and hence C,(X) is Lindelof by Baturov’s theorem (SFFS-269). This
implies #(X) < w by TFS-189. Therefore X is Fréchet—Urysohn and a dense set of
points of countable character by Fact 1 of U.080.

U.164. Prove that a metrizable space is Sokolov if and only if it is second countable.

Solution. If X is a metrizable Sokolov space then ex?(X) = w by Problem 161; so
X is second countable by TFS-214. If, on the other hand, X is second countable (or
has a countable network) and a closed set F,, C X" is taken for any n € N then, for
the identity map ¢ : X — X, we have nw(¢p(X)) = nw(X) < w and ¢"(F,) = F,
for any n € N; thus X is Sokolov (evidently, metrizability is not needed to prove
this implication).

U.165. Let X be a Sokolov space with [*(X) - t*(X) = w. Prove that

(i) if X has a small diagonal then nw(X) = w;
(ii) if wy is a caliber of X then nw(X) = w.

Solution. Suppose that X has a small diagonal. By Problem 163 it suffices to show
that X is separable; so assume, towards a contradiction, that d(X) > w. Then there
is a left-separated subspace ¥ = {x, : @ < w1} C X (see SFFS-004). Let Y, =
{xg: B <a}and F, =Y, forany @ < w;. Applying Problem 163 once more we
convince ourselves that nw(F,) < w for any o < w;. It follows from ¢ (X) < w that
F =|J{F,:a <w}isclosedin X and nw(F) = w;.

The small diagonal is a hereditary property; so the space F has a small diagonal.
It follows from [*(F) = o that w; is a caliber of C,(F) (see SFFS-294).
Furthermore, d(C,(F)) < nw(C,(F)) = nw(F) = w;sofixaset D = {fy 1o <
w1} C Cp(F) whichis densein C,(F). If D, = {fp: B < a}and H, = Dy, then
H, is closed in C,(F) for any o« < w;. Every Sokolov space is w-monolithic (see
Problem 163) so nw(H,) = w; since nw(C,(F)) = wi, the set Uy = C,(F)\H,
is non-empty for any o < w;.

It follows from [*(F) < [*(X) < w that 1(C,(F)) = o and therefore the set
H = J{H, : @ < w} is closed in C,(F); since the dense set D is contained in
H,wehave H = C,(F). Consequently, the family i/ = {U, : @ < w;} consists of
non-empty open subsets of C,(F); since U is decreasing and (U = @, it is point-
countable which is impossible because w; is a caliber of C,(F’). This contradiction
shows that d(X) = w and hence nw(X) = w; so (i) is proved.

As to (ii), if ; is a caliber of X then C,(X) has a small diagonal (see SFFS-
290). Since C,(X) is a Sokolov space by Problem 156, we can apply (i) to conclude
that nw(C,(X)) = w and hence nw(X) = nw(C,(X)) = w; so our solution is
complete.
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U.166. Prove that if X is a Sokolov space with a Gs-diagonal then nw(X) = .

Solution. Let A = {(x,x) : x € X} C X x X be the diagonal of the space X.
Since A is a Gs-subset of X x X, there is a sequence { F;, : n € w} of closed subsets
of X x X such that F,, C F,4; foreveryn € w and (X x X)\A = |, ¢, Fn- It
follows from Problem 153 that there is a continuous map ¢ : X — X such that
nw(e(X)) < w and p*(F,) C F, forany n € w;let Y = ¢(X).

Given any distinct x, y € X the point z = (x, y) does not belong to A; so there
isn € w such that z € F,. Therefore p(z) = (¢(x),(y)) € F, which implies that
(p(x), (y)) ¢ A and hence ¢(x) # ¢(y). Thus the map ¢ is injective.

Let o*(f) = f o forany f € C,(Y); then the map ¢* : C,(Y) — C,(X) is
an embedding and the set T = ¢*(C,(Y)) is dense in the space C,(X) (see TFS-
163). Consequently, d(Cp(X)) < d(T) = d(C,(Y)) <nw(Cp(Y)) = nw(Y) < .
It turns out that C,(X) is a separable Sokolov space; so nw(Cp,(X)) = w by
Problem 163. Therefore nw(X) = nw(C,(X)) = w.

U.167. Let X be a Lindelof X'-space. Prove that if X is Sokolov then t(X) < w
and C, ,(X) is Lindelof for any n € N. In particular, if K is Sokolov compact (or
Corson compact) then C, ,(K) is Lindelof for any n € N.

Solution. Recall that C,(X) has countable extent by Problem 161; by Baturov’s
theorem (SFFS-269) the space C,,(X) is Lindeldf and therefore 1*(X) = o by TFS-
189. Since we also have /*(X) = w (see SFFS-256), we can apply Problem 162 to
conclude that C), ,,(X) is Lindelof for any n € N.

U.168. Let T be an infinite set. Prove that, if A is an adequate family on T then K 4
is a compact space.

Solution. It suffices to show that the set K 4 is closed in D7. If x € DT\ K 4 then
B = x7'(1) ¢ A and hence there is a finite C C B such that C ¢ A. The
set O, = {y € DT : y(t) = 1foranyt € C} is open in D7 and x € O,.
Furthermore, O, N K4 = @ because y € O, N K4 implies D = y~'(1) € A
and hence C C D also belongs to .4 which is a contradiction. This contradiction
shows that O, N K 4 = @ and hence every x € D7\ K 4 has an open neighbourhood
O, C DT\K 4. Thus DT\ K 4 is open in D; so K 4 is compact being closed in D7 .

U.169. Let T be an infinite set. Suppose that A is an adequate family on T. Prove
that K 4 is a Corson compact space if and only if all elements of A are countable.

Solution. The space K 4 is compact by Problem 168; if K 4 is Corson compact and
some A € Ais uncountable thenthe set X = {yp : B C A} is contained in K 4 and
X ~ DA. However, t(X) > w because X is a non-metrizable dyadic compact space
(see TFS-359); on the other hand, #(X) < (K 4) = w (see Problem 120) which is
a contradiction. This proves necessity.

Now, if |[A] < o forany A € Athen K4 C ¥ = {x € DT : x7!(1) is
countable}. The space ¥ is a X'-product of second countable spaces so K 4 C X' is
Corson compact by Problem 119 and hence we have established sufficiency.
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U.170. Let T be an infinite set; suppose that A is an adequate family on T and u is
the function on K 4 which is identically zero. For any t € T let e,(f) = f(t) for
any [ € Ka. Observe that Z = {e; : t € T} U{u} C Cp(Ka,D); let (&) = u
and ¢(t) = e, forany t € T. Prove that ¢ : T} — Z is a homeomorphism and
Z is closed in C,(K 4, D). In particular, the space T’} is homeomorphic to a closed
subspace of Cp(K 4, ).

Solution. To see that Z C C,(K 4,D) it suffices to prove that e; is continuous on
K 4 for each t € T. But this is an immediate consequence of the fact that the sets
e 0)={f € Ka: f(t)=0}ande; ' (1) = {f € K4 : f(t) = 1} are open in
K 4 by definition of the product topology on D7

Every e, is an isolated point of Z; indeed, it follows from | J.A = T that f =
Xy € KassoW = {p € C,(Ka,D) : p(f) = 1} is an open neighbourhood of
e, in C,(K4,D) and W N Z = {e,}. Thus it suffices to show that ¢ and ¢! are
continuous at the points £ and u respectively.

Take any set U € t(§,T}); by definition of the topology of 7'}, there are sets
Ay, ..., Ay € Asuchthat {£} U (T\ (U, -, 4;)) C U;then f; = x4, € K4 for any
i<nItW ={pecCy(KaD): p(fi) = Oforalli < n} then W is an open
neighbourhood of u in C,(K 4, D) and o' (W N Z) C {€}U(T\(U; -, 4i)) which
shows that ¢! is continuous at the point u.

To see that ¢ is continuous at £ take any set W € ©(u, Z); there exist functions
fiseoosfae Kqasuchthat V ={p e Z : p(f;) =0foralli <n} C W.If 4; =
£7N(1) foralli < nthen U = {§} U (T\(U,~, 4)) is an open neighbourhood
of £in T3 and ¢(U) C V C W which shows that ¢ is continuous at & and hence
¢ : T — Z is a homeomorphism.

To finally prove that Z is closed in C,(K4,D) take any point p €
C,(K4,D)\Z; the set H = p~!(1) is non-empty and open in K 4. Fix A € A
such that f = y4 € Handlet P = {g € K4 : g '(1) C A and
g (1) is finite}. If W € t(f, K4) then there is a finite C C T such that
Wi ={ge Kg:glC=fICYy,CW.If B=CNAtheng = yp € P
and g € W; N P C W N P. This shows that f € P and therefore there exists a
finite D C Asuchthatg = yp € H.

The set O = {g € C,(K4,D) : q(g) = 1} is open in C,(K 4,D); besides,
p € O and O N Z is finite because ¢; € O if and only if + € D. Thus every point
p € Cp(K 4,D)\Z has a neighbourhood O such that O N Z is finite. An evident
consequence is that Z is closed in C,(K 4, D) and hence our solution is complete.

U.171. Suppose that T is an infinite set and A is an adequate family on T. Prove
that the spaces C,(K 4,D) and C,(K 4) are both continuous images of the space
(T3 x w)®.

Solution. If Y and Z are spaces then the expression Y > Z says that ¥ maps
continuously onto Z.

Denote by u the function on K 4 which is identically zero. For any ¢ € T let
e;(f) = f(t)forany f € Kg. Then Z = {e; : t € T} U {u} C Cp(K,D) is
closed in C,(K 4,D) and T} ~ Z (see Problem 170). Therefore we can identify
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Z and T;. It is easy to see that 7'} separates the points of K 4; so we can apply
Fact 2 of U.150 to conclude that C,(K 4, D) = (J{C, : n € w} where every C,
is a continuous image of a finite power of 7';. In particular, we have (7})” > C,
for any n € o and therefore (7})” x @ > C,(K4,D). Since (T} x w)* =~
(TH?xw® > (T})*” xw we conclude that the space (7"} X @)® maps continuously
onto Cp,(K 4, D).

Thus (T3 X 0)® >~ (T} x ©)?)” > (Cp(Ka,D))” =~ C,(K4,D”). Now,
the space K 4 is compact and zero-dimensional; so C,(K4,D®) > C,(K4,I)
(see Problem 004) and hence (T} x ) > C,(K.4,1). Another consequence of
compactness of K 4 is that C,(K 4) = (J{C,(K 4, [—n.n]) : n € N}; every space
C,(K 4, [—n,n]) is homeomorphic to C,(K 4,1), so we have C,(K4,I) x @ >
Cp(K 4). Therefore (T} x @)” x @ > C,(K4,D”) x @ > C,p(K4,1) X0 >
Cp(KA)~

Finally, (T} x 0)® x @ >~ (T})* x0® xw =~ (T})* x0® ~ (T} x w)“; so the
space (T} X w)” maps continuously onto C, (K 4) as well.

U.A72. Let T be an infinite set. Suppose that A is an adequate family on T. Prove
the space C,(K 4) is K-analytic if and only if T is K -analytic.

Solution. If C,(K 4) is K-analytic then T} is K-analytic because 7 embeds in
C,(K 4) as a closed subspace (see Problem 170). If, on the other hand, the set 7'} is
K-analytic then Z = (T} x w)® is also K-analytic; since C,(K 4) is a continuous
image of Z (see Problem 171), it is K-analytic as well (see SFFS-343).

U.173. Let T be an infinite set. Suppose that A is an adequate family on T. Prove
the space C,(K 4) is Lindeldf X if and only if T} is Lindeldf X.

Solution. If C,(K 4) is a Lindelof X-space then 77} is Lindelof X' because 7'
embeds in C,(K 4) as a closed subspace (see Problem 170). If, on the other hand,
T is a Lindelof X'-space then Z = (T} x @) is also Lindel6f X'; since C), (K 4)
is a continuous image of Z (see Problem 171), it is a Lindelof X'-space as well (see
SFFS-254, SFFS-256 and SFFS-243).

U.174. Observe that every adequate compact space is zero-dimensional. Give an
example of a zero-dimensional Corson compact space which is not homeomorphic
to any adequate compact space.

Solution. If 7 is an infinite set and .4 is an adequate family on T then the adequate
compact space K 4 is contained in D7 so it is zero-dimensional (see SFFS-303).

Fact 1. Suppose that X is a countably compact o-discrete space, ie., X =
Une » Xn where each X, is a discrete subspace of X. Then X is scattered.

Proof. 1If X is not scattered then there is ¥ C X such that ¥ has no isolated points.
It is clear that K = Y is also dense-in-itself. If K, = X,, N K then K, is a discrete
subspace of K for any n € w. It is an easy exercise that, in a dense-in-itself space,
the closure of any discrete subspace is nowhere dense; so F,, = K, is a closed
nowhere dense subspace of K for any n € w. The space K is countably compact
and K = J,c, Fu: this contradiction with the Baire property of K shows that
Fact 1 is proved.
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Fact 2. Given an infinite set A and n € w let 0,(4) = {x € D4 : |x~!1(1)| < n}.
Then o, (A) is a scattered compact space.

Proof. Take an arbitrary x € D*4\o, (A); there are distinct ay,...,a,+; € A such
that x(a;) = 1foranyi = 1,...,n 4+ 1. Theset O = {y € D4 : y(a;) = 1 forall
i <n+1}isopenin D4 and x € O C D*\o,(A). This proves that the set o, (A)
is compact being closed in D4.

IfS; = {x e D*: |x7'(1)] = i} then S; C 0,(A) for any i < n.Itis clear
that Sy consists of the unique point which is identically zeroon A. If 1 <i < n and
x € S; then there are distinct by, ..., b; € A such that {b,...,b;} = x7'(1). The
set W ={yeD*:y(b;)=1forall j <i}isopeninD?and W NS; = {x}; this
proves that S; is discrete for any i < n. Since 0,,(4) = Sp U ... U S, the compact
space 0, (A) is a finite union of discrete subspaces; so it is scattered by Fact 1 and
therefore Fact 2 is proved.

Returning to our solution let K be the Alexandroff double AD(Y) of the space
Y = D”. Recall that K = Ky U K; where Ky N K; = @, the set K is closed in
K and all points of K are isolated in K. Besides, the space K, is a homeomorphic
copy of Y and a bijection ¢ : Ky — K] is chosen in such a way that the family
B ={U U (e(U)\{p(x)}) : U € 7(x, Ko)} is a local base at any x € K.

The space K is Corson compact by Problem 124; since Y is zero-dimensional,
the family C of all clopen subsets of Y is a base in Y. It is immediate that the family
Cx ={U U (p(U)\{p(x)}) : x € U € C}is also a local base at x in K and every
element of C, is clopen in K. Thus | J{C, : x € Ko} U {{x} : x € K} is a clopen
base in K, i.e., K is zero-dimensional. The family C is countable (see Fact 1 of
U.077); so every C, is a countable local base at any x € K. Therefore K is first
countable.

Now assume that there is an infinite set 7 and an adequate family A of subsets
of T such that K 4 is homeomorphic to K. If o(T) = {x € DT : x~(1) is finite}
then N = o(T) N K 4 is dense in the space K 4. Indeed, if x = y4 € K 4 for some
A € A then take any W € 1(x, K 4). There exists a finite set C C T such that
Wi={yeKyqg:y|IC=x|C}CcCW.If B=CnNAtheny = yg € W NN C
W N N.Thus WN N # @ forany W € t(x, K4) and hence N = K 4. Since
K4 >~ K, the set D of isolated points of K 4 is uncountable; the set N being dense
in K 4, we have D C N.

Furthermore, N = |J,,c,, Nm Where N,, = {z € N : |z7'(1)| < m} for every
me o If0,(T) = {x € DT : [x7'(1)] < m} then N,, = N N 0,,(T) for
any m € w. Thus N, is uncountable for some m € ® and hence FF = N, C
om(T) because 0, (T') is compact by Fact 2. Therefore F' is an uncountable scattered
compact subspace of K 4; the space K4 ~ K being first countable, F' is also first
countable.

Finally, let F’ be the set F with the topology generated by the family of all
Gs-subsets of F. It follows from y(F) = w that F’ is an uncountable discrete
space. However, F’ has to be Lindelof by SFFS-128. Since no uncountable discrete
space is Lindelof, we obtained a contradiction which shows that K is not adequate
and completes our solution.
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U.175. Let T be a subspace of R of cardinality w,. Consider some well-ordering <
on T and let < be the order on T induced from the usual order on R. Denote by A,
the family of all subsets of T on which the orders < and < coincide (i.e., A € A,
if and only if, for any distinct x,y € A, we have x < y if and only if x < y).
Let A, be the family of all subsets of T on which the orders < and < are opposite
(i.e., A € A; if and only if, for any distinct x,y € A, we have x < y if and only
if y < x). Check that A = Ay U A, is an adequate family and that X = K 4 is a
Corson compact space for which C,(X) is not a continuous image of any Lindeldf
k-space. In particular, C,(X) is not a Lindeldof X-space.

Solution. Observe that, by definition, if A C 7 and |A| < 1 then A € A; N A, and
hence | JA = T.1If A € A, then the orders < and < coincide on A and hence on
any subset of A; thus exp A C A;. Analogously, if A € A, then the orders < and <
are opposite on A and on any subset of A; so exp A C A,. Now assume that A C T
is an infinite set such that any finite B C A belongs to A. If A ¢ A then the orders
< and < do not coincide on A and therefore there exist distinct x, y € A such that
x < y but y < x. The orders < and < cannot be opposite on A either; so there are
distinct z,¢ € A for whichz <t andz < f. The set B = {x, y,z,t} C A is finite; so
B € A.If B € A, then the orders < and < have to coincide on B for which the pair
{x, y} gives a contradiction. If B € A, then the pair {z, ¢} provides a contradiction
again. Thus A € 4 and hence A is, indeed, an adequate family.

Next, we prove that all elements of A are countable. Assume towards a
contradiction, that A € A; and |A| > w. It follows from Fact 1 of S.151 that there is
an uncountable B C A such that B has no isolated points (considered as a subspace
of R). Since the orders < and < coincide on B, the set B is well ordered by the
natural order of R. In particular, there is @ € B which is the <-minimal element
of B. The set B\{a} has no isolated points; since it is well ordered, it has a unique
minimal element b. We have ¢ < b and (a,b) N B = @ because the existence of
anumber ¢ € (a,b) N B contradicts minimality of b in B\{a}. As a consequence,
forc = # we have {a} = (—o0,c) N B, i.e., a is isolated in B; this contradiction
shows that 4, has no uncountable elements.

Now assume that A € A; and |A| > . Apply Fact 1 of S.151 again to see that
there is an uncountable B C A such that B has no isolated points (considered as
a subspace of R). The set B is well ordered by <; so B has a <-minimal element
a. Since the orders < and < are opposite on B, the pointa € B is the <-maximal
element of B. The set B\{a} has no isolated points; since it is well ordered, by <
it has a unique <-maximal element b. We have b < a and (b,a) N B = @ because
the existence of a number ¢ € (b, a) N B contradicts maximality of b in B\{a}. As
a consequence, for ¢ = ”erb we have {a} = (¢, +00) N B, i.e., a is isolated in B;
this contradiction shows that A, cannot have uncountable elements either.

Therefore all elements of A are countable; so K 4 is a Corson compact space by
Problem 169. It turns out that

(1) if A C T is an infinite set then there is an infinite B C A such that B € A.
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Call a sequence S = {r, : n € w} C T monotone if either r, < r,4; or
r, > ry4) for all n € w; in the first case S is called increasing and in the second
case S is decreasing. Observe first that it is possible to extract a monotone sequence
{a, :n € w} C A.Indeed, if A has the property

(2) there is an infinite A’ C A such that for any a € A’ the set {b € A" : a < b} is
infinite,

then an increasing sequence {a, : n € w} C A’ C A can be constructed by an
evident induction. If, the property (2) does not hold for A then

(3) any infinite A’ C A has a maximal element,

so we can let ap = max(A4) and a,4+; = max(A\{ay, ...,a,}) for any n € w which
gives us a decreasing sequence {a, : n € w} C A.

Thus we can assume, without loss of generality, that A = {a, : n € w}isa
monotone sequence. There is ny € w such that a,, is the <-minimal element of A4;
itis evident that a,, < a; forany i > no. Suppose that we have ng, ..., n; € w such
thatng < ... <npanda,, < ... < a,, whilea,, < a; foranyi > ny. Then there
is ng4+1 > ny such that a,, , is the <-minimal element of the set {a; : i > ny} and
our induction properties are fulfilled for the numbers ny, ..., ng, ng41.

Therefore there exists an increasing sequence B = {n; : i € w} C w such that
ay, < ap;,, forany i € w. Since our sequence A is <-monotone, the orders < and
< either coincide or are opposite on B, i.e., B € A and hence (1) is proved.

Observe that any A € A is closed and discrete in Tj; so it follows from (1)
that every infinite subset of Tj has an infinite closed and discrete subset and, in
particular, any compact subset of 7'} is finite.

Fact 1. If Z is an uncountable space which is a continuous image of a Lindelof
k-space then there is an infinite compact K C Z.

Proof. Fix a Lindelof k-space L such that there is a continuous onto map
f:L—Z.If f7'(z)isopenin L forany z € Z then {f!(z) : z € Z}isa
disjoint uncountable open cover of L which contradicts the Lindel6f property of L.

Thus there exists a point z € Z such that f~!(z) is not open in L and therefore
there is a compact P C L such that P N (L\ f~'(z)) = P\ f~'(z) is not closed in
the space L. If the compact set K = f(P) is finite then Q = K\{z} is closed in Z
and hence P\ f~'(z) = P N f~'(Q) is closed in L which is a contradiction. Thus
K is an infinite compact subset of Z and Fact 1 is proved.

Returning to our solution assume that a Lindelof k-space maps continuously onto
C,(K 4). Now, T} is a closed subspace of C, (K 4), so some Lindelof k-space maps
continuously onto 73 as well; since |7 | >  and all compact subsets of 7} are
finite, this gives a contradiction with Fact 1.

Finally, observe that C,(K 4) cannot be a Lindelof X-space because any
Lindeldf X-space is a continuous image of a Lindelof p-space (SFFS-253) and
every p-space is a k-space (SFFS-230).
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U.176. Give a ZFC example of a Corson compact space without a dense metrizable
subspace.

Solution. Givenatree (T,<)and p € Tlet p ={q € T : g < p}; say that a set
P C T ao-antichain if P = J,,¢,, P, and every P, is an antichain. Aset 0 C T
is dense in T if, for any p € T thereis ¢ € Q such that p < g. Let Lim(w;) be the
set of all limit ordinals of w;; if I C w; is compact then it has a unique maximal
element which we will denote by max(F).

Fact 1. Suppose that A C w is a stationary set such that w;\ A4 is also stationary
and let T(A) = {F C A : F is closed in w;}. Then all elements of T(A) are
countable and hence compact; given F, G € T(A) say that F < G if F is an initial
segment of G, i.e., for the ordinal ® = max(F), we have G N (« + 1) = F. Then
(T (A), <) is a tree which has no uncountable chains and no dense ¢-antichains.

Proof. 1t is straightforward that < is a partial orderon T = T'(A). If p € T then p
is well ordered because the correspondence ¢ — max(g) is an order-isomorphism
of p onto a subset of w; (with the well order inherited from w,). Thus T is, indeed,
a tree; all elements of T are countable because an uncountable closed subset of A4
would miss a stationary set w; \ A which is impossible.

Now, assume that C C T is an uncountable chain. Since p is countable for any
p € C, itis easy to construct by transfinite induction a set {p, : @ < w1} C C such
that p, < pg whenever « < f < w;. Then p = | J{pe : @ < w1} € T because
the union of an increasing w;-sequence of closed sets is a closed set in a space
of countable tightness (in our case the relevant space w; is even first countable).
Therefore p is an uncountable element of 7" which is a contradiction. Thus 7" has
no uncountable chains.

Next, assume towards a contradiction, that U, is an antichain in 7 for every
newandU = J,c, Un is dense in 7'. Since every antichain of T is contained in
a maximal antichain, we can assume, without loss of generality, that every U, is a
maximal antichain of 7'. As a consequence,

(1) forany ¢ € T and n € w there existu € U, and s € T such that {u, ¢} C 3.
We are going to construct by transfinite induction a family {E£, : @ < w;} and
an w;-sequence {8, : o < w;} C w; with the following properties:

(2) o =0and Ey = 0;

(3) E, C T is countable and max(p) < §, forany p € E, and @ < wy;

(4) ifa € Lim(w,) then §, = sup{ép : B <a}and E, = | J{Ep: B < a};

() ife <B <w theno <8, <8, E, C Egand,forany p € E, andn € w
there is u € U, and ¢ € Ep such that {p, u} C § and max(g) > &,.

To satisfy the condition (2) we must start with §o = 0, Eg = 0;if o < w; isa
limit ordinal and we have the set {8g : B < o} and the family {£p : 8 < «} then let
8« = sup{dg : B < a}and E, = |J{Ep : B < «}. This guarantees (4).

Now, suppose that, for some ordinal v < w;, we have the set {6, : ¢« < v}
and the family {E, : o < v} with the properties (2)—(5) fulfilled for all o, 8 < v.
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For every element t € E, and n € o fix u(t,n) € U, and s(¢t,n) € T such
that ¢ < s(¢,n), u(t,n) < s(t,n) and max(s(¢,n)) > max{v,§,} (this is possible
by (1).

LetE),, = E,U{s(t,n) :t € E,,n € w}, Evyy = U{p:peE)  }and
8y+1 = sup{max(p) : p € E,+1}. It is straightforward that the properties (2)—(5)
hold for the set {§, : @ < v + 1} and the family { £, : @ < v + 1}; so our inductive
procedure can be continued to construct the promised w;-sequence {5, : ¢ < w;}
and the family { £, : @ < w;} with the properties (2)—(5).

Observe that

(6) the set H = {&@ < w1 : @ = 84} is closed and unbounded in w;.

Indeed, if {&, },ew C H is an increasing sequence and o, — « then it follows
from (4) that 8, = sup{d,, : n € w} = sup{w, : n € w} = « because §,, =
for any n € w. This proves that the set H is closed. Given any 8 < w, letay =
and o, +1 = 84, + 1 for any n € w. A consequence of (5) is that o, < o, for any
n € w;if o = sup,c, o, then o € H and o > B which shows that H is cofinal in
wp and (6) is proved.

Our set A being stationary, it follows from (6) that there is @ € H N A; fix an
increasing sequence {a, : n € w} such that sup,, o, = «. Applying the property
(5) once more we conclude that sup{s,, : n € w} = «a.

Take an element py € E,, arbitrarily. Suppose that n € @ and we have sets
{pi i <n}CTand{u :i <n} CT with the following properties:

(7) pi € Ey, foralli <n;
8) pi < pi+1 and max(p;+1) > «; forany i < n;
9) u; € Uy and u; < p;4 foreveryi < n.

The property (5) implies that we can choose p,+ € Eq, ., and u, € U, such that
Unp < Put1s Pn < Pnt1 and max(pp41) > 8y, = . It is immediate that (7)—(9)
are fulfilled for the sets {p; : i < n + 1} and {&; : i < n 4 1}; so our inductive
procedure gives us sequences {p, : n € w} and {u, : n € w} with the properties
(N-9).

It follows from (5) and (7) that @ ¢ p, forany n € w. It is easy to see that the set
p = (U,e, Pn) U {a} belongsto T and p, < p forevery n € w. Since U is dense
in 7', there is n € w and u € U, for which p < u and hence u, < p,+1 < p <u
(see (8) and (9)). This is a contradiction with the fact that U, is an antichain; so
Fact 1 is proved.

Fact 2. Given an infinite set T let [P, Q] = {x € DT : x(P) C {1} and x(Q) C
{0}} for any disjoint finite sets P, Q C T. Suppose additionally that we have a
family U = {[P,, Q4] : a € A} such that A is infinite and sup{|P, U Q4| : a €
A} < w. Then U is not disjoint.

Proof. Observe first that the family ¢/ is not disjoint if and only if there are distinct
a,b € Asuchthat (P, U Py) N (Q, U Qp) = @. Our proof will be by induction on
n=sup{|P,UQ,|:a € A}.Ifn = 0then[P,, Q,] = [0.0] = D7 foranya € A;
so U is not disjoint.
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Now suppose that sup{|P, U Q,| : a € A} = k € N and we have proved that,
for any infinite set B, a family V = {[U,, V] : b € B} is not disjoint whenever
sup{|Up U V,| : b € B} <k.

Let us first consider the case when the family P = {P, :a € A} U{Q, :a € A}
is point-finite. Fix ag € A; then only finitely many elements of P can intersect either
of the sets Py, Q4,; so there is a; € A for which (P, U Py) N (Qgo U Qp,) =9
and hence [Py, Q4] N [Py, Qu,] # 9.

If the family P is not point-finite then one of the collections Py = {P, : a € A}
or P = {Q, : a € A} isnot point-finite. Since both cases are analogous, we assume
that Py is not point-finite. Passing to a smaller infinite family if necessary, we can
consider that (| Py # @; fix a pointap € (| Po. Forany a € A let P) = P,\{ao};
then | P)| < | P,|. Besides, ap ¢ Q, forany a € A because every Q, is disjoint from
P, D () Po. As a consequence, sup{| P, U Q,| : a € A} < k; so we can apply the
induction hypothesis to conclude that the family {[P/, Q,] : a € A} is not disjoint
and therefore we can find distinct elements a, b € A such that (P, U P)) N (Q, U
Qp) = @.Butthen (P, U P,) N (Q, U Op) = (P, U Py Ulao}) N(Qa U Qp) =0
and hence the family I/ is not disjoint.

Thus our inductive procedure can be continued to show that the family ¢/ is not
disjoint for any n = sup{| P, U Q.| : a € A}; so Fact 2 is proved.

Returning to our solution take a stationary set A C w; such that w;\ A4 is also
stationary (such a set exists by SFFS-066) and construct the tree T = T (A4) as in
Fact 1. The family A = {C C T : C is a chain} is adequate if we consider that
the empty set is also a chain. Indeed, it is clear that any subset of a chain is a chain;
since the singletons are also chains, we have | J A = T. Now, if every finite subset
of aset C C T is a chain then C is a chain for otherwise there are incomparable
P, q € C and the finite set { p, ¢} C C gives a contradiction. Furthermore, all chains
of T are countable by Fact 1; so the adequate compact space K = K 4 is Corson

compact.
If K has a dense metrizable subspace then it has a o-disjoint m-base by
Problem 138; so we can choose, for any i € w, a family U; = {[Py, Qp] :

b € B;} C t(DT) (for the definition of the sets [Py, Q5] see Fact 2) such that
V, ={UNK :U € UY}isdisjointand V = | J{V; : i € w}is a w-base in K.
Splitting every V; into countably many subfamilies if necessary, we can assume
without loss of generality, that for any i € w there are k(i),m(i) € w such that
|Pp| = k(i) and |Qp| = m(i) forany b € B;.

For every b € B; there is x € [Py, Q] N K, so the set P, C x~!(1) has to be a
chain; let z; be the maximal element of P, with respect to the tree order on 7. The
set Z; = {z» : b € B;} has only finite chains for any i € w. To see it take any i € w
and suppose that C C B; is an infinite set such that {z, : b € C} is a chain.

Fix any distinct elements b, b, € C; the fact that z;, and z,, are comparable
implies that P = Pp, U P, isachainand hence x = yp € K. If the sets [Pp,, Op,]
and [Py,, Qp,] are not disjoint then (Py, U Pp,) N (Qp, U Op,) = @ and hence
x belongs to the set [Pp,, Op,] N [Ph,, Os,] N K which is a contradiction because
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the family V; is disjoint. Therefore the family {[Py, Q5] : b € C} is disjoint in
contradiction with Fact 2. Thus the set Z; has no infinite chains for any i € w.

Nowlet Z;; ={z€ Z; : |zNZ;| = j}forany i, j € w. Since all chains in Z;
are finite, we have Z; = (J{Z;; : j € w} forevery i € w. Each Z;; is an antichain
forif x,y € Z;; and x < y then y N Z; has more elements than X N Z;. Therefore
every Z; is a o-antichain and hence so is Z = Uiew Z;.

Given any ¢ € T the set H = [{t},d] N K is non-empty and open; so there are
i € wand b € B; such that [Py, Qp] N K C H; fix a point x € [Py, O] N K.
Then P, C x~!(1) is a chain and therefore y = yp, € K N [Py, Q5]. Since also
y € H, we must have y(¢) = 1 and hence ¢ € P, which impliest <z, € Z;. Asa
consequence, our g-antichain Z is dense in 7; this contradicts Fact 1 and shows that
K is a Corson compact space without a dense metrizable subspace, i.e., our solution
is complete.

U.177. Give an example of a compact space X for which (C,(X))? is Lindeldf while
X is not Corson compact.

Solution. Given ordinals o, 8 < w; let (o, 8] = {y < w; : @ < y < B}. Denote
by L the set of all limit ordinals of w; and let I = w;\L. For any ordinal « € L
choose an increasing sequence S, = {{y(n) : n € w} C I such that S, — « and
consider the set S, = S, U{a}. Say that a space Z has strong condensation property
if, for any uncountable A C Z there is point zp € Z such that some uncountable
B C Ais concentrated around z, i.e., |B\U| < w forany U € t(zp, Z). A function
f : Z — R separates points x,y € Z if f(x) # f(y).

Fact 1. In a Lindelof space Z every uncountable A C Z has a condensation point,
i.e., there is zp € Z for which |[A N U| > o forany U € (29, Z). In addition, if
Z is a space with /[(Z) < w then Z is Lindelof if and only if every uncountable
A C Z has a condensation point,

Proof. Suppose that Z is Lindelof; if A C Z is uncountable and there is no
condensation point for A then choose, for any z € Z a set U, € t(z, Z) such
that |U, N A| < . There is a countable P C Z such that ( J{U,:z€ P} = Z;so
A =J{ANU,:ze P}iscountable which is a contradiction.

Now assume that /(Z) < ; and every uncountable subset of Z has a
condensation point. If Z is not Lindelof then there is an open cover I/ of the space Z
such that no countable subfamily of ¢/ covers Z. Since /(Z) < w;, we can assume
that |U| = wy; choose an enumeration {U, : @ < w;} of the family U.

The set F, = Z\((J{Up : B < «}) is non-empty for any ordinal &« < w; and
({Fy:a <w} = 0. Take a pointz, € F, forany o < w;;then A = {7, : @ <
o} is uncountable for otherwise there is « < w; such that A C (J{Up : B < o}
which is a contradiction with A N F,, # 0.

For any z € Z there is « < w; such that z € U, and therefore W = X\ Fy4 is
an open neighbourhood of the point z such that W N A C {zg : B < a} is countable.
Thus A has no condensation point in Z; this contradiction shows that the space Z
is Lindelof and hence Fact 1 is proved.
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Fact 2. If Z is a space with strong condensation property and /(Z*) < w; then Z®
is Lindelof.

Proof. Let p,, : Z — Z be the natural projection of Z* onto its n-th factor for any
n € w. Take an arbitrary uncountable set A C Z®. If py(A) is countable then there
is 20 € po(A) such that Ag = p;'(z0) N A is uncountable. If py(A) is uncountable
then there is zp € Z and an uncountable Ay C A such that py|Ay is injective and
Po(Ap) is concentrated around zy.

Assume that k €  and we have uncountable sets 49 D ... D A; and
20,..-,2 € Z such that A D A and, for any i < k, either p;(4;) = {z} or
the map p;|A; is injective and p; (A;) is concentrated around z;.

If pr+1(Ax) is countable then there is a point zz4+; € Z such that the set
A1 = pk_j_l(zkﬁ) N Ay is uncountable; if pgy;(Ax) is uncountable then there
is an uncountable A;4; C Ay and zx4+; € Z for which ppyi|Ar+; 1S injective
and py41(Ax+1) is concentrated around zx 4. Thus our inductive procedure can be
continued to obtain a decreasing family {A4; : i € w} of uncountable subsets of A
and a sequence {z; : i € w} C Z such that, for any i € w, either p;(4;) = {z;} or
pilA; is injective and p; (A;) is concentrated around z;.

Thenz = (z; : i € w) € Z® is a condensation point for the set A. Indeed, if we
are given any set U € t(z, Z®) then there exist a number n € w and Uy, ..., U, €
t(Z)suchthatz e W = Uy x ... x U, X Z\et) U Ttis easy to see that, for
everyi < n,theset B; = {u € A,41: pi(u) ¢ U;} is countable (possibly empty);
sothe set A" = A,+1\(Bo U ... U By) isuncountableand A’ C WNA CUnN A.
Thus every uncountable A C Z“ has a condensation point; so Z® is Lindelof by
Fact 1 and hence Fact 2 is proved.

Returning to our solution define a topology t on w; as follows: For every o € 1
let B, = {{a}};if @ € Lthen B, = {{a(n) : n > k} : k € w}. Let 7 be the
topology generated by the family {B, : & < w;} as local bases. It is evident that the
space Y = (wi, t) is locally compact and all points of / are isolated in Y. Since L
is an uncountable closed discrete subspace of Y, the space Y is not compact. Let X
be the one-point compactification of ¥ and denote by w the unique point of the set
X\Y.

If K C Y is compact then K N L is finite because K is closed and discrete in Y.
The set K’ = K\(IU{Sy : « € K N L}) is also finite being closed and discrete in
K;s0 K C K'U(|J{S«: @ € KN L})is countable. This proves that

(1) every compact subspace of Y is countable.

Assume that X is Corson compact and hence there exists a point-countable
family U of open F,-subsets of X which Tj-separates the points of X (see
Problem 118). Given x, y € X say thataset U € U separates x and y if U N {x, y}
is a singleton. Since every Fj-subspace of X is o-compact, the property (1) implies
that

(2) ifU e U andw ¢ U then U is countable,
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and hence sup(U) < w; forany U € Uy = U\t(w, X). There are at most countably
many elements of &/ which contain w. Since X\U C Y is compact and hence
countable for any U € t(w, X), there exists an ordinal y < w; such that

(3) for any countable ordinal @ > y, if U € U separates o and w then U € U and
hencea € U.

Take any yp € L with yp > y and choose Uj € U which separates yo and w. The
property (3) shows that Uy € Uy and yp € Up. Suppose that f < w; and we have
chosen a set {y, : « < B} C L and a family {U, : « < 8} C Uy with the following
properties:

(4) Yo € Uy forany a < f;

(5) o <a < Bimplies @' < Yy < Ya;

(6) if &’ < o < B then sup{sup(Us) : § < &'} < yq;

(7) if o < B is a limit ordinal then y, = sup{ys : § < «}.

If B is a limit ordinal then we have to let yg = sup{y, : @ < B}; since U is a
Ty-separating family in X, there is Ug € U which separates yg and w. It follows
from (3) that yg € Ug € Up. It is easy to see that the properties (4)—(7) hold for all
a < B.

Now, if 8 = B/ + 1 then y’ = sup{sup(U,) : @ < B’} < w; by (2); so if we take
an ordinal yg € L with yg > max{yg,y’} + 1 then some Ug € U separates yg and
w which implies, by (3), that yg € Ug € Up. It is clear that (4)—(7) still hold for any
a < B; so our inductive procedure can be continued to construct an w;-sequence
G ={y, : o < w} C L anda family {U, : « < w1} C Uy with the properties
(4)—(7) fulfilled for any 8 < w;.

An immediate consequence of (4) and (6) is that U, # Up if a # B; besides, it
follows from (5) and (7) that G is a closed unbounded subset of w;. For any ¢ < oy,
the set U, is an open neighbourhood of y,; so there is ky € w such that u,, (n) € U,
forany n > kg let f(yo) = iy, (ko).

This gives us a function f : G — w; such that f(8) < B for any 8 € G;
so we can apply SFFS-067 to find an uncountable H C G and 8 < w; such that
f(v) = B forany v € H. In other words, there is an uncountable £ C w; such that
f(yy) = B forany @ € E. By our choice of the function f we have 8 € U,, for any
a € E. Since U, # Uy for distinct o, ' € E, the point 8 belongs to uncountably
many elements of {/; this contradiction shows that X is not Corson compact.

Let D = {f € C,(X,D) : | f~'(1) N L| < 1}. The set D separates the points
of X. Indeed, if « € I then y(, € D separates the points w and . If @ € L then
Xs, also separates o and w.

If we are given distinct ordinals «, 8 < w; such that {&, 8} N I # @ then one
of the functions y{4}, x{p; belongs to D and separates  and §. Finally, if o, B € L
and o # B then s, € D separates « and S.

Let Dy = {f € C,(X,D) : f~'(1) N L = @} and suppose that E is an
uncountable subset of Dy. It is easy to see that f~!(1) is finite for any f € E; so
there is an uncountable E’ C E and a finite P C I such that f~'(1)Ng~ (1) = P
for any distinct f, g € E’.If h = yp then it is an easy exercise that the set E’ is
concentrated around /. This shows that
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(8) the set Dy C D has strong condensation property.

Our purpose is to prove that D has strong condensation property so suppose that
E is an uncountable subset of D. It follows from (8) that we do not lose generality
assuming that £ N Dy is countable.

Consider first the case when there is an uncountable G C E and o € L such that
f(x) =1forall f € G.Then H = {f —ys, : / € G}is an uncountable subset of
Dy; so we can apply (8) to find a function g € Dy and an uncountable set H' C H
which is concentrated around g. It is straightforward that the set G’ = {f + xs, :
f € H’} C G is uncountable and concentrated around g + x5, € D.

Assume that E, = {f € E : f(x) = 1} is countable for any & € L and hence
the set {&¢ € L : there exists f € E with f(«) = 1} is uncountable. It takes an
evident transfinite induction to construct sets { f, : @ < w1} C E and {8, : o <
w1} C L such that

(9) fu(8s) = 1and 8, > vy = sup{dp : B < o} forany @ < w;.

The family {(ve, 84] : @ < w1} is disjoint; let Jo = £, (1) N (v, 8a)s ga = X4,
and hy, = fy — gy forany o < w;. If u € Dy is identically zero on X then the
set {gy : @ < w;} is concentrated around u because the family {g; (1) : @ < w;}
is disjoint. Furthermore, i, € D, for any ¢ < w;; so we can apply (8) again to
find a function 7 € Dy and an uncountable 2 C w; such that {h, : @ € £} is
concentrated around 4.

It turns out that the set P = {f, : o € £2} is also concentrated around /.
Indeed, take any open neighbourhood O of the function 4 = A + u. Since the sum
is continuous in C,(X) x Cp,(X) (see TFS-115), it is also continuous in C, (X, D) x
C,(X.D); so there exist Wi € t(h,C,(X,D)), Wo € t(u,Cp(X,D)) such that
p+q € Oforany p € W) and ¢ € W,. There exists y < w; such that h, € W,
and g, € Wy forany o € 2 witha > y. Then f, = hy + g4 € O forany o € 2
with & > y and hence P is, indeed, concentrated around . Finally, observe that P
is uncountable because f, # fg whenever a # . Therefore we proved that D has
strong condensation property; this, together with /(D) < w(D) < w(C,(X)) < w1,
implies that D is Lindelof (see Fact 2).

Since D separates the points of X, the space X condenses and hence embeds in
C,(D) (see TFS-166). Finally, apply Fact 4 of U.093 to conclude that (C,(X))® is
Lindel6f and complete our solution.

U.178. Prove that any Corson compact space is a continuous image of a zero-
dimensional Corson compact space.

Solution. Let X be a Corson compact space. By Problem 118, the space X has a
point-countable Ty-separating family I/ of open Fy-subsets of X. For any U € U
choose a continuous function fyy : X — I = [0,1] C R such that X\U = f;;'(0)
(see Fact 1 of S.358 and Fact 1 of $.499). Themap f = A{fy : U eU}: X — I¥
is an embedding. To see it take distinct x,y € X. There is U € U such that
U N {x, y}is asingleton. Then fy(x) # fy(y) and therefore f(x) # f(») which
proves that f is, indeed, an embedding being an injection; let X' = f(X).
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Observe that X' C {x € I¥ :theset {U € U : x(U) # 0} is countable} because
ifx € X' thenx = f(y) forsome y € X and x(U) = fy(y) forany U € U which
implies that the family {U € U : x(U) # 0} C{U €U : y € U} is countable.

To simplify the notation we will reformulate the obtained result as follows:

(1) there exists a set 7 such that X embedsin ¥ = {x € IT : |x~'(1\{0})| < w},
so we can assume that X C X'.

Let K = D® be the Cantor set; fix a pointa € K and let [, = [nl? #] clI
for any n € w. The space K being zero-dimensional, there exists a local base O =
{0, : n € w} atthe pointa in K such that the set O, is clopenin K and 0,1, C O,
for any n € w. Making the relevant changes in O if necessary, we can assume that
Oy = K and K,, = 0,\O, 4+ # @ forany n € w.

Since no point of K is isolated, the same is true for any non-empty clopen
subset of K and hence every non-empty clopen subset of K is homeomorphic to
K (see SFFS-348). This shows that K;, is homeomorphic to K and hence there is a
continuous onto map ¢, : K, — I, for any n € o (see TFS-128). Let ¢(a) = 0; if
x € K\{a} then there is a unique n € w such that x € K,;; let p(x) = ¢, (x). Itis
an easy exercise that ¢ : K — I is a continuous onto map such that ¢~!(0) = {a}.

Let ® : KT — IT be the product of T-many copies of ¢, i.e., @(x)(t) =
@(x(t)) forany x € KT and ¢t € T. The map @ is continuous by Fact 1 of S$.271
and it is easy to see that @®(KT) = IT. The space Y = &~ (X) is compact being
closed in the compact space K. Take any point y € Y and let x = @(y). If

y(t) # a then x(t) = ¢(y(¢)) # 0 and hence
Sy={teT:y()#a} Csupp(x) ={t T :x(t) #0}.

It follows from X C X that supp(x) is countable; so S, is countable for any
y € Y which shows that Y is a subset of a X'-product of T-many copies of K.
Therefore Y is a Corson compact space by Problem 119. It is clear that @|Y
maps Y continuously onto X. Besides, Y is zero-dimensional because so is K7
(see SFFS-301 and SFFS-302). Therefore Y is a zero-dimensional Corson compact
space which maps continuously onto X .

U.179. Prove that every first countable space is a W -space and every W -space is
Fréchet—Urysohn.

Solution. Suppose that X is a first countable space and fix a point x € X. There is
a countable local base B = {O, : n € N} of X at x such that O,4+; C O, for any
n € N. Now, let (@) = O and, if moves Uy, x1,..., U,, x,, have been made, let
o(Uy, x1,..., Uy, xy) = Oyy1. Itis clear that o is a strategy for the player OP.

If we have a play {(U;,x;) : i € N} in which OP applied the strategy o then
x; € Uy = O; forany i € N so it is evident that the sequence {x;} converges to x.
Thus o is a winning strategy for OP and therefore {x} is a W-set; the point x € X
was chosen arbitrarily; so X is a W-space, i.e., we proved that any first countable
space is a W-space.
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Now, assume that X is a W-space. Given a set A C X and a point x € A4 fix
the respective winning strategy o for the player OP at the point x and consider a
play {(Ui,x;) : i € N} where U; = a(@), O;j+1 = o(Uy, x1,...,U;,x;) and
x; € U; N A forany i € N. To see that such a play is possible, observe that every
move of OP is an open neighbourhood of x; so U; N A # @ for any i € N and hence
PT can choose a point x; € U; N A at his i-th move. It is evident that in the play
{(Ui,x;) : i € N} the player OP applied the strategy o;so {x; : i € N} C Aisa
sequence which converges to x. Thus X is a Fréchet—Urysohn space.

U.180. Suppose that f : X — Y is an open continuous onto map. Prove that if X
isa W-space then so is Y.

Solution. Take any point y € Y and fix x € X such that f(x) = y. The player
OP has a winning strategy o in X at the point x. We will define a strategy s for the
Gruenhage game on Y at y in such a way that, for any play P = {(U;, y;) : i € N}
of this game where OP applies the strategy s, there is a play P’ = {(V;, x;) : i € N}
of the same game on X at x such that the player OP applies ¢ in P’ and we have
f(V:) = Us, f(x;) = yi foralli € N.

Let s(@) = f(o(®@)); if PT chooses y; € U, = s(0) there is x; €
Vi = (@) such that f(x;) = y;. Let Vo = o(V1,x1), U = f(V>) and
s(Ui,y1) = U,. Suppose that n € N and moves Uy, yi,...,U,, yn, U4 and
Vi.x1,..., Vu, xu, Vug1 have been made in the respective games on Y and X in
such a way that the player OP applies the strategies s and o in ¥ and X respectively
while f(V;) = U; foralli <n 4+ 1and f(x;) = y; foralli <n.

If PT plays a point y,+; € U,+; then there exists a point x,,+; € V; 41 such that
SGur1) = vy let Voo = o(Visxy, oo, Vagt, Xng1)s Ungz = f(Vig2) and
s(Ut, ¥1,..., Ups1, Yng1) = Uyyo. It is evident that all mentioned properties of s
now hold if we substitute n by n + 1. The induction step in defining the strategy
s being carried out, our inductive procedure can be continued and hence we have
the promised play P’ = {(V;, x;) : i € N} on X where OP applies ¢ for any play
P = {(U;,y:) : i € N} on Y where OP applies the strategy s. Since the strategy
o is winning, the sequence S’ = {x, : n € N} converges to x and therefore the
sequence S = {y, :n € N} = {f(x,) : n € N} convergesto f(x) = y.

Observe that we only defined the strategy s for the plays where s has to be
applied. For the rest of the respective initial segments of our game the function s can
be defined arbitrarily, e.g., we can let s(Uy, y1,...,U,, y,) = Y for any sequence
{Ui,y1,..., Uy, ¥y} where s was not defined yet. We already proved that if OP
applies the strategy s in a play {(U;, y;) : i € N} then y; — y; so s is a winning
strategy and therefore Y is, indeed, a W-space.

U.181. Suppose that X is a separable space and a closed set F C X has an outer
base of closed neighbourhoods (i.e., for any U € ©(F, X) there is V € t(F, X)
suchthat V.C U). Prove that if F is a W -set in X then x(F, X) < . In particular,
if X is a separable W -space then y(X) = w.
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Solution. Let A be a countable dense subset of the space X and fix a winning
strategy o for the player OP in the W-game at the set F' in X. Consider the
family W = {W € 1(F,X) : there is n € N and an initial segment
Wi,ay, ..., Wy—1,a,—1, W, of a play in a W-game at F where OP applies the
strategy o, the point a; belongs to A foranyi <nand W, = W}. Any W € Wis
uniquely determined by a finite (maybe empty, in which case W = o (0)) sequence
of points from A; so |[WW| < w and hence it suffices to show that JV is an outer base
at F.

To obtain a contradiction assume that there exits a set U’ € 7(F, X) such that
W\U’ # @ forany W € W. Fix aset U € t(F,X) for which U C U’; then
W\U # @ for any W € W. The set A being dense in X thereisa; € A N (W;\U)
where W) = o(¥) € W. Suppose that n € N and {W,ay,...,W,,a,, W41} is an
initial segment of the W-game at F with the following properties:

(1) Wiy1 = o(Wy,ay,...,W;,a;) for any i < n, i.e., the player OP applies the
strategy 03
2) a; e AN(W\U) foranyi < n.

As a consequence, W, € W; so it follows from our choice of U that we can
take a pOiIlt ap+1 € AN (W,,.H\U); let Wyqo = O'(Wl,al, Ceey Wn+1,a,,+1). It is
evident that the conditions (1)—(2) are still satisfied forall i < n+1; so our inductive
procedure gives a play {W;, a; : i € N} for which (1) and (2) hold. In particular, the
player OP applies the strategy o and hence the sequence S = {a, : n € N} has to
converge to F. On the other hand, S C X\U by (2) which is a contradiction.

Thus W is, indeed, an outer base of F in X and therefore y(F, X) < |W| < w.
Finally observe that if F is a singleton then it has a base of closed neighbourhoods
by regularity of X. Consequently, y(x, X) < w for any x € X whenever X is a
separable W -space.

U.182. Show that there exist W -spaces which are not first countable and Fréchet—
Urysohn spaces which are not W -spaces.

Solution. Let X = A(w;) = w; U {a} be the one-point compactification of the
discrete space of cardinality w;. Recall that a € X is the unique non-isolated point
of X and t(a, X) = {X\K : K C X\{a} is finite}.

If x € X\{a} then it is evident that the n-th move U, = {x} foranyn € N
gives a winning strategy for OP in the Gruenhage game on X at x. Now, for the
case x = aletU; = X and (@) = Uy; if n € N and moves Uy, xy,..., Uy, x,
are made then let o (U1, x1, ..., U, x,) = X\{x1,...,x,}. This defines a strategy
o on the space X at the point a.

If we have a play {(U,,x,) : n € N} where o is applied then x, # x, for
distinct m, n € N; so the sequence {x, : n € N} converges to a. Thus ¢ is a winning
strategy, so X is a W-space; since ¥/ (a, X) = y(a, X) > o we have y(X) > w.

Now let M be a countable second countable space for which there is a closed
map f : M — Y such that Y is not metrizable (see TFS-227). A countable space is
metrizable if and only if it is first countable; so x(Y') > w. It follows from TFS-225
that Y is a Fréchet—Urysohn space. If Y is a W-space then it is first countable by



2 Solutions of Problems 001-500 203

Problem 181; this contradiction shows that Y is an example of a Fréchet—Urysohn
space which does not have the W -property.

U.183. Prove that any subspace of a W-space is a W -space and any countable
product of W -spaces is a W -space.

Solution. Suppose that X is a W-space and ¥ C X. Given a point y € Y there
is a winning strategy s in the W-game on X at y. Let (@) = s(4) N Y; then
W) = o(@) € t(y,Y). Now suppose that n € N and {W, y1,..., W,—1, yu—1, Wy}
is an initial segment of the play in the W-game on Y at y where our future strategy
o is defined and applied, i.e., (Wi, y1,..., W;,y;) = Wiy forany i < n and,
besides, we have an initial segment {Uy, y1, ..., U,—1, yu—1, Uy} of a play in the
W-game on X at y where OP applies the strategy s and W; = U; N Y for any
i < n.If PT plays with a point y, € W, then y, € U,, so the strategy s
is applicable; let a(Wy, y1, ..., Wy, yn) = s(Up, y1,..., Uy, yq) N Y5 it is clear
that W,+1 = o(W1, y1,..., Wy, yu) is an open neighbourhood of y in Y, so our
inductive procedure defines a strategy o in the W-game on Y at the point y.

To see that o is winning observe that, for every play P = {(W,, y,) : n € N} in
the W-game on Y at y where o is applied we have a play P’ = {(U,, y,) : n € N}
in the W-game on X at the point y where the player OP applies the strategy s.
Since s is a winning strategy, the sequence {y,} converges to y and hence o is also
a winning strategy, i.e., Y is a W-space. This proves that any subspace of a W -space
is a W-space.

Now assume that X, is a W-space for any n € N; we must prove that the space
X =J[{X, : n € N} is a W-space. If x € X then there is a winning strategy o, in
the W-game on X, at the point x(n) for any n € N. Denote by p, : X — X, the
respective natural projection for any n € N and let o(0) = pl_1 (01(@)). It is clear
that the set U; = o(9) is an open neighbourhood of x in X; let O] = 01(9).

Suppose that n € N and {U;, x,...,U,—1, x,—1,U,} is an initial segment of
a play in the W-game on X at x where our future strategy o of the player OP is
defined and applied, i.e., o (Ui, x1,...,U;, x;) = U; 4, for any i < n and, besides,
for any j < n an initial segment S; = {O],x;(j),.-.. Op_;, xa=1(j). O;_; 1}
of a play in the W-game on X; at the point x(;) is chosen in such a way that the
strategy o is applied in every S; and

(1) O} =0;(9) and U; = ﬂ{pj_l(Oij_jH) :j <i}foranyi <n.

If the player PT makes a move x, € U, then it follows from the property
(1) that x,(j) € Or{—j+l and therefore o; is applicable; let 0;“'1 = 0,+1(0)
and 0,{_j+2 =0;(0{,x;(j)s- -, 0;_;, xa=1(}), O 11 Xn (j)) forany j < n;
since Oyf_j 1 1s an open neighbourhood of the point x () forany j € {1,...,n +

1}, the set Up41 = ({p;'(O;_;1,) : j < n+ 1} is an open neighbourhood of the
point x ao we can let o(Uy, xy, ..., Uy—1x,—-1, Uy, x,) = U,41. The property (1)
is still fulfilled when we substitute n by n 4 1 so our inductive procedure defines a
strategy o on X for which the property (1) holds for all n € N.
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To see that o is winning suppose that {(U,, x,) : n € N} is a play where OP
applies the strategy o. By our choice of o there is a play {(0; JXipj—1(i)) 1 j e N}
in the W-game on the space X; at the point x (i) where OP applies the strategy o;
foranyi € N.

As a consequence, the sequence {x;4,;_1(i) : j € N} converges to x (i) for any
i € N;soitis an easy exercise to see that x, — x and hence o is a winning strategy.
This shows that X is a W-space and therefore any countable product of W-spaces
is a W-space.

U.184. Prove that any X -product of W -spaces is a W -space. Deduce from these
facts that if X is a Corson compact space then every non-empty closed FF C X isa
W -set; in particular, X is a W -space.

Solution. Suppose that X, is a W-space and a point a; € X is fixed forany ¢ € T'.
Let a(t) = a, forany t € T;thena € X = [[,c; X;. We must prove that
Y(X,a) = {x € X :thesetsupp(x) = {t € T : x(¢t) # a,} is countable} is
a W-space.

For any t € T denote by p, : ¥(X,a) — X, the restriction to ¥ (X, a) of the
natural projection of X onto the factor X,. Fix a point y € ¥ = ¥(X,a) and a
winning strategy o, of the player OP in the W-game on the space X, at the point
v = y(t) forany t € T. For any x € X choose a countable set 7 = {t; : n €
N} C T such that supp(x) C T* andlet T, = {t; : i <n}foranyn € N.

Let 0(0) = pt_lyl(otly (@)); it is clear that the set U; = o(@) is an open

neighbourhood of the point y; let S1 = {tly }. To construct a strategy o by induction
assume that n € N and {Uy, x1, ..., U,—1, X,—1, U, } is an initial segment of a play
in the W-game on X' at y where our future strategy o of the player OP is defined
and applied, i.e., o (Uy, x1,...,U;, x;) = U;4 forany i < n and, besides, we have
finite sets S; C ... C S, C T with the following properties:

(1) Tl-y UT"U...UT ' C S;foranyi <n;

(2) forany t € S, if k, = min{i : ¢ € S;} then a play P; in the W-game on X; at
the point y, starts at the step k; and OP applies the strategy o; in P;;

(3) foranyi <nandt € S, if k, <i then at the step i the player OP makes his/her
strategy move number (i — k; + 1) (starting with o, (@) if i = k,) following the
move number (i — k;) of the player PT (in case when k; < i) who plays with
xi—1(0);

(4) forany i < n we have U; = (\{p;(O;) : t € S;, k; < i and O; is the move
number (i — k; + 1) of the player OP}.

Now, suppose that the player PT makes a move x, € U, and consider the
respective initial segment S; = {O{,z},..., 0, _;, 2, _;, O}, } of the play P, for
any ¢ € S,. It follows from the property (4) that x, () € Oy, foranyt € S, so the
strategy o; is applicable; let O; = 0;(0{, 2}, ..., O}, 1,2, 1, Oy, , Xx (1)) for any

t € S,. Take a finite set S, +; C T such that S, U Tny+1 UT5,U...UT%, C Sup1
and let O; = o,(@) forany ¢t € S, +1\S,.
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It is immediate that U,+1 = (\{p,; '(O;) : t € S,+1} is an open neighbourhood
of yin X;leto(Uy, x1, ..., Uy, x,) = U,4. Itis evident that the conditions (1)—(4)
are still satisfied if we substitute n + 1 in place of n. Thus our strategy o can be
inductively constructed so that the properties (1)-(4) hold for any n € N.

To see that o is winning, assume that {(U,, x,) : n € N} is a play where OP
applies the strategy 0. We also have a sequence {S, : n € N} with the properties
(D)—(4);1let S = |J{S, : n € N}. It follows from (1) that supp(y) U supp(x;) C S
foranyi € N.

For any ¢ € S we have a play {(O!,z,) : n € N} in the W-game on X; at y()
in which OP applies the strategy o, and {z}, : n € N} = {xy,4,—1(¢) : n € N}. The
strategy o; is winning so the sequence {z,} converges to y(¢) for any ¢ € S; thus
X, (t) — y(¢) for any ¢t € S. Furthermore, it follows from (1) that x,(¢) = a, =
y(t) forany t € T\S so x,(t) — y(¢) forany ¢t € T and hence the sequence {x,}
converges to y. Thus the strategy o is winning; so we proved that ¥ is a W-space.

Therefore every X' -product of the real lines is a W-space; applying Problem 183
we can conclude that

(5) every Corson compactum is a W-space.

The following useful fact will help us to show that every closed subset of a
Corson compact space is a W -set.

Factl. If f : Y — Z is a perfect map and z € Z then {z} is a W-set in Z if and
only if f~!(z)isa W-setin Y.

Proof. Suppose that {z} is a W-set in Z and fix a winning strategy s for the player
OP in the W-game in Z at the point z. Let V; = s(@) and U; = f~!(Vp); then
U, is an open neighbourhood of the set F = f~!(z). Suppose that n € N and
{U1, y1,...,Us—1, yu—1, U, } is an initial segment of a play in the W-game on Y
at I where our future strategy o of the player OP is defined and applied, i.e.,
o(Ui,y1,...,U;,y;) = U4 forany i < n and, besides, we have an initial segment
{Vi,ziy .o Vaei,zn—1, Vi } of a play of the W-game on Y at y in which OP applies
the strategy s while U; = f~'(V;) andz; = f(y;) foranyi < n.

If the player PT makes a move y, € U, then z, = f(y,) € V, and hence the
strategy s can be applied; let V, 11 = s(Vi.z1,..., Vi.zy) and U,y = f ' (Vs1)-
Then the formula o (Uy, y1, ..., Uy, y,) = U,+ completes the inductive definition
of the strategy o.

To see that ¢ is winning suppose that {(U;, y;) : i € N} is a play where OP
applies the strategy o. Then there is a play {(V;,z;) : i € N} in the W-game on Z at
the point z in which OP applies the strategy s while f(y;) = z; and U; = f~1(V})
forany i € N. Since the strategy s is winning, the sequence {z; } converges to z. Now,
if O € t(F,Y) then W = Z\ f(Y\O) is an open neighbourhood of z such that
f_l(W) C O. There exists m € N such that z; € W for all i > m; it is immediate
that y; € f~'(W) C O forall i > m and hence the sequence {y;} converges to F.
This proves that F' is a W-set and therefore we established sufficiency.
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To prove necessity, assume that F' is a W-set. Given an open set U C Y the set
V = Z\f(Y\U) is an open subset of Z (maybe empty) such that (V) C U;
let f¥(U)=V.

Fix a winning strategy o for the player OP in the W -game on the space Y at the
set F and let U; = o(@); then V; = f#(U)) € t(z, Z) so we can let s(d) = V.

Suppose that n € N and {V1,z1,..., Vy—1,2,—1, Vi } is an initial segment of a play
in the W-game on Z at z where our future strategy s of the player OP is defined and
applied, i.e., s(V1,21,...,Vi,z;) = V4 forany i < n and, besides, we have an

initial segment {U,, y1, ..., U,—1, yy—1, U, } in a play of the W-game on Y at F in
which OP applies the strategy o while V; = f#(U;) and z; = f(y;) forany i < n.

If the player PT makes a move z, € V, then take any point y, € f~'(z,);
since f~(z,) € f~'(V,) C U,, we have y, € U, and therefore the strategy o is
applicable; let U,+1 = o (U, y1...., Uy, yn) and V,yy = f#(U,+1). Then V, 4y
is an open neighbourhood of z in Z; so the formula o(V1,z1, ..., Vi, 24) = Vit
completes our inductive definition of the strategy s.

To see that s is winning suppose that {(V;,z;) : i € N}isaplay where OP applies
the strategy s. Then there is a play {(U;, y;) : i € N} in the W-game on Y at the
set F in which OP applies the strategy o while f(y;) = z; for any i € N. Since the
strategy o is winning, the sequence {y; } converges to F. An immediate consequence
of continuity of f is that the sequence {z;} = {f(;)} converges to z. This proves
that {z} is a W -set and therefore we established necessity. Fact 1 is proved.

Finally, take any Corson compact space K and fix a non-empty closed set
F C K. Let us consider the map f : K — N which is obtained by collapsing
F to a point. Recall that N = {xr} U (K\F), the base of the topology of N at a
point x € K\F is given by the family t(x, K\ F) and the local base at xf is the
family {{xr} U (U\F) : U € ©(F, K)}. The map f is defined by f(x) = xp for
any x € F and f(x) = x whenever x € K\ F.

Then N is a compact Hausforff space and the map f is surjective and continuous
(see Fact 2 of T.245). The space N is Corson compact by Problem 151 and therefore
{xp}isa W-setin N by (5). Since F = f~'(xr) and f is perfect, we can apply
Fact 1 to conclude that F is a W-set in K and hence our solution is complete.

U.185. Prove that, if X is a compact space of countable tightness, then a non-empty
closed H C X is a W-set if and only if X\ H is metalindeldf.

Solution. We will deduce sufficiency from a more general statement.

Fact 1. Suppose that Z is a compact space, F' is non-empty and closed in Z and,
additionally, there is a point-countable open cover U of the set Z\ F such that U C
Z\F forany U € Y. Then F is a W-setin Z.

Proof. Given any x € Z\F letU, = {U,’ : n € N} be a subfamily of I/ such that
x € U € U implies U € U,; we will also need the family U} = {U : k < n} for
anyn € N.

To define inductively a winning strategy o for the player OP let 6(J) = Z and
assume that n € N and we have an initial segment {Uy, x1, ..., U,—1x,—1, U,} of



2 Solutions of Problems 001-500 207

the W-game on Z at the set F' in which our future strategy o is defined and applied,
ie, Uy =0(@) and Uiy = o(Uy, x1,...,U;, x;) forany i < n and, besides

(1) foranyi < n we have U4, ﬂUL{)’;j = @ forany j <i.

If the player PT makes a move x,, € U, then the closed set P; = L{fi does meet
F foranyi < nsotheset U,y = U,\(P, U...U P,) is an open neighbourhood
of the set F;leto(Uy, x1,...,Uy,, x,) = U,y1. Itis evident that (1) still holds if we
substitute n + 1 in place of n; so our inductive procedure defines a strategy of the
player OP in the W-game on Z at F' with the property (1).

To see that o is winning suppose that {(U;, x;) : i € N} is a play in which OP
applies the strategy o. Given any point y € Z\F fix V € U such that y € V.
If there is k € N such that x; € V then V' = U_* and hence V' € U] for some
m € N. We have x, € U, for every n € N; it follows from the property (1) that
U,NV = @ foranyn > m+k+1 and therefore VN{x; :i € N} C {x1,..., Xpm+k}-
Thus, for any y € Z\F thereis V € t(y, X) such that V N {x; : i € N} is finite,
and hence D = {x; : i € N} is closed and discrete in Z\ F. Now, if O € ©(F, Z)
then K = Z\ O is a compact subspace of Z\ F;s0 D N K = D\O is finite which
shows that D converges to F' and hence the strategy o is winning, i.e., F' is a W -set
in Z. Fact 1 is proved.

Fact 2. Suppose that Z is a set and A is a family of subsets of Z. Assume also that
we have a map ¢ : exp A — exp A such that |¢p(B)| < max{w, |B|} forany B C A.
A family B C A will be called ¢-closed if ¢(B) C B. Suppose, additionally, that
we have a property P such that

(a) any countable ¢-closed family B C A has P;

(b) for any ordinal «, if a family B, C A is ¢-closed and has P for any o < « and,
besides, « < B < k implies B, C Bg, then the family B = (J{By : @ < «}
has P.

Then the family .4 has the property P.

Proof. We will prove this by induction on A = |A|. If A = o then A has P by
(a). Now assume that | A| = x and our Fact is proved for all families of cardinality
less than «. Write A as {Ag : B < «}; we will construct an increasing «-sequence
{Bg : B < «} of subfamilies of .A with the following properties:

(2) the family Bg is ¢-closed and |Bg| < « for any B < k;
(3) {4, 1y < B} C Bgforevery B <«.

We can start with By = @. If « is a limit ordinal and we have Bg for any 8 < o
then let B, = (J{Bp : B < a}. Itis clear that the properties (2) and (3) are fulfilled
forevery f < «.

Now, if @ = o' + 1 thenlet Cy = By U {Ay} and C,41 = C, U ¢(Cy) for
any n € o. It is immediate that B, = |, ¢, Cu is ¢-closed, has cardinality < «
and {Ag : B < a} C B,. Therefore our inductive procedure gives us an increasing
k-sequence S = {53, : & < k} with the properties (2) and (3). Since A, € By for
any o < k by (3), we have | JS = A.
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Furthermore, the induction hypothesis is applicable to every B, and the map
¢| exp(B,) because B, is ¢-closed and |B,| < k by (2). Thus every 5, has P;
the collection S being increasing, the family .4 = | J S has P by (b); so Fact 2 is
proved.

Returning to our solution suppose that X\ H is metalindelof. Every x € X\ H
has an open neighbourhood O, such that O, C X\ H; there is a point-countable
open refinement U/ of the open cover {O, : x € X\ H} of the space X\ H. Itis clear
that U € X\ H forany U € U; so H is a W-set by Fact 1. This proves sufficiency.

Now assume that H is a W-set and fix a winning strategy o for the player OP
in the W-game on X at the set H. The following observations will be useful to
simplify our notation.

First note that the values of the strategy o only matter in the plays where it is
applied. Thus, when we calculate o for an initial segment {U,, x1, ..., Uy, x,}, the
set o (Uy, x1, ..., Uy, x,) actually depends only on the points {xi, ..., x,} because
U =0, Uy = o(a(®),x1), U3 = o(c(9),x1,0(c(9),x1),x2) and so on by
trivial induction.

So our first simplification will consist in writing o(xy,...,x,) instead of
the expression o (Uy, x1, ..., Uy, x,). Formally, however, the set o(xy,...,x,) is
defined only for those n-tuples (xi,...,x,) for which x; € o(%) and x;4+; €
o(xy,...,x;) foreveryi < n. Butitis easy to see that we can define o (xy, ..., x;)
arbitrarily, say o(xy, ..., x,) = X for all other n-tuples (x, ..., x,); the resulting
strategy will still be winning.

The next step is to define a map o’ for any finite subset F of the space X. Let
o’'(#) = o(®);if |[F| = n > 0 then define the value of ¢’ at F by the formula
o'(F)=({o(x1,...,x,) : x; € F foranyi < n}.Itis an easy exercise to see that
the function ¢’ is still a winning strategy in the sense that for any sequence S = {x; :
i € N} such that x; € 0(¥) and x,4+; € o(xy,...,x,) forany n € N the sequence
S converges to H. Our next simplification is to consider that 0 = o”, i.e., 0(F) is
defined for all finite sets F C X and o (F') does not depend on enumeration of F.
Call S = {x; : i € N} ao-sequenceif x; € 0(0) and x,4+; € o(xy,...,x,) for any
n € N. We have observed already that any o-sequence converges to H .

To prove that X\ H is metalindelof take an open cover U of the space X\ H.
We can assume, without loss of generality, that U N H = @ forany U € U. For any
finite family &’ C U fix a finite O(U’) C U such that | J{U : U e U’} ¢ JOWU');
if V C U then let B(V) = [J{O@U') : U is a finite subfamily of U/}.

For an arbitrary V C U let V* be the minimal family of subsets of X such that
YV CV*and A, B € V* implies AU B € V*, AN B € V*and A\B € V*. Itis an
easy exercise that |V*| < max{w, |V|} forany V C U; observe also that the elements
of V* are not necessarily open and Vy, C V; C U implies V; C V;. For any non-
empty A € U* choose a point y(A4) € A andlet Y(V) = {y(A) : A € V*\{0}} for
any V C U.

Given V C U and a finite set F' C Y (V) the set X\o(F) is compact; since
it is contained in X\ H, we can choose a finite family Q(F) C U which covers
X\o(F).Let A(V) = | J{Q(F) : F is a finite subset of Y (V)}.
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For an arbitrary family ¥V C U let (V) = A(V) U B(V); this gives us a map
@ :expU — expU. It is straightforward that |p(V)| < max{w, |V|} forany V C U.
Say that a family V C U has the property P if the cover V of the space | J V) has a
point-countable open refinement (from now on we will abbreviate this phrase saying
simply that V' has a point-countable open refinement). It is evident that any countable
V C U has P so it suffices, by Fact 2, to prove that if k is an ordinaland {V,, : o < «'}
is an increasing k-sequence of subfamilies of ¢/ with the property P then the family
V = U{Vs : @ < &} also has P. Let W, be a point-countable refinement of the
family V, for any o < «.

If the ordinal « is countably cofinal then V is a countable union of families with
the property P; so it is an easy exercise that )V also has P. Thus we can assume,
without loss of generality, that the cofinality of « is uncountable. The following
property is crucial for our proof:

(4) if £ C U is a p-closed family then Y(€) C | JE U H and | J &’ C |J & for any
finite £’ C £.

Assume first that &’ C £ is finite. Since £ is g-closed, we have O(£’) C & and
therefore | J & C (JO(&') c €.

To prove the first part of (4) assume towards a contradiction that, for the set P =
Y(&), there is a pointz € P\({JE U H); fix W € t(z, X) such that W N H = @.
If Uy = o(@) then X\U, C |J Q(9¥) which, together with Q(#) C & implies that
X\U, C |Y¢& and therefore z € Uj. It follows from z € P that we can choose
x1 € P NU; N W. Suppose that we have an initial segment {Uy, x1, ..., U,, x,} of
aplay in the W-game on X at H in which OP applies the strategy o and x; € PNW
foranyi <n.

Since the family & is ¢-closed, for the set F = {x,...,x,} C P we have
X\o(F) Cc |JQ(F) and Q(F) C & which implies that for the set U,4+; = o(F)
we have X\U,+; C |J € and therefore z € Uy 41; so we can find x,,41 € PNU,+1N
W . Thus our inductive procedure gives us a g-sequence S = {x, : n € N} C W,
however, X \W is an open neighbourhood of H which contains no elements of S.
This contradiction with the fact that o is winning strategy, shows that the property
(4) is true.

Forany o < k let Ny = (J{Vp : B < a}, V), = Vo \ N,y and Z, = Y(N,). Fix
o < k,an element V € V!, and observe that N, is a ¢-closed family (it is an easy
exercise that any union of ¢-closed families is ¢-closed). The property (4) implies
that Z, C (UM, U H;s0 K =V N Z, is a compact subset of Oy = | JN,. The
family N, being ¢-closed, we can find a finite N/ C A, such that K C |JN; let
Oy = V\(UN"). tis clear that Oy € (V.)* and Oy N Z, = @ forany V € V..
Let My ={Oy : V €V, };if B < o then Zg C Z,; so we have

(®)] Zﬂfﬂ =@ forany A € M, and § < a.

Furthermore, Oy D V\O, forany V € V. and hence | M, : @ < k}isa
cover of X\ H. It turns out that

(6) the family {{ J M, : @ < k} is point-countable.
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If (6) is not true then there exists an increasing w;-sequence {f(«) : ¢ < w;} of
ordinals such that, for any o < w;, we can choose A, € Mgy in such a way that
A={Ay: @ < w1} # @; take apoint z € A and let y = sup{B(«) : @ < w;}.

The family C = {4, N Z, : @ < w;} is centered. Indeed, if &y < ... < @y < @y
then Q = A, N...N A, is a non-empty element of (Vg(,))* which shows that
y(Q) € Zp(4,) C Z, and hence y(Q) € O N Z,,.

Thus C is centered and hence R = (\{4. N Z, : ¢ < w1} # @; fix a point
y € R.Since t(X) <wand Z, = J{Zpw) : @ < w1}, we have Z,, = (J{Z () :
a < w;} which implies that there is o9 < w; for which y € 7,3(%). However, for
o = ag + 1 we have y € A, and hence Ay N Z () # @ which is a contradiction
with (5); so the property (6) is proved.

Finally, recall that every V, has a point-countable open refinement W,. Let
W, = {W Nnint(Y M) : W € W,} for any & < k. It is clear that W), is a family
of open subsets of X. We claim that W = [ J{W, : @ < «} is a point-countable
refinement of V.

Since every W, is a refinement of V,, the family W is inscribed in V, i.e., for
any W € W, there is V € V such that W C V. To see that W covers | J V take any
x eUVandleta = min{f < k : x € [JVg}. Then thereis V € V, withx € V.
Observe that Oy = V\(|J F) for some finite 7 C | J{Vp : B < «} and therefore
x ¢ U_]-" by (4). Consequently, x € V\U_}' C Int(Oy) C Int(|J M,). Now if
W e W, and x € W then x € W N Int(| M) € W, and hence W covers the set
UV, i.e., Wis arefinement of V.

To finally see that WV is point-countable take any point x € | JW. The set G =
{o < K : x € | J Mg} is countable by (6) and it is immediate that x ¢ W whenever
W e W, and @ ¢ G. Therefore x can only belong to the elements of the family
W = J{W), : « € G} which is point-countable being a countable union of point-
countable families. Thus x can belong to at most countably many elements of W
i.e., W is point-countable.

We proved that our property P satisfies all premises of Fact 2; so the family ¢/ has
the property P, i.e., there exists a point-countable open refinement of /. Therefore
X\ H is metalindeldf; this settles necessity and makes our solution complete.

U.186. Let X be a compact scattered space. Prove that a non-empty closed H C X
is a W-set if and only if X\ H is metacompact.

Solution. If K is a scattered compact space then we denote by /(K) the set of
isolated points of K. Given a scattered compact space Z let Fo(Z) = Z;ifais a
limit ordinal and we have constructed a decreasing a-sequence {Fg(Z) : B < a}
thenlet F,(Z) = ({Fp(Z) : B < a}.Ifa = B+ 1 and we have the set Fg(Z) then
let Fo (Z) = Fg(Z)\1(Fg(Z)). Observe that F,(Z) # @ implies that Fo(Z) is
strictly smaller than F,(Z); soif A = |Z| then Fy(Z) = 0.

If o is a limit ordinal and Fg(Z) # @ for any B < o then Fy(Z) # @ because
Z is compact and every Fg(Z) is closed in Z. Therefore the dispersion index
di(Z) =min{a < A : Fy11(Z) = @} is well defined. If « = di(Z) then F,(Z) is
finite being a compact discrete space; we will call the set F, (Z) the top level of Z.
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Suppose first that X\ H is metacompact. Every x € X\H has an open
neighbourhood O, such that O, C X\H; there is a point-finite open refinement
U of the open cover {0, : x € X\ H} of the space X\ H. Itis clear that U C X\ H
forany U € U; so H is a W-set by Fact 1 of U.185. This proves sufficiency.

Now assume that H is a W-set and fix a winning strategy o for the player OP
in the W-game on X at the set H. The following observations will be useful to
simplify our notation.

First note that the values of the strategy o only matter in the plays where it is
applied. Thus, when we calculate ¢ for an initial segment {U,, x1, ..., Uy, x,}, the
set o(Uy, x1, ..., Uy, x,) actually depends only on the points {x, ..., x,} because
U =0), Uy = 0(0(@),x1), Us = o(c(9),x1,0(0(d), x1), x2) and so on by
trivial induction.

So our first simplification will consist in writing o(xy,...,x,) instead of
the expression o (Uy, x1, ..., Uy, x,). Formally, however, the set o(xy,...,Xx,) is
defined only for those n-tuples (xi,...,x,) for which x; € o(#) and x;4+, €
o(xy,...,x;) foreveryi < n. But it is easy to see that we can define o (xy, ..., x,)
arbitrarily, say o(xy,...,x,) = X for all other n-tuples (xi, ..., x,); the resulting
strategy will still be winning.

The next step is to define a map ¢’ for any finite subset F of the space X. Let
o’'(0) = o(@); if |F| = n > 0 then define the value of ¢’ at F by the formula
o'(F) =(\{o(x1,...,x,) : x; € F foranyi < n}.Itis an easy exercise to see that
the function ¢’ is still a winning strategy in the sense that for any sequence S = {x; :
i € N} such that x; € 6(@) and x,+; € o(xy,...,x,) forany n € N the sequence
S converges to H. Our next simplification is to consider that 0 = ¢’, i.e., 0(F) is
defined for all finite sets F C X and o (F') does not depend on enumeration of F.
Call S = {x; : i € N} ao-sequenceif x; € 6(0) and x,+; € o(xy,...,x,) for any
n € N. We have observed already that any o-sequence converges to H .

To prove that X\ H is metacompact take an open cover U of the space X\ H.
The space X is zero-dimensional; so we can assume, without loss of generality, that
every U € U is a clopen subset of X.

For an arbitrary V C U let V* be the minimal family of subsets of X such that
YV CV*and A, B € V* implies AU B € V*, AN B € V*and A\B € V*. Itis an
easy exercise that |V*| < max{w, |V|} forany )V C U; observe also that the elements
of V* are clopen in X and Vy C V; C U implies Vi C V}. For any non-empty
A € U* the set L(A) is the top level of 4; let Y(V) = | J{L(A) : A € V*\{@}} for
any V C U.

Given V C U and a finite set F' C Y (V) the set X\o(F') is compact; since it is
contained in the set X'\ H, we can choose a finite family Q(F) C U which covers
X\o(F).Let (V) = |J{Q(F) : F is a finite subset of Y(V)}; this gives us a map
@ :expU — expU. It is clear that [¢(V)| < max{w, |V|} for any V C U. Say that a
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family V C U has the property P if the cover ) of the space | J V has a point-finite
open refinement (from now on we will abbreviate this phrase saying simply that VV
has a point-finite open refinement).

If a family V = {V}, : n € w} C U is countable then letting V; = V; and V] =
V\(Vo U ... UV,) forany n € N we obtain a disjoint refinement {V, : n € o}
of the family V. Thus any countable V C U has P so it suffices, by Fact 2 of U.185,
to prove that if « is an ordinal and {V, : o < «} is an increasing k-sequence of
subfamilies of U with the property P then the family V = ( J{V, : @ < «} also has
‘P. Let W, be a point-finite refinement of the family V, for any o < «.

If the ordinal « is a successor then there is an ordinal 8 with k = B + 1 and
hence V = Vg has a point-finite refinement. Thus we can assume, without loss of
generality, that « is a limit ordinal. The following property is crucial for our proof:

(1) if € C U is a p-closed family then Y(£) C | JEU H.

To prove (1) assume towards a contradiction that, for the set P = Y (&), there is
apointz € P\(JEU H); fix W € t(z, X) such that W N H = @.If U} = o(9)
then X\U; C | Q(®) which, together with Q(#) C & implies that X\U; C |J&
and therefore z € U,. It follows from z € P that we can choose x; € P N U; N
W . Suppose that we have an initial segment {U;, x1, ..., U,, x,} of a play in the
W-game on X at H in which OP applies the strategy o and x; € P N W for any
i <n.

Since the family £ is ¢-closed, for the set F = {x;,...,x,} C P we have
X\o(F) Cc |JQ(F) and Q(F) C & which implies that for the set U, = o (F)
we have X\U, 4+ C | € and therefore z € U,+ so we can find x,+1 € PNU,+1N
W . Thus our inductive procedure gives us a o-sequence S = {x, : n € N} C W,
however, X \W is an open neighbourhood of H which contains no elements of S.
This contradiction with the fact that o is winning strategy, shows that the property
(1) is true.

Forany o < klet Ny = | J{Vs : B < a}, V, = Vo \N, and Z, = Y(N,). Fix
o < k, an element V' € V/, and observe that \V,, is a -closed family (it is an easy
exercise that any union of ¢-closed families is ¢-closed). The property (1) implies
that Z, C |[JN, U H;s0 K =V N Z, is a compact subset of O, = | JN,. The
family A, being ¢-closed, we can find a finite N/ C A, such that K C |JN; let
Oy = V\(UN'). Itis clear that Oy € (V.)* and Oy N Z, = @ forany V € V..
Let M, ={Oy : V € V,};if B <athen Zg C Z,; so we have

(2) ANZg =0 forany A € M, and B < «.

Furthermore, Oy O V\O, for any V € V, and hence | J{M, : & < «}isa
cover of X\ H. It turns out that
(3) the family {| J M, : a < «} is point-finite.

If (3) is not true then there exists an increasing sequence {$(n) : n € w} C k of
ordinals such that, for any n < w, we can choose 4, € Mg, in such a way that

A=A, :n <o} #0;lety =sup{f(n) :n < w}.
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If B, = (\{A4; : i < n}foranyn € w then every B, is a scattered compact
space; so the ordinal u, = di(B,) is well defined. Let D,, be the top level of B, for
eachn € w. Since the sequence {B, : n € w} is decreasing, we have o > pu; > ...
which shows that there is kK € w such that u; = py foranyi > k.

Observe that Dy C By, C B, foranyn < k.Ifn > k then B, C By and therefore
Fy(By) D Fy(B,) for any ordinal «. In particular, Dy = F,, D F,, (B,) = D,.
This proves that

4) DN B, #@foranyn € w.

However, B, € V/;((k) and hence Dy = L(Bk) C Z,g(k).:,_l C Z,g(k.H) which
shows that B, N Dy C A, N Dy C A, N Zg+1y = @ forany n > k + 1 by (2).
This contradiction with the property (4) completes the proof of (3).

Recall that every family V, has a point-finite open refinement W, and let W, =
Wn (UM, : W e W,} forany o < k. It is clear that W, is a family of open
subsets of X. We claim that W =  J{W,, : a@ < k} is a point-finite refinement of V.

Since every W, is a refinement of V,, the family W is inscribed in V, i.e., for
any W € W, there is V € V such that W C V. To see that W covers | V take any
x eJVandleta = min{f < k : x € [JVg}. Then thereis V € V, withx € V.
Observe that Oy = V\(|J F) for some finite 7 C | J{Vp : B < «} and therefore
x €0y C UMy . Nowif W e Wyandx € W thenx € W N (| JMy) € W), and
hence W covers the set | J V), i.e., W is a refinement of V.

To finally see that the family W is point-finite take any point x € [ JW. The
set G = {o < k : x € |JM,} is finite by (3) and it is immediate that x ¢ W
whenever W € W, and a ¢ G. Therefore x can only belong to the elements of the
family W' = (J{W, : @ € G} which is point-finite being a finite union of point-
finite families. Thus x can belong to at most finitely many elements of W, i.e., W
is point-finite.

We proved that our property P satisfies all premises of Fact 2 of U.185; so
the family U/ has the property P, i.e., there exists a point-finite open refinement
of U. Therefore X \ H is metacompact; this settles necessity and makes our solution
complete.

U.187. (Yakovlev’s theorem) Prove that any Corson compact space is hereditarily
metalindelof.

Solution. Given a Corson compact space K take any X C K to prove that X is
metalindelof take an arbitrary open cover U/ of the space X . Forany U € U/ fix a set
Oy € 1(K) such that Oy N X = U. The family V = {Oy : U € U} is an open
coverof theset G = |JV;let F = K\G.If F = @ then G is compact; if F # @
then it follows from Problem 184 that F' is a W-set in K and hence G = K\ F is
metalindel6f by Problem 185 (recall that every Corson compact space has countable
tightness by Problem 120). Therefore G is metalindelsf in all possible cases; let V'
be a point-countable open refinement of V. It is straightforward that, in the space X,
the family {V N X : V € V'} is a point-countable open refinement of I/ and hence
X is metalindelof.
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U.188. Prove that the following are equivalent for any compact space X :

(i) X is Corson compact;

(ii) every closed subset of X x X isa W-setin X x X;
(iii) the diagonal A = {(x,x) : x € X} of the space X isa W-setin X x X;
(iv) the space (X x X)\A is metalindeldf;

(v) the space X x X is hereditarily metalindeldf.

Solution. If X is Corson compact then so is X x X (see Problem 137) and hence
every closed F C X x X is a W-set by Problem 184. Besides, X x X is hereditarily
metalindelof by Problem 187. Therefore (i)==>(ii) and (i)==(v). The implications
(il)==(iii) and (v)==-(iv) are trivial; so let us prove that (iii))==(iv). Assuming
that (iii) holds fix a point x € X and a winning strategy o for the player OP in the
W-game on X x X at the set A. If U; = o(9) then there is V| € 7(x, X) such that
Vix Vi C Ul;lets(ﬂ) = V.

Suppose that n € N and we have an initial segment {V}, x1, ..., Vy—1, x,—1, Vii}
of a play in the W-game on X at the point x in which our future strategy s is defined
and applied, i.e., Vi1 = s(V1,x1,...,V;,x;) forany i < n and there is an initial
segment {Uy,z1,...,Uy—1, 201, Uy} of a play in the W-game on X x X at the set
A where OP applies the strategy o while

(1) zi = (xj,x) forany i <nand V; x V; C U, foranyi < n.

If the player PT makes a move x, € V), then z, = (x,,x) € V,, x V,, C Uy, so
the strategy o is applicable; let U, = o(Uy, z1, ..., Uy, z,). Then we can choose
Vig1 € ‘L’(x, X) such that V41 X V41 C Uy let s(Vi, x1, .., Vo X)) = Vit
It is immediate that (1) is fulfilled if n is replaced by n + 1; so our inductive
procedure defines a strategy s on the space X at the point x.

To see that s is winning take a play {(V,,x,) : n € N} in which s is applied.
We have a play {(U,,z,) : n € N} in which OP applies ¢ and (1) is satisfied for
all n € N. Since o is a winning strategy, 7z, — A. Let S = {x, : n € N}; given
any W € t(x, X) assume that S\W is infinite. Then D = {(x,,x) : x, ¢ W}is
an infinite subset of §” = {z, : n € N}. Itis clear that D C P = (X\W) x {x}.
However, P is closed in X x X and P N A = @. Thus (X x X)\P is an open
neighbourhood of A outside of which we have an infinite subset D of the set S’.
This contradiction with § — A shows that S\W is finite and hence S — x.
Therefore s is a winning strategy; the point x € X was chosen arbitrarily so we
established that X is a W-space. Therefore X x X is a W-space by Problem 183; in
particular, (X x X) = w (see Problem 179) and hence Problem 185 can be applied
to conclude that (X x X)\A is metalindelof. This settles (iii)==>(iv); so to finish
our proof it suffices to show that (iv)=—=(i).

Fact 1. Given a space Z suppose that I/ is an open cover of Z such that U is
Lindeldf for any U € U. Then U can be shrunk, i.e., forany U € U there is a closed
set Fy C U such that {Fy : U € U} is a cover of Z.

Proof. Call a subcollection 4’ C U enveloping if U C |JU’ for any U € U'.
Observe first that there is a set T such that
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2) U = \J{U, : t € T} where U, C U is countable and enveloping for any ¢ € T.

To prove (2), it suffices to show that every U € U can be included in a countable
enveloping subcollection of U. So, let Uy = {U}; if a we have a countable U, C U
then L = U{V : V € U,} is Lindelof so there is a countable U/, C U, such that
Uy C Uy and L C | JU,+1. This gives us a sequence {U, : n € w} of subfamilies
of U; it is evident that U € U’ = | J{U, : n € w} and U’ is enveloping; so (2) is
proved.

Now, if a we are given the decomposition (2) of the family ¢/ then the set L; =
U, = U{U : U € U,} is Lindelof and hence paracompact for any ¢t € T.
Therefore the cover U/, can be shrunk in L, by Fact 2 of S.226. For any U € U,
there is F, C U such that the set F{; is closed in L; and ( {F}, : U € U;} = L,.
Consequently, F{, C U is closed in U because U C Ly; this proves that every F},
is closed in Z.

Choose a well order < on the set 7 and let s(U) = min{t € T : U € U,} for
any U € U; then Fy = F[S](U) is closed in Z and contained in U. We claim that
F = {Fy : U € U} is a shrinking of the cover . To see this take any z € Z and let
to =min{t € T : z € L;}. Since {FS’ : U € Uy} is acover of L, thereis U € Uy,
such that z € F;"; observe that s(U) = t, and hence z € Fé(U) = Fy which shows
that F is a cover of Z and hence Fact 1 is proved.

Returning to our solution assume that ¥ = (X x X)\A is metalindel6f. Then
there is a point-countable open cover Q of the set ¥ such that U C Y for any
U € Q. This implies that U = cly(U) is a compact set; so Fact 1 is applicable
to find a shrinking {Fy : U € Q} of the family Q. It is easy to see that every
Fy is compact; so there is a finite family Oy of open subsets of X x X such that
Fy cUOy cUOy C U andevery O € Oy is standard, i.e., O = Oy x O, for
some o-compact sets O1, O, € 7(X) such that 0, N0, =4@.1Itisan easy exercise
that the family O = {0 : O € Oy, U € Q} is point-countable.

The map ¢ : X x X — X x X defined by the formula ¢(x, y) = (y, x) for any
x,y € X is a homeomorphism such that ¢(Y) = Y; so the family O U {¢(O) :
O € O} is also point-countable. Choosing an indexation {U; x V; : t € T} of the
family @' = {0 : O € Oy, U € Q} U{p(0) : O € Oy, U € Q} we will have
the following properties:

3) U, V; are open o-compact subsets of X forany ¢ € T
@ U, NV, = @foranyt € T}

(5) the family {U; x V, : t € T} is point-countable;

6) JO' =Y andU xV € O implies V x U € O'.

Let k = d(X) and choose a dense set D = {p, : @ < k} in the space X; let
Xo ={ppg: B <a}forany o < k;call a family 7 C exp X a minimal cover of X,
if Xy C JF and Xy & |J(F\{F}) forany F € F. Given a finite F C T we will
oftenuse the set Up = ({U; : ¢t € F};foranyo <k letly ={Up : F C T is
finite and {V, : ¢ € F} is a minimal cover of X, }. It is easy to see that 4, consists
of o-compact open subsets of X for any o < k. It turns out that
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(7) the family & = | J{U, : @ < k} is point-countable.

If we assume the contrary then there exists a family {F, : @ < w;} of finite
subsets of T such that

(8) there is n € N for which |F,| = n forany o < wy;
(9) forevery o < w thereis B(o) < k such that Ur, € Up() and the w;-sequence
{B() : & < w;} is non-decreasing;
(10) there aset F' C T such that F, N Fg = F for any distinct o, B < wy;
(11) thereis apointx € X with x € (\{UF, : @ < w;}.

The properties (8) and (10) can be guaranteed taking an uncountable family with
the property (11) and passing to an appropriate uncountable subfamily applying the
A-lemma (SFFS-038). Once we have (8) and (10) choose a function ¢ : w; — k
such that U, € Uy for any a < w;. Suppose first that there is an ordinal oy < «
for which the set S = ¢~!(ap) is uncountable. Passing to {F,, : & € S} gives a set
for which B(«) is the same ordinal for all @ < w;; so the condition (9) is satisfied.

Now if ¢ ™' (a) is countable for any o < « then use a trivial transfinite induction
to get the relevant subfamily with the property (9).

Since we have U, # Up, for distinct ordinals , 8 < w; we have F, # F for
all @ < ;. The family Vo = {V; : ¢ € Fy} is a minimal cover of Xg(g); so there is a
point y € Xpo)\(U{V::t € F}).

We have B(0) < B(x) forany o < w;;s0y € | J{V, : t € F,} and hence there
ist, € F,\F for which y € V,U. It follows from (10) that #, # tg if @ < f; since
(x,y) € (WU, xV,, : 0 < a < w} we obtain a contradiction with the property
(5). Thus the family ¢/ is point-countable and (7) is proved.

Our final step is to show that

(12) the family U/ is Ty-separating in X .

Take distinct points x;, x, € X and assume first that there is @ < « such that
Xx; € Xy while z = xo; ¢ X,. Forany y € X, thereis ¢, € T such that (z,y) €
U, x V,,. There exists a finite P C X, for which X, C U{V,y .y € P};so
the set F/ = {t, : y € P}is finiteand X, C (J{V; : ¢t € F'}. Take F C F’
such that {V; : t € F} is a minimal cover of X,; then Ur € U while z € Ur and
Ur N X, = @ which shows that U separates the points x; and x;.

Therefore we can assume, without loss of generality, that there is @ < k such
that x1,x2 € X, and {x1,x2} N Xg = @ forany B < a. Let V} = {V, : x; € U,
and x, ¢ U;}and V, = {V; : x, € U, and x; ¢ U,}. Observe that x, € | V), and
X1 € U V5.

The space K = X\ [J(V; UV),) is compact; for any pointz € K thereist(z) € T
such that x; € U, and z € V(. Since V) ¢ Vi U V,, we must have x; € Uy,).
As a consequence, there is a finite F C T such that K C (J{V, : ¢t € F} and
{x1,x2} C Up. It follows from {xi,x,} C X, that Ur N{pg : B < a} # @
and therefore the set H = (J{V, : ¢ € F} does not contain {pg : B < a}; let
§=min{f : pg ¢ H}.
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The point ps has to belong to X\K = J(V; U V,); so there is s € T for which
Vs € Vi UV, and ps € V5. Then the set Uy separates the points x| and x;. Since
{V,yU{V, 1t € F}covers X511, there is F’ C F such that the family {V,} U{V, :
t € F’} is a minimal cover of Xs4,. As a consequence, U = U; N Upr € U and
U separates the points x; and x; because so does Uy while {x;, x,} C U, for any
t € F'. Thus the property (12) is proved.

It follows from (7) and (12) that U/ is a point-countable 7j-separating family of
open Fj-subsets of X; so X is Corson compact by Problem 118. This proves the
implication (iv)==(i) and makes our solution complete.

U.189. Give an example of a compact W -space X such that some continuous image
of X is not a W-space.

Solution. Take a separable first countable non-metrizable compact space K, e.g.,
the two arrows space (see TFS-384). Then X = K x K is first countable; so it is a
W -space (see Problem 179). Let A = {(x,x) : x € K} C K x K be the diagonal
of the space K. Define amap p : X — Y by collapsing the set A to a point, i.e.,
Y = {aa} U (X\A) and 7(Y) = t(X\AQ) U {ar} U(U\AQ) : U € (A, X)}
while the map p is defined by p(x) = a, forany x € A and p(x) = x whenever
x € X\A.

It was proved in Fact 2 of T.245 that the space Y is Tychonoff and the map p is
continuous. By compactness of X, the space Y is also compact and the map p is
perfect; besides, A = p~'(an). If {a,} is a W-set in the space Y then A is a W -set
in X by Fact 1 of U.184. Apply Problem 188 to conclude that the space K must be
Corson compact and hence metrizable because any separable Corson compact space
is metrizable by Problem 121. This contradiction shows that Y is not a W-space; so
X is a compact W -space whose continuous image Y fails to be a W-space.

U.190. Suppose that X is a compact space which embeds into a o -product of second
countable spaces. Prove that the space X*\ A is metacompact; here, as usual, A =
{(x,x) : x € X} is the diagonal of the space X .

Solution. If Z is a space and A C exp Z then a family B C exp Z is inscribed in
A if for any B € B thereis A € A such that B C A. The family B is a shrinking of
Aift B={Bs: A e A}and B4y C A forany A € A. Suppose that M, is a second
countable space for any ¢ € T and we are given a pointa € M = [[,or M;. If the
space Z embedsino(M,a) = {x e M : |{t € T : x(t) # a(t)}| < w} then Z?>
embeds in 0(M,a) x c(M,a) C M x M.LetT; = T x {i} foranyi € {0,1};
we want T; be a copy of T;so lett’ = (¢,0) andt” = (¢,1) forany t € T. Let
M, = M;» = M, for any ¢t € T and define a map

o:MxM—>N=[[{M:seTyuT}

by requiring that ¢(x, y)(s) = x(¢) if s = t' € Tp and ¢(x, y)(s) = y(¢) in the
case when s = t” € T). It is straightforward that the map ¢ is a homeomorphism
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such that ¢(o(M,a) x 6(M,a)) = o(N,b) where b = ¢(a,a). It is evident that
o (N, b) is also a o-product of second countable spaces; so we proved that

(1) if a space Z embeds in a o-product of second countable spaces then Z? also
embeds in a o-product of second countable spaces.

We will deduce metacompactness of X2\ A from a more general statement.
Fact 1. Any subspace of a o-product of second countable spaces is metacompact.

Proof. Suppose that M, is a second countable space for any ¢t € T and we are given
apointa € M = [[{M,; :t € T};letoc = 0(M,a). Forany S C T the map
ps 1 06 & Mg = [],cg M; defined by the formula pg(x) = x|S for any x € 0, is
the restriction of the natural projection of M onto the face Mg. Denote by Fin(7') the
family of all finite subsets of 7. If F' € Fin(T') thenlet O = {x € 0 : x(t) # a(t)
for any ¢ € F}. It is convenient to agree that Oy = o; we will also need the set
Or ={x € Op : x(t) = a(¢t) for any t € T\F} for any finite F C T. Observe
that Qg = {a}. Itis straightforward that

@) ULQr : F €Fin(T)} =0,
SO our next step is to show that
(3) the family O = {Opf : F € Fin(T)} is point-finite.

Indeed, if A is an infinite subfamily of Fin(7T") then S = | J A has to be infinite;
if x € (\{OF : F € A} then x(t) # a(t) for any ¢t € S which is a contradiction
with x € ¢. Thus the intersection of any infinite subfamily of O is empty, i.e., O is
point-finite.

Given a family I/ of open subsets of a space Z say that a collection V C t(Z) is
a refinement of I/ (in the space Z) if V is inscribed in ¢/ and | JV = (JU. It turns
out that

(4) any family & C t(0) has a point-finite refinement in 0.

To prove the property (4) letUr ={U N QF : U € U} forany F € Fin(T'). The
space Q r is homeomorphic to Np = [[{M;\{a(t)} : t € F}; so it is paracompact
being second countable. Therefore there exists a point-finite refinement V¢ of the
family Up in the space Q p. The map pr|QF : Qr — Ny is a homeomorphism;
so the family {pr (V) : V € Vr} is point-finite and consists of open subsets of Np.
For any V' € Vp choose a set G(V') € t(0) which is contained in an element of I/
and G(V)N Qr = V.Let V = p'(pr(V)) N G(V) for any V € V. The set V
is open in o, contained in an element of &/ and VNQr =V for any V € Vr.

Observe that every family Wy = {V : V € Vr} is point-finite because it is a
shrinking of the point-finite family { p;l( pr(V)) : V € Vpg}. Furthermore, Wy is
inscribed in U; so W = | J{Wr : F € Fin(T)} is also inscribed in U.

To see that W is point-finite take any point x € o. It follows from (3) that the
family & = {F € Fin(T) : x € OF} is finite. Since | JWF C p;l(Qp) = O for
any finite F' C T, the point x does not belong to any W € W\({WFrF : F € &}).
Therefore x can only belong to the elements of the family | J{WpF : F € £} which
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is point-finite being a finite union of point-finite families. This proves that W is a
point-finite family inscribed in ¢/. Finally, it follows easily from (2) that (JW =
(JU; so W is a point-finite refinement of I/ and (4) is proved.

Now, take any Y C o; if U’ is an open cover of Y then choose Wy € (o) such
that Wy N'Y = U forany U € U’. The family i = {Wy : U € U’} is a collection
of open subsets of o; so we can apply (4) to find a point-finite open refinement VV
of the family /. It is evident that V' = {V N'Y : V € V} is a point-finite open
refinement of the cover U’; so Y is metacompact and Fact 1 is proved.

Returning to our solution observe that the property (1) implies that X2 embeds
in a o-product of second countable spaces; so X?\ A also embeds in a o-product
of second countable spaces. Finally, apply Fact 1 to conclude that X2\ A is
metacompact and finish our solution.

U.191. Observe that any countably compact subspace of a Corson compact space
is closed and hence compact. Deduce from this fact that there exists a countably
compact space X which embeds into X (A) for some A but is not embeddable into
any Corson compact space.

Solution. Suppose that K is a Corson compact space and P C K is countably
compact. If P is not closed in K then there is a sequence S = {a, : n € w} C P
which converges to some ¢ € K\ P (see Problem 120). It is an easy exercise to
see that S is an infinite closed discrete subspace of P which is a contradiction with
countable compactness of P. Thus any countably compact subspace of a Corson
compact space is compact.

Now let X = C,(L(w:1),]) (here, as usual, the space L(w;) is the one-point
Lindelofication of the discrete space of cardinality w;). Since L(w;) is a P-space,
our space X is countably compact by TFS-397. Furthermore, X is not compact
because L(w;) is not discrete (see TFS-396). Observe also that the space X
embeds in C,(L(w;)) which is a ¥-product of real lines (see Problem 106); by
the conclusion of the previous paragraph, X is not embeddable in a Corson compact
space because it is countably compact and non-compact.

U.192. Let M, be a separable metrizable space for any o« < w,. Prove that a
dense subspace Y of the space [[{My : o < w1} is normal if and only if Y is
collectionwise normal.

Solution. Given a space Z and A, B C Z say that A and B are separated in Z if
ANB =0 = BN A.Thesets A and B are open-separatedin Z if there are disjoint
opensets U,V C Z forwhichA CUand B C V.

Fact 1. Suppose that Z is a set and « is an infinite regular cardinal. Given a non-
empty family A C exp Z such that | A| < k and |A| > « for any A € A there is a
disjoint family {Z, : @ < «} suchthat Z = ( J{Z, : @ < «}and Z, N A # @ for
any A € Aand o < k.
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Proof. We have A = {A, : @ < k} (repetitions are allowed in this enumeration);
choose a point z) € Ag. Assume that @ < k and we have a set P = {z/}; v B <o}
with the following properties:

(1) if y, By, B <and (B,y) # (B, ') then 2} # 2 ;
) zg € A, forany B,y < a.

Since |P| < |a x | = || < «k, we have the equality |[Ag\P| = « for any
B < « which shows that we can choose points %5 € Ag\P for any B < « and

Le Ap\ P forevery B < « in such a way that z/’; £ z};; whenever (8,y) # (8',y)
and max{f, y} = max{f’,y'} = a.

It is immediate that the set {z}; 1y, B < a} still has the properties (1) and (2);
so our inductive procedure gives us a set {zg : ¥, B < k} for which (1) and (2) are
satisfied for any o < «.

If] <o < kthenlet Z, = {zg 2B <khifZo=Z\(U{Zy : 1 < <«k})
then the family D = {Z, : @ < «} is as promised. Indeed, it is clear that D is
disjoint and | JD = Z.If A € Aand @ < k then A = Ap for some B < k and

hence zg € Zy N Ag,ie., Z, N A # @ forany A € A;so Fact 1 is proved.

Returning to our solution observe first that collectionwise normality implies
normality for any space; so we only have to prove that if a subspace Y of the space
M = [[{M, : @ < w;} is normal then it is collectionwise normal. We will do it
by showing that ext(Y) = w so assume, towards a contradiction, that D C Y is
closed, discrete and |D| = w;.

Choose a countable base H, in the space M, such that M, € H, for every
a <w;.Givenay,...,o, <w;and O; € H,, for any i < n, consider the set

[01,...,0,;01,...,0,] ={x € M : x(a;) € O; forany i < n}.

It is clear that the family B = {[ot), ..., 0,; O01,..., 0] :n eN, o) < ... <0, <
w; and O; € H,, for any i < n} is a base of the space M. For any S C w; let
ps: M — Mg = [[{M, : « € S} be the projection of M onto its face M.

Consider the family A = {B € B : B N D is uncountable}; then |A| < w;.
Besides, A # @ because M = [o; M,]| € A for any o < w;. Applying Fact 1 we
can find disjoint sets £, G’ C D suchthat EN B # @ # G’ N B forany B € A;
let G = D\E. One of the sets E, G is uncountable; so we can assume without loss
of generality that |E| > w.

The space Y being normal, the sets E and G are open-separated in M and hence
there is a countable S C w) such that the sets ps(E) and ps(G) are separated in M
(see Fact 3 of S.291). Let B = {[ay,...,0, : O1,...,0,] € B:ay,...,a, € S}.
We have two cases to consider.

Case 1. The set ps(E) is countable. Then there exists a point z € E such that
p5'(ps(z)) N E is uncountable. If z € B = [ay,...,a,; O1,...,0,] € B then
p5'(ps(z)) N E C B and hence B € A.
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Case 2. If the second countable space ps(E) is uncountable then it must have a
complete accumulation point #; fix a point z € E with pg(z) = ¢. If we assume that
z€ B =1Jo,...,0,;01,...,0,] € B then ps(B) € t(t, Ms) and therefore the
set E/ = {x € E : ps(x) € ps(B)} is uncountable. Since p5'(ps(B)) = B, we
have E’ C B and therefore B € A. This shows that
(*)thereisz € E suchthatz € B = [oy,...,0,; Oy, ..., 0,] € B’ implies B € A.

It follows from (x) that G N B # @ for any B € B’ with z € B. Itis easy to check
that the family {ps(B) : B € B’} is a local base in My at the point t = pg(z). It
follows from G N B # @ that ps(B) N ps(G) # @ for any B € BB’ and therefore
t € cly;(ps(G)) N ps(E) which is a contradiction with the fact that pg(E) and
ps(G) are separated in M. This contradiction shows that ex?(Y) = @ and hence
Y is collectionwise normal by Fact 3 of S.294. We proved that any normal ¥ C M
is collectionwise normal; so our solution is complete.

U.193. Prove that if 2°' = c then there exists a dense hereditarily normal subspace
Y in the space D such that ext(Y) = wi. Deduce from this fact that it is
independent of ZFC whether normality implies collectionwise normality in the class
of dense subspaces of D*.

Solution. If we are given a space Z say that sets A, B C Z are separated in Z if
ANB =@ = BN A. The sets A and B are open-separated in Z if there are disjoint
U,V et(Z)suchthat ACUand B C V.

We denote by K the Cantor set D”. As usual, any n € N is identified with the set
{0,...,n—1}. The set of all non-empty finite subsets of a set A4 is denoted by Fin(A).
For every S € Fin(w) and x € K5 letbs(x) = {x(i):i € S} C K.If|S| > 2 then
As = {x € K : there are distinct m,n € S for which x(m) = x(n)};if |S| = 1
then As = @. Givenaset S € Fin(w) say that F C K5\ Ag is properin K if there
is H C F with |H| = c¢ such that the family Fy = {bs(x) : x € H} is disjoint.

Given distinct points xj,...,x, € K and (not necessarily distinct) i;,...,i, € D
let [X1,...,%p 01, in) = {f € DK : f(x;) = i; forall j < n}.Itis evident
that the family B = {[x1,...,x,;i1,...,iy] :n € N, x; € K and i; € D for any
j < n}is a base of DX; the elements of B are called the standard open subsets of
DK IfU = [x1,..., X0 01,...,0,] is a standard open subset of the space DX then

supp(U) = {x1,..., X}

If T.T" € Fin(w) and T’ C T then pl, : KT — KT’ is the projection of K7
onto its face K7'. A set F C KT is almost proper in KT if F is either a singleton
or proper in K or else there is a non-empty S C T, S # T such that pg(F) isa
proper subset of K5 and p;\s (F) is a singleton.

Fact 1. Suppose that S € Fin(w) and a set F C KS\Ag is compact and non-
empty. Then F = | J{F; : i € } where F; is compact and almost proper in K for
any ! € w.

Proof. We will carry out induction along n = |S|. If [S| = 1 and F C K5 is
countable then we can take as F; the respective singletons whose union is F. If F is
uncountable then | F| = ¢ (see e.g., SFFS-353); so it is immediate that F' is proper
in K5,
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Assume that n € N and our Fact has been proved for all S € Fin(w) with
|S| < n. Take any S = {lo,....l,} C w suchthat/; # [; whenever i # j and
assume that F is a compact subset of K5\ Ag. For the sake of brevity denote the
map pfli} by g; for any i < n. Suppose first that

(1) there is a countable set A C K such that F C (J{g; ' (A) : i < n} (we identify
K and K for every i < n).

If A ={x, :m € w}thenlet G(m,i) = ¢; ' (x,,) N F for any numbers m € @
andi <n.If G(m,i) # @ then H(m,i) = pg\{li}(G(m,i)) C KS\{’i}\AS\{,i}; )
the induction hypothesis is applicable to H(m, i), i.e., H(m,i) = | J{Gy : k € w}
where every Gy, is almost proper in KS\i},

Given k € w, for every x € Gy let o(x)|(S\{/;}) = x and p(x)(l;) = x.
Then ¢ : Gy — K and it is immediate that G, = ¢(Gy) is almost proper in K.
It is evident that G(m,i) = (J{G, : k € w}; so we represented every set G(m, i)
as a countable union of almost proper subsets of K. It follows from the equality
F=J{G(m,i):m € w, i <nand G(m,i) # @} that F is also representable as
a countable union of almost proper subsets of K; so our proof is complete in this
case.

If the property (1) does not hold then

(2) F ¢ \U{qg7"(A) :i <n}forany A C K with |[4] < c.

To see that (2) is true, for any x € K let £(x)(i) = x(/;) forany i < n. Then
£(x) € K"*! and hence we have amap & : K5 — K"*! Itis easy to see that £ is a
homeomorphism which preserves the properties (1) and (2), i.e., aset G C K has
either (1) or (2) if and only if £(G) has the respective property in K"*!. However,
the properties (1) and (2) for S = {0, ..., n} have already been introduced in S.151
where (1) stood for | F|,+; < w and (2) was denoted by | F|,+1 > ¢. Now we can
apply Fact 4 of S.151 to see that |§(F)|,+1 > o implies |E(F)|,+1 = ¢, i.e., (2)
holds for £(F) in K"*! and therefore (2) is fulfilled for F.

Now we can prove that F is itself proper. Take a point xo € F arbitrarily.
Suppose that o < ¢ and we have constructed a set {xg : B < «} such that the
family A = {bs(xg) : B < a} is disjoint. Then A = (_J A has cardinality strictly
less than ¢; so (2) implies that there is a point x, € F\(U{g7'(4) : i < n}).
It is immediate that the family {bs(xp) : B < a} is still disjoint; so our inductive
procedure givesus aset B = {xg : B < ¢} C F such that Fp is disjoint. This shows
that the set F is proper; so we can take F; = F for all i € w; this finishes the proof
of Fact 1.

Fact 2. There exist disjoint sets Py, Py C K such that Q = K\(Py U P;) has
cardinality ¢ and, for any S € Fin(w), u € DS and a proper set F C K* there is
x € F such that x(m) € P,y foranym € S.

Proof. Let{F, : a < c} be an enumeration of all compact proper subsets of K for
all S € Fin(w). For every a < c¢ fix the set S, € Fin(w) such that F, is proper in
K5« and a set H, C F, such that |H,| = ¢ and Fn, is disjoint.
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Since Hj is infinite, for any u € D% we can pick a point x, € Hj so that
u # v implies x, # x, and consider the set P(0) = {x,(m) : m € Sy and
u(m) = i};let P;(0) = U{P"(0) : u € D5} for each i € D and choose a point
z0 € K\(Po(0) U P1(0)).

Suppose that oo < ¢ and we have aset Z, = {zg : B < a} C K and a collection
{P;(B) : B < o} of finite subsets of K foreveryi € D with the following properties:

(3) the sets Zy, T) = (J{Po(B) : B < a}and T,! = | J{P1(B) : B < a} are
disjoint;

(4) forany B < o and u € D% there is a point x € Fg such that x(m) € Pyn)(B)
for any m € Sg.

Since the set Z = Z, U T? U T! has cardinality strictly less than ¢, the set
H = {x € Hy : bs,(x) N Z = @} has cardinality c¢. For any u € D5 pick an
element x, € H such that u # v implies x, # x, and consider the set P/(«) =
{x,(m) : m € Sy and u(m) = i}; let Pi(¢) = U{P(@) : u € D5} for every
i €. Sincetheset T = Z U Py(x) U Py () has cardinality strictly less than ¢, we
can take a point z, € K\T.

It is evident that {zg : B < @} C K and the families {P;(8) : 8 < a}, i € D
still satisfy (3) and (4); so our inductive procedure can be continued to construct a
set {zg : B < ¢} and the collection {P;(B) : B < ¢} for every i € D in such a way
that the conditions (3) and (4) are fulfilled for all @ < c.

Let P, = (J{Pi(B) : B < c} for every element i € D. It follows from the
inclusion {zy : @ < ¢} C Q = K\(Po U Py) that |Q| = c. The condition (3)
shows that we have Py N P; = @. Now, if S € Fin(w) and F C KSisa compact
proper subset of K5 then there is § < ¢ such that F = Fg and S = Sg. The
condition (4) implies that, for any u € D5 = D% there is x € Fg = F such
that x(m) € Pyum)(B) C Pygm) for all m € S. Thus Py and P; have all promised
properties; so Fact 2 is proved.

Fact 3. A space Z is hereditarily normal if and only if any pair of separated subsets
of Z are open-separated.

Proof. If Z is hereditarily normal and A, B C Z are separated in Z then they are
open-separated in Z: this was proved in Fact 1 of S.291, so we have necessity.

Now assume that if A, B C Z are separated then they are open-separated and fix
any subspace Y C Z.If F and G are disjoint closed subsets of the space Y then
clz(F)NG =cly(F)NG = FNG = @ and, analogously, clz (G) N F = @ which
shows that F and G are separated in Z. Thus there are disjoint U’, V' € t(Z) such
that F C U' and G C V'. Thesets U = U'NY and V = V' N Y are open
in Y, disjoint and F C U, G C V. Thus any disjoint closed subsets of Y are
open-separated, i.e., ¥ is normal. Fact 3 is proved.

Returning to our solution observe that C = C,(K,DD) is a countable dense
subspace of DX (see Fact 1 of U.077 and Fact 1 of S.390) and let Py, P;,Q C K
be the sets provided by Fact 2. Since 2! = ¢ and |Q| = ¢, we can choose a

surjective map ¢ : Q — exp(w;). Forany ¢ < w; and i € D let h,(x) = i for
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every x € Pi;if x € Q then hy(x) = 0if o ¢ ¢(x) and hy(x) = 1 whenever
o € @(x). This givesus aset D = {h, : @ < w;} C DX; we will prove that the
space Y = C U D is hereditarily normal and ex?(Y) = w;.

Observe that any open subset of K = K is proper in K;so P; N U # @ for
any U € t*(K) and i € D. Therefore every P; is dense in K which shows that
every h € D is discontinuous on K, i.e., D N C = @. Given a function f € C
either f~1(0) or f~'(1) is infinite; if U = f~!(i) is infinite then we can take
Xo € PoNU and x; € P; N U. It is immediate that V = [xo, x1:i,i] € ©(f,DX)
and V' N D = @. This proves that D is closedin Y.

If E C D then there is A C w; suchthat E = {h, : « € A} and x € Q for
which ¢(x) = A. It is straightforward that s, (x) = 1 forall € A and hy(x) = 0
whenever & € w;\A. Therefore [x; 1] and [x; 0] are disjoint open neighbourhoods
of E and D\E respectively. Thus any £ C D is open in D, i.e., D is a closed
discrete subspace of Y. Besides, if we take £ = { f,} then we proved that E and
D\E are contained in disjoint open subsets of DX; therefore f, # fs whenever
a # Bysoext(Y)=|D| = w.

As a consequence, the space Y cannot be collectionwise normal for otherwise
we would have w;-many disjoint non-empty open subsets which separate the points
of D; however, this is impossible by ¢(Y) = w (recall that Y is dense in DX).

Let us finally prove that Y is hereditarily normal; by Fact 3 it suffices to show
that if F and G are separated in Y then they are open-separated in Y.

Forany A C K let 74 : DX — D be the natural projection of DX onto its
face D4. It is sufficient to establish that there is a countable £ C K such that 7 (F)
and 7 (G) are separated in D (see Fact 3 of S.291). To simplify the terminology
we will say that sets R, T C DX are A-separated if 4 (R) and 7 4(T') are separated
in D4,

We will use several times the following trivial observations.

(5) If A C K and R, T C DX are A-separated then R and T are B-separated for
any B C K with A C B.

(6) Suppose that R, T C DX, R = RRUR,, T = T, UT, and there
exist sets Api, A1z, A21, A C K such that the sets R; and T; are A;;-
separated for any i, j € {1,2}. Then R and T are A-separated for the set
A= A11 @] A12 @] A21 U A22.

(7) If R,T C DX and there exist families 2/, V of standard open subsets of DX
suchthat U = JUD R, TNU =PandV = JV DT whileVNR=0
then R and T are A-separated where A = | J{supp(W) : W € U U V}.

Foranyn € Nlet M, = {1,...,n}. Let F; = FNC and F, = F N D;
analogously, define G| = GNC and G, = GN D. The sets F; and G| are countable
and separated in C; so there exits countable families &/; and V; of standard open
subsets of DX such that F; C | JU; € DX\G; and G; C | J V) € DX\ F. Thus the
property (7) guarantees existence of a countable A;; C K such that F; and G, are
A -separated.

The set F} being countable and separated from G, there is a countable U, C B
such that Fi C | JUy C DK\G,. Let 2 = {@ < w : hy € G,}; forany @ € 2
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there is a standard O, = [x{,... ,x,‘;‘u; i, i,‘j‘u] such that i, € O, C DK\ F.
It is easy to see that we can choose a countable family {2, : n € w} of subsets of
w; such that ( J{$2, : n € w} = 2 while k, = k(n) for any o € £2, and there is
u, € DMko guch that if =uy(j)forany j € Mygy).

Let x, = (x‘l",...,x]‘:a) € KMo and e, = @, .. .,i]?a) € DMk forany o < wy;
for any n € o there is e(n) € DMk such that e, = e(n) for any a € £2,. If
y=01....ym) € KMnande = (i, ...,i,) € DM then we will also denote the

set [Vis--vs Ymilts---,im] by O(y,e€); then Oy = O(x,, ey) forany o < w;.

Let P, = {x, :x € £2,} C KMM")\AMM for any number n € w. The set Ay,
is closed in the space K™; so P, = |J{P} : i € w} where cl(P}) N Ay, = 0
for any i € w. Observe that O(x,e(n)) N F; = @ for any x € cl(P}) andi € w.
Indeed, if /' € F; N O(x,e(n)) for some x = (x1,...,x,) € Q! = cl(P]) then
f(x;) = u,(j) forall j < k(n). Since the function f is continuous, there exists
Xo = (xf,...,x%,)) € Py such that f(x%) = u,(j) = i¥ forany j < k(n).
Therefore f € O(xy,e,) = O, which is a contradiction with the choice of O,.

Fix i,n € w; by Fact 1 we have a representation Q) = (J{F; : j € w} where
the set F; is compact and almost proper in K My for every j € w. We claim that,

(8) forevery j € w,theset G’ = G, N (| J{O(x,e(n)) : x € F;}) can be covered
by just one element of the family {O(x,e(x)) : x € F;}.

This is evident if F; is a singleton. If not then either F; is proper or there is L C

Mp(n), L # My and a proper compact set P in K~ such that 712/["(”’ (Fj) =P
Min
Mk:n))\L
from Fact 2 we see that there is a point z € P such that z(m) € P, () for any
m € L. By the definition of the set D we have h(z(m)) = u,(m) for any h € D
which shows that all elements of D take the same value u,(m) at z(m) for any
m € L. But outside of L the coordinates of all points of F; are constant; so if a we
take a point x = (x1,...,Xku) € F; such that m € L implies x,, = z(m) then
G’ C O(x,e(n)). Indeed, if m ¢ L then h(x,,) = u,(m) for all h € G’ because G’
is covered by the sets {O(y,e(n)) : y € F;} while y,, = x,, forany y € F; and
m e Mk(n)\L.

On the other hand, if m € L then all points of G, (and even of D) have the same
values at x,,; so again h(x,;,) = u,(m) forany m € L and h € G’; so (8) is proved.

An immediate consequence of (8) is that G, N (J{O(x,e(n)) : x € Q}}) can
be covered by countably many elements of the family {O(x,e(n)) : x € Q!} and
hence G, N (J{O(x,e(n)) : x € P,}) can also be covered by countably many
elements of the family {O(x,e(n)) : x € Q. i € w} forany n € w. This implies
that there is a countable family V, C B such that G, C | JV, C DK\ F;. The
set A1 = ({supp(U) : U € U, U V,} is countable; applying (7) we conclude
that the sets F} and G, are Aj,-separated. An analogous proof shows that there is a
countable A;; C K such that F, and G| are A,;-separated.

Finally, choose x € Q such that ¢(x) = £2 (recall that G, = {hy : @ € 2}).
Then h(x) = 1forany h € G, while h(x) = 0if h € D\G,. In particular, h(x) =0
for any h € F,. Thus F, and G, are Ay -separated if Ay, = {x}. Finally, apply (6)

and (F;) is a singleton. Recalling the main property of the sets Py and P;
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to conclude that the set A = A1 U A1 U Ay U Ay, is countable while F and
G are A-separated. This proves that Y is a hereditarily normal dense subspace of
DX ~ D¢ with ext(Y) = w;.

We have already noted that ¥ cannot be collectionwise normal; so under 2! = ¢
there is a dense normal subspace of D¢ which is not collectionwise normal.
However, under CH, we have ¢ = w;; so every dense normal subspace of D¢ = D!
is collectionwise normal by Problem 192. Therefore it is independent of ZFC
whether normality of a dense subspace of D¢ implies its collectionwise normality
and hence our solution is complete.

U.194. Let X be a monolithic compact space of countable tightness. Prove that any
dense normal subspace of C,(X) is Lindeldf. In particular, if X is a Corson compact
space and Y is a dense normal subspace of C,(X) then Y is Lindeldf.

Solution. If Z is a space then A, B C Z are separatedin Z if ANB = BNA = @.
The sets A and B are open-separated in Z if there are disjoint U,V € t(Z)
such that A C U and B C V. Let O be the family of all non-empty intervals in
R with rational endpoints; it is clear that the family O is countable. If we have
points zi,...,z; € Z and O4,...,0, € O then W(zy,...,24;01,...,0,) =
{f € Cy(Z) : f(z) € O; forall i < nj}. It is clear that the family
W(z,...,20:01,...,0,) :n €N, z; € Zand O; € Oforalli < n}isa
base in the space C,(Z).

Fact 1. Suppose that Z is a space and N' C exp Z is a network in Z. Given
My, ....M, € N and 01,...,0, € O let [Ml,...,Mn;Ol,...,On] = {f €
C,(K): f(M;) C O forany i < n}. Then the family

M={M,....M;;01,....,0,] :neN, M; e N, O, € O forevery i <n}

is a network in C,(Z).

Proof. If f € C,(Z) and U € t(f, C,(Z)) then there exist points z;,...,z, € Z
and O4,...,0, € O for which f € G = W(z,...,2:;04,...,0,) C U.
By continuity of f there are V; € t(z,Z) such that f(V;) C O; for any
i < n. The family N being a network of Z there are My, ..., M, € N for which
zi € M; C V; foreveryi < n.Then H = [My,...,M,;Oy,...,0,] € M and
f € HCG CU.Thus M is anetwork in C,(Z) and Fact 1 is proved.

Returning to our solution suppose that N is normal and dense in C,(X). If N is
not Lindelof then ext(N) > w by Baturov’s theorem (SFFS-269); so we can fix a
closed discrete subspace D of the space N such that D = w;.If A and B are disjoint
subsets of D then they are open-separated in N by normality of N; take disjoint
U'.V' € t(N)suchthat A C U'and B C V'. There exist U,V € t(C,(X)) such
that U NN = U’ and V NN = V’. An immediate consequence of density of N in
Cp,(X)isthat U NV = Q. This shows that

(1) any disjoint A, B C D are open-separated in C,(X).
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For any x € X let ¢(x)(f) = f(x) forany f € D; then p(x) € C,(D) for
any x € X and the map ¢ : X — C,(D) must be continuous (see TFS-166). Then
K = ¢(X) is an w-monolithic compact space with w(K) < w;. The dual map
¢* : Cp(K) = C,(X) is defined by ¢*(f) = fog forany f € C,(K);itis an
embedding such that D C ¢*(C,(K)) (see Fact 5 of U.086).

It is evident that D is a discrete subspace of C = ¢*(C,(K)) and it follows from
(1) that any disjoint A, B C D are open-separated in C. Since C is homeomorphic
to C,(K),

(2) there exists a discrete subspace £ C C,(K) such that | E| = w; and any disjoint
A, B C E are open-separated in C,(K).

If § = {sy : @ < wi}is a dense subspace of K then let K, = {sg : B < a} for
any @ < w;. Every K, is second countable by w-monolithity of K and it follows
from#(K) = w that K = (J{Ky & < w1 }. If Ly = K \(U{Kp : B < a}) for
any a < o then the family {L, : @ < w;} of second countable spaces is disjoint
and | J{Ly : @ < w1} = K. If we fix a countable network N, in the space L, for
all @ < w) then the family A" = [ J{N, : @ < w;} is a point-countable network in
K such that |N] < w;.

The family M = {{My,...,M,;0y,...,0,] :n € N, M; ¢ N, O; € O for
every i < n}is anetwork in C,(K) by Fact . Let M’ = {M e M : M N E is
uncountable}. Applying Fact 1 of U.192 to the family {M N E : M € M’} we can
find disjoint sets A, B’ C E suchthat AN M #  # B'N M forany M € M.
If B=FE\AthenANB =0, AUB=EandANM # 0 # BN M for any
M € M’. One of the sets A, B is uncountable; so we can assume without loss of
generality that |A| > w.

The sets A and B are open-separated in C,(K) by (2); so we can apply Fact 3
of S.291 to see that there exists a countable 7 C K such that 77 (A) and 7y (B) are
separated in R” (here 77 : C,(K) — C,(T) C RT is the restriction map). The set
A is uncountable while w(R7) < w; so there is fy € A such that, for the function
go = nr(fo).theset{ f € A: mr(f) € U} is uncountable for any U € t(go, R7).

Since 77 (A) and 77 (B) are separated in R7, there exists a set U € 7(go, R”)
such that U Ny (B) = @. There are ty,...,t, € T and Oy, ..., O, € O such that
g€V ={geCyT):g(t) e O;foralli <n} C U; we already observed that
theset H = {f € A : wp(f) € V} has to be uncountable. It is immediate that any
f € H belongsto the set W(ty,...,t,; Oy,..., Oy); socontinuity of f implies that
there are le, e, M,‘,f € N such that¢; € Mif and f(Mif) C O; foranyi <n.

Since the set T is countable and N is point-countable, only countably many
elements of the family N meet the set T'. As a consequence, there is an uncountable
set H' C H and M,,..., M, eNsuchthatM,f = M, forany f € H andi <n.
In particular, f € M = [My,...,M,;0y,...,0,] forany f € H’ and therefore
M € M'. Thus BN M # @ by our choice of B; if f € BN M then f(M;) C O;
and therefore f(¢;) € O; for any i < n. This shows that 77 (f) € V Nap(B) =@
which is a contradiction.
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Recall that our contradiction was obtained assuming that some dense normal
N C C,(X) is not Lindelof; so we proved that any normal dense subspace of
C,(X) is Lindelof. Finally, if X is a Corson compact space then it is w-monolithic
and has countable tightness (see Problem 120); so any normal dense Y C C,(X) is
Lindelof and hence our solution is complete.

U.195. Let X be a Corson compact space. Prove that there exists a o-discrete set
Y C C,(X) which separates the points of X .

Solution. Fix a point-countable Tj-separating family U/ of open Fi-subsets of the
space X (such a family exists by Problem 118); there is no loss of generality to
assume that U # X forany U € U. Forany U € U there is a function fy € C,(X)
such that X\U = f~1(0) (see Fact 1 of S.358). The family U being T,-separating,
the set FF = { fy : U € U} separates the points of X .

It turns out that

(1) the space F is locally countable, i.e., for any function fy € F there is a
countable H € 7(fy, F).

To see that the property (1) holds, let u be the function which is identically zero
on X . It follows from fy # u that there are x1,...,x, € X and Oy, ..., 0, € T*(R)
such that fo € W = {f € Cp(X) : f(x;) € O; foranyi < n}andu ¢ W.
Thus there is k < n such that 0 ¢ O. The family U’ = {U € U : x;, € U} is
countable; since fy(xx) = 0, we have fy ¢ W forany U € U\U'. Therefore the
set H=W N F e t(fy, F) is countable and (1) is proved.

Now let V be a maximal disjoint family of non-empty countable open subsets
of F. It is an easy exercise to prove, using (1), that Y = [JV is dense in F. The
set Y also separates the points of X (see Fact 2 of S.351). Choose an enumeration
{fi :i € w}ofevery set V € V. Itis evident that the set ¥; = {f} : V € V}is
discrete for any i € w. Therefore Y = ( J{Y; : i € w} is a o-discrete subspace of
C,(X) which separates the points of X.

U.196. Prove that, under Continuum Hypothesis, there exists a compact space X
such that no o-discrete Y C C,(X) separates the points of X.

Solution. If CH holds then there exists a compact non-metrizable space X such
that hd*(X) = w (see SFFS-099 and SFFS-027). Now we can apply SFFS-025 to
see that s*(C,(X)) = s*(X) < hd*(X) = w. Thus any o-discrete Y C C,(X)
is countable; so if Y separates the points of X then X has to be metrizable (see
TFS-166) which is a contradiction. Therefore no o-discrete subspace ¥ C Cp,(X)
separates the points of X.

U.197. Let X be a metrizable space. Prove that there is a discrete Y C Cp(X)
which separates the points of X .

Solution. If X is finite then there is a finite subspace of C,(X) which separates
the points of X; so assume that X is infinite. Fix a base B C 7*(X) in the space
X such that B # X forany B € Band B = |, ¢, B: while every family B, is
discrete (see TFS-221). Pick a point xp € B for any B € B. Every open subset of
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X is a cozero-set (see Fact 1 of S.358) so, for any n € w and B € 5, there exists a
function fp : X — [0,27"] such that f(xz) = 27" and X\B = f;'(0).

It is easy to see that the set Y = {fp : B € B} C C,(X) separates the points of
X. To prove that Y is discrete take any & € Y'; there are m € w and B € B,, such
thath = fp.Lete = 27" !theset O = {f € Cp(X) : | f(xp) — fo(xp)| < &} is
an open neighbourhood of fp in C,(X).Ifn > m 4+ 1and U € B, then fy(xp) <
27" and hence | fy (xg)— f(xp)| = 27" —27" > 27m_2="=1 = 2=m=1 — ¢ which
shows that fy ¢ O. Since every family B, is discrete, only finitely many elements
of B = |Y{B, : n < m} contain xg. If U € B’ and xg ¢ U then fy(xp) = 0
and hence | fy (xp) — fp(xp)| = 27" > ¢, i.e., fy ¢ O. This proves that the set
O € ©(h,C,(X)) contains only finitely many elements of Y. The function h € ¥
was chosen arbitrarily; so every & € Y has an open neighbourhood O in C,(X') such
that O N'Y is finite. Therefore Y is a discrete subspace of C,(X) which separates
the points of X.

U.198. Prove that, for each cardinal k, there exists a discrete Y C C,(I) which
separates the points of I*.

Solution. Let us consider that « carries a discrete topology, i.e., k is a discrete
space; then R“ = C,(x) and I = C,(k,I). For any o € « let ¢,(f) = f(a) for
any f € I; then ¢, € C,(I) for any o € k and the map ¢ : k — C,(I) defined
by (o) = ¢, for any « € k, is continuous (see TFS-166). In any Tychonoff space
Z the set C,(Z,1) separates the points and the closed subsets of Z so the same is
true for Z = k and hence ¢ is an embedding by TFS-166. Therefore the space
Y = ¢(k) C C,(I) is discrete. Finally, observe that Y separates the points of
C,(I*) (this was also proved in TFS-166); so Y is a discrete subspace of C,(I*)
which separates the points of the space I*.

U.199. Prove that C,(Bw\w) cannot be condensed into X+(A) for any A.

Solution. Assume towards a contradiction that A is a set such that there exists a
condensation ¢ : Cp(fw\w) — Y forsome Y C X, (A). Observe that A cannot be
countable for otherwise iw(C,(Bw\w)) = w and hence fw\w is separable which
is a contradiction with TFS-371. Thus A is uncountable and hence we can consider
that there is an uncountable cardinal « such that Y C C,(A(k)) (see Problem 105).

Let : C,(C,(A(k))) — C,(Y) be the restriction map; there exists a subspace
F C Cp(Cp(A(k))) such that F' ~ A(k) and F separates the points of C,(A(x))
(see TFS-166 and TFS-167). Consequently, the set G = w(F) C C,(Y) separates
the points of the space Y. It is easy to see that any continuous image of A(k) is
either finite or homeomorphic to the one-point compactification of a discrete space;
so G >~ A(A) for some cardinal A.

If G is countable then iw(Y) < w (see TFS-166); since C,(Bw\w) condenses
onto Y, we have iw(C,(Bw\w)) = w which we already saw to be impossible. Thus
A > w; since the dual map ¢* embeds C,(Y) in C,(C,(Bw\w)) (see TFS-163), the
space A(A) embeds in C,(C,(Bw\w)) which shows that p(C,(Bw\w)) > A > w
(see TFS-178). However, C,(Bw\w) is a continuous image of C,(Bw) (TFS-380)
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which, together with p(C,(Bw)) = w (TFS-382) implies that p(C,(Bw\w)) < w;
this contradiction shows that C,(Bw\w) cannot be condensed into X (A4).

U.200. Prove that, for any Corson compact X and any n € N, the space Cp,,(X)
linearly condenses onto a subspace of X (A) for some A.

Solution. The symbol P stands for the space of the irrationals which we identify
with @®. A space Z condenses into a space Y if there is a condensation of Z onto
a subspace of Y. Such a condensation is called a condensation of Z into Y .

Fact 1. 1f Z is a primarily Lindelof space then C), 5, (Z) contains a dense primarily
Lindelof subspace for any n € N.

Proof. If n = 1thenlete,(f) = f(z) forany pointz € Z and function f € C,(Z).
Then e; € C,(Cp(Z)) for any z € Z and the subspace Z' = {e; : z € Z} of the
space C,(C,(Z)) is homeomorphic to Z by TFS-167. Furthermore, the minimal
subalgebra A(Z") of C,(C,(Z)) which contains Z' is dense in C,(C,(Z)) because
Z' and hence A(Z’) separates the points of C,(Z) (see TFS-192).

Since primarily Lindelof spaces form a weakly k-directed class by Problem 146,
the set A(Z') is a countable union of primarily Lindel6f spaces by Problem 006;
so A(Z’) is primarily Lindelof by Problem 142. Thus A(Z’) is a dense primarily
Lindelof subspace of C,(C,(Z)) which proves our Fact forn = 1.

Now assume that k € N and we have proved that ¥ = C,x%(Z) has a
dense primarily Lindelof subspace L. The space C,ax+1)(Z) is homeomorphic
to C,(Cp(Y)). Again, let e, (f) = f(y) forany y € Y and f € C,(Y);
then e, € C,(C,(Y)) forany y € Y and the mape : ¥ — C,(Cy(Y))
defined by e(y) = e, for any y € Y is an embedding by TFS-167. Thus the
subspace Y' = {e, : y € Y} of the space C,(C,(Y)) is homeomorphic to ¥ and
L' = {e, : y € L} is a dense primarily Lindelf subspace of the set Y. The set Y’
separates the points of C,(Y) and hence so does L’ being dense in Y’. Therefore
the minimal subalgebra A(L’) of the space C,(C,(Y')) which contains L’ is dense
in C,(C,(Y)) by TFS-192. As before, we can observe, applying Problems 146, 006
and 142 that A(L’) is primarily Lindelsf. Thus, A(L’) is a dense primarily Lindelof
subspace of C,(C,(Y)) = Cpr4k+1)(Z); so our inductive procedure shows that
C,2,(Z) contains a dense primarily Lindelof subspace for any n € N, i.e., Fact 1 is
proved.

Fact2. If F is a non-empty closed subspace of a X'-product of real lines then
C,(F) condenses linearly into X'(B) for some B.

Proof. Suppose that F' is a closed subspace of X (T') for some T'; we will proceed
by induction on the cardinal w(F) = d(F); if d(F) = w take a dense countable
D C F and observe that the restriction map condenses C,(F) linearly into R?
which embeds linearly in R”. Since R” embeds linearly in X' (w;), we proved our
Fact for all separable sets F.

Now assume that k = d(F) is an uncountable cardinal and we proved, for any
cardinal A < « that, for any closed G C X(T') with d(G) < A, the space C,(G)
condenses linearly into a X’ -product of real lines. Fix a dense set D = {x, : o < «}
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in the space F. For any x € X(T) let supp(x) = {t € T : x(t) # 0}; then
supp(x) is a countable set for any x € X(7'). Givenaset S C 7 and x € ¥(T) let
rs(x)(t) = x(¢)ift € S and rg(x)(t) = Oforallt € T\S. Then rg(x) € X(T)
forany x € X (T) and the map rg : X(T) — X (T) is a retraction forany S C T.
We will also need the family F = {S C T : rs(F) C F}.

It follows from Problem 152 that there exists a non-empty countable set Ey € F.
Assume that @ < « and we have a family {Eg : B < o} C F with the following
properties:

(1) y < B <o implies E, C Eg and supp(x,) C Eg;
(2) |Ep| < |B| - w forany p < a;
(3) if B < ais a limit ordinal then Eg = ( {E, : y < B}.

If o is a limit ordinal then let £, = Uﬂ<a Eg; then E, € F by Problem 152
and it is evident that the properties (1)—(3) still hold forall 8 < a. If @ = g + 1
then it is a consequence of Problem 152 that there exists a set £, € F such that
Eq, Usupp(xy,) C Eq and |Ey| < |Eq, U supp(xy,)| - @ < |o| - @. It is also clear
that (1)—(3) hold for all 8 < «; so our inductive procedure can be continued to
construct a family {E, : @ < k} C F with (1),(2) and (3) fulfilled for any § < «.

It is evident that the map r, = rg, | F is a retraction on F'. We claim that

(4) theset 2(f) ={a <k : fory # f orey1}iscountable forany f € C,(F).

To see that the property (4) is true suppose not; then there is f € C,(F)
such that £2(f) is uncountable and hence we can choose a point z, € F such
that f(ro(ze)) # f(re+1(z¢)) for any « € £2(f). There is an uncountable set
2 C 2(f) and ¢ > 0 such that | f(r4(z4)) — f(ra+1(z4))| > € for any @ € £2.
Since ext(F) < w (see Problems 152, 160 and 161), the set {rq(zs) : @ € £2} has
an accumulation point z € F.

The function f being continuous at z, there is a set S = {z,...,¢,} C T and
Oi,...,0, € T(R) such that diam( f(U)) < ewherez e U = {x € F : x(t;) €
O; for all i < n}. Therefore the set M = {a € 2 : ro(zy) € U} is infinite; the
family { E4+1\Ey : @ € M} is disjoint; so there is @« € M such that (Ey4+1\Ey) N
S =0.

Now observe that ry4+1(z¢) = 7E,,,(zo) can have coordinates distinct from
the coordinates of the point r4(z4) = rg,(z4) only on the set E,yi\Ey. Thus
Fa+1(za)(t;) = ry(z4)(t;) € O; for every i < n which implies that ro41(zy) €
U. However, then ¢ < |f(re(zo)) — f(ra+1(z0))| < diam(f(U)) < e; this
contradiction shows that (4) is proved.

For any @ < k let F, = r,(F); itis easy to see that the family {F, : & < Kk} is
non-decreasing and d(F,) = w(F,) < |Ey| < k forevery o < k (see (2)). We will
need the following property of the family {F}, : & < «k}:

(5) if o < K is a non-zero limit ordinal then H, = (J{Fp : < o} is densein F,.

If (5) is not true then we can choose a point y € F,\H,. There is a set S’ =
{$1,...,8m} CTand Wy,...., W, € t(R)suchthaty e W = {x € F : x(s;) €
W; for any i < m} C F\H,. It follows from (3) that there is § < « such that
Egn S’ = E, NS’. We have rg(y) € Fp while the distinct coordinates of y and
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rg(y) lie in E,\ Eg; so it follows from our choice of B that (E,\Eg) N S’ = @. As
a consequence, rg(y)(s;) = y(s;) € W forany i < m,i.e., rg(y) € W N Fg which
is a contradiction with Fg C H, and W N H, = @. This proves the property (5).

Denote by m, the restriction map from C,(F) onto C,(F). Define the dual
map ry @ Cp(Fy) = C,(F)by ri(f) = foryforany f € C,(F,); then ry
is a linear embedding for any o < k. Furthermore, s, = ry o 7y : Cp(F) —
Cy = r;(Cy(Fy)) is a linear retraction by Problem 147; we leave to the reader the
straightforward verification that @ < 8 < « implies C, C Cg. Since Fy, is a closed
subspace of X (T") with d(F,) < « and C, =~ C,(F,), our induction hypothesis
shows that, for any @ < «, there exists a linear injective map 6, : C, — X(B,) for
some set B, ; we can assume, without loss of generality, that the family {B, : & < «}
is disjoint. Given @ < k let u, € ¥ (B,) be defined by u,(b) = 0 forall b € B,.

Now let uo(f) = do(so(f)) and po+1(f) = Sa+1(Sa+1(f) — sa(f)) for any
a < kand f € C,(F). The maps po and pot1 @ Cp(F) — X(Byy1) are
continuous and linear for any @ < k; observe also that every pq 4 is well defined
because Cy C Cqy1 and hence sq41(f) — So(f) € Coq1 forany f € C,(F) and
a < k. The map §, being linear, an immediate consequence of (4) is that

(6) pat1(f) = gy forany a ¢ 2(f).

We are finally ready to construct the promised linear condensation of the space
Cp(F);let B = By U | {Bot1 : @ < k}and o = poA(A{ftas1 o < k});itis
immediate that 1 : C,(F) = [[{Z(Ba+1) : @ < k} X X (By) C RE. The diagonal
product of linear continuous maps is, evidently, a linear continuous map; so u is
linear and continuous.

To see that u is injective take distinct functions f,g € C,(F). Since W =
{x € F: f(x) # g(x)} € t(F) and D is dense in F, there is « < « such that
f(xe) # g(xq). We have supp(xy) C Eq+1 Which implies ry41(xy) = Xo € Fyti
and therefore my4+1(f) # my+1(g). As a consequence, the set J = {o < « :
7. (f) # 7my(g)} is non-empty; let « = minJ. If @ = 0 then 7o(f) # mo(g)
which implies so( f) # so(g) and hence po(f) # 1o(g) because & is an injection.

Now assume that @ > 0 is a limit ordinal. Then we have f|F, # g|F, and hence
f|Hy # g|H, by the property (5). Therefore there is 8 < « for which f(q) # g(q)
for some g € Fg,i.e., f|Fg # g|Fpg which is a contradiction with the choice of .
Therefore « > 0 cannot be a limit and hence « = B + 1. By the choice of @ we
have g (f) = mg(g) while ng11(f) # mp+1(g) and therefore sg(f) = sp(g)
while s441(f) # sp11(g). This implies that sp41(f) — 55(f) # 5p+1(8) — 55(2)
whence ug11(f) # pnp+1(g) because §g41 is an injection. Thus p(f) # w(g) and
hence we proved that u is injective.

The last thing we have to show is that «(C,(F)) C X (B) so take any function
/€ Cp(F). The property (6) implies that 1(f)(b) = pta+1(f)(D) = uat1(b) =0
whenever o ¢ $2(f). The set £2( /) must be countable by (4); if « € £2(f) then
Ua+1(f) € X (By+1) by the definition of §,4;. Thus the set {b € B : u(f)(b) #
0} is contained in the set | J{{/ € Buy+1 : fat+1(f)(D) # 0} :a € 2(fH}U{b €
By : po(f)(b) # 0} which is countable so u(f) € X(B) forany f € C,(F)
and therefore . is a linear continuous injective map from C,(F) to ¥ (B). Fact 2 is
proved.



2 Solutions of Problems 001-500 233

Fact 3. For any space Z and n € w the space Cj,5,+1(Z) condenses linearly into
C,(Z? x P).

Proof. Let P be the class of spaces representable as a continuous image of Z¢ x P.
Any metrizable compact space K is a continuous image of P (see e.g., SFFS-328);
so K is a continuous image of Z¢ x P, i.e., K € P. Since P” ~ P, it is an easy
exercise to see that P € P implies P® € P. It is evident that a continuous image
of a space from P is in P; so P is a weakly k-directed class. Besides, a countable
union of spaces from P is also in P; this easily follows from P x o ~ P.

Let us show by induction that, for any n € N, the space C},,(Z) has a dense
subspace which belongs to P. Let e,(f) = f(z) foranyz € Z and f € C,(Z).
Then e, € C,(C,(Z)) for any z € Z and the subspace Z’' = {e, : z € Z} of the
space C,(C,(Z)) is homeomorphic to Z by TFS-167. Furthermore, the minimal
subalgebra A(Z’) of C,(C,(Z)) which contains Z' is dense in C,(C,(Z)) because
Z’ and hence A(Z’) separates the points of C,(Z) (see TFS-192).

Since P is a weakly k-directed class, the set A(Z’) is a countable union of
elements of P (see Problem 006); so A(Z’) € P, i.e., A(Z’) is a dense subspace of
C,(C,(Z)) which belongs to P. This proves our Fact forn = 1.

Now assume that k € N and we have proved that Y = C,,(Z) has a dense
subspace L € P. The space Cp2t+1)(Z) is homeomorphic to C,(C,(Y)). Again,
lete,(f) = f(y)forany y € Y and f € C,(Y); thene, € C,(C,(Y)) for any
y € Yandthemape : ¥ — C,(C,(Y)) defined by e(y) = e, forany y € Y
is an embedding by TFS-167. Thus the subspace Y’ = {e, : y € Y} of the space
C,(C,(Y)) is homeomorphicto ¥ and L’ = {e, : y € L} € P is a dense subspace
of the set Y'. The set Y’ separates the points of C,(Y") and hence so does L’ being
dense in Y. Therefore the minimal subalgebra A(L’) of the space C,(C,(Y)) which
contains L’ is dense in C,(C,(Y)) by TFS-192. As before, we can observe, that
A(L’) € P. Thus, A(L’) € P is a dense subspace of C,(C,(Y)) >~ Cprx+1)(Z);
so our inductive procedure shows that C,,»,(Z) contains a dense subspace L, € P
foranyn € N.

Thus the restriction map 7w condenses Cp2,4+1(Z) = C,(Cp2,(Z)) linearly
into Cp(L,). There is a continuous onto map ¢ : Z“ x P — L,; so the dual
map ¢* linearly embeds C,(L,) in C,(Z* xP). It is immediate that ¢* o 7 linearly
condenses the space Cj,5,+1(Z) into C,(Z® x P); so Fact 3 is proved.

Returning to our solution take any n € N and let Y = Cj5,-1(X). Since X
is Corson compact, the space Z = C,(X) is primarily Lindel6f by Problem 150;
therefore C,, 5,—1(X) is primarily Lindelof forn = 1. If n > 1 then C,2,—1(X) =
Cpon—2(Z); so Y has a dense primarily Lindeldf subspace L by Fact 1. Therefore
the restriction map w : C,(Y) — C,(L) is linear and injective. By Problem 149,
there exists a linear injective map ¢ : C,(L) — X (A) for some set A.
Consequently, the map ¢ o & linearly condenses the space C,(Y) =~ Cj2,(X)
into ¥ (A). Therefore Cp,(X) linearly condenses into a X'-product of real lines
foranyn € N.

Finally, take any number n € w; there exists a linear injective continuous
mapping ¢ : Cpont1(X) — Cp(X® x IP) by Fact 3. The space X is Corson



234 2 Solutions of Problems 001-500

compact by Problem 137; so it can be embedded (as a closed subspace) in X'(B) for
some set B. Besides, P can be embedded in R” as a closed subspace by TFS-273.
Therefore F = X“ x P is embeddable in a X'-product of real lines as a closed
subspace. Therefore there exists a linear injective continuous map § : C,(F) —
2 (A) for some set A (see Fact 2). Itis clear that § o ¢ : Cpap41(X) = X (A) is
an injective linear continuous map; so C) ,+1(X) can be linearly condensed into a
XY -product of real lines for any n € @ and hence our solution is complete.

U.201. Suppose that X = vY and Z is a subspace of RX such that C,(X) C Z.
Prove that there exists Z' C RY such that C,(Y) C Z' and Z' is a continuous
image of Z.

Solution. Let 7 : R¥ — RY be the restriction map; since every f € C,(Y)
extends to a continuous map on X (see TFS-412), we have 7(C,(X)) = C,(Y).
Therefore C,(Y) = n(C,(X)) C n(Z) C RY and Z’' = n(Z) is a continuous
image of Z.

U.202. Suppose that X is o-compact. Prove that there exists a Kqs5-space Z such
that C,(X) C Z C RY.

Solution. We have X = [ J{X; : i € w} where every X; is compact; let Yo = X
and Vi1 = X; 1 \(U{X) : k <i})foranyi € w. Then ¥; C X, foreveryi € w,
the family Y = {Y; : i € w}is disjoint and X = (J{Y; : i € w}; throwing away
the empty elements of the family ) if necessary we can assume, without loss of
generality, that ¥; # @ forany i € w.

For every i € w let ; : RX — RY be the natural projection (which coincides
with the restriction map) onto the face RYi. The set P(n,i) = {f € RY : | f(x)| <
n for all x € Y;} is compact for all n,i € w being homeomorphic to the space
[-n,n]Yi. The set Y; is contained in a compact subspace X; C X; so every f €
C,(X) is bounded on ¥; which shows that 7; (C, (X)) C Q(i) = (J{P(n,i) :n €
w} foreveryi € w.

Therefore C,(X) € Z = [],_, Q@) ¢ R¥ = [],_,RY and, to finish the
proof, it suffices to observe that Z is a Kys-space being a countable product of
o-compact spaces (see TFS-338).

U.203. Suppose that vX is o-compact. Prove that there exists a K -analytic space
Z such that C,,(X) C Z C R¥.

Solution. The space vX being o-compact, there exists a Kys-space T such that
C,(vX) C T C RYX by Problem 202. Apply Problem 201 to conclude that there
is a space Z C R¥ such that Z is a continuous image of T and C,(X) C Z. Thus
C,(X) C Z C RY and the space Z is K-analytic because it is a continuous image
of the K,s-space T'.

U.204. Prove that X is pseudocompact if and only if there exists a o-compact space
Z such that C,,(X) C Z C R¥.
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Solution. If X is pseudocompact then every function f € C,(X) is bounded on
X;50 Cp(X) € Z = J{[-n,n]* : n € o} C RX and it is evident that Z is
o-compact. This proves necessity.

Now, assume that X is not pseudocompact while there is a o-compact Z such
that C,(X) C Z C RX. There is a countably infinite closed discrete D C X which
is C-embedded in X (see Fact 1 of S$.350); let 7 : R¥ — RP® be the restriction map.
We have R? = 7(C,(X)) C 7(Z) and therefore RP = 7(Z) which implies that
R® ~ R” is o-compact being a continuous image of a o-compact space Z. This
contradiction with Fact 2 of S.399 shows that there is no o-compact space Z with
C,(X) C Z C R¥, i.e., we established sufficiency.

U.205. Give an example of a Lindeldf space X for which there exists no Lindelof
space Z such that C,(X) C Z C RX.

Solution. Let X = L(w) be the Lindelofication of the discrete space of cardinality
w;. The space X is Lindelof; so assume, towards a contradiction, that there is a
Lindelf Z such that C,(X) C Z C RX. Since X is a Lindelsf P-space, every
countable subset of X is closed and C-embedded in X . This implies that the space
R¥ is canonically homeomorphic to v(C,(X)) (see TFS-485) and hence C,(X)
has to be C-embedded in R* (see TFS-413). But then C »(X) is also C-embedded
in its Lindelof (and hence realcompact) extension Z. Applying Fact 1 of S.438 we
conclude that Z ~ v(C,(X)) x~ RX ~ R® which is a contradiction (see e.g.,
Fact 3 of S.215). As a consequence, there exists no Lindelof space Z for which
C,(X) C Z CR™.

U.206. Prove that vX is a Lindeléf X-space if and only if C,(X) C Z C RX for
some Lindelof X -space Z. In particular,

(i) if C,(X) is a Lindelof X -space, then vX is a Lindelof X -space;
(ii) (Uspenskij’s theorem) if X is a Lindelof X'-space then there exists a Lindelof
XY-space Z such that C,(X) C Z C R¥;
(iii) if v(Cp(X)) is a Lindelof X -space then vX is Lindelof X.

Solution. If vX is a Lindelof X -space then there exists a Lindelof X'-space Y such
that C,(vX) C Y C RYY by Fact 1 of T.399. Apply Problem 201 to see that there
exists a set Z C R such that C,(X) C Z and Z is a continuous image of Y.
Therefore Z is a Lindelof X-space such that C,(X) C Z C RY, ie., we proved
necessity.

Now suppose that there is a Lindeléf ¥-space Z such that C,(X) C Z C R¥.
For every x € X lete,(f) = f(x) forany f € RY. Thene, : R¥ — Risa
continuous function because it coincides with the natural projection of R¥ onto the
factor of RX determined by x. Let u, = e,|C,(X) for any x € X; then the space
X' ={uy: x € X} C Cp(Cp(X)) C REX is homeomorphic to X by TFS-167.
Besides, X’ is C-embedded in R¢»*) by TFS-168.

Let 7 : R? — R%W be the restriction map; observe first that X’ C
7(Cy(Z)) because every u, € X' extends to e.|Z, i.e., uy = m(ec|Z) for any
x € X. Apply Fact 1 of T.399 once more to find a Lindelof X-space L such
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that C,(Z) C L C R?. The space M = n(L) C RS@ is Lindelof ¥ and
X' C n(Cp(Z)) C n(L) = M. Therefore Y = cly(X’) is a Lindelof X-space
which is an extension of the space X'. The space X’ being C-embedded in a larger
space R€»X) it is also C-embedded in Y. The space Y is Lindelof X and hence
realcompact; so Y >~ v(X’) by Fact 1 of S.438.

Therefore vX ~ v(X’) >~ Y is a Lindel6f X-space and hence we proved the
main statement of our Problem. The assertions (i) and (ii) follow trivially. To see
that (iii) also holds observe that there is a set Sy C R¥ such that C,(X) C Sy and
Sy is canonically homeomorphic to v(C,(X)) (see TFS-438). By our assumption,
the space v(C,(X)) and hence Sy is Lindel6f X' so we can use the main statement
to conclude that vX is Lindelof X~ and make our solution complete.

U.207. Given a natural n > 1, suppose that there exists a Lindelof X' -space Z such
that Cp,(X) C Z C RE»1=1X) Prove that there exists a Lindelof X-space Y such
that C,(X) C Y C RY.

Solution. Let us first prove by induction that

(*) if v(Cpx (X)) is a Lindel6f X'-space for some number k € w then vX also has
the Lindelof X' -property.

Since (*) evidently holds for k = 0 assume that it is fulfilled for all kK < m and
V(Cpm+1(X)) is a Lindelof X'-space. An immediate consequence of Problem 206
is that v(Cp,,(X)) is Lindelof ¥ so the induction hypothesis shows that vX is
Lindelof X' and hence (x) is proved.

Returning to our solution observe thatif n = 1 then we cantake Y = Z.If n >
1 and there is a Lindelof X-space Z with C,,(X) C Z C RE»—1X) then let
T = Cpu_1(X). We have C,(T) C Z C RT; so Problem 206 is applicable again
to conclude that vT" = v(C,,—((X)) is a Lindelof X-space. Thus we can apply
(*) to see that vX is a Lindelof X'-space. Applying Problem 206 once more we
conclude that there exists a Lindelof X-space Y for which C,(X) C Y C R¥.

U.208. Suppose that C,(X) is a Lindelof X -space. Prove that Cp,,(X) is w-stable
and w-monolithic for any natural n.

Solution. Any Lindel6f X-space is w-stable by SFFS-266; so C,(X) is w-
stable and hence X is w-monolithic by SFFS-152. Furthermore, it follows from
Problem 206 that vX is a Lindelof Y'-space; so we can apply SFFS-267 to conclude
that X is also w-stable. Apply SFFS-152 and SFFS-154 to see that a space Z is
both w-stable and w-monolithic if and only if so is C,(Z). Now, it takes a trivial
induction to conclude that C, ,, (X)) is both w-stable and w-monolithic forany n € w.

U.209. Prove that a space X is dominated by a space homeomorphic to the
irrationals if and only if X is P-dominated.

Solution. Given a space Z we denote by K(Z) the family of all compact subsets
of Z. Suppose that X is P-dominated and hence there is a P-ordered compact cover
{F, : p € P} of the space X.
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For any n € w let m, : ®® — w be the natural projection of @® onto its n-th
factor. If K is a compact subset of w® then 7, (K) is a compact and hence finite
subset of w. Consequently, there is p € w® such that 7,(K) C {0,..., p(n)} for
any n € w. Therefore the number u,(K) = min{m € o : 7,(K) C {0,...,m}}is
well defined for any n € w. Letting px(n) = u,(K) for any n € w we obtain an
element px € w® forany K € K(w®).

It is immediate that if K, L € C(w®) and K C L then px < p; and therefore
Fyx C F), . This shows that letting Qx = F), for any K € K(w®) we get a
family F = {Qk : K € K(»®)} of compact subsets of X such that K C L implies
Ok C Q. Furthermore, if x € X then there is p € w® for which x € F;itis
straightforward that, for the compact set K = [[{{0,..., p(n)} : n € w} C w®
we have px = p and hence x € Q. Thus F is also a cover of X and hence X is
dominated by @®, i.e., we proved sufficiency.

Now assume that X is dominated by w®, i.e., there exists a compact cover { F :
K € K(w®)} of the space X such that K C L implies Fx C F,. Forany p € o®
the set K, = [[{{0...., p(n)} : n € w} C w® is compact and it is easy to see that
p < q implies K, C K. Let G, = Fk, forany p € ®”. Then G = {G, : p € P}
is a family of compact subsets of X such that p < ¢ implies G, C G, i.e., G is
P-ordered.

Given an arbitrary point x € X there is K € (w®) such that x € Fg. For any
n € w the set m,(K) C w is compact and hence finite; so there is p € w® such that
m,(K) C {0,..., p(n)} for any n € w which shows that K C K,. Consequently,
Fx C Fg, = G, whence x € G, and therefore G is a cover of X. Thus X is
P-dominated; so we proved necessity and hence our solution is complete.

U.210. Suppose that X is dominated by a second countable space. Prove that there
is a countable family F of subsets of X which is a network with respect to a cover
of X with countably compact subspaces of X.

Solution. As usual, given a space Z, the symbol KC(Z) stands for the family of all
compact subsets of Z. Suppose that X is dominated by a second countable space
M;let {Fx : K € K(M)} be the respective compact cover of X. Fix a countable
base I3 in M such that B is closed under finite unions and intersections. It is easy to
see that BB is a network for all compact subsets of M, i.e., if K C M is compact and
O € (K, M) then there is B € B for which K C B C O.

For any set B € Blet Q(B) = |U{Fx : K € K(M) and K C B}; then
the family F = {Q(B) : B € B} C exp X is countable. Since the family B is
closed under finite intersections, for every K € KC(M), we can choose an outer base
Bk = {BX :n € } C Boftheset K in M in such a way that cI(BY, ) C BX for
anyn € w.Let Cx = ({Q(BX) : n € w} forany K € K(M). It is immediate that
K C Cg;30C ={Cg : K € K(M)} is a cover of the space X. It turns out that all
elements of C are countably compact and F is a network with respect to C. To prove
it we will need the following property.

(*) If x, € Q(BK) for any n € w then the sequence S = {x, : n € w} has an
accumulation point which belongs to the set Ck.
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For any n € w take K,, € K(M) such that K,, C BnK and x, € Fg,.Itis easy to
see that, for any m € w the set H,, = | J{K, :n > m} UK C BnIf is compact; so
we have {x, : n > m} C Fy,, for every m € . In particular, S C Fp,; the set Fpy,
being compact, the sequence S has accumulation points in Fp,. On the other hand,
the set {n € w : x,, ¢ Fp,,} is finite for any m € w; so all accumulation points of S
have to belong to the set (\{Fp, : n € w} C Ck which shows that (*) is proved.

Finally, assume that K € K(M) and Cx C O € t(X). We have Cx C Q(BX)
for any n € w. If there is x, € Q(BX)\O foranyn € w then S = {x, : n € w}
has an accumulation point in Ck by (x). However, S C X\ O; so all accumulation
points of S have to belong to X\ O which does not meet Cg. This contradiction
shows that Cx C Q(BX) C O for some n € w and therefore F is a countable
network with respect to the cover C. Finally, if S = {x, : n € w} C Ck then
Xn € Q(BK) forany n € w so S has an accumulation point in Cg by (). Therefore
Ck is countably compact for any K € KC(M), i.e., all elements of the cover C are
countably compact.

U.211. Suppose that a space X has a countable family F which is a network with
respect to a cover of X with countably compact subspaces of X. Prove that vX is a
Lindelof X'-space.

Solution. Let C be a cover of X such that every C € C is countably compact and
F is a countable network with respect to C. Let Y = (J{C : C € C} (the bar
denotes the closure in vX). The set C is compact for any C € C (see TFS-415); so
D = {C : C € C}is a compact cover of Y ; besides, X C ¥ C vX.

The family G = {F NY : F € F} is countable; suppose that C € C and
D = C C O € t(Y). The set D being compact there exists V € 7(D,Y) such
that cly (V) € O.Since W = VN X € t(C, X), there exists F € F for which
C C F C W. Consequently, D =CCFCW;s0G=FNY € G and
D C G. Furthermore, G C WNY C VNY = cly(V) C O. This proves that
D C G C O and therefore G is a countable network with respect to a compact
cover D of the space Y. Thus Y is a Lindelof Y-space; by TFS-414 and TFS-406
we have vY ~ Y =~ vX; so vX is a Lindelof X'-space.

U.212. Prove that the property of being dominated by a second countable space
is preserved by countable unions, products and intersections as well as by closed
subspaces and continuous images.

Solution. Given a space Z the symbol K(Z) stands for the family of all compact
subsets of Z. Let X be dominated by a second countable space M ; fix the respective
compact cover { Fx : K € IC(M)} of the space X.If f : X — Y is a continuous
onto map then { f(Fx) : K € K(M)} is a compact cover of ¥ which witnesses the
domination of Y by M. Therefore

(1) if X is dominated by a second countable space then any continuous image of X
is dominated by the same second countable space.

Now, if A4 is a closed subset of X then the compactcover {Fx NA : K € (M)}
of the set A witnesses the domination of A by M. Thus
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(2) if X is dominated by a second countable space then any closed subspace of X
is dominated by the same second countable space.

Suppose that a space X,, is dominated by a second countable space M, and let
{Fk : K € K(M,)} be the respective compact cover of X, foranyn € w. Let X =
[l,<, Xnand M =[], _, M,; the map r, : M — M, is the natural projection for
any n € w.

For any K € K(M) the set Gk = [],., Fr.(x)y C X is compact and it is
immediate that {Gg : K € (M)} is a cover of X which witnesses the domination
of X by M. This shows that

(3) if X, is dominated by a second countable space M, for every n € w then
X =1T1,., X» is dominated by the second countable space M = [],_, M,.

The properties (2) and (3) together with Fact 7 of S.271 imply that

(4) if Y is a space and X,, C Y is dominated by a second countable space then
X = (), <, Xn is also dominated by a second countable space.

Finally assume that X = (J,_, X, and every X, is dominated by a second
countable space M,,; let { Fx : K € IC(M,)} be the respective compact cover of X,.
We can assume, without loss of generality, that the family {M,, : n € w} is disjoint.
The space M = P, _,, M, is second countable; we can consider that every M, is a
clopen subspace of M.

For any K € K(M) let mxg = min{n : K C My U ... U M,}; it is clear
that mg € w is well defined and K C L implies mg < my. Now, if K € (M)
let K, = KNM, foreveryn € w. Then Gx = Fg,U.. .UFKmK is a compact subset
of X and it is easy to check that K C L implies Gx C G. Since K(M,) C K(M)
for any n € w, the family {Gg : K € (M)} covers X and hence X is dominated
by M. As a consequence,

(5) if X = J,., X» and every X, is dominated by a second countable space then
X is also dominated by a second countable space.

The properties (1)—(5) show that our solution is complete.

U.213. Show that every Lindeldf X -space is dominated by a second countable space.
Prove that X is a Lindelof X -space if and only if X is Dieudonné complete and
dominated by a second countable space.

Solution. Given a space Z the symbol K(Z) stands for the family of all compact
subsets of Z. If X is a Lindelof X'-space then there exists a second countable space
M and a compact-valued upper semicontinuous onto map ¢ : M — X (see SFFS-
249). If K C M is compact then ¢(K) = (J{¢(x) : x € K} is also compact by
SFFS-241. It is evident that K C L implies ¢(K) C ¢(L);so {@(K): K € K(M)}
is a family which witnesses domination of X by M. Thus every Lindelof X'-space
is Dieudonné complete (see TFS-454 and TFS-406) and dominated by a second
countable space, i.e., we proved necessity.

Now assume that X is Dieudonné complete and dominated by a second countable
space. By Problem 210, there exists a countable family 7 C exp X and a cover C
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of the space X such that every C € C is countably compact and F is a network
with respect to C. The set C is compact for any C € C (see TFS-455); so the family
D = {C : C € C} is a compact cover of X. The family G = {F : F € F}is
countable. Given D € D there is C € C suchthat D = C.If U € t(D, X) there
exists V € ©(D, X) for which V C U.

The family F being a network with respect to C, there is F € F such that
CCFCV.ThenG=FeGand D =C C G CV C U which shows that G is
a countable network with respect to the compact cover D of the space X . Therefore
X is Lindelof X' and hence we have established sufficiency.

U.214. Prove that, for any space X, the space C,(X) is dominated by a second
countable space if and only C,(X) is Lindelof X.

Solution. Given a space Z the symbol K(Z) stands for the family of all compact
subsets of Z. If C,(X) is Lindelof X' then it is dominated by a second countable
space (see Problem 213); so sufficiency is clear.

To prove necessity assume that C,(X) is dominated by a second countable space
M and fix the respective compact cover {Fg : K € K(M)} of the space C,(X).
Apply Problem 210 and Problem 211 to see that v(C,(X)) is a Lindel6f X'-space
and hence vX is also Lindelof X' (see Problem 206). Let 7 : C,(vX) — C,(X)
be sthe restriction map. Since 7|4 : A — mw(A) is a homeomorphism for any
countable 4 C C,(vX) (see TFS-437), the set Gk = n~'(Fk) is countably
compact for any K € K(M). Indeed, G is closed in C,(vX); so if it is not
countably compact then there is a countably infinite D C Gg which is closed and
discrete in Gg and hence in C,(vX). The set £ = n(D) C Fg cannot be closed
and discrete in Fx; so it has an accumulation point f € Fx.If g = 77 '(f) then g
is an accumulation point of D because 7 |(D U {g}) is a homeomorphism between
DU{g}land E U{f}.

This contradiction shows that every G is, indeed, countably compact and hence
ext(Gg) = w; applying Baturov’s theorem (SFFS-269) we conclude that G is
Lindel6f and hence compact. Therefore {Ggx : K € K(M)} is a compact cover
of Cp(vX); it is evident that K C L implies Gk C Gy; so the space C,(vX) is
dominated by our second countable space M.

Observe also that ext(C,(vX)) = o for otherwise there is an uncountable
closed discrete D C C,(vX) and hence D is dominated by a second countable
space by Problem 212. However, D is metrizable and hence Dieudonné complete; so
it has to be Lindelof by Problem 213. Since any discrete Lindelof space is countable,
we have a contradiction which shows that ext(C,(vX)) = w and hence C,(vX)
is Lindelof by Baturov’s theorem (SFFS-269). Any Lindelof space is Dieudonné
complete (see TFS-454 and TFS-406); so we can apply Problem 213 again to see
that C,(vX) is Lindelof X'. Therefore C,(X) is also Lindelof X being a continuous
image of C,(vX). This settles necessity and makes our solution complete.

U.215. Prove that, for any space X, the space C,(X) is P-dominated if and only if
C,(X) is K-analytic.
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Solution. Any K-analytic space is P-dominated by SFFS-391; so sufficiency
is clear. To prove necessity, assume that C,(X) is P-dominated. Then C,(X)
is dominated by the second countable space w® (see Problem 209); applying
Problem 214 we conclude that C,(X) is a Lindelof X'-space. Any Lindelof space
is realcompact (TFS-406); so we can apply SFFS-391 again to see that C,(X) is
K-analytic.

U.216. Prove that, for any space X, the space C,(X) is strongly P-dominated if and
only if X is countable and discrete.

Solution. If X is countable and discrete then C,(X) = R¥ is Polish and hence
strongly P-dominated by SFFS-365; so sufficiency is clear. To prove necessity
assume that C,(X) is strongly P-dominated and let {K, : p € [P} be the respective
compact cover of C,,(X).

Let v : Cp(vX) — C,(X) be the restriction map. Since 7|4 : A — m(A) is
a homeomorphism for any countable A C C,(vX) (see TFS-437), the set G, =
7 YK ) is countably compact for any p € P. Indeed, G, is closed in C,(vX) so,
if it is not countably compact then there is a countably infinite D C G, which is
closed and discrete in G, and hence in C,,(vX). The set E = n(D) C K, cannot be
closed and discrete in K ,; so it has an accumulation point f € K,.If g = a7 f)
then g is an accumulation point of D because 7 |(D U {g}) is a homeomorphism
between D U {g}and E U {f}.

This contradiction shows that every G, is, indeed, countably compact and hence
ext(G,) = w; applying Baturov’s theorem (SFFS-269) we conclude that G, is
Lindel6f and hence compact. Therefore G = {G, : p € P} is a compact cover
of Cp(vX); it is evident that G swallows compact subsets of C,(vX) and p < ¢
implies G, C Gg; so the space C,(vX) is also strongly P-dominated. It is easy to
see that strong P-domination is closed-hereditary so every closed F C C,(vX) is
strongly P-dominated.

Fact 1. If Z is a space and K C Z is a non-empty metrizable compact subspace
of Z then there exists a linear continuous map e : C,(K) — C,(Z) such that

e(f)|K = f forany f € C,(K).

Proof. There exists a countable set A C C,(K) which separates the points of K.
The set K is C-embedded in Z (see Fact 1 of T.218) so, for any f € A there is
u(f) € Cp(Z)suchthatu(f)|K = f.Letg = Alu(f): f € A} : Z — R4; the
spaces Y = ¢(Z) and L = ¢(K) are second countable and L C Y. Besides, L is
closed in Y being compact. Since the family {u(f) : f € A} separates the points
of K, the map ¢|K : K — L is a homeomorphism; let v : L — K be its inverse.
Apply Fact 1 of U.062 to find a linear continuous map § : C,(L) — C,(Y)
such that §(f)|L = f forany f € C,(L). The dual map ¢* : C,(Y) — C,(Z)
defined by ¢*(f) = f o ¢ forany f € C,(Y) is a linear embedding by TFS-163.
Therefore the map . = ¢* 06 : C,(L) — C,(Z) is also linear and continuous. The
dual map v* : C,(K) — C,(L) of the map v is a linear homeomorphism; so the
mape = pov* : Cp(K) = C,(Z) is linear and continuous. Given any function

J € Cp(K)wehavee(f) = n(v™(f)) = p(fov) = ¢*(8(fov)) = 8(fov)op.
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For an arbitrary point x € K we have e(f)(x) = §(f o v)(¢(x)). Since ¢(x) € L,
we have §(f o v)(p(x)) = (f ov)(¢(x)) by the choice of §. Therefore e( f)(x) =
Sf(p(x))) = f(x) because v(¢(y)) = y forany y € K by the choice of v.

Thus we established that e(f)(x) = f(x) for any x € K which shows that
e(f)|K = f forany f € C,(K); so Fact 1 is proved.

Fact 2. If Z is a space and K is a non-empty metrizable compact subspace of Z
then C,(Z) is linearly homeomorphic to C,(K) x I where I = {f € C,(Z) :
f(K) = {0}}. In particular, C,,(K) embeds in C,(Z) as a closed linear subspace.

Proof. By Fact 1, there exists a linear continuous map e : C,(K) — C,(Z) such
thate(f)|K = f forany f € C,(K).Let g : Cp,(Z) — C,(K) be the restriction
map. Givenany f € C,(Z)let§(f) = f—e(mwk(f));itisevident that the mapping
§:Cy(Z) — Cy(Z) is linear, continuous and we have the inclusion §(C,(Z)) C 1.
Consequently, letting ¢(f) = (wg(f),8(f)) for any function /' € C,(Z), we
obtain amap ¢ : C,(Z) — C,(K) x I which is linear and continuous being the
diagonal product of linear continuous maps.

Forany (f,g) € C,(K) x I,let u(f.g) = e(f) + g; it is straightforward that
n: Cp(K) x I — Cp(Z) is linear, continuous and inverse to ¢. Thus the spaces
C,(Z) and C,(K) x I are linearly homeomorphic; it is evident that any factor of
a product of topological vector spaces embeds in that product as a linear closed
subspace; so C,(K) embeds in C,(Z) as a closed linear subspace and hence Fact 2
is proved.

Returning to our solution observe that vX contains no non-trivial convergent
sequences; indeed, if S C vX is a non-trivial convergent sequence then it is
metrizable and compact so C,(S) embeds in C,(vX) as a closed subspace by
Fact 2. Thus C,(S) is strongly P-dominated and hence Polish by SFFS-365 which
contradicts TFS-265.

Now take an arbitrary compact subset K of vX; since C,(vX) is Lindelof X
(see Problem 215), the space vX and hence K is w-monolithic (see Problem 208).
It is evident that any infinite w-monolithic compact space has non-trivial convergent
sequences; so if K is infinite then there are non-trivial convergent sequences in
vX which is a contradiction. Therefore every compact subspace of vX is finite;
the space vX being Lindelof X' (see Problem 206) we can apply Fact 2 of T.227 to
conclude that vX is countable and hence C, (vX) is second countable. Apply SFFS-
365 once more to see that C,(vX) is Polish and hence vX is discrete. Thus X is
also countable and discrete; this settles necessity and makes our solution complete.

U.217. Observe that there exist spaces X for which C,(X,]) is Lindelof X while
C,(X) is not Lindeldf. Supposing that vX and C,(X,I) are Lindeldf X-spaces
prove that C,(X) is a Lindelof X -space. In particular, if X is Lindelof X then the
space C,(X) is Lindelof X if and only if C,(X,]) is a Lindelof X-space.

Solution. If X is a discrete space of cardinality w; then C,(X,I) = I¥ is even
compact while C,(X) = R¥ is not normal (see Fact 2 of S.215). Now assume that
vX and C,(X,I) are Lindelof X-spaces. By Problem 206, there exists a Lindelof
X-space L such that C,,(X) C L C R¥.
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If J =(—1,1) CIthenletv : R — J be a homeomorphism. If v.(f) =vo f
for any f € RY then the map vy : R¥ — J¥ is a homeomorphism such that
V«(Cp(X)) = Cp(X,J) (see TFS-091). Thus M = v, (L) is a Lindelof X'-space
for which C,(X,J) ¢ M C J¥ C IX. Therefore C,(X,J) = M N C,(X,]) is
a Lindelof X'-space by SFFS-258. Consequently, C,(X) ~ C,(X, J) is a Lindelof
XY -space.

U.218. (Okunev’s theorem). Suppose that X and Y are Lindeldf X -spaces such that
Y C Cp(X). Prove that C,(Y) is a Lindelof X-space.

Solution. Since Y is Lindelof X, there exists a countable family F C exp Y which
is a network with respect to a compact cover C of the space Y. We denote by Q the
set Q N (0, 1).

Given numbersn € N, § > 0, a point x = (x1,...,x,) € X" and f € Y let
O(f,x,6) ={geY :|g(x;)— f(x;)| <& foreveryi < n}.Itis evident that the
family {O(f. x,8) : § > 0 and there is n € N such that x = (x,...,x,) € X"} is
alocal base in Y at the point f.

For arbitrary numbers ¢ > 0,§ > 0, n € N and a set P C Y consider the
set M(e,8,n,P) = {(p,x) e I" x X" : 9o € I', x = (x1,...,X,) € X" and
lo(f) —e(g)] < eforany f € Y and g € P such that f € O(g,x,8)}. We
claim that

(1) M(e,8,n, P) isclosedin TV x X" foranye >0, 6>0,neNand P C Y.

To see that the property (1) holds take a point (¢, x) € (I x X")\M(e,8,n, P)
where x = (x1,...,x,) € X". By the definition of the set M (¢, §, n, P) there exist
f € Y and g € P such that |p(f) — ¢(g)| > e and f € O(g,x,§). Observe
that the set W = {n € I : |n(f) — n(g)| > &} isopeninI' and ¢ € W.
Furthermore, the functions f and g are continuous on X; sotheset V ={y € X :
|f(y) —g(»)| < é}isopenin X and x; € V for any i < n. Thus V" is open in
X" and x € V", Itis straightforward that (W x V") N M(e,§,n, P) = @; since
(p,x) € W x V", we showed that any point (¢, x) € (I' x X")\M(e,§,n, P) has
aneighbourhood W x V" contained in the complement of M (e, §, n, P). Therefore
(MY x X")\M(e,8,n, P)isopeninI¥ x X" i.e., M(g,8,n, P)is closedinI¥ x X";
so (1) is proved.

Foranyn € Nlet 7 : I¥ x X" — I" be the natural projection; given any numbers
e > 0,8 >0,and P C Y let L(¢,6,n, P) = nw(M(e,8,n, P)). Observe that
I¥ x X" is a Lindelsf X -space because so is X ; it follows from (1) that M (¢, §,n, P)
is also Lindel6f X' and hence L(g, §, n, P) is Lindelof X' as well being a continuous
image of the Lindel6f X'-space M (¢, §,n, P). Thus

(2) L(e,8,n, P) C I is a Lindelof XY -space forany ¢ > 0, § > 0, n € N and
PcCY.

The family £ = {L(¢,8,n, P) :n € N, ¢,6 € Q¢ and P € F} is countable and
consists of Lindelof X-subspaces of I' . We will establish next that
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(3) the family £ separates the set C,(Y,I) from I \C,(Y,1) in the sense that, for
any ¢ € C,(Y,I) and n € I"\C,(Y,I) there is L € L such that ¢ € L
while n ¢ L.

To prove (3) take any ¢ € C,(Y,I) and n € I"\C,(Y,]); there is some point
g € Y such that 7 is discontinuous at g and hence there is ¢ € Q¢ such that,

(4) foranyn e N, y = (y1,...,ys) € X" and § > O thereis f € O(g,y,4) for
which [n(f) = n(g)| > &.

The family C being a cover of the space Y we can choose a set C € C such that
g € C.Forany element 1 € C the map ¢ is continuous at the point /; so there exist
np €N, x; = (x{’, . ,x,’}h) € X" and 8, € Qg such that forany u € O(h, x;, 38;)
we have |p(u) — ¢(h)| < 5. The open cover {O(h, xp, ;) : h € C} of the compact
set C has a finite subcover and therefore there exists a finite set £ C C such that
C CG=J{O(h,x,,8;):he€ E};then§ =min{8; : h € E} € Qp. Takem € N
andx = (x,...,xy,) € X" suchthatxf’ e{xy,...,xy foranyh € E andi < ny.
There exists P € F such that C C P C G;itis easy to check thatif v € P and
u e O(v, x,08) then |p(u) — p(v)| < .

Recalling the definition of M(e, §,m, P) we conclude that (¢,x) €
M(e,8,m, P) and therefore ¢ € L = L(e,8,m, P). On the other hand, n ¢ L
because g € P; so the property (4) says exactly that it is not possible to find n € N
and y € X" such that (n, y) € M(e,8,n, P). Thus the property (3) is proved.

The property (3) shows that £ is a countable family of Lindelof X-subspaces
of I which separates C, (Y, I) from I \C, (Y, I). Since I' is a compact extension
of Cp(Y,1), it follows from SFFS-233 that C,, (Y, I) is a Lindelof X-space. Finally,
apply Problem 217 to conclude that C,(Y') is a Lindel6f X -space and complete our
solution.

U.219. Let X and C,(X) be Lindelof X -spaces. Prove that, for every natural n, the
space Cp,,(X) is a Lindelof X-space. In particular, if X is compact and C,(X) is
Lindelof X' then all iterated function spaces of X are Lindelof X -spaces.

Solution. This is easily done by induction on n € w. By our assumptions, C, , (X)
is a Lindel6f X-space for n € {0,1}. Now assume that we are given a natural
number k > 1 and the space C,,(X) is Lindelof X for any n < k. In particular,
Y =Cpro(X)and Z = Cpi—1(X) = C,(Y) are Lindelof X'-spaces. Applying
Problem 218 we conclude that C, 4 (X) = C,(Z) is a Lindelof X-space. Thus our
inductive procedure shows that C,, , (X) is a Lindelof X'-space for any n € w.

U.220. For an arbitrary Lindelof X -space X, prove that any countably compact
subspace Y C C,(X) is Gul’ko compact.

Solution. By countable compactness of ¥ we have ext(Y) = w; so Baturov’s
theorem (SFFS-269) implies that Y is Lindelof and hence compact. Finally apply
Problem 020 to conclude that C,(Y) is a Lindelof X-space, i.e., ¥ is Gul'ko
compact.
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U.221. Suppose that C,(X) is a Lindeldf X-space. Prove that any countably
compactY C C,(X) is Gul’ko compact.

Solution. The space vX is Lindelof X' by Problem 206;let 7 : C,(vX) — Cp(X)
be the restriction map. We claim that the set Z = 7~ 1(Y) C C,(vX) is also
countably compact. Indeed, if D is a countably infinite closed discrete subspace of
Z then E = m(D) has to have an accumulation point f € Y. Then g = 7~ '(f) €
Z and g is an accumulation point of D because 7 |(D U {g}) is a homeomorphism
between D U {g} and E U { f'} (see TFS-437); this contradiction shows that Z is
countably compact.

Recall that Z C C,(vX) and vX is a Lindelof X'-space; besides, countable
compactness of Z implies ext(Z) = w; so Baturov’s theorem (SFFS-269) shows
that Z is Lindel6f and hence compact. Apply Problem 020 to conclude that C,(Z)
is also a Lindelof X' -space, i.e., Z is Gul’ko compact. Themap n|Z : Z — Y is a
condensation and hence homeomorphism;so Y is also Gul’ko compact.

U.222. (Reznichenko’s compactum) Prove that there exists a compact space M with
the following properties:

(i) C,(M) is a K-analytic space, i.e., M is Talagrand compact;
(ii) there is x € M such that M\{x} is pseudocompact and M is the Stone—Cech
extension of M \{x}.

As a consequence, there is an example of a K-analytic space X such that some
closed pseudocompact subspace of C,(X) is not countably compact.

Solution. As usual, A(k) is the one-point compactification of the discrete space of
cardinality k. We let ®° = {0} and 0=* = (J{w" : n € w}; forany n € N, we
identify " with the set of all maps fromn = {0,...,n — 1} tow. If n € w and
s € 0" thent = s~k € @"™! is defined by t|n = s and t(n) = k for any k € w.
If few?andn e wthen f|0 =@ and f|ln = f|{0,...,n — 1} foranyn € N.

The symbol P denotes the space of the irrationals which we identify with 0. If Z
is a space then z € Z is called a w-point if there exists a finite family &/ C ©(Z)
such that {z} = ({U : U € U}. A family {U, : n € w} of subsets of a space
Z converges to a point 7 € Z if, for any U € t(z, Z) there is m € w such that
U, C Uforalln > m. Givenaset 4 let c(D?) = {x € D : |x~1(1)| < w} and
YD) ={x eD?: |x (1) < ).

Fact 1. Suppose that K is a compact space and some x € K is not a w-point. Then
K\{x} is pseudocompact and K is canonically homeomorphic to B(K\{x}), i.e.,
there exists a homeomorphism ¢ : B(K\{x}) — K such that ¢(y) = y for any
point y € K\{x}.

Proof. Observe first that x cannot be an isolated point because otherwise {x} = U
where U = {x} € t(K). If the space K\{x} is not pseudocompact then there is
a discrete family Y = {U, : n € o} C t*(K\{x}). Given any U € t(x, K) if
U,\U # @ for infinitely many n € o then take V € t(x,K) with V C U and
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observe that the family {U,\V : n € w and U,\U # @} C t*(K\V) is infinite and
discrete in the compact space K\ V; this contradiction shows that U,\U = @ for all
but finitely many #, i.e., the family I/ converges to the point x.

It is now easy to check that for the open sets G = ( J{Uz, : n € w} and H =
U241 : n € @} we have {x} = G N H, i.e., x is a w-point which is again a
contradiction. Therefore K\{x} is pseudocompact.

Let L = B(K\{x}); since the space K is a compact extension of K\{x}, there
exists a continuous map ¢ : L — K such that ¢|(K\{x}) — K\{x} is the identity
mapping. If R = L\(K\{x}) is a singleton then ¢ is a canonical homeomorphism;
so assume that there are distinct points y;, y, € R. Take U, U, € t(L) such that
cly (Uy) Nelp(U,) = 9.

The set V; = U; N (K\{x}) is open in the space K for any i € {1, 2}. Since
@(R) = {x} (see Fact 1 of S.259), we have ¢(y;) = x; furthermore, y; € clp(V;)
and hence x = ¢(y;) € clg(p(V;)) = clg(V;) for every i € {1,2}. As a
consequence, {x} C clg (V1) N clg(V»). If, on the other hand, y € K\{x} and
y € clg(V1) Nclg(V2) then y € clp (V1) Nclp(V2) = @ which gives us a
contradiction. This proves that {x} = clg (V1) Nclg(V2), i.e., x is a w-point which is
a contradiction again. Thus K is canonically homeomorphic to S(K\{x}); so Fact 1
is proved.

Fact 2. Given a set 4 let u € D* be defined by u(a) = 0 for any a € A. Suppose
that S, C o(D*)\{u} is a sequence which converges to u for any n € . Then there
exists a sequence S C | J{S, : n € w} suchthat § — u, the set S N S, is infinite for
any n € w and the family {x~'(1) : x € S} is disjoint.

Proof. Let {my : k € w} be an enumeration of @ where every n € w occurs
infinitely many times. Choose xy € S, arbitrarily; assume that n € @ and we have
chosen x; € S, for each i < n in such a way that the family {x;"'(1) : i < n}is
disjoint. Since S, , converges to u, the family S = x7'():xe Sy} 18 point-
finite; so at most finitely many elements of S meet the finite set A = (J{x;!(1) :
i < n}. Therefore we can choose x,,+1 € Sim,4, insuch a way that xn]l_l (HNA = 0;
it is evident that the family {x; '(1) 1 i < n + 1} is still disjoint; so our inductive
procedure givesus a set S = {x; : i € w} suchthatx; € S, forany i € ® and the
family {x;'(1) : i € w} is disjoint. It is straightforward that S is as promised; so
Fact 2 is proved.

If Z is a space and z € Z say that a sequence S C Z converges flexibly to z if S
converges to z and for any family {G, : x € S} of Gs-subsets of Z with x € G, for
any x € S, we can choose a point y(x) € G, for any x € S so that the sequence
{y(x) : x € S} converges to a point y € Z\{z}.

Fact 3. Suppose that K is a Fréchet—Urysohn compact space and ¥ C K is dense
in K. Suppose additionally that a point u € K'\Y has the following property:

(*) if S, C Y is a sequence which converges to u for any n € w then there is a
sequence S C K such that S N S, is infinite for any n € @ and S flexibly
converges to u.
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Then, for any countable family &/ C t(K) we have {u} # ({U : U € U} and, in
particular, u is not a w-point in K.

Proof. Suppose that U, € t(K) forany n € w and {u} = ({U, : n € }; there is
no loss of generality to assume that Uy = K. Thenu € U, N'Y and hence we can
pick a sequence S,, C U, NY such that S, — u forany n € w. Use the property ()
to find a sequence S C K such that S flexibly converges to # and S N S}, is infinite
forany n € w. Then G, = (\{U, : x € U,}is a Gs-set and x € G, forany x € S.

By our choice of S we can take y(x) € G, for any x € S such that the sequence
{y(x) : x € S} converges to a point y € K\{u}. Given any number n € w the set
{x € §:x € U,} is infinite; so S’ = {x € S : y(x) € U,} is infinite as well
which shows that S’ C U, converges to y and hence y € U, for any n € w. Thus
y € (WU, : n € o} whence {u} # ({U, : n € w}; this contradiction shows that
Fact 3 is proved.

Fact 4. Suppose that A is a set and K C X(A) is a compact subspace for which
there exists a family {A; : s € ©=“} of subsets of A with the following properties:

(i) Ap = Aand A; = | J{As~, : n € w} forany s € ©=?;
(ii) forany x € K and f € w® there exists m € o such that A 7, N x~H(R\{0})
is finite for all n > m.

Then C,(K) is a K-analytic space.

Proof. Let y, : A — D be the characteristic function of the set {a} for any a € A4,
i.e., xo(a) = 1 while y,(b) = 0 for any b € A\{a}; let zo(a) = O for any a € A.
The set Lo = {z0} U {), : a € A} is compact; so the set K' = KU Ly D K is
compact as well and therefore it suffices to prove that C,,(K’) is K-analytic. Since
the property (ii) still holds for K’, we can assume, without loss of generality, that
K' =K,ie., Ly CK.

For any point x € X (A) let supp(x) = x~!(R\{0}). Denote by u the function on
K which is identically zero. For any a € A let e,(x) = x(a) for any x € K; then
e, € C,(K) because e, coincides with the restriction to K of the natural projection
of R4 onto the factor determined by a. The set T = {u} U {e, : a € A} separates
the points of K; so it suffices to establish that 7" is K-analytic (see Problem 022).
Observe that the set W, = {v € C,(K) : v(x4) > 0} is an open neighbourhood of
e, in C,(K) such that W, N T = {e,}; therefore every e, is an isolated point of 7.

For every s € w<® let Q; = {u} U {e, : a € A }; then every Q; is closed
in T and hence so is the set Py = (\{Qy}, : n € w} forany f € w®. Letting
¢(f) = Py forany f € [P we obtain a multi-valued map ¢ : P — T. It turns out
that P, is compact for every f € P, i.e., ¢ is compact-valued.

To prove this take any U € t(u, C,(K)); there is a finite set F/ C K and ¢ > 0
such that W = {v € C,(K) : |v(x)| < e forall x € F} C U. Consider the
set C = |J{supp(x) : x € F}. It follows from (ii) that there is m € w such that
C N Ay, is finite and therefore e(x) = 0 whenever x € F foralle € Q 7}, except
for finitely many of them. Since Py C Q s, it turns out that e(x) = 0 whenever
x € F for all but finitely many e € Py. Thus P/\U C Py\W is finite, i.e., we
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found a point u € Py such that P,\U is finite for any open neighbourhood of  in
C,(K). Therefore Py is a compact space with at most one non-isolated point and
hence the map ¢ is, indeed, compact-valued.

Given any a € A, it follows from the property (i) that there is a function f € P
witha € (\{A s}, : n € w} which shows thate, € Py and therefore { P/ : f € w®}
isacoverof 7.

Now assume that a sequence S = {f, : n € w} C w® convergesto f € w® and
t, € Py, forany n € w. Passing to a subsequence of S if necessary, we can assume,
without loss of generality, that f,|n = f|n and hence t, € Q 7, forany n € w.

If there exists a point f € T such thatt = 1, € Q s}, for infinitely many n € w
then ¢t € Py is an accumulation point of S. If not, then, passing to a subsequence of
S if necessary, we can assume that z, # f,, if n # m. To see that S — u take any
x € K; there is m € w for which the set D = supp(x) N Ay, is finite. We have
S ={ty :n=m} C Qyyand t, = e, wherea, € Ay, foranyn > m.
Therefore #,(x) = x(a,) = 0 for all n > m such that a, ¢ D. This proves that
t,(x) = O for all but finitely many n for any x € K and therefore the sequence
{tn 1n € w}convergestot =u € Py.

We checked that, in all cases, there is an accumulation point ¢ € Py for the
sequence {f,}; so we can apply SFFS-389 to conclude that T is K-analytic and
hence C,(K) is K-analytic as well by Problem 022. Fact 4 is proved.

Fact 5. There exists a compact space K with the following properties:

(i) Cp(K)is K-analytic, i.e., K is Talagrand compact;
(ii) there is a point u € K such that for any family {U, : n € w} C 7(K) we have
{u} # (WU, : n € ®} and, in particular, u is not a 7-point;
(iii) we have K = (J{K, : n € w} where the family {K, : n € w} is disjoint,
Ko >~ A(c) and u is the unique non-isolated point of Ky; besides, K, is clopen
in K and homeomorphic to a closed subspace of (A(c))® for any n € N.

Proof. For any ordinals ¢, f < w; the ordinal intervals are defined in the usual way,
ie,[a,Bl={y:y€ewanda <y <B},[a,B) ={y:y ewanda <y < B};
analogously, («,8) = {y : y € wyanda < y < B}.Let I = [0,1] C R and
denote by T the set ({0} x {nl :n e NHU((0,wy) xI). Thus T C [0, w1) x I; let
7w : T — [0,w;) be the projection, i.e.,if € [0,w), r € [ andt = (a,7) € T
then () = . Itis clear thata, = (0,1) € T forany n € N.

Call aset G C T thin if 7|G is injective and denote by F the family of all
non-empty finite thin subsets of 7. Let Ay = {{a,} : n € N}; it is straightforward
that Ay C F. Assume that @ < ; and we have families {Ag : B < «} with the
following properties:

(1) Ag C Fand |Ag| < cforany B < a;

(2) if B <o and A € Ag then {0, B} C 7(A4) and A C 7~'([0, B]);

(3) forany B € (0,) and r € I the family A/rg ={A e Ag: (B.r) € A}is
countably infinite, while the collection B, = {A\{(B8,r)}: A € Alrg} is disjoint
and contained in  J{A, : y < B};
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(4) if B € (0,) and C C (J{A, : y < B} is a countably infinite disjoint collection
then there are c-many r € [ such that A/rg ={CU{(B,r)}:C eC}.

Let M = {C : C C |J{Ap : B < a} is a countably infinite disjoint collection}; it
is clear that [M| < c; so there is amap g : I — M such that |g™'(C)| = ¢ for any
C € M. The family A, = {C U {(a,r)} : C € g(r)} is countable for any r € I; so
the collection A, = (J{A, : r € I'} has cardinality c.

It is immediate that the conditions (1)—(4) are still satisfied for all 8 < «; so our
inductive procedure gives us a collection {4, : ¢ < w;} for which the properties
(1)—(4) hold for any 8 < w;; let A = |J{ Ay : @ < w;}. It follows from (2) that,
for any A € A there are unique ¢ < w; and r € [ such that A € A/ ; call the point
t = (a,r) € A the maximal element of A and denote it by max(A).

Given a set A C T the characteristic function y4 € DT of the set A is defined
asusual: y4(t) = 1ift € Aand y4(t) = Oforall t € T\A. Let u = yg and
Y = {y4: A € A}; we are going to prove that the compact space K = Y (the bar
denotes the closure in D7) is as promised.

Observe that {a,} € A and hence yy,,; € Y foranyn € N;ifa > Oandr € /
then it follows from (3) that the sequence {x4 : A € AJ} converges to x{(q.r)}-
Therefore

(5) xyy€ Kforanyr €T.

It is straightforward that # belongs to the closure of the set {ygy : ¢ € T} and
hence u € K.
It is important to note that

(6) the set supp(x) = x~!(1) is thin for any x € K.

Indeed, if r; # rp, 1 = (a,r1), tn = (a,rz) and {t1,5,} C supp(x) then
it follows from x € Y that there exists A € A for which y4(t;) = 1 for every
i €{1,2},ie., {t;,r} C A which is a contradiction with A € F. This proves (6).

We will show next that K C X (D7) and hence K is Corson compact. Take an
arbitrary A € A; then A € A, for some @ < w; and hence (o, r) € A for some
r € I.If @ > 0 then it follows from (3) that A\{(«,r)} € A; proceed in the same
way inductively (i.e., at every step throw away the maximal element of the current
set) and observe that successively taking away some number of maximal elements
is the same as considering the set 7! ([0, B]) N 4 for some B < w;. Thus

(7) forany A € Aand B < w; the set 771 ([0, B]) N A also belongs to A.
The following property of the family A4 is crucial.

8)if A,B € Aand {t;,1,} C AN B forsome t;,t, € T with B = n(t;) < @ =
7(t;) then 771 ([0,¢]) N 4 = =~ 1([0,]) N B.

To see that the property (8) is true observe that A’ = 7~ !([0,a]) N 4 € A and
B’ = 771([0,a]) N B € Aby (7). Thereis r € I witht, = (a,r) € A’ N B'; so
it follows from (2) that A", B’ € A!; the family B}, is disjoint by (3) and both sets
A\{t,} and B'\{1,} belong to B.,. Now it follows from #; € (B'\{f2}) N (A'\{12})
that A” = B’; so (8) is proved.
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Now assume that A = supp(x) is uncountable for some x € K. Then there is
a € (A) such that w(A) N[0, ] is infinite; pick t = (a,7) € Aands = (B,q) € A
with B < a. The set O = {y € DT : y(s) = y(t) = 1} is an open neighbourhood
of the point x in D”; so it follows from x € Y thatx € Y N O. LetU = {B € A :
{t,s} C B};itisevidentthat Yo =Y N O = {yp : B € U}. It follows from (8)
that there exists a finite set H C 7' ([0, &]) such that BNz ~1([0,«]) = H for any
B € U. Since 7(A) N[0, «] is infinite, we can find y € (7 (A) N[0, ¢])\H.Ift' € A
and 7 (t") = y then there exists y = ypg € Yy for which y(¢) = 1 which shows that
B € U while ¢’ € (BN~ '([0,a])\ H which is a contradiction. Thus 4 = x~!(1)
is countable for any x € K and hence K C X(D”) is Corson compact.

To see that the space C,(K) is K-analytic consider, for any m,n € o, the set
S ={t = (a,r) € T :ecithera,4 ¢ Aforany A € A, witht € A or there is
A e Aysuchthatt € A, a,41 € Aand |[A| =m+ 1}. Let Ty = T;if s € 0=
and dom(s) = {0, ...,m — 1} for some m € Nthenlet Ty, = Sg(o) n...N S,‘;(Tl_l).
We will check that the family 7 = {T; : s € w=“} satisfies the conditions (i) and
(ii) of Fact 4.

Fix s € o<® andt = (a,r) € Ty; if s € 0" and a4+, ¢ A for any A € A with
max(A) =t thent € S N Ty = Ty~o. If there exists A € A such that max(A) = ¢
anda,4+; € Athent € S)' N Ty = Ty~ for m = |A| — 1. This shows that we have
Ty, = U{Ts~k : k € w} forany s € =%, i.e., the family 7 satisfies (i) of Fact 4.

To prove that the condition (ii) of Fact 4 is also satisfied take x € K and f €
w®; if |supp(x)| < o then there is nothing to prove; so we can apply (6) to fix
t,s € supp(x) such that 0 < m(¢) < 7(s). Since x € Y, there is A € A with
x4() = ya(s) = x(s) = x(¢) = 1 and therefore {z, s} C A. By (2) and (6), there
is a unique m € w with a,,+; € A. We claim that

9) |S* Nsupp(x)| < 1foranyk € w.

Assume, towards a contradiction that (9) is false; since supp(x) is thin by (6),
there are s",#" € supp(x) N S¥ such that @ = 7(s’) < B = n(¢'). It follows from
x € Y that there is B € A such that {¢,s,t’,s'} C B. The property (8) implies
that a,,+1 € B; furthermore, D = 7~1([0, 8]) N B € Aby (7) and ¢’ = max(D).
If D' € A, a,+1 € D' and ¢/ = max(D’) then D’ = D (see ()); so it follows
from ¢’ € S that |D| =k + 1.

Analogously, E = 77 1([0,«¢]) N B € A while a4+, € E and max(E) = s’.
Again, s’ € S¥ implies that |E| = k + 1; however, this is a contradiction because
E C D and E # D; so it is impossible that |D| = |E| = k + 1. Thus we
established the property (9) and therefore |supp(x) N Ty|ont1yl =< [supp(x) N
SH) < 15 since Trin C Tyimyry for any n > m + 1, we proved that
[supp(x) N Tsj4| < @ for any n > m + 1, i.e., the condition (ii) of Fact 4 is
also satisfied for 7. Thus C,(K) is K-analytic by Fact 4.

To prove that the point u € K satisfies the condition (ii) of our Fact, it suffices
to show that the set Y C K has the property (x) from Fact 3. So, assume that
S, C Y is a sequence which converges to u for any n € w. It follows from Fact 2
that there is a sequence S C Y for which § N S, is infinite for any n € w and
the family {supp(x) : x € S} is disjoint. To see that S flexibly converges to u let
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B, = supp(x) and suppose that G, is a Gs-subset of K with x € G, forany x € S.
Making every G, smaller if necessary we can assume that there exists a countable
Ay C T\By suchthat G, = {y € K : B, Csupp(y) C T\A.}.

The set A = (J{A, : x € S} is countable and it follows from u € S\S that
the family C = {B, : x € S} C A is countably infinite; there exists ¢ <
such that C C (J{Ap : B < a}and A C 7~ !([0,)); so it follows from (4) that
Al ={C U{(a,r)}: C €C}forsomer € I.

We have B, C E, = B, U {(«,r)} C T\ A, and therefore y(x) = yg, C Gy
for any x € §. It is clear that the sequence {y(x) : x € S} = {yp : B € A}
converges t0 y = X{(.r)} # 4 and hence S flexibly converges to u which, together
with Fact 3, shows that (ii) is proved.

To finally prove that the property (iii) holds for K observe that the subspace
Ko = {u} U{xyy 1t € (0,01) x I} C K is homeomorphic to the space A(c).
Let A, = {4 € A:a, € A} forany n € N; then A = [ J{A, : n € N} and
A, NA, =0ifn # m.

IfY,={y4: A€ A}and K, =7, forany n € N then K, C K is compact.
The set U, = {x € K : x(a,) = 1} is clopen in K and it is immediate that
K, = U, so K, is clopen in K for every n € N. It is straightforward that the family
{K, : n € w} is disjoint.

To see that K = |, ¢, Kn take any x € K\Ko; If x = xy,,) forsomen € N then
x € K,. If not then there are ¢, s € supp(x) such that 7(t) < 7(s). Since x € Y,
there is B € A such that {¢, s} C B; thereis aunique n € N with a, € B. It follows
from (8) that A € A, forany A € Awith {t,s} C A.Theset O ={y € K: y(t) =
y(s) =1}isopenin Kandx € O;50x € Y N O.ButY NO ={y4: A€ Aand
{t,sy C Ay C Y, andhencex € Y, = K,; so we proved that K = | J,¢,, Kn-

Now fix m € N; to prove that K, is homeomorphic to a closed subspace of the
space (A(c))® consider the set R = | J{supp(x) : x € K,,} = J{supp(x) : x €
Y} Foreveryt = (a,r) € R thereis A € A such that {a,,,t} C A; so it follows
from (8) that the set A’ N 77!([0, «]) is the same for any A’ € A,, witht € A’
Thus the number u(t) = |A N 771([0,«])| is well defined and depends only on ¢.
Let R, = {t € R: u(t) = n}foranyn € N. Then R = | J{R, : n € N} and the
family {R, : n € N} is disjoint. Besides,

(10) |supp(x) N R,| < 1forany x € K, andn € N.

Since Y, is dense in K, it suffices to prove (10) for every x € Y,,. Suppose that
x € Yy, t,s € supp(x) while o = 7(t) < B = =(s) and {¢,s} C R,. The set
A = supp(x) belongs to A,;let B = AN 7~ ([0,8]) and C = AN 7~ '([0, ]).
It follows from s € A N R, that |B| = n; since also ¢t € R,, we have |C| = n
which is impossible because B and C are distinct finite sets with C C B. This
contradiction shows that (10) is true.

Let 7g : DT — DR be the projection of DT onto its face DX; analogously g,
is the projection of D7 onto its face D® for any n € N. It is not difficult to see that
wR| Ky : Ky = mr(K,,) is a homeomorphism. Besides, 7z (K,,) is homeomorphic
to a closed subset of the product [[{7g, (K,;) : n € N}. Givent € R, letv, € D*
be the characteristic function of {¢} and denote by w, the function on R, which is
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identically zero on R,,. It follows from the property (10) that, for any n € N, we
have g, (K;n) C L, = {w,} U{v, : t € R,}. Since every L, can be embedded
in A(c) as a closed subspace, the space K,, embeds in (A(c))” for any m € w.
We finally checked (iii) and hence Fact 5 is proved.

Returning to our solution let M be the compact space K whose existence is stated
by Fact 5. The property (i) of Fact 5 says that C,,(M) is K-analytic. The property
(ii) of Fact 5 together with Fact 1 imply that there is a point x € M such that M \{x}
is pseudocompact and M is the Stone—Cech extension of M \{x}. Observe that M
embeds in C,(C,(M)); since C,(M) is Lindelof X, the space C,(C,(M)) and
hence M is w-monolithic and has countable tightness. Consequently, M is Fréchet—
Urysohn (see Fact 1 of U.080); so there exists a sequence S C Y = M \{x} which
converges to x. It is evident that .S is an infinite closed and discrete subset of ¥'; so
Y is not countably compact.

Finally,let X = C,(Y);if my : C,(M) — C,(Y) is the restriction map then it
follows from pseudocompactness of ¥ and BY = M that C,(Y) = ny(C,(M))
and hence X = C,(Y) is also K-analytic. Furthermore, Y embeds in C,(X) as a
closed subspace by TFS-167. Thus X is a K-analytic space such that the subspace
Y C C,(X) is closed, pseudocompact and not countably compact.

U.223. Suppose that, for a countably compact space X, there exists a condensation
f X = Z C Cy(Y), where C,(Y) is a Lindelof X-space. Prove that f is a
homeomorphism and X is Gul’ko compact.

Solution. If F is a closed subset of X then it is countably compact and hence so is
S (F) which implies, together with Problem 221, that f(F') is Gul’ko compact and
hence closed in Z; in particular, Z is Gul’ko compact. Thus our condensation f
is a closed map; this shows that f is a homeomorphism and X is Gul’ko compact
being homeomorphic to a Gul’ko compact space Z.

U.224. Give an example of a pseudocompact non-countably compact space X which
can be condensed onto a compact K C C,(Y), where C,(Y) is Lindelof X.

Solution. Let M be Reznichenko’s compactum (see Problem 222). Then there is a
point x € M such that X = M\{x} is pseudocompact while M is canonically
homeomorphic to BX. Observe that M embeds in C,(C,(M)); since C,(M)
is Lindelof X, the space C,(C,(M)) and hence M is w-monolithic and has
countable tightness. Consequently, M is Fréchet—Urysohn (see Fact 1 of U.080);
so there exists a sequence S C X which converges to x. It is evident that S is an
infinite closed and discrete subset of X; so X is not countably compact.

The space X being locally compact, there is a condensation ¢ : X — K
of X onto some compact space K (see Fact 3 of T.357). There is a continuous
mapping @ : M — K such that @|X = ¢ (see TFS-257). The dual map
@* : Cp(K) — Cp(M) embeds C,(K) in C,(M) as a closed subspace (see
TFS-163). As a consequence, the space ¥ = C,(K) is Lindel6f ¥ being a
closed subspace of a Lindelof X'-space C,(M ). By TFS-167 we can consider that
K C C,(Y); it follows from Problem 219 that C,(Y) is also a Lindelof X-space;
so our condensation ¢ is what we looked for.
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U.225. Give an example of a space X such that C,(X) is Lindelof X and some
pseudocompact subspace of C,(X) is not countably compact.

Solution. Let M be Reznichenko’s compactum (see Problem 222). Then there is
apoint x € M such that Y = M\{x} is pseudocompact while M is canonically
homeomorphic to Y. Observe that M embeds in C,(C,(M)); since C,(M) is
Lindelof ¥, the space C,(C,(M)) and hence M is w-monolithic and has countable
tightness. Consequently, M is Fréchet—Urysohn (see Fact 1 of U.080); so there
exists a sequence S C Y which converges to x. It is evident that S is an
infinite closed and discrete subset of Y'; so Y is not countably compact.

Since X = C,(M) is a Lindelof X'-space, the space C,(X) is also Lindelof
X by Problem 219. The restriction map = : C,(M) — C,(Y) is onto because
Y is pseudocompact and M = BY; thus the dual map 7* : C,(C,(Y)) —
C,(Cp,(M)) = Cp(X) is an embedding (see TFS-163). Since ¥ embeds in
C,(C,(Y)), it also embeds in C,(X). Therefore C,(X) is a Lindelof X'-space
which contains a pseudocompact non-countably compact subspace Y .

U.226. Observe that there exist Gul’ko spaces X such that t(Cp(X)) > w. Prove
that, if C,(X) is Lindeldf ¥ and Y C C,(X) is pseudocompact then Y must be
Fréchet—Urysohn.

Solution. Let M be Reznichenko’s compactum (see Problem 222). Then there
exists a point x € M such that the space X = M\{x} is pseudocompact while
M is canonically homeomorphic to SX; an immediate consequence is that the
restrictionmap 7 : C,(M) — C,(X) isontoso C,(X) is a Lindelof X'-space being
a continuous image of a Lindelof X¥-space C,(M). The space X is not compact
and hence not Lindel6f because it is a pseudocompact proper dense subspace of
M . Therefore t(C,(X)) > w (see TFS-149); so C,(X) is a Lindelof X'-space of
uncountable tightness.

Now assume that X is a space such that C,(X) is Lindelof X and ¥ C C,(X)
is pseudocompact. The space Z = 7Y is also pseudocompact (see Fact 18 of S.351);
since Z is closed in the Lindeldf space C,(X), it has to be compact. Therefore Z
is Gul’ko compact (see Problem 221); so #(Z) = w by TFS-189; besides, C,(X) is
w-monolithic (see Problem 208) and hence so is Z which shows that Z is a Fréchet—
Urysohn space (see Fact 1 of U.080). Finally, Y has to be a Fréchet—Urysohn space
being a subspace of a Fréchet—Urysohn space Z.

U.227. Show that there exists a space X such that C,(X) is a Lindelof X -space and
1(Y) > w for some o-compact subspace Y C C,(X).

Solution. Let S = {x € D“ : x~!(1) is finite}; since S = D! N o(w;), the space
S is homeomorphic to a closed subspace of o (w). The space o(w;) is o-compact
by Problem 108; so S is also o-compact. Furthermore, S C Y (w1) = Cp(A(w1))
(see Problem 105). The class L(X) of Lindelof X'-spaces is sk-directed (see SFFS-
254) and A(w;) is also Lindelof X' being compact; so we can apply Problem 092
to see that C;(S) belongs to (L(X))ss = L(X) and hence C,,(S, 1) is a Lindelof
X -space. Now apply Problem 217 to conclude that C,,(S) is a Lindelof X-space.
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Let z(o) = 1 for any o < wy; then z € D1\ X(w;). Since S C X (wy), for any
countable B C S we have 7 ¢ B (the bar denotes the closure in D®'). Therefore
Z = S U {z}is also o-compact and t(Z) > w.

Let us show that C,(C,(Z)) is a Lindelo6f X'-space. Since the restriction map
m: Cp(v(Cp(Z))) — C,(Cy(Z)) is continuous and onto, it suffices to show that
C,(v(Cp(Z2))) is Lindelof X'. The space v(Cp,(Z)) is canonically homeomorphic
totheset H = {f € R? : f is strictly w-continuous on Z} (see TFS-438). Observe
that S C Z is a Fréchet—Urysohn space so, for every f € H, the function f|S is
continuous. On the other hand, if f € RZ and f|S is continuous then f is strictly
w-continuous on Z; this is an easy consequence of the fact that z ¢ B for any
countable B C S.

Since v(Cp(Z)) ~ H, we established that the space v(C,(Z)) is homeomor-
phic to the set { f € RZ : f|S € C,(S)} = C,(S) x R where R is the factor of R?
determined by the pointz. If T = § @ {z} then v(C,(Z)) =~ C,(S) xR =~ C,(T).

The space T is o-compact and hence Lindelof X'; besides, C,(T) = C,(S) xR
is also Lindelof X because so is C,(S). This makes it possible to apply Okunev’s
theorem (see Problem 218) to conclude that C,(C,(T)) = C,(v(C,(Z))) is
a Lindelof X-space. Thus C,(C,(Z)) is a Lindel6f X-space as well being a
continuous image (under ) of the space C,(C,(T)) = C,(v(C,(2))).

Finally observe that, for X = C,(Z), the space Z embeds in C,(X) by TFS-167
and hence thereis Y C C,(X) with Y ~ Z and hence ¢(Y') > w. Therefore C,,(X)
is a Lindelof X'-space such that (Y') > o for a o-compact subspace Y C Cp,(X).

U.228. Let X be a space and denote by w : C,(vX) — C,(X) the restriction map.
Prove that, for any countably compact Y C C,(X), the space n='(Y) C C,(vX)
is countably compact.

Solution. To see that the set Z = 77 !(Y) C C,(vX) is also countably compact
suppose that D is a countably infinite closed discrete subspace of Z. Then E =
(D) has to have an accumulation point f € Y. Then g = 7 !'(f) € Z and g
is an accumulation point of D because 7 |(D U {g}) is a homeomorphism between
D U{g}and E U {f} (see TFS-437); this contradiction shows that Z is countably
compact.

U.229. Give an example of a space X such that 1= (Y) is not pseudocompact
for some pseudocompact Y C C,(X). Here m : C,(vX) — C,(X) is the
restriction map.

Solution. There exists an infinite pseudocompact space X such that the space ¥ =
C,(X,]) is also pseudocompact (see TFS-400 and TFS-398). Since every countable
subset of X is closed and discrete in X by TFS-398, the space X is not countably
compact; besides, vX = X (see TFS-415 and TFS-417).

If the set Z = n~1(Y) C C,(vX) = C,(BX) is pseudocompact then it is
bounded in C,(BX) and hence compact by Grothendieck’s theorem (Problem 044).
Therefore Y = C,(X,]) is also compact being a continuous image of Z. Thus X is
discrete by TFS-396; this contradiction proves that Y is a pseudocompact subspace
of C,(X) such that 7 ~!(Y) is not pseudocompact.
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U.230. Assume that vX is a Lindelof X-space and w : C,(vX) — C,(X) is
the restriction map. Prove that, for any compact subspace Y C C,(X), the space
7 1Y) C Cp(vX) is also compact.

Solution. The space Z = 7' (Y) C C,(vX) is countably compact by Problem
228; therefore ext(Z) = w and hence we can apply Baturov’s theorem SFFS-269
to see that Z is Lindelof and hence compact.

U.231. Assume that vX is a Lindelof X-space and w : C,(vX) — C,(X) is
the restriction map. Prove that, for any Lindelof X-space Y C C,(X), the space
7 1Y) C Cp(vX) is Lindeléf X.

Solution. Given a space Z we denote by KC(Z) the family of all compact subsets
of Z. There exists a second countable space M for which there is a compact cover
{Fx : K € (M)} of the space Y such that K C L implies Fx C Fp (see
Problem 213).If T = 7~ !'(Y) then Gx = n~!(Fx) is compact for any K € (M)
(see Problem 230). Therefore {G : K € IC(M)} is a compact cover of T' such that
K C L implies Gx C G.

If F is a closed discrete subspace of 7 then let Hx = Gg N F for any K €
IC(M); it is evident that {Hgx : K € K(M)} is a compact cover of F such that
K C Limplies Hxy C H;.Thus F is dominated by a second countable space; since
F is metrizable, it is Dieudonné complete; so we can apply Problem 213 again to
conclude that F is Lindelof X' and hence countable (it is evident that every Lindelof
discrete space is countable). This proves that ex?(7") = w and hence we can apply
Baturov’s theorem (SFFS-269) to conclude that 7 is Lindel6f. Any Lindeldf space
is Dieudonné complete (see TFS-462); so we can apply Problem 213 once more to
conclude that 7 = 7~ (Y) is a Lindel6f X-space.

U.232. Let X be a pseudocompact space and denote by w : Cp(BX) — C,(X) the
restriction map. Prove that, for an arbitrary Lindelof X' -space (compact space) Y C
C,(X), the space 1= (Y) C C,(BX) is Lindeléf X (or compact, respectively).

Solution. Observe that BX = vX because X is pseudocompact (see TFS-415 and
TFS-417). Now if ¥ C C,(X) is Lindelof ¥ then 7~!(Y) is a Lindeldf X-space
by Problem 231. If Y is compact then 7~ (Y) is also compact by Problem 230.

U.233. Give an example of a pseudocompact X such that x='(Y) C C,(BX) is
not Lindeldf for some Lindelof Y C C,(X). Here w : Cp(BX) — C,(X) is the
restriction map.

Solution. Let X be the ordinal w; with its usual order topology. Then X is
countably compact and BX = w; + 1 (see TFS-314). The space ¥ = C,(X) is
Lindelof by TFS-316 while #7!(Y) = C,(w; + 1) is not Lindeldf (see TFS-320).

U.234. Observe that C,(X) is a Lindelof X -space if and only if C,(vX) is Lindelof
X; prove that, for any X, the space C,(X) is K-analytic if and only if C,(vX) is
K-analytic. In other words, X is a Talagrand space if and only if vX is Talagrand.
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Solution. We identify the space P of the irrationals with w®;if p,g € Pthen p < ¢
says that p(n) < ¢g(n) forany n € w.

The restriction map 7 : C,(vX) — C,(X) is a condensation of C,(vX) onto
C,(X); thus the space C,(X) is a continuous image of C,(vX) and hence the
Lindelof X'-property of C,(vX) implies that C,(X) is also Lindelof X. Now, if
C,(X) is Lindelof X' then so is vX by Problem 206 which makes it possible to
apply Problem 231 to see that C,(vX) = 7' (C,(X)) is also a Lindelof X-space.
This shows that C,(X) is a Lindelof X'-space if and only if so is C,(vX).

If C,(vX) is K-analytic then C,(X) is also K-analytic being a continuous image
of Cp(vX). Now, if C,(X) is K-analytic then there is a compact cover {K, : p €
P} of the space C,(X) such that p < g implies K, C K, (see SFFS-391). The
space vX is Lindelof X' by Problem 206; so we can apply Problem 230 to see that
F, = n7!(K,) is compact for any p € PP. Therefore {F, : p € P} is a compact
cover of C,(vX) such that p < g implies F, C F,, i.e., the space C,(vX) is
P-dominated. Finally, apply Problem 215 to conclude that C,(vX) is K-analytic.
Thus C,(X) is K-analytic if and only if C,(vX) is K-analytic.

U.235. Suppose that C,(X) is a Lindelof X-space. Prove that C,,(vX) is a
Lindeldf X -space for everyn € N.

Solution. The space vX is Lindelof X' by Problem 206 and C,(vX) is Lindelof
% by Problem 234. Thus Problem 219 is applicable to conclude that C,, ,(VX) is
Lindelof X' for any n € N.

U.236. Given an arbitrary space X let w : Cp(vX) — C,(X) be the restriction
mapping. Let T* (@) = ¢ o 1 for any function ¢ € R€X) and observe that the map
a* : ROYX) - RGOX) s an embedding. Identifying the space v(C,(C,(X)))
with the subspace {¢ € R»X) : ¢ is strictly w-continuous on C,(X)} of the space
RS (X (see TFS-438) prove that

(i) 7*(Cp(Cp(X))) C 7™ (W(Cp(Cp(X)))) C Cp(Cp(vX));
(ii) if Cp(X) is normal then w*(v(C,(C,(X)))) = Cp(Cp(vX)) and hence the
spaces v(Cp(Cp(X))) and Cp(Cp(vX)) are homeomorphic.

Solution. If we consider that the spaces C,(X) and C,(vX) are discrete then
a* : REGX) — REWX) g the usual dual map between their spaces of continuous
functions. Thus TFS-163 is applicable to conclude that 7* is an embedding.

If ¢ € v(Cp(Cp(X))) then ¢ is strictly w-continuous on C,(X) and hence
7*(p) = ¢ o m is strictly w-continuous on C,(vX). The space vX being
realcompact, we have #,,(C,(vX)) = o (see TFS-434); so w*(¢) is continuous
on Cp,(vX) which shows that 7*(v(C,(C,(X)))) C C,(C,(vX)). This proves (i).

Furthermore, if the space C,(X) is normal and ¢ : C,(vX) — R is a
continuous function then ¢ o 77! C,(X) — R is w-continuous because
the map 7 is a homeomorphism if restricted to a countable subset of C,(vX)
(see TFS-437). The space C,(X) being normal, the map § = ¢ o n~! has to

be strictly w-continuous (see TFS-421) and 7*(§) = Eomr = poxlom = ¢.
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This shows that we have the inclusion C,(C,(vX)) C n*(v(C,(C,(X)))), ie.,
C,(Cp(vX)) = m*(W(CH(Cy(X)))); since 7* is a homeomorphism, we have
C,(Cp(vX)) = v(Cp(Cp(X))); so (ii) is proved.

U.237. Suppose that C,(X) is a Lindelof X-space. Prove that C,,(vX) is
homeomorphic to v(C,2,(X)) for everyn € N.

Solution. Since C,(X) is normal, the space C,(C,(vX)) is homeomorphic to
v(Cp(Cp(X))) by Problem 236; so the statement of this Problem is true for
n = 1. Proceeding by induction assume that v(Cp (X)) =~ C, 2 (vX) for some
k> 1.1IfY = Cpo(vX) then C,(Y) = Cpox4+1(vX) is a Lindelof X-space
by Problem 235. Thus we can apply Problem 236 to see that v(Cpor42(X)) =
v(Cp(Cp(Y))) =~ C,(Cp(vY)). Recalling that vY = Y because Y is a Lindelof
X -space (see Problem 235), we conclude that v(Cp 2k 42(X)) =~ C,(Cp(Y)) =
Cpok4+2(vX). This concludes the induction step and proves that v(C,2,(X)) is
homeomorphic to C)», (VX)) for any n € N.

U.238. Suppose that C,(X) is a Lindelof X' -space. Prove that C),5,11(vX) can be
condensed onto Cp,+1(X) for everyn € w.

Solution. The space X is dense and C-embedded in vX and hence the restriction
map r : Cp,(vX) — C,(X) is a condensation. Therefore the statement of our
Problem is true for n = 0. Now, if n > 0 then we can apply Problem 237 to see
that Y = Cp,(vX) is homeomorphic to v(Cp2,(X)); let Z = Cp2,(X). The
restrictionmap 7 : Cp,(vZ) — Cp(Z) = Cp2,+1(X) is a condensation; since ¥ =~
vZ, there is a homeomorphism £ between the spaces C,(Y) = Cj2,41(vX) and
C,(vZ).1tis evident that v o £ is a condensation of C,, 5,41 (vX) onto Cp, 2,41 (X).

U.239. Suppose that Cp, 55 +1(X) is a Lindelof X-space for some k € w. Prove that
Cpont+1(X) is a Lindelof X -space every n € w.

Solution. Given spaces Y and Z, the expression Y T Z says that ¥ embeds in
Z as a closed subspace. Observe that Z C C,(C,(Z)) for any space Z (see TFS-
167). Therefore C,(X) C C,3(X) C Cp5(X) E ..., ie., proceeding by a trivial
induction we can establish that C,(X) C Cj2,+1(X) for any n € w. In particular,
Cp(X) E Cpar+1(X) and hence C,(X) is a Lindelof X-space.

Given any n € o the space C, 7,41(vX) is Lindelof X' by Problem 235; besides,
the space Cp2,+1(X) is a continuous image of Cp2,4+1(vX) by Problem 238.
Therefore C),+1(X) is a Lindelof X-space for any n € .

U.240. Suppose that Cp, 2 (X) is a Lindelof X-space for some k € N. Prove that
Cpon(X) is a Lindelof X-space every n € N.

Solution. Given spaces Y and Z, the expression ¥ T Z says that ¥ embeds in
Z as a closed subspace. Observe that Z E C,(C,(Z)) for any space Z (see TFS-
167). Therefore C,(C,(X)) E Cp4(X) E Cp6(X) E ..., ie., proceeding by a
trivial induction we can establish that C,(C,(X)) E C,,(X) for any n € N. In
particular, C,(C,(X)) T C,2(X) and hence C,(C,(X)) is a Lindelf X-space;
let Y = C,(X). Finally, if n € N then Cp»,(X) = Cp2,—1(Y) is Lindelof X' by
Problem 239; so C)»,(X) is a Lindelof X-space for any n € N.
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U.241. Give an example of a space X such that C,(X) is not Lindelof while
Cpon(X) is a Lindelof X -space for every n € N.

Solution. Let S = {x € D” : x~!(1) is finite}; since S = D! N o(w;), the space
S is homeomorphic to a closed subspace of o (w). The space o(w;) is o-compact
by Problem 108; so S is also o-compact. Furthermore, S C Yy (w1) = Cp(A(w1))
(see Problem 105). The class L(X) of Lindelof X'-spaces is sk-directed (see SFFS-
254) and A(w;) is also Lindelof X' being compact; so we can apply Problem 092
to see that C7(S) belongs to (L(X))ss = L(X) and hence C, (S, 1) is a Lindeldf
X -space. Now apply Problem 217 to conclude that C,,(S) is a Lindelof X-space.

Let z(o) = 1 for any o < wy; then z € D'\ ¥'(w,). Since S C X(w;), for any
countable B C S we have 7 ¢ B (the bar denotes the closure in D®'). Therefore
X = S U {z} is also o-compact and 7 (X) > w.

Let us show that C,(C,(X)) is a Lindel6f X-space. Since the restriction map
m: Cp(v(Cp(X))) — C,(Cp(X)) is continuous and onto, it suffices to show that
C,(v(Cp(X))) is Lindelof X'. The space v(C,(X)) is canonically homeomorphic
totheset H = {f € RX : f is strictly w-continuous on X } (see TFS-438). Observe
that § C X is a Fréchet-Urysohn space so, for every f € H, the function f|S is
continuous. On the other hand, if € RY and f|S is continuous then f is strictly
w-continuous on X; this is an easy consequence of the fact that z ¢ B for any
countable B C S.

Since v(C,(X)) =~ H, we proved that the space v(C,(X)) is homeomorphic
to the set {f € RY : f|S € C,(S)} = C,(S) x R where R is the factor of RY
determined by the point z. If 7 = § @ {z} then v(C, (X)) =~ C,(S) xR =~ C,(T).

The space T is o-compact and hence Lindelof X'; besides, C,(T) = C,(S) xR
is also Lindelof X because so is C,(S). This makes it possible to apply Okunev’s
theorem (Problem 218) to conclude that C,(C,(T')) = C,(v(C,(X))) is a Lindelof
X -space. Thus C,(C,(X)) is a Lindelof X'-space as well being a continuous image
(under ) of the space C,(C,(T)) = C,(v(C,(X))).

However, the space C,(X) is not Lindelof because 1(X) > w (see TFS-189);
applying Problem 240 we conclude that C,,(X) is a Lindelof X-space for all
n € N, i.e., X is the promised example.

U.242. Give an example of a space X such that C,C,(X) is not Lindelof while
Cpont+1(X) is a Lindelof X -space for every n € w.

Solution. It was proved in Problem 222 that there exists a compact space M such
that C,(M) is K-analytic while there is a point x € M such that X = M\{x} is
pseudocompact and M is the Stone—Cech extension of X. Observe that M embeds
in C,(Cp(M)); since C,(M) is Lindelof X, the space C,(C,(M)) and hence M
is w-monolithic and has countable tightness. Consequently, M is Fréchet—Urysohn
(see Fact 1 of U.080); so there exists a sequence S C X = M \{x} which converges
to x. It is evident that S is an infinite closed and discrete subset of X; so X is not
countably compact and hence not Lindelof.

If m : C,(M) — C,(X) is the restriction map then it follows from pseudo-
compactness of X and BX = M that C,(X) = n(C,(M)) and hence C,(X)
is also K-analytic. Furthermore, X embeds in C,(C,(X)) as a closed subspace
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(see TFS-167) which shows that C,(C,(X)) is not Lindelof. Finally observe that
C,(X) is Lindelof ¥ so we can apply Problem 239 to conclude that Cp,41(X) is
a Lindelof X'-space for any n € w.

U.243. Prove that, for any space X, only the following distributions of the Lindelof
X -property in iterated function spaces are possible:

(i) Cpn(X) is not a Lindeldf X -space for anyn € N;
(ii) Cpn(X) is a Lindelof X-space for any n € N;
(iii) Cpon+1(X) is a Lindelof X-space and C,2,42(X) is not Lindelof for any
new;
(iv) Cponi2(X) is a Lindelof X-space and Cp2,+1(X) is not Lindelof for any
n e w.

Solution. If X is a discrete space of cardinality w; then C,(X) = R is not
Lindelof by Fact 2 of S.215; furthermore, X embeds in C,(C,(X)) as a closed
subspace; so C,(Cp,(X)) is not Lindeldf either. Since C,(X) is not Lindelof X, it
follows from Problem 239 that Cy,4+(X) is not Lindelof X' for any n € w. The
space Cp,(C,(X)) is not Lindelof X' so Problem 240 implies that C,,(X) is not
Lindelof X' for any n € N. Thus, (i) holds for the space X.

To prove that there exists a space X for which (ii) is true it suffices to consider
X = R. Then C,,(X) is a Lindelof X-space because it has a countable network
for any n € N. Next, observe that the space X from Problem 241 has the property
(iv) while the space X from Problem 242 has the property (iii).

To see that no other cases can occur, observe that if a space X does not have the
property (i) then Cpx(X) is Lindel6f X' for some k € N. Assume first that there
are m,/ € N with m even and / odd such that both spaces C,,,(X) and Cp;(X)
are Lindelof X. It is an immediate consequence of Problem 239 and Problem 240
that Cp, (X) is Lindelof X both for even and odd n € N, i.e., Cp,(X) is a Lindel6f
XY -space for all n € N. Thus we have the case (ii).

Now, if C,,(X) is Lindelof X for some even n € N and there exists no odd
m € w with C,,,(X) Lindelof X, then it follows from Problem 241 that we have
case (iv). Finally, if C, ,(X) is Lindel6f X for some odd n and there exists no even
m € w with C,,,(X) Lindelof X, then it follows from Problem 242 that we have
the case (iii).

U.244. Suppose that C, ¢ +1(X) is a Lindelof X -space for some k € w. Prove that,
if Cp2142(X) is normal for some | € w, then C,,(X) is a Lindelof X-space for any
neN

Solution. Given spaces Y and Z, the expression ¥ T Z says that ¥ embeds in
Z as a closed subspace. Observe that Z E C,(C,(Z)) for any space Z (see TFS-
167). Therefore C,(C,(X)) E Cp4(X) E Cp6(X) E ..., ie., proceeding by a
trivial induction we can establish that C,(C,(X)) E Cpy42(X) forany n € .
In particular, C,(C,(X)) E Cp+2(X) and hence C,(C,(X)) is a normal space.
It follows from TFS-295 that ext(C,(C,(X))) = .
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Apply Problem 239 to see that C,(X) is a Lindelof X-space; thus Baturov’s
theorem (SFFS-269) is applicable to see that [(C,(C,(X))) = ext(C,(C,(X))) =
w, i.e., the space C,(C,(X)) is Lindelof and hence realcompact which shows that
we have the equality v(C,(C,(X))) = C,(C,(X)). The space C,3(X) is also
Lindeldf X' by Problem 239; so v(C,(C,(X))) = C,(C,(X)) has to be a Lindelof
X -space by Problem 206. Finally, apply Problem 240 to see that C,,(X) is a
Lindelof X-space for all even n € N; by Problem 239 the space C), ,,(X) is Lindel6f
XY forall odd n € N;so Cp,,(X) is Lindelof X forall n € N.

U.245. Suppose that C, 2 42(X) is a Lindelof X -space for some k € w. Prove that,
if Cp2141(X) is normal for some | € w, then C,,(X) is a Lindelof X-space for any
neN

Solution. Given spaces Y and Z, the expression Y T Z says that ¥ embeds in
Z as a closed subspace. Observe that Z C C,(C,(Z)) for any space Z (see TFS-
167). Therefore C,(X) C C,3(X) C C,5(X) E ..., ie., proceeding by a trivial
induction we can establish that C,(X) C C,2,+1(X) for any n € w. In particular,
C,(X) E Cpa+1(X) and hence C,(X) is a normal space. It follows from TFS-295
that ext(Cp(X)) = w.

Apply Problem 240 to see that C,(C,(X)) is a Lindelof X-space; since
X embeds in C,(C,(X)) as a closed subspace, it also has to be a Lindelof
X -space. Thus Baturov’s theorem (SFFS-269) is applicable to see that /(C,(X)) =
ext(Cp(X)) = w,ie., Cp(X) is Lindelof and hence realcompact which shows
that v(Cp(X)) = C,(X). The space C,(C,(X)) being Lindel6f X' we can apply
Problem 206 to conclude that v(C,(X)) = C,(X) is a Lindelof X'-space. Finally,
apply Problem 240 to see that Cp,,(X) is a Lindelof X'-space for all even n € N;
by Problem 239 the space C),,(X) is Lindelof X' for all odd n € N; so C,(X) is
Lindelof X' foralln € N.

U.246. Prove that, if C,(X) is a Lindeldof X -space, then v(C,C,(X)) is a Lindelof
X -space.

Solution. It follows from Problem 239 that C,(C,(C,(X))) is a Lindelof X-space;
so v(C,(C,(X))) is also Lindeldf X' by Problem 206.

U.247. Prove that, if X is normal and v(C,(X)) is a Lindeldf X-space, then
v(C,C, (X)) is a Lindelof X-space.

Solution. There exists a space Y such that C,(Y) >~ v(C,(X)) (see TFS-439).
Thus C,(Y) is a Lindel6f X'-space and therefore v(C,(C,(Y))) is also a Lindelof
X -space by Problem 246. The restriction map 7 : C,(v(Cp(X))) — C,(C,(X))
can be extended to a continuous map 7 : v(C,(V(C,(X)))) = v(C,(Cp(X))) (see
TFS-413). For the set H = 7 (v(C,(v(C,(X))))) we have

(1) Cp(Cp(X)) C H Cu(Cpr(Cr(X))).

The space H is Lindelof X' (and hence realcompact) because H is a continuous
image of the space v(C,(v(C,(X)))) which is homeomorphic to a Lindel6f
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X-space v(C,(Cp(Y))). It follows from (1) that C,(C,(X)) is C-embedded in H;
so we can apply Fact 1 of S.438 to conclude that v(C,(C,(X))) = H is a Lindelof
XY -space.

U.248. Prove that, if X is realcompact and v(C,(X)) is a Lindelof X -space, then
v(C,Cp(X)) is a Lindelof X-space.

Solution. It follows from Problem 206 that vX = X is a Lindelof X'-space. Thus
X is normal and hence we can apply Problem 247 to see that v(C,(C,(X))) is a
Lindel6f X'-space.

U.249. Let w; be a caliber of a space X. Prove that C,(X) is a Lindeldof X -space if
and only if X has a countable network.

Solution. If network weight of X is countable then nw(C,(X)) = o, so C,(X) is
a Lindelof X' -space; this proves sufficiency. To deal with necessity, say that a space
Y is a counterexample if w is a caliber of ¥ while the space C,(Y) is Lindelof X
and nw(Y') > w. Our aim is to show that there are no counterexamples.

Assume towards a contradiction that a space X is a counterexample. Then
nw(vX) > nw(X) > o and w is a caliber of vX because X is dense in vX
(see SFFS-278). Furthermore, C,(vX) is a Lindelof X-space by Problem 234;
so vX is also a counterexample. Thus we can assume, without loss of generality,
that X = vX, ie., X is realcompact and hence X = vX is Lindelof X (see
Problem 206).

The space C,(X) being w-monolithic by Problem 208, if d(C,(X)) = o then
nw(Cp,(X)) = nw(X) = w, i.e., X is not a counterexample. Therefore C,(X) is
not separable and hence there exists a left-separated A C C,(X) such that | 4| = w;
(see SFFS-004).

Let ex(f) = f(x) for any point x € X and function f € A. Thene, € C,(A)
and the map e : X — C,(A) defined by e(x) = e, for any x € X is continuous
by TFS-166; let Y = e(X). It is clear that w(Y') < w(C,(A4)) < |A| = wi. There
exists a space Z and continuous ontomaps ¢ : Z — Y and £ : X — Z such that ¢
is a condensation, £ is R-quotient and ¢ o § = e (see Fact 2 of T.139). Any Lindelof
X' -space is stable by SFFS-266; so nw(Z) < w;.

The dual map £* : C,(Z) — C,(X) is a closed embedding of C,(Z) in C,(X)
(see TFS-163); so C,(Z) is also a Lindelof X'-space. Since Z is a continuous image
of X, the cardinal w, is a caliber of Z. We also have A C e*(C,(Y)) C §*(C,(Z))
(see Fact 5 of U.086) which shows that nw(Z) = nw(Cp,(Z)) = nw(A) > w;so Z
is still a counterexample.

Since nw(Z) = w;, we can take a dense set D in the space Z with |D| < wy;
let {zo : @ < w;} be an enumeration of the set D. If Z, = {z3: B <o} for
each o < w; then | {Z, : @ < wi} = Z because 1(Z) < I(Cp(Z2)) = w. If
Zy = Z for some o < w; then Z is separable and hence nw(Z) = w because any
counterexample is w-monolithic.

This contradiction shows that U, = Z\Z, € t*(Z) for any ¢ < w,. Besides,
a < B < w; implies Ug C U, and {Us : @ < @1} = @. Observe that the
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family Y = {Uy : @ < w1} C t*(Z) is uncountable because otherwise there is
ap < wi such that U, = U,, for any o > oy and hence AU = Uy, # @ whichis a
contradiction.

Now, if x € Z then there is 8 < w; such that x ¢ Upg. This implies that x ¢
U, for any ¢ > f which proves that I/ is point-countable. As a consequence, the
uncountable family &/ C t*(Z) is point-countable which contradicts the fact that w,
is a caliber of Z. This final contradiction shows that counterexamples do not exist;
therefore we proved necessity and made our solution complete.

U.250. Prove that there exists a space X such that w, is a precaliber of X, the space
Cpn(X) is a Lindelof X-space for all n € w, while X does not have a countable
network.

Solution. If Y = A(w;) then the space Y is compact and hence Lindel6f X. The
space X = C,(Y) is also Lindelof X' (see Problem 107);s0 Cp,(X) = Cp,—1(Y)
is a Lindelof X'-space for any n € N by Problem 219. The cardinal w; is a precaliber
of X by SFFS-283 while nw(X) = nw(Y) = w; so our space X has all the
promised properties.

U.251. Let X be a Lindelof X -space with wy a caliber of X. Prove that any Lindeldof
X-subspace of C,(X) has a countable network.

Solution. Recall that a space is called cosmic if it has a countable network. Suppose
that Y C C,(X) is Lindel6f X and not cosmic; since Y is monolithic (see SFFS-
266), it is not separable; so there is a left-separated A C Y such that |A| = w; (see
SFFS-004). Clearly, the set B = ANY is also Lindeldf X and not cosmic.

Lete,(f) = f(x)foranyx € X and f € A. Thene, € C,(A) forany x € X
and the map e : X — C,(A) defined by e(x) = e, for any x € X is continuous by
TFS-166; let X' = e(X). Then w(X’) < w(C,(A)) = w;. There exists a space Z
and continuous onto maps ¢ : Z — X’ and & : X — Z such that § is R-quotient,
¢ is a condensation and e = ¢ o £ (see Fact 2 of T.139). If £* : C(,(Z) — C,(X)
is the dual map of £ then it embeds C,(Z) in C,(X) as a closed subset by TFS-
163. Besides, A C e*(Cp(X')) C £*(Cp(Z)) (see Fact 5 of U.086) and hence
B C £*(C,(Z)); so Z is a Lindelof X-space with w; caliber of Z while a non-
cosmic Lindelsf X -space B embeds in C,(Z).

The space X being stable by SFFS-266, we have nw(Z) < w; so we can choose
aset D ={zy ;@ < w1} C Z whichisdensein Z. If Uy, = Z\{zg : B <} # 0
for every @ < w; then {U, : @ < w;} C t*(Z) is an uncountable point-countable
family which contradicts the fact that ) is a caliber of Z. Thus {zg : B < a} = Z
for some o < wy, i.e., Z is separable. Therefore iw(B) < iw(C,(2)) = d(Z) =
w; the space B is stable being Lindelof X' so nw(B) =  which is a contradiction
with A C B and nw(A) > w. This contradiction shows that every Lindelof X'-space
Y C C,(X) is cosmic.

U.252. Prove that a Lindeldf X' -space Y has a small diagonal if and only if it embeds
into Cp(X) for some X with w\ a caliber of X.
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Solution. If Y has a small diagonal then w; is a caliber of X = C,(Y) by SFFS-
294. The space Y embeds in Cp(X) = C,(C,(Y)) by TFS-167; so we proved
necessity. Now, if X is a space and w; is a caliber of X then C,(X) has a small
diagonal by SFFS-290; so if Y C C,(X) then Y also has a small diagonal (it is an
easy exercise that having a small diagonal is a hereditary property).

U.253. Prove that, if C,(X) is a Lindeldf X' -space and has a small diagonal then X
has a countable network.

Solution. The cardinal w,; is a caliber of the space X by SFFS-290; so X has a
countable network by Problem 249.

U.254. Suppose that a space X has a dense subspace which is a continuous image
of a product of separable spaces. Prove that any Lindeldf X -subspace of C,(X) has
a countable network.

Solution. Fix a Lindelof X-space L C C,(X) and let Y be a dense subspace
of X such that some product of separable spaces maps continuously onto Y. The
restriction map  : Cp(X) — C,(Y) is injective; sop = w|L : L - M = n(L)
is a condensation.

The cardinal w; is a caliber of the space Y (see SFFS-282 and SFFS-277); so
the diagonal of C,(Y) is small by SFFS-290. Therefore M has a small diagonal
as well. Furthermore, every compact subspace of C,(Y') is metrizable by TFS-307;
so all compact subspace of M are also metrizable. Thus we can apply Fact 1 of
T.300 to see that nw(M) = o and hence iw(M) = o (see TFS-156). Since L
condenses onto M, we have iw(L) = w and hence nw(L) = w because every
Lindelof X-space is stable by SFFS-266. Thus every Lindelof X'-space L C Cp,(X)
has a countable network.

U.2585. Prove that any first countable space is a Preiss—Simon space.

Solution. Suppose that y(X) = w and take a closed F C X. For any x € F we
have y(x, F') < w; so there is alocal base {U, : n € w} at the point x in F such that
Uy+1 CU,foranyn € w. IfU € 1(x, X)then UNF € 7(x, F);sothereism € w
with U,, C U N F. Consequently, U, C U,, C U for any n > m which shows that
the sequence {U, : n € w} converges to x. This proves that X is a Preiss—Simon
space.

U.256. Prove that any Preiss—Simon space is Fréchet—Urysohn.

Solution. Suppose that X is a Preiss—Simon space; given A C X and x € A, the set
F = Aisclosedin X and x € F; so there exists a sequence {U, : n € o} C t*(F)
which converges to x. Since A is dense in F, we have A N U, # @; choose a point
x, € ANU, forany n € w. Itis immediate that the sequence S = {x, :n € w} C A
converges to x; so X is a Fréchet—Urysohn space.

U.257. Give an example of a compact Fréchet—Urysohn space which does not have

the Preiss—Simon property.

Solution. It was proved in Problem 222 that there exists a compact space X
such that C,(X) is a Lindelof X'-space while X \{x} is pseudocompact for some
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non-isolated point x € X. The space X is w-monolithic because C,(X) is stable
(see SFFS-266 and SFFS-152); besides, f(X) < I[(C,(X)) = w (see TFS-189); so
X is a Fréchet—Urysohn space by Fact 1 of U.080.

Now, suppose that i/ = {U, : n € o} C t*(X) is a sequence that converges
to the point x and let W, = U,\{x} for any n € w. It is easy to check that the
family W = {W, : n € w} C t™(X\{x}) is locally finite in the space X \{x}.
If W is finite, say W = {V1,..., Vi} then pick a point y; € V; foreveryi < k.
Since U — x, there is U € U such that {yi, ..., yr} N U = @ which implies that
W s U\{x} ¢ {Vi,..., Vi}. Therefore W is an infinite locally finite family of non-
empty open subsets of a pseudocompact space X \{x}; this contradiction shows that
X is not a Preiss—Simon space.

U.258. Let X be a space which has the Preiss—Simon property. Prove that each
pseudocompact subspace of X is closed in X.

Solution. Suppose that P is a pseudocompact subspace of X . If there exists a point
x € P\P then we can apply the Preiss—Simon property to x and the closed set
F = P to obtain a sequence S = {U, : n € w} C t*(F) such that S — x. The
point x is not isolated in F'; so U, # {x} and hence V,, = U,\{x} # @ for any
n € . It is easy to see that the family V = {V, : n € w} C t*(F) is locally finite
in F\{x}. If V is finite, say V = {W,..., W} then choose a point z; € W; for
any i < k. Since x ¢ {z1,..., 2/, it follows from S — x that there is U € S with
UNn{zi,...,z} = @.Itis immediate that U\{x} € V while U\{x} & {W1,..., Wi}
which is a contradiction.

Therefore V is an infinite locally finite family of non-empty open subsets of
F\{x} while F\{x} is pseudocompact because P is dense in F'\{x} (see Fact 18
of $.351). This final contradiction shows that there are no points x € P\P, i.e., P
is closed in X .

U.259. Suppose that X is a Preiss—Simon compact space. Prove that, for any proper
dense Y C X, the space X is not the Cech-Stone extension of Y .

Solution. Assume, towards a contradiction, that X = BY for some proper dense
Y C X and fix a point x € X\Y. By the Preiss—Simon property of X there is a
sequence {U, : n € w} C 7*(X) which converges to x. The set Y is dense in X; so
we can pick a point yyp € Uy N Y and a set V) € t(yo, X) such that Vo C Uy and
x ¢ Vo letm(0) = 0.

Assume that k € w and we have chosen points yy, ..., Y, open sets Vy, ..., Vi
and natural numbers m(0), . .., m (k) with the following properties:

(1) m(@i) <m(i + 1) forany i < k;
2) yieV:, C V;cC Uny forany i < k;
(3) x ¢ V; forany i < k and the family {V; : i < k} is disjoint.

Since H = X\(\U{V; :i <k}) € t(x, X), there exists a number m(k + 1) €
such that m(k + 1) > m(k) and Upx+1) C H; the set ¥ being dense in X we
can find a point Y41 € Upg+1y N'Y and a set Vi1 € t(yis1, X) for which
x ¢ Vigr and Viyy C Upget). It is evident that (1)—(3) hold for all i < k + 1;
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so our inductive procedure can be continued to construct sequences {y; : i € w} C
X\{x}, {m(i) :i e o} Cwand{V; : i € w} C v(X) such that (1)—(3) are fulfilled
foralli < w.

An evident consequence of the properties (1) and (2) is that the sequence {V}, :
n € w} converges to x; the property (3) implies that the family V = {V; : i € w}is
discrete in X\ {x}. It follows from Fact 5 of T.132 that there is a continuous function
S+ X\{x} — [0, 1] such that f(y2;) = 0 and f(y24+1) = 1 foralli € w. The
function g = f|Y is continuous on Y. Since X = BY, thereis h € C,(X, [0, 1])
such that 4|Y = g and, in particular, h(y,;) = 0 and h(yz;4+1) = 1 foralli € w.
However, y,; — x and y»;+1 — x when i — 00; so it follows from continuity of
h that h(x) = 0 and h(x) = 1 at the same time; this contradiction shows that our
solution is complete.

U.260. Prove that the following properties are equivalent for any countably compact
space X :

(i) X is a Preiss—Simon space;
(ii) each pseudocompact subspace of X is closedin X ;
(iii) for each closed F C X and any non-isolated x € F, the space F\{x} is not
pseudocompact.

Solution. The implication (i)==>(ii) was proved in Problem 258. Suppose that (ii)
holds and a set F' is closed in X; if x € F is not isolated in F then F\{x} is not
closed in X; so it is not pseudocompact. This proves (ii)==>(iii).

Finally, assume that (iii) takes place. Given a closed F' C X and a non-isolated
point x € F, the set G = F\{x} is not pseudocompact; so there is a family U =
{U, : n € w} C t*(G) which is discrete in G. To see that i/ — x take any U €
t(x,X). If theset A = {n € w : U,\U # 0} is infinite then take x,, € U,\U for
any n € A.Since D = {x, : n € A} C X\U, the set U is an open neighbourhood
of x which does not meet D.

Assume that y # x;if y € X\ F then X\ F is a neighbourhood of y which does
notmeet D.If y € F then y € F\{x}; the family U/ being discrete in F\{x} there
exists a set W € t(y, F\{x}) such that W meets at most one element of ¢/ and
hence |[W N D| < 1.ThesetV = W U (X\F) is an open neighbourhood of y in X
and |V N D| < 1. Thus every y € X has a neighbourhood which meets at most one
element of D. This shows that D is an infinite closed discrete subspace of X which
contradicts countable compactness of X .

Consequently, U,\U = @ for all but finitely many n € @ which shows that
U, C U eventually and hence i/ — x. Thus X is a Preiss—Simon space; this settles
(iii)==(i) and completes our solution.

U.261. Let X be a Lindelof X -space. Suppose that Y C C,(X) and the set of non-
isolated points of Y is Lindelof X. Prove that C,(Y,]) is Lindelof X.

Solution. Let E be the set of non-isolated points of Y'; since E is Lindelof ¥, there
exists a countable family & C exp E which is a network with respect to a compact
cover C of the space E. We denote by Q the set Q N (0, 1).
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Given numbersn € N, § > 0, a point x = (x1,...,x,) € X" and f € Y let
O(f,x,6) ={geY :|g(x;)— f(x;)| <& foreveryi < n}.Itis evident that the
family {O(f. x,8) : § > 0 and there is n € N such that x = (x;,...,x,) € X"} is
alocal base in Y at the point f.

For arbitrary numbers ¢ > 0,6 > 0, n € N and a set P C FE consider the
set M(e,8,n,P) = {(p,x) e I" x X" : 9o € I', x = (x1,...,X,) € X" and
lo(f) —e(g)| < eforany f € Y and g € P such that f € O(g,x,8)}. We
claim that

(1) M(e,8,n, P) isclosedin TV x X" foranye >0, § >0, n e Nand P C E.

To see that (1) is true take any point (¢,x) € (I' x X")\M(e,8,n, P) where
x = (x1,...,X,) € X". By the definition of the set M (e, §,n, P) thereexist f € ¥
and g € P such that [o(f) —¢(g)| > eand f € O(g,x,8). Theset W = {n €
1Y : In(f)—n(g)| > e}isopeninI? and ¢ € W. Furthermore, the functions f and
g are continuouson X;sotheset V ={y e X : |f(y) — g(y)| < &} isopenin X
and x; € V forany i < n.Thus V" is openin X" and x € V". It is straightforward
that (W x V") N M(¢e,8,n, P) = @; since (¢, x) € W x V", we showed that any
point (¢,x) € (I x X")\M(e,§,n, P) has a neighbourhood W x V" contained
in the complement of M (e, §,n, P). Therefore (I' x X")\M (e, 8,n, P) is open in
IY x X", ie., M(e,8,n, P) is closed in IY x X™;s0 (1) is proved.

For any number n € Nlet 7 : I¥ x X" — ¥ be the natural projection;
for arbitrary ¢ > 0,6 > 0, and P C Y let L(s,8,n, P) = n(M(e,8,n, P)).
Observe that 1Y x X" is a Lindelof XY -space because so is X; it follows from (1)
that M (¢, §,n, P) is also Lindel6f X and hence L(g, 8, n, P) is Lindelof X' as well
being a continuous image of the Lindelof X'-space M (¢, §,n, P). Thus

(2) L(e,8,n, P) C 1" is a Lindelof X-space for any ¢ > 0, § > 0, n € N and
P CE.

The family £ = {L(¢,8,n,P):n €N, ¢,6 € Qo and P € F} is countable and
consists of Lindelsf X'-subspaces of I' . We will establish next that

(3) the family £ separates the set C,,(Y,I) from I \C,(Y,1) in the sense that, for
any ¢ € C,(Y,I) and n € I"\C,(Y,]) there is L € L such that ¢ € L while
ngL.

To prove (3) take any ¢ € C,(Y,I) and 5 € I\ C, (Y, I); since all points of Y \ E
are isolated, there is some point g € E such that 5 is discontinuous at g and hence
there is € € Q such that,

(4) foranyn € N, y = (y1,...,ys) € X" and § > O thereis f € O(g, y,$) for
which [n(f) —n(g)| > e.

The family C being a cover of the set £ we can choose a set C € C such that
g € C. For any element 7 € C the map ¢ is continuous at the point /; so there are
np €N, xp = (x},....x!) € X" and §, € Qg such that forany u € O(h. x;.38;)
we have |p(u) — ¢(h)| < 5. The open cover {O(h, x,,8;) : h € C} of the compact
set C must have a finite subcover and therefore there exists a finite D C C such
that C € G = | J{O(h,xp,8,) : h € D};then § = min{S, : h € D} € Q.
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Take m € Nand x = (x1,...,X,) € X" such that x! € {xi,...,x,,} for any
h € D andi < ny. There exists P € F such that C C P C G itis easy to check
thatif v € P andu € O(v, x,§) then |p(u) — (V)| < &.

Recalling the definition of M(e,§,m, P) we conclude that (¢,x) €
M(e,86,m, P) and therefore ¢ € L = L(g,8,m, P). On the other hand, we
have n ¢ L because g € P; so the property (4) says exactly that there isnon € N
and y € X" such that (n, y) € M(e, 8, n, P). Thus the property (3) is proved.

The property (3) shows that £ is a countable family of Lindelof X'-subspaces of
I which separates C, (Y, I) from I'\C,(Y,I). Since I is a compact extension of

C,(Y,1), it follows from SFFS-233 that C, (Y, I) is a Lindel6f X'-space.

U.262. Let X be an Eberlein—Grothendieck space. Suppose that the set of non-
isolated points of X is o-compact. Prove that C,(X,1) is K3

Solution. There is a compact space K such that X C C,(K); let E be the set of
non-isolated points of X . There exists a countable family C of compact subspaces
of E such that £ = [ JC. We denote by Qg the set Q N (0, 1).

Given numbersn € N, § > 0, apoint x = (x1,...,x,) € K" and f € X let
O(f,x,6) ={g e X :|gx;)— f(x;)| < foreveryi < n}.Itis evident that the
family {O(f, x,8) : § > 0 and there is n € N such that x = (xy,...,x,) € K"} is
alocal base in X at the point f.

For arbitrary numbers ¢ > 0, 6 > 0, n € N and a set P C E consider the
set M(,8,n,P) = {(¢.x) e ¥ x K" : ¢ e IX, x = (x1,...,x,) € K" and
lo(f) —e(g)] < eforany f € X and g € P such that f € O(g,x,8)}. We
claim that

(1) M(e,é,n, P)is closed in I¥ x K" foranye >0, § >0, n e Nand P C E.

To see that (1) is true take an arbitrary point (¢, x) € (I* x K")\M(e,8,n, P)
where x = (x1,...,x,) € K". By the definition of the set M(g,§,n, P) there
exist f € X and g € P such that |p(f) — ¢(g)] > ¢ and f € O(g,x,9).
The set W = {n € T¥ : |n(f) —n(g)| > &} is openin I¥ and ¢ € W.
Furthermore, the functions f and g are continuous on K; so the set V = {y €
K:|f(y)—g(y)| <é}isopenin K and x; € V foranyi < n. Thus V" is open
in K" and x € V". It is straightforward that (W x V") N M(e,8,n, P) = @; since
(p,x) € W x V", we showed that any point (¢, x) € (I¥ x K")\M(e,§,n, P) has
aneighbourhood W x V" contained in the complement of M (e, §, n, P). Therefore
(I* x K")\M(g,8,n, P)isopenin ¥ x K", i.e., M(g,8,n, P)is closed in I* x K";
so (1) is proved.

For any number n € N let 7 : I¥ x K" — IX be the natural projection;
for arbitrary ¢ > 0, § > 0, and P C X let L(¢,8,n, P) = n(M(e,8,n, P)).
Observe that I¥ x K" is a compact space because so is K it follows from (1) that
M(e,8,n, P) is also compact and hence L(e,8,n, P) is compact as well being a
continuous image of the compact space M (¢, §,n, P). Thus

(2) L(s,8,n, P) CI¥ is compactforany e >0, § >0, n € Nand P C E.
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The family £ = {L(¢,6,n,C) :n € N, ¢,§ € Qp and C € C} is easily seen to
be countable; besides, it consists of compact subspaces of the space I¥. Therefore
the set H[C,¢] = (J{L(¢,86,n,C) : n € Nand § € Qo} is o-compact for any
C € C and ¢ € Q. We will establish next that

(3) Cp(X.T) = "{H[C.€]: £ € Qp. C €C}.

To prove (3) take 7 € I*\C,(X,I); since all points of X \E are isolated, there
is some point g € E such that 7 is discontinuous at g and hence there is ¢ € Qg
such that,

(4) foranyn e N, y = (y1,...,ys) € K" and § > O thereis f € O(g, y,4) for
which [n(f) = n(g)| > &.

The family C being a cover of the set E we can choose C € C such that g € C.
Observe that n ¢ H[C, €] because g € C; so the property (4) says exactly that there
arenon € N, § € Qpand y € K" such that (n, y) € M(e,6,n,C). Thusn ¢ H =
(WHI[C,¢]: C €C, & € Qo} forany n € IX\C,(X,]),ie, H C C,(X,]).

To prove the opposite inclusion take any ¢ € C,(X,I) and fix C € Cande € Q.
For any element 7 € C the map ¢ is continuous at the point s and hence there
exist n, € N, x;, = (x?,...,x,’}h) € K" and 6, € Qg such that for any u €
O(h, xp, 38,) we have |p(u) — ¢(h)| < 5. The open cover {O(h, x;,8,) : h € C}
of the compact set C has a finite subcover; so there is a finite D C C such that
C c G =\ J{O(h,xp,6y) : h € D};then § = min{s;, : h € D} € Q. Take
me Nandx = (xq,...,x,) € K™ suchthatx{’ € {x1,..., Xy} forany h € D and
i <ny.Itiseasy to check thatif v € C and u € O(v, x, §) then |p(u) — ¢(v)| < e.
Recalling the definition of M (g, §, m, C) we conclude that (¢, x) € M(g,6,m,C)
and therefore ¢ € H[C,¢]. The set C € C and ¢ € Q( were chosen arbitrarily; so
¢ € H and hence H = C,(X, 1), i.e., the property (3) is proved.

Finally, apply (3) to conclude that the space C, (X, I) is a countable intersection
of o-compact subspaces of I¥, i.e., C,(X,I) is a K,s-space.

U.263. Let X be a second countable space. Prove that, for any M C X, the space
C,(Xum, 1) is Lindelof X.

Solution. Observe that the space Xy is Tychonoff and all points of X\M are
isolated in Xy; besides, the topologies induced on M from Xj; and X coincide
which shows that M is also second countable if considered as a subspace of X/
(see Fact 1 of S.293).

Fix a countable base B in the space X; since the topology of X is stronger than
the topology of X, every B € B is a cozero-set in Xjs; so we can take a function
fB € Cp(Xum, 1) such that X, \U = f;'(0) forany B € B.

Let x(x) = 1 and y.(y) = O for each y € Xp\{x}; then . € Cp(Xy)
for any x € X\ M. If u is the function which is identically zero on Xy then the
set F' = {yx : x € Xyy\M} U {u} is compact because F\U is finite for any
U € t(u,Cp(Xn)). It is straightforward that the set ¥ = F U {fp : B € B}
separates the points and the closed subsets of X ;.

Lete.(f) = f(x) for any point x € X and function f € Y. Thene, € C,(Y)
and themap e : X — C,(Y) defined by e(x) = e, for any x € X is an embedding
by TFS-166. Therefore X can be embedded in C,,(Y") for a o-compact (and hence
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Lindelof ¥ -) space Y. We have noticed already that the set E of non-isolated points
of X}y is contained in M ; so w(E) < w and, in particular, E is a Lindelof X'-space.
Therefore Problem 261 can be applied to conclude that C,(Xy,I) is a Lindelof
X -space.

U.264. Let X be a o-compact Eberlein-Grothendieck space. Prove that C,(X) is a
K,s-space.

Solution. Let J = (—1,1) C I and fix a homeomorphism £ : R — J. Then the
map 7 : R¥ — JX defined by (f) = £ o f forany f € R¥ is a homeomorphism
and n(C,(X)) = C,(X, J) (see TFS-091).

There exists a K,s5-space Z such that C,(X) C Z C RY (see Problem 202).
Then T = n(Z) is also a Kys-space and C,(X,J) C T C JX . The space C,(X.0)
is also K44 by Problem 262;s0 H = C,(X,I) N T is a Kys-space as well (see TFS-
338 and Fact 7 of S.271). It is clear that C,(X,J) C H. Given f € H, it follows
from f € C,(X,I) that f is continuous on X; besides, f € J X and therefore
f € C,(X,J). This proves that C,(X,J) = H is a K,s-space and hence so is
C,(X) being homeomorphic to C, (X, J).

U.265. Give an example of a Lindeldf space X such that C,(X,1) is Lindelof X and
X x X is not Lindeldf.

Solution. Given a space Z and aset A C Z we will denote the space Z4 by Z[A];
recall that the underlying set of Z[A] is Z and its topology is generated by the
family t(Z)U{{z} : z € Z\ A}. It follows from Problem 090 that there exist disjoint
sets A, B C I such that both spaces (I[A])® and (I[B])® are Lindelof. Therefore the
space X = [[A] @ 1[B] is also Lindel6f. Both spaces C, (I[A], I) and C,(I[B], ) are
Lindel6f X' by Problem 263 which shows that C,(X,I) ~ C,(I[4],I) x C,(I[B].I)
(see TFS-114) is also Lindelof X'. However, the space [[A] x [[ B] is not normal (see
Fact 5 of U.093) and embeds in X x X as a closed subspace; so X x X is not normal
and hence not Lindel6f.

U.266. Suppose that v(C,(X)) is a Lindelof X-space and s(C,(X)) = w. Prove
that nw(X) = w.

Solution. The space C,(X) is w-stable by SFFS-267; so the space X and hence
X x X is w-monolithic (see SFFS-152 and SFFS-114). Furthermore, s(X x X) <
s(Cp(X)) = w (see SFFS-016) which, together with Fact 1 of U.127 shows that
hli(X x X) = w. Therefore A(X) = w and the space X is realcompact being
Lindeldf. Thus vX = X is a Lindelof X'-space by Problem 206; so it follows from
A(X) = w that nw(X) = w (see SFFS-300).

U.267. Suppose that C,(X) is hereditarily stable and vX is a Lindelof X -space.
Prove that nw(X) = w.

Solution. A metrizable space is w-stable if and only if it is separable (see SFFS-
106); in particular, a discrete space is w-stable if and only if it is countable. Thus,
hereditary stability of C,(X) implies s(C,(X)) = w. Therefore s(X x X) <
s(Cp(X)) = w (see SFFS-016); since C,(X) is stable, the space X and hence
X xX is monolithic which, together with Fact 1 of U.127 shows that /(X xX) < w.
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Therefore A(X) = w and the space X is realcompact being Lindelof. Thus X =
vX is a Lindelof X-space; so we can apply SFFS-300 to conclude that X has a
countable network.

U.268. Show that if C,(X) is hereditarily stable then nw(Y) = w for any Lindelof
X -subspace Y C X.

Solution. A metrizable space is w-stable if and only if it is separable (see SFFS-
106); in particular, a discrete space is w-stable if and only if it is countable. Thus,
hereditary stability of C,(X) implies s(C,(X)) = w. Therefore s(X x X) <
s(Cp(X)) = w (see SFFS-016); since C,(X) is stable, the space X and hence X x X
is monolithic which, together with Fact 1 of U.127 shows that /(X x X) < w and
therefore A(X) = w, i.e., X has a Gs-diagonal. Finally, if ¥ C X is a Lindelof
XY-space then A(Y) < A(X) = w; so we can apply SFFS-300 to conclude that Y
has a countable network.

U.269. Suppose that v(C,(X)) is a Lindelof X -space and w, is a caliber of C,(X).
Prove that nw(Y') = w for any Lindelof X -subspace Y C X.

Solution. If K is a compact subspace of the space X then the restriction map
m: Cp(X) = C,(K) is continuous and onto (see Fact 1 of T.218). Therefore w; is a
caliber of the space C,(K). There is a continuous map & : v(C,(X)) = v(C,(K))
such that £|C,(X) = = (see TFS-413); let C = &(v(C,(X))). The space C
is Lindelof X' and Cp,(K) C C C v(C,(K)) which shows that C = vC =~
v(Cp(K)) (see TFS-414); so v(C,(K)) is a Lindelof X-space.

Now let us look at the restriction map r : C,(v(C,(K))) — C,(C,(K)); we
can consider that K C C,(C,(K)) (see TFS-167). It follows from Problem 230
that K’ = r~!(K) is compact; so the condensation s = r|K’ : K’ — K is
a homeomorphism. We have #(K’) < #(C,(v(Cp(X)))) < w; so t(K) = w
and hence C,(K) is realcompact by TFS-429. Thus C,(K) = v(C,(K)) is a
Lindelof X'-space. By Okunev’s theorem (Problem 218) the space C,(C,(K)) is
also Lindeldf ¥ which makes it possible to apply Problem 249 to conclude that
nw(C,(K)) = w and hence w(K) = nw(K) = w. As a consequence

(1) any compact subspace of X is metrizable.

Finally, if Y C X is a Lindelof X'-subspace of X then any compact subspace of
Y is metrizable by (1); the space X has a small diagonal by SFFS-293 and hence
the diagonal of Y is small as well. Thus we can apply Fact 1 of T.300 to conclude
that nw(Y) = w.

U.270. Show that there exists an example of a space X that has a weakly o-point-
finite family U C t*(X) which is not o-point-finite.

Solution. If Z is a space and A C exp Z say that A is point-finite at a point
z € Z if the family {4 € A : z € A} is finite. The space of the irrationals is
denoted by P; it is identified with the space w®. Given p,q € Pwelet p < ¢
if p(n) < gq(n) for any n € w. Take a point a ¢ P and introduce a topology
w on the set T = {a} U P declaring all the points of P isolated and taking as
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a base at a the family of all complements of closed discrete subspaces of P. It
is easy to see that the space Y = (T, ) is Tychonoff and zero-dimensional. Let
X ={f € C,(Y,D) : f(a) = 0}. As usual, if A C T then y4 € DT is the
characteristic function of 4, i.e., y4(¢) = 1 forallt € A and y4(t) = 0 whenever
t € T\A.

The space P being second countable it is easy to find a countable family 5 of
open subsets of PP such that B is an outer base at any compact K C P, i.e., for any
U € t(K,P) there is B € B such that K C B C U. For any point p € P the set
O,={f€X: f(p) =1}isopenin X. We claim that i/ = {0, : p € P} is the
promised family. Observe first that, for any p € P we have y¢,3 € O,,i.e., O, # 0.

Assume that V, C t*(X) is point-finite forany n € w and U = (J{V, : n € w}.
Let P, ={p € P: O, € V,} forany n € w. The space P is not o-compact; so it
follows from P = | J{ P, : n € w} that there is m € w such that P, is not compact;
it is an easy exercise to see that there is an infinite D C P,, which is closed and
discrete in IP. Therefore f = yp € X and the point f belongs to every element of
the infinite subfamily {O, : p € D} of the family V,,, i.e., V,, is not point-finite at
f - This contradiction proves that I/ is not o-point-finite.

To see that U/ is weakly o-point-finite let dpg = {O, : p € B} forany B € B.
Then C = {Up : B € B} is a countable collection of subfamilies of /. To prove
that C witnesses that I/ is weakly o-point-finite take any f € X and p € P. The set
K ={g€eP:q < p}iscompactand p € K.Theset E = f~'(1) being closed and
discrete in PP, the intersection F = E N K has to be finite. The set W = P\(E\F)
is an open neighbourhood of K in IP so there is B € I3 for which K C B C W.In
particular, BN E = F is a finite set and therefore U is point-finite at /. Since also
O, € Up, we proved that i = \U{Up : Up is point-finite at f}, i.e., U is weakly
o-point-finite.

U.271. Suppose that X is a space and s(X) < k. Prove that any weakly o-point-
finite family of non-empty open subsets of X has cardinality < k.

Solution. Given a space Z and a family A C expZ let A(z) = {A € A:z¢€ A}
and ord(z, A) = |A(z)| for any z € Z; the family A is point-finite at a point 7 € Z
iford(z, A) < w. Say thata set D C Z is dense in Aif D N A # @ forany A € A.

Fact 1. Given a space Z and a family & C t*(Z) there is a discrete D C Z such
that | {U e : DNU # 8} =U.

Proof. If U = 0 then there is nothing to prove. If not, take any U € U and zp € U.
Suppose that 8 < |Z|* is an ordinal and we have a set {z, : « < B} C Z with the
following properties:

D) Wo =U{UU(z,)) 1y <o} #|JU forany o < B;
(2) zo € (UU)\W, forany o < .

If W = (J{UU(za) @ @ < B} = (JU then our inductive construction stops.
If Wp # |JU then we can choose V € U and zg € V\Wj. It is evident that the

properties (1) and (2) are still fulfilled for all @ < f; so our inductive construction
can be continued.
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Observe that it follows from the property (2) that y # o implies z, 7# z,. Since
we cannot have a faithfully indexed set {z, : @ < |Z|*} C Z, our inductive
procedure has to stop for some 8 < |Z|* and hence | J{{ U (z) : o < B} = U U;
this shows that, for the set D = {z, : @ < B} wehave | J{U e U : DNU # @} =
(JU. Finally, the set D is discrete because (| JU(zy)) N D = {z4} for any @ < B;
so Fact 1 is proved.

Fact 2. Suppose that A is an infinite cardinal, Z is a space and B C t*(Z) is a
family with ord(z, B) < A for any z € Z. Then there exists a family {D, : o < A}
of discrete subspaces of Z such that, for the set D = | J{D, : @ < A}, we have
DN B # @forany B € B. In particular, if B is point-finite then there is a o-discrete
subset of Z which is dense in .

Proof. Givenaset A C ZandC C BletC(A) = {B € C: BN A # @} and
C[A] = C\C(A); assume towards a contradiction that B[A] # @ for any set A which
can be represented as a union of < A-many discrete subspaces of Z.

Apply Fact 1 to find a discrete subspace Dy C Z such that | J B(Dy) = | B and
let Dy = B(Dy). Assume that, for some 8 < A, we have a family {D,, : ¢ < B} of
discrete subsets of Z and a collection {D,, : @ < 8} of subfamilies of 5 such that

(3) D, C B(Dy) forany o < ;
@) if E, = U{Dy 1 y <a}, Cy = B[E,] then Dy = Cy(Dy) and | JD, = |JCy
for any @ < B;

Let Eg = | J{Dy : @ < B}; our assumption about B shows that Cg = B[Eg] #
@; so we can apply Fact 1 to find a discrete set Dg C Z such that ( JCg(Dg) =
(U Cg. If we let Dg = Cg(Dp) then it is evident that the properties (3) and (4) are
still fulfilled for all @ < B; so our inductive procedure can be continued to construct
a family {D, : ¢ < A} of discrete subsets of Z and a collection {D, : ¢ < A} of
subfamilies of B for which (3) and (4) hold for all § < A.

Let D = [ J{Dy : @ < A} and use again our assumption about 1 to find a set
U € B[D]; fix a point x € U. It follows from (4) that U € C, and hence there is
By, € D, such that x € B, for any o < A. Another consequence of (3) and (4) is
that the collection {D, : o < A} is disjoint; so B, # Bg whenever o # . Since
x € (\{By : @ < A}, we have ord(x, B) > A which is a contradiction. Fact 2 is
proved.

Returning to our solution suppose that i/ C t*(X) is weakly o-point-finite and
fix a collection {U,, : n € w} of subfamilies of &/ which witnesses this. If z € X then
let A = {n € w : the family U, is point-finite at z}; we have Y = | J{U, : n € A}
which shows that U (z) C | J{U,(z) : n € A} and hence

(5) the family U/(z) is countable for any z € Z.

Consider the set X, = {x € X : U, is point-finite at x} for any n € w. Then
(U{X, : n € o} = X because, for any x € X there is n € w such that the family
U, is point-finite at x. By Fact 2, there exists a o-discrete D,, C X, such that D, is
denseinV, ={UNX,:U el,and U N X,, # 0}.
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The set D = | J{D, : n € w} is also o-discrete; we claim that D is dense
in Y. Indeed, given U € U pick a point x € U. By the choice of the collection
{U, - n € o}, we have U = | J{U, : the family U, is point-finite at x}. Therefore
there is n € w with ord(x,U,) < w and U € U,. As a consequence, x € X, and
therefore U N X,, € V, which shows that D, N(UNX,) # @ andhence DNU # 0.

The set D being o-discrete, it follows from s(X) < « that |D| < k. Therefore
U = | J{U(z) : z € D} which, together with (5), implies || < k and makes our
solution complete.

U.272. Give an example of a non-cosmic Lindeldf X' -space X such that any closed
uncountable subspace of X has more than one (and hence infinitely many) non-
isolated points.

Solution. Such a space can even be compact. Indeed, let X = Bw where w is
taken with the discrete topology and take any infinite closed F C X. There is an
infinite discrete subspace D C F (see Fact 4 of $.382); so |D| = 2¢ by Fact 1 of
S.483. Every point of D\ D is not isolated in F; so we have 2¢ non-isolated points
in the subspace F'. Finally, X is not cosmic because | X | = 2¢ (see TFS-368) while
|Z| < ¢ for any cosmic space Z (see TFS-156, TFS-159 and SFFS-015).

U.273. Suppose that C,(X) is a Lindelof X-space. Prove that, if all closed
uncountable subspaces of C,(X) have more than one non-isolated points, then
C,(X) has a countable network.

Solution. If ¥ = vX then both spaces Y and C,(Y) are Lindelof X (see
Problems 235 and 206). Let u(y) = 0 for all y € Y; the spaces Y and C,(Y)
are w-monolithic by Problem 208; so if nw(X) > w then nw(Y) > o and hence
Y(Cp(Y)) = d(Y) > w which implies /(C,(Y)\{u}) > w (see Fact 1 of U.027).
Apply Baturov’s theorem (SFFS-269) to find a closed discrete D C C,(Y)\{u}
with |D| = w;. Itis evident that the set H = D U {u} is closed in C,,(Y) and has a
unique non-isolated point u.

If 7 : Cp(Y) — Cp(X)is the restriction map then the set £ = m(H ) is uncount-
able because 7 is a condensation; let v = 7 (u). The set H is concentrated around
the point u in the sense that H\U is countable for any U € t(u, C,(Y)). This
property is, evidently, preserved by continuous maps; so the set E is concentrated
around the point v.

To see that the set E is closed in C,,(X) take any function f € C,(X)\E; then
f # v;sowecanchoose V € t(f, C,(X))suchthatv ¢ V.Since W = Cp(X)\V
is an open neighbourhood of v, the set Eg = E\W is countable; let Hy = 7~ (E).
It is clear that f ¢ (W N E); besides, if f € Egthen g = 7~ '(f) € H, because
the map 7 |(Hy U {g}) — Eo U{ [} is a homeomorphism (see TFS-436). However,
Hy C H because H is closed in C »(Y) so g € H which is a contradiction. This
proves that f ¢ E forany f € C,(X)\E,ie., E isclosed in C,(X).

Finally observe that v is the unique non-isolated point of the subspace E; indeed,
if f € E\{v}isnotisolatedin E thentake V' € t(f, C,(X))suchthatv ¢ V. Since
E is concentrated around v, the set IV N E is countable and hence there is a countable
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M C E suchthat f € M\M;let N = 7~ (M) and g = 7~ '(f). Apply TFS-
436 once more to see that g is an accumulation point of the set N because 7 |(N U
{g}) : NU{g} - M U {f} is a homeomorphism. As a consequence, g # u is a
non-isolated point of H which is a contradiction. Thus E is a closed uncountable
subspace of C,(X) with a unique non-isolated point. This final contradiction with
our assumption about C,(X) shows that nw(C,(X)) = nw(X) = w.

U.274. Let X be a Lindeldof X -space with a unique non-isolated point. Prove that
any subspace of C,(X) has a weakly o-point-finite Ty-separating family of cozero
sets.

Solution. It is evident that having a weakly o-point-finite 7p-separating family of
cozero sets is a hereditary property so it suffices to construct such a family in C, (X).
Denote by a the unique non-isolated point of X and let D = X\{a}. The space X
being Lindelof X, there is a countable family 7 of closed subsets of X which is a
network with respect to a compact cover C of the space X. Let O+ = QN (0, +00)
and Q_ = QN (—00,0).If g € Q4 thenlet O, = (¢, +00); if ¢ € Q_ then
Oq = (—OO, Q)

Fact 1. If Z is a space with a unique non-isolated point then Z & {t} ~ Z for
any t ¢ Z.

Proof. We can consider that both Z and {¢} are clopen subspaces of Z & {¢}. Letw
be the non-isolated point of Z; there are two cases to consider.

a) There is an infinite Y C Z\{w} such that w ¢ Y. Then Y is a clopen discrete
subspace of Z; so Y @ {t} is also a discrete space of the same cardinality as Y.
Thus Y & {¢t} >~ Y and therefore

Z~Z\V)®Y~Z\N)e Y i) ~(Z\Y)®Y)D {1t~ Z & {1

b) w € Y for any infinite Y C Z\{w}. Then Z\U is finite for any U € t(w, Z).
Let £ : (Z\{w}) — (Z\{w}) U {¢} be a bijection (which exists because Z\{w}
has to be infinite). Now construct a map f : Z — Z & {t} letting f(a) = a
and f(z) = £(z) forany z € Z. Then f is a bijection and we have only to check
continuity of f at the point a.

Given U € t(a,Z & {t}) the set (Z & {t})\U is finite; so V = f~1(U)
contains @ and Z\V is also finite which shows that V' is open in Z. Thus f is a
homeomorphism being a condensation of a compact space Z onto Z & {¢}. Fact 1
is proved.

Returning to our solutionlet C = { f € C,(X) : f(a) = 0};then Cp(X) =~ C x
R (see Fact 1 of S.409). Take a point ¢ ¢ X; the space Y = X @{¢} is homeomorphic
to X by Fact 1. If ¢ : X — Y is a homeomorphism then ¢(a) = a and the dual
map ¢* : Cp,(Y) — C,(X) is a homeomorphism as well (see TFS-163).

If I ={f € Cp(Y): f(a) = 0} then it is routine to check that ¢*(/) = C and
therefore C =~ [. On the other hand, if f € C and r € R then define a function
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g = n(f,r) € I by the equalities g|X = f and g(¢) = r. It is straightforward
that n : C x R — I is a homeomorphism;so C,(X) ~ C x R >~ I ~ C which
shows that C,(X) is homeomorphic to C and hence it suffices to find a weakly
o -point-finite 7Ty-separating family of cozero sets in C.

For any x € D and g € Q\{0} let W(x,q) = {f € C : f(x) € Og,}. Let
ex(f) = f(x) forany x € D and f € C. Then e, : C — R is a continuous map
by TFS-166; since W(x, q) = e;'(0,), the set W(x, q) is cozero for any ¢ € Q\{0}
and x € D (see Fact 1 of T.252).

Take distinct f, g € C; there is x € D such that f(x) # g(x). We can assume,
without loss of generality, that f(x) < g(x) and hence there is ¢ € Q\{0} with
f(x) < g < g(x).Itis immediate that W(x, q) N{ f, g} is a singleton; so the family
W ={W(x,q):x € D, g € Q\{0}} is Ty-separating.

For any ¢ € Q\{0} let W, = {W(x,q) : x € D};then W = J{W, : q €
Q\{0}}. We leave it to the reader as an easy exercise to prove that a countable union
of weakly o-point-finite families is a weakly o-point-finite family; so it suffices to
show that W, is weakly o-point-finite for any g € Q\{0}.

LethT ={W(x,q) :x e TN D}forany T € T;thenS = {WqT T eT}
is a countable collection of subfamilies of WV,. To see that S witnesses that W, is
weakly o-point-finite take any f € C and x € D. Thereis K € C such that x € K.
Observe that the set P = f~!(0,) N K is finite for otherwise a is a limit point of
P and therefore | f(a)| > |g| which is a contradiction with f(a) = 0.

Furthermore, a is not in the closure of the openset G = f~1(0,); so G is closed
in X whence G\ P is a clopen subset of X as well. The family 7 is a network with
respect to C; so there is T € 7 such that K C T C X\(G\P). It is immediate that
T NG = KNG is finite; so only finitely many elements of WqT contain f, i.e., the
family WqT is point-finite at f. It follows from x € K C T that W(x,q) € WT;
so W, = W] : the family W/ is point-finite at £}, i.e., W, is weakly o-point-
finite.

Thus W is a weakly o-point-finite Tp-separating family of cozero subsets of C;
since C,(X) =~ C, such a family also exists in C,(X) and hence our solution is
complete.

U.275. Let X be a space of countable spread. Prove that C,(X) is a Lindelof
XY -space if and only if X has a countable network.

Solution. If X has a countable network then nw(C, (X)) = nw(X) = » and hence
C,(X) is a Lindelof X-space; so sufficiency is clear. Now assume that s(X) = w
and C,(X) is a Lindelof X-space; let u(x) = 0 for any x € X. If X does not
have a countable network then there is an uncountable set D C C,(X) such that
E = D U {u} is closed in C,(X) and u is the unique non-isolated point of E (see
Problem 273). The space E is Lindelof X being closed in Cp,(X); for any x € X
and f € E lete,(f) = f(x). Thene, € C,(E) for any x € X and the map
e : X — C,(E) defined by e(x) = e, for any x € X is continuous by TFS-166;
let Y = e(X).
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Since E is a Lindelof X'-space with a unique non-isolated point, we can apply
Problem 274 to see that ¥ has a weakly o-point-finite Ty-separating family &/ C
*(Y) of cozero-sets. Since s(Y) < s(X) = o, the family I/ is countable by
Problem 271. For any U € U fix fy € C,(Y) such that X\U = f;;'(0). Since
U is To-separating, the set F = {fy : U € U} separates the points of ¥ and
hence Y condenses into RY (see TFS-166); we have w(RF) < |F|-w = w; so
Y can be condensed onto a second countable space, i.e., iw(Y) = w. Therefore
d(C,(Y)) = w (see TFS-174); the space C,(Y) embeds in C,(X) (see TFS-163),
so C,(Y) is w-monolithic because so is C,(X) (see Problem 208). This implies
nw(Cp(Y)) = w.

On the other hand the set £ embeds in C,,(Y') by TFS-166 and hence nw(E) = w
which is impossible because D C E is uncountable and all points of D are isolated
in E. The obtained contradiction shows that nw(X) = w; this settles necessity and
completes our solution.

U.276. Show that, under CH, there exists a space X of countable spread for which
there is a Lindeldf X-space Y C Cp(X) withnw(Y) > w.

Solution. The promised subspace Y can even be compact. Indeed, under CH, there
exists a compact non-metrizable space K such that 2d*(K) = o (see SFFS-099
and SFFS-027). If X = C,(K) then s(X) < s*(X) = s*(K) < hd*(K) = w (see
SFFS-025) while K embeds in C,(X) = C,(C,(K)) (see TFS-167) and hence
thereis Y C C,(X) with Y ~ K. It is clear that ¥ is Lindelof X' and nw(Y) =
w(Y) > w.

U.277. Let X be a space with a unique non-isolated point: X = {a} U Y, where
all points of Y are isolated and a ¢ Y. Prove that, for every infinite cardinal k, the
following conditions are equivalent:

(i) p(Cp(X)) = ;

(ii) if {Ay : @ < KV} is a disjoint family of finite subsets of Y then there is an
infinite S C k™t such thata ¢ | J{Ay : a € S};

(iii) if {Ao : @ < k1 } is a family of finite subsets of Y then there is an infinite
S C k™t suchthata ¢ | J{Ay 1 € S}.

Solution. To see that (i)==>(ii) suppose that A = {4, : a@ < «*} is a disjoint
family of finite subsets of Y'; there is nothing to prove if infinitely many elements
of A are empty; so we can assume, throwing away the empty elements of A if
necessary, that 4, # @ for all ¢ < kT. Since kT is uncountable, there exists
H C k% such that |H| = kT and there is m € N for which |4,] = m; let
Ae ={yl,...,y" forany o € H. Theset O, = {f € C,(X) : f(a) € (—1,1)
and f(y.) € (i,i + 1) forany i < m} is non-empty and open in C,(X) for any
o € H. Wehave p(C,(X)) < «, so the family {O,, : o € H} cannot be point-finite;
let S C H be an infinite set such that W = (({Oy : @ € S} # @ and hence we can
pick a function f € W.

Assume that we have a € | J{4, : @ € S}; recalling that f(y.) € (i,i + 1) and
hence f(y.) > 1 forany @ € S andi < m we conclude that f(y) > 1 for any
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pointy € A = | {4y : @ € S} and hence f(a) > 1 by continuity of f. Since
this contradicts f(a) € (=1, 1), we proved that a ¢ A and settled the implication
()= (ii).

To see that (ii)==(iii) is true take a family A = {4, : o < kT} of finite subsets
of Y. Apply the A-lemma (SFFS-038) to find a set £ C « such that |E| = ¢ and
thereis aset R C « suchthat A,NAg = R forany distincte, B € E. If B, = Aq\R
for any « € E then the family {B, : « € E} is disjoint; so we can apply (ii) to find
an infinite F C E for whicha ¢ | J{B, :« € F}. The set R C Y is finite; so
a¢ | {By:a € F}UR =|J{Ay : @ € F}. This proves that (il)=(iii).

Finally, assume that the condition (iii) is satisfied and there is a point-finite family
U C t(Cp(X)) with [U| = «T. It is easy to see that every U € t*(C,(X))

contains a standard open set [a,X1,...,x,;0,01,...,0,] = {f € C,(X) :
f(a) € O and f(x;) € O; for any i < n} where O and every O; is a non-
empty interval with rational endpoints and the family {O, Oy, ..., O,} is disjoint.

Choosing such a standard open subset in every element of I/ we will still have a
point-finite family of cardinality x*; so we can assume, without loss of generality,
that all elements of I/ are the standard open sets described above.

Since there are only countably many finite families of rational intervals, we can
pass, if necessary, to an appropriate subfamily of U/ of cardinality T to assume
that there is n € N and rational non-empty intervals O, Oy, ..., O, C R such that
every element of the family I/ is of the form [a, x1, ..., x,; O, Oy, ..., O,] where
{x1,...,x,} C Y. Applying the A-lemma (SFFS-038) once more and passing to
a relevant subfamily of U of cardinality k™, we can consider that there exists a set
R ={yi1,...,ym} C Y and non-empty disjoint intervals W1, ..., W,, with rational
endpoints such that

Z/l:{[a,yl,...,ym,x;,...,xg;O,Wl,...,Wm,01,...,0,,]:oz</c+}

where the set 4, = {x(i, ..., Xk} is contained in Y for any ordinal o < k1 and the
family A = {A, : @ < KT} U {R} is disjoint. Pick r € O, s; € W, foranyi < m
andr; € O; foranyi < n.

By (iii), there is an infinite set S C « T such thata ¢ | J{4, : @ € S}. Since the
family A is disjoint, there exists a function f : ({a} U (J{4y : @ € S})) —> R
such that f(a) = r, f(x}) =r;foralli <nand f(y;) =s; foralli < m.The set
A ={a}U(J{Ay : @ € S}) is closed and discrete in X while the space X is normal
(see Claim 2 of S.018); so there exists a function g € C,(X) with g|A = f.Itis
immediate that g € [a, y1,..., Ym, X}s .. X2 O, Wi, ..., Wy, Oy,..., O,] for any
a € S which shows that g belongs to infinitely many elements of the point-finite
family /; this contradiction settles (iii)==>(i) and completes our solution.

U.278. Let X be a space with a unique non-isolated point. Prove that, if X has
no non-trivial convergent sequences, then the point-finite cellularity of C,(X) is
countable.

Solution. Let a be the unique non-isolated point of the space X and denote by Y
the set X\{a}. Suppose that A is a disjoint family of finite subsets of ¥ such that
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|A| = w;. Passing, if necessary, to an appropriate subfamily of A of cardinality
i, we can assume that there is n € N such that |A| = n for any A € A. Thus
A={Ay:a <w}where 4, = {x!,...,x"} C Y forany @ < w,.

The set {x} : @ < w;} does not have a sequence which converges to a; so there
is an infinite set S; C w; such that a is not in the closure of the set {xolt o€ Sy}
Suppose that we have infinite subsets S| D ... D Sk of w; such that a is not in the
closure of the set {x! : & € S;} forany i < k. Since there is no sequence in the set
{xg : o € Sk} which converges to a, we can find an infinite Sy4+; C Sk such that a
is not in the closure of the set {xéf*’1 ca € Siy1})

This inductive procedure shows that we can continue our construction to obtain
infinite subsets S; O ... D S, of w; such that a is not in the closure of the set
{x! .« € S;} forany i < n. An immediate consequence is that a is not in the
closure of the set | J{4, : @ € S,} which shows that we can apply Problem 277 to
conclude that p(C,(X)) < w.

U.279. Call a family y of finite subsets of a space X concentrated if there is no
infinite ) C y such that | J u is discrete and C*-embedded in X . Prove that, if every
concentrated family of finite subsets of X has cardinality < k, then p(C,(X)) < k.

Solution. Assume that there exists a point-finite family &/ C t*(C,(X)) with
|U| = k™. Ttis easy to see that every U € t*(C,(X)) contains a standard open set
X1, %05 01,...,0,] ={f € Cp(X) : f(x;) € O; foranyi < n} where every
O; C Ris anon-empty interval with rational endpoints and the family {Oy, ..., O,}
is disjoint. Choosing such a standard open subset in every element of &/ we will
still have a point-finite family of cardinality ¥ ™; so we can assume, without loss of
generality, that all elements of U are the standard open sets described above.

Since there are only countably many finite families of rational intervals, we
can pass, if necessary, to an appropriate subfamily of &/ of cardinality k* to
assume that there is # € N and rational non-empty intervals Oy,..., 0, C R
such that every element of the family I/ is of the form [xi,...,x,; Oy,..., O,].
Applying the A-lemma (SFFS-038) and passing to a relevant subfamily of ¢/ of
cardinality « T, we can consider that there exists a set R = {yi,....ym} C X
and non-empty disjoint intervals Wi, ..., W, C R with rational endpoints such that
U= {1 Ym X X5 Wi, oo W, O1,..., O0y] @ < k) and the family
A= {{xl,... x"} s a < T} U{R} is disjoint; let A, = {x},...,x"} for any
a < k1. Picks; e W, foranyi <mandr; € O; foranyi <n.

Since the family {4, U R : @ < k™ } cannot be concentrated, there is an infinite
set § C kT such that | J{4, U R : @ € S} is discrete and C *-embedded in X . The
family A being disjoint, there exists a function f : | J{4y UR : @ € S} — R such
that f(x’) = r; foralli < n and f(y;) = s; forall i < m. The function f is
bounded and continuouson 4 = | J{A, UR : @ € S} because A4 is discrete. The set
A is also C*-embedded; so there is g € C,,(X) such that g|4 = f. Itis immediate
that g € ({iseees Vs X)s oo X Wi oo Wi, O1,..., 0] - @ € S}, e, g
belongs to infinitely many elements of the point-finite family ¢/. This contradiction
shows that, in C,(X), there are no point-finite families of non-empty open sets of
cardinality k*, i.e., p(C,(X)) < k.
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U.280. Prove that there exists a Lindelof X -space X with a unique non-isolated
point such that C,(X) is a Lindelof X -space, p(Cp(X)) = w, all compact subsets
of X are countable and nw(X) = «¢.

Solution. Given a set A let Fin(A) be the family of all finite subsets of A. Consider
the interval / = [0,1] C R with the topology inherited from R; recall that the
Alexandroff double AD(I) of the space I is the set / x D with the topology
generated by the family

exp(I x {1}) U{(U xD)\F : U € t(I) and F is a finite subset of I x {1}},

asabase. Letting [p = {(¢,0) : t € [}and I, = {(¢, 1) : t € I} we have the equality
AD(I)=1yUl,.Ifx = (t,i) € AD(I) then n(x) = t;themapw : AD(I) —> I
is called the projection. The space AD(I) is compact and the projection 7 is a
continuous and hence perfect map (see TFS-364). It is easy to see that all points of
the set /; are isolated in A D(I) and the local base at any x = (¢, 0) € I is given by
the family {(( — %, t+ %) xD)\{(z, 1)} : n € N} which shows that y(AD(])) = w.

Forany y € I let y,(y) = 1 and yx,(x) = 0 forany x € AD(/)\{y}. Since
every y € I; isisolated in Y, the function y, is continuous on AD (/). If u(x) = 0
for all x € AD([) then the set K = {u} U {y, : y € I} is compact; therefore
the set K; = K U {mw} C C,(AD(I))) is also compact. It is easy to see that K;
separates the points of AD([]); so there is a continuous injective map of AD([)
into C, (K1) (see TFS-166); the space AD(/) being compact, this injective map is
a homeomorphism and hence AD(]) embeds in C, (K1), i.e., we proved that

(1) any subspace of AD([) is an Eberlein—Grothendieck space.

Given a set A C I we will also need the space /4 which has the underlying
set [ and the topology generated by the family exp(/\A) U t(/) as a subbase.
In other words, we declare all points of 7\ A isolated while the topology is the same
at all points of A. It was proved in Problem 090 that there exist disjoint dense sets
A,B C I suchthat |[A] = |B| = ¢, AU B = [ and the space (/4)® is Lindelof.
Observe that

(2) thespace Y = B x D C AD(I) is Lindelof X,

because 7w|Y : Y — B is a perfect map of Y onto the second countable space B
(see SFFS-243 and Fact 2 of S.261).

The space Y C AD(I) is Eberlein—Grothendieck by the property (1); since
the set By = B x {0} of non-isolated points of Y is homeomorphic to B
with the topology induced from R, the subspace By is Lindelof X' being second
countable. Thus we can apply Problem 261 to see that C, (Y, I) is Lindelof X' which
implies, together with (2), that C,(Y) is also Lindelof X (see Problem 217).

Now, considering B as a subspace of R we will establish that

(3) for any uncountable disjoint family F C Fin(B) there is an infinite G C F such
that | J{F : F € G} is closed and discrete in B.
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Passing to a subfamily of F of cardinality w, if necessary, we can assume that
there is n € N and a faithfully indexed set F,, = {x(i, ..., xh} C Bforany o < w
such that F = {F, : @ < o1}. Letz, = (x},...,x") € B" forany @ < w;. Then
Z ={zy : ¢ < w1} C B"; if we consider Z to be a subspace of (/,4)" then it must
have an accumulation point z = (21, ...,2,) € (I4)" because (/4)" is Lindelof.

Let p; : (14)" — 14 be the natural projection of (14)" onto its i -th factor for any
i < n. The family F being disjoint, the map p;|Z is injective foranyi € {1,...,n}.
Ifz; € B forsomei < n then p;!(z;) is an open neighbourhood of zin (1,4)" (recall
that all point of B are isolated in /1) which intersects at most one element of Z. This
contradiction shows that z; € A forall i < n.

The space (14)" being first countable, we can find a faithfully indexed set {c, :
n € w} C w; such that the sequence {z,, : n € w} converges to z. Therefore the
sequence D; = {xén :n € w} convergesto z; € A and hence D; is a closed discrete
subset of B for any i < n; this implies that D = D, U ... U D, is also closed and
discrete in B. Now, if G = {F,, : n € o} then § is and infinite subfamily of F such
that | J{F : F € G} = D is closed and discrete in B; so (3) is proved.

Next let X be the space obtained from Y by collapsing the closed set By to a
point. Recall that X = {x(} U (Y \ By) where all points of B; = Y\ By are isolated
in X and t(xp, X) = {{xo} U (B1\F) : F C Bj and F is closed in Y}. We have
a natural quotient map & : ¥ — X defined by i(x) = x for any x € B; and
h(x) = x¢ for any x € By (see Fact 2 of T.245). Therefore X is a Lindel6f X'-space
with a unique non-isolated point x.

Since & is a quotient map of X onto Y, the dual map r* : C,(X) — C,(Y)
embeds C,(X) in a Lindelof X'-space C,(Y) as a closed subspace (see TFS-163);
so Cp(X) is also a Lindelof X'-space.

To compute the cardinal p(C,(X)) assume that H is an uncountable disjoint
family of finite subsets of Bj. For any point x € Bj there is a unique £(x) € B such
that x = (£(x), 1); itis evident that £ : By — B is a bijection. Therefore the family
F ={&(P) : P € H} C Fin(B) is disjoint and uncountable; so we can apply (3)
to extract an infinite G C H such that the set D = | J{§(F) : F € G} is closed and
discrete in B.

Given a point x = (¢,0) € By we can find W € (¢, I) such that |W N D| < 1;
then W x D € 7(x,Y) also contains at most one point of £ = | J{F : F € G}.
This proves that £ C By is closed in Y and hence {xo} U (B;\E) is an open
neighbourhood of x(p in X which shows that xo ¢ cly(E). We proved that, for
any uncountable disjoint family H of finite subsets of B; there exists an infinite
family G C H such that xy ¢ cly((J{F : F € G}); this makes it possible to apply
Problem 277 to conclude that p(C,(X)) = w.

To see that nw(X) = c¢ observe that B; C X is a discrete subspace of X with
|Bi| = |X| = ¢. Now, if K C X is compact and uncountable then it is possible to
apply (3) to the family {{£(x)} : x € K\{xo}} to extract an infinite T C K\{xo}
such that £(T') is closed and discrete in B. As before, we can prove that T is closed
in Y and hence in X. It turns out that T is an infinite closed discrete subspace of
a compact space K; this contradiction shows that any compact subspace of X is
countable; so we have proved all promised properties of the space X .
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U.281. Prove that there exists a space X such that C,(X) is Lindelof X-space,
nw(X) = cand p(X) = w.

Solution. It was proved in Problem 280 that there exists a Lindelof X'-space Y such
that nw(Y') = ¢, the space X = C,(Y) is Lindelo6f X' and p(X) = w. Applying
Problem 218 we conclude that C,(X) is also a Lindelof X'-space; finally, nw(X) =
nw(Y) = c; so the space X is as required.

U.282. Prove that any continuous image and any closed subspace of a Gul’ko
compact space is a Gul’ko compact space.

Solution. Suppose that K is Gul’ko compact and f : K — L is a continuous onto
map. Then f is closed and hence quotient; so the dual map f* : C,(L) — C,(K)
embeds C,(L) in C,(K) as a closed subspace (see TFS-163). Any closed subspace
of a Lindelof X-space is Lindelof X' so C,(L) is a Lindelof X-space, i.e., L is
Gul’ko compact.

Now, if F C K is closed then the restriction map 7 : C,(K) — C,(F) is
continuous and onto because K is normal. Therefore C,(F) is a Lindelof X-space
being a continuous image of a Lindeldf X'-space Cp,(X) (see SFFS-243). Thus F is
Gul’ko compact as well.

U.283. Prove that any countable product of Gul’ko compact spaces is a Gul’ko
compact space.

Solution. Suppose that a space K, is Gul’ko compact for any » € @ and let K =
[1,e, Kn: we will need the natural projection p, : K — K, forany n € w. The dual
map p;; : Cp(K,) — C,(K)is an embedding (see TFS-163);let C, = p;(C,(K,))
for any n € w. It is an easy exercise that the set C = |, ¢, C» separates the points
of K. Since C is Lindelof ¥ by SFFS-257, we can apply Problem 020 to see that
C,(K) is also Lindelof X' and hence K is Gul’ko compact.

U.284. Let X be a Gul’ko compact space. Prove that for every second countable M ,
the space C,(X, M) is Lindelof X.

Solution. Given a space Z and Y C Z say that a family A C exp Z separates Y
from Z\Y if, forany y € Y and z € Z\Y thereis A € A such that y € A and
7 ¢ A.

Fact 1. Suppose that Z is a Lindelof ¥-space, Y C Z and there is a countable
family A of Lindelof X'-subspaces of Z that separates Y from Z\Y. Then Y is a
Lindelof X'-space.

Proof. The set P = Y is Lindelof ¥ being closed in Z; by SFFS-233, there exists
a countable family F of compact subsets of SZ that separates Z from SZ\Z. The
space K = clgz(Y) is a compactification of the space Y . It is evident that the family
G ={F NK:F € F} consists of compact subspaces of K while all elements of
the family B = {A N P : A € A} are Lindelof X -spaces.

Thus all elements of the family %7 = G U B are Lindelof X'-subspaces of the
space K. Takeany y € Y andz € K\Y.Ifz ¢ Z then thereis F € F withy € F
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andz ¢ F. The set H = F N K belongs to H while we have y € H andz ¢ H.
Now, if z € Z then z € Z\Y and hence there is A € A for which y € A and z ¢ A;
it is clear that B = A N P belongs to H while y € B and z ¢ B. This proves that
the family H separates Y from K\Y'; so we can apply SFFS-233 to conclude that
Y is a Lindelof X'-space. Fact 1 is proved.

Returning to our solution observe that we can consider that M is a subspace of
I and therefore C,(X, M) C C,(X,1*). Observe that C,(X,I?) ~ (C,(X,1))*
by TFS-112 and hence C, (X, I*) is a Lindelof X'-space (see SFFS-256). If K C I
is a closed set then C, (X, K) is a closed subspace of C,(X,I”); so we have

(1) Cp(X, K) is a Lindel6f X'-space for any closed K C 1.

The space [” is second countable so, given a non-empty open subspace U of
the space [“ it is easy to find a sequence {U, : n € w} C t*(I?) such that U, C
U, C Uyy foranyn € w and | J{U, : n € w} = U. It takes a moment’s
reflection to understand that, for any compact K C U, thereisn € o with K C U,,.
The set K = f(X) being compact for any f € C,(X, U), we obtain the equality

C,(X,U) = UJ{C,(X,U,) : n € o} which, together with (1), shows that
(2) the space C,(X, U) is Lindelof X for any open U C I*.

Fix a countable base B in the space I which is closed under finite unions and
finite intersections. It is easy to see that 3 is a network with respect to any compact
K c 1%, ie., forany U € t(K,I?) thereis B € B with K C B C U. The space
Cp = C,(X, B) is Lindelof X for any B € B by (2). Let us show that

(3) ThefamilyC = {Cp : B € B} separates C,(X, M) from C,(X,I“)\C, (X, M).

To see that (3) holds take any f € C,(X, M) and g € C,(X,I*)\C,(X, M);
fix a point x € X such that g(x) ¢ M. The set K = f(X) being compact there is
B € Bsuchthat K C B C I*\{g(x)}. Itis evident that f € Cp and g ¢ Cp; so
(3) is proved.

Finally, apply (2) and (3) together with Fact 1 to conclude that C,(X, M) is a
Lindelof X'-space.

U.285. Prove that if C,(X) is a Lindelof X-space then X can be condensed into a
X -product of real lines. Deduce from this fact that every Gul’ko compact space is
Corson compact.

Solution. Given aspace X and A C X let 7§ : C,(X) — C,(A) be the restriction
map. For any B C C,(X) let e} (x)(f) = f(x) forany f € B; then e} (x) €
C,(B) for any x € X and the map eg : X — C,(B) is continuous (see TFS-166).
If X is clear then we will write 4 and ep instead of njf and eg respectively. For a
map ¢ : P — Q its dual map ¢* : C,(Q) — C,(P) is defined by ¢*(f) = f oo
forany f € C,(Q).If X isaspace, BCexpXandY C X then B|Y ={UNY :
U € B}. A family F C exp X is called a X-family in X if F is a network with
respect to a compact cover of X. In this terminology, a space is Lindelof X' if and
only if it has a countable X'-family.
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In most of our proofs we will have a fixed pair (X, Y) of spaces such that Y C
C,(X). If, additionally, P C X and Q0 C Y we will say that sets M C P and
L C Q are (P, Q)-conjugate if mpy(L) = 7wy (Q) and e (M) = ep(P); the
sets M and L are (P, Q)-preconjugate if mp (L) is dense in 7y (Q) and er (M)
is dense in ez (P). If no confusion can be made then (X, Y)-conjugate sets will be
called conjugate and (X, Y)-preconjugate sets will be simply called preconjugate.

Fact 1. Given a space X suppose that Y C C,(X) generates the topology of X.
Then ) (Y) generates the topology of M forany M C X.

Proof. 1t is evident that, for any function f € C,(X) and any set U C R we have
i U)YNM = (fIM)""(U) = (mu ()" (U). By our assumption on the set ¥
the family B = {f~'(U) : f € Y, U € t(R)} is a subbase in X; so the family
BIM = {(zu(f))"'(U): f € Y U € t(R)} is a subbase in M which shows that
7y (Y) generates the topology of M. Fact 1 is proved.

Fact 2. Suppose that X is a space and a set ¥ C C,(X) generates the topology
of X. Assume also that M C X and L C Y are conjugate sets. Then the maps
u=-er|M: M — e (M)andv = mp|L : L — mp (L) are homeomorphisms;
besides, the maps r = uloe 1 X — M and g = viomy : Y — L are
continuous retractions such that ¢ = r*|Y. The maps r and ¢ are called the pair of
retractions corresponding to the conjugate pair (M, L).

Proof. The set Ly = my (L) = mp(Y) generates the topology of M by Fact 1;
so the evaluation map eﬁlo : M — C,(Ly) is an embedding by TFS-166. Since the
map v : L — Ly is continuous and onto, the dual map v* : C,(Lo) = C,(L) is

also an embedding (see TFS-163); so the map v* o eﬁlo embeds M in C,(L). It is

straightforward that u = v* o eﬁ”o ; so the map u is a homeomorphism.

To convince ourselves that the map v : L — L is a homeomorphism observe
that the set My = e (M) = er(X) generates the topology of L by TFS-166.
Therefore the map eILV,O : L — C,(Mp) is an embedding. The map u : M — My is
continuous and onto so u* : C,(My) — C,(M) is an embedding as well and it is
easy to check that u* o 61%40 = v; so v is, indeed, a homeomorphism.

An immediate consequence is that the maps r and ¢ are continuous being
compositions of continuous maps. If x € M then e (x) = u(x) and therefore
r(x) = u"'(er(x)) = u'(u(x)) = x which shows that r is a retraction (see Fact 1
of S.351). Analogously, if f € L then my(f) = v(f) and hence we have the
equality ¢(f) = v " (mm (f)) = v 1 (v(f)) = f;s0 q is a retraction as well.

Finally, take any f € Y; to prove that ¢(f) = r*(f) pick any x € X. By the
definition of r we have r(x) = u~'(er(x)) so ey (r(x)) = u(r(x)) = er(x). The
equality ey (x) = ep(r(x)) shows that g(x) = g(r(x)) for any g € L and, in
particular, g(f)(x) = q(f)(r(x)). Recalling that g(f)|M = f|M we can see
that ¢(f)(x) = ¢(f)(r(x)) = f(r(x)) and therefore ¢(f)(x) = f(r(x)) for any
x € X which shows that g(f) = f or = r*(f). Thus q(f) = r*(f) for any
f €Y and hence g = r*|Y; so Fact 2 is proved.
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Fact 3. Suppose that X is a space and ¥ C C,(X) generates the topology of X.
Assume that we are given sets My, M; C X and Ly, L; C Y for which both
(Mo, Ly) and (M, L) are conjugate pairs such that My C M; and Ly C L;.
If (r;, g;) is the pair of retractions corresponding to the conjugate pair (M;, L;) for
everyi € Dthenrgory =rjorg=rpandgooqi = q1 ©qgo = qo.

Proof. If u; = er;|M; thenr; = ui_l oey, forany i € D. Fix any x € X. We have
r(x) = uy'er, (x)); so er, (r1(x)) = ui(ri(x)) = er,(x) which shows that
f(ri(x)) = f(x) forany f € L. Since Ly C Ly, we have f(ri(x)) = f(x)
forany f € L, and hence ey, (r1(x)) = er,(x) which implies that

ro(r(x)) = uy ' (er, (n(x))) = g (e1,(x)) = ro(x).

This proves that ry o r; = ry.

Now, ro(x) € My C M; which shows that ey, (ro(x)) = ui(ro(x)) and hence
ri(ro(x)) = uy (e, (ro(x))) = ro(x); as a consequence, ry o ry = ro which implies
that ro = r) o r9 = rp o ry and therefore we proved the first statement of our Fact.

To finish the proof observe that g; = r* for any i € D by Fact 2 and therefore
qo o qi1(f) = qo(qi(f)) = rg(r{(f)) = rg(for) = foriorg= fory =
ro (f) = qo(f) forany f € Y. Thus g9 o g1 = qo. Analogously, i(qo(f)) =
forgorp = forg=qo(f)forany f € Y and therefore gy o g1 = g1 ©qo = qo
which shows that Fact 3 is proved.

Fact 4. Suppose that X is a space and ¥ C C,(X) generates the topology of X;
assume also that we have sets P C X and Q C Y. Given a limit ordinal 8 assume
that we have a (P, Q)-preconjugate pair (M, L, ) for every ¢ < f8 such that o <
y < Bimplies My, C M, and L, C L,.If M = J{M, : o < B}and L = [ J{L, :
a < B} then (M, L) is a (P, Q)-preconjugate pair.

Proof. To see that the set M’ = ey (M) is dense in P’ = e, (P) take any x € P
and U € t(ep(x), P'); let x’ = ey (x). There are fi,..., f, € L and ¢ > 0 such
that V.= {y € P’ : |y'(f;) —x'(f;)| < eforanyi < n} C U. There exists an
ordinal @ < B such that {fi,..., fu} C L. Since e, (M,) is dense in ey, (P),
there is a point y € M, such that |e; (y)(fi) —er,(x)(fi)| < € forany i < n.
This is equivalent to saying that | f;(y) — fi(x)| < e for every i < n which, in
turn, is equivalent to saying that |e; (v)(f;) —er(x)(f;)| < € for any i < n. Thus
Yy =er(y) e VM C UnN M’ sothe point x’ is in the closure of M’. Thus
M’ = e (M) isdensein P’ = e, (P).

To show that the set 7ps (L) is dense in my (Q) take any function f € Q and
aset U € t(my(f), 7y (Q)). There exist points xi,...,x; € M and & > 0 such
that V = {g € ny(Q) : |g(x;) — f(x;)| < eforalli <k} C U.Takea < B
for which {x1,...,xx} C M,. The set my, (Ly) being dense in 7, (Q) there is
g € Ly such that |mar, (8)(x;) — 7w, (f)(xi)| < € forall i < k which is equivalent
to the inequality |g(x;) — f(x;)| < eforalli < k.

An immediate consequence is that |y (g)(x;) — wp (f)(x;)| < eforalli <k
and therefore my(g) € V Ny (L) C U N apy(L). Thus any [ € mpy(Q) is
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in the closure of wy (L), i.e., wa (L) is dense in 7y (Q) and hence (M, L) is a
(P, Q)-preconjugate pair. Fact 4 is proved.

Fact 5. Suppose that X is a Lindelof X'-space and F is a fixed countable network
with respect to a compact cover C of the space X. Assume additionally that F
is closed under finite intersections and f : X — Y is a continuous onto map.
If A C X is a set such that f(A N F) is dense in f(F) for any F € F then

fA) =Y.

Proof. Assume, towards a contradiction that there is a point y € Y\ f(4) and fix
aset C € Csuchthat C N f~'(y) # @. The set K = A N C is compact; so
U = Y\ f(K) is an open neighbourhood of y; take V € t(y,Y) such that V C U.
Since F is closed under finite intersections, we can choose a sequence S = {F, :
n € w} C Fsuchthat C C F, and F,, D F, 4 for any n € @ while S is a network
at C,i.e., forany O € t(C, X) thereisn € w with F,, C O. We have y € f(F,);
the set f(A N F,) being dense in f(F,), we can pick a pointa, € AN F, such that
f(a,) € V foreveryn € w.

Next, observe that the sequence S = {a, : n € w} has an accumulation point
in C. Indeed, if every z € C has an open neighbourhood O, such that the set N, =
{n € w : a, € O} is finite then, by compactness of C, there is a finite D C C
with C € O = |J{O; : z € D}. Then there are only finitely many n € w such that
a, € O while there exists m € w with F,, C O and therefore a, € O foralln > m.
This contradiction shows that there is an accumulation pointa € C for the sequence
S.Thena € ANC = K;since f(a,) € V forall n € w, we have f(a) € V by
continuity of f. Thus f(a) € U N f(K) which is a contradiction. Fact 5 is proved.

Fact 6. Suppose that  is an infinite cardinal, X is a space and a set Y C C,(X)
generates the topology of X. Assume also that M C exp X and £ C expY are
countable families and we have sets A C X, B C Y with |A| < k and |B| < «.
Then there exist sets M C X and L C Y suchthat A C M, B C L, |[M| <
K, |L| < « and the pair (M N P, L N Q) is (P, Q)-preconjugate for any P € M
and Q € L.

Proof. Let My = A, Lo = B and choose an enumeration {(P,, Q,) : n € w} of
the set M x L such that every pair (P, Q) € M x L occurs infinitely many times
in this enumeration.

Assume that n € w and we have sets My,...,M,, C X and Ly,...,L, C Y
with the following properties:

(H)A=MyC...CM,andB=LyC...C Ly,

(2) |M;| <kand|L;| <k foralli <n;

(3) theseter, (M;+1 N P;)isdenseiney, (P;) foranyi < n;
(4) theset wpy, (Li+1 N Q) is dense in 7y, (Q;) forany i < n.

The sets e;, (P,) C C,(L,) and mp, (Q,) C Cp(M,) have weight < k by the
property (2); so there exist M, C X and L, C Y suchthat M,, C M, 4+, L, C
Lyt1 and [My 41| < k. |Lyt1] < & while mwag, (L1 N Q) is dense in 7y, (Qr)
and ey, (M,+1 N P,) is dense in ez, (Py).
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It is immediate that the properties (1)—(4) still hold for all i < n; so our inductive
procedure can be continued to construct sequences {M; : i € w} and {L; : i € w}
for which (1)—(4) are fulfilled for any n € w.

To see that the sets M = |, ¢, My and L = | J, ¢, L are as promised take any
pair (P, Q) € MxLandlet M’ = MNP, L’ = LNQ; we must prove that the pair
(M’, L) is (P, Q)-preconjugate. Take any f € Q,and U € t(mp (f), 7a(Q)).
By the definition of the topology of pointwise convergence there are xj,...,x; €
M’ande > Osuchthat V = {h € mp/(Q) : |h(x;)— f(x;)| < eforalli <k} C U.

It follows from (1) and the choice of our enumeration of M x L that there is
n € o such that (P,, Q,) = (P, Q) and {xi,...,xx} C M,. The property (4)
shows that there is g € L,+; N Q such that |g(x;) — f(x;)| < e foralli < k.
It is immediate that 7y (g) € V N wp (L") C U Ny (L), Therefore myr (L) is
dense in 7y (Q).

To show that the set ey /(M) is dense in the space e;/(P) fix any x € P and
U € t(ep/(x),er (P)). There are functions fi,..., fx € L' and & > 0 such that
V={z € ep(P) : |z(fi) —err(x)(fi)| < eforalli < k} C U. It follows
from (1) and the choice of our enumeration of M x L that there is n € w such
that (P,, Qn) = (P, Q) and {f1,..., fi} C L,. The property (3) shows that there
is y € My41 N P such that |er, (¥)(fi) —er,(x)(fi)] < eforalli < k.Itis
immediate that e, (y) € V Nep (M’) C U Nep/(M’). Therefore ey /(M) is dense
in e;/(P) and Fact 6 is proved.

Fact 7. Suppose that X is a Lindelof X'-space and a Lindelof X-space Y C C,(X)
generates the topology of X. Assume additionally that some countable families P C
exp X, Q C expY are closed under finite intersections and finite unions and there
exist compact covers K and C of the spaces X and Y respectively such that P is a
network with respect to K and Q is a network with respect to C. Assume that we
are given sets M C X and L C Y such that the pair (M N P,L N Q) is (P, Q)-
preconjugate for any (P, Q) € P x Q. Then the pair (M, cly (L)) is conjugate.

Proof. Let F = M and G = cly(L).If x € F, y € X and e;(x) = ez (y) then
eg(x) = eg(y) because the functions e (x) and e (y) are continuous on G while
er(x) and ey (y) are their restrictions to the dense subspace L of the space G (see
Fact 0 of S.351). Thus it is sufficient to show that e, (F) = e (X).

If X’ = ep(X) thene, : X — X’ is continuous and onto; fix any P € P and
let Lo = LN Qforany Q € Q. If M' = M N P then the pair (M', Lg) is
(P, Q)-conjugate for any Q € Q.

Take any point x € P and U € t(ep(x),er(P)). There are functions
fi,....fn € Lande > Osuchthat V = {z € e, (P) : |z(fi) —er(x)(fi)] < &
forall i < n} C U. Since Q is closed under finite unions, there is @ € Q such
that A = {fi,..., fu} C Q and hence A C L. The pair (M’, L) being (P, Q)-
preconjugate there is a point y € M’ such that |er, (y)(fi) — er, (X)(fi)] < &
for all i < n. This is the same as saying that | f;(y) — fi(x)| < & and hence
ler (V)(fi) —er(x)(fi)| < eforanyi < n. This showsthate;(y) € VNe (M) C
U Nep (M) and therefore e; (M) is dense in e, (P).
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The set P was chosen arbitrarily; so e, (M N P) is dense in e, (P) for any
P € P. This makes it possible to apply Fact 5 to see that e (F) = X’ and hence
eG(F) = eg(X).

Analogously, if my (G) = 7y (Y) then 7 (G) = wp(Y); so it suffices to show
that 74 (G) = 7wy (Y). Let Y = 7y (Y); then rps : ¥ — Y is a continuous onto
map. Fix an element Q € Q;let Q' = QN Land Mp = M N P forany P € P.
Take any f € Q and U € t(mwp(f), mmr(Q)). There are points xy,...,x, € M
and a number ¢ > O such that V = {g € ny(Q) : |g(x;) — f(xi)] < & for
alli < n} C U. The family P being closed under finite unions, there is P € P
such that A = {x;,...,x,} C P and therefore A C Mp. The pair (Mp, Q') is
(P, Q)-preconjugate; so there is g € Q’ such that |g(x;) — f(x;)| < eforalli < n.
It is clear that |mar(g)(x;) — wam (f)(x;)] < € forall i < n and hence mp(g) €
V Ny (Q) C U Nmy(Q’). This proves that 7y (L N Q) is dense in 77, (Q) for
any Q € Q; so we can apply Fact 5 again to conclude that my (G) = Y’ = 7y (Y).
Thus the pair (M, cly (L)) is conjugate and Fact 7 is proved.

In the following Fact and its proof a pair of sets M C X and L C C,(X) is
called conjugate if they are (X, C,(X))-conjugate.

Fact 8. Suppose that « is an infinite cardinal and X is a Lindelof X'-space such that
C,(X) is also Lindelof ¥ and d(X) = k. Assume additionally that a set D = {x, :
o < k}isdensein X and E = {f, : @ < «} is dense in C,(X); observe that this
assumption cannot be contradictory because both X and C,(X) are monolithic (see
SFFS-266) and hence d(X) = nw(X) = nw(C,(X)) = d(C,(X)). Then there
exists families {M, : o < k} C expX and {L, : o < k} C exp(C,(X)) with
the following properties:

(a) M, is closed in X and L, is closed in C,(X) while the pair (M, Ly) is
conjugate for any o < k;

(b) if @« < « is a limit ordinal then M, = |(J{Mp:B <a} and L, =
ULLg : B <a};

(c) if B <o <kthen Mg C My and Lg C Ly;

(d) x4 € My and f, € L, forany o < «;

(e) nw(My) < |a|-wand nw(Ly) < || - @ for any o < k.

Proof. Let Y = C,(X) and fix countable ¥'-families P and Q in the spaces X
and Y respectively such that both P and Q are closed under finite unions and finite
intersections.

Next, apply Fact 6 to the sets A = {x¢} and B = { f} to find countable 49 C X
and By C Y for which the pair (49 N P, By N Q) is (P, Q)-preconjugate for any
pair (P, Q) € P x Q. By Fact 7, the pair (Ao, cly (By)) is conjugate; let My = Ay
and Lo = cly (By). It is clear that the conditions (a)—(e) are satisfied for @ = 0.

Now assume that £ < k and we have constructed families {M, : ¢ < &} and
{Ay : @ < &} of subsets of X as well as families and {L, : @ < §}and {B, : @ < &}
of subsets of Y such that the properties (a)—(e) hold for any o < & and we also have
the following properties:
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(4) the pair (A4 N P, By, N Q) is (P, Q)-preconjugate for any ordinal ¢ < £ and
(P,Q)ePxQ.

(5) |Ag| < || - w and |By| < |o| - @ for any o < &;

(6) M, = A, and L, = cly (By) forany o < &;

(7) if B <a < Ethen Ag C Ay and Bg C B,.

If £ = n+ 1 then we can apply Fact 6 to find sets As C X and B¢ C Y such that
AyU{xs} C Ag, BU{ fe} C B, the pair (A¢ N P, Be N Q) is (P, Q)-preconjugate
for any pair (P, Q) € P x Q and |4¢| < |4,| - @, |Bt| < |By| - w. It follows from
Fact 7 that the sets Mz = A¢ and Lg = cly (B) form a conjugate pair. It is evident
that the conditions (a)—(e) and (4)—(7) are still fulfilled for all « < & (we have to use
monolithity of X and Y to see that the condition (e) is satisfied).

Now, if £ is a limit ordinal then consider the sets A¢ = (J{4, : @ < &} and
Be = |J{By : @ < £}. The pair (4¢ N P, B; N Q) has tgbe (P, Q)-preconjugate
for any (P, Q) € P x Q (see Fact 4); so the sets My = Ag and Lg = cly(Bg) are
conjugate by Fact 7. The property (e) holds by monolithity of X and Y, properties
(a)—(d) are evident as well as (4)—(7) for all @ < &. This shows that our inductive
procedure can be continued to construct the promised families {M, : ¢ < k} C
expX and {L, : @ <k} C exp(Cp(X)). Fact 8 is proved.

Fact9. If X and C,(X) are Lindelof X-spaces then C,(X) can be linearly
condensed into a X'-product of real lines.

Proof. Observe that both spaces X and C,(X) are monolithic (see SFFS-266); so
we have d(X) = nw(X) = nw(C,(X)) = d(Cp(X)). Our proof will be by
induction on ¥k = d(X). If « = w then fix a countable dense set D C X and
observe that the restriction map 7p : Cp(X) — R? condenses C »(X) linearly in
R? which, turn, is linearly homeomorphic to a subspace of X (w)).

Now assume that k is an uncountable cardinal and we have proved that, for any
cardinal A < «, if Z and C,(Z) are Lindel6f X'-spaces with d(Z) < A then C,(Z)
condenses linearly into a X'-product of real lines.

Assume that d(X) = « and fix a dense set D = {x, : @ < k} in the space
X. There exists a dense set £ = {f, : @ < «} in the space C,(X). We can
take families {M, : o < «} C expX and {L, : a < «} C exp(C,(X)) whose
existence is guaranteed by Fact 8. Let (ry, o) be the pair of the retractions which
correspond to the conjugate pair (M, L, ) for any o < k. We will first consider the
case when cf(k) = w and hence there is an increasing sequence {A, : n € w} of
infinite cardinals such that k = sup{A, : n € w}.

The property (e) of Fact 8 shows that d(M;,) < A, < k for any n € w; so there
exists a linear condensation @, of the space C,(M,,) into X' (A,) for some set A,;
there is no loss of generality to assume that the family {4, : n € w} is disjoint.
Let m, : Cp(X) — C,(M,,) be the restriction map. Then the diagonal product
& = A{®, om, : n € wy maps Cp(X) linearly into [ [{X(4,) : n € 0} C X (A)
where A = (J{4, : n € w}. Therefore @ : C,,(X) — X (A) is a linear map. To see
that @ is injective take distinct f, g € C,(X).
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The properties (¢) and (d) imply that D C M = [ J{M,, : n € w}; so the set
M is dense in X. Therefore f|M # g|M and hence thereis n € w and x € M,
such that f(x) # g(x) and therefore w,(f) # m,(g). The mapping @, being an
injection, we have @, (7, (f)) # @, (w,(g)) which implies that @(f) # ®(g); so
@ is injective. Thus @ condenses C,(X) linearly into X'(A).

Now assume that the cofinality of the cardinal k is uncountable. It follows from
t(X) =t(Cp(X)) =wthat | J{M, :a <k} =X and ( {L, : @ <k} = Cp(X).
The following property is crucial.

(8) forany f € Cp(X)theset Ey ={a <k : fory # f orey1}is countable.

To prove (8) fix a function f € C,(X); observe first that f ory = ry(f) =
qu(f) forany o < « (see Fact 2). There is n < « such that f* € L,; this means that
qu(f) = f forany o > n;so Ey C n.If Ey is uncountable then we can choose an
increasing w;-sequence S = {& o < w1} C Er;let§ = sup S. It follows from
E;Cnthat§ <n<«.

The function g = g¢(f) belongs to Lg; it follows from (b) of Fact 8 and
1(Cp(X)) = wthat g € L, for some y < §&. There exists @ < w; such that
y < &, and therefore q¢,(g) = ¢z,+1(g) = g. Now apply Fact 3 to conclude
that g¢,(g) = ¢, (9:(f)) = g, (f). Analogously, g¢,+1(8) = qg,+1(q:(f)) =

qz,+1(f). As a consequence, g, (f) = g5, () = g and gg, +1(f) = qg,+1(8) = &
which shows that gz, +1(f) = gg, (f); this contradiction with §, € E; completes

the proof of (8).

Now it is time to apply the induction hypothesis and take linear condensations
@ : Cp(My) — X(B)and @, : C,(Myy1) — X(B,) for any o < k. We can
assume, without loss of generality, that the family {B} U {B, : o < «} is disjoint;
let A =BU(J{By:a <«k}).

For any function f € C,(X) consider the set £2(f) = @ o mp,(f) and, for any
ordinal o < «, let 24(f) = Po(7r, 4, (Gut+1(f) — qu(f))). Then 2 : C,(X) —
Y (B)and §2, : C,(X) — X (B,) forany a < k. Observe that g, : Cp(X) — L
is a linear map; so L is a linear subspace of the space C,(X) for any o < «.
Therefore go+1(f) — qo(f) € Log1 forany o < x and f € C,(X).

It is evident that £2 and £2, are continuous linear maps for any o < «; so the
diagonal product ¢ = 2A(A{$2, : o« < «}) maps C,(X) linearly and continuously
into the space X (B) x ([[{X(By) : o < k}) C RA. We claim that

(9) the map ¢ is an injection.

Indeed, take distinct functions f,g € Cp(X) andlet U = {x € X : f(x) #
g} If fIMy # g|My then Q2(f) # §2(g) because @ is a condensation; thus
o(f) # o(g). Uy, (f) = wm,(g) then & = min{a : U N M, # @} > 0. Observe
that £ has to be a successor ordinal for otherwise the set V' = U N M is non-empty
and open in M¢; so it follows from (b) of Fact 8 that V' N M,, # @ for some o < §,
a contradiction.

Thus §¢ = n + 1 which shows that f|M, = g|M, while f|M,+1 # g|My+..
Therefore q,(f) = fory = am,(f)ory = wm,(g) ory = gory = qy(g).
Fix apoint x € U N My41. We have f(r,+1(x)) = f(x) # g(x) = g(ry+1(x))
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which shows that f o ry11 # g o ryq1, i.e., gpi1(f) # qy+1(g). As an immediate
consequence, ¢y+1(f) — 4(f) # qr41(8) — 45(8) and hence 2,(f) # £2,(g)
because the maps 7y, |Ly+1 and @, are injective. This implies (/) # ¢(g) and
concludes the proof of (9).

We will finally show that ¢ actually maps C,(X) in X' (A4), i.e, (f) € Z(A)
forany f € C,(X). Let u, € RP* be the function which is identically zero on B,
for any o < k. The property (8) shows that, for any & € ¥\ E s we have ¢, 1+1(f) =
q«(f) and hence £2,( f) = u, because @, o myy, ., is a linear map. An immediate
consequence is that the set H; = {a € A : ¢(f)(a) # 0} is contained in B U
(U{By : @ € Ef}). Recalling that £2(C,(X)) C X(B) and £2,(C,(X)) C ¥ (By)
for any ordinal « € E s we conclude that H s is countable and hence ¢ is a linear
condensation of C,(X) into X'(A). Fact 9 is proved.

Returning to our solution, suppose that X is an arbitrary space such that C,(X)
is Lindelof X'. If Y = vX then Y is Lindel6f X' (see Problem 206) and C,(Y) is
a Lindelof X'-space as well (see Problem 234). Therefore C,(C,(Y)) is a Lindelof
XY-space by Okunev’s theorem (see Problem 218); so we can apply Fact 9 to the
space Z = C,(Y) to conclude that the space C,(Z) = C,(C,(Y)) condenses into
a XY-product of real lines. Since Y embeds in C,(C,(Y)) by TFS-167, the space
Y can be condensed into X' (A) for some A. The space X being a subspace of ¥
we conclude that X also condenses into a X'-product of real lines. Finally, if X is a
Gul’ko compact space then it condenses into some X' (A4); this condensation has to
be a homeomorphism; so X is Corson compact and hence our solution is complete.

U.286. Prove that if X is Corson compact then the space C,(X) condenses linearly
into a X-product of real lines. As a consequence, for any Gul’ko compact X the
space C,(X) condenses linearly into a X-product of real lines.

Solution. If Z is a compact space then let || f|| = sup{| f(z)| : z € Z} for any
function f € C,(Z). For any set A we can also define a norm in the space X (A)
letting ||x|| = sup{|x(a)| : a € A} for any x € X, (A). If a confusion can happen
with norms in different spaces we will use the norm symbol with indices to make it
clear in which space the norm is taken.

Fix a set T such that X C X(T); we will prove by induction on the cardinal
d(X) that there exists a set B and a linear condensation ¢ : C,(X) — X« (B) such
that ||@(f)|| < || f|| for any f € C,(X) (we will say that such a condensation
does not increase the norm). If d(X) = w then such a condensation of C,(X) into
Y« (N) exists by Fact 14 of S.351.

Now assume that kx = d(X) is an uncountable cardinal and we proved, for any
cardinal A < k that, for any compact G C X(T) with d(G) < A, there is a set
A and a linear condensation ¢ : C,(G) — X«(A) such that ||o(f)|| < ||f]| for
any f € C,(G). Fix adense set D = {xo : @ < k} in the space X. For any
x € X(T) let supp(x) = {¢t € T : x(¢t) # 0}; then supp(x) is a countable set for
any x € X(T).Givenaset S C T andx € X(T) letrg(x)(¢) = x(¢) ift € S and
rs(x)(t) =0forallt € T\S. Thenrg(x) € X (T) for any x € X (T') and the map
rs 1 X(T) — X(T) is a retraction for any S C 7. We will also need the family
F={ScCT:rs(X)CX}.
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It follows from Problem 152 that there exists a countably infinite set £y € F.
Assume that o < « and we have a family {E£g : B < o} C F with the following
properties:

(1) y < B < aimplies E, C Eg and supp(x,) C Ep;
(2) |Eg| < |B|-wforany B < a;
(3) if B < a is alimit ordinal then Eg = |J{E, : y < B}.

If o is a limit ordinal then let E, = (Jg_, Ep; then E, € F by Problem 152
and it is evident that the properties (1)—(3) still hold forall 8 < o. If @ = 0 + 1
then it is a consequence of Problem 152 that there exists a set £, € F such that
Eq, Usupp(xy,) C Ey and |Ey| < |Ey, U supp(xe,)| - @ < |a| - w. It is also clear
that (1)—(3) hold for all B < «; so our inductive procedure can be continued to
construct a family {E, : & < k} C F with (1),(2) and (3) fulfilled for any 8 < «.

It is evident that every map r, = rg,|X is a retraction on X. We claim that

(4) theset 2(f,¢) = {o < k :thereis x € X suchthat | f(ry(x))— f(re+1(x))| =
¢} is finite for any ¢ > O and f € C,(X).

To see that (4) is true suppose not; then there exists a function f € C,(X) and a
number ¢ > 0 such that the set £2( f, ¢) is infinite. Choose a point z, € X such that
| f(re(za)) — f(ras1(za))| = € for any o € £2(f, ¢). By compactness of X, the set
{ra(z) : @ € 2(f, €)} has an accumulation point z € X.

The function f being continuous at z, there is a set S = {z1,...,t,} C T and
Oi,...,0, € 7(R) such that diam(f(U)) < ewherez € U = {x € X : x(t;) €
O; foralli < n}. Therefore the set M = {& € 2(f,¢) : r4(z») € U} is infinite; the
family {Ey+1\Ey : @ € M} is disjoint; so there is « € M such that (Ey+1\Ey) N
S =0.

Now observe that ry+1(ze) = rg,,,(z¢) can have coordinates distinct from
the coordinates of the point r4(zy) = 7, (z4) only on the set Eyy;\E,. Thus
ra+1(20)(t) = ry4(ze)(t;) € O; for every i < n which implies that ry4+(z4) €
U. However, then ¢ < |f(ry(za)) — f(ra+1(z0))| < diam(f(U)) < e; this
contradiction shows that (4) is proved.

For any o < « let X, = ry(X); it is easy to see that the family {X, : @ < «} is
non-decreasing and d(X,) = w(Xy) < |Eq| < k for every o < k (see (2)). We will
need the following property of the family {X, : « < «}:

(5) if @ < k is a non-zero limit ordinal then H, = ( J{Xp : B < o} is dense in X,,.
If (5) is not true then we can choose a point y € X,\H,. There is a set S’ =
{$1,...,8m} C T and Wy, ..., W,, € t(R) such that
yeW={xeX:x(s) e Wiforanyi <m} C X\H,.

It follows from the property (3) that there is f < « such that Eg NS = E, N S’.
We have rg(y) € Xg while the distinct coordinates of y and rg(y) lie in E,\ Eg; by
our choice of B, we have (E,\Eg) N S" = @ and therefore rg(y)(si) = y(s;) € W;
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forany i < m,i.e., rg(y) € W N Xg which is a contradiction with Xg C H, and
W N H, = 9. This proves the property (5).

Denote by m, the restriction map from C,(X) onto C,(X,); observe that we
have the inequality ||o(f)|| < || f|| forany f € C,(X) and o < k. Our induction
hypothesis shows that, for any o < «, there exists a set B, and a linear injective
map 8y : Cp(Xo) — 2(By) such that |[6(f)||e < || f]| forany f € C,(Xy) (here
[| - ||e is the norm in Xy (By)).

We can assume, without loss of generality, that the family {B, : o < «} is
disjoint. Let jto(f) = 80(wo(f)) and jras1(f) = 381 (Tat1 (f © Fa1 — f 0 7))
for any ordinal « < « and f € C,(X). The maps o and pet1 @ Cp(X) —
Y (By+1) are continuous and linear for any o < k. It is evident that ||uo(f))|]o <
[|f]| forany f € C,(X); given < k and x € X we have

| f(ras1(x) = fra (G = | frar1 G|+ 1 (ra ()] < 2[| 1]

S0 || forg+1— fory|| <2|| f]]. Since w41 and 8441 do not increase the norm, we
have ||pta+1(f)la+1 < || f|| for any f € C,(X). This, together with the property
(4) implies that

(6) forany e > Oif o ¢ 2(f,¢) then |ug+1(f)(h)| < eforany b € By4.

We are finally ready to construct the promised linear condensation of the space
Cp(X);let B = By U|J{Bot1 :a < k}and p = poA(A{ptay1 @ o < k});itis
immediate that ;1 : C,(X) = [[{Z(Bo+1) : @ < k} X X (By) C RE. The diagonal
product of linear continuous maps is, evidently, a linear continuous map; so u is
linear and continuous. Furthermore, if 5 € B then there is @ < k such that b € B,
and hence () (D)] =< [|pa(f)lle = [|f]| which shows that

(7) sup{|lu(f)D)| : b € By < || f]|forany f € Cp(X).

To see that the map u is injective take distinct functions f, g € C,(X). Since
W={xeX: f(x)# gx)} € t*(X)and D is dense in X, there is & < « such
that f(x,) # g(xy). We have supp(xy) C Ey+1 Which implies ry41(xy) = x4 €
Xu+1 and therefore 7wy 41 (f) # 7wy+1(g). Therefore the set J = {a < « : mo(f) #
74(g)} is non-empty; let « = min J. If « = 0 then wo( f) # mo(g) which implies
Ho(f) # po(g) because g is an injection.

Now assume that ¢ > 0 is a limit ordinal. Then we have f|X, # g|X, and
hence f|H, # g|Hy by (5). Therefore there is § < « for which f(q) # g(gq) for
some g € Xg, i.e., f|Xp # g|Xp which is a contradiction with the choice of .
Therefore « > 0 cannot be a limit and hence « = B + 1 for some 8 < «.
By the choice of a we have ng(f) = mg(g) while mg11(f) # mpri(g) and
therefore f org = g org while f orgy1 # g orgyi. There exists z € X such
that f(rg+1(z)) # g(rg+1(z)) so, for the point y = rgyi(z) € Xp41 we have
frp1(y) = f(y) # g(y) = g(rg+1(y)). This shows that g1 (f o rg41) #
mg+1(g © rp41); an immediate consequence is that wgy(f o rg11 — f org) #

mgy1(g orgy1 — g org) whence ugt1(f) # ups1(g) because dg4 is injective.
Thus w(f) # pn(g) and hence we proved that u is injective.
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The last thing we have to show is that ;£(C,(X)) C X« (B) so take any function
f € Cp(X) and € > 0. The property (6) implies that | (f)(b)| = [pat1(f)(D)| <
¢ whenever @ ¢ $£2(f,e) and b € By41. The set £2(f, ¢) is finite by (4); if
a € 2(f,¢) then pg+1(f) € X«(By+1) by the definition of the mapping &g 1.
Therefore the set {b € B : |u(f)(b)| > €} is contained in the set

(b € Batr = litar 1 (N)B)] = 6} s € 2(f )} U b € By - [uo(f)(B)] = &}

which is finite; so u(f) € X« (B) for any f € C,(X) and therefore u is a linear
continuous injective map from C,(X) to X« (B).

The property (7) implies that the condensation p does not increase the norm;
so our induction step is accomplished and hence we proved that, for any Corson
compact X the space C,(X) condenses into a X-product of real lines. Finally,
observe that if X is Gul’ko compact then it is Corson compact by Problem 285; so
C,(X) can still be condensed into a X-product of real lines.

U.287. Let X be a Corson compact space. Prove that, if p(C,(X)) = w then X is
metrizable. Therefore if X is a Gul’ko compact space and p(C,(X)) = w then X
is metrizable.

Solution. By Problem 286 we can find a set A such that there exists a condensation
¢ :Cp(X) — Y forsomeY C X4(A).If Aiscountablethenw(Y) < w(X«(A4)) =
o which shows that d(X) = iw(C,(X)) < w;so X is metrizable by Problem 121.

If A is uncountable then we can consider that there is an uncountable cardinal
such that Y C C,(A(k)) (see Problem 105). Let & : C,(Cp(A(k))) — Cp,(Y) be
the restriction map; there exists a subspace F¥ C C,(C,(A(k))) such that F >~ A(k)
and F separates the points of C,(A(x)) (see TFS-166 and TFS-167). Consequently,
the set G = w(F) C C,(Y) separates the points of the space Y. If G is countable
then iw(Y) < w (see TFS-166); thus d(X) = iw(C,(X)) < w; so X is metrizable
by Problem 121.

It is easy to see that any continuous image of A(k) is either finite or home-
omorphic to the one-point compactification of a discrete space so, if |G| > w
then G ~ A(A) for some uncountable cardinal A. The dual map ¢* : Cp,(Y) —
C,(Cp(X)) embeds C,(Y) in Cp(Cp(X)) (see TFS-163) and therefore G embeds
in C,(Cp(X)). Since G =~ A(A), we have p(Cp(X)) > A > o (see TFS-
178) which is a contradiction. Therefore G cannot be uncountable and hence X
is metrizable.

Finally, if X is a Gul’ko compact space with p(C,(X)) = o then X is Corson
compact by Problem 285; so X is metrizable.

U.288. Suppose that X and C,(X) are Lindelof X -spaces and p(C,(X)) = w.
Prove that | X| < c.

Solution. Fix a compact cover C of the space X such that there is a countable
family & C exp X which is a network with respect to C. For any C € C there is
Fc¢ C F which is a network at C, i.e., for any U € t(C, X) there is F € F¢
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such that C C F C U. An immediate consequence is that (| F¢c = C which
proves that the correspondence C — F is an injection from C in exp F. Therefore
IC] < |expF| <c.

For any set C € C the restriction map ¢ : C,(X) — C,(C) is surjective; so
p(Cp(C)) = w (it is an easy exercise that the point-finite cellularity is not raised
by continuous maps). Since C is Gul’ko compact by Problem 220, we can apply
Problem 287 to see that C is metrizable. Thus |[C| < ¢ for any C € C and hence
IXI<ICl-c=c

U.289. Prove that a compact space X is Gul’ko compact if and only if X has a
weakly o -point-finite Ty-separating family of cozero sets.

Solution. Given a space Z say that Y C t(Z) is a Gul’ko family if U is weakly
o-point-finite, Tp-separating and consists of cozero subsets of Z. In this terminology
we have to prove that a compact space Z is Gul’ko compact if and only if there exists
a Gul’ko family in Z.

Call a space Z concentrated around a point z € Z if Z\U is countable for any
U € 1(z, Z). If U is an open cover of a space Z say thataset Y C Z is U{-compact
if there is a finite i/’ C U such that Y C (JU'. If Z is a space and A C exp Z then
A is said to be point-finite at a point 7 € Z if |{A € A:z € A} < w.

Fact 1. Suppose that a set Z C X'(A) is concentrated around a point ¢ € Z. Then
there exists a sequence {Z, : n € w} C exp Z such that Z\{t} = | J{Z, : n € v}
while, for every n € w, the set K, = {t} U Z, is compact and all points of Z, are
isolated in K,,.

Proof. 1f the set Z is countable then Z\{t} = {Z, : n € w} where |Z,| < 1 for
any n € w; thus every K, is finite so the statement of our Fact is true.

Now assume that | Z| > w; there is no loss of generality to consider that#(a) = 0
foranya € A. Since Z is concentrated around ¢, the set Z\ H is countable whenever
H is a Gs-subset of Z witht € H.

For any x € X (A) let supp(x) = {a € A : x(a) # 0}. Given a pointa € A
the set H(a) = {z € Z\{t} : z(a) # 0} has to be countable because Z\ H(a) is a
Gs-subset of the space Z such thatt € Z\ H(a). Forany a € A let Py(a) = H(a)
and P,4+1(a) = U{H(a) : a € U{supp(z) : z € P,(a)}} forany n € w.Itis evident
that every P, (a) is countable so the set P(a) = | J{P,(a) : n € w} is countable for
every a € A.

Given any point z € Z\{t}, there exists an index a € A with z(a) # 0 and
therefore z € H(a) C P(a). This shows that ( J{P(a) : a € A} = Z\{t}. Since
P(a) is countable, the set Q(a) = | J{supp(z) : z € P(a)} is also countable for any
a € A.Givena,b € A say thata ~ b if there exists a finite sequence {2, ...,z,} C
Z such that a € supp(zo), b € supp(z,) and supp(z;) N supp(zi+1) # @ for any
i < n.Itis straightforward that @ ~ a for any a € A; besides, a ~ b is equivalent
tob ~aanda ~ b ~ c implies a ~ c¢. Therefore ~ is an equivalence relation; it is
easy to see that Q(a) = {b € A : b ~ a}; so we have

(1) ifa,b € Aand Q(a) N Q(b) # @ then Q(a) = Q(b).
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As a consequence, we can find a set B C A such that the family {Q(b) : b € B}
is disjoint and | J{P(b) : b € B} = Z\{t}. Since every P(b) is countable, there is
asequence {Z, : n € w} C exp(Z\{t}) such that | J{Z,, : n € w} = Z\{¢} and we
have |Z, N P(b)| < 1forany b € B andn € w. Thus the family {supp(z) : z € Z,,}
is disjoint; so every neighbourhood of ¢ contains all but finitely many points of Z,
for any n € w. Therefore every K, = Z,, U {t} is compact and the points of Z, are
isolated in K,,; so Fact 1 is proved.

Fact 2. A space Z has the Lindelof X-property if and only if there exists a
countable family F C exp Z such that, for any open cover U/ of the space Z the
collection 7/ = {F € F : F is U-compact} covers Z.

Proof. If Z is Lindelof X then fix a compact cover C of the space Z such that there
exists a countable network F with respect to C. Given any open cover U{ of the
space Z, for any z € Z there is C € C with z € C. Pick a finite 4’ C U such that
C c JU'. Since F is a network at C, there is F € F suchthat C C F Cc JU'.
Thus F is U-compact and x € F. This shows that the family of all Z/-compact
elements of F covers Z and hence we proved necessity.

To establish sufficiency, fix the respective countable family /' C exp Z and let
P = {clgz(F) : F € F}. Then P is a countable family of closed subsets of BZ.
Given any points z € Z and t € BZ\Z observe that i = {Z\clgz(U) : U €
©(t, BZ)} is an open cover of the space Z. Since U/-compact elements of F cover
Z,thereis F € F suchthat F isU{-compactand z € F.Take U;,..., U, € ©(t,BZ)
such that F C (Z\clgz(U1)) U ... U (Z\clgz(U,)) and hence F N U = @ where
U =UN...NU, which shows thatz € G =clgz(F)andt ¢ G.

This proves that the family P separates Z from BZ\Z; so we can apply SFFS-
233 to conclude that Z is a Lindelof X' -space. Fact 2 is proved.

Fact 3. If there exists a Gul’ko family in a space Z, for any n € w then there is a
Gul’ko family in the space Z = [[{Z, : n € w}.

Proof. Fix a Gul’ko family V, on the space Z, and let {V! : m € w} be the
collection of subfamilies of V,, which witnesses the Gul’ko property of V), for any
n € w. We will need the natural projection p, : Z — Z,; letU, = {p,;'(V):V €
V,} forany n € w.

The family U = (J{U, : n € w} consists of cozero subsets of Z (see Fact 1
of T.252). If y, z are distinct elements of Z then there is n € w with p,(y) #
Pn(z). The family V, is Ty-separating in Z,; so there is V' € V), such that V N
{Pn(¥), pn(2)} is a singleton. It is immediate that U = p; (V) € U and U N {y, z}
is a singleton; so U is a Ty-separating family in Z.

To see that I/ is a Gul’ko family, we must prove that it is weakly o-point-finite.
To do so consider the family U, = {p;'(V) : V € V"} for any m,n € w. Given a
pointz€ Zandn € wlet A, = {m € w : V), is point-finite at z(n)}. It is evident
that the family ¢{); is point-finite at z for any n € w and m € A,,. Since every V, is a
Gul’ko family on Z,,, we have | J{V!. : m € A,} =V, for any n € w and therefore



296 2 Solutions of Problems 001-500

(U - UL is point-finite at z} D (UL :n e w, m € A,} = J{U, 1 n € 0} =
U. Thus the countable collection {{f], : m,n € w} of subfamilies of I{ guarantees
that U is weakly o-point-finite. Consequently, ¢/ is a Gul’ko family on Z and hence
Fact 3 is proved.

Returning to our solution assume that X is Gul’ko compact. We can consider
that X C X'(A) for some set A by Problem 285. As usual, supp(x) = {a € A :
x(a) # 0} for any x € X (A). Let u be the function on X with u(x) = 0 for
all x € X.Foranya € Alet p, : ¥(A) — R be the natural projection onto
the factor determined by a; then u, = p,|X € C,(X). It is evident that the set
T ={u} U{u, :a € A} C Cp(X) separates the points of X.

Observe that T is concentrated around the point u. Indeed, if U € 7(u, T) then
there are xy,...,x, € X and ¢ > Osuchthat{r € T : |t(x;)| < eforalli <
n} C U. Since every supp(x;) is countable, the set B = supp(x;) U ... U supp(x,)
is countable as well and it is immediate that u, € U for any a € A\B. Thus
T\U C {u, : a € B} is acountable set.

Apply Problem 286 to find a condensation ¢ : C,(X) — Y where Y C X(S)
for some set S. The set ¢(7T') is concentrated around the point ¢(u«); so we can apply
Fact 1 to conclude that there exists a sequence {7, : n € w} C exp T \{u} such
that | {T, : n € w} = T\{u} and K, = ¢(T,) U {¢(u)} is a compact subspace
of X'(S) such that all points of ¢(7},) are isolated in K,. Therefore T, U {u} =
¢ '(K,) is closed in C,(X) and all points of 7, are isolated in H, = T, U {u}.
The space H = D, , H, maps continuously onto 7 = |, e, Hn; so C,(T)
embeds in C,(H). Since T separates the points of X, the space X condenses and
hence embeds in C,(T") (see TFS-166). Consequently, X embeds in C,(H) =
[1,e, Cp(Hy) as well.

If H, is countable then C,(H,) has a countable base which is, evidently, a
Gul’ko family in C,(H,). If H, is uncountable then u is the unique non-isolated
point of H,. The space H, is Lindelof X' being closed in C,(X); so we can apply
Problem 274 to conclude that there exists a Gul’ko family in C,(H,). This proves
that every C,(H,) has a Gul’ko family and hence so has C,(H) by Fact 3. Having
a Gul’ko family is a hereditary property; so X has a Gul’ko family and hence we
established necessity.

Now assume that X is compactand U/ C t*(X) is a Gul’ko family in X; choose
a sequence {U, : n € w} of subfamilies of ¢/ which witnesses the Gul’ko property
of U. Note first that I/ is point-countable because, for any x € X the family {U €
U : x € U} is contained in the collection | J{{U € U, : x e U} : n € w and U, is
point-finite at x} which is countable. Thus X is Corson compact by Problem 118.

For any U € U fix a function fy € C,(X, [0, 1]) such that X\U = f~1(0). Let
u(x) = O forall x € X;itis clear that the space T = {u} U{ fy : U € U} separates
the points of X. Observe first that the set T is concentrated around the point u.
Indeed, if O € t(u, T) then there are points xi,...,x, € X and a number ¢ > 0
such that O’ = {t € T : |t(x;)| < €} C O. The family U being point-countable
there is a countable V C U such that U N {xy,...,x,} = @ forany U € U\V. Itis
immediate that fy € O’ C O forany U € U\V and hence T\O C {fy : U € V}
is countable.



2 Solutions of Problems 001-500 297

Apply Problem 286 again to find a condensation ¢ : C,(X) — Y where Y C
X (S) for some set S. The set ¢(7') is concentrated around the point ¢ (u); so we can
apply Fact 1 to conclude that there exists a sequence {T,, : n € w} C exp T'\{u} such
that ({7, : n € w} = T\{u} and K, = ¢(T,,) U {¢(u)} is a compact subspace of
X (S) such that all points of ¢(T},) are isolated in K,,. Therefore T, U{u} = ¢~ 1(K,)
is closed in C,(X) and all points of T, are isolated in H, = T,, U {u}.

We claim that every H,, is a Lindelof X' -space; this is evident if H,, is countable;
so we can assume, without loss of generality, that |T,,| > w. Take a family U, C U
such that T, = {fy : U € U,}. It is clear that U, is weakly o-point-finite; so fix a
collection {{/" : m € w} witnessing this. If P,, = {fy : U € U}'} U {u} for any
m € o then the family P = {P,, : m € w} C exp(H,) is countable; let Q be the
family of all finite intersections of the family P.

Take any open cover £ of the space H, and fix O € £ with u € O; there are
X1,...,Xx € Xande > Osuchthat O’ = {t € H, : |[t(x;)| < eforalli <k} C O.
Fix anyt € T, and U € U, witht = fy. The family U4, being weakly o-point-
finite, for any i < k there is m; € w such that the family ¢/’ is point-finite at x;
andU e . YV = ({UM i <k} thenU €V and only finitely many elements
of V meet the set {xy, ..., x¢}.

Therefore the set Q = {fy : V e V} U {u} = P;”' N...N P belongs to Q
and ¢ € Q. Furthermore, Q\O C Q\ O’ is finite which shows that Q is £-compact.
We also have {u,t} C Q and hence for any open cover £ of the space H,, the
family of £-compact elements of O covers H,,. Thus H, is a Lindelof ¥ -space for
any n € w by Fact 2. As a consequence, T = |, c,, Hx is also Lindelof X (see
SFFS-257). Therefore we found a Lindelof X'-space T C C,(X) that separates the
points of X. This implies that C,(X) is a Lindelof X'-space by Problem 020 and
finishes the proof of sufficiency making our solution complete.

U.290. Prove that a compact X is Gul’ko compact if and only if there exists a set A
such that X embeds into Xs(A) for some family s = {A, : n € w} of subsets of A
with | Js = A.

Solution. Given an arbitrary space Z say that i C t(Z) a Gul’ko family in Z it U
is weakly o-point-finite, Ty-separating and consists of cozero subsets of Z. A family
A C exp Z is point-finite at 7 € Z if the family {A € A : 7 € A} is finite.

Fact 1. Suppose that A is a set and we have a family s = {4, : n € w} C exp A
such that s = A. Then there exists a Gul’ko family in the space X (A).

Proof. Given a rational number » # 0 let O, = (r,4+o00) if r > 0 and O, =
(—oo,r)ifr < 0.Let U = {x € X;(A) : x(a) € O,} for any r € Q\{0} and
a € A. Every U/ is a cozero set in X;(A) being the inverse image of O, under
the projection on the factor determined by a (see Fact 1 of T.252); so the family
U, = {U? : a € A} consists of cozero sets for any r € Q\{0}. If x and y are
distinct points of X(A) then there is @ € A such that x(a) # y(a). There is
no loss of generality to assume that x(a) < y(a). Pick a number r € Q\{0} with
x(a) < r < y(a);itis immediate that O, N{x(a), y(a)} is a singleton and therefore
U! N {x, y} is a singleton as well.
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Thus the family & = | J{U, : r € Q\{0}} is Tp-separating in X(A); so it suffices
to show that I/ is weakly o-point-finite. It is an easy exercise that a countable union
of weakly o-point-finite families is a weakly o-point-finite family; so it is sufficient
to prove that U, is weakly o-point-finite for any r € Q\{0}.

TodosoletV, = {U? :a € Ay} C U, forany n € w. Given any x € X;(A)
let Ny = {n € w : supp(x) N A, is finite}. Then A = | J{A4, : n € N,} and hence
U, = |J{V, : n € N,}. Furthermore, if n € N, and x € U for some a € A, then
x(a) € O, and hence a € supp(x) N A,, which shows that

{(VeV,:xeV}yC{U :a esupp(x) NA,}

and therefore V), is point-finite at x for every n € N,. As a consequence, we have
U =WV, :n € Ni} C UV : V, is point-finite at x} which proves that every
U, is weakly o-point-finite. Thus ¢/ is a Gul’ko family in X;(A4) and hence Fact 1 is
proved.

Fact 2. 1If Z is a space and U{ is a weakly o-point-finite family of subsets of Z then
U is point-countable.

Proof. Fix a sequence {{4, : n € w} of subfamilies of &/ which witnesses that I/ is
weakly o-point-finite. For any z € Z let N, = {n € w : U, is point-finite at z}.
We have U = | J{U, : n € N_}; so the family {U € U : z € U} is contained in
the countable family | J{{U € U, : z € U} : n € N.} and therefore every z € Z
belongs to at most countably many elements of U/, i.e., U is point-countable. Fact 2
is proved.

Returning to our solution assume that X is Gul’ko compact. Then there exists
a Gul’ko family ¢/ in X by Problem 289. For any U € U fix a function fy €
C,(X,[0,1]) such that X\U = f71(0). Then 4 = {fy : U € U} C Cp(X)
separates the points of X. Let ex(f) = f(x) forany x € X and f € A. Then
ey € Cp(A) and the map e : X — C,(A) defined by e(x) = e, forany x € X
is continuous; since A separates the points of X, the map e is an embedding (see
TFS-166); so the space Y = {e, : x € X} C R* is homeomorphic to X.

There is a sequence {U,, : n € w} of subfamilies of &/ which witnesses the Gul’ko
property of U; let A, = {fy : U € U,} foranyn € w. Then A = | J,,, An; for the
family s = {4, : n € w} we will prove that Y C X (A).

Observe first that e, (fy) = fu(x) # 0 if and only if x € U; besides, the
family U(x) = {U € U : x € U} is countable by Fact 2 and e, (fyy) = 0 for any
U € U\U(x). This shows that e, (f) # O for at most countably many f € A4; so
Y C ¥(A).

Now take any x € X and let Ny = {n € w : U, is point-finite at x}. If n € N,
then supp(ey) = {f € A : ex(f) # 0} = {fv : x € U}; since U, is point-finite
at x, the set supp(ex) N A, = {fv : U € U, and x € U} is finite for any n € N,.
Thus [ J{A4, : supp(ey) N A, is finite} D | J{A4, : n € N} = A forany x € X and
therefore Y C X;(A). Thus every Gul’ko compact X is homeomorphic to a space
Y C X(A) for some set A and a sequence s = {4, : n € w} of subsets of 4, i.e.,
we proved necessity.

new
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Finally, if X is a compact space and X C X;(A) for some set A and a sequence
s = {A, : n € w} of subsets of A then X has a Gul’ko family because so
does X (A) by Fact 1 (it is an easy exercise that having a Gul’ko family is a
hereditary property). Therefore X is a Gul’ko compact by Problem 289; so we
checked sufficiency and hence our solution is complete.

U.291. Suppose that X is a space, n € N and a non-empty family U C t*(X) has
order < n, i.e., every x € X belongs to at most n elements of the family U. Prove
that there exist disjoint families V, ..., V, of non-empty open subsets of X such
thatV = J{V; : i < n}isa w-base for U.

Solution. If we have a family V C exp X then V(x) = {V € V : x € V} and
ord(x,V) = |V(x)| for any x € X; let ord(V) = sup{ord(x,V) : x € X}.

Our solution will be done by induction on n = ord({); if n = 1 then U is
disjoint; so we can take V| = /. Now assume that we proved our statement for all
n < k and take a non-empty U C t*(X) with ord(/) < k + 1. For any point x of
the set O = {x € X : ord(x,U) = k + 1} let {U}", ..., U, |} be an enumeration
of the family ¢/ (x); then it has to be faithful and hence U, = U} N...N U,;‘H cOo
which shows that O is open in X.

Now assume that x,y € O and z € U, N Uy; then z € ((\U(x)) N (NUD)).
It follows from ord(z, ) < k + 1 and |U(x)| = |U(¥)| = k + 1 thatU(x) = U(y)
and therefore U, = U,. Thus the family V; = {U, : x € O} is disjoint and it is
immediate that V), is a 7-base for the family U, = {U e U : U N O # @}.

It is evident that ord(U/\U;) < k; if the family U\U, is empty then we can let
Vi = Vi foranyi € {2,....k + 1}. f U\U, # @ then can apply the induction
hypothesis to find disjoint families V5, ..., Vi4+1 of non-empty open subsets of X
such that Vo, U. ..UV 4 is a w-base for U\U;. It is straightforward that the families
Vi, ..., Vk41 are as required; so our induction procedure shows that for any n € N
and any non-empty family & C t*(X) if ord(d) < n there are disjoint families
Vi,...,V, Ct*(X) suchthat V; U... UV, is a w-base for .

U.292. Suppose that a we are given a space X with the Baire property and U is a
weakly o-point-finite family of non-empty open subsets of X. Prove that there exists
a o-disjoint family V C t*(X) which is a w-base for U.

Solution. If we have a family W C exp X then W(x) = {W € W : x € W} and
ord(x, W) = |W(x)| for any x € X. The family W is called point-finite at x € X
iford(x, W) < w;if A C X then W[A] ={W e W: W NA#0@}.

Fix a sequence {U, : n € w} which witnesses that I/ is weakly o-point-finite; the
set Xpm = {x € X : ord({U4,) < m}isclosed in X for any n,m € w. Given U € U
let Ny = {n € w: U € U,}. It turns out that

(M) U Xum:ne Ny, mew} =X,

because, for any x € X thereisn € w such that U € U, (i.e.,n € Ny) and U, is
point-finite at x. Let U,,,, = Int(X,,,,); it follows from Problem 291 that there exists
a o-disjoint family V,,,, C t*(X) (which might be empty) such that V,,, is a w-base
for Uy [Uym] for any n,m € w. We claim that V = | J{Vum : n,m € w} is a w-base



300 2 Solutions of Problems 001-500

for . Indeed, take any U € U. It follows from (1) and the Baire property of X that
\{Uum : n € Ny, m € w}is dense in X; so there isn € Ny and m € w such
that U N Uy, # @. Thus U € U,[U, ] and therefore there is V' € V,,, for which
V C U. Therefore V is a o-disjoint w-base for the family U/.

U.293. Prove that every Gul’ko compact space has a dense metrizable subspace.

Solution. If X is a set and W C exp X then W(x) = {W € W : x € W} and
ord(x, W) = |W(x)| for any x € X. The family W is called point-finite at x € X
iford(x, W) <w;if AC X then WA={WNA: W eWj.

Fact 1. For an arbitrary space Z,

(a) acountable union of weakly o-point-finite families of subsets of Z is a weakly
o-point-finite family;

(b) if U C expZ is weakly o-point-finite and Vy C expU is disjoint for any
U € U then the family V = (J{Vy : U € U} is weakly o-point-finite.

Proof. Suppose that, for any n € w, a family W, C exp Z is weakly o-point-finite
and fix a sequence {W,,, : m € w} of subfamilies of W, which witnesses this.
To see that W = (J{W, : n € w} is weakly o-point-finite take any x € Z and
W e W. Thereisn € w with W € W,,; so there exists m € w such that W € W,
and the family W,,,, is point-finite at x. This shows that the countable collection
{Waum 1 n,m € w} witnesses that W is weakly o-point-finite; so (a) is proved.

As to (b), fix a sequence {U4, : n € w} which witnesses that the family I/ is
weakly o-point-finite and let G, = (J{Vy : U € U,} foranyn € w.If x € Z and
V € V then there is U € U such that V' € Vy. Take n € w such that the family
U, is point-finite at x and U € U,,. Then V € G, and it is easy to check that G,
is point-finite at x. Thus the sequence {G, : n € w} C exp) witnesses that V) is
weakly o-point-finite. This settles (b); so Fact 1 is proved.

Returning to our solution let us establish that

(1) given a set A and a sequence s = {A, : n € w} C expA suchthat 4 = (Js,
any compact subset of ¥;(A) has a o-disjoint w-base.

To prove (1) fix an arbitrary set A with a sequence s = {4, :n € w} Cexp 4
suchthat A = | Js. Given B,C C A with B C C let Jfg : R¢ — R? be the natural
projection of R€ onto its face RZ. For any B C A, the family sz = {4, N B :
n € w} defines the set X, (B) and it is straightforward that 7 (X,(4)) C X, (B).
Let us call the set X, (B) the B-face of X;(A4). Aset U C R is called a standard
open subset of RE if U = [[{U, : b € B} where U, € t(R) for any b € B and the
set supp(U) = {b € B : U, # R} is finite. It is evident that standard open sets of
R2 constitute a base of R® for any B C A.

Givenany B C Aand Y C X, (B) denote by Ay the minimal cardinal A such
that ¥ can be embedded in a C-face of X(A) for some C C A with |C| = A; we
will call Ay the embedding index of Y . Call a compact space Y C X, (B) solid if
Ag = Ay forany U € t*(Y). Let us show first that
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(2) if, for any B C A, every solid compact ¥ C X, (B) has a o-disjoint 7-
base then, for any B C A, every compact subspace of X, (B) has a o-disjoint
m-base.

To prove (2) assume that, for any B C A, every solid compact subspace of
Y, (B) has a o-disjoint w-base and take an arbitrary compact ¥ C X, (B) for
some B C A.

The family G = {G € t*(Y) : G is solid} is a 7-base in Y. Indeed, for any
U € t*(Y) we can choose a set G € t*(U) such that the embedding index of G
is minimal; then Ay = Ay forany V € *(G), ie., G is solid. Thus G € G and
GCU.

Take a maximal disjoint family &/ C t*(Y) of non-empty solid open sets. Since
the non-empty solid open sets form a m-base in Y, the set | JU/ is dense in Y. By
our assumption about solid sets we can take a o-disjoint 7-base Gy in the space U
forany U € U. It is an easy exercise that ( J{Gy|U : U € U} is a o-disjoint 7r-base
in Y'; so (2) is proved.

We will establish next that, for any £ C A, every compact solid subspace ¥ C
X, (E) has a o-disjoint w-base. If 1y < o then the space Y has a countable base;
so there is nothing to prove. Assume, towards a contradiction, that some compact
solid space Y C X, (B) does not have a o-disjoint 77-base and let ¥ be the minimal
cardinal for which there exists B C A and a solid compact subspace X C X, (B)
such that Ax = «k and X has no o-disjoint -base. Then ¥ > ® and we can consider
that | B| = «. Fix a faithful enumeration {b, : @ < k} of the set B and consider the
set Co = {bg : B <} forany o < k.

The set Oy, = {x € X : x(by) # 0} is open in X (possibly empty) and the set
H, = nga (0) is compact for any « < k. It is clear that An, < |e|-o < k;sowe
can find a o-disjoint r-base U,, in the space H,, (if H, = @ then U, = @). The map
Do = JrCBa |0, : O, — H, is continuous, so p;'(U)N Oy € t*(X) forany & < &
and U € U,; fix a sequence {Uy,, : n € w} of disjoint subfamilies of U, such that
Uy = U{Uun 1 n € w}.

Let Vo = {p;'(U) N Oy : U € Uy} forany & < k;then V = (J{V, : @ < k}
is a w-base in X. To see it take any O € t*(X). There is a standard set U in the
space RB such that @ # V = U N X C O. The space X being solid there is
o < « such that supp(U) C U{bg : B < a} and O, NV # @. It follows from
Fact 1 of $.298 that W = p,(O, N V) is a non-empty open subset of H,, such that
p;l(W) = 0, N V. The family U, being a w-base in H,, there is G € U, with
G C W.Then G' = pa_l(G) N O, € Vand G’ C V;so Vis, indeed, a w-base in
X . It turns out that

(3) the family O = {0, : @ < «} is weakly o-point-finite in X.

Consider the family O, = {0, : b, € A, N B} for any n € w. Given any
x € X and ¢ < k, it follows from x € X, (A) that there is n € w such that
by € A, N B and supp(x) N A, N B is finite. It is immediate that O,, € O, and only
finitely many elements of O, can contain the point x; this proves that the sequence
{O, 1 n € w} C exp O witnesses that O is weakly o-point-finite, i.e., (3) is proved.
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Our next step is to show that the family V is also weakly o-point-finite. The
family V,,, = {p;'(U) N Oy : U € U,,} is disjoint for any & < k and n € w.
Therefore the family G, = | J{Vu. : @ < k} is weakly o-point-finite for any n € w
(see Fact 1). Since V = | J{G, : n € w}, we can apply Fact 1 again to see that V is
weakly o-point-finite.

Thus V is a weakly o-point-finite 7-base in X. Now apply Problem 292 to
conclude that there is a o-disjoint family B C 7*(X) which is a w-base for V.
An immediate consequence is that BB is a o-disjoint 7r-base in X . This contradiction
with the choice of X shows that, for any B C A, every solid compact subset of
Y, (B) has a o-disjoint 7-base. Now we can apply (2) to see that for any B C A4,
every compact subset of X, (B) has a o-disjoint -base; so (1) is proved.

Finally, take a Gul’ko compact space X. By Problem 290, there is a set A and a
sequence s = {A, : n € w} of subsets of A such that | Js = 4 and X embeds in
Y (A). By (1), the space X has a o-disjoint 7-base; so it follows from Problems 285
and 138 that X has a dense metrizable subspace.

U.294. Let X be a Gul’ko compact space. Prove that w(X) = d(X) = c¢(X). In
particular, each Gul’ko compact space with the Souslin property is metrizable.

Solution. The inequalities ¢(X) < d(X) < w(X) are evident. Now, assume that
k is a cardinal and ¢(X) < k; take a dense metrizable M C X (this is possible by
Problem 293) and observe that c(M) < ¢(X) < x,s0d(M) = c(M) < « (see
TFS-214) and therefore d(X) < «. Finally, apply Problem 285 and Problem 121 to
see that w(X) = d(X) < k. This proves that w(X) < ¢(X) and hence c¢(X) =
d(X) = w(X).

U.295. Let X be a pseudocompact space with the Souslin property. Prove that any
Lindelof X -subspace of C,(X) has a countable network.

Solution. Take a Lindel6f X'-subspace Y C C,(X) andletw : Cp(BX) — C,(X)
be the restriction map. Then 7 is a condensation and the space Z = 7~ !(Y) is
Lindelof X' (see Problem 232). For any x € X and f € Z lete,(f) = f(x);
then e, € C,(Z) and the map e : BX — C,(Z) defined by e(x) = e, for any
x € BX is continuous by TFS-166. The space K = e¢(8X) is Gul’ko compact (see
Problem 220) and ¢(K) < ¢(BX) = ¢(X) = w. Thus w(K) = w by Problem 294;
the space Z embeds in C,(K) by TFS-166, so nw(Z) < nw(C,(K)) = nw(K) <
w(K) = o which implies that Z has a countable network. This shows that ¥ =
7 (Z) also has a countable network being a continuous image of Z.

U.296. Let X be a Lindeldf X -space. Suppose that Y is a pseudocompact subspace
of C,(X). Prove that Y is compact and metrizable if and only if c(Y') = w.

Solution. If Y is compact and metrizable then c¢(Y) < w(Y) = o (see TFS-212);
so necessity is clear. Now, assume that ¢c(Y) = w. Forany x € X and f € Y
let e.(f) = f(x);thene, € Cp(Y) and the map e : X — C,(Y) defined by
e(x) = e, forany x € X is continuous by TFS-166. The space Z = e(X) C C,(Y)
is Lindelof X' so nw(Z) = w by Problem 295. Furthermore, ¥ embeds in C,(Z)
by TFS-166; so nw(Y) < nw(C,(Z)) = nw(Z) = w.
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As a consequence, iw(Y) < nw(Y) = w (see TFS-156) and hence w(Y) = w
by TFS-140. Thus Y is metrizable and hence compact by TFS-212. This settles
sufficiency and makes our solution complete.

U.297. Prove that every Gul’ko compact space is hereditarily d -separable.

Solution. Let K be a Gul’ko compact space. Given any ¥ C K the set F = Y is
also Gul’ko compact by Problem 282. Therefore F has a dense metrizable subspace
by Problem 293 which, together with Problems 285 and 138, implies that the space
F has a o-disjoint r-base B. It is evident that the familyC = {BNY : B € B}isa
o-disjoint wr-base in Y.

If we pick a point yc € C for any C € C then the set D = {y¢c : C € C}
is dense in Y. We have C = (J{C, : n € w} where C, is disjoint for any n € w.
It is straightforward that the subspace D, = {yc : C € C,} is discrete for each
new;soD = D, is a dense o-discrete subspace of ¥ which shows that Y
is d-separable.

neEw

U.298. Let X be a compact space. Prove that C,(X) is a K-analytic space if and
only if X has a Ty-separating family U of open Fj-subsets of X and subfamilies
{Us 1 s € =2} of the family U with the following properties:

(a) Usg = U and Us; = \J{Us~r : k € o} for any s € ©=¢;
(b) for every x € X and every f € w®, there exists m € w such that the family
Uy, is point-finite at x for alln > m.

Solution. Given a space Z let uz € C,(Z) be the function which is identically
zero on Z; say that a set A C Z is concentrated around a point 7 € Z if A\U is
countable for any U € 7(z, Z). The space P of the irrationals is identified with v®;
given p,q € P, the expression p < ¢q says that p(n) < g(n) for any n € w. For
s € w=<?and p € w® we write s C p if p|[dom(s) = s.

A family U C exp Z is said to be P-point-finite if there is exists a collection
{Us : s € =} of subfamilies of U such that Uy = U, Us = | J{Us~k : k € o}
forany s € = and, forany x € Z and f € w® there is m € w such thatU s, is
point-finite at x (observe that in this case U/ |, is automatically point-finite at x for
any n > m).

Fact 1. 1f K is Corson compact then there is aset A C C,(K) such that AU {ug} is
closed in C,(K), all points of A are isolated in A U {ug } and A separates the points
of K.

Proof. There exists a point-countable 7y-separating family &/ of non-empty cozero
subsets of K (see Problem 118). For any U € U take a function fy € C,(K, [0, 1])
such that K\U = f~'(0). The family ¢/ being point-countable the set H = { fy :
U € U} is concentrated around the point ug.

Apply Problem 286 to convince ourselves that there exists a linear condensation
¢ : Cp(K) — X(B) for some set B. It is evident that the set £ = ¢(H) is
concentrated around w = ¢(ug); so there is a sequence {E, : n € w} C expE
such that E\{w} = (J{E, : n € w} while, for every n € w, the set E, U {w}



304 2 Solutions of Problems 001-500

is compact and all points of E, are isolated in E, U {w} (see Fact 1 of U.289). If
H, = ¢ '(E,) then H, U{ug} = ¢ '(E, U{w}) is closed in C,(K) and all points
of H, are isolated in H, U {ug} for any n € w.

Let Ao = Hp and 4, = %-Hn = {%f : f € Hy} forany n € N. Since the
multiplication by % is a homeomorphism of C,(K) onto itself, the set A, U {ug} is
closed in C,(K) forany n € w;let A = | {4, : n € w}.

Take a function f € C,(K)\(A U {ug}). Then f(x) # 0 for some x € K; so
there is m € N such that | f(x)| > % The set W = {g € C,(K) : |g(x)| > %}
isopenin C,(K) and A, N W = @ for any n > m. Since A, U {ug} is closed in
C,(K) for any n < m, the set W' = W\(U{4, U {ux} : n < m}) is an open
neighbourhood of f* which does not meet A U {ug}. This proves that

(1) the set A U {ug} is closed in C,(K).

It is evident that the set H separates the points of K; since all functions of A
were obtained from the elements of H by multiplication by a non-zero constant, we
conclude that

(2) the set A separates the points of K.

Now, if f € A then f € Ay for some k € w and f # ug; so thereis x € K
for which f(x) > O and hence there is m € w such that f(x) > % The set
W ={geCyK):l|gx)| > %}is openin C,(K)and A,NW = @ foranyn > m.
Furthermore, the set A, U {ux} is closed in the space C,(K) for any numbern € w;
so the set W' = W\(U{A4, U {ux} : n < m, n # k}) is an open neighbourhood
of fin C,(K) such that W’ N A C Ay. Since f is an isolated point of Ay U {ux},
thereis U € 7(f, C,(K)) such that U N (Ax U {ux}) = {f}. It is immediate that
U’ = UNW'is an open neighbourhood of f in C,(K) and U N(AU{ug}) = {f},
i.e., f isisolated in A U {ug}. This, together with the properties (1) and (2), shows
that Fact 1 is proved.

Fact2. 1If Z is a space and U,, C exp Z is P-point-finite for any n € w then U =
U{U, : n € w} is also P-point-finite.

Proof. For any s € w<“\{@} let [s] € w=“ be the finite sequence obtained from s
by “cutting off” its first element, i.e., dom([s]) = dom(s)—1 and [s](m) = s(m+1)
for any m € dom([s]). Analogously, if f € w® then g = [f] € w® is defined by
gn) = f(n+1)forany n € w.

Fix a collection {U{] : s € @=*} of subfamilies of I/, which witnesses that I, is
P-point-finite for any n € w. Let Uy = U and U = L{[‘Z(]O) for any s € w=?\{0}.
Observe first that, for any s € ', we have [s] = @ and therefore Uy~ = L{éC =U
forany k € w sold = Uy = \J{Up~ : k € w}.

Now, if we are given an element s € w<“\{@} then, for = [s] and n = 5(0),
we have U]' = (J{U], : k € w} which is the same as saying that U = (J{U~ :
k € w}.

Now if x € Z and f € w® then, for k = f(0) and g = [f], thereis m € w
such that L{;n is point-finite at x for all n > m and this is equivalent to saying that



2 Solutions of Problems 001-500 305

U ), is point-finite at x for all n > m + 1. This verifies all required properties of the
family U; so U is IP-point-finite and Fact 2 is proved.

Fact 3. If Z is a space and a family &/ C exp Z is P-point-finite then ¢/ is weakly
o-point-finite and hence point-countable.

Proof. Take a collection C = {Us : s € w=*} which witnesses that the family I/ is
P-point-finite. Let us check that C also witnesses that I/ is weakly o-point-finite. Fix
apoint x € Z and U € U it follows from the definition of a P-point-finite family
that there is /' € w® suchthat U € Uy), for any n € w. Besides, there exists m € w
for which U, is point-finite at x, i.e., for s = f|m we have U € U, and U is
point-finite at x. This shows that | J{U; : U € U and U is point-finite at x} = U;
so U is, indeed, weakly o-point-finite. Finally, apply Fact 2 of U.290 to conclude
that U/ is point-countable. Fact 3 is proved.

Returning to our solution suppose that I/ is a P-point-finite 7j-separating family
of cozero subsets of X and fix fy € C,(X, [0, 1]) such that X\U = f;;'(0) for
any U € U. Let a collection {Uf; : s € v=“} witness that I/ is P-point-finite. The
set A = {fy : U € U} separates the points of X. Forany f € 4 and x € X let
ex(f) = f(x). Then e, € R and the map e : X — R* defined by e(x) = e,
for any x € X is continuous and injective by TFS-166; so e embeds X in R4; let
Y =e(X).

The family U/ is point-countable by Fact 3; an immediate consequence is that
Y C ¥(A). Let Ay = {fv : U € Uy} for any s € w=<®. It is evident that Ag = A
and A; = (| J{As~k : k € w} forany s € ®<®. Now if y € Y then y = e, for some
x € X;forany f € w® there exists m € w such that the family I/, is point-finite
at x for any n > m. This implies that supp(y) N A |, is finite for any n > m.
Therefore the set Y C X'(A) satisfies the premises of Fact 4 of U.222 which implies
that C,(Y) is K-analytic. Since X =~ Y, the space C,(X) is also K-analytic and
hence we proved sufficiency.

To establish necessity assume that C,,(X) is a K-analytic space and let u = uy.
The space X is Corson compact by Problem 285 and hence there is a set 4 C
C,(X)\{u} such that the set ¥ = A U {u} is closed in C,(X), all points of A are
isolated in A U {u} and A separates the points of X (see Fact 1). If A is countable
then w(X) = w; so it follows from Fact 2 that any countable base of X is a P-point-
finite, Tp-separating family of cozero open subsets of X which proves necessity in
this case. Therefore we can only consider the case when A is uncountable.

The space Y is K-analytic; so there is a compact cover {K, : p € P} of the
space Y such that p < g implies K, C K, (see SFFS-391). For any s € 0= let
Hy, = |{K, : s C p}. Then Hy = Y and H, = |J{H,~ : k € v} for any
s €.

For any ¢ € Q withg > Olet O, = (¢q,+00);if ¢ € Q and g < O then let
0, = (—00, q). We claim that

(3) the family U4 = { f~1(0,) : f € A} is P-point-finite for any ¢ € Q\{0}.
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To prove (3) letUy = {f~1(0,) : f € ANH,} forany s € »=°.Itis immediate
that Z/lg = U and Uy = U{L{fhk 1k € w} forany s € w=“. Given a point x € X
and p € w” theset F = (\{Hp, : n € w} is countably compact by Fact 1 of $.391;
since Y has a unique non-isolated point, the set F is compact.

The family H = {H,), : n € w} is a network at F in the sense that, for any
U € 7(F,Y) there is n € w such that H,, C U. Indeed, if it were not so then
there is U € t(F,Y) such that we can choose a point f, € H,,\U forany n € w.
The sequence S = {f, : n € w} has an accumulation point f € F (this was
also proved in Fact 1 of S.391); however, S C Y\U while f € U which is a
contradiction.

If theset P = {f € F\{u} : x € f71(0,)} is infinite then P must have an
accumulation point in F' and this accumulation point has to be u. However, the set
W ={feY :|f(x)] <|ql|}is an open neighbourhood of u in ¥ while | f(x)| >
|q| for any f € P. Thus W N P = @; this contradiction shows that P is finite.

The closure of the set G = {f € Y : f(x) € O,} in Y does not contain u
because W N G = @. Therefore G is clopen in ¥ which shows that Y\ (G\ P) is an
open neighbourhood of F in Y. By our observation about ‘H there is m € w such
that H,),, C Y\(G\P). Since G N Hy,, ={f € Hp : x € f71(0,)} C P is
finite, the family L{glm is point-finite at x. If n > m then L{qln C uj‘m; SO L[Z‘n is
point-finite at x for any n > m. Therefore the family /9 is P-point-finite for any
q € Q\{0}, i.e., (3) is proved.

By Fact 2, the family U = (J{U? : ¢ € Q\{0}} is P-point-finite as well. All
elements of Uf are cozero sets in X by Fact 1 of T.252. Besides, U is Ty-separating;
indeed, if x and y are distinct points of X then there is f € Y with f(x) # f(»).
We can assume, without loss of generality, that f(x) < f(»). Thereis g € Q\{0}
such that f(x) < g < f(y).Itisimmediate that U = f~'(0,) € U and U N{x, y}
is a singleton. This shows that the family ¢/ has all required properties, i.e., we
settled necessity and hence our solution is complete.

U.299. Let X be a compact space. Prove that C,(X) is a K-analytic space if and
only if X can be embedded into some X(A) in such a way that, for some family
{As 1 s € =?} of subsets of A, the following conditions are fulfilled:

(a) Ag = Aand Ay = \J{As~k 1 k € w} foranys € =;
(b) for any point x € X and any [ € w®, there exists m € w such that the set
Ay, Nsupp(x) is finite for alln > m.

Solution. A family U/ of subsets of Z is P-point-finite if there is exists a collection
{Us : s € 0=} of subfamilies of U such that Uy = U, U; = |J{U;~ : k € w}
forany s € = and, for any x € Z and f € w® there is m € w such that U, is
point-finite at x (observe that in this case Uy, is automatically point-finite at x for
any n > m).

Observe that sufficiency was established in Fact 4 of U.222. Now, if C,(X) is a
K-analytic space then there exists a P-point-finite 7j-separating family I/ of cozero
subsets of X (see Problem 298). Fix fy € C,(X, [0, 1]) such that X\U = f;;'(0)
for any U € U. Let a collection {Uf; : s € 0=} witness that / is P-point-finite.
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The set A = {fy : U € U} separates the points of X. Forany f € Aandx € X
let e.(f) = f(x). Then e, € R* and the map e : X — R4 defined by e(x) = e,
for any x € X is continuous and injective by TFS-166; so e embeds X in R4; let
Y =e(X).

The family U/ is point-countable by Fact 3 of U.298; an immediate consequence
isthat Y € X (A). Let Ay = {fv : U € U,} for any s € w=?. It is evident that
Ag = Aand A; = | J{A;~ 1 k € w}forany s € o<?. Nowif y € Y theny = e,
for some x € X; forany f € w® there exists m € w such that the family U/, is
point-finite at x for any n > m. This implies that supp(y) N A sy, is finite for any
n > m. Therefore the set Y C X'(A) and the family {A; : s € w=“} show that there
is an embedding of X in X' (A) with all required properties. This proves necessity
and finishes our solution.

U.300. (Talagrand’s example) Show that there exists a Gul’ko compact space X
such that C,(X) is not K-analytic. In other words, not every Gul’ko compact space
is Talagrand compact.

Solution. As usual, we identify any ordinal with the set of its predecessors; in
particular,0 = @ andn = {0,...,n — 1} forany n € N. Given 5,7 € »<* such that
n = dom(s) and m = dom(z) we define u = s~ € w=* with dom(u) = n + m by
concatenating s and ¢, i.e., we let u|ln = s and u(n 4 i) = t(i) for any i € dom(?).
Ifs € ©<?, dom(s) = kandn € wthent = s™n € w<* is defined by letting
dom(t) = k + 1, t|k = s and ¢(k) = n. For any functions s and ¢ the expression
t C s stands for dom(¢) C dom(s) and s|dom(¢) = ¢. The space IP of the irrationals
is identified with w®.

Let 2 = {s € ®=® :i,j € dom(s) and i < j imply s(i) < s(j)}. In other
words, £2 consists of strictly increasing elements of @ <. For any n €  consider
the set £2, = {s € £ : s(i) < n forany i € dom(s)}. It is clear that every £2, is a
finite set with §2, C £2,4+, and | J{£2, : n € 0} = Q2.

AsetA C QLisatreeif s € Aimpliest € Aforanyt € 2 witht C s.If A C £2
is a tree then a set B C A is called a branch of A if, for any s,¢ € B either s C ¢ or
t Cs.LetE ={A C £2: Ais atree without infinite branches}. Observe first that

(1) theset M = {x € D% : x~'(1) is a tree} C D is closed in D and hence
compact.

Indeed, if x € ]D)Q\M then there are 5,7 € £ such that s € x7!(1), t C s
andt ¢ x~'(1). Theset U = {y € D? : y(s) = 1 and y(t) = 0} is an open
neighbourhood of x in D and U N M = @. Thus D\ M is open in D¥?, i.e., M is
closed; so (1) is proved.

The set we are afteris T = {x € M : x~'(1) # @ and x~'(1) € &}. For
anyx € M andn € wlet 0,(x) = {y €¢ M : y|2, = x|$2,}. It is clear that
0,(x) € ©(x, M) forany x € M and n € w; besides, the family {0, (x) : n € w}
is a local base at x in the space M.

Let Ag = {A C M :thereis x € M, s € x~!(1) and an increasing sequence
ig, ..., I, € dom(s) such that A = {xg,...,x,} and x; € Oy, )(x) for any k < n}.
It is clear from the definition that all elements of .4, are finite. We are going to work
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with the family A = {A C T : there is a sequence {4, : n € w} C Aj such that
A, C Apq foranyn € w and A C (J{4, : n € w}}.
Observe first that

(2) {x} € Aforany x € T and hence | JA =T,
because x € Oy(g)(x) for any s € x~'(1). It is immediate from the definition that
(3)ifAe Aand B C Athen B € A.

Our purpose is to prove that A is an adequate family on 7. The following
property of Ay is crucial.

(4) Suppose that B C T and every finite C C B belongs to Ag. Then any
accumulation point of B in the space M belongs to M\T.

To prove (4) assume the contrary and fix a point z € T and a faithfully indexed
sequence S = {z, : n € w} C B\{z} which converges to z. For every n € w there
is p(n) € w such that z, € Op)(2)\Opm)+1(2). Passing to a subsequence of S if
necessary we can assume, without loss of generality, that p(n) < p(n+1) for every
new;letl =2p(0)+ 2.

Fix anyn € w, n > [;thenr(n) = max{i € o : p(i) < 5 — 1} is well defined
because p(0) < 5 —1. Since {zo, ..., z,} is a finite subset of B, it belongs to Ay and
therefore there exist y € M and s, € y~!(1) such that for some (not necessarily
increasing) sequence i, ..., i, € dom(s,) we have zx € Oy, (;)(y) for any k < n.
According to the definition we could have taken an increasing sequence of elements
of dom(s, ) but then we would have to reorder the set {zo, ..., z, }. However, what is
left after reordering the respective elements of dom(s,) is their faithful enumeration;
therefore iy # i,, whenever k # m.

The sequence {p(k) : k < n} being increasing, we have p(k) > 5 for any
k > 5. The numbers which belong to the set {s, (ix) : k > 5} are distinct and there
are at least 5-many of them which shows that s, (ix) > 5 for some k > 5. For the
number m = min{p(k), s,(ix)} > 5 we have zx € On(2) and zx € Oy, (y) which
implies 0,,(z) = O (y).

n

For any j < r(n) we have the inequality p(j) + 1 < 5 < m; an immediate
consequence is that z; ¢ Op,j)+1(z) = Opcj)+1(y). This, together with z; €
Oy, (i;)(y) implies that s,(i;) < p(j). If &, = s,[(r(n) + 1) then ¢, € y~I(1)
(recall that y~'(1) is a tree). Besides, there is j < 5 such that t, € £2;; it follows
from O,,(z) = O, (y) that O;(z) = O;(y) and therefore t, € z7'(1).

We have established that, for any n > [, there exists ¢, € z7!(1) such that
dom(z,) = {0,...,r(n)} and 1,(j) < p(j) for any j < r(n). Since every #,(j)
takes finitely many values, there is an increasing sequence {n; : j € w} C w and a
sequence {my : k € w} C w such that 7, (k) = my forany j € w andk < r(n;).
Since r(n;) — +o0, the sequence {#,, : j € w} is an infinite branch in Zz71(1); this
contradiction with z € T shows that (4) is proved.

Now it is easy to prove that .4 is an adequate family. To do it take a set A C T
such that, for every finite B C A, we have B € A and hence there is a sequence
{A, :n € o} C Ay suchthat A, C A,4 foranyn € w and B C |, ¢, 4n-
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There is n € w such that B C A, and therefore B € Ay. Thus every finite subset of
A belongs to Ay. If A is uncountable then it follows from w(A4) = w (we consider
the topology induced in A from M) that some @ € A is an accumulation point
of A. This contradiction with (4) shows that A is countable; let {a, : n € w} be an
enumeration of A4.

We saw that B, = {ao,...,a,} € Ap for any n € w so it follows from the
definition of A that A = | J{B, : n € w} € A. Thus A is an adequate family on 7.
If A C T then y4 € DT is the characteristic function of A on T, i.e., y 4(x) = 1 for
any x € A and y4(x) = 0 whenever x € T\ A.

Take a point £ ¢ T and define a topology u on T U {¢} by declaring all points of
T isolated while the local base at & is given by the complements of all finite unions
of elements of A. Denote the space (7" U {§}, u) by T andlet X = {y, : A €
A} ¢ DT. Then X is a compact space by Problem 168. Besides, all elements of A
are countable; so X is Corson compact by Problem 169.

Another consequence of (4) is thatno A € A has an accumulation pointin 7" and
therefore every A € A is closed and discrete in the topology on T induced from M.
Forany x € T let p(x) = {§,x};then ¢ : T — T is a compact-valued map. It is
evident that (T) = (J{o(x) : x e T} =T3. Ifx € T and U € 1(¢(x), T}) then
§eUandhence F = T\U C A1U...UA, forsome Ay, ..., A, € A. Since every
A; is closed and discrete in T, the set A = | J{A; : i < n}is closed and discrete in
T as well so W = T\ A is an open neighbourhood of x in 7. It is immediate that
e(W) = U{e(y) : y € W} C U which proves that ¢ is upper semicontinuous.
Since T is second countable, we conclude that Tj is a Lindelof X'-space (see SFFS-
249). Consequently, C,(X) is also a Lindelof X'-space (see Problem 173),i.e., X is
a Gul’ko compact.

Forany s,z € 2lets <tifs Ctands # t.If H C £2 then an element s € H
is called maximal in H if there isno t € H with s < t. Let us prove that

(5) if H € & then, for any s € H there is a maximal elementt € H with s C ¢.

Indeed, let sp = s and assume that n € w and we have a sequence so, ...,s, € H
such that 59 < ... < s,. If 5, is a maximal element of H then we are done. If not,
then there is s,+1 € H with s, < s,41. If we have not obtained a maximal element
s, in H forany n € w then {s, : n € w} is an infinite branch in H; this contradiction
proves (5).

For any non-empty H € £let D(H) = {s € H :thereist € H withs < ¢}.In
other words, to obtain D(H ), we throw away all maximal elements of H .

Now we can define the order of any H € £. Let Ag(H) = H. If we have
Ay(H) then Ayy1(H) = D(Ay(H)); if B is a limit ordinal and we have the family
{Ao(H) 1 a0 < B} then Ag(H) = ({Au(H) 1 a < B}.

It is easy to see that every A,(H) is a tree; it follows from Ay(H) C H
that A,(H) has no infinite branches and therefore (5) implies that Ay (H) #
Ay (H). Since every A, (H) is countable, there is a countable ordinal « such that
Ay (H) = 0. Therefore the ordinal n(H) = min{fa < w; : Ax(H) = @} is well
defined. If x € T then x~'(1) € &; so we can define ord(x) = n(x~'(1)).
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If Z C T then let ord(Z) = sup{ord(z) : z € Z}. Call aset Z C T unbounded
if ord(Z) = w;; otherwise Z will be called bounded.
It is evident that

(6) if Z,, C T is bounded for any n € w then | J{Z, : n € w} is bounded.
We claim that
(7) the set T is unbounded.

To prove (7) it suffices to show that, for any ¢ < w, there is H, € & such
that n(Hy) > o. If we take any s € £2 then, for the set Hy = {s} we have
n(Ho) =1=0.

Assume that o < o is a limit ordinal and, for any 8 < o, we have aset Hg C £2
such that n(Hg) > B. Take a surjective map ¢ : @ — « and define 5, € w' by
5,(0) =nforanyn € w. Foranyn € w and s € Hy) let t,(i) = s(i) +n + 1
for any i € dom(s). Then wy = 5,7 ¢, € §2 forany s € Hy); let G, = {w; :
s € Hyy}. Itis easy to see that the family {G, : n € w} is disjoint and n(G,) >
N(Hym) = @(n) forany n € w;let G = (J{G, 1 n € w}.

It is straightforward that Ag(G) = (J{Ap(G,) : n € w} forany B < w;. An
immediate consequence is that n(G) > sup{n(G,) :n € w} > sup{f : < o} = a.
Therefore we can take H, = G.

Now assume that « = B + 1 and we have a set Hg such that n(Hg) > B. For
any s € Hpg let s'(n) = s(n) + 2 for any n € dom(s). It is clear that, for the set
H' = {s" s € Hg} we have n(H') > . Then 5o"s" € §2 for any s € Hg; so
Hy = {50} U{so"s" : s € Hg} € £. Since sy is the minimal element of H,, we have
so € A, (Hy) forany y < B. Consequently, n(H,) > B + 1 = a; so our inductive
procedure gives us a set H, € £ such that n(H,) > o forany o < w;. If xo = yp,
then x, € T and ord(x,) > « for any @ < wy, i.e., ord(T') = w; and (7) is proved.

Assume towards a contradiction that 7'} is K -analytic. By SFFS-388, there exists
a compact-valued upper semicontinuous onto map ¢ : P — T1. Forany Z C P let
o(Z) = J{o(p) : p € Z}.Givenany s € o<“ let Ay, = {p € P:s C p}and
By = ¢(Ay) N T. For any n € w define u, € w' by u,(0) = n. Given s € £2 and
xeTletY(x,s)={re€8:57t€x (1)} and x[s] = yy(r.)-

It follows from P = (J{4,, : n € o} that T = |J{B,, : n € w}; so the
properties (6) and (7) imply that there is ng €  for which B, is unbounded; let
ty = Up,.

It is easy to see that ord(x) < sup{ord(x[u,]) + 1:n € w and u, € x~'(1)} for
any x € T. Therefore there is m( € @ such that the set Zy = {x[uy,] : x € B, and
U, € x~1(1)} is unbounded; let 5o = ;.

The set {z|$2m, : 2 € Zo} being finite, we can apply the property (6) again to see
that there exists xo € T such that the set Z; = {x[so] : x € Oy,(x0) N By, and
5o € x~1(1)} is unbounded. We have 5o € £2,; if 5o ¢ x5 (1) then sp ¢ x~'(1)
for any point x € O, (x0). The set Z; being unbounded, there exists x € O,,,(Xo)
such that x[so] € T; however Y (x,s9) = @ and hence x[s¢] ¢ T'; this contradiction
shows that 5o € x5 ' (1).
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Assume that k € w and we have constructed
ng, ..., Nk, Mg, ..., Mg €Ew,ty,....0h E0~“,50,....,5« € 2andxg,...,x, €T

with the following properties:

8) m; <mjyforanyi < k;
) 1 = Up, and t; 41 = t; " n;4 for any i < k;
(10) so = um, and 8,41 = 8; "m; 4 forany i < k;
(1) s; € x7'(1) foralli < k;
(12) {x[s;]: x € O, (x;) N B;, and s5; € x~'(1)} is unbounded for any i < k;
(13) O, (xi) = O, (xx) foranyi < k.

We have B, = \J{B,~» : n € w}; so it follows from (6) that there exists
Ng+1 € o such that, for fx41 = 1~ ng41, the set {x[sg] : x € O, (xx) N By, and
st € x~1(1)} is unbounded.

For any n > ny the point w, = s; " n belongs to £2; it is easy to see that
ord(x[s¢]) < supford(x[w,]) +1 : n € w and w, € x~!(1)} forany x € T
with s; € x7!(1). As a consequence, there is my4| € @, my+; > my such that, for
the element sg 11 = s~ my41 € 2, the set Zy = {x[s+1] : X € O, (xx) N By,
and sx41 € x~'(1)} is unbounded.

Since the set {z|$2,,,, : z € Zi} is finite, we can apply the property (6)
once more to see that there is x¢4+1 € T such that Oy, (xg+1) C O, (xx) and
the set Zyy1 = {x[sk+1] : X € Opyy, (Xeg1) N By, and spq1 € x7'(1)} is
unbounded. We have si 1 € 2,3 if sk+1 ¢ x, (1) then s 41 & x~'(1) for any
X € Oy, (Xk+1). The set Zy11 being unbounded, there exists x € Oy, (Xk+1)
such that x[sx4+1] € T; however Y(x,sx+1) = @ and hence x[sx4+1] ¢ T; this
contradiction shows that s; 4+ € xk_j_l(l).

Now it is clear that the properties (8)—(10) still hold for all i < k and (11)-(13)
are fulfilled for all i < k + 1. Thus our inductive procedure makes it possible to
construct sequences {n; : i € w} Cw,{m; :i € w} Cw,{t; i € v} C W= as
well as sequences {s; : i € w} C £2 and {x; : i € w} C T for which the conditions
(8)—(13) are satisfied for all i < w.

It follows from (13) that there exists y € M such that Oy, (y) = O, (x,) and
hence s, € y~'(1) forany n € w.

For any n € w choose a point y, € B, N Oy, (¥);then{y1,..., yr} € Ap forany
k € w;s0 B ={y; :i € w} € A. Therefore the set B is closed and discrete in 7'}.
The set B is contained in 7 while y € M'\T because an infinite branch {s, : n € w}
is a subset of y~!'(1). This implies that B is an infinite set. Let p(k) = ny for any
k € w; then p € P. Since ¢(p) is compact, the set ¢(p) N B is finite; so the set
C = B\¢(p) is infinite.

The set C is closed and disjoint from ¢(p). The family {4;, : k € w} is a local
base at p in P; the map ¢ being upper semicontinuous, there is k € o such that
B;, N C = 0. Observe that y, € B, C By, for all n > k which shows that B\ B;,
is finite which is a contradiction with C C B\ B;,.
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This contradiction shows that the space 7} is not K-analytic and therefore the
space C,(X) is not K-analytic either (see Problem 172). Thus X is a compact space
such that C,(X) is Lindelof X (i.e., X is Gul’ko compact) but not K -analytic.

U.301. Prove that the following conditions are equivalent for any space X :

(i) X is functionally perfect;

(ii) X condenses onto a subspace of C,(Y') for some compact Y ;

(iii) X condenses onto a subspace of C,(Y) for some o-compact Y ;

(iv) there exists a o-compact H C C,(X) which separates the points of X ;
(v) the space C,(X) is k-separable.

Solution. Suppose that X is functionally perfect and fix a compactset Y C C,(X)
which separates the points of X. Forany x € X lete,(f) = f(x) forany f € Y.
Then e, € C,(Y) and the map e : X — C,(Y) defined by e(x) = e, for any
x € X, is continuous (see TFS-166); let Z = e(X). Themape : X — Z is a
condensation (this was also proved in TFS-166); so X condenses onto the subspace
Z of the space C,(Y). This proves (i)==(ii).

The implication (ii)==>(iii) being trivial assume that there is a o-compact space
Y for which there exists a condensation ¢ : X — Z for some Z C C,(Y). For
any y € Y letq,(f) = f(y) forany f € Z. Thenq, € C,(Z) and the map
q :Y — C,(Z) defined by q(y) = ¢, forany y € Y, is continuous. This shows
that the space Y’ = ¢(Y) is o-compact and separates the points of Z (see TFS-166).

Given f € Cp(Z) let 9*(f) = f o ¢. Then the map ¢* : C,(Z) — Cp(X)
is continuous by TFS-163; so the space H = ¢*(Y') C C,(X) is o-compact. If x
and y are distinct points of X then ¢(x) # @(y); since Y’ separates the points
of Z, thereis f € Y’ with f(p(x)) # f(e(y)) or, in other words, ¢*(f)(x) #
©*(f)(y). Thus p*(f) is a function from H which separates x and y. This proves
that H is a o-compact subspace of C,(X) which separates the points of X, i.e., we
settled (ii))=(iv).

Now assume that there exists a o-compact H C C,(X) which separates the
points of X and consider the minimal subalgebra Y of C,(X) which contains H;
the o-compactness P being a k-directed property we can apply Problem 006 to see
that Y belongs to the class P, = P, i.e., Y is also o-compact. The set Y O H
separates the points of X because so does H; therefore TFS-192 is applicable to
conclude that Y is dense in C,(X). This shows that C,,(X) is k-separable and hence
(iv)==(v) is proved.

Finally suppose that the space C,(X) has a dense o-compact subspace; since
Co(X,(—=1,1)) = C,(X), wecan fix aset Y C C,(X,(—1,1)) such that ¥ is
densein C,(X,(—1,1)) and Y = |, ¢, ¥» Where every Y, is compact. It is evident
that Y separates the points of X .

For any n € o the set K, = {#f . f € Y,} is compact because the
multiplication by nl? maps Y, continuously onto K, (see TFS-116). It is an easy
exercise that ., K, still separates the points of X. Let u be the function which is
identically zero on X and consider the set K = {u} U (| J{K, : n € 0}).

neEw
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Fix any U € 7(u,C,(X)); there is ¢ > 0 and a finite set /' C X such that
V={feCyX):|f(x)] <eforany x € F} C U. Choose m € w such that
m+_1 < g then | f(x)| < n41—1 < m+_1 < ¢gforany f € Ky, x € X andn > m
which implies that K,, C V C U foralln > m and therefore K\U C KoU...UK,,
is a compact set.

We have shown that K\U is compact for any open U > u; an evident
consequence is that K is a compact subspace of C,(X) which separates the points
of X, i.e., X is functionally perfect. This settles the implication (v)=—>(i) and makes

our solution complete.

U.302. Show that neither X (A) nor R4 is functionally perfect whenever the set A is
uncountable.

Solution. Let k = |A| and observe that I¥ C R* while R >~ (—1,1)* C I*. Asa
consequence, nw(I“) < nw(R“) < nw(I“) which shows that we have the equalities
nw(R<) = nw(I*) = w(Il) = « (see Fact 3 of S.368 and Fact 4 of S.307).

Assume that a compact K C C,(IR¥) separates the points of R*. Then K is
metrizable by TFS-307 and the evaluation map e : R“ — C,(K) is injective (see
TFS-166); let H = e(R*). We have iw(H) < nw(H) < nw(Cp(K)) = nw(K) =
o (see TFS-156). Since R* condenses onto H, we have the inequality i w(R") <
iw(H) < w. The space R* being stable by SFFS-268, we must have nw(R*) = w;
this contradiction shows that R is not functionally perfect because nw(R*) = k =
|A| is uncountable. Since R* ~ R¥, the space R4 is not functionally perfect either.

Next observe that ¥ (A4) >~ C,(L(x)) by Problem 106; it is easy to see that L (k)
is a P-space; so every countable A C L(«) is closed and C-embedded in L(x) (see
Fact 1 of S.479). This implies that the space C, (L (k)) is pseudocomplete and hence
U(Cp(L(k))) =~ REW ~ R¥ (see TFS-485). This proves that we can identify R*
with v(Z(A)); let  : C,(R?) — C,(X(A)) be the respective restriction map.

Given a compact subspace K C C,(X(A)) the space K’ = 7! (K) is countably
compact by Problem 228. Therefore we can apply TFS-307 once more to see that K’
is compact and metrizable; consequently, K is also metrizable being a continuous
image of K'. If K separates the points of the space X'(A4) then the evaluation
map ¢ : X¥(A) — C,(K) is injective by TFS-166; let G = q(X'(A)). Since g
condenses X (A) onto G, we have iw(X(A4)) <iw(G) < nw(G) < nw(C,(K)) =
nw(K) = w; so it is possible to apply w-stability of the space ¥(A) to conclude
that nw(X (A)) = w (see SFFS-268).

For any a € A let fy(a) = 1 and f,(b) = 0 for all b € A\{a}. It is
straightforward that the set D = {f, : a € A} C XY (A) is a discrete subspace
of ¥ (A); since |D| = |A| = k > w, we conclude that nw(X (A4)) > |D| > w; this
final contradiction shows that X'(A) is not functionally perfect as well.

U.303. Prove that the spaces o (A) and X« (A) are functionally perfect for any A.

Solution. If A is finite then the spaces 0(A4) and X (A) coincide with the second
countable space R”. Therefore the space C,(0(A4)) = C,(X«(A)) is separable
and hence k-separable. Applying Problem 301 we can see that 0(A4) = Y« (A4) is
functionally perfect.
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Now, if |A| = k¥ > w then ¥4 (A4) >~ C,(A(k)) (see Problem 105). The space
A(x) being compact, we can apply Problem 301 to see that C,(A(x)) and hence
Y« (A) is functionally perfect. Finally, 0(A) is a subspace of X, (A4); so it embeds
in C,(A(x)) which, together with Problem 301, implies that 0 (A4) is functionally
perfect.

U.304. Prove that C,(w1) is functionally perfect.

Solution. Given anordinale < w; letey(f) = f(o) for any function f € Cp(wy).
Then e, € C,(Cp(wr)) for every o < w; and the set £ = {e, : @ < w} is
homeomorphic to w; (see TFS-167). Let u be the function which is identically zero
on C,(w;) and consider the space

K ={u}U{eo} Uieys —eqt1:a <wi} CCH(CpH(wr)).

Let us prove first that
(1) the set K separates the points of Cp,(w;).

To see that (1) is true take distinct functions f, g € C,(w) and consider the
ordinal 8 = min{a < w; : f(a@) # g(a)}. If B = 0then eg(f) = f(0) # g(0) =
eo(g); so eg € K separates f and g.

Now, if 8 > 0 is a limit ordinal then A = {a : @ < B} is dense in A U {B};
so it follows from f|A = g|A that f(8) = g(B) (see Fact 0 of S.351). This
contradiction shows that  is a successor ordinal, i.e., 8 = « + 1 for some o < ;.
By our definition of the ordinal 8, we have f(a¢+1) # g(a+1) while f(«) = g(a).
As a consequence, e,(f) = ey(g) and eq+1(f) # eq+1(g) which shows that

(eq —eq+1)(f) # (eq — €a+1)(g), i.€., (1) is proved.
Let us show next that

(2) forany U € t(u, Cp(C,(w1))), the set K\U is finite.

Indeed, given any U € t(u, C,(Cp(w1))), there is a finite set F C C,(w;) and
e > Osuchthat V = {9 € Cp(Cp(w1)) : |o(f)| < eforall f € F} C U.
Therefore it suffices to show that K\V is finite. If V; = {¢ € C,(Cp(w1)) :
lo(f)| < e} forany f € F then V = ﬂfeF V¢; so it suffices to establish that
K\Vy is finite forany f € F.

Suppose for a contradiction that there is a function f € F for which the set
K\V/ is infinite. Then there is a strictly increasing sequence {&, : n € w} C wi
such that |(ey, — €q,+1)(f)| = e foranyn € w. If « = sup{e, : n € w} then
the sequence S = {a, : n € w} converges to o so, by continuity of f, there is
y < asuchthat | f(B) — f(a)| < 5 whenever y < B < a. The sequence S being
convergent to «, there exists a number n € @ for which y < o, < «; an immediate

consequence is that | f(a;) — f(@)| < 5 and | f(a, + 1) — f(@)| < 5. Thus

|(eotn _ean+1)(f)| = If(an) - f(an + 1)|
<|fla) = f@]+ [flan + 1) = f(@)] <5+ 5 =&

this contradiction shows that (2) is proved.
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An evident consequence of (2) is that K is compact; the property (1) shows that
K separates the points of C,(w;) so C,(w;) is functionally perfect.

U.305. Show that, if a space condenses onto a functionally perfect space, then it is
functionally perfect.

Solution. Suppose that Y is functionally perfectand ¢ : X — Y is a condensation.
By Problem 301, there is a condensation p : ¥ — Z where Z C C,(K) for
some compact space K. Evidently, i o ¢ condenses X onto Z; so we can apply
Problem 301 again to see that X is also functionally perfect.

U.306. Prove that any subspace of a functionally perfect space is functionally
perfect.

Solution. Suppose that X is functionally perfect and ¥ C X. By Problem 301,
there is a condensation ¢ : X — Z where Z C C,(K) for some compact
space K. If Y’ = ¢(Y) then ¢y = ¢|Y condenses ¥ onto Y’ C C,(K). Applying
Problem 301 again we conclude that Y is also functionally perfect.

U.307. Prove that a countable product of functionally perfect spaces is a function-
ally perfect space. In particular, a countable product of Eberlein compact spaces is
Eberlein compact.

Solution. Suppose that a space X, is functionally perfect and apply Problem 301 to
fix a condensation ¢, : X, — Y, where ¥, C C,(K,) for some compact space K,
foranyn € w.Let X = [[,¢, Xn and Y = [], ¢, Ya; it is immediate that the map
¢ = [l,e, ¥n : X — Y is a condensation. Besides, Y C [], ¢, Cp(Ky) >~ C,(K)
where K = {K, : n € w} (see TFS-114). It turns out that X condenses onto a
subspace of C,(K) while the space K is o-compact; this makes it possible to apply
Problem 301 again to conclude that X = [] ., X, is functionally perfect.

new

U.308. Prove that any o-product of functionally perfect spaces is a functionally
perfect space.

Solution. Suppose that X; is functionally perfect and a point a; € X, is fixed for
anyt € T.Let X = [[,c; X; and define apointa € X by a(t) = a, forany s € T.
We must prove that the space 0(X,a) = {x e X : [{t € T : x(t) # a;}| < w}is
functionally perfect. For any x € o(X,a) letsupp(x) = {t € T : x(¢) # a;}.

Fix a compact set F; C C,(X;) which separates the points of X; and consider,
forany t € T, the map ¢, : Cp(X,) — C,(X;) defined by the formula ¢,(f) =
S — f(a;) foreach f € C,(X;).Itis easy to see that every ¢; is continuous and the
compact set K; = ¢, (F;) still separates the points of X;. Furthermore,

(1) f(a;) =0forany f € K, andt € T,

because ¢; (f)(a;) = f(a;) — f(a;) = Oforevery f € C,(X;).

Givent € T, we will need the natural projection 7r; : 0 (X, a) — X,; its dual map
7’ Cp(Xs) = Cp(0(X,a)) is continuous (see TFS-163); so the set G, = 7,*(K;)
is a compact subspace of C,(c(X,a)). Define a function u € C,(c(X,a)) to be
identically zero on o(X,a) and consider the set G = {u} U (J{G, : t € T}).
We claim that
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(2) forany U € t(u, Cp(0(X,a))) there is a finite A C T such that G; C U for
any t € T\ A.

Take any U € t(u,C,(0(X,a))); there is a finite set £ C o(X,a) ande > 0
such that V' = {f € C,(0(X,a)) : |f(x)] < eforall x € E} C U. The set
A = |J{supp(x) : x € E} is finite. Fix any t € T\ A and x € E; then n;(x) = q;
and therefore f(m,(x)) = 0 for each f € K;. For any g € G; thereis f € K, such
that g = 7*(f) = f om;. Thus g(x) = f(7;(x)) = 0 which shows that g(x) =0
for any g € G, and x € E. This implies G, C V C U forallt € T\A4, i.e., (2) is
proved.

It follows from (2) that, for any U € t(u, C,(0(X,a))) thereis a finitte A C T
such that the set G\U is contained in a compact set P = ( J{G; : t € A}. Since
G\U isclosed in G, it also closed in P; the space P being compact, the set G\U is
compact forany U € t(u, Cp(0(X, a))). This, evidently, implies that G is compact.

Finally, take any distinct x, y € 0(X,a). Thereexistst € T with 7;(x) # 7:(y).
Since the set K, separates the points of X,, there is f € K; with f(m,(x)) #
S (y)). The function g = ;" (f) belongs to G and we have g(x) = f(m;(x)) #
f(m(y)) = g(y), i.e., g separates x and y. This proves that G is a compact
subset of o (X, a) which separates the points of 0 (X, a), i.e., 0(X, a) is functionally
perfect.

U.309. Prove that any product of k-separable spaces is k-separable.

Solution. Suppose that X, is k-separable and fix a o-compact ¥; C X, for any
t € T; we must prove that the space X = [[,c; X; is k-separable. The space
Y = ]_[teT Y; is dense in X; so it suffices to show that Y is k-separable. We can
choose a compact subset Y C Y; of the space Y; such that ¥, C Y"1 for any
newandY, =J,c, Y/ forany r € T. We can assume, without loss of generality,
that Y,° # @ and hence we can fix a pointa, € Y forany ¢ € T.

The product space K, = [[,cr ¥/ C Y is compact for any number n € w and
hence the set K = |, ¢,, K» is o-compact. Given any point y € Y and U € 7(y,Y)
there exists a finite set S C T and a set O; € t(Y) for each index s € S such that
Yy €V =[lses Os x[;er\s ¥r C U.Thereis m € w such that y(s) € ¥;" for any
s € S.Letz(s) = y(s) forall s € S and z(¢) = a, forany t € T'\S. It is immediate
thatz € K, NV C KNU;s0 KNU # @ forany U € t(y,Y),ie,y € K.
Since the point y € ¥ was chosen arbitrarily, we have proved that K = Y, i.e., the
o-compact set K is dense in Y. Thus Y is k-separable; so X is k-separable as well.

U.310. Prove that a space X is hereditarily k-separable (i.e., every subspace Y C X
is k-separable) if and only if X is hereditarily separable.

Solution. It is evident that any hereditarily separable space has to be hereditarily
k-separable; so assume that the space X is hereditarily k-separable. Observe that
a discrete k-separable space must be countable; so every discrete subspace of X
is countable, i.e., s(X) = . If X is not hereditarily separable then there exists a
set Y = {yo 1@ < w1} C X suchthat y, ¢ {yp: B <aj forany o < w; (see
SFFS-004). It is easy to see that
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(1) the closure in Y of any countable subset of Y is countable and hence the space
Y is not separable.

However, it is k-separable by our assumption about X'; so we can take a family
{K, : n € w} of compact subspaces of ¥ such that K = [ J{K,, : n € w} is dense
in Y. It is easy to see that any free sequence in a space Z is a discrete subspace of
Z; so any free sequence in K, is countable; this implies that #(K,) < o for any
n € o (see TFS-328). The property (1) implies that every K, is w-monolithic; so it
is Fréchet—Urysohn by Fact 1 of U.080.

Ifn € wand F C K, is a closed dense-in-itself closed subspace of K,, then
we can apply Fact 1 of T.045 to see that there is a separable closed dense-in-itself
set G C F. It follows from (1) that G has to be countable; so G is a countable
dense-in-itself compact space which is a contradiction with the Baire property of
G. Therefore every K, is scattered and hence the set D, of isolated points of K,
is dense in K. Since D, is discrete, it has to be countable so the space K, is also
countable by (1). As a consequence, K is a dense countable subset of Y'; this last
contradiction shows that X is hereditarily separable.

U311. Let f : X — Y be an irreducible perfect map. Show that X is k-separable
ifand only if sois Y.

Solution. If X is k-separable then it has a dense o-compact subspace A; it is evident
that f(A) is a dense o-compact subspace of Y; so Y is k-separable as well. Here
we only used continuity of the map f.

Now assume that f is perfect and irreducible while Y is k-separable. Fix a family
{K, : n € w} of compact subspaces of ¥ such that K = ( {K, : n € w} is dense
inY. The set F, = f~!(K,) is compact for any n € w (see Fact 2 of S.259). If the
set F = | J{F, : n € w}isnotdense in X then £ = F is a proper closed subset
of X; by irreducibility of f, the set G = f(FE) is a proper closed subset of ¥ and
therefore U = Y\G # @. The set K being dense in the space Y, there exists a
number 7 € w such that K, N U # @.But K,, = f(F,) C f(F) C f(E) which s
a contradiction with K, N (Y\ f(E)) = K, NU # @. Thus F is a dense o-compact
subspace of X, i.e., X is k-separable.

U.312. Prove that, for any k-separable X, the space C,(X) is functionally perfect.
In particular, the space C,(X) is functionally perfect for any compact X .

Solution. Fix a family {K, : n € w} of compact subspaces of the space X such that
K ={K, : n € w}isdensein X. The restriction map = : C,(X) — C,(K)is an
injection (see TFS-152);let Z = n(C,(X)). It turns out that C,,(X') condenses onto
the subspace Z of C,(K) where the space K is o-compact. This makes it possible
to apply Problem 301 to conclude that C,(X) is functionally perfect.

U.313. Give an example of a non-k-separable space X for which C,(X) is
functionally perfect.

Solution. The space C,(w)) is functionally perfect by Problem 304. If K C w is
an uncountable set then the family {K N {f : B < @} : @ < w;} is an open cover of
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K which has no countable subcover; therefore K is not Lindelof. This shows that
every Lindelof subspace of w; is countable. In particular, every o-compact subspace
of w, is countable; since the closure of every countable subset of @, is countable,
) is not separable and hence not k-separable. Thus X = w; is an example of a
non-k-separable space such that C,(X) is functionally perfect.

U.314. Prove that, for an arbitrary space X, the space C,(X) is a continuous image
of Cp (Cp (Cp (X))).

Solution. Let e, (f) = f(x) forany f € C,(X); thene, € C,(C,(X)) and the
map e : X — C,(C,(X)) defined by e(x) = e, for any x € X, is an embedding
(see TFS-167). Therefore the space E = {e, : x € X} is homeomorphic to
X; besides, the set E is C-embedded in the space C,(C,(X)) by TFS-168. As
an immediate consequence, the restriction w : C,(C,(C,(X))) — C,(E) maps
C,(C,(Cp(X))) continuously onto C,(E) =~ Cp(X).

U.315. Prove that C,(X) is k-separable if and only if C,C,(X) is functionally
perfect. As a consequence, X is functionally perfect if and only if C,(C,(X)) is
functionally perfect.

Solution. If C,(X) is k-separable then C,(C,(X)) is functionally perfect by
Problem 312. Now, if C,(C,(X)) is functionally perfect then C,(C,(C,(X))) is
k-separable by Problem 301. Being a continuous image of C,(C,(C,(X))) by
Problem 314, the space C,(X) is also k-separable. Finally, apply Problem 301 once
more to see that a space X is functionally perfect <= C,(X) is k-separable
<= C,(C,(X)) is functionally perfect.

U.316. Prove that any metrizable space is functionally perfect. In particular, any
second countable space is functionally perfect and hence any metrizable compact
space is Eberlein compact.

Solution. If M is a metrizable space then there exists a compact K such that
M embeds in C,(K) (see Problem 034). Therefore Problem 301 is applicable to
conclude that M is functionally perfect.

U.317. Let X be a metrizable space. Prove that C,(X) is functionally perfect if and
only if X is second countable.

Solution. If X is second countable then it is separable (and hence k-separable);
so C,(X) is functionally perfect by Problem 312. Now, if C,(X) is functionally
perfect and w(X) > w then ext(X) > w and hence we can apply Fact 1 of S.215 to
conclude that R”' embeds in C,(X). Therefore R®' is also functionally perfect by
Problem 306; this contradiction with Problem 302 shows that X has to be second
countable.

U.318. Prove that any paracompact space with a Gs-diagonal can be condensed
onto a metrizable space. Deduce from this fact that any paracompact space with a
Gs-diagonal is functionally perfect.
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Solution. Given a space Z and families A, B of subsets of Z we will need the
family ANB ={ANB: Ac A B e B} Recall that a Gs-diagonal sequence
of a space Z is a family {D, : n € w} of open covers of Z such that {z} =
{St(z, D) : n € w} for each z € Z. It was proved in Fact 1 of T.235 that a space
has a Gs-diagonal if and only if it has a Gs-diagonal sequence.

Fact 1. A space Z can be condensed onto a metrizable space if and only if it has
a Gs-diagonal sequence {U, : n € w} such that U, 4, is a star refinement of U, for
any n € w.

Proof. Suppose that f : Z — M is a condensation of Z onto a metric space
(M,d).ItD,, = {Bs(y, #) 1y € M} foranyn € w then it is straightforward that
{D, : n € w}isaGs-diagonal sequence in M. Any metrizable space is paracompact
by TFS-218; so we can construct inductively, using TFS-230, a sequence {V, : n €
w} of open covers of M such that Vy = Dy and V, 4 is a star refinement of V, AD,
for any n € w. It is immediate that {V, : n € w} is still a Gs-diagonal sequence in
M such that V, 4 is a star refinement of V, forall n € w.

IfU, = {f~Y(V):V €V,} forevery n € w then {U, : n € w} is the promised
Gs-diagonal sequence in Z; this settles necessity.

Now assume that we have a Gs-diagonal sequence {{, : n € w} in the space Z
such that U4, is a star refinement of U, for any n € w. Given any points x,y € Z
let o(x,y) = 0if x = y;if x # y then let p(x,y) = 27" where n(x,y) =
min{n € o : x ¢ St(y,U,}. It follows from {y} = ({St(y,U,) : n € w} that the
numbers n(x, y) and ¢(x, y) are well defined. Observe first that

(1) n(x,y) = n(y,x) and hence ¢(x,y) = ¢(y,x) forany x,y € Z.

Fix x,y € Z; it suffices to show that n(x,y) = n(y,x) which is evident if
x = y; so assume that x # y. The point x belongs to St(y,U,) if and only if there
is U € U, with x, y € U which holds if and only if y € St(x,U,). Therefore x €
St(y,U,) < y € St(x,U,) for any n € w which shows that n(x, y) = n(y, x);
so (1) is proved. An immediate consequence of the definition of ¢ is that

(2) ¢(x,y) =0if x = y and ¢(x, y) > 0 whenever x # y.

Call a chain any indexed sequence {xo, ..., x,} of the points of Z; say that a
chain C = {xo,...,x,} connects points x,y € Z if xo = x and x, = y. For any
chain C = {xo,...,x,} let (C) = 0ifn = 0and I(C) = ¢(x¢,x1) + ... +
©(Xp—1,x,) ifn > 0.If x,y € Z then let d(x, y) = inf{/(C) : C is a chain which
connects the points x and y}. Let us show that

(3) the function d is a metric on Z.

It is immediate that d(x,y) > O for any x,y € Z.If x = y then the chain
C = {x} connects the points x and y; so d(x,y) </(C) =0,1ie.,d(x,y) =0.

To see that d is symmetric observe that if a chain Cy = {xo, ..., x,} connects x
and y then the chain C; = {x,,...,Xxo} connects y and x; since [(Cy) = [(Cy),
we have d(y,x) < I(C) for any chain C which connects the points x and y.
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As a consequence, d(y,x) < d(x,y); changing the roles of x and y we obtain
the equality d(x,y) = d(y,x) for any x,y € Z, i.e, d is, indeed, symmetric.
The following property of d is crucial.

(4 d(x,y) = @(x,y) =2d(x,y) forany x,y € Z.

The first inequality follows from the fact that {x, y} is a chain which connects
the points x and y. If we have a chain C = {xy, ..., x,}, call n the number of links
of C.

To verify the second inequality, it suffices to show that, for any chain C which
connects the points x and y, we have [(C) > %(p(x, ¥). We will do that by induction
on the number n of links of the chain C. If n = 1 then C = {x, y} and hence
1(C) = ¢(x,y) = 30(x, ).

Suppose that the inequality /(C) > %(p(x, y) has been established for all
points x,y € Z and chains C with at most k links which connect x and y.
Take any chain C = {xo,..., Xk, Xk+1} which connects some points x and y;
we have ¢(x,y) = 27 for some m € w which implies that y ¢ St(x,Uy,).
If o(xi, xi41) > %qo(x, y) for some i < k then there is nothing to prove; so assume
that @(x;, Xi41) < %(p(x,y) = 271 and therefore x; 4, € St(x;, Up+1) for all
i <k.

If x;x € St(x,Uy+1) then there exist sets U, V € U,,4+1 such that {x,x;} C U
and {xx, y} € V which shows that {x, y} C St(xx,Up+1). The family U, being
a star refinement of U, there is a set W € U,, such that St(xy,U,+1) C W and
therefore {x, y} C W whence y € St(x,U,,) which is a contradiction. Thus x; ¢
St(x, Uy, +1) and hence the number p = min{l/ < k : x; ¢ St(x,Up,+1)} is well
defined. Furthermore, it follows from x; € St(x, U, +) that p > 1.

If we have y € St(x,,U,+1) then it follows from x, € St(x,—(,Upn+1) and
Xp—1 € St(x,Uy+1) that there exist elements U, V, W of the family U4,,4 such that
{x,xp-1} C U, {xp—1,xp} C V and {x,, y} C W. An immediate consequence is
that {x, y} C St(V,U,,+1); using again the fact that U,y is a star refinement of U,
we conclude that there is G € U, with {x, y} C St(V,Un+1) C G;s0{x,y} C G,
i.e., y € St(x,U,y) which is a contradiction.

Thus, y ¢ St(x,,Un+1) which shows that

I o
px,xp) =27""" = 79(x.y) and p(x,, y) = 27" '= 79X, ).

Furthermore, both chains Co = {x¢,...,x,} and C; = {x,, ..., xx41} have at
most k-many links; so by the induction hypothesis we have

1 1 1 1
l(CO) Z E@(xsxp) 2 Z(p(xv J’) andl(cl) Z E@(xpv J’) 2 Z(p(xv J’)

which implies that [(C) = [(Cy) +1(C)) > %qo(x, ¥). This completes our induction
step showing that /(C) > %(p(x, y) for any chain C which connects the points x
and y. Therefore d(x, y) > %go(x, y) and (4) is proved.
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Now it follows from (4) that x # y implies d(x,y) > %(p(x,y) > 0; so
d(x,y) = 0 if and only if x = y. To finally check the triangle inequality
take any x,y,z € Z. Given any ¢ > 0 there exist chains Cy = {x¢,...,X,}
which connects x and y and a chain C; = {yy,..., yx} which connects y and
z such that /[(Cy) < d(x,y) + § and I[(C1) < d(y,z) + 5. It is clear that
Cy = {x0,...,Xn—1,Y0,---, Vi } is a chain which connects x and z; so d(x,z) <
[(Cy) = I(Co) +1(Cy) < d(x,y)+d(y,z) + ¢. Since this inequality holds for any
e > 0, we have d(x,z) < d(x,y) + d(y,2), i.e., d is, indeed, a metric on Z and
hence (3) is proved.

We claim that the topology 7 generated by the metric d is contained in t(Z).
Indeed, fix any U € t; for any x € U there is ¢ > 0 such that B;(x,e) C U.
Choose m €  for which 27" < &. If y € St(x,Uy,+1) then ¢(x,y) < 27"~ !; so
d(x,y) <2¢(x,y) < 27" < & (here we used the property (4)). This proves that
O, = St(x,Uy+1) C By(x,e) C U for any point x € U and therefore the set
U =|J{O, : x € U}isopenin Z. We have taken a set U € t arbitrarily; so every
U € tisopenin Z and therefore t C t(Z).

Finally, it follows from ¢ C t(Z) that the identity mapi : Z — (Z,1) is
a condensation of Z onto a metric space (Z, t); this shows that we established
sufficiency, i.e., Fact 1 is proved.

Returning to our solution assume that X is a paracompact space which has a
Gs-diagonal. By Fact 1 of T.235 there exists a Gs-diagonal sequence {D, : n €
w} in the space X. Using paracompactness of X and TFS-230 we can construct
inductively a sequence {{/, : n € w} of open covers of X such that Uy = Dy and
U, +1 is a star refinement of U, A D, for each n € w. It is evident that the collection
{U, : n € w} is still a Gs-diagonal sequence which satisfied the premises of Fact 1.
Therefore X can be condensed onto a metrizable space. Finally apply Problems 316
and 305 to conclude that X is functionally perfect and complete our solution.

U.319. Observe that any Eberlein—Grothendieck space is functionally perfect. Give
an example of a functionally perfect space which is not Eberlein—Grothendieck.

Solution. It is an immediate consequence of Problem 301 that every Eberlein—
Grothendieck space is functionally perfect. Now let X be the Sorgenfrey line, i.e.,
the underlying set of X is R and the family B = {[a,b) : a,b € R, a < b} is
a base of the topology of X. It is evident that the identity mapping condenses X
onto R; so X is functionally perfect by Problems 305 and 316. However, X is not
Eberlein—Grothendieck because d(X) = w and nw(X) > w (see TFS-165), while
every Eberlein—Grothendieck space is monolithic (see SFFS-118 and SFFS-154).

U.320. Prove that every metrizable space embeds into an Eberlein compact space.

Solution. Given an infinite cardinal k, denote by J(x) the Kowalsky hedgehog with
k-many spines. Any metrizable space embeds in (J(x))® for some « (see TFS-222)
so it suffices to show that (J(k))® embeds in an Eberlein compact space for any
infinite cardinal «. It follows from Problem 307 that it suffices to embed every J (k)
in an Eberlein compact space; so fix an infinite cardinal «.
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Recall that we have J(x) = {0} U (IU{J : @ < «}) where J, = (0,1] x {o}
for any @ < k. The topology of J(«) is generated by a metric d defined as follows:
d(x,x) =0forany x € J(k).Ifx =0and y = (t,a) € Jy thend(x,y) = t;if
x = (t,a)and y = (s,a) thend(x, y) = |t —s|. Finally, if x = (t,®), y = (s, )
and o # B thend(x,y) = s + ¢. Itis easy to see that, for every ¢ < «, the map
(t,) — t is a homeomorphism between J, and J = (0,1] C R.

Let I = [0,1] C R and consider the space I x A(k); here, as usual, A(x) is
the one-point compactification of a discrete space of cardinality k. We consider that
A(k) = « U {a} where a ¢ « is the unique non-isolated point of A(k). The set
P = {0} x A(x) is closed in the compact space I x A(k); so we can collapse it to a
point to obtain the space K = (I x A(k))/P.

Recall that we have K = ((I x A(x))\P) U {xp} where the topology on the
subset (I x A(k))\P = J x A(x) is induced from I x A(k) and aset U C K with
xp € Uisopenin K if and only if (U N (J x A(x))) U P € t(P, I x A(k)). The
space K is compact being a continuous image of / x A(k) (see Fact 2 of T.245).
Since we have not proved yet that a continuous image of an Eberlein compact space
is Eberlein compact, let us establish directly that K is Eberlein compact.

Define a function g € C,(K) as follows: for any x = (f,a) € J x A(k) let
g(x) = t;if x = xp then let g(x) = 0. Furthermore, for any x = (¢t,«) € J, let
fo(x) =1t;if x = xp orx = (¢, B) for some B # « let f,(x) = 0. Then f, : K —
R is a continuous function on K such that f,|(J, U {xp}) is a homeomorphism
between J, U {xp} and I for any & < x. Let u be the function which is identically
zero on K; thenthe set F = {f, : o < «} U {u} U {g} separates the points of K.
Besides, the set [ is compact because F\U is finite for any U € t(u, C,(K)). This
proves that K is an Eberlein compact space.

To see that J (k) embeds in K let ¢(x) = x forany x € J x x and f(0) = xp;
then ¢ : J(k) - Y = (J x k) U{xp} C K is a bijection. It is evident that
¢|Jy : Jy — Jy is a homeomorphism for any & < k. Since every J,, is open both
in J(x) and in Y, the maps ¢ and ¢! are continuous at all points of J x k.

Take any set U € t(xp,Y); by the definition of the topology at x p, there exists
V et(P,I x A(k)) such that V N (J x k) C U. By Fact 3 of S.271 there is ¢ > 0
such that [0, &) x A(k) C V. It is immediate that the set W = ((0, &) x k) U {0} is
an open neighbourhood of the point 0 in the space J(«x) and ¢(W) = ((0,&) x k) U
{xp} C U. This shows that the map ¢ is continuous at the point 0.

To see that ¢! is continuous at the point xp take any U € 7(0, J(k)). There is
& > Osuchthat B;(0,¢) C U.Itis straightforward that B; (0, &) = ((0, &) xx)U{0};
the set W = (([0,¢e) x A(k)) N (J x k)) U {xp} is an open neighbourhood of xp
in Y and it is easy to see that ' (W) = ((0,¢) x ) U {0} = B4(0,¢) C U. This
shows that ¢! is continuous at the point xp so ¢ is an embedding of J(k) into an
Eberlein compact space K.

U.321. Prove that C,(X) is a K,s-space for any Eberlein compact X . In particular,
each Eberlein compact space is Gul’ko compact and hence Corson compact.
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Solution. If X is Eberlein compact then there is a compact K C C,(X) which
separates the points of X. The class K of compact spaces is k-directed; since K € K,
we can apply Problem 014 to conclude that C,(X) belongs to Ky, i.e., C,(X) is a
Kss5-space.

Since every K,s-space is Lindelof X (see SFFS-257 and SFFS-258), any Eber-
lein compact space is Gul’ko compact and hence Corson compact by Problem 285.

U.322. Prove that a compact space X is Eberlein if and only if it embeds into X, (A)
for some A.

Solution. This was proved in Fact 16 of S.351.

U.323. Prove that a compact space X is metrizable if and only if the space X has a
T:-separating o-point-finite family of cozero sets.

Solution. If X is metrizable then it is second countable; so it has a countable base
B. It is evident that B is a 7}-separating o -point-finite family of cozero open sets in
X ; this proves necessity.

As to sufficiency, if ¢/ is a T} -separating o-point-finite family of open subsets of
X (we don’t even need them to be cozero sets) then I/ is point-countable so we can
apply Fact 1 of T.203 to see that X is metrizable.

U.324. Prove that a compact space X is Eberlein compact if and only if X has a
To-separating o -point-finite family of cozero sets.

Solution. If X is Eberlein compact then we can consider that X C X, (A) for some
set A by Problem 322. Observe that the property of having a Ty-separating o-point-
finite family of cozero subsets in hereditary; so it suffices to show that X,.(A) has
such a family.

Given a € A, for any rational number g > 0 let U;(a) = {x € X«x(4) : x(a) >
q};if g € QN (—00,0) thenlet U, (a) = {x € Xx(A) : x(a) < g}. Itis evident that
U,(a) is a cozero set in Xx(A) for any ¢ € Q\{0} and a € A. For any ¢ € Q\{0}
the family U4, = {U,(a) : a € A} is point-finite for otherwise there is a point
x € X, (A) such that |x(a)| > |g| for infinitely many a € A.

Therefore the family & = | J{U, : ¢ € Q\{0}} is o-point-finite and consists of
cozero subsets of X, (A). To see that U is Ty-separating take distinct x, y € Y. (A);
there is @ € A for which x(a) # y(a). It is evident that there exists g € Q\{0}
which lies between the points x(a) and y(a). Then U,(a) € U and U,(a) N {x, y}
is a singleton. Thus U/ is a Ty-separating o-point-finite family of cozero subsets of
Y« (A). We already noted that this implies existence of such a family in X; so we
proved necessity.

To establish sufficiency assume that Y = (J{U, : n € w} is a Ty-separating
family of cozero subsets of X such that {4, is point-finite for any n € w. Denote
by u the function of X which is identically zero. Given any U € U, fix a function
€ Cp(X,[0,27"]) such that X\U = (f))~1(0).

We claim that the set K = {f} : n € o, U € U,} U {u} is compact. Indeed,
given any G € t(u,C,(X)) there is a finite set /' C X and & > 0 such that
H ={f € C,(X) :|f(x)] < eforany x € F} C G.Pick m € w such that
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27" < g;ythen f] € H foralln > mand U € U, because | f/(x)| = fl(x) <
27" <27 < gforany x € X. The family V = | J{U, : n < m} being point-
finite there is a finite V' C V such that x ¢ U and hence f/(x) = 0 for any
x € F,n<mandU € U,\V'. As a consequence, f € H for all except finitely
many f € K which shows that K\G C K\H is a finite set. Since K\G is finite
forany G € 7(u, C,(X)), the set K is compact.

Finally, if x,y € X and x # y then there are n € w and U € U, such that
U N {x, y} is a singleton. It is clear that f;} is equal to zero at exactly one of the
points x, y; so f(x) # f/(y). We proved that the compact set K C C,(X)
separates the points of our compact space X; so X is Eberlein compact. This settles
sufficiency and makes our solution complete.

U.325. Give an example of a scattered compact space which fails to be Corson
compact and has a Ty-separating o -point-finite family of open sets.

Solution. Let L be the set of all limit ordinals of w;. For every @ € L choose a
strictly increasing sequence Sy, = {iq(n) : n € w} C o\ L which converges to o
and let B, = {{o} U (Sx\K) : K is a finite subset of S,}. Let 7 be the topology
on w; generated by the family B = {{a} : @ € o/\L} U (J{By : @ € L}) as
a base. It is easy to see that ¥ = (wj, 7) is a locally compact space in which all
points of w;\ L are isolated and /5, is a countable base at the point « for any « € L.
Furthermore, L is a closed discrete subspace of Y'; so Y is not compact.

If K C Y is compact then K N L is finite because K is closed and discrete in Y.
The set K" = K\(IJ{Sy : @ € K N L}) is also finite being closed and discrete in
K;so K C K'U (|J{Sy : @« € K N L}) is countable. This proves that

(1) every compact subspace of Y is countable.

Denote by X the one-point compactification of Y; it is straightforward that X
is compact and scattered. Let w € X be the point which compactifies Y, i.e.,
{w} = X\Y. Assume that X is Corson compact and hence there exists a point-
countable family U/ of open F;-subsets of X which Ty-separates the points of X
(see Problem 118). Given x,y € X say that a set U € U separates x and y if
U N{x, y} is a singleton. Since every F,-subspace of X is o-compact, the property
(1) implies that

(2) ifU e U andw ¢ U then U is countable,

and hence sup(U) < w; forany U € Uy = U\t (w, X). There are at most countably
many elements of I/ which contain w. Since X\U C Y is compact and hence
countable for any U € t(w, X), there exists an ordinal y < w; such that

(3) for any countable ordinal @ > y, if U € U separates o and w then U € U, and
hencea € U.

Take any yo € L with Yy > y and choose U, € U which separates yo and w.
The property (3) shows that Uy € Uy and yo € Up. Suppose that B < w; and we
have a set {y, : @ < B} C L and a family {U, : @ < B} C Uy with the following
properties:
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(4) yo € Uy forany o < B;

(5) o <o < Bimplies &' < Yy < Va;

(6) if o’ < a < B then sup{sup(Us) : § < &'} < Vq;

(7) if @ < B is a limit ordinal then y, = sup{ys : § < a}.

If B is a limit ordinal then we have to let yg = sup{y, : @ < B}; since U is a
Ty-separating family in X, there is Ug € U which separates yg and w. It follows
from (3) that yg € Ug € Uj. It is easy to see that the properties (4)—(7) hold for all
a<pB.

Now, if 8 = B’ + 1 then y’ = sup{sup(Uy,) : @ < B’} < w; by (2); so if we
take yg € L with yg > max{yp,y’} + 1 then some Ug € U separates yg and w
which implies, by (3), that yg € Ug € Uj. It is clear that (4)—(7) still hold for any
a < B; so our inductive procedure can be continued to construct an w;-sequence
G ={y,:a <w} C L anda family {U, : ¢ < w1} C Uy with the properties
(4)—(7) fulfilled for any f < w;.

An immediate consequence of (4) and (6) is that U, # Up if o # B; besides, it
follows from (5) and (7) that G is a closed unbounded subset of w;. For any ¢ < wy,
the set U, is an open neighbourhood of y,; so there is ky € w such that u,, (n) € U,
forany n > ky;let f(yo) = y, (ko).

This gives us a function f : G — w; such that f(8) < B for any B € G;
so we can apply SFFS-067 to find an uncountable H C G and 8 < w; such that
f(v) = B forany v € H. In other words, there is an uncountable £ C w; such that
f(yy) = B forany o € E. By our choice of the function f we have 8 € U, for any
a € E. Since U, # Uy for distinct o, o’ € E, the point 8 belongs to uncountably
many elements of ¢/; this contradiction shows that X is not Corson compact.

To finally see that the space X has a o-point-finite 7j-separating family of open
sets fix a countable base O in R and an injective map £ : L — R; then the family
H = {£71(0) : O € O} C expX is also countable. For any H € H the set
Fp = (L\H) U {w} is closed in X being either finite or homeomorphic to the
one-point compactification of the discrete space L\ H. Therefore the set Wy =
(w1\L) U H = X\ Fy isopen in X for any H € H. Thus the family W = {{«} :
a € w\L} U{Wy : H € H} is o-disjoint (and hence o-point-finite) and consists
of open subsets of X.

To see that W is Ty-separating, take distinct points x,y € X. If x = o € w;\L
ory = o € w;\L then the set W = {«} belongs to W and separates x and y. If
{x,y} € X\(w1\L) and one of the points x, y, say, x coincides with w then there
is O € O with £(y) € O;then H = (w;\L) U §7'(0) € W and H separates
the points x and y. Finally, if x, y € L then £(x) # &(¥); so there is O € O with
E(x) € Oand £(y) ¢ O.Theset H = (w;\L) UE1(O) belongsto W and x € H
while y ¢ H,i.e., H also separates the points x and y. Thus, X is the promised
scattered compact space which has a Tp-separating o-point-finite family of open
sets and fails to be Corson.

U.326. Suppose that a compact X has a Ty-separating point-finite family of open
sets. Prove that X is Eberlein compact.
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Solution. Let I/ be a Ty-separating point-finite family of open subsets of X. Say
that an open set U separates some points x,y € X if U N {x, y} is a singleton.
Forany x € X letUy = {U e U : x € U} and O, = (U, (if Uy = @ then
O, = X). Observe that

(1) for any distinct x, y € X we have U, # U,,

because otherwise no U € U separates the points x and y. Our next observation
is that

(2) the family O = {O, : x € X} is point-finite.

To see that (2) is true assume that there is z € X and an infinite set A C X such
that z € ({Oyx : x € A}. For any x € A it follows from z € O, thatU, C U, so
the family {{, : x € A} consists of finite collections contained in Uf;. The family U/,
being finite, there are distinct x, y € A such that if, = U,; this contradiction with
(1) shows that no point z € X can belong to infinitely many elements of O, i.e., (2)
is proved.

For any x € X fix a cozero set W, such that x € W, C O,; it follows from (2)
that the family W = {W, : x € X} is point-finite. If x and y are distinct points
of X then there is U € U which separates x and y, say, x € U and y ¢ U. Then
x € W, C O, C U C X\{y} and hence W, separates the points x and y (if y € U
then, analogously, the set W, separates the points x and y). This shows that JV is
a point-finite 7Ty-separating family of cozero subsets of X and hence X is Eberlein
compact by Problem 324.

U.327. Prove that a non-empty compact X is Eberlein if and only if there is a
compact F' C C,(X) which separates the points of X and is homeomorphic to
A(k) for some cardinal k.

Solution. Sufficiency is clear; so assume that X is an Eberlein compact space. If
some finite A C C,(X) can separate the points of X then, for any n € w, let
fn(x) = 27" for any x € X and denote by u the function of X which is identically
zero. It is clear that the set K = A U {f, : n € w} U {u} separates the points of X
and K >~ A(w).

Now assume that no finite subset of C,(X) separates the points of X. By
Problem 324, there is a Ty-separating family U = | J{U, : n € w} of cozero subsets
of X such that U, is point-finite for any n € w. Given any set U € U, fix a function
i€ Cp(X,[0,27"]) such that X\U = (f1)~(0).

Let K ={f) :n€w, Uel,}U/{u};givenx,y € X with x # y there are
n € wand U € U, such that U N {x, y} is a singleton. It is clear that f} is equal to
zero at exactly one of the points x, y; so f}(x) # f}(»). This proves that the set
K C Cp,(X) separates the points of the space X and hence K is infinite.

Given any G € t(u, C,(X)) there is a finite set ¥ C X and & > 0 such that
H ={f € Cy(X):|f(x)] <eforany x € F} C G. Pick a number m € w
such that 27" < ¢; then f} € H foralln > m and U € U, because | ] (x)| =
fi(x) <27 <27 < gforany x € X. The family V = J{U, : n < m}
being point-finite there is a finite V' C V such that x ¢ U and hence f{/(x) = 0
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forany x € F, n <mand U € U,\V'. As a consequence, f € H for all except
finitely many f € K which shows that K\G C K\H is a finite set. Since the
space K is infinite and the set K\G is finite for any G € 7(u, C,(X)), the set K is
homeomorphic to A(x) for some « and hence our solution is complete.

U.328. Say that a function x : 1 — 1 is increasing (decreasing) if x(s) < x(t) (or
x(s) > x(t) respectively) whenever s,t € Land s < t. A function x : I — T is
called monotone if it is either increasing or decreasing. Prove that the Helly space
X = {x e I': x is a monotone function} is closed in I' and hence compact. Is it an
Eberlein compact space?

Solution. We have the equality X = XoUX| where Xo = {x € I' : x is increasing}
and X; = {x € I' : x is decreasing}. If z € I'\ X then there are s, € I such that
s < tandz(s) > z(r). Fore = z(s)—z(1) > Otheset U = {x € I' : x(s) > z(s)—%
and x(r) < z(r) + 5} isopenin I'and z € U C 1"\ X; so Xy is closed in I' and
hence compact. It is now evident how to make the relevant changes in this proof
to establish compactness of X|; so the space X is compact being the union of two
compact sets.

For any a € (—1, 1) define a function x, € I' as follows: x,(t) = —1ift < a,
Xxgz(a) = 0 and x,(t) = 1 for any ¢t > a. It is clear that every x, is increasing; so
D ={x,:a € (—1,1)} C Xo. Theset U, = {x € I' : |x(a)| < 1} is open in I"
and U, N D = {x,} forany a € (—1, 1). This proves that

(1) the set D is a discrete subspace of X).

Let Q = QN (—1,1); for any p,q € Q with p < g consider the function

¢pq € 1! defined by ¢, ,(t) = —1if ¢t < p, ¢,,(t) = 1forallt > g and

Vpq(t) = ﬁt — T_‘—ﬁ forany t € (p, q).
Theset A = {¢,4: p,q € Q and p < g} C X is countable. We claim that

(2) the set D is contained in the closure of A.

To prove (2), fix any a € (—1, 1) and take an arbitrary U € 7(x,, X). There is
€ > 0andafinite set K C Isuchthata € Kand V ={x € X : |x(¢) —x,(t)| < ¢
foranyt € K} C U.Itiseasy to find § > 0 such that § < min{l, ¢, %(1 +a), %(1 —
a)}and K\{a} C [-1,a—=68]U[a + 6, 1].

Observe that (a — §,a + §) C (=1, 1); besides, § < 1 and hence §%> < §. Choose

apointr € Q N(a — %,a) and pick s € Q for whichj—1 <s < %.The numbers
- — £ _ 8 38
p—r—sandq—r—l—zsbelongtoQandp>a—T—i >a—73 >a—34.
82 8

Furthermore, ¢ > a — 5 + 3 > aandg < a + % < a + §. As a consequence,
©pq(t) = x4(2) forany t € K\{a}.
2

Now, |@pq(a) — xq(a@)| = |@pq(a)| = |%| = ‘“;r‘ < i,/—/f = § < ¢e. Thus
|@pq(t) —xa(t)| < & foranyt € K whichshows thatg,, € VN A C U N 4; the
open neighbourhood U of the point x, was chosen arbitrarily; so x, € A for any
a € (—1,1) and therefore D C A, ie., (2) is proved.

In a discrete space network is equal to the cardinality of the space; so it follows
from the property (1) that nw(D) = |D| > w. The property (2) implies that
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