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Preface

The 28th International Conference on Architecture of Computing Systems (ARCS 2015)
was hosted by the CISTER Research Center at Instituto Superior de Engenharia do
Porto, Portugal, from March 24 to 27, 2015 and continues the long-standing ARCS tra-
dition of reporting top-notch results in computer architecture and related areas. It was
organized by the special interest group on ‘Architecture of Computing Systems’ of the
GI (Gesellschaft für Informatik e. V.) and ITG (Informationstechnische Gesellschaft im
VDE), with GI having the financial responsibility for the 2015 edition. The conference
was also supported by IFIP (International Federation of Information Processing).

The special focus of ARCS 2015 was on “Reconciling Parallelism and Predictabil-
ity in Mixed-Critical Systems.” This reflects the ongoing convergence between compu-
tational, control, and communication systems in many application areas and markets.
The increasingly data-intensive and computational nature of Cyber-Physical Systems
is now pushing for embedded control systems to run on complex parallel hardware.
System designers are squeezed between the hammer of dependability, performance,
power and energy efficiency, and the anvil of cost. The latter is typically associated with
programmability issues, validation and verification, deployment, maintenance, com-
plexity, portability, etc. Traditional, low-level approaches to parallel software develop-
ment are already plagued by data races, non-reproducible bugs, time unpredictability,
non-composability, and unscalable verification. Solutions exist to raise the abstraction
level, to develop dependable, reusable, and efficient parallel implementations, and to
build computer architectures with predictability, fault tolerance, and dependability in
mind. The Internet of Things also pushes for reconciling computation and control in
computing systems. The convergence of challenges, technology, and markets for high-
performance consumer and mobile devices has already taken place. The ubiquity of
safety, security, and dependability requirements meets cost efficiency concerns. Long-
term research is needed, as well as research evaluating the maturity of existing system
design methods, programming languages and tools, software stacks, computer archi-
tectures, and validation approaches. This conference put a particular focus on these
research issues.

The conference attracted 45 submissions from 22 countries. Each paper was as-
signed to at least three Program Committee Members for reviewing. The Committee
selected 19 submissions for publication with authors from 11 countries. These pa-
pers were organized into six sessions covering topics on hardware, design, applica-
trions, trust and privacy, and real-time issues. A session was dedicated to the three
best paper candidates of the conference. Three invited talks on “The Evolution of
Computer Architectures: A View from the European Commission” by Sandro D’Elia,
European Commission Unit “Complex Systems & Advanced Computing,” Belgium,
“Architectures for Mixed-Criticality Systems based on Networked Multi-Core Chips”
by Roman Obermaisser, University of Siegen, Germany, and “Time Predictability in
High-Performance Mixed-Criticality Multicore Systems" by Francisco Cazorla,
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Barcelona Supercomputing Center, Spain, completed the strong technical program.
Four workshops focusing on specific sub-topics of ARCS were organized in conjunction
with the main conference, one on Dependability and Fault Tolerance, one on Multi-
Objective Many-Core Design, one on Self-Optimization in Organic and Autonomic
Computing Systems, as well as one on Complex Problems over High Performance
Computing Architectures. The conference week also featured two tutorials, on CUDA
tuning and new GPU trends, and on the Myriad2 architecture, programming and com-
puter vision applications.

We would like to thank the many individuals who contributed to the success of
the conference, in particular the members of the Program Committee as well as the
additional external reviewers, for the time and effort they put into reviewing the sub-
missions carefully and selecting a high-quality program. Many thanks also to all authors
for submitting their work. The workshops and tutorials were organized and coordinated
by João Cardoso, and the poster session was organized by Florian Kluge and Patrick
Meumeu Yomsi. The proceedings were compiled by Thilo Pionteck, industry liaison
performed by Sascha Uhrig and David Pereira, and conference publicity by Vincent
Nélis. The local arrangements were coordinated by Luis Ferreira. Our gratitude goes
to all of them as well as to all other people, in particular the team at CISTER, which
helped in the organization of ARCS 2015.

January 2015 Luís Miguel Pinho
Wolfgang Karl

Albert Cohen
Uwe Brinkschulte



Organization

General Co-Chairs

Luís Miguel Pinho CISTER/INESC TEC, ISEP, Portugal
Wolfgang Karl Karlsruhe Institute of Technology, Germany

Program Co-chairs

Albert Cohen Inria, France
Uwe Brinkschulte Universität Frankfurt, Germany

Publication Chair

Thilo Pionteck Universität zu Lübeck, Germany

Industrial Liaison Co-chairs

Sascha Uhrig Technische Universität Dortmund, Germany
David Pereira CISTER/INESC TEC, ISEP, Portugal

Workshop and Tutorial Chair

João M. P. Cardoso University of Porto/INESC TEC, Portugal

Poster Co-chairs

Florian Kluge University of Augsburg, Germany
Patrick Meumeu Yomsi CISTER/INESC TEC, ISEP, Portugal

Publicity Chair

Vincent Nelis CISTER/INESC TEC, ISEP, Portugal

Local Organization Chair

Luis Lino Ferreira CISTER/INESC TEC, ISEP, Portugal



VIII Organization

Program Committee

Michael Beigl Karlsruhe Institute of Technology, Germany
Mladen Berekovic Technische Universität Braunschweig, Germany
Simon Bliudze École Polytechnique Fédérale de Lausanne,

Switzerland
Florian Brandner École Nationale Supérieure de Techniques

Avancées, France
Jürgen Brehm Leibniz Universität Hannover, Germany
Uwe Brinkschulte Universität Frankfurt am Main, Germany
David Broman KTH Royal Institute of Technology, Sweden, and

University of California, Berkeley, USA
João M.P. Cardoso University of Porto/INESC TEC, Portugal
Luigi Carro Universidade Federal do Rio Grande do Sul, Brazil
Albert Cohen Inria, France
Koen De Bosschere Ghent University, Belgium
Nikitas Dimopoulos University of Victoria, Canada
Ahmed El-Mahdy Egypt-Japan University of Science

and Technology, Egypt
Fabrizio Ferrandi Politecnico di Milano, Italy
Dietmar Fey Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Pierfrancesco Foglia Università di Pisa, Italy
William Fornaciari Politecnico di Milano, Italy
Björn Franke University of Edinburgh, UK
Roberto Giorgi Università di Siena, Italy
Daniel Gracia Pérez Thales Research and Technology, France
Jan Haase University of the Federal Armed Forces Hamburg,

Germany
Jörg Henkel Karlsruhe Institute of Technology, Germany
Andreas Herkersdorf Technische Universität München, Germany
Christian Hochberger Technische Universität Darmstadt, Germany
Jörg Hähner Universität Augsburg, Germany
Michael Hübner Ruhr University Bochum, Germany
Gert Jervan Tallinn University of Technology, Estonia
Ben Juurlink Technische Universität Berlin, Germany
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Christos Kartsaklis Oak Ridge National Laboratory, USA
Jörg Keller Fernuniversität in Hagen, Germany
Raimund Kirner University of Hertfordshire, UK
Andreas Koch Technische Universität Darmstadt, Germany
Hana Kubátová Czech Technical University in Prague,

Czech Republic
Olaf Landsiedel Chalmers University of Technology, Sweden
Paul Lukowicz Universität Passau, Germany



Organization IX

Erik Maehle Universität zu Lübeck, Germany
Christian Müller-Schloer Leibniz Universität Hannover, Germany
Alex Orailoglu University of California, San Diego, USA
Carlos Eduardo Pereira Universidade Federal do Rio Grande do Sul, Brazil
Thilo Pionteck Universität zu Lübeck, Germany
Pascal Sainrat Université Toulouse III, France
Toshinori Sato Fukuoka University, Japan
Martin Schulz Lawrence Livermore National Laboratory, USA
Karsten Schwan Georgia Institute of Technology, USA
Leonel Sousa Universidade de Lisboa, Portugal
Rainer Spallek Technische Universität Dresden, Germany
Olaf Spinczyk Technische Universität Dortmund, Germany
Benno Stabernack Fraunhofer Institut für Nachrichtentechnik,

Germany
Walter Stechele Technische Universität München, Germany
Djamshid Tavangarian Universität Rostock, Germany
Jürgen Teich Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
Eduardo Tovar CISTER/INESC TEC, ISEP, Portugal
Pedro Trancoso University of Cyprus, Cyprus
Carsten Trinitis Technische Universität München, Germany
Martin Törngren KTH Royal Institute of Technology, Sweden
Sascha Uhrig Technische Universität Dortmund, Germany
Theo Ungerer Universität Augsburg, Germany
Hans Vandierendonck Queen’s University Belfast, UK
Stephane Vialle CentraleSupelec and UMI GT-CNRS 2958, France
Lucian Vintan “Lucian Blaga" University of Sibiu, Romania
Klaus Waldschmidt Universität Frankfurt am Main, Germany
Stephan Wong Delft University of Technology, The Netherlands

Additional Reviewers

Ardeshiricham, Armaiti
Backasch, Rico
Blochwitz, Christopher
Bradatsch, Christian
Comprés Ureña, Isaías A.
Eckert, Marcel
Engel, Andreas
Feng, Lei
Gangadharan, Deepak
Gottschling, Philip
Grudnitsky, Artjom
Guo, Qi
Haas, Florian

Habermann, Philipp
Hassan, Ahmad
Hempel, Gerald
Hu, Sensen
Huthmann, Jens
Iacovelli, Saverio
Jordan, Alexander
Kantert, Jan
Maia, Cláudio
Meyer, Dominik
Mische, Jörg
Naji, Amine
Nogueira, Luís



X Organization

Pohl, Angela
Preußer, Thomas
Pyka, Arthur
Sanz Marco, Vicent
Schirmeier, Horst
Shuka, Romeo
Smirnov, Fedor

Spiegelberg, Henning
Westman, Jonas
Yomsi, Patrick
Zabel, Martin
Zhang, Xinhai
Zolda, Michael



Invited Talks



Dr. Sandro D’Elia, European Commission Unit
“Complex Systems and Advanced Computing”

The Evolution of Computer Architectures: A view from the European Commission

Abstract of Talk: The changes in technology and market conditions have brought, in re-
cent years, a significant evolution in the computer architectures. Multi-core chips force
programmers to think parallel in any application domain, heterogeneous systems inte-
grating different specialised processors are now the rule also in consumer markets, and
energy efficiency is an issue across the entire computing spectrum from the wearable
device to the high performance cluster. These trends pose significant issues: software
development is a bottleneck because efficient programming for parallel and heteroge-
neous architectures is difficult, and application development remains a labour-intensive
and expensive activity; non-deterministic timing in multicore chips poses a huge prob-
lem whenever a guaranteed response time is needed; software is typically not aware
of the energy it uses, and therefore does not use hardware efficiently. Security is a
cross-cutting problem, which in some cases is addressed through hardware-enforced
"secure zones". This presentation discusses the recent evolution in computing archi-
tectures focusing on examples from European research and innovation projects, with a
look forward to some promising innovations in the field like bio-inspired, probabilistic
and approximate computing.

Dr. Sandro D’Elia is Project Officer at the European Commission Unit A/3 "Complex
Systems & Advanced Computing". He spent a significant part of his career as IT project
manager, first in the private sector and then in the IT service of the European Commis-
sion. In 2009 he moved to a position of research project officer. His role is evaluating,
negotiating, controlling and supporting research and innovation projects financed by the
European Commission, contributing to the drafting of the research and innovation work
programme, and contributing to European policies on software, cyber-physical systems
and advanced computing.



Prof. Dr. Roman Obermaisser, University of Siegen

Architectures for Mixed-Criticality Systems Based on Networked Multi-Core Chips

Abstract of Talk: Mixed-criticality architectures with support for modular certifica-
tion make the integration of application subsystems with different safety assurance
levels both technically and economically feasible. Strict segregation of these subsys-
tems is a key requirement to avoid fault propagation and unintended side-effects due
to integration. Also, mixed-criticality architectures must deal with the heterogeneity of
subsystems that differ not only in their criticality, but also in the underlying compu-
tational models and the timing requirements. Non safety-critical subsystems often de-
mand adaptability and support for dynamic system structures, while certification stan-
dards impose static configurations for safety-critical subsystems. Several aspects such
as time and space partitioning, heterogeneous computational models and adaptability
were individually addressed at different integration levels including distributed systems,
the chip-level and software execution environments. However, a holistic architecture for
the seamless mixed-criticality integration encompassing distributed systems, multi-core
chips, operating systems and hypervisors is an open research problem. This presenta-
tion discusses the state-of-the-art of mixed-criticality systems and presents research
challenges towards a hierarchical mixed-criticality platform with support for strict seg-
regation of subsystems, heterogeneity and adaptability.

Prof. Dr. Roman Obermaisser is full professor at the Division for Embedded Systems
at University of Siegen in Germany. He has studied computer sciences at Vienna Univer-
sity of Technology and received the Master’s degree in 2001. In February 2004, Roman
Obermaisser has finished his doctoral studies in Computer Science with Prof. Hermann
Kopetz at Vienna University of Technology as research advisor. In July 2009, Roman
Obermaisser has received the habilitation ("Venia docendi") certificate for Technical
Computer Science. His research work focuses on system architectures for distributed
embedded real-time systems. He is the author of numerous conference and journal
publications. He also wrote books on cross-domain system architectures for embed-
ded systems, event-triggered and time-triggered control paradigms and time-triggered
communication protocols. He has also participated in several EU research projects (e.g.
DECOS, NextTTA, universAAL) and was the coordinator of the European research
projects GENESYS and ACROSS. At present Roman Obermaisser coordinates the Eu-
ropean research project DREAMS that will establish a mixed-criticality architecture for
networked multi-core chips.



Dr. Francisco Cazorla, Barcelona Supercomputing Center

Time Predictability in High-Performance Mixed-Criticality Multicore Systems

Abstract of Talk: While the search for high-performance will continue to be one of the
main driving factors in computer design and development, there is an increasing need
for time predictability across computing domains including high-performance (data-
centre and supercomputers), handheld and embedded devices. The trend towards using
computer systems to increasingly control essential aspects of human beings and the
increasing connectivity across devices will naturally lead to situations in which ap-
plications - partially executed in handheld and datacentre computers, directly connect
with more embedded critical systems such as cars or medical devices. The problem
lies in the fact that high-performance is usually achieved by deploying aggressive hard-
ware features (speculation, caches, heterogeneous designs) that negatively impact time
predictability. The challenge lies on finding hardware/software designs that balance
high-performance and time-predictability as needed by the application environment.
In this talk I will focus on the increasing needs of time predictability in computing
systems. I will present some of the main challenges in the design of multicores and
manycores, widely deployed in the different computer domains, to provide increasing
degrees of time predictability without significantly degrading average performance. I
will present the work done in my research group in two different directions to reach
this goal, namely, probabilistic multicore systems and the analysis of COTS multicore
processors.

Dr. Francisco J. Cazorla is a researcher at the National Spanish Research Council
(CSIC) and the leader of the CAOS research group (Computer Architecture - Operat-
ing System) at the Barcelona Supercomputing Centre (www.bsc.es/ caos). His research
area covers the design for both high-performance and real-time systems. He has led sev-
eral research projects funded by industry including several processor vendor companies
(IBM, Sun microsystems) and the European Space Agency. He has also participated in
European FP6 (SARC) and FP7 Projects (MERASA, parMERASA). He led the FP7
PROARTIS project and currently leads the FP7 PROXIMA project. He has co-authored
over 70 papers in international refereed conferences and has several patents on the area.
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Parallel-Operation-Oriented Optically
Reconfigurable Gate Array

Takumi Fujimori and Minoru Watanabe(B)

Electrical and Electronic Engineering, Shizuoka University, 3-5-1 Johoku,
Hamamatsu, Shizuoka 432-8561, Japan

tmwatan@ipc.shizuoka.ac.jp

Abstract. Recently, studies exploring acceleration of software opera-
tions on a processor have been undertaken aggressively using field pro-
grammable gate arrays (FPGAs). However, currently available FPGA
architectures present waste occurring with parallel operation in terms
of configuration memory because the same configuration context corre-
sponding to same-function modules must be programmed onto numer-
ous configuration memory parts. Therefore, a parallel-operation-oriented
FPGA with a single shared configuration memory for some programma-
ble gate arrays has been proposed. Here, the architecture is applied
for optically reconfigurable gate arrays (ORGA). To date, the ORGA
architecture has demonstrated that a high-speed dynamic reconfigura-
tion capability can increase the performance of its programmable gate
array drastically. Software operations can be accelerated using an ORGA.
This paper therefore presents a proposal for combinational architecture
of the parallel-operation oriented FPGA architecture and a high-speed
reconfiguration ORGA. The architecture is called a parallel-operation-
oriented ORGA architecture. For this study, a parallel-operation-oriented
ORGA with four programmable gate arrays sharing a common configu-
ration photodiode-array has been designed using 0.18µm CMOS process
technology. This study clarified the benefits of the parallel-operation-
oriented ORGA in comparison with an FPGA having the same gate
array structure, produced using the same process technology.

1 Introduction

Recently, studies of acceleration of software operations on a processor have been
executed aggressively using general-purpose computing on graphics processing
units (GPGPUs) [1]–[3] and using field programmable gate arrays (FPGAs)
[4]–[6]. Particularly, along with the increasing size of FPGAs, many FPGA
hardware acceleration results have been reported. According to several reports,
FPGA acceleration is suitable for fluid analysis, electromagnetic field analysis,
image processing operation, game solvers, and so on. The importance of FPGA
hardware acceleration of software operations therefore appears to be increasing.

Actually, FPGA programmability can be achieved based on a look-up table
(LUT) and switching matrix (SM) architecture. For that architecture, FPGA
performance is always inferior to that of custom VLSIs since a circuit imple-
mented onto a LUT is always slower than the corresponding custom logic circuit
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-16086-3 1
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Fig. 1. Photograph of an optically reconfigurable gate array (ORGA) with 16 config-
uration contexts

and because the path delay of SMs on FPGA is greater than that of simple metal
wires on custom VLSIs. When implementing processors, the clock frequency of
the soft core processor on FPGA is always about a tenth of the frequency of
custom processors having the same process technology as that of the FPGA
[7][8][9].

Nevertheless, many high-performance FPGA implementations that are supe-
rior to the performance of the latest processors and the latest GPGPUs on per-
sonal computers have been reported. In such cases, the architecture invariably
uses a massively parallel operation. Although the clock frequency of a single unit
on an FPGA is lower than that of Intel’s processors, the total performance of the
parallel operation overcomes the processors. Therefore, when an FPGA is used
as a hardware accelerator the architecture must become a parallel operation.

However, a main concern of a parallel operation on FPGA is that the same
configuration context corresponding to the same-function modules must be pro-
grammed onto many parts of the configuration memory. Currently available
FPGAs are designed as general-purpose programmable gate arrays so that all
logic blocks, switching matrices, and so on can be programmed individually. Such
an architecture is wasteful when functioning under parallel operation.

A better structure in the case of implementing a number of identical circuits
onto LUTs and SMs is to share a common configuration memory for a parallel
operation. Consequently, the amount of configuration memory can be decreased
so that a larger programmable gate array can be realized on a die of the same
size. Therefore, a parallel-operation-oriented FPGA that has a single shared con-
figuration memory for some programmable gate arrays has been proposed [10].
The gate density can be increased by sharing configuration memory compared
with general-purpose FPGAs.

Here, the parallel-operation-oriented FPGA architecture is applied for opti-
cally reconfigurable gate arrays (ORGAs). An ORGA consists of a holographic
memory, a laser array, and an optically programmable gate array, as shown in
Fig. 1 [11]–[15]. The ORGA can have over 256 reconfiguration contexts inside a
holographic memory, which can be implemented dynamically onto an optically
programmable gate array at every 10 ns. To date, ORGA architecture has
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Fig. 2. Parallel-operation-oriented FPGA architecture including four common pro-
grammable gate arrays in which four parallel operations can be implemented

demonstrated that such high-speed dynamic reconfiguration capability can in-
crease the performance of its programmable gate array drastically. Using the high-
speed dynamic reconfiguration, simple circuits with a few functions can be
implemented onto a programmable gate array. Change of the function can be
accomplished using high-speed dynamic reconfiguration. Simple function requires
only a small implementation area so that a large parallel computation can be real-
ized. Therefore, a software operation can be accelerated drastically by exploiting
the high-speed dynamic reconfiguration of ORGAs. Moreover, if the parallel-
operation-oriented FPGA architecture is applied to ORGA, then the acceleration
power or the number of parallel operation units is increased extremely.

This report therefore presents a proposal for a combined architecture of the
parallel-operation oriented FPGA architecture and a high-speed reconfiguration
ORGA. The architecture, called a parallel-operation-oriented ORGA architec-
ture, includes a shared common configuration architecture. For this study, a
parallel-operation-oriented ORGA with four programmable gate arrays sharing a
common configuration photodiode-array has been designed using 0.18 µm CMOS
process technology. The benefits of the parallel-operation-oriented ORGA were
clarified in comparison with an FPGA having the same gate array structure and
the same process technology.

2 Parallel-Operation-Oriented ORGA Architecture

2.1 Parallel-Operation-Oriented FPGA Architecture

Under current general-purpose FPGA architectures, each logic block, switching
matrix, I/O block, block RAM, and so on includes a configuration memory
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Fig. 3. Hybrid architecture including the parallel-operation-oriented FPGA architec-
ture and current general-purpose FPGA architecture

individually. However, in an FPGA accelerator, for example, in uses for fluid
analysis, electromagnetic field analysis, image processing operation, and game
solvers, numerous units with the same function are used. In this case, each
function should use a shared configuration memory to increase the gate density
of a programmable gate array. Therefore, a parallel-operation-oriented FPGA
architecture with a common shared configuration memory has been proposed as
shown in Fig. 2.

Figure 2 presents one example of a parallel-operation-oriented FPGA archi-
tecture including four common programmable gate arrays in which four parallel
operations can be implemented. Of course, the number of common programmable
gate arrays depends on the target application. For example, a game solver invari-
ably uses numerous common evaluation modules. In this case, a programmable
gate array partly including 10 common programmable gate array areas might
be suitable for the application. As a result, the amount of configuration memory
inside an FPGA can be decreased so that the gate array density can be increased.

Figure 3 shows that the parallel-operation-oriented FPGA architecture should
be used along with a current general-purpose FPGA architecture. A suitable
implementation is that a part is designed as parallel-operation-oriented FPGA
architecture. The remainder should be current general-purpose FPGA architec-
ture. Therefore, a system includes both a parallel operation part and a dedicated
operation part. The ratio of a parallel operation part to a dedicated operation
part also depends on the target application.

2.2 Parallel-Operation-Oriented ORGA Architecture

To date, ORGA architecture has demonstrated that a high-speed dynamic recon-
figuration capability can increase its programmable gate array performance dras-
tically. If a high-speed reconfiguration is possible on a programmable gate array,
then a single-function unit can be implemented. Multi-functionality can be
achieved by reconfiguring the hardware itself. Such single-function unit works at
the highest clock frequency. Numerous units can be implemented onto a small
implementation area compared with a general-purpose multi-function unit with
numerous functions because the complexity and size of units is smaller and
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Fig. 4. Construction of a logic block

Fig. 5. Connection of logic blocks and switching matrices

simpler than those of multi-function units. Therefore, the performance can be
increased compared with static uses of current FPGAs.

Moreover, an ORGA can support a high-speed dynamic reconfiguration. Its
reconfiguration period is less than 10 ns. The number of reconfiguration contexts
is at least 256. In the future, the number of configuration contexts on an ORGA
will be increased to a million configuration contexts. For the goal of realizing
numerous reconfiguration contexts, studies of new ORGAs have been progress-
ing. Therefore, ORGA is extremely useful to accelerate a software operation on
a processor. Additionally, the parallel-operation-oriented FPGA architecture is
useful to increase the number of parallel operations on a gate array or the gate
density of an ORGA under a parallel operation can be increased. In this study,
a parallel-operation-oriented ORGA with four programmable gate arrays shar-
ing a common configuration photodiode-array has been designed using 0.18 µm
CMOS process technology.
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Table 1. Specifications of a parallel-operation-oriented optically reconfigurable gate
array

Technology 0.18 µm double-poly
5-metal CMOS process

Chip size 5.0 × 5.0 mm2

Supply Voltage Core 1.8V, I/O 3.3V

Photodiode size 4.40 × 4.45 µm2

Photodiode response time < 5 ns

Sensitivity 2.12 × 10−14 J

Distance between
Photodiodes h.=30.08, v.= 20.16 [µm]

Number of
Photodiodes 25,056

Number of
Logic Blocks 736

Number of
Switching Matrices 828

Number of Wires
in a Routing Channel 8

Number of
I/O blocks 16 (64 bit)

Gate Count 25,024

3 VLSI Design of a Parallel-Operation-Oriented ORGA

3.1 Entire VLSI Design

Here, a parallel-operation-oriented ORGA with four programmable gate array
sharing a configuration architecture was designed using 0.18 µm standard com-
plementary metal oxide semiconductor (CMOS) process technology. The ORGA-
VLSI specifications are shown in Table 1. In an ORGA, a configuration context is
provided optically from a holographic memory. Therefore, an ORGA has numer-
ous photodiodes to detect the configuration context, as shown in Table 1. The
number of photodiodes corresponds to the number of configuration bits. In this
design, 25,056 photodiodes were implemented for programming a programmable
gate array. All blocks of the programmable gate array can be reconfigured at
once. In this design, the ORGA has four programmable gate array planes which
share the single configuration photodiode architecture of the 25,056 photodi-
odes. Each programmable gate array plane has 184 optically reconfigurable logic
blocks and 207 optically reconfigurable switching matrices. The programmable
gate array works along with the same configuration information based on a single
photodiode configuration system.

3.2 Optically Reconfigurable Logic Block

Figure 4 shows that each logic block on a programmable gate array plane has
two four-input look-up tables (LUTs) and two delay-type flip flops. An optically
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Fig. 6. CAD Layouts of logic blocks of (a) a comparison target design of a cur-
rent general-purpose FPGA including a single programmable gate array and (b) a
parallel-operation-oriented ORGA including four banks sharing a common configura-
tion photodiode

Fig. 7. CAD Layout of a switching matrix of (a) a comparison target design of a
current general-purpose FPGA including a single programmable gate array and (b) a
parallel-operation-oriented ORGA including four banks sharing a common configura-
tion photodiode

reconfigurable logic block cell has four logic blocks. The four logic blocks share
the same configuration context so that they can be reconfigured using 60 photo-
diodes. The CAD layout of the optically reconfigurable logic block is portrayed
in Fig. 6(b). Therefore, all four logic blocks can be reconfigured at once and can
function as the same circuit, although the input signals for logic blocks mutually
differ. Figure 5 shows that the optically reconfigurable logic block cell has four
output ports and four input ports for four programmable gate array planes.
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(a) A normal FPGA (b) A parallel-operation-oriented ORGA

Fig. 8. CAD Layouts of (a) a comparison design of a current general-purpose FPGA
and (b) a parallel-operation-oriented ORGA including four programmable gate arrays
sharing a common configuration context

3.3 Optically Reconfigurable Switching Matrix

In addition, the optically reconfigurable switching matrix was designed as having
four direction connections. Each switching matrix is connected for each direction
to another one with eight wires. An optically reconfigurable switching matrix has
64 photodiodes for configuration procedures. The CAD layout of the optically
reconfigurable switching matrix cell is portrayed in Fig. 7(b). The optically recon-
figurable switching matrix cell has four switching matrices for four programmable
gate arrays. Therefore, as shown in Fig. 5, each direction of the optically recon-
figurable switching matrix cell has four ports for four programmable gate array
planes.

3.4 Gate Array Design

Each photodiode was designed to be 4.40 × 4.45µm. The photodiode sensitivity
was estimated experimentally as 2.12 × 10−14 J. Even if reconfiguration can be
executed constantly at 100 MHz, the necessary optical power for the configura-
tion procedure is about 26.6 mW. Therefore, the configuration power consump-
tion of the ORGA-VLSI can be estimated as low. Each logic block is surrounded
by four switching matrices connecting eight wiring channels as an island style
gate array. Since a parallel-operation-oriented ORGA has four of the same pro-
grammable gate arrays sharing a configuration architecture, in all, it has 736
logic blocks and 828 switching matrices. In this design, the number of I/O bits
was limited to 64 bits because of chip package issues. The gate count reaches
25,024 gates. The CAD layout of the programmable gate array is presented in
Fig. 8. The chip size is 5 mm × 5 mm. All gate array parts were designed using
standard cells, except for a photodiode cell. The photodiode cell was designed
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Table 2. Results of gate density comparisons

Type Current FPGA Parallel-operation-oriented ORGA

Number of functions Single function 4 functions
(368 LUTs) (1,472 LUTs)

Size of a Logic Block 132.48 × 91.84 µm2 236.80 × 152.32 µm2

Size of a Switching Matrix 110.08 × 91.84 µm2 236.80 × 152.32 µm2

Size of an I/O Block without PAD 106.88 × 91.84 µm2 236.80 × 152.32 µm2

Size of a gate array (184 LBs and 207 SMs) 6,443,988 µm2 19,103,661 µm2

Number of LUTs / mm2 57.1 77.1

Table 3. Results of comparing the operating clock frequency of a seven-stage ring
oscillator

Type Current FPGA Parallel-operation-oriented ORGA

Number of functions Single function 4 functions

Operating clock frequency 43.71 MHz 72.78 MHz

Gate array performance 2.50 ×109 5.61 ×109

/ second · mm2 LUT operations / sec. · mm2 LUT operations / sec. · mm2

Performance ratio 1 2.24

Table 4. Results of comparing the leakage power consumption

Type Current FPGA Parallel-operation-oriented ORGA

Number of functions Single function 4 functions

Leakage Power 6.14 µW 7.38 µW

as full-custom. The gate array design was synthesized using a logic synthesis
tool (Design Compiler: Synopsys Inc.). In addition, as a place and route tool, IC
compiler (Synopsys Inc.) was used. Voltages of the core and I/O are 1.8 V and
3.3 V, respectively. Currently, to facilitate optical experiments, the ORGA photo-
diode size and space between the photodiodes were designed as large. Therefore,
since the ORGA-VLSI design has spaces and the density of the logic cells is
not maximum, the cell sizes of the logic block and the switching matrix of the
ORGA-VLSI were larger than those of the comparison-target FPGA.

3.5 Comparison Target Design

Additionally, here, as a comparison target, a normal FPGA was also designed
with the same 0.18 µm standard CMOS process technology. The FPGA has
a single programmable gate array, which is the same structure as the ORGA
design and the configuration memory above. Since the FPGA has only one pro-
grammable gate array plane, the gate array has 184 logic blocks and 207 switch-
ing matrices. Of course, the logic block structure and switching matrix structure
are also the same. The CAD layouts of a logic block and a switching matrix are
shown respectively in Fig. 6(a) and Fig. 7(a).
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4 Evaluation Results

4.1 Gate Density

The implementation results of the parallel-operation-oriented ORGA and the
comparison target FPGA are presented in Table 2. Figures 6, 7, and 8 show
that the implementation area of the ORGA-VLSI is larger than that of the
comparison target FPGA. The gate array’s implementation area of the parallel-
operation-oriented ORGA is 19,103,661 µm2. However, the ORGA-VLSI includes
four-times the gate array or four planes of programmable gate arrays. There-
fore, a single programmable gate array corresponding to the comparison target
FPGA has been implemented on only 4,775,915 µm2. The implementation area is
smaller than 6,443,988 µm2 of the comparison target FPGA. Estimating the gate
density, the number of LUTs / mm2 of the parallel-operation-oriented ORGA
and the comparison target FPGA are 77.1 and 57.1, respectively, because the
programmable gate arrays of the parallel-operation-oriented ORGA and the com-
parison target FPGA respectively have 1,472 LUTs and 368 LUTs. Therefore,
the gate density of the parallel-operation-oriented ORGA is higher than that of
the comparison target FPGA, meaning that the ORGA-VLSI can execute larger
operations than the comparison target FPGA.

4.2 Propagation Delay

Next, the operation clock frequencies of the parallel-operation-oriented ORGA
and the comparison target FPGA were measured as results show in Table 3.
The results are based on IC compiler generated SDF information and the cor-
responding HDL simulation. Here, a seven-stage ring oscillator has been imple-
mented onto both ORGA-VLSI and FPGA. The operating clock frequencies of
the parallel-operation-oriented ORGA and the comparison target FPGA were
72.78 MHz and 43.71 MHz. The results show that the operation on an ORGA
can be done faster than on the comparison target FPGA. Currently, the compar-
ison target FPGA was designed to be as small as possible. Therefore, although
FPGA is small, the gate array performance is lower. Of course, the performance
of the comparison target FPGA can be improved through future development.
However, even if the performance of an ORGA becomes lower than that of cur-
rent FPGA design, a parallel-operation-oriented ORGA has advantages under
parallel operation because the number of programmable gate array planes can
be increased easily. Anyway, the performance of the parallel-operation-oriented
ORGA is higher than that of current FPGAs. The total performance per square
millimeter of the parallel-operation-oriented ORGA was 2.24 times higher than
that of the comparison-target FPGA. In another example, the 4-bit multiplier
circuit works at 80.13 MHz. The working speed can be regarded as sufficient
under the current 0.18 µm standard CMOS process technology.

4.3 Power Consumption Estimation

The leakage power consumption generated by the IC compiler is presented
in Table 4. The leakage power consumption of the parallel-operation-oriented
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ORGA is slightly higher than that of the comparison target FPGA. However,
the leakage power consumption per single programmable gate array is decreased
drastically compared with the comparison target FPGA because the ORGA-
VLSI includes four programmable gate arrays. Considering a single programma-
ble gate array, the leakage power consumption is estimated as 1.85 µW. Therefore,
the leakage power consumption per programmable gate array of the parallel-
operation-oriented ORGA is sufficiently smaller than the comparison target
FPGA. The major component of the latest VLSI’s power consumption is leakage
power consumption. The result implies that when the ORGA-VLSI chooses the
latest VLSI technology in the future, the power consumption of the parallel-
operation-oriented ORGA is sufficiently lower than that of currently available
FPGAs.

5 Conclusion

An accelerator using an FPGA must always use a massively parallel opera-
tion to constitute a high-performance system. The configuration memory of cur-
rently available FPGA architecture is wasted under parallel operation because
the same configuration context corresponding to same-function modules must
be programmed onto numerous parts of the configuration memory. Therefore,
a parallel-operation-oriented FPGA with a single shared configuration memory
has been proposed for some programmable gate arrays.

On the other hand, ORGA architecture has demonstrated that its high-speed
dynamic reconfiguration capability can increase the number of parallel opera-
tions on its programmable gate array drastically. If both architectures could be
implemented onto a single system, then numerous parallel operations would be
realized.

This report has presented a proposal of a parallel-operation-oriented ORGA
architecture including a shared common configuration photodiode architecture.
In addition, a parallel-operation-oriented ORGA was designed using the same
0.18 µm process technology. Results show that the parallel-operation-oriented
ORGA architecture presents benefits in terms of performance and power con-
sumption related to the leak current, compared with current general-purpose
FPGAs, which was also designed with the same 0.18 µm process technology and
the same FPGA architecture. The performance per unit area of the parallel-
operation-oriented ORGA is 2.24 times higher than that of a comparison-target
FPGA. When using a parallel operation on an ORGA, the architecture is well-
suited to realizing a high-performance system. The parallel-operation-oriented
ORGA architecture is also well-suited to future three-dimensional VLSI
technologies.
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Abstract. Safety critical systems and in particular higher functional
integrated systems like mixed-criticality systems in avionics require a safe-
guarding that functionalities cannot interfere with each other. A notably
underestimated issue are I/O devices and their (message-signaled) inter-
rupts. Message-signaled interrupts are the omnipresent type of interrupts
in modern serial high-speed I/O subsystems. These interrupts can be
considered as small DMA write packets. If there is no safeguarding for
interrupts, an I/O device associated with a distinct functionality can trig-
ger any interrupt or manipulate any control register like triggering reset
of all processing cores to provoke a complete system failure. This is a par-
ticular issue for available embedded processor architectures, since they
do not provide adequate means for interrupt separation like an IOMMU
with a granularity sufficient for interrupts.

This paper presents the SgInt concept to enable the safeguarding
of interrupts for hardware-based I/O virtualization for safety-critical
and mixed-criticality embedded real-time systems using non-transparent
bridges in single (multi-core) processor systems and multi (multi-core)
processor systems. The advantage of this SgInt concept is that it is an
general and reusable interrupt separation solution which is scalable from
a single (multi-core) processor to a multi (multi-core) processor system
and builds on available COTS chip solutions. It allows to upgrade spa-
tial separation for interrupts to available processors having no means for
interrupt separation. A practical evaluation shows that the SgInt concept
provides the required spatial separation and even slightly outperforms
state-of-the-art doorbell interrupt handling in transfer time and transfer
rate (by about 0.04 %).

1 Introduction

Driven by the demand for more and more functionality, there is a trend in
avionics similar to other field of electronics to a higher functional integration. To
save space, weight and power, functionalities are integrated onto one computing
c© Springer International Publishing Switzerland 2015
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platform. This trend is pushed further by integrating functionalities of different
criticality levels onto the same platform to so called mixed-criticality systems.

Functionalities of different criticality levels on one shared (multi-core) plat-
form require that these functionalities cannot interfere with each other or with
the entire system. To manage this interference issue, temporal separation and
spatial separation are essential to grant a safe and secure system operation. The
Input/Output (I/O) subsystem is a central part, because almost every function
needs I/O for its operation. Since I/O is an often underestimated problem, this
paper focuses on I/O. Temporal separation means having separation in the time
domain. For example, it is guaranteed that an I/O device has a granted transfer
rate or maximum transfer time [1]. Spatial separation means having separation
in the address space domain. For example, it is assured that an I/O device only
writes into a distinct address range or memory area belonging to a distinct func-
tionality or application [2]. A particularly underestimated issue in I/O handling
are (message-signaled) interrupts. Message-signaled interrupts are the ubiqui-
tous type of interrupts in modern memory-mapped I/O subsystems and can be
considered as small Direct Memory Access (DMA) write packets (e.g. with only
4 Byte payload). If there is no spatial separation for interrupts, an erroneous
I/O device can trigger any interrupt of the system-on-chip of the processor or
manipulate any memory-mapped control register like triggering reset of all pro-
cessing cores. Such a situation could lead to a complete system failure [2] [3].
Therefore, it is common in today’s avionics and similar highly safety-critical
systems to effectively turn off all interrupts and handle I/O via polling. This
is a very resource-consuming and ineffective, but a safe approach to solve the
problem. Further constraints are the use of Commercial Of–The–Shelf (COTS)
components, low complexity, determinism and predictability (cf. Section 3).

The challenge is that available embedded processor architectures do not offer
spatial separation means for interrupts like an Input/Output Memory Manage-
ment Unit (IOMMU) with sufficiently fine granularity (cf. Section 3 and [2]).
Server or high-end workstation processor architectures providing such means (cf.
Section 2 and [4] [5]) are not usable for embedded real-time systems because of
size, weight, power, cooling, harsh environmental conditions, certification con-
siderations, etc. Further constraints are the use of Commercial Off–The–Shelf
(COTS) components. This is essential to keep costs low for products with low
piece numbers / volume like aircraft. A fully customized design of a proces-
sor chip or system-on-chip is economically infeasible. For these reasons, this
paper does not discuss the design of interrupt controllers or IOMMUs. Instead,
it focuses on an approach to extend available embedded COTS processors or
system-on-chip by additional means to provide spatial separation for interrupts
with the least possible impact on performance.

The contribution of the Safeguarding Interrupts (SgInt) concept of this paper
is an efficient, high-performance and safe interrupt handling approach for highly
safety-critical systems. It enables spatial separation at interrupt level in systems
that does not have already built-in means. This concept is a reusable and gen-
eral solution, which is scalable from a single (multi-core) processor to a multi
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(multi-core) processor system and builds on available COTS chip solutions. The
SgInt concept uses a source / origin ID check in the Non-Transparent Bridge
(NTB) with an exclusive address range within the NTB aperture for interrupts
of one distinct I/O device in combination with a dedicated alias page in the
processor only containing the interrupt triggering register as mapping target.
Furthermore, the paper contributes a implementation and an application of the
SgInt concept in context of hardware-based I/O virtualization (cf. Section 2).
The result of the presented practical evaluation is that the performance in terms
of transfer time and transfer rate of the SgInt concept is by about 0.04% better
than state-of-the-art doorbell interrupt handling.

To our best knowledge, we are the first to discuss an interrupt separation
solution for single (multi-core) processor systems and multi (multi-core) proces-
sor systems in mixed-criticality embedded real-time systems that do not provide
adequate means for interrupt separation.

2 Related Work

The application context of this paper is hardware-based I/O virtualization (cf.
[1,2,6]). This is the hardware-managed sharing of I/O in virtualized embed-
ded systems. Virualized embedded systems are systems where multiple virtual
machines or application partitions are running on a shared computing platform
managed by virtual machine manager or hypervisor. The key point is that the
sharing or virtualization management is offloaded to hardware. This hardware
management provides a Physical Function (PF) (management interface) and sev-
eral Virtual Functions (VFs) interfaces (application interfaces) [7]. A memory-
mapped I/O like PCI Express (PCIe) serves as basic I/O technology. This allows
to map the PF to a control partition or hypervisor. The VFs are mapped to the
corresponding application partitions. Already available means for memory man-
agement and mapping like Memory Management Unit (MMU) and IOMMU
ensure the spatial separation between the application partitions and I/O inter-
faces.

Non-transparent bridging in context of PCIe is the non-transparent connec-
tion of two dedicated tree-like (single-root) PCIe hierarchies or address spaces
together to enable multiple processors to communicate and exchange data [8]. A
(single-root) PCIe hierarchy or address space is a tree-like topology with maxi-
mally one Central Processing Unit (CPU), master or root. Therefore, a commu-
nication between two root or CPUs is originally not possible. To solve this issue,
an NTB connects two PCIe hierarchies by presenting itself as an end-point to
both PCIe hierarchies. An NTB is constructed by two end-points back to back
with an address translation functionality. Each side of an NTB opens an address
window (aperture) from one PCIe single root hierarchy to the other PCIe single
root hierarchy. The behavior of an NTB is considered as non-transparent, since
the NTB and its address translation feature has to be setup before it allows to
exchange data. It is not checked if a device or function is allowed to transfer
data to a distinct destination. Interrupts are transferred over an NTB by the
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so-called doorbell mechanism. This mechanism consumes the interrupt on the
first side of the NTB and newly generates the interrupt on the second side and
transmits it to the processing unit. It is not checked if a device or function is
allowed to trigger an interrupt. The current concept uses NTB technology in
a different way than formerly intended to enable multi-processor communica-
tion. It extends NTBs to enable spatial separation for interrupts of shared PCIe
devices in a single (multi-core) processor or multi (multi-core) processor system.

[9] uses PCIe interconnect, NTB and Intel VT-d to share a PCIe Single Root
I/O Virtualization (SR-IOV) network card among multiple Intel Xeon hosts
in the IT-server domain. It is suggested to use a dedicated address window
in the NTB to transfer interrupts from one NTB side to the other instead of
using the doorbell mechanism to improve performance. The interrupt remapping
feature of Intel VT-d – the Intel implementation of an IOMMU – is able to check
if a device or function is allowed to trigger an interrupt [4] [10]. AMD provides a
similar technology as part of AMD-Vi or AMD IOMMU [5] [11] [12]. In contrast
to this, the current paper uses PCIe interconnect, NTB technology without an
IOMMU – like Intel VT-d – to share a PCIe SR-IOV or PCIe multifunction
device while still providing spatial separation for data transactions and interrupts
in a mixed-criticality real-time embedded system. The current concept presents
a more general interrupt separation solution, which does not rely on special
interrupt separating features of Intel VT-d or AMD IOMMU.

[6] uses NTB technology to emulate an external IOMMU to provide spatial
separation for data transactions of I/O devices like the separation feature of
an IOMMU for a single (multi-core) computing host lacking an IOMMU. It is
enforced that transactions (for example a DMA write) initiated by I/O device(s)
flow over the NTBs. The control engine in the NTB checks the target address
and source / origin ID (e.g. PCIe ID) of these transactions. A rule set in the
control engine (e.g. white list) decides whether to block the transaction or pass
the transaction and translate the target address to the defined target address in
the (bus) address space on the other side of the NTB. [13] extends this idea to
provide spatial separation for sharing I/O devices among multi (multi-core) pro-
cessor systems which usually do not have means for separation like an IOMMU.
The current paper extends this approach to increase the separation granularity
further to provide spatial separation also for interrupts of I/O devices in a single
(multi-core) processor system as well as a multi (multi-core) processor system,
whose processors lack means to separate interrupts. In addition to the origin /
source ID check in the NTB, the SgInt concept uses an exclusive address range
(page) within the NTB aperture for the interrupts of each I/O device. Mapping
target for this interrupt page is a dedicated page (alias page) in the processor
that only contains the interrupt triggering register.

3 SgInt (Safeguarding Interrupts)

A fundamental assumption is a static system configuration proving low com-
plexity. This is prioritized over dynamic flexibility to obtain a predictable and
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deterministic system behavior. Determinism and predictability is an essential pre-
requisite to moderate the effort for the required assurance or certification process
of a safety-oriented and security-oriented development project like in avionics
[14]. Another assumption is the use of COTS components. This is essential to
keep costs low for products with low piece numbers / volume and long life cycles
like aircraft.

The SgInt concept enables the safeguarding of interrupts for hardware-based
I/O virtualization for mixed-criticality embedded real-time systems using non-
transparent bridges in single (multi-core) processor systems as well as in multi
(multi-core) processor systems.

The already described separation mechanism (cf. [6] and [13]) using NTBs
with additional checking of the target address and source / origin ID can also be
extended to safeguard interrupts (cf. Figure 1). Message-signaled interrupts are
the omnipresent type of interrupts in modern serial high-speed memory-mapped
I/O standards, since dedicated interrupt wires are no longer available. Message-
signaled interrupts can be considered as small DMA write transactions (e.g. 4
Byte). The SgInt concept uses an exclusive entry in the rule set in the NTB per
I/O device (or PCIe function or application interface) for its associated interrupts
(cf. Figure 1). An entry represents an address window or memory page of a typical
size of 4kB. The mapping target of this entry or page is a memory-mapped
page containing the interrupt trigger register of the interrupt controller. The
interrupt trigger register converts the message-signaled interrupt to an actual
interrupt. The access to this NTB entry is controlled by the control engine in the
NTB performing the origin/source ID check (cf. Figure 1). This means that only
the message-signaled interrupt sent by a distinct I/O device (or PCIe function
or application interface) can pass this special interrupt window over the NTB.
However, the protection granularity at page level is still not sufficient for a safe
and secure handling of interrupts. The mapping target of this interrupt entry or
page is a page containing this interrupt trigger register and a variety of additional
control registers. Since a message-signaled interrupt is a DMA write packet, it is
able to manipulate any memory-mapped control register within the target page.
For example, an interrupt can trigger interrupts associated with other devices
or other system-on-chip interrupts or processor interrupts by targeting another
interrupt trigger register (cf. Figure 1). In addition, an interrupt can manipulate
any memory-mapped control register of the target page like triggering the reset
of all processing cores (cf. Figure 1). This could lead to a complete system failure.
To prevent this, the granularity or precision of the origin/source ID check needs
to be increased. A possibility is to isolate the interrupt trigger register within a
page. This means, a page only contains this single interrupt trigger register or an
alias register to this interrupt trigger register. An I/O device (or PCIe function
or application interface) that is allowed to access this page can only change this
register and nothing else since the page does not contain more control registers.
Such a page is called alias page or page with an alias to the interrupt trigger
register (cf. Figure 1).
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Fig. 1. SgInt (Safeguarding Interrupts): Origin/source ID check in combination with
alias pages

To demonstrate an application, we have implemented the SgInt concept in
the context of sharing a DMA-capable multi-function PCIe I/O card in a mixed-
criticality embedded processing platform. Figure 2 depicts the implemented sys-
tem setup. A Xilinx VC709 FPGA evaluation board is used as PCIe I/O card.
A PLX 8749 chip serves as PCIe switch containing the two non-transparent
bridges. The two system hosts are built up by two Freescale QorIQ P4080 Devel-
opment Systems (P4080DS). The P4080 platform is a PowerPC-based embed-
ded multi-core processing platform and a reference model of the Freescale QorIQ
series. Freescale’s Software Development Kit (SDK) Version 1.2 is used as soft-
ware foundation. The avionics industry considers the PowerPC architecture-
based P4080 platform as a platform candidate for embedded avionics systems
[1,2,6,14,15].

For simplicity reasons, the demonstration system considers only two multi-
core processors and one DMA-capable and bus-mastering capable PCIe card with
two physical PCIe functions. Physical function (PF) 0 is used as management
interface and application interface 1 and PF 1 servers as application interface 2.
However, the SgInt concept is scalable from one application interface per pro-
cessing host to multiple application interfaces per processing host with one NTB
with multiple windows or multiple NTBs. An additional reason for using only
two physical functions is that the SR-IOV capability of the Xilinx VC709 FPGA
evaluation board is not compatible to the P4080DS. The Xilinx SR-IOV IP-core
requires the optional PCIe Alternative Routing-ID Interpretation (ARI) exten-
sion to address VFs. The P4080DS does not support PCIe ARI [1]. Xilinx has
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Fig. 2. Implementation of the Concept

confirmed this and we are in dialog with Xilinx to eliminate this limitation in
the succeeding generation of Xilinx FPGAs.

The demonstration system encompasses two multi-core processors. If desired,
the management part can be outsourced to a third management processor. The left
multi-core processor runs the management section and one application section.
One core and one dedicated (bus) address space or PCIe hierarchy or root port
(RP) takes over the tasks of the management section. A second core and a sec-
ond dedicated address space or PCIe hierarchy or root port runs one application
section. This part of the demonstration system is representative to apply the
concept in a single (multi-core) processing system. To be able to evaluate the
concept also in multi (multi-core) processor systems, the additional second multi-
processor takes over the task of another application section. This management
control partition sets up the system, controls the main address space and controls
the NTBs and the management interface of the I/O card. Each of the dedicated
address spaces of a application section is connected to the main address spaces
by an NTB. Application partition 1 running on the first multi-core processor is
directly mapped to application interface 1 of the I/O card whereas application
partition 2 running on the second multi-core processor is mapped to application
interface 2 of the I/O card. The IOMMU of the P4080 platform has no means
to safeguard interrupts of multiple PCIe devices or PCIe devices with multi-
ple functions [2] [16]. Therefore, the spatial separation of interrupts of the two
application interfaces are performed by the SgInt concept.
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4 Evaluation

4.1 Evaluation Setup

The evaluation of the enforcement of the source / origin ID check for interrupts
is analyzed with the following procedure:
The control partition sets up the NTB and the PCIe advanced error report-
ing (AER) registers. A DMA write transaction followed by a synchronization
interrupt is triggered. The interrupt contains an allowed origin / source ID and
target address, which complies to the rule set. Application partition 1 waits for
the receiving of the interrupt while a time out timer is started. In this case, the
receiving of the interrupt is expected and no time out should occur. The AER
registers report no error. As a next step, another DMA write transaction with
a synchronization interrupt is triggered. Here, the interrupt contains a target
address associated to a disallowed origin / source ID. Application partition 1
waits for the receiving of the interrupt while a time out timer is started. The
receiving of the interrupt is expected but does not occur and the time out occurs.
The AER registers report the header and the first 32 data bits of the blocked
packet.

The evaluation of the performance overhead (transfer time, transfer rate) of
the SgInt concept is investigated with the following procedure:
The control partition configures the NTB and the I/O card. It is defined by the
management interface that application interface 1 is assigned 50% of the avail-
able transfer rate and application interface 2 is assigned 50% of the available
transfer rate. DMA read and write transactions hit the two application parti-
tions. The transfer time and transfer rate of transactions are measured includ-
ing the low-level software overhead and synchronization interrupts. The DMA
transactions are composed of a number of 128 Byte-sized packets sent back to
back. The number of packets is increased from 1 to 255. For each packet count,
the measurements are run 100 times. The described measurement procedure is
executed twice. One time it is conducted using the presented SgInt concept with
interrupt separation. The other time it is performed using the state-of-the-art
doorbell interrupt mechanism without separation (cf. Section 2 and [8]). Then
both results are compared.

4.2 Evaluation Results

The evaluation result of the enforcement of the source / origin ID check for
interrupts is given by the following output:

Test case 1 : ID ok −> pass
// setup NTB

( app l i c a t i o n i n t e r f a c e 1 ( source ID=0C00)
i s a l lowed to t r i g g e r sync i n t e r r up t
( address 0xE070A140 , data 0x13 )

// t r i g g e r DMA wr i t e with end i n t e r r up t
// pr in tout o f app l i c a t i o n p a r t i t i o n 1
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<no er ror>
// pr in tout o f PCIe Advanced Error Report ing (AER) r e g i s t e r s

PLX AER HEADER0 +0x3EFD0 : 0x00000000
PLX AER HEADER1 +0x3EFD4 : 0x00000000
PLX AER HEADER2 +0x3EFD8 : 0x00000000
PLX AER HEADER3 +0x3EFDC: 0x00000000

Test case 2 : ID v i o l a t i o n −> block
// setup NTB

( source ID=0C03 i s a l lowed
to t r i g g e r sync i n t e r r up t
( address 0xE070A140 , data 0x13 ) ;
app l i c a t i o n i n t e r f a c e 1 ( source ID=0C00)
i s NOT al lowed to t r i g g e r the i n t e r r up t )

// t r i g g e r DMA wr i t e with end i n t e r r up t
// pr in tout o f app l i c a t i o n p a r t i t i o n 1

// i nd i c a t i n g time out occurred
ntbxpcieappdrv wait f o r i n t e r r up t :
Operation not permitted

// pr in tout o f PCIe Advanced Error Report ing (AER) r e g i s t e r s
PLX AER HEADER0 +0x3EFD0 : 0x40000001
PLX AER HEADER1 +0x3EFD4 : 0x0C00000F //ID=0C00
PLX AER HEADER2 +0x3EFD8 : 0xE070A140
PLX AER HEADER3 +0x3EFDC: 0x13000000

Figure 3 shows the relative difference of the transfer time between the SgInt
concept and no interrupt separation, whereas Figure 4 depicts the relative differ-
ence of the transfer rate between the SgInt concept and no interrupt separation.
For the transfer time, the values of the SgInt concept are about 0.04% (for

writes) to 0.08% (for reads) lower than the values of no interrupt separation. In
case of transfer rate transactions, the data of the SgInt concept are about 0.04%
(for writes) to (0.09%) for reads higher than the data of no interrupt separation.

5 Discussion and Impact

In test case 1 of the interrupt source / origin ID check, the interrupt is allowed
to pass and to trigger the interrupt in the processing system. In test case 2, the
origin ID of the actual sent interrupt does not comply to the origin ID of the
corresponding target address in the rule set in the NTB. Therefore, the interrupt
is blocked. Concluding, the origin ID check of the SgInt concept shows that the
spacial separation in dependency of the origin ID can be enforced for interrupts.

The transfer time figure (cf. Figure 3 and Section 4.2) shows that the SgInt
concept with separation has a 0.04% better transfer time than the state-of-the-
art NTB configuration without interrupt separation. The reason for this can
be explained by the nature of the state-of-the-art doorbell interrupt mechanism
[8]. This mechanism consumes the interrupt on the first side of the NTB and
generates a new interrupt on the second side and transmits it to the processing
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unit. In contrast to this, the presented SgInt concept handles the interrupt like
any other data packet passing the NTB. After the source / origin ID check
decided to pass the packet through the NTB window, the packet is forwarded
and its target address is translated. This forwarding process inclusive source /
origin ID check is marginally more efficient than the traditional way of consuming
and recreating without source / origin ID check of the interrupt. The figure for
the transfer rate (cf. Figure 4) confirms the statements of the transfer time.

The the demonstration system considers two multi-core processors sharing
one I/O card with two application interfaces. However, the scalability of the SgInt
concept ranges from one application interface per processing host to multiple
application interfaces per processing host with one NTB with multiple windows
or multiple NTBs.

A really relevant item is that the SgInt concept can provide spatial sepa-
ration for interrupts in systems, which do not have an IOMMU or have an
IOMMU that is not able to safeguard interrupts. In contrast to Intel server
systems using Intel VT-d [4], embedded real-time systems do not have means
to protect interrupts. For these systems, the presented SgInt concept is a real
benefit. The SgInt concept requires that the processor platform provides special
alias pages encapsulating an interrupt trigger register (cf. Figure 1 and Section
3). The most of Freescale’s PowerPC-based processors (e.g. the Freescale QorIQ
families) provide three to four of such special alias pages for interrupt trigger
registers. This allows to provide spatial separation for three to four application
interfaces using safeguarded interrupts per processor. The SgInt concept fulfills
the required separation and offers a growth of 300-400% in protected interrupts.
Since the avionics industry currently has most certification-related experience
for critical avionic components for the PowerPC architecture, future develop-
ments based on this architecture are focused. The aircraft certification author-
ities EASA and FAA lately recommended to restrict the usage of multi-core
processors for safety-critical systems due to safety concerns to dual-core proces-
sor systems at the moment [17]. For future (multi-)processor systems making use
of (multiple) dual-core processors (like Freescale’s P5020), the presented SgInt
concept is practically applicable and has still spare resources for extensions.

6 Summary and Conclusion

The presented SgInt concept enables the safeguarding of interrupts in single
(multi-core) processor systems and multiple (multi-core) processor systems.

The SgInt concept uses an exclusive page within the NTB aperture for inter-
rupts of one distinct application interface and a dedicated page in the processor
only containing the interrupt triggering register as mapping target in addition
to the source/ origin ID check in the NTB. The evaluation results of the SgInt
concept reveals that SgInt concept slightly outperforms state-of-the-art doorbell
interrupt handling in transfer time and transfer rate (by about 0.04%). The
SgInt concept can provide spatial separation for interrupts in systems, which
do not have an IOMMU or have an IOMMU that is not able to safeguard
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interrupts. This is especially important for safety-critical embedded real-time
systems since these systems usually do not have means to protect interrupts.
This SgInt concept is not limited to safeguard device interrupts. It can also be
applied to provide spatial separation for inter-processor communication inter-
rupts.

While this paper focuses on avionics, the results are applicable to adjacent
markets which have similar stringent security and safety requirements such as
automotive, railway and industrial control.
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Abstract. Synthesis of DoAll loops is a key aspect of High Level Syn-
thesis since they allow to easily exploit the potential parallelism provided
by programmable devices. This type of parallelism can be implemented
in several ways: by duplicating the implementation of body loop, by
exploiting loop pipelining or by applying vectorization.

In this paper a methodology for the synthesis of complex DoAll loops
based on outer vectorization is proposed. Vectorization is not limited to
the innermost loops: complex constructs such as nested loops, conditional
constructs and function calls are supported. Experimental results on par-
allel benchmarks show up to 7.35x speed-up and up to 40 % reduction of
area-delay product.

1 Introduction

Heterogeneous multiprocessor systems are becoming very common in a large
group of embedded system application fields because of their computational
power and their power efficiency. This type of architecture requires that the dif-
ferent tasks in which an application is decomposed are assigned to the most suit-
able processing element. The parts of the application which are characterized by
high degree of parallelism are good candidates to be mapped on programmable
hardware devices since their hardware implementation can potentially have very
significant speed-up with respect to software implementation. Design by hand
efficient hardware implementations can be a hard task since requires the knowl-
edge of hardware description languages which is typically a rare expertise. To
overcome or at least to mitigate this issue, High Level Synthesis [4] has been
introduced: it consists of a (semi)-automatic design flow, potentially composed
of several methodologies, that starting from a high level representation of a spec-
ification (e.g., a C/C++ source code implementation) produces its hardware
implementation.

Loop parallelization is one of the most used techniques exploited by High
Level Synthesis to take advantage of the parallelism provided by hardware plat-
forms. An important class of loops which are good candidates to be parallelized
are DoAll loops [19]. These loops are characterized by the absence of inter-
iteration dependences which allows completely independent execution of differ-
ent iterations. A parallel hardware implementation of this type of loop can be
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 31–42, 2015.
DOI: 10.1007/978-3-319-16086-3 3
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obtained by replicating multiple times the module implementing its body. This
type of approach potentially provides good results in terms of performance, but
it can significantly increase the resources usage. Moreover, the obtained speed-
up can be partially reduced by the concurrent accesses to shared resources (e.g.,
shared memory) performed by the different module replicas. The contention res-
olutions can indeed introduce overhead both in terms of delay in critical path
(e.g., for the presence of the arbiter) and of cycles (e.g., because of the stalls
introduced during resources acquisition).

This paper proposes a methodology for High Level Synthesis of DoAll loops
based on vectorization [13] (i.e., introduction of functional units processing vec-
tors of data) to mitigate these problems. The methodology does not introduce
any significant change to the structure of the Finite State Machine nor to the
hardware accelerator interface, so it can be easily integrated in existing High
Level Synthesis design flows provided that they already support synthesis of
vector operations. Its main contributions are the following:

– It extends the applicability of vectorization in High Level Synthesis by allow-
ing vectorization of complex loops (i.e., loops that contain nested loops,
conditional constructs and function calls).

– It allows to selectively combine vectorization with local pipelined computa-
tion potentially exploiting benefits of both the approaches.

The rest of the paper is organized as follows. Section 2 presents related work
while Section 3 presents a motivational example. Section 4 describes the proposed
methodology whose experimental results are presented in Section 5. Finally
Section 6 presents the conclusions of the paper.

2 Related Work

Synthesis of DoAll loops is a very well studied topic of High Level Synthesis so
that many approaches have been proposed to address this problem. Identification
of this type of loops can be performed by means of Polyhedral methodologies,
which allow to analyze and transform source code specifications exposing the
different possibilities of parallelizing a loop. An example of framework aiming
at performing such type of transformations is presented in [19]: this framework
is able to systematically identify effective access patterns and to apply both
inter- and intra- block optimizations, exposing several types of possible paral-
lelization. The framework then evaluates each of them, and when estimated it
as profitable, applies it to the specification source code. Despite completeness
of existing frameworks and methodologies for polyhedral analysis, this type of
techniques is still limited to loops with limited irregularity in their structure.
For this reason, most of the recent synthesis techniques for DoAll loops start
from applications where parallelism has already been identified. Papakonstanti-
nou et al. [15] proposed the automatic synthesis of applications written with
CUDA programming model. The proposed approach adopts FCUDA, a design
flow which translates the CUDA code into task-level parallel C code. This code
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is then provided as input to AutoPilot which performs the actual synthesis pro-
ducing a multi accelerators system. In a similar way, Choi et al. [2] proposed
the automatic synthesis of applications already parallelized, but they start from
applications exploiting pthreads and OpenMP API. In this case, the methodol-
ogy directly produces parallel hardware implementations of the loops which have
been annotated with #pragma omp for (they are DoAll loops with compile time
known number of iterations). The parallel architecture is obtained by replicating
multiple times the hardware accelerator which implements the body loop. This
approach does not have any applicability limitation, but implies to replicate
multiple times the whole implementation of the loop and requires a processor
to synchronize the execution of the accelerators, with a significant increase of
resources usage. A similar approach (i.e., the automatic synthesis of OpenMP
annotated applications) was proposed in [3] but targeting heterogeneous systems
implemented onto FPGAs. All these approaches, since the different accelerator
replicas potentially access at the same time to external data, require to add logic
to control resources contention, potentially delaying requests performed by the
single accelerators.

Parallelization of complex DoAll loops (i.e., outer loops) by means of vec-
torization was proposed for SIMD processors [13]: loops are vectorized during
compilation for SIMD architectures, even if they contain other loops or condi-
tional constructs, provided that some conditions are met. In particular the outer
and the inner loops must be countable and all the conditional constructs must be
removable by means of if-conversion. Moreover, ad-hoc analyses and transforma-
tions are applied trying to maximize the number of aligned accesses. A similar
approach is proposed in this paper, but it is adopted during the synthesis of
hardware accelerators. Finally, the effects of using vector functional units in
High Level Synthesis have already been evaluated in [17]. The authors proposed
the adoption of configurable vector functional units which can implement at the
same time both scalar operations and vector operations. This approach produces
better solutions both in terms of performances and power consumption, show-
ing the effectiveness of using parallel functional units, but it is limited to the
parallelization of some operations of the specification.

3 Motivational Example

In this section a small motivational example is presented showing the potential
advantages of the outer loop vectorization with respect to other loop optimiza-
tion techniques when applied in High Level Synthesis. The example, presented in
the left part of Fig. 1, consists of a brief fragment of code containing two nested
loops. The outer loop is characterized by a fixed number of iterations (16) while
the number (k) of iterations of inner loop cannot be computed at compile time.
Moreover, the iterations of the outer loop can be parallelized while the iterations
of the inner loop have to be executed in sequence. To allow the application of
the most common types of loop parallelization techniques, the source code in
the left part of Fig. 1 has been transformed by means of if-conversion removing
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Initial Code Pre-Processed Code Transformed Code

A for(i=0; i<16; i++) { for(i=0; i<16; i++) { for(i={0,1}; i[0]<16; i = i+{2,2}) {

B sum = 0; sum = 0; sum = {0,0};

C for(j=0; j<k; j++) { for(j=0; j<k; j++) { for(j=0; j<k; j++) {

D if(sum < 10) { c = sum < 10; c = sum < 10

E temp = in[i][j];
temp[0] = in[i[0]][j];

temp[1] = in[i[1]][j];

F sum = sum + in[i][j]; sumS = sum + temp; sumS = sum + temp;

G } sum = c ? sumS : sum;
sum[0] = c[0] ? sumS[0] : sum[0];

sum[1] = c[1] ? sumS[1] : sum[1];

} } }

H res[i] = sum/k; res[i] = sum/k;
res[i[0]] = sum[0]/k;

res[i[1]] = sum[1]/k;

} } }

Fig. 1. Example of application of the proposed methodology

1 A(0,-)
i={0,1};

A(1,-)
2 B(0,-)

sum={0,0};
B(1,-)
C(0,0)

j=0;
C(1,0)

3 D(0,0)
c=sum<10;

D(1,0)
E(0,0) temp[0]=in[i[0]][j];
E(1,0) temp[1]=in[i[1]][j];

4 F(0,0)
sumS=sum+temp;

F(1,0)
C(0,1)

j++;
C(1,1)

5 G(0,0) sum[0] = c[0] ? sumS[0] : sum[0];
G(1,0) sum[1] = c[1] ? sumS[1] : sum[1];

6 D(0,1)
c=sum<10;

D(1,1)
E(0,1) temp[0]=in[i[0]][j];
E(1,1) temp[1]=in[i[1]][j];

7 F(0,1)
sumS=sum+temp;

F(1,1)
C(0,2)

j++;
C(1,2)

5 G(0,1) sum[0] = c[0] ? sumS[0] : sum[0];
G(1,1) sum[1] = c[1] ? sumS[1] : sum[1];

9 H(0,-) res[i[0]]=sum[0]/k;
H(1,-) res[i[1]]=sum[1]/k;

Fig. 2. Execution trace of the first two iterations of outer loop when outer loop vec-
torization is applied

the conditional construct instruction D. Moreover, the complex instruction F
has been decomposed into two simpler instructions (the reading from the matrix
and the sum). The result of these transformations is shown in the central part of
Fig. 1 where instructions E and G have been added. Nevertheless, the presence
of a nested and non parallelizable loop with an unknown number of iterations
prevents the application of some loop optimization techniques, but not of the
proposed.

The only other loop parallelization technique which can be applied to the
loops of Fig. 1 without any further change is the Unrolling of inner loop [6].
However, the instructions belonging to consecutive iterations of the loop cannot
be executed in parallel because of data dependence between G and D, limit-
ing the benefit of adopting this optimization. The Unrolling of outer loop [6],
the Pipelining of inner loop [6], the Pipelining of outer loop [11] and the Vec-
torization of inner loop [12] cannot be applied to the example because of the
variable number of iterations of inner loop and because of inter-iterations data
dependence.

On the contrary, outer loop vectorization can be applied to the considered
example: the right part of Fig. 1 shows the results of the optimization, while
Fig. 2 reports which are the operations executed by an accelerator synthesized
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with the proposed methodology in each control step during first iteration of outer
loop. For the sake of brevity and simplicity, it is assumed that the execution time
of each synthesized instruction is one clock cycle, that chaining is not exploited
and that k=2. A pair of indices has been associated to each instruction: the first
index is the relative iteration number of the outer loop to which the instruction
belongs while the second index is the relative iteration number of the inner
loop. The effects of the outer vectorization are that the first iteration of nested
loop executed during first iteration of DoAll loop is executed in parallel with
first iteration of nested loop executed during second iteration of DoAll loop and
so on. The details about the proposed solution and about how this can been
obtained will be presented in the following section.

4 Proposed Methodology Flow

The proposed methodology is integrated in a High Level Synthesis flow and
aims at synthesizing a parallel hardware accelerator by means of outer loop
vectorization. A fixed number P of iterations of the loop is coupled and merged
so that the execution of an iteration of the transformed loop corresponds to
the execution of P iterations of the original loop. P identifies the degree of
introduced parallelism: different loops can be parallelized with different degrees
of parallelism and different implementations of the same loop can be obtained
by varying its degree of parallelism.

The significant part of the proposed methodology flow consists of the trans-
formations applied to the loop to be synthesized. These transformations can be
applied with similar results to the source code or to the high level intermediate
representations adopted in the first phases of a High Level Synthesis design flow.
The direct manipulation of high level representations allows to easily integrate
the proposed methodology in existing High Level Synthesis flows, provided that
they support vector functional units. The methodology assumes that vector vari-
ables are synthesized as registers: if vector variables were mapped on BRAM,
the methodology is still applicable, but the memory accesses overhead would
completely nullify the benefits of the vectorization.

A loop can be synthesized with the proposed methodology if:

1. it is a DoAll loop, i.e., all iterations can be executed in parallel;
2. the number n of its iterations is multiple of the degree of parallelism P :

n%P = 0;
3. nested loops are not controlled by conditional constructs (i.e., nested loops

are not contained in a then or in a else block; polyhedral transformations
can help to remove violations to this constraint;

4. the number of iterations of nested loops does not depend on a value computed
in the outer loop.

Note that the loop to be parallelized and the nested loops can contain con-
ditional constructs which will be removed by if-conversion. Moreover, it is not
required that nested loops are DoAll loops nor countable loops, but only that
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their iterations number does not depend on a value computed in the outer loop
since they will be not internally parallelized nor unrolled. Indeed, the vectoriza-
tion of the outer loop implicitly creates multiple copies of the inner loops. Each
copy will be executed sequentially, but the different copies will be executed in
parallel and in a completely synchronized way. The synchronization is implicit
and it is guaranteed by the fourth precondition. Second constraint can poten-
tially be removed by adding the possibility to execute in an ad-hoc way the last
n%P iterations of the loop. In a similar way, also the constraint on the number
of iterations of nested loops can be removed.

The proposed methodology flow is composed of several steps:

1. Loops Analysis: the specification is analyzed to identify DoAll loops.
2. PreProcessing transformation: conditional constructs in the loops are removed

by transforming instructions controlled by them in speculated or predicated
instructions; complex instructions are decomposed in simpler instructions.

3. Instructions classification: each instruction of the loops is analyzed to iden-
tify if it controls the execution of a loop and, if not, if it has to be transformed
in a vector instruction or in a set of scalar instructions.

4. Instructions transformation: instructions which control execution of loops
are transformed to support parallel execution of iterations; other instruc-
tions are transformed in vector instructions or in sets of scalar instructions
according to how they have been classified.

5. Synthesis: the transformed loops are synthesized by means of High Level
Synthesis flow.

In the following each of these steps will be detailed and its application to the
example of Fig. 1 will be shown.

Loops Analysis. The source code or its high level intermediate representation
is analyzed to identify DoAll loops. How this analysis is performed is out of the
scope of this paper: all state of the art techniques such as polyhedral analyses can
be exploited. However, since not all the DoAll loops can be actually identified
by static analyses, loops which have to be parallelized by means of vectorization
can be directly annotated by the designer with annotations like OpenMP pragma
simd [14].

The outmost loop of Fig. 1 has been annotated with OpenMP pragma simd
to be synthesized with the proposed methodology.

Preprocessing Transformation. In this step the original specification is mod-
ified to remove complex instructions and conditional constructs (i.e., if). First
objective is achieved by replacing complex operations (i.e., operations which
require more than one functional unit to be synthesized) with simpler operations.
Second objective is obtained by applying if-conversion by means of speculation
[7] and predication [10]. The recursive application of these transformations to the
body of the DoAll loop and to its nested loops removes all the conditional con-
structs allowing to apply the following steps of the methodology. Note that, since
this transformation is required to apply the loop vectorization, it always has to
be performed, even when it is not profitable because of possible mispeculations.
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The result of applying these transformations to the example is shown in the
centre part of Fig. 1. Instruction F has been decomposed into two operations E
and F (a read from a matrix and a sum), then instruction D has been trans-
formed in a boolean assignment, while instruction E and instruction F have been
speculated.

Instructions Classification. During this phase of the methodology each instruc-
tion which is part of the analyzed loop or of a nested loop is classified into four
different classes:

– Vector instructions: they will be transformed into vector instructions; in the
presented example they are B, D, and F.

– MultiScalar instructions: they will be transformed into P scalar instructions;
in the presented example they are E, G and H.

– DoAll loop instructions: they are the instructions controlling the execution
of the DoAll loop; in the presented example A is the only one;

– Nested loop instructions: they are the instructions controlling the execution
of nested loops; in the presented example C is the only one.

The reason for which the second class has been introduced depends on how
a vector instruction can be implemented:

1 Single scalar unit, i.e., a single scalar functional unit which executes P scalar
operations in sequence; this is the worst solution in terms of clock cycles,
but the best in terms of area.

2 Single pipeline unit, i.e., a single pipeline functional unit which executes P
scalar operations in pipelined way; for complex operations (i.e., operations
which require more than one cycle) it provides good performances (better
than 1 ) with a slight area increment.

3 Multiple scalar units, i.e., P scalar functional units which execute P scalar
operations in parallel; this is the best solution in terms of clock cycles, but
the worst in terms of area.

4 Vector parallel unit, i.e., a single vector functional unit; it provides the same
performances of 3 but better area savings because of better resource sharing
[8] [5] and smaller controller complexity [9].

If the second class of instructions was not introduced, all operations would be
synthesized as 4 , producing the best solution in terms of performance, but the
increment of area with respect to the non parallelized solution would be too
large. Moreover some operations cannot be implemented in this way (e.g., non
aligned memory accesses).

On the contrary, the introduction of the second class of instructions provides
more flexibility to the High Level Synthesis design flow because allows to per-
form outer loop vectorization of loops containing instructions which cannot be
vectorized. Moreover the choice between 1 , 2 and 3 allows to explore different
possible trade-offs between area and performance in the produced solutions.

Note that classifying an instruction as Vector or MultiScalar determines only
if an instruction will be synthesized as 4 or not. Since the choice between 1 ,
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2 and 3 does not concern vector functional units, this can be demanded to the
rest of the High Level Synthesis design flow. The proposed methodology classi-
fies as MultiScalar all the instructions which cannot be implemented by vector
functional units (e.g., non-contiguous memory accesses) and all the instructions
that require more than one clock cycle to be executed.

In the analyzed example, instructions E and G have been classified as Multi-
Scalar instructions since vector functional units which implement these types of
operations (non-contiguous load and conditional assignment) are not available.
Finally, since the division requires more than one cycle, instruction H has been
classified as MultiScalar instruction. In this way the 2 divisions can be synthe-
sized as 1 (1 divisor), 2 (1 divisor which executes the two divisions in pipeline)
or 3 (2 different divisors) according to the choices taken by the rest of the High
Level Synthesis design flow.

Instructions Transformation. Different types of transformations are applied
in this step. For the sake of brevity, it will be presented only how to transform
simple for loops, but the proposed methodology can be applied even with dif-
ferent patterns (e.g., while loops). All the scalar variables defined inside the
DoAll loop (with the exception of the induction variables of the nested loops)
are transformed in vector variables, while the variables defined outside the DoAll
loop are not modified. In the considered example i, res, sum, sumS, and temp
are vectorized while j, and k are not.

DoAll loop instructions are transformed to support simultaneous execution
of multiple iterations of the parallelized loop. The transformations to be applied
are the following:

– primary induction variable is initialized with the values it would assume
during first P iterations of the loop; in the presented example it is initialized
to {0,1}.

– increment instruction is transformed in a vector instruction; the added con-
stant is the increment of the sequential loop multiplied by P ; in the presented
example i++ is transformed in i = i + {2,2} since P = 2.

– guard instruction is not transformed in a vector instruction; changes to
operands can be necessary to extract the scalar variables from the vector
variables and to fix the loop termination; in the presented example i<16 is
transformed in i[0]<16.

If secondary induction variables are present, further changes can be necessary.
Nested loop instructions have to be transformed to support simultaneous

execution of implicit multiple copies of the nested loops. The transformations
to be applied in case of for instructions are limited to their operands. In the
presented example, operands of for(j=0; j<k; j++) have not to be changed
since j is defined in this instruction and k is not defined inside the DoAll loop.

Each Vector instruction is transformed in a single vector instruction which
directly writes a whole vector variable. Finally, each MultiScalar instruction is
transformed in P scalar instructions, each of which writes a different element of a
vector variable. The input variables of each instruction are opportunely modified
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to correctly manage scalar/vector data. The instructions to extract scalar values
from vector variables (e.g., var_0 = var[0]) and to compose vector variables
starting from scalar variables (e.g., var = {var_0, var_1}) may need to be
added.

Synthesis. After that the previous steps of the proposed methodology flow
have been applied, state-of-the-art High Level Synthesis flows can be applied.
Since the transformed intermediate representation contains vector instructions,
the design flows have to support synthesis of vector functional units.

5 Experimental Results

To evaluate the proposed methodology, this has been implemented in Bambu [16],
a modular framework for High Level Synthesis developed at Politecnico di Milano.
Since the identification of the DoAll loops is out of the scope of this paper, this type
of analysis has not been implemented: benchmarks have to be annotated by hand
with a #pragma omp simd [14] to be vectorized. The degree of parallelism of each
loop can be specified by the designer by means of the safelen clause associated
with each #pragma omp simd.

The proposed methodology has been verified on a set of parallel benchmarks
distributed with Legup [2]. In OpenMP benchmarks each #pragma omp for has
been replaced with #pragma omp simd, while pthread benchmarks have to be re-
factorized to replace pthread parallelism with #pragma omp simd. The proposed
methodology cannot be applied to all the distributed benchmarks: some of them
do not contain DoAll loops or contain DoAll loops which do not satisfy the
constraints listed in Section 4.

Different degrees of parallelism have been considered: 1 (absence of paral-
lelism), 2, 4 and 8. For each degree and for each benchmark a different hardware
accelerator is produced by Bambu. The tool has been configured with maxi-
mum level optimization (-O3), to store input and output data on a dual port
pipelined memory external to the hardware accelerator and to target 100MHz
frequency. Two target platforms have been considered: the Xilinx Zynq-7000
xc7z020 and the Altera Cyclone II EP2C70F896C6. The solutions produced by
High Level Synthesis have been finally synthesized with Xilinx Vivado [18] and
Altera Quartus II [1]. The synthesis results obtained after place and route on dif-
ferent benchmarks with different degrees of parallelism are presented in Table 1.
The area results refer only to the synthesized accelerator since the produced
parallel hardware architectures, differently from the ones presented in [2], do
not require any external processor nor external controller to be integrated in
the system. Memory utilization has not been reported since all the benchmarks
have been synthesized assuming that input and output data are stored in exter-
nal memories. The results obtained on the different platforms are similar, so
that the proposed methodology can actually be considered as appliable to dif-
ferent families of FPGAs. Moreover the results show how it is effectively able to
save resources with respect to the complete duplication of loop implementation:
the area of the produced solutions indeed growths less that the parallel degree.



40 M. Lattuada and F. Ferrandi

Table 1. Experimental Results of applying the proposed methodology

The maximum resource saving has been obtained for Histogram benchmark when
targeting both platforms with parallel degree of 8: more than 40%. The resource
saving however is not effective on the usage of DSPs: their number growths lin-
early in Dotproduct benchmark while in case of Histogram benchmark they have
been introduced only in vectorized implementation. On Boxfilter (when P=2
and P=4) and on Histogram (when P=2) the obtained speed-up is more than
linear (i.e., it is larger than parallel degree). Further gain with respect to the
linear speed-up is due to the if-conversion preprocessing phase which allows to
improve the performances of the circuit implementation even when vectoriza-



Exploiting Outer Loops Vectorization in High Level Synthesis 41

tion is not applied. However, for all the benchmarks the real speed-up grows
less than parallel degree. The main cause of this reduction in speed-up growing
is the considered memory architecture which has only two ports. The number
of ports limits the exploitation of parallelism since limits to two the number of
simultaneous memory accesses. Even if memory accesses are pipelined, solutions
where degree of parallelism is larger than 2 are slowed and cannot achieve max-
imum performances. Memory partitioning, by increasing the number of possible
concurrent accesses, can solve this problem, but it is not supported by Bambu.

The introduction of vector functional units does not decrease very much the
maximum frequency of the circuits. In the worst case (Hash benchmark imple-
mented on Altera board with P = 4) the maximum frequency is reduced of 25%.
Note that the increasing of the parallel degree does not always imply a decreas-
ing in the maximum frequency. There are specifications (e.g., Boxfilter when
implemented on Zynq) for which the introduction of vectorization increases the
maximum frequency. The gain in terms of area-delay product for most com-
plex benchmarks (e.g., Boxfilter and Histogram) is quite significant (up to 40%
obtained on Boxfilter on Zynq with P=2) since the performances grow faster
than resource utilization thanks to the if-conversion and to the local pipelined
computation. However, there is a general gain in terms of area-delay product also
for most of the other benchmarks when the considered parallel degree is 2. On
the contrary, because of the performances limitations due to memory accesses,
the solutions with higher parallel degree present worse results.

Finally, it has to be highlighted that direct comparison of the results of the
proposed methodology and the results presented in [2] is not possible, not only
for the different analyzed benchmarks but also for the different types of built
architectures. Differently from [2] indeed, the parallel accelerators built with the
proposed methodology do not require to be coupled with a controller processor.
For this reason, this has not been included in the resource utilization statistics
in non-vectorized architecture nor in the vectorized, resulting in smaller area
occupations and in smaller area-delay savings.

6 Conclusions

In this paper a methodology for the synthesis of parallel accelerators based on
vectorization has been presented. This methodology is able to synthesize by
means of outer loop vectorization also irregular loops: nested loops, conditional
constructs and operations which cannot be vectorized are supported. Since it
transforms high level specifications, it can be easily integrated in existing design
flows if they support synthesis of vector functional units. Experimental results
show the effectiveness of the proposed methodology: the parallel produced solu-
tions present a significant speed-up with a limited resource usage growth with
respect to non vectorized solutions.
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Abstract. With the emergence of 3D-DRAM, Processing-in-Memory
has once more become of great interest to the research community and
industry. In this paper, we present our observations on a subset of the
PIM design space. We show how the architectural choices for PIM core
frequency and cache sizes will affect the overall power consumption and
energy efficiency. Our findings include detailed power consumption mod-
eling for an ARM-like core as a PIM core. We show the maximum number
of PIM cores we can place in the logic layer with respect to a power bud-
get. In addition, we explore the optimal design choices for the number
of cores as a function of frequency, utilization, and energy efficiency.

Keywords: Processing-in-memory · 3D-DRAM · Big data ·
MapReduce

1 Introduction

Over the last decade, we have witnessed the Big Data processing evolution.
Existing commodity systems, which are widely used in the Big Data processing
community, are becoming less energy efficient and fail to scale in terms of power
consumption and area. [20] clearly shows that this is also true for any Scale-Out
workloads in general. With the evolution of new emerging DRAM technologies, in
particular 3D-DRAM, Processing-in-Memory (PIM) has again become of great
interest to the research community as well as the industry [2,15]. When it comes
to Big Data processing, systems with 3D-DRAM including PIM could prove
to be more energy efficient and powerful than traditional commodity systems.
Recent studies [8,14,18] have shown the potential use of PIM in 3D-DRAM chips.
However, in order to prove the efficiency and usability of PIM, a much larger
design space needs to be explored. This includes both software and hardware
related design choices as well as tackling the challenges which arise from such a
complex heterogeneous system. From a software perspective, challenges such as
programmability, scalability, programming interfaces, and usability need to be
explored. Major hardware challenges include PIM core micro-architecture, inter-
connection networks, and interfaces. In this paper, we present our observations
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-16086-3 4
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for a subset of architectural choices for the PIM cores, e.g. core architecture,
frequency, and cache sizes to maximize energy efficiency. Our goal is to explore
a part of the large design space and investigate the trade-offs between certain
design choices. We believe that our observations can be useful for narrowing
down some architectural choices. We focus on an ARM-like energy-efficient core
as a PIM core and evaluate design choices for caches, core frequency, and number
of cores for a set of Big Data analyses benchmarks based on MapReduce. Our
findings and observation include:

• How cache size and core frequency affect the performance of a single PIM core
and total power consumption

• How these parameters and metrics translate to overall energy efficiency
• Power decomposition for different system components
• Potential number of cores we can place in the logic layer within a power budget
• Possible design choices for number of cores as a function of frequency, utiliza-

tion, and energy efficiency

The rest of the paper is organized as follows. Section 2 covers the background
and related studies, and Sect. 3 describes benefits and challenges of PIM in 3D-
DRAM. Section 4 shows our contribution to the design space exploration. In Sect.
5 we describe the methodology and in Sect. 6 we present our results followed by
a discussion. We conclude with Sect. 7 and discuss the future work.

2 Background and Related Work

2.1 3D-DRAM Memory

3D-DRAM memory provides memory access with lower latency, higher band-
width and lower power consumption. A prototype of such 3D-DRAM is already
available from Micron [21]. A group of different vendors, Hybrid Memory Cube
Consortium (HMCC) [10], are working on expanding 3D-DRAM capabilities.
Current prototype 3D-DRAM, known as Hybrid Memory Cube (HMC) has a
capacity of 4GB and can provide maximum memory bandwidth of 320GB/s [10].
3D-DRAM memory is typically going to consist of several layers of DRAM
(nMOS) dies stacked on top of each other with a logic layer (CMOS) sitting
on the bottom of the stack. Communication between different layers is done
through high speed TSVs (Through Silicon Vias) [9,10]. The logic die contains
necessary interfacing circuits for the DRAM dies, and it still has enough area
to accommodate additional logic [14,18]. The proposed TDP budget of the logic
layer is conservatively set at 10W [18].

2.2 An Overview on PIM

Processing-in-Memory (PIM) is the concept of putting computation as close as
possible to memory to get faster access to memory and achieve higher bandwidth.
Processing logic can be integrated in different levels of the storage hierarchy, e.g.
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cache, memory (DRAM), permanent storage (Solid State Drive-SSD). In this
study, we focus only on processing in DRAM memory.

Research in the area of PIM can be categorized into two eras from the imple-
mentation point of view. In the first era, researchers relied on a processing
technology that tried to combine both logic and DRAM cells on a single die.
However the incompatibilities in the manufacturing process of these different
types of devices made it difficult to integrate DRAM with logic [15,22]. The
invention of 3D-die stacking technology breathed a new life for PIM research.
3D-Die stacking enables two disparate technologies to be integrated in the same
die. It provides a very useful way of constructing a single die that can offer both
dense memory and fast logic. Also, some other common challenges anticipated by
the researchers of the past PIM studies seem to be easily solved with 3D-DRAM
technology.

PIM, Previous Studies. From the 1990s to 2005, a number of studies pro-
posed appropriate architectures employing PIM to achieve lower memory latency,
higher memory bandwidth and high throughput. Some interesting studies from
that era include EXECUBE [23], IRAM [13], FlexRAM [15], Smart Memo-
ries [24], DIVA [11], and Intelligent Memory Manager [4]. In most of the work,
the researchers advocated architectures with vector [13] or SIMD type [11,15,23]
processing units sitting close to the memory arrays.

PIM, Related Studies. Recently proposed Near Data Computing (NDC)
architecture [14] and PIM for MapReduce applications [8] propose to integrate
simple ARM cores as PIM cores in 3D-DRAM memory and have shown per-
formance and energy gains. In our study, we closely resemble the architecture
but the goal of our study differs. In this paper, we explore the design space of
PIM cores utilizing MapReduce applications as a use case. In TOP-PIM [18] the
researchers presented a 3D-DRAM PIM model with GPUs as PIM cores. For
different process technologies, they have shown significant energy efficiency with
little or no performance degradation for different HPC and graph applications.
Other studies [2,3,15] have provided useful insights on research directions for
PIM-augmented 3D-DRAM systems.

3 PIM Integrated 3D-DRAM: Looking into the Future

In data center systems we need to process large amounts of data as fast as possi-
ble. The main bottleneck in achieving higher speed processing is the gap between
processor and memory speed. Here we discuss the two most important issues
which create this problem, namely latency and bandwidth. Energy efficiency is
another crucial requirement for today’s data centers. 3D-DRAM memory cubes
provide memory accesses with lower latency, higher bandwidth and lower power
consumption. PIM cores integrated in the logic layer of 3D-DRAM are expected
to capitalize these benefits.
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Latency. Memory access latency for a commodity processor can be divided in
two parts [13]. The first part is the time to send the address bits to the DRAM.
This includes lookups in the cache hierarchy, memory controller overhead, mul-
tiplexing the address over the system memory bus, and reaching the DRAM
pins, etc. The second part is the core DRAM access latency, which may include
row precharge time (tRP), row address to column address delay time (tRCD)
and column access delay time (tCAS). DRAM core latency is approximately
40-50ns [5,14]. PIM core’s DRAM access latency will be reduced by the lookup
time for L2 and L3 caches as it only has L1 caches. In addition, the off-chip
memory bus delay can be avoided as the PIM cores reside in the same stack
as the DRAM dies and are connected with high speed TSVs. The reduction in
DRAM access latency is expected to be at least 30% [2].

Bandwidth. Today’s processors, which typically have superscalar pipelines, sup-
port Out-Of-Order execution, and support speculation need an excessive amount
of data per second. A good part of data can be supplied by large caches. How-
ever, present data intensive applications, e.g. Scale-Out applications [20], do not
benefit from deep cache hierarchies and demand more memory accesses result-
ing in a high bandwidth requirement. Additionally, non-blocking and prefetch-
enabled caches increase this requirement. The invention of 3D-DRAM memory
can provide a viable solution to the high bandwidth requirement. Current proto-
types [10] offer as much as 320GB/s off-chip memory bandwidth. Ser-Des links
are used to support this high memory bandwidth. Each Ser-Des link can sup-
port 40GB/s while consuming high power, and in order to provide 320GB/s, 8
such links are required. This bandwidth (320GB/s) is also available to the logic
die sitting at the bottom of the stacked DRAM dies through TSV buses. If we
integrate PIM cores into the logic layer they will be able to utilize the high
bandwidth without requiring Ser-Des links.

Power. The memory subsystem (memory chip, I/O interface and link) is power
hungry, and in modern Petascale systems, it consumes approximately 35% of
the total system power budget and is anticipated to consume more than 60% in
future Exascale systems [6]. 3D-DRAM will be able to provide 72% less energy
per bit as compared to current DDR4 DRAM systems [17]. Nonetheless accessing
off-chip memory has high overhead in terms of energy. Studies have shown that
around 50%-70% of the DRAM access energy is consumed by the interfaces [6,7].
Other studies show that approximately 20-30 pJ/b are spent when transferring
data over DRAM buses [7], 5-10 pJ/b for Ser-Des links, and it is expected to
be only 30-110 fJ/b when traversed along 3D TSV [18]. Thus, PIM integrated
systems would be more energy efficient when running data-intensive workloads.

Challenges. There exist a number of issues which need to be solved for PIMs
to be effective. The crucial challenge is designing an appropriate system archi-
tecture. This involves many design parameters, such as, the host processor,
PIM processors, the memory hierarchy, communication channels, interfaces, etc.



Processing-in-Memory: Exploring the Design Space 47

Also a number of changes must be made to the operating system (e.g. mem-
ory management), programming framework (e.g. libraries), and programming
models (e.g. synchronization, coherence, data layout).

4 PIM Design Space Exploration

A general model of a PIM augmented architecture using 3D-DRAM has been
proposed by Zhang et al. [2] and a similar model has been used in recent stud-
ies [8,14] as well. We use the same model for our studies. The model consists
of a host processor connected to one or many 3D-DRAM modules where each
3D-DRAM module has several PIM cores residing in the logic layer (Fig. 1). The
host processor views all the 3D-DRAM modules as one physical address space
shared between the host processor and the PIM cores.

Previous studies have shown high performance gains and energy reductions
for PIM-augmented architectures running MapReduce workloads [8,14]. How-
ever, the power analyses performed in these studies, for ARM-like PIM cores, are
not accurate. The overall power consumption of the PIM core is underestimated,
and not all power components are considered, e.g. cache power. Furthermore, the
studies are limited for a fixed cache size and core frequency.

In this paper, our goal is to explore the design space of the PIM cores in terms
of cache sizes, operating frequency, the number of cores for a specific micro-
architecture, and perform more realistic power estimations. We take an in-order,
single issue, ARM-like core and perform simulations for different MapReduce
workloads. Our focus is on the map() phase of MapReduce workloads because
they are data intensive and highly parallelizable. We have used gem5 [19] to
capture the performance statistics of the core and McPAT [25] and CACTI-
3DD [26] for the power analyses.

Host
processor

3D
DRAMDRAM

stack

Logic
Layer +

PIM cores
3D

DRAM
3D

DRAM

3D
DRAM

3D
DRAM

Fig. 1. A PIM augmented system comprising of 4 3D-DRAM cubes with several PIM
cores embedded in the logic layer.

The architectural choices for cache size and frequency for the PIM cores will
depend on two metrics, i.e. power consumption and energy efficiency. Total power
consumption of a PIM core is an important factor because it limits the number
of cores we can place in the logic layer within a power budget of 10W. We define
the energy efficiency as useful work done per unit of energy (Work/Joule). We
do not focus solely on total execution time, because it would imply the largest
cache size and highest frequency as optimal choices. This is not a good app-
roach because we want to minimize the power consumption while maximizing
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the performance. We performed experiments with varying L1 cache sizes with
and without enabled prefetching. We have observed a moderate cache size with
prefetch offers the best energy efficiency. The reason behind this is the low tem-
poral locality and streaming-like behavior of map() phases in MapReduce work-
loads. Note that including another level of cache would consume a significant
amount of power without providing a significant performance improvement. We
also vary the PIM core frequency and adjust the supply voltage accordingly [27]
to ensure a minimal supply voltage. There will be an optimal frequency for which
we get the best energy efficiency. Because the power increases exponentially and
execution time reduces linearly, higher frequencies than optimal will result in
low energy efficiency due to high power. Lower frequencies will result in lower
energy efficiency due to high execution times.

We also calculate the maximum number of cores we can place in the logic
layer within the power budget of 10W. Note that the maximum number of cores
may not be the optimal choice since the utilization of the cores will depend
on the application which will run on the PIM cores. We therefore evaluate the
optimal number of cores we want to place in the logic layer with respect to mini-
mal execution time and minimal energy spent. We calculate the execution times
using Amdahl’s law for different possibilities of serial fractions. We reason that,
although the computation done on PIM cores is typically going to be parallel,
there may be some overhead due to communication, synchronization, or load
imbalance. We observe that the more overhead we have, the fewer cores we want
in the logic layer. We do not get significant performance gains with increasing
the number of cores but add unnecessary power consumption. If we do not place
the maximum number of cores, we hardly utilize the available bandwidth within
a 3D stack. This leads to a conclusion that a SIMD/VLIW/vector processor
architecture, which can consume much more bandwidth, should be considered
as a PIM core. We plan to investigate such designs in the future.

5 Methodology

We used the gem5 simulator [19] to capture the performance statistics needed
for our power and energy efficiency evaluation. We used the “minor” CPU, an
in-order, single-issue CPU model with support for ARM ISA. We are aware that
this model is not as detailed, but it is the only available in-order model with
ARM ISA support. We used a simple DRAM model with a fixed latency of
40ns [14] to match the latency of the 3D-DRAM. We ran four different micro-
benchmarks, written in the C programming language, which capture the map()
function behavior of common MapReduce applications. After input reading, we
take a snapshot of the execution and simulate the run only for the map() func-
tion, which is approximately 500 million instructions. We perform the simula-
tions for four micro-benchmarks, wordcount, histogram, linear regression, and
string match. We vary the L1 cache sizes and core frequencies. L1 cache means
split instruction and data caches of the same size, e.g. 16KB L1 cache means a
16KB L1 instruction and 16KB L1 data cache. We use a 64B block size for cache.
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For the power consumption modeling we used McPAT [25], a power modeling
tool with support for power, area and timing optimization. The tool uses a CPU
model description and the corresponding performance statistics for an applica-
tion run. We take the needed input parameters from gem5 statistics outputs and
feed them into McPAT. We do so for each benchmark we run with different cache
sizes and frequencies. We adjust the supply voltage for each frequency accord-
ingly. This also allows us to capture the correct increase in power while varying
the frequency. The chosen voltage-frequency pairs mimic those in [27]. To keep
the static power consumption low, we allow power-gating. All the power estima-
tions were conducted with respect to the 40nm process, and technology param-
eters follow the ITRS roadmap. We have modeled a 3D-DRAM with respect to
JEDEC-HBM [12] standard using CACTI-3DD [26]. We obtained the 3D-DRAM
access energy of 3.98pJ/bit which is close to 3.7pJ/bit as presented in [14]. The
next section describes the experiments and results in more detail followed by a
discussion.
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Fig. 2. Energy efficiency for two MapReduce workloads. (a) A configuration with 16KB
L1 cache and a frequency of 800MHz results in the best energy efficiency. A frequency
of 1GHz provides almost the same energy efficiency and represents a better alternative
in terms of performance at the cost of higher power consumption. (b) A configuration
with 4KB cache and 1GHz frequency results in the best energy efficiency.

6 Results and Discussion

6.1 PIM Core Frequency and Cache Size

We use the collected statistics from gem5 to evaluate what would be good archi-
tectural choices for cache sizes and core frequencies. In order to do that, we look
at the overall energy efficiency for different cache size-frequency pairs. The goal is
to find an optimal point where we get the most out of the PIM core for the lowest
possible power consumption. For that, we take the total execution time obtained
from gem5 and the power consumption of the core obtained from McPAT [25].
We include both static and dynamic power consumption, for the core and caches,
as well as the dynamic 3D-DRAM power obtained from CACTI-3DD [26]. It is
important to include the dynamic DRAM power consumption because smaller
cache sizes can create more accesses to the DRAM and result in increased overall
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power consumption. We calculate the energy efficiency, Eeff as Eeff = 1/Energy
where,

Energy = (CPU Power × Total Execution Time)
+(Number of Memory Access × DRAM Access Energy) . (1)

Figure 2 shows the overall PIM core energy efficiency in Work/Joule for two
distinct workloads: wordcount and histogram. We do not present the data for the
other two workloads since they exhibited similar behavior as that of histogram.
The data shows that, for applications like wordcount, a PIM core with 16KB
L1 cache running at 800MHz frequency is the most energy efficient choice. For
applications similar to histogram a 4KB L1 cache and a frequency of 800MHz
results in the most energy efficient setup. We acknowledge that the actual values
for cache sizes and operating frequencies may be benchmark dependent, and we
plan to conduct further experiments with several other benchmarks. Our goal
here is to present an approach for exploring these design choices. We do, however,
believe that, if we are using ARM like cores, for most MapReduce applications,
where map functions will be executed by PIM cores, the best operating frequen-
cies will range between 600MHz-1000MHz and the optimal cache sizes range
between 8KB-32KB. From our results, we observe that the applications don’t
benefit from larger caches and therefore a second level of cache would just intro-
duce more power overhead and not provide performance gains. Thus, we do not
evaluate the use of L2 caches.

6.2 Power Consumption

We obtain the total PIM core power consumption from McPAT [25]. We scale
the supply voltage to support various frequencies by using the voltage-frequency
pairs as in [27]. We separate the power consumption into four different compo-
nents: static core power, dynamic core power, static cache power, and dynamic
cache power. The power consumption will depend on both frequency and supply
voltage and, therefore, will scale exponentially. Figure 3 shows the breakdown of
different power components within a PIM core. For a cache size of 32KB and core
frequency of 1GHz, the total PIM power consumption (including cache power) is
around 500mW. The core dynamic power is roughly 50mW which supports the
published data for an energy-efficient in-order ARM core [16]. Previous studies
[8,14] used the power specifications for the same ARM core and took into con-
sideration only the core dynamic power consumption. However, we notice that
the core static power and the cache power are the most significant components
and should be taken into account. Even after allowing for power-gating, static
power consumption is high. This implies that the PIM cores should be turned off
whenever they are not performing computation. We include the dynamic power
of the DRAM to capture the effects of cache sizes.

6.3 Number of PIM Cores

The maximum number of PIM cores that can be placed in the logic layer of
a 3D-DRAM will depend on the PIM core power consumption as well as the
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Fig. 3. Power decomposition for PIM core components. A significant portion of the
power comes from the static power for core and cache. A configuration with a cache
size of 32KB, and core frequency of 1GHz, consumes 153mW of static and 50mW of
dynamic core power, and 173mW of static and 131mW of dynamic cache power. The
DRAM dynamic power consumption is 51mW. The power consumption was modeled
using McPAT with enabled power-gating.

power limit of the logic layer. Researchers have proposed a conservative power
budget of 10W for the logic layer [18]. Figure 4 shows the maximum number
of cores, within that power budget, for different setups. For 800MHz and 16KB
L1 cache, we can put up to 26 cores in the logic layer. Due to various parallel
overheads, the code which will run on the PIM cores may result in lower uti-
lization of the PIM cores. Therefore, we reason about a good number of PIM
cores with respect to Amdahl’s law. The rate at which the power increases with
the number of cores will be higher than the obtained speedup. We are trying to
find the trade-off between energy consumption and execution time. We do that
by calculating the execution times for different numbers of cores using Amdahl’s
law for different parallel overheads (serial fractions). For specific core parameters
(cache, frequency), we obtain the execution time from a gem5 simulation when
using a single core. We then vary the number of cores, for different parallel over-
heads, and calculate the execution times by using Amdahl’s law. The obtained
execution time for n cores, Total Execution Time(n), is used to calculate the
energy consumed by n cores, E(n).

E(n) = n × CPU Power × Total Execution Time(n) . (2)

We compute E(n) for different frequencies so we can observe different design
alternatives. We plot the time-energy pairs in a 2D plane. The points closest
to the optimum point (0,0) will be the configurations which are optimized for
both performance and energy. Figure 5 shows how the desired number of cores
changes because of Amdahl’s law. The general observation is the more overhead
we have, the fewer cores we want in the logic layer. For a parallel overhead of 1%
we want as many as 16-24 cores, for 10% overhead 8-12 and for 30% 4-6 cores.

The desired number of cores depends on the parallel overhead and is subject
to Amdahl’s law. Therefore, it would be wise to choose highly parallelizable
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Fig. 5. Time-Energy pairs for 3 different parallel overheads. The desirable number of
PIM cores are those closer to the (0,0) coordinate. As the parallel overhead increases,
the configurations with more cores “drift away” because more cores do not provide
additional performance and increase the power consumption. The black line represents
the 10W power budget. All the configurations which are on the left-hand side of the
slope are not possible, since they exceed the power limit. For a parallel overhead of
1% we want as many as 16-24 cores, for 10% overhead 8-12 and for 30% 4-6 cores.
For each number of cores, we plot the points for different frequencies starting with the
largest frequency (1600MHz) on the left most side and ending with the lowest frequency
(200MHz) on the right most side. Note that the 800MHz frequency still gives the best
results in terms of energy and time.
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applications with no parallel overhead to run on PIM. If we assume that more
general applications are going to run on PIM we might consider putting less
cores and not waste additional energy.

7 Conclusion and Future Work

In this paper, we presented our observations on a subset of architectural choices
for PIM cores. As a use case, we have used map() phases of several MapReduce
workloads. Our study shows that a PIM core running at 800MHz clock frequency,
with 16KB instruction cache and 16KB data cache, provides the best energy
efficiency. In addition, we have shown the power consumption components and
calculated the maximum number of cores we can place in the logic layer. Also,
we have shown how the parallel overhead of a program can limit the advantage
of having a larger number of cores in the logic layer.

In the future we want to explore other possible micro-architectures for PIM
cores such as simple RISC cores, VLIW processors, vector processors and Dataflow.
Also, we would like to characterize which applications benefit from a PIM archi-
tecture and how to exploit the possible benefits.
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Abstract. We propose and study a mapping algorithm optimized for
shared-cache multicore processors. Performance requirement of modern
applications is constantly growing. Processing huge amount of data in
real-time is a trend even for mobile devices. It is common to find a
octa-core processor in mobile phones or tablets. We will be able to see
embedded devices with tens of cores in the next few years, if the trend
continues. Conventional mapping algorithms are not well designed for
shared-cache multicore processors. We discuss the importance of appli-
cation mapping in terms of inter-application communication and shared-
cache access delay. An algorithm is proposed with optimizations of the
two aspects. We introduce a method with low computation complexity.
First the mapping region is calculated with the congregate degree of
nodes, then the region is expanded with a strategy in which the nearest
nodes with lowest average cache latency are selected. The comparison
with other mapping algorithms shows up to 13.9% improvement in aver-
age inter-application communication distance, with near optimal values
considering the average cache latency. The results from real applications
show that, the execution time and power consumption of the proposed
algorithm has improved for 8% and 16.7% respectively, compared with
an incremental mapping algorithm.

1 Introduction

Performance demanding applications such as games, real-time multimedia pro-
cessing, real-time remote sensing and wireless signal processing have penetrated
people’s daily life deeper than ever before. These applications generate and pro-
cess huge amount of data. Processing the data relies on efficient hardware, smart
algorithm and support from the middleware. To improve the performance of data
processing, parallel algorithms and multicore systems are widely used. Employ-
ing more and more cores in a single chip is a trend for multi-threaded applications
with increasing performance requirements. Recent semiconductor technology has
made it possible to integrate more general-purpose processor cores into a sin-
gle chip. Even smart phones and tablets are equipped with quad- or octa-core
processors nowadays. It is predictable that in the near future, tens of cores on a
single chip will appear on the market. However, the communication infrastruc-
ture of current multicore processors are mainly based on share bus, which can
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 55–67, 2015.
DOI: 10.1007/978-3-319-16086-3 5
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have performance bottleneck as the number of on-chip components increases.
To handle the communication requirements of future multicore systems, the
Network-on-Chip (NoC) concept has been proposed as a promising alternative
to the conventional bus-based communication mechanism [5].
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Figure 1 presents an NoC with 16
nodes. The nodes are connected by
network links and routers (R). Pro-
cessing Elements (PE) are attached
to the routers. On-chip data such
as control messages and cache data
messages are generated by the cores
and L1/L2 caches and sent to the
routers via network interfaces (NI).
Each router includes several ports for
connecting local NI and four cardi-
nal directions, where each port con-
sists of several Virtual Channels (VC)
and input buffers. The router controls
message flow, e.g. serialization and routing, with Routing Computation Unit
(RCU), Virtual Channel Allocator (VCA) and Switch Allocator (SA). Compo-
nents are connected by a Crossbar Switch (CS). NoC processors such as Intel
SCC, Tilera TILE and KALRAY MPPA are manufactured both for research and
commercial use [8].

Application/task mapping consists of finding a mapping region for a given
application task with a set of constraints and requirements, e.g. performance,
energy cost, efficiency and network congestion. These metrics can be affected
drastically with different mapping decisions. The application mapping algorithm
itself should be efficient in a dynamic system, since finding the best or optimal
solution is an NP-hard problem in many cases [21]. First fit algorithm is widely
used in modern operating systems, in which the first available processor in the
processor list is selected [7]. Several mapping algorithms for traditional archi-
tectures have been explored and investigated by previous researches [15] [9].
To reduce the access latency to different memory modules, application map-
ping for Non-Uniform Memory Access (NUMA) and cache coherent NUMA sys-
tems are discussed in [6] and [13]. Due to the size and computation complexity,
researchers studied heuristic mapping algorithms under different NoC architec-
tures and constraints. For example, a greedy heuristic approximation algorithm
for three-dimensional NoCs is studied in [21], while Chou et al. discussed an
incremental mapping algorithm with efficiency optimizations [4]. Real-time map-
ping algorithms in NoC platforms are investigated in [10] and [2].

In shared-cache multicore processors, the shared last level cache is one of the
most important aspects in determining application performance, due to the fact
that cache access latency may take a significant part of total execution time
for applications [25]. The impact of shared-cache is even higher for NoCs since
cache slices are usually distributed to different nodes [3] [20]. Previous researches
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have focused on optimizing the compactness of mapping region, i.e. nodes in the
mapping region should be closer to each other if possible [4] [7]. However the
latency of shared-cache is not investigated. In this paper, we propose and study
a novel heuristic application mapping algorithm which aims to optimize the
application delay to shared cache. In addition the average compactness of the
resulting mapping region is even better than that in the previous studies.

2 On-chip Communication of Applications

For shared-cache multicore processors, the on-chip communication of multi-
threaded applications can be classified as two types: inter-application commu-
nication and shared-cache access. In general, the multi-threaded application
is mapped to certain nodes of the processor. Inter-application communication
means data exchange among multiple threads in an application, while shared-
cache access means fetching/storing data from/to the shared cache. Figure 2
shows several cases for the two types of communication. We investigate the
Manhattan Distance (MD) which represents the number of hop counts between
two nodes. In Figure 2a, a 4-thread application is mapped to four corners of
the mesh network, while in Figure 2b the application is mapped to the cen-
tre. Apparently, in terms of inter-application communication, Figure 2b shows a
better mapping since the communication delay among nodes is lower. In consid-
eration of shared-cache access, the average MD from node 0 to other nodes is 3
(Figure 2c), while the metric for node 5 in Figure 2d is reduced to 2. A thread
running on node 5 has faster access to shared-cache compared with node 0.

(a) (b) (c) (d)

Fig. 2. Examples of different mapping strategy for a 4-thread application ((a) and (b),
arrow shows communication distance between nodes), and distances to the shared cache
of node 0 and 5 ((c) and (d), the routing paths are shown as arrows, while numbers
indicate the distance in hop count. Notice that not all routing paths are illustrated for
clarity).

Based on the aforementioned analysis, obviously the inter-application com-
munication latency and shared-cache latency are strongly related to the mapping
strategy of multi-threaded applications. The mapping algorithm should evaluate
the two metrics for optimizing performance of applications. Specifically, mod-
ern applications have higher and higher demand on communication and data
exchange. Conventional application mapping algorithms that have not been
optimized for these aspects can lead to performance bottlenecks and reduced
efficiency for multi-threaded applications.
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3 The Proposed Mapping Algorithm

In this section, a model is defined for the multicore platform. We analyse the
aspects that are affecting application performance. A novel application map-
ping algorithm aiming at optimizing these factors is proposed for shared-cache
multicore processors. We also explore limitations of the proposed algorithm.

3.1 Multicore Platform Model

We present definitions of the multicore platform and the fundamentals of the
mapping problem. Homogeneous NoC with mesh-based interconnect is presumed
here for simplicity.

Definition 1. A NoC N(P (X,Y )) consists of a mesh network P (X,Y ) of width
X, length Y with X×Y nodes. Each node consists of a PE, an NI and a router.
Each PE contains a core (single thread), a private L1 cache and a shared last
level cache (L2 cache). Figure 1 illustrates a NoC of N(P (4, 4)).

Definition 2. Each node ni is denoted by a coordinate (x, y), where 0≤x≤X−1
and 0≤y≤Y − 1. The coordinate can be represented as i=y×X+x.

Definition 3. The Manhattan Distance between ni(xi, yi) and nj(xj , yj) is MD
(ni,nj), MD(ni,nj)=|xi − xj | + |yi − yj |.
Definition 4. Two nodes n1(x1, y1) and n2(x2, y2) are connected by a router
and related link only if they are adjacent, e.g. |x1 − x2| + |y1 − y2| = 1.

Definition 5. An application Ai(t) has t threads, and therefore must be mapped
to t cores for execution.

Definition 6. nAvailable is a list of available nodes in P (X,Y ).

Definition 7. Ri(Ai(t)) is the destination mapping region in P (X,Y ), consist-
ing of a list of nodes nt with t nodes for Ai(t).

Definition 8. Average Cache Latency (ACLni
) is the average latency for a

node ni accessing the shared last level cache. The ACLni
is calculated as:

ACLni
=

∑
MD(ni, nj)
X × Y

(1)

Such that: 0≤j≤X × Y − 1.

Definition 9. Average Inter-application Latency (AILRi(Ai(t))) is the average
latency between internal nodes for an application Ai(t) with a mapping region
Ri(Ai(t)). The AILRi(Ai(t)) is calculated as:

AILRi(Ai(t)) =
∑

MD(ni, nj)
t

(2)

Such that: ∀i, j : ni, nj ∈ Ri(Ai(t)).
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3.2 Application Mapping and Efficiency

System performance and efficiency can be affected by the two metrics ACL and
AIL. For example, a node with lower ACL has lower average latency accessing
the shared cache slices, resulting improved performance and efficiency. Similarly,
a mapping region with lower AIL has lower average node-node access delay
which is an advantage for communication-intensive applications. We explain the
two metrics with Figure 3a. Application D is mapped to four nodes n29, n30,
n37 and n38. It can be calculated that the ACLs of n30 and n38 are 4.75 ( 30464 ),
while these values for n29 and n37 are both 4.25 (27264 ). Indeed, nodes closer to
the centre of the mesh network generally have lower ACL values. For AIL of D,
we must calculate the average MD between one node and all other nodes in the
mapping region. Take n30 for instance, MD(n30, n29) = 1, MD(n30, n38) = 1
and MD(n30, n37) = 2, therefore the average MD of n30 to other nodes in the
mapping region is 1 (44 ). Similarly this metric can be calculated for n29, n37 and
n38, and the AIL of D is the mean value of four. Both C and D are possible
mapping regions for an application with 4 threads, however D is preferable since
the two metrics are lower than that in C (ACL and AIL for C are 5.5625 and
3.25, while for D the two metrics are 4.625 and 1, respectively).
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Fig. 3. Examples of different mapping schemes. (a), an example of four applications
A (16 threads), B (16 threads), C (4 threads) and D (4 threads) running in an 8×8
NoC. (b), two mapping regions for a 15-thread application. (c), two mapping regions
for a 16-thread application.

It is relatively easy to find a mapping region with lowest value of one met-
ric. For example, to find a mapping region with lowest ACL, the algorithm can
sort all available nodes with ACL, and output the required number of nodes
with lowest ACL. We will evaluate this strategy in the experiments. The min-
imal ACL strategy works well for single-thread applications. However, for an
application with more threads, the resulting mapping region can be fragmented,
leading to poor inter-application communication and even congestion of the on-
chip network [24]. For example, application C in Figure 3a can cause congestion
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to B, since the network resources in B are contended with the traffic of D. To
decrease congestion and reduce the delay of inter-application communication,
intuitively, the algorithm can enumerate all mapping possibilities and output
the region with lowest AIL. Nevertheless the time spent for exhaustive enu-
meration increases rapidly as the size of the inputs grows: assuming all nodes
in the mesh are available, a 4-thread application in a 4×4 mesh has

(
16
4

)
=

1,820 mapping possibilities, while a 10-thread application in an 8×8 mesh has(
64
10

)
= 151 billion mapping possibilities. It is questionable whether the trade-off

of exhaustive enumeration is worthy for generating the optimal result. Practi-
cally, heuristic and stochastic algorithms, as well as simulated annealing and
linear programming are widely used to achieve relatively good results with low
computational complexity. Here the proposed algorithm is based on heuristics.
In general, the AIL of a mapping region is lower in case the region is more
congregate [14] [23]. In this paper, more congregate means that the shape of a
region is closer to a square. Figure 3a shows two applications A and B both with
16 threads. The AIL of B is lower than that in A, since B is more congregate
than A (AILRB(AB(16)) = 2.5, AILRA(AA(16)) = 3.125, 4×4 square compared
with 8×2 rectangle). Another example is shown in Figure 3b, in which the AIL
of the upper mapping region is higher than that in the lower (2.49 and 2.42).
Notice that it is not always true the AIL of a square region is the lowest among
all regions. Figure 3c illustrates two regions with 16 nodes, in which the AIL
of upper region is better than the square shaped region (2.484 and 2.5 respec-
tively), despite the fact that the difference is only 0.64%. We define Congregate
Degree based on the above analysis:

Definition 10. Congregate Degree (CDni
) is the maximum number of available

nodes for ni in the x + y+ (right-up) direction, in a square shape.

Apparently CD of an occupied node is 0, for other nodes the value is the
square of an integer. For instance in Figure 3a, CDn5 = 9, which means that
for n5, the maximum number of free nodes in a square shape in the right-up
direction is 9. The CDs of other free nodes are indicated in the figure as well.

3.3 The Proposed Algorithm

The number of nodes requested by an application can be equal, larger or smaller
than the CD of a node. Therefore the region should be shrunk or expanded
accordingly. Furthermore, the search space, i.e. the number of candidate mapping
regions should be limited for higher efficiency. We define a variable Rmax to limit
the maximum number of regions in the candidate list. Larger Rmax increases
the search space, spends more time for calculation and possibly generates better
results. We will explore the quality of the algorithm with different cases where
Rmax ≤ √

X × Y . Another problems is, which node should be the first to explore.
We discovered that nodes in the central part of the mesh network have lower
ACL values than nodes in the border, therefore the algorithm explores from the
node with minimum ACL.
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The region will be added to the candidate region list, in case the number
of tasks in an application equals to the CD of a node (Case 1). If CDni

is
larger than the number of tasks in an application, and the number of tasks can
be represented by a square (e.g. applications with 1, 4, 9, 16... tasks), then the
smallest CDni

that is closest to the number of requested nodes is added to the
candidate list (Case 2.1). Otherwise the aforementioned square region must be
expanded. For instance, an application with 6 threads will be mapped to CDni

= 4 if available, then expanded with 2 nodes (Case 2.2). Notice that CDni

represents the maximum number of free nodes in a square, while the smaller
squares in CDni

can be evaluated if necessary. In Figure 3a, despite the fact that
CDn5 = 9, it can be estimated for an application with 4 tasks. The last case is
for CDni

smaller than the number of tasks in an application: the region should
be expanded and then placed to the candidate region list (Case 3). To minimize
AIL and improve the cohesion of the expanded region while maintaining better
ACL, we propose a nearest, lowest ACL expanding strategy. The algorithm
explores adjacent nodes near the current region in terms of MD, nodes with
lowest average MD to the current region are added to the expanded region. A
node is favourable if it has lower ACL. Finally, the candidate regions are assessed
with both ACL and AIL, we define Normalized Average Latency (NAL):

Definition 11. Normalized Average Latency (NALRi(Ai(t))) is the weighted
average latency of a mapping region Ri(Ai(t)):

NALRi(Ai(t)) =

∑
nj∈Ri(Ai(t))

ACLnj

t − ACLmin

ACLmin
+

AILRi(Ai(t)) − AILmin

AILmin
(3)

where ACLmin and AILmin represent the minimum ACL and AIL of all candi-
date regions.

In the destination multicore platform, given an application A(t), we define
the problem as finding a mapping region R(A(t)) with optimizations of both
ACL and AIL. The pseudo code of the proposed algorithm is demonstrated in
Algorithm 1. The computation complexity of the proposed algorithm is linear,
determined by nAvailable and Rmax. Higher amount of available nodes will lead
to increased search space, similarly exploring more candidate regions will result
more time for calculation. Overall the computation cost of the proposed algo-
rithm is relatively low. The exact time cost will be explored in the experiments.
The main problem of the proposed algorithm is that, the available maximum
CDni

may reduce quickly when applications are mapped to the network, causing
fragmentation. This is due to the fact that the algorithm starts to explore nodes
with lowest ACL which are in the centre of the network. Limiting the maxi-
mum usable nodes is a solution for fragmentation and will be studied in the
following section. In addition, the proposed algorithm assumes applications with
certain amount of cache accesses and inter-application communication, while
unique applications with low amount of cache accesses and/or inter-application
communication may not benefit that much from the algorithm.
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Algorithm 1. Pseudo code of the proposed mapping algorithm
Input: The configuration of the NoC N(P (X,Y )); list of current available nodes

nAvailable; ACL for all nodes; Rmax as the maximum number of regions in
the list of candidate regions RCandidate; an application with t threads A(t)

Output: A mapping region R(A(t)) for the application

∀ni∈nAvailable: {
calculate and sort all ACLni as ACLsorted

calculate all CDni

}

∀ACLsorted if CDni > t then

Shrink the region to
⌊√

t
⌋

Expand the region according to the nearest, lowest ACL strategy if t >
⌊√

t
⌋2

Place the region into the candidate list RCandidate until reaching Rmax

else if CDni = t then
Place the region into the candidate list RCandidate until reaching Rmax

end
else

Expand the region according to the nearest, lowest ACL strategy
Place the region into the candidate list RCandidate until reaching Rmax

end

end

Calculate and return the region with lowest NAL in RCandidate

4 Experimental Evaluation

In this section, we evaluate the performance of different mapping algorithms with
synthetic and real application. Theoretical performance metrics such as ACL,
AIL and time cost, as well as application performance metrics are investigated.

4.1 Synthetic Result Analysis

We first evaluate mapping results using synthetic traces. Here, Task Graph Gen-
erator [18] is selected to generate 10,000 tasks with 1 to 16 threads. By applying
the same task input set and sequence, we investigate the proposed mapping algo-
rithm with different number of search space (P − SS∗), the First Fit mapping
algorithm in Solaris 9 (FF ), the incremental mapping algorithm in [4] (INC),
the mapping algorithm that always choose nodes with minimum ACL (MACL)
and random mapping (RAND). The tasks enter and leave the system with first-
in-first-out sequence. We also explore networks with different utilization, since
lower utilized networks generally have higher number of available nodes and
therefore have higher potential to generate better results. In case the number of
available nodes are not enough for the next application, the earliest application
will be removed. The quality of mapping results is measured by AIL and average
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ACL of all nodes in the mapping region (AACL). Lower values are preferable
under the same condition. The results are presented in Table 1.

In terms of AACL, mapping algorithm MACL achieved lowest value in all
cases. This is due to the fact that MACL always chooses next node with lowest
ACL. It is noteworthy that the AACL results of the proposed algorithm are
basically identical with MACL regardless of the search space, implying that
our algorithm achieves near optimal values in terms of cache latency. Increasing
the network utilization leads to higher AACL for all algorithms, and the differ-
ence of AACLs for these algorithms is smaller in case the network is saturated.
Notice that the proposed algorithm generated best AACL under full network
utilization, although the improvement is relatively small (≈1%). Overall, the
AACL for P − SS1 has improved by 5.2% and 7.4% under 70% network uti-
lization, compared with FF and INC respectively. The number of search space
plays a key role in consideration of AIL. For example, increasing the size of
search space from 1 to 8 results a 16.7% AIL improvement on average. How-
ever the time consumed by searching a better region increases linearly. We note
that the time spent for making mapping decision is considerably low even for
P − SS8 (magnitude of µs). It can be neglected for most non-realtime systems,
taking human reaction time and program execution time into account (magni-
tude of ms or higher). On average, compared with INC, the AILs of P − SS8
has improved 10.8%, 12.6%, 13.9% and 2.1% under 70% to 100% network uti-
lization, respectively. In conclusion, the proposed algorithm provides best AIL
and AACL in most cases, with reasonable computation complexity.

Table 1. Result of different mapping algorithms with different Node Utilization (NU),
the unit of time µs is the average time of mapping decisions. System configuration:
C/gcc 4.7.2, Linux 3.6.11, Core i7 920 3.7 GHz, 8GB Memory.

NU=0.7 P-SS1 P-SS2 P-SS4 P-SS8 FF INC MACL RAND

AIL 1.923 1.815 1.714 1.663 2.753 1.866 3.256 4.204

AACL 4.851 4.844 4.848 4.846 5.116 5.239 4.812 5.267

Time 86.1 110.4 161.2 263.9 63.3 79.8 63.8 65.3

NU=0.8 P-SS1 P-SS2 P-SS4 P-SS8 FF INC MACL RAND

AIL 2.063 1.922 1.777 1.718 2.842 1.967 3.516 4.212

AACL 4.983 4.980 4.981 4.981 5.114 5.217 4.949 5.257

Time 80.5 102.0 144.6 231.4 61.5 74.0 61.7 63.2

NU=0.9 P-SS1 P-SS2 P-SS4 P-SS8 FF INC MACL RAND

AIL 2.299 2.080 1.910 1.829 2.909 2.126 3.742 4.295

AACL 5.089 5.088 5.089 5.091 5.153 5.226 5.080 5.254

Time 91.1 93.3 129.8 203.9 60.0 69.6 60.1 62.2

NU=1.0 P-SS1 P-SS2 P-SS4 P-SS8 FF INC MACL RAND

AIL 2.837 2.652 2.478 2.369 2.958 2.422 4.018 4.177

AACL 5.238 5.241 5.237 5.229 5.254 5.280 5.269 5.253

Time 70.6 85.3 132.0 175.3 59.0 64.9 58.6 62.6
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4.2 Application Result Analysis

The experimental environment for real applications is based on a cycle-accurate
NoC simulator (GEMS/Simics [16] [17]). An NoC processor with 64 (8×8) nodes
is simulated. Each NoC node consists of a dedicated router, an NI and a PE. The
PE consists of a Sun UltraSPARCIII+ core with private L1 cache (split I + D,
16KB + 16KB, 4-way, 64-byte line, 3-cycle access delay) and a slice of the shared
L2 cache (512KB per slice, totally 16MB). The cache/memory architecture of
the system is static non-uniform [12] [22], and MOESI cache coherence protocol
is used [1]. Orion2 is selected to evaluate the detailed power characteristics of
routers and links [11]. Several workloads with 16 threads are chosen from [19].
All mapping algorithms are evaluated in the state where the aforementioned
10,000 tasks are mapped to the system with 90% network utilization, and first-
in-first-out scheduling is used in case the available nodes are insufficient for the
incoming application. Performance metrics are measured in terms of application
execution time and power consumption of the routers and links. Here we only
compare P − SS8 with other algorithms. The normalized results are illustrated
in Figure 4a and 4b.
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Fig. 4. Normalized average application execution time (a) and power consumption of
the network (b) for different mapping algorithms

Experimental results from Figure 4a indicated that the proposed algorithm
(P−SS8) is the best among all algorithms in terms of average application execu-
tion time. Specifically, compared with FF and INC, the applications run 12.5%
and 8% faster respectively. The performance of FF and MACL are basically
the same, where random mapping shows worst performance. The main reason is
that, while INC considers continuity and compactness of the mapping region,
the ACLs of nodes are neglected. Similarly MACL is optimized for minimal
ACL in all cases, while the continuity and compactness of the mapping region
are ignored. We note that, in case of high system utilization, AIL is more impor-
tant than ACL for multi-threaded applications since the available nodes left are
usually those with higher ACL values. We also notice that, the selection of the
first node is critical for choosing the mapping region. For example, INC selects
the first node as close to the master node (i.e. node 0) as possible which can
reduce fragmentation of the network, whereas the proposed algorithm starts from
a node with minimal ACL. Obviously the strategy of the proposed algorithm is
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more effective compared with other algorithms. In terms of power consumption
(Figure 4b), the improvement of P − SS8 is considerably higher than others. In
comparison to INC and FF , the energy consumed by the on-chip network is
reduced by 16.7% and 26.8%, on average for the applications, respectively. The
improvement for execution time and power consumption differs from application
to application, depending on the intensity of thread-thread communication and
number of accesses to the shared-cache.

5 Conclusion

We proposed an application mapping algorithm for shared-cache multicore pro-
cessors. Multiprocessing is a trend for modern data processing, more and more
cores are integrated into a single chip to improve the performance of multi-
processing. We investigated the on-chip communication delays of shared-cache
multicore processors. The delays were characterised as inter-application com-
munication and shared-cache access. We explored an algorithm which optimizes
both delays at the same time. A novel strategy is proposed to calculate the map-
ping region with low computation complexity. Experimental study compared
theoretical and real world performances of our method with other algorithms
under synthetic and application workloads. It is shown that the proposed algo-
rithm consistently leads to reduction in the inter-application communication
and cache access delays. Results from our algorithm also show 12.5% and 26.8%
improvement of application execution time and network power consumption over
the first fit algorithm, respectively.
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Abstract. Convolutional neural networks (CNNs) are state-of-the-art
machine learning algorithm in low-resolution vision tasks and are widely
applied in many applications. However, the training process of them is
very time-consuming. As a result, many approaches have been proposed
in which parallelization is one of the most effective. In this article, we
parallelized a classic CNN on a new platform of Intel R© Xeon PhiTM

Coprocessor with OpenMP. Our implementation acquired 131× speedup
against the serial version running on the coprocessor itself and 8.3×
speedup against the serial baseline on the Xeon R© E5-2697 CPU.

Keywords: Convolutional neural network · OpenMP · Intel many
integrated core architecture · Xeon phi

1 Introduction

Among various machine learning algorithms, convolutional neural networks
(CNNs) have been proved to be state-of-the-art in many applications such as
face detecting[1,2] and hand-writing digital recognition[3]. However, the train-
ing of CNNs is very time-consuming especially on large data sets. And this
runtime can further increase exponentially with the networks’ getting deeper
and larger. Therefore, parallelization of the networks was widely applied as an
effective approach to reduce the time cost, and it attracted strong research focus.

Multi-core CPUs and GPUs are two main platforms for the paralleliza-
tion. Comparatively speaking, GPUs are more popular in the recent researches
because of their rich floating point calculation power. With Nvidia R© CUDA
framework, developers are able to utilize the physical resources efficiently without
learning a completely new language or a series of complex APIs. For example, [4]
used two Nvidia GTX580 cards to build a super large convolutional neural net-
work for the classification of 1.2 million high-resolution images and managed to
train it in one week. More previously, [5] mapped a large scale CNN on a Nvidia
GTX285 and acquired a speedup of about 100 times against its serial baseline.
The keys to the high performance on GPUs are the efficient implementation of
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 71–82, 2015.
DOI: 10.1007/978-3-319-16086-3 6
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convolution operation and using batch learning to improve the parallelism. On
the other hand, multi-core CPUs provide even easier programming environment
such as OpenMP, but the number of threads of a multi-core CPU is relatively low
which limits the performance of parallelization. [6] showed that CPUs’ imple-
mentation performed better for small neural networks than GPUs’, while GPUs
took back the advantage with the scale getting bigger.

In 2012, Intel published new Xeon Phi Coprocessors, codenamed Knights
Corner (KNC in the rest of this paper), as its first commercial release of Many
Integrated Core (MIC) Architecture for high performance computing. A typical
model of KNC owns 60 cores on the single chip and provides 240 threads. The
peak double precision floating point performance is up to over 1 TFLOPS. Like
a GPU card, Xeon Phi is a PCIe device. It can be viewed as a coprocessor to the
CPU as well as a host with its own operating system. Through the support of
compiler, KNC can share the same programming environment with CPUs. Given
a serial C/C++ program and provided it can be parallelized, it takes only a few
efforts to map it to a KNC card (or cards) and acquire considerable speedup.

In this article, we accelerated the training process of a convolutional neural
network on a KNC card as an alternative to the traditional platforms of multi-
core CPUs and GPUs. We used OpenMP and SIMD to parallelize the network
according to the hierarchy of KNC, and used some compiling skills to optimize
the performance. The experiments showed our implementation acquired 131×
speedup against the serial version running on the new platform itself and it was
8.3× faster than the serial baseline on Xeon CPU.

The rest parts of this paper are organized as follows. Section 2 gives details
about the architecture of new Xeon Phi coprocessors. Section 3 introduces the
structure of the convolutional neural network. Then in section 4, we discuss
the technical points used in the parallelization process. Section 5 presents our
evaluation results. Finally in section 6, we draw the conclusion and discuss the
future work.

2 Intel R© Xeon PhiTM Coprocessors

2.1 Architecture

Taking new Xeon Phi 5110P for example, it is equipped with 60 x86 cores that
run at a low frequency for the consideration of power efficiency. Each one of
these cores has an in-order dual-issue pipeline and supports 4 threads by Intel
Hyper-Threading Technology to provide rich thread resources for parallelism.
A bi-directional ring bus is used to connect them. The high-level overview of the
KNC structure is given by Fig. 1.

For memory hierarchy, there are 32 KB private L1 caches for data and instruc-
tion and a sharing 512KB L2 cache in each core. All L2 caches are fully coherent
by tag directories. As a PCI-E card, KNC has a quite big on-chip memory of up
to 8GB and doesn’t share memory with host CPU. There are 8 double-channel
memory controllers on the ring bus, providing a bandwidth of up to 352 GB/s.
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Fig. 1. Architecture Overview of KNC Coprocessors

KNC has a new designed 512-bit SIMD instruction set, which means the
VPU(Vector Processing Unit) in each core can execute 16 single-precision(SP)
or 8 double-precision(DP) operations per cycle. With multiply-add instruction,
such long-width SIMD instruction set directly gives a 16x speedup in evaluating
the FLOPS of double precision. Thus, it is of great importance to take full
advantage of the SIMD when parallelizing applications on KNC.

2.2 Programming Modes

There are three programming modes for MIC: Native, Offload or Symmetric.
Native mode is the easiest by treating KNC who runs its own micro-Linux

operation system to manage the on-chip resources as an independent many-core
computer and directly running programs on it. However, the performance of
serial parts of the code could be very bad because of the lightweight design of
KNC cores. Symmetric mode is often used in MPI programming. It also treats
KNC as an independent node and make it work together with host CPU and
other KNC nodes. In fact, native mode can be a special case of Symmetric mode
where there is only one KNC node.

In this paper, we parallelized the convolutional neural network on a KNC
coprocessor by offload mode where KNC works in a quite similar way with GPU
in GPGPU. The program runs on the host CPU until it comes to the parallel
regions which are identified by developers with the compiler directive #pragma
offload. These regions will be sent to the KNC card with necessary data blocks
specified by clauses in/out through PCI-E and execute in parallel. The newest
releases of Xeon Phi have supported PCI-E 2.0, but the offload bandwidth is still
relatively low. Therefore, we should avoid too much communication between host
CPUs and KNC cards.

2.3 Experiment Platform

We used a Xeon Phi 5110P for the parallelization task. It was installed on a dual-
socket Intel Xeon E5-2697 server. The host CPU was responsible for handling
serial part of the CNN algorithm such as reading data and constructing the
network. What’s more, the serial baseline of CNN was executed on it with SIMD
option on. Detailed information of the platform is presented in Table.1.



74 J. Liu et al.

3 Convolutional Neural Networks

Convolutional neural networks are special deep feed forward neural networks
with layers of convolution filter banks. It is naturally suitable for vision tasks as
inspired by Hubel and Wiesel’s research on cat’s visual cortex[7]

A convolutional neural network can be separated into two parts: a trainable
feature extractor and a classifier plugged at the end of it. The feature extractor
is usually composed of alternant convolutional layers and pooling layers, and
each of them contains several sub-layers called feature maps. These layers imi-
tate simple cells and complex cells in mammal visual area and together provide
translation invariance for the network. When applied to tasks such as image
recognition, CNNs are able to take images directly as input. Feature extraction
is automatically learned by training rather than being designed manually before-
hand. Fig. 2 shows the structure of our CNN for hand-writing digital recognition.

Fig. 2. Structure of our CNN, where C1 stands for the first layer being a convolutional
layer, S2 stands for the second layer being a pooling layer, and so on. The two final
layers are fully connected and serve as the classifier. All weight kernels in convolutional
layers are 5 × 5.

Table 1. Platform Setup
Host Coprocessor

CPU Model Xeon E5-2697 Xeon Phi 5110P
Sockets×core×SMT×SIMD: 2×12×2×4 1×60×4×8

Frequency:(GHz) 2.7 1.053
L1/L2/L3 Cache:(KB) 32/256/30,720 32/512/-

Memory:(GB) 64 8
Compiler: Intel Composer xe 2013.5.192 -
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CNN is a machine learning algorithm. We need to train it with huge amount
of labeled data before it can be used to get correct results as a classifier. The
training process is consisted of forward propagation and then backward propaga-
tion, while the classification process only contains the forward. By parallelizing
the training process, both forward and backward propagation are parallelized
actually.

3.1 Convolutional Layers

Convolutional layers extract local features from the input maps by convolution
of weight kernels and the corresponding patches of the input maps. The weight
kernels are shared in an output feature map so that the number of trainable
parameters is dramatically reduced. The kernels for an output feature map are
3D, i.e. Ni×Ky×Kx, where Ni stands for input feature maps, and Ky,Kx stand
for the dimensions of kernels and patches. For each output neuron, convolution
results are summed up to pass a non-linear function, a common choice of which
is the sigmoid in [10]

f(x) = 1.7159 ∗ tanh(2x/3) (1)

3.2 Max Pooling Layers

Pooling layers play a crucial role in obtaining translation-invariant features
by combining information in spatial neighborhood from inputs. The operation
reduces the size of input feature maps at the same time. Unlike the convolutional
layer, one feature map in a pooling layer connects to the only input feature map
from the previous layer correspondingly in order. That means the number of
feature maps in a pooling layer is exactly equal to the number in the previous
layer.

Early CNN models such as LeNet 5[8] applied averaging operation for pool-
ing layers. Later, [9] found that max pooling operation benefited in both conver-
gence and generalization. After that, more and more implementation of CNNs
chose max-pooling for their pooling layers, and so did ours. In max pooling layers,
the output neuron equals to the max value in the receptive field of input map.

3.3 Back Propagation

Convolutional neural networks are trained by backward propagation (BP) algo-
rithm under most of circumstances. Based on standard BP algorithm, there are
three supplements.

The first one is the backward propagation of errors in convolutional lay-
ers, which can be implemented in two ways: by “Pushing” or by “Pulling”[11].
Fig. 3 illustrates the difference between these two implementation. For “Push-
ing”, implementation is easier as we can treat the computation process in the
same order of forward propagation. However, it may cause data writing competi-
tion when several neurons or feature maps conduct their back propagation at the
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same time, which is a disadvantage for parallelization. For “Pulling”, there are
no such competition, but we need to address all connections of a input neuron
in an unnatural perspective which makes coding complex. We selected “Pulling”
in our implementation for the sake of a better parallelization effect.

(a) by “Pushing” (b) by “Pulling”

Fig. 3. Illustration of how “Pushing” and “Pulling” work in back propagation.

The second one is also in convolutional layers where each weight is shared by
many connections of neurons. In this situation, the weight’s gradient is calculated
by summing up all gradients generated by those connections who share this
weight.

Last but not least, each output neuron in max pooling layers only delivers
the sensitivity to the input neuron from who this output neuron got its value,
resulting in sparse sensitivity maps in the previous layer.

4 Parallelization

In this section, we describe main technical points in the parallelization. We
used OpenMP to parallelize the network as it suits CNN algorithm which is
consisted of multiple levels of loops well. It is also one of the most popular parallel
models under multi-core environments. To take full usage of thread resources
on MIC, we needed to divide the tasks into fragments which can be carried
out at the same time independently and to make sure the parallelism scale
is large enough. On the other hand, OpenMP runs in a join/fork model. The
management of threads (creation and destroy) takes considerable time. So does
the offloading through PCI-E as mentioned in section before. Therefore, the
parallelism granularity of OpenMP should be relatively big to reduce the times
of such additional cost. Parallelizing batch learning makes itself on top of the
candidate list as it meets this two requirements well. Other points include threads
affinity, nested parallelism, SIMD, and compiling skills like unrolling. They are
presented in the following subsection in a top-to-bottom order.

4.1 Parallelizing Batch Learning

Batch learning can efficiently increase the parallelism. In batch learning, deltas
of weights are temporarily stored instead of being used to update weights imme-
diately as they are in stochastic learning so that the training of network can be
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parallelized by propagating many input images at the same time. After a certain
number of propagation which is called batch size, the weights get updated by
adding up those deltas stored in this batch. Therefore, batch size decides the
maximum number of input images that can be propagated at the same time, in
other word, the maximum number of parallel threads.

The updating of weights should be carried out every batch of propagation,
making it a big time cost in training. Fortunately, these weights are completely
independently from each other during this process. Therefore, we used all 240
threads on a KNC to parallelize it at the granularity of kernels of weights. After
the parallelization, it takes only 6.25% time for updating in the whole training
process.

Batch learning benefits parallelizing, but it also brings some problems as
side effects. With bigger batch size, not only the convergency speed of training
gets slower, but also the accuracy declines. Fig. 4 shows how growing batch
size influences the training accuracy in 40 epochs in this application of hand-
writing digital recognition. Learning rates for different batch size were all picked
heuristically to get better training effect. It’s shown that the accuracy did decline
by batch size getting larger. However, the decrease was not so dramatic in some
range where batch size was not greater than 60 that it could be accepted in
some degree. With some tricks in training CNNs such as image distortion, the
accuracy would be compensated.
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Fig. 4. Accuracy under different batch size after 40 epochs of training.

Taking both two factors of parallelism and accuracy into consideration, it
was easy for us to set the batch size at 60 which is just equal to the number
of cores on the KNC card. As an important side-effect, it made the mapping
strategy very clear and efficient: each core be responsible for the propagation of
one input sample at a time. This part of contents will be discussed in the next
subsection.

4.2 Thread Affinity

The assignment of tasks was implemented by Thread Affinity, a mechanism in
the Intel Compiler to bind OpenMP threads to physical’s. It could greatly influ-
ence the speed of parallelized applications. Taking our case as an example, if we
mapped four OpenMP threads in batch learning to four different KNC cores,
it would be 2.05 times faster than mapping them to four threads on one core.
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There are three interfaces provided to specify Thread Affinity. The most high-
level and easiest one among them is through setting the KMP AFFINITY
environment variable. Each of its 7 optional values corresponds to a mode of
assignment. Fig. 5 illustrates the difference between two typical modes: “Scat-
ter” and “Compact” when mapping two OpenMP threads on a simplified topol-
ogy where there are two cores in a CPU and each core supports two physical
threads. In “Scatter” mode, two threads are allocated to Core0 and Core1, while
they are both allocated to Core 0 in “Compact” mode. It’s shown that setting
KMP AFFINITY to “Scatter” can satisfy our mapping strategy where each
KNC cores be responsible for one threads in parallelizing batch learning.

(a) “Satter” mode (b) “Compact” mode

Fig. 5. Illustration of the difference between “Scatter” and “Compact” for
KMP AFFINITY. In “Scatter” mode, OpenMP threads would be assigned as evenly
as possible across the cores as the mode’s name suggests. “Compact” mode, on the
contrary, tries to assign threads as close as possible to each other.

4.3 Nested Parallelism

Nested parallelism allows programmers to create parallel region within a parallel
region itself. Therefore it can be used to fully utilize the hierarchy of threads
on MIC. Through KMP Affinity, we first mapped 60 OpenMP threads for batch
learning to 60 MIC cores. Then we used the 4 threads per core to further par-
allelize the propagation of each sample. This is done at the level of each layer
of the convolutional neural network where the propagation is carried out in the
order of output feature maps independently. Note that the four threads in a MIC
core doesn’t mean they really run at the same time. They still run in order but
are scheduled to avoid the time for fetching data.

4.4 Loop Unrolling

Loop unrolling is a basic compiling method to improve the performance. It can
be done by compilers automatically. With appropriate guidance, Intel compilers
nowadays can do perfect jobs. For the loops involving SIMD operation, we used
#pragma loop account() to inform the compiler of the most possible length
and let it decide how to do the unrolling. For the loops with out SIMD on
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contrary, we can directly use #pragma unroll to tell the compiler to fully
unroll the loops. For example, in the function of convolution calculation, we had
the following code. By loop unrolling, the performance got further improvement.

#pragma loop_account(5)
for(int ky=0; ky < kernel_size_y; ky++)
{

#pragma loop_account(5)
for(int kx=0; kx < kernel_size_x; kx++)

...
}

4.5 SIMD Optimization

SIMD is at the bottom of parallelism hierarchy of MIC architecture and plays
a great role in acquiring high performance. Here we used it to parallelize the
convolution operation which is the innermost iteration in the CNN algorithm.

Just like loops unrolling discussed above, SIMD operation and optimization
can be automatically done by the compiler with proper guidance. However, in
our case, the 2D kernel size is relatively small by being 5 × 5. It means that
the inner loop can’t take full usage of 512-bit vector width of SIMD as the code
above shows.

A native solution was to collapse the most inner 2-level loops into one so that
the loop size would be big enough. However, the additional mod/div operation
for computing arrays’ reference brought really big harm and the performance
got even worse. An alternative of using 1D arrays instead of 2D’s for kernels and
feature maps would bring the same problem in addressing for input neurons.
Finally, we used an eclectic method by copying the involving data to temporary
1D arrays in advance and collapsing the inner 2-level loops for SIMD. In this way,
there would be no additional mod/div operation, and the SIMD width would be
utilized more efficiently in calculation. However, the performance would not be
improved dramatically because the copy operation would take most of the time.

By now, three of the four main levels of loops in the CNN algorithms had been
parallelized in a top-to-bottom order corresponding to the parallelism hierarchy
of MIC architecture. They were the the iteration of input samples, the iteration
of output feature maps in each layer and the iteration in convolution operation.
The former two were parallelized by OpenMP and its nested parallelism, while
the last one was parallelized by SIMD.

5 Evaluation

5.1 Accuracy

We used MNIST[8] as the benchmark for the evaluation. The data set contains
60,000 gray scale images of hand-writing digital for training and another 10,000
for testing. For the parallel version, we set the batch size at 60 as mentioned in
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Section 4.1. The initial learning rate was 0.0001 and declined every other epochs
until it became small enough(not less than 10−6). Meanwhile, a serial baseline
version was trained by stochastic learning as comparison. After 10 epochs of
training, the parallel version achieved a 1.22% error rate for the test set. After
40 epochs, this value decreased to 0.993%, which was 0.113% higher than the
baseline’s. Therefore, the parallel version worked correctly and the accuracy
didn’t drop a lot.

5.2 Performance and Comparison

When parallelizing the network, we first directly mapped the serial version onto
the KNC and then adopted those technical points described in section 4 in
order. Fig. 6 shows how those methods improved the performance step by step.
First, we used 60 cores to parallelize the batch learning and it brought 46.7×
speedup. Based on that, nested parallelism improved the speedup by 1.55×.
Loops unrolling further improved 1.43 times and SIMD optimization improved
another 1.26 times. In the end, the parallelized version acquired 131× speedup
against the serial version on the KNC.
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Fig. 6. Speedup brought by each technical point of parallelization.

On the other hand, as Fig. 7 shows, the serial performance on the KNC was
much poorer than that on the Xeon CPU by over 15 times. It is because of the
very lightweight cores on MIC. Intel uses long-width SIMD set to compensate for
the floating point computing ability. However, the algorithm was not doing SIMD
calculation all the time. And these non-SIMD parts magnified the weakness of
KNC cores. Therefore, compared to the baseline on host CPU, the speedup was
only 8.3 times.

Finally, we compared the performance with that on multi-core CPUs plat-
form. Our parallelization implementation is for MIC architecture, but it also
suits multi-core CPUs very well. The host CPU, Xeon E5-2679, is the top model
among Intel Xeon family. We set the batch size to 24 and used 2 threads in each
core for nested parallelism. Fig. 8 shows the results of comparison. The dual-
socket E5-2697 acquired 11.2× speedup against the baseline and outperformed
our KNC platform, although the KNC had a big advantage in peak computing
ability.
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Fig. 7. Comparison of single-thread per-
formance between KNC and Xeon CPU.

Fig. 8. Performance Comparison between
KNC and multi-core platform.

6 Conclusion

We parallelized a classic convolutional neural network on Intel Xeon Phi copro-
cessor in a top-to-bottom order and showed the threads hierarchy of the MIC
architecture is suitable for the parallelization of convolutional neural networks.
The parallelized network running on a KNC card gained 131× speedup against
the serial KNC version. Compared to serial baseline running on a Xeon E5-2697
CPU, the speedup dropped to 8.3× because of the low performance of MIC
lightweight cores. We also showed the parallelized method suits well in tradi-
tional multi-core environments. The dual-socket E5-2697 on the motherboard
acquired 11.2× speedup against the baseline and outperformed the KNC plat-
form. Due to the lightweight-core design, the full usage of the 512-bit SIMD is of
great importance to acquire high performance on MIC devices. While it greatly
depends on developers’ tuning as well as the features of applications themselves.

Anyway, Xeon Phi is a good supplement to multi-core CPUs. Programmers
can map their code to Xeon Phi and get acceleration easily with lots of existing
tools providing effective supports.

In future work, we will try to further improve the performance of our par-
allelization of CNN on Xeon Phi since the platform’s great floating point com-
puting ability is very potential. We will start from the following two points:
improving the utilization of SIMD by merging convolutional layers and pooling
layers, working on the cache issues. We will also try to improve the scalability
of our parallelized CNN algorithm.
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Abstract. State-of-the-art mobile smartphone and tablet processors are
beginning to employ fully speculative, out-of-order architectures with
deep instruction pipelines. These processors often have pipeline lengths of
24 or more stages. Furthermore, to improve high-performance ILP, these
processors provide multiple parallel pipeline paths for various instruction
types. These architectures provide multiple execution clusters defined by
instruction type, each with its own issue queue. Instructions are dis-
patched to one of the appropriate issue queues, and all issue queues
are then scanned in parallel to identify instructions ready for execution.
The goal of such a resource-intensive architectural design is to sustain
peak processor performance. Unfortunately, applications oftentimes only
leverage a small subset of these robust computation resources, and the
excess hardware resources still consume power while idle. This paper
proposes a novel methodology that leverages the unique characteris-
tics of the mobile ecosystem to drive hardware adaptation for a power-
efficient execution pipeline microarchitecture. The proposed architecture
will monitor the run-time execution behavior in order to enable only
those pipeline resources that are currently needed, allowing the system
to rapidly respond to changing resource demands to ensure performance
is maintained while reducing power consumption. The simulation results
show that processor performance is maintained while achieving a signif-
icant reduction in execution pipeline power consumption.

Keywords: Mobile · Low-power · Dynamic · Adaptive hardware ·
Pipeline

1 Introduction

High-performance mobile processors are beginning to employ heterogeneous pro-
cessor topologies in order to provide a continuum of computational resources that
can handle the wide range of variability that occurs in the mobile domain. These
heterogeneous processor topologies typically utilize a cluster of “Little” processor
cores optimized for low-power, as well as a cluster of “Big” processor cores tar-
geting higher performance at the cost of higher power dissipation. An example of
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 83–95, 2015.
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such a topology is the ARM big.LITTLE architecture, which incorporates high-
performance Cortex-A15 “big” processors with low-power Cortex-A7 “LITTLE”
processors [6].

In general, the “Little” processor leverages an in-order architecture with a
simple pipeline. For example, the ARM Cortex-A7 has a pipeline length of 8–10
stages. On the other hand, the “Big” processor usually employs a fully spec-
ulative, out-of-order architecture with a deeper pipeline. For comparison, the
ARM Cortex-A15 supports register renaming and has a pipeline length of 15–24
stages. Furthermore, to improve high-performance ILP the Cortex-A15 provides
multiple, parallel pipeline paths for various instruction types. These microarchi-
tectural differences are one of the main reasons for the large increase in energy
consumption compared to the “Little” processor.

In this paper, we propose reducing the power consumption of these more
power-hungry “Big” processor cores by dynamically adapting the instruction
pipeline. Leveraging the unique characteristics of high-performance mobile pro-
cessor architectures, a fine-grained adaptive hardware control mechanism is devel-
oped. The microarchitecture will automatically shut down individual pipeline
paths during periods of reduced utilization. Upon subsequent demand, these
pipeline paths can be re-enabled in a manner that avoids any performance penal-
ties. Furthermore, the aggressiveness of shutting down pipeline paths will be
guided by an application-specific code analysis. The result will be a significant
reduction of wasted power from idle pipeline paths without any negative impacts
to performance.

2 Related Work

A good amount of prior research has been done related to reducing execution
pipeline power in general purpose processors while incurring a minor perfor-
mance degradation. A common approach relies on resizing the issue queue in
order to control the rate of execution of the processor pipeline.

The authors in [11] proposed an architecture allowing the sizes of the issue
queue, reorder buffer, and the load/store queue to be dynamically adjusted. They
employed periodic sampling of occupancy levels to determine when to increase
or decrease capacity. Similarly, the authors in [5] present an issue queue design
that allows for dynamic configurability of size and speed using transmission
gate insertion. The circuit also gathers activity statistics during execution to
allow on-the-fly adjustments to improve energy and performance. Both of these
approaches rely on costly run-time profiling techniques that consume power to
keep track of such statistical information.

The authors in [10] propose a mechanism to disable one or more processor
pipelines based on dynamically monitoring the processor’s performance. They
focus on an Alpha 21264 processor with two integer pipeline clusters and a single
floating-point pipeline. In a similar vein, Pipeline Balancing was proposed in [2],
which dynamically monitors performance and adjusts the issue rate accordingly.
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The implementation proposed by the authors necessitates that at least one clus-
ter of functional units for each ISA type remain active, limiting the amount of
power savings since the minimum issue rate will be 4 per cycle.

A proposal to power-gate execution units to abate leakage power was pro-
posed in [8]. The authors provide analytical equations for determining break-even
points, and then apply this information to put specific execution units to sleep
based on elapsed time or branch misprediction events.

A software-assisted approach to dynamically resizing the issue queue was
presented in [9]. Compile-time analysis provides information on the required
number of issue queue entries. Unfortunately, the proposed static analysis does
not handle inter-procedural dependence analysis, limiting the applicability of the
algorithm in the presence of function calls.

3 Motivation

The larger, high-performance cores in the heterogeneous processor topology typ-
ically consist of an out-of-order architecture with a relatively deep pipeline. The
incentive of having an out-of-order processor is to allow execution around data
hazards in order to improve performance. The effectiveness of such an architec-
ture is often limited by how far it can “look ahead” by placing decoded instruc-
tions into an issue queue used to identify those instructions whose dependencies
are completely resolved. For high-end targets, having a window size of 40 or
more instructions is often required to meet performance targets. Unfortunately,
it is also common knowledge in the mobile industry that the issue queue size
is frequency limited to about 8 entries, which severely limits the effectiveness
of the architecture. The physical design of issue queues larger than 8 entries
incurs longer critical path timing to concurrently scan all entries and route nec-
essary data.

In order to overcome this limitation, it is common practice in mobile microar-
chitectures to employ multiple, smaller issue queues. The execution is broken
down into multiple clusters defined by instruction type, each with its own issue
queue. Instructions will be dispatched to the appropriate issue queue, and all

Fig. 1. Typical Mobile Out-of-Order Processor Pipeline
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issue queues are then scanned in parallel to identify instructions ready for exe-
cution. A typical mobile out-of-order processor pipeline is shown in Figure 1,
which is similar to that used in the ARM Cortex-A15 and Cortex-A57, Apple
A6 Swift and A7 Cyclone, and Qualcomm Krait 400 and Krait 450 processors.

As one can see, after instructions are decoded, they will be dispatched into an
issue queue for the appropriate instruction type. Once the instruction’s depen-
dencies are resolved, it will be issued and executed. Each pipeline has its own
separate issue queue and can issue independently from the other pipelines. Cer-
tain instruction types can have more than one pipeline in order to increase
parallelism by ameliorating structural hazards. For example, in the architecture
shown in Figure 1, the Integer and Floating-Point instruction types are provided
two parallel pipelines.

Under ideal circumstances, the instruction mix of an application will be well-
balanced and essentially match the physically available pipeline functional units.
In this case, the pipeline will deliver a substantial amount of ILP and hardware
resources will be well utilized. Unfortunately, it is rare for an application to
follow this ideal. For example, one may have an application that completely
avoids using any floating-point instructions. Yet, the physical hardware for two
entire floating-point pipelines is present. During the course of executing this
application, a large portion of the hardware will be idle and wasting precious
battery life. Even while nothing is executing within these pipelines a substantial
amount of power is consumed by the issue queue logic checking for valid entries
to issue, and the functional units themselves consuming power as they idle.

To demonstrate the possible skewed distribution of instruction types, the
instruction mix of all SPEC CPU2000 [13] integer and floating-point bench-
marks is shown in Figure 2 and Figure 3, respectively. As one would expect,
the integer benchmarks very rarely make use of any floating-point operations.
Thus, having some mechanism to disable the floating-point pipelines will clearly

Fig. 2. SPEC Integer Benchmark Instruction Mix



Mobile Ecosystem Driven Dynamic Pipeline Adaptation for Low Power 87

Fig. 3. SPEC Floating-Point Benchmark Instruction Mix

help to conserve power. Furthermore, for those instruction types with multiple
parallel pipelines, a given application may be unable to actually exploit any ILP
benefit of this additional hardware unless a sufficiently large amount of those
instructions is present within the execution window.

Given these observations, it becomes clear that an adaptive approach is neces-
sary to help tune the microarchitecture in order to conserve power. Each individ-
ual instruction pipeline should be monitored to determine if there is a sufficient
demand for keeping it enabled. If these structures remain idle, an automated
mechanism should exist to shut down the issue queue and execution logic in
order to avoid both dynamic and static power dissipation.

As one would expect, there are trade-offs to such a dynamically reconfig-
urable microarchitecture. For instance, monitoring the pipeline activity patterns
during run time to detect idleness requires additional hardware and power. Sim-
ilarly, the process of disabling and re-enabling a pipeline path can incur both
power and performance penalties. In particular, if the logic to re-enable a path
is not accurately predicted, the pipeline will stall and waste even more power.
Our goal is to intelligently exploit the unique characteristics of mobile processor
architectures to minimize or completely eliminate these overheads.

4 Implementation

In order to conserve power, one would like to dynamically adapt the hardware
pipeline to best match the computational needs of a specific application. This
application-specific tailoring of the hardware microarchitecture needs to be fine-
grained and able to efficiently respond to changes in the application’s execution
patterns. Furthermore, it is essential that any proposed additional hardware logic
itself be frugal so as not to countermand the reductions in power we are trying
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to achieve. The following subsections will describe the hardware architecture to
enable a fine-grained, adaptive instruction pipeline as well as a software-driven
approach to determining the aggressiveness of the hardware’s adaptation.

4.1 Hardware Architecture

The proposed hardware architecture to enable a fine-grained, adaptive instruc-
tion pipeline is shown in Figure 4. This figure illustrates the various hardware
mechanisms that will be added to each individual instruction pipeline. As shown
in Figure 1, there are typically 8 separate instruction pipelines, each of which
will follow this same approach.

Fig. 4. Proposed Adaptive Pipeline Architecture

The first new hardware structure is a Pipeline Usage Register. The purpose
of this register is to indicate the temporal utilization of a given pipeline path.
This register will initially be populated with a non-zero value, and over time
that value will decrease towards zero if the pipeline is idle. Once this register
becomes zero, a Disable Signal will be asserted high, which will disable the issue
queue, issue stage, execution stage, and writeback stage of the pipeline. These
disabled hardware structures will have their supply voltage gated as described
in [12], obviating both dynamic switching power and any static leakage power.

The Pipeline Usage Register is implemented as a shift register. Upon receiv-
ing the R-Shift Trigger signal, the Pipeline Usage Register is right shifted and
fed a most-significant-bit (MSB) value of 0. The R-Shift Trigger signal will be
generated by a Frequency Divider that will take the pipeline clock and divide
it by 8. In this fashion, the R-Shift Trigger signal will occur every 8 pipeline
cycles. This mechanism will be what determines that a given pipeline has been
idle for a period of time and causes the Pipeline Usage Register to become zero,
in turn shutting down the pipeline hardware structures.

The reciprocal logic that marks that a pipeline is actively in use is controlled
by the Reset Trigger signal. This reset signal will be asserted during the decode
stage four cycles before the instruction is dispatched into an issue queue. Upon
the Reset Trigger signal going high, the Pipeline Usage Register will be reset to
the value specified in the Reset Value Register. This logic not only handles the
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case of ensuring that an active pipeline is not turned off by keeping the Pipeline
Usage Register non-zero, but it also handles re-enabling a disabled pipeline with-
out causing any performance penalty. The decode stage typically takes multiple
cycles (7 in our example architecture), since the instruction is not only decoded,
but other logic like register renaming is done as well. Given this, the instruction
type (i.e. integer, floating-point, branch, etc.) is determined rather early in the
decode stage (based on the instruction opcode), and this information can be
conveyed to the Pipeline Usage Register while things like register renaming are
being done. Based on this observation, the Reset Trigger signal can be generated
four cycles prior to the instruction being dispatched into an issue queue. This
allows a possibly disabled issue queue to be fully re-enabled before a dispatched
instruction is sent to it.

The Reset Value Register will possess the property of having a continuous
run of 1’s of some length L starting from the LSB. The longer the length L
is, the longer the pipeline must remain idle before it will cause an automatic
shutdown. This structuring of the Reset Value Register will minimize bit-flipping
transitions within the Pipeline Usage Register (avoiding needless dynamic power
consumption). Since the Pipeline Usage Register is right-shifted over and over,
each right-shift will only incur a single bit-flip.

A further power reducing optimization is the circuitry to determine when the
Pipeline Usage Register is zero. Instead of using a relatively expensive compara-
tor circuit, all the bits within the Pipeline Usage Register can simply be fed into
a NOR gate, which will become 1 only when all the input bits are 0.

Lastly, we can further optimize the instruction types with multiple pipelines
(e.g. Integer and Floating-Point). In these cases, there may not be sufficient
instructions to merit having two parallel pipeline paths. In order to gracefully
account for this situation, the dispatch logic will be slightly updated. Instead
of randomly selecting one of the issue queues to dispatch the instruction to,
the multiple issue queues will be prioritized. Only when the first issue queue
is full will the instruction be dispatched into the next queue. In this fashion,
if one issue queue is able to support the instruction stream without becoming
inundated, it will cause the second issue queue to remain idle, causing it to
turn off. If the instruction demand increases and spills over the first issue queue,
then the second issue queue can service the instructions as before. Performance
will remain unaffected by this change. Rather, this prioritization of issue queues
helps essentially defragment and compress the instructions into one queue before
needing to expand into another, helping the second pipeline remain idle and thus
be possibly turned off to conserve power.

To ensure any active executions have sufficient time to complete and exit
before we shut down the pipeline, the Reset Value Register will be required
to have at least two 1’s in the LSBs. This will ensure at least two right-shift
intervals occur before the pipeline is shut down, where each interval occurs after
8 pipeline cycles based on the Pipeline Usage Register ’s clock divider. Given that
the longest pipeline stage in our design is the Floating-Point pipeline, taking up
to 12 cycles once leaving the issue queue, having two intervals of 8 pipeline
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cycles ensures that the last instruction in the pipeline has completed before
the pipeline is disabled. This helps greatly simplify the shutdown logic, since
no querying within the execution stages needs to occur before we turn off the
pipeline. For pipeline stalls, the same stalling mechanism will cause the clock
divider to also not move forward ensuring consistency in the timing.

4.2 Software-Driven Reset Thresholds

The prior section described the microarchitectural design to enable the adaptive
instruction pipeline. However, instead of arbitrarily selecting the value for the
Reset Value Register and hard-coding it across all the pipelines and even across
different applications, one would like to make a more intelligent selection. Look-
ing back at the instruction mixes shown for the benchmarks in Figure 2 and
Figure 3, a logical extension would be to leverage this information to help guide
the selection of the reset threshold value.

The general observation is that if the quantity of a particular instruction type
is quite low, there is a higher probability that the pipeline for that instruction
type will be idle. Furthermore, when the rare instruction type does occur, it
most likely will be sporadic and shutting down the pipeline sooner rather than
later can help maximize power savings. Thus, it is proposed to set the Reset
Value Register to the following values based on the relative percentage of the
instruction type (IT ), where N is the size of the Reset Value Register in bits:

• If IT < 5%, Reset Value Register = {{(N − 2) {0}} , 1, 1}
• Else if IT < 20%, Reset Value Register =

{{
(N−2)

2 {0}
}
,
{

(N−2)
2 {1}

}
, 1, 1

}

• Else, Reset Value Register = {{(N − 2) {1}} , 1, 1}

We examine two different software-based approaches to estimating instruc-
tion type density. The first approach is a pure compile-time code analysis to get
static instruction type counts. In order to determine the instruction type dis-
tribution of a mobile smartphone application including all foundation libraries,
an on-device code analysis framework is employed [3]. A simple post-processing
script can then analyze and identify the opcodes for each instruction type. The
second approach instead relies on profiling an actual execution of the application
in order to garner dynamic instruction type counts. This latter approach will help
identify hotspot patterns wherein loops may greatly increase the overall predom-
inance of a small number of static instructions. In both of these approaches, the

Fig. 5. Overview of Compiler and Hardware Interaction
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pipeline-specific Reset Value Register number computed based on instruction
type will be passed to the underlying hardware microarchitecture via metadata
embedded within the software executable. Upon the application being loaded,
the metadata will populate the values for the various hardware Reset Value Reg-
isters associated with each instruction type. An overview of this architecture is
shown in Figure 5.

5 Experimental Results

In order to assess the benefit from this proposed architectural design, we utilized
the SimpleScalar framework [1]. The stock code initially utilized a basic register
update unit (RUU) structure, combining the reorder buffer (ROB) and reserva-
tion stations and provided no register renaming. In order to match the target
architecture and fully exploit possible parallelism and instruction throughput,
the default sim-outorder simulator was modified to implement a full speculative
Tomasulo architecture [7], including register renaming and decentralized issue
queues stations. Furthermore, the simulator is augmented with the adaptive
instruction pipeline logic proposed in this paper and also incorporates a heavily
customized version of the Wattch power analysis framework [4]. The size N of
the Pipeline Usage Register and Reset Value Register was chosen to be 8 bits.

Table 1 summarizes the system configuration parameters, reflecting a typical
high-performance mobile processor.

Table 1. Hardware Configuration Parameters

Fetch Stages 5
Decode Stages 7

Issue Stages 1
Execution Stages, INT 1

Execution Stages, MULT 4
Execution Stages, FP ADD/SUB 2

Execution Stages, FP MUL 6
Execution Stages, FP DIV 10

Execution Stages, BRANCH 1
Execution Stages, LD/ST 4

Writeback Stages 1
Issue Queue Entries 8
Instruction L1 cache 64 KB, 4-way set-associative

Data L1 cache 64 KB, 4-way set-associative
Unified L2 cache 2MB, 8-way set-associative

Number of Pipelines 2 INT, 1 MULT, 2 FP
1 BRANCH, 1 LD, 1 ST

The complete SPEC CPU2000 benchmark suite [13] is used, providing 12
integer and 14 floating-point real-world applications. The benchmarks are cross-
compiled for the PISA instruction set using the highest level of optimization
available for the language-specific compiler. The reference inputs are used for
each benchmark, with each benchmark executed in its entirety from start to
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finish. For the approach of using profiled application information, the training
inputs for each benchmark are used.

In order to assess the proposed architecture, the complete pipeline power
utilization is analyzed, including both dynamic and static power. The additional
power overhead incurred for enabling the adaptive pipeline, such as from regis-
ters, control logic, and transitioning pipelines off and on, are also incorporated
into the results.

Figure 6 shows the power reduction across the pipeline logic observed for the
integer benchmarks. The average power savings for integer benchmarks using
pure static analysis is 27.11%, while execution profiling yields a slightly better
average of 27.41%. In a majority of the integer benchmarks, the Reset Value
Register threshold selected in both pure static analysis and execution profiling
turns out to be the same. Additionally, while the execution profiling approach
does better on average, in the crafty benchmark the improvement was actually
worse than pure static analysis. In this case, it is likely that the training inputs
used during profiling had a significantly different dynamic instruction distribu-
tion compared to the reference inputs used during actual benchmarking.

Fig. 6. Integer Benchmarks Pipeline Power Reduction

Similarly, the power savings for floating-point benchmarks are shown in
Figure 7. The average power savings using pure static analysis is approximately
18.80%, while using execution profiling garners a 19.12% average reduction.
Again, a majority of the benchmarks ended up having the same Reset Value
Register threshold based on static analysis and execution profiling. The lucas
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benchmark was another exception to the execution profiling approach outper-
forming the pure static analysis approach. Additionally, as one would expect, the
benefit for floating-point benchmarks is slightly less than the integer case, since
the floating-point pipeline will need to be enabled much more often. However,
the adaptive logic is still able to identify excess hardware resources that may
occur throughout the execution lifetime and intelligently turn them off to save
power.

Fig. 7. Floating-Point Benchmarks Pipeline Power Reduction

As one can see, the proposed architecture is able to eliminate a substantial
amount of power consumption by adaptively disabling portions of the pipeline
when they are not actively needed. In particular, most of the integer benchmarks
rarely, if ever, use the floating-point pipeline, which can account for approxi-
mately 20% of the energy in the pipeline logic. Furthermore, these power sav-
ings come at no cost to processor performance. Instruction throughput is not
degraded using this proposal, since any time disabled pipeline resources are
needed they will be immediately re-enabled four cycles ahead of time.

6 Conclusions

High-performance mobile processors typically employ more power-hungry out-
of-order processors with deep pipelines in order to meet peak demands. However,
not all applications possess the exact same instruction mix, leading to uneven
physical resource allocations within the process pipeline. Given that power is a
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critical concern for mobile devices, conserving power without negatively impact-
ing performance is a top priority.

A novel adaptive instruction pipeline architecture for mobile processors has
been presented. This adaptive architecture leverages the unique characteristics of
high-performance mobile processor microarchitecture design to propose a frugal
dynamically adaptive mechanism to enable fine-grained pipeline gating. Based
on run time utilization, idle pipelines and associated issue queues are turned off
to reduce dynamic and leakage power. The proposed microarchitecture automat-
ically shuts down individual pipeline paths during periods of reduced utilization.
Upon subsequent demand, these pipeline paths are preemptively re-enabled to
completely avoid any performance penalties. Application-specific code analysis
is also leveraged to guide the aggressiveness of the pipeline gating. The results
demonstrate a substantial amount of power savings can be achieved without any
impact to performance.
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Abstract. A satellite’s on-board computer must guarantee integrity
and recover degraded or damaged data over the entire duration of the
spacecraft’s mission in an extreme, radiated environment. While redun-
dancy and hardware-side voting can protect Magnetoresistive RAM well
from device failure, more sophisticated software-side storage concepts
are required if advanced operating systems are used. A combination of
hardware and filesystem measures can thus drastically increase system
dependability, even for missions with a very long duration. We present
a novel POSIX-compatible filesystem implementation offering memory
protection, checksumming and forward error correction.
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1 Introduction

Recent small- and nanosatellite development has shown a rapid increase in avail-
able compute power and storage capacity, but also in system complexity. Cube-
sats [1], are currently the most popular nanosatellite form factor due to their
cost efficiency and ever increased system performance. The authors are involved
in developing such a satellite, MOVE-II, whose predecessor, First-MOVE, was
launched into Low Earth Orbit (LEO) in 2013.

More challenging quality requirements, limitations in energy consumption,
heat dissipation and the generally extreme environmental conditions result in
spaceflight software and hardware evolution being considerably more time con-
suming and slower paced. Ultimately, nanosatellite computing will evolve away
from federated clusters of specialized microcontrollers [2], a development that
could also be observed with larger spacecraft over the past decades. Instead,
more powerful, hardened, centralized general purpose computers will cover a
wider range of responsibilities [3,4]. Thereby, overall spacecraft complexity can
be reduced and efficiency improved, while each individual computer’s complex-
ity increases [2]. Certainly, an increased compute burden also requires more
c© Springer International Publishing Switzerland 2015
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sophisticated operating system (OS) software, which in turn results in increased
code complexity and size [5].

For very simple computers, custom tailored OSs offer an excellent balance
of size and functionality. However, development of proprietary OSs for unique
custom computers has been abandoned in most of the IT industry, in favor of
standard soft- and hardware reuse. This is still an ongoing process in spaceflight,
though already producing a focus on a few types of radiation hardened processor
platforms (i.e. LEON3, PPC750, RAD6000, see [6]) running common OSs [7,8].
The same evolution has begun in nanosatellite computing, albeit much faster.

OSs popular in spaceflight such as RTEMS can consume less than 256KB
of non-volatile (nv) memory [9], whereas Linux requires at least 2MB. If such
a larger OS is used aboard a satellite, more sophisticated storage concepts are
needed. Data must be stored permanently and consistently throughout the mis-
sion lifetime. Space missions often last between 5 and 10 years [10], but can reach
25 years or longer like with the Voyager probes. Thus a satellite’s command and
data handling (CDH), the on-board computer, must guarantee integrity and
recover degraded or damaged data (error detection and correction – EDAC)
over a prolonged period of time in a hostile environment. We consider a filesys-
tem (FS) the most resource conserving and efficient approach, which also allows
dynamically adjustable protection for the individual data structures. As Magne-
toresistive Random-Access Memory (MRAM) [11] is widely used for radiation
resistant data storage in nanosatellites, FTRFS is applied FS to this technology.

This paper is organized as follows: Section 2 introduces the specific require-
ments and hazards to computing in orbit and deep-space, as well as the properties
of different memories. Section 3 analyzes existing FSs and related research, to
avoid implementation from scratch. Section 4 presents our FS, offering memory
protection, forward error correction (FEC) and checksumming for both data and
metadata. First results of our FS implementation are provided in Section 4.4 and
its limitations are elaborated in Section 4.5. Finally, Section 5 contains potential
solutions and our next steps in development.

2 Impact of the Spaceflight Use Case

Besides extreme temperature variations and the absence of atmosphere for heat
dissipation, the impact of the near-Earth radiation environment must be consid-
ered in space computing. About 20% of all anomalies [12] aboard satellites can
be attributed to high-energy particles from the sources depicted in Figure 1.

Particles originating from Earth’s radiation belts, the Van Allen belts, consist
mostly of trapped protons and electrons. Galactic Cosmic Rays from beyond
our solar system are mostly protons [13,14], whereas various other high-energy
particles are ejected by the Sun during Solar Particle Events (SPEs).

Therefore, depending on the orbit of the spacecraft and the occurrence of
SPEs, an on-board computer will be penetrated by a mixture of high-energy pro-
tons, electrons and heavy ions. Physical shielding using aluminum or other mate-
rial can reduce certain radiation effects. However, sufficient protection would
require a spacecraft to dedicate unreasonable additional mass to shielding.
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Fig. 1. The sources of radiation effecting a satellite. Figure is not to scale.

Furthermore, in LEO, the radiation bombardment will be increased while
transiting the South Atlantic Anomaly (SAA). Earth’s magnetic field experiences
a local, height-dependent dip within the SAA, due to an offset of the spin axis
from the magnetic axis. In this zone, a satellite and its electronics will experience
an increase of proton flux of up to 104 times (energies > 30 MeV) [14]. This flux
increase results in a rapid growth of bit errors and other upsets in a satellite’s
CDH. In case of MOVE-II, the full functionality of CDH-subsystem is required at
all time due to scientific measurements being conducted from one of the satellite’s
possible payloads, even though brief outages (e.g. reboots) are acceptable. This
scientific payload should measure the anti-proton flux within the SAA, as its
physical properties are subject of scientific debate.

Different storage technologies vary regarding the energy-threshold necessary
to induce an effect and the type of effect caused. The most important radiation
induced phenomena on memory are:

– Single Event Effects (SEE), local ionization from protons or heavy ions
– Total Ionizing Dose (TID), the cumulative effect of charge trapping in the

oxide of electronic devices
– Displacement Damage due to structural displacement in crystalline compo-

nents of electronic hardware.

Other types of SEEs, the destructive ones being the most relevant, are well
described in [15]. Some novel memory technologies (e.g. MRAM [11], PCRAM
[16]) have shown inherent radiation tolerance against bit-flips, Single Event
Upsets (SEUs), due to their data storage mechanism [17,18].

Due to a shifting voltage threshold in floating gate cells caused by TID,
commercial flash memories are more susceptible to bit errors. Highly scaled flash
memories are also prone to SEUs causing shifts in the threshold voltage profile
of one or more storage cells, referred to as Multiple Bit Upset [19].

All these memory technologies are sensitive to Single Event Functional Inter-
rupts (SEFIs) [20], which can affect blocks, banks or entire circuits due to particle
strikes in the peripheral circuitry.
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3 Related Work and Preexisting File Systems

Filesystems often include performance optimizations like disk head tracking,
utilization of data locality and caching. However, most of these enhancements do
not apply to storage technologies used in spaceflight. In fact, such optimizations
add significant code overhead, possibly resulting in a more error prone FS and
may even reduce performance.

Next-generation FSs, e.g. BTRFS and ZFS, are designed to handle many-
terabyte sized devices and RAID-pools. Silent data corruption has become a
practical issue with such large volumes [21]. Thus, these FSs can maintain check-
sums for data blocks and metadata. Due to their intended use in large disk pools,
they do also offer integrated multi-device functionality.

Multi-device functionality would certainly be advantageous, but neither ZFS
nor BTRFS scale to small storage volumes. Minimum volume sizes are far beyond
what current nanosatellite CDHs can offer. Also, future development of these FSs
will eventually result in design decisions not in favor of spaceflight application.

FSs for flash devices, like the memory technology itself, have evolved con-
siderably over the past decade [22,23]. Upcoming FSs already handle challenges
like potentially negative compression rates [24] or erase/write-block abstraction,
offer proper wear leveling and interact with device EDAC functionality (check-
summing, spare handling and recovery). UFFS even offers integrity protection
for data and metadata using erasure codes.

Most new flash-FSs interact directly with memory 1, thereby are incompat-
ible with other memory technologies unless flash properties are emulated. This
introduces further IO and may result in unnecessary data loss, as flash memory
is of course block oriented.

RAM filesystems are usually optimized for throughput or simplicity, often
resulting in a relatively slim codebase. If designed for volatile RAM, these FS are
optimized for simplicity and do not necessarily require a nondestructive unmount
procedure. Non-volatile RAM FSs perform direct memory access to optimize for
throughput, other utilize compression to increase storage capacity [25].

Except for PRAMFS [26], none of these FSs consider memory protection to
increase dependability. PRAMFS offers execute-in-place (XIP) support [27] and
is POSIX-compatible, but offers no data integrity protection.

In contrast to flash memories RAM filesystems are not block based, but
benefit from the ability to access data arbitrarily. Thereby, no intermediate block
management is required and read-erase-update cycles are unnecessary. While
simple block-layer EDAC would certainly be possible, structures within a RAM
filesystem can be protected individually allowing for stronger protection.

Open source space engineering and CDH research is directed mainly
towards testing radiation related properties of memory technologies [20,28] and
on NAND-flash in particular [29,30]. At the time of this writing, we are unaware
of advanced software-side non-flash driven storage concepts for space use.

1 In the case of Linux through the memory technology device subsystem (MTD).
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4 FTRFS

FTRFS (fault-tolerant radiation-robust filesystem for space use) operates effi-
ciently with small volumes(≤4MB), but also scales to larger volumes and is
bootable.

Regarding the FS’s threat model, ECC is applied to all CPU-caches and
volatile SRAM, thus faults in these deceives are considered detectable and pos-
sibly correctable at runtime. A CPU running FTRFS must be equipped with a
memory management unit with its page-table residing in volatile memory. All
other elements (e.g. periphery and ALUs), other memories (e.g. registers and
buffers) and in-transit data are considered potential error sources, see Section 2.

Memory protection has been largely ignored in RAM-FS design. In part, this
can be attributed to a misconception of memory protection as a pure security-
measure against malware. However, for directly mapped nv-memory, memory
protection introduces the memory management unit as a safeguard against data
corruption due to upsets in the system [32]. Thus, only in-use memory pages
will be writable even from Kernel space, whereas the vast majority of memory
is kept read-only, protected from misdirected write access i.e. due to SEUs in a
register used for addressing during a store operation.

While data compression has been popular in size constrained FSs, it would
offer low compression rates, as well-compressible data, e.g. log data, will not be
kept in the same memory as the OS core components. Thus, it would offer little
capacity gains but entail severe code overhead.

After a detailed OS evaluation, we chose the Linux kernel as the base for our
FS due to its adaptability, extensive soft/hardware support and vast commu-
nity. We decided against utilizing RTEMS mainly due to our limited software
development manpower.

A loss of components has to be compensated at the software- or hardware
level through voting or simple redundancy. Multi-device capability was consid-
ered for this FS, however it should rather be implemented below the FS level
(e.g. via majority voting in hardware [33]) or as an overlay, e.g. RAIF [34].

The capability to detect and correct metadata and data errors was considered
crucial during development. Based on the mission duration, destination or the
orbit a spacecraft operates in, different levels of protection will be necessary. The
protective guarantees offered can be adjusted at format time or later through
the use of additional tools.

Our satellite’s CDH offers 32MB of ECC-SRAM and is driven by an ARM
Cortex-A5 CPU, however it could be upgraded to a Cortex-A7-MP. Due to
the relatively restricted system resources aboard a nanosatellite, cryptographic
checksums do not offer a significant benefit. Instead, CRC32 is utilized for per-
formance reasons in tandem with Reed-Solomon encoding (RS) [31].

4.1 Metadata Integrity Protection

For proper protection at the FS level, in addition to the stored filesystem objects
(inodes) and their data, all other metadata must be protected. Figure 2 depicts
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Fig. 2. The basic layout of the presented FS. EDAC data is appended or prepended
to each FS structure. PSB and SSB refer to the primary and secondary super blocks.

the basic layout. Although similar to ext2 and PRAMFS [26], data addressing
and bad block handling work fundamentally different. We borrow memory pro-
tection from the wprotect component of PRAMFS, as well as the superblock and
inode layout. PRAMFS is licensed under GPLv2 and based upon ext2.

The Super Block (SB) is kept redundantly, as depicted in Figure 2. An
update to the SB always implies a refresh of the secondary SB, hence, hereafter
no explicit reference of the secondary SB will be made. The SB also contains
EDAC parameters for blocks, inodes and the bitmap.

The SB is the most critical structure within our FS, and is static after vol-
ume creation. Its content is copied to system memory at mount time, thus it is
sufficient to assure SB consistency the first time it is accessed.

As the SB contains critical FS information, we avoid accumulating errors
over time through scrubbing. Thereby, the CRC checksum is re-evaluated each
time certain filesystem API functions (e.g. directory traversal) are performed.

A block-usage bitmap is dynamically allocated based on the overhead
subtracted data-block count and is appended to the secondary SB. The bitmap
EDAC is also dynamically sized and must be stored beyond the compile-time
static SB, even though placing it there would be convenient. Thus, the protection
data is located in the first block after the end of the bitmap, see Figure 2. In
case the bitmap is extended, the new part of the bitmap is initialized and then
the error correction data is recomputed at its new location. We refrain from re-
computing and re-checking the EDAC data upon each access, instead FEC data
is checked before and updated after each relevant operation has been concluded.

Inodes are kept as an array. Their consistency is of paramount importance
as they define the logical structure of the filesystem. The array’s length is deter-
mined upon FS initialization and can change only if the volume is resized. As
each inode is an independent entity, an inode-table wide EDAC is unnecessary.
Instead, we extend and protect each inode individually.

4.2 Data Consistency and Organization

To optimize the FS towards both larger (e.g. a kernel image, a database) and
very small (e.g. scripts) files, direct and double indirect data addressing are
supported, as depicted in Figure 3. The FS selects automatically which method
is used. Data protection requirements vary depending on block size, and use
case. Thus FTRFS allows the user to adjust the protection strength for data
blocks, as will be described in the next section.



102 C.M. Fuchs et al.

Fig. 3. Each inode can either utilize direct addressing or double indirection. Extended
attributes are always addressed directly.

Data block size cannot be arbitrarily decreased, as some Linux kernel sub-
systems assume them to be sized to a power of two. Instead, the FS internally
utilizes larger blocks to include EDAC data, see Figure 4.

Extended attributes (xattr) are deduplicated and referenced by one or
more inodes, as depicted in Figure 3. Like in PRAMFS, xattrs are stored as data
blocks, thereby we can treat these identically to regular data.

Nanosatellites, at least the non-classified ones, are not yet considered security
critical devices. However, the application area of nanosatellites will expand consid-
erably in the future [3]. An increasing professionalization will introduce enhanced
requirements regarding dependability and security. Shared-satellite usage scenar-
ios as well as technology testing satellites will certainly also require stronger secu-
rity measures, which can be implemented using xattrs.

An xattr block’s integrity is verified once its reference is resolved. Once all
write access (in bulk) has been concluded, the EDAC data is updated.

4.3 Algorithm Details and Performance

Our primary goal was to develop an FS which could be used to store a full size-
optimized Linux root FS including a kernel image safely over a long period of
time within an 8MB volume. There are numerous erasure codes available that
could be used to protect our FS. After careful consideration, RS was chosen
mainly due to the following reasons:

– The algorithm is well analyzed, and widely used in various embedded sce-
narios, including spacecraft. Optimized software implementations, IP-cores
and hardware accelerations is available.

– MRAM, while being SEU immune, is still prone to stray-writes, controller
errors and in-transit data corruption. RS relies upon symbol level error cor-
rection, which is precisely the kind of corruption the FS must correct. Misdi-
rected access within a page evades memory protection and corrupts the FS,
thus corrupted single-byte, 2, 4 and 8B runs will occur.

RS decoding is computationally expensive, thus the protected data is sub-
devided into sub-blocks sized to 128B plus the user specified error number
of correction-roots simplifying addressing and guaranteeing data alignment for
power-of-two correction-root counts. Inodes and SBs can be fit into one single
RS-code, while data block length does not result in extreme checking times.
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To skip the expensive RS decoding step during regular operation, a CRC32
checksum allows high-performance checking. The RS-code is only read in case
the checksum is invalid.

Data blocks are divided into subblocks so the FS can make optimal use
of the RS code length. For common block-sizes and error correction strengths,
5 to 19 RS codes are necessary, see Table 1 for information on expected overhead.
The correction data is accumulated at the end of the data block. Checksums
across the entire block’s data, each subblock and the error correction data are
also retained. The resulting data format is depicted in Figure 4. Protection can
be enhanced further by performing symbol interleaving for the RS codes and the
block data, at the cost of performance.

FS traversal and data access will eventually slow down for strongly degraded
storage volumes. As we immediately commit corrected data to memory, perfor-
mance degradation is only temporary, assuming soft-faults.

4.4 Results and Current Status

FTRFS is currently undergoing testing and has been implemented for the Linux
kernel. Due to its POSIX-compliance, it could easily be ported to other plat-
forms. The memory protection functionality has been inherited from PRAMFS,
the FS structure from ext2. We utilize the RS implementation of the Linux
kernel, as its API also supports hardware acceleration.

Several components of the FS should undergo an optimization process, which
will result in a drastic performance increase. Even though we have not yet
conducted long-term benchmarking and performance analysis, the throughput
degradation during regular operations is minimal. Modern CPUs can compute
CRC32 within a few cycles due to hardware acceleration. We intend to publish
additional performance and energy consumption metrics, once testing has been
concluded and basic optimizations have been applied and the OBC computer
has been finalized.

Data is read and written once per access. It is good practice in critical scenar-
ios and especially spaceflight to read and write data multiple times, or deploy

Fig. 4. A data block subdivided into 5 subblocks. Separate checksums for the entire
data block, EDAC data and each subblock are depicted in red.
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more advanced consistency checking techniques [35]. These changes could be
applied in bulk, through a macro, or compiler side.

The level of protection offered by the FS can be adjusted at format-time, or
later by using a proprietary FS-tuning tool. RS has a long record of space use
in CDH and communications. Thus, we know the algorithm offers efficient pro-
tection regarding our threat scenario. Once testing has been concluded, we will
perform long-term performance analysis in a degraded environment. To bench-
mark the FS, data degradation can be introduced using fault injection and we
will be performed these tests after optimizations have been applied. However,
artificial fault injection is usually not considered sufficient to prove the efficiency
of a fault-tolerance concept for space-use. Our satellite’s CDH computer includ-
ing the FS will – and in general a satellite has to – undergo testing using various
radiation sources before launch. Results will be made available once these tests
have been carried out.

4.5 Conceptional Limitations and Restrictions

It is debatable whether journaling would increase FTRFS’s reliability, as it usu-
ally helps safeguard FS consistency with slow storage media [36] due to power
loss or disconnect. However, all access in our FS happens synchronously, and
MRAM is only slightly slower than regular DRAM. Thus, journaling is currently
not implemented.

Loss of power can also happen in our spaceflight use case, but depending on
the event it can be handled differently. Spacecraft are battery backed and will
utilize on-PCB components providing relatively abundant hold-back time after
the electrical power subsystem (EPS) and the battery are disconnected due to
latch-up protection. The FS can thus either conclude a pending write operation
within the remaining active time, or the OS will have sufficient time to cancel
pending writes in case the system has sufficient warning time.

The FS can not protect itself from device or memory bank failure. However, as
MRAM access is deterministic, majority voting can be implemented in hardware
to compensate for device failure [33]. This would also further increase protection
against SEFIs, as upsets within one chip would be compensated by voting.

If data is stored with RS-symbol interleaving, a XIP mapping would techni-
cally be impossible. XIP could still perform mappings for non-interleaved data

Table 1. EDAC overhead for FS structures. Bitmap: 16MB FS, 5% inodes, 1024B BS

Data Correction Correction
Structure Size (B) Symbols/Code # Codes Total (B) Overhead (B) Overhead (%)
Super Block 128 32 1 32 68 53.13%
Inode 160 32 1 32 68 42.50%

Data Blocks 1024 4 5 20 68 5.86%
1024 16 5 80 188 17.58%

4096 4 17 68 212 4.98%
4096 16 19 304 692 16.70%

Bitmap 1773 32 10 320 688 38.80%
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though, but thereby only the clear-text part of each RS code would be mapped
and read. Via this memory mapping, integrity protection for stored file data
would be ignored, unless we accept that a potential XIP mapping would allow
program code to be loaded/executed without any integrity checking. Thereby,
the integrity assumptions upon which FTRFS’s concept is based would be vio-
lated and integrity could not be guaranteed for any executed program stored on
the FS. Theoretically, data integrity could also be checked each time a mapping
is established for a block. To perform these checks however, this data would
have to be read in full, obsoleting the performance advantage and RAM con-
serving properties of XIP. XIP and FS-level data integrity protection can thus
be considered mutually exclusive.

5 Outlook and Future Work

Permanent defects will require FEC upon every access to an object. If such a
hard fault occurred in a frequently accessed object (e.g. the root inode or a
populated directory), we would want to avoid future re-checks. In the current
FS implementation, there is no functionality to avoid this behavior, however it
could be added later on.

Bad-block relocation is already implemented within the FS, but only used
during write, truncate and allocation operations, not during other access. The
only exception hereby is the root inode, which currently is assumed to be in a
fixed location, like in PRAMFS. This feature as well could be implemented in a
future version and would certainly increase storage reliability, performance and
reduce data degradation.

FTRFS could theoretically also operate on different memory technologies,
however, most of its advantages are enabled through RAM properties. Protection
at the FS layer would be rather complex, unwieldy and could still not offer proper
protection against device failure. Thus, the authors are working on a different
protective concept for flash memory.

In contrast to RAM, flash access times will vary depending on block integrity.
Thus, full voting based majority decisions would require very complex control
logic. If voting was conducted utilizing hardware-side flash controllers, a delayed
response from one controller would stall access to the entire voting circuit. Even
if the result has already been determined, the circuit would still be busy.

A transparent protective layer utilizing RAID1, FEC and checksuming could
however be implemented as an MTD middleware layer. MTD-striping [37] has
been proposed as a middleware function in the past, but has never been included
in the Linux Kernel. However, the existence of the MTD-striping code proofs the
feasibility of a mirroring and protection MTD-layer.

6 Conclusions

We presented a novel filesystem implementation enabling a software-side protec-
tive scheme against data degradation due to environmental effects introduced by
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the space environment as described in Section 2. We have shown the feasibility
of a bootable, POSIX-compatible FS which can efficiently protect an OS image
from device failure and software flaws according to the threat model outlined at
the beginning of Section 4.

With respect to our use case in spaceflight, neither component level, nor
hardware- or software-side measures individually can guarantee sufficient system
consistency. Traditionally, radiation effects in space systems are compensated
for with stronger hardware-EDAC and component-redundancy, which do not
scale for complex systems and result in increased energy consumption. While
redundancy and hardware-side voting can protect well from device failure, data
integrity protection is difficult at this level. A combination of hardware and
software measures can thus drastically increase system dependability, even for
missions with a very long duration.

References

1. Heidt, H., et al.: Cubesat: A new Generation of Picosatellite for Education and
Industry Low-Cost Space Experimentation. In: Proc. 14th AIAA/USU Conference
on Small Satellites (2000)

2. Busch, S., Schilling, K.: UWE-3: a modular system design for the next generation of
very small satellites. In: Proceedings of Small Satellites Systems and Services–The
4S Symposium, Slovenia (2012)

3. Evans, D., Merri, M.: OPS-SAT: An ESA Nanosatellite for Accelerating Innovation
in Satellite Control. Spaceops (2014)

4. Bridges, C., et al.: Smartphone Qualification & linux-based tools for cubesat com-
puting payloads. In: 2013 IEEE Aerospace Conference, pp. 1–10. IEEE (2013)

5. Stringfellow, M., Leveson, N., Owens, B.: Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems. IEEE Proc. 98(4), 515–525 (2010)

6. Ryu, K., Shin, E., Mooney, V.: A comparison of five different multiprocessor SoC
bus architectures. In: Proceedings of the Euromicro Symposium on Digital Systems
Design 2001, pp. 202–209. IEEE (2001)

7. McComas, D.: NASA/GSFC’s Flight Software Core Flight System (2012)
8. Williams, J., Bergmann, N.: Reconfigurable linux for spaceflight applications. In:

Proceedings of the Military and Aerospace Programmable Logic Devices (MAPLD
2004) (2004)

9. Atienza, D., et al.: Systematic Dynamic Memory Management Design Methodology
for Reduced Memory Footprint. ACM-TODAES 11(2), 465–489 (2006)

10. Saleh, J., Hastings, D., Newman, D.: Weaving Time into System Architecture:
Satellite Cost per Operational Day and Optimal Design Lifetime. Acta Astronau-
tica 54(6), 413–431 (2004)

11. Katti, R., Stadler, H., Wu, J.: High Speed Magneto-resistive Random Access Mem-
ory, US Patent 5,173,873 (December 22, 1992)

12. Bourdarie, S., Xapsos, M.: The Near-Earth Space Radiation Environment. IEEE
Trans. on Nuclear Science 55, 1810–1832 (2008)

13. Xapsos, M., O’Neill, P., O’Brien, T.: Near-Earth Space Radiation Models. IEEE
Transactions on Nuclear Science 60, 1691–1705 (2013)

14. Schwank, J., Shaneyfelt, M., Dodd, P.: Radiation Hardness Assurance Testing of
Microelectronic Devices and Integrated Circuits. IEEE Transactions on Nuclear
Science 60, 2074–2100 (2013)



FTRFS: A Fault-Tolerant Radiation-Robust Filesystem for Space Use 107

15. ESA/ESTEC Requirements and Standards Division ECSS: Calculation of Radia-
tion and its Effects and Margin Policy Handbook. ECSS-E-HB-10-12A (2010)

16. Chen, F.: Phase-Change Memory, US Patent App. 14/191,016 (February 26, 2014)
17. Tsiligiannis, G., et al.: Testing a Commercial MRAM Under Neutron and AlphaRa-

diation in Dynamic Mode. IEEE Trans. on Nuclear Science 60 (2013)
18. Maimon, J., et al.: Results of radiation effects on a chalcogenide non-volatile mem-

ory array. In: Proceedings of 2004 IEEE Aerospace Conference, vol. 4, pp. 2306–
2315. IEEE (2004)

19. Gerardin, S., et al.: Radiation Effects in Flash Memories. IEEE Transactions on
Nuclear Science 60, 1953–1969 (2013)

20. Nguyen, D., Irom, F.: Radiation effects on MRAM. In: Radiation and Its Effects
on Components and Systems, pp. 1–4. IEEE (2007)

21. Baker, M., et al.: A fresh look at the reliability of long-term digital storage. In:
ACM SIGOPS Operating Systems Review, vol. 40, pp. 221–234. ACM (2006)

22. Engel, J., Mertens, R.: LogFS - finally a scalable flash file system. In: 12th Inter-
national Linux System Technology Conference (2005)

23. Qiu, S., Reddy, N.: NVMFS: a hybrid file system for improving random write in
NAND-flash SSD. In: 2013 IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1–5. IEEE (2013)

24. Liangzhu, W.: The Investigation of JFFS2 Storage. Microcomputer Information 8,
030 (2008)

25. Edel, N., et al.: MRAMFS: a compressing file system for non-volatile RAM. In:
Proceedings of the IEEE Computer Society’s 12th Annual International Sympo-
sium on MASCOTS 2004. IEEE (2004)

26. Stornelli, M.: Protected and Persistent RAM Filesystem. pramfs.sourceforge.net
27. Hulbert, J.: The Advanced XIP file system. In: Linux Symposium, p. 211 (2008)
28. Elghefari, M., et al.: Radiation Effects Assessment of MRAM Devices (2008)
29. Cassel, M., et al. : NAND-flash memory technology in mass memory systems for

space applications. In: DASIA 2008, vol. 665, p. 25 (2008)
30. Herpel, H., et al.: Next generation mass memory architecture. In: DASIA (2010)
31. Wicker, SB., et al.: Reed-Solomon Codes and their Applications. Wiley & Sons

(1999)
32. Suzuki, S., Shin, K.: On memory protection in real-time OS for small embed-

ded systems. In: Proceedings of the Fourth International Workshop on Real-Time
Computing Systems and Applications, pp. 51–58. IEEE (1997)

33. Su, S., et al.: A Hardware Redundancy Reconfiguration Scheme for Tolerating Mul-
tiple Module Failures. IEEE Transactions on Computers 100(3), 254–258 (1980)

34. Joukov, N., et al.: Raif: redundant array of independent filesystems. In: 24th IEEE
Mass Storage Systems and Technologies, MSST 2007, pp. 199–214 (2007)

35. Cagno, B., et al.: Verifying data integrity of a non-volatile memory system during
data caching process. US Patent 8,037,380

36. Prabhakaran, V., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: Analysis and evolu-
tion of journaling file systems. In: USENIX Annual Technical Conference, General
Track, pp. 105–120 (2005)

37. Belyakov, A.: Linux-MTD Striping Middle Layer. Linux-MTD mailing list (March
2006)

http://pramfs.sourceforge.net


CPS-Xen: A Virtual Execution Environment
for Cyber-Physical Applications

Boguslaw Jablkowski(B) and Olaf Spinczyk

Department of Computer Science,
Technical University of Dortmund, Dortmund, Germany
{boguslaw.jablkowski,olaf.spinczyk}@tu-dortmund.de

Abstract. The range of applications for virtualization technology grows
continually. The possibility of workload consolidation, the facilitated sys-
tem administration, the fault-tolerance properties and cost reduction are
what renders this technique so interesting. Thus, it stands to reason to
expand its field of application to the domain of Cyber-Physical Systems
(CPSs). Unfortunately, the integration of multiple CPS on a single server
by means of virtualization is not a straightforward task. In this domain,
real-time constraints of critical tasks have to be satisfied, in order to
avoid damage or even a catastrophe, and virtualization was initially not
designed to cope with such requirements. In this article we present CPS-
Xen, a platform for executing virtualized safety-critical CPS applications.
CPS-Xen is based upon the Xen-Hypervisor - a popular open-source Vir-
tual Machine Monitor (VMM). We extend the VMM with a real-time
scheduler implementing the rate-monotonic (RM) scheduling policy and
show that optimizing the VMM-scheduler alone is not enough, as the
I/O-scheduling introduces delays and priority inversion in the scheduling
of the VMs. In order to solve this issue, we propose an architecture that
synergizes the work of both schedulers. Finally, throughout an extensive
set of experiments the proposed architecture is shown to fulfill – even
under high CPU load and up to 36 concurrent VMs – the hard real-time
requirements of CPS applications.

Keywords: Virtualization · Cyber-physical systems · Power systems ·
Real-time systems

1 Introduction

Cyber-physical systems became a fundamental constituent of many different
environments. They can be found in domains such as autonomous automotive
and avionic systems, transportation, intelligent buildings, robotics, power sys-
tems and many more. Yet, despite their variety most CPS share a common
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denominator, their complexity. This originates from their immanently heteroge-
neous and distributed character as well as the fact that modern CPS evolved into
software-intensive systems composed of numerous software components. Consid-
ering the recent technological advancements in computing, sensing and com-
munication, it stands to reason that in the future the use and importance of
software in CPS will constantly grow, further increasing their complexity. This
poses a challenge in the analysis and deployment of CPS. However, the issue of
distributed heterogeneous components and complicated software is not exclusive
to the area of CPS. There are other domains with similar challenges. A good
example are large data centers. In this area similar issues could have been suc-
cessfully tackled by the technique of virtualization. The fundamental features of
virtualization are that it allows for a transparent integration and consolidation
of the system components, thus significantly reducing its complexity and, at the
same time, enables new management and fault-tolerance options. For instance,
the high degree of fault-containment provided by this technology - both in space
and time dimension - permits safety and security improvements. The software
encapsulated in Virtual Machines (VM) is unable to propagate errors across the
system or withhold crucial system resources. Therefore, an already compromised
or erroneous VM is isolated and cannot affect the execution of other VMs. This
property not only increases the dependability and security of the system but it is
also one of the arguments in favor of using virtualization for the construction of
mixed-criticality systems. Further, features like live migration, replication and
checkpoint recovery enable dynamic system reconfiguration at runtime, facili-
tate administration and even allow for the implementation of high availability
solution to transparently survive hardware failures. The list of benefits provided
by virtualization is substantial, hence, it seems reasonable to try to expand its
field of application to the domain of CPS. The integration of the computational
subsystems into a one functional whole on a homogenous platform could not
only result in a strongly reduced system complexity, raised dependability and
availability, but also in a significant reduction of the procurement, operation, and
maintenance costs. This article studies the feasibility of such an approach in the
context of Cyber-Physical Energy Systems (CPES) by introducing CPS-Xen, an
architecture for hosting virtualized CPS applications. In contrast to other works,
CPS-Xen synergizes the scheduling of VMs with I/O-scheduling. Due to this, we
can show throughout an extensive set of experiments that our architecture not
only fulfills the hard real-time constraints of CPS applications but also exhibits
minimal delay and jitter.

The rest of the paper is structured as follows. Section 2 describes the appli-
cation domain of Cyber-Physical Energy Systems (CPES) and their typical real-
time requirements. Section 3 presents our CPS-Xen architecture and discusses
important implementation details. Section 4 elucidates the experiments setup
and the measurements techniques. Section 5 provides the results for the con-
ducted experiments. Finally, Section 6 discusses related works and the paper
concludes in Section 7.
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2 Cyber-Physical Energy Systems and Real-Time
Constraints

Since modern power systems are good examples of large, distributed and com-
plex cyber-physical systems they will serve in this article as the background
for our research. In the last years, the circumstances in operating the electric
power grid have changed substantially. The principal reasons for this change are
the newly emerging technologies (e.g. electric mobility), the ongoing integration
of renewable energy sources and - at least in Europe - the liberalization of the
electricity markets. All of those change the expectations and therefore the require-
ments regarding the Information and Communication Technology (ICT) infras-
tructure and demand for new solutions. Particularly interesting for our research
is the substation automation field. On the substation level of the power grid,
new, interconnected and intelligent microprocessor-based controllers - Intelligent
Electronic Devices (IED) - are being installed to meet the new requirements of
monitoring, protection and control applications. Because these applications are
commonly implemented on dedicated IEDs and - due to safety requirements -
often redundantly the new solutions require a considerable number of devices to
be installed and managed. Fortunately, in many of the cases, the computation
logic from these devices can be abstracted and encapsulated in VMs. However,
it has to be guaranteed that such an integrated, new system is fulfilling all func-
tional and non-functional requirements. These have to be identified and verified.
The functional aspects referring to, for example, the result correctness of the
protection algorithm are beyond the scope of this article. The latter ones, we are
interested in, are defined by appropriate standards and associations. Regarding
the timing constrains for the domain of interest we will refer to the IEC 61850
Standard [3,4].

IEC 61850 is a bundle of standards for power system automation including
substation automation and transmission grid protection. In short, the main pro-
tocols implementing the IEC 61850 specifications are Sampled Values (SV) used
for the transmission of the measurements values, the Generic Object Oriented
Substation Event (GOOSE) responsible for carrying the state changing com-
mands (e.g. tripping commands) and the Manufacturing Message Specification
(MMS) transmitting general purpose data for substation applications. The first
two are layer-2 protocols, in contrast to the MMS which is a layer-3 protocol.
The communication requirements for our studies imposed on the test system by
the IEC 61850 specifications are summarized in Table 1. The transfer time limit
comprises of the network communication delay and the communication process-
ing time at the sender and receiver. The inter-arrival time describes the frequency
at which the devices communicate with each other (e.g. a circuit breaker and
an IED). In order to facilitate the evaluation of our architecture, for the pur-
pose of this paper we assume that the computation delays for the algorithms
executed inside the VMs are already included in the communication constraints
for the different message types. Note that this approach introduces stricter tim-
ing constraints, as the transfer time requirements described in the standard do
not include the computation delays. However, the computation time for our test



CPS-Xen: A Virtual Execution Environment for Cyber-Physical Applications 111

Table 1. Timing constraints

Protocol Inter-Arrival Time Transfer Time Limit

SV 0.250 ms 3 ms
GOOSE 5 ms 3-20 ms
MMS 50 ms 100 ms

implementation of a distance protection function - which is used for the overcur-
rent protection of power lines and is one of the most critical functions regard-
ing timing constraints - never exceeded 40 s. In relation to the communication
timing constraints including the computation latencies seems as an acceptable
approach.

3 Architecture of CPS-Xen

The generic architecture for hosting virtualized safety-critical CPS applications
is depicted in Figure 1. Our implementation is based on the Xen-Hypervisor [1],
which is an open-source project with a large and active user community. Xen
utilizes the technique of platform virtualization which allows for the concur-
rent execution of multiple Operating Systems (OS) on the same hardware. The
OSs - including the applications running within - are encapsulated in VMs and
are being managed by the hypervisor. The hypervisor also controls and assigns
processor and memory resources to the VMs. In Figure 1, every physical host
represents a server running the Xen-VMM. Each of the hypervisors is able to con-
currently host a specific number of virtual machines - this number is bounded
by the available hardware resources and the requirements of the applications
to be run. A unique virtual machine created at boot time (Domain 0) holds
the drivers for the underlying hardware and is responsible for the interaction
between the other virtual machines, also known as guest operating systems, and
the physical I/O resources. All of the remaining VMs encapsulate CPS applica-
tions. Figure 1 also depicts two physical communication interfaces, one for the
virtualization management traffic (e.g. migrating VMs) and one for the commu-
nication between the physical part of the CPS (sensors and actuators) and the
servers.

VMVM

Hardware

Guest-OS

CPS
Domain 0
(privileged)

Hypervisor
VM
Guest-OS

Physical Host  1

...

Process Level Communication Interface

Physical DevicePhysical Device

VMVM

Hardware

Guest-OS

Hypervisor
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Physical Host  n
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Application Domain 0
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CPS
Application

CPS
Application

CPS
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Fig. 1. Execution platform for virtualized CPS applications
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3.1 Xen for Real Time

Xen 4.1.4 ships with two default VM-schedulers: the Credit and the Simple
Earliest Deadline First (SEDF) scheduler. The Credit scheduler implements a
fair share policy and for that reason it’s not suitable for managing real-time
applications that are encapsulated in VMs. In turn, the current implementation
of the SEDF scheduler does not handle increased load situations and is not able
to hold real-time constraints, as we show in Section 5. Therefore, we extended
the Xen-Hypervisor with our own real-time scheduler.

Real-Time VM Scheduling. In the power systems domain, the safety-critical
applications strictly depend on periodic sensor values which are being transmit-
ted by computation-triggering network packets. A scheduling policy that pro-
vides optimal priority assignment in regard to these assumptions is the Rate
Monotonic (RM) algorithm [5]. It is a dynamic preemptive scheduling algo-
rithm based on static priorities where the highest priority is assigned to the
task with the shortest period. We have implemented this policy in form of a
VMM-scheduler. Our Xen-RM-scheduler takes the following parameters: a slice,
a period and a priority. The slice denotes the maximum amount of CPU time
a virtual machine may receive in a time interval that is specified by the cyclic
consecutive requests for this VM and is called a period. The priority denotes
the order in which an active VM, presumed it has not already consumed its
whole slice for this period, will be scheduled on the processor and depends on
its period. However, our implementation also allows for the explicit setting of
the VMs priorities even if they differ from the RM policy priority assignment.
This option was helpful in testing the influence of the network packet sched-
uler on the VMM-scheduler. Further, we enhanced the Xen tools for the pos-
sibility of adjusting the scheduler parameters at run time. The source code for
CPS-Xen used in our experiments is available on our website: http://ess.cs.uni-
dortmund.de/EN/Software/index.html.

Real-Time Networking. However, the response time of a real-time VM that
is being triggered by a network packet depends not only on its workload and the
hypervisor itself. Another crucial factor is the processing of the packets in the
network driver domain - in our case Domain 0 (Dom0). One of the Xen features
is that the virtualized OSs don’t have to provide their own hardware drivers, this
task is delegated to the Dom0. Xen implements a split driver model. In the case
of network communication, a virtualized guest OS has to implement an driver
abstraction called the netfront. Dom0 holds the counterpart in form of a net-
back driver and coordinates it with all of the guests netfronts. Further, it hooks
these drivers into the Linux kernel. Till recently - before Linux Kernel version
3.12 - the packets were processed by a single kernel thread. In terms of real-time
performance this approach had several limitations [10]. The network packets
were scheduled regardless of the priority of the destined VM what directly led
to priority inversion and an indeterministic behavior. In Linux Kernel 3.12, a
new netback model has been implemented where the New API packet reception
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mechanism (NAPI) [8] and multiple kernel threads are utilized for packet pro-
cessing. The new model is called 1:1, since for every booted VM a dedicated
kernel thread (named vif ) is being instantiated. The idea behind these changes
is to enable better scheduling fairness, yet we also use it to synergize the work
of the VMM-scheduler with the Linux scheduler in Dom0. Through the POSIX
interface (chrt command) in Dom0 we manipulate the real-time attributes of
the packet processing threads the way that the Linux scheduler performs as a
RM scheduler and corresponds with the VMM-scheduler priorities thus solving
the priority inversion issue. Section 5 provides the evaluation results for this
approach.

4 Experiment Setup

The main purposes of our experiments are to analyze the impact of the schedulers
synergy on the reactiveness of the system in regards to hard real-time constraints
and to investigate how well our architecture scales as load increases. For this, in
different scenarios we measure the response times of CPS applications that are
encapsulated in VMs.

We conducted our experiments on a Dell PowerEdge R620 machine consist-
ing of two 8-core Intel Xeon E5-2650v2 processors running at a constant speed
of 2.6 GHz and an integrated Intel I350 1Gbit Ethernet network card. Domain
0 ran on a 64-Bit version of Ubuntu 14 Server with a para-virtualized kernel 3.13
and an exclusively dedicated core. As the VMM we used CPS-Xen based upon the
Xen version 4.1.4. The workloads representing the power system applications were
all embedded into the para-virtualized Mini-OS guest VMs. Further, we used addi-
tional computers to generate the network packets for the VMs under test.

4.1 VM Sets

The test VMs and their parameters were derived from the IEC 61850 standard,
which is elucidated in Section 2. The three VM types used in our experiments are:
the MMS-VMs – representing the soft or the non real-time load, the GOOSE-
VMs and SV-VMs – representing the workloads with hard real-time constraints.
Note that for the MMS-VMs we prepared a set of workloads, as we used them
in our CPU load scalability experiments for the iterative increase of the proces-
sor utilization. Further, in order to reduce the network load (for the scalability
experiments a total of 140 thousand packets had to be sent in less than a minute)
and, as it is a common practice for implementing SV-based protection functions,
we assumed a window of four SV-values for triggering the computation of the
protection algorithm running inside SV-VMs. Therefore, we set the period for
SV-VMs to 1 ms. The execution time for the workload of the SV-VM was deter-
mined on the basis of an implementation for a real distance protection function,
in turn, the other two are of synthetic nature. Table 2 summarizes the different
VMs and their parameters including the worst-case execution times (WCET).
The current design of our architecture assumes that each workload (task) runs



114 B. Jablkowski and O. Spinczyk

Table 2. VM types and their parameters

VM type Period WCET

SV-VM 1 ms 40 s
GOOSE-VM 5 ms 375 s
MMS-VM 50 ms 2.4 - 33.6 ms

in a separated VM. This approach has several advantage. It eases the formal
timing analysis of the execution platform, as we don’t have to assume a hier-
archical scheduling architecture. It also allows for a higher utilization, due to
the fact that the slice and the period of the VM can be chosen appropriately
to its workload requirements. However, for test cases which employed a large
number of instantiated VMs, simply applying the WCET values to the slices
has proved to be an insufficient approach, as during long term experiments (106

requests) we witnessed rare outliers in our results. As the reason for the outliers
we identified the context switch function inside the Xen-Hypervisor. During the
conduction of our tests, the measured worst-case execution time for this func-
tion under RM reached 2122 ns and was 180 ns on average. Considering that the
scheduling quantum of our scheduler is set to then in worst-case the over-
head of 2122 ns translates to a 21% resource loss. After appropriately adjusting
the slice values we experienced no more outliers. Though, it has to be noted
that calculating the worst-case context switch time into the slices leads to overly
pessimistic assumptions about the required dimension of the system. However,
in regards to the presented architecture the focus of this article lies on the fulfill-
ment of real-time constraints and therefore we defer the optimization challenge
of scaling the system appropriately as future work.

4.2 Measurements Techniques

For the purpose of this study we have implemented a UDP-based client-server
benchmark in C. All of the servers (each representing a software function of a
CPES) were running inside the VMs, the sensor values generating clients were
instantiated on separate computers. During the conduction of our experiments
we measured three different latency types. For estimating and monitoring of
the execution times inside the VMs we implemented the approach suggested by
Intel for clock cycle precise measurements [7]. This method provided us with a
maximum measurement result deviation of only four clock cycles. Further, in
Dom0 we collected data for the response times of each VM under test. In this
article, we define the response time of a VM as the time interval between the
moment when the network packet destined for that given VM arrives at the
bottom of the Linux TCP/IP stack and the time-stamp at which it is delegated
to the network adapter for a response transmission. Using systemtap1 we hooked
into the TCP/IP stack layer-2 kernel functions and logged the appropriate time-
stamps. The focus of the subsequent experiments lies on the response times,
1 At first we used tcpdump, yet we experienced significant measurement overheads.
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Fig. 2. Differences in the response times of real-time VMs under a) RM with syner-
gyzed network packet scheduling, b) standard RM scheduling and c) standard SEDF
scheduling

as they allow to characterize the impact of the I/O-scheduler on the VMM-
scheduler as well as to gain insight into how the system would perform if it
would to be deployed in a real industrial environment. Finally, on the machines
generating the network packets with the sensor values we recorded the round-
trip times (RTT) for every single packet. We used these values to additionally
validate our execution and response time delays. In the subsequent experiments
for each measurements and each of the presented figures - if not explicitly stated
otherwise - a total number of 10,000 packets were sent to each of the VMs.

5 Evaluation

In this section, we describe the results from the conducted experiments with
CPS-Xen. First, we show how the synergyzing of the network packet scheduler
with the VMM scheduler impacts the response times of the real-time VMs. Next,
we present the results of two scalability tests. The first one analyzes the real-
time capabilities under increasing CPU load, the second scenario investigates
the architecture in terms of a growing number of VM instances.

5.1 Scheduling Synergy

This experiment focuses on the interdependency between the network packet
scheduler from Dom0 and the VMM scheduler with respect to the response
times of real-time VMs. In order to analyze this relation, we instantiated ten
VMs on a single core with no workload and measured the reaction latency of
the VMs for three different scheduler setups. For each test and each VM the
requests were send over a network from a sensor node with a constant period of
1 ms for a total number of 20,000 packets. All VMs were prioritized with VM1

having the highest priority and VM10 the lowest. Figure 2 depicts the combined
results in form of six boxplots merged into three VM pair blocks representing
the different setups. Due to space limitations we only included the results for
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(c) VM1 - SEDF
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(d) VM2 - SEDF

Fig. 3. Response times of real-time VMs in relation to CPU load under RM and SEDF

the highest and lowest priority VMs. Starting form the left, the pair of VMs in
a) ran under the RM policy and the scheduling priorities for the kernel threads
responsible for the processing of the network packets were set accordingly to
the VMM scheduler priorities. In this test no deadlines were missed. The second
pair b) represents the results for the setup were the packet processing threads
were left unprioritized. In this case, the VMs again ran under the RM policy.
However, here, several deadlines were missed. The differences in the results of
a) and b) exemplify the impact of the I/O-scheduling on the VMM-scheduling.
Finally, for the sake of completeness we also included the results for the Xen
SEDF scheduler. These are depicted by the VM pair in c). In this setup the
packets processing threads were left unchanged as in the case of b). The results
for SEDF show hundreds of deadline violations.

5.2 Scalability

It is often the case that new and unknown issues emerge only after a certain
load has been induced on an architecture under test. Therefore, in the subsequent
experiments we evaluated CPS-Xen with respect to its scalability characteristics.
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(b) GOOSE VMs

Fig. 4. Response times of six real-time VMs running on a single core under RM

CPU Load. This series of experiments relates to the behavior of our platform
under increasing CPU load. All of the following tests include two real-time VMs
(SV and GOOSE processing workloads) and one non real-time VM (MMS work-
load) scheduled on a single core. We used the non real-time VM for iteratively
increasing the processor utilization. It has to be noted that the specified loads
represent worst-case utilization values based upon the worst-case execution times
of the workloads. During the execution of the tests the loads - on average - were
about 15% lower. Figure 3 illustrates the response times of the two real-time
VMs both for the RM and SEDF scheduling policies with respect to the rising
CPU load. Figure 3 a) and b) present the respond latencies for VM1 and VM2

under the RM scheduler. We can observe that the worst-case response times for
both VM1 and VM2 are far below their deadlines irrespective of the CPU load
and that the response times manifest a deterministic behavior with a relatively
small variance. Figure 3 c) and d) depicts the response times under SEDF. The
results show that even under a low CPU load - starting at 30%- deadlines are
being missed.

VM Instances. The following experiments address the scalability potential of
CPS-Xen in respect to a growing number of VMs. The first test investigates the
capability of the system to scale up in case of a single core. For this purpose we
tripled the number of VMs used for the CPU load experiments and measured
the response times of the 9 concurrently executed VMs - 6 real-time and 3 non
real-time VMs. We additionally prioritized the VMs within each of the types,
in order to clearly bring out the influence of the scheduler. Figure 4 shows the
results for the a) SV- and b) GOOSE-workload processing VMs. We can observe
that in both cases no deadlines were missed and the average and worst-caste
response times are similar to the ones obtained in the CPU load experiments. It
has to be noted that also all of the non real-time VMs completed their execution
on time. The next experiment investigates the capability of our architecture to
maintain its deterministic behavior in the case that additional VMs are being
deployed on multiple cores. For this, we instantiated a total number of 36 VMs
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(c) SV-VMs under SEDF
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Fig. 5. Response times of 24 real-time VMs from a total of 36 VMs running on 4 cores
under RM and SEDF

on four cores, 9 VMs on each core and each core hosting 3 SV-VMs, 3 GOOSE-
VMs and 3 MMS-VMs. For the sake of completeness and better comparison we
rerun the tests for the SEDF scheduler. Figure 5 depicts the measured response
time values for both scheduler types and all four cores. For VMs scheduled under
the RM policy no deadlines were missed and again the worst-case response times
are in the region of the ones measured during the CPU load experiment. In the
case of the SEDF scheduler none of the real-time constraints for the SV- or
GOOSE-VMs have been fulfilled.

6 Related Work

There is still little literature on analyzing large-scale CPSs in the context of vir-
tual execution environments. Till recently, virtualization has mainly been studied
in terms of resource utilization. Nonetheless, some interesting work has been done
in the context of virtualization and real-time systems. In [9] the authors propose
a scheduling framework for analyzing compositional scheduling techniques in Xen
and provide a suit of real-time VM scheduling policies. However, this work does
not address the issue of I/O-scheduling or its influence on the VMM-scheduling.
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In [6], a method for designing VM schedulers is being presented but also this
analysis is burdened with priority inversion issues. A proposal for overcoming
the I/O-scheduling related problems is being presented in [10], yet this approach
restricts itself to local inter-domain communication. The communication-aware
scheduling approach described in [2] improves the reactiveness of the I/O inten-
sive VMs - scheduled under SEDF - by raising their priorities. Yet, this approach
only alleviates the problem but does not solve it.

7 Conclusions

In this paper we presented CPS-Xen, an architecture for executing virtual-
ized CPS applications such as those encountered in modern power systems. We
showed that the default Xen SEDF real-time scheduler fails at fulfilling hard
real-time constraints and therefore proposed a RM scheduler extension for Xen.
Our scheduler performs within tighter response time bounds and achieves lower
jitter. Nonetheless, our studies reveal that optimizing the VMM-scheduler alone
is not enough, as the I/O-scheduling introduces delays and priority inversion to
the system. Therefore, we assigned real-time priorities to the network packets
processing threads and synergized the work of both schedulers. The results of
the conducted series of experiments - including scalability studies - show that
this is the right approach, as in none of the tests a deadline was ever missed.
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Abstract. In this paper, we present a self-optimization approach that
does not only consider pure load-balancing but also takes into account
trust to improve the assignment of important services to trustworthy
nodes. Our approach uses different optimization strategies to determine
whether a service should be transferred to another node or not. The eval-
uation results showed that the proposed approach is able to balance the
workload between nodes nearly optimal. Moreover, it improves signifi-
cantly the availability of important services, i.e., the achieved availability
was no lower than 85% of the maximum theoretical availability value.

Keywords: Organic computing · Autonomic computing · Trust · Self-x
properties · Self-optimization

1 Introduction

Organic Computing [1] is an initiative that brings together many fields of com-
puting with the purpose of creating computing systems that self-configure [2],
self-optimize, self-heal and self-protect (i.e., the so called self-x properties). Trust
as a basic concept can be used to improve the robustness of such systems. In
this paper we adopt the definition of trust [3] of the research unit OC-Trust
of the German Research Foundation (DFG). In their research, trust covers dif-
ferent facets, as, for example, safety, reliability, credibility and usability. Our
investigation focuses on the reliability aspect. Furthermore, we assume that a
node can not realistically assess its own trust value because it may trust itself
fully. Therefore, the calculation of the trust value for the self-x properties must
be done with the following trust metrics:

– Direct Trust [4] is based on the own experiences a node has made directly
with an interaction partner node. Typically, trust values are calculated by
taking the mean or weighted mean of past experiences.

– Reputation [5] is based on the trust values of others that had experiences
with the interaction partner. Reputation is typically collected if not enough
or outdated own experiences exist.

This research has received funding from the research unit OC-Trust (FOR 1085) of
the German Research Foundation (DFG).
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When all the aforementioned values are obtained, a total trust value based on
direct trust and reputation values can be calculated using confidence to weight
both parts against each other [6]. This value can then be used to enhance the
self-x properties with trust capabilities. In this paper, we primarily focus on
self-optimization and note that our goal is to develop an autonomously trust-
enhanced self-optimization algorithm that works in a distributed manner and
also ensures global optimality. It uses at runtime the current information of
nodes to perform an equal load distribution of services in the whole network as
in a typical load balancing scenario.

2 Related Work

A lot of papers have been published to deal with the assignment problem of
services on nodes, either to achieve a static or dynamic load balancing [7]. In
most existing algorithms, the consideration of the trustworthiness of nodes has
been neglected so far. For instance, the work of Rao et al. [8] proposes sev-
eral methods for solving the load balancing problem in distributed systems.
One of these methods, called one-to-one, is similar to our approach: two nodes
are picked at random. Then, a virtual server transfer is initiated if one of the
nodes is heavy and the other is light. Their method, however, does not consider
how the availability of important services may be improved, and does not dis-
tinguish between trustworthy and untrustworthy nodes. Bittencourt et al. [9]
presented an approach to schedule processes composed of dependent services
onto a grid. This approach is implemented in the Xavantes grid middleware and
arranges the services in groups. It has the drawback of a central service distri-
bution instance and therefore a single point of failure can occur. In [10], two
individual self-optimization algorithms for LTE networks are presented. One of
these algorithms, called Load Balancing in Downlink LTE networks, is similar
to our approach. The authors try to shift the virtual load of overloaded cells
to less loaded adjacent cells by changing the virtual cell borders. The virtual
load is modeled as the sum of resources needed to achieve a certain QoS for all
active user equipments. In [11], the authors presented a receiver-initiated opti-
mization algorithm that automatically balances the workload of nodes in service
distributed environments. It is implemented in the OCμ middleware. In their
algorithm, services can be relocated or transferred to other nodes to balance the
resource consumption among nodes. Moreover, it takes into account the trust
constraints of nodes to transfer important services only to trustworthy nodes.
However, it is based on the unrealistic assumption that all nodes have the same
resource capacity. Contrary to this work, our approach is able to work with
heterogeneous capacities.

3 Basic Idea of the Self-optimization Algorithm

A distributed system consisting of a set of n nodes N = {n1, n2.., nn} is consid-
ered, where each node can interact with each other through a set of application
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messages. They can optimize at runtime the assignment of services in the net-
work by transferring their own services to other nodes. Suppose that node j at a
certain point during runtime sends an application message to another node i. It
appends onto the outgoing message (a) its trust in node i (b) its current work-
load and (c) some information (i.e., importance level and consumption) about
services, which are running on it. Based on this information node i decides which
of the following optimization strategies should be performed:

3.1 No Optimization

– Description: The workload between nodes is well balanced and their trust
values are similar enough.

– Discussion: This is the simplest case that can happen between nodes. Both
of them are well optimized in terms of trust and workload.

– Solution: Nothing will happen

3.2 Load Optimization

– Description: Trust of nodes is similar enough but their workload is unbal-
anced.

– Discussion: This strategy aims to find a pure load balancing between nodes
since their trust is similar enough.

– Solution: Services are transferred to balance the workload between the
nodes. Then, two cases are distinguished: (a) either the workload of i is
higher or (b) the workload of j is higher. In the case of (a), node i balances
the workload of the nodes by transferring a subset of its services to j. Other-
wise, node i sends an alert message to j together with all information which
are necessary for the optimization. Case (a) will be then triggered on side
of j.

3.3 Trust Optimization

– Description: The workload between nodes is well balanced but their
trust values differ significantly. In this case important services might run
on untrustworthy nodes and are prone to fail.

– Discussion: This strategy aims to use particularly trustworthy nodes for
important services. Therefore, important services have to be relocated to
more trustworthy nodes and unimportant services to less trustworthy nodes.
Furthermore, the overall workload resources between nodes should still be
well-balanced.

– Solution: By this strategy, we distinguish between two cases: (a) either i is
more trustworthy than j or (b) j is more trustworthy than i. If (a), then i
swaps its unimportant services for important services of j. In the case of (b),
node i swaps its important for unimportant services of j. Note that the load
consumption between important and unimportant services should be similar
to keep the load-balancing property in both nodes satisfied.
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3.4 Trust and Load Optimization

– Description: Trust of nodes differs significantly and their workload is unbal-
anced.

– Discussion: This strategy aims at workload balancing with additional con-
sideration of the services’ priority, i.e. to avoid hosting important services
on untrustworthy nodes.

– Solution: Four cases are distinguished: (a) either the workload of i is higher
and i is more trustworthy than j, (b) the workload of i is higher but j is more
trustworthy, (c) the workload of j is higher but it is less trustworthy than i,
or finally (d), the workload of j is higher and it is also more trustworthy than
j. In the case of (a), node i balances the workload of load by transferring
only unimportant services to j. If there are no unimportant services avail-
able, then no optimization is done. The rationale for this step is that there
is a trade-off between trust and workload. Improving one of these criteria
will typically deteriorate the other. In the case of (b), node i balances the
workload by transferring only important services to j. Just as the case of
(b), no optimization is done, if there are no available unimportant services.
In other cases (i.e., c and d), node i sends an alert optimization message to
j to piggy-back information necessary for self-optimization. Depending on
the situation, case (a) or (b) will be then triggered on side of j.

4 Metrics and Notations

Since it is very complex to address the self-optimization problem in its full gen-
erality, we make some simplifying assumptions. Firstly, we assume that the load
of a service is stable (or can otherwise be predicted) over the time interval it
takes for the self-optimization algorithm to operate. Secondly, we assume there
is only one bottleneck resource we are trying to optimize for. Let wi denote the
workload of a node i, where wi represents the sum of the resource consumptions
of all services running on node i (see Formula 1).

wi =
∑

s∈Si

cs, with 0 ≤ wi ≤ Cmax
i . (1)

It is to note that cs means the resource consumption of a service s. The
maximum resource capacity of a node i is denoted by Cmax

i and its set of services
by Si. Moreover, we divide services Si into two sets based on their importance
levels:

– Simp
i : Set of important services (running on node i), which are necessary for

the functionality of the entire system.
– Sunimp

i : Set of unimportant services (running on node i), which have only a
low negative effect on the entire system if they fail.
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Then, considering only the context of pure load optimization, our goal is to
balance the workload between nodes. Let us assume two nodes, i and j: node
i is underloaded. However, node j is overloaded and its task is to balance the
workload by service transfers to i. Thus, as you can see in Figure 1, j transfers

Fig. 1. Simple load optimization method

its services whose cumulative resource consumption is close enough to |wj−wi|
2

(optimal balancing). Although this simple idea seems to make a lot of sense, it
has a big problem that does not operate with different resource capacities (see
Figure 2).

Fig. 2. Nodes still unbalanced

Oi =
wi + wj

cmax
i + cmax

j

cmax
i (2)

Therefore, we introduce a new optimal theoretical workload Oi, which should
serve as a target reference point for every node. The node which surpasses this
reference point (wi > Oi + δtol) is considered to be overloaded, otherwise it is
underloaded (wi < Oi − δtol) or balanced (|Oi − wi| ≤ δtol), where a δtol is a
tolerable threshold and represents the quality to reach the perfect workload. The
optimal theoretical workload of a node i is calculated using Formula 2. Since wi

is normalized in a different capacity than wj , we must first divide the sum of
workload wi + wj by the sum of capacity cmax

i + cmax
j to obtain the optimal

theoretical workload per one unit capacity, which will be then multiplied by
cmax
i . Furthermore, each node has an individual trust value calculated based on

our previously developed trust metrics [6]. The trust value ti(j) represents the
subjective trust of node i in node j and will always range between 0 and 1.
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The value of 0 means that i does not trust j at all while a value of 1 stands
for complete trust. Two nodes i and j are considered to have a similar trust
behavior if |ti(j) − tj(i)| ≤ γtol, where γtol is a tolerable threshold and reflects
the quality to achieve a good trust similarity between nodes.

5 The Algorithm in Detail

The algorithm proposed in this section represents a best-effort approach to
improve the assignment of services on nodes so as to satisfy both workload
and trust constraints. It is used to solve this problem in a distributed manner.
We assume that nodes of the network do not know about the workload of oth-
ers until they receive a message from a node with information about that. The
workload of nodes also might change over time. We further assume that a node
can not assess its own trust value, but is rated by other nodes. Therefore, its
trust value must be calculated from the neighbor nodes of the network (see [6]
for more details). Note that the trust of nodes might also change over time.

Again we are considering two nodes i and j, where j sends an application
message mj to i, on which it piggybacks the following additional information:

– Sunimp
j : Set of less important services running on node j

– Simp
j : Set of important services running on j

– tj(i): Current trust value of j in i
– wj : Current workload value of j
– cmax

j : Maximum resource capacity of j

Based on this information node i decides which optimization strategy should
be performed. In the following we consider all possible decisions a node i has to
make:

5.1 No Optimization

– Formal description: |ti(j) − tj(i)| ≤ γtol and |Oi − wi| ≤ δtol
– Solution: Nothing will happen

5.2 Load Optimization

– Formal description: |ti(j) − tj(i)| ≤ γtol and |Oi − wi| > δtol
• Case a: wi > Oi and wj < Oj

Node i balances the workload by transferring some of its services to j,
regardless of whether they are important or not since the trust of nodes
is similar. Firstly, it determines Ψ (see Formula 3 and 4) as a set of
services that could be selected to balance the workload of nodes. Note
that C(Is) represents the consumption function of a set of services Is and
is calculated by the sum of all its service consumptions.
If Ψ is empty, then no optimization is done. Otherwise i transfers Ψ to
j.
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Ψ = {Is | Is ⊆ (Simp
i ∪ Sunimp

i ) : max C(Is) and

C(Is) ≤ (Oj − wj) and 0 < C(Is) ≤ (wi − Oi)}
(3)

C(Is) =
∑

s∈Is

cs (4)

• Case b: wi < Oi and wj > Oj

Since services are assumed not to be stolen from other nodes, node i
sends an alert message to j to piggy-back information necessary for self-
optimization as described above. Then, Case (5.2-a) will be triggered but
on the side of j.

5.3 Trust Optimization

– Formal description: |ti(j) − tj(i)| > γtol and |Oi − wi| ≤ δtol
• Case a: tj(i) > ti(j)

In this case i determines Ψ (see Formula 5) as a set of unimportant ser-
vices (i.e., with the maximum load consumption) that could be exchanged
for important services of j so that the difference of their load consump-
tion never exceeds Ctol to keep the load-balancing property in both nodes
satisfied.

Ψ = {Is | Is ⊆ Sunimp
i , ∃Js ⊆ Simp

j : max C(Is) and

|C(Is) − C(Js)| ≤ Ctol and (C(Is) + wj) ≤ cmax
j }

(5)

Then, after transferring Ψ, node i sends an alert optimization message to
j (i.e., including all information which are necessary for the optimization)
in order to trigger case (5.4-b) on side of j. Note that the execution of
this step aims to balance again the workload between the nodes.

• Case b: tj(i) < ti(j)
In contrast to case (5.3-a), Ψ is determined only from important services
(see Formula 6), since j is more trustworthy than i. Then, i sends an
alert optimization message to j in order to trigger case (5.4-a) on side
of j.

Ψ = {Is | Is ⊆ Simp
i , ∃Js ⊆ Sunimp

j : max C(Is) and

|C(Is) − C(Js)| ≤ Ctol and (C(Is) + wj) ≤ cmax
j }

(6)
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5.4 Trust and Load Optimization

– Formal description: |ti(j) − tj(i)| > γtol and |Oi − wi| > δtol
• Case a: wi > Oi and wj < Oj and tj(i) > ti(j)

Node i balances the workload only by transferring unimportant services
to j (i.e., due to the fact that i is more trustworthy than j). It determines
Ψ as a set of only unimportant services that could be selected to balance
the workload of nodes (see Formula 7). Then, i transfers Ψ to j.

Ψ = {Is | Is ⊆ Sunimp
i : max C(Is) and C(Is) ≤ (Oj − wj)

and 0 < C(Is) ≤ (wi − Oi)}
(7)

• Case b: wi > Oi and wj < Oj and tj(i) < ti(j)
Since j is more trustworthy than i, Ψ will be determined only from
important services (see Formula 8). Then, just as the case of (5.4-a), if
Ψ is empty, no optimization is done. Otherwise i transfers Ψ to j.

Ψ = {Is | Is ⊆ Simp
i : max C(Is) and C(Is) ≤ (Oj − wj)

and 0 < C(Is) ≤ (wi − Oi)}
(8)

• In other cases:
Node i sends an alert message to j (i.e., including all information which
are necessary for the optimization). Depending on the situation, case
(5.4-a or 5.4-b) will be then triggered on the side of j.

6 Evaluation

In this section an evaluation for the introduced self-optimization approach is pro-
vided. For the purpose of evaluating and testing, an evaluator based on TEM [12]
has been implemented which is able to simulate the self-optimization algorithm.
The evaluation network consists of 100 nodes, where all nodes are able to commu-
nicate with each other using message passing. Experiments with more nodes were
tested and yielded similar results, but with 100 nodes more observable effects
were seen. Each node has a limited resource capacity (memory) and is judged
by an individual trust value without any central knowledge. Furthermore, four
type of nodes are defined with different trust and resource values (see Table 1).

Then, a mixture of heterogeneous services with different resource consump-
tions are randomly generated for nodes. The sum of all node’s service consump-
tions does not exceed a node’s capacity (i.e., as defined in formula 1). If, for
example, a trustworthy node is already full, then the same procedure is repeated
for an untrustworthy node and so on until the average load of the system reaches
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Table 1. Mixture of heterogeneous nodes

Node Type Memory (MB) Trust Amount (%)

Type 1 500-1000 0.7-0.9 10

Type 2 500-1500 0.3-0.6 50

Type 3 2000-4000 0.4-0.8 30

Type 4 4000-8000 0.4-0.9 10

50% (workload = 50%). This means that some nodes may have many services
and others none to unbalance the workload between nodes. Important services
are created only for untrustworthy nodes and unimportant services for trustwor-
thy nodes. Without the self-optimization techniques the workload of nodes are
still unbalanced. Moreover, important services running on untrustworthy nodes
are prone to fail. With the use of the trust metrics [6], the trust of a node can
be measured and taken into consideration for the transfer of services.

Two rating functions are used to evaluate the fitness of a service distribution
regarding trust and workload. The first rating function for workload Fworkload

aims to calculate the average deviation of all nodes from the desired workload
workload (in our case, 50%). This is expressed by the formula 9, where N is the
set of all nodes and |N | the cardinality of N .

Fworkload =

∑

n∈N
|workload(n) − workload|

|N | (9)

workload =

∑

n∈N
workload(n)

|N | (10)

The main idea of the second rating function Ftrust is to reward important
services running on trustworthy nodes. This is expressed by the formula 11,
where N is the set of all nodes, Sn is the set of services on a node n, t(n) its
trust value and p(s) the priority of a service s (i.e., if s is important, P (s) has
the value of 1, otherwise 0).

At the beginning of the simulation, the network is rated by using both Ftrust

and Fworkload. Then, the simulation is started and after each optimization step
the network is rated again. Within one optimization step, 50 pair of nodes
(sender/receiver) are randomly chosen to perform the self-optimization process.
Senders send an application message to receivers to piggyback necessary informa-
tion for the self-optimization, as described in section 3. Based on the extracted
information the receiver determines whether it transfers its services or not.
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Ftrust =
∑

n∈N

∑

s∈Sn

p(s)t(n) (11)

The goal is to maximize the availability of important services, which means
that Ftrust should be maximized (i.e., to an optimal theoretical point that we
explain later in 6.2). Therefore, it is necessary to transfer the more important ser-
vices to more trustworthy nodes. Furthermore, the overall utilization of resources
in the network should be well-balanced, i.e., Fworkload should be minimized near
to zero.

6.1 Results Regarding the Rating Function Fworkload

As mentioned above, Fworkload indicates the average workload deviation of all
nodes from the desired workload workload (in our case, 50%). The lower the
value of Fworkload, the better the performance of workload balancing.

Fig. 3. Rating function for workload deviation(Fworkload)

Figure 3 shows the result of this experiment, whereas the values on the x-
axis stand for optimization steps and the average workload deviation of nodes is
depicted on the y-axis. It can be observed that the proposed algorithm improves
the workload balancing by about 93%. However, it does not reach the theoretical
maximum rate of 100% due to the trade-off between trust and workload.

6.2 Results Regarding the Rating Function Ftrust

In the following, the service distribution for the proposed self-optimization
algorithm is evaluated regarding Ftrust. Figure 4 shows the result of this exper-
iment. The square line represents the result of Ftrust using the proposed self-
optimization algorithm. It can be observed that the algorithm improves during
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Fig. 4. Rating function for Trust (Ftrust)

runtime the availability of important services. This means that the considera-
tion of workload does not prevent the algorithm to relocate important services to
trustworthy nodes. However, it remains to investigate how good is the obtained
result compared to an optimal theoretical result, when all important services
are hosted only on trustworthy nodes (pure trust distribution, i.e., regardless of
whether nodes are balanced or not). For this purpose we use an approximation
algorithm that sorts in decreasing order the trust values of nodes and relocates
all important services only to most trustworthy nodes until their capacity is full.
The triangular marked line in the figure illustrates the result of the approxima-
tion algorithm. As a conclusion to all simulations we have done so far (about
1000 runs were evaluated) we can state that the proposed algorithm greatly
improves the trust distribution of services. More precisely, it achieves 85% of the
theoretical maximum result. However, it stays by 15% behind the theoretical
maximum result due to the trade-off between trust and workload.

7 Conclusion

In this paper, we have presented a trustworthy self-optimization algorithm that
does not only consider pure load-balancing but also takes into account trust to
improve the assignment of important services to trustworthy nodes. More pre-
cisely, it uses different optimization strategies to determine whether a service
should be transferred to another node or not. The proposed algorithm has been
evaluated. The results show that for our model trust concepts improve signifi-
cantly the availability of important services while causing a small deterioration
(i.e., by about 7%) regarding load balancing.
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Abstract. Wireless Sensor Networks are characterised by a large amount
of participating nodes. Considering attackers and malicious elements
within such a network poses challenges for the network protocols in opera-
tion. Based on concepts from the Organic Computing domain, this paper
introduces a novel approach to introduce reliability measures and establish
End-to-End trust in WSNs. We evaluate our concepts using simulation by
adding nodes which try to attack the system. The results show that these
malicious nodes can be quickly isolated with low additional effort.

1 Introduction

Wireless Sensor networks (WSNs) describe a class of computing systems with
special characteristics. They operate in highly dynamic environments and adapt
their behaviour automatically to changing conditions while sensing the environ-
ment. Due to the potentially large number of participating nodes, the system
architecture is spatially distributed over potentially large areas.

In standard WSNs, all nodes are assumed to belong to one authority and
deliver their results to one or more sink nodes that are controlled in a centralised
way. However, nodes may become compromised or broken during their lifetime.
Current protocols and most installations do not take malicious behaviour or
partially failures into account.

Based on insights from the domain of Organic Computing [18], we describe
a novel concept for estimating the reliability of nodes in such WSNs. Taking
this into account, we develop an artificial trust relationship between nodes to
which we refer as End-to-End trust that improves the routing decisions within
the network. We demonstrate the benefit of our approach using simulation and
compare the results to standard approaches. Thereby, we demonstrate that the
benefit of these measures come with only low additional effort.
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This paper is organised as follows: Section 2 describes our application sce-
nario in more detail. This is followed by the problem description in Section 3.
Section 4 gives an overview to previous and related work. Afterwards, Section 5
introduces our novel approach of End-to-End trust, which is then evaluated in
Section 6. Section 7 discussed the achieved results and derives research directions
for current and future work. Finally, Section 8 concludes the paper.

2 Application Scenario

WSNs have a wide area of usage, from environmental [12] and industrial mon-
itoring [1] to healthcare purposes [3]. Unlike normal wireless networks, WSNs
often have special limitations, such as being battery powered or the limited pro-
cessing power and memory size of the Micro Controller (μC) used on the nodes.
Also, some use cases add other challenges, i.e. mobility of network nodes and,
therefore, changing network topologies. Due to the limited power supply, nodes
are equipped with low power transceiver chips for wireless communication stan-
dards, i.e. IEEE 802.15.4 [11]. Thus, WSNs belong to the group of low power and
lossy networks. Another reason for the loss is the previously mentioned mobility
and the resulting instability of links between nodes.

In most WSNs, the major traffic is directed to a more powerful node which
is able to store the sensed data. This special node is called sink and typically
has an uplink to the Internet or other large-scale networks.

Due to the instability, loss, and limitations mentioned above, standard pro-
tocols from the domain of mobile ad-hoc networks (i.e. AODV [16] or OLSR [5])
are not applicable. Therefore, the Routing Protocol for Low power and Lossy
Networks [20] (RPL), an IPv6 Routing Protocol, was developed. It is a distance
vector routing protocol designed for the limitations given by the hardware and
the special environmental challenges in WSNs. To route packets, RPL constructs
a Destination-Oriented Directed Acyclic Graph (DODAG). For most applications
in WSNs, a DODAG is an appropriate routing assumption because most of the
traffic is directed to the sink node. In RPL, this node is called root. A network
can contain more than one RPL instance; every instance is serving goal of the
network and may consist of more than one DODAG to fulfil the goal. Every
DODAG can only have one root. To route a packet to the root, all intermediate
nodes forward the packet to their parent nodes until the root is reached.

Contrary to the node-sink relation, packets have to be sent from the sink to
nodes in certain cases. To be able to handle these cases, RPL has the ability to
gather all nodes forwarding a packet to the root. Using this information, RPL is
able to store the routing path into a packet and route it down to the desired node.
However, this mode is optional and may be disabled to save memory on the nodes.

The way nodes select a parent inside the DODAG depends on the appli-
cation’s goal. It is influenced by different metrics, i.e. the required energy to
transmit a packet to the next node. Furthermore, constraints such as the maxi-
mum number of forwards can influence the structure of the resulting DODAG.
From all this information, the Objective Function (OF) generates the rank of
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a node. The rank influences the position of a node in the DODAG. Thereby,
the root is always rank 0. Only nodes with a lower rank can be parents of a
node. To forward a packet, a node does not necessarily take the parent with
the lowest rank. This decision is left to the OF as well. The ability to construct
an application-specific routing graph is a big advantage of RPL compared to
AODV [16] or OLSR [5].

3 Problem

RPL is very efficient when building routing trees and recovering from node fail-
ures. However, it has major problems if nodes only fail partially or behave inten-
tionally malicious. In standard RPL, all parent decisions are based on the rank.
The Minimum Rank with Hysteresis Objective Function [9] (MRHOF) extension
introduces metric containers and improves the parent selection. Most deploy-
ments use Expected Transmission count [6] (ETX) as a metric which derives
the route with statistically the lowest count of transmissions. The ETX value is
passed inside the DIO packets as a metric container. There exist two major prob-
lems: First, the ETX values for certain links could be fake; second, a node may
not forward other packets than routing information. ETX is calculated based
on the packets actually sent. Hence, it does not ensure any routing at all. This
behaviour may be malicious or even unintended because of misconfiguration or
failures.

In our experience with physical systems, the problem can have two reasons:
first, because of broken software deployments to parts of the network; second,
because overload happens on the bus to the wireless adapter. In both cases, one
or more nodes practically performed a sink hole attack against the network and
prevented significant portions of the network from communicating at all. Nodes
with broken software behave like malicious nodes. However, this does not happen
intentionally. Still, the routing protocol should be able to circumvent them and
recover from this unintentional attack.

Overloading the bus to the wireless adapter happens frequently with cheap
hardware on central nodes. As a result, we observe increasing packet loss, which is
not represented in the ETX value for the links to the nodes. This effect is caused
by the transceiver chip itself, because according to IEEE 802.15.4 it sends a link
level acknowledgement after it successfully received a packet. The sending node
considers the packets as successfully transmitted in its ETX calculation. How-
ever, when the bus to the transceiver chip is overloaded, the operating system of
the receiving node may have never processed the packet. From the outside, this
behaviour, which is done for power saving in the CPU, also looks like a (partial)
sink hole attack.

4 Previous and Related Work

4.1 Sensor Networks

Typically, WSNs are designed as networks of dozens to thousands of small-
scaled and cheap electronic sensing devices [2], called sensor nodes. Sensor nodes
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typically consist of at least one sensor to sense environmental variables, a wireless
transceiver chip to communicate, and a Micro Controller (μC) to pre-process
the gathered data and to handle the communication processing. These nodes are
often battery powered, so, energy efficiency is one of the main objectives in the
design of software for these devices. This objective is present in all layers of the
network stack in such networks; starting down in the physical layer with low
power communication standard such as IEEE 802.15.4 [11]. One of most active
fields of research in energy preservation is the MAC-Layer [10] [15].

The routing of packets in such networks is not only challenging from the
energy preservation objective, but also from the perspectives of packet loss and
instability of links between nodes. Most sensor networks are deployed over an
area which is larger than the transmission range of the sensor nodes. Thus, rout-
ing must be able to handle multi-hop transfer of packets. To be as cost-efficient
as possible, every node in the network should be used as a forwarding node. This
leads to multiple possible paths for packets to reach their destination. The way
the path is chosen depends on the application the network is supposed to fulfil.
For networks which have to deliver packets in a guaranteed time, approaches
such as GINSENG [14] are available. Like GINSENG most routing protocols
are specialised to meet one target, i.e. round trip time or the energy to transfer
a packet to its destination. A more flexible approach regarding the objective
function is RPL.

4.2 Trust and Reputation in Sensor Networks

In contrast to standard RPL, we do not assume any benevolence of nodes in the
network [19]. To cope with this information uncertainty, we introduce a trust
metric. A general overview about applying trust to distributed systems can be
found in [4].

Ganeriwal et al. [8] implemented reputation in sensor networks. Every node
rates its neighbours and malfunctioning nodes can be avoided. However, relay
or wormhole attacks can not be prevented.

Another approach was presented by Leligou et al. [13]: They propose to use
active traffic sniffing to defend against attacks and integrate encryption to fight
most attacks. However, active sniffing costs a lot of energy, because the CPU has
to read all packets on the air. Additionally, this approach can not ensure that
packets are actually delivered to the root.

Zhan et al. [21] presented a Trust Aware Routing Framework (TARF), which
can fight most attacks without much overhead. They use a very simple trust
metric and no reputation. We adapted parts of their approach to RPL and
extended them.

5 Approach

In RPL, nodes have only very limited knowledge about the topology to save
power and memory. Since one of the main reasons for energy consumption is the
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use of radio, there should be as little communication as possible. Because of this
constraint to minimise communication, there are no acknowledgements from the
root about received packets. Unfortunately, this means that nodes can not know
whether their packets were actually forwarded and delivered.

However, to detect malicious or broken nodes, we need to gain knowledge
whether our packets actually reached the root. Normally, most communication
is one-way in such networks, so, there is no feedback. In our approach, we intro-
duce End-to-End Trust as an effective low-overhead measurement to fill the
information gap about the delivery rate of a route.

5.1 End-to-End Trust

To achieve End-to-End Trust, we first add a sequence number to every packet
from a node to root. This allows the root to determine if it missed packets.
However, it still can not tell whether it got the last packet and, more important,
the sending node does not know. Fortunately, the root periodically sends a DIO
to all nodes. We add a header to all DIOs which contains the Trust Round
(see Section 5.2) and the count of all received packets in this round. Additionally,
we also trigger a DIO when the root sees a high count of missing packets. Nodes
will receive a forwarded DIO from each of their neighbours. However, according
to RFC 6550 [20], they shall ignore it from all but their parents. This ensures
that every node knows about the last sequence number seen by the root and the
amount of missing packets. An attacker can only prevent a node from receiving
the correct DIO if it controls all neighbours of that node and in that case there
would not be a working route anyway. In theory, the attacker would only have
to control the parents, fortunately implementations (i.e. Contiki) also consider
DIOs from non-parent neighbours.

5.2 Trust Rounds

Previous approaches had problems to determine whether a packet was actually
sent before or after the DIO was generated since clocks are either not existent
or not synchronised in sensor networks. To solve this dilemma, we introduce
so called Trust Rounds (TR). Nodes attach TR and sequence number to every
packet. When the root generates a DIO, it starts a new round. After nodes
receive the DIO, they reset their sequence counter to zero and use the new
round. The parent will only be reselected when a new round starts or when the
old parent becomes unavailable. At the beginning of a TR nodes re-evaluate
their parent selection and will select a better performing parent if available.
This optimisation helps to save memory on all nodes since they only need to
remember their sequence and the selected parent.

5.3 Trust Metric and Objective Function

With both sequence numbers and TRs, nodes will eventually know which packets
reached the root and which did not. Based on this knowledge, a node calculates
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the delivery rate for the parent used in the last TR. This rate should be next to
100% in normal cases because a packet is resent if no link level acknowledgement
was received by the radio.

We use a simple trust metric Tn,r to calculate the trust for all neighbours
n (see Equation (4)). In every round r, a node calculates the new Trust Tn,r for
its selected parent np based on the new experiences Ξ and the previous trust
value Tnp,r−1. The factor α decides how strong the new experiences are weighted
compared to the previous ones (see Equations (3) and (4)). The initial trust value
Tn,0 of every node is set to 0.5 (see Equation (2)).

T ∈ [0, 1] (1)
Tn,0 := 0.5 (2)

Ξ :=
#delivered

#sent
(3)

Tn,r :=

{
α × Tn,r−1 + (1 − α) × Ξ n = np

Tn,r−1 otherwise
(4)

When a node receives a DIO which starts a new TR, it will update the
trust value for the current parent. We define an Objective Function (OF) which
then uses this metric to select suitable parents. Initially, all nodes are equally
trustworthy and the behaviour is equal to standard RPL with Objective Function
OF0 according to RFC 6552 [17]. Every node increases its rank to be higher than
those of the suitable parents. It then selects the best parent. If the trust value
of the parent decreases, it will at some point no longer be considered as a good
parent. The OF will select a better parent. Eventually, the node needs to adjust
its rank to have more parents available.

5.4 Overhead

Sending additional information always causes overhead. However, we try to min-
imise the impact on power consumption. Therefore, we do not send additional
packets to keep radio and CPU in power save mode as long as possible. Instead,
we use existing messages which are sent anyway and add our data into the mes-
sage. Additionally, we compress the data as much as possible: Since sequence
number and TR are only two bytes they should fit inside the padding of most
packets; in contrast, the DIOs which are sent by the root need an entry for every
node in the network such that the amount of data is not negligible. One main
concern is the size of IPv6 Addresses which are 16 bytes for every node. E.g. for
a network with 400 nodes the DIO would grow to about 7 kB. However, most
sensor networks use a common prefix for all nodes and we can exploit this to
decrease the address size. We choose a prefix of 14 bytes, so, our addresses con-
tain two bytes. Adding our one byte counter for the received packets, we result
in a three byte entry per node. The resulting DIO for 300 nodes with about
1200 bytes still fits inside the standard MTU.
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6 Evaluation

To measure the effectiveness of our approach, we implemented our RPL extension
in Contiki [7] and ran simulations in Cooja [22]. Cooja allows us to use the same
code which also runs on real hardware which similar restrictions to memory, cpu
and radio. In this experiment, we set up a multi-hop sensor network with 26/27
Tmote Sky nodes (see Figure 1). Those sensor nodes run a Texas Instruments
MSP430 microcontroller at 8 MHz. They control 10 kB of RAM and 48 kB
of flash. Every node can reach its neighbours without packet loss to focus on
malicious nodes only. We use a single DODAG in which nodes periodically send
data to the root. When simulating broken or malicious nodes, we disable the
forwarding of data packets. However, they still send out routing informations
(i.e. DIOs), so, they remain inside the network. Indeed, routing information may
be stale or wrong since RPL does not validate this information.

(a) Scenario A: One attacking node (b) Scenario B: Two attacking nodes

Fig. 1. Evaluation scenarios with attackers coloured in red

To compare our approach with state-of-the-art RPL we consider three sce-
narios: first, we simulated an undisturbed scenario to compare our approach to
standard RPL. This will be considered as the reference experiment later on. Sec-
ond, we construct a scenario with one attacking node next to root. Only three
nodes can reach root directly and one of those is malicious (see Figure 1a). To
increase the attack, we provide a third scenario with two attackers next to root.
They are two out of four nodes with direct link to root (see Figure 1b).

6.1 Undisturbed Case

In the undisturbed case we compare RAM, ROM and DIO size between our app-
roach and the reference RPL implementation in Contiki. ROM and RAM usage
is measured statically for the Tmote Sky build (see Figure 2a). Our implemen-
tation uses about 1.2 kB of additional ROM, which brings this particular sensor
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node to its limit. RAM is allocated at compile time and the usage increases by
1.6 kB, which is surprisingly high. The reason for this increase it that a Contiki
node stores the last received DIO for every direct neighbour in RAM - even for
neighbours which are not currently parents. Unfortunately, Contiki preallocates
memory for every possible neighbour (maximal neigbour count is configurable;
20 is default for Tmote Sky) and we increased the size of DIOs by 65 bytes.
However, a node only needs to remember the latest metric container and the
memory usage could be reduced by optimising DIO storage.

Trust Reference Δ

ROM 48796 B 47520 B 1276 B
RAM 9516 B 7834 B 1682 B

Metric Container 65 B 0 B 65 B
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(b) Undisturbed system

Fig. 2. System in undisturbed case

We also compared the packet delivery rate between reference and our imple-
mentation. As shown in Figure 2b, both behave similarly. Minimal packet loss is
happening in both cases and delivery rate is about 99%. However, in our imple-
mentation the delivery rate is slightly lower in simulation due to higher CPU
usage and more radio inference due to bigger DIOs. In Future Work, we present
some ideas to reduce the size of the DIOs to prevent this effect.

6.2 Under Attack

To evaluate our approach under attack we added one or two malicious nodes
to the network (see layout in Figure 1). Those malicious nodes do not forward
any data packets. However, they still send out RPL Routing packets so other
nodes still may use them as parents. For both attacks we compare standard RPL
with rank as metric and our implementation with Trust as metric. We placed
attackers direct next to root to maximise their impact on the system.

In Scenario A with one attacker the reference implementation only achieves
a delivery rate of constant 79% (see Figure 1a and 3a) This effect is caused
by a single attacker which is one out of three nodes which can directly reach
root. In contrast, our trust-enhanced RPL performs improves over time: At the
beginning it reaches 86% delivery rate and eventually it recovers to over 99%
deliver rate.
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(a) Scenario A: One attacking node
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(b) Scenario B: Two attacking nodes

Fig. 3. System under attack

We add a second attacker in Scenario B and repeat our measurements (see
Figure 1b and 3b). In the reference experiment the delivery rate dropped to an
average of 38,5%. About 60% of the nodes are unable to communicate with root.
In comparison, our approach reaches a delivery rate of about 70% initially. After
about 400 packets it improves to nearly 100%. The improvement happens quite
abrupt because RPL requires nodes to change their rank if they do not have any
suitable parents. However, the rank also influences the topology of the network
and thereby the attackers move out of the routes for most nodes.

7 Discussion and Future Work

Our approach adds resilience against most kinds of attacks against RPL by
verifying that packets actually reach their target. The routing will recover in
case nodes are not forwarding packets correctly to the root by isolating bro-
ken or malicious elements. However, this produces some overhead which can be
reduced. The sequence numbers added to every packet only account for very
little additional data and can be neglected. Unfortunately, this does not hold for
the list of sequence numbers in the DIO: first, depending on the count of nodes
in the network, the size increases linearly; second, DIOs are resent by each node
to all neighbours. So, if we consider transmitted bytes the amount increases at
least quadratic by the count of nodes. Our approach to compress the length of
the addresses reduces this effect.

To save more energy, the distribution of sequence numbers from root to all
nodes should be optimised: RPL is able to build routes back from the root to all
nodes, which can be used to distribute the sequence numbers. However, the Trust
Round should stay inside the DIO to ensure that nodes can always determine the
start of a new round. This allows them to notice when their parent intercepted
the packet with sequence numbers and change the route.
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We used a very simple trust metric to rate routes via different parents.
Despite its effectiveness, this approach causes some unwanted side-effects: First,
it does not matter how many packets were sent in a round. This makes the tim-
ing of the packets important and attackers can determine if it is save to discard
a certain packet. Second, when the attacking node is very near to the root, it
causes a cascade of routing changes because all nodes will switch the parent at
the same time. This effect should be mitigated by a more advanced OF.

8 Conclusion

This paper introduced a novel approach to add reliability and End-to-End trust
to Wireless Sensor Networks (WSNs). Typically, standard protocols for the oper-
ation of WSNs do not consider bad or even malicious behaviour of nodes which
can be the result of an attack. Our approach is able to estimate the reliabil-
ity of nodes during operation. Based on observing the behaviour, we establish
End-to-End trust relationships that help to isolated malicious elements.

We evaluated the protocol by comparing the results to other related tech-
niques. Thereby, we demonstrate that our approach is able to quickly isolate
malicious elements with only low additional effort, since WSN nodes are typ-
ically characterised by restricted resources and low power supply. In current
and future work, we are trying to improve the trust metric. The current app-
roach utilised a simplified metric – taking the number of packets of a round into
account will help to make it harder for the attacker to adapt to the protocol.
Furthermore, we need techniques to avoid a cascading effects in route changes.
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Abstract. Healthcare Providers are widely using Cloud Computing to
securely share Electronic Health Record(EHR). Entire EHR data can-
not be disclosed to all the users with different privilege level, since it is
more privacy sensitive. So Healthcare Provider has to enforce a privacy
preserved access control mechanism to efficiently share EHR. Privacy
preserved secure data sharing is one of the most challenging issues in
cloud environment. Existing access control mechanisms for data shar-
ing do not consider the privacy of individuals, who are the subjects of
data which is being shared while preventing user revocation problem.
To address these problems, we are proposing a novel idea in which, users
whose attributes satisfy the access policy and access rights are effective in
access time can recover the corresponding data. Proposed scheme is able
to ensure security, integrity, privacy preserved fine-grained access control
and prevent data mining attacks on shared data. Even though this paper
focuses on EHR sharing, it can be generalized to privacy preserved data
sharing.

Keywords: Cloud computing · Ciphertext-policy attribute-based
encryption · Re-encryption · Anonymization

1 Introduction

Cloud computing is an emerging technological computing paradigm and a novel
business model. It enables users to remotely store their data. Cloud providers
are now claiming that cloud computing is in compliance with HIPAA(Health
Insurance Portability and Accountability Act). Hence organizations are entrust-
ing cloud providers [16] to host their sensitive data to the cloud. HIPAA was
designed to protect the privacy of patient medical record and restrict access to
the data, which are essential for healthcare industry. Healthcare industry now
begins to migrate EHR and other data to the cloud due to its outstanding charac-
teristics such as scalability, mobility and data sharing. Breach of medical record
could lead to identity theft, which can destroy a person’s finance, credit, repu-
tation and violate privacy. So health care industry and professionals should take
c© Springer International Publishing Switzerland 2015
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care of maintaining security, privacy and access control for outsourced medical
data in cloud. Major threat that hinders the wide adoption of cloud is the fear
of losing privacy and security of the data stored on the cloud. Proper security
mechanism not yet fully implemented in the cloud environment. It is still vul-
nerable to attacks. Thus privacy preserved data sharing becomes an important
concern for cloud users.

Cryptographic methods are being used to ensure the security of data at rest
and transit. In traditional cryptographic methods, only authorized users with
decryption key would be able to recover data from an encrypted information [1],
it cannot provide fine-grained access control and scalable user revocation. Data
owner cannot exert any access control on the ciphertext. By the introduction of
attribute based encryption, without knowing the exact identities of the recipi-
ent [2], data owner determines who can decrypt the data, then encrypt it using
defined access policy. Recipients whose attributes satisfies the access policy would
be able to decrypt the corresponding data. Hence we are proposing a novel idea to
provide privacy preserved fine-grained access control for EHR sharing. Proposed
system make use of CP-ABE [11,13] and K-anonymity to achieve fine-grained
access control and privacy of EHR. User revocation problem is also resolved by
proxy re-encryption.

The paper has been organized as follows. Section 1 gives the introduction
and motivation for the proposed research work. Section 2 describes the related
work relevant for data sharing and privacy preservation. System model discussed
in Section 3. Proposed system described in section 4. Implementation and per-
formance evaluation reviewed in section 5. Section 6 concludes the work and
proposes the idea for future work.

2 Related Works

Losing privacy is one of the threat towards the wide adoption of cloud computing.
Traditional way of data sharing among the requested users is either by symmet-
ric or asymmetric cryptosystem in which security depends on the key used for
encryption. Key compromise and absence of access control mechanism are the
vulnerabilities exist in those types of cryptosystem. Following sections describe
various data sharing and privacy preservation schemes for sensitive data.

2.1 Sharing of Encrypted Data

Kallahala et. al. [4] proposed a symmetric key cryptosystem to encrypt the data
and protect it from untrusted server. Overall security only relies on key used for
encryption. Key compromise leads to the unauthorized access to the encrypted
data. Encryptor cannot decide what kind of receivers will be able to decrypt the
information. Fine grained access control cannot be ensured by the symmetric key
encryption. Number of Keys grows linearly with the number of file groups. Key
management exerts more workload on the data owner. Goh el. al. [1] describes a
combination of symmetric and public key cryptosystem. In order to recover the
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data, user has to get symmetric key by decrypting the message using his secret
key. Main drawback of the system is that the number of Keys used in the system
grows linearly with the number of users.

Identity of individual is disclosed to the public in Identity Based Encryp-
tion(IBE) [3]. This scheme is not able to preserve the privacy and fine-grained
access control. Attribute based encryption is one of the solution for this problem.
In Attribute Based Encryption(ABE) [2], Data Owner needs to use access policy
to encrypt the information. Two variations of ABE are key-policy attribute-
based encryption(KP-ABE) and ciphertext-policy attribute-based encryption
(CP-ABE). Policies are built into the user’s keys and attributes are used to
encrypt the data in KP-ABE. Wang and Luo [17] proposes a constant sized
ciphertext with KP-ABE scheme. Attributes are used to describe user’s creden-
tials, and data owner determines the policy on who can decrypt the data in
CP-ABE. Key revocation problem still exists in CP-ABE.

HABE [7,10] is introduced to prevent the key revocation problem; once the
user is revoked from the system, data owner should send proxy re-encryption
(PRE) keys to the cloud service provider(CSP), then the CSP will be delegated
to execute re-encryption. Data owner should be online to send the PRE keys
is one of the problem to this approach. Delay in issuing PRE keys may cause
security problems. In time based proxy re-encryption, each attribute of the user
is associated with time to enable user’s access right to be effective in a pre-
determined time and enable CSP to re-encrypt ciphertext automatically based
on the time [9]. Time to be updated to renew the access right of the user.

2.2 Privacy Preservation

Health related data is highly sensitive and outsourcing it to the cloud is more
prone to privacy violation. Disclosing a version of private data in its original form
to all the requested users with various privilege level would violate the privacy
of individuals who are the subjects of data stored in the shared document [8]. So
healthcare provider has to guarantee the privacy of individual while maintaining
the data practically useful [15]. Sweeney et. al. proposed K-anonymity [5] in
which, information of a person contained in the release version of data cannot be
distinguished from at least k-1 individuals whose information also appears in the
release. It is achieved by make use of Quasi-Identifiers; attributes whose values
when linked with external information can potentially identify an individual.

Ciphertext policy attribute based encryption is not able resolve the user
revocation problem and not considering the privacy of individuals who are the
subjects of data which is being shared. Anonymization can be used to preserve
the privacy of data [6]. But it is not able to ensure security and access control
of shared data. So we are proposing a novel idea to preserve the privacy of data
and ensure access control, while sharing the data among the requested users.
The scheme is also able to resolve the user revocation problem. It is achieved
by combining CP-ABE with El-Gamal re-encryption. Privacy of shared data is
achieved by K-anonymization technique. In the proposed system, CSP is dele-
gated to re-encrypt and share data among the requested users.
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3 System Model

Consider the scenario in which doctor, researcher, pharmaceutical company and
insurance department needs same EHR which has been oursourced in the cloud.
Doctor needs the data to prescribe the medicine. Researcher wants to analyze
the rate of some contagious disease in some locality. Pharmaceutical company
has to analyse the effect of certain drug to prevent disease and which can also be
used for manufacturing drugs. Insurance department has to identify the patients
to disburse the insurance claim. Sharing entire data to all communicating par-
ties will adversely affect the privacy of an individual. According to this scenario,
attributes which are more prone to privacy violation needs to be delinked from
other information based on the privilege level of users while sharing the data
among the authenticated users. Figure 1 describes the architecture of our pro-
posed system, which guarantee fine-grained access control and privacy preserva-
tion on EHR data outsourced by the healthcare provider.

Fig. 1. System Architecture

4 Proposed Approach (Anonymous-CPABE)

Anonymous-CPABE allows healthcare provider to discloses data to the commu-
nicating agents only if their attributes satisfied with the access policy embedded
in the message. It can also preserve the privacy of individuals by delinking the
individual’s identity from the sensitive attributes. The scheme is divided into
three modules such as Optimized K-Anonymization, Fine-Grained Access Con-
trol and Re-encryption are described in the following sections.
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4.1 Optimized K-Anonymization

We are adopting an optimized K-anonymization technique to delink the indi-
vidual’s identity from the sensitive attributes in the message. Anonymization of
original data is done by the algorithm 1. In order to preserve the privacy of indi-
vidual, personally identifying information(PII) is converted to an unidentified
form by applying the hash function thereby delinking of PII from the sensitive
attribute is achieved. In the proposed algorithm, anonymization is applied on
each subgroup of k tuples, thereby efficiency is improved. By repeatedly applying
generalization we are able to achieve k-anonymity without additionally including
more number of tuples. Sample data shown in Table 1 describes the anonymiza-
tion done by the healthcare provider using Optimized K-Anonymization algo-
rithm.

Algorithm 1. Optimized K-Anonymization
Input: Table T, parameter k, Quasi Identifiers QIi (i= 1 to n)
Output: k-anonymized table T’

1: Apply Hash function on personally identifying information(PII)
2: Apply generalization on each Quasi Identifier values (QI)
3: Perform K-Anonymity(T) on Quasi Identifiers
4: Function K-Anonymity(T)

1: Group k tuples with same QIi value
2: for each group do
3: QI ′ = QI - Discard QIi with same attribute values in all tuples
4: Select the QI ′ within the group.
5: Apply generalization on QI ′ such that identifier values are generalized

within the group and k-tuples are indistinguishable within the group based
on QI.

6: end for

Table 1. Original data and k-anonymized data (k=3)

Key Atr. Quasi Idfr. Stv.Atr.

Idx SSN Name Zipcode Age Disease

1 p100 Bob 47677 29 HIV

2 p103 John 47602 27 Cancer

3 p110 Ancy 47678 47 Fever

4 p111 Julie 47909 53 Cancer

5 p113 Alice 47905 22 HIV

6 p115 Wion 47906 36 Fever

Key Atr. Quasi Idfr. Stv.Atr.

Idx SSN Name Zipcode Age Disease

1 H(p100) H(Bob) 476** 2* HIV

2 H(p103) H(John) 476** 2* Cancer

3 H(p110) H(Ancy) 476** 2* Fever

4 H(p111) H(Julie) 479** 5* Cancer

5 H(p113) H(Alice) 479** 5* HIV

6 H(p115) H(Wion) 479** 5* Fever
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4.2 Fine-Grained Access Control

Healthcare provider determines access policy based on what kind of the recipient
group is able to decrypt the shared data then anonymizes and encrypt the EHR
by the decided policy and outsource it to the cloud. Key generation center(KGC)
is responsible to distribute relevant keys required for data encryption and recip-
ients’ secret key. CP-ABE used for fine-grained access control over the shared
data has 4 phases of execution such as Setup, KeyGen, Encrypt and Decrypt.
Bilinear pairing is the basis of CP-ABE. Setup and KeyGen phases are executed
by the trusted Key Generation Center(KGC). Encryption phase is executed by
healthcare provider. Users are able to decrypt the message in Decrypt phase
only if the attributes of users are satisfied with the access policy embedded in
the cipher text.

Highly privileged users are authorized to get original data, so original data is
encrypted using the access policy of the highly privilged recipient, which is the
subset of the original access policy and re-encrypted data is made available only
to those user by the proxy server. Information required for deanonymization is
re-encrypted and shared by the proxy server to the user. User has to do the
intersection of anonymized data and original encrypted data using the index
of each tuple. Then replace anonymized data with original data. Only highly
privileged user will get all the data in its original form. Personally identifying
information will not be disclosed to lesser privileged user. Most of the users do
not have the privilege to access the entire data in its original form, so that no
need of deanonymization is required for those user groups.

4.3 El-Gamal Re-encryption

CP-ABE is still vulnerable to key revocation problem. In order to avoid this
problem, El-Gamal re-encryption is performed on the EHR by the CSP to
share the data among the requested users without the intervention of data
owner. Message sequence chart of re-encryption of ciphertext is described in the
figure 2. CSP is not be able to decrypt the data outsourced in the cloud, since
it is encrypted using the CP-ABE by the specified access policy . Whenever
user request data, proxy server re-encrypt the ciphertext using El-Gamal re-
encryption key(RKA→B). Key generation center is still responsible to distribute
the re-encryption key(RKA→B) to the proxy server. Genuineness of the user
is verified at the key generation center by the shared symmetric key k and
the time stamp shared in advance. Whenever the revoked user’s request comes,
KGC will not provide the re-encryption key to the proxy server to share the
data. Thereby key revocation problem is resolved. Healthcare provider interven-
tion is not needed to share the data among the requested users, so that workload
exerted on the data owner is minimized. Otherwise data owner should be always
online to share the data. Operations done on each agent is described as follows:
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Fig. 2. Message Sequence Chart of El-Gamal Re-encryption

1. Key Generation Center(KGC)
Setup, KeyGen and Re-encryption phase executes at KGC to distribute rel-
evant keys. Let G0 be a bilinear group of prime order p, g be a generator of
G0. Let e : G0 × G0 → G1 denote a bilinear map.
Setup(k)−→ (PK,MK):- In Setup phase, KGC chooses public parameters
(G0, g,H,H1) according to the security parameter k. Using public parameters
and random exponents, it generates public key PK and master key MK.
Health care provider make use of public key PK to encrypt the data to be
shared and the master key MK is kept as secret to create the secret key for
requested users.

PK = (G0, g, h = gβ , f = g1/β , e(g, g)α), MK = (β, gα) (1)

KeyGen(PK, MK, S)−→ SK:- Set of attributes S is used to authenticate
a user ut. KeyGen phase generates secret keys corresponding to the secret
value rt, rj ∈R Z∗

p where rj is the random number corresponds to each
attribute j ∈ S. It computes personalized secret key and a set of attribute
keys for user ut. Then secret key SK distributes to the requested user.

SKut
= (D = g

(α+rt)
β ,∀j ∈ S : Dj = grt .H(j)rj ,D′

j = grj ) (2)

Re-encryption(a, b)−→ (RKA→B):- KGCgenerates and send re-encryption
key (RKA→B)=(b/a)modN to the proxy server. where N is the large prime
number, a is the healthcare provider private key, b is the user private key.

(RKA→B) = (b/a)modN (3)

2. Healthcare Provider
Healthcare Provider performs following operations and generates ciphertext
corresponding to anonymized EHR based on access policy shown in the
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equation(4). Then outsource ciphertext [M ]CPABE to the cloud and send
(gr)amodN to proxy server.

[M ]CPABE = (A,C ′, C,∀y ∈ Y : Cy, C ′
y) where

C ′ = Me(g, g)αs, C = hs, Cy = gqy(0), C ′
y = H(att(y))qy(0) .

(4)

(a) Encrypt(PK, M, A)−→ [M ]CPABE ; where A- Access policy, M- EHR to
be shared

(b) send ([M ]CPABE , (gr)amodN) to proxy server; where grmodN - public
key of the proxy server, a and gamodN - private key and public key of
healthcare provider

Access policy represented as access tree, which is to be embedded in the
ciphertext for access control. Interior nodes of the tree is a threshold gates
and leaf nodes are associated with attributes. Ciphertext is computed for the
message M by giving the access structure A and the public key PK, which is
described in algorithm 2. Let y be the set of leaf nodes in A.

Algorithm 2. Encrypt(PK, M, A)
1: for each node x in the tree from root node do
2: Choose polynomial qx

3: set degree of polynomial dx = kx −1, where kx = 1 for OR gate and kx = numx

for AND gate
4: end for
5: Choose random s ∈ Zp

6: for root node R do
7: set qR(0) = s
8: end for
9: C’= Me(g, g)αs; C = hs

10: for all leaf nodes y in Y do
11: Cy = gqy(0); C′

y = H(att(y))qy(0)

12: end for

3. Proxy Server
Proxy server is used to re-encrypt and share the data to the requested users
by using re-encryption key obtained from key generation center. Proxy server
operations are listd below:
(a) Get re-encryption key from KGC: (RKA→B) = (b/a)modN
(b) Re-encrypt the ciphertext: ([M ]CPABE .gra)b/a)
(c) send re-encrypted ciphertext to the requested user: ([M ]CPABE .grb, gr)

4. User
Secret key b is made available only to the intended recipient so that he is
able decrypt the re-encrypted ciphertext using the received gr. Attributes of
recipients’ are to be satisfied with the access policy, to decrypt the data. Oth-
erwise recursive DecryptNode algorithm returns a null and the correspond-
ing user cannot decrypt the ciphertext. Decrypt operations are described by
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Algorithm 3. Decrypt(PK, SK, [M ]CPABE)
1: DecryptNode([M ]CPABE , SK, y)
2: if access policy satisfied by S then
3: A = DecryptNode([M ]CPABE , SK, r) = e(g, g)rs

4: C′ = M.e(g, g)αs; e(C,D) = e(gβs, g
(α+r)

β )
5: M = C′/(e(C,D)/A)
6: end if
7: Function DecryptNode([M ]CPABE, SK, y)

1: for each leaf node y do
2: set j = att(y)
3: if j ∈ S then

4: DecryptNode =
e(Dj ,Cx)

e(D′
j ,C′

x)
= e(grt .H(j)

rj ,gqy(0))

e(g
rj ,H(j)qy(0))

5: return ( e(g, g)rqy(0))
6: else
7: return( null)
8: end if
9: end for

algorithm 3. User performs the following operations to retrieve the original
message. Proposed Anonymous-CPABE scheme can be efficiently utilized for
sharing the information through the google drive. It provides the properties
such as Scalability, Data Confidentiality, Fine-Grained Access Control, User
Accountability, Collusion Resistant, Privacy Preservation and Resolve User
Revocation Problem.
(a) Decrypt re-encrypted ciphertext and creates attribute-based ciphertext

[M ]CPABE = [M ]CPABE .grb/(gr)b (5)

(b) Decrypt [M ]CPABE to obtain M; C ′ = M.e(g, g)αs, A = e(g, g)rs

e(C,D) = e(gβs, g
(α+r)

β ) = e(g, g)s(α+r) = e(g, g)αs.e(g, g)rs

M = C ′/(e(C,D)/A)
(6)

5 Implementation and Performance Evaluation

All the experimentations are done on 2.2GHz intel core-i7 processor with 8GB of
RAM running 32-bit Linux Kernel version 3.2.0. Proposed Anonymous-CPABE
scheme implemented using CP-ABE tool kit and PBC library [14]. All pairing
operations are done by the pbc library. The implementation uses a 160-bit elliptic
curve group based on the supersingular curve y2 = x3 + x over a 512-bit finite
field.

Optimized K-anonymization algorithm anonymizes the data and thereby
preserve the privacy of shared data. Then data is encrypted by deciding the
access policy using CP-ABE. Healthcare provider outsource the EHR to the
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(a) Key Generation time (b) Encryption time

Fig. 3. Performance of Anonymous-CPABE

Fig. 4. Decryption time with various level of optimization

cloud. Whenever user request data, CSP re-encrypt the data using El-Gamal
re-encryption by receiving the re-encryption key from the KGC. We have exper-
imented the proposed system using 46MB census data. Cloud storage imple-
mented using Openstack-Swift environment for the storage of data. The
Proposed Anonymous-CPABE has been analyzed with the CP-ABE. Analysis
has been done for key generation time, encryption time and decryption time on
the basis of various policy attributes. Different optimization techniques has been
tested for decryption. In all the cases system performs well as that of CP-ABE.
Performance analysis is specified graphically. Figure 3(a) shows secret key gen-
eration time required by running CP-ABE KeyGen phase. It exerts workload
only on KGC since it is executed at the KGC. Figure 3(b) displays encryp-
tion time required by running CP-ABE Encrypt phase, which is executed by the
healthcare provider. Figure 4 describes decryption time for various access policy.
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Decryption time has been analysed for various optimized algorithms. Decryp-
tion time for ”naive” represents the time for running recursive DecryptNode
algorithm and arbitrarily selecting nodes to satisfy each threshold gate. More
optimized results are obtained for ”flatten” algorithm, which reduces the final
number of leaf nodes and thereby reduces the exponentiations.

5.1 Security of Encrypted Contents

Proposed data sharing scheme is provably secure and it can provide fine-grained
access control, data confidentiality, integrity, and privacy in any distributed envi-
ronment. Proposed system is also free from any data mining attacks.

1. Fine-Grained Access Control- Access control is maintained by the
embedded access policy in the ciphertext. Since the CP-ABE is based on
bilinear mapping and it is provably secure, it is infeasible to break the
scheme. Nobody is able to modify/recreate the key required for maintaining
access control.

2. Data Confidentiality- Encryption/Decryption is based on public/secret
key generated by the bilinear mapping. So it is provably secure and infeasible
to violate the confidentiality of encrypted data.

3. Privacy- Anonymization preserve the privacy of shared data. K-anonymity
is able to prevent the attacks like linking attacks, which leads to the privacy
violation.

4. Data Mining Attack Prevention- By make use of knowledge base, adver-
sary is able to retrieve valuable information from the shared data. Since the
shared data is encrypted and anonymized, data mining attack is also pre-
venting.

6 Conclusion and Future Work

Anonymization technique preserve the privacy of shared data while disclosing
the data to a set of users. This technique enables us to share the same data in
different form to a set of users by delinking the sensitive information from the
PII. CP-ABE allows the data owner to decide the access control mechanism for
the message to be shared to a group of users. This mechanism can be efficiently
utilized for fine-grained access control based data sharing in cloud environment.
The shared data can be directly used for analysis and data mining. As a future
work, we are trying to eliminate single point of vulnerability at the key generation
center. Analyze the effect of outsourcing the decryption phase partially to the
cloud. Then we have to elaborate the work by including security proof.
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Abstract. Current research on synthesizable temperature sensors, using
the reconfigurable logic of the FPGA to measure temperature anywhere
on the FPGA, ueses an oscillating, temperature dependent route on the
FPGA. These LUT-based routes require a complex calibration process
and have a large footprint on the die. The proposed synthesizable tem-
perature sensor uses DSP-slices to reduce the calibration overhead and
the footprint as well. The sensor can achieve a resolution of up to 0.12◦C,
depending on configuration. A sample rate of up to 1040 samples per sec-
ond is feasible, in the fastest configuration. The sensor was evaluated and
compared. The sensor is more stable, easier to calibrate and features a
smaller footprint. This allows a higher density of temperature sensors
than before. It uses 45 FF, 69 LUTs, 6 Shift-Registers (SRL32) and 4
DSP-slices to realize a fully digital, synthesizable temperature sensor,
including a calibration circuit, a reading circuit and a buffer structure to
save multiple data samples.

Keywords: FPGA · Temperature sensors · Routing · LUTs ·DSP-slices

1 Introduction

Temperature sensors are used in many integrated circuits. Apart from providing
temperature data, they are also used as safety guard to prevent irreversible
and functional failures. The power dissipation can also be estimated using these
sensors. A circuit with a high temperature drives a higher current than the same
circuit at a lower temperature, therefore, the power dissipation is temperature
dependent. While miniaturisation moves forward and integrated circuits become
even smaller, power dissipation becomes a more and more important issue. By
observing the temperature, parts of the FPGA could be dynamically reconfigured
to reduce the power dissipation. For example, the clock could be adjusted in
hotter parts, creating locale, temperature dependent frequency variations.

The temperature sensors should produce a minimal dissipation loss them-
selves, ensuring the energy saved by dynamically reconfiguring the FPGA, is
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 161–172, 2015.
DOI: 10.1007/978-3-319-16086-3 13
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greater than the dissipation loss by the sensors. Analysing hotter and colder
parts of the FPGA requires a complete temperature profile. The temperature
sensors should be evenly distributed over the FPGA to measure the tempera-
ture profile more accurately. Most commercially available FPGAs feature only
a single temperature sensor in the middle of the die, which is not enough for
a complete temperature profile. To distribute as many temperature sensors as
possible on the die, the sensors should be very small. The temperature sensor
should therefore use only few resources, to minimize the power loss and reduce
the footprint, the required physical area on the FPGA. In this paper, a fully
digital, synthesizable temperature sensor is presented. A comprehensive evalu-
ation is shown and the sensor is compared to other FPGA-based temperature
sensors. In section 2, related work is presented. Section 3 discusses the proposed
temperature sensor design in detail. In section 4, an evaluation is shown, includ-
ing evaluation environment and the implemented sensor types used. Section 5
concludes this work.

2 Related Work

Many integrated circuits feature onboard temperature sensors, the most com-
mon type being the band-gap sensor. The sensor type is based on band-gap
reference voltage circuits, like the Brokaw band-gap reference, for example [1].
For example, one of these sensors is integrated in the center of the Virtex 6 FPGA
on the Xilinx ML605 Development Board [2], which is used during the evaluation.
These sensors are very low-cost and need only a couple of bipolar transistors.
The sensors also provide an accurate measurement without extensive calibration,
but their position is fixed during fabrication. Unfortunately, there is only one
of these sensors available on most FPGAs impeding the implementation of a
spatial temperature profile.

To measure a spatial temperature profile, flexible temperature sensors are
needed. It should be possible to realize the sensors anywhere on the FPGA.
For this purpose, the reconfigurable logic on the FPGA can be used. Chen et
al. proposed a fully digital time domain sensor which can be implemented on
the reconfigurable logic available in typical commercial FPGA devices [3]. The
basic design is shown in Fig. 1. This sensor implements a delay line, which
consists of several cascaded logic elements. Without any registers in between,
the route starts to oscillate. The number of oscillations in a given time-frame,
in this context called cycles, is proportional to temperature. By counting these
cycles, a temperature sensor can be realized anywhere on the FPGA. The design
must be calibrated every time the design is synthesized because of the routing
algorithms in current EDA tools.

Syed et al. proposed a calibration circuit and a different delay line, using
LUTs instead of cascaded logic blocks [4]. This sensor needs even fewer resources
than the proposed design by Chen et al, the overall structure is shown in Fig. 2.
The sensor uses look-up tables for the delay line, but the slices and LEs between
these LUTs must not be used. The resource cost is therefore much higher due to
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Fig. 2. Look-up table based temperature sensor structure [4]

the unused LUTs. One sensor configuration in [4] needs 16 slices horizontally and
40 slices vertically, blocking 640 slices by allocating just ten LUTs. The width
and height of the delay line can be configured, but this has a direct impact on
the resolution, accuracy and sampling frequency [4]. The last part of this sensor
design, the calibration circuit, transforms the measured cycles into temperature,
but an initial calibration is still needed.

Ring oscillator structures for temperature sensors are currently state-of-the-
art, using either logic delay or LUTs [3–9]. Both variants provide a high degree
of flexibility. The main problem with these sensors is the high overhead for
calibration due the high variance in routing each time a bitstream is gener-
ated. The LUT approach has, compared to the used resources, a rather large
footprint, rendering it less useful. A new sensor should reduce the effort on cali-
bration and provide a small footprint, blocking less logical units. This paper pro-
poses a temperature sensor based on DSP-slices instead of LUTs to match these
requirements.
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3 Proposed DSP-Based Synthesizable Temperature
Sensor

The main reason for the instability and therefore the need for an extended cal-
ibration, are the routing algorithms of current EDA tools like the Xilinx ISE
Suite. While it is possible to constrain the placement of the implemented logic
blocks, the routing itself can’t be directly constrained. DSP-slices are pre-routed
for maximum performance and minimal dissipation loss. The routing inside the
slices can’t diversify because it is set prior to production. The proposed design
uses multiple cascaded DSPs to create a time-domain temperature sensor sim-
ilar to [3] and [4]. The design is nearly identical to Syed et al., but exchanges
the LUTs with DSP-slices. The design was implemented on a Xilinx ML605
development board, featuring a Virtex 6 FPGA [10]. The Virtex 6 series FPGA
features vertical rows of DSP-slices, each DSP is connected to the DSP above
and below with a minimum of routing. Each DSP can be configured individually
by a number of configuration registers [11]. By utilizing this structure, the degree
of freedom in the routing is reduced, which results in a higher degree of stability
and performance.
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Fig. 3 shows one DSP48E1 slice; these were used in the design of this sensor.
It is possible to deactivate all registers in the DSP-slice. Most inputs and outputs
of the DSP slice are not used and all internal registers are deactivated. Since a
cascade of DSP-slices is used for the delay line, each slice is connected to the next
one via the CARRYCASCIN and CARRYCASCOUT signal ports. This carry-
chain is depicted in Fig. 4. Each slice uses three inputs, A, B and C. While A and
B are driven completely by logical high levels, C is driven by logical low levels.
By connecting the lowest bit of port C of the first DSP-slice to the enable bit, it
is possible to generate a carry-out signal for the following steps of the cascade.
It is not possible to connect the CARRYCASCIN of the lowest DSP-slice to the
enable signal, due to routing and configuration restrictions.

An XOR gate is connected to this cascade and the enable signal. The output
of this gate is connected to the last bit at signal port C of the first DSP in
the carry chain. The carry-out signal of the last DSP-slice is fed to the clock
port of a counter circuit and also back to the XOR gate. When the carry-out
signal from the last DSP reaches the XOR gate, it is inverted as long as the
enable signal is still driving a logical high level. The logical low level, which is
now driven through the carry-chain, generates no carry-out signal, which is also
inverted, as long as the enable signal is still driving a high level. This continues
as long as the enable signal is still driving a high signal. Each time the delay
line generates a rising edge this way, the number of counted cycles is increased.
Because of the temperature dependency, the number of counted cycles is higher
when the temperature is high and vice versa. By using a basic counter to count
down from a pre-defined value, the enable signal can be set at high, Ensuring
fixed time intervals for each measurement performed. The counting circuit is
identical to [4].

This design also reduces the footprint of the proposed temperature sensor.
The minimum number of needed DSP-slices is four. The combinatorial delay
generated by each DSP-slice depends on the speed grade of the FPGA. The
delay ranges from 1.64 ns up to 2.6 ns. Since the system clock is set to 100 MHz,
four cascaded slices generate a combinatorial delay of at least 6.56 ns up to 10.4
ns. Less DSP slices would also oscillate, but the shift-register, which counts the
oscillations, couldn’t keep up [12]. The design was successfully tested with up to
10 DSP slices, but could be expanded to use up more. The number of DSP-slices
affects resolution and sampling rate and is covered in the following section.

4 Evaluation

4.1 Emulation Environment and Climate Chamber

The evaluation was performed in an automatic climate chamber to provide a
stable and reproducible environment for testing. The climate chamber and the
ML605 inside are depicted in Fig. 5. The climate chamber can drive temperatures
as low as -40 ◦C up to 180 ◦C while controlling the humidity. For each test, the
same temperature range was driven, starting with 10 ◦C up to 40 ◦C room
temperature whilst the humidity was held for stable at 40%. The temperature



166 C. Bartels et al.

Fig. 5. The device under test inside the climate machine

rose in steps of 0.5 ◦C. The temperature was hold a moment after reaching
the set value before the actual measuring took place, to let the temperature
propagate properly. After collecting at least 5000 samples, the temperature was
increased again. Each temperature curve was driven multiple times to eliminate
measurement error as much as possible.

To evaluate the proposed sensor, it was integrated in an emulation framework.
The framework offers modules for memory access, a Master/Slave bus interface
and Ethernet register transfer to name a few. The sensor was integrated in the
framework as a module. A hardware monitor module [13] was instantiated, which
accesses the on-board temperature sensor and provides a reference temperature
for each measurement. The result of each sensor and the reference temperature
is stored in a central register structure which can be accessed via Ethernet by a
PC client.

The temperature increase has an impact on the current, therefore the effect
on power, voltage and current should be monitored as well. To measure this
effect, a USB interface adapter by Texas Instrument was used [14]. The results
were calculated in the same way as the temperature samples, using at least 5000
samples per temperature step to minimize the measurement error.

4.2 Implemented Sensor Types

To validate the proposed approach, the design by Syed et al. [4] was used as
a reference. In total, 16 sensors were placed on the FPGA in a grid, each sen-
sor using 10 LUTs for the delay line. This design was evaluated for multiple
configurations, including different amounts of shift registers in the divider and
different word lengths in the integrator. The design was evaluated on three Xil-
inx ML605 evaluation boards, featuring the same hardware specifications. These
boards were selected for comparability reasons and to evaluate the impact of
fabrication differences. The results of this evaluation are not in the scope of
this document. The configuration chosen for the evaluation offers an acceptable
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a) Reference Sensor Design [4] b) DSP-based sensor (10 DSP-slices)

Fig. 6. Routing variations of the same design on the same FPGA; a) Reference by
Syed [4] and b)DSP-based sensor configured with 10 DSP-slices

trade-off between accuracy and sampling rate. To compare both sensors objec-
tively, the same amount of sensor modules were implemented. In total, 16 sensors
were instantiated evenly on the FPGA and evaluated. These proposed sensors
were placed in the same physical regions on the FPGA as the referenced sensors.
The use-cases for the evaluation differ for the number of used DSP slices, rang-
ing from four to ten. This design was also evaluated on the same three ML605
evaluation boards.

4.3 Evaluation and Comparison

The routing differences between both designs were evaluated. Fig. 6 shows the
differences due to the routing algorithms of the EDA tools. The graphs were
created with the FPGA Editor by Xilinx. For better viewing, the images were
inverted afterwards. The routing from the delay line can be seen highlighted in
blue. Fig. 6 a) shows the sensor by Syed et al., Fig.6 b) shows the proposed
DSP-based sensor. The routing is shown for the same design, but for different
synthesis runs. Additional to these global differences, local routing variances for
the same design can be observed as well. The sensor by Szed et al. shows a higher
deviation, compared to the proposed DSP-sensor.

Since the hardware monitor module was used as a golden reference, the error
of this sensor must be noted as well. The sensor uses an analogue-to-digital
converter with a precision of 0.5 ◦C. The temperature sensor has a maximum
measurement error of 4 ◦C over a range of -40 ◦C to 125 ◦C [13].

Fig. 7a) shows the results of the temperature sensor by Syed et al. [4]. The
depicted mean values were calculated by multiple measurement runs as described
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a) Reference Sensor Design [4] b) DSP-based sensor (4 DSP-slices)

Fig. 7. Mean number of oscillations for 16 individual sensors in a given timeframe; a)
Reference by Syed [4] and b)DSP-based sensor configured with 4 DSP-slices

before and at least 5000 samples per measured temperature. The x-axis depicts
the temperature, the y-axis shows the number of oscillations per given time-
frame. This time-frame is defined by a counter, driven by the regular clock. This
results in a sampling frequency of 250 samples per second for the evaluation.
The counter can be modified and the maximum sample rates are presented later
on. Fig. 7b) shows the mean values of each sensor configured with 4 DSP-slices.
All sensors with the proposed DSP-structure have nearly identical gradients, but
an offset which differs. This offset varies and depends mainly on the number of
used DSP-slices. A shorter delay line results in a higher oscillation count per
measured segment. Compared to the sensor by Syed et al., lower offset values
can be seen.

To compare the values to each other, the gap between the highest and lowest
value is used as an indicator. A wide gap is an indication for instability and
displays the need for a two point calibration to accurately measure the gradient
for the fitting curve. The gap in Fig. 7a) ranges from 6729 to 365980, a factor of
54.39. The gap pictured in Fig. 7b) ranges from 85527 to 95977, which is a factor
of 1.12. The width of this gap varies, depending on board and sensor type. For
the referenced sensor the factor for this gap ranges from 52.97 to 55.63, while
the factor for the proposed sensor ranges from 1.05 to 2.24. The proposed sensor
shows smaller gaps and is therefore more stable, even with longer delay paths.

Fig.8b) shows the gradients for the referenced sensor by Syed et al., Fig.8b)
shows the gradients of the proposed sensor design. The x and y-axes represent
the relative position on the FPGA, while the z-axis represents the gradient for
each sensor. The colours bear no meaning and are only for ease of viewing.

The instability at the referenced sensor can be observed very clearly, each
sensor should have roughly the same gradient. Instead, some sensors have huge
gradients, while others have very low gradients. By measuring only one sensor
and applying the resulting calibration on every sensor, huge errors would be
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a) Reference Sensor Design [4] b) DSP-based sensor (4 DSP-slices)

Fig. 8. Gradient for each sensor on the FPGA; a) Reference by Syed [4] and b)DSP-
based sensor configured with 4 DSP-slices

introduced into the measurement. This graphical representation of the proposed
design shows no significant hotspot, but individual sensors with slightly different
gradients. High offsets and gradients are not necessarily at the same position on
the FPGA. The highest offset can be found in sensor (4,4) while the lowest is in
sensor (1,4); the highest gradient is in sensor (3,4), while the lowest is in sensor
(4,1) for example. The values for gradient and offset are not coupled. The high-
est offset can always be found in the same physical region of the same FPGA,
regardless of design differences, but constant with used board. This makes cal-
ibration even more important. The difference on each gradient is small and by
inducing a small error, it is possible to calibrate each sensor by measuring only
one sensor and using the data for each sensor.

The same bitstream produced different results on the three available boards,
which can be seen in Table 1. As the boards and the FPGAs have the the same
specifications, these differences are due to the manufacturing process. A higher
number of DSP-slices reduce the gap between the maximum and the minimum
root mean square error, the sensor gets more stable with increasing DSP-slice
count. A longer delay line results in a longer oscillating path and therefore fewer
oscillations in the same given time-frame.

The equivalence between sampling rate, resolution and accuracy per ◦C
depends on the length of the delay line and can be seen in Table 2. The table
lists much larger resource requirements than the original paper by Syed et al.
This is due to an included buffer structure. This buffer structure stores the last
temperature samples to provide temporal temperature information. The sensor
evaluation is shown for 4, 5, 6, 7 and 10 DSP slices. Regarding resolution, the
sensor is theoretically better than other research. Realistically, this value must
be greater or equal to 0.5 due to the on-board temperature sensor. The accu-
racy was calculated by analysing the residuals of the mean values of each sen-
sor. The mean values were fitted using a two point calibration. Afterwards, the
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Table 1. Overview sensor configuration vs root mean square error on three different
Xilinx ML605 boards

Sensor
Configu-
ration

Used
Board

Maximum
RMSE in
Cycles

Minimum
RMSE in
Cycles

Difference
Max/Min in
Cycles

Cycles
per
◦C

4 DSP # 1 1.284 (0.042◦C) 0.508 (0.017◦C) 0.776 (0.025◦C) 31
5 DSP # 1 0.842 (0.022◦C) 0.536 (0.014◦C) 0.306 (0.008◦C) 38
6 DSP # 1 0.964 (0.023◦C) 0.634 (0.015◦C) 0.329 (0.008◦C) 43
7 DSP # 1 1.038 (0.020◦C) 0.629 (0.012◦C) 0.408 (0.008◦C) 52
10 DSP # 1 0.839 (0.011◦C) 0.450 (0.006◦C) 0.389 (0.005◦C) 76
Syed et.al. # 1 0.805 (0.016◦C) 0.681 (0.014◦C) 0.125 (0.003◦C) 49
4 DSP # 2 0.801 (0.019◦C) 0.522 (0.013◦C) 0.279 (0.007◦C) 42
5 DSP # 2 1.138 (0.023◦C) 0.786 (0.016◦C) 0.352 (0.007◦C) 51
6 DSP # 2 0.806 (0.014◦C) 0.544 (0.010◦C) 0.262 (0.005◦C) 57
7 DSP # 2 0.680 (0.010◦C) 0.532 (0.008◦C) 0.148 (0.002◦C) 68
10 DSP # 2 0.614 (0.007◦C) 0.420 (0.005◦C) 0.194 (0.002◦C) 84
Syed et.al. # 2 0.920 (0.020◦C) 0.705 (0.015◦C) 0.217 (0.005◦C) 47
4 DSP # 3 2.345 (0.057◦C) 1.942 (0.047◦C) 0.403 (0.010◦C) 42
5 DSP # 3 2.598 (0.056◦C) 2.166 (0.047◦C) 0.432 (0.009◦C) 47
6 DSP # 3 2.822 (0.053◦C) 2.396 (0.045◦C) 0.426 (0.008◦C) 54
7 DSP # 3 2.806 (0.045◦C) 2.489 (0.040◦C) 0.318 (0.005◦C) 63
10 DSP # 3 2.867 (0.038◦C) 2.520 (0.034◦C) 0.349 (0.005◦C) 75
Syed et.al. # 3 1.793 (0.027◦C) 1.399 (0.021◦C) 0.394 (0.006◦C) 67

maximum and minimum values for these residuals were analysed. The presented
values show the worst case, classified by the largest gap between minimum and
maximum residual. The last column shows the maximum number of possible
samples. This value decreases with increasing DSP-slice count, due to the longer
delay line.

Finally, the power dissipation of the FPGA was monitored in the climate
chamber as well. An adapter by Texas Instruments was used to evaluate the
power dissipation [14]. This adapter reads available registers on the FPGA. These
registers store information from on-chip sensors, including Voltage, Current and
many more. Table 3 summarizes the results of the measurements. The current
rose about ten percent, while the voltage didn’t change much. The additional
current was expected, due to the temperature dependency of the transistors on
the FPGA. Overall, an additional power dissipation of about nine percent can
be noticed over a span of 30◦C. Compared to each other, there was no significant
increase in power due to replacing the LUT-based temperature sensors with the
DSP-based temperature sensors.
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Table 2. Overview synthesizable sensor design configurations

Sensor Con-
figuration

Used Resources Resolution
[◦C]

Accuracy
[◦C]1

Samples per
sec1

[3] 140 LE 0.06 -1.5 to 0.8 3000
[5] 48 LE 0.13 -0.7 to 0.6 4400
[4] 7 FFs, 16 6-LUTs, 7

SRL32
0.5 0.5 1000

From [4] 2 42 FFs, 74 6-LUTs, 6
SRL32

0.021 ±1.0 869

4 DSP2 45 FF, 69 6-LUTs, 6
SRL32, 4 DSP-Slices

0.032 1 -1,16 to 1,15 1040

5 DSP2 45 FF, 69 6-LUTs, 6
SRL32, 5 DSP-Slices

0.026 1 -0,48 to 1,22 879

6 DSP2 45 FF, 69 6-LUTs, 6
SRL32, 6 DSP-Slices

0.018 1 -0,36 to 0,87 754

7 DSP2 45 FF, 69 6-LUTs, 6
SRL32, 7 DSP-Slices

0.015 1 -0,70 to 0,82 671

10 DSP2 45 FF, 69 6-LUTs, 6
SRL32, 10 DSP-Slices

0.012 1 -0,49 to 0,78 517

Table 3. Power analysis with different temperatures

Sensor Con-
figuration

Current
[A] @55
◦C

Current
[A] @25◦C

Voltage
[V] @55◦C

Voltage
[V] @25◦C

Power [W]
@55◦C

Power [W]
@25◦C

4 DSP 2.0104 1.8128 1.0185 1.0172 2.0155 1.8525
5 DSP 1.9777 1.7813 1.0185 1.0175 2.0198 1.8674
6 DSP 2.026 1.8426 1.0181 1.0175 2.0491 1.8963
7 DSP 1.998 1.837 1.0188 1.0176 2.0362 1.8789
10 DSP 2.0043 1.8098 1.0247 1.0224 2.0539 1.8555
Syed et.al. 1.8799 1.6992 1.0212 1.0205 1.9289 1.7383

5 Conclusion

The proposed sensor uses a configurable amount of DSP-slices to implement a
stable and easy to calibrate temperature sensor on a FPGA. Using DSP-slice-
based routing showed improved stability, with smaller gaps in oscillation counts
compared to LUT-based routing, making calibration more easy. The accuracy of
the proposed sensor is about the same as other research; the resolution proves
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to be better than LUT-based temperature sensors. The sensor has acceptable
hardware requirements, using 45 FF, 69 6-LUT, 6 SRL32 and a varying number
of DSP-slices. These hardware resources can be packed more densely compared
to other research and include a buffer structure. The power analysis with the
measurement tool by Texas Instrument showed no significant increase or decrease
in power dissipation.
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Abstract. Meeting non-functional requirements, like safety according
to ISO26262, is gaining rising importance in the automotive industry
along with the reuse and migration of existing applications. Embed-
ded virtualization is a promising technology to isolate software and its
possible faults. In a virtualized system shared communication devices
constitute a bottleneck and require special treatment for safety-related
systems.

In this paper, we evaluate the emulation of CAN and Ethernet hard-
ware drivers in virtualized automotive software systems of BMW. We show
a methodology how to relocate and isolate safety-related drivers within a
large scale software integrated virtualized system. For our analysis we use
the Infineon AURIX TriCore TC27x controller. To encapsulate our soft-
ware, we use a research-based hypervisor supported by ETAS Ltd.

Keywords: Automotive · Embedded multicore · Embedded hypervisor ·
Virtualization · Emulated communication controller · CAN ·
Ethernet

1 Introduction

In the next decade, many new features and technologies, like Advanced Driver
Assistant Systems (ADAS), will be integrated in our cars [3], [4]. The trend to
develop bigger and more complex software systems on capable Electronic Con-
trol Units (ECUs) is rising. To tackle such always increasing amount of vehicle
functionality, Electric and Electronic (E/E) architectures, using the example of
BMW [12], were reordered in a domain-oriented manner. To reduce the amount
of ECUs, automotive software is consolidated onto comprehensive hardware plat-
forms. This methodology is illustrated in figure 1 and is called Large Scale Soft-
ware Integration (LSSI) [12].

Virtualization technology could be a proper methodology to integrate soft-
ware components in a transparent and flexible way, protected from each other
[12], [14]. To be prepared for safety-related systems, the ISO26262 demands free-
dom from interference between vehicle software and functionality [8]. The isola-
tion features between Virtual Machines (VMs) could achieve that requirement
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 173–185, 2015.
DOI: 10.1007/978-3-319-16086-3 14
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Fig. 1. Repartitioning of ECUs in automotive E/E systems

for separation of safety-related software parts from the rest of the system. The
Hypervisor (HV) acts as the smallest instance related to all VMs in the system.
For safety-related systems, the HV must be qualified to the highest Automotive
Safety Integrity Level (ASIL) assigned to any application within the system. In
any case, real-time capabilities, deterministic behavior and hard deadlines must
be fulfilled to achieve required properties of an automotive embedded system.

In this paper, we focus on the emulation of communication controllers for
Controller Area Network (CAN) and Ethernet in a paravirtualized automotive
software system by using an embedded HV, closely developed to the AUTOSAR
standard. We discuss how to permit peripheral access to VMs and how to deal
with limited memory protection ranges. To run mixed-integrity automotive func-
tionality, we suggest an approach to integrate the Communication Hardware
Abstraction within the AUTOSAR Microcontroller Abstraction Layer (MCAL)
in a decentralized manner, encapsulated in a unique VM. This method is ana-
lyzed for timing overheads of the information flow between VMs and intercon-
nected automotive fieldbuses. For our analysis, we use an embedded HV with
real-time capabilities. The hypervisor (called RTA-HV ) is supported by ETAS
Ltd. [13] and is ported to the Infineon AURIX TriCore microcontroller which
fulfills our needs for paravirtualization [2].

The next sections are organized as follows: Section 2 outlines the related
work on hardware emulation by using embedded HVs for real-time systems.
Section 3 outlines methods to integrate systems in a paravirtualized environment.
In section 4 we summarize the implementation to build virtual gateways for
information routing. The results and performance evaluations are discussed in
section 5. Section 6 summarizes the paper and its results.

2 Related Work

To achieve performance advantages, paravirtualization is already used in data
centers supported by Virtual Machine Monitors (VMMs) like Xen [1]. Embedded
real-time VMMs like XtratuM [9] or Sysgo’s PikeOS are available and able to
encapsulate safety-related functionality. But these HVs are not available for con-
trollers without a Memory Management Unit (MMU) [2], which is mostly not
integrated in state-of-the-art automotive devices. These are mostly equipped
with only a Memory Protection Unit (MPU) to realize spatial protection.

Chip vendors like Intel or AMD feature their controllers with virtualization
extensions like Intel VT or AMD-V. These chips are applied in data centers,
where software applications are massively consolidated on from server systems
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decoupled from the hardware. For I/O virtualization, extensions like Intel VT-c
(Virtualization Technology for Connectivity) come into consideration [7].

Research based solutions for self-virtualized CAN and Ethernet controllers for
embedded real-time systems is shown in [6] and [11]. No hardware emulation is
necessary and message arbitration is processed controller internally. An approach
without a full HV for CAN virtualization with safety aspects is presented in [14].

The architecture of our work is derived from Xen [1]. Front- and backend
drivers called Netfront and Netback were used to pass information between the
master VM called dom0 and other guest VMs called User Domains (DomUs)
(see figure 3). The dom0 runs all device drivers needed from other DomUs.

3 Methods to Integrate Virtualized Peripherals Using
the Infineon AURIX TriCore

The HV represents a Type-1 VMM which runs bare-metal in supervisor mode
on the Infineon AURIX microcontroller. No hosting Operating System (OS) is
needed. Every VM operates in a one-to-one mapping per core in user mode and
implements its core local HV instance. Additional Virtual Device Emulators
(VDEs) run in the context of the HV and have kernel access rights. VDEs allow
the emulation of peripherals or the implementation of communication channels
between VMs. Each VDE implementation exists once for the overall system
and is re-entrant for any core and VM. A trap class 6 (System Call) is used
to trigger the HV. Every VDE implements its own request() function, where
incoming service requests are processed. VDEs possess the highest interrupt
priority levels in the system. If the core is handling a trap routine or executing
HV code, all interrupts for VMs are blocked.

3.1 Granting Access to Peripheral Space

For the Infineon TriCore AURIX microcontroller, three different privileged
modes exist. In supervisor mode there are no restrictions for memory or periph-
eral access. In user mode, two distinctions exist between User-0 mode, where
peripheral access is generally restricted and User-1 mode which basically grants
access to I/O controllers. Any register call of a VM which runs in User-0 or 1
mode is either allowed due to the Instruction Set Architecture (ISA) or must be
executed by the HV which runs in Supervisor (SU) mode itself. For the latter,
the HV verifies such calls on software level. If they are not allowed, they will be
restricted by the MPU. To grant access to communication controllers or to other
peripherals, we identified the following three use cases. To operate virtual com-
munication controllers, all three approaches are applicable and must be analyzed
depending on the project situation and hardware resources.

1. Direct Device Assignment (DDA): DDA is a well proven technique like
for server systems in data centers. Peripherals like CAN or Ethernet con-
troller must not be shared between multiple virtual machines. The VM has
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to run in User-1 mode and affected peripheral address space must be regis-
tered additionally in the MPU per core. For sure, this method is restricted
by given MPU protection ranges and by given hardware resources.

2. Paravirtualization of non-shared devices: If the MPU’s protection
address ranges are insufficient to grant access to peripheral space, hardware
accesses must be paravirtualized. In this case, every call from VMs must be
wrapped by HV and forwarded to the HV and its VDEs. This is mandatory
if the virtual machine runs in User-0 mode. Unfortunately, this approach will
increase the timing overhead due to trap and emulation due to the HV.

3. Emulation of shared devices: In this case, more than one virtual machine
needs access to a particular peripheral. The access must be controlled and
arbitrated by the HV. There are identical timing overheads as in use case 2
and besides additional efforts for routing, concurrent accesses and blocking
times must be taken into account. To arbitrate messages within the HV an
additional VDE must be developed.

3.2 Relocating Hardware Drivers to Allow Safe and Secure Accesses

Every peripheral needs its individual hardware drivers for operation located
in the AUTOSAR MCAL. Typically, software instances should have exclusive
access to peripherals. Within LSSI systems probably some peripherals must
be shared. For mixed-integrity systems it is problematic to introduce unqual-
ified software and its communication channels into a safety-related system. The
uncontrolled sharing of peripherals between software partitions without any con-
trolling instance can lead to malfunctions [8], [14]. Especially, in case of VM
shutdown or restart, hardware drivers for other VMs must always be available
for safety-related software parts. Therefore, we list identified approaches for par-
avirtualized automotive E/E systems, illustrated in figure 2.

1. Driver modules integrated within each VM: All drivers are integrated
within a VM and run completely in user space. Either the VM has direct access
to peripherals, due to the AURIX’ User-1 mode granted by the MPU, or all
attempts to register access have to be executed within kernel space by the
HV. In any case, the VM needs exclusive access to peripherals (DDA). All SU
only registers must be handled from the HV by using hypercalls. We use a
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paravirtualized approach where trapping and emulation of register calls are
reduced as much as possible and routed to the HV.

2. Driver modules integrated within the HV: Relevant MCAL modules
are located within the HV and operate in kernel space in SU mode. They
have direct access to the hardware and all privileges. In this configuration,
malicious drivers can jeopardize the overall system (single point of failure),
even the HV itself. All attempts to have access to peripherals must be routed
to and arbitrated by a VDE. This will increase the timing overheads because
of trap and emulation to reach the HV.

3. Driver modules relocated to a privileged VM: This approach differs
between guest VMs called DomUs and a unique VM called Master Domain
(DomM). This method is very similar to Xen’s dom0 approach [1], where all
drivers run in a special domain. DomM integrates drivers in a special VM.
Only DomM routes frames to the fieldbus and has exclusive access to the
communication controller. All attempts to exchange data of DomUs must be
transmitted to DomM and routed to another DomU or fieldbus. The DomM
must not run in supervisor mode. To gain performance advantages, exclusive
access to peripherals (DDA) which run in User-1 mode is necessary. The
DomM runs as an encapsulated VM and implements a bridge for incoming
attempts to peripheral access. It routes I/O information to VMs or fieldbuses.

4 Building Virtual Gateways

Sharing peripherals during run-time will cause interference to arbitrate frames
(time) and protect peripheral access (space). We focus on the supervised emu-
lation of communication controllers in safety-related systems. DDA needs no
special routing mechanism because all devices are assigned exclusively to VMs.
But this method is only possible if no peripheral must be shared. If drivers are
relocated to the HV, its Trusted Computing Base (TCB) will increase. Due to the
timing limitations and arbitration overheads within HV withdraws that method,
as well. Therefore, we analyze the relocation of drivers to an independent, priv-
iledged VM called DomM, as described in section 3.2. To grant peripheral access
for hardware drivers (see section 3.1), MPU regions can be used exclusively for
that purpose. Because of exclusive access to peripherals in DomM there is no
need for hardware emulation (DDA).

4.1 Information Exchange Between Virtual Machines

To guarantee a safe and secure way to interact between VMs and cores, we
implement a special VDE interface called Inter-Virtual-Machine-Communication
VDE (IvmcVDE) which acts as a generic communication channel to transfer data
[10]. Every information flow between VMs is under the control of the HV itself.
The HV forwards incoming service requests to its IvmcVDE. Either polling or
interrupt-driven communication mechanisms are possible to exchange informa-
tion between VMs. Both strategies implement an event channel between VMs.
All data is exchanged by using HV mechanisms like IvmcVDE.



178 D. Reinhardt et al.

In case of polling strategies, the VM has to notify new information by observ-
ing global data memory sections in the Local Memory Unit (LMU) of the
AURIX. No traps or interrupts are needed to activate other cores. If there is
new information available in the LMU, the dedicated VM will fetch that infor-
mation periodically. In case of interrupt-driven strategies, we use a notification
mechanism supplied by the HV, to trigger other cores and VM instances to re-
enter the context of IvmcVDE. The sender core stores data in the global data
RAM and triggers the receiver core by using an interrupt. The request()-function
of IvmcVDE is reached to process new data.
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To avoid blocking accesses or starvation we implement three ring buffers (see
figure 3) by using the Circular Buffer Addressing Mode of the AURIX TriCore.
This feature supports atomic load and store operations including circular pointer
shifting. They are supplied hardware features of the AURIX microcontroller. For
each buffer we choose a size of 4096 byte located in the global data RAM of the
LMU. All DomUs write messages to the DomMs ring buffer where they are
retrieved and routed (FIFO). Two types of event channels are implemented:
The polling (a flag signals new data) and interrupt-driven mechanisms.

Figure 4 describes the base frame-formats in our system. The Protocol Con-
trol Information (PCI) of every frame is stored in an additional header. The
Request Mode controls the IvmcVDE operation and distinguishes between trans-
mission modes like polling or interrupt-driven strategies. The Destination and
Source Core field directs the information exchange between VMs. Because we
support dynamic package length to efficiently support variable frame length in
IEEE 802.3 Ethernet, the Length field stores the overall payload size. The Pay-
load includes a wrapped communication frame e.g. CAN or Ethernet. Since we
are in a safe environment where data corruption is very unlikely due to ECC-
RAM and lock-step cores, we can omit check-summing the payload. They are
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Table 1. Exemplary routing table to direct CAN frames

ID Port(DomMcore0) Port(DomUcore1) Port(DomUcore2)

0x1F TRUE FALSE TRUE

0xA2 FALSE TRUE TRUE

... ... ... ...

calculated and inserted within the hardware driver or the controller itself and
must not be transmitted in that layer.

Bit 0 8 16 24 56

Ivmc Req.Mode Dest.Core Src.Core Length Payload ...
CAN Msg.ID Length Data ...
ETH Dest.MAC Src.MAC Type Data ...

Fig. 4. Base Frame-Format for CAN and Ethernet

4.2 Routing Information Using a Privileged Domain

The DomM needs a scheduling scheme to route information between DomUs and
other fieldbuses.Therefore,we integrate abridgingmechanism intoDomMto route
information ECU internally and externally. DomM implements a bridging func-
tionality (see figure 3) including a Source Address Table (SAT) for Ethernet and a
routing table for CAN which hold the routing protocols for incoming messages. A
bridge typically acts on layer two of the ISO/OSI-model and routes information.
Our VM bridge is divided into a controlling and a forwarding part:

The controlling part holds the routing table (see table 1) and the organi-
zation of it. In case of routing Ethernet frames there is a SAT (identical to a
network switch) containing the MAC addresses which are assigned to connecting
ports [5]. In case of CAN communication the routing table contains the CAN
IDs. Therefore, we differentiate between a statically (CAN) and a dynamically
(Ethernet) construction of our routing table (the SAT). The CAN routing table
is configured statically before compile time and holds all routing information in
advance. The Ethernet SAT will be setup dynamically during system run-time
and assigns MAC addresses to (port) IDs.

The forwarding part routes messages between VMs or connecting fieldbuses
(e.g. CAN or Ethernet). All incoming messages will be accepted, either by polling
strategies or retrieved by an Interrupt Service Routine (ISR). We serialize mes-
sages and use the given IvmcVDE to exchange information between VMs. To
transmit frames to a connected fieldbus, DomM implements needed hardware
drivers, which have exclusive peripheral access to needed hardware controllers.

Table 1 lists an exemplary routing protocol for incoming CAN frames. The
bridge distinguishes according to the ID (the CAN identifier) to which Port (the
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VM and its core) the message must be routed through (e.g. message ID 0xA2 is
routed to core1 and core2). If an incoming frame is assigned for DomM, it will
be transferred to the connected fieldbus. All routing information is configured
before compile time. In case of incoming Ethernet frames, the bridge distin-
guishes according to the ID (the MAC address) to which Port (the VM and
its core) the message must be routed through. Similar to the CAN approach, it
assigns multiple MAC addresses (IDs) to Ports.

5 Results and Discussion

We want to evaluate the overhead, which occurs due to paravirtualization of
the system and relocating the hardware drivers, with the different approaches
mentioned above. Therefore, we compare a paravirtualized system to a native
system version. Our measurements are executed on the Infineon AURIX TriCore
TC27X [2]. Each calculation core operates at a clock rate of 200 MHz. The
focus is on peripheral usage like HighSpeed-CAN (500 kbit/s) and Fast Ethernet
(100 Mbit/s) communication controller. For all our measurements, each core
is exclusively used for sending or receiving messages. Blocking times due to
concurrent accesses are avoided. To be close to real platforms, all measurements
are realized multiple times with external clients and include the transmission
overheads of peripherals to a connected fieldbus.

Figure 5 and 6 are organized as follows: Native systems are not paravirtual-
ized and represent the benchmark for our measurements. For DomM→
Fieldbus, frames were transmitted directly from the privileged domain to the
connecting fieldbus including all routing efforts. In DomU→Fieldbus scenario,
frames were transmitted from a DomU to DomM and from this point routed
to the fieldbus. In DomU→DomU scenario there is no limiting fieldbus involved
and frames were exchanged ECU internally from a DomU routed by DomM to
another DomU.

5.1 Response Time per Message Size

We want to analyze the response times of single messages for relocated automo-
tive communication drivers. Figure 5 shows the timing measurements to trans-
mit messages over a fieldbus compared by the size of their payload by using
interrupt-driven communication mechanisms. After message routing by DomM
we use DDA to access peripherals directly and have exclusive access to relevant
controller registers. With it, we avoid processing overhead due to the HV for
data transmission. For interrupt-driven data reception, there is as static tim-
ing overhead of 4 s to route incoming interrupts to VMs [13]. Thus, for all our
measurements the timing gaps between the native and DDA case is minimalistic.

Figure 5a shows the transmission of Ethernet frames using the ICMP pro-
tocol to measure echo replies of different sizes (ping). The message exchange of
bigger frames has more impact on latency compared to CAN. This is reason-
able, because copy operations of bigger frame structures are more calculation
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Fig. 5. Response time measurements compared by their payload

intensive and cause additional timing overheads. Routing frames from one VM
to another need two copy operations, which need more time if the payload size
increases. In case of transmitting frames from DomU to DomM, there is firstly
additional management overhead for information exchange between VMs using
IvmcVDE. Secondly, the calculation effort due to OSI abstraction layers for
TCP and message routing (using a SAT) by each VM (compare the gap between
DomM→Fieldbus and Native→Fieldbus). Sending Ethernet frames of 64 byte
from any DomU to the fieldbus takes 620 s. The transmission of 1500 byte
of payload takes not even the double amount of transmission time. At around
700 byte of payload, we measured the break-even point of latency to exchange
Ethernet frames between DomUs or transmit them over the fieldbus.

The CAN response time analysis is illustrated in figure 5b and shows a similar
direct proportional trend for all measurements. Because of small CAN frame
sizes, copy operations between VMs are not mentionable which relate to a slightly
increasing trend. The management overhead for routing frames in DomM, using a
lookup table with a time complexity of O(1), causes timing overhead around 1 s.
The transmission of frames from any DomU by using IvmcVDE causes additional
timing overhead, around 4%. The longest time is required by the CAN controller
itself to transmit frames over the fieldbus. The time to instantiate a frame until
it is handed over to the controller is less than 5 s. The remaining time is used
for the frame transmission within the CAN controller. Because of small CAN
frame sizes the transmission overheads between VMs caused by IvmcVDE are
negligible and even faster than the connecting CAN fieldbus. We determine that
information routing in an optimal paravirtualized system has nearly no impact
on response times and achieves nearly linear measurement results.

5.2 Maximum Throughput Measurements

First, we will analyze the possible bandwidth to transfer data between VMs.
Therefore, we will measure the data rates from DomU to DomM, which is pre-
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sented in figure 6a. No routing overheads incur in this scenario. We can achieve
slightly higher data rates with polling than with interrupt-driven mechanisms.
In case of using interrupt-driven mechanisms there are more processing efforts
necessary. This is because all interrupts must be routed through the HV due to
less virtualization support of the hardware. Basically, the data rate is lower for
the transmission of smaller frame sizes than for bigger frame sizes. This relates
to fixed processing overheads to handle frames within the HV and between VMs.
Copy operations (load and store) of bigger data types in sequence are more effi-
cient than smaller data frames (e.g. 7 byte of payload) which must be copied
byte per byte. Our ring buffers have a size of 4096 byte. The data rate drops
at 2049 byte (including 6 byte of PCI). For this message size the ring buffer
cannot store more than one frame at once. Then only sequential read and write
operations are possible. Our tests show that the IvmcVDE is capable to transmit
data up to 97 Mbit/s, with 2047 byte message size, from one VM to another.
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Fig. 6. Measured data rates between VMs by using the IvmcVDE

Second, we analyze the maximum data-throughput (interrupt-driven) for
CAN and Ethernet. Ethernet measurements (full-duplex ) are illustrated in figure
6b. Native systems without virtualization (Native→Fieldbus) have a doubled
reception rate compared by the rate to transmit data. This is reasonable, because
no data copies (zero-copy) are necessary to receive frames. In addition, incom-
ing frames are allocated per Direct Memory Access (DMA) in the VMs data
structures. To transmit frames, each message must be copied once into the data
structure of the Ethernet controller individually. In case of DomM→Fieldbus the
reception rate is nearly cut in half because of an additional copy operation in
the bridge of DomM. In case of DomU→Fieldbus the data is received by DomM
and first copied from IvmcVDE into the ring buffer located in the context of the
receiving VM. Here, the data is transmitted to the dedicated DomU which will
cause the second data copy. To transmit data to a fieldbus, even a third copy
operation into the data structure of the Ethernet controller is necessary. There-
fore, to achieve high data-rates with Ethernet, the amount of copy operations
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by using a DomM has a significant influence on communication performance of
smaller embedded controllers. Compared, to native systems we can transfer less
data between VMs, either in case of DomU→Fieldbus or DomU→DomU, due
to additional time-consuming copy operations of payload sizes mostly around
1500 byte. Summarized, there are timing penalties to bridge Ethernet frames in
a paravirtualized system and using a DomM by using limited hardware.

For CAN, the maximum transmission rates are limited by the speed of the
transmitting hardware controller and by the fieldbus bitrate illustrated in figure
6c. There are no maximum reception rates for because we are limited to the
bitrate of the CAN fieldbus with only one active transmitter at once. We can
receive CAN frames much faster than transmitting them and determined no
frame losses. In the native case without virtualization, we achieve a maximum
transmission data rate of 272 kbit/s with a fixed payload of 8 byte per frame.
Including its PCI, a typical CAN frame has a size of 108 bit which now achieves
an overall data rate of 459 kbit/s. We obtain the same ratio for DomM→Fieldbus
including all routing efforts. This relates to the much slower transmission time
of the CAN controller itself for coping data to any data structures in the MCAL
(see section 5.1). In case of DomU→Fieldbus we achieve similar results. The
slight deviation is due to management overhead in the IvmcVDE for message
exchange between VMs. To transmit full CAN frames between DomUs by using a
managing DomM (DomU→DomU ) we measure reception timings around 103 s
which is much faster than sending them over the CAN fieldbus. Therefore, we can
obtain higher data rates with a maximum throughput of 620 kbit/s. Summarized,
even by usage of a decentralized DomM, software-driven CAN routing within a
paravirtualized system has no big impact on the overall performance.

6 Conclusion

In this paper, we showed an approach to relocate hardware drivers of commu-
nication controllers like CAN and Ethernet. Our goal was to run them in a safe
execution space to decouple safety-related functionality from untrusted software
parts. Additionally, the TCB of the HV should be kept as small as possible.
Therefore, a privileged VM like DomM is a solution to encapsulate safety-related
hardware drivers, isolated from non-qualified software, in coherence of an embed-
ded HV. To achieve real-time and safety requirements, some tradeoffs must be
taken into account. If additional communication paths and small timing efforts
can be tolerated, we showed a methodology for building virtual gateways to
route information between virtualized automotive embedded systems.

Ethernet for automotive environments is mostly used to transfer big data
volumes. Due to additional copy operations the transmission rate is reduced
between VMs compared to native systems. Achieving higher data rates would
require faster hardware controllers with supporting virtualization extensions.
CAN is used to transmit small chunks of data within a reasonable timeframe.
According to our measurements, these requirements are realizable in our par-
avirtualized system. Furthermore, the achieved bandwidth between VMs is sig-
nificant higher compared to any other automotive fieldbuses. If messages are
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exchanged exclusively by ECUs, the migration to VMs can save bandwidth of
connecting fieldbuses. Thus, the system migration to VMs within LSSI plat-
forms could be an intermediate step for communication intensive ECUs. For
safety-related systems, our approach, to encapsulate drivers in a safe environ-
ment, realizes an already proven method in data centers to separate hardware
drivers from VMs.
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Abstract. Distributed Shared Memory (DSM) architectures are becom-
ing popular to exploit parallelism of architectures while offering flexibility
of using both shared and distributed memory paradigms to application
developers. At the same time, Networks on Chip (NoC) have become real-
ity to address communication bottlenecks in massively parallel tile-based
processor architectures. In NoC-based DSM architectures, the synchro-
nization overhead for spawning a task on a remote network node may
lead to high performance penalties. In order to reduce the synchroniza-
tion delays during remote task spawning, the design of Network Interface
(NI) becomes important. In this paper, we present a network inter-
face architecture which supports task spawning between network nodes
by employing efficient synchronization mechanisms. The proposed NI
internal hardware support offloads the software from handling the syn-
chronization during remote task spawning and hence results in achieving
better overall performance. Simulation results highlight that the pro-
posed hardware architecture improves the performance by up to 42 % in
comparison to existing state of the art approaches. The FPGA prototype
is also used to depict the benefits of the proposed approach for real world
applications. Implementation results show the low area footprint of the
proposed hardware.

1 Introduction

With the increase in number of transistors which can be integrated on a sin-
gle chip, systems become more complex and power consuming. This has led to
the trend of building many-core systems instead of developing more sophisti-
cated and power hungry single core architectures. Tilera’s TilePro [1] and Intel’s
research chip Single-Chip Cloud Computer (SCC) [2] represent the state of
the art examples of existing many-core systems. The trend towards introduc-
ing many-core systems on chip has also affected the on-chip communication
requirements. Shared bus-based communication infrastructures lack the scala-
bility, which is required in future massively parallel architectures. Distributed
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 186–198, 2015.
DOI: 10.1007/978-3-319-16086-3 15
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interconnects like Networks on Chip [3] are found to be more suitable for many-
core systems.

General purpose many-core systems are expected to support the execution of
a wide range of applications, each of which may benefit from either a shared mem-
ory or message passing based programming style. Researchers have addressed
this problem by introducing distributed shared memory architectures which com-
bine the advantages of both shared and distributed memory architectures [4].
Partitioned Global Address Space (PGAS) programming model has emerged as
a scalable and productive way for programming DSM architectures [5]. Both
shared memory and message passing-based programming models can be effi-
ciently supported on a DSM architecture. DSM architectures enable the shared
memory programming paradigm by allowing access to all memories present in the
system through a global address space. In addition, the message passing model is
supported by distributing the memories in different nodes of architecture which
provides scalability by avoiding creation of data access hotspots.

The distributed nature of NoCs brings many challenges for the developers of
the parallel on-chip architectures. Communication and synchronization mecha-
nisms between tasks, which are running on different architecture nodes intercon-
nected via NoC, have significant impact on the overall system performance. In
order to efficiently exploit the available parallelism on the underlying platform,
the delays for synchronizing the application tasks, which are spawned from one
node to the other, should be reduced. Efficient mechanisms are thus required in
order to enable fast communication and reduce the software overhead involved
in task spawning. In the past, both hardware and software based solutions were
proposed to support task synchronization in DSM architectures. Software-based
solutions are flexible but have higher performance overheads. Hardware-based
methods deliver better performance but they require large modifications in archi-
tectural building blocks at multiple levels and thus make them less flexible. Along
the aforementioned considerations, we propose a hardware-based approach which
requires extensions only in the network interface architecture in order to support
communication and synchronization for remote task spawning.

We present a NoC interface architecture, which provides hardware-based task
spawning support. The proposed support offloads the software and results in
delivering higher performance. At the same time, the presented NI enables dis-
tributed memory communication through state of the art load/store and remote
DMA transfers. The experimental results show better performance and lower
overhead offered by our approach compared to other state of the art solutions.

The rest of this paper is organized as follows: In Section 2, background and
related work are described. Section 3 gives an overview of the target DSM archi-
tecture. Proposed task spawning support in network interface architecture is
explained in Section 4. Simulation, prototyping and synthesis results are pre-
sented in Section 5. Section 6 gives a conclusion and summarizes our next steps.
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2 Related Work

Increasing architecture sizes have encouraged the development of novel method-
ologies to support synchronization between remote network nodes on a DSM
architecture. An approach to support both shared memory and message pass-
ing through hardware is presented in [6]. Different components of the hardware
architecture are modified to support synchronization between processing ele-
ments connected via NoC. Processor pipeline is extended to support custom
instructions for shared memory and message passing synchronization. Moreover,
the interface between processor and network interface is customized for shared
memory and message passing communication. Unfortunately, the work does not
present the overhead of the approach which makes the comparison with other
concepts difficult.

A mixed hardware-software solution to support a distributed shared memory
architecture is presented in [7]. The authors have proposed a Dual Microcoded
Controller (DMC) as a core module which contains many sub-modules for sup-
porting operations like core and network interfacing, virtual to physical address
translation and synchronization. Synchronization between remote network nodes
is supported through test-and-set primitive. The benchmarks which are used
as test cases to support shared memory and message passing are quite limited in
scope and it is not answered how this approach can be scaled for real-time appli-
cations. In addition, the performance improvement or overhead of this approach
is not compared with any pure hardware or software-based solution.

Another hardware-software based approach to support communication and
synchronization between network nodes is presented in [8]. Distributed commu-
nication is enabled through hardware supported remote direct memory access.
However, the synchronization is performed through software configured prim-
itives. The synchronization overhead over distributed interconnect while using
software-based synchronization is not addressed.

In this paper, we propose an approach which provides architectural support
in the network interface for synchronizing remote task spawning. The proposed
approach delivers higher performance when compared with hardware-software
based approaches because of being a pure hardware implementation. In addition,
only an extension of the network interface architecture is required instead of
modifying many architectural components in comparison to above-mentioned
hardware-based methodology.

3 NoC-Based DSM Architecture

Our concept is based on a many-core DSM architecture in which a NoC is
deployed as distributed on-chip interconnect and the memory is physically dis-
tributed among the architecture. In contrast to a pure distributed memory sys-
tem, a DSM architecture enables direct access to each memory in Non-Uniform
Memory Access (NUMA) fashion. An example configuration is shown in the
Figure 1. However, our concept is not limited to this particular configuration
and can be applied to any generic NoC-based DSM architecture.
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Fig. 1. Network on Chip based DSM architecture

The architecture contains compute, memory and I/O tiles. In compute tiles,
several processor cores are connected by a shared bus. Each core has an exclusive
L1 cache. The processor cores inside the tile share a common L2 cache. There is
also a block of memory named as tile local memory, attached to the bus. Memory
tile represents global memory whereas I/O tile enables the interface of architecture
with standard external interfaces like UART, Ethernet etc. The network on chip
interface enables the communication between different tiles over NoC.

Cache coherence is supported within the tile at the level of L1 caches. The
intra-tile cache coherence enables use of shared memory programming model for
parallel applications, which can be mapped within a tile. However, no global
cache coherence is supported between the caches and tile local memories belong-
ing to different tiles. The reason is the limitation and the overhead of global cache
coherence with respect to scalability. Intel’s SCC architecture [2] is a prominent
representative of an existing architecture, which does not provide global coher-
ence between all caches to ensure scalability. For bigger applications, which use

Table 1. Memory map of considered DSM architecture

Memory access domain

Start
Address
(MSB)

End
Address
(MSB)

Shared memory domain
Private memory
domain

Global shared memory - 0x0000 0x7FFF

Distributed shared memory -
Tile 0 - 0x8000 0x80FF
Tile 1 - 0x8100 0x81FF
Tile ... - ... ...

I/O area - 0xC000 0xDFFF

- Private range 0xE000 0xFFFF
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multiple tiles, cache coherency can either be realized in software [9] or other
programming models, such as message passing, have to be used.

Table 1 shows an example of a memory map of the DSM architecture. The
memory map has two memory access domains i.e. shared memory domain and
private memory domain. The shared memory domain is further divided in global
shared memory and distributed shared memory. Global shared memory address
range is used to access the memory which is shared by all tiles (for example, off-
chip DDR memory). The address range of distributed shared memory domain is
distributed among all tiles to make all tile local memories accessible from each
tile. A separate section is reserved for I/O devices that are shared between all
tiles. Private memory domain contains memory mapped registers inside the NI
which could be configured by the processor cores.

4 Remote Task Spawning and Distributed
Communication

4.1 Inter-tile Task Spawning Support

For our investigations, we have considered a task spawning model in which
the complete code and data associated to the spawned task is copied from the
source tile to the destination tile. The software on the source tile initiates the
remote direct memory access to transfer the task data. When the data transfer
is completed, the task pointer which points to the start address of the code in
the destination tile, is sent by the source tile. Afterward, the software clears
the memory on the source tile which was allocated for the spawned task. For a
NoC-based distributed shared memory architecture, the task spawning between
two tiles is represented by a message sequence chart, shown in the Figure 2.

Processor

Source Tile

Tile local Memory

Destination Tile

task_pointer_dst

write_task_pointer_dst_ack

write_task_pointer_dst

dma_transfer

Network Interface Network Interface

write_task_data

dma_ack

dma_status = ‚0’
…………………

dma_status = ‘1’

configure_dma

poll_dma_status

transfer_task_data

send_task_pointer_dst

spawn_task_remote

poll_task_status

send_task_pointer_dst

trig_task_pointer_src

task_status = ‚0’
…………………
task_status = ‘1’

Fig. 2. Message sequence chart showing software managed inter-tile task spawning

As represented in the Figure 2, the remote task spawning could be divided
in following three sub-operations:
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– transfer task data relates to the operation in which the task data is moved
from the source to the destination tile.

– send task pointer dst describes the phase to move the task pointer/object
to the destination tile.

– trig task pointer src describes the step in which the software releases the
memory which was associated to the spawned task on the source tile before
spawning the task.

In state of the art approach for remote task spawning [8], the software is involved
in performing each of the above steps. Software has to poll the status of the
respective sub-operations in order to perform the next subsequent operation.
Status polling results in significant overhead on tile-interconnect. In addition,
it limits the system performance as the software remains busy with the status
polling and can not proceed with the actual application processing.

In NoC-based DSM architectures, network interface plays the role of a gate-
way between computation elements (tiles) and the distributed communication
infrastructure (NoC). Keeping in view this functional significance, we propose
hardware support for inter-tile task spawning inside the NI. The proposed sup-
port performs the synchronization related to remote task spawning by handling
different phases in hardware and thus offloads the software from synchronization
overhead. In addition, the presented hardware support handles the synchroniza-
tion by keeping in view the distributed nature of NoC and thus relieves the tile
interconnect from status polling requests. Inter-tile task spawning supported by
proposed methodology is presented in Figure 3.

Processor

Source Tile

Tile local Memory

Destination Tile

task_pointer_dst

dma_transfer

Network Interface Network Interface

write_task_data

dma_ack

dma_status = ‚0’
task_status = ‘0’
.…………………
dma_status = ‘1’
task_status = ‘0’

configure_dma

spawn_task_remote
(transfer_task_data,

send_task_pointer_dst,
trig_task_pointer_src)

send_task_pointer_dst

dma_status = ‘1’
task_status = ‚0’
………………….
dma_status = ‘1’
task_status = ‘1’

trig_task_pointer_src

write_task_pointer_dst

write_task_pointer_dst_ack

Fig. 3. Message sequence chart showing NI managed inter-tile task spawning

In our approach, software is only required to initiate the task spawning
request by configuring task spawning hardware support in the network inter-
face. Afterward, the proposed support initiates the transfer of task data to the
destination tile by configuring remote direct memory access. Upon successful
completion of the DMA operation, the task pointer is sent to the destination
tile. When send task pointer dst operation is completed, trig task pointer src is
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performed by signaling the software through an interrupt to indicate the comple-
tion of task spawning request. The status of sub-operations is monitored inside
the NI through the following flags:

– dma status indicates the status of transfer task data operation. If the data
transfer is completed, it is set to ’1’, otherwise it is ’0’.

– task status indicates the status of send task pointer dst. If the task pointer
is transferred, it is set to ’1’, otherwise it is ’0’.

The transmit and receive data-paths of the network interface architecture
with proposed task spawning support are shown in the Figures 4 and 5 respec-
tively. Compared to state of the art NI architectures, the presented network
interface contains Inter-tile Task Spawning (ITS) unit to manage the remote
task spawning. ITS unit offloads the software by handling synchronization events
related to the remote task spawning in hardware and thus delivers significant
improvement in overall performance. The proposed hardware support could be
paired with any generic parallel operating system implementation, which is tar-
geted for DSM many-core architectures [10].
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4.2 Distributed Communication Support

The presented network interface architecture consists of many sub-components as
shown in the Figures 4 and 5. ITS unit is vital for providing the proposed inter-
tile task spawning support as described in Section 4.1. The distributed commu-
nication between different tiles is supported via Remote Direct Memory Access
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(RDMA) and Remote Load/Store Unit (RLSU). Tile to network protocol trans-
lation and packet scheduling is realized in transmit data-path through Request
Translation and Packetization and Packet Scheduling units respectively. Whereas
receive data-path has Request Decoding and De-packetization and Packet Classi-
fication units for packet decoding and network to tile protocol conversion respec-
tively. For state of the art components in the presented NI architecture, we have
only provided the details, which are relevant for our concept.

4.2.1 Remote Direct Memory Access

Remote direct memory access is provided inside the NI through hardware RDMA
Engine. RDMA unit can be configured internally via ITS or directly through the
processor cores. ITS configures RDMA to transport task data for task spawn-
ing. Remote DMA delivers better efficiency while transferring data between
distributed memories as compared to state of the art load/store transactions.
Remote direct memory access requires following parameters:

– dma id points to the DMA request identifier.
– dma len shows the length (in data words) of the DMA transfer.
– src addr points to the source address in the sender tile from where the data

has to be transferred.
– dst addr indicates the destination address where the data has to be copied

in the destination tile.

When the DMA operation is completed successfully, the acknowledgment is sent
back to the source tile which updates the dma status flag accordingly.

4.2.2 Remote Load/Store Access
Remote load/store unit supports access to distributed memories in the form of
read/write transactions. RLSU supports read/write accesses of configurable size.
The tile bus is released during remote load/store operation to prevent blocking
of transactions from other tile masters.

To enable distributed communication both via load/stores and DMA, the
NI transmit data-path has two different interfaces on the shared bus, which
are mapped to the two respective memory access domains in the memory map:
the shared memory domain and the private memory domain as illustrated in
Table 1. The NI interface in the private memory domain is directly connected
to the shared bus and is accessible by the processor cores. The software running
on the processor cores can configure the ITS and RDMA units by writing into
memory mapped registers of the NI. The shared memory domain interface is
mapped through the L2 cache. This interface serves load/store accesses to the
shared memory (distributed as well as global) in the architecture. Remote load
store unit transparently supports read/write transactions through the L1 and
L2 cache hierarchy. As stated before, coherence is not supported between the
tiles from hardware perspective.
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4.2.3 Request Translation, Packetization and Packet Scheduling
Request Translation and Packetization unit is responsible for translating the
requests from RLSU, RDMA and ITS modules and generating the network pack-
ets accordingly. For our investigations, we have used a virtual channel based NoC
with wormhole switching [11]. Each FIFO in the network interface corresponds
to a virtual channel. The communication between the source and destination
happens in the form of packets which belong to the particular request type. In
each network packet, the corresponding request type i.e. load/store access, DMA
or synchronization message is encoded in the packet header. Packet Scheduler is
responsible for scheduling transmit FIFOs over the NI output link.

4.2.4 Request Decoding, De-packetization and Packet Classification
The packets arriving at the tile input are placed into the respective FIFOs
by the Packet Classifier. In the receive data-path, Request Decoding and De-
packetization unit interprets the request type in the packet header and triggers
RLSU, RDMA or ITS receive unit to serve the incoming request over tile bus
master interface accordingly.

5 Experiments

The experiment section is divided into three subsections. In the first subsec-
tion, the evaluations are done in a simulation environment where NoC traffic
benchmarks are simulated on the proposed architecture. Then, we have built an
FPGA prototype implementing the proposed methodology and executed real-
world application on it. Finally, synthesis results show the implementation cost
of the proposed architecture on ASIC and FPGA.

5.1 Simulation with NoC Traffic Benchmarks

A cycle accurate tiled architecture model as shown in the Figure 1 including the
proposed NI architecture is used for the following investigations. A NoC with
mesh topology and XY-routing is used [11]. The size of the platform is config-
urable. We have applied uniform and hotspot traffic models which are common
traffic benchmarks for NoC-based system evaluations [12]. In the uniform case,
each tile tries to spawn a number of tasks on every other tile in the architec-
ture in a defined sequence. Task spawning consists of communication between
source and destination tile in the form of three steps as mentioned in Section 4.1.
All tiles start communicating at the same time. trig task pointer src operation
indicates the completion of a task spawning request. For the hotspot scenario,
all tiles attempt to spawn tasks on the same destination tile. The corner tile
(0, 0) is chosen as the hotspot. The simulation is stopped after all tiles are fin-
ished. We have compared our approach with state of the art approach [8] and
named it as Reference (Ref). In state of the art approach, the synchronization
related to task spawning is managed by software as shown in Figure 2. Our
approach in which the task spawning is handled by ITS unit in NI is named
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as NI TS. Both the approaches use RDMA to move task data between tiles.
The payload which is transferred as task data is kept fixed in these simulation
scenarios. Figure 6 shows the comparison of the execution time between two
approaches for both the uniform and hotspot scenarios with increasing archi-
tecture size. The execution time is further divided in computation time and the

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e 
 

2x2 

Synchronization time 
Computation time 

3x3 4x4 5x5 
Architecture Size 

6x6 

(a) Execution time in uniform scenario

0 

0,2 

0,4 

0,6 

0,8 

1 

1,2 

No
rm

al
ize

d 
Ex

ec
ut

io
n 

Ti
m

e 
 

2x2 

Synchronization time 
Computation time 

3x3 4x4 5x5 
Architecture Size 

6x6 

(b) Execution time in hotspot scenario

Fig. 6. Simulation results with NoC traffic benchmarks

synchronization time. The time which is spent for processing and queuing in
the architecture is indicated as computation time. Whereas the latency which
results from status polling is marked as synchronization time. In the uniform
scenario, a linear increase in synchronization time is observed. The results for
hotspot scenario show higher increase in synchronization time with the increas-
ing architecture size. Our approach gives a performance improvement of up to
42% in comparison to Reference. The simulation scenarios which have higher
degree of parallelism, i.e., more number of tasks are spawned to remote tiles in
a bigger architecture configuration, the status polling requests make significant
share of traffic on tile interconnect and hence result in higher synchronization
time in the Reference configuration. Our approach offloads the software from
checking the status of task spawning operation and indicates the completion of
spawning process through an interrupt to the software. Hence, the tile intercon-
nect is not loaded with status polling requests which results in the corresponding
performance improvement in our configuration.

5.2 FPGA Prototyping with Real World Application

An FPGA prototype of the architecture shown in Figure 1 is realized. A par-
allel implementation of an integer matrix multiplication application is executed
on the prototype to demonstrate the benefits of proposed task spawning sup-
port. The Synopsys CHIPit system with 6 Virtex-5 VLX330 FPGAs is used
for prototyping. A 1 GB DDR memory is used as global shared memory which
is present as a memory tile among other compute tiles in the architecture. The
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global shared memory contains the matrices and code of the parallel application.
Each compute tile consists of 4 LEON3 Sparc V8 cores [13]. In addition, each
compute tile contains an 8 MB tile local memory in which the respective task
data is copied from global shared memory while processing. The proposed NI is
used to connect the tiles with the NoC, which is presented in [11].

The memory tile spawns tasks of matrix multiplication application to each
tile in the architecture. During task spawning, the task data is copied from the
memory tile to the respective tile local memories in the compute tiles through
RDMA. Finally, each tile writes its results back to the memory tile. Figure 7
shows the execution time of matrix multiplication for different architecture sizes.
Reference and NI TS refer to the state of the art and the proposed configu-
rations respectively as stated in Section 5.1. Looking at the results, it can be
observed that our methodology reduces the synchronization time and thus deliv-
ers a performance improvement of up to 19% as compared to the Reference. The
synchronization time is reduced by using efficient handshaking and signaling
mechanisms as presented by the proposed concept.
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Fig. 7. FPGA prototyping results with Matrix Multiplication Application

5.3 ASIC and FPGA Synthesis for Area Estimation

The HDL representation of the proposed network interface architecture is real-
ized. The implementation cost of the proposed support is measured in terms of
area and clock frequency. Table 2 shows the resource utilization of a single NI
(without proposed support) and the ITS unit (proposed task spawning support)
for both ASIC and FPGA respectively. For ASIC synthesis, a 45 nm standard
cell library from TSMC (tcbn45gsbwpwc) with worst case operating conditions
is used. Synopsys Design Compiler (F-2011.09-SP4) is taken for synthesis. The
target device for the FPGA synthesis is Xilinx Virtex-5 VLX330 which is also
used for prototyping. Synopsys Synplify Premier (G-2012.09) is used for FPGA
synthesis. After the synthesis, place and route for FPGA is performed by Xil-
inx P&R tools. The results depict that the proposed hardware support for task
spawning offers a low area footprint. The area overhead of ITS unit is around 16%
for both ASIC and FPGA implementations in comparison to the NI without the
corresponding support. In addition, the proposed hardware can be synthesized
at reasonably higher frequency for ASIC implementation which can be compared
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Table 2. ASIC TSMC 45nm and FPGA Virtex-5 VLX330 synthesis Results

ASIC FPGA
Synthesized Entity Frequency Area Frequency LUTs Registers

(MHz) (µm2) (MHz)

NI (without ITS unit) 1500 43579 127 4937 1868

ITS unit 1500 7121 130 838 356

to the interconnect frequency of the state of the art many-core architectures like
SCC [2].

6 Conclusion and Future Work

In this paper, we have proposed a network on chip interface architecture to sup-
port inter-tile task spawning on DSM many-core architectures. The presented
hardware architecture offloads the software from the job of handling intermedi-
ate synchronization events during remote task spawning. The simulation results
illustrate the improvement in performance by up to 42% while comparing with
other state of the art approach. The proposed hardware support shows the per-
formance improvement of up to 19%, when real world applications are executed
on FPGA prototype. The proposed NI offload is particularly beneficial for appli-
cations and benchmarks which have a sizable synchronization overhead. ASIC
and FPGA synthesis results depict that the proposed hardware extensions have a
small area footprint. In the future, we plan to investigate real world applications
with higher degree of parallelism for evaluating our concept.
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Abstract. The concept of a firm real-time task implies the notion of
a firm deadline that should not be missed by the jobs of this task. If a
deadline miss occurs, the concerned job yields no value to the system. It
turns out that for some application domains, this restrictive notion can
be relaxed. For example, robust control systems can tolerate that single
executions of a control loop miss their deadlines, and still yield an accept-
able behaviour. Thus, systems can be developed under more optimistic
assumptions, e.g. by allowing overloads. However, care must be taken
that deadline misses do not accumulate. This restriction can be expressed
by the model of (m, k)-firm real-time tasks that require that within any
k successive jobs at least m jobs are executed successfully. This paper
presents the heuristic utility-based algorithm MKU for scheduling sets
of (m, k)-firm real-time tasks. Therefore, MKU uses history-cognisant
utility functions. Simulations show that for moderate overloads, MKU
achieves a higher schedulability ratio than other schedulers developed
for (m, k)-firm real-time tasks.

1 Introduction

Certain types of real-time systems can tolerate that some jobs miss their dead-
lines or are not executed at all. Consider, for example, the decoding of a video
stream. If single frames are displayed too late, the quality a viewer experiences
degrades, but he stills can draw some benefit. Similarly, control systems can
also tolerate some job losses due to their robustness. However, in both cases it
is necessary that losses do not accumulate. A simple Quality-of-Service (QoS)
metric is therefore not sufficient to describe the tolerances, as it can only express
the ratio between missed and kept deadlines, but not the distribution of dead-
line misses over time. Special concepts have been developed in scheduling theory
that allow to constrain this distribution, for example the skip-over model [20],
(m, k)-firm real-time tasks [14], the dynamic window-constrained scheduler [31],
or weakly-hard real-time tasks [3].

In our work, we are especially interested in the scheduling of (m, k)-firm
real-time tasks. The (m, k)-firm model describes tasks that require that within
any k consecutive jobs at least m jobs are executed successfully. Most works on
scheduling of (m, k)-firm real-time tasks use a fixed-priority scheduler for dis-
patching the single jobs. The only scheduler that we know of that uses dynamic
priority scheduling [8] is quite pessimistic in terms of schedulability.
c© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 201–211, 2015.
DOI: 10.1007/978-3-319-16086-3 16
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In this paper, we present the heuristic MKU algorithm for the scheduling
of (m, k)-firm real-time tasks. It is based on the earliest-deadline first (EDF)
policy [22]. MKU uses History-Cognisant Utility Functions (HCUFs) [18] that
are derived from Time Utility Functions (TUFs) [15]. A TUF represents a task’s
utility value depending on the completion time of its current job. Accordingly,
a HCUF represents the utility a task has accumulated with respect to the exe-
cution of past jobs. In our previous work on HCUFs [18], we have shown that
HCUFs can be used to distribute cancellations equally among the tasks in an
overloaded task set. However, no guarantees were given about how cancellations
are distributed over the life time of a single task. In this work, we investigate, how
good HCUFs are apt to give more concrete guarantees to restrict the distribu-
tion of cancellations. Therefore, we express the (m, k)-constraints of (m, k)-firm
real-time tasks as HCUFs. The scheduling algorithm uses these HCUFs to decide
which jobs shall be cancelled in overload situations. This allows for instance to
prefer jobs for execution that have been cancelled more often than others in
recent history. Experimental evaluations show the performance advantages of
MKU over most existing schedulers for (m, k)-firm real-time task sets.

We proceed as follows: In the following section, we review related work on
scheduling of (m, k)-firm real-time tasks and scheduling with TUFs. In section 3,
the mapping of (m, k)-constraints and the corresponding scheduling algorithm
are introduced. Experimental evaluations are presented in section 4. We conclude
this paper in section 5.

2 Related Work

2.1 (m,k)-Firm Real-Time Tasks

The concept of (m, k)-firm real-time tasks was introduced by Hamdaoui and
Ramanathan [14] as a means to describe acceptable loss rates of streams more
precisely. This work also introduces the Distance-Based Priority (DBP) assign-
ment technique. Here, a task’s distance from a failing state is used as a metric.
The distance specifies, how many jobs may consecutively miss their deadlines
until the task’s (m, k)-constraint will no longer be fulfiled. Each job is assigned a
priority that is inversely proportional to its task’s distance from a failure state,
meaning that jobs of tasks near their failing state get a higher priority. Job
dispatching then can be performed in a fixed-priority preemptive (FPP) man-
ner. An exact schedulability test for DBP-scheduled task sets is provided by
Goossens [13].

Ramanathan uses the concept of (m, k)-firm real-time tasks for the specific
case of control systems [27]. A deterministic classification into mandatory and
optional jobs is proposed based on static (m, k)-patterns. Mandatory jobs are
scheduled with their original, e.g. rate-monotonic priority, while optional jobs
get the lowest possible priority. Due to a peculiarity of the classification tech-
nique, the first job of any task is classified as mandatory. Thus, in a synchronous
task set the time t = 0 is a critical instant where a job from each task gets
ready, which introduces a high pessimism into the schedulability analysis. Quan
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and Hu [26] solve this by calculating rotation values for the (m, k)-patterns to
relieve such critical instants. They also point out the NP-hardness of finding
a (m, k)-pattern such that a specific task set is schedulable. The rotation val-
ues are used by Semprebom et al. [29] for an online admission test of tasks in
communication networks. Jia et al. [16] derive a sufficient schedulability condi-
tion for (m, k)-firm real-time task sets and present an algorithm that aims to
find at least sub-optimal values for m. Flavia et al. [12] present an algorithm
that dynamically assigns (m, k)-parameters for plant control. Cho et al. present
two schemes for Guaranteed Dynamic Priority Assignment (GDPA) [8]. Both
schemes are based on EDF scheduling, but additionally take the tasks’ distance
from a failing state into account. They are aimed at (1) providing a bounded
probability of violations of the (m, k)-firm constraints, and (2) maximising the
probability of kept deadlines.

2.2 TUF-Based Real-Time Scheduling

The concept of time-utility functions was originally introduced by Jensen
et al. [15]. Instead of basing task scheduling solely on the binary notion of a
deadline, the use of TUFs allows for a greater flexibility. The benefit of TUFs is
demonstrated on EDF scheduling of overloaded task sets. If a high probability for
a deadline miss is detected that would render the EDF schedule infeasible, jobs
that only contribute with a low utility to the system are selectively cancelled.
Thus, schedulability of the system is ensured and accumulated utility is max-
imised. Locke [23] investigated this technique further for best-effort scheduling.
Clark [9] has extended it for tasks with dependent activities.

Several heuristic scheduling algorithms based on TUFs have been proposed
(e.g. [7,21,30]). The notion of time-utility is used in scheduling of real-time
systems in general (see [28] for an overview, or e.g. [1,6,10]) and in the special
case of overloaded real-time systems (e.g. [4,19,24,25]). Applications of time-
value scheduling can be found in dynamic reconfiguration of systems [5], Ethernet
packet scheduling [30] and robotics [2].

3 HCUF-Based (m,k)-Firm Real-Time Scheduling

Our work is based on the following task model: A (m, k)-firm real-time task is a
tuple τi = (Ci, Ti,mi, ki), where Ci denotes the task’s worst-case execution time
(WCET) and Ti its period. We assume that a task is released initially at time
t = 0. Thus, jobs ji,l are generated at times ri,l = lTi, l = 0, 1, . . . and must be
finished until di,l = (l + 1)Ti, i.e. the task’s relative deadline equals its period.
The completion time of job ji,l is denoted as fi,l. The task’s (m, k)-constraint is
defined by (mi, ki), meaning that in any ki consecutively released jobs at least
mi must be finished before their deadline.

The aim of this work is to execute a set T = {τ1, τ2, . . . , τn} of n independent
(m, k)-firm real-time tasks on one processor without violating any task’s (m, k)-
constraint. In this section, we first define a history cognisant utility function that
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is able to map a task’s current state in terms of its (m, k)-constraint. Then, a
scheduler is introduced to schedule T with the help of the HCUFs.

3.1 Mapping of (m,k)-Constraints as HCUF

The HCUF we introduce is based on a TUF that rates the execution of single
jobs. Each job ji,l of a task τi is classified by a step-shaped TUF uF (ji,l) that
represents a firm real-time requirement. uF (ji,l) is evaluated when job ji,l finishes
execution (at time fi,l) or is cancelled. If ji,l is completed before its deadline,
uF yields a utility value of 1, and of 0 else:

uF (ji,l) =
{

1 fi,l ≤ di,l
0 else (1)

For each task τi, a sliding window wi = (w1
i , . . . , w

ki
i ) over ki consecutive jobs is

kept which stores the utility values uF (ji,l) of the last ki jobs. In the following,
w1

i shall denote the utility of the most recent job, while wk
i stands for the utility

of the least recent job of τi. A task’s basic (m, k)-HCUF Hm(τi) is calculated as
the mean value of all entries in wi:

Hm(τi) =
1
ki

ki∑

j=1

wj
i (2)

Obviously, if all jobs inside the window have kept their deadlines, Hm(τi) = 1.
Additionally, the (m, k)-constraint of τi requires that Hm(τi) never falls below
mi

ki
. If Hm(τi) = mi

ki
, the task is in a critical state and must not miss its next

deadline. Thus, the HCUF value representing the critical state is very important
for scheduling decisions. The HCUF values representing the critical states of
tasks with different (m, k)-constraints are not directly comparable. To overcome
this drawback and ease scheduler implementation, we scale Hm by ki

mi
such that

the minimally allowed utility for any (m, k)-constraint is 1:

Ĥm(τi) =
ki
mi

Hm(τi) =
1

mi

ki∑

j=1

wj
i (3)

Ĥm gives a relative measurement of how far a task is away from a violation of its
(m, k)-constraint. As long as Ĥm(τi) ≥ 1, the task’s (m, k)-constraint is fulfiled.
The maximum value of Ĥm(τi) is ki

mi
, which leads to the following two properties

of Ĥm for special (m, k)-parameters:

Property 1. Tasks that have different (m, k)-constraints, but whose constraints
have the same ratio m

k , can gain the same maximum value. However, for tasks
with bigger k, Ĥm has a more fine-grained resolution.

Property 2. Tasks τi, τj , i �= j with ki = kj and mi < mj have different maxi-
mum values max Ĥm(τi) > max Ĥm(τj).

We will discuss how these properties influence scheduling decisions in the follow-
ing section.
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3.2 Scheduling Based on (m,k)-HCUFs

Our scheduling algorithm MKU for (m, k)-tasks is based on the best-effort app-
roach by Jensen et al. [15], which in turn is an extension to the EDF algorithm.
In the beginning, the entries of the (m, k)-windows wi of all tasks are initialised
to 1. All ready jobs are kept in a list ordered increasingly by their deadlines.
Dispatching is performed in EDF manner from the front of the list. If after the
insertion of a new job in the ready queue the possibility of a deadline miss is
detected for a job jn, all jobs jo with deadlines do ≤ dn (including jn) are exam-
ined (indices denote position in EDF queue). For each job jo, its task’s possible
HCU Ĥp value is calculated, assuming that jo is cancelled. Assuming that jo
belongs to task τi, Ĥp is calculated in accordance with equation (3) as:

Ĥp(τi) =
1
m

ki−1∑

j=1

wj
i (4)

Note that the sum now only ranges up to wki−1, compared to equation (3): If
the current job is cancelled, wk

i will be removed from the window and a new
value 0 representing that cancellation will be inserted at the front of wi. The
job with the maximum value of Ĥp is then removed from the schedule. However,
only jobs ji,l with Ĥp(τi) ≥ 1 are considered for cancellation. This procedure
is repeated until the overload is resolved. If no candidates for removal can be
found, obviously no job can be cancelled without violating its (m, k)-constraint,
and therefore the whole task set is not schedulable under MKU with the given
(m, k)-constraints.

In the beginning, tasks with equal m
k ratios have the same probability for

having their first job cancelled. However, due to the finer granularity of Ĥm of
tasks with bigger k values (see property 1 from section 3.1), such tasks also have
a higher probability to be chosen for subsequent cancellations, as their Ĥm value
decreases more slowly. For tasks τi, τj with ki = kj , but mi < mj (property 2
from section 3.1), τi has a higher probability of cancellation due to its higher
max Ĥm(τi) value, which represents τi’s higher tolerance towards job losses.

3.3 Complexity

The complexity of the MKU approach can be split in two parts: Concerning
regular management of the ready list, MKU inherits the complexity of EDF.
A naive implementation using regular lists has a complexity of O(n) for insertion
of new jobs. Using balanced trees, the management complexity can be reduced
to O(log n) [11].

Additionally, MKU introduces some overhead for detection and resolution
of overload situations. Both operation must only be performed when a new job
is added to the ready list. Overload detection, i.e. finding a job that will miss
its deadline, takes O(n) steps, as the ready list must be examined from its
beginning. To resolve an overload situation, at most n additional walks through
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the list must be performed, leading to a complexity of O(n2). The Ĥm value
for each task should be initialised once and then be kept in memory. Thus,
online calculation/update of Ĥm and Ĥp values can be performed in constant
time (regardless of the window size k) by advancing the existing value using the
entries of the sliding window wi of each task τi.

4 Experimental Evaluation

We compare the performance of the MKU scheduling policy with that of other
scheduling techniques for (m, k)-firm real-time task sets. Therefore, we have per-
formed extensive simulations of randomly generated task sets. The simulations
were performed using the tms-sim framework developed in our group [17], which
is available as open source software1. In this section, we discuss the methodology
we applied in our evaluations, and subsequently present and discuss the results.

4.1 Methodology

Task Set Generation. Task sets consisting of n = 5 tasks are randomly gen-
erated in the following manner: The period of the tasks is randomly selected
between 5 and 15. The k value of each task is randomly selected from [2, 10],
and the m value from [1, k]. The execution times of the tasks then is generated
such that the task set’s utilisation lies inside a given interval U ± dU . U stands
for a target utilisation, dU represents the maximally allowed deviation from U .
For each task τi, an execution time weight ei is randomly selected from [1, 100].
Based on the weights ei and the target utilisation U , a value C ′

i is calculated.
ei indicates, how much a task τi’s utilisation Ui = Ci

Ti
contributes to the total

utilisation U :
ei∑n
j=1 ej

=
Ui

U
(5)

Solving for C ′
i yields:

C ′
i =

U
∑n

j=1 ej
Tiei (6)

A task’s actual execution time is retrieved by rounding C ′
i to the nearest integer

value. If the rounding results in 0, Ci = 1 is set. This forced rounding up of Ci

leads to slight upward shift of the mean utilisation away from U of the generated
task sets within any interval. Task sets with a utilisation outside U ± dU are
discarded immediately.

Evaluation Environment. We examine utilisations of U = 1.05, 1.15, . . . , 1.95
with a tolerance dU = 0.05. For each utilisation interval, 10.000 task sets are
generated. Each task set is executed for 1.000.000 time steps to account at least
for the largest possible hyper period of all tasks. In our simulations, we com-
pare the MKU scheduler with several other scheduling policies that have been
1 http://myweb.rz.uni-augsburg.de/∼klugeflo/tms-sim/

http://myweb.rz.uni-augsburg.de/~klugeflo/tms-sim/
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proposed for (m, k)-firm tasks. An overview of the used models can be found in
table 1. The behaviour of the GDPA and GDPA-S schemes [8] is very similar.
Therefore, the GDPA-S scheme is omitted. Tasks according to the DBP [14] and
MKC/-R [26,27] schemes are dispatched using a fixed priority preemptive (FPP)
scheduler. The GDPA scheme uses a modified EDF scheduler according to [8].
The same applies for the MKU scheme presented in this paper (see sect. 3.2).
Simulation assumes that the execution time of a task is constant and not sub-
ject to any variations. All schedulers cancel jobs as soon as the latest possible
starting time of a job di,j − ci,j elapses without the job being executed, as the
job then will not be able to keep its deadline.

Table 1. Task models and schedulers used in the experimental evaluation

Model Abbr. Scheduler Reference

Distance-based priority DBP FPP [14]

(m, k)-firm control tasks MKC FPP [27]

MKC with pattern rotation MKC-R FPP [26]

Guaranteed Dynamic Priority Assignment GDPA EDF (modified) [8]

Utility-based (m, k)-tasks MKU EDF (modified) sect. 3

4.2 Results

First, let us examine the overall success rates that the various schedulers achieve.
These are shown in figure 1. Comparing MKC and MKC-R, we can see the
improvements that are introduced by the rotation of the (m, k)-patterns in MKC-
R. The performance of GDPA lies somewhere between MKC and MKC-R. How-
ever, for all three approaches the number of successfully scheduled task sets drops
very fast to one percent and below at a target utilisation of 1.45 and beyond.
Better results can be achieved with DBP and MKU. Both schemes achieve to
schedule at least twice as much task sets as can be scheduled by one of MKC,
MKC-R, or GDPA. For moderate overloads with a utilisation U < 1.5, MKU
even outperforms DBP by being able to schedule 3-17% more task sets. For task
sets with high overloads (U > 1.5), DBP yields better results. Table 2 lists the
absolute numbers of task sets that were schedulable under all schemes. The per-
centages compare the differences between the MKU and DBP approaches (using
DBP as base). A positive percentage indicates that MKU could schedule more
task sets than DBP successfully, and vice-versa.

An important parameter is the number of preemptions a job experiences
during being executed. In a real implementation, each preemption introduces an
additional overhead that delays completion of jobs. Concerning the task sets
that were successfully scheduled by any of the scheduling schemes, we present
the number of job preemptions that occurred. Table 3 shows the number of pre-
emptions that all task sets that were schedulable under all investigated schedulers
incurred. The values for target utilisations U ≥ 1.65 are omitted due to the low
number of overall successful task sets in these intervals. Figure 4.2 shows the
average number of preemptions that occurred per task set during simulation.
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Fig. 1. Overall success rates

Table 2. Absolute number of task sets that were schedulable

Target utilisation 1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95

all Schedulers 2430 661 213 76 32 8 6 0 0 0

MKC 4112 1499 604 268 148 63 36 22 10 1

MKC-S 4305 1974 935 419 219 111 49 20 10 8

GDPA 4240 1635 620 325 154 78 34 18 13 2

DBP 9180 7352 5214 3674 2478 1575 1028 655 452 310

MKU 9572 8164 6111 4109 2540 1525 838 447 250 114

MKU vs. DBP 4% 11% 17% 12% 3% -3% -18% -32% -45% -63%

Table 3. Accumulated number of preemptions experienced by all task sets that were
schedulable by any scheduler in each utilisation interval

Target utilisation 1.05 1.15 1.25 1.35 1.45 1.55

Schedulable task sets 2430 661 213 76 32 8

MKC 894 180 57 19 10 0

MKC-S 11378 2918 856 294 135 43

GDPA 1688 369 121 41 19 6

DBP 15148 4511 1495 588 241 67

MKU 2089 471 144 48 25 9

Both the table and the figure show that MKU schedules task sets with only a
fraction of the preemptions that occur in DBP. Insofar, MKU induces a much
lower system overhead than DBP.

Summed up, our results show that for moderate overloads (U < 1.5) MKU
can outperform the other scheduling schemes for (m, k)-firm tasks. This utilisa-
tion region seems also to be the most relevant, as task sets with higher overloads
have high probability of being not schedulable at all (see table 2).
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Fig. 2. Average number of preemptions that a task set that was schedulable experienced.

5 Conclusions

We have modeled the (m, k)-constraints of (m, k)-firm real-time tasks as history-
cognisant utility functions. The HCUF of a (m, k)-firm real-time task represents
the ratio between kept and missed deadlines in the k-window of the task. These
HCUFs are used by the heuristic MKU scheduler to decide which jobs to cancel
in overload situations. MKU is based on the best effort scheduler by Jensen et
al. [15] that uses time-utility functions for these decisions. By looking one step
into the future (see Ĥp(τi) in eq. (4)), MKU takes also into account whether a
task can tolerate a cancellation at all. Our experimental evaluations show that
for moderate overloads with a utilisation U < 1.5, MKU can schedule 3-17%
more task sets than the DBP approach [14]. Additionally, jobs scheduled with
MKU experience much less preemptions than under DBP.

In the future, we are going to analyse MKU formally. A central goal of this
analysis is to derive sufficient schedulability conditions. Additionally, we hope
to find properties of MKU that explain the tradeoff point against DBP around
U ≈ 1.5 that we found in our simulations. Finally, we plan to apply MKU for
scheduling robust control systems.
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Abstract. Demands on computing performance are steadily increasing,
also in the domain of embedded hard real-time applications. Accord-
ingly, multicore processors have already entered the hard real-time
domain, mainly for execution of multiple applications. Further perfor-
mance improvements can be gained by executing multithreaded applica-
tions on multicores. Since such applications share data between multiple
cores, coherent accesses to that data must be guaranteed. To be applied
in hard real-time domains, the complete system, including the cache
hierarchy, needs to provide a predictable timing behaviour that allows a
static estimate of the worst case execution time.

This paper presents an analysis of the well-known MESI (Modified,
Exclusive, Shared, Invalid) technique and its drawbacks concerning time
predictability. Moreover, we show ways how to implement a MESI tech-
nique suitable for hard real-time systems.

Keywords: Hard real-time systems · Timing predictability · Cache
coherence · Multicore

1 Introduction

The state of the art in general purpose computing systems is to provide higher
performance by multi- and many-core architectures. This trend can also be
observed in the embedded systems domain. For example, the Automotive Open
System Architecture (AUTOSAR) [1] in its revision 4.0 describes techniques
that enable multicore architectures. The Integrated Modular Avionics (IMA) [13]
architecture also allows use of multicores if several preconditions are met. Some
of these preconditions are defined in the ARINC 653 standard [14].

The major target of using multicores in embedded systems is currently to
bundle several applications on the same computing system in order to reduce
area, weight, energy as well as profiting from the increased performance. Since
different applications require different levels of real-time performance, security
and reliability, such systems are called mixed criticality systems.

In order to bring certification efforts to a feasible level, all applications must
run in total isolation which is the basic idea of the IMA concept [6] and is also
included in AUTOSAR 4.0. This means that freedom from interference of the
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applications must be guaranteed by the system. If this is the case, each applica-
tion can be treated according to its own criticality level. Interferences between
applications are eliminated by the system. Freedom from interference means that
both the memory regions as well as the timing behaviour of a given application
cannot be influenced by any other application. The first problem can be solved by
a suitable memory management unit and is not discussed here. The second issue
is more problematic since the shared resources of a multicore can be accessed
by different applications in parallel. The problem is further aggravated by the
execution of multithreaded applications, which frequently share large amounts of
data and thus necessitate cache coherence. Parallel hard real-time applications
have been researched in the European FP7 project parMERASA [12].

Previous examinations of the cache coherence technique of Freescale’s P4080
show a significant influence of cache coherence on the execution time [8]. In this
work, it is shown that simply enabling cache coherence without actually sharing
data decreases performance. Sharing data leads to a further slow-down. Freescale
recommends disabling cache coherence if strict time predictable behaviour is
required [3]. In view of this, Infineon’s AURIX multicore relinquishes cache coher-
ence altogether [4].

The contribution of this paper is a study of different bus-based embodiments
of the well-known MESI [5] coherence technique which are examined regarding
time predictability, interference, and worst case estimations. Moreover, recom-
mendations for a time predictable implementation are given, which also allow
complete freedom from interference.

The paper is organised as follows: Section 2 presents related work addressing
isolation of applications on multicores and Section 3 discusses different aspects of
MESI variations regarding static timing analysis. In Section 4 we present a pos-
sible incarnation of the MESI cache coherence technique that shows predictable
timing behaviour. Section 5 concludes the paper.

2 Related Work on Timing Isolation

A basic precondition for timing isolation is that activities of one core cannot
affect any other core in an unpredictable way. More precisely, the latency of all
accesses to shared resources must be upper-bounded and this upper bound must
be known statically. Moreover, the upper bound should be as close as possible
to the actual timing to allow a realistic static WCET estimation. The shared
resources relevant to cache coherence are the shared bus, the shared memory
and the local caches, now that they contain shared data.

Timing isolation on shared buses can be attained by using simple slot-based
arbitration schemes like Time Division Multiplexed Access (TDMA) as proposed
by Wilhelm et al. [21] or (prioritised) round-robin based arbitration as proposed
by Paolieri et al. [10].

Accesses to shared memory can be managed by time predictable memory
controllers [2] [11]. These controllers schedule memory accesses in a way that
eliminates interferences between accesses. The common idea is to assign cores
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to memory banks in the style of the multithreaded PRET architecture [18],
where the thread slots are assigned to memory banks. The proposed techniques
can be extended to allow accesses to the complete memory (instead of private
banks) but this comes at the price of even longer (though still bounded) access
latencies. One possibility to reduce the worst case latency, where the maximum
possible concurrency has to be assumed, is presented by Schlieker et al. [19].
Here, the maximum number of concurrent accesses is determined depending
on the behaviour of co-scheduled threads, which requires a statically known
schedule and an analysis of all threads. If threads are programmed in a way
which makes a static analysis impossible1, the physical maximum concurrency
must be assumed.

Since the price for time predictability is a significantly longer latency of mem-
ory accesses caused by the bus and the memory controller, data caches are strongly
recommended. Needless to say, these caches must exhibit predictable (timing)
behaviour, thus eliminating the possibility of implementing a shared cache [21].

Integrating private caches calls for a technique that keeps accesses to shared
data coherent, i. e. the most recently written value must be delivered to the
next read access, independent of the cores involved. Current multicores suitable
for hard real-time systems either do not comprise any data cache or the caches
are used only for private data. Accesses to shared data are performed without
the help of a cache, resulting in a long worst case latency for each access. Local
caches not holding shared data (and hence, without coherence support) can be
analysed by using techniques proposed in [17], [20], and [7].

We expect that future parallel hard real-time applications will need to share
larger amounts of data between different cores. Longer latencies because of
uncached accesses reducing the overall performance cannot be tolerated in this
case. Paolieri et al. [9] proposed a technique that allows software pipelined paral-
lel execution with data cache support. Data that is propagated from one pipeline
stage to the next one is stored in separate cache banks (one output bank per
pipeline stage). These banks are passed to the next pipeline stage on every
pipeline step together with cached data. The cache will be regarded as preloaded
by the previous pipeline stage during static timing analysis.

Pyka et al. [15,16] proposed the time predictable On-demand coherent cache
(ODC2) technique which allows sharing data with cache support in special situ-
ations. The methodology relies on synchronization using mutexes and barriers.
Sharing data outside of synchronized regions is not allowed. Moreover, it must
be guaranteed that cache lines with private data are not shared, i. e. private
data of different cores must not be located in the same cache line.

Since there is no time predictable technique available that fulfills the need
for general cache coherence, we examine the well-know MESI coherence tech-
nique for suitability in hard real-time systems. We focus on a bus-based system,
given that the number of cores in hard real-time systems is likely to remain
comparatively low (2-8) in the near future.

1 In mixed criticality environments, non-critical threads do not need to follow any
guidelines or conventions.
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3 Analysis of Current Cache Coherence Techniques

All well-known coherence techniques focus on optimising average performance
with little attention to providing predictable timing behaviour. We examined
the MESI coherence techniques with respect to time predictability. We assume
an example system containing multiple cores (the concrete number is irrelevant)
connected by a shared bus to a shared memory. The cores are equipped with local
first level data caches. Further cache levels are not foreseen because they lack
analysability [21]. The bus arbitration follows a homogeneous TDMA scheme as
proposed by [21] and [10]. The memory controller is assumed to show predictable
timing behaviour as mentioned in Section 2. Instruction caches are not considered
in this study given that the read-only nature of these caches alleviates the need
for coherence.

The examined cache coherence techniques cover all combinations of the fol-
lowing characteristics and parameters, except for combinations of update-based
actualisation with write-back policy2:

1. Associativity: Direct mapped and associative caches show different charac-
teristics regarding analysability.

2. Write policy: The timing behaviour of write-back and write-through policies
is different. If a write-through technique is applied, write accesses modify
both the local cache content (in case of a hit) and the content of memory in
parallel. This means the memory is always up-to-date.

3. Write allocation: The chosen write allocation policy defines how a cache
deals with write accesses if the corresponding data is not present in the
cache. Write-allocate loads the required cache line into the cache and modifies
it afterwards. Non-write-allocate does not copy the data, instead the data
is written directly to the memory. Note that the latter complicates cache
coherence because other caches holding the specific data need to be updated.

4. Actualisation of cache content: We distinguish between invalidation-based
and update-based techniques. If one core modifies the content of a memory
location held in multiple caches, the corresponding cache lines in other cores
can be invalidated or updated to ensure coherent accesses.

5. Data transport: In case of a cache miss on data present in and modified by
another core, this data can be sent to the requesting core through the mem-
ory (pure bus-snooping) or directly from the source cache to the requesting
cache (bus-snarfing). In the first case, the cache holding data interrupts the
memory access of the requesting core and writes-back the new data to mem-
ory while snarfing means sending the new data directly to the target cache.

For a tight WCET estimation, sufficient knowledge of the cache content and
replacement policy (if applicable) is required as well as defined maximum laten-
cies for cache hits and misses (upper bounds must be quantifiable).3

2 Sending updates only at the time of evictions would mean that other caches are not
aware of remote modifications.

3 The upper bounds must be reasonably low because otherwise the use of uncached
accesses to shared memory would seem preferable over coherent caches.
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Figure 1 presents three

Fig. 1. Nature of local cache (shared, private) with
and without cache coherence and questions arising
at cache timing analysis

issues that need to be con-
sidered in a static analysis of
a memory access: the time
required to access the local
cache, whether the access
results in a hit or a miss
(depends on cache content),
and, in the case of a miss, the
latency for loading the cache
line from memory.

If no cache coherence is
supported, the first two ques-
tions can be answered on a
local, per-core basis. In this
case, other cores can only

influence the cache’s timing as a result of accesses to the shared bus. In con-
trast, when cache coherence is applied, there may be communication between
a local cache and other cores. Hence, both the cache’s contents as well as its
timing behaviour w.r.t the local core can be modified by other cores. The cache
can therefore not be treated as private any more.

The issues affecting cache content are therefore modifications by other cores
as well as invalidate/update actions of other caches. These prohibit static pre-
diction of the data stored in a cache line at a given point in time. Additionally,
the access latencies of cache hits and misses can vary depending on the states
and actions of other caches. These timing variations can be caused by:

– invalidate/update requests from the local cache that need to be sent to other
caches,

– memory requests that are interrupted by other caches (e.g. if another core
needs to write-back modified data),

– requests of other caches that need to be handled by the local cache (e.g. an
interruption of memory accesses of other caches).

We consolidated these issues and identified the following four topics that are
influenced by the presence of cache coherence: (A) Unpredictable invalidation,
(B) Cache access latency, (C) Shared data miss latency and (D) Write hit latency.
Here, (A) addresses individual cache lines or cache sets, (B) affects all cache
accesses independent from the state and the nature (private or shared) of the
accessed data, (C) is relevant only for cache misses if a shared cache line is
accessed, and (D) for writes on shared cache lines.

Since each can lead to uncertainties during timing analysis or even to an
unpredictable timing behaviour, we discuss them individually in the following
sections.
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3.1 A: Unpredictable Invalidation

In case of an invalidation-based coherence technique, the availability of a specific
piece of data is hard to predict. This applies primarily to cache lines with shared
data but also to private data in associative caches:

1. A cache line containing data which is shared with other cores can become
invalid if another core intends to write to that data.

2. Even though the lifetime of any private cache line is not directly affected
by shared data, the state of the replacement policy can be modified by
invalidations of shared cache lines. This problem does not exist for direct-
mapped caches since there is no replacement policy.

A simple example

Fig. 2. Different scenarios of shared data invalidation
can lead to eviction or preservation of private data A

(see Figure 2) illustrates
a situation where private
data is affected by a
coherence message: We
assume a 2-way set-
associative cache with
a Least-Recently-Used
(LRU) replacement pol-
icy and the cache line
access order A,X,B,A,
where the cache lines A
and B hold private and
X holds shared data.
All accesses occur within
the same set. If X is

invalidated before the access to B (scenario c), the free cache line can be used
for B. In the case X is not invalidated before (scenario a and b), B will evict A
and the next access to A will lead to a cache miss.

Hence, the lifetime of any cache line within a set that can hold shared data can
be influenced by unpredictable invalidations of other cores if an associative cache
is used. This makes the prediction of the cache content practically impossible.

In contrast, direct-mapped caches do not exhibit the problem of unpredictable
replacement status and are thus candidates for hard real-time multicore systems.

3.2 B: Cache Access Latency

Snooping- and snarfing-based coherence techniques require that all cores listen
to the activities of the bus. The cache control logic has to check at each activity
if the local cache is affected. This is done by comparing the address on the bus
with the cache tags stored locally. If the addressed cache line is available in the
local cache, the type of the bus transaction together with the local state of the
cache line is checked. Depending on the outcome of this check further actions
may be required by the cache controller.
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In general purpose systems, all these steps can be done by the same logic that
controls the accesses of the local core. If an internal and an external access occur
at the same time, one of the requests can be delayed, preferably the internal
one. With respect to hard real-time systems, delaying either of the requests is
problematic: Delaying the external request means affecting the timing of the
requesting core by local activities, while delaying the internal request means, at
first glance, an unpredictable influence on the local timing.

Whereas delaying external accesses is not an option, delaying internal
accesses has an upper bound, given a TDMA bus arbitration, and can there-
fore be analysed thus: During the TDMA slot assigned to the local core no
external request can occur. Hence, there will be no conflict at that time and the
local access to the cache can be performed.

Unfortunately, this solution brings a high overhead to the WCET because,
even for cache hits, a maximum latency of the length of one TDMA period must
be assumed (i. e. external disruptions in all other slots). One possible solution
is to implement the cache as dual-ported cache resulting in higher hardware
complexity. The cache controller would then be able to deal with two requests
simultaneously: the internal read access from the local core and the external
invalidation or update request from another core. Write accesses are not an
issue because of (D).

3.3 C: Shared Data Miss Latency

A cache miss typically generates a read burst from main memory. Since data in
the main memory could be outdated with modified data present in another core’s
cache, a previous write back of the cache line possessing the data is necessary.
This topic is relevant only for write-back policy or if a write buffer is integrated.
If a simple write-through policy (i.e., no write buffers) is applied, this problem
does not occur. The use of bus-snarfing can also mitigate the problem.

The issue of data write-back leads to the following questions: Is the required
data modified by another core and not yet written back to memory? If so, when
will the other core be able to respond to the request and, if necessary, write back
the current data?

Since we are assuming a time predictable TDMA bus arbitration, the timing
of both issues must fit into the slots of the bus. In both cases, the remote core
(if any) can use the slot of the local core to respond to the read request. This is
possible because, at that instance, the remote core is not allowed to send its own
request to the bus anyway. Figure 3 shows an example timing of a TDMA-
based quad-core system in combination with bus-snooping and bus-snarfing,
respectively.

As can be seen in the figure, a snooping-based technique with write-back
policy does not meet the requirements of hard real-time systems: In the first
step, a core (core 1) issues a read request for a cache line present in another
core (core 2). Core 2 has to write-back that data first which cannot be per-
formed in the current time slot because this slot is already occupied by the read
request aborted by core 2. Since it is not allowed for core 2 to use its own slot
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Fig. 3. Example timing of a cache miss when accessing shared data that is modi-
fied and available in another cache (write-back policy). An unpredictable and possibly
unbounded waiting time can occur in case of a bus-snooping technique.

(which is reserved for core 2’s own memory accesses), the write-back has to take
place during the next slot of core 1. Now, the cores 2, 3, and 0 could access
that particular data in the following slots with intention to write (write-allocate
technique assumed, read accesses are no problem here). If this is the case, the
new request is handled immediately since the memory is up-to-date and the
requesting core (2,3, or 0) afterwards holds again a modified copy of the data
originally requested by core 1.

This circumstance results in the original starting situation from core 1’s point
of view. In this case, the next attempt of core 1 to read the data will again fail.
We conclude that the access latency to shared data cannot be bounded if a
snooping-based write-back technique with write-allocate is used since starvation
can occur.

With bus-snarfing, the data required by core 1 is delivered by core 2 directly,
given that core 2 is able to handle the request immediately (see Section 3.2).
Since the read is now an atomic action, it cannot be interrupted or harmed by
any other core. The latency of a cache miss can be bounded independently of
the availability of the corresponding data in other caches.

Alternatively, a non-write-allocated write technique can be applied. In this
case, no core will ask for the specific cache line with intention to write within
the critical phase (between write-back and second trial of core 1). Instead the
intended write will be performed on the memory directly without copying the
data to the cache.

3.4 D: Write Hit Latency

If a core wants to write on a cache line that is present in the local cache as
well as in other cores (i. e. in MESI shared state), the write cannot be executed
immediately even if a write-back policy is applied. Figure 4 demonstrates the
following situation: The local caches of two cores hold the same cache line and
both cores want to write on that line in the same cycle. Both cores recognise a
hit which means that each one has to announce the write to the other cores in
order to get the line in exclusive state. In general purpose systems, both cores
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Fig. 4. Two cores perform writes to the same cache line which is present in both caches.
The writes cannot be performed immediately since the cores do not know about each
others’ activity.

will compete for the bus. The winner will perform the write first and the second
core will follow.

In case of a TDMA-based bus arbitration scheme, each core has to wait until
its own time slot has arrived before making the announcement. This means that
in the worst case a core has to wait for one TDMA period before performing a
write on a cache hit. Moreover, this is valid only for bus-snarfing or update-based
techniques. For invalidation-based bus-snooping, a similar starvation situation
as described in paragraph 3.3 can occur, resulting in an indefinite delay. Since
the cache lines are already available in the cache, there is no difference between
write-allocate and non-write-allocate.

Note that with write-through policy every core has to wait for its TDMA
slot anyway. Accordingly, there is no difference between write hits and misses to
shared data or to private data.

4 Cache Coherence for Hard Real-time Systems

Figure 5 shows a summary of the issues concerning time predictability of
MESI-based cache coherence techniques. The figure targets single-ported direct-
mapped caches since associative caches generally suffer from the problem of
external modifications of the replacement state with all invalidation-based tech-
niques (left sub-figure). The combination of update-based and write-back is not
useful and not considered here. The labels refer to the issues mentioned in the
preceding paragraphs. (CU) and (DU) represent the unbounded delays of (C)
and (D), respectively.

The snooping-based write-invalidate techniques are probably the most fre-
quently implemented techniques in general purpose and high performance
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Fig. 5. Summary of issues concerning time predictability of different cache coherence
techniques. The summary focuses on single-ported direct-mapped caches.

systems. As can be seen, these techniques suffer from all the above mentioned
issues complicating or even impeding (unbounded delays CU and DU) a static
WCET analysis.

In contrast, update-based caches with write-through policy allow a static
WCET analysis in principle. Moreover, if several preconditions are fulfilled, over-
estimation can be reduced to a minimum: Since (B) is based on the implemen-
tation of a single-ported cache, it is not relevant anymore with a dual-ported
cache. Hence, only (D) affects the WCET analysis of update-based caches, inde-
pendently of the used write-allocate and data transportation techniques. Fortu-
nately, (D) does not impede a WCET analysis but rather just slightly increases
pessimism.

In the following equations 1-4, we present worst-case bound estimations for
the accesses read hit (trd hit), read miss (trd miss), write hit (twr hit), and write
miss (twr miss) if an update-based dual-ported cache with write-through (WT)
policy is used. TTDMA represents the period of the TDMA arbitration scheme
in processor clock cycles and TLatmem

indicates the latency of the memory and
the bus for data delivery of read requests.

trd hit − immediateprocessing (1)

trd miss = TTDMA + TLatmem
(2)

twr hit =
{
TTDMA, if exclusive because of write-trough
TTDMA, if shared because of (D) (3)

twr miss =
{

TTDMA, for non-write-allocate
2 ∗ TTDMA + TLatmem

, for write-allocate (4)
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The presented worst-case latencies show that integrating local data caches
with cache coherence for shared data is reasonable compared to uncached
accesses to shared data. Even though the cache provides performance improve-
ments only for cache-hits-on-read, this kind of access is the major reason for
applying caches in the first place. Here, a cache improves worst-case access to
shared data by TTDMA + TLatmem

4 which can be considerably high with a large
number of cores.

5 Conclusion

This paper presents a way to implement a hardware cache coherence technique
suitable for hard real-time systems. In multicore processors with local data caches
a technique must be provided that allows multiple cores to access shared data in
a coherent way. A multiplicity of coherence techniques with different characteris-
tics are well-known for general purpose systems but they lack time predictability.

After a study of different embodiments of bus-based MESI cache coherence
methods with respect to timing analysis, we found out that time predictable
cache coherence is possible with well-known MESI techniques. Together with a
time predictable TDMA bus interconnect and an analysable memory controller,
an update-based dual-ported direct-mapped cache using bus-snarfing can provide
statically predictable timing behaviour. Moreover, the worst-case latencies are
in the range of the timing given by the TDMA bus and need to be assumed even
if no cache is applied.
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11. Paolieri, M., Quiñones, E., Cazorla, F.J., Valero, M.: An Analyzable Memory Con-
troller for Hard Real-Time CMPs. IEEE Embedded Systems Letters 1(4), 86–90
(2009)

12. parMERASA - Multi-Core Execution of Parallelised Hard Real-Time Applications
Supporting Analysability, EU FP7 Project. http://www.parmerasa.eu/

13. Prisaznuk, P.: Integrated modular avionics. In: Proceedings of the IEEE 1992
National Aerospace and Electronics Conference, NAECON 1992, vol. 1, pp. 39–45,
May 1992

14. Prisaznuk, P.: Arinc 653 role in integrated modular avionics (ima). In: IEEE/AIAA
27th Digital Avionics Systems Conference, DASC 2008, pp. 1.E.5-1–1.E.5-10,
October 2008

15. Pyka, A., Rohde, M., Uhrig, S.: Performance evaluation of the time analysable
on-demand coherent cache. In: TrustCom/ISPA/IUCC, pp. 1887–1892 (2013)

16. Pyka, A., Rohde, M., Uhrig, S.: A real-time capable coherent data cache for multi-
cores. Concurrency and Computation: Practice and Experience 26(6), 1342–1354
(2014). http://dx.doi.org/10.1002/cpe.3172

17. Ramaprasad, H., Mueller, F.: Bounding worst-case data cache behavior by ana-
lytically deriving cache reference patterns. In: Proceedings of the 11th IEEE
Real Time on Embedded Technology and Applications Symposium, RTAS 2005,
pp. 148–157. IEEE Computer Society, Washington, DC (2005). http://dx.doi.org/
10.1109/RTAS.2005.12

18. Reineke, J., Liu, I., Patel, H.D., Kim, S., Lee, E.A.: PRET DRAM controller: bank
privatization for predictability and temporal isolation. In: CODES+ISSS 2011:
Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, pp. 99–108. ACM, October 2011

19. Schliecker, S., Ivers, M., Ernst, R.: Integrated analysis of communicating tasks in
mpsocs. In: Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2006, pp. 288–293. ACM, New York
(2006). http://doi.acm.org/10.1145/1176254.1176325

20. Sen, R., Srikant, Y.N.: Wcet estimation for executables in the presence of data
caches. In: Kirsch, C.M., Wilhelm, R. (eds.) Proceedings of the 7th ACM &
IEEE International Conference on Embedded Software, EMSOFT 2007, Salzburg,
Austria, September 30 - October 3, 2007, pp. 203–212. ACM (2007)

21. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. Trans. Comp. Aided Des. Integ. Cir. Sys. 28(7), 966–978 (2009)

http://doi.acm.org/10.1145/1555754.1555764
http://www.parmerasa.eu/
http://dx.doi.org/10.1002/cpe.3172
http://dx.doi.org/10.1109/RTAS.2005.12
http://dx.doi.org/10.1109/RTAS.2005.12
http://doi.acm.org/10.1145/1176254.1176325


Allocation of Parallel Real-Time Tasks
in Distributed Multi-core Architectures

Supported by an FTT-SE Network

Ricardo Garibay-Mart́ınez(B), Geoffrey Nelissen,
Luis Lino Ferreira, and Lúıs Miguel Pinho
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Abstract. Distributed real-time systems such as automotive applica-
tions are becoming larger and more complex, thus, requiring the use of
more powerful hardware and software architectures. Furthermore, those
distributed applications commonly have stringent real-time constraints.
This implies that such applications would gain in flexibility if they were
parallelized and distributed over the system. In this paper, we consider
the problem of allocating fixed-priority fork-join Parallel/Distributed
real-time tasks onto distributed multi-core nodes connected through a
Flexible Time Triggered Switched Ethernet network. We analyze the sys-
tem requirements and present a set of formulations based on a constraint
programming approach. Constraint programming allows us to express the
relations between variables in the form of constraints. Our approach is
guaranteed to find a feasible solution, if one exists, in contrast to other
approaches based on heuristics. Furthermore, approaches based on con-
straint programming have shown to obtain solutions for these type of
formulations in reasonable time.

Keywords: Constraint programming · Real-time · Parallel tasks ·
Distributed multi-core architectures

1 Introduction

Modern cars are a good example of time-constrained distributed systems. They
are composed of tens of computing nodes, some of them based on multi-core
architectures interconnected by various types of communication networks. The
complexity of their workload never stops increasing, therefore, many of their
applications would gain in flexibility if they were parallelized and distributed
over the system.

The fork-join Parallel/Distributed real-time model (P/D tasks) [1], was desig-
ned to consider such execution pattern. In this paper, we consider P/D tasks and
a distributed computing platform composed of multi-core nodes, and intercon-
nected by a Flexible Time Triggered - Switched Ethernet (FTT-SE) network [2].
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A P/D task starts with a master thread executing sequentially, which may then
fork to be executed in parallel on local and remote nodes. When the parallel
execution is completed on the local and remote nodes, the partial results are
transmitted using messages, and aggregated by the master thread. The mas-
ter thread then resumes its execution until the next fork. Since the threads are
potentially distributed over the different nodes composing the platform, we call
these operations Distributed-Fork (D-Fork) and Distributed-Join (D-Join).

Furthermore, for a given task set and a given computing platform, the main
challenge is to find a feasible allocation for the tasks in a way that all the tasks
meet their associated end-to-end deadlines. An end-to-end deadline represents
the longest elapsed time that a sequence of threads and messages composing a
task is permitted to take from the time instant at which it is activated, and the
instant at which the last thread of the task completes its execution.

Contribution. In this paper, we present a set of formulations for modeling the
allocation of P/D tasks in a distributed multi-core architecture by using a con-
straint programming approach. Constraint programming approach expresses the
relations between variables in the form of constraints. Our constraint program-
ming formulation is guaranteed to find a feasible allocation, if one exists, in
contrast to other approaches based on heuristic techniques. Our work is close to
the one presented in [4], but with the main difference: (i) that we model fork-
join Parallel/Distributed real-time tasks executing over a distributed multi-core
architecture, and (ii) that we consider messages being transmitted through a
Flexible Time Triggered Switched Ethernet (FTT-SE) network. Furthermore,
similar approaches based on constraint programming have shown that it is pos-
sible to obtain solutions for these type of formulations in reasonable time [3,4].

Structure of the Paper. Section 2 presents the related work. In Section 3 we intro-
duce the system model. We introduce the constraint programming formulation
in Section 4. Finally, our conclusions are drawn in Section 5.

2 Related Work

In this section, we briefly review work related to: (i) scheduling of fixed-priority
parallel real-time tasks, and (ii) the problem of allocating tasks and messages
in distributed systems. Nevertheless, we restrain our attention to the case of
real-time pre-emptive fixed-priority scheduling.

Research related to the scheduling of fixed-priority parallel real-time tasks has
essentially targeted multi-core architectures. In [5], the authors introduced the
Task Stretch Transformation (TST) model for parallel synchronous tasks that
follow a fork-join structure. The TST considers preemptive fixed-priority periodic
tasks with implicit deadlines partitioned according to the Fisher-Baruah-Baker
First-Fit-Decreasing (FBB-FFD) [6] algorithm. Similarly, the Segment Stretch
Transformation (SST) model was introduced in [7]. The authors converted the
parallel threads of a fork-join task into sequential tasks by creating a master
thread, but with the difference (when compared to [5]) that no thread is ever
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allowed to migrate between cores. That work was generalized in [8], by allowing
an arbitrary number of threads per parallel segment, and in [9] for the scheduling
of tasks represented by a Directed Acyclic Graph (DAG).

The problem of allocating sequential task in distributed systems has been
intensively studied. Related works can be divided into: (i) heuristic based, and
(ii) optimal strategies.

Related to heuristics based research, Tindell et al. [10] addressed these issues
as an optimization problem, solving it with the general purpose Simulated
Annealing algorithm. In [11] the authors assume a set of tasks and messages
that are statically allocated to processors and networks (therefore no partitioning
phase is considered), focusing on assigning the priorities to tasks and messages.
Azketa et al. [12], addressed this problem by using the general purpose genetic
algorithms. The authors initiate their genetic algorithm by assigning priorities
using the HOPA heuristic [11], which is based on Deadline Monotonic (DM)
priority assignment [13], and iterate over different solutions. To test schedula-
bility they use the holistic analysis presented in Tindell et al. [14] and Palencia
et al. [15,16] schedulability tests. In [17] we proposed the DOPA heuristic, which
simultaneously solves the problem of assigning tasks to processors and assigning
priorities to tasks. DOPA is based on Audsleys Optimal Priority Assignment
(OPA) algorithm [18] to assign priorities to tasks and messages.

Regarding optimal strategies, in [19] a solution based on branch-and-bound
was proposed, enumerating the possible paths that can lead to an allocation, and
cutting the path whenever a feasible schedule cannot be reached by following
such task assignment. The bounding step is performed by checking the schedu-
lability of each branch, based on the schedulability analysis derived by Tindell
et al. [14]. In [3] the authors propose to solve the problem of allocation of tasks
by formulating a mixed integer linear programming framework. Similarly to this
work, in [4], the authors model the task partitioning problem as a constraint
optimization programming problem. Both works assume that each thread has
its own period and deadline.

In the previous work [1] we studied the problem of scheduling fork-join tasks
on a distributed system composed of single-processor nodes and a shared bus
communication network. Distributed systems have the particularity that the
transmission delay of messages communicating threads within a task, cannot be
deemed negligible as in the case of multi-core systems [5,7,8]. In here, we extend
the problem of task allocation of fork-join real-time tasks presented in [1], by
considering (i) a distributed multi-core architecture, and (ii) using a FTT-SE
network for message transmission.

3 System Model

We consider a distributed computing platform composed of a set N = {ν1, . . . , νm}
of m multi-core nodes to execute tasks. Each node νr (r ∈ {1, . . . , m}) is composed
of mr identical cores πr,s (s ∈ {1, . . . , mr}). The total number of cores in the
system is therefore equal to mtot =

∑
νi∈N mr. The processing nodes are inter-

connected by an FTT-SE network ρ = {SW1, . . . , SWw} of w Ethernet switches.
The switches and distributed nodes are interconnected through full-duplex links.
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Also, we consider a set T = {τ1, . . . , τn} of n periodic P/D tasks. Figure 1
shows an example of a P/D task τi. A task τi is activated with a period Ti,
and is characterized by an implicit end-to-end deadline Di. A P/D task τi (i ∈
{1, . . . , n}) is composed of a sequence of ni sequential and parallel distributed
segments σi,j (j ∈ {1, . . . , ni}). ni is assumed to be an odd integer, since a P/D
task should always start and finish with a sequential segment. Therefore, odd
segments σi,2j+1 identify sequential segments and even segments σi,2j identify
P/D segments. Each segment σi,j is composed of a set of threads θi,j,k with
k ∈ {1, . . . , ni,j}, where ni,j = 1 for sequential segments.
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Fig. 1. The fork-join parallel distributed periodic real-time task (P/D task) model.

All sequential segments of a P/D task τi belong to the master thread, there-
fore, they are assumed to execute on the same core. This means that the core
that performs a D-Fork operation (invoker core) is in charge of aggregating the
result by performing a D-Join operation. Some threads within a P/D segment
may be executed on remote node νl. Consequently, for each thread θi,j,k belong-
ing to a P/D segment, two messages μi,j−1,k and μi,j,k are transmitted between
the invoker and remote core. That is, P/D threads and messages that belong
to a P/D segment and execute on a remote core, have a precedence relation:
μi,j−1,k → θi,j,k → μi,j,k. We call this sequence a distributed execution path
(denoted as DPi,j,k). If a P/D thread executes on the same node νl than the
master thread, the transmission time of μi,j−1,k and μi,j,k are equal to zero, since
the transfer of data through a shared memory can be considered negligible.

For each P/D segment, there exists a synchronization point at the end of
the segment, indicating that no thread that belongs to the segment after the
synchronization point can start executing before all threads of the current seg-
ment have completed their execution. Threads are preemptive, but messages are
non-preemptive. Each thread θi,j,k has a Worst-Case Execution Time (WCET)
of Ci,j,k, and each message μi,j,k has a Worst-Case Message Length (WCML)
Mi,j,k.

4 Constraint Programming Formulation

The problem of task allocation can be seen as a two-sided problem: (i) finding
the partitioning of threads and messages onto the processing elements of the
distributed system, and (ii) finding the priority assignment for the threads and
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messages in that partition so that the real-time tasks and messages complete
their execution before reaching their respective end-to-end deadlines.

In this section we analyze the system requirements and provide a formulation
based on a constraint programming approach similar to [4].

4.1 Parallel/Distributed Tasks

In a similar manner as in [1], we transform threads composing a P/D task into
a set of independent sequential tasks with constrained deadlines. This transfor-
mation is based on the imposition of a set of artificial intermediate deadlines
(denoted as di,j), to threads θi,j,k and messages μi,j,k, in each segment σi,j . The
following two constraints must be associated to each intermediate deadline di,j.

Even if all threads execute in parallel, the relative deadline di,j cannot be
smaller than the maximum WCET of a thread in that segment, thereby imposing
that: ∧

∀τi∈T

∧

∀σi,j∈τi

di,j ≥ max
k=1,...,ni,j

{Ci,j,k}. (1)

Also, the total execution granted to all segments constituting a task τi must
be smaller or equal than the relative deadline of τi, that is:

∧

∀τi∈T

∑

∀σi,j∈τi

di,j ≤ Di. (2)

Thus, the artificial deadline di,j is the maximum time that threads of a seg-
ment σi,j are permitted to take, from the moment they are released, to the
moment they complete their execution. Therefore, the problem can be formu-
lated as to find the artificial deadlines di,j for every segment σi,j , in a way that
the Worst-Case Response Time (WCRT) of threads θi,j,k (and messages μi,j,k)
is smaller or equal to the end-to-end deadline Di. More constraints are presented
in Sections 4.2 and 4.3.

4.2 Fully-Partitioned Distributed Multi-core Systems

In this work, we assume a fixed-priority fully-partitioned scheduling algorithm.
Let us assume that each core in the system (regardless the processing node they
are part of) is assigned a unique identifier in the interval [1,mtot]. Then we
define the integer variable Πθi,j,k

, indicating the identifier of the core on which
the thread θi,j,k is mapped. By definition of the core identifier, the following
constraints apply:

Πθi,j,k
> 0, (3)

Πθi,j,k
≤ mtot. (4)
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A constraint of the P/D task model is that all sequential segments of a task
τi must execute on the same core πr,s. This is imposed by (5):

∧

∀θi,2j+1,1∈T

∧

∀θi,2b+1,1∈T

Πθi,2j+1,1 = Πθi,2b+1,1
. (5)

Let us define the variable pi,j,k as the priority of a thread θi,j,k. Although
pi,j,k could be an integer variable of the problem for which the solver finds a
valid value in its proposed solution, in a concern of drastically reducing the
number of variables and therefore the complexity of the problem, one may also
assume that priorities are assigned using DM [13], in which case pi,j,k = di,j, and
pi,j,k can be omitted in the description of the problem. Yet, it is necessary to
evaluate if a certain partitioning leads to a valid solution. We know from [20],
that the worst-case response time ri,j,k of an independent thread θi,j,k scheduled
with a preemptive fixed-priority scheduling algorithm, is given by (6):

ri,j,k = Ci,j,k +
∑

θa,b,c∈HPi,j,k

⌈
ri,j,k
Ta

⌉

Ca,b,c, (6)

where HPi,j,k is the set of threads with higher or equal priority than θi,j,k, and
executing on the same core than θi,j,k.

This can be modeled in the constraint problem as:
∧

∀θi,j,k∈T

ri,j,k = Ci,j,k +
∑

∀θa,b,c∈T

IHPa,b,c
i,j,k , (7)

where IHPa,b,c
i,j,k is the interference caused by a thread θa,b,c on θi,j,k.

Higher priority relation is represented by the following boolean variable:

pa,b,c
i,j,k =

{
1 if θa,b,c has higher priority than θi,j,k (pi,j,k ≤ pa,b,c),
0 otherwise.

Because Πθi,j,k
= Πθa,b,c

indicates that the θi,j,k and θa,b,c threads execute on the
same core, the total interference over a thread θi,j,k is expressed as:

∧

∀θi,j,k∈T

∧

∀θa,b,c∈T

IHPa,b,c
i,j,k =

{
Ia,b,c
i,j,k × Ca,b,c if

(
(pa,b,c

i,j,k = 1) ∧ (Πθi,j,k
= Πθa,b,c

)
)
,

0 otherwise,
(8)

where Ia,b,c
i,j,k is the number of preemptions a thread θi,j,k suffers from a thread

θa,b,c. Since Ia,b,c
i,j,k is an integer, the ceiling operator can be rewritten as follows:

⌈
ri,j,k
Ta

⌉

= Ia,b,c
i,j,k =⇒ ri,j,k

Ta
≤ Ia,b,c

i,j,k <
ri,j,k
Ta

+ 1, (9)

thereby, leading to the following constraints:
∧

∀θi,j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k
= Πθa,b,c

) → (Ia,b,c
i,j,k × Ta ≥ ri,j,k)

∧
(
(Ia,b,c

i,j,k − 1) × Ta < ri,j,k
)

,

(10)
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∧

∀θi,j,k∈T

∧

∀θa,b,c∈T

(Πθi,j,k
�= Πθi,j,k

) → Ia,b,c
i,j,k = 0. (11)

Furthermore, in the P/D task model, some threads within a P/D segment
may be executed on remote nodes. Consequently, for each such thread θi,j,k,
two messages μi,j−1,k and μi,j,k are transmitted between the invoker and remote
node. That is, a distributed execution path is generated (μi,j−1,k → θi,j,k →
μi,j,k).

NV(θi,j,k) is a function denoting to which node νq a thread θi,j,k has been
assigned. Then, NV(θi,j,k) = NV(θa,b,c) indicates that the threads θi,j,k and θa,b,c

execute on the same node, in which case no message is transmitted through the
network. However, if NV(θi,j,k) �= NV(θa,b,c), the WCRT rDPi,j,k

of a distributed
execution path DPi,j,k must be as follows:

∧

∀μi,j,k∈T

∧

∀θi,j,k∈T

rDPi,j,k
=

{
rmsg
i,j−1,k + ri,j,k + rmsg

i,j,k if NV(θi,j,k) �= NV(θa,b,c),

ri,j,k otherwise,
(12)

where ri,j,k is the WCRT of thread θi,j,k obtained with (7), and rmsg
i,j−1,k and rmsg

i,j,k are
the WCRTs of messages μi,j−1,k and μi,j,k respectively, obtained with a network
dependent analysis. In this paper, we assume the network analysis presented in
[21] for FTT-SE networks. Thus, for a partition of tasks τi to be considered a
valid solution (all deadlines are met), the following condition has to be respected:

∧

∀θi,j,k∈T

rDPi,j,k
≤ di,j. (13)

4.3 FTT-SE Network

The communications within a FTT-SE network are done based on fixed duration
slots called Elementary Cycles (ECs). The construction of the EC schedule is
done by keeping updated tables for synchronous (i.e., periodic) and asynchronous
(i.e., sporadic) messages. The scheduler applies a scheduling policy (e.g., Dead-
line Monotonic) over these tables, generating the ready queues for transmission
for that EC. This process is repeated until no other message fits in its respective
scheduling window for that EC (i.e., considering all messages from higher to
lower priority). For building the ECs it is important to consider:

i. the architecture of the distributed system. The architectural model must
include the full-duplex transmission links. We represent the architecture as
an adjacency-matrix of a graph G = (V,E). The set V = {v1, . . . , v|V |} of
vertices vi represents the set of switches ρ and the set of nodes N , and the
set E = {(v1, v2), . . . , (v|V |−1, v|V |)} of edges (vi, vj), represent the commu-
nication links, from nodes to switches, from switches to nodes or between
switches. Note that: (i) direct links between nodes do not exist, (ii) links are
directed; that is, (vi, vj) and (vj , vi) represent two different links, and (iii)
the network is full-duplex; that is, if (vi, vj) is part of the graph, then (vj , vi)
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is too. Thus, the adjacency matrix representation of a graph G consists of
a |V | × |V | matrix A = (ai,j) such that:

ai,j =

{
1 if (vi, vj) ∈ E,
0 otherwise,

depending of the partitioning of threads onto the nodes νl of the system,
there exists a set PNμi,j,k

⊆ V containing the vertices (i.e., switches) that
a message μi,j,k traverses during a D-fork or a D-join operation. For deter-
mining PNμi,j,k

, we use the Breadth-First Search (BFS) Algorithm [22] for
each message μi,j,k. The BFS inputs are: the matrix A (representing the
system architecture), the origin vertex (invoker core/remote core), and the
destination vertex (the remote core/invoker core). The BFS finds the short-
est path from the origin node to the destination node. Therefore, the BFS
algorithm finds the switches that a message μi,j,k crosses during a D-fork or
a D-join operation. The set PNμi,j,k

is required for computing the WCRT of
a message μi,j,k in the FTT-SE network.

ii. the switching delays. In this paper, we consider a switching delay (denoted
as SDi,j,k) when a message μi,j,k crosses a switch SWz. SDi,j,k has two com-
ponents, the switch relaying latency (denoted as Δ), which has a constant
value related to the specifications of the switch, and the Store-and-Forward
Delay (denoted as SFDi,j,k), i.e., SDi,j,k = SFDi,j,k +Δ. However, for each EC,
only the maximum switching delay SDi,j,k is considered.

iii. the EC is subdivided into time slots for transmitting different types of traffic
(e.g. synchronous window, asynchronous window, etc.). Thus, one must con-
sider the length of the specific transmission window for each type of traffic
(denoted as LW ). The length of such a window is the reserved bandwidth for
transmission in that EC, and cannot be exceeded when transmitting mes-
sages within the FTT-SE protocol. This is modeled by the request bound
function in (14), and the supply bound function (19), presented in the fol-
lowing.

Response Time Analysis for FTT-SE Networks. Depending on a given
partition, we have to find the WCRT of the messages in the network to verify
if the condition in (13) is respected. We consider the work presented in [21] for
the computation of the WCRT of messages within the FTT-SE protocol, with a
slight modification.

The request bound function rbfi,j,k(t) represents the maximum transmis-
sion requirements generated by a message μi,j,k and all its higher priority mes-
sages during an interval [0, t]. The rbfi,j,k(t) is computed as:

∧

∀μi,j,k∈T

rbfi,j,k(t) = Mi,j,k + sni,j,k × SFDi,j,k + Wli,j,k(t) + Wri,j,k(t), (14)

where, sni,j,k is the number of switches that a message μi,j,k traverses from the
origin node to its destination node, Wli,j,k(t) is the “Shared Link Delay”, and
Wri,j,k(t) is the “Remote Link Delay”, which are explained below.
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Shared Link Delay. The transmission of a message μi,j,k may be delayed by all the
higher priority messages that share a link with μi,j,k. However, such interference
occurs only once, so messages that caused such interference on a previous link are
excluded from the analysis for the next links. Also, when building the schedule
for each EC, the scheduler considers the maximum switching delay SDz (see
(16)), only once. Therefore, Wli,j,k(t) is computed by separating the interference
of messages from the switching-delay-effect (denoted as Isi,j,k(t)) for each EC.
The shared link delay is computed in (15):

Wli,j,k(t) =
∑

∀μa,b,c∈SLDi,j,k

⌈
t

Ta

⌉

Ma,b,c + Isi,j,k(t), (15)

where SLDi,j,k = {∀μa,b,c : μa,b,c �= μi,j,k ∧ (PNμi,j,k
∩ PNμa,b,c

�= 0) ∧ μa,b,c ∈
hp(μi,j,k) ∧ μa,b,c ∈ WT (μi,j,k)}, where, hp(μi,j,k) is the set of messages with
priority higher or equal than μa,b,c and WT (μi,j,k) is the set of messages that are
scheduled in the same window as μa,b,c (i.e. the synchronous or the asynchronous
window). The set hp(μi,j,k) for messages μi,j,k in (15), as well as the ceiling
function, can be formulated in a similar manner as in Section 4.2.

For computing the switching-delay-effect Isi,j,k(t), it is needed to compute an
upper bound on the number of switching delays (SDi,j,k) from each message that
contributes to (15), at time t. In [21], depending on time t, a number of switching
delays are inserted into an array whenever a message crosses a switch in the
network. The array is sorted in order to consider the maximum switching delays
only. A sorting operation is not amenable to optimization solvers. Therefore,
we introduce a simpler upper bound with the cost of slightly increment the
pessimism.

The number of ECs in an interval [0, t] is given by: z(t) =
⌈

t
EC

⌉
(the ceiling

function, can be formulated as in Section 4.2), thus, in order to consider the
worst-case scenario for the computation of the WCRT, we consider the maximum
switching delay (SDmax

i,j,k ) for each message that contributes to (15), and computed
as:

SDmax
i,j,k = max

∀μa,b,c∈SLDi,j,k

{SFDi,j,k + Δ}. (16)

Then, the maximum switching delay is multiplied by the number of ECs at
time t (given by z(t)). Thus, the switching-delay-effect is computed as:

Isi,j,k = SDmax
i,j,k × z(t). (17)

Remote Link Delay. A message μi,j,k can be blocked by other higher priority
messages even if they do not share a transmission link. Thus, a higher priority
message can delay a lower priority message even though they do not share a
transmission link [21]. Therefore, to compute the worst-case remote link delay,
it is needed to consider all messages that share links with the messages that
contributed to the shared link delay (see (15)), excluding all messages that are
already considered in (15). Hence, we have:

Wri,j,k(t) =
∑

∀μp,q,r∈RLDi,j,k

⌈
t

Tp

⌉

Mp,q,r (18)
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where, RLDi,j,k = {∀μp,q,r : μp,q,r �= μa,b,c �= μi,j,k ∧ (PNμp,q,r ∩ PNμa,b,c
�= 0) ∧

(PNμp,q,r ∩ PNμi,j,k
= 0)(PNμa,b,c

∩ PNμi,j,k
�= 0) ∧ μp,q,r ∈ hp(μa,b,c) ∧ μp,q,r ∈

WT (μa,b,c)}.
The demand bound function is then compared with the supply bound func-

tion sbfi,j,k(t), which represents the minimum effective communication capacity
that the network supplies during the time interval [0, t] to a message μi,j,k. In
each EC, the bandwidth provided for transmitting each type of traffic (e.g., syn-
chronous or asynchronous traffic) is equal to (LW−I)

EC , where LW is an input and
represents the length of the specific transmission window and I is the maximum
inserted idle time of such window. The inserted idle time results from the fact
that the maximum window duration cannot be exceeded.

∧

∀μi,j,k∈T

sbfi,j,k(t) = (
LW − I

EC
) × t. (19)

Then, the response time of a message μi,j,k is computed by introducing a
new variable ti,j,k such that:

∧

∀μi,j,k∈T

ti,j,k > 0, (20)

∧

∀μi,j,k∈T

sbfi,j,k(ti,j,k) ≥ rbfi,j,k(ti,j,k). (21)

Since it is not possible to determine the specific time of transmission of
messages inside an EC, the computation of the WCRT for a message μi,j,k is in
terms of a number of ECs, thus the WCRT of a message μi,j,k is given by:

∧

∀μi,j,k∈T

rmsg
i,j,k =

⌈ ti,j,k
EC

⌉
× EC. (22)

4.4 Constraint Satisfiability

The constraints sketched above are a combination of linear and non-linear con-
straints over a set of integer and boolean variables. This implies the use of
extremely powerful optimization methods. It has been shown (e.g., [4]) that
such type of optimization problems are not amenable for conventional numer-
ical optimization solvers. However, for real-time purposes, a correct solution is
obtained by guaranteeing that all the constraints are satisfied, regardless of the
value of a given objective function. Thus, the optimization problem gets reduced
to a Satisfiability (SAT) problem, in which solutions can be obtained in reason-
able time [4]. The constrains and optimization variables are summarized in the
following.
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Summary. We convert a set of P/D tasks τi into a set of independent sequential
tasks, by imposing a set of artificial intermediate deadlines. The constraints for
intermediate deadline are: (1) and (2). A valid partition, in which all threads
respect their intermediate deadlines di,j, is constrained with (5) and (7). The
WCRT of a distributed execution path (DPi,j,k) depends on where the threads
in a P/D segment are executed (i.e., locally or remotely), that is modeled in
(12). If threads θi,j,k are executed remotely, the WCRT of messages transmitted
through an FTT-SE network has to be considered. That is modeled with (20)-
(21). Finally, all tasks have to respect the condition in (13).

5 Conclusions

In this paper we presented the formulations for modeling the allocation of P/D
tasks in a distributed multi-core architecture supported by an FTT-SE network,
by using a constraint programming approach. Our constraint programming app-
roach is guaranteed to find a feasible allocation, if one exists, in contrast to other
approaches based on heuristic techniques. Furthermore, similar approaches based
on constraint program have shown that it is possible to obtain solutions for these
formulations in reasonable time.
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Abstract. Probabilistic Timing Analysis (PTA) has emerged recently
to derive trustworthy and tight WCET estimates. Computational costs
due to the use of the mathematical operator called convolution used by
SPTA – the static variant of PTA – and also deployed in many domains
including signal and image processing, jeopardize the scalability of SPTA
to real-size programs. We evaluate, qualitatively and quantitatively, opti-
mizations to reduce convlution’s computational costs when it is applied
to SPTA. We showthat SPTA specific optimizations provide the largest
execution time reductions, at the cost of a small loss of precision.

1 Introduction

Probabilistic Timing Analysis (PTA) [2,3,5,7,9,16] has emerged recently as a
powerful family of techniques to estimate the worst-case execution time (WCET)
of programs. Recent PTA techniques advocate for hardware and software designs
that either have fixed latency or randomized timing behavior [5,7,10,11], to
produce WCET estimates that can be exceeded with a given – arbitrarily low –
probability , which are typically referred to as probabilistic WCET (pWCET)
estimates. Using those hardware and software designs increases coverage (and
so usefulness) of pWCET estimates [6]. Examples of time-randomized hardware
elements are caches with random placement and/or replacement [5,11,13].

The static variant of PTA, called SPTA, has recently been object of intense
study [2,5,8,14]. In this paper we contribute to SPTA development by identifying
and mitigating one of the major bottlenecks for SPTA to scale to industrial-size
programs: its execution time requirements.

Under SPTA, each instruction has a probabilistic timing behavior repre-
sented with an Execution Time Profile (ETP). An ETP is expressed by a tim-
ing vector that enumerates all the possible latencies that the instruction may
incur, and a probability vector, which for each latency in the timing vector,
lists the associated probability of occurrence. Hence, for an instruction Ii we
have ETP (Ii) =<

→
ti ,

→
pi> where

→
ti= (t1i , t

2
i , ..., t

Ni
i ) and

→
pi= (p1i , p

2
i , ..., p

Ni
i ), with

∑Ni

j=1 pji = 1. The convolution function, ⊗, is used to combine ETPs, such that
a new ETP is obtained representing the execution time distribution of the exe-
cution of all the instructions convolved.
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With real-time programs growing in size, the need to carry out a convolution
operation for every instruction in the object code may incur high computation
time requirements. Hence, efficient ways to perform convolutions in the context
of SPTA are needed. In this paper we analyze a number of optimizations of the
convolution operation. Some optimizations keep precision, whereas some others
sacrifice some precision to reduce computational cost, while preserving WCET
trustworthiness.

– Among precision-preserving optimizations we consider convolution paral-
lelization, as largely studied previously in the literature [15,17], in 2 forms:
(1) inter-convolution parallelization, where ETPs to be convolved are split
into several groups that are convolved in parallel and (2) intra-convolution
parallelization where one (or both) of the ETPs to be convolved is split into
sub-ETPs so that each sub-ETP is convolved with the other ETP in parallel.

– Among optimizations that sacrifice some precision to reduce convolution
cost, we consider (3) discretization, such that few different forms of ETPs
exist and convolutions across identical ETPs need not be carried out too
often. We also consider (4) sampling where several elements in the ETP are
collapsed into one [12], thus reducing the length of the ETPs to be convolved
and so the number of operations.

Our results show that discretization and sampling – the SPTA specific opti-
mizations – lead to the highest reductions in execution time, whereas the com-
bination of intra- and inter-convolution parallelization provides second order
reductions in execution time. In particular, discretization and sampling reduce
execution time by a factor of 10 whereas precision-preserving optimizations
reduce it by a factor of 2. This execution time reduction comes at the expense
of a pWCET increase around 3%.

Another approach to speed-up convolutions is to use Fourier Transformation,
and in particular its discrete fast version (DFT). This approach needs first to
convert the distribution from the time domain to the frequency domain using
DFT. Then, according to the convolution theorem, a point-wise multiplication
is applied, which is equivalent to the convolution in the time domain. Finally,
inverse DFT is performed to obtain the distribution in the time domain. Evalu-
ating DFT to speed up convolutions is left for future work.

The rest of the paper is organized as follows. Section 2 provides background
on PTA and convolutions. Section 3 presents issues challenging SPTA scalability
and optimizations to reduce its computational cost. Optimizations are evaluated
in Section 4. Finally, Section 5 concludes the paper.

2 Background: PTA and Convolutions

Along a given path, assuming that the probabilities for the execution times of
each instruction are independent, SPTA is performed by deploying the discrete
convolution (⊗) of the ETPs that describe the execution time for each instruction
along that path. The final outcome is a probability distribution representing the
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Algorithm 1. Convolution canonical implementation
1: c ← 1
2: for i = 1 to N do
3: for j = 1 to N do
4: etpr.lat[c] ← etp1.lat[i] + etp2.lat[j]
5: etpr.prob[c] ← etp1.prob[i] ∗ etp2.prob[j]
6: c ← c + 1
7: end for
8: end for

timing behavior of the entire execution path. For the sake of clarity we keep the
discussion at the level of a single execution path.

More formally, if X and Y denote the random variables that describe the
execution time of two instructions x and y, the convolution Z = X ⊗ Y is
defined as follows: P{Z = z} =

∑k=+∞
k=0 P{X = k}P{Y = z − k}. For instance

if an instruction x is known to execute in 1 cycle with a probability of 0.9 and to
execute in 10 cycles with a probability of 0.1 and an instruction y has an equal
probability of 0.5 to execute in 2 or 10 cycles, we have:

Z = X ⊗ Y = ({1, 10}, {0.9, 0.1}) ⊗ ({2, 10}, {0.5, 0.5})
= ({3, 11, 12, 20}, {0.45, 0.45, 0.05, 0.05})

For every static instruction, i.e. instruction in the executable of the program,
SPTA requires that their ETPs are not affected by the execution of previous
instructions. When time-randomized caches are used, there is an intrinsic depen-
dence among the hit probability of an access (Phit) and the outcome of previous
cache accesses [5,8]. Existing techniques to break this dependence create a lower
bound function to Phit (so an upper bound to Pmiss) of every instruction to make
it independent – for WCET estimation purposes – from previous accesses [2,5,8].
Given that those methods are orthogonal to the cost of convolutions, we omit
details and refer the interested reader to the original works.

3 SPTA: Performance Issues and Optimizations

When implementing ETP convolution it is convenient to operate normalized
ETPs (ETPs whose latencies are sorted from lowest to highest). Canonical con-
volution of normalized ETPs then consists of three steps: convolution, sorting
and normalization. Convolution per se, shown in Algorithm 1, consists of mul-
tiplying each pair of probabilities from both ETPs and adding their latencies.
After convolution, latencies in the result ETP are not sorted anymore, which
is corrected by the sorting step. Normalization, shown in Algorithm 2, then
removes repeated latencies in ETPs; it combines consecutive repeated latencies
by adding up their probabilities.

Given two normalized ETPs of N elements each, convolution per se, has a
complexity of O(N2), and the resulting ETP contains N2 elements. The com-
plexity of sorting the N2 elements is O(N2 log N2). However, the resulting ETP
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Algorithm 2. Normalizing function
1: c ← 0
2: etp out.lat[0] ← etp in.lat[0]
3: for i = 1 to N do
4: if etp in.lat[i] = etp in.lat[i − 1] then
5: etp out.prob[c] ← etp out.prob[c] + etp in.prob[i]
6: else
7: c ← c + 1
8: etp out.lat[c] ← etp in.lat[i]
9: etp out.prob[c] ← etp in.prob[i]

10: end if
11: end for

contains N blocks of N elements, each block sorted internally, which reduces
computational cost in practice down to O(N2). The cost of normalization is
linear with the number of elements in the ETP.

Starting from the canonical convolution, we survey optimizations related to
(i) the cost of each individual operation, (ii) parallelization, (iii) sampling and
(iv) discretization. Experimental results are shown in Section 4.

3.1 Cost of Each Operation

The main particularity when convolution is applied to SPTA is that SPTA works
with very small probabilities (e.g. 10−30) due to the fact that multiplication of
probabilities during convolution leads to lower values for probabilities with an
increased number of decimal digits. Operating with such low values makes IEEE
754 standard floating-point (FP) representations inaccurate. For instance, 64-
bit double precision FP IEEE 754 numbers use 52 binary digits for the fraction,
which allows representing up to 15 decimal digits approximately. To avoid issues
with precision, arbitrary-precision FP (apfp) numbers can be used. apfp preci-
sion is not limited by fixed-precision arithmetic implemented in hardware. This
increase in precision is provided at the cost of significant longer latency to carry
out each operation, as each operation may require dozens of assembly instruc-
tions. The impact of the apfp precision on the execution time of convolutions
will be studied in Section 4.

3.2 Parallelization

Parallelization can be applied across different convolution operations on different
ETPs (inter-convolution parallelism) or in the convolution of a pair of ETPs
(intra-convolution parallelism).

Intra-convolution Parallelism. Given two ETPs with N and M elements
respectively, convolution requires adding the latencies and multiplying the prob-
abilities for the N × M different pairs of elements from both ETPs. Dividing
such work into T parts to be performed in parallel can be done in many differ-
ent ways. In our case, we divide the N -point ETP1 (or ETP2) into T subETPs
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of N/T points each, ETP part
1 where T is the number of cores/processors used.

Each such ETP part
1 can be convolved with ETP2 in parallel. The result of this

step are T different ETPs. Those have to be concatenated and normalized to
become the final outcome of the convolution of ETP1 and ETP2.

Inter-convolution Parallelism. In the case of SPTA, typically each instruc-
tion has its own ETP. Programs may have easily thousands if not hundreds
of thousands of instructions. Hence, convolutions can be performed in parallel.
Given a list of M ETPs to be convolved, our approach consists in splitting the
list into T chunks of Mc = M/T ETPs each. Each chunk to be convolved is
assigned to a different core or processor. Two approaches can be followed to
convolve the ETPs in each chunk:

Sequential Order within a Chunk. The first two ETPs (e.g., of N elements each)
are convolved, which requires N2 operations if sorting and normalization of the
resulting ETP are omitted, and generates an ETP with up to N2 elements,
which in a following step is convolved with the third ETP requiring up to N3

operations. Equation 1 shows the maximum number of operations carried out
with this approach.

OpCountMc
seq =

Mc∑

i=2

(
N i

)
(1)

Tree Reduction within a Chunk. In a first step, the Mc ETPs (each of N ele-
ments) are convolved in pairs, so each convolution requires N2 operations. In a
second step, the resulting Mc/2 ETPs, each of up to N2 elements, are convolved
in pairs requiring up to N4 operations each and resulting in Mc/4 ETPs. Equa-
tion 2 shows in the general case the maximum number of operations carried out
with this approach.

OpCountMc
tree =

�log2 Mc�∑

i=1

(
Mc

2i
× N2i

)

(2)

If the number of ETPs is not a power-of-two, the tree reduction approach
requires an adjustment phase. Given M ETPs, we convolve as many pairs as
needed so that we obtain M ′ ETPs where M ′ is a power-of-two.

3.3 Sampling

When two ETPs of N elements are convolved the resulting ETP may have up to
N2 elements. Hence, there is an exponential increase in the number of elements
in the result ETP as the number of convolutions increases. In order to limit the
number of elements in the ETP, sampling techniques can be used [12].

The principle of sampling, largely used in the literature, is reducing the num-
ber of points in the ETPs. In a real-time context, an additional requirement is
to ensure that the new ETP is an upper-bound of the original one, so that
pWCETs are never underestimated. This is done by collapsing probabilities to
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the right [12]. For instance, ETP1 =< (1, 2, 3, 4), (0.2, 0.1, 0.5, 0.2) > could be
sampled as ETP1′ =< (2, 4), (0.3, 0.7) > or ETP1′ =< (3, 4), (0.8, 0.2) >.

There are several ways of sampling an ETP such that, while ensuring it is a
safe upper-bound of the original one, the pessimism introduced is kept low [12].
As shown in [12], sampling makes convolution cost to flatten asymptotically so
that it does not grow exponentially.

3.4 Discretization of Probabilities

In order to introduce discretization we use an example. Let us assume an archi-
tecture in which each instruction can take exactly two latencies (e.g., cache hit
and cache miss [11]). Discretization consists in rounding probabilities such that
the probability of the highest latency is rounded up and the one of the lowest
latency is rounded down. For instance, given ETP =< (1, 20), (0.24, 0.76) >,
if we round to a given fraction, e.g. 0.1, this would result in ETProunded =<
(1, 20), (0.2, 0.8) >. Overall, rounding consists in adding ε to the probability of
the high latency (and subtracting ε from the probability of low latency) such
that it becomes a multiple of a given rounding value rv, where rv ≤ 1 and
1 mod rv = 0, so that (phigh lat + ε) mod rv = 0.

Rounding has two effects. On the one hand, the resulting ETP can have only
1/rv + 1 different forms. On the other hand, the probability of high latencies is
increased, thus inducing higher pessimism. Similarly to sampling, discretization
reduces precision. However, those optimizations sacrifice precision in a controlled
and trustworthy way from a WCET estimation perspective (the resulting ETP
always upper-bounds the exact one).

In the presence of an M -element vector of ETPs, in a first pass all the prob-
abilities of the ETPs are rounded as explained resulting in g different forms of
ETP, with g = 1/rv + 1. The convolution of N copies of the same ETP can be
done much faster than the normal convolution. This is explained later in this
section.

After the first step, there are up to g ETPs to convolve, with g being typically
a relatively low value (e.g., g = 101 if rv = 0.01). Those ETPs can be convolved
in parallel applying any of the techniques explained before.

Convolution of E Copies of the Same ETP. Convolving E times an ETP
consists, in essence, of applying the power operation. In order to reduce the
execution time of the power operation of convolutions we need to decompose E
into an addition of power-of-two values. For instance, E = 7 can be decomposed
into 4, 2 and 1. In this case we convolve ETP

pow(2)
1 = ETP1⊗ETP1. In a second

step we convolve ETP
pow(4)
1 = ETP

pow(2)
1 ⊗ ETP

pow(2)
1 . The final ETP can be

obtained by convolving at most all those ETPs as shown in Equation 3.

ETP
pow(7)
1 = ETP

pow(4)
1 ⊗ ETP

pow(2)
1 ⊗ ETP

pow(1)
1 (3)

In general, generating the power-of-two ETPs requires performing �log2E�−1
convolutions. Then, at most each such ETP (including the original one, ETP1)
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needs to be convolved once, thus requiring up to �log2E�−1 extra convolutions.
Overall, with this approach the power of a given ETP can be carried out with at
most 2 × (�log2E� − 1) convolutions, whereas the sequential approach requires
E − 1 convolutions.

4 Experimental Results

In this section we evaluate the execution time reduction and pessimism increase
of the techniques presented when applied in isolation and in a combined manner.
The number of configurations and results presented is limited due to space con-
straints. All these optimizations have been integrated into an ETP management
library, developed in C++.

4.1 Experimental Conditions

Platform and apfp Library. We use a quad-core AMD OpteronTM processor
connected to a 32GB DDR2 667 MHz SDRAM. We run a standard Linux dis-
tribution on top of it. For arbitrary-precision FP computations we use the GNU
mpfr (multiple-precision FP) Library, http://www.mpfr.org/.

The precision of the mpfr library was selected according to the criticality
level of the target applications. Obviously, the higher the precision the longer
takes each operation to execute and the higher are the memory requirements
of the library. As an example, for commercial airborne systems at the highest
integrity level, called DAL-A, the maximum allowed failure rate per hour of oper-
ation [1] in a system component is 10−9. Thus, if a task is fired up to 102 times
per second, it can be run up to 3.6 × 105 times per hour, and so its probability
of timing failure per activation, TPFact should not exceed 3.6 × 10−14. There-
fore, an exceedance probability threshold of 10−15 (TPFact ≤ 10−15) suffices to
achieve the highest integrity level. Similarly, exceedance probability thresholds
can be derived for other domains and safety levels. We have observed empirically
that even if millions of multiplications are performed, a precision of 20 decimal
digits suffices to keep accurate results for the 15th decimal digit (and beyond).
This means that when enforcing the 20th decimal digit to be rounded up or down
for trustworthiness reasons, such pessimism does not propagate up to the 15th

decimal digit. Thus, we regard 20 decimal digits as enough for our needs, and
select this value as a default value in the experiments. The impact of this param-
eter in terms of computation cost is studied later in this section. A sensitivity
study of the impact of this parameter on pessimism has not been performed due
to space constraints, but our choice limits such pessimism to much less than
0.01% in practice in all our experiments.

Optimization Parameters. When applying inter-convolution parallelism, one
has to choose between tree reduction and sequential order when convolving the
ETPs within each parallel chunk. Tree reduction typically requires fewer oper-
ations than those required with sequential processing ETPs (up to 50% fewer
operations). However, it makes ETP size grow faster until their maximum size,

http://www.mpfr.org/
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which is limited by calling the sampling function. Hence with tree reduction most
operations require working with two ETPs of E elements. Instead, sequential
order also make intermediate ETPs grow up to E elements, but keeps convolv-
ing them with N -elements ETPs, with N << E. Overall, sequential order works
faster than tree reduction so it is our default choice in the rest of the paper.

As far as sampling is concerned, many sampling methods have been defined
and compared in [12]. Among those, we use uniform space sampling, as it
provides a good balance among execution time requirements and pessimism
introduced. In the experiments, unless otherwise stated, sampling will be sys-
tematically applied, and the size of ETPs will be limited to 1,024 elements. If
larger ETPs are explicitly used (i.e. 2,048 or 4,096 elements) and sampling is
applied, the size of the original ETPs determines the size of the output ETPs.

Test-case Generation and Metrics. In each experiment we use several ETPs
with different number of elements. These input ETPs have been generated ran-
domly. To measure the improvement brought by each optimization, we use the
execution time reduction, typically w.r.t. non-optimized execution in a single
core. Optimizations studied are orthogonal to other methods for convolution
optimization [4] whose analysis is beyond the scope of this paper. Pessimism
resulting from some optimizations (sampling and discretization) is also com-
puted w.r.t. to the non-optimized results. Pessimism is measured in terms of
weight of the ETP, which is obtained as W =

∑N
i=1 pi × li where N is the

number of elements in the ETP, and pi and li are the probability and latency
at position i respectively [12]. Then, the weight of the ETP after optimizations
(Woptim) is compared w.r.t. to the ETP without optimizations (Wbaseline).

4.2 Impact of apfp and mpfr Precision on the Cost of Each
Operation

ISA apfp

≥ = + * / ≥ = + * /

1 1 1 2 3 5 22 17 36 75

Fig. 1. Cost of each oper-
ation normalized to native
ISA FP add operation

To evaluate the price to pay for having suffi-
cient precision in the ETPs, we first evaluate
the execution time of each basic operation used
by convolutions (comparison, assignment, addition,
multiplication, division). All values are normalized
to the execution time of the native FP addition
operation, i.e. the operation to add FP numbers
in the ISA. Results have been obtained by running
on our processor a set of micro-benchmarks that exercise the same number of
operations of each type.

The results are given in Fig. 1, with the precision of the apfp library set
to a high value, 300 digits. We observe that the impact of the apfp library is
significant. The apfp operation with lower overhead, the comparison, has an
execution time 5x higher than an ISA regular FP comparison. We attribute
this to the fact that it is often completed after comparing only a subset of
the digits. Addition and assignment have a similar slowdown around 20x while
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(a) Normalized execution time (b) Normalized memory requirements

Fig. 2. Execution time and memory requirements for different mpfr library precisions

(a) E.T. of intra-ETP parallelization (b) E.T. of inter-ETP parallelization

Fig. 3. Impact of parallelization on execution time

multiplication and division have a latency 36x and 75x higher than the ISA
addition respectively. This represents an increment of more than 22x and 26x
w.r.t. their ISA counterparts.

To further evaluate the impact of the apfp library precision, we run a single-
threaded version of the convolution varying the precision of mpfr from 300 dig-
its down to 20, which is considered reasonable for SPTA as explained earlier.
Fig. 2(a) and Fig. 2(b) respectively show the reduction in execution time and
memory requirements as the number of digits decreases from 300 to 20 when
convolving two ETPs. Two ETP sizes are evaluated: 2,048 (i.e 2K ) and 1,024
(i.e. 1K ), and sampling is applied. We observe significant reductions of more
than 35% and 45% in execution time and memory respectively when moving
from 300 to 20 digits, for both ETP sizes.

4.3 Parallelization

Intra-ETP Parallelization. In this experiment we carry out the convolution
of 2 ETPs in parallel, with sorting, sampling and normalization turned off. Only
the first step of canonical convolution (see Section 3) is executed in parallel
and measured. In this way, we obtain an upper-bound of the execution time
reduction (scalability) of intra-convolution parallelism. Two different ETP sizes
are evaluated: 2,048 (2K) and 4,096 (4K).

Fig. 3(a) shows the execution time results when running the convolution on
1, 2 and 4 cores. We observe good scalability: execution time reduces by 40%
with 2 cores and by 65% with 4 cores. The size of the ETPs has a marginal
impact.
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(a) Run time of discretization (b) Pessimism introduced

Fig. 4. Evaluation of the Discretization optimization

Inter-ETP Parallelization. In contrast to intra-ETP parallelization, inter-
ETP parallelization does not parallelize one convolution, but instead splits a
sequence of convolutions into chunks to be processed in parallel. In this experi-
ment, given a vector of M ETPs to convolve, we measure the benefit of dividing
it into T ∈ [1, 4] chunks, which are processed in parallel (each chunk in one core).
The ETPs in each chunk are processed in sequential order.

Fig. 3(b) shows the execution time reduction of inter-ETP parallelization
when convolving vectors of 2,048 and 4,096 ETPs (e.g., 4096x2 in the legend
stands for 4,096 ETPs of 2K elements each). Results are also shown across dif-
ferent numbers of elements per ETP, namely, 2 and 4. Results do not reach
optimal scaling due to: (i) the intrinsic overhead of parallelization (e.g., spawn-
ing and synchronizing threads) and (ii) because eventually the number of ETPs
to convolve is lower than the core count, thus leaving some cores idle. As it can
be observed in Fig. 3(b), the number and size of the ETPs has marginal impact
on execution time.

4.4 Probability Discretization

In this experiment, we assess the execution time benefits and impact on pes-
simism introduced by probability discretization. For this experiment we carry
out the convolution of a vector of 4,096 ETPs of 2 elements each1. Probabilities
of those ETPs are randomly generated, latencies are lhit = 1 and lmiss = 60. We
carry out the evaluation for two different rv values: 0.05 and 0.1.

Fig. 4 shows the results, obtained by averaging the ETP weight and execution
times on 1,000 runs. When run on one single core (two leftmost bars in Fig. 4(a)),
we observe that with rv = 0.05, we obtain an execution time reduction of more
than 93% (from 7.44s/convolution down to 0.54). With rv = 0.1 there is an
additional slight reduction in the execution time. However, in terms of pessimism
(ETP weight, shown in Fig. 4(b)), rv = 0.05 shows to have low pessimism. The
increase in pessimism of rv = 0.1 does not pay off its additional small reduction
in execution time.

Fig. 5 compares the pWCET estimates obtained after convolving 4,096 ran-
dom ETPs when discretization is not applied, and when it is applied with
1 A two-point ETP represents an architecture with a single level of cache, e.g. the

instruction cache, where each ETP takes the form: < (lhit, lmiss), (phit, pmiss) >
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Fig. 5. pWCET estimates with and without discretization

rv = 0.05 and rv = 0.1. We observe that with discretization pWCET estimates
obtained are more pessimistic than when not using discretization. However, the
pessimism introduced is relatively small. For instance, for a cutoff probability of
10−12 the overestimation is 3.1% for rv = 0.05 and 5.5% for rv = 0.1.

4.5 Combination of Techniques

The two rightmost bars in Fig. 4(a) show the result of combining discretization
and hybrid parallelization. We observe that the combination of both reduces the
cost of convolutions to less than 5% of the cost of the non-optimized convolution
method, thus showing that benefits of optimizations increase when combined.
In terms of absolute execution time, the cost of one convolution reduces from
7.44s down to 0.33s. Thus, if a program has 100,000 instructions, those opti-
mizations reduce convolution cost from 8.6 days down to 9.2 hours. While such
cost is still high, we regard it as affordable and it can be further reduced if other
optimizations are applied [4] (e.g., fast-fourier transformation).

5 Conclusions

PTA has been regarded as a powerful approach to obtain trustworthy and tight
WCET estimates. The static variant of PTA, SPTA, requires the use of con-
volutions, whose computational cost is high. In this paper we have identified
some features of convolutions that require a large number of computations and
provide a set of optimizations to reduce their cost. Those optimizations, inte-
grated into a software library, include precision-preserving optimizations (e.g.,
parallelization), as well as optimizations that trade off some accuracy for some
computational cost reduction while preserving trustworthiness. Among those,
discretization shows to be the most effective solution. Our results prove the
effectiveness of the different optimizations and a small subset of them show a
combined execution time reduction down to less than 5% of that of the non-
optimized version.
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All in all, SPTA specific optimizations trading off execution time reduction
and accuracy show to be the most effective ones and they can be combined
straightforwardly with non-specific ones.
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