Chapter 2

Immense Cellular Implications Associated

to Small Stress Proteins Expression: Impacts
on Human Pathologies

André-Patrick Arrigo, Benjamin Ducarouge, Fabrice Lavial,
and Benjamin Gibert

Abstract In addition to being potent chaperones that protect cells against the
accumulation of unfolded proteins under stress conditions, mammalian small heat
shock proteins (small Hsps) regulate many vital cellular processes in normal and
pathological cells. Indeed, these Hsps are constitutively expressed in many tissues
and show dramatic changes in their levels of expression in most human pathologies.
They are characterized by a large spectrum of activities and are particularly active
in protein conformational and inflammatory diseases as well as in cancer pathologies.
It is now believed that the immense cellular implications of small Hsps results from
their ability to interact, through particular structural changes, with many different
client proteins that are subsequently modulated in their activities or half-lifes. Here,
we have integrated functionally and structurally the recent data in the literature
concerning the interactions of mammalian small Hsps with specific clients. Further
analysis with geneMANIA software and database confirmed the incredibly large
number of functions associated with these Hsps. The consequences for human
pathologies as well as putative therapeutic strategies are discussed, particularly
when the expression of small Hsps is harmful (as in some cancer pathologies) or
when it appears beneficial for patients.
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2.1 Many Functions Associated with Small Hsps in Addition
to Their Protective Role in Stress Condition

The last decade has been characterized by an incredible jump in the interest in the
ten mammalian small Hsps. Indeed, until the turn of the century, these stress proteins
were considered as exotic chaperones that did not use ATP for their activity.
These “forgotten chaperones”, as they were called in 2002 (Solari and Garrido
2002), are now stars among Hsps to judge by the large number of scientific and
medical publications dealing with their particular behaviors and functions that fill
the current literature. This renewed interest is probably linked to their constitutive
expression in normal and pathological conditions as well as to the large number of
unrelated functions associated with their over- or under-expression in many different
cell types. Interest has also been generated by the growing number of pathological
mutations in their genes that induce degenerative or myopathic diseases and by their
newly described ability to be secreted.

2.1.1 Stress Conditions, Chaperone Activity
and Anti-aggregation Properties

Early studies dealing with HspB1 and HspBS5 revealed their enhanced expression
under heat shock conditions as well as their ATP-independent chaperone property
(Jakob et al. 1993; Rogalla et al. 1999). It was shown that large oligomeric struc-
tures formed by small Hsps store stress-altered polypeptides in a refolding compe-
tent state that can interfere with their propensity to aggregate (Bellyei et al. 2007;
Carra et al. 2005; Ehrnsperger et al. 1997, 2000; Ganea 2001; Haslbeck et al. 2005;
Horwitz et al. 1992; Jakob et al. 1993; Lee et al. 1997; Markossian et al. 2009).
These altered polypeptides can subsequently be refolded by the ATP-dependent
Hsp70, Hsp90 and co-chaperones “foldase” machines (Buchner 1999; Bukau and
Horwich 1998; Freeman and Morimoto 1996; Lee and Vierling 2000) or degraded
by the CHIP-ubiquin-26S proteasome machine (McDonough and Patterson 2003).
The dynamic oligomerization/phosphorylation status of small Hsps, and particu-
larly HspB1, is an essential factor of this process (Arrigo et al. 1988; Lelj-Garolla
and Mauk 2005, 2006; Paul et al. 2010; Preville et al. 1998b; Rogalla et al. 1999;
Simon et al. 2013). The cytoskeleton is one of the primary targets protected by
HspB1 and HspBS5 in response to stress (Bellomo and Mirabelli 1992; Welch and
Feramisco 1985) as well as in normal growth conditions. This property probably
relies, at least in the case of HspB1, on the fact that phosphorylated small HspB1
oligomers modulate F-actin fiber growth and, indirectly, extracellular matrix orga-
nization (Dalle-Donne et al. 2001; Mounier and Arrigo 2002; Perng et al. 1999).
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Under stress conditions, HspB1 and HspBS5 stabilize microtubules (Hino et al. 2000;
Preville et al. 1996; Xi et al. 2006). HspBS5 is also very active in maintaining inter-
mediate filaments homeostasis, particularly in muscle cells where it associates with
desmin (Bennardini et al. 1992; Djabali et al. 1999). Moreover, HspB1 and HspB5
share an intriguing anti-oxidant property which appears linked to the chaperoning
of several anti-oxidant enzymes, particularly G6PDH (glucose 6-phosphate dehy-
drogenase) (Arrigo 2001, 2007b, 2013; Arrigo et al. 2005; Firdaus et al. 2006a;
Mehlen et al. 1996a; Paul and Arrigo 2000; Preville et al. 1998a, 1999; Rogalla
etal. 1999; Yan et al. 2002). Consequently, damage such as protein and nucleic acid
oxidation as well as lipid peroxidation is reduced and the positive effect of these
Hsps towards mitochondrial A®m increases ATP levels, which favors the activity of
ATP-dependent chaperones (Mehlen et al. 1996a; Preville et al. 1999).

Only HspB1, HspB5 and HspB8 molecular chaperones are induced under stress
conditions. Interestingly, constitutively expressed small Hsps, such as HspB2,
HspB3, HspB4, HspB6 and HspB7, also display chaperone activities or at least anti-
aggregation and pro-degradative functions (Carra et al. 2013). The anti-aggregation
and anti-fibrillation properties of mammalian small Hsps are summarized in
Table 2.1. Depending on the substrate, some Hsps perform these tasks better than
others, suggesting that they do not all have the same chaperone-like activity. For
example, HspB4 can chaperone HspB5 once in the alpha-crystallin complex
(Andley 2007), while HspB3 (Asthana et al. 2012) and HspB2 exhibit significant
chaperone-like activity towards specific target proteins and can attenuate the ordered
amyloid fibril formation of a-synuclein (Prabhu et al. 2012). The major substrates
recognized by small Hsps can be mutated polypeptides that cause degenerative or
myopathic diseases (i.e. desmin, polyQ proteins, SOD, a-synuclein) or proteins that
are prone to aggregate. It is also important to mention that small Hsp mutants can
induce the aggregation of their substrates, such as the R120G missense mutation in
HspB5 which is genetically linked to a desmin-related myopathy consequently of
the aggregation of desmin (Bova et al. 1999; Vicart et al. 1998). Similarly, the
P182L mutant of HspB1 leads to motor neuronopathies as a result of the formation
of aggregates that sequestrate Neurofilament middle chain subunit (NF-M) and
p150 Dynactin (Ackerley et al. 2005). Equally, proteins that interact with mutant
small Hsps can counteract aggregation, as for example the chaperone-like effect of
Bag3 towards aggregated HspB8 mutant (Hishiya et al. 2011). As a result of its
interaction with Bag3, HspBS also has the ability to trigger macroautophagy (Carra
2009; Carra et al. 2008b). This favors the elimination of aggregated polypeptides
generated by heat (Nivon et al. 2009) or oxidative stress (Keller et al. 2004; Kiffin
et al. 2006). Interestingly, HspB6 also appears to play a role in the Bag-3/HspB8
complex that triggers macroautophagy (Fuchs et al. 2010). Less information is
available concerning HspB9 and HspB10 in spite of their ability to interact with
particular polypeptides (see Table 2.2).
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2.1.2 Enormous Cellular Implications Associated
with Constitutively Expressed Small Hsps

Mammalian small Hsps are expressed in the absence of apparent stress in specific tis-
sues of developing and adult organisms as well as in pathological conditions (Arrigo
2012b; Bhat and Nagineni 1989; Gernold et al. 1993; Huang et al. 2007; Klemenz
et al. 1993; Mymrikov et al. 2011; Quraishe et al. 2008; Srinivasan et al. 1992;
Tanguay et al. 1993). For example, HspB1 and HspB6 are highly abundant in mus-
cles. However, the overall tissue distribution of these two proteins is different since
HspB6 is specific to muscles (Seit-Nebi and Gusev 2010) while HspB1 is expressed
in almost all tissues. Similarly, HspB5, which forms with HspB4 the lens alpha-crys-
tallin complex is also expressed in the heart, skeletal muscle fibers, brain and kidney
while HspB4 is also present in pancreas. In contrast, HspB9 and HspB 10 are restricted
to testis expression (de Wit et al. 2004; Yang et al. 2012). Other important points con-
cern the expression of these proteins in pathological conditions as well as the drastic
effects (neuropathies, myopathies, cardiomyopathies, cataracts) induced by some of
their mutations (i.e. mutations in HspB1, HspB3, HspB4, HspB5, HspB6 and HspB8)
(Benndorf et al. 2014; Kwok et al. 2011; Mymrikov et al. 2011; Vicart et al. 1998). So,
what is the function of these Hsps in specific tissues? (see Sect. 2.1.2.1).

2.1.2.1 Small Hsps Client Concept

The recent literature is quite abundant in descriptions of new functions associated
with constitutively expressed small Hsps. Moreover, each small Hsp appears to have
its own panel of activities (Fig. 2.1). An intriguing point is the unrelated nature of
those activities distributed in almost all essential cellular pathways or activities, from
cytoskeleton homeostasis to signal transduction pathways, gene expression and cell
death (see Fig. 2.1). To understand why so many activities are associated with small
Hsps, we must first explain their particular structural organization. Indeed, these pro-
teins share, as a result of their crystallin homology, complex oligomeric structures
that allow for the formation of dynamic homo and hetero-oligomeric structures (from
50 to >700 kDa, depending on the small Hsps) (Arrigo 2007a; 2011, Arrigo et al.
1988; Basha et al. 2011; Garrido 2002; Simon et al. 2013). Moreover, phosphoryla-
tion plays a key role in the case of HspB1, HspB5 and HspB4. These Hsps bear sev-
eral serine sites phosphorylated by specific kinases, including stress and MAP
kinases. Another key parameter is the cellular environment that modulates, in a
dynamic and reversible way, the oligomeric organization and phosphorylation of
some of these proteins, such as HspB1 (Arrigo et al. 1988; Arrigo 2000, 2007b, 2011;
Arrigo and Gibert 2012; Bruey et al. 2000b; Mehlen and Arrigo 1994; Mehlen et al.
1997a; Paul et al. 2010). This suggests an intracellular sensor activity associated
with small Hsps that can record changes in cellular environment. For example,
HspB1 reorganizes differently its phosphorylation and oligomerization status in cells
exposed to different apoptotic inducers (Paul et al. 2010). What could this mean?
Since HspB1 is an anti-apoptotic protein its structural changes could instruct the cell
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Fig. 2.1 Large spectrum of cellular activities associated with mammalian small Hsps. The func-
tional activities of the different members of the small Hsps family are presented in a cartoon where
each Hsp is characterized by a specific color

to choose the best strategy to counteract the effects of a particular apoptotic inducer.
How can this be done? Do small Hsps have multiple enzymatic activities because of
their complex oligomeric organization, and are they thus pleotropic polypeptides, or
are they acting via chaperone-like activities towards other polypeptides? Recently
published reports revealed that the novel activities of small Hsps often correlate with
their ability to interact with different polypeptides. Hence, could the apparent pleo-
tropic effects of small Hsps be indirect and, as previously described for Hsp90
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(Georgakis and Younes 2005; Neckers et al. 1999), result from the modulation of the
activity and/or half-life of many clients? (list of Hsp90 clients: http://www.picard.ch/
downloads). To clarify this point, we analyzed three polypeptides pro-caspase-3,
HDACO6 and STAT-2 interacting with HspB1 in HeLa cells and discovered that their
half-life was greatly enhanced by interacting with HspB1 (Gibert et al. 2012a), which
confirmed that, in the same cell, HspB1 can recognize different protein clients. The
updated list of the major proteins interacting with mammalian small Hsps and the
cellular consequences mediated by these interactions is presented in Table 2.2, see
also (Arrigo 2013; Arrigo and Gibert 2012, 2013; Ciocca et al 2013). Clients are
listed according to their activity in major cellular functions, such as transduction
pathways, apoptosis, protein degradation, translation, transcription, cytoskeletal
organization and homeostasis or cell adhesion. When available, information is
given about the structural organization of small Hsps or their corresponding clients
involved in the interactions. The little information already available confirms the
important role played by the oligomerization and phosphorylation patterns of small
Hsps. Several consequences can result from small Hsps/clients interactions, such as
modulation of half-life, enzymatic activity, structural organization or modification of
the client. For example, some clients interact with HspB1 to increase their half-life
and thus avoid their rapid proteolytic degradation (Her2 oncogene, pro-caspase 3,
HDM2, the histone deacetylase HDAC6, Androgen Receptor AR and the transcrip-
tion factors STAT-2 and STAT-3) while the opposite effect occurs for the rapidly
degraded PTEN polypeptide when it is bound to HspB1. The transcription factor
HSF1 is sumoylated as a result of its interaction with HspB1 coupled to the Ubc-9
like sumoylating enzyme UBE21. Moreover, some cellular effects mediated by small
Hsps are well known but the targeted proteins are still not defined. One striking exam-
ple is the modulation of the TAK-1 inflammation pathway by HspB8 (see Table 2.2).

Two major questions arise from these observations: (i) what are the cellular
consequences induced by the interaction of small Hsps to so many protein targets
and (ii) how do small Hsps recognize client protein targets?

(i) Concerning the first question one can easily conclude by analyzing Table 2.2 that
small Hsps modulate the maturation and activity of a wide range of client pro-
teins including regulators of the life and death of the cell and signal transducer
polypeptides, such as kinases and transcription factors. Therefore, by regulating
a large repertoire of cellular functions small Hsps have a huge importance on
normal biology, disease and evolutionary processes. Hence, as does Hsp90
(McClellan et al. 2007; Moulick et al. 2011; Taipale et al. 2010), these Hsps
appear as global regulators of cell systems through their chaperone/client interac-
tome systems. However, it is difficult to obtain a realistic view of the global cel-
lular consequences generated by small Hsps interactomes. To meet this challenge
we have performed protein interaction networks analysis using the geneMANIA
software and database (Warde-Farley et al. 2010) (http://www.genemania.org/).
This web interface shows the relationships between gene products and predicts
their functional association in biological processes, pathways or diseases. Such
data can help elucidate cellular pathways, create functional links between gene
products and diseases, and can enable investigators to extract significantly more
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information about the cellular impact generated by the expression of small Hsps
than by relying solely on primary literature (Table 2.2). However, care must be
taken when using these data since some interactions are only predicted. An exam-
ple presented in Fig. 2.2 illustrates the proteins interacting with HspB1, HspBS5,
HspB6 and HspBS8. Only 100 proteins interacting with the four Hsps are ana-
lyzed, so some clients mentioned in Table 2.2 are not listed while new ones are
mentioned. Nevertheless, this analysis further confirms that small Hsps interact
with a wide spectrum of polypeptides and consequently modulate many different
cellular pathways, as for example those dealing with protein kinases, gene
expression, cell adhesion and migration, cell death, catabolic processes, responses
to stimulation, confirming their broad implications in cell biology.

Fig. 2.2 Human HspB1, HspB5, HspB6 and HspB8 protein interactomes and predictomes as
proposed by GeneMANIA software and database including BioGRID and PathwayCommons.
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Fig. 2.2 (continued) Analyzed Hsps are indicated in black while interacting proteins are in grey.
Physical interactions (red lines) and predicted (orange lines) ones were analyzed. The software
was set to analyze up to hundred gene products and at most hundred related attributes. Automatically
selected weighting method. Predicted interactions could be for instance, two proteins known to
interact in another organism, such as S. cerevisiae. Abbreviations: CRYAB HspB5, CRYAA HspB4,
HSPAS heat shock 70 kDa protein 8, HSPHI heat shock 105 kDa/110 kDa protein 1, DNAJBI
DnalJ (Hsp40) homolog, subfamily B, member 1, CRYGC crystallin, gamma C, CRYBB2 crystallin,
beta B2, CRYZ crystallin, zeta (quinone reductase), F'/13A1 coagulation factor XIII, A1 polypep-
tide, BAG3 BCL2-associated athanogene 3, CS citrate synthase, POP7 processing of precursor 7,
ribonuclease P/MRP subunit (S. cerevisiae), STAT-3 signal transducer and activator of transcrip-
tion 3 (acute-phase response factor), SPARCLI SPARC-like 1 (hevin), RAD5] RADS51 homolog
(S. cerevisiae), SPARC secreted protein, acidic, cysteine-rich (osteonectin), USP38 ubiquitin spe-
cific peptidase 38, BCL2L1 BCL2-like 1, MAPKAPK5 mitogen-activated protein kinase-activated
protein kinase 5, CRYBAI crystallin, beta A1, TAGLN3 transgelin 3, CASP3 caspase 3, apoptosis-
related cysteine peptidase, BMPR2 bone morphogenetic protein receptor, type II (serine/threonine
kinase), CYCS cytochrome c, somatic, MAPKAPK?2 mitogen-activated protein kinase-activated
protein kinase 2, TGFBI111 transforming growth factor beta 1 induced transcript 1, YWHAG tyro-
sine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide,
PSMA3 proteasome subunit, alpha type, 3, MAPKAPK3 mitogen-activated protein kinase-acti-
vated protein kinase 3, POLR2D polymerase (RNA) II (DNA directed) polypeptide D, TAGLN2
transgelin 2, PLCG2 phospholipase C, gamma 2 (phosphatidylinositol-specific), PYROXDI pyri-
dine nucleotide-disulphide oxidoreductase domain 1, TGM1 transglutaminase 1 (K polypeptide
epidermal type I, protein-glutamine-gamma-glutamyltransferase), USP/ ubiquitin specific pepti-
dase 1, EIF4GI eukaryotic translation initiation factor 4 gamma, 1, HNRNPD heterogeneous
nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37 kDa), PRKCE protein
kinase C, epsilon, HSPG?2 heparan sulfate proteoglycan 2, PRKAA I protein kinase, AMP-activated,
alpha 1 catalytic subunit, DMWD dystrophia myotonica, WD repeat containing, PRKDI protein
kinase D1, ILK integrin-linked kinase; MAGEDI melanoma antigen family D, 1, SAPI8 Sin3A-
associated protein, 18 kDa, GIT1 G protein-coupled receptor kinase interacting ArfGAP 1, MAPK3
mitogen-activated protein kinase 3, MAGEA6 melanoma antigen family A, 6, BRF2 BRF2, subunit
of RNA polymerase III transcription initiation factor, BRF1-like, CCNK cyclin K, IGSF21 immu-
noglobin superfamily, member 21, MME membrane metallo-endopeptidase, PSMD4 proteasome
26S subunit, non-ATPase, 4, PSMD6 proteasome 26S subunit, non-ATPase, 6, TTN titin, CIAO]
cytosolic iron-sulfur protein assembly 1, DAXX death-domain associated protein, EPB41 erythro-
cyte membrane protein band 4.1 (elliptocytosis 1, RH-linked), PPA1 pyrophosphatase (inorganic)
1, ACTCI actin, alpha, cardiac muscle 1. AKT/ v-akt murine thymoma viral oncogene homolog 1,
KCNMA potassium large conductance calcium-activated channel, subfamily M, alpha member 1,
LNX]1 ligand of numb-protein X, MED31 mediator complex subunit 31, C70rf64 chromosome 7
open reading frame 64, NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha, SLC2A4 solute carrier family 2 (facilitated glucose transporter) member 4, TP53
tumor protein p53, 7SC22D1 TSC22 domain family, member 1, ALDH18A1 aldehyde dehydroge-
nase 18 family, member A1, AMOT angiomotin, APP amyloid beta (A4) precursor protein, BAG/
BCL2-associated athanogene, BBC3 BCL2 binding component 3, BCL2L11 BCL2-like 11 (apop-
tosis facilitator), BRCA2 breast cancer 2, early onset, COLI5AI collagen, type XV, alpha 1,
COL3AI collagen, type 111, alpha 1, CSNK1D casein kinase 1, delta, CSNK/E casein kinase 1,epsi-
lon, CSNK2A1 casein kinase 2, alpha 1 polypeptide, CST3 cystatin C, FI3B coagulation factor
XIII, B polypeptide, FIGN fidgetin, HDACI histone deacetylase 1, LALBA alpha-lactalbumin,
LRIF1I ligand dependent nuclear receptor interacting factor 1, MDH2 malate dehydrogenase 2,
NAD (mitochondrial), MIP major intrinsic protein of lens fiber, MNDI meiotic nuclear divisions 1
homolog (S. cerevisiae), PIAS3 protein inhibitor of activated STAT-3, PRKCA protein kinase C,
alpha RAD51API1: RADS51 associated protein 1, RPP25 ribonuclease P/MRP 25 kDa subunit,
SLX4 SLX4 structure-specific endonuclease subunit homolog (S. cerevisiae), SRRM?2 serine/argi-
nine repetitive matrix 2, VEGFA vascular endothelial growth factor A
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(ii) As for the second question, we believe that small Hsps act as does Hsp90 to
recognize clients by taking advantage of a variety of conformational states to
interact with co-chaperones and clients (Hessling et al. 2009; Mickler et al.
2009). Compared to other mammalian small Hsps, HspB1 has the most
dynamic phospho-oligomeric organization, a property that could explain its
ability to recognize a large number of protein clients probably through the
rapid generation of interacting platforms (Arrigo and Gibert 2012, 2013;
Ciocca et al. 2013; Gibert et al. 2011, 2012a; Paul et al. 2010). Consequently,
HspB1 dynamic interactome may allow cells to respond quickly and mount
the most effective response to a particular condition. However, an unan-
swered question is how small Hsps generate specific interacting platforms to
act on client repertoire. At least in the case of HspB1, the phenomenon may
depend on the complex patterns of MAPKAPK?2,3-dependent phosphoryla-
tion of three serines sites located in the N-terminal domain of HspB1 (Arrigo
and Gibert 2012, 2013; Paul et al. 2010; Rouse et al. 1994; Simon et al. 2013;
Stokoe et al. 1992). Our recent observations favor this hypothesis since in
growing HeLa cells pro-caspase-3 interacts mainly with the serine 15 phos-
phorylated small oligomers of HspB1 while HDACG is recovered at the level
of the large serine 82 phosphorylated oligomers. In contrast, STAT-2 binds to
the medium and large sized HspB1 oligomers (Arrigo and Gibert 2013;
Gibert et al. 2012a). Thus, in growing HeLa cells, the specific phospho-oligo-
meric organization of HspB1 consists of signaling structures that recognize
and bind at least three different polypeptides and subsequently modulate
their half-life. This observation confirms the hypothesis that the dynamic
structural plasticity of small Hsps structure can lead to at least 300 different
stoichiometries that favor the recognition of many particular target proteins
(Stengel et al. 2010).

An increased complexity arises by taking into account another fundamental
property of small Hsps. Once they are expressed in the same cells, they have the
ability to interact with each other and form multiple combinatorial oligomeric struc-
tures (Table 2.3, see also Arrigo 2013; Bukach et al. 2009; den Engelsman et al.
2009 #3479; Saha and Das 2004; Simon et al. 2007; Zantema et al. 1992). Since
interaction between two small Hsps mutually affects the structure and chaperone
activity of both partners (Aquilina et al. 2013; Bukach et al. 2009; den Engelsman
et al. 2009; Gibert et al. 2013; Mymrikov et al. 2012; Simon et al. 2013; Skouri-
Panet et al. 2012), it cannot be excluded that the chimeric oligomers can recognize
novel client proteins and/or are unable to bind those interacting with parental small
Hsps. Moreover, not all sHsps interact equally efficiently with each other in vitro
(Mymrikov et al. 2012). In that respect, the molecular ratio between small Hsp part-
ners is often different (e.g. 3:1 in the case of HspB4:HspB5 and HspB2:HspB3
complexes). In vivo, the phenomenon is probably even more complex since modifi-
cations, such as phosphorylation, which depend on the type of cell considered and
its physiology are of prime importance (Paul et al. 2010; Simon et al. 2013). For
example, in cells expressing an equimolar ratio of HspB1 and HspBS5, only 90 % of
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Table 2.4 HspB chimeric hetero-oligomeric complexes: biological consequences and targeted
polypeptides

Observations
HspB Resulting Interacting made
Client | complex | effects structure/sequence | In cells |In vitro | References
? HspB2/ | Muscle ? X - den Engelsman
HspB3 | development et al. (2009) and
Sugiyama et al.
(2000)
Bag3 HspB8/ | Chaperone | B4, B8 hydrophobic | X X Carra et al.
HspB6 | Bag3 grooves (HspB8/B6) (2008b) and
activity IPV (Ile-Pro-Val) Fuchs et al.
motifs (Bag3) (2010)
G6PDH | HspB1/ | Stimulation | Interaction with X - Arrigo (2013)
HspB5 | of activity hyperphosphorylated
HspB1, no
interaction with
HspBS5

Listed here are the clients that interact with small Hsps consequently of the formation of hetero-
oligomeric Hsps complexes

HspB1 forms chimeric molecules with HspBS5. This enhances the phosphorylation
of the remaining 10 % of non interacting HspB1 which can now recognize a new
client, G6PDH, and can stimulate its detoxicant enzymatic activity (Table 2.4)
(Arrigo 2013). Unfortunately, no clear data are yet available concerning the protein
targets recognized by chimeric small Hsps (Table 2.4), as for example in the case of
HspB2:HspB3 complex involved in the development of muscle cells. Similarly, it is
not known whether Bag3, which interacts with HspB8 and HspB6, can bind to
HspB8:HspB6 complex to modulate autophagy. Another important consequence of
the above mentioned property of small Hsps is the dominant effect of a mutated
small Hsp that can dramatically spread between other interacting members of the
family (Diaz-Latoud et al. 2005; Fontaine et al. 2006; Simon et al. 2013). These
pathological interactions can also lead to the accumulation of cytoplasmic protein
aggregates linked to diseases.

2.2 Examples Illustrating the Broad Spectrum of Positive or
Negative Roles of Small Hsps in Human Pathologies

Nowadays, the medical literature is filled with reports explaining that the level of
expression of small Hsps is highly modulated, as they are often upregulated in path-
ological conditions such as protein conformational disorders (neurodegenerative
diseases, myopathies, cataracts), inflammatory diseases and cancers. Many func-
tions were attributed to HspB1 and HspB5 and, probably due to their more recent
discovery, less frequently to the other small Hsps. As mentioned above, these
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proteins probably act by interacting with pathology specific clients. Based on earlier
observations, we proposed that the upregulation of these proteins had a negative
effect (for the patient) in cancer pathologies while it was positive in the case of
degenerative diseases (Arrigo and Simon 2010; Arrigo 2005; Arrigo et al. 2007).
The most recent studies have complicated this hypothesis since, as described below
(Sect. 2.2.3), one small Hsp can be beneficial in one type of cancer and harmful in
another. In fact, from a patient point of view, the major effects mediated by these
interactions will depend on the friendly or hostile nature of the interacting clients.
Thus, more work is needed to increase our knowledge of the pathology-dependent
clients that interact with small Hsps, and future therapeutic interventions will have
to be carefully planned to avoid dramatic off-target effects for patients.

2.2.1 Degenerative Diseases
2.2.1.1 Protective Role of Small Hsps

Elevated levels of Hsps, such as HspB1, HspB5 and high molecular weight Hsps,
are observed in cells with altered protein folding homeostasis as a result of the
expression of proteins prone to aggregate or fibrillate (see Table 2.1). Hence, high
levels of these Hsps are observed in cortical Lewy bodies, Alzheimer’s disease
plaques containing p-amyloid peptide, granules of neurones expressing polyQ
mutants of Huntingtin polypeptide, Rosenthal fibers of Alexander disease,
Creutzfeldt-Jakob altered neurons, neurofibrillary tangles, a-synuclein deposit
associated with Parkinson’s disease, SOD1 aggregates in amyotrophic lateral scle-
rosis, myopathy-associated inclusion body such as muscle cells expressing mutated
desmin as well as in neurones from cerebral ischemia or heart cells altered by myo-
cardial infarction or atrial fibrillation (Bruinsma et al. 2011; Brundel et al. 2008;
Goldfarb et al. 2004; Muchowski 2002; Muchowski and Wacker 2005; Renkawek
etal. 1994; Wyttenbach 2004; Yerbury et al. 2012). In these cells, HspB1 and HspB5
trigger a beneficial protection by reducing the formation of pathological protein
aggregates (Eaton et al. 2000; Efthymiou et al. 2004; Latchman 2005; Lewis et al.
1999). Protective activity has recently been reported for other small Hsps, such as
HspB2, HspB3, HspB6, HspB7, HspBS8 (Bruinsma et al. 2011; Brundel et al. 2008;
Carra et al. 2005, 2008a; Ke et al. 2011; Vos et al. 2010). However, these Hsps are
effective in their own way in counteracting protein aggregation or fibrillation. For
example HspB7, which, unlike HspB1, does not improve the refolding of heat-
denatured polypeptides, is nevertheless the most efficient small Hsp in suppressing
polyQ aggregation and polyQ-induced cellular toxicity (Vos et al. 2010). Taken
together these observations lead to the conclusion that small Hsps are beneficial
proteins that interfere with pathological processes leading to neurodegenerative,
myopathic, cardiomyopathic, cataract and retinal diseases (Andley 2007; Firdaus
et al. 2006a; Lee et al. 2006; Outeiro et al. 2006; Perrin et al. 2007; Wilhelmus et al.
2006a, b; Wyttenbach et al. 2002). This conclusion was further supported by
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mutations which inhibit the chaperone activity of HspB1, HspB3, HspB4, HspBS5,
HspB6 and HspB8 and provoke pathological diseases, such as amyotrophic lateral
sclerosis (ALS), axonal Charcot-Marie-Tooth disease, inherited peripheral and
motor neuropathies, myofibrillar myopathies, cardiomyopathies and cataracts
(Ackerley et al. 2005; Benndorf et al. 2014; Bova et al. 1999; Datskevich et al.
2012; Dierick et al. 2007; Elicker and Hutson 2007; Evgrafov et al. 2004; Kijima
et al. 2005; Vicart et al. 1998). However, depending on the clients that are recog-
nized by these Hsps, the consequences of their mutations will vary, with HspB1,
HspB3, and HspB8 causing motor neuropathies, while HspB5 induces particular
myopathies called aB-crystallinopathies (Benndorf et al. 2014).

2.2.1.2 Ocxidative Stress Generated by Aggregated Polypeptides

In addition to their anti-aggregation and fibrillation properties the fact that at least
HspB1 and HspBS5 can act as anti-oxidant molecules (Arrigo 1998, 2013; Arrigo
etal. 2005; Chen et al. 2006; Firdaus et al. 2006a, b; Mehlen et al. 1996a; Wyttenbach
et al. 2002) is of prime importance as it can counteracts some of the harmful effects
induced by aggregated polypeptides. Indeed, a disregulated intracellular redox lead-
ing to permanent oxidative conditions is a common feature observed in many degen-
erative diseases and in cells bearing aggregated polypeptides (Bharath et al. 2002;
Browne et al. 1999; Choi et al. 2005; Firdaus et al. 2006b; Fox et al. 2007; Halliwell
2001; Jenner and Olanow 1996; Tabner et al. 2001; Turnbull et al. 2003). This phe-
nomenon is a consequence of Huntingtin, f-amyloid and a-synuclein being metal
homeostasis modulating or direct iron/copper binding polypeptides (Hilditch-
Maguire et al. 2000; Huang et al. 2004). Hydroxyl radical over-production through
the metal-mediated alteration of the hydroxyl radical generating Fenton reaction is
thus a common feature of cells containing these aggregated polypeptides (Halliwell
and Gutteridge 1984; Sayre et al. 2000 #1935; Shoham and Youdim 2000). Hydroxyl
radicals stimulate protein aggregation and interfere with proteasome function
(Firdaus et al. 2006a, b; Janue et al. 2007; Liu et al. 2006; Wyttenbach et al. 2002).
These observations lead to the conclusion that some small Hsps, as HspB5
(Bjorkdahl et al. 2008; Ousman et al. 2007), could be considered as therapeutic
agents to treat degenerative diseases.

2.2.2 Inflammation

HspB1 is essential for both IL-1 and TNF-induced pro-inflammatory signaling
pathways leading to the expression of pro-inflammatory genes, such as cyclooxy-
genase-2, IL-6, and IL-8 (Alford et al. 2007). Increased cyclooxygenase-2 and IL-6
expression appears to occur through the stabilisation of their respective mRNAs as
a result of the enhanced activation of the kinase downstream of p38 MAPK, MK2
by HspB1. The client(s) targeted by HspB1 to perform this task are still unknown,
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but may reside at the level or more upstream of the pivotal kinase TAK1. This study
also shows that in this context many signaling events depend on HspB1, such as
downstream signalling by p38 MAPK, JNK and their activators (MKK-3, -4, -6, -7)
and IKKp. In that respect, it is worth noting that HspB1 can interact with the activat-
ing kinases IKKa and IKKf of the transcription factor NF-xB (Dodd et al. 2009).
Another role has been proposed for HspB1 through its association with the AUF1-
and signal transduction-regulated complex, ASTRC, that regulates mRNA degrada-
tion machinery. This could lead to a mechanism that combines proinflammatory
cytokine induction with monocyte adhesion and motility (Sinsimer et al. 2008).
HspBS5 also plays several roles in inflammation. The first one describes HspBS as a
new regulator of leukocyte recruitment, through its ability to enhance NF-xB pro-
inflammatory signaling pathways and the expression of endothelial adhesion mol-
ecule during endothelial activation (Dieterich et al. 2013). No putative client has yet
been described to support this activity. The second activity concerns a role for
HspB5 as an extracellular protein (see Sect. 2.2.4) and deals with its ability, when
added to the plasma of patients suffering of multiple sclerosis, theumatoid arthritis,
and amyloidosis as well of mice with experimental allergic encephalomyelitis, to
interact with some relative apparent selectivity with at least 70 different pro-
inflammatory mediators (acute phase proteins, members of the complement cas-
cade, and coagulation factors) (Rothbard et al. 2012) (see Table 2.2). Of great
interest, the presence of exogenous HspB5 decreased inflammation as a result of a
reduced concentration of these mediators. Using a similar approach, another study
points to the activation of an immune-regulatory macrophage response and inhibi-
tion of lung inflammation using HspB5-loaded microparticles (van Noort et al.
2013). These observations, as well as that of Kurnellas et al. (2012), confirm that
exogenous HspB5 could be used as an anti-inflammation therapeutic agent. HspB1
and HspBS5 also have beneficial protective roles against inflammation since their
anti-oxidant properties may favor their interference with tumor necrosis factor
(TNFo) signaling pathways, as observed in the case of asthma (Alford et al. 2007;
Kammanadiminti and Chadee 2006; Mehlen et al. 1995; Merendino et al. 2002).
Taken together, these observations suggest crucial, but different, roles for HspB1
and HspB5 in inflammatory processes.

2.2.3 Cancers

Multiple molecular alterations are key characteristics of most cancer cells. However,
an overall view of the major proteins involved in oncogenic signaling pathways is
currently beyond reach. In that respect, small Hsps are among the proteins whose
expression is altered in cancer cells. It is now well recognized that they have key
roles in cancer biology as a result of their interaction with specific clients that mod-
ulate tumor development through their activity at the level of apoptosis, mitotic
signaling pathways, angiogenesis, cell escape and survival, senescence, epithelial-
to-mesenchymal transition (EMT) and metastasis (Arrigo and Gibert 2014).
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In recent years, the major small Hsps reported to play important roles in cancer
pathologies were HspB1 and HspBS5 (Arrigo 2007a; Arrigo and Simon 2010; Arrigo
and Gibert 2014; Arrigo et al. 2007; Calderwood et al. 2006; Ciocca and Calderwood
2005). Recent observations now include HspB4, HspB6 and HspBS8 as well as the
intriguing dual pro- and anti-tumorigenic properties of some small Hsps.

2.23.1 Pro-tumorigenic Effects of Small Hsps

Elevated levels of expression of HspB1 and HspB5 were the first indicators of the
putative role of small Hsps in some cancer cells. It was first discovered that a high
level of expression of these proteins protects against apoptotic death (Mehlen et al.
1996b) and is pro-tumorigenic (Garrido et al. 1998). Recent studies have analyzed
their mode of action favoring tumor development.

Protection Against Cell Death, Apoptosis

Protection against apoptotic cell death by HspB1 was discovered in 1996 (Mehlen
et al. 1996b, 1997b; Samali and Cotter 1996). This property suggested that the high
level of expression of HspB1 observed in many cancer cells could promote carcino-
genesis, tumor maintenance and dissemination, an assumption demonstrated two
years later (Garrido et al. 1998). HspB1 anti-apoptotic property is a consequence of
its interaction with many client proteins in the initiation and execution phases of
apoptosis (Arrigo 2012a; Arrigo and Gibert 2014; Ciocca et al. 2013). In fact, based
on the signal transduction-dependent dynamic reorganization of its phosphorylation
and oligomerization status (Paul et al. 2010; Rogalla et al. 1999), HspB1 can inter-
act with the more appropriate clients to counteract apoptotic processes. This leads to
the hypothesis that HspB1 has multiple strategies to counteract inducer-specific
intrinsic and extrinsic apoptosis (Arrigo 2011; Paul et al. 2010). For example, by
acting towards F-actin and t-Bid translocation, HspB1 reduces cytochrome c (Paul
et al. 2002) and Smac-diablo (Chauhan et al. 2003) release from mitochondria. In
addition, it also decreases apoptosome and caspase-9 activation by a direct interac-
tion with cytosolic cytochrome ¢ (Bruey et al. 2000a; Garrido et al. 1999). A surpris-
ing effect occurs at the level of procaspase-3 whose activation is negatively regulated
by phosphorylated small oligomers of HspB1 (Arrigo and Gibert 2013; Gibert et al.
2012a; Pandey et al. 2000). In the meantime, HspB1 increases procaspase-3 half-
life by down-regulating its degradation by the ubiquitin-proteasome machinery
(Gibert et al. 2012a). Among the death receptor pathways that are under the control
of HspB1 are Fas, TNFa and TRAIL (Mehlen et al. 1995, 1996b; Zhuang et al.
2009). In the Fas signal transduction mechanism, phosphorylated dimers of HspB1
abolished the link between activated Fas receptor and apoptotic signaling kinasel
(Askl) by interacting with DAXX (Charette et al. 2000). The protection against
TNFa mediated transduction death signal is less well documented. Nevertheless,
HspB1 may protect cells directly through the classical apoptotic machinery and/or
its ability to interfere with the oxidative stress generated by this inflammatory
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cytokine (Mehlen et al. 1995, 1996a). In contrast (see below section “Stimulation of
cell survival pathways, senescence”), the inhibitory effect of HspB1 against TRAIL
induced death does not appear to occur at the level of the apoptotic machinery but
rather through the stimulation a cell survival mechanism (Qi et al. 2014).

HspB5 and HspB4 have also been reported as anti-apoptotic proteins (Andley
et al. 2000; Kamradt et al. 2005) and several reports mention their action towards
tumorigenicity (Arrigo 2007a; Chen et al. 2012; Kase et al. 2009; Mahon et al.
1987; Rigas et al. 2009). Their anti-apoptotic modes of action differ from that of
HspB1, however. Indeed, in addition to their action towards caspase-3, these Hsps
negatively regulate members of the Bcl-2 family, Bcl-X;, Bcl-XS and Bax, as well
as cytoplasmic p53 by interfering with their redistribution into mitochondria in
apoptotic conditions (Hu et al. 2012; Liu et al. 2007; Mao et al. 2004). HspB5 was
also shown to modulate p53 level (Watanabe et al. 2009). Moreover, both HspB4
and HspBS5 can prevent apoptosis through interactions with clients involved in regu-
lating signaling Raf/MEK/ERK and PKCalpha pathways (Liu et al. 2004).
Moreover, HspB5 modulates the activity of XIAP, an endogenous inhibitor of cas-
pases (Lee et al. 2012), and inhibits RAS activation responsive to the calcium-
activated Raf/MEK/ERK signaling pathway mediated p53-dependent apoptosis (Li
et al. 2005). HspB5 expression can also be correlated with pERK1/2 expression
(van de Schootbrugge et al. 2013b). However, it is important to note that these par-
ticular properties are usually tissue specific; for example, in pancreatic cancer cells
HspB4 has a surprising opposite effect and acts as a negative regulator of carcino-
genesis (Deng et al. 2010) (see below section “Anti-tumorigenic Effects”). HspB5
also protects retinal pigment epithelial cells through its association with HDAC1 on
SC35 speckles (Noh et al. 2008), which suggests that HspB5 knockout could be
beneficial to vitreoretinopathy therapy.

It is also interesting to note that 14-3-3 polypeptide is a client of phosphorylated
HspB6. Hence, this Hsp can compete with the large number of regulator proteins
interacting with 14-3-3 and indirectly modulate many cellular processes, such as those
involved in actin cytoskeleton reorganization or Bad mediated apoptosis (Chernik
et al. 2007; Seit-Nebi and Gusev 2010; Sluchanko et al. 2011; Zha et al. 1997).

Stimulation of Cell Survival Pathways, Senescence

HspBl1 still appears as being the major small Hsp involved in the stimulation of cell
survival pathways through its interaction with specific clients. Among those path-
ways, the Akt signaling cascade is a major one which includes key factors such as Akt,
PI3K, PTEN, mitogen-activated protein kinase kinase-3,6, BAD and Forkhead tran-
scription factors. In cancer cells, high expression levels of HspB1 result in its interac-
tion with Akt and PTEN. HspB 1 action towards Akt kinase activity and the stimulation
of the degradation of the phosphatase PTEN stimulate the PI3K/Akt signaling path-
way and thus enhance the survival of these pathological cells (Cayado-Gutierrez et al.
2012; Rane et al. 2003; Wu et al. 2007). An interesting survival pathway also modu-
lated by HspBl1 is the PEA-15 molecular switch linking cell proliferation to Fas-
induced apoptosis. In that regard, the interaction of HspB1 with PEA-15 inhibits



60 A.-P. Arrigo et al.

Fas-induced apoptosis and promotes cell survival and proliferation (Hayashi et al.
2012). Another example concerns the Src-Akt/ERK pro-survival signaling transduc-
tion triggered by TRAIL death receptor. Analysis of the molecular mechanism
revealed that phosphorylated HspB1 activates the pathway by interacting with Src and
by scaffolding protein beta-arrestin2 (Qi et al. 2014). The signaling complex made of
phospho-HspB 1/beta-arrestin2/Src appears therefore to be responsible for activating
the TRAIL-triggered Src-Akt/ERK pro-survival pathway. HspB1 also appears to act
in signaling pathways promoting survival of gliomas, but the molecular mechanism is
not yet known (Golembieski et al. 2008; McClung et al. 2012).

In addition to improving cell survival, HspB1 has a p53 dependent negative
action towards the oncogene-induced senescence (OIS) pathway which normally
blocks cancer progression (O’Callaghan-Sunol et al. 2007). Indeed, HspB1 deple-
tion usually induces a senescent-like phenotype in cancer cells. Among the morpho-
logical changes that were observed one can note a drastic reduction in the mitotic
index through induction of p21waf expression (O’Callaghan-Sunol et al. 2007) and
a particular cellular multi-nucleation which appears to be the result of the degrada-
tion of HDACS6 (Gibert et al. 2012a), an HspB1 client acting as a powerful contribu-
tor to oncogenic pathways activation (Lee et al. 2008). HDACG6 is proteolytically
stabilized by HspB1 serine 82 phosphorylated oligomers (Arrigo and Gibert 2013;
Gibert et al. 2012a). Among the other clients and/or pathways effective in support-
ing the negative effect of HspB 1 towards senescence are the p53 stabilizator HDM2,
an ubiquitin ligase (E3) that targets p53 for degradation (O’Callaghan-Sunol et al.
2007; Yang et al. 2005) and the PI3K/AKT induced OIS (Ghosh et al. 2013).

Cell Escape, Epithelial-to-Mesenchymal Transition (EMT), Metastasis

In addition to counteracting cell death and promoting cell survival pathways, HspB 1
and HspB5 have been shown to bear tumorigenic (Garrido et al. 1998, 2006) and
pro-metastatic (Bausero et al. 2006; Lemieux et al. 1997; Nagaraja et al. 2012b)
properties. In that regard, several clients interacting with these proteins have been
identified (Arrigo and Gibert 2014) that are particularly active at the level of the
cytoskeleton and extracellular matrix (Arrigo and Gibert 2013; Gibert et al. 2012a;
Lavoie et al. 1993; Mounier and Arrigo 2002; Perng et al. 1999; Wettstein et al.
2012; Xi et al. 2006). For example, in cancer cells, HspB1 is necessary for F-actin
mediated cytokinesis and interferes with the accumulation of giant polynucleated
cells (Gibert et al. 2012a). Another important client interacting with both HspB1
and HspB5 is p-catenin (Fanelli et al. 2008; Ghosh et al. 2007¢) and the resulting
effect is a modulation of cadherin-catenin cell adhesion proteins (Fanelli et al.
2008). At least in the case of HspB1, the interaction plays a crucial role in promot-
ing tumor growth. Among the other clients of HspB1, one can cite several metallo-
proteinases (Bausero et al. 2006; Xu et al. 2006) as well as SPARC (secreted protein,
acidic and rich in cysteine), a polypeptide that plays an important role in cell adhe-
sion and migration (Golembieski et al. 2008; McClung et al. 2012; Schultz et al.
2012). In several cancer pathologies, HspB5 also promotes cell migration and
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invasion. For example, HspBS5 induces the EGF- and anchorage-independent growth
of human breast basal-like tumors through the constitutive activation of the MAPK
kinase/ERK (MEK/ERK) pathway and transforms immortalized human mammary
epithelial cells in invasive mammary carcinomas that have the same aspect as basal-
like breast tumors (Gruvberger-Saal and Parsons 2006; Moyano et al. 2006). At
least in the kidney, HspBS5 can participate in maintaining tissue integrity by interact-
ing with Ksp-cadherin-16 and promoting its connection to the cytoskeleton
(Thedieck et al. 2008).

HspBl1 is still the major small Hsp that stimulates metastasis (Bausero et al. 2004,
2006; Gibert et al. 2012b; Nagaraja et al. 2012a, b). Epithelial-to-mesenchymal tran-
sition (EMT) is the major parameter controlling metastasis that appears under the
control of HspB1 (Shiota et al. 2013; Wei et al. 2011). Indeed, HspB 1 modulates the
expression of pro-metastatic genes (Nagaraja et al. 2012b), such as those dependent
on STAT3/Twist signaling by enhancing the binding of the transcription factor
STAT3 to the promoter of the Twist gene (Shiota et al. 2013). This transcriptional
event generates two hallmarks of EMT: N-cadherin up-regulation and E-cadherin
downregulation. It is therefore possible that the interaction of HspB1 with phos-
phorylated and activated STAT3 could be one of the key events regulating this phe-
nomenon (Gibert et al. 2012a). HspB1 also binds to and stabilizes the transcription
factor Snail, and consequently induces EMT features (Wettstein et al. 2013). The
phenomenon probably occurs via a Snail-induced transcriptional blockage of
E-cadherin gene expression (Batlle et al. 2000). E-cadherin downregulation is nec-
essary to trigger epithelial-to-mesenchymal transition and acquisition of metastatic
potential at late stages of epithelial tumour progression. Concerning HspB5, a recent
study mentions that its expression is associated with distant metastases formation in
head and neck squamous cell carcinoma, a link that might relate to the chaperone
function of HspB5 in mediating folding and secretion of VEGF and stimulating cell
migration (van de Schootbrugge et al. 2013a). Thus, among the different small Hsps,
at least HspB1 and HspB5 are considered as potent stimulators of tumor progres-
sion. However, we should be cautious before coming to a general conclusion on this
topic, since, as indicated below (Sect. 2.2.3.2), in some tumors these Hsps have been
recently shown to have an anti-tumor activity that counteracts tumor development.

Angiogenesis

Do small Hsps participate in the process triggering the excessive formation of
blood vessels that irrigate cancer cells? Until recently, no answer could be given to
this question since no data supported such a pro-angiogenic hypothesis. However,
recent game-changing reports have clearly demonstrated that small Hsps indeed
play a role in this process. First, it was shown that, in addition to their intracellular
distribution, small Hsps can also be localized in plasma membrane and can be
exported in the extracellular milieu (Chowdary et al. 2006; Rayner et al. 2008;
Tsvetkova et al. 2002), a phenomenon that correlates with tumor growth and
metastasis formation (Bausero et al. 2004). In addition to a possible
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immunological role for small Hsps, a first observation was that recombinant
HspB1 added to the growth medium has a pro-angiogenic effect mediated by Toll-
like receptor 3 (TLR3) at the surface of human microvascular endothelial cells
(HMECs). The interaction stimulates NF-kB dependent vascular endothelial
growth factor (VEGF) gene transcription and promotes secretion of VEGF-
activating VEGF receptor type 2 and angiogenesis (Thuringer et al. 2013). Indeed,
the production by endothelial cells of intracellular autocrine (intracrine) VEGF is
critical for vasculature homeostasis. A more recent study showed that HspB1 is
directly released from endothelial cells (ECs) and confirmed that it modulates
angiogenesis via direct interaction with VEGF. However, these authors also
showed that HspB1 can be cleaved by MMP9 (Matrix MetalloProteinase 9) and
recovered as anti-angiogenic fragments which interfere with VEGF-induced ECs
activation and tumor progression (Choi et al. 2014). Thus, it appears that the effect
mediated by extracellular HspB1 in cancer pathologies may depend on the effi-
ciency of its cleavage by MMP9. However, the first study used recombinant HspB 1
added to culture medium, so that the cleavage activity of endogenous MMP9 could
have been overwhelmed by an excess of HspB1 and thus a pro-angiogenic effect
was observed. Thus, in vivo, HspB1 released from cells appears as an anti-angio-
genic polypeptide. This is also supported by the fact that MMP inhibitors have
failed in clinical trials, probably through their efficient knock out of HspBl
fragmentation.

Another small Hsp involved in angiogenesis is HspB5 since it is crucial for endo-
thelial cell survival and is up regulated during vessel morphogenesis. For example,
tumor vessels in HspB5 (—/—) mice showed signs of caspase-3 activation and apop-
tosis and tumors grown in such mice were significantly less vascularized than
wild-type tumors and displayed increased areas of apoptosis/necrosis (Dimberg
et al. 2008). Recently, it was shown that HspB5 is a VEGF chaperone that protects
this growth factor against proteolytic degradation (Kerr and Byzova 2010; Ruan
et al. 2011). HspB5 appears therefore strongly involved in the pathway maintaining
intracrine VEGF signaling that sustains aberrant tumor angiogenesis (Dimberg
et al. 2008; Ruan et al. 2011).

Gene Expression

The control by HspB1 of several crucial transcription factors (among them Snail,
STAT3, NF-xB and HSF1) can have dramatic consequences particularly towards
apoptosis inhibition and EMT promotion. HSF1 (heat shock factor 1), the transcrip-
tion factor responsible for Hsps expression, has also been shown to play a crucial
role in tumorogenesis (Mendillo et al. 2012). HSF1 is SUMO-2/3 modified by
HspB1-Ubc9 complex (Brunet Simioni et al. 2009). This modification does not
affect HSF1 DNA-binding ability but blocks its transactivation function suggesting
that it could act, together with NuRD factors, as a transcriptional inhibitor that
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represses genes that oppose metastasis. Other hypotheses suggest that it could
modulate energy metabolism or permit the development of polyploidy in cancer
cells (Calderwood 2012; Mendillo et al. 2012).

HspB1, HspB7 and HspB8 can also favor the expression of pro-tumorigenic pro-
teins though the control of mRNAs. Indeed, some clients of these Hsps regulate
mRNA splicing, such as SAM68, Ddx20, EFTUD2 and SC35 (Badri et al. 2006;
Hegele et al. 2012; Sun et al. 2010; Vos et al. 2009), while others play a role in
translational initiation (eI[F4G) (Andrieu et al. 2010) or mRNA stability (AUF1)
(Sinsimer et al. 2008).

2.2.3.2 Anti-tumorigenic Effects

In contrast to the classical view described above favoring a pro-tumorigenic activity
for HspB1 and HspBS5, recent observations indicate that, in some cancer types,
HspB1, HspB5 and HspB4 polypeptides display intriguing tumor suppressive activ-
ities. Moreover, recent studies dealing with HspB8 and HspB6 clearly show that
these polypeptides promote tumor growth resistance and decrease cell survival.

Tumor Suppressive Role of HspB1

As mentioned above, HspB1 released from endothelial cells (ECs) regulates angio-
genesis by interacting with VEGF (vascular endothelial growth factor). However,
new observations have revealed that MMP9 (matrix metalloproteinase 9) can cleave
HspB1 and release anti-angiogenic fragments that inhibit lung and liver tumor pro-
gression of B16F10 melanoma cells and lung tumor progression of CT26 colon
carcinoma cells. The failure of MMP inhibitors in clinical trials could then be
explained by their ability to decrease HspBl fragmentation leading to pro-
tumorigenic effects (Choi et al. 2014).

Tumor Suppressive Role of HspB5

In the case of nasopharyngeal carcinoma (NPC), an intriguing observation was that
HspB5 downregulation is significantly associated with the progression of NPC
while its overexpression interferes with NPC progression-associated phenotypes
such as loss of cell adhesion, invasion, interaction with the tumor microenviron-
ment, invasive protrusion formation and expression of epithelial-mesenchymal
transition-associated markers. Molecular analysis revealed that HspBS suppresses
NPC progression by interacting with the cadherin/catenin adherens junction. This
indirectly decreases the levels of expression of critical downstream targets such as
cyclin-D1 and c-myc (Huang et al. 2012)
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HspB4

The role of HspB4 in tumorigenesis appears rather equivocal (Deng et al. 2010).
Indeed, depending of the tumor type the level of this protein is either up- or
downregulated. In normal conditions, HspB4 is mainly expressed in the lens and
is also detectable in the pancreas. Consequently, many of the lens tumor cells
display high levels of HspB4 expression, such as those from retinoblastoma and
eyelids with sebaceous carcinoma (Kase et al. 2009; Mahon et al. 1987; Rigas
et al. 2009). In these cells, HspB4, like HspBS5, can promote tumorigenesis since
it bears an anti-apoptotic activity (Andley et al. 2000; Ciocca and Calderwood
2005) whose major property is to negatively regulate the pro-apoptotic members
of the Bcl-2 family and caspase-3 (Hu et al. 2012). Contrasting with these
observations, the moderate level of expression of HspB4 observed in normal
human pancreas samples appears significantly reduced in many cases of pancre-
atic carcinoma of different types. Unfortunately, to date, the mechanism con-
trolling HspB4 down-regulation in pancreatic carcinoma cells is not known.
Another interesting point, as demonstrated by genetically forced expression of
this protein, concerns the fact that, in the pancreas, HspB4 can act as a negative
regulator that blocks cell transformation and retards cell migration (Deng et al.
2010). However, the mechanism by which HspB4 performs this pancreatic task
is not yet solved. It may occur through a modulation of ERK MAP kinase activ-
ity regulating AP-1 expression and activity to halt cell transformation and retard
cell migration (Chen et al. 2012; Deng et al. 2010). Thus, in spite of some com-
mon properties towards apoptosis, cell proliferation and tumor metastasis more
work is needed to unravel the particular role of HspB4 in pancreatic
carcinogenesis.

HspBS8

It has been recently shown that in a large fraction of melanoma tumors, which are
aggressive and drug-resistant cancers, HspB8 gene is silenced through aberrant
DNA methylation. This phenomenon modulates Aza-C (5-Aza-2"-deoxycytidine)
treatment efficiency (Smith et al. 2011). The anti-tumor property of HspB8 was then
identified by experiments aimed at restoring its expression. Indeed, putting HspB8
back in cells inhibited tumor growth and induced the death of genetically diverse
melanoma lines as a result of the activation of TAK1 (TGF-p activated kinase
1)-dependent death pathways (Li et al. 2007; Smith et al. 2012). Among the TAK1
putative down-stream pathways that could be involved is the inflammasome inde-
pendent activation of caspase-1 resulting from the upregulation of ASC (apoptosis-
associated speck-like protein containing a CARD). Apoptosis could then be caused
by caspase-1-mediated cleavage of Beclin-1, a polypeptide upregulated in mela-
noma tumors as a result of mTOR (mammalian target of rapamycin)
phosphorylation.
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HspB6

Recent findings have shown that, in human hepatocellular carcinoma (HCC), HspB6
expression levels are inversely correlated with the progression of HCC. The nega-
tive effect mediated by HspB6 appears to result from its interaction with PI3K
(phosphoinositide 3-kinase, an upstream kinase of Akt). This interaction suppresses
PI3K activity, inhibits the AKT survival pathway and subsequently decreases HCC
survival and growth (Matsushima-Nishiwaki et al. 2013).

Therapeutic Thoughts About Tumor Suppressive Small Hsps in Cancer

The examples presented above clearly indicate that, in some cancer cells, small
Hsps can be associated with anti-tumorigenic activity. Hence, it is intriguing to note
that cancer cells can devise strategies to improve their growth and dissemination by
down-regulating the expression of these polypeptides. This may open up new thera-
peutic options aimed at restoring or up regulating the expression or activity of these
proteins. However, restoring the specific expression of transcriptionally silenced
genes is quite difficult. Moreover, as in the case of HspBS, the approach can be
limited by the genetic diversity of the tumors. A better way to improve therapeutic
strategies would be to mimic chemically the activation performed by small Hsps, as
for example towards the TAK1 pathway in the case of melanoma. Similarly, restor-
ing HspB4 or HspBS5 level of expression, up-regulating HspB6 activity towards
PI3K or stimulating HspB1 cleavage by MMP9 could be a challenge. In the mean-
time a better understanding of the role of HspB4 towards ERK MAP kinase activity
and AP-1 expression as well as of HspB6 inhibitory interaction with PI3K may help
in the discovery of new drugs effective against pancreatic and hepatic cells
carcinogenesis.

2.2.4 Extracellular Roles of Small Hsps

Recently, a major discovery was that HspB1, HspB5 and HspBS8 can localize in
plasma membrane and be secreted in spite of their major intracellular localization
(Chowdary et al. 2006; Rayner et al. 2008; Sreekumar et al. 2010; Tsvetkova et al.
2002). Thus, what could be the functions of these proteins at the cell surface or in
the extracellular milieu? Do these circulating proteins share some of the properties
of circulating Hsp70 (De Maio 2011)? For example, are they associated with immu-
nogenic peptides which trigger an immune response (Delneste et al. 2002), or are
they pro-immunosuppressive polypeptides (Chalmin et al. 2010). Are they involved
in anti-inflammation, alarmone or other pathways by interacting with specific cel-
lular receptors? Recent observations suggest that circulating HspB1 is not associ-
ated with immunogenic peptides but could have immunoregulatory activity. For
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example, circulating HspBS5 stimulates macrophages through its ability to recognize
CD14, TLR1 and TLR2 (Toll-like receptor 1 and 2) at their surface (van Noort et al.
2013). Similarly, HspB8 and HspB4 recognize TLR4 and induce dendritic cells
activation (Roelofs et al. 2006). HspB1 was also found to activate NF-xB in macro-
phages (Salari et al. 2012). In addition, this protein recognizes several cell surface
polypeptides such as CD10 (Dall’Era et al. 2007), Plasminogen, Angiostatin
(Dudani et al. 2007) and TLR3 (Thuringer et al. 2013). In 4T1 breast adenocarci-
noma cells, HspB1 cell surface expression appears correlated with tumor growth
and metastasis formation (Bausero et al. 2004, 2006). Moreover, the angiogenic
property of HspB1 is regulated by the cleavage efficiency of MMP9 (Choi et al.
2014; Thuringer et al. 2013) (see also Sect. Angiogenesis).

A key aspect of circulating small Hsps is that they can be either beneficial or
harmful to patients suffering from different pathologies. In that regard they behave
like intracellular small Hsps. For example, a major positive effect of circulating
HspB1 is its impressive atheroprotective effect (Rayner et al. 2008; Salari et al.
2012). On the other hand, secreted HspB1 correlates with vascular complications in
type 1 diabetic patients (Gruden et al. 2008) and is not a positive signal in cancers.
Consequently, major care will have to be taken in case of therapeutic approaches
targeting circulating Hsps. More studies are urgently needed to evaluate the multi-
ple roles played by these extracellular proteins in normal and pathological physio-
logical conditions.

2.2.5 Conclusions

As described here, small Hsps have immense cellular implications as a result of
their interaction with many specific client polypeptides whose number is growing
exponentially. Their ability to bind polypeptides and modulate their folding is a
property that was originally discovered in heat shock treated cells where HspB1 was
shown to interact with aberrantly folded polypeptides to prevent their aggregation.
It is now well known that small Hsps can modulate folding or induce modifications
in interacting clients. They also have the crucial ability to positively or negatively
modulate their half-lifes. Taken together, these observations show that small Hsps
can have a drastic influence on the level of expression as well as on the activity of
interacting clients. Consequently, these Hsps indirectly appear to have a huge num-
ber of functions that allow cells to rest, grow or better adapt to changes in their
physiology or pathological status. Moreover, by targeting specific clients, small
Hsps can be protective and beneficial against cell degeneration. They can also have
a disastrous effect by causing some cancer cells to proliferate and create
metastasis.

The proteomic analysis presented here confirms our feeling that small Hsps, as
Hsp90 (McClellan et al. 2007; Moulick et al. 2011; Taipale et al. 2010), are global
regulators of cell systems that exert marked effects on normal biology and diseases
through their chaperone/client interactome systems. Hence, we are now facing
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problems that are even more complex than those encountered by researchers
working with Hsp90. The first of these illustrates the complexity associated with
small Hsps and deals with the chimeric structures that can form between two small
Hsps. These structures appear to have lost the properties associated with parental
homo-oligomers, but do they have specific interactomes or are they inert? The sec-
ond problem is common to small Hsps and Hsp90: what is the structural dynamic
that acts on a diverse client repertoire in defined cellular conditions? In the case of
HspB1, phosphorylation and oligomerization appear as key factors that dynami-
cally react and provide a recognition platform for specific clients (Arrigo and Gibert
2013; Paul et al. 2010), however nothing is known about the molecular signaling
mechanisms involved in this process. Thus, more in-depth structural work, signal-
ing studies as well as analysis of the organization of small Hsps in living cells are
necessary to unravel the problem of how these chaperones recognize client polypep-
tides. The third problem deals with therapeutic strategies aimed at modulating the
level or activity of these chaperones. In the case of Hsp90, drugs interfering with its
chaperone activity and broad interaction with clients have been clinically tested.
Their modest effects and unsuspected side effects resulted in lack of FDA recogni-
tion (Whitesell et al. 2012). More specific drugs targeting only a subset of Hsp90-
clients may prove more useful (Moulick et al. 2011). Similarly, the use of genetic
techniques to invalidate the expression of small Hsps appears efficient (Gibert et al.
2012b; Wettstein et al. 2013) but in the long term they could be disappointing
because of the complete disruption of small Hsps protein interactomes. Drugs or
genetic techniques altering the structure of small Hsps can lead to interesting results
(Gibert et al. 2011; Heinrich et al. 2011) but will require in-depth analysis of their
effects on small Hsps interactomes. More work is needed to build comprehensive
dynamic interactomes of small Hsps in specific pathologies. This will be necessary
in characterizing both the good and pathological clients recognized by these Hsps.
The discovery of new drugs or genetic techniques that preserve their interaction
with the good clients and destroy those with the ugly ones will probably have a
bright future.
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