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    Chapter 2   
 Immense Cellular Implications Associated 
to Small Stress Proteins Expression: Impacts 
on Human Pathologies 

             André-Patrick     Arrigo     ,     Benjamin     Ducarouge    ,     Fabrice     Lavial    , 
and     Benjamin     Gibert   

    Abstract     In addition to being potent chaperones that protect cells against the 
 accumulation of unfolded proteins under stress conditions, mammalian small heat 
shock proteins (small Hsps) regulate many vital cellular processes in normal and 
pathological cells. Indeed, these Hsps are constitutively expressed in many tissues 
and show dramatic changes in their levels of expression in most human pathologies. 
They are characterized by a large spectrum of activities and are particularly active 
in protein conformational and infl ammatory diseases as well as in cancer pathologies. 
It is now believed that the immense cellular implications of small Hsps results from 
their ability to interact, through particular structural changes, with many different 
client proteins that are subsequently modulated in their activities or half-lifes. Here, 
we have integrated functionally and structurally the recent data in the literature 
concerning the interactions of mammalian small Hsps with specifi c clients. Further 
analysis with geneMANIA software and database confi rmed the incredibly large 
number of functions associated with these Hsps. The consequences for human 
pathologies as well as putative therapeutic strategies are discussed, particularly 
when the expression of small Hsps is harmful (as in some cancer pathologies) or 
when it appears benefi cial for patients.  
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2.1         Many Functions Associated with Small Hsps in Addition 
to Their Protective Role in Stress Condition 

 The last decade has been characterized by an incredible jump in the interest in the 
ten mammalian small Hsps. Indeed, until the turn of the century, these stress proteins 
were considered as exotic chaperones that did not use ATP for their activity. 
These “forgotten chaperones”, as they were called in 2002 (Solari and Garrido 
 2002 ), are now stars among Hsps to judge by the large number of scientifi c and 
medical publications dealing with their particular behaviors and functions that fi ll 
the current literature. This renewed interest is probably linked to their constitutive 
expression in normal and pathological conditions as well as to the large number of 
unrelated functions associated with their over- or under-expression in many different 
cell types. Interest has also been generated by the growing number of pathological 
mutations in their genes that induce degenerative or myopathic diseases and by their 
newly described ability to be secreted. 

2.1.1     Stress Conditions, Chaperone Activity 
and Anti- aggregation Properties 

 Early studies dealing with HspB1 and HspB5 revealed their enhanced expression 
under heat shock conditions as well as their ATP-independent chaperone property 
(Jakob et al.  1993 ; Rogalla et al.  1999 ). It was shown that large oligomeric struc-
tures formed by small Hsps store stress-altered polypeptides in a refolding compe-
tent state that can interfere with their propensity to aggregate (Bellyei et al.  2007 ; 
Carra et al.  2005 ; Ehrnsperger et al.  1997 ,  2000 ; Ganea  2001 ; Haslbeck et al.  2005 ; 
Horwitz et al.  1992 ; Jakob et al.  1993 ; Lee et al.  1997 ; Markossian et al.  2009 ). 
These altered polypeptides can subsequently be refolded by the ATP-dependent 
Hsp70, Hsp90 and co-chaperones “foldase” machines (Buchner  1999 ; Bukau and 
Horwich  1998 ; Freeman and Morimoto  1996 ; Lee and Vierling  2000 ) or degraded 
by the CHIP-ubiquin-26S proteasome machine (McDonough and Patterson  2003 ). 
The dynamic oligomerization/phosphorylation status of small Hsps, and particu-
larly HspB1, is an essential factor of this process (Arrigo et al.  1988 ; Lelj-Garolla 
and Mauk  2005 ,  2006 ; Paul et al.  2010 ; Preville et al.  1998b ; Rogalla et al.  1999 ; 
Simon et al.  2013 ). The cytoskeleton is one of the primary targets protected by 
HspB1 and HspB5 in response to stress (Bellomo and Mirabelli  1992 ; Welch and 
Feramisco  1985 ) as well as in normal growth conditions. This property probably 
relies, at least in the case of HspB1, on the fact that phosphorylated small HspB1 
oligomers modulate F-actin fi ber growth and, indirectly, extracellular matrix orga-
nization (Dalle-Donne et al.  2001 ; Mounier and Arrigo  2002 ; Perng et al.  1999 ). 

A.-P. Arrigo et al.
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Under stress conditions, HspB1 and HspB5 stabilize microtubules (Hino et al.  2000 ; 
Preville et al.  1996 ; Xi et al.  2006 ). HspB5 is also very active in maintaining inter-
mediate fi laments homeostasis, particularly in muscle cells where it associates with 
desmin (Bennardini et al.  1992 ; Djabali et al.  1999 ). Moreover, HspB1 and HspB5 
share an intriguing anti-oxidant property which appears linked to the chaperoning 
of several anti-oxidant enzymes, particularly G6PDH (glucose 6-phosphate dehy-
drogenase) (Arrigo  2001 ,  2007b ,  2013 ; Arrigo et al.  2005 ; Firdaus et al.  2006a ; 
Mehlen et al.  1996a ; Paul and Arrigo  2000 ; Preville et al.  1998a ,  1999 ; Rogalla 
et al.  1999 ; Yan et al.  2002 ). Consequently, damage such as protein and nucleic acid 
oxidation as well as lipid peroxidation is reduced and the positive effect of these 
Hsps towards mitochondrial ΔΦm increases ATP levels, which favors the activity of 
ATP-dependent chaperones (Mehlen et al.  1996a ; Preville et al.  1999 ). 

 Only HspB1, HspB5 and HspB8 molecular chaperones are induced under stress 
conditions. Interestingly, constitutively expressed small Hsps, such as HspB2, 
HspB3, HspB4, HspB6 and HspB7, also display chaperone activities or at least anti- 
aggregation and pro-degradative functions (Carra et al.  2013 ). The anti-aggregation 
and anti-fi brillation properties of mammalian small Hsps are summarized in 
Table  2.1 . Depending on the substrate, some Hsps perform these tasks better than 
others, suggesting that they do not all have the same chaperone-like activity. For 
example, HspB4 can chaperone HspB5 once in the alpha-crystallin complex 
(Andley  2007 ), while HspB3 (Asthana et al.  2012 ) and HspB2 exhibit signifi cant 
chaperone-like activity towards specifi c target proteins and can attenuate the ordered 
amyloid fi bril formation of α-synuclein (Prabhu et al.  2012 ). The major substrates 
recognized by small Hsps can be mutated polypeptides that cause degenerative or 
myopathic diseases (i.e. desmin, polyQ proteins, SOD, α-synuclein) or proteins that 
are prone to aggregate. It is also important to mention that small Hsp mutants can 
induce the aggregation of their substrates, such as the R120G missense mutation in 
HspB5 which is genetically linked to a desmin-related myopathy consequently of 
the aggregation of desmin (Bova et al.  1999 ; Vicart et al.  1998 ). Similarly, the 
P182L mutant of HspB1 leads to motor neuronopathies as a result of the formation 
of aggregates that sequestrate Neurofi lament middle chain subunit (NF-M) and 
p150 Dynactin (Ackerley et al.  2005 ). Equally, proteins that interact with mutant 
small Hsps can counteract aggregation, as for example the chaperone-like effect of 
Bag3 towards aggregated HspB8 mutant (Hishiya et al.  2011 ). As a result of its 
interaction with Bag3, HspB8 also has the ability to trigger macroautophagy (Carra 
 2009 ; Carra et al.  2008b ). This favors the elimination of aggregated polypeptides 
generated by heat (Nivon et al.  2009 ) or oxidative stress (Keller et al.  2004 ; Kiffi n 
et al.  2006 ). Interestingly, HspB6 also appears to play a role in the Bag-3/HspB8 
complex that triggers macroautophagy (Fuchs et al.  2010 ). Less information is 
available concerning HspB9 and HspB10 in spite of their ability to interact with 
particular polypeptides (see Table  2.2 ).

2 Small Hsps Interactomes and Pathologies
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2.1.2         Enormous Cellular Implications Associated 
with Constitutively Expressed Small Hsps 

 Mammalian small Hsps are expressed in the absence of apparent stress in specifi c tis-
sues of developing and adult organisms as well as in pathological conditions (Arrigo 
 2012b ; Bhat and Nagineni  1989 ; Gernold et al.  1993 ; Huang et al.  2007 ; Klemenz 
et al.  1993 ; Mymrikov et al.  2011 ; Quraishe et al.  2008 ; Srinivasan et al.  1992 ; 
Tanguay et al.  1993 ). For example, HspB1 and HspB6 are highly abundant in mus-
cles. However, the overall tissue distribution of these two proteins is different since 
HspB6 is specifi c to muscles (Seit-Nebi and Gusev  2010 ) while HspB1 is expressed 
in almost all tissues. Similarly, HspB5, which forms with HspB4 the lens alpha-crys-
tallin complex is also expressed in the heart, skeletal muscle fi bers, brain and kidney 
while HspB4 is also present in pancreas. In contrast, HspB9 and HspB10 are restricted 
to testis expression (de Wit et al.  2004 ; Yang et al.  2012 ). Other important points con-
cern the expression of these proteins in pathological conditions as well as the drastic 
effects (neuropathies, myopathies, cardiomyopathies, cataracts) induced by some of 
their mutations (i.e. mutations in HspB1, HspB3, HspB4, HspB5, HspB6 and HspB8) 
(Benndorf et al.  2014 ; Kwok et al.  2011 ; Mymrikov et al.  2011 ; Vicart et al.  1998 ). So, 
what is the function of these Hsps in specifi c tissues? (see Sect.  2.1.2.1 ). 

2.1.2.1      Small Hsps Client Concept 

 The recent literature is quite abundant in descriptions of new functions associated 
with constitutively expressed small Hsps. Moreover, each small Hsp appears to have 
its own panel of activities (Fig.  2.1 ). An intriguing point is the unrelated nature of 
those activities distributed in almost all essential cellular pathways or activities, from 
cytoskeleton homeostasis to signal transduction pathways, gene expression and cell 
death (see Fig.  2.1 ). To understand why so many activities are associated with small 
Hsps, we must fi rst explain their particular structural organization. Indeed, these pro-
teins share, as a result of their crystallin homology, complex oligomeric structures 
that allow for the formation of dynamic homo and hetero- oligomeric structures (from 
50 to >700 kDa, depending on the small Hsps) (Arrigo  2007a ;  2011 , Arrigo et al. 
 1988 ; Basha et al.  2011 ; Garrido  2002 ; Simon et al.  2013 ). Moreover, phosphoryla-
tion plays a key role in the case of HspB1, HspB5 and HspB4. These Hsps bear sev-
eral serine sites phosphorylated by specifi c kinases, including stress and MAP 
kinases. Another key parameter is the cellular environment that modulates, in a 
dynamic and reversible way, the oligomeric organization and phosphorylation of 
some of these proteins, such as HspB1 (Arrigo et al.  1988 ; Arrigo  2000 ,  2007b ,  2011 ; 
Arrigo and Gibert  2012 ; Bruey et al.  2000b ; Mehlen and Arrigo  1994 ; Mehlen et al. 
 1997a ; Paul et al.  2010 ). This suggests an intracellular sensor activity associated 
with small Hsps that can record changes in cellular environment. For example, 
HspB1 reorganizes differently its phosphorylation and oligomerization status in cells 
exposed to different apoptotic inducers (Paul et al.  2010 ). What could this mean? 
Since HspB1 is an anti-apoptotic protein its structural changes could instruct the cell 
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to choose the best strategy to counteract the effects of a particular apoptotic inducer. 
How can this be done? Do small Hsps have multiple enzymatic activities because of 
their complex oligomeric organization, and are they thus pleotropic polypeptides, or 
are they acting via chaperone-like activities towards other polypeptides? Recently 
published reports revealed that the novel activities of small Hsps often correlate with 
their ability to interact with different polypeptides. Hence, could the apparent pleo-
tropic effects of small Hsps be indirect and, as previously described for Hsp90 

  Fig. 2.1    Large spectrum of cellular activities associated with mammalian small Hsps. The func-
tional activities of the different members of the small Hsps family are presented in a cartoon where 
each Hsp is characterized by a specifi c color       
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(Georgakis and Younes  2005 ; Neckers et al.  1999 ), result from the modulation of the 
activity and/or half-life of many clients? (list of Hsp90 clients:   http://www.picard.ch/
downloads    ). To clarify this point, we analyzed three polypeptides pro-caspase-3, 
HDAC6 and STAT-2 interacting with HspB1 in HeLa cells and discovered that their 
half-life was greatly enhanced by interacting with HspB1 (Gibert et al.  2012a ), which 
confi rmed that, in the same cell, HspB1 can recognize different protein clients. The 
updated list of the major proteins interacting with mammalian small Hsps and the 
cellular consequences mediated by these interactions is presented in Table  2.2 , see 
also (Arrigo  2013 ; Arrigo and Gibert  2012 ,  2013 ; Ciocca et al  2013 ). Clients are 
listed according to their activity in major cellular functions, such as transduction 
pathways, apoptosis, protein degradation, translation, transcription, cytoskeletal 
organization and homeostasis or cell adhesion. When available, information is 
given about the structural organization of small Hsps or their corresponding clients 
involved in the interactions. The little information already available confi rms the 
important role played by the oligomerization and phosphorylation patterns of small 
Hsps. Several consequences can result from small Hsps/clients interactions, such as 
modulation of half-life, enzymatic activity, structural organization or modifi cation of 
the client. For example, some clients interact with HspB1 to increase their half-life 
and thus avoid their rapid proteolytic degradation (Her2 oncogene, pro-caspase 3, 
HDM2, the histone deacetylase HDAC6, Androgen Receptor AR and the transcrip-
tion factors STAT-2 and STAT-3) while the opposite effect occurs for the rapidly 
degraded PTEN polypeptide when it is bound to HspB1. The transcription factor 
HSF1 is sumoylated as a result of its interaction with HspB1 coupled to the Ubc-9 
like sumoylating enzyme UBE21. Moreover, some cellular effects mediated by small 
Hsps are well known but the targeted proteins are still not defi ned. One striking exam-
ple is the modulation of the TAK-1 infl ammation pathway by HspB8 (see Table  2.2 ).  

 Two major questions arise from these observations: (i) what are the cellular 
consequences induced by the interaction of small Hsps to so many protein targets 
and (ii) how do small Hsps recognize client protein targets?

    (i)    Concerning the fi rst question one can easily conclude by analyzing Table  2.2  that 
small Hsps modulate the maturation and activity of a wide range of client pro-
teins including regulators of the life and death of the cell and signal transducer 
polypeptides, such as kinases and transcription factors. Therefore, by regulating 
a large repertoire of cellular functions small Hsps have a huge importance on 
normal biology, disease and evolutionary processes. Hence, as does Hsp90 
(McClellan et al.  2007 ; Moulick et al.  2011 ; Taipale et al.  2010 ), these Hsps 
appear as global regulators of cell systems through their chaperone/client interac-
tome systems. However, it is diffi cult to obtain a realistic view of the global cel-
lular consequences generated by small Hsps interactomes. To meet this challenge 
we have performed protein interaction networks analysis using the geneMANIA 
software and database (Warde-Farley et al.  2010 ) (  http://www.genemania.org/    ). 
This web interface shows the relationships between gene products and predicts 
their functional association in biological processes, pathways or diseases. Such 
data can help elucidate cellular pathways, create functional links between gene 
products and diseases, and can enable  investigators to extract signifi cantly more 
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information about the cellular impact generated by the expression of small Hsps 
than by relying solely on primary literature (Table  2.2 ). However, care must be 
taken when using these data since some interactions are only predicted. An exam-
ple presented in Fig.  2.2  illustrates the proteins interacting with HspB1, HspB5, 
HspB6 and HspB8. Only 100 proteins interacting with the four Hsps are ana-
lyzed, so some clients mentioned in Table  2.2  are not listed while new ones are 
mentioned. Nevertheless, this analysis further confi rms that small Hsps interact 
with a wide spectrum of polypeptides and consequently modulate many different 
cellular pathways, as for example those dealing with protein kinases, gene 
expression, cell adhesion and migration, cell death, catabolic processes, responses 
to stimulation,  confi rming their broad implications in cell biology.    

  Fig. 2.2    Human HspB1, HspB5, HspB6 and HspB8 protein interactomes and predictomes as 
proposed by GeneMANIA software and database including BioGRID and PathwayCommons. 
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Fig. 2.2 (continued) Analyzed Hsps are indicated in  black  while interacting proteins are in  grey . 
Physical interactions ( red lines ) and predicted ( orange lines ) ones were analyzed. The software 
was set to analyze up to hundred gene products and at most hundred related attributes. Automatically 
selected weighting method. Predicted interactions could be for instance, two proteins known to 
interact in another organism, such as S. cerevisiae. Abbreviations:  CRYAB  HspB5,  CRYAA  HspB4, 
 HSPA8  heat shock 70 kDa protein 8,  HSPH1  heat shock 105 kDa/110 kDa protein 1,  DNAJB1  
DnaJ (Hsp40) homolog, subfamily B, member 1,  CRYGC  crystallin, gamma C,  CRYBB2  crystallin, 
beta B2,  CRYZ  crystallin, zeta (quinone reductase),  F13A1  coagulation factor XIII, A1 polypep-
tide,  BAG3  BCL2- associated athanogene 3,  CS  citrate synthase,  POP7  processing of precursor 7, 
ribonuclease P/MRP subunit (S. cerevisiae),  STAT-3  signal transducer and activator of transcrip-
tion 3 (acute-phase response factor),  SPARCL1  SPARC-like 1 (hevin),  RAD51  RAD51 homolog 
(S. cerevisiae),  SPARC  secreted protein, acidic, cysteine-rich (osteonectin),  USP38  ubiquitin spe-
cifi c peptidase 38,  BCL2L1  BCL2-like 1,  MAPKAPK5  mitogen-activated protein kinase-activated 
protein kinase 5,  CRYBA1  crystallin, beta A1,  TAGLN3  transgelin 3,  CASP3  caspase 3, apoptosis-
related cysteine peptidase,  BMPR2  bone morphogenetic protein receptor, type II (serine/threonine 
kinase),  CYCS  cytochrome c, somatic,  MAPKAPK2  mitogen-activated protein kinase-activated 
protein kinase 2,  TGFB1I1  transforming growth factor beta 1 induced transcript 1,  YWHAG  tyro-
sine 3- monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide, 
 PSMA3  proteasome subunit, alpha type, 3,  MAPKAPK3  mitogen-activated protein kinase-acti-
vated protein kinase 3,  POLR2D  polymerase (RNA) II (DNA directed) polypeptide D,  TAGLN2  
transgelin 2,  PLCG2  phospholipase C, gamma 2 (phosphatidylinositol-specifi c),  PYROXD1  pyri-
dine nucleotide- disulphide oxidoreductase domain 1,  TGM1  transglutaminase 1 (K polypeptide 
epidermal type I, protein-glutamine-gamma-glutamyltransferase),  USP1  ubiquitin specifi c pepti-
dase 1,  EIF4G1  eukaryotic translation initiation factor 4 gamma, 1,  HNRNPD  heterogeneous 
nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37 kDa),  PRKCE  protein 
kinase C, epsilon,  HSPG2  heparan sulfate proteoglycan 2,  PRKAA1  protein kinase, AMP-activated, 
alpha 1 catalytic subunit,  DMWD  dystrophia myotonica, WD repeat containing,  PRKD1  protein 
kinase D1,  ILK  integrin-linked kinase;  MAGED1  melanoma antigen family D, 1,  SAP18  Sin3A-
associated protein, 18 kDa,  GIT1  G protein-coupled receptor kinase interacting ArfGAP 1,  MAPK3  
mitogen-activated protein kinase 3,  MAGEA6  melanoma antigen family A, 6,  BRF2  BRF2, subunit 
of RNA polymerase III transcription initiation factor, BRF1-like,  CCNK  cyclin K,  IGSF21  immu-
noglobin superfamily, member 21,  MME  membrane metallo-endopeptidase,  PSMD4  proteasome 
26S subunit, non-ATPase, 4,  PSMD6  proteasome 26S subunit, non-ATPase, 6,  TTN  titin,  CIAO1  
cytosolic iron-sulfur protein assembly 1,  DAXX  death-domain associated protein,  EPB41  erythro-
cyte membrane protein band 4.1 (elliptocytosis 1, RH-linked),  PPA1  pyrophosphatase (inorganic) 
1,  ACTC1  actin, alpha, cardiac muscle 1.  AKT1  v-akt murine thymoma viral oncogene homolog 1, 
 KCNMA1  potassium large conductance calcium-activated channel, subfamily M, alpha member 1, 
 LNX1  ligand of numb-protein X,  MED31  mediator complex subunit 31,  C7orf64  chromosome 7 
open reading frame 64,  NFKBIA  nuclear factor of kappa light polypeptide gene enhancer in B-cells 
inhibitor, alpha,  SLC2A4  solute carrier family 2 (facilitated glucose transporter) member 4,  TP53  
tumor protein p53,  TSC22D1  TSC22 domain family, member 1,  ALDH18A1  aldehyde dehydroge-
nase 18 family, member A1,  AMOT  angiomotin,  APP  amyloid beta (A4) precursor protein,  BAG1  
BCL2-associated athanogene,  BBC3  BCL2 binding component 3,  BCL2L11  BCL2-like 11 (apop-
tosis facilitator),  BRCA2  breast cancer 2, early onset,  COL15A1  collagen, type XV, alpha 1, 
 COL3A1  collagen, type III, alpha 1,  CSNK1D  casein kinase 1, delta,  CSNK1E  casein kinase 1,epsi-
lon,  CSNK2A1  casein kinase 2, alpha 1 polypeptide,  CST3  cystatin C,  F13B  coagulation factor 
XIII, B polypeptide,  FIGN  fi dgetin,  HDAC1  histone deacetylase 1,  LALBA  alpha-lactalbumin, 
 LRIF1  ligand dependent nuclear receptor interacting factor 1,  MDH2  malate dehydrogenase 2, 
NAD (mitochondrial),  MIP  major intrinsic protein of lens fi ber,  MND1  meiotic nuclear divisions 1 
homolog (S. cerevisiae),  PIAS3  protein inhibitor of activated STAT-3,  PRKCA  protein kinase C, 
alpha RAD51AP1: RAD51 associated protein 1,  RPP25  ribonuclease P/MRP 25 kDa subunit, 
 SLX4  SLX4 structure-specifi c endonuclease subunit homolog (S. cerevisiae),  SRRM2  serine/argi-
nine repetitive matrix 2,  VEGFA  vascular endothelial growth factor A       
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   (ii)    As for the second question, we believe that small Hsps act as does Hsp90 to 
recognize clients by taking advantage of a variety of conformational states to 
interact with co-chaperones and clients (Hessling et al.  2009 ; Mickler et al. 
 2009 ). Compared to other mammalian small Hsps, HspB1 has the most 
dynamic phospho-oligomeric organization, a property that could explain its 
ability to recognize a large number of protein clients probably through the 
rapid  generation of interacting platforms (Arrigo and Gibert  2012 ,  2013 ; 
Ciocca et al.  2013 ; Gibert et al.  2011 ,  2012a ; Paul et al.  2010 ). Consequently, 
HspB1 dynamic interactome may allow cells to respond quickly and mount 
the most effective response to a particular condition. However, an unan-
swered question is how small Hsps generate specifi c interacting platforms to 
act on client repertoire. At least in the case of HspB1, the phenomenon may 
depend on the complex patterns of MAPKAPK2,3-dependent phosphoryla-
tion of three serines sites located in the N-terminal domain of HspB1 (Arrigo 
and Gibert  2012 ,  2013 ; Paul et al.  2010 ; Rouse et al.  1994 ; Simon et al.  2013 ; 
Stokoe et al.  1992 ). Our recent observations favor this hypothesis since in 
growing HeLa cells pro-caspase- 3 interacts mainly with the serine 15 phos-
phorylated small oligomers of HspB1 while HDAC6 is recovered at the level 
of the large serine 82 phosphorylated oligomers. In contrast, STAT-2 binds to 
the medium and large sized HspB1 oligomers (Arrigo and Gibert  2013 ; 
Gibert et al.  2012a ). Thus, in growing HeLa cells, the specifi c phospho-oligo-
meric organization of HspB1 consists of signaling structures that recognize 
and bind at least three different polypeptides and subsequently modulate 
their half-life. This observation confi rms the hypothesis that the dynamic 
structural plasticity of small Hsps structure can lead to at least 300 different 
stoichiometries that favor the recognition of many particular target proteins 
(Stengel et al.  2010 ).     

 An increased complexity arises by taking into account another fundamental 
property of small Hsps. Once they are expressed in the same cells, they have the 
ability to interact with each other and form multiple combinatorial oligomeric struc-
tures (Table  2.3 , see also Arrigo  2013 ; Bukach et al.  2009 ;  den Engelsman et al. 
 2009  #3479; Saha and Das  2004 ; Simon et al.  2007 ; Zantema et al.  1992 ). Since 
interaction between two small Hsps mutually affects the structure and chaperone 
activity of both partners (Aquilina et al.  2013 ; Bukach et al.  2009 ; den Engelsman 
et al.  2009 ; Gibert et al.  2013 ; Mymrikov et al.  2012 ; Simon et al.  2013 ; Skouri-
Panet et al.  2012 ), it cannot be excluded that the chimeric oligomers can recognize 
novel client proteins and/or are unable to bind those interacting with parental small 
Hsps. Moreover, not all sHsps interact equally effi ciently with each other in vitro 
(Mymrikov et al.  2012 ). In that respect, the molecular ratio between small Hsp part-
ners is often different (e.g. 3:1 in the case of HspB4:HspB5 and HspB2:HspB3 
complexes). In vivo, the phenomenon is probably even more complex since modifi -
cations, such as phosphorylation, which depend on the type of cell considered and 
its physiology are of prime importance (Paul et al.  2010 ; Simon et al.  2013 ). For 
example, in cells expressing an equimolar ratio of HspB1 and HspB5, only 90 % of 
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HspB1 forms chimeric molecules with HspB5. This enhances the phosphorylation 
of the remaining 10 % of non interacting HspB1 which can now recognize a new 
client, G6PDH, and can stimulate its detoxicant enzymatic activity (Table  2.4 ) 
(Arrigo  2013 ). Unfortunately, no clear data are yet available concerning the protein 
targets recognized by chimeric small Hsps (Table  2.4 ), as for example in the case of 
HspB2:HspB3 complex involved in the development of muscle cells. Similarly, it is 
not known whether Bag3, which interacts with HspB8 and HspB6, can bind to 
HspB8:HspB6 complex to modulate autophagy. Another important consequence of 
the above mentioned property of small Hsps is the dominant effect of a mutated 
small Hsp that can dramatically spread between other interacting members of the 
family (Diaz-Latoud et al.  2005 ; Fontaine et al.  2006 ; Simon et al.  2013 ). These 
pathological interactions can also lead to the accumulation of cytoplasmic protein 
aggregates linked to diseases.

2.2           Examples Illustrating the Broad Spectrum of Positive or 
Negative Roles of Small Hsps in Human Pathologies 

 Nowadays, the medical literature is fi lled with reports explaining that the level of 
expression of small Hsps is highly modulated, as they are often upregulated in path-
ological conditions such as protein conformational disorders (neurodegenerative 
diseases, myopathies, cataracts), infl ammatory diseases and cancers. Many func-
tions were attributed to HspB1 and HspB5 and, probably due to their more recent 
discovery, less frequently to the other small Hsps. As mentioned above, these 

    Table 2.4    HspB chimeric hetero-oligomeric complexes: biological consequences and targeted 
polypeptides   

 Client 
 HspB 
complex 

 Resulting 
effects 

 Interacting 
structure/sequence 

 Observations 
made 

 References  In cells  In vitro 

 ?  HspB2/
HspB3 

 Muscle 
development 

 ?  X  –  den Engelsman 
et al. ( 2009 ) and 
Sugiyama et al. 
( 2000 ) 

 Bag3  HspB8/
HspB6 

 Chaperone 
Bag3 
activity 

 β4, β8 hydrophobic 
grooves (HspB8/B6) 

 X  X  Carra et al. 
( 2008b ) and 
Fuchs et al. 
( 2010 ) 

 IPV (Ile-Pro-Val) 
motifs (Bag3) 

 G6PDH  HspB1/
HspB5 

 Stimulation 
of activity 

 Interaction with 
hyperphosphorylated 

 X  –  Arrigo ( 2013 ) 

 HspB1, no 
interaction with 
HspB5 

  Listed here are the clients that interact with small Hsps consequently of the formation of hetero- 
oligomeric Hsps complexes  
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proteins probably act by interacting with pathology specifi c clients. Based on earlier 
observations, we proposed that the upregulation of these proteins had a negative 
effect (for the patient) in cancer pathologies while it was positive in the case of 
degenerative diseases (Arrigo and Simon  2010 ; Arrigo  2005 ; Arrigo et al.  2007 ). 
The most recent studies have complicated this hypothesis since, as described below 
(Sect.  2.2.3 ), one small Hsp can be benefi cial in one type of cancer and harmful in 
another. In fact, from a patient point of view, the major effects mediated by these 
interactions will depend on the friendly or hostile nature of the interacting clients. 
Thus, more work is needed to increase our knowledge of the pathology-dependent 
clients that interact with small Hsps, and future therapeutic interventions will have 
to be carefully planned to avoid dramatic off-target effects for patients. 

2.2.1     Degenerative Diseases 

2.2.1.1     Protective Role of Small Hsps 

 Elevated levels of Hsps, such as HspB1, HspB5 and high molecular weight Hsps, 
are observed in cells with altered protein folding homeostasis as a result of the 
expression of proteins prone to aggregate or fi brillate (see Table  2.1 ). Hence, high 
levels of these Hsps are observed in cortical Lewy bodies, Alzheimer’s disease 
plaques containing β-amyloid peptide, granules of neurones expressing polyQ 
mutants of Huntingtin polypeptide, Rosenthal fi bers of Alexander disease, 
Creutzfeldt-Jakob altered neurons, neurofi brillary tangles, α-synuclein deposit 
associated with Parkinson’s disease, SOD1 aggregates in amyotrophic lateral scle-
rosis, myopathy-associated inclusion body such as muscle cells expressing mutated 
desmin as well as in neurones from cerebral ischemia or heart cells altered by myo-
cardial infarction or atrial fi brillation (Bruinsma et al.  2011 ; Brundel et al.  2008 ; 
Goldfarb et al.  2004 ; Muchowski  2002 ; Muchowski and Wacker  2005 ; Renkawek 
et al.  1994 ; Wyttenbach  2004 ; Yerbury et al.  2012 ). In these cells, HspB1 and HspB5 
trigger a benefi cial protection by reducing the formation of pathological protein 
aggregates (Eaton et al.  2000 ; Efthymiou et al.  2004 ; Latchman  2005 ; Lewis et al. 
 1999 ). Protective activity has recently been reported for other small Hsps, such as 
HspB2, HspB3, HspB6, HspB7, HspB8 (Bruinsma et al.  2011 ; Brundel et al.  2008 ; 
Carra et al.  2005 ,  2008a ; Ke et al.  2011 ; Vos et al.  2010 ). However, these Hsps are 
effective in their own way in counteracting protein aggregation or fi brillation. For 
example HspB7, which, unlike HspB1, does not improve the refolding of heat- 
denatured polypeptides, is nevertheless the most effi cient small Hsp in suppressing 
polyQ aggregation and polyQ-induced cellular toxicity (Vos et al.  2010 ). Taken 
together these observations lead to the conclusion that small Hsps are benefi cial 
proteins that interfere with pathological processes leading to neurodegenerative, 
myopathic, cardiomyopathic, cataract and retinal diseases (Andley  2007 ; Firdaus 
et al.  2006a ; Lee et al.  2006 ; Outeiro et al.  2006 ; Perrin et al.  2007 ; Wilhelmus et al. 
 2006a ,  b ; Wyttenbach et al.  2002 ). This conclusion was further supported by 
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mutations which inhibit the chaperone activity of HspB1, HspB3, HspB4, HspB5, 
HspB6 and HspB8 and provoke pathological diseases, such as amyotrophic lateral 
sclerosis (ALS), axonal Charcot-Marie-Tooth disease, inherited peripheral and 
motor neuropathies, myofi brillar myopathies, cardiomyopathies and cataracts 
(Ackerley et al.  2005 ; Benndorf et al.  2014 ; Bova et al.  1999 ; Datskevich et al. 
 2012 ; Dierick et al.  2007 ; Elicker and Hutson  2007 ; Evgrafov et al.  2004 ; Kijima 
et al.  2005 ; Vicart et al.  1998 ). However, depending on the clients that are recog-
nized by these Hsps, the consequences of their mutations will vary, with HspB1, 
HspB3, and HspB8 causing motor neuropathies, while HspB5 induces particular 
myopathies called αB-crystallinopathies (Benndorf et al.  2014 ).  

2.2.1.2     Oxidative Stress Generated by Aggregated Polypeptides 

 In addition to their anti-aggregation and fi brillation properties the fact that at least 
HspB1 and HspB5 can act as anti-oxidant molecules (Arrigo  1998 ,  2013 ; Arrigo 
et al.  2005 ; Chen et al.  2006 ; Firdaus et al.  2006a ,  b ; Mehlen et al.  1996a ; Wyttenbach 
et al.  2002 ) is of prime importance as it can counteracts some of the harmful effects 
induced by aggregated polypeptides. Indeed, a disregulated intracellular redox lead-
ing to permanent oxidative conditions is a common feature observed in many degen-
erative diseases and in cells bearing aggregated polypeptides (Bharath et al.  2002 ; 
Browne et al.  1999 ; Choi et al.  2005 ; Firdaus et al.  2006b ; Fox et al.  2007 ; Halliwell 
 2001 ; Jenner and Olanow  1996 ; Tabner et al.  2001 ; Turnbull et al.  2003 ). This phe-
nomenon is a consequence of Huntingtin, β-amyloid and α-synuclein being metal 
homeostasis modulating or direct iron/copper binding polypeptides (Hilditch- 
Maguire et al.  2000 ; Huang et al.  2004 ). Hydroxyl radical over-production through 
the metal-mediated alteration of the hydroxyl radical generating Fenton reaction is 
thus a common feature of cells containing these aggregated polypeptides (Halliwell 
and Gutteridge  1984 ; Sayre et al.  2000  #1935; Shoham and Youdim  2000 ). Hydroxyl 
radicals stimulate protein aggregation and interfere with proteasome function 
(Firdaus et al.  2006a ,  b ; Janue et al.  2007 ; Liu et al.  2006 ; Wyttenbach et al.  2002 ). 
These observations lead to the conclusion that some small Hsps, as HspB5 
(Bjorkdahl et al.  2008 ; Ousman et al.  2007 ), could be considered as therapeutic 
agents to treat degenerative diseases.   

2.2.2     Infl ammation 

 HspB1 is essential for both IL-1 and TNF-induced pro-infl ammatory signaling 
pathways leading to the expression of pro-infl ammatory genes, such as cyclooxy-
genase- 2, IL-6, and IL-8 (Alford et al.  2007 ). Increased cyclooxygenase-2 and IL-6 
expression appears to occur through the stabilisation of their respective mRNAs as 
a result of the enhanced activation of the kinase downstream of p38 MAPK, MK2 
by HspB1. The client(s) targeted by HspB1 to perform this task are still unknown, 
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but may reside at the level or more upstream of the pivotal kinase TAK1. This study 
also shows that in this context many signaling events depend on HspB1, such as 
downstream signalling by p38 MAPK, JNK and their activators (MKK-3, -4, -6, -7) 
and IKKβ. In that respect, it is worth noting that HspB1 can interact with the activat-
ing kinases IKKα and IKKβ of the transcription factor NF-κB (Dodd et al.  2009 ). 
Another role has been proposed for HspB1 through its association with the AUF1- 
and signal transduction-regulated complex, ASTRC, that regulates mRNA degrada-
tion machinery. This could lead to a mechanism that combines proinfl ammatory 
cytokine induction with monocyte adhesion and motility (Sinsimer et al.  2008 ). 
HspB5 also plays several roles in infl ammation. The fi rst one describes HspB5 as a 
new regulator of leukocyte recruitment, through its ability to enhance NF-κB pro- 
infl ammatory signaling pathways and the expression of endothelial adhesion mol-
ecule during endothelial activation (Dieterich et al.  2013 ). No putative client has yet 
been described to support this activity. The second activity concerns a role for 
HspB5 as an extracellular protein (see Sect.  2.2.4 ) and deals with its ability, when 
added to the plasma of patients suffering of multiple sclerosis, rheumatoid arthritis, 
and amyloidosis as well of mice with experimental allergic encephalomyelitis, to 
interact with some relative apparent selectivity with at least 70 different pro- 
infl ammatory mediators (acute phase proteins, members of the complement cas-
cade, and coagulation factors) (Rothbard et al.  2012 ) (see Table  2.2 ). Of great 
interest, the presence of exogenous HspB5 decreased infl ammation as a result of a 
reduced concentration of these mediators. Using a similar approach, another study 
points to the activation of an immune-regulatory macrophage response and inhibi-
tion of lung infl ammation using HspB5-loaded microparticles (van Noort et al. 
 2013 ). These observations, as well as that of Kurnellas et al. ( 2012 ), confi rm that 
exogenous HspB5 could be used as an anti-infl ammation therapeutic agent. HspB1 
and HspB5 also have benefi cial protective roles against infl ammation since their 
anti-oxidant properties may favor their interference with tumor necrosis factor 
(TNFα) signaling pathways, as observed in the case of asthma (Alford et al.  2007 ; 
Kammanadiminti and Chadee  2006 ; Mehlen et al.  1995 ; Merendino et al.  2002 ). 
Taken together, these observations suggest crucial, but different, roles for HspB1 
and HspB5 in infl ammatory processes.  

2.2.3      Cancers 

 Multiple molecular alterations are key characteristics of most cancer cells. However, 
an overall view of the major proteins involved in oncogenic signaling pathways is 
currently beyond reach. In that respect, small Hsps are among the proteins whose 
expression is altered in cancer cells. It is now well recognized that they have key 
roles in cancer biology as a result of their interaction with specifi c clients that mod-
ulate tumor development through their activity at the level of apoptosis, mitotic 
signaling pathways, angiogenesis, cell escape and survival, senescence, epithelial-
to-mesenchymal transition (EMT) and metastasis (Arrigo and Gibert  2014 ). 
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In recent years, the major small Hsps reported to play important roles in cancer 
 pathologies were HspB1 and HspB5 (Arrigo  2007a ; Arrigo and Simon  2010 ; Arrigo 
and Gibert  2014 ; Arrigo et al.  2007 ; Calderwood et al.  2006 ; Ciocca and Calderwood 
 2005 ). Recent observations now include HspB4, HspB6 and HspB8 as well as the 
intriguing dual pro- and anti-tumorigenic properties of some small Hsps. 

2.2.3.1     Pro-tumorigenic Effects of Small Hsps 

 Elevated levels of expression of HspB1 and HspB5 were the fi rst indicators of the 
putative role of small Hsps in some cancer cells. It was fi rst discovered that a high 
level of expression of these proteins protects against apoptotic death (Mehlen et al. 
 1996b ) and is pro-tumorigenic (Garrido et al.  1998 ). Recent studies have analyzed 
their mode of action favoring tumor development. 

   Protection Against Cell Death, Apoptosis 

 Protection against apoptotic cell death by HspB1 was discovered in 1996 (Mehlen 
et al.  1996b ,  1997b ; Samali and Cotter  1996 ). This property suggested that the high 
level of expression of HspB1 observed in many cancer cells could promote carcino-
genesis, tumor maintenance and dissemination, an assumption demonstrated two 
years later (Garrido et al.  1998 ). HspB1 anti-apoptotic property is a consequence of 
its interaction with many client proteins in the initiation and execution phases of 
apoptosis (Arrigo  2012a ; Arrigo and Gibert  2014 ; Ciocca et al.  2013 ). In fact, based 
on the signal transduction-dependent dynamic reorganization of its phosphorylation 
and oligomerization status (Paul et al.  2010 ; Rogalla et al.  1999 ), HspB1 can inter-
act with the more appropriate clients to counteract apoptotic processes. This leads to 
the hypothesis that HspB1 has multiple strategies to counteract inducer-specifi c 
intrinsic and extrinsic apoptosis (Arrigo  2011 ; Paul et al.  2010 ). For example, by 
acting towards F-actin and t-Bid translocation, HspB1 reduces cytochrome c (Paul 
et al.  2002 ) and Smac-diablo (Chauhan et al.  2003 ) release from mitochondria. In 
addition, it also decreases apoptosome and caspase-9 activation by a direct interac-
tion with cytosolic cytochrome c (Bruey et al.  2000a ; Garrido et al.  1999 ). A surpris-
ing effect occurs at the level of procaspase-3 whose activation is negatively regulated 
by phosphorylated small oligomers of HspB1 (Arrigo and Gibert  2013 ; Gibert et al. 
 2012a ; Pandey et al.  2000 ). In the meantime, HspB1 increases procaspase- 3 half-
life by down-regulating its degradation by the ubiquitin-proteasome machinery 
(Gibert et al.  2012a ). Among the death receptor pathways that are under the control 
of HspB1 are Fas, TNFα and TRAIL (Mehlen et al.  1995 ,  1996b ; Zhuang et al. 
 2009 ). In the Fas signal transduction mechanism, phosphorylated dimers of HspB1 
abolished the link between activated Fas receptor and apoptotic signaling kinase1 
(Ask1) by interacting with DAXX (Charette et al.  2000 ). The protection against 
TNFα mediated transduction death signal is less well documented. Nevertheless, 
HspB1 may protect cells directly through the classical apoptotic machinery and/or 
its ability to interfere with the oxidative stress generated by this infl ammatory 
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cytokine (Mehlen et al.  1995 ,  1996a ). In contrast (see below section “ Stimulation of 
cell survival  pathways, senescence ”), the inhibitory effect of HspB1 against TRAIL 
induced death does not appear to occur at the level of the apoptotic machinery but 
rather through the stimulation a cell survival mechanism (Qi et al.  2014 ). 

 HspB5 and HspB4 have also been reported as anti-apoptotic proteins (Andley 
et al.  2000 ; Kamradt et al.  2005 ) and several reports mention their action towards 
tumorigenicity (Arrigo  2007a ; Chen et al.  2012 ; Kase et al.  2009 ; Mahon et al. 
 1987 ; Rigas et al.  2009 ). Their anti-apoptotic modes of action differ from that of 
HspB1, however. Indeed, in addition to their action towards caspase-3, these Hsps 
negatively regulate members of the Bcl-2 family, Bcl-X L , Bcl-XS and Bax, as well 
as cytoplasmic p53 by interfering with their redistribution into mitochondria in 
apoptotic conditions (Hu et al.  2012 ; Liu et al.  2007 ; Mao et al.  2004 ). HspB5 was 
also shown to modulate p53 level (Watanabe et al.  2009 ). Moreover, both HspB4 
and HspB5 can prevent apoptosis through interactions with clients involved in regu-
lating signaling Raf/MEK/ERK and PKCαlpha pathways (Liu et al.  2004 ). 
Moreover, HspB5 modulates the activity of XIAP, an endogenous inhibitor of cas-
pases (Lee et al.  2012 ), and inhibits RAS activation responsive to the calcium- 
activated Raf/MEK/ERK signaling pathway mediated p53-dependent apoptosis (Li 
et al.  2005 ). HspB5 expression can also be correlated with pERK1/2 expression 
(van de Schootbrugge et al.  2013b ). However, it is important to note that these par-
ticular properties are usually tissue specifi c; for example, in pancreatic cancer cells 
HspB4 has a surprising opposite effect and acts as a negative regulator of carcino-
genesis (Deng et al.  2010 ) (see below section “ Anti-tumorigenic Effects ”). HspB5 
also protects retinal pigment epithelial cells through its association with HDAC1 on 
SC35 speckles (Noh et al.  2008 ), which suggests that HspB5 knockout could be 
benefi cial to vitreoretinopathy therapy. 

 It is also interesting to note that 14-3-3 polypeptide is a client of phosphorylated 
HspB6. Hence, this Hsp can compete with the large number of regulator proteins 
interacting with 14-3-3 and indirectly modulate many cellular processes, such as those 
involved in actin cytoskeleton reorganization or Bad mediated apoptosis (Chernik 
et al.  2007 ; Seit-Nebi and Gusev  2010 ; Sluchanko et al.  2011 ; Zha et al.  1997 ).  

    Stimulation of Cell Survival Pathways, Senescence 

 HspB1 still appears as being the major small Hsp involved in the stimulation of cell 
survival pathways through its interaction with specifi c clients. Among those path-
ways, the Akt signaling cascade is a major one which includes key factors such as Akt, 
PI3K, PTEN, mitogen-activated protein kinase kinase-3,6, BAD and Forkhead tran-
scription factors. In cancer cells, high expression levels of HspB1 result in its interac-
tion with Akt and PTEN. HspB1 action towards Akt kinase activity and the stimulation 
of the degradation of the phosphatase PTEN stimulate the PI3K/Akt signaling path-
way and thus enhance the survival of these pathological cells (Cayado- Gutierrez et al. 
 2012 ; Rane et al.  2003 ; Wu et al.  2007 ). An interesting survival pathway also modu-
lated by HspB1 is the PEA-15 molecular switch linking cell proliferation to Fas-
induced apoptosis. In that regard, the interaction of HspB1 with PEA-15 inhibits 
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Fas-induced apoptosis and promotes cell survival and proliferation (Hayashi et al. 
 2012 ). Another example concerns the Src-Akt/ERK pro-survival signaling transduc-
tion triggered by TRAIL death receptor. Analysis of the molecular mechanism 
revealed that phosphorylated HspB1 activates the pathway by interacting with Src and 
by scaffolding protein beta-arrestin2 (Qi et al.  2014 ). The signaling complex made of 
phospho-HspB1/beta-arrestin2/Src appears therefore to be responsible for activating 
the TRAIL-triggered Src-Akt/ERK pro-survival pathway. HspB1 also appears to act 
in signaling pathways promoting survival of gliomas, but the molecular mechanism is 
not yet known (Golembieski et al.  2008 ; McClung et al.  2012 ). 

 In addition to improving cell survival, HspB1 has a p53 dependent negative 
action towards the oncogene-induced senescence (OIS) pathway which normally 
blocks cancer progression (O’Callaghan-Sunol et al.  2007 ). Indeed, HspB1 deple-
tion usually induces a senescent-like phenotype in cancer cells. Among the morpho-
logical changes that were observed one can note a drastic reduction in the mitotic 
index through induction of p21waf expression (O’Callaghan-Sunol et al.  2007 ) and 
a particular cellular multi-nucleation which appears to be the result of the degrada-
tion of HDAC6 (Gibert et al.  2012a ), an HspB1 client acting as a powerful contribu-
tor to oncogenic pathways activation (Lee et al.  2008 ). HDAC6 is proteolytically 
stabilized by HspB1 serine 82 phosphorylated oligomers (Arrigo and Gibert  2013 ; 
Gibert et al.  2012a ). Among the other clients and/or pathways effective in support-
ing the negative effect of HspB1 towards senescence are the p53 stabilizator HDM2, 
an ubiquitin ligase (E3) that targets p53 for degradation (O’Callaghan-Sunol et al. 
 2007 ; Yang et al.  2005 ) and the PI3K/AKT induced OIS (Ghosh et al.  2013 ).  

   Cell Escape, Epithelial-to-Mesenchymal Transition (EMT), Metastasis 

 In addition to counteracting cell death and promoting cell survival pathways, HspB1 
and HspB5 have been shown to bear tumorigenic (Garrido et al.  1998 ,  2006 ) and 
pro-metastatic (Bausero et al.  2006 ; Lemieux et al.  1997 ; Nagaraja et al.  2012b ) 
properties. In that regard, several clients interacting with these proteins have been 
identifi ed (Arrigo and Gibert  2014 ) that are particularly active at the level of the 
cytoskeleton and extracellular matrix (Arrigo and Gibert  2013 ; Gibert et al.  2012a ; 
Lavoie et al.  1993 ; Mounier and Arrigo  2002 ; Perng et al.  1999 ; Wettstein et al. 
 2012 ; Xi et al.  2006 ). For example, in cancer cells, HspB1 is necessary for F-actin 
mediated cytokinesis and interferes with the accumulation of giant polynucleated 
cells (Gibert et al.  2012a ). Another important client interacting with both HspB1 
and HspB5 is β-catenin (Fanelli et al.  2008 ; Ghosh et al.  2007c ) and the resulting 
effect is a modulation of cadherin-catenin cell adhesion proteins (Fanelli et al. 
 2008 ). At least in the case of HspB1, the interaction plays a crucial role in promot-
ing tumor growth. Among the other clients of HspB1, one can cite several metallo-
proteinases (Bausero et al.  2006 ; Xu et al.  2006 ) as well as SPARC (secreted protein, 
acidic and rich in cysteine), a polypeptide that plays an important role in cell adhe-
sion and migration (Golembieski et al.  2008 ; McClung et al.  2012 ; Schultz et al. 
 2012 ). In several cancer pathologies, HspB5 also promotes cell migration and 
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invasion. For example, HspB5 induces the EGF- and anchorage-independent growth 
of human breast basal-like tumors through the constitutive activation of the MAPK 
kinase/ERK (MEK/ERK) pathway and transforms immortalized human mammary 
epithelial cells in invasive mammary carcinomas that have the same aspect as basal- 
like breast tumors (Gruvberger-Saal and Parsons  2006 ; Moyano et al.  2006 ). At 
least in the kidney, HspB5 can participate in maintaining tissue integrity by interact-
ing with Ksp-cadherin-16 and promoting its connection to the cytoskeleton 
(Thedieck et al.  2008 ). 

 HspB1 is still the major small Hsp that stimulates metastasis (Bausero et al.  2004 , 
 2006 ; Gibert et al.  2012b ; Nagaraja et al.  2012a ,  b ). Epithelial-to-mesenchymal tran-
sition (EMT) is the major parameter controlling metastasis that appears under the 
control of HspB1 (Shiota et al.  2013 ; Wei et al.  2011 ). Indeed, HspB1 modulates the 
expression of pro-metastatic genes (Nagaraja et al.  2012b ), such as those dependent 
on STAT3/Twist signaling by enhancing the binding of the transcription factor 
STAT3 to the promoter of the Twist gene (Shiota et al.  2013 ). This transcriptional 
event generates two hallmarks of EMT: N-cadherin up-regulation and E-cadherin 
downregulation. It is therefore possible that the interaction of HspB1 with phos-
phorylated and activated STAT3 could be one of the key events regulating this phe-
nomenon (Gibert et al.  2012a ). HspB1 also binds to and stabilizes the transcription 
factor Snail, and consequently induces EMT features (Wettstein et al.  2013 ). The 
phenomenon probably occurs via a Snail-induced transcriptional blockage of 
E-cadherin gene expression (Batlle et al.  2000 ). E-cadherin downregulation is nec-
essary to trigger epithelial-to-mesenchymal transition and acquisition of metastatic 
potential at late stages of epithelial tumour progression. Concerning HspB5, a recent 
study mentions that its expression is associated with distant metastases  formation in 
head and neck squamous cell carcinoma, a link that might relate to the chaperone 
function of HspB5 in mediating folding and secretion of VEGF and stimulating cell 
migration (van de Schootbrugge et al.  2013a ). Thus, among the different small Hsps, 
at least HspB1 and HspB5 are considered as potent stimulators of tumor progres-
sion. However, we should be cautious before coming to a general conclusion on this 
topic, since, as indicated below (Sect.  2.2.3.2 ), in some tumors these Hsps have been 
recently shown to have an anti-tumor activity that counteracts tumor development.  

    Angiogenesis 

 Do small Hsps participate in the process triggering the excessive formation of 
blood vessels that irrigate cancer cells? Until recently, no answer could be given to 
this question since no data supported such a pro-angiogenic hypothesis. However, 
recent game-changing reports have clearly demonstrated that small Hsps indeed 
play a role in this process. First, it was shown that, in addition to their intracellular 
distribution, small Hsps can also be localized in plasma membrane and can be 
exported in the extracellular milieu (Chowdary et al.  2006 ; Rayner et al.  2008 ; 
Tsvetkova et al.  2002 ), a phenomenon that correlates with tumor growth and 
metastasis formation (Bausero et al.  2004 ). In addition to a possible 
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immunological role for small Hsps, a fi rst observation was that recombinant 
HspB1 added to the growth medium has a pro-angiogenic effect mediated by Toll-
like receptor 3 (TLR3) at the surface of human microvascular endothelial cells 
(HMECs). The interaction stimulates NF-κB dependent vascular endothelial 
growth factor (VEGF) gene transcription and promotes secretion of VEGF-
activating VEGF receptor type 2 and angiogenesis (Thuringer et al.  2013 ). Indeed, 
the production by endothelial cells of intracellular autocrine (intracrine) VEGF is 
critical for vasculature homeostasis. A more recent study showed that HspB1 is 
directly released from endothelial cells (ECs) and confi rmed that it modulates 
angiogenesis via direct interaction with VEGF. However, these authors also 
showed that HspB1 can be cleaved by MMP9 (Matrix MetalloProteinase 9) and 
recovered as anti-angiogenic fragments which interfere with VEGF-induced ECs 
activation and tumor progression (Choi et al.  2014 ). Thus, it appears that the effect 
mediated by extracellular HspB1 in cancer pathologies may depend on the effi -
ciency of its cleavage by MMP9. However, the fi rst study used recombinant HspB1 
added to culture medium, so that the cleavage activity of endogenous MMP9 could 
have been overwhelmed by an excess of HspB1 and thus a pro-angiogenic effect 
was observed. Thus, in vivo, HspB1 released from cells appears as an anti-angio-
genic polypeptide. This is also supported by the fact that MMP inhibitors have 
failed in clinical trials, probably through their effi cient knock out of HspB1 
fragmentation. 

 Another small Hsp involved in angiogenesis is HspB5 since it is crucial for endo-
thelial cell survival and is up regulated during vessel morphogenesis. For example, 
tumor vessels in HspB5 (−/−) mice showed signs of caspase-3 activation and apop-
tosis and tumors grown in such mice were signifi cantly less vascularized than 
 wild- type tumors and displayed increased areas of apoptosis/necrosis (Dimberg 
et al.  2008 ). Recently, it was shown that HspB5 is a VEGF chaperone that protects 
this growth factor against proteolytic degradation (Kerr and Byzova  2010 ; Ruan 
et al.  2011 ). HspB5 appears therefore strongly involved in the pathway maintaining 
intracrine VEGF signaling that sustains aberrant tumor angiogenesis (Dimberg 
et al.  2008 ; Ruan et al.  2011 ).  

   Gene Expression 

 The control by HspB1 of several crucial transcription factors (among them Snail, 
STAT3, NF-κB and HSF1) can have dramatic consequences particularly towards 
apoptosis inhibition and EMT promotion. HSF1 (heat shock factor 1), the transcrip-
tion factor responsible for Hsps expression, has also been shown to play a crucial 
role in tumorogenesis (Mendillo et al.  2012 ). HSF1 is SUMO-2/3 modifi ed by 
HspB1-Ubc9 complex (Brunet Simioni et al.  2009 ). This modifi cation does not 
affect HSF1 DNA-binding ability but blocks its transactivation function suggesting 
that it could act, together with NuRD factors, as a transcriptional inhibitor that 
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represses genes that oppose metastasis. Other hypotheses suggest that it could 
 modulate energy metabolism or permit the development of polyploidy in cancer 
cells (Calderwood  2012 ; Mendillo et al.  2012 ). 

 HspB1, HspB7 and HspB8 can also favor the expression of pro-tumorigenic pro-
teins though the control of mRNAs. Indeed, some clients of these Hsps regulate 
mRNA splicing, such as SAM68, Ddx20, EFTUD2 and SC35 (Badri et al.  2006 ; 
Hegele et al.  2012 ; Sun et al.  2010 ; Vos et al.  2009 ), while others play a role in 
translational initiation (eIF4G) (Andrieu et al.  2010 ) or mRNA stability (AUF1) 
(Sinsimer et al.  2008 ).   

2.2.3.2      Anti-tumorigenic Effects 

 In contrast to the classical view described above favoring a pro-tumorigenic activity 
for HspB1 and HspB5, recent observations indicate that, in some cancer types, 
HspB1, HspB5 and HspB4 polypeptides display intriguing tumor suppressive activ-
ities. Moreover, recent studies dealing with HspB8 and HspB6 clearly show that 
these polypeptides promote tumor growth resistance and decrease cell survival. 

    Tumor Suppressive Role of HspB1 

 As mentioned above, HspB1 released from endothelial cells (ECs) regulates angio-
genesis by interacting with VEGF (vascular endothelial growth factor). However, 
new observations have revealed that MMP9 (matrix metalloproteinase 9) can cleave 
HspB1 and release anti-angiogenic fragments that inhibit lung and liver tumor pro-
gression of B16F10 melanoma cells and lung tumor progression of CT26 colon 
carcinoma cells. The failure of MMP inhibitors in clinical trials could then be 
explained by their ability to decrease HspB1 fragmentation leading to pro- 
tumorigenic effects (Choi et al.  2014 ).  

   Tumor Suppressive Role of HspB5 

 In the case of nasopharyngeal carcinoma (NPC), an intriguing observation was that 
HspB5 downregulation is signifi cantly associated with the progression of NPC 
while its overexpression interferes with NPC progression-associated phenotypes 
such as loss of cell adhesion, invasion, interaction with the tumor microenviron-
ment, invasive protrusion formation and expression of epithelial-mesenchymal 
transition-associated markers. Molecular analysis revealed that HspB5 suppresses 
NPC progression by interacting with the cadherin/catenin adherens junction. This 
indirectly decreases the levels of expression of critical downstream targets such as 
cyclin-D1 and c-myc (Huang et al.  2012 )  
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   HspB4 

 The role of HspB4 in tumorigenesis appears rather equivocal (Deng et al.  2010 ). 
Indeed, depending of the tumor type the level of this protein is either up- or 
downregulated. In normal conditions, HspB4 is mainly expressed in the lens and 
is also detectable in the pancreas. Consequently, many of the lens tumor cells 
display high levels of HspB4 expression, such as those from retinoblastoma and 
eyelids with sebaceous carcinoma (Kase et al.  2009 ; Mahon et al.  1987 ; Rigas 
et al.  2009 ). In these cells, HspB4, like HspB5, can promote tumorigenesis since 
it bears an anti- apoptotic activity (Andley et al.  2000 ; Ciocca and Calderwood 
 2005 ) whose major property is to negatively regulate the pro-apoptotic members 
of the Bcl-2 family and caspase-3 (Hu et al.  2012 ). Contrasting with these 
observations, the moderate level of expression of HspB4 observed in normal 
human pancreas samples appears signifi cantly reduced in many cases of pancre-
atic carcinoma of different types. Unfortunately, to date, the mechanism con-
trolling HspB4 down-regulation in pancreatic carcinoma cells is not known. 
Another interesting point, as demonstrated by genetically forced expression of 
this protein, concerns the fact that, in the pancreas, HspB4 can act as a negative 
regulator that blocks cell transformation and retards cell migration (Deng et al. 
 2010 ). However, the mechanism by which HspB4 performs this pancreatic task 
is not yet solved. It may occur through a modulation of ERK MAP kinase activ-
ity regulating AP-1 expression and activity to halt cell transformation and retard 
cell migration (Chen et al.  2012 ; Deng et al.  2010 ). Thus, in spite of some com-
mon properties towards apoptosis, cell proliferation and tumor metastasis more 
work is needed to unravel the particular role of HspB4 in pancreatic 
carcinogenesis.  

   HspB8 

 It has been recently shown that in a large fraction of melanoma tumors, which are 
aggressive and drug-resistant cancers, HspB8 gene is silenced through aberrant 
DNA methylation. This phenomenon modulates Aza-C (5-Aza-2″-deoxycytidine) 
treatment effi ciency (Smith et al.  2011 ). The anti-tumor property of HspB8 was then 
identifi ed by experiments aimed at restoring its expression. Indeed, putting HspB8 
back in cells inhibited tumor growth and induced the death of genetically diverse 
melanoma lines as a result of the activation of TAK1 (TGF-β activated kinase 
1)-dependent death pathways (Li et al.  2007 ; Smith et al.  2012 ). Among the TAK1 
putative down-stream pathways that could be involved is the infl ammasome inde-
pendent activation of caspase-1 resulting from the upregulation of ASC (apoptosis- 
associated speck-like protein containing a CARD). Apoptosis could then be caused 
by caspase-1-mediated cleavage of Beclin-1, a polypeptide upregulated in mela-
noma tumors as a result of mTOR (mammalian target of rapamycin) 
phosphorylation.  
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   HspB6 

 Recent fi ndings have shown that, in human hepatocellular carcinoma (HCC), HspB6 
expression levels are inversely correlated with the progression of HCC. The nega-
tive effect mediated by HspB6 appears to result from its interaction with PI3K 
(phosphoinositide 3-kinase, an upstream kinase of Akt). This interaction suppresses 
PI3K activity, inhibits the AKT survival pathway and subsequently decreases HCC 
survival and growth (Matsushima-Nishiwaki et al.  2013 ).  

   Therapeutic Thoughts About Tumor Suppressive Small Hsps in Cancer 

 The examples presented above clearly indicate that, in some cancer cells, small 
Hsps can be associated with anti-tumorigenic activity. Hence, it is intriguing to note 
that cancer cells can devise strategies to improve their growth and dissemination by 
down-regulating the expression of these polypeptides. This may open up new thera-
peutic options aimed at restoring or up regulating the expression or activity of these 
proteins. However, restoring the specifi c expression of transcriptionally silenced 
genes is quite diffi cult. Moreover, as in the case of HspB8, the approach can be 
limited by the genetic diversity of the tumors. A better way to improve therapeutic 
strategies would be to mimic chemically the activation performed by small Hsps, as 
for example towards the TAK1 pathway in the case of melanoma. Similarly, restor-
ing HspB4 or HspB5 level of expression, up-regulating HspB6 activity towards 
PI3K or stimulating HspB1 cleavage by MMP9 could be a challenge. In the mean-
time a better understanding of the role of HspB4 towards ERK MAP kinase activity 
and AP-1 expression as well as of HspB6 inhibitory interaction with PI3K may help 
in the discovery of new drugs effective against pancreatic and hepatic cells 
carcinogenesis.    

2.2.4      Extracellular Roles of Small Hsps 

 Recently, a major discovery was that HspB1, HspB5 and HspB8 can localize in 
plasma membrane and be secreted in spite of their major intracellular localization 
(Chowdary et al.  2006 ; Rayner et al.  2008 ; Sreekumar et al.  2010 ; Tsvetkova et al. 
 2002 ). Thus, what could be the functions of these proteins at the cell surface or in 
the extracellular milieu? Do these circulating proteins share some of the properties 
of circulating Hsp70 (De Maio  2011 )? For example, are they associated with immu-
nogenic peptides which trigger an immune response (Delneste et al.  2002 ), or are 
they pro-immunosuppressive polypeptides (Chalmin et al.  2010 ). Are they involved 
in anti-infl ammation, alarmone or other pathways by interacting with specifi c cel-
lular receptors? Recent observations suggest that circulating HspB1 is not associ-
ated with immunogenic peptides but could have immunoregulatory activity. For 
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example, circulating HspB5 stimulates macrophages through its ability to recognize 
CD14, TLR1 and TLR2 (Toll-like receptor 1 and 2) at their surface (van Noort et al. 
 2013 ). Similarly, HspB8 and HspB4 recognize TLR4 and induce dendritic cells 
activation (Roelofs et al.  2006 ). HspB1 was also found to activate NF-κB in macro-
phages (Salari et al.  2012 ). In addition, this protein recognizes several cell surface 
polypeptides such as CD10 (Dall’Era et al.  2007 ), Plasminogen, Angiostatin 
(Dudani et al.  2007 ) and TLR3 (Thuringer et al.  2013 ). In 4T1 breast adenocarci-
noma cells, HspB1 cell surface expression appears correlated with tumor growth 
and metastasis formation (Bausero et al.  2004 ,  2006 ). Moreover, the angiogenic 
property of HspB1 is regulated by the cleavage effi ciency of MMP9 (Choi et al. 
 2014 ; Thuringer et al.  2013 ) (see also Sect.  Angiogenesis ). 

 A key aspect of circulating small Hsps is that they can be either benefi cial or 
harmful to patients suffering from different pathologies. In that regard they behave 
like intracellular small Hsps. For example, a major positive effect of circulating 
HspB1 is its impressive atheroprotective effect (Rayner et al.  2008 ; Salari et al. 
 2012 ). On the other hand, secreted HspB1 correlates with vascular complications in 
type 1 diabetic patients (Gruden et al.  2008 ) and is not a positive signal in cancers. 
Consequently, major care will have to be taken in case of therapeutic approaches 
targeting circulating Hsps. More studies are urgently needed to evaluate the multi-
ple roles played by these extracellular proteins in normal and pathological physio-
logical conditions.  

2.2.5     Conclusions 

 As described here, small Hsps have immense cellular implications as a result of 
their interaction with many specifi c client polypeptides whose number is growing 
exponentially. Their ability to bind polypeptides and modulate their folding is a 
property that was originally discovered in heat shock treated cells where HspB1 was 
shown to interact with aberrantly folded polypeptides to prevent their aggregation. 
It is now well known that small Hsps can modulate folding or induce modifi cations 
in interacting clients. They also have the crucial ability to positively or negatively 
modulate their half-lifes. Taken together, these observations show that small Hsps 
can have a drastic infl uence on the level of expression as well as on the activity of 
interacting clients. Consequently, these Hsps indirectly appear to have a huge num-
ber of functions that allow cells to rest, grow or better adapt to changes in their 
physiology or pathological status. Moreover, by targeting specifi c clients, small 
Hsps can be protective and benefi cial against cell degeneration. They can also have 
a disastrous effect by causing some cancer cells to proliferate and create 
metastasis. 

 The proteomic analysis presented here confi rms our feeling that small Hsps, as 
Hsp90 (McClellan et al.  2007 ; Moulick et al.  2011 ; Taipale et al.  2010 ), are global 
regulators of cell systems that exert marked effects on normal biology and diseases 
through their chaperone/client interactome systems. Hence, we are now facing 
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problems that are even more complex than those encountered by researchers 
 working with Hsp90. The fi rst of these illustrates the complexity associated with 
small Hsps and deals with the chimeric structures that can form between two small 
Hsps. These structures appear to have lost the properties associated with parental 
homo- oligomers, but do they have specifi c interactomes or are they inert? The sec-
ond problem is common to small Hsps and Hsp90: what is the structural dynamic 
that acts on a diverse client repertoire in defi ned cellular conditions? In the case of 
HspB1, phosphorylation and oligomerization appear as key factors that dynami-
cally react and provide a recognition platform for specifi c clients (Arrigo and Gibert 
 2013 ; Paul et al.  2010 ), however nothing is known about the molecular signaling 
mechanisms involved in this process. Thus, more in-depth structural work, signal-
ing studies as well as analysis of the organization of small Hsps in living cells are 
necessary to unravel the problem of how these chaperones recognize client polypep-
tides. The third problem deals with therapeutic strategies aimed at modulating the 
level or activity of these chaperones. In the case of Hsp90, drugs interfering with its 
chaperone activity and broad interaction with clients have been clinically tested. 
Their modest effects and unsuspected side effects resulted in lack of FDA recogni-
tion (Whitesell et al.  2012 ). More specifi c drugs targeting only a subset of Hsp90- 
clients may prove more useful (Moulick et al.  2011 ). Similarly, the use of genetic 
techniques to invalidate the expression of small Hsps appears effi cient (Gibert et al. 
 2012b ; Wettstein et al.  2013 ) but in the long term they could be disappointing 
because of the complete disruption of small Hsps protein interactomes. Drugs or 
genetic techniques altering the structure of small Hsps can lead to interesting results 
(Gibert et al.  2011 ; Heinrich et al.  2011 ) but will require in-depth analysis of their 
effects on small Hsps interactomes. More work is needed to build comprehensive 
dynamic interactomes of small Hsps in specifi c pathologies. This will be necessary 
in characterizing both the good and pathological clients recognized by these Hsps. 
The discovery of new drugs or genetic techniques that preserve their interaction 
with the good clients and destroy those with the ugly ones will probably have a 
bright future.      
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