
Mathematical Biosciences Institute Lecture Series 1.1
Stochastics in Biological Systems 

Branching 
Process Models 
of Cancer

Richard Durrett



Mathematical Biosciences Institute Lecture Series

The Mathematical Biosciences Institute (MBI) fosters innovation in the
application of mathematical, statistical and computational methods in
the resolution of significant problems in the biosciences, and encourages
the development of new areas in the mathematical sciences motivated by
important questions in the biosciences. To accomplish this mission, MBI
holds many week-long research workshops each year, trains postdoctoral
fellows, and sponsors a variety of educational programs.

The MBI lecture series are readable up to date introductions into exciting
research areas that are inspired by annual programs at the MBI. The
purpose is to provide curricular materials that illustrate the applications
of the mathematical sciences to the life sciences. The collections are
organized as independent volumes, each one suitable for use as a module
in standard graduate courses in the mathematical sciences and written in a
style accessible to researchers, professionals, and graduate students in the
mathematical and biological sciences. The MBI lectures can also serve as
an introduction for researchers to recent and emerging subject areas in the
mathematical biosciences.

Marty Golubitsky, Michael Reed
Mathematical Biosciences institute

More information about this series at http://www.springer.com/series/13083

http://www.springer.com/series/13083


Mathematical Biosciences Institute Lecture Series
Volume 1: Stochastics in Biological Systems

Stochasticity is fundamental to biological systems. In some situations the
system can be treated as a large number of similar agents interacting in a
homogeneously mixing environment, and so the dynamics are well-captured by
deterministic ordinary differential equations. However, in many situations, the
system can be driven by a small number of agents or strongly influenced by an
environment fluctuating in space and time. For example, fluctuations are critical
in the early stages of an epidemic; a small number of molecules may determine
the direction of cellular processes; changing climate may alter the balance
among competing populations. Spatial models may be required when agents
are distributed in space and interactions between agents are local. Systems can
evolve to become more robust or co-evolve in response to competitive or host-
pathogen interactions. Consequently, models must allow agents to change and
interact in complex ways. Stochasticity increases the complexity of models in
some ways, but may also simplify and smooth results in other ways.

Volume 1 provides a series of lectures by internationally well-known authors
based on the year on Stochastics in biological systems which took place at
the MBI in 2011–2012.

Michael Reed, Richard Durrett
Editors



Mathematical Biosciences Institute Lecture Series
Volume 1: Stochastics in Biological Systems

Model Formulation and Simulation of Stochastic Population
and Epidemic Models
Linda S. Allen

Stochastic Analysis of Biochemical Systems
David Anderson; Thomas G. Kurtz

Branching Process Models of Cancer
Richard Durrett

Stochastic Neuron Modeling
Pricilla Greenwood; Lawrence Ward

The Mathematics of Intracellular Transport
Scott McKinley; Peter Kramer

Some Stochastic Population Models
Sylvie Méléard; Vincent Bansaye

Population Models with Interaction
Etienne Pardoux

Correlations from Coupled Enzymatic Processing
Ruth Williams





Richard Durrett

Branching Process Models
of Cancer

123



Richard Durrett
Department of Mathematics
Duke University
Durham, NC, USA

ISSN 2364-2297 ISSN 2364-2300 (electronic)
Mathematical Biosciences Institute Lecture series
ISBN 978-3-319-16064-1 ISBN 978-3-319-16065-8 (eBook)
DOI 10.1007/978-3-319-16065-8

Library of Congress Control Number: 2015933144

Mathematics Subject Classification (2010): 60F05, 60G44, 60G52, 60J80, 92C50, 92D25

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


Preface

In this chapter, we will use multitype branching processes with mutation to model
cancer. With cancer progression, resistance to therapy, and metastastis in mind, we
will investigate �k, the time of the first type k mutation, and �k , the time of the
first type k mutation that founds a family line that does not die out, as well as the
growth of the number of type k cells. The last three sections apply these results
to metastasis, ovarian cancer, and tumor heterogeneity. Even though martingales
and stable laws are mentioned, these notes should be accessible to a student who is
familiar with Poisson processes and continuous time Markov chains.

I would like to thank Jasmine Foo, Kevin Leder, and Marc Ryser who have
collaborated with me on this work. My work and that of Marc Ryser has been
partially supported by NIH grant R01-GM096190.

Durham, NC, USA Richard Durrett
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Branching Process Models of Cancer

Richard Durrett

1 Multistage theory of cancer

Throughout these notes, we model cancer as an exponentially growing cell
population in which type i cells are those that have accumulated i � 0 mutations
compared to the type 0 cells. To motivate the study of these models we begin with
a brief and incomplete history lesson and a description of some situations in which
our model may be applied.

The idea that carcinogenesis is a multistage process goes back to the 1950s.
Fisher and Holloman [49] pointed out that when the logarithm of cancer mortality
from stomach cancer in women was plotted versus log of age, the result was
line with slope 6. Nordling [61] and Armitage and Doll [40] suggested that the
observed relationship would be explained if a cancer cell was the end result of seven
mutations. There was no model. The conclusion was based on the fact that if Xi are
independent and exponential with rate ui , then

P.X1 C � � � CXk � t/ �
 

kY
iD1

ui

!
tk�1

.k � 1/Š
;

the restriction to small t being due to the fact that most cancers affect only a small
fraction of the population. For more on early work, see the survey by Armitage [39].

In 1971 Knudson [52] analyzed 48 cases of retinoblastoma, a cancer that
develops in the retinas of children as the eye grows its full size in the first five
years of life. 25 children had tumors in only one eyes, while 23 had tumors in both
eyes and generally more serious symptoms. From the age of onset of cancer for
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2 R. Durrett

patients in the two groups, he inferred that there was a gene, later identified and
named RB1, so that when both copies were knocked out cancer was initiated, and
that individuals in the group with bilateral tumors had a germline mutation so that
one copy was knocked out in all of their cells. This was the first example of a tumor
suppressor gene, which leads to trouble when both copies have been inactivated.
For more see Knudson’s 2001 survey [53].

In the late 1980s, it became possible to identify the molecular events that underlie
the initiation and progression of human tumors. The abundant data for colorectal
tumors made it an excellent system to study the genetic alterations involved. Fearon
and Vogelstein [46] argued that mutations in four or five genes were required for
the formation of a malignant tumor, and that colorectal tumors appear to arise from
the mutational inactivation of tumor suppressor genes coupled with a mutational
activation of oncogenes; one hit turns them on. In population genetics terms the
later would be called advantageous mutations because they increase the growth rate
of the cells in which they occur.

Over a decade later, Luebeck and Moolgavkar [56] synthesized the existing
research on colon cancer to produce a four stage model. The first two steps were
the knockout of the adenomatous polyposis coli (APC) gene, followed by activation
of the oncogene KRAS and the inactivation of TP53, which has been called “the
guardian of the genome” because of its role in conserving stability by preventing
genome mutation. For more on the genetic basis of colon cancer, see Fearon’s recent
survey [45].

Compared to colon cancer, chronic myeloid leukemia (CML) is a very simple
disease. 95% of patients have a BCR-ABL gene fusion caused by a a reciprocal
translocation between chromosome 9 and chromosome 22. Because of this sim-
plicity, the disease can be treated with a tyrosine kinase inhibitor, e.g., imatinib,
that blocks the action of BCR-ABL. Unfortunately, mutations in the ABL binding
domain can lead to resistance to therapy. In Sections 6 and 12, we will use a two
type branching process model to investigate the questions: What is the probability
that resistant cells are present at diagnosis? If so, how many are there?

Metastasis, the spread of cancer to distant organs, is the most common cause of
death for cancer patients. It is a very complex process: cells must enter the blood
stream (intravasation), survive the trip through the circulatory system, leave the
blood stream at its destination (extravasation), and survive in an alien environment,
e.g., cells from the breast tissue living in bone. See [71] and [47] for more detailed
descriptions. In Section 16, we will analyze a simple three type model for metastasis
that ignores the most of the details of the process. In Section 17 we will consider
the special case of ovarian cancer.

2 Mathematical Overview

Our model is a multitype branching process with mutation in which Zi.t/ be the
number of type i cells at time t . Type i cells give birth at rate ai and die at rate bi .
Here, we always assume that the growth rate �i D ai�bi > 0, even though this does
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not hold in all applications, see e.g., [16, 17]. To take care of mutations, we suppose
that individuals of type i in addition give birth at rate uiC1 to individuals of type
i C 1. Some researchers prefer to have births at rate ˛i and mutations at birth with
probability �i , but this is equivalent to ai D ˛i .1 � �i/ and ui D ˛i�i .

For our model it is natural to investigate:

• �k , the time of the first type k mutation, and �k , the time of the first type k
mutation that founds a family line that does not die out. The limiting distributions
of these quantities as s; ui ! 0 are studied in Section 5 for the case k D 1 and
in general in Section 15.

• The limiting behavior of e��1tZ1.t/ as t ! 1 is studied in Section 9, where
one-sided stable laws with index ˛ < 1. Once the result is proved for k D 1,
it extends in a straightforward way to k > 1, see Section 13. The method of
proof of these results allows us to obtain insights into tumor heterogeneity in
Section 18.

• Let TM the time for the type 0 population to reach size M , which we think of
the time at which cancer is detected. Motivated by the questions about resistance
to imatinib, we will investigate P.Z1.TM / > 0/ in Section 6 and the size of
Z1.TM / in Section 12. Thinking about metastasis, we will studyP.Z2.TM / > 0/
in Section 16.

There are more results in this survey, but these are the main themes. Along the way
we will review, and in some cases improve, results that have been derived using
nonrigorous arguments.

Some of our formulas are complicated, so it useful to look at concrete examples.
To do this, we need to have reasonable parameter values. We will typically take the
death rates bi D 1. This corresponds to measuring time in units of cell divisions.
The exponential growth rate �i is analogous to the selective advantage of type i
cells. In a study of glioblastoma and colorectal cancer, Bozic et al. [5] concluded
that the average selective advantage of somatic mutations was surprisingly small,
0:004. Here, we will often use slightly larger values, �1 D 0:02, and �2 D 0:04.

To identify the order of magnitude of the mutation rates ui , we note that the point
mutation rate has been estimated, see [54], to be 5 � 10�10 per nucleotide per cell
division. To compute the ui this number needs to be multiplied by the number
of nucleotides that when mutated lead to cancer. In some cases there are a
small number of nonsynonymous mutations (that change the amino acid in the
corresponding protein) that achieve the desired effect, while in other cases there
may be hundreds of possible mutations that knock out the gene and there may be a
number of genes within a genetic pathway that can be hit. Thus mutation rates can
range from 10�9 to 10�5, or can be larger after the mechanisms that govern DNA
replication are damaged.
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3 Branching process results

We begin by studying the number of type 0 cells, Z0.t/, which is a branching
process in which each cell gives birth at rate a0 and dies at rate b0. In terms of
the theory of continuous time Markov chains, the matrix q.i; j / that gives the rate
of jumps from i to j has

q.i; i C 1/ D a0i; q.i; i � 1/ D b0i;

and q.i; j / D 0 otherwise. Since each initial individual gives rise to an independent
copy of the branching process, we will suppose throughout this section that
Z0.0/ D 1. Since each individual gives birth at rate a0 and dies as rate b0

d

dt
EZ0.t/ D �0EZ0.t/;

where �0 D a0 � b0. Since EZ0.0/ D 1,

EZ0.t/ D e�0t : (1)

Our next step is to compute the extinction probability,

� D P.Z0.t/ D 0 for some t � 0/:

By considering what happened on the first jump

� D b0

a0 C b0
� 1C a0

a0 C b0
� �2: (2)

In words, since jumps 1 ! 0 occur at rate b0 and from 1 ! 2 at rate a0, the
first event is a death with probability b0=.a0 C b0/ in which case the probability of
extinction is 1. The first event is a birth with probability a0=.a0 C b0/ in which case
the probability of extinction is �2, since for this to happen both of the lineages have
to die out and they are independent.

Rearranging (2) gives a0�2�.a0Cb0/�Cb0 D 0. Since 1 is a root, the quadratic
factors as .� � 1/.a0� � b0/ D 0, and

� D
(
b0=a0 if a0 > b0;

1 if a0 � b0:
(3)

To compute the generating function F.x; t/ D ExZ0.t/, we begin by noting that

Lemma 1. @F=@t D �.a0 C b0/F C a0F
2 C b0 D .1 � F /.b0 � a0F /.
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Proof. If h is small, then the probability of more than one event in Œ0; h� is O.h2/,
the probability of a birth is � a0h, of a death is � b0h. In the second case we
have no particles, so the generating function of Z0.t C h/ will be 	 1. In the first
case we have two particles at time h who give rise to two independent copies of
the branching process, so the generating function of Z0.t C h/ will be F.x; t/2.
Combining these observations,

F.x; t C h/ D a0hF.x; t/
2 C b0h � 1C .1 � .a0 C b0/h/F.x; t/CO.h2/:

A little algebra converts this into

F.x; t C h/ � F.x; t/
h

D a0F.x; t/
2 C b0 � .a0 C b0/F.x; t/CO.h/:

Letting h ! 0 gives the desired result. ut
On page 109 of Athreya and Ney [3], or in formula (5) of Iwasa, Nowak, and

Michor [24], we find the solution:

F.x; t/ D b0.x � 1/� e��0t .a0x � b0/

a0.x � 1/� e��0t .a0x � b0/
: (4)

Remark. Here and in what follows, if the reader finds the details of the calculations
too unpleasant, feel free to skip ahead to the end of the proof.

Proof. Later we will need a generalization so we will find the solution of

dg

dt
D .c � g/.b � ag/ g.0/ D x:

The equation in Lemma 1 corresponds to c D 1, a D a0, and b D b0. Rearranging
we have

dt D dg

.c � g/.b � ag/
D 1

b � ac

�
dg

c � g � a
dg

b � ag

�
:

Integrating we have for some constantD

tCD D � 1

b � ac
log.c�g/C 1

b � ac
log.b�ag/ D 1

b � ac
log

�
b � ag

c � g
�
; (5)

so b � ag D e.b�ac/t eD.b�ac/.c � g/, and solving for g gives

g.t/ D b � ceD.b�ac/e.b�ac/t

a � eD.b�ac/e.b�ac/t
: (6)
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Taking t D 0 in (6), we have

eD.b�ac/ D ax � b

x � c :

Using this in (6), setting c D 1, adding the subscript 0’s, and rearranging gives (4).ut
Remark. Here and throughout the paper we use log for the natural (base e)
logarithm.

It is remarkable that one can invert the generating function to find the underlying
distribution. These formulas come from Section 8.6 in Bailey [4]. If we let

˛ D b0e
�0t � b0

a0e�0t � b0 and ˇ D a0e
�0t � a0

a0e�0t � b0 ; (7)

then the underlying distribution is a generalized geometric

p0 D ˛ pn D .1 � ˛/.1 � ˇ/ˇn�1 for n � 1. (8)

To check this claim, note that taking x D 0 in (4) confirms the size of the atom at 0
and suggests that we write

F.x; t/ D .b0e
�0t � b0/� x.b0e

�0t � a0/

.a0e�0t � b0/� x.a0e�0t � a0/
: (9)

For comparison we note that the generating function of (8) is

˛ C .1� ˛/.1 � ˇ/
1X
nD1

ˇn�1xn D ˛ C .1 � ˛/.1 � ˇ/
x

1 � ˇx

D ˛ C .1 � ˛ � ˇ/x
1 � ˇ

:

Dividing the numerator and the denominator in (9) by a0e�0t � b0 gives

F.x; t/ D ˛ � x.b0e
�0t � a0/=.a0e

�0t � b0/

1 � ˇx ;

and it remains to check that using (7) that

1 � ˛ � ˇ D .a0 � b0/e�0t � a0e�0t C a0

a0e�0t � b0 D �b0e
�0t � a0

a0e�0t � b0 :
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Yule process. If b0 D 0 (no death), and hence �0 D a0, then the generating
function in (4) simplifies to

F.x; t/ D xe��0t

1 � x C xe��0t : (10)

˛ D 0 in (8), so we have a geometric distribution with

ˇ D 1 � e��0t :

Since the mean of the geometric is 1=.1 � ˇ/, this is consistent with the fact that
EZ0.t/ D e�0t .

Returning to the general case and subtracting (4) from 1, we have

1 � F.x; t/ D �0.x � 1/
a0.x � 1/� e��0t .a0x � b0/ : (11)

Setting x D 0 in (11), we have

P.Z0.t/ D 0/ D b0 � b0e��0t

a0 � b0e��0t and

P.Z0.t/ > 0/ D 1 � F.0; t/ D �0

a0 � b0e��0t : (12)

Note that this converges exponentially fast to the probability of nonextinction,
�0=a0.

Theorem 1. Suppose a0 > b0. As t ! 1, e��0tZ0.t/ ! W0.

W0 Dd

b0

a0
ı0 C �0

a0
exponential.�0=a0/ (13)

where ı0 is a point mass at 0, and the exponential (r) distribution has density re�rt

and mean 1=r . That is,

P.W0 D 0/ D b0

a0
and P.W0 > xjW0 > 0/ D exp.�x�0=a0/:

Proof. From (8), the atom at 0

˛.t/ D b0 � b0e��0t

a0 � b0e��0t ! b0

a0
:
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The geometric distribution .1 � ˇ/ˇn�1 has mean

1

1 � ˇ
D a0e

�0t � b0
a0 � b0

� a0e
�0t

�0
;

where xt � yt means xt =yt ! 1. Since a geometric distribution rescaled by its
mean converges to a mean 1 exponential, the desired result follows.

This gives the limiting behavior of the distribution of e��0tZ0.t/. To show that
the sequence of numbers e��0tZ0.t/ ! W0, we note that EZ0.t/ D e�0 t and
individuals give birth independently; so e��0tZ0.t/ is a nonnegative martingale and
hence converges with probability one to a limit W0.ut

If we let �0
0 D fZ0.t/ D 0 for some t � 0g, then (3) implies

P.�0
0/ D b0=a0: (14)

Since W0 D 0 on �0
0, (13) implies that W0 > 0 when the process does not die out.

Letting�01 D fZ0.t/ > 0 for all t � 0g we have

.e��0tZ0.t/j�01/ ! V0 D exponential.�0=a0/: (15)

Later we need the formula for the Laplace transform of V0:

Ee�	V0 D
Z 1

0

e�	x �0
a0
e�.�0=a0/x dx

D �0=a0

.�0=a0/C 	
D .1C .a0=�0/	/

�1: (16)

3.1 Conditioned branching processes

For almost all of these notes, we will consider processes in continuous time. The one
exception is that to develop the theory in this section, we begin with discrete time.
In that setting the branching process is described by giving the offspring distribution
pk , i.e., the probability an individual has k children. Given a family of independent
random variables 
ni with P.
ni D k/ D pk , we can define the branching process by
specifyingZ0 and then inductively defining

ZnC1 D
(
0 if Zn D 0,PZn

iD1 
ni if Zn > 0.
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Let � D P
k kpk be the mean of the offspring distribution. It is known that if � < 1

or� D 1 andp1 < 1 the process always dies out, while if� > 1 then the probability
the process dies out starting fromZ0 D 1 is the solution 2 Œ0; 1/ of �.�/ D �, where
�.x/ D P

k pkx
k is the generating function of the offspring distribution.

In some situations, it is desirable to decompose a branching process with � > 1

into the backbone (the individuals who have an infinite line of descent) and the side
trees (the individuals who start a family that dies out). A fact, due to Harris [23],
which makes this useful, is that if we condition on the branching process not dying
out, and only look at the individuals that have an infinite line of descent, then we
have a branching process with offspring distribution:

Npk D .1 � �/�1
X
m�k

pm

 
m

k

!
.1 � �/k�m�k: (17)

In words, if we want k children whose family lines do not die out, then we need to
havem � k children and exactlym� k of these must start lineages that die out. We
divide by 1�� because that is the probability that the individual under consideration
starts a family line that does not die out.

To compute the generating function of Npk , we interchange the order of summa-
tion, which is legitimate because all the terms are � 0, and then use the binomial
formula to evaluate the inner sum.

1X
kD1

X
m�k

pm

 
m

k

!
.1 � �/k�m�kzk D

1X
mD1

pm

mX
kD1

 
m

k

!
.1 � �/kzk�m�k

D
1X
mD1

pmŒ..1 � �/z C �/m � �m�;

so the generating function is

N�.z/ D
1X
kD1

Npkzk D �..1� �/z C �/� �.�/

1 � � :

Geometrically, we have taken the part of the generating function over Œ�; 1�, which
has range Œ�; 1�, and linearly rescaled the x and y axes to make it map Œ0; 1� onto
Œ0; 1�. See Figure 1 for a picture.

If we condition our branching process to die out, we get a branching process with
offspring distribution:

Opk D pk�
k=�: (18)
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Fig. 1 Graph of the generating function �.z/ D .1C z/3=8 for Binomial(3,1/2), showing N� in the
upper right square and O� in the lower left. Fixed point is at �2C p

5 D 0:23606.

In words, if there are k children, then all of their family lines must die out, and
these events are independent with probability �. We divide by � because that if the
probability that the individual under consideration starts a family line that dies out.
The generating function is

O�.z/ D
1X
kD1

pk�
kzk=� D �.�z/=�:

In this case, we have taken the part of the generating function over Œ0; ��, which has
range Œ0; ��, and linearly rescaled the x and y axes to make it map Œ0; 1� onto Œ0; 1�.
See Figure 1 for a picture. The mean of Opk is O� D P1

kD1 kpk�k�1 D �0.�/, so the
mean total progeny of a process conditioned to die out is

1X
nD0

�0.�/n D 1=.1� �0.�//: (19)

To do these conditionings in continuous time, we follow O’Connell [32] and take
a limit of discrete time approximations. Let the offspring distribution be

p0 D b0ı p2 D a0ı p1 D 1 � .a0 C b0/ı

where ı is small enough so that p1 > 0. The extinction probability solves

� D b0ı C Œ1 � .a0 C b0/ı�� C a0ı�
2;
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or b0 � .a0 C b0/� C a0�
2 D 0 which again gives � D b0=a0 if a0 > b0. If we

condition the branching process to die out then by (18)

Op0 D p0=� D a0ı Op2 D p2�b0ı Op1 D p1 D 1 � .a0 C b0/ı

so in the limit as ı ! 0 we have births at rate b0 and deaths at rate a0. If we
condition on survival and recall � D a0=b0, then we get

Np2 D p2.1 � �/ D b0ı.1� �/ D �0ı Np1 D 1 � Np2 D 1 � �0ı

so in the limit as ı ! 0 we end up with a Yule process with births at rate �0.

4 Time for Z0 to reach size M

While from the point of view of stochastic processes, it is natural to start measuring
time when there is one cancer cell, that time is not known in reality. Thus we will
shift our attention to the time at which the cancer is detected, which we will idealize
as the time the total number of cancer cells reaches M . For example, in studies of
chronic myeloid leukemia it has been common to take M D 105 cancerous cells.

As a first step in investigating this quantity we consider TM D minft W Z0.t/ D
M g, and then return later to consider Zi.TM / for i > 0. To find the distribution of
TM , we note that by (15), conditional on nonextinction, e��0tZ0.t/ ! V0, which is
exponential with rate �0=a0, or informally Z0.t/ � e�0tV0. From this we see that

P.TM � t/ � P.e�0tV0 � M/ D exp.�.�0=a0/Me��0t /

which is the double exponential, or Gumbel distribution. Differentiating we find the
density function

fTM .t/ D exp.�.�0=a0/Me��0t / � �
2
0M

a0
e��0t (20)

Clearly the actual waiting TM � 0; however, in our formula P.TM � 0/ D
exp.��0M=a0/. As we will see in the concrete example below, in applications this
will be very small. Because of this, it is natural to view the density in (20) as defined
on .�1;1/. To compute the mean we have to compute

ETM D �20M

a0

Z 1

�1
te��0t exp.�.�0=a0/Me��0t / dt

If we let z D .�0=a0/Me
��0t , then e��0t D a0z=�0M , t D �.1=�0/ log.a0z=�0M/,

and dt D �dz=z�0, so the integral becomes
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D ��
2
0M

a0

Z 1

0

1

�0
log.a0z=�0M/ � a0z

�0M
� e�z dz

z�0

D � 1

�0

Z 1

0

log.a0z=�0M/e�z dz

Since
R1
0
e�z dz D 1 it follows that

ETM D 1

�0
log

�
M�0

a0

�
� 1

�0

Z 1

0

e�z log z dz (21)

The first term is the value of TM if we replace V0 by its mean a0=�0 and solve

e�0TM a0=�0 D M

The integral in the second term (including the minus sign) is Euler’s constant

� D 0:5772156649:

Example 1. For a concrete example suppose a0 D 1:02, b D 1, �0 D 0:02 and set
M D 105. In this case P.TM � 0/ D exp.�200=1:02/� 0. The first term in (21) is

1

�0
log

�
M�0

a0

�
D 50 log1960:78 D 379:05

and the second is �=�0 D 28:86 a small correction. b D 1 so the units are the
number of cell divisions, i.e., for cells that divide on the average every four days
this is 1516 days or 4.15 years.

5 Time until the first type 1

Let �1 be the time of occurrence of the first type 1. If we think of 0’s as an
exponentially growing population of tumor cells, then type 1’s cells might have
more aggressive growth or be resistant to therapy. Since 1’s are produced at rate
u1Z0.s/ at time s,

P.�1 > t jZ0.s/; s � t; �01/ D exp

�
�u1

Z t

0

Z0.s/ds

�
: (22)

�1 will typically occur when
R t
0
Z0.s/ ds is of order 1=u1. A typical value for the

mutation rate is u1 D 10�5 or smaller, so 1=u1 is a large number, and we can use the
approximation .Z0.s/j�01/ � e�0sV0. Evaluating the integral,

Z t

0

e�0sV0 ds D V0 � e
�0t � 1
�0

:
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Dropping the second term and taking the expected value by using (16) with
	 D u1e�0t =�0, we conclude that

P.�1 > t j�01/ � E exp.�u1V0e
�0t =�0/ D �

1C .a0=�
2
0/u1e

�0t
��1

: (23)

The median t11=2 of the limiting distribution has �20 D a0u1e
�0t

1
1=2 so

t11=2 � 1

�0
log

�
�20
a0u1

�
: (24)

In some cases we regard V0 as a fixed constant. Implicitly assuming that V0 > 0

we write

P.�1 > t jV0/ � exp.�u1V0e
�0t /=�0: (25)

If we replace V0 by its mean EV0 D a0=�0 the tail of the limit distribution of �1 is
equal to 1=e at

Nt11=e D 1

�0
log

�
�20
a0u1

�
: (26)

A second quantity of interest is �1, the time of occurrence of the first type 1 that
gives rise to a family which does not die out. Since the rate of these successful type
1 mutations is u1�1=a1, all we have to do is to replace u1 by u1�1=a1 in (23) and
(25) to get

P.�1 > t j�01/ � �
1C .a0=�

2
0/.u1�1=a1/e

�0t
��1

; (27)

P.�1 > t jV0/ � exp.�V0.u1�1=a1/e�0t /=�0: (28)

Replacing t by s to define the quantities for �1 corresponding to (24) and (26)

s11=2 D Ns11=e D 1

�0
log

�
�20a1

a0u1�1

�
: (29)

Example 2. To help digest these formulas it is useful to have concrete examples.
If the mutation rate u1 D 10�5, b0 D b1 D 1, a0 D 1:02, and a1 D 1:04 then
�0 D 0:02, �1 D 0:04 and

t11=2 D Nt11=e D 50 log

�
4 � 10�4

1:02 � 10�5

�
D 183:45;

s11=2 D Ns11=e D 50 log

�
4:16 � 10�4

4:08 � 10�7

�
D 50 log.1019:6/ D 346:36:
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Again since bi D 1, the time units are cell-divisions. If cells divide every four days,
this translates into 733.8 days (about two years) and 1385.44 days or 3.8 years. If
instead u1 D 10�6 this adds .1=�0/ log.10/ D 115:13 or 460.5 days to the two
waiting times.

Limit Theorems. Our next goal is to find the limiting behavior of �1. Since the
median is where the distribution function crosses 1/2, (22) implies

P.�1 > t
1
1=2 C t j�01/ � .1C e�0t /�1;

and it follows that

P.�1 > t
1
1=2 C x=�0j�01/ ! .1C ex/�1: (30)

For a comparison with simulation see Figure 2.
The results for fixed V0 are similar, but the limit distributions is slightly different.

P.�1 > Nt11=e C t jV0/ � exp.�e�0t /;

and it follows that

P.�1 > Nt11=e C x=�0jV0/ ! exp.�ex/:
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1

Time

Simulated vs. Predicted CDFs of τ1 , τ2 , and τ3.

Fig. 2 Results of 200 runs of the system with a0 D 1:02, a1 D 1:04, a2 D 1:06, bi D 1:0, and
u D 10�5 . Smooth curves are the limit results for �i , i D 1; 2; 3.
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The results for �1 come from changing the value of u1 ! u1�2=a2.

P.�1 > s
1
1=2 C x=�0j�01/ D P.�1 > t

1
1=2 C x=�0j�01/ ! .1C ex/�1; (31)

P.�1 > Ns11=e C x=�0jV0/ D P.�1 > Nt11=e C x=�0jV0/ ! exp.�ex/:

6 Mutation before detection?

Cancer therapy often fails because acquired resistance enables cancer cells to grow
despite the continuous administration of therapy. In some cases, a single genetic
alteration is sufficient to cause resistance to cancer treatment. Chronic myeloid
leukemia (CML) is caused by a reciprocal translocation between chromosomes 9
and 22 which creates the BCR-ABL oncoprotein. Treatment of CML with imatinib
can fail due to a single point mutation in the tyrosine kinase domain of ABL.
To date more than 90 point mutations that cause resistance to treatment have
been observed. The possibility of drug-resistant cells at the beginning of therapy
is of clinical importance since the likelihood and extent of resistance determines
treatment choices and patient prognosis.

For this reason Iwasa, Nowak, and Michor [24] were interested in the probability
that a mutation conferring resistance to a particular treatment would occur before a
cancer was detected. To formulate this a math problem, we assume that the disease
can be detected when the number of cancer cells reaches sizeM . Assuming that the
number of resistant (type 1) cells will be a small fraction of M we will define this
to be TM D minft W Z0.t/ D M g. Using the calculation in (22), and noting that on
the nonextinction event�01, we haveZ0.t/ � V0e

�0t which impliesZ0.TM � s/ �
Me��0s , we find

P.�1 > TM jZ0.s/; s � TM ;�
01/ D exp

�
�u1

Z TM

0

Z0.t/ dt

�

� exp

�
�M u1

Z 1

0

e��0s ds

�
D exp .�M u1=�0/ : (32)

This answers our math question, but since the mutation to type 1 might die out, the
biologically relevant question is to compute the probability thatZ1.TM / > 0. To do
this we note that mutations to type 1 occur at rate u1Me��0s at time TM � s, and
by (12) will not die out by time TM with probability �1=.a1 � b1e

��1s/. Thinking
about thinning a Poisson process we see that the number of mutations to type 1 that
survive to time TM is Poisson with mean

�.M/ D M u1

Z 1

0

e��0s �1

a1 � b1e��1s ds; (33)
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and it follows that

P.Z1.TM / > 0j�01/ D 1 � exp.��.M//: (34)

The integral in (33) cannot be evaluated exactly, but it is useful to change variables
t D exp.��0s/, dt D ��0 exp.��0s/ ds to rewrite it as

�.M/ D M u1
�0

Z 1

0

�1

a1 � b1t�1=�0
dt: (35)

To compare with (7) in [24], we change notation

here a0 b0 a1 b1 u1
[24] r d a b ru

To explain the last conversion recall that in [24] their mutation rate u is per cell
division, while ours is a rate per unit time. The final conversion is that their ˛ D
�1=�0, which in our notation is 1=˛. For this reason, we will let N̨ D �1=�0. Once
these identifications are made, one can recognize their

F D
Z 1

0

1 � b=a
1 � .b=a/y N̨ dy (36)

as our integral and the two formulas are identical. In our notation the final result is

P.Z1.TM / > 0j�01/ D 1 � exp

�
� Mu1F

a0 � b0
�
: (37)

When mutation does not change the birth or death rates, i.e., a0 D a1 D a and
b0 D b1 D b,

Z 1

0

dt

a � bt
D �1

b
log.a � bt/

ˇ̌̌
ˇ
1

0

D 1

b
log

� a

a � b

�
;

and (37) becomes

P.Z1.TM / > 0j�01/ D 1 � exp

�
�Mu1a

b
log

� a

a � b
�	
: (38)

Recalling u1 D au, this agrees with (8) in [24] and (1) in Tomasetti and Levy [36]
(there a D L, b D D).

The derivation in [24] is clever but not 100% rigorous. They break things down
according to the number of sensitive cells k. The number increases to k C 1 at rate
kr and decreases to k � 1 at rate kd. This shows that the number of sensitive cells
is a time change of a random walk. If we let fx.t/ be the probability there are x
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sensitive cells at time t , then the expected number of resistant cancer cells produced
when there are x sensitive cancer cells is

Rx D ru
Z 1

0

xf x.t/ dt:

We are interested in what happens when the sensitive are conditioned to not die out
and the process is stopped when M is reached. In this case, if we ignore the values
near the endpoints 0 and M , then the number of man-hours at a site,

R1
0

xf x.t/ dt,
will be the same as the occupation time of x in a random walk with drift. At time t
the random walk will have moved from 0 to � .r � d/t , so the time spent at each
value in Œ0; .r � d/t� is � 1=.r � d/. This gives

Rx � u

1 � d=r (39)

in agreement with the result computed in their appendix B. The (minor) flaw in their
argument is that the Rx are random with ERx � u=.1� d=r/, but successive values
are correlated. However, the correlations are short-range, so weighted averages of
the Rx , such as the ones that appear in sums approximating (35), will be close to
their mean.

Approximations. Logic tells us that P.�1 > TM j�01/ � P.Z1.TM / D 0j�01/,
so it is comforting to note that the integrand in (35) is � 1. To get an upper bound
we note that Z1.TM / D 0 implies �1 > TM and type 1 mutations live forever with
probability �1=a1, so using the reasoning that led to (34)

P.Z1.TM / D 0j�01/ � P.�1 > TM j�01/ D exp.�M u1�1=a1�0/; (40)

an inequality which can also be derived by noting that �1=a1 is a lower bound on
the integrand.

Example 3. Leder et al. [29] have taken a closer look at the probability of pre-
existing resistance in chronic myeloid leukemia in order to obtain estimates of
the diversity of resistant cells. They choose M D 105 cells as the threshold for
detection, and on the basis of in vitro studies set a0 D 0:008, b0 D 0:003,
and � D 0:005 with time measured in years. They are interested in particular
nucleotide substitutions, so they set the mutation rate per birth at 10�7, or at rate
u D 0:008 � 10�7 D 8 � 10�10.

They examined eleven BCR-ABL mutations that produced resistance to treat-
ment by imatinib, dasatinib, and nilotinib. The mutants are listed in the next table in
decreasing order of their birth rates (per day). They assumed that the death rate in all
cases is 0.003. To explain the names, T 315I has a Threonine instead of Isoleucine
at position 315, while p210 is the wild type.
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mutation growth rate resistant to

T351I 0.0088 all

E255K 0.0085 I

Y235F 0.0082 I

p210 0.0080 none

E255V 0.0078 I

V299L 0.0074 D

Y253H 0.0074 I

M351I 0.0072 I

F317L 0.0071 I,D

T315A 0.0070 D

F317V 0.0067 D

L248R 0.0061 I,D

The growth parameters for T351I are a1 D 0:0088 and b1 D 0:003, so �1 D
0:0058. In this case Mu1=�0 D 105 � 0:008 � 10�7=0:005 D 0:016, and �1=a1 D
0:659, so we have

P.�1 � TM j�01/ D 1 � e�0:016 D 0:01587

P.Z1.TM / > 0j�1/ D 0:01263

P.�1 � TM j�1/ D 1 � e�0:010544 D 0:01049

where the last answer comes from evaluating the integral in (33) numerically. The
mutation with the lowest growth rate in the table is L248R, which changes Leucine
to Arginine at position 248. It has growth parameters a1 D 0:0061 and b1 D 0:003,
so �1 D 0:0031. Again Mu1=�0 D 0:0058 but this time �1=a1 D 0:581, so we have

P.�1 � TM j�01/ D 1 � e�0:016 D 0:01587

P.Z1.TM / > 0j�1/ D 0:01198

P.�1 � TM j�1/ D 1 � e�0:008131 D 0:00810

Comparing these two extreme cases we see that for all 11 mutations the probability
of resistance is between 0.01198 and 0.01263. From this they conclude that for the
parameters used in the computation the probability of no resistant type is 0.87, while
there will be one with probability 0.12, and two with probability 0.01.
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7 Accumulation of neutral mutations

It is widely accepted that cancers result from an accumulation of mutations that
increase the growth rates of tumor cells compared to the cells that surround them.
A number of studies have sequenced the genomes of tumors in order to find the
causative or “driver” mutations. [54, 63, 66, 69, 72]. The Cancer Genome Atlas
project and the International Cancer Genome Consortium represent the largest of
such efforts. They aim to sequence hundreds of examples of dozens of tumor types.
See [43] for a summary of some of the results that have been found. There is much
more on the web pages of these two organizations.

The search for “driver” mutations that cause the disease has been complicated by
the fact that a typical solid tumor has dozens of amino-acid altering substitutions but
only a small fraction of these are involved in the disease. The others are “passenger”
mutations that are genetically neutral. A recent study [70] argues that half or more of
the somatic mutations found in tumors occur before the onset of disease. To begin to
understand the behavior of neutral mutations in our cancer model, we first consider
those that occur to type 0’s. As shown in Section 3.1, if we condition Z0.t/ on the
event�01 that it does not die out, and let Y0.t/ be the number of individuals at time
t whose families do not die out, then Y0.t/ is a Yule process in which births occur at
rate �0. Since each of theZ0.t/ individuals at time t has a probability � D �0=a0 of
starting a family that does not die out, and the events are independent for different
individuals,

Y0.t/=Z0.t/ ! � in probability, (41)

As explained in Section 1, Y0.t/ is the backbone of the branching tree. The
remainder of the population lives in finite trees attached to the backbone. The finite
trees are copies of the branching process conditioned to die out, so most of these are
small, i.e., each individual in the population has a close relative on the backbone.
Because of this, it is enough to study the accumulation of mutations in Y0.t/.

Our first problem is to investigate the population site frequency spectrum,

F.x/ D lim
t!1Ft .x/; (42)

where Ft .x/ is the expected number of neutral “passenger” mutations present in
more than a fraction x of the individuals at time t . To begin to compute F.x/,
we note that by remarks, it is enough to investigate the frequencies of neutral
mutations within Y0. If we take the viewpoint of the infinite alleles model, where
each mutation is to a type not seen before, then results can be obtained from Durrett
and Schweinsberg’s [15] study of a gene duplication model. In their system there
is initially a single individual of type 1. No individual dies and each individual
independently gives birth to a new individual at rate 1. When a new individual is
born it has the same type as its parent with probability 1 � r and with probability r
is a new type which is different from all previously observed types.
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Let TN be the first time there are N individuals and let FS;N be the number
of families of size > S at time TN . Omitting the precise error bounds given in
Theorem 1.3 of [15], that result says

FS;N � r

�
2 � r

1 � r

�
NS�1=.1�r/ for 1 
 S 
 N1�r : (43)

The upper cutoff on S is needed for the result to hold. When S � N1�r , EFS;N
decays exponentially fast.

As mentioned above, the last conclusion gives a result for a branching process
with mutations according to the infinite alleles model, a subject first investigated
by Griffiths and Pakes [19]. To study DNA sequence data, we are more interested in
the frequencies of individual mutations. Using ideas from Durrett and Schweinsberg
[14] it is easy to show:

Theorem 2. If passenger mutations occur at rate � then F.x/ D �=�0x.

Numerical example. To illustrate the use of Theorem 2 suppose the time has been
scaled so that a0 D 1, �0 D 0:01 and � D 10�5. In support of the numbers we
note that Bozic et al. [5] estimate that the selective advantage provided by a typical
cancer driver mutation is 0:004 ˙ 0:0004. As for the second, if the per nucleotide
mutation rate is 10�9 and there are 1000 nucleotides in a gene, then a mutation rate
of 10�6 per gene results. In this case Theorem 2 predicts if we focus only on one
gene, then the expected number of mutations with frequency> 0:1 is

F.0:1/ D 10�6C2C1 D 0:001 (44)

so, to a good first approximation, no particular neutral mutation occurs with an
appreciable frequency. Of course, if we are sequencing 20,000 genes, then there will
be a few dozen passenger mutations seen in a given individual. On the other hand,
there will be very few specific neutral mutations that will appear multiple times
in the sample, i.e., there should be few false positives. However, the bad news for
sequencing studies is that in many cancers there is a wide variety of driver mutations
that accomplish the same end.

Proof of Theorem 2. We will drop the subscript 0 for convenience. For j � 1 let
Tj D minft W Yt D j g and notice that T1 D 0. Since the j individuals at time Tj
start independent copies Y 1; : : : Y j of Y , we have

lim
s!1 e��sY i .s/ D 
i ;

where the 
i are independent exponential mean 1 (here time s in Y i corresponds to
time Tj C s in the original process). From the limit theorem for the Y i we see that
for j � 2 the limiting fraction of the population descended from individual i at time
Tj is

ri D 
i=.
1 C � � � C 
j /; 1 � i � j;
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which as some of you know has a beta.1; j � 1/ distribution with density

.j � 1/.1 � x/j�2:

For those who don’t we give the simple proof of this fact. Note that

..
1; : : : 
j /j
1 C � � � C 
j D t/

is uniform over all nonnegative vectors that sum to t , so .r1; : : : rj / is uniformly
distributed over the nonnegative vectors that sum to 1. Now the joint distribution of
the ri can be generated by letting U1; : : : Uj�1 be uniform on Œ0; 1�, U .1/ < U .2/

< : : : U .j�1/ be the order statistics, and ri D U .i/ � U .i�1/ where U .0/ D 0 and
U .j / D 1. From this and symmetry, we see that

P.ri > x/ D P.rj > x/ D P.Ui < 1 � x for 1 � i � j � 1/ D .1 � x/j�1;

and differentiating gives the density.
If the neutral mutation rate is �, then on ŒTj ; TjC1/mutations occur to individuals

in Y at rate �j , while births occur at rate �j , so the number of mutations Nj in this
time interval has a shifted geometric distribution with success probability �=.�C�/,
i.e.,

P.Nj D k/ D
�

�

� C �

�k
�

� C �
for k D 0; 1; 2 : : : (45)

The Nj are i.i.d. with mean

� C �

�
� 1 D �

�
:

Thus the expected number of neutral mutations that are present at frequency larger
than x is

�

�

1X
jD1

.1� x/j�1 D �

�x
:

The j D 1 term corresponds to mutations in ŒT1; T2/ which will be present in the
entire population.ut

Theorem 2 describes the population site frequency spectrum. The next result
describes the frequencies in a sample. Suppose we sample n individuals from the
Yule process when it has size N� and hence the whole population has size � N .
Let �n;m be the number of mutations present in m individuals.
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Theorem 3. As N ! 1

E�n;m

8̂<
:̂

! n�

�
� 1

m.m� 1/
2 � m < n;

� n�

�
� log.N�/ m D 1:

(46)

where aN � bN means aN =bN ! 1.

To explain the result for m D 1, we note that, as Slatkin and Hudson [35]
observed, genealogies in exponentially growing population tend to be star-shaped,
i.e., the most recent common ancestor of two individuals occurs near the beginning
of the branching process. The time required for Y0.t/ to reach size N� is �
.1=�/ log.N�/, so the number of mutations on our n lineages is roughly n� times
this. Note that, (i) for a fixed sample size, E�n;m, 2 � m < n are bounded.

Proof of Theorem 3. We begin with a calculus fact that is easy for readers who can
remember the definition of the beta distribution. The rest of us can simply integrate
by parts.

Lemma 2. If a and b are nonnegative integers

Z 1

0

xa.1 � x/b dx D aŠbŠ

.a C b C 1/Š
: (47)

Differentiating the distribution function from Theorem 2 gives the density �=�x2.
We have removed the atom at 1 since those mutations will be present in every
individual and we are supposing the sample size n > m the number of times
the mutation occurs in the sample. Conditioning on the frequency in the entire
population, it follows that for m � 2 < n that

E�n;m D
Z 1

0

�

�x2

 
n

m

!
xm.1 � x/n�m dx D n�

�m.m� 1/
;

where we have used n 
 N and the second step requiresm � 2.
When m D 1 the formula above gives E�n;1 D 1. To get a finite answer we

note that the expected number that are present at frequency larger than x is

�

�

N�X
jD1

.1 � x/j�1 D �

�x

�
1 � .1 � x/N� � :

Differentiating (and multiplying by �1) changes the density from �=�x2 to

�

�

�
1

x2

�
1 � .1 � x/N� � � 1

x
N�.1� x/N��1

�
: (48)
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Ignoring the constant �=� for the moment and noticing

 
n

m

!
xm.1 � x/n�m D nx.1 � x/n�1

whenm D 1 the contribution from the second term is

n

Z 1

0

N�.1� x/N�Cn�2 dx D n � N�

N� C n � 1 < n

and this term can be ignored. Changing variables x D y=N� the first integral is

Z 1

0

1

x

�
1 � .1 � x/N� � .1 � x/n�1 dx

D
Z N�

0

1

y

�
1 � .1 � y=N�/N� � .1 � y=N�/n�1 dy:

To show that the above is � log.N�/we letKN ! 1 slowly and divide the integral
into three regions Œ0;KN �, ŒKN ;N�= logN�, and ŒN�= logN;N��. Outside the first
interval, .1 � y=N�/N� ! 0 and outside the third, .1 � y=N�/n�1 ! 1 so we
conclude that the above is

O.KN /C
Z N�= logN

KN

1

y
dy CO.log logN/

ut

8 Properties of the gamma function

The Gamma function is defined for ˛ > 0 by

.˛/ D
Z 1

0

t˛�1e�t dt: (49)

This quantity with 0 < ˛ < 1 will show up in the constants of our limit theorems,
so we record some of its properties now. Integrating by parts

.˛ C 1/ D
Z 1

0

t˛e�t dt D
Z 1

0

˛t˛�1e�t dt D ˛.˛/: (50)

Since .1/ D 1 it follows that if n is an integer .n/ D .n � 1/Š. Among the many
formulas for  , the most useful for us is Euler’s reflection formula

.˛/.1 � ˛/ D �

sin.�˛/
: (51)
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Taking ˛ D 1=2 we see that implies .1=2/ D p
� . Letting ˛ ! 0 and using

.1 � ˛/ ! .1/ D 1

.˛/ � �

sin.�˛/
� 1

˛
; (52)

where we have used sin x � x as x ! 0.

9 Growth of Z1.t/

In this section we will examine the growth of the type 1’s under the assumption
that Z�

0 .t/ D V0e
�0t for t 2 .�1;1/, where the star is to remind us that we have

extendedZ0 to negative times. The constant V0 could be set equal to 1 by changing
the origin of time. We will not do that because proving the result for a general V0
will make it easy to prove results for Z�

k .t/ by induction. The expected number of
type 1 families that begin at negative times is V0�=�0. When V0 D 1 this is 10�3
or smaller, so the extension changes the behavior very little. However, as the reader
will see, it makes the analysis much easier.

We begin by stating and discussing the main results before we get involved in the
details of the proofs. Let ˛ D �0=�1,

c�;1 D 1

a1

�
a1

�1

�˛
.˛/; ch;1 D c�;1.1� ˛/; (53)

and c	;1 D ch;1.a0=�0/.

Theorem 4. If we assume Z�
0 .t/ D V0e

�0t then as t ! 1,

e��1tZ�
1 .t/ ! V1:

(i) V1 is the sum of the points in a Poisson process with mean measure

�.x;1/ D c�;1u1V0x
�˛

(ii) E.e�	V1 jV0/ D exp.�ch;1u1V0	˛/
(iii) P.V1 > xjV0/ � x�˛ch;1u1V0=.1� ˛/ D c�;1u1V0x�˛ .
(iv) If V0 is exponential(�0=a0/ then

E exp.�	V1/ D .1C c	;1u1	
˛/�1; (54)

and (v) P.V1 > x/ � x�˛c	;1u1=.1 � ˛/.
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Conclusion (ii) implies that the distribution of .V1jV0/ is a one-sided stable law with
index ˛. It is know that such distributions have a power law tail. Conclusion (iii)
makes this precise. In words, when x is large the sum is bigger than x if and only if
there is a point in .x;1/ in the Poisson process. The result in (iii) was discovered
by Iwasa, Noawk, and Michor [24] using simulation. The conclusions in (iv) follows
from (ii) by taking expected value and using (16). Finally (v) follows from (iv) in the
same way (iii) follows from (ii), by using a Tauberian theorem given in Lemma 4.

Proof of (i). Mutations to type 1 occur at times of a Poisson process with rate
u1V0e�0s . Theorem 1 implies that a mutation at time s will grow to size � e�1.t�s/W1

by time t , where W1 has distribution

W1 Dd

b1

a1
ı0 C �1

a1
exponential.�1=a1/:

To add up the contributions, we associate with each point si in the Poisson process
an independent random variable yi with the same distribution asW1. This gives us a
Poisson process on .�1;1/ � .0;1/ (we ignore the points with yi D 0) that has
intensity

u1V0e
�0s � .�1=a1/2e�.�1=a1/y :

Here, one of the two factors of �1=a1 comes from P.W1 > 0/, the other from the
exponential density function.

A point .s; y/ makes a contribution e��1sy to limt!1 e��1tZ�
1 .t/. Points with

e��1sy > x will contribute more than x to the limit. The number of such points is
Poisson distributed with meanZ 1

�1
u1V0e

�0s
�1

a1
e�.�1=a1/xe�1s ds;

where one factor of �1=a1 has disappeared since we are looking at the tail of the
distribution. Changing variables

�1

a1
xe�1s D t;

�1

a1
x�1e

�1sds D dt;

and noticing s D .1=�1/ log.ta1=x�1/ implies e.�0��1/s D .a1t=�1x/
.�0=�1/�1 the

integral above becomes

D u1V0

Z 1

0

�
a1t

�1x

�̨ �1
e�t dt

�1x

D u1V0
a1

�
a1

�1

�̨
x�˛

Z 1

0

t˛�1e�t dt;

which completes the proof of (i). ut
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Proof of (ii). Let QZ1.t/ be the number of 1’s at time t in the branching process with
Z0.0/ D 0, Z1.0/ D 1, and let Q�1;t .	/ D Ee�	 QZ1.t/.

Lemma 3. E
�
e�	Z�

1 .t/jV0
�

D exp
�
�u1

R t
�1 V0e

�0s.1 � Q�1;t�s.	// ds
�

.

Proof of (ii). We begin with the corresponding formula in discrete time:

E
�
e�	Z�

1 .n/
ˇ̌̌
Z�
0 .m/;m � n

�
D

n�1Y
mD�1

1X
kmD0

e�u1Z
�

0 .m/
.u1Z�

0 .m//
km

kmŠ
Q�1;n�m�1.	/km

D
n�1Y

mD�1
exp

��u1Z
�
0 .m/.1 � Q�1;n�m�1.	//

�

D exp

 
�u1

n�1X
mD�1

Z�
0 .m/.1� Q�1;n�m�1.	//

!
:

Breaking up the time-axis into intervals of length h and letting h ! 0 and using
Z�
0 .s/ D V0e

�0s gives the result in continuous time.ut
Replacing 	 by 	e��1t in Lemma 3 and letting t ! 1

E
�
e�	V1 jV0

� D lim
t!1 exp

�
�u1V0

Z t

�1
e�0s.1 � Q�1;t�s.	e��1t // ds

�
: (55)

To calculate the limit, we note that by (15)

QZ1.t � s/e��1.t�s/ ) b1

a1
ı0 C �1

a1
exponential.�1=a1/;

so multiplying by e��1s and taking the Laplace transform, we have

1 � Q�1;t�s.	e��1t / ! �1

a1

Z 1

0

.1 � e�	x/.�1=a1/e�1se�xe�1s�1=a1dx: (56)

Using this in (55) and interchanging the order of integration

E
�
e�	V1 jV0

� D exp .�u1V0h.	// ; (57)

where

h.	/ D �21
a21

Z 1

0

.1 � e�	x/
�Z 1

�1
e�0se�1se�xe�1s�1=a1ds

	
dx: (58)



Branching Process Models of Cancer 27

Changing variables u D xe�1s�1=a1, e�1sds D a1 du=.�21x/, the inside integral

D
Z 1

0

�
a1u

�1x

��0=�1
e�u a1du

�21x
:

Inserting this in (58) and recalling ˛ D �0=�1, we have

h.	/ D 1

a1

�
a1

�1

�˛ Z 1

0

.1 � e�	x/x�˛�1 dx
Z 1

0

u˛e�u du:

Comparing with (53) and using .˛ C 1/ D ˛.˛/, see (50), gives

h.	/ D c�;1

Z 1

0

.1� e�	x/˛x�˛�1 dx: (59)

Changing variables x D y=	 , dx D dy=	 we have

h.	/ D c�;1	
˛

Z 1

0

.1 � e�y/˛y�˛�1 dy:

Integrating by parts, it follows that

h.	/ D c�;1	
˛

Z 1

0

e�yy�˛ dy D c�;1.1 � ˛/	˛ D ch;1	
˛; (60)

which completes the proof of (ii).ut
Proof of (iii). To show that V1 has a power law tail, we note that (57) and (60) imply
that as 	 ! 0,

1 �E.e�	V1 jV0/ � ch;1u1V0	
˛; (61)

and then use a Tauberian theorem from Feller Volume II (pages 442–446). Let

!.�/ D
Z 1

0

e��xdU.x/:

Lemma 4. If L is slowly varying and U has an ultimately monotone derivative u,
then !.�/ � ���L.1=�/ if and only if u.x/ � x��1L.x/=.�/.

To use this result we note that if �.	/ is the Laplace transform of the probability
distribution F , then integrating by parts gives

Z 1

0

e�	xdF.x/ D .e�	x/.F.x/ � 1/
ˇ̌1
0

� 	
Z 1

0

e�	x.1 � F.x// dx;
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so we have

1 � �.	/ D 	

Z 1

0

e�	x.1 � F.x// dx:

Using (61), it follows that .1 � �.	//=	 � ch;1u1V0	˛�1. Apply Lemma 4 with
!.	/ D .1 � �.	//=	 , u.x/ D 1 � F.x/ which is decreasing and � D 1 � ˛ we
conclude

1 � F.x/ � ch;1u1V0
.1 � ˛/

x��0=�1 ;

which proves (iii) and completes the proof of Theorem 4.ut

10 Moments of Z1.t/

The fact that EV1 D 1 is a signal of complications that we will now investigate.
We return to considering the process Zk.t/ which starts with one type 0 at time 0.
The first step is to compute expected values. EZ0.s/ D e�0t so, assuming �0 < �1,

EZ1.t/ D
Z t

0

u1e
�0se�1.t�s/ ds D u1e

�1t

Z t

0

e�.�1��0/s ds

D e�1t
u1

�1 � �0
.1 � e�.�1��0/s/: (62)

To investigate the limiting behavior of Z1.t/ we note that

Mt D e��1tZ1.t/ �
Z t

0

u1Z0.s/e
��1.t�s/ ds is a martingale.

The integral, call it It , is increasing in t and has expected value e��1tEZ1.t/ �
u1.�1 � �0/ so it converges to a limit I1. Since Mt � �I1 the martingale
convergence theorem implies that

e��1tZ1.t/ ! W1 a.s.

Our next step is to show EW1 D EI1 D u1=.�1 � �0/. This follows from:

Lemma 5. For k � 0, supt E.e
��ktZk.t//2 < 1.

Proof. The base case is easy. We look at the derivative d
dtE.e

��0tZ0.t//2

D �2�0E.e��0tZ0.t//
2 C e�2�0t .EŒa0Z0.t/.2Z0.t/C 1/� �EŒb0Z0.t/.2Z0.t/ � 1/�/

D e�2�0t .a0 C b0/EZ0.t/ D e��0t .a0 C b0/;
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and it follows that supt E.e
��0tZ0.t//2 < 1. Next, we suppose supt E.e

��k�1t

Zk�1.t//2 � ck�1 < 1 and consider the derivative d
dtE.e

��ktZk.t//2

D �2�kE.e��ktZk.t//2 C e�2�ktEŒakZk.t/.2Zk.t/C 1/�

� e�2�k tEŒbkZk.t/.2Zk.t/ � 1/�C e�2�ktEŒukZk�1.t/.2Zk.t/C 1/�

D .ak C bk/e
�2�k tEZk.t/C uke

�2�k tEŒZk�1.t/.2Zk.t/C 1/�:

To bound 2uke�2�ktEŒZk�1.t/Zk.t/�, we use the Cauchy-Schwarz inequality and
y1=2 � 1C y for y � 0 to get

� 2uke
�.�k��k�1/tEŒe�2�k�1tZ2

k�1.t/�1=2EŒe�2�ktZ2
k.t/�

1=2

� 2uke
�.�k��k�1/t c

1=2

k�1
�
1CEŒe�2�k tZ2

k.t/�
�
:

Comparison theorems for differential equations imply that E.e��ktZk.t//2 �
m.t/ where m.t/ is the solution of the differential equation

d

dt
m.t/ D a.t/m.t/C b.t/; m.0/ D 0; (63)

with a.t/ D 2ukc
1=2

k�1e�.�k��k�1/t , and

b.t/ D .ak C bk/e
�2�ktEZk.t/C 2uke

�2�k tEZk�1.t/C 2ukc
1=2

k�1e
�.�k��k�1/t :

Solving (63) gives

m.t/ D
Z t

0

b.s/ exp

�Z t

s

a.r/ dr

�
:

Since a.t/ and b.t/ are both integrable,m.t/ is bounded. ut
At this point we have shown that

e��1tZ1.t/ ! W1 with EW1 D u1=.�1 � �0/;
e��1tZ�

1 .t/ ! V1 with EV1 D 1:

To see the reason for the difference between the two limits, we will repeat part of the
proof of the point process result (i) from Theorem 4 toZ1.t/. A point .s; y/makes a
contribution e��1sy to limt!1 e��1tZ1.t/. Points with e��1sy > x will contribute
more than x to the limit. The number of such points is Poisson distributed with mean

Z 1

0

u1V0e
�0s
�1

a1
e�.�1=a1/xe�1s ds:
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Changing variables t D .�1=a1/xe
�1s now leads to

u1V0
a1

�
�1x

a1

��˛ Z 1

�1x=a1

t˛�1e�t dt; (64)

while in the last section the result was

u1V0
a1

�
�1x

a1

��˛ Z 1

0

t˛�1e�t dt:

When �1x=a1 is large the integral in (64) is roughly the value of the integrand at the
lower limit, so the quantity above is � Cx�1 exp.��1x=a1/ as x ! 1.

The last calculation shows that W1 is roughly the infinite mean random variable
V1 truncated at a1=�1. However EV0 D a0=�0 and in most of our applications
u1a0=a1�0 is small, so this truncation is much larger than the typical value of V1 and
EW1 is not a good measure of the size of W1.

11 Luria-Delbruck distributions

We now go back in time 70 years to the work of Luria and Delbruck [30] on
bacterial growth. Luria and Delbruck grew a number of bacterial populations until
they reached a size of order 108, and then exposed them to attack by bacteriophage
(anti-bacterial virus). Only bacteria resistant to the phage survived. At the time there
were two theories about the emergence of resistance. (i) Mutations from sensitive to
resistant were constantly occurring even in the absence of the phage. (ii) A certain
proportion of organisms were able to adapt themselves to the new environment, and
thereby acquired an immunity that is passed on to their offspring. Under the second
scenario, one would expect a Poisson number of survivors, but that was not what
was observed.

To make it easier to connect with published work, the normal cells will be called
type 1 and mutants type 2. Type 1’s will be assumed to grow deterministically.
There are two cases to consider (a) the type 2’s grow deterministically or (b) the
type 2’s are a Yule process (no deaths). If type 2’s were a branching process, then
we would have the model we have been studying. The point of this section is to see
the analogous results in a simpler setting and to explore other techniques that have
been used.
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11.1 Deterministic growth of type 1’s

To determine the distribution of the number of mutants under scenario (i), Luria and
Delbruck defined a process that starts at time 0 with one normal cell and no mutants.
They assumed that normal cells grow deterministically at rate ˇ1 so

N.t/ D eˇ1t :

Resistant mutants appear at rate�N.t/, so the expected number of mutations at time
t is

m.t/ D
Z t

0

�eˇ1s ds D �

ˇ1
.eˇ1t � 1/: (65)

Mutants grow at rate ˇ2, so the expected number of mutants at time t is

EX.t/ D
Z t

0

�eˇ1seˇ2.t�s/ ds D
(
�teˇ1t ˇ1 D ˇ2;
�

ˇ2�ˇ1 .e
ˇ2t � eˇ1t / ˇ1 ¤ ˇ2:

(66)

In our cancer applications we have ˇ1 < ˇ2 and the formula reduces to the one in
(62). However, for the bacterial experiment, it is natural to assume ˇ1 D ˇ2, i.e., in
the absence of phage the resistance mutation is neutral.

Crump and Hoel [6] analyzed the model using the theory of “filtered Poisson
processes”:

X.t/ D
M.t/X
iD1

Wi .t � �i /;

whereM.t/ is the number of mutations by time t , �i is the time of the i th mutation,
and in the current contextWi.s/ D exp.ˇ2s/. Using equation (5.42) of Parzen [33],
which is our Lemma 3 given in Section 9, the cumulant generating function

K.u; t/ D logEŒe	X.t/� D
Z t

0

�eˇ1s. t�s.	/� 1/ ds; (67)

where  r.	/ D E.e	W.r//, which in this case is just exp.	eˇ1r /.
Given a random variable Y

d

d	
logE.e	Y / D E.Ye	Y /

E.e	Y /
D EY when 	 D 0:
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Differentiating again

d2

d	2
logE.e	Y / D E.Y 2e	Y /E.e	Y /� .EYe	Y /2

.Ee	Y /2

D E.Y 2/� .EY/2 when 	 D 0:

In general,

dn

d	n
logE.e	Y /

ˇ̌̌
ˇ
	D0

D �n

where �n is the nth cumulant. Differentiating n times we have

�n.t/ D
Z t

0

�eˇ1sEWn.t � s/ ds:

When n D 1 this is the formula for the mean given in (65). When n D 2,

�2.t/ D
Z t

0

�eˇ1se2ˇ2.t�s/ ds

D
(

�

ˇ1�2ˇ2 .e
ˇ1t � e2ˇ2t / ˇ1 ¤ 2ˇ2;

�te2ˇ1t ˇ1 D 2ˇ2:

According to Zheng’s (1999) survey [37], very little is known about the
distribution of X.t/. However, the proof of Theorem 4 applies easily to this case.
Since the type 1 process is deterministic, a mutation at time s contributes e�ˇ2s to
e�ˇ2tX.t/. In order for this contribution to be> x we need s to be< �.1=ˇ2/ logx,
so using the formula in (65) the number is Poisson with mean

�

ˇ1
.e�.ˇ1=ˇ2/ log x � 1/ D �

ˇ1
.x�ˇ1=ˇ2 � 1/ for x � 1.

This is the Poisson process for our stable law with the points > 1 removed.

11.2 Lea-Coulson [28] formulation

As in the previous example, normal cells grow deterministically N.t/ D eˇ1t and
mutants appear at rate�N.t/, but now each mutant starts a Yule process having birth
rate ˇ2. We begin by deriving an equation for the generating function G.z; t/ D
EŒzX.t/�. Since jumps from k ! k C 1 occur at rate ˇ2k C �eˇ1t at time t ,

@G

@t
D
X
k

.ˇ2k C �eˇ1t /.zkC1 � zk/P.X.t/ D k/:
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The second term D �eˇ1t .z � 1/G. To deal with the first one, we rewrite it as

ˇ2z.z � 1/
X
k�1

kzk�1P.X.t/ D k/ D ˇ2z.z � 1/
@G

@z
;

so we have

@G

@t
D ˇ2z.z � 1/@G

@z
C �eˇ1t .z � 1/G: (68)

For our purposes it is more convenient to use the cumulant generating function
K. ; t/ D log.EŒe X.t/�/ D logG.e /. The chain rule tells us that

@K

@t
D 1

G.e /

@G

@t
.e /;

@K

@ 
D 1

G.e /

@G

@z
.e /e ;

so we have

@K

@t
D ˇ2.e

 � 1/@K
@ 

C �eˇ1t .e � 1/; (69)

which agrees with (50) in Zheng [37] and pages 125–129 in Bailey [4]. Inserting
K. ; t/ D P

j�1 �j .t/ j =j Š into (69) and equating terms we have

�0
1.t/ D ˇ2�1.t/C �eˇ1t ;

�0
2.t/ D ˇ2�1.t/C 2ˇ2�2.t/C �eˇ1t :

The formula for the mean is the same as in (66). When ˇ1 ¤ ˇ2 and ˇ1 ¤ 2ˇ2

var ŒX.t/� D �eˇ2t Œˇ1.1C eˇ1�ˇ2 t � 2eˇ2t �C 2ˇ2.e
ˇ2t � 1/

.ˇ1 � ˇ2/.ˇ1 � 2ˇ2/
:

In the exceptional cases

var ŒX.t/� D
(
�

ˇ2
eˇ2t .1 � eˇ2t C 2ˇ2te

ˇ2t / ˇ1 D 2ˇ2;

2�

ˇ1
eˇ1t .eˇ1t � 1/� �teˇ1t ˇ1 D ˇ2:

In the special case ˇ1 D ˇ2 these go back to Bailey. Zheng claims credit for the
general formulas, see his (52) and (53). Using this approach we could derive exact
formulas for the variance of our process rather than simply the bounds on the second
moment given in Section 10.
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Generating function. If ˇ2 > ˇ1, then we can analyze the limiting behavior of
e�ˇ2tX.t/ as we did in Section 9. For this reason, we restrict our attention now to
the case ˇ1 D ˇ2 D ˇ, in which case (68) becomes

@G

@t
D ˇz.z � 1/@G

@z
C �eˇt .z � 1/G;

with initial conditionG.z; 0/ D 1. Alternatively, using (65) we can use the boundary
condition

G.0; t/ D exp.�m.t//:

Changing variables 	 D .�=ˇ/eˇt , so F.z; 	/ D G.z; ˇ�1 log.ˇ	=�//, one
arrives at

@F

@	
D z.z � 1/

	

@F

@z
C .z � 1/F:

One solution with F.0; 	/ D e�	 , called the Lea-Coulson p.g.f. can be written as

F.z; 	/ D .1� z/	.1�z/=z D exp.	.f .z/ � 1//; (70)

where f .z/ D 1C
�
1 � z

z

�
log.1 � z/:

If we let 	.t/ D .�=ˇ/eˇ1t , then in terms of G the boundary condition is

G.0; t/ D F.0; 	.t// D e�	.t/:

In the literature it is often remarked that this is not correct due to the value at t D 0.
However, since 	.t/ D R t

�1 �eˇ1s ds this corresponds to our process on .�1;1/.
Define the LD.	; �/ distribution by its generating function

G.z; 	; �/ D exp

�
	

�
1

z
� 1

	
log.1 � �z/

�
D .1 � �z/	.1�z/=z: (71)

If 	.t/ D .�=ˇ/eˇt and �.t/ D 1 � e�ˇt , then this is the exact generating function
for X.t/, which first appeared as (30a) in Armitage [2] where it was attributed to
Bartlett. If instead we take �.t/ D 1 it is the Lea-Coulson p.g.f.

We will now derive these results from Parzen’s formula (67). Recalling the
formula for the generating function of the Yule process given in (10)

logE.zX.t// D �
Z t

0

�eˇs
1 � z

1 � z C ze�ˇ.t�s/ ds:
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Changing variables x D ze�ˇ.t�s/ so that dz D ˇze�ˇ.t�s/ds and eˇsds D
.eˇt=ˇz/dx the above

D ��e
ˇt

ˇz

Z z

ze�ˇt

1 � z

1 � z C x
dx

D �eˇt

ˇ

�
1 � z

z

	
log.1 � z C ze�ˇt /;

so changing notation we have (71):

G.z; 	; �/ D exp

�
	

�
1 � z

z

	
log.1 � �z/

�

If we replace 0 by �1 in the lower limit, then the last term becomes log.1 � z/
instead.

The Lea-Coulson model is a special case of our branching process conditioned
on V0, so Theorem 4 implies that when ˇ1 < ˇ2 the tail of the distribution for V1
has

P.V1 > xjV0/ � c�;1u1V0x
�ˇ1=ˇ2 :

From this it should not be surprising that if X D LD.	; 1/ then

P.X > n/ � 	=n and P.X D n/ � 	=n2:

A nice proof with references to the earlier contributions can be found in Zheng [38].

12 Number of type 1’s at time TM

In Section 6 we studied the probability that type 1 cells were present when the
number of type 0’s reached size M . Since the 1’s may be tumor cells with more
aggressive growth or resistant to therapy, it is also important to understand the
number that are present.

As in Section 6, Iwasa, Nowak, and Michor [24] study Z1.TM / by decomposing
according to the size of the process when mutations happen. Their formula (4) for
the generating function of the number of resistant cancer cells (written here in our
notation) is:

G.
/ D exp

 
� u

1 � b0=a0
M�1X
xD1

.1 � gx.
//
!

(72)
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Here gx.
/ is the generating function of the branching process QZ1.t/ evaluated at
t D .1=�0/ log.M=x/, which is the time the type 0’s need to grow from size x to
size M .

Here we will instead note that it is immediate from the proof of Lemma 3 that

E exp.�	Z�
1 .TM // � exp

�
�u1

Z 0

�1
Me�0s.1 � Q��s.	/ ds

�
(73)

where Q� is the Laplace transform of the distribution of QZ1.t/, the branching process
starting from a single 1 (and no mutations from 0 to 1). To see this note that in the
previous formula the mutation rate at time s was u1V1e�0s for s � t , while now it is
u1Me�0s for s � 0.

From (73), it is immediate that

Theorem 5. If M ! 1 and Mu1 ! � 2 .0;1/, Z�
1 .TM / converges in

distribution to U1 with Laplace transform

E.exp.�	U1// D exp

�
��

Z 1

0

e��0t .1 � Q�t .	// dt

�

To explain the assumption that Mu1 ! � 2 .0;1/, note that this implies that
resistance is neither certain nor impossible. More concretely, it is estimated that in
chronic myeloid leukemia [31] thatM D 2:5�105 while u D 4�10�7 so Mu � 0:1.

Since (11) implies

1 � Q�t .	/ D �1.1 � e�	 /
a1.1 � e�	 / � e��1t .b1 � a1e�	 /

the Laplace transform of U1 is not pretty. However, as we will now show U1 has a
power law tail, a result that [24] demonstrated by simulation.

To do this we note that if there is a mutation before TM � .1=�1/ logy, then it is
likely that fU1 > yg. The expected number of such mutations is

Mu1

Z �.1=�1/ log y

�1
e�0s ds D Mu1 � 1

�0
e�.�0=�1/ log y D .1=�0/�y

�˛:

As in Section 9 one can prove this rigorously by looking at the asymptotics for
the Laplace transform as 	 ! 0. Changing variables t D �t.	/C x where t.	/ D
.1=�1/ log.1 � e�	 /

Z 1

0

dt e��0t �1.1 � e�	 /
a1.1 � e�	 /� e��1t .b1 � a1e�	 /

D .1 � e�	 /˛
Z 1

�t .	/
e��0x �1

a1 � e��1x.b1 � a1e�	 /
dx

� 	˛
Z 1

�1
e��0x �1

a1 � e��1x.b1 � a1/ dx as 	 ! 0.



Branching Process Models of Cancer 37

The probability of having a type 1 at time TM is, by (37),

P D 1 � exp

�
� Mu1F

1 � b0=a0

�

where F is given in (36). Using (72), we see that the mean of the number of
resistance cells conditional on there being at least 1 is

NY D G0.1/
P

D u

P.1 � b0=a0/
M�1X
xD1

�
M

x

� N̨
;

where using notation from Section 6, N̨ D �1=�0 D 1=˛. As observed in [24] this
formula is not accurate in the case of advantageous resistant mutations because the
dominant contribution comes from mutations when the tumor is small.

When mutations do not change the birth or death rates, i.e., a0 D a1 D a and
b0 D b1 D b, then N̨ D 1 and the answer becomes

Mu1 logM

P.1 � b=a/ :

If we suppose in addition that Mu1 is small, then (38) implies

Mu1
P

� Mu � 1
1 � exp

h
� Mu1a

log

�
a
a�b

�i � .a=b/ log.a=.a � b//

and we have

NY � logM

.a=b � 1/ log.a=.a � b// ;

which is (12) in [24] and (2) in [36]. Again the logM comes from the unlikely event
of resistance mutations that occur when the tumor is small.

13 Growth of Zk.t/

The formulas for the constants in the next limit theorem are ugly, but the proof is
very easy. The arguments in Section 9 and induction give the desired result. Let
˛k D �k�1=�k. Generalizing (53) we define

c�;k D 1

ak

�
ak

�k

�˛k
.˛k/ ch;k D .1 � ˛k/c�;k (74)
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Let �1 D u1 and inductively define for k � 2

c	;k D c	;k�1c�0=�k�1

h;k (75)

�k D �k�1u�0=�k�1

k D
kY

jD1
u
�0=�j�1

j : (76)

Let Fk�11 be the �-field generated by Z�
j .t/, j � k � 1, t � 0.

Theorem 6. If Z�
0 .t/ D V0e

�0t for t 2 .�1;1/, then as t ! 1.

e��k tZ�
k .t/ ! Vk a.s.

(i) .VkjFk�11 / is the sum of the points in a Poisson process with mean measure

�.x;1/ D c�;kukVk�1x�˛k :

(ii) E.e�	Vk jFk�11 / D exp.�ch;kukVk�1	˛k /.
(iii) P.Vk > xjFk�11 / � x�˛k c�;kukVk�1=.1 � ˛k/
(iv) If V0 is exponential.�0=a0/, then

Ee�	Vk D �
1C c	;k�k	

�0=�k
��1

(77)

and (v) P.Vk > x/ � x��0=�k c	;k�k=.1 � �0=�k/.
Proof. We will prove this by induction. When k D 1, this follows from Theorem 4.
Suppose now that k � 2. Let Fk�1

t be the �-field generated byZ�
j .s/ for j � k� 1

and s � t . Let QZk.t/ be the number of type k’s at time t in the branching process
with QZk.0/ D 1 and QZj .0/ D 0 for j � k � 1, and let Q�k;t .	/ D Ee�	 QZk.t/. The
reasoning that led to Lemma 3 implies

E.e�	Z�

k .t/jFk�1
t / D exp

�
�uk

Z t

�1
Z�
k�1.s/.1 � Q�k;t�s.	// ds

�

Replacing Z�
k�1.s/ by e�k�1sVk�1, 	 by 	e��kt , and letting t ! 1

E
�
e�	Vk jFk�11

� D lim
t!1 exp

�
�ukVk�1

Z t

�1
e�k�1s.1 � Q�k;t�s.	e��kt // ds

�
(78)

At this point the calculation is the same as the one in the proof of Theorem 4 with 1
and 0 replaced by k and k � 1 respectively, so it follows from the proofs of (ii) and
(iii) that
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E
�
e�	Vk jFk�11

� D exp .�ch;kukVk�1	˛k / (79)

P.Vk > xjFk�11 / � x�˛k c�;kukVk�1=.1� ˛k/: (80)

Taking expected value of (79) and using the result for k � 1

Ee�	Vk D �
1C c	;k�1�k�1.ch;kuk	

�k�1=�k /�0=�k�1
��1

D �
1C c	;k�k	

�0=�k
��1

by (75) and (76), which proves (77). Part (v) now follows from Lemma 4.ut

14 Transitions between waves

While the formulas in Theorem 6 are complicated, there is a simple underlying
conceptual picture. For simplicity, consider the special case in which all the ui D u
and let L D log.1=u/.

Theorem 7. Let ˇk D Pk�1
jD0 1=�j . As u ! 0,

1

L
logCZk.Lt/ ! zk.t/ D �k.t � ˇk/C:

Here xC D maxf0; xg takes care of the fact that log.0/ D �1. A picture tells the
story much better than formulas:

In wordsZk�1.Lt/ hits 1=u at time � ˇk . At this point the first type k is born and
the type k population grows like e�kt , i.e., its logarithm grows like �kt and hence

ˇkC1 � ˇk D 1

�k
: (81)

Note that the process is accelerating, i.e., the increments between the birth times for
successive waves are decreasing (Fig. 3).

Theorem 7 makes it easy to obtain results for the time Tk D infft � 0 W Zk.t/ >
Zj .t/ for all j ¤ kg at which the type k’s first become dominant in the population.
The type k’s overtake the type k � 1’s at the time tk > ˇk when �k.t � ˇk/ D
�k�1.t � ˇk�1/ or

.�k � �k�1/tk D �kˇk � �k�1ˇk�1:

In the special case �k D �0 C kb this becomes

btk D bˇk C 1

�k�1
.ˇk � ˇk�1/;
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Fig. 3 Growth of .1=L/ logC.Zk.Lt// for L D log.1=u/ shows the dominant type in the
population as a function of t .

so using (81)

tk D ˇk C b�1;

Note that this is a constant time after the time the first type k appears:

Theorem 8. If uj 	 u and �k D �0 C kb then Tk=L ! ˇk C b�1

15 Time to the first type k, k � 2

Our next topic is the waiting time for the first type k C 1:

P.�kC1 > t jFk
t / D exp

�
�
Z t

0

ukC1Z�
k .s/ ds

�
� exp.�ukC1Vke�kt =�k/:

Taking expected value and using Theorem 6

P.�kC1 > t j�01/ D �
1C c	;k�k.ukC1e�kt =�k/�0=�k

��1
:

Using the definition of �kC1 the median tkC1
1=2 is defined by

c	;k�kC1 exp.�0t
kC1
1=2 /�

��0=�k
k D 1;

and solving gives

tkC1
1=2 D 1

�0
log

 
�
�0=�k
k

c	;k�kC1

!
D 1

�k
log.�k/ � 1

�0
log .c	;k�kC1/ : (82)
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As in the case of �1,

P.�kC1 > tkC1
1=2 C x=�0j�01/ � .1C ex/�1: (83)

Again the result for the median skC1
1=2 of the time �kC1 of the first mutation to

type k C 1 with a family that does not die out can be found by replacing ukC1 by
ukC1�kC1=akC1. Using �kC1 D �ku�0=�kkC1 from (76), when we do this gives

skC1
1=2 D 1

�k
log

�
�kakC1

ukC1�kC1

�
� 1

�0
log.c	;k�k/: (84)

As in the case of �kC1,

P.�kC1 > tkC1
1=2 C x=�0j�01/ � .1C ex/�1: (85)

To simplify and to relate our result to (S5) of Bozic et al. [5] we will look at the
difference

skC1
1=2 �sk1=2 D 1

�k
log

�
�kakC1

ukC1�kC1

�
� 1

�k�1

log

�
�k�1ak

uk�k

�
� 1

�0
log

�
c
�0=�k�1

h;k u�0=�k�1

k

�
;

where in the second term we have used (75) and (76) to evaluate c	;k=c	;k�1 and
�k=�k�1. Recalling the formula

ch;k D 1

ak

�
ak

�k

�˛k
.˛k/.1 � ˛k/ with ˛k D �k�1=�k;

given in (74) we have

skC1
1=2 � sk1=2 D 1

�k
log

�
�2kakC1

akukC1�kC1

�
� 1

�k�1
log.˛k.˛k/.1 � ˛k// (86)

15.1 Relationship to Bozic et al. [5]

Bozic et al. [5] investigated �k in order to obtain insights into the accumulation
of passenger mutations. Their model takes place in discrete time, which facilitates
simulation, their types are numbered starting from 1 rather than from 0. At each time
step, a cell of type j � 1 either divides into two cells, which occurs with probability
bj , or dies with probability dj where dj D .1�s/j =2 and bj D 1�dj . In addition,
at every division, the new daughter cell can acquire an additional driver mutation
with probability u. It is unfortunate that their birth probability bj is our death rate
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for type j cells. We will not resolve this conflict because we want to preserve their
notation in order to make it easy to compare with the results in the paper.

They use �j to denote �jC1 � �j . In (S5) in their supplementary materials.

E.�jC1 � �j / D
T log

h
1�qj

ubj .1�qjC1/

�
1 � 1

bj .2�u/

�i
logŒbj .2 � u/�

; (87)

where qj is probability that a type j mutation dies out. In quoting their result, we
have dropped the 1C inside the log in their formula, since it disappears in their later
calculations and this makes their result easier to relate to ours.

When the differences in notation are taken into account (29) agrees with the
j D 1 case of (87). The death and birth probabilities in the model of Bozic et al. [5]
are d1 D .1 � s/=2 and b1 D 1 � d1 D .1C s/=2, so log.2b1/ � log.1C s/ � s.
qj � .1� js/=.1C js/ � 1� 2js. Taking into account the fact that mutations occur
only in the new daughter cell at birth, we have u1 D b1u, so when j D 1 (87)
becomes

E.�2 � �1/ � 1

s
log

�
s2

u1 � 2s
�
:

Setting �j D .j C 1/s, and ai D biC1 in our continuous time branching process,
we have a1=a0 � 1 and this agrees with (29).

Example 4. To match a choice of parameters studied in Bozic et al. [5], we will
take u D 10�5 and s D 0:01, so ui D biu � 5 � 10�6, and

s11=2 � 1

0:01
log

�
10�4

5 � 10�6 � 0:02
�

D 100 log.1000/ D 690:77:

Note that by (31) the fluctuations in �1 are of order 1=�0 D 100.
To connect with reality, we note that for colon cancer the average time between

cell divisions is T D 4 days, so 690.77 translates into 7.57 years. In contrast, Bozic
et al. [5] compute a waiting time of 8.3 years on page 18546. This difference is due to
the fact that the formula they use ((1) on the cited page) employs the approximation
1=2 � 1.

Turning to the later waves, we note that:

(i) the first “main” term in (86) corresponds to the answer in (87).
(ii) by (51), ˛k.˛k/.1�˛k/ D �˛k= sin.�˛k/ > 1, so the “correction” term not

present in (87) is< 0, which is consistent with the fact that the heuristic leading
to (87) considers only the first successful mutation.
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Table 1 Comparison of expected waiting times from (86) and (87). The
numbers in parentheses are the answers converted into years using T D 4

as the average number of days between cell divisions.

main corr. from (86) from (87)

s11=2 690.77 0 s11=2 690.77 (7.57) 550.87 (6.04)

s21=2 � s11=2 394.41 45.15 s21=2 1040.03 (11.39) 895.39 (9.81)

s31=2 � s21=2 280.36 44.15 s31=2 1276.24 (13.98) 1149.79 (12.60)

To obtain some insight into the relative sizes of the “main” and the “correction”
terms in (86), we will consider our concrete example in which �i D .i C 1/s and
ai D biC1 � 1=2, so for i � 1

siC11=2 � si1=2 D 1

.i C 1/s
log

�
.i C 1/2s

uiC1.i C 2/

�
� 1

is
log

�
�˛i

sin.�˛i /

�
:

Taking s D 0:01, u D 10�5, and ui D 5� 10�6 leads to the results given in Table 1.
The values in the last column differ from the sum of the values in the first column

because Bozic et al. [5] indulge in some dubious arithmetic to go from their formula

E.�jC1 � �j / D 1

js
log

�
2j 2s

.j C 1/u

�
;

to their final result

E�k � 1

2s
log

�
4ks2

u2

�
log k:

First they use the approximation j=.j C 1/ � 1 and then
Pk�1

jD1 � R k
0 . In the

first row of the table this means that their formula underestimates the right answer
by 20%. Bozic et al. [5] tout the excellent agreement between their formula and
simulations given in their Figure S2. However, a closer look at the graph reveals
that while their formula underestimates simulation results, our answers agree with
them almost exactly.

16 Application: Metastasis

Haeno, Iwasa, and Michor [21] and Haeno and Michor [22] have used mutlitype
branching processes to study metastasis and have applied their work to study
pancreatic cancer data [20]. Suppressing the complex details of the process of
metastasis, the model has three types of cells
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• Ordinary tumor cells, type 0.
• Cells that have the ability to metastasize, type 1.
• Cells that have spread to another location, type 2.

In the notation of [21] the birth rates of the three types of cells are r , a1, and a2,
while the death rates are d , b1, and b2, so a0 D r and b0 D d . Their mutation rates,
which we will call �i , are per birth so in our terminology, ui D ai�1�i .

The main questions are: what is the probability metastasis has occurred at
diagnosis, and if so what is the size? To turn this into a precise mathematical
question, we declare, as in Sections 6 and 12, the time of diagnosis to be T 0M D
infft W Z0

t D M g.

16.1 P.Z2.TM/ > 0/

The first step is to calculate the probability of having a type 2 at time t given that we
start with a single type 1 at time 0. This is related to the problem studied in Section 6
but here we do not condition on nonextinction of the 1’s or use the approximation
Z1 � V1e

�1t . Let gi .z0; z1; t/ be the generating function for .Z1.t/; Z2.t// when
the system is started from one individual of type i . Note that

P.Z2.t/ > 0jZ1.0/ D 1/ D 1� g1.1; 0; t/:

To make it easier to derive the next result, we will think about the version of the
model in which type 1’s give birth at rate a1 and the result is type 2 with probability
�2, where �2 D u2=a1. By considering what happens on the first jump and arguing
as in the proof of Lemma 1:

@g1

@t
D b1.1 � g1/C a1.1 � �2/.g

2
1 � g1/C a1�2.g1g2 � g1/; (88)

@g2

@t
D b2.1 � g2/C a2.g

2
2 � g2/:

These equations can be solved exactly, see Antal and Krapivsky [1], but their result,
which involves hypergeometric functions, is not particularly useful.

If we let g.t/ D g1.1; 0; t/ and h.t/ D g2.1; 0; t/, then taking x D 0 in (11),
adjusting the indices, and multiplying top and bottom of the fraction by �1=a2

h.t/ D 1 � 1 � b2=a2

1 � .b2=a2/e�.a2�b2/t :

Our next goal is to show:

1 � g.t/ � �1=a1

1C .�1=a1/2.1=�2/e��1t : (89)
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Proof of (89). Doing algebra on the first differential equation in (88) we have

dg

dt
D b1.1� g/C a1.1 � �2/.g

2 � g/C a1�2.gh � g/

D .b1 � a1g/.1 � g/ � a1�2g.g � h/: (90)

Paraphrasing [21], if we neglect the second term, which is of order u2, this equation
is similar to a logistic equation and has two equilibria, g D 1 and g D b1=a1.
For small t , g � 1 and h � 0, so the second term is approximately �a1�2 and
pushes the system away from the unstable equilibrium g D 1 to the stable one at
g D b1=a1. The second term is therefore only important for small t and we can
approximate (90) as

dg

dt
D .b1 � a1g/.1 � g/� a1�2

a1g � b1
a1 � b1

:

The logic of this approximation is not explained in [21], but the final term is a
linear function that is 0 when g D b1=a1 and is 1 when g D 1. In addition, as the
reader will soon see, it is convenient for computation. If we let � D a1�2=.a1�b1/,
then the above can be written as

dg

dt
D .b1 � a1g/.1C � � g/:

Using the calculation in the proof of (4) now with c D 1C � we get from (6) that

g.t/ D b1 � .1C �/eD.b1�.1C�/a1/e.b1�.1C�/a1/t

a1 � eD.b1�.1C�/a1/e.b1�.1C�/a1/t :

Taking t D 0 in (5) and recalling g.0/ D 1 we have

eD.b1�.1C�/a1/ D b1 � a1
�

:

Plugging into the previous equation we have

g.t/ D b1 � .1C �/.b1 � a1/�
�1e.b1�.1C�/a1/t

a1 � .b1 � a1/��1e.b1�.1C�/a1/t
:

Subtracting this from 1, and noting the second term in the numerator is .1C�/ times
the second term in denominator we have

1 � g.t/ D a1 � b1 C �.b1 � a1/��1eb1�.1C�/a1
a1 � .b1 � a1/��1e.b1�.1C�/a1/t
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D a1.1C �/ � b1
a1 � .b1 � a1/��1e.b1�.1C�/a1/t

� �

D .�1=a1/C �

1C .1 � b1=a1/��1e.b1�.1C�/a1/t
� �:

This does not match (A7) in [21], but remarkably when we simply end up with
the same end result. Plugging the definition of � D a1�2=.a1 � b1/ into ��1 and
replacing the other two � by 0 gives the desired result. ut

As in the work of Iwasa, Nowak, and Michor [24] discussed in Section 6, [21]
we break things down according to the number of type 1 individuals that are present
when the type 2 mutations occur to conclude that

P.Z2.T
0
M/ > 0/ � 1 � exp

"
� �1

1 � b0=a0
MX
xD1

.1 � g1x.1; 0//

#
:

where g1x.s1; s2/ is the bivariate generating function of .Z1.t/; Z2.t// for a process
started with one type 1 whenZ0.t/ D x. As in (39) the first factor gives the expected
number of type 1 mutations that occur when Z0.t/ D x. To evaluate the sum they
assume deterministic growth of the type 0’s to conclude that

g1x.1; 0/ D g1

�
1; 0;

1

�0
log.M=x/

�
D g..1=�0/ logM/:

Combining the last two formulas with (89), we have the formula derived in (A9)
of [24]

P.Z2.T
0
M / D 0/ � exp

�
� �1

1 � b0=a0

Z M

0

�1=a1 dx

1C .�1=a1/2.1=�2/.M=x/��1=�0

	
:

(91)

An alternative approach. It follows from the results given in Section 5 that

P.�2 > T
0
M / D exp

�
�
Z 0

�1
dsMe�0su1

�1

a1
P.�2 � sj�11/

�
: (92)

To see this note that u1�1=a1 is the rate for type 1 mutations that don’t die out, so
the integral gives ƒ1;2.M/ D the mean number of successful type 1 mutations that
produce a successful type 2 family before T 0M . Since the number of such successes is
Poisson with meanƒ1;2.M/, the probability of none is exp.�ƒ1;2.M//. Using (23)

P.�2 � t j�11/ D 1 � .1C c1;2u2e
�1t /�1: (93)
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where c1;2 D .a1=�
2
1/�2=a2. To prepare for comparison with (91), we rewrite the

right-hand side as

c1;2u2e�1t

1C c1;2u2e�1t
D 1

1C .1=u2c1;2/e��1t : (94)

Combining (92), (93), and (94), then changing variables x D Me�0s , dx D
�0Me

�0s we have

P.�2 > T
0
M / � exp

�
� u1
�0

Z M

0

�1=a1 dx

1C .1=u2c1;2/.M=x/��1=�0

	

D exp

�
� u1
�0

Z M

0

�1=a1 dx

1C .�21=a1/.a2=�2u2/.M=x/
��1=�0

	
: (95)

Since �1 D u1=a0 the factors in front are the same. In the term after the 1C in
denominator of the integral in (95), a2=u2 D �2, so there is a factor of a1=�2 that
separates this part of the formula from the corresponding part of (91).

16.2 Neutral case

Suppose that ai 	 a, bi 	 b, and �i 	 �. In words, the mutation that confers the
ability to migrate does not change the growth rate of the cancer cells. In this case,
c1;2 D 1=� so (95) becomes

P.�2 > T
0
M / � exp

�
�u1
a

Z M

0

dx

1C .�=u2/.x=M/

	
:

The integral is

u2M

�
log.1C .�=u2/.x=M//

ˇ̌̌
ˇ
M

0

;

so we have

P.�2 > T
0
M / � exp

�
�Mu1u2

�a
log.1C �=u2/

�
: (96)

Since �=u2 is large we can drop the 1C inside the logarithm. If the quantity inside
the exponent is small, then we have

P.�2 � T 0M / � Mu1u2
�a

log.�=u2/: (97)
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Using ui D a�i , and then dropping the �=a from inside the logarithm as is done in
[21]) the above becomes

P.�2 � T 0M / � M�1�2

.�=a/
log.1=u2/;

which is �=a times (5) in [21].

Concrete Example. The following situation (described in our notation) is simu-
lated in panel (a) of Figure 2 in [21]: ai D 0:2, bi D 0:1, �i D 0:1, u1 D 2 � 10�4,
u2 D 2 � 10�6, and M D 106. log.104/ D 9:210 so the approximation from (97) is
0.184 versus 0.368 from (5). Despite the fact that we are estimating �2 < T 0M , the
first estimate is much closer to the data point for �1 D 10�3. Even closer is the one
from (96), which is 1 � exp.�0:184/ D 0:168.

17 Application: Ovarian cancer

This section summarizes results from [7]. Ovarian cancer is the fifth leading cause
of cancer death among women in the United States with one in 71 American women
developing the disease during her lifetime. In 2012, 22,280 new cases are estimated
to develop in the United States with 15,500 deaths expected [65]. To motivate our
model, we begin by describing the four general stages used to classify the disease
clinically:

I. Cancer confined to one ovary
II. Cancer involves both ovaries or has spread to other tissue within the pelvis

III. Cancer has spread to the abdomen
IV. Cancer has spread to distant organs

According to the SEER database [68], the distribution of the stage at diagnosis
is (roughly) I: 20%, II: 10%, III: 40%, and IV: 30%. Five-year survival statistics
based on stage at diagnosis are as follows: I: 90%, II: 65%, III: 25%, IV: 10%,
[44]. Given these statistics, the ability to accurately detect early stage disease could
improve ovarian cancer survival dramatically. However, no screening strategy has
yet been proven to reduce mortality [42]. Our goal is to estimate the size of the
window of opportunity for screening, i.e., the amount of time in which screening can
help improve survival. More specifically, it is the amount of time during which the
primary tumor is of a size detectable by transvaginal ultrasound while the amount
of metastasis has not significantly increased the chance of mortality.

Ovarian carcinoma begins as a tumor on the surface of the ovary or fallopian
tube, which we call the primary tumor. Metastasis occurs either by direct extension
from the primary tumor to neighboring organs, such as the bladder or colon, or
when cancer cells detach from the surface of the primary tumor via an epithelial-
to-mesenchymal (EMT) transition. Once the cells have detached, they float in the
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peritoneal fluid as single cells or multicelluar spheroids. Cells then reattach to the
omentum and peritoneum and begin more aggressive metastatic growth [55, 59].
We can therefore think of ovarian cancer as consisting of three general tumor cell
subtypes:

• Primary (cells in the ovary or fallopian tube), type 0.
• Peritoneal (viable cells in peritoneal fluid), type 1.
• Metastatic (cells implanted on other intra-abdominal surfaces), type 2.

To parametrize the branching process model, we use data from [41], who exam-
ined the incidence of unsuspected ovarian cancers in apparently healthy women
who underwent prophylactic bilateral salpingo-oophorectomies. They estimated
that ovarian cancers had two-phase exponential growth with �0 D .log 2/=4 and
�2 D .log 2/=2:5 per month, i.e., in the early stage the doubling time is 4 months,
while in the later stage it is 2.5 months. The growth rate �1 cannot be estimated from
this data, so we will take it to be 0 and thereby get an upper bound on the size of the
window of opportunity for screening, which was described in words above and will
be defined more precisely in a minute. There does not seem to be data to allow us
to directly estimate the migration rates u1 and u2. Fortunately, only the product u1u2
appears in our answers. We will choose u1u2 D 10�4 to achieve agreement with
observed quantities such as the size of the primary tumor when stage III is reached.

Type 0 cells are a branching process that grows at exponential rate �0 > 0. We
are not interested in the situation in which the type 0’s die out, so we consider the
Z0’s conditioned on nonextinction �01 D fZ0.t/ > 0 for all tg. In this case (15)
tells us that

.e��0tZ0.t/j�01/ ! V0 D exponential.�0=a0/:

Time t represents the amount of time since the initial mutation that began the tumor.
That event is not observable, so by shifting the origin of time we can

Assume Z0.t/ D e�0t to get rid of V0.
Type 1’s leave from the surface of the primary tumor at rate u1 times the surface

area. Ignoring the constant that comes from the relationship between the surface
area and volume of a sphere, and letting �1 D 2�0=3, the mean is

EZ1.t/ D
Z t

0

u1e
�1se�1.t�s/ ds

D u1
�1 � �1

�
e�1t � e�1t � �

�
u1

�1 � �1
�
e�1t : (98)

Since type 1’s are cells floating in the peritoneal fluid and have less access to
nutrients, it is natural to assume that �1 < �1. To remove the unknown rate �1
from our calculations, we will later set �1 D 0. For the moment, we will proceed
without that assumption.
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Theorem 9. If �1 > �1 � 0, then Z1.t/=EZ1.t/ ! 1 in probability as t ! 1.

Intuitively, this holds since the integral in (98) has its dominant contribution from
times s near t when there are a lot of migrations. The results are easily shown by
computing second moments. The proof is given in the Section 17.3.

At time s; mutations occur to type 2 cells at rate u2.u1=�1/e�1s; so we let

s2 D 1

�1
log

�
�1

u1u2

�
(99)

be the time at which the mutation rate is 1. The next result follows easily from the
proof of Theorem 6, but has the advantage of having simpler constants.

Theorem 10. If �2 > �1 > 0, then e��2.t�s2/Z2.t/ ! V2 where V2 is the sum of
points in a Poisson process with mean measure �.x;1/ D C2x

�˛2 where ˛2 D
�1=�2,

C2 D 1

a2

�
a2

�2

�˛2
.˛2/:

17.1 Window of opportunity for screening

In order to be able to compute the size of the window of time in which screening can
be effective, we need to have precise definitions of its two endpoints. For the upper
bound, we define the time at which the patient enters stage III as T2 D minft W
Z2.t/ D 109g, where we have used the often-quoted rule of thumb that 109 cells
= 1 cm3 = 1 gram. For the lower bound, we focus on detection by transvaginal
ultrasound, so we define T0 D minfZ0.t/ D 6:5�107g, corresponding to a spherical
tumor of diameter 0.5 cm. These definitions are based on somewhat crude estimates
of detectability and “significant” metastasis. If the reader prefers different values, it
is easy to recalculate the size of the window.

Using our growth rate parameters �0 D .log 2/=4 D 0:1733 and �2 D
.log 2/=2:5 D 0:2772, we set

e0:1733T0 D 6:5 � 107; which gives T0 D 1

0:1733
log.6:5 � 107/ D 103:8:

months or 8.65 years. This may seem to be a very long time, but the estimate is
consistent with calculations done for other types of cancers.

To make a crude calculation of T2, ignoring the randomness in the growth of the
2’s, we note that by (99), mutations to type 2 occur at rate 1 at time

s2 D 1

�1
log

�
�1

u1u2

�
:
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From this point, it will take roughly

1

�2
log.109/ D 74:76 months

for the 2’s to grow to size 109. If we let u1u2 D 10�4 and note �1 D 0:1155; then

s2 D 1

:1155
log.1155/ D 61:05;

so T2 D 74:76C 61:05 D 135:81 months, and the window of opportunity is T2 �
T0 D 32:01 months or 2.67 years.

To take the randomness of Z2 into account, we use Theorem 10 to conclude that

Z2.t/ � e�2.t�s2/V2:

Setting this equal to 109 and solving, we have

T2 � s2 C 1

�2
log.109=V2/; (100)

and hence

T2 D 138:51� log.1=V2/:

The distribution of the window, T2 � T0, is shown in Figure 4. When one takes the
correction into account, T2 �T0 is between 27 and 34 months with high probability.

30 31 32 33 34 35 36
months

0.1

0.2

0.3

0.4

0.5

0.6
Probability

Fig. 4 Distribution for T2 � T0. Due to a computational error in [7] the distribution needs to be
shifted to the left by 2.7 months.
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17.2 Primary tumor size at onset of metastasis

When tumors are found at an early stage and removed surgically, patients almost
always undergo chemotherapy as the next step of treatment. Although chemotherapy
is prescribed in part due to the possibility of residual tumor in the site of surgery,
it is also done out of concern that some cells had already metastasized but had not
yet grown to a detectable size. Here, we use our model to estimate the probability
of metastasis given a primary tumor of known size.

We want to find the distribution for the size of the primary tumor at the onset of
metastasis, i.e., at time T2: Using (100), we have

Z0.T2/ � exp
�
�0


s2 C .1=�2/ log.109=V2/

��
:

Using (99) and recalling �1 D 2�0=3, �0=�2 D 5=8, we now have

Z0.T2/ �
�
�1

u1u2

�3=2 �
109

V2

�5=8
:

From this, we see that the size of the primary tumor at time s2 is

�
�1

u1u2

�3=2
� 4 � 104;

which translates into a diameter of 0.84 mm. If we ignore randomness and take
V2 D 1; then the size of the primary at time T2 is

4 � 104 � 1045=8 D 1:686 � 1010;

which translates into 3 cm. Figure 5 shows the distribution for size and a comparison
with the results of [41], respectively.

There is an overall difference of factor two between the time at which the
curves decrease to 0. This difference could be removed by adjusting our parameters.
However, such an adjustment would not change the disagreement between the
shapes of the early parts. We find the initial sharp drop of the curve surprising and
think it might be an artifact of the way in which they analyzed data. In a typical
Kaplan-Meier survival study, patients either leave the study or die. Deaths in such a
study are observed when they occur. In the ovarian cancer study, in which a woman
is observed to have stage III cancer, the progression occurred at some time in the
past which must be estimated. The curve will be skewed if this is not done correctly.
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Fig. 5 Computed distribution of the size of the primary at the time of detection compared with
data from [41].

17.3 Proof of Theorem 9

Theorem 9. If �1 > �1 � 0, then Z1.t/=EZ1.t/ ! 1 in probability as t ! 1.

Proof. Let NZ1.t/ be the contribution from mutations before time t � log t .

E NZ1.t/ D
Z t�log t

0

u1e
�1se�1.t�s/ ds:

A little algebra and the asymptotic behavior of EZ1.t/ given in (98) shows that

E NZ1.t/ D e�1.log t /EZ1.t � log t/ � e.�1��1/.log t /EZ1.t/:

Since �1 > �1, E NZ1.t/=EZ1.t/ ! 0.
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Let Y1.t/ be the number of type 1’s at time t when we start our multitype
branching process with one 1 and no 0’s. Using Theorem 1, there is a positive
constant C so that

var .Y1.t// � Ce2�1t :

The processZ0.t/ is deterministic, so the contributions to Z1.t/ from different time
intervals are independent. Thus, if we let OZ1.t/ D Z1.t/ � NZ1.t/; we have

var . OZ1.t// �
Z t

t�log t
u1e

�1se2�1.t�s/ ds:

Introducing the normalization and changing variables r D t � s in the integral, we
have

var .e��1t OZ1.t// � e��1t
Z log t

0

e.2�1��1/r dr

� e��1t .log t/.1C t2�1��1 / ! 0;

where we have added 1 to take into account the possibility that 2�1 � �1 < 0. Since
e��1tZ1.t/ converges to a positive limit, it follows that var . OZ1.t/=EZ1.t// ! 0:

Combining this with the fact that E NZ1.t/=EZ1.t/ ! 0 gives the desired result. ut

18 Application: Intratumor heterogeneity

For several reasons problems in cancer treatment are caused by diversity of cell
types in a tumor.

• Different subpopulations within a tumor and its metastases may have varying
types of response to any given treatment. This has been documented by sequenc-
ing samples from different regions in renal carcinoma [51], glioblastoma [67],
and breast cancer [60].

• Heterogeneity levels are associated with aggressiveness of disease. For example,
in Barrett’s esophagus [57] and in breast cancer [62]

• Heterogeneity has long been implicated in the development of resistance to
cancer therapy after an initial response, and in the development of metastases
[48]. This has important consequences for treatment [50, 64].

For simplicity, we will restrict our attention to quantifying the amount of diversity in
the first wave. These results generalize easily to later waves. Since the population is
(at most times) dominated by a single wave, this is enough to quantify the diversity
in the entire population. More details about the generalization can be found in [12].
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To formulate a simple mathematical problem, we will suppose that the type 1
producing mutations are all different, and the descendants of a mutant, which
we will call a clone, have the same genotype. The point process in the proof of
Theorem 4 allows us to understand the sizes of the clones. Recall that we are
supposing Z0.t/ D V0e

�0t where V0 is nonrandom. The results about diversity will
not depend on V0, so this can be done without loss of generality.

As in Section 9, define a two-dimensional point process Xt with a point at .s;w/
if there was a mutation to type 1 at time s and the resulting type 1 branching
process QZ1.t/ has e��1.t�s/ QZ1.t/ ! w. A point at .s;w/ contributes e��1sw to
V1 D limt!1 e��1tZ1.t/.

V1 D
X

.s;w/2Xt

e��1sw

is the sum of points in a Poisson point process with mean measure �.z;1/ D
A1u1V0z�˛ where ˛ D �0=�1.

In Section 9 we showed that the distribution of V1 is a one-sided stable law. To
make the connection with the point process representation recall

Theorem 11. Let Y1; Y2; : : : be independent and identically distributed nonnegative
random variables with P.Yi > x/ � cx�˛ where 0 < ˛ < 1 and let Sn D
Y1 C � � � C Yn. Then

Sn=n
1=˛ ! V;

where V is the sum of points in a Poisson process with mean measure
�.z;1/ D cz�˛ .

Proof (Ideas behind the proof). The key is to let

Nn.z/ D jf1 � m � n W Ym > zn1=˛gj:

The assumption P.Yi > x/ � cx�˛ implies that nP.Yi > zn1=˛/ � cz�˛=n. Since
the variables are independentNn.a/ converges to a Poisson with mean cz�˛ . With a
little work, one can show that the contribution of all the jumps � �n1=˛ is small if �
is and the desired result follows. For more details see Section 3.7 in [10].ut

Simpson’s index is a useful measure of the amount of diversity. Called the
homozygosity in genetics, it is defined to be the probability two randomly chosen
individuals in wave 1 are descended from the same mutation.

R D
1X
iD1

X2
i

V 2
1

;
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where X1 > X2 > : : : are points in the Poisson process and V1 is the sum. While
the point process is somewhat complicated, the formula for the mean of Simpson’s
index is very simple.

Theorem 12. ER D 1 � ˛ where ˛ D �0=�1.

This was proved in [12] by using a 2001 result of Fuchs, Joffe, and Teugels [18]
about

Rn D
nX
iD1

Y 2i
S2n

where Sn D
nX
iD1

Yi ;

and the Yi are the i.i.d. random variables from Theorem 11. They proved ERn !
1 � ˛ so the task in [12] was to show Rn ) R and ERn ! ER. See page 472 of
[12] for more details. A more interesting derivation can be given using results about
Poisson-Dirichlet distributions but that requires more machinery, so we postpone
the proof until after we have stated all of our results

We can use a 1973 result of Logan, Mallows, Rice, and Shepp [27] to get an idea
about the distribution of R. Consider the “self-normalized sums”

Sn.p/ D
Pn

iD1 Yi
.
Pn

jD1 Y
p
j /

1=p
;

where Y1; Y2; : : : � 0 are i.i.d. In the theory of sums of independent random
variables, this definition is nice because one does not have to know what the index
of the stable law is in order to do the normalization. Of course, our motivation here
is that

Sn.2/ D R�1=2
n :

Logan et al. [27] proved convergence in distribution and identified the Fourier
transform of the limit. The convergence of

nX
iD1

Yi=n
1=˛ and

nX
jD1

Y
p
j =n

p=˛

to stable laws are standard, but to get convergence of the ratio one needs to show
convergence of the joint distribution. This is done with clever computations. Even in
the relatively nice case p D 2 there is not a good formula. The picture of the density
function in the case p D 2, ˛ D 0:15 if Figure 6 might explain why. In the figure
` is the asymmetry parameter of the stable law. ` D 0 means we are in the positive
one-sided case.
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Fig. 6 Picture of the limit distribution for Sn.2/ when ˛ D 0:15.

Size of the largest clone. Using a 1952 result of Darling [8], we can find the
limiting distribution

Mn D max
1�i�n Yi=Sn

of the fraction of individuals in the largest clone.

Theorem 13. As n ! 1, 1=Mn ! T where T has characteristic function
eit=f˛.t/ where

f˛.t/ D 1C ˛

Z 1

0

.1 � eitu/u�.˛C1/ du:

ET D 1=.1� ˛/ and var .T / D 2=.1� ˛/2.2 � ˛/.

18.1 Poisson-Dirichlet distributions

We now give a second derivation of Theorem 12. The proof is not simple, but it does
take us through some interesting territory. The facts we use here, unless otherwise
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indicated can be found in the 1997 paper by Pitman and Yor [34]. We thank Jason
Schweinsberg, Jim Pitman, and Ngoc Tran for helpful discussions of this material.
This two-parameter family of distributions PD.˛; 	/ can be defined from a residual
allocation model. To do this we begin by recalling that a beta(ˇ; � ) distribution has
density on .0; 1/ given by

.ˇ C �/

.ˇ/.�/
xˇ�1.1 � x/ˇ�1: (101)

Let B1;B2; : : : be independent with Bn Dd beta.1 � ˛; 	 C n˛/ distribution. Let
Z1 D B1 and for k � 2 let

Zk D .1 � B1/ � � � .1 � Bk�1/Bk:

This sometimes called a stick breaking model since at time k we break off a fraction
Bk of what remains of the stick.

Let U1; U2; : : : be the Zi arranged in decreasing order. It is known that we can
go from the Ui to a sequence OUi with the same joint distribution as the Zi by a
size-biased permutation.

P. OUnC1 D Uj j OU1; : : : OUn;U1; U2; : : :/ D Uj

1 � OU1 � � � OUn
;

if Uj has not already been chosen or 0 otherwise. An important corollary is

OU1 has a beta.1� ˛; 	 C ˛/ distribution. (102)

An example familiar from elementary probability is given by the limiting
behavior of the cycle sizes of a random permutation � of f1; 2; : : : N g. Construct
the first cycle by following 1 ! �.1/ ! �.�.1// ! : : : until we return to 1. When
this happens the first cycle is complete. To continue we take the smallest value not
in the first cycle and repeat the procedure. For more details see Example 2.2.4 in
[10]. It is easy to see that if we let L1;L2; : : : be the cycle lengths and we take Bi to
be beta(1,1), i.e., uniform on (0,1), then

.L1=N;L2=N;L3=N; : : :/ ) .Z1;Z2;Z3; : : :/:

where ) indicates convergence in distribution of the sequence, i.e., for each n the
joint distribution of the first n terms converges.

A more sophisticated example appears in the limiting behavior of the Ewen’s
sampling formula for the infinite alleles model. As explained in Section 1.3.3 of [9],
if we let sj .N / be the number of individuals with the j th most frequent allele when
the rescaled mutation rate is 	 , and let the Bi be beta.1; 	/ then

.s1.N /=N; s2.N /=N; : : :/ ) .U1; U2; : : :/:
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so the limit distribution is PD.0; 	/. This example provided Kingman’s motivation
for introducing a one-parameter family of Poisson-Dirichlet distribution in [25].

The connection we are most interested in here comes from the following
example. Let �s be a one-sided stable process with index ˛. That is, s ! �s is
nondecreasing, has independent increments and

E exp.��.�t � �s// D exp

�
�
Z 1

0

.1 � exp.��x// .t � s/cx�˛ dx

�
:

Let J1.t/ > J2.t/ > : : : be the jumps of �s for s 2 Œ0; t � listed in decreasing order.
Proposition 6 in [34] implies that

�
J1.t/

�t
;
J1.t/

�t
; : : :

�
Dd PD.0; ˛/:

Changing to our notation this implies

�
X1

V1
;
X2

V1
; : : :

�
Dd PD.0; ˛/: (103)

Returning to other notation introduced earlier let .U1; U2; : : :/ Dd PD.	; ˛/ and
OUi be a size biased permutation. Formula (6) in [34] gives us

E˛;	

1X
nD1

f .Un/ D E˛;	

"
f . OU1/

OU1

#
(104)

D .	 C 1/

.	 C ˛/.1 � ˛/
Z 1

0

du
f .u/

u
u�˛.1 � u/˛C	�1:

The first equality follows easily from the fact that OU1 D Un with probability Un,
the second from (102) and the formula for the beta density given in (101). If we let
f .u/ D u2, then we have that

E

1X
nD1

X2
n

V 2
1

D 1

.˛/.1 � ˛/
Z 1

0

du u1�˛.1 � u/˛�1

D 1

.˛/.1 � ˛/ � .2 � ˛/.˛/ D 1 � ˛; (105)

by the Gamma function recursion (50).
A second commonly used measure of diversity is the entropy, which is often

called Shannon’s index in the literature. Taking f .u/ D u log u in (104), we see that
the expected value of the entropy is

.	 C 1/

.	 C ˛/.1 � ˛/

Z 1

0

du u�˛.1� u/˛C	�1 log u:
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We do not know how to evaluate the integral using calculus but it is easy to evaluate
numerically. For example of the use of Simpson’s and Shannon’s indices in studying
breast cancer see [62]. Merlo et al. [58] have investigated how well these indices and
the Hill index

 X
i

p
q
i

!1=.1�q/

perform as predictors of the progression of Barrett’s esophagus to esophageal
adenocarcinoma. They found that all of the diversity measures were strong and
highly significant predictors of progression.
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