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           Introduction 

 Glucocorticoids, the end products of the hypothalamic–pituitary–adrenal axis, are 
human steroid hormones secreted by the zona fasciculata of the adrenal cortex 
(Fig.  1 ). This class of steroids is essential for the physiological and daily mainte-
nance and regulation of the balance between basal and stress-related homeostasis 
[ 22 ,  52 ]. Several biologic processes in virtually all physiological organ systems are 
mediated and infl uenced by this class of molecules [ 22 ,  52 ]. Glucocorticoids are 
also essential for the proper functioning of almost all organs and tissues of the 
organism, including the central nervous and cardiovascular systems and metabolic 
organs, such as the liver and adipose tissue, as well as the immune/infl ammatory 
response [ 22 ,  52 ]. In addition, glucocorticoids at “pharmacologic” or “stress- 
related” doses are irreplaceable therapeutic means for many allergic, infl ammatory, 
autoimmune, and lymphoproliferative diseases [ 90 ]. Moreover, glucocorticoids are 
used for the treatment of a wide spectrum of disorders in childhood. In particular, 
glucocorticoid replacement remains the cornerstone of treatment for life- threatening 
endocrinopathies in childhood, such as congenital adrenal hyperplasia, Addison dis-
ease, and steroid replacement therapy for subjects with secondary hypothalamic–
pituitary–adrenal axis defi cit. The normal physiology of cortisol secretion and 
metabolism has been the focus of much research, the results and limitations of 
which are relevant to the consideration of optimal glucocorticoid replacement ther-
apy in childhood. They challenge assumptions about the dose and pattern of gluco-
corticoid replacement, the choice of which glucocorticoid to use, and the use of 
reference ranges or targets in assessing glucocorticoid replacement therapy in 
patients with hypocortisolemia. Therefore, in-depth knowledge of the physiological 
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pattern of cortisol production and action as well as of the therapeutic opportunity 
can be challenging for physicians, pediatricians, and pediatric endocrinologists. In 
this chapter the physiology of the hypothalamic–pituitary–adrenal axis and of glu-
cocorticoids is described. In addition, glucocorticoid replacement therapy in the 
main clinical disorders in youths (i.e., congenital adrenal hyperplasia, Addison dis-
ease, and Cushing disease) is elucidated.   

    Adrenal Gland: Embryology and Physiology 

 The adrenal gland was fi rst described in 1552 by Bartolomeu Estaquio as the 
“glandulae renis incumbents” in  Opuscula Anatômica  [ 42 ], although its func-
tion remained a mystery for centuries. The mystery began to be solved in 1885, 
however, when Thomas Addison described the clinical features of 11 patients 
with primary adrenal insuffi ciency [ 57 ]. In 1949, the synthesis of cortisone 
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  Fig. 1    Regulation of the hypothalamic–pituitary–adrenal axis. Adrenal cortisol production and 
secretion are regulated by the hypothalamic–pituitary–adrenal axis. Basal diurnal rhythm (regu-
lated by internal clock genes) and various stress factors prompt the release of corticotropin- 
releasing hormone ( CRH ), which stimulates production and secretion of adrenocorticotropin 
( ACTH ) from the pituitary gland. ACTH then stimulates cortisol (and androgen) production and 
release from the zona fasciculata and the zona reticularis. Positive feed-forward regulation path-
ways are highlighted. Negative feedback control to the hypothalamus and the pituitary gland works 
directly through cortisol       
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facilitated the treatment of this condition [ 50 ]. The adrenal gland is made of two 
tissue types, namely, the adrenal medulla and the adrenal cortex, which have 
different embryonic origins. By 4–5 weeks of gestation, cells from the meso-
derm aggregate to form a primitive cortex between the posterior part of the 
dorsal mesentery and the gonadal ridge [ 7 ]. Shortly thereafter, this primitive 
cortex becomes surrounded by a narrow band of cells termed the permanent 
cortex. By 7–8 weeks of fetal life, the primitive cortex is invaded by chromaffi n 
cells that develop rapidly and eventually replace most of the primitive cortex, 
forming the medulla. At this time the adrenal gland is close to the cranial part of 
the primitive kidney and not far from the genital ridge. The adrenal medulla, 
which originates from ectodermal cells, has an entirely different function from 
the mesodermal adrenal cortex. 

 In mammals, the adrenal cortex is made of three zones. The fi rst region is the 
outer zone, the zona glomerulosa, which is responsible for the production and secre-
tion of the mineralocorticoid aldosterone. The inner region is divided into the zona 
fasciculata and the zona reticularis and is responsible for synthesis and production 
of glucocorticoids (cortisol, corticosterone, and adrenal androgens). We fi rst focus 
our discussion on the physiological function and regulation of cortisol production. 
Then we consider the more common disorders related to primary or secondary 
hypocortisolism, their potential therapeutic approach, and therapy-related compli-
cations in childhood.  

    Biosynthesis of Cortisol 

 Cortisol is the principal glucocorticoid hormone produced by the adrenal cortex in 
humans. The production of cortisol is the result of a series of reactions that involve 
the concerted action of several enzymes within the adrenals. In this complex process 
of steroidogenesis, the uptake of cholesterol to the mitochondria represents the fi rst 
and critical step that is facilitated by the action of a regulatory protein called the 
steroidogenic acute regulatory protein [ 75 ]. The biosynthetic pathway of the adrenal 
steroids is shown in Fig.  1 . Thus, during steroidogenesis, cholesterol is the precur-
sor of a number of steroid hormones of both gonadal and adrenocortical origin. 
Although they share similar chemical formulae, small differences in their molecular 
structure characterize each steroid hormone and give them specifi c functions [ 86 ]. 
The pathway from cholesterol to the end steroid products requires fi ve cytochrome 
P450 enzymes [cholesterol side-chain cleavage enzyme (20-hydroxylase, 
22-hydroxylase, 20,22-lyase, CYP11A), 3β-hydroxysteroid dehydrogenase (3β- 
HSD), 17α-hydroxylase and 17,20-lyase (CYP17), 21-hydroxylase (CYP21), 
11β-hydroxylase (CYP11B1), aldosterone synthetase (11β-hydroxylation, 
18-hydroxylation, 18-oxidation, CYP11B)]. Cholesterol is stored in the adrenal cell 
as cholesterol esters [ 75 ,  86 ]. Under the infl uence of an esterase, cholesterol 
becomes available and is transported to the mitochondria, where it is converted into 
pregnenolone [ 75 ,  86 ]. This steroid then moves into the endoplasmic reticulum, 
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where 3β-hydroxysteroid dehydrogenase, 21-hydroxylase, and 17-3β-hydroxylase 
enzymes are located. The resulting steroids include 11-deoxycorticosterone (DOC) 
and 11-deoxycortisol as well as two C-19 carbon steroids, androstenedione and 
dehydroepiandrosterone. At this point, DOC and 11-deoxycortisol return to the 
mitochondria, where they are converted into corticosterone and cortisol, respec-
tively. This is the end of the biosynthetic process in the cells of the fasciculata. In 
the cells of the zona glomerulosa in the mitochondria, DOC is transformed into 
corticosterone, 18-hydroxycorticosterone, and aldosterone [ 75 ,  86 ].  

    Control of Corticosteroid Secretion 

 Synthesis and secretion of cortisol are regulated by the pituitary hormone adreno-
corticotropin (ACTH), which in turn is regulated by hypothalamic corticotropin- 
releasing hormone (CRH) with the synergistic action of arginine vasopressin (AVP). 
These hormones comprise the hypothalamic–pituitary–adrenal axis that is directly 
related to a complex closed-loop system. Indeed, CRH is synthesized in the hypo-
thalamus and carried to the anterior pituitary, where it stimulates ACTH release. 
Finally, ACTH stimulates the adrenal cortex to secrete cortisol. Cortisol inhibits the 
synthesis and secretion of both CRH and ACTH in a negative feedback regulation 
system [ 64 ,  67 ,  85 ,  109 ]. 

 CRH is a 41-amino acid straight-chain peptide secreted mainly by the median 
eminence into the portal vessels. Via specifi c receptors (CRH-R1), CRH activates 
the formation of cyclic adenosine monophosphate, which then activates a series of 
protein kinases, resulting in increased transcription of the pro-opiomelanocortin 
gene and in ACTH formation [ 12 ,  64 ,  67 ,  85 ,  109 ]. ACTH has a half-life in blood of 
a few minutes and like other hormones binds specifi c receptors on the adrenal cor-
tex, type 2 melanocortin receptors (MC2-R), and increases cyclic adenosine mono-
phosphate formation to initiate the synthesis of cortisol, which is released 
immediately into the systemic circulation by diffusion [ 12 ,  64 ,  67 ,  85 ,  109 ]. ACTH 
stimulation of cortisol on the adrenal includes both an immediate and a chronic 
phase. Acutely, over a few minutes, steroidogenesis is stimulated through a ste-
roidogenic acute regulatory protein (STAR-)-mediated increase in cholesterol deliv-
ery to the CYP11A1 enzyme in the inner mitochondrial membrane [ 14 ]. In the more 
chronic phase, over 24–26 h of exposure, ACTH leads to an increase in the synthesis 
of all steroidogenic CYP enzymes (CYP11A1, CYP17, CYP21A2, CYP11B1) in 
addition to adrenodoxin, and these effects are mediated at the transcriptional level. 
Additional effects of ACTH include: (a) increased synthesis of the low-density lipo-
protein and high-density lipoprotein receptors, and possibly also HMG-CoA 
(3-hydroxy-3-methyl-glutaryl-CoA) reductase, the rate-limiting step in cholesterol 
biosynthesis; (b) increased adrenal weight by inducing both hyperplasia and hyper-
trophy [ 12 ,  14 ,  64 ,  67 ,  85 ,  109 ]. 

 Glucocorticoid synthesis is mostly affected by two variables: the secretion pat-
terns and the secretion rate. The former is related to three main physiological mech-
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anisms affecting the secretion of cortisol: pulsative secretion and diurnal variation, 
stress, and negative feedback. The normal pattern of glucocorticoid secretion 
includes both a diurnal rhythm and a pulsatile ultradian rhythm. In fact, the natural 
cortisol peak in humans occurs early, before awakening, and falls progressively 
during the day, reaching low levels in the evening [ 9 ,  112 ]. The circadian rhythm of 
glucocorticoid secretion is accompanied by a pulsatile ultradian rhythm throughout 
the 24-h cycle [ 20 ]. As documented by automated frequent blood-sampling tech-
niques, the pulses vary in amplitude throughout the day, with the amplitude gener-
ally decreasing during the diurnal trough. Of note, the two components are separable 
secretory modes. Thus the “pulsatile” and “circadian” rhythms are independently 
regulated [ 118 ]. Ultradian rhythmicity has been shown in rats [ 116 ], monkeys [ 94 ], 
and humans [ 9 ,  38 ,  46 ,  112 ]. Among the most relevant practical consequences 
[ 118 ] of the pulsatility is that the underlying pattern of spontaneous pulses might 
not be detected if sampling is infrequent and/or conducted over a short period. This 
might also have an additional effect on the tissue specifi city. In fact, the two 
glucocorticoid- related tissue receptors have different affi nities. Therefore, accord-
ing to the circulating level of ligands, the receptors will be differentially occupied 
and activated [ 118 ], especially affecting the occupancy of the lower-affi nity gluco-
corticoids receptors [ 118 ]. Prolonged versus intermittent exposure seems to also 
affect steroid-responsive hepatic enzymes. Studies have documented that short 
exposure to glucocorticoids may have different effects on tyrosine aminotransfer-
ase, an enzyme involved in the catalysis of the fi rst step in tyrosine catabolism [ 88 , 
 107 ]. Finally, prolonged exposure to glucocorticoids has been shown to downregu-
late glucocorticoids receptors [ 88 ]. 

 This complex regulation system is further characterized by the ability of the 
adrenal glands to secrete steroids in a stress-related way [ 37 ]. Surgical stress such 
as trauma and tissue destruction, medical stress such as acute illness, fever, and 
hypoglycemia, and emotional stress related to psychological upset result in a sig-
nifi cant increase in cortisol secretion in most cases. The hypothalamic–pituitary–
adrenal axis in conjunction with the sympathetic system connects the brain with the 
periphery of the body. Of note, the body responses to a stressor – physical or emo-
tional – that disrupts the homeostatic balance of the organism are mainly related to 
the hypothalamic–pituitary–adrenal axis activity [ 37 ,  93 ]. All the complex activities 
characterizing the individual’s adaptive response to excessive stress are stereotypi-
cal and usually defi ned as the “general adaptation syndrome” [ 37 ,  93 ]. This physi-
ological response involves interactions between hormones and the central nervous 
system. Glucocorticoids along with catecholamines (the end product of sympathetic 
nervous system activation) secreted by the adrenal medulla and sympathetic nerves 
orchestrate the “fi ght or fl ight” response, which is the fi rst stage of the general adap-
tation syndrome [ 69 ]. The fi ght or fl ight response refers to different factors includ-
ing: a quick mobilization of energy from storage to different systems, such as the 
heart, muscles, and the brain; a prompt transport of nutrients and oxygen to relevant 
tissues facilitated by accelerated cardiac output and breathing rate; and increased 
blood pressure [ 23 ]. According to the theory of Munck and colleagues [ 77 ], the 
physiological function of stress-induced increase in glucocorticoid levels is to 
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defend the body against the normal defense reactions that are activated by stress and 
not against the stress itself. According to this theory, glucocorticoids accomplish 
this function by turning off these defense reactions, thus preventing them from over-
shooting and threatening homeostasis. Therefore, it is now commonly accepted that 
glucocorticoid secretion in a stress situation plays a double and complementary 
function: a permissive and suppressive effect, the former preparing or priming 
defense mechanisms for action and the latter limiting these actions [ 78 ]. CRH and 
AVP neurons of the hypothalamic paraventricular nuclei and the noradrenergic neu-
rons of the locus coeruleus/norepinephrine–central sympathetic systems in the brain 
stem represent the main apparatus of the stress system. In addition, the peripheral 
branches of this system consist of the hypothalamic–pituitary–adrenal axis and the 
systemic sympathetic and adrenomedullary nervous system [ 21 ]. Both central com-
ponents of the stress system are stimulated by cholinergic and serotonergic neu-
rotransmitters and inhibited by γ-aminobutyric acid, benzodiazepine, and arcuate 
nucleus pro-opiomelanocortin peptides [ 19 ,  31 ]. Activation of the central stress sys-
tem results in the secretion of CRH and AVP into the hypophyseal portal circulation, 
thus inducing glucocorticoid secretion by the hypothalamic–pituitary–adrenal axis. 
In this complex event the systemic sympathetic and adrenomedullary nervous sys-
tems are also activated as a direct consequence of central stress system stimulation, 
which in turn results in a peripheral secretion of catecholamines and several neuro-
peptides. At rest the stress system is still active, assisting the body in responding to 
various distinct signals, for example, circadian, neurosensory, blood-borne, and lim-
bic [ 22 ]. The activation of the stress system has thus several effects: it increases 
arousal, accelerates motor refl exes, improves attention and cognitive function, 
decreases appetite and sexual arousal, and also increases the tolerance of pain [ 23 ]. 
Although these types of stress are well known to affect cortisol production, research 
is still ongoing to defi ne all the regulatory mechanisms involved. Among the 
reported results, studies of the immune system have shown that leukocytes may play 
a relevant regulatory action by secreting a series of interleukins able to signifi cantly 
affect the adrenal axis [ 110 ]. 

 The negative feedback represents a relevant feedback control able to constantly 
equilibrate the secretion rate of both ACTH and cortisol. When plasma concentra-
tions of cortisol increase markedly, a negative feedback effect on the secretion of 
CRH and ACTH is induced [ 64 ,  67 ,  85 ,  109 ]. 

 The secretion rate and cortisol metabolism represent an additional variable that 
needs to be considered in defi ning glucocorticoid synthesis in the young. The daily 
cortisol production rate ranges between 5 and 10 mg/m 2  body surface area [ 16 ,  28 , 
 51 ,  55 ]. Circulating cortisol in humans is about 90 % plasma protein bound, mostly 
to cortisol-binding globulin and less to albumin, while only 5–10 % circulates 
unbound as a free active hormone [ 64 ,  67 ,  85 ,  109 ]. The free cortisol concentration 
ranges from approximately 1 nmol/l at the diurnal trough to approximately 
100 nmol/l at the diurnal peak [ 96 ]. Estimations of the circulating half-life of corti-
sol vary between 70 and 120 min. Cortisol is cleared through several distinct path-
ways, including A-ring reduction to form tetrahydrocortisol and its 5α-isomer, 
allotetrahydrocortisol, hydroxylation to yield 6-β-hydroxycortisol, and the  reduction 
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of the 20-oxo group to produce cortisol [ 34 ]. Cortisone is an inactive steroid that 
circulates at concentrations of around 60 nmol/l, largely unbound to plasma proteins 
and without marked diurnal variation. The main source of cortisone is 
11-β-hydroxysteroid dehydrogenase-type 2 (11-β-HSD-2) in the kidney [ 96 ,  108 ], 
which gates glucocorticoid access to nuclear receptors by a prereceptor mechanism. 
11-β-HSD-1 converts cortisone to cortisol, amplifying the steroid signal in target 
cells [ 97 ]. Additionally, cortisol derives from circulating cortisone via conversion in 
peripheral tissues expressing the enzyme 11-β-HSD-1. The cortisol secretion rate in 
children also shows some peculiarities. Several studies in children have shown that 
in normal children and adolescents, the cortisol secretion rate is directly related to 
body size [ 28 ,  51 ,  74 ]. Migeon et al. showed that when the values are corrected for 
body surface area, the rates are similar at various ages; in fact, the average ± stan-
dard deviation was 12 ± 2 with a range of 8–16 mg/m 2 /24 h [ 74 ]. Using stable iso-
tope dilution/mass spectroscopy, Esteban et al. showed that the cortisol secretion 
rate for 12 normal subjects was lower, accounting for 5.7 ± 1.5 mg/m 2 /24 h [ 74 ]. 
Kerrigan et al. also investigated the daily cortisol production and clearance rates in 
a group of 18 normal unstressed pubertal male subjects by applying deconvolution 
analysis to serum cortisol concentrations obtained every 20 min for 24 h [ 51 ] and 
found similar results to Esteban’s data. In addition, they showed that the estimated 
cortisol production rate for the early puberty group was indistinguishable from that 
of the late puberty subjects [ 51 ]. No difference was observed between the two 
pubertal groups in the secretory burst frequency and half-duration, mass of cortisol 
released per secretory episode, average maximal rate of hormone secretion, and 
serum cortisol half-life [ 51 ]. A signifi cant diurnal pattern of cortisol secretion was 
observed for all subjects, manifested by nyctohemeral variations in the frequency of 
adrenocortical secretory bursts, the amplitude (maximal rate of cortisol secretion) 
and the mass of cortisol released per secretory episode. In this age group, maximum 
serum hormone concentrations occurred between 07:06 and 11:14 h [ 51 ]. Similar 
results were also reported by Linder et al., who evaluated the cortisol production 
rate in 33 normal children and adolescents, using a stable isotope-dilution technique 
with high-performance liquid chromatography-mass spectrometry [ 61 ].  

    Effects of Cortisol 

 Glucocorticoids are essential for the maintenance of homeostasis and enable the 
organism to prepare for, respond to, and manage physical or emotional stress. These 
hormones affect nearly every organ and tissue in the body and have diverse life- 
sustaining effects throughout the life span. Glucocorticoid access to nuclear recep-
tors is gated by the 11-β-HSD enzymes. Corticosteroids are highly lipophilic and 
are thought to diffuse readily across biological membranes to access their intracel-
lular receptors [ 41 ,  81 ]. At the cellular level, the myriad effects of corticosteroids 
are largely a consequence of transcriptional actions mediated via binding to two 
types of intracellular receptors: the high-affi nity mineralocorticoid receptor and the 
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lower-affi nity glucocorticoid receptors [ 32 ,  70 ]. On binding ligand, glucocorticoid 
receptors and mineralocorticoid receptors dissociate from complexes with chaper-
one proteins, translocate to the nucleus, and bind directly or indirectly to the regula-
tory regions of target genes: ≈2 % of the human genome is regulated by 
glucocorticoids [ 89 ], although few, any genes are exclusively controlled by cortico-
steroids. Rapid glucocorticoid signaling via membrane binding has also been pos-
tulated [ 18 ]. 

 Cortisol is involved in peripheral glucose uptake and utilization (gluconeogene-
sis and glycogenolysis). Cortisol also affects the maintenance of proper cardiovas-
cular tone, endothelial integrity, and the distribution of fl uids within the vascular 
compartment. Moreover, cortisol potentiates the vasoconstrictor action of catechol-
amines and decreases the production of nitric oxide [ 25 ,  36 ]. Therefore, cortisol 
defi ciency results in hypoglycemia, hypotension, lethargy, decreased appetite, abso-
lute leukocytosis, eosinophilia, and anemia. Cortisol infl uences the activity and 
direction of the reactions underlying intermediary metabolism and many functions 
of the central nervous system, including arousal, cognition, mood, and sleep. 
Physiological amounts of glucocorticoids are also essential for normal renal tubular 
function and thus for water and electrolyte homeostasis. Studies have shown that 
15–20 % of the human leukocyte transcriptome is infl uenced by glucocorticoids 
[ 24 ,  33 ], and almost two thirds of them are induced, whereas the rest are suppressed. 
Through their genomic actions, glucocorticoids regulate cellular metabolism pri-
marily through catabolic actions in the liver, muscle, and adipose tissue [ 24 ,  33 ]. 
Finally, multiple components regulating the quantity and quality of immune/infl am-
matory responses are well-recognized glucocorticoid targets, providing the basis for 
the wide use of glucocorticoids as potent anti-infl ammatory/immunosuppressive 
drugs in the treatment of infl ammatory diseases and cancer [ 90 ].  

    Cortisol Replacement Therapy: Relevance in Pediatric 
Endocrinology 

 The fi rst treatment for adrenal insuffi ciency was introduced in the 1930s when lipid 
extracts from adrenal glands were tested, leading to a drastic and rapid drop of the 
mortality rate from 100 % to a seemingly normal life expectancy. In 1937 and 1949, 
the synthesis of 11-deoxycortisone (11-DOC) and cortisone, respectively, repre-
sented major improvements in therapy. Since the fi rst published report of the effi cacy 
of cortisone in the treatment of rheumatoid arthritis in 1949 [ 92 ], patients with adre-
nal insuffi ciency have been treated with glucocorticoid replacement, and after the 
introduction of fl udrocortisone in the 1950s replacement therapy has remained virtu-
ally unchanged [ 66 ]. Hydrocortisone is now used in many centers around the world. 

 As mentioned, following the fi rst report of the effi cacy of cortisone in treating 
rheumatoid arthritis, glucocorticoids have been used widely in several autoimmune 
diseases and in the treatment of a spectrum of disorders in childhood. In particular, 
glucocorticoid replacement remains the cornerstone of treatment for certain 
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 life- threatening endocrinopathies in childhood, such as congenital adrenal hyper-
plasia, Addison disease, and as replacement therapy for those subjects with second-
ary hypothalamic–pituitary–adrenal axis defi cit. In the next sections, a short 
description of these main disorders in childhood is provided, evidencing the role of 
glucocorticoids in their treatment.  

    Adrenal Insuffi ciency 

 Adrenal insuffi ciency is a clinical condition characterized by a state of failure of the 
adrenal cortex to provide suffi cient amounts of steroid hormones, in particular glu-
cocorticoids. Several causes might be responsible for the development of adrenal 
insuffi ciency in childhood. According to the localization of its underlying cause, 
adrenal insuffi ciency in childhood can be essentially categorized into two major 
groups: primary and secondary. The most frequent causes of primary and secondary 
adrenal insuffi ciency are summarized in Table  1 .

   The group of primary adrenal insuffi ciency includes: autoimmune adrenalitis 
(Addison disease, which can arise in isolation or as part of an autoimmune poly-
glandular syndrome), infections (tuberculosis, cryptococcosis, mycosis, AIDS), 
congenital conditions (adrenoleukodystrophy, adrenomyeloneuropathy, congenital 
adrenal hyperplasia), bilateral adrenalectomy, bilateral adrenal hemorrhage, metas-
tases and surgery, and drug-induced adrenal insuffi ciency (treatment with mitotane, 
etomidate, ketoconazole, aminoglutethimide). Secondary adrenal insuffi ciency 
results from hypothalamic–pituitary impairment, with consecutive lack of CRH 
and/or ACTH. Thus, this group mainly includes: pituitary tumors or other tumors of 
the hypothalamic–pituitary region often associated with panhypopituitarism (caused 

   Table 1    Most frequent causes of primary and secondary adrenal insuffi ciency   

 Primary  Autoimmune adrenalitis (isolated or related to an autoimmune polyglandular 
syndrome) 
 Infections (tuberculosis, cryptococcosis, mycosis, AIDS) 
 Congenital (congenital adrenal hyperplasia, adrenoleukodystrophy, 
adrenomyeloneuropathy) 
 Bilateral adrenalectomy 
 Bilateral adrenal hemorrhage 
 Metastases and surgery 
 Drug-induced adrenal insuffi ciency (treatment with mitotane, etomidate, 
ketoconazole, aminoglutethimide) 

 Secondary  Pituitary tumors or other tumors of the hypothalamic–pituitary axis (secondary 
adrenal insuffi ciency as a consequences of tumor growth and treatment, i.e., 
surgery, radiation 
 Exogenous chronic glucocorticoid treatment 
 Head trauma 
 Pituitary infi ltration (tuberculosis, sarcoidosis, Wegener’s granulomatosis) 
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by tumor growth or treatment with surgery or irradiation), exogenous glucocorti-
coids leading to suppression of CRH/ACTH release, head trauma, and pituitary 
infi ltration. 

 Although most of these conditions rarely occur in childhood, adrenal insuffi -
ciency related to congenital adrenal hyperplasia, Addison disease, and Cushing’s 
syndrome are not uncommon, thus requiring clinicians, health-care planners, and 
patients to understand these life-threatening disorders and the proper management 
of adrenal insuffi ciency in the various clinical settings. While etiological aspects 
characterize the different causes of adrenal insuffi ciency, glucocorticoids tradition-
ally represent the main therapeutic option in all forms of adrenal insuffi ciency, 
including acute and chronic states. 

 Acute adrenal insuffi ciency is a life-threatening disease that involves severe 
hypotension or hypovolemia, acute abdominal pain, nausea and vomiting, lack of 
stamina, and weight loss [ 4 ]. Anorexia, fever, weakness, fatigue, lethargy, and con-
fusion may also be associated with this condition. Dizziness, irritability, and pos-
tural hypotension are frequent complaints; these symptoms can be triggered by 
several predisposing factors such as trauma, surgery, and infections, which sud-
denly increase the need for corticosteroids. Acute adrenal insuffi ciency-related 
shock is often unresponsive to volume replacement and vasoconstrictor agents [ 54 , 
 84 ,  111 ]. Hyperpigmentation and salt-craving are also often detected. According to 
the underlying cause, the onset of the disease can be insidious, taking years to diag-
nose, or can lead to the development of an acute crisis following an intercurrent 
illness [ 54 ,  84 ].  

    Congenital Adrenal Hyperplasia 

 Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused 
by the defi ciency of an enzyme involved in steroidogenesis within the adrenal 
cortex [ 72 ,  115 ]. Although several enzymatic defects have been described, the 
most common is cytochrome P450 21-hydroxylase (CYP21) defi ciency. The 
defect accounts for approximately 95 % of cases and results from mutations [ 5 , 
 44 ,  56 ,  103 ] of the  CYP21A2  gene located on chromosome 6p21.3. The enzyme 
adrenal insuffi ciency converts 17-hydroxyprogesterone into 11-deoxycortisol 
and progesterone into 11-deoxycortisone, which are precursors for cortisol and 
aldosterone, respectively (Fig.  1 ). Therefore, defects of the enzymatic activity 
result in an impaired adrenal synthesis of cortisol often associated with aldoste-
rone defi ciency, which in turn leads to increased ACTH secretion by the pituitary 
gland. The impaired cortisol/aldosterone synthesis and the increased ACTH pro-
duction directly induce: severe salt wasting (SW) and Addisonian crisis, related 
to cortisol and aldosterone defi ciency; adrenal gland hyperplasia, related to 
ACTH oversecretion; and accumulation of steroid precursors, inducing a vari-
able degree of virilization as a direct consequence of adrenal androgen overpro-
duction [ 115 ]. 
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 According to the degree of the enzyme defi ciency, different clinical phenotypes 
can be defi ned including: classic SW, classic simple virilizing (SV), and nonclassic 
(NC) CAH. The classic SW form is the most severe form of enzymatic activity 
defi ciency, resulting from a residual activity of less than 1 %. In this form, severe 
cortisol defi ciency and decreased aldosterone synthesis are detected. Female 
patients are virilized prenatally owing to adrenal androgen excess. Neonates (boys 
and girls) also suffer from life-threatening Addisonian crisis. In those forms charac-
terized by a residual enzyme activity of 1–2 % (simple virilizing) CAH, the residual 
activity is enough for suffi cient aldosterone production, thus preventing SW. By 
contrast, cortisol synthesis is impaired and this results in the development of genital 
ambiguity in affected female patients due to prenatal virilization. In those forms 
with a residual enzymatic activity around 20–50 % (nonclassic), cortisol and aldo-
sterone production are normal. In these subjects a mild androgen excess may be 
detected and may induce premature pubarche, cystic acne, hirsutism, and menstrual 
disorders in some subjects in childhood/adolescence, or may even be asymptomatic. 
Some patients present fi rst in adulthood with fertility problems.  

    Addison Disease 

 Autoimmune adrenalitis, or autoimmune Addison disease (AAD), is a rare condi-
tion in childhood. Both humoral and cellular immunity play a role in AAD patho-
genesis, with presence of adrenal cortex autoantibodies in the serum of patients [ 3 ]. 
These adrenal cortex autoantibodies are of the immunoglobulin subclasses IgG1, 
IgG2, and IgG4 and are directed against the steroidogenic enzymes, with steroido-
genic 21-hydroxylase being the most prevalent [ 100 ,  117 ]. Although the presence of 
adrenal cortex autoantibodies is a main feature of the disease, their role in the patho-
genesis of autoimmune Addison disease is still debated. Studies have shown that the 
destruction of adrenocortical cells is mainly mediated by T-lymphocytes. Thus the 
secondary release of peptides may result in the production of antibodies [ 13 ]. 
Autoimmune adrenalitis may present in 60 % of cases as part of an autoimmune 
polyendocrine syndrome, while in the remaining 40 % it is isolated [ 4 ]. During the 
fi rst two decades of life, isolated AAD is predominantly observed in male subjects 
(70 %); however, after the third decade of life, there is a substantial female prepon-
derance (81 %) [ 102 ]. Spontaneous recovery of adrenal function has been described 
but is rare. Addison disease is the fi nal result of AAD; the initial phase is subclini-
cal, and after at least 90 % of the adrenal gland has been destroyed, symptoms of 
adrenal failure occur [ 11 ]. This condition can easily be misdiagnosed in childhood, 
thus negatively affecting data on its true prevalence; autoimmune adrenalitis is the 
main cause of adrenal insuffi ciency after the introduction of antituberculosis ther-
apy, and is responsible for 68–94 % of the cases in European and North American 
reports [ 10 ,  29 ,  79 ]. Determination of inappropriately low cortisol production asso-
ciated with the presence of high titers of adrenal cortex autoantibodies is strongly 
suggestive of autoimmune adrenalitis. The diagnosis is confi rmed by excluding 
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other causes of adrenal failure, using other tests as necessary. Treatment is based on 
corticosteroid replacement, and the prognosis following treatment is the same as for 
the normal population. Thus the standard initial therapy is corticosteroid 
replacement.  

    Cushing’s Syndrome in Children: Role of Glucocorticoid 
Therapy 

 Cushing’s syndrome refers to a large group of clinical conditions characterized by 
the presence of signs and symptoms associated with prolonged exposure to inap-
propriate levels of the hormone cortisol [ 67 ]. In children with Cushing’s syndrome, 
the hypothalamic–pituitary–adrenal axis has lost its ability for self-regulation. Thus, 
the impaired hypothalamic–pituitary–adrenal axis function may result from an 
excessive secretion of either ACTH or cortisol and from the loss of the negative 
feedback function [ 67 ]. 

 Cushing’s syndrome is a rare entity; its overall incidence is approximately two to 
fi ve new cases per million people per year. Characteristically, in older children, a 
female predominance has been described that decreases with younger age and 
seems to switch to a male predominance in infants and young toddlers [ 67 ,  85 ,  109 ]. 

 Although both exogenous and endogenous causes can induce Cushing’s syn-
drome, the former are certainly more common in children. In particular, exogenous 
or iatrogenic causes might result from chronic administration of glucocorticoids or 
ACTH (such as in the treatment of many nonendocrine diseases including neoplas-
tic, hematologic, pulmonary, autoimmune, epileptic, and dermatologic disorders). 
Among the endogenous causes of Cushing’s syndrome in children, ACTH overpro-
duction from the pituitary (called Cushing’s disease) is the most common, and 
results from an ACTH-secreting pituitary microadenoma or, rarely, a macroade-
noma. Cushing’s disease is more common in children older than 7 years of age, 
accounting for approximately 75 % of all cases of Cushing’s syndrome in this age 
group. By contrast, in children younger than 7 years adrenal causes of Cushing’s 
syndrome (adenoma, carcinoma, or bilateral hyperplasia) are the most frequent. 
Ectopic ACTH/CRH production occurs rarely in young children and adolescents, 
and for some forms they have never been described in young children [ 85 ,  104 ,  105 , 
 109 ]. A few additional rare diseases, such as primary pigmented adrenocortical 
nodular disease (PPNAD), massive macronodular adrenal hyperplasia (MMAD), 
McCune–Albright syndrome, might be related to Cushing’s syndrome in childhood. 
PPNAD is a genetic disorder and the majority of cases are associated with Carney 
complex, a syndrome of multiple endocrine abnormalities in addition to lentigo and 
myxomas. Periodic, cyclical, or otherwise atypical Cushing’s syndrome is often 
documented in children and adolescents with PPNAD. MMAD is another rare bilat-
eral disease that leads to Cushing’s syndrome [ 105 ]. In children with MMAD, the 
adrenal glands are massively enlarged, with multiple huge nodules that are typical 
yellow-to-brown cortisol-producing adenomas. Data have shown that in some 
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patients with MMAD, cortisol levels seem to increase with food ingestion (food- 
dependent Cushing’s syndrome), which might result from an aberrant expression of 
the gastric inhibitory polypeptide receptor in the adrenal glands. In the majority of 
patients with MMAD, however, the disease does not appear to be gastric inhibitory 
polypeptide receptor dependent. 

 In children with McCune–Albright syndrome, adrenal adenomas or, more fre-
quently, bilateral macronodular adrenal hyperplasia can also be seen [ 30 ,  53 ]. In this 
syndrome, there is a somatic mutation of the  GNAS1  gene leading to constitutive 
activation of the Gsα protein and continuous, non-ACTH-dependent activation of 
steroidogenesis by the adrenal cortex. 

 The treatment of choice varies according to the underlying cause [ 49 ,  85 ,  104 , 
 105 ,  109 ]. Transsphenoidal surgery (TSS) with or without irradiation of the pitu-
itary gland represents the treatment of choice for almost all patients with ACTH- 
secreting pituitary adenomas (Cushing’s disease). Surgical resection with or without 
radiotherapy is also the treatment of choice for benign adrenal tumors. The treat-
ment of choice in bilateral micronodular or macronodular adrenal disease, such as 
PPNAD and MMAD, is usually bilateral total adrenalectomy. In addition, in sub-
jects with Cushing’s disease or ectopic ACTH-dependent Cushing’s syndrome in 
whom surgery or radiotherapy has failed, or in whom the tumor has not been local-
ized, adrenalectomy is a potential treatment. Finally, pharmacotherapy is also an 
option if surgery fails for Cushing’s disease or in ectopic ACTH secretion where the 
source cannot be identifi ed. Several molecules can be used, such as mitotane, ami-
noglutethimide, metyrapone, trilostane, and ketoconazole, which may act by: inhib-
iting the biosynthesis of corticosteroids by blocking the action of 11-β-hydroxylase 
and cholesterol side chain cleavage enzymes; destroying adrenocortical cells that 
secrete cortisol; blocking the conversion of cholesterol to pregnenolone in the adre-
nal cortex; inhibiting the synthesis of cortisol, aldosterone, and androgens; prevent-
ing the conversion of 11-deoxycortisol to cortisol; inhibiting the conversion of 
pregnenolone to progesterone; or blocking adrenal steroidogenesis. 

 Although the treatment of choice varies according to the underlying cause of 
Cushing’s syndrome or disease, the hypothalamic–pituitary–adrenal axis is often 
negatively affected [ 49 ,  85 ,  104 ,  105 ,  109 ]. Hypopituitarism is the most common 
adverse effect, and it is more frequent when surgery precedes radiotherapy. In addi-
tion, after the completion of successful TSS in Cushing’s disease or excision of an 
autonomously functioning adrenal adenoma, there will be a period of adrenal insuf-
fi ciency while the hypothalamic–pituitary–adrenal axis recovers. Therefore, in this 
situation glucocorticoids might be replaced. Treatment is aimed at restoring physi-
ological changes, with a usual replacement dose of 12–15 mg/m 2 /day two or three 
times daily [ 63 ]. In addition, in the immediate postoperative period, cortisol treat-
ment should be started initially at stress doses of glucocorticoids and then weaning 
relatively rapidly to a physiological replacement dose. 

 According to the underlying alteration, glucocorticoid replacement might be 
temporarily adopted only for a short period [ 49 ,  85 ,  104 ,  105 ,  109 ]. Thereafter, 
patients should be closely followed up with a systematic assessment of the 
 adrenocortical function. Clinicians might consider discontinuing glucocorticoid 
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treatment if normal responses to a 1-h ACTH test are documented (cortisol level 
over 18 μg/dl at 30 or 60 min after ACTH stimulation) [ 49 ,  85 ,  104 ,  105 ,  109 ]. 

 In children with unilateral adrenalectomy as in patients with Cushing’s disease 
post-TSS, a similar replacement regimen is needed for a single adrenocortical 
tumor. By contrast, for those who have undergone bilateral adrenalectomy, lifetime 
replacement with both glucocorticoids (as described previously) and mineralocorti-
coids (fl udrocortisone 0.1–0.3 mg daily) is needed. In these patients, too, glucocor-
ticoids at stress doses are needed immediately postoperatively, with a relatively 
quick weaning to physiological replacement doses. In addition, for temporary and 
permanent adrenal insuffi ciency, acute illness, trauma, or surgical procedures, stress 
doses must be adopted in all patients [ 49 ,  85 ,  104 ,  105 ,  109 ].  

    Replacement Therapy in Young Patients with Impaired 
Adrenal Function 

 The main aim of treatment of adrenal insuffi ciency in childhood is to restore the 
impaired hypothalamic–pituitary–adrenal axis, without impairing growth while 
allowing for normal pubertal development and fertility. In addition, in subjects with 
congenital adrenal hyperplasia a proper suppression of androgen production is 
needed to minimize the peripheral effects of hyperandrogenism secretion. 

 The available evidence suggests that conventional treatment of patients with 
hypoadrenalism may result in adverse effects on some surrogate markers of disease 
risk, such as a lower bone mineral density, than in age- and sex-matched controls, 
and in increased postprandial glucose and insulin concentrations. Although the 
quality of life of patients with hypoadrenalism may be impaired, there is no evi-
dence of an improvement with higher doses of steroids, although quality of life is 
better if the hydrocortisone dose is split up, with the highest dose taken in the morn-
ing. Thus the evidence suggests that most patients may safely be treated with a low 
dose of glucocorticoids in two or three divided doses, along with education about 
the appropriate course of action in the event of intercurrent illnesses. 

 The glucocorticoid of choice in childhood is hydrocortisone, which is short act-
ing and hence has the lowest growth-suppressing effect (Table  2 ) [ 48 ,  101 ]. During 
infancy, especially in subjects needing an initial reduction of markedly elevated 
adrenal sex hormones, up to 25 mg of hydrocortisone/m 2  may be required. This is 
more than the daily physiological secretion of 7–9 mg/m 2  in newborns and 6–8 mg/

   Table 2    Suggested maintenance therapy for growing patients   

 Medication  Total dose  Daily doses 

 Hydrocortisone     15–25 (mg/m2/day)  Three times per day 
 Fludrocortisone  0.05–0.2 (mg/m2/day)  One to two times per day 
 Sodium chloride supplements  1–3 g/day (1,751 mEq/day)  Divided in several feeding 
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m 2  in older infants and children [ 48 ,  101 ]. Hydrocortisone oral suspension is not 
recommended [ 73 ]; divided or crushed tablets of hydrocortisone should be used in 
growing children. Cortisone acetate requires conversion to cortisol for bioactivity 
[ 82 ]; thus hydrocortisone is considered the drug of fi rst choice. To mimic the circa-
dian cortisol secretion, the daily hydrocortisone dose is divided into two or three 
doses, with administration of one half to two thirds of the total daily dose in the 
morning. The short elimination half-life of hydrocortisone (approximately 1.5 h) 
when given in traditional immediate-release preparations, however, leads to high 
peaks with low values in between. A twice-daily regimen with administration of the 
second dose 6–8 h after the morning dose is recommended. The timing of the sec-
ond dose may be changed slightly according to the patient’s activities. Some authors 
postulate that a thrice-daily administration is more benefi cial [ 2 ,  6 ,  43 ,  59 ,  87 ], 
although there is no hard evidence available yet to support this. Whereas hydrocor-
tisone is preferred during infancy and childhood, longer-acting glucocorticoids may 
be recommended at or near the completion of linear growth, such as in older adoles-
cents or young adults (Table  3 ). Prednisone and prednisolone should be given twice 
daily [ 48 ,  101 ]. Prednisolone may be preferable since it is the active drug. The dose 
(2–4 mg/m 2 /day) should be one-fi fth that of hydrocortisone. The dosage of dexa-
methasone is 0.25–0.5 mg/m 2 /day given once daily. These steroids have minimal 
mineralocorticoid effects compared with hydrocortisone. In children with advanced 
bone age, such as in boys with non-salt-losing CAH, initiation of therapy may pre-
cipitate central precocious puberty, requiring additional treatments, such as with a 
GnRH agonist. In some children with treatment refractory to hydrocortisone, long- 
acting glucocorticoids may be effective [ 91 ]. In symptomatic patients with non-
classic- CAH, treatment with glucocorticoids is recommended. In these patients, 
chronic steroid treatment may suppress the hypothalamic–pituitary–adrenal axis, so 
they require stress dosing during surgery or severe illness. For asymptomatic 
patients with non-classic-CAH, hydrocortisone treatment is not required during 
stress [ 101 ]. All patients with classic CAH require mineralocorticoid replacement 
with fl udrocortisone at a dose of 0.05–0.2 mg/day. The dose is slightly higher (up to 
0.3 mg/day) in newborns and small infants because of their increased metabolism 
and end-organ resistance to mineralocorticoids. Such therapy will reduce vasopres-
sin and ACTH levels and lower the dosage of glucocorticoid required. The need for 
continuing mineralocorticoids should be assessed based on plasma renin activity 
(PRA) and blood pressure [ 47 ]. Although aldosterone levels are normal in patients 
with NSW CAH, these patients also benefi t from mineralocorticoid replacement as 

   Table 3    Suggested maintenance therapy for fully grown patients   

 Type of long-acting glucocorticoids  Suggested dose (mg/day)     Daily doses (mg/day) 

 Hydrocortisone  15–25  Two to three times per day 
 Prednisone  5–7.5  Two times per day 
 Prednisolone  0.25–0.5  Two times per day 
 Dexamethasone  5–50  Once daily 
 Fludrocortisone  0.05–0.2  Once daily 
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it helps to decrease the dose of glucocorticoid required to suppress androgens. 
Hence, published guidelines recommend that all children with classic CAH be 
treated with fl udrocortisone [ 48 ,  101 ]. Owing to the obligatory urinary sodium loss, 
sodium chloride supplementation should be provided to infants. Sodium chloride 
supplements are often needed in infancy at 1–3 g/day (17–51 mEq/day; 1 g = 17 mEq 
of sodium), divided with each feed [ 48 ,  76 ,  101 ]. Older infants and children gener-
ally do not require salt supplementation.

        Glucocorticoid Adjustment Issues 

 Maintenance dosing of glucocorticoids for replacement therapy is based on the need 
to reproduce the secretory rate of cortisol in the intact system. During severe illness 
and stress, the activity of the hypothalamic–pituitary–adrenal axis is signifi cantly 
enhanced, resulting in a considerable rise of cortisol release from the adrenal cortex 
[ 4 ,  36 ]. Therefore, owing to the relevant changes of glucocorticoid synthesis in dif-
ferent clinical settings, glucocorticoid replacement doses need to be constantly 
adjusted accordingly. In 2008, a consensus statement for recommendations for the 
diagnosis and management of corticosteroid insuffi ciency in critically ill adult 
patients was published [ 45 ,  68 ]. By contrast, agreement among intensive care and 
endocrinology specialists is low for the pediatric population, especially regarding 
diagnostic criteria and the prevalence of adrenal insuffi ciency associated with criti-
cal illness [ 71 ,  99 ]. Pediatric endocrinologists are often required to provide consul-
tation regarding suspected adrenal insuffi ciency in critically ill children. Although 
acute adrenal insuffi ciency is rare, it is a life-threatening condition. Thus early diag-
nosis is key for effective and life-saving treatment of affected patients. All patients 
and their partners or relatives must receive crisis prevention training, including a 
steroid emergency card/bracelet and detailed instructions on stress-related dose 
adjustment to ensure that medical providers know about their underlying disorder. 
In addition, an emergency kit must be provided (e.g., 100 mg hydrocortisone-21- 
hydrogensuccinate) for traveling abroad; alternatively, prednisolone or other corti-
costeroid preparations can be used in emergency conditions if hydrocortisone is not 
readily available (Table  4 ).

   Table 4    Recommendations for patients with chronic adrenal failure   

 Emergency card/bracelet 
 Education of patient and partner: 
   Rationale for dose adjustments in stress 
   Discussion of typical situations requiring dose adjustment (e.g., fever, surgery, trauma) 
   Nausea, vomiting, and diarrhea as reasons to use parenteral hydrocortisone 
   Signs and symptoms of emerging adrenal crisis 
 Provision of a hydrocortisone ampule (e.g., 100 mg hydrocortisone 21-hydrogensuccinate) to 
the patient for emergency use by attending physician 
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   The cortisol secretory rate increases substantially during physiological stress. 
Consequently, the complex events that can occur in the setting of an adrenal crisis, 
mainly characterized by hypoglycemia, hypotension, and even cardiovascular col-
lapse, need to be prevented in patients with adrenal insuffi ciency (primary or sec-
ondary) by adequately educating patients and parents to increase glucocorticoid 
doses during stress. Although this approach is universally adopted, there is contro-
versy as to what constitutes “stress” and the need to increase glucocorticoid doses. 
However, the correct defi nition of a “stressing condition” is of paramount impor-
tance for a properly balanced glucocorticoid therapy, thus avoiding preventable epi-
sodes of adrenal insuffi ciency crisis or over-dosages and their associated side 
effects. If the children act and appear well, they might not require a stress-dose 
steroid regimen during mild stresses such as immunizations, uncomplicated viral 
illnesses, and upper respiratory tract infections with sore throat, rhinorrhea, and/or 
low-grade fever and otitis media. By contrast, clinical conditions such as those 
accompanied by fever (≥38 °C), vomiting, diarrhea, lethargy, inadequate oral 
intake, trauma, dental procedures, surgery, and large burns must be considered as 
“severe stresses,” thus requiring an appropriate increase of glucocorticoid doses. In 
addition, physical exercise and especially moderate to extreme schedules of exer-
cise are also considered “stress” and thus may require glucocorticoid dose increases. 

 A common recommendation is to treat most stresses that require increased doses 
with hydrocortisone 30–50 mg/m 2 /day (approximately doubling or tripling the daily 
dose) divided into three or four daily doses [ 26 ,  48 ,  58 ,  60 ,  99 ], with higher doses to 
cover more severe illnesses or surgical procedures. 

 Parenteral glucocorticoid administration is indicated for those children who are 
unable to tolerate oral maintenance or stress doses during an illness. Parents need to 
be instructed to start at home using 50 mg/m 2  of intramuscular hydrocortisone 
sodium succinate, which seems to provide coverage for ≈ 6–8 h. If glucocorticoids 
are administered intramuscularly, a consultation with a health-care provider is rec-
ommended and emergency evaluation and treatment with intravenous hydrocorti-
sone should be undertaken if the child’s condition does not improve or if it 
worsens. 

 Although it is accepted that patients with hypoadrenalism may also adjust gluco-
corticoid replacement therapy during moderate to extreme physical activity, the 
amount of increase is still under debate. The degree to which doses should be 
increased is also debated, with recommendations varying between two and ten times 
the maintenance rate [ 60 ]. Although some authors postulate that moderate to extreme 
physical exercise may be facilitated by a slight increase (≈30 %) in hydrocortisone 
dosage 60 min before exercise [ 4 ], there is no evidence to support this. In addition, in 
a randomized, double-blind crossover study of nine adolescents with congenital adre-
nal hyperplasia, Weise et al. showed that an additional morning dose of hydrocorti-
sone, which resulted in doubling of cortisol levels, just before short- term high-intensity 
exercise did not have an effect on blood levels of glucose, lactate, or free fatty acids, 
on exercise capacity, or on peak blood pressure response [ 114 ]. The peak heart rate 
was marginally (but statistically signifi cantly) higher following the extra dose of 
hydrocortisone (mean 193 vs. 191 beats/min). Of the nine patients, one correctly 
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identifi ed the session at which he had received the extra dose of hydrocortisone, three 
identifi ed the wrong session, and fi ve said they did not notice a difference. In their 
consensus statement on congenital adrenal hyperplasia, the Lawson Wilkins Pediatric 
Endocrine Society and European Society for Paediatric Endocrinology did not rec-
ommend increasing the glucocorticoid dose during psychological and emotional 
stress [ 48 ]. Therefore, although the topic is still open to discussion, it is important to 
state that young subjects should be advised not to take extra doses of hydrocortisone 
regularly (especially for day-to-day physical or psychological stressors), in order to 
minimize the long-term effects of chronic high- dose glucocorticoids. During hospi-
talization, major trauma, or surgery, intravenous hydrocortisone should be adminis-
tered at a dosage of 50–100 mg/m 2 /day divided into four doses (a bolus dose of 25 mg 
in neonates, infants, and preschool children, 50 mg in school-age children, and 
100 mg in adults followed by three to four times the maintenance daily dose divided 
every 6 h) [ 101 ]. Hydrocortisone has mineralocorticoid activity at stress doses of 
50 mg/m 2 , hence mineralocorticoid supplementation is not required. 

 Surgical or trauma patients may receive rectal, intramuscular, or intravenous 
hydrocortisone. Intravenous bolus and subsequent dosage guidelines are as follows: 
for children younger than 3 years, 25 mg followed by 25–30 mg/day; for children 
3–12 years of age, 50 mg followed by 50–60 mg/day; and for adolescents and adults, 
100 mg followed by 100 mg/day [ 48 ,  101 ]. The most severe stresses, such as major 
surgery or sepsis, are often treated more aggressively, with dosages up to 100 mg/m 2  
per day in divided doses every 6 h intravenously [ 99 ]. Although various glucocorti-
coid preparations could be used for stress dosing, hydrocortisone is the preferred 
agent because of its mineralocorticoid activity. Stress doses are administered for only 
24–48 h unless the underlying illness is prolonged. Before general anesthesia and 
surgery, parenteral hydrocortisone is also recommended. A preoperative dose of 
50 mg/m 2  30–60 min before induction of anesthesia can be administered intrave-
nously or intramuscularly. A second dose of 50 mg/m 2  can then be administered as a 
constant infusion or as an intravenous bolus divided every 6 h over the next 24 h. 
Intravenous or oral stress doses may be continued until the patient has recovered [ 99 ]. 

 For older adolescents and young adults, recently published guidelines [ 45 ] need 
to be followed during surgery, dental procedures, delivery, and invasive procedures, 
and are summarized in Table  5 .

       Role of Associated Hormonal Defi ciencies or Treatment 

 Several studies have shown the role of multiple pituitary hormone defi ciencies and 
especially of impaired thyroid function in defi ning glucocorticoid therapy. Adrenal 
crisis can develop after initiation of thyroid hormone replacement in subjects with 
hypothyroidism and with an accompanied unrecognized adrenal insuffi ciency. 
Although the underlying mechanisms are not fully understood, it has been hypoth-
esized that patients with hypothyroidism have reduced cortisol requirements sec-
ondary to a reduced metabolic rate in the presence of untreated hypothyroidism [ 39 , 
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 98 ]. Soon after thyroid hormone replacement therapy is started, the metabolic rate 
and cortisol requirements increase, resulting in an adrenal crisis. Similarly, cortisol 
metabolism is signifi cantly increased in subjects with hyperthyroidism, thus result-
ing in an increased glucocorticoid requirement. Because of elevated cortisol clear-
ance, it is suggested to increase cortisol replacement as much as twofold in 
individuals with hyperthyroidism and adrenal insuffi ciency [ 4 ]. 

 Studies have shown that growth hormone treatment can affect cortisol levels. By 
inhibiting 11-β-HDS-1 activity in the liver, growth hormone treatment can result in 
decreased conversion of inactive cortisone to active cortisol [ 35 ]. Therefore, in sub-
jects with secondary adrenal insuffi ciency requiring growth hormone therapy, signs 
and symptoms of adrenal insuffi ciency need to be monitored and glucocorticoid 
therapy increased accordingly. In addition, in children with anatomic abnormalities 
of the pituitary or stalk on magnetic resonance imaging, or with organic causes 
(e.g., cranial surgery, tumors, trauma) and/or multiple anterior pituitary hormone 
defi ciencies, the hypothalamic–pituitary–adrenal axis should be evaluated. Similar 
considerations apply for children with cranial radiation, septo-optic dysplasia, 
 autoimmune hypophysitis, PROP-1 defi ciency, and head trauma [ 8 ,  15 ,  83 ]. If indi-
cated, periodic reassessment of previously normal hypothalamic–pituitary–adrenal 
function should be considered in patients with organic hypopituitarism. 

   Table 5    Treatment during surgery, dental procedures, delivery, and invasive procedures for fully 
grown youths and young adults (from Husebye et al.)   

 Procedure  Preoperative needs  Postoperative needs 

 Major surgery 
with long 
recovery time 

 100 mg hydrocortisone i.m. just 
before anesthesia 

 Continue 100 mg hydrocortisone i.m. 
every 6 h until able to eat and drink. 
Then double oral dose for 48 h, then 
taper to normal dose 

 Major surgery 
with rapid 
recovery 

 100 mg hydrocortisone i.m. just 
before anesthesia 

 Continue 100 mg hydrocortisone i.m. 
every 6 h for 24–48 h. Then double 
oral dose for 24–48 h, then taper to 
normal dose 

 Labor and vaginal 
birth 

 100 mg hydrocortisone i.m. at 
onset of labor 

 Double oral dose for 24–48 h after 
delivery, then taper to normal dose 

 Minor surgery 
and major dental 
surgery 

 100 mg hydrocortisone i.m. just 
before anesthesia 

 Double oral dose for 24 h, then return 
to normal dose 

 Invasive bowel 
procedures 
requiring 
laxatives 

 Hospital admission overnight 
with 100 mg hydrocortisone i.m. 
and fl uid, repeat dose before start 
of procedure 

 Double oral dose for 24 h, then return 
to normal dose 

 Other invasive 
procedures 

 100 mg hydrocortisone i.m. just 
before start of procedure 

 Double oral dose for 24 h, then return 
to normal dose 

 Dental procedure  Extra morning dose 1 h before 
surgery 

 Double oral dose for 24 h, then return 
to normal dose 

 Minor procedure  Usually not required  Extra dose (e.g., 20 mg hydrocortisone) 
if symptoms are present 
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 Hypothalamic–pituitary–adrenal function needs to be evaluated in children who 
receive medication able to affect cortisol biosynthesis, such as drugs that accelerate 
(i.e., phenytoin, barbiturates, and rifampin) [ 4 ,  99 ] or inhibit (i.e., aminoglutethi-
mide, etomidate, ketoconazole, metyrapone, medroxyprogesterone, and megestrol) 
[ 27 ,  99 ] cortisol metabolism. 

 Lastly, but no less important, the hypothalamic–pituitary–adrenal axis should be 
explored in children and adolescents who have discontinued long-term glucocorti-
coid treatment. Chronic administration of synthetic glucocorticoids leads to feed-
back inhibition of endogenous cortisol secretion and may eventually induce adrenal 
insuffi ciency, with weakness, fatigue, or nausea. In these subjects, signs of adrenal 
insuffi ciency might particularly occur during stress after therapy is discontinued, 
due to an insuffi cient capacity of the adrenals to respond to stress. Recovery of the 
hypothalamic–pituitary–adrenal axis usually occurs within weeks after short-term 
(up to 3 months) therapy, but may occasionally take many months [ 40 ,  80 ,  95 ].  

    Pregnancy 

 Pregnancy and especially its related hormonal and metabolic changes represent a 
physiological condition requiring glucocorticoid adjustment in subjects. Owing to the 
effects of estrogen on liver, pregnancy is physiologically associated with a gradual 
and pronounced increase in corticosteroid-binding globulin production, which in 
turns results in increased levels of free cortisol levels, particularly during the last tri-
mester. Additional factors such as the placental synthesis and release of biologically 
active CRH and ACTH, increased ACTH responsiveness, pituitary desensitization to 
cortisol feedback, and enhanced pituitary responses to corticotropin-releasing factors 
[ 62 ,  106 ] represent determinant contributors of the progressive free cortisol rise dur-
ing pregnancy, up to twofold [ 1 ,  62 ,  106 ]. Thus, during pregnancy hydrocortisone 
doses might be increased by 50 % [ 4 ]. However, although physiological requirements 
increase during pregnancy, the need for hydrocortisone replacement dose adjustment 
during the last trimester is still debated. In single case reports, adrenal crisis due to 
insuffi cient dose adaptation during pregnancy has been observed. Therefore, we rec-
ommend close supervision and favor an increase in the glucocorticoid replacement 
dose by up to 50 % during the last trimester. In addition, a recent consensus statement 
in subjects with primary adrenal insuffi ciency recommended administering 100 mg 
of hydrocortisone intramuscularly at onset of labor, continuing with a double oral 
dose for 24–48 h after delivery and followed by rapid tapering [ 45 ].  

    Newer Formulations of Hydrocortisone 

 In some subjects treated with hydrocortisone, the replacement therapy often does 
not fully replicate the normal circadian pattern of cortisol secretion, thus signifi -
cantly affecting disease control. Therefore, during the past few decades researchers 
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attempted to overcome this issue by formulating new preparations of hydrocorti-
sone, such as continuous subcutaneous infusion or modifi ed-release hydrocortisone 
(MR-HC; Chronocort®), with promising preliminary results. 

 In a pilot study of adults, continuous subcutaneous hydrocortisone infusion was 
shown to properly restore the physiological circadian variation, resulting in a signifi -
cant decrease of glucocorticoid daily doses [ 65 ]. Hydrocortisone infusion was not 
associated with major side effects and was linked to an improvement in subjective 
health status. Similarly, continuous subcutaneous infusion of hydrocortisone in a cir-
cadian pattern was able to achieve good disease control in a poorly controlled pubertal 
boy on high-dose oral treatment [ 17 ]. Results of phase II trials in the USA have shown 
that bedtime dosing of Chronocort® more closely mimics the physiological secretion 
pattern of cortisol and decreases morning 17-hydroxyprogesterone levels [ 113 ].     
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