
Chapter 9
Analyzing a Decade of Human-Competitive
(“HUMIE”) Winners: What Can We Learn?

Karthik Kannappan, Lee Spector, Moshe Sipper, Thomas Helmuth,
William La Cava, Jake Wisdom and Omri Bernstein

9.1 Introduction

In the field of evolutionary computation (EC) ideas from evolutionary biology—
random variation and selection—are harnessed in algorithms that are applied to
complex computational problems. The origins of EC can be traced back to the 1950s
and 1960s but the field has come into its own over the past two decades, proving
successful in solving numerous problems from highly diverse domains (Sipper 2002).
EC techniques are being increasingly applied to difficult real-world problems, often
yielding results that are not merely academically interesting but also competitive
with the work done by creative and inventive humans. Indeed, a recent emerging
theme is that of human-competitive machine intelligence, produced by evolutionary
means (Koza 2008, 2010).
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A recent survey cited 28 instances in which genetic programming (GP), a form of
EC, “has duplicated the functionality of a previously patented invention, infringed
a previously issued patent, or created a patentable new invention” and cited “over
a dozen additional known instances where genetic programming has produced a
human-competitive result that is not patent related” (Koza 2008). These results come
from an astonishing variety of fields, including image analysis, game playing, quan-
tum computer programming, software repair, and the design of complex objects such
as analog circuits, antennas, photonic crystals, and polymer optical fibers.

We believe this to be more than a mere novel line of research within a single
research community. Surpassing humans in the ability to solve complex problems is
a grand challenge, with potentially far-reaching, transformative implications.

In this chapter we take a close look at the 42 winners of the past decade (2004–
2013) of Human-Competitive (HUMIE) competitions, seeking to draw conclusions
about past and future directions of the field.

We note that two of the authors (Spector, Sipper) have extensive experience in
human-competitive research, having won between them eight HUMIE awards (Koza
2010). In addition, Spector has served as a judge for the HUMIES awards for some
years. Spector and his colleagues earned the competition’s top prize twice, once
for the use of EC to produce quantum computing results that were published in
a top physics journal (Barnum et al. 2000; Spector 2004) and once for results in
pure mathematics that exceeded human performance by several orders of magnitude
(Spector et al. 2008). Sipper, who has six wins, tackled a string of hard games
and puzzles, evolving game-playing strategies that held their own in competition
against humans (Sipper 2006; Hauptman et al. 2009; Benbassat et al. 2012). In
collaborative work with a partner from the semiconductors industry Sipper attained
marked improvement over humans in developing automatic defect classifiers for
patterned wafers (Glazer and Sipper 2008).

9.2 The HUMIES

As of 2004, one of the major annual events in the field of evolutionary computation
— the Genetic and Evolutionary Computation Conference1—boasts a competition
that awards prizes to human-competitive results: The HUMIES. As noted at the
competition site (Koza 2010): “Techniques of genetic and evolutionary computation
are being increasingly applied to difficult real-world problems—often yielding results
that are not merely interesting, but competitive with the work of creative and inventive
humans.”

To set the stage for our current work we provide examples of HUMIE winners in
two important areas: pure mathematics and games.

1 see sigevo.org
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Pure Mathematics
Spector has produced significant new results in the application of genetic pro-
gramming to mathematics, in collaborative work with Distinguished Professor of
Mathematics David M. Clark, at the State University of New York at New Paltz.
Together with two Hampshire College undergraduates and one Hampshire alumnus,
they applied genetic programming to a problem in pure mathematics, in the study of
finite algebras.

Algebraists have been looking at finding “terms” that represent specific functions
in specific algebras for several decades, with particular interest attaching to the dis-
covery of terms for Mal’cev functions (the significance of which was first made
clear in 1954), Pixley functions (1963), the discriminator function (1970), and ma-
jority functions (1975). The most effective methods previously developed for finding
these terms are uniform search (including exhaustive search and random search) and
construction via the primality theorem. In exhaustive search terms are enumerated
systematically from smallest to largest, while in random search terms within a range
of sizes are generated in random order. Exhaustive search will always produce the
smallest term of the required type if such a term exists, but it requires astronomical
amounts of time, except for the very smallest algebras or the very simplest terms.
Random search has similarly problematic performance characteristics but without
any guarantees concerning size or success. Construction via the primality theorem
gives the most time efficient method known to describe these terms that applies to
any primal algebra, but except for the very smallest algebras the terms it produces
have astronomical length.

Spector and colleagues documented the application of genetic programming to
these term-finding problems, producing human-competitive results in the discov-
ery of particular algebraic terms (e.g., discriminator, Pixley, majority, and Mal’cev
terms) and showing that genetic programming exceeded the performance of every
prior method of finding these terms in either time or size by several orders of mag-
nitude (Spector et al. 2008). This result earned the gold medal in the 5th Annual
HUMIES Awards for Human-Competitive Results Produced by Genetic and Evo-
lutionary Computation, held at the 2008 Genetic and Evolutionary Computation
Conference. Subsequently, this work led to the development of new mathematical
theory that has been published independently (Clark 2013).

Games
Ever since the dawn of artificial intelligence in the 1950s, games have been part
and parcel of this lively field. In 1957, a year after the Dartmouth Conference that
marked the official birth of AI, Alex Bernstein designed a program for the IBM 704
that played two amateur games of chess. In 1958, Allen Newell, J. C. Shaw, and
Herbert Simon introduced a more sophisticated chess program (beaten in thirty-five
moves by a 10-year-old beginner in its last official game played in 1960). Arthur L.
Samuel of IBM spent much of the fifties working on game-playing AI programs, and
by 1961 he had a checkers program that could play at the master’s level. In 1961 and
1963 Donald Michie described a simple trial-and-error learning system for learning
how to play Tic-Tac-Toe (or Noughts and Crosses) called MENACE (for Matchbox
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Educable Noughts and Crosses Engine). These are but examples of highly popular
games that have been treated by AI researchers since the field’s inception.

Why study games? On this matter Susan L. Epstein wrote:

There are two principal reasons to continue to do research on games... First, human fasci-
nation with game playing is long-standing and pervasive. Anthropologists have catalogued
popular games in almost every culture... Games intrigue us because they address important
cognitive functions... The second reason to continue game-playing research is that some
difficult games remain to be won, games that people play very well but computers do not.
These games clarify what our current approach lacks. They set challenges for us to meet,
and they promise ample rewards (Epstein 1999).

Studying games may thus advance our knowledge in both cognition and artificial in-
telligence, and, last but not least, games possess a competitive angle which coincides
with our human nature, thus motivating both researcher and student alike.

Over the past 7 years Sipper has done extensive research in the area of games
(Sipper et al 2007; Hauptman and Sipper 2005b, a; Hauptman and Sipper 2007b;
Azaria and Sipper 2005a, b; Benbassat and Sipper 2010; Hauptman and Sipper
2007a; Hauptman et al. 2009; Shichel et al. 2005), which culminated in his recent
book, “Evolved to Win” (Sipper 2011) (see also www.moshesipper.com/games).
Among the games successfully tackled are: chess, backgammon, checkers, Re-
versi, Robocode (tank-war simulation), Rush Hour, and FreeCell. These exhibit
the full range from two-player, full-knowledge, deterministic board games, through
stochastic, simulation-based games, to puzzles.

A recent line of research has attempted to build a more general form of evolution-
based game intelligence by employing a structure known as a policy, which is an
ordered set of search-guiding rules (Hauptman et al. 2009; Elyasaf et al. 2012).
Policies are complex structures that allow one to define specific conditions under
which certain actions are performed. They might specify, for example, that a certain
stratagem for solving a puzzle becomes relevant when certain conditions hold. The
combination of policies and evolution might just prove powerful enough to set up
a general “strategizing machine” (Sipper et al. 2007), i.e., one able to automati-
cally evolve successful game strategies given a description of the game in question.
Sipper’s work on games has garnered five HUMIE awards to date.

9.3 A Compendium of a Decade’s Worth of HUMIE Winners

The main intention behind analyzing a decade’s worth of HUMIE winners is to be
able to determine whether there were any particular aspects that were similar across
the various domains that the winners covered. In 2005, John R. Koza, Sameer H.
Al-Sakran, and Lee W. Jones (Koza et al. 2005) did some preliminary analysis,
looking for cross-domain features of programs evolved using Genetic Programming.
We intend to do something similar, but do so from the specific point of view of
trying to identify the aspects of the applications (of any evolutionary computation
technique, and not just Genetic Programming) that make them human-competitive.
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With the HUMIES over a decade old now, we also have a larger set of results to
analyze relative to the number of results analyzed in the original Koza paper (Koza
et al. 2005).

The actual HUMIES competition is designed to recognize work that has already
been published that holds its own against humans in one of many ways. For example,
a result produced by EC that reproduces a past patent, or qualifies as a new patentable
invention is considered human-competitive. Similarly, a result that is publishable in
its own right as a new scientific result (notwithstanding the fact that the result was
mechanically created) is also considered human competitive (Koza 2010). Table 9.1
lists, in detail, the various criteria for a program to be considered human-competitive,
and also supplies a count of the number of HUMIE winners that have matched each
criterion in the past decade of the HUMIES.

The 42 HUMIE winners of the past decade are listed in Table 9.2. In addition
to a very brief description of the winning entry and its author(s), the table includes
the specific algorithm used by that entry, where GP is Genetic Programming, GA is
Genetic Algorithms, ES refers to Evolutionary Strategies, DE refers to Differential
Evolution and GBML refers to Genetics Based Machine Learning. A special category
for “noise” is also included. An entry is marked as “noisy” if the data that was used
to evolve the solution may inherently have some noise, such as data collected from
say, a physical measurement, where the source of the noise is the measurement error.
An example of an entry that does not have any noise would be trying to perform
symbolic regression to fit a curve that is already known mathematically. Since the
data that must be fit already has a known mathematical function, there’s no real noise
involved here as far as the data points that the program that does the regression sees
— all data points are perfectly accurate. In our analysis of the HUMIES (Tables 9.1,
9.2, 9.3, 9.4, 9.5), we explicitly chose to ignore whether the entry won a gold, silver,
or bronze award, since we believe that this is insignificant to the analysis because an
entry that has won any award at all is necessarily human-competitive.

9.4 Lessons Learned

First and foremost, we note that techniques from evolutionary computation have been
used to solve problems from a very wide variety of domains in a human competitive
way ; the past 10 years of HUMIES awards alone have winners that have solved
problems in a human-competitive way in 21 different domains (see Table 9.4). This
clearly suggests that techniques based on EC are rather widely applicable, and are
not confined to specific fields.

Second, Genetic Programming (GP) and Genetic Algorithms (GAs) certainly
seem to be winning strategies at the HUMIES, with 22 papers based on GP and
15 papers based on GA’s having won the HUMIES so far (See Table 9.3). In other
words, a combined 37 papers out of the 42 overall HUMIE winners, or roughly 88 %
of the winners, used either GP or GAs.
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Table 9.1 Categories A-H, with a count of the number of HUMIE winners so far winning in this
category, and a description of what each category means. Categories and Full Descriptions were
obtained from the HUMIES website (Koza 2010)

Category Brief description Count Full description

A Patented invention 10 The result was patented as an inven-
tion in the past is an improvement
over a patented invention or would
qualify today as a patentable new
invention

B Equal to accepted scientific result 20 The result is equal to or better than
a result that was accepted as a new
scientific result at the time when it
was published in a peer-reviewed
scientific journal

C Could be put in archive of results 8 The result is equal to or better
than a result that was placed into a
database or archive of results main-
tained by an internationally recog-
nized panel of scientific experts

D Publishable as new scientific result 29 The result is publishable in its own
right as a new scientific result in-
dependent of the fact that the result
was mechanically created

E Best incremental solution 25 The result is equal to or better than
the most recent human-created solu-
tion to a long-standing problem for
which there has been a succession of
increasingly better human-created
solutions

F Achievement in field at time of dis-
covery

25 The result is equal to or better
than a result that was considered an
achievement in its field at the time
it was first discovered

G Indisputable difficulty 26 The result solves a problem of in-
disputable difficulty in its field

H Human competition contender 9 The result holds its own or wins
a regulated competition involving
human contestants (in the form of
either live human players or human-
written computer programs)

Next, the problem “type” analysis from Table 9.5 seems to show an interesting
trend, with a lot of the problems that evolutionary computation (EC) seems to solve
human-competitively being design problems. We use the term design in a rather
broad way, to include both designing concrete entities such as an antenna, as well
as designing more subtle entities, such as say, designing a winning strategy for a
game. This leads us to note that EC may be particularly well suited to designing new



9 Analyzing a Decade of Human-Competitive (“HUMIE”) Winners 155

Ta
bl

e
9.

2
T

he
42

H
U

M
IE

w
in

ne
rs

of
th

e
pa

st
de

ca
de

E
nt

ry
Fi

rs
ta

ut
ho

r
A

lg
Ty

pe
Y

ea
r

N
Se

tti
ng

A
pp

lic
at

io
n

ar
ea

Te
ch

ni
qu

e
A

B
C

D
E

F
G

H

A
nt

an
ae

L
oh

n
G

P
D

es
ig

n
20

04
X

G
ov

er
nm

en
t

E
le

ct
ri

ca
le

ng
in

ee
ri

ng
,

A
nt

en
na

s
D

ev
el

op
m

en
ta

lG
P

X
X

X

Q
ua

nt
um

Sp
ec

to
r

G
P

Pr
og

ra
m

m
in

g
20

04
A

ca
de

m
ia

Q
ua

nt
um

St
ac

k-
ba

se
d,

D
ev

el
-

op
m

en
ta

l
X

X

SA
T

G
P

he
ur

is
tic

s
Fu

ku
na

ga
G

P
D

es
ig

n
20

04
A

ca
de

m
ia

O
pt

im
iz

at
io

n
St

ro
ng

ly
ty

pe
d

G
P

X

K
in

em
at

ic
m

ac
hi

ne
st

ra
ig

ht
lin

e
L

ip
so

n
G

P
D

es
ig

n
20

04
A

ca
de

m
ia

M
ec

ha
ni

ca
l

en
gi

ne
er

in
g

D
ev

el
op

m
en

ta
lG

P
X

O
rg

an
iz

at
io

n
D

es
ig

n
O

pt
im

iz
at

io
n

K
ho

sr
av

ia
ni

G
P

O
pt

im
iz

at
io

n
20

04
A

ca
de

m
ia

O
pe

ra
tio

ns
re

se
ar

ch
St

an
da

rd
G

P
X

X
X

C
ir

cu
it

de
si

gn
St

oi
ca

G
A

D
es

ig
n

20
04

X
G

ov
er

nm
en

t
E

le
ct

ro
ni

cs
M

ix
tr

in
si

c
ev

ol
ut

io
n

(S
W

&
H

W
)

X
X

2D
Ph

ot
on

ic
cr

ys
ta

ls
Pr

eb
le

G
P

D
es

ig
n

20
05

A
ca

de
m

ia
Ph

ot
on

ic
s

T
re

e
an

d
bi

tm
ap

re
p-

re
se

nt
at

io
ns

X
X

X

Q
ua

nt
um

at
to

se
co

nd
dy

na
m

ic
s

B
ar

te
ls

E
S

O
pt

im
iz

at
io

n
20

05
X

A
ca

de
m

ia
Q

ua
nt

um
St

an
da

rd
E

S
X

X
X

O
pt

ic
al

le
ns

sy
st

em
s

K
oz

a
G

P
D

es
ig

n
20

05
In

du
st

ry
O

pt
ic

s
D

ev
el

op
m

en
ta

lG
P

X
X

X
X

A
lg

A
lg

or
ith

m
,N

N
oi

sy
da

ta
,A

-H
ar

e
de

fin
ed

in
Ta

bl
e

9.
1.



156 K. Kannappan et al.

Ta
bl

e
9.

2
(c

on
tin

ue
d)

E
nt

ry
Fi

rs
ta

ut
ho

r
A

lg
Ty

pe
Y

ea
r

N
Se

tti
ng

A
pp

lic
at

io
n

ar
ea

Te
ch

ni
qu

e
A

B
C

D
E

F
G

H

Q
ua

nt
um

fo
ur

ie
r

tr
an

sf
or

m
al

go
ri

th
m

M
as

se
y

G
P

D
es

ig
n

20
05

A
ca

de
m

ia
Q

ua
nt

um
D

ev
el

op
m

en
ta

lG
P

X
X

X

A
ss

em
bl

y
pr

og
ra

m
s

E
dg

ar
G

P
Pr

og
ra

m
m

in
g

20
05

A
ca

de
m

ia
So

ft
w

ar
e

en
gi

ne
er

in
g

M
ic

ro
G

P
X

X

Sp
ac

e
sy

st
em

s
de

-
si

gn
Te

rr
ile

G
A

O
pt

im
iz

at
io

n
20

05
G

ov
er

nm
en

t
M

ec
ha

ni
ca

l
en

gi
ne

er
-

in
g

X
X

X

G
am

e
pl

ay
in

g
Si

pp
er

G
P

D
es

ig
n

20
05

A
ca

de
m

ia
ga

m
es

st
an

da
rd

G
P

X

Im
ag

e
co

m
pr

es
si

on
G

ra
se

m
an

n
G

A
D

es
ig

n
20

05
A

ca
de

m
ia

Im
ag

e
pr

oc
es

si
ng

C
oe

vo
lu

tio
na

ry
X

X
X

X

Si
nu

so
id

al
os

ci
lla

to
rs

A
gg

ar
w

al
G

A
D

es
ig

n
20

06
A

ca
de

m
ia

E
le

ct
ro

ni
cs

G
A

X
X

X
X

Ph
ot

oc
he

m
is

tr
y

Sa
st

ry
G

A
O

pt
im

iz
at

io
n

20
06

A
ca

de
m

ia
C

he
m

is
tr

y
M

ul
ti-

ob
je

ct
iv

e
G

A
X

X
X

X

E
lli

ps
e

de
te

ct
io

n
Y

ao
G

A
C

la
ss

ifi
ca

tio
n

20
06

X
A

ca
de

m
ia

Im
ag

e
pr

oc
es

si
ng

M
ul

ti-
po

pu
la

tio
n

X
X

X

In
te

re
st

po
in

t
de

te
c-

tio
n

O
la

gu
e

G
P

C
la

ss
ifi

ca
tio

n
20

06
X

G
ov

er
nm

en
t

C
om

pu
te

r
vi

si
on

St
an

da
rd

G
P

X
X

X
X

X
X

Po
ly

m
er

op
tic

al
fi-

br
es

M
an

os
G

A
D

es
ig

n
20

07
A

ca
de

m
ia

Po
ly

m
er

s
D

ev
el

op
m

en
ta

lG
A

X
X

X
X



9 Analyzing a Decade of Human-Competitive (“HUMIE”) Winners 157

Ta
bl

e
9.

2
(c

on
tin

ue
d)

E
nt

ry
Fi

rs
ta

ut
ho

r
A

lg
Ty

pe
Y

ea
r

N
Se

tti
ng

A
pp

lic
at

io
n

ar
ea

Te
ch

ni
qu

e
A

B
C

D
E

F
G

H

M
at

e-
In

-N
ch

es
s

pr
ob

le
m

Si
pp

er
G

P
D

es
ig

n
20

07
A

ca
de

m
ia

G
am

es
K

oz
a-

st
yl

e
G

P
X

X
X

X
X

D
ia

gn
os

in
g

pr
os

ta
te

ca
nc

er
L

lo
r

G
B

M
L

C
la

ss
ifi

ca
tio

n
20

07
X

A
ca

de
m

ia
M

ed
ic

in
e

X
X

X

A
ut

om
at

ed
al

ph
ab

et
re

du
ct

io
n

m
et

ho
d

B
ac

ar
di

t
G

A
C

lu
st

er
in

g
20

07
A

ca
de

m
ia

B
io

lo
gy

E
xt

en
de

d
C

om
pa

ct
G

en
et

ic
A

lg
or

ith
m

(E
D

A
)

X
X

X
X

Fi
ni

te
al

ge
br

as
Sp

ec
to

r
G

P
R

eg
re

ss
io

n
20

08
A

ca
de

m
ia

M
at

he
m

at
ic

s
St

ac
k-

ba
se

d,
D

ev
el

-
op

m
en

ta
l

X
X

X
X

X

R
T

L
be

nc
hm

ar
k

ci
r-

cu
its

Pe
ce

nk
a

G
A

D
es

ig
n

20
08

In
du

st
ry

,
A

ca
de

m
ia

E
le

ct
ro

ni
cs

N
on

-b
in

ar
y

G
A

X
X

E
vo

lv
in

g
au

to
m

at
ic

de
fe

ct
cl

as
si

fic
at

io
n

G
la

ze
r

G
A

C
la

ss
ifi

ca
tio

n
20

08
In

du
st

ry
,

A
ca

de
m

ia
E

le
ct

ro
ni

cs
St

an
da

rd
G

A
X

X
X

X
X

So
ft

w
ar

e
pa

tc
he

s
Fo

rr
es

t
G

P
Pr

og
ra

m
m

in
g

20
09

A
ca

de
m

ia
So

ft
w

ar
e

en
gi

ne
er

in
g

A
ST

w
ith

w
ei

gh
te

d
pr

og
ra

m
pa

th
X

U
se

r
id

en
tifi

ca
tio

n
on

sm
ar

tp
ho

ne
s

Sh
ah

za
d

G
A

C
la

ss
ifi

ca
tio

n
20

09
A

ca
de

m
ia

Se
cu

ri
ty

G
A

w
ith

pa
rt

ic
le

sw
ar

m
op

tim
iz

at
io

n
X

X
X

X



158 K. Kannappan et al.

Ta
bl

e
9.

2
(c

on
tin

ue
d)

E
nt

ry
Fi

rs
ta

ut
ho

r
A

lg
Ty

pe
Y

ea
r

N
Se

tti
ng

A
pp

lic
at

io
n

ar
ea

Te
ch

ni
qu

e
A

B
C

D
E

F
G

H

G
P-

R
us

h
-R

us
h

ho
ur

pu
zz

le
H

au
pt

pm
an

G
P

D
es

ig
n

20
09

A
ca

de
m

ia
G

am
es

Po
lic

y-
ba

se
d

G
P

X
X

X
X

X

D
es

cr
ip

to
r

op
er

at
or

s
Pe

re
z

G
P

D
es

ig
n

20
09

G
ov

er
nm

en
t

C
om

pu
te

r
vi

si
on

St
an

da
rd

G
P

X
X

X
X

X
X

X

Pr
ot

ei
n

st
ru

ct
ur

e
pr

e-
di

ct
io

n
K

ra
sn

og
or

G
P

R
eg

re
ss

io
n

20
10

X
A

ca
de

m
ia

B
io

lo
gy

St
an

da
rd

X
X

X

D
om

ai
n-

In
de

pe
nd

en
t

sa
tis

fic
in

g
pl

an
ni

ng

Pi
er

re
M

H
Pl

an
ni

ng
20

10
A

ca
de

m
ia

Pl
an

ni
ng

X
X

X
X

So
lv

in
g

ite
ra

te
d

fu
nc

tio
ns

us
in

g
G

P
Sc

hm
id

t
G

P
R

eg
re

ss
io

n
20

10
A

ca
de

m
ia

M
at

he
m

at
ic

s
Sy

m
bo

lic
re

gr
es

si
on

al
go

ri
th

m
X

X
X

M
ix

ed
-I

nt
eg

er
ev

ol
ut

io
n

st
at

eg
ie

s-
m

ed
ic

al
im

ag
es

T
ho

m
as

E
S

O
pt

im
iz

at
io

n
20

10
X

A
ca

de
m

ia
Im

ag
e

pr
oc

es
si

ng
,

M
ed

ic
in

e
M

ix
ed

-I
nt

eg
er

ev
o-

lu
tio

n
st

ra
te

gi
es

X
X

X

Fr
ee

C
el

l
E

ly
as

af
G

A
D

es
ig

n
20

11
A

ca
de

m
ia

G
am

es
St

an
da

rd
G

A
X

X
X

X
X



9 Analyzing a Decade of Human-Competitive (“HUMIE”) Winners 159

Ta
bl

e
9.

2
(c

on
tin

ue
d)

E
nt

ry
Fi

rs
ta

ut
ho

r
A

lg
Ty

pe
Y

ea
r

N
Se

tti
ng

A
pp

lic
at

io
n

ar
ea

Te
ch

ni
qu

e
A

B
C

D
E

F
G

H

V
er

fic
ia

tio
n

al
go

-
ri

th
m

fo
r

ev
ol

va
bl

e
ha

rd
w

ar
e

L
uk

as
G

P
O

pt
im

iz
at

io
n

20
11

A
ca

de
m

ia
E

le
ct

ro
ni

cs
C

ar
te

si
an

G
P

X
X

X

O
pt

im
al

br
oa

d-
ba

nd
St

ok
es

/M
ue

lle
r

po
-

la
ri

m
et

er

L
et

ne
s

G
A

D
es

ig
n

20
11

A
ca

de
m

ia
O

pt
ic

s
St

an
da

rd
G

A
X

X
X

X
X

X
X

G
am

e
de

si
gn

B
ro

w
ne

G
P

D
es

ig
n

20
12

A
ca

de
m

ia
G

am
es

E
vo

lv
in

g
ru

le
tr

ee
s

X
X

X

A
ut

om
at

ed
Pr

ob
e

M
ic

ro
sc

op
y

W
oo

lle
y

G
A

O
pt

im
iz

at
io

n
20

12
A

ca
de

m
ia

M
ec

ha
ni

ca
l

en
gi

ne
er

-
in

g
C

el
lu

la
r

G
A

X
X

X
X

X
X

A
ut

om
at

ed
pr

og
ra

m
re

pa
ir

D
ew

ey
-

V
og

t
G

P
Pr

og
ra

m
m

in
g

20
12

A
ca

de
m

ia
So

ft
w

ar
e

en
gi

ne
er

in
g

G
P

ov
er

A
ST

ed
it

op
er

at
io

ns
X

X

Fr
ee

C
el

l
Si

pp
er

G
P

D
es

ig
n

20
13

A
ca

de
m

ia
G

am
es

Po
lic

y-
ba

se
d

G
P

X
X

X
X

X

Ju
pi

te
r

m
oo

n
se

ar
ch

Iz
zo

D
E

D
es

ig
n

20
13

G
ov

er
nm

en
t

M
ec

ha
ni

ca
l

en
gi

ne
er

-
in

g
Se

lf
-a

da
pt

at
io

n
di

f-
fe

re
nt

ia
l

ev
ol

ut
io

n
al

go
ri

th
m

,
A

sy
n-

ch
ro

no
us

is
la

nd
m

od
el

X
X

X
X

So
lid

st
at

e
N

M
R

pu
ls

e
se

qu
en

ce
s

B
ec

hm
an

n
G

A
O

pt
im

iz
at

io
n

20
13

A
ca

de
m

ia
Ph

ys
ic

s
St

an
da

rd
G

A
X

X
X

X
X

X
X



160 K. Kannappan et al.

Table 9.3 A summary of the
algorithms used by the
HUMIE winners

Algorithm Count

Genetic Programming (GP) 22

Genetic Algorithms (GA) 15

Evolutionary Strategies (ES) 2

Differential Evolution (DE) 1

Genetics Based Machine Learning (GBML) 1

Metaheuristic 1

Table 9.4 Categorization of the application domains of the HUMIE winners. Note that some winners
may come under multiple application categories. The number in brackets after the application
categories denotes the number of HUMIE winners in that particular application category

Application Count Application category

Antennas 1 Engineering (19)

Biology 2 Science (7)

Chemistry 1 Science (7)

Computer vision 2 Computer science (7)

Electrical engineering 1 Engineering (19)

Electronics 5 Engineering (19)

Games 6 Games (6)

Image processing 3 Computer science (7)

Mathematics 2 Mathematics (3)

Mechanical engineering 4 Engineering (19)

Medicine 2 Medicine (2)

Operations research 1 Engineering (19)

Optics 2 Engineering (19)

Optimization 1 Mathematics (3)

Photonics 1 Engineering (19)

Physics 1 Science (7)

Planning 1 Computer science (7)

Polymers 1 Engineering (19)

Quantum 3 Science (7)

Security 1 Computer science (7)

Software engineering 3 Engineering (19)

entities from scratch in a human-competitive way. The authors note that classifying
problems based on a “type” is a slightly subjective process and that some problems
may fit several types at times, but we believe that the above analysis is still sufficient
to note how good EC is when it comes to design problems.
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Table 9.5 A count of the
broad types of problems that
the HUMIE winners solved

Problem Type Count

Classification 5

Clustering 1

Design 20

Optimization 8

Planning 1

Programming 4

Regression 3

Another interesting trend at the HUMIES seems to be the abundance of papers
that have combined domain specific knowledge effectively with evolution in a way
where evolution helps combine and adapt existing human knowledge in innovative
new ways. For example, Stephanie Forrest’s paper (Forrest et al. 2009) uses existing
human knowledge embedded in non-faulty parts of the code to repair parts of the
code that are faulty. Policy based GP (Hauptman et al. 2009; Elyasaf et al. 2012)
is another such area where human knowledge is integrated into an EC system that
then evolves a solution that is human competitive. This particular trend certainly
suggests a rethink of the artificial (intelligence)-to-(human) intelligence (A/I) ratio,
suggested by John Koza et al., which states that GP delivers a high amount of artificial
intelligence relative to the relatively minimal amount of human intelligence that is
put in to the system (Koza et al. 2003). In the context of human-competitive machine
intelligence, our analysis suggests that looking for a high A to I ratio is not the best
way to seek promising problems. Instead, we suggest that the focus should be on the
additional knowledge gained by some automatic technique that makes the system
human competitive. To quote Moshe Sipper from his book Evolved to Win (Sipper
2011),

Rather than aiming to maximize A/I we believe the “correct” equation is:

A − I ≥ Mε

where Mε stands for “meaningful epsilon”. When wishing to attain machine competence in
some real-life, hard-to-learn domain, then, by all means, imbue the machine with as much
I(ntelligence) as possible! After all, if imbuing the I reduces the problem’s complexity to
triviality, then it was probably not hard to begin with. Conversely, if the problem is truly hard,
then have man and machine work in concert to push the frontiers ofA as far as possible. Thus,
it is not max(A/I) that is of interest but the added value of the machine’s output: Granting the
designer “permission” to imbue the machine with as much I as he can, will it then produce
a ΔA = A − I , namely, added intelligence, that is sufficiently meaningful? Even if this
meaningful epsilon Mε is small in (some) absolute terms, its relative value can be huge (e.g.,
a chip that can pack 1–2 % more transistors, or a game player that is slightly better and thus
world champion).

We believe that this approach of looking at the additional intelligence gained by an
automated system is crucial not just for Genetic Programming, but for Artificial In-
telligence on the whole. We strongly encourage people to build artificial intelligence
systems that make as much use of existing human knowledge as possible.
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9.5 Concluding Remarks

Overall, analyzing a decade’s worth of HUMIES papers seems to suggest that when
combined effectively with domain-specific knowledge, GP and GA are approaches to
EC that are highly effective in producing human-competitive results, in a very wide
array of fields. We strongly encourage further research in the human-competitive
domain, particularly with EC approaches such as GA and GP, used in conjunction
with human knowledge in the current field. One aspect that we note in particular is
the significance of collaboration with experts outside the computer science domain,
which leads to several interesting insights in multiple fields.

We would also like to mention the gradual shift from a high Artificial Intelligence
to Human Intelligence (A/I) ratio, towards a focus on the additional intelligence
gained by using an intelligent system, irrespective of how much human intelligence
one supplies to it. One interesting aspect that must be brought up when moving
away from high (A/I) is interpretability, particularly when a human is involved in a
feedback loop used to improve the system. In her recent work, Cynthia Rudin has
been suggesting interpretability as a key feature in several prediction systems, and
notes that experts are more likely to use an interpretable system compared to a black
box system that they do not understand (Letham et al. 2012; Rudin et al. 2012; Wang
et al. 2013). While most of evolutionary computation has historically been using a
black-box approach, interpretability might eventually become rather important too
(both in EC-based approaches and in other machine learning approaches) to build
human-competitive systems, particularly when human experts are involved in both
building the system and improving its quality.

In a recent paper Kiri Wagstaff argues that much of current machine learning
(ML) research has lost its connection to problems of import to the larger world of
science and society (Wagstaff 2012). In reference to the much-used (and perhaps
much-abused) UCI archive she eloquently writes,

“Legions of researchers have chased after the best iris or mushroom classifier. Yet this flurry
of effort does not seem to have had any impact on the fields of botany or mycology.”

Wagstaff identifies several problems that underlie the “Machine Learning for Ma-
chine Learning’s Sake” stance, including: overly focusing on benchmark data sets,
with little to no relation to the real world; too much emphasis on abstract metrics that
ignore or remove problem-specific details, usually so that numbers can be compared
across domains; and lack of follow-through:

“It is easy to sit in your office and run [some] algorithm on a data set you downloaded
from the web. It is very hard to identify a problem for which machine learning may offer a
solution, determine what data should be collected, select or extract relevant features, choose
an appropriate learning method, select an evaluation method, interpret the results, involve
domain experts, publicize the results to the relevant scientific community, persuade users to
adopt the technique, and (only then) to truly have made a difference.”

She argues for making machine learning matter: asking how one’s work impacts the
original problem domain; greater involvement of domain experts; and considering
the potential impact on society of a problem one elects to work on. She proposes
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a number of admirable Impact Challenges as examples of machine learning that
matters, e.g., a law passed or a legal decision made that relies on the result of an ML
analysis, and $ 100 M saved through improved decision making provided by an ML
system.

We think that Wagstaff actually bolsters research into human-competitive results
produced by EC. Despite her opining that, “human-level performance is not the gold
standard. What matters is achieving performance sufficient to make an impact on
the world”, we think that the problems in Table 9.2 are very strongly coupled to the
real world. Indeed, most, if not all, of them have involved expertise (and often actual
experts) in a real-world problem domain, and the competition itself sets out to under-
score the impact of such research on society at large. Thus, the HUMIE winners may
all be unknowingly responding to Wagstaff’s challenge, creating machine learning
that matters.
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