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Preface

This book is based on the material presented at the Twelfth Workshop on Genetic
Programming Theory and Practice by the Center for the Study of Complex System
at the University of Michigan in Ann Arbor on May 8th–10th, 2014. The purpose
of this workshop is to promote the exchange of ideas between theorists working
on genetic programming and people applying genetic programming to real-world
problems. It is designed to encourage speculative presentations with a lot of time
for discussion between presentations and focuses on the underlying principles of
Genetic Programming (GP) and methods of application used to get the best results.
Each chapter of this book was sent to two other participants before the workshop
who responded with comments and suggestions, thus allowing the authors to revise
and expand the work presented at the workshop. After the workshop, the authors
revised the work based on comments and discussions from the participants. In many
cases the involvement of reviewers, and the general discussions during workshop is
considered the most important aspect of the the workshop.

In addition to the GP researchers and practitioners, there were three keynote
speakers who presented on a related area of study at the start each day. Traditionally,
these have involved a biological component as GP is inspired by the mechanisms of
natural selection, a presentation on a related field of computer science, often related
to machine learning, and a presentation by someone from industry describing the use
of a cutting edge technology in a practical application. This year, on the first day, Dr.
Chao Cheng of Dartmouth University presented Application of Machine-Learning
Methods to Transcriptional Regulation by Histone Modifications and Transcription
Factors where he discussed his group’s use of machine learning and genetic pro-
gramming in the analysis of molecular biology, and in particular, the mechanisms
of genetics. On the second day, Paco Nathan presented Nine Decades of Machine
Learning: GP in the context of Big Data and contemporary open source which de-
scribed the history of machine learning, its growing importance in the analysis of
‘Big Data’ and the potential for GP in this space. Finally, Theresa Kotanchek pre-
sented Materials Innovation and the Next Manufacturing Renaissance, a description
of her tenure as the VP of Sustainable Technology at Dow Chemical Company, the
difficulties and successes of applying machine learning and GP to the development of
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vi Preface

more energy efficient manufacturing processes, and the future use of GP in designing
new materials.

In addition to the presentations and keynote speakers, we expanded the format
of the workshop this year to include “whiteboard sessions”—discussions led by a
participant of the workshop on a topic of ongoing research. The goal of these sessions
was to expand the speculative nature of the workshop so that people could present
and discuss topics on which their thinking was not yet complete in order to solicit
new ideas and suggestions on these topics. Though the results of these sessions do
not appear in this book, they provided another avenue of discussion for ideas that
were not quite ready for general release. The hope is that these sessions will take
advantage of the collected experience and knowledge of the participants and will
lead to future papers and presentations at GP Theory and Practice.

Here is a list of the whiteboard sessions and the people who led the discussions:

• Evolving Arbitrary Software—Led by Lee Spector
• Mobile Computing and Evolutionary Computing—Led by Moshe Sipper
• Application Spaces and Opportunities—Led by William P. Worzel

October 2014 Rick Riolo, William P. Worzel and Mark Kotanchek
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Chapter 1
Application of Machine-Learning Methods
to Understand Gene Expression Regulation

Chao Cheng and William P. Worzel

1.1 Introduction

For a long time molecular biology studies were known to be time-consuming and
labor-intensive. The amount of data generated was mostly at small-scale and easy to
be analyzed. This situation has changed radically with the development of microarray
technologies in middle 1990’s, which can quantify the expression levels of tens of
thousands of genes simultaneously. More recently, owing to the advent of the next-
generation sequencing technologies, an enormous amount of biological data has been
produced. A single massively parallel sequencing platform (e.g. Illumina HiSeq) is
able to generate terabytes of raw data in one day. These high-throughput technologies
have been used in several large-scale projects such as ENCODE (the Encyclopedia of
DNA Element) (ENCODE Consortium 2012), TCGA (The Cancer Genome Atlas)
(Kandoth et al. 2013) and Roadmap Epigenomics (Chadwick 2012).

Specifically, ENCODE is a research project sponsored by the US National Hu-
man Genome Research Institute (NHGRI) in 2003 (ENCODE Consortium 2012).
It was launched as a follow-up to the human genome project (HGP), which was an
international project initiated in 1990 and completed in 2003. In 2001 this project
published the whole human genome sequence containing approximately 3.3 billion
base-pairs (Lander et al. 2001; Venter et al. 2001). In the human genome, only 1.5 %
of DNA encodes proteins, the function of the remaining 98.5 % of the human genome
is unknown. The goal of ENCODE project is to utilize high-throughput technologies
to identify functional elements in the human genome and determine their roles in
regulating gene expression. Functional elements are regulatory units of the human
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2 C. Cheng and W. P. Worzel

genome including promoters, enhancers, insulators, silencers and transcription fac-
tor binding sites, etc. Obtaining a catalogue of these elements is an essential step to
understand how the human genome is organized and regulated. Considering the fact
that certain experiments are impossible or difficult to carry out in humans, the EN-
CODE project is extended to three model organisms: fly, worm (modENCODE) and
mouse (mouse ENCODE) (Gerstein et al. 2010; Stamatoyannopoulos et al. 2012).

These projects have produced an enormous amount of data. For instance, the
ENCODE project has generated more than 2600 genomic datasets from RNA-seq,
ChIP-seq (Chromatin Precipitation followed by massive parallel Sequencing), CAGE
(Cap Analysis of Gene Expression) and other experiments (ENCODE Consortium
2012). RNA-seq is a sequencing based method that can quantify the expression
levels of genes in biological samples. ChIP-seq is developed to determine genome
wide transcription factor (TF) binding or histone modification events. In a ChIP-seq
experiment, an antibody is utilized to collect DNA molecules binding with a TF
or enriched for a specific type of histone modification. DNA molecules are then
fragmentized and sequenced in a sequencing machine to obtain millions of reads.
These reads are mapped to the genome to determine their positions to obtain the
binding signals of a TF or the histone modification signals of a specific type of histone
mark (e.g. H3K4me3) in a sample at all positions in the genome. The ENCODE
project has produced a total of 1,479 ChIP-seq datasets to capture transcription factor
binding or histone modification patterns in different human cell lines. Specifically,
1,242 of them are TF binding datasets, accounting for 199 (> 10 %) of human factors.
These datasets provide unprecedented opportunities to elucidate the mechanism of
transcriptional regulation in human genome.

Transcription is a highly supervised process, in which two interrelated factors
are involved: TFs and histone modifications (Kurdistani et al. 2004; Berger 2007;
Farnham 2009). TFs are a specific family of proteins which account for ∼ 10 % of
the proteins encoded by the human genome. They can act as activators, co-activators,
repressors, and chromatin remodeling factors, and bind to specific gene regulatory
elements (such as promoters, enhancers, silencers, and insulators) to cooperatively
induce a unique pattern of gene expression (Maston et al. 2006). In the human
genome, DNA is non-covalently associated with histone proteins (H1, H2A, H2B,
H3, and H4) to form high order nucleoprotein structures. Histones can be modified
biochemically to alter the local chromatin structure. Basically there are two chromatin
states: an “open” state is highly accessible to transcription regulators to turn on gene
expression, and a “close” state is poorly accessible to transcription regulators and
thus gene expression is off. There are many possible histone modification types.
For example, H3K4me3 is a modification that adds three methyl- groups to a lysine
amino acid of the histone H3. Combinations of different histone modifications result
in a “histone code” that ultimately dictate the structural status of chromatin (Strahl
and Allis 2000). Along with transcription factors, histone modifications result in a
carefully orchestrated and complex level of gene expression regulation.

Machine learning approaches have been widely applied to biological studies.
Particularly, the large-scale projects have provided useful data for training and testing
models developed to address a variety of biological questions. In this chapter, we will
introduce several examples in which machine learning models are applied to analyze
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the data from ENCODE and modENCODE. First, we will describe a quantitative
model that relates gene expression levels with TF binding and histone modification
signals. Second, we will show how we use machine learning methods to predict TF
binding sites and tissue specific enhancers based on histone modification patterns
and sequence features. Third, we will introduce a machine learning method to predict
cell cycle regulated genes. Finally, we will discuss the advantages and limitations of
genetic programming techniques in biological applications.

1.2 Application of Machine Learning to Predict Gene
Expression from TF Binding and Histone Modifications

Gene expression is under precise regulation by TFs and histone modifications (HMs).
In this example, we construct predictive models to quantify the relationship between
gene expression levels and TF binding and histone modification signals (Cheng et al.
2011b, 2012; Cheng and Gerstein 2012). With these models, we aim to investigate
how much variation of gene expression levels can be explained by TF binding and
histone modification signals, respectively. We have tested the models in multiple
species ranging from yeast to human. Here we show the results using data obtained
from mouse embryo stem cells (mESCs). Specifically, the data contain ChIP-seq pro-
files for 12 TFs (E2f1, Esrrb, Klf4, Nanog, Oct4, Stat3, Smad1, Sox2, Tcfcp2l1, Zfx,
c-Myc and n-Myc) and 7 histone modifications (H3K4me1, H3K4me2, H3K4me3,
H3K4me9, H3K20me3, H3K27me3 and H3K36me3), as well as gene expression
data from RNA-seq (Mikkelsen et al. 2007; Chen et al. 2008; Cloonan et al. 2008).
The models take TF binding and/or histone modification signals as the “input” and
relate them to the “output”: expression levels of genes.

Figure 1.1 shows the schematic diagram we used for predicting gene expression
levels from TF binding data. Given the genomic binding data for a total of M TFs,
our prediction model contains the following steps. First, we divided the DNA region
around the transcriptional start site (TSS) of genes into 80 bins, each of 100 bp in size.
For each bin, we calculated the average signal for each chromatin feature (i.e. TFs),
resulting in a matrix of G∗M, here G is the total number of genes and M is the number
of TFs. Second, in each bin we constructed a model that used the binding signal of
all TFs as predictors to predict the expression levels of genes (the first layer models).
Finally, the predicted expression values in all bins are combined by a second layer
model to make the final prediction. We applied several supervised machine learning
approaches including Random Forest (RF), Support Vector Regression (SVR) and
multivariable linear regression model (MLR).

We evaluated the predictive accuracy of models using a cross-validation method.
Specifically, we randomly selected 2000 genes as training data and the rest as test
data. We trained the bin-specific models or the two-layer model with the training
data, and then applied it to predict the expression levels of genes in the test data. The
correlation between the predicted values and the experimentally measured expression
levels of genes in the test data were calculated as the predictive accuracy.
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Fig. 1.1 A two-layer supervised model for predicting gene expression levels based on TF
binding signals. DNA regions surrounding the Transcription Start Site (TSS) are divided into
80 bins, each of 100 bp in size. In the first layer, a model is constructed for each bin to predict
the expression values of genes using binding signals of multiple TFs as predictors. The predicted
values from all bins are then combined in the second layer model to make the final prediction of
gene expression

We build three sets of models using TF binding signals only (TF models), his-
tone modification signals only (HM models) and a combination of them (TF+HM
models), respectively. Different machine learning methods achieved comparable
predictive accuracy. Here we focus on the results from the SVR method. Figure 1.2
shows the predictive accuracy of the three sets of models in 80 bins around the TSS
as well as in 80 bins around the transcriptional terminal site (TTS). As shown, the
highest predictive power (R = 0.71) of the TF models is achieved at the TSS, which
individually accounts for 50 % of the variation in gene expression. In contrast, the
highest predictive bins of the HM models are within the transcribed region imme-
diately downstream of the TSS, which achieves similar prediction accuracy as the
best prediction by TF models. As shown, the TF models and HM models show very
different patterns in their prediction accuracy profiles—the TF models show best
prediction accuracy at a narrow DNA region at the TSS and the predictive power de-
cays quickly away from it; while the HM models are highly predictive to expression
across a broad range of transcribed regions that extends from upstream of the TSS
to downstream of the TTS. Moreover, the TF+HM models only obtain prediction
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Fig. 1.2 The prediction accuracy of three set of models. The predictive accuracy of the TF
models, the HM models and the TF+HM models, in each of the 160 bins (80 bins surrounding
TSS and 80 bins surrounding TTS of genes) are shown. Accuracy is measured as the correlation
between predicted and measured expression levels. TSS:Transcription Start Site; TTS:Transcription
Terminal Site

accuracy similar to that of the HM models or the TF models across all bins, sug-
gesting that the TF binding signal and HM signal are redundant for gene expression
prediction.

In addition to the mouse data, we have applied the histone modification model
to four other species including yeast, worm, fly and human using data generated by
ENCODE, modENCODE and previous publications. Our results indicate that in all
these organisms, about 50 % of gene variation can be explained by TF binding or
histone modification signals in the TSS-proximal DNA region.

1.3 Application of Machine Learning to Predict Transcription
Factor Binding Sites and Enhancers

Identification of TF binding sites (TFBSs) is critical for investigating transcriptional
regulation of genes. The specific binding of a TF is mediated by the recognition of
its binding motif represented as a position-weighted matrix (PWM) (Stormo 2000).
TFBSs in a genome can be predicted by computational methods or determined by
experimental approaches. Computationally, TFBSs can be predicted by searching
DNA sequences for the associated PWM of a TF. Experimentally, ChIP-seq and
ChIP-chip have been widely used to identify the genomic binding sites of TFs (Ren
et al. 2000; Johnson et al. 2007).

Histone modifications can modulate the accessibility of DNA regions and affect
the recruitment of TFs (Li et al. 2007). We thus developed machine learning ap-
proaches to predict TFBSs based on histone modification signals (Gerstein et al.
2010; Cheng et al. 2011a; Yip et al. 2012). Figure 1.3 shows an example of using
modENCODE worm data to predict the binding sites of a TF, HLH-1. As shown,
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Fig. 1.3 Application of Machine Learning to Predict TF Binding sites in C. Elegans Genome.
C. elegans genome is divided into continuous small bins each of 100 bp in size (Left panel).
Average histone modification signals of multiple types were calculated in each bin. These histone
modification signals are utilized as predictors to predict whether a bin is bound by a specific TF. 1
and 0 indicate binding and non-binding events, respectively. The positive predictive values of the
PWM model, the Chromatin model and the PWM+Chromatin model for HLH-1 are shown in the
right panel

the worm genome was divided into small continuous bins of 100 bp in size, and
the average signals for 13 histone modification types in early embryonic cells were
calculated. These signals were used as predictors to predict whether the bins are
bound with HLH-1. Histone modification signals and HLH-1 binding signals are
determined by ChIP-chip experiment.

Figure 1.3 shows the positive predictive values (PPVs) of three models: PWM
model, Chromatin model, and the PWM+Chromatin model. The PWM model sim-
ply examines the existence of HLH-1 binding motif in each bin and identifies bins
with one or more motifs as the positive binding bins of HLH-1. The Chromatin
model combines 13 histone modification signals as predictors using Support Vector
Machine (SVM). The PWM+Chromatin model identify HLH-1 binding bins as those
that are classified as positive by the Chromatin SVM model and contain one or more
HLH-1 motifs. The accuracy of the models are assessed by comparing predictions
with the HLH-1 ChIP-chip data. As shown, only 10 % of HLH-1 motif-containing
bins are true positives. In contrast, the Chromatin only model achieves a much high
accuracy with PPV=58 %. Moreover, the accuracy can be further improved when
PWM information is included (the PWM+Chromatin model). These results indicate
that chromatin structures are highly informative for predicting TF binding sites.

A specific type of DNA elements called enhancers play crucial roles in the regu-
lation of tissue specific gene expression. An enhancer is a short (50–1500 bp) region
of DNA that can be bound with TFs to activate the transcription of genes (Pennac-
chio et al. 2013). Unlike promoters that localize in DNA regions proximal to TSS
of genes, enhancers are distant cis-acting elements, often localize in intergenic or
intronic region, and regulate expression of genes a few mb away. Active enhancers
are known to be associated with certain histone marks (e.g. H3K4me1 and H3K27ac)
(Creyghton et al. 2010). Thus we developed machine learning models to predict tissue
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Fig. 1.4 Prediction of Human Tissue Specific Enhancers. (a) A three-step procedure for predict-
ing embryo specific enhancers in human. (b) Experimental validation of predicted enhancers in a
mouse embryo system. The dark regions mark the tissues in which the tested enhancer is active

specific enhancers in human using ENCODE data (ENCODE Consortium 2012). In
the models, we adopt the following steps to predict tissue specific human enhancers
(Fig. 1.4a) (Yip et al. 2012).

First, we constructed a Random Forest model to predict the binding active regions
(BAR) across the whole human genome. A BAR is defined as the genomic region
where transcription factors tend to bind, which is associated with open chromatin
structure highly accessible to TFs. To train the model, 100 bp bins overlapping with
the TF binding peaks were collected as positive examples, and non-positive bins
were randomly sampled from the whole genome as negative examples. The model
predicted a list of candidate BAR bins in the human genome, presumably from DNA
regions with open chromatin structure. Second, we merged adjacent bins into longer
regions, and identified the merged BARs that are enriched in the binding motifs
of embryo specific TFs (e.g. SOX and OCT family members) to predict embryo
specific enhancers. Finally, we selected candidate enhancers from these regions that
are conserved across different species and localize at least 5kb away from any known
TSSs.

In order to assess the accuracy of our predictions, we selected 6 candidate en-
hancers out of the positive predictions and validated their enhancer activity in a
mouse embryo system. In this system, enhancers were inserted into an expression
vector on the upstream of a lacZ reporter gene fused with an hsp68 promoter, and
then transfected into day E11.5 embryos of transgenic mice (Pennacchio et al. 2006).
If an enhancer is active in some tissues, it will initiate the transcription of the report
gene and display blue colors in these tissues. Figure 1.4b shows an example of en-
hancer that is active in the spine tissues. Among the 6 tested predictions, 5 (83 %)
were found to have enhancer activities in various tissues with high reproducibility.
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1.4 Application of Machine Learning to Predict Cell Cycle
Regulated Genes

Cell cycle is an important biological process in which a series of events take place
in a cell leading to its division and duplication to produce two daughter cells. The
cell cycle is under precise regulation at different levels (Orlando et al. 2008). At the
transcriptional level it has been shown that a series of TFs act at different phases of
the cell cycle and coordinate the sequential transcription of cell cycle genes (Simon
et al. 2001; Cheng and Li 2008). In humans, more than a thousand genes exhibit
periodic expression patterns during the cell cycle. The periodic expression pattern of
cell cycle genes is encoded in cis in their promoters and can be manifested in trans
by the TFs that bind to them. In other words, genes that are bound and regulated by
cell cycle regulators are likely to be cell cycle genes.

Based on this rationale, we constructed Random Forest models to predict cell
cycle genes (Cheng et al. 2013). In the models, we utilized the ENCODE ChIP-seq-
derived TF-binding data and TRANSFAC-derived motif matching data as predictors
(Fig. 1.5a). More specifically, we calculated the regulatory scores for all human genes
to obtain 424 TF binding profiles. These binding profiles represent binding strength
of TFs to human genes in a number of different cell lines. In addition, we examine
the existence of all TRANSFAC TF binding motifs in the promoters of genes (from
TSS to upstream 1kb), resulting in a total of 546 motif matching score profiles. To
train the model, we used the cell cycle and non-cell cycle genes identified from a
time course data that measured gene expression at multiple time points of the cell
cycle in HeLa cells (Whitfield et al. 2002). Out of the 424 TF binding profiles, 46
are from HeLa cells, while the rest are from other human cell lines.

We constructed three models to classify cell cycle versus non-cell cycle genes
using Random Forest method. In a TF model the trans TF-binding features were
used as predictors; in a Motif model the cis motif features are used as predictors; and
a TF+motif model uses a combination of all of the features. The performance of these
models was evaluated by 10-fold cross-validation. Our results suggest that both TF
binding features and motif features are informative for cell cycle gene prediction– the
TF model achieves a prediction accuracy AUC=0.768 and the motif model achieved
AUC=0.642 (Fig. 1.5b). This suggests that the trans- TF binding features are more
informative than the cis- motif features. Moreover, a combination of both sets of
features (the TF+motif model) can significantly improve the prediction accuracy,
leading to an AUC=0.861. This indicates that the trans- information captured by
ChIP-seq data and the cis- information provided by the motif analysis complement
each other in cell cycle prediction.

Apart from the Random forest model, we also implemented other machine
learning methods, including support vector machine (SVM) and penalized logis-
tic regression (PLS). The prediction accuracy of these models is slightly lower than
the Random Forest model. In addition, results from these models confirmed the find-
ing and conclusions from the Random Forest model, e.g. higher predictive accuracy
of TF binding features than motif features.
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Fig. 1.5 Application of Machine Learning Models to Predict Cell Cycle Genes. (a) The
schematic diagram of our cell cycle prediction model. (b) The ROC curve of three models: TF
only model, Motif only model, and TF+Motif model. (c) TF binding data from HeLa cells achieves
the highest prediction accuracy for predicting cell cycle regulated genes in HeLa cells

In the 424 TF binding profiles, there are 68 from GM12878, 94 from K562, 37
from HESC and 55 from HEPG2 cell lines, respectively. We thus examined the cell
line specificity of our cell cycle gene prediction model. If cell cycle regulation is cell
line specific, we would expect the best prediction accuracy using HeLa TF binding
profiles; and otherwise a similar accuracy throughout different cell lines. As shown
in Fig. 1.5c, indeed the highest prediction accuracy was achieved when matched data
are used– the TF binding features from the HeLa cell line are used for predicting
HeLa cell cycle genes. Thus, these results suggest that cell cycle genes are cell line
specific and exhibit differences in their regulation between cell lines.

1.5 Application of Genetic Programming to Biological Studies

Genetic programming (GP) and genetic algorithm (GA) have been widely used in
different fields of biological studies including drug design, association studies and
cancer research, etc (Ghosh and Bagchi 2009; Worzel et al. 2009; Khan and Alam
2012). GP is distinct from other common machine learning algorithms used in bioin-
formatics. In this section, we will discuss about the advantages and limitations of
GP (Mitra et al. 2006; Moore and White 2006).
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1.5.1 Advantages of Genetic Programming

Interpretability Many machine learning methods such as SVM and Neural Net-
works do not provide human readable results. In contrast, the final output of GP
consists of easily readable rules. For example, when GP is applied to classify can-
cer subclasses, the resulting rules are expressed as executable classifier programs
that define tangible relationships between the most influential genes. That is, the
results of GP are easily interpretable. The findings may be interpreted in the bio-
logical context of these genes and provide new testable working hypotheses. While
hierarchical clustering provides visually intuitive results, it does not provide exact
relationships among the features. Classification and regression trees (CART) output
a binary decision tree, which is interpretable but it fails to provide clear insights into
the relationships among features—these relationships become less explicit and diffi-
cult to discern when the tree grows larger. Moreover, CART algorithms are normally
felt to be greedy, leading to a locally optimized solution (Eggermont et al. 2004). GP
takes a more global view by searching a larger space for solution trees so it is likely
to have better performance.

Automatic Feature Selection GP can also select features automatically without any
need to pre-filter or limit them based on what is known about a system. This property
of GP is favorable, since filtering may create an incomplete and biased dataset that
become not representative of a complex biological system. Basically, the “curse of
dimensionality” affects all classification algorithms but the problem of dimensional
reduction is more important in some classical algorithms, e.g. hierarchical clustering
and Neural Networks, which do not scale easily to larger numbers of variables.
Feature selection is then an important step before the application of these algorithms,
which may lead to loss of information that is critical for the success of them.

Small Set of Selected Features GP is capable of identify a small set of features that
are most influential to the response variable. This property is especially useful when
GP is applied to biomedical problems, e.g. identify a gene set for predicting clinical
outcome in cancer. Without compromising their predictability, GP can usually limit
the complexity of the classifiers and generate robust but simple rules containing only
a few genes. A smaller gene set means lower cost in a clinical diagnosis, which
makes it affordable to more customers. Moreover, Occam’s Razor suggests that the
smaller the solution, the more robust it is. Overfitting is the price paid for producing
overly complex models, so GP’s ability to make concise selections of features helps
to discover robust solutions.

Non-linear Relationships GP can choose variables from a large list and then com-
bine them in a non-linear, readable way. This is a powerful character of GP, since
many biological systems have non-linear relationships between genes or proteins.
SVM outputs non-linear classifiers but it is limited to the kernel selected. CART
implements nonlinearity in a pseudo sense as they split the data and tackle each
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partition separately, but it is not as succinct as the rules produced by GP in capturing
the non-linear relationships among genes.

Missing Values GP can incorporate very diverse data sets that contain different
types of variables and can also handle missing values in the data. Missing values in
a dataset can be problematic as even a small amount of missing data may result in a
considerable loss in performance. One can process the missing values by imputation
or by replacing them with a constant. This may introduce bias in the data. GP alle-
viates this problem by leveraging the ability of the system to select features. During
fitness assessment, a sample with missing data may be considered as misclassified
by a rule and thus decrease the fitness of the rule. As a consequence, variables with a
large percentage of missing values are not favored for picking up by the GP system.
This approach allows for maximum use of the available data without making any
unwarranted assumptions about missing data.

Multiple Data Types GP can integrate categorical, integer, and real valued data
seamlessly to produce rules that are conditional on state information. For example,
patient demographics or status (e.g., gender or disease state) can be used to produce
conditional classifiers where different biomarkers are used depending on these con-
ditional factors. Similarly, a predictor could be different depending on where a cell
is in the cell cycle.

Continuous Functions GP can also be adapted to create continuous functions from
time series data. This allows GP to produce dynamic models which could describe
many biological processes. The growing volume of data in biology, combined with
the increasing ability to measure cell states, may make it possible to create empirical
models that give insight into dynamic processes (Kotanchek et al. 2012).

1.5.2 Limitations of Genetic Programming

Computationally Intensive GP is computationally intensive that requires a large
amount of machine time. The estimated machine time increases with increasing
complexity of the problem, and increase in the dimensions and number of samples.
This can be resolved by using parallel computing– segmenting the problem into parts
and then processing them simultaneously on different processors with synchroniza-
tion. Strikingly, GP is particularly tractable for parallel computing techniques as
there are several natural ways to distribute execution onto different machines (Andre
and Koza 1996).

Inconsistent Rules from Different Runs As GP is a stochastic process that depends
highly on the initial control parameter settings, it does not guarantee an optimal
solution in all runs. Therefore, it should be repeated several times with different
settings to ensure that the system has not fallen into a local optima. GP may also
output several rules that are quite different but perform equally well. One can create
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an ensemble classifier to utilize these rules to make final prediction. To further refine
these rules, one should refer to the biological functionality of the features (genes)
and validate them in independent datasets.

1.5.3 Possible Uses of Genetic Programming to Predict Gene
Expression Levels Based on TFs and HMs

As described above, GP is a powerful and flexible machine learning approach. When
applied to the question of the effect of TFs and HMs to gene expression levels,
they can be used in place of the SVR or other machine learning algorithms with
the difference that GP would produce human readable results, clearly showing the
interaction between TFs, HMs, and the combination of the two in controlling gene
expression levels.

It is also possible that a two-step process would not be necessary in GP as it
could be used to combine binding values for each bin to produce a gene expression
predictor. This could be done by using the set of MxG matrices as inputs (essentially
creating an NxMxG input matrix) to evolve a predictor for the gene expression levels.
The form of this predictor would create functional rules that combine TF signals from
each bin to predict gene expression levels.

1.5.4 Predicting Binding Sites and Enhancers Using Genetic
Programming

Similarly, predicting binding sites using GP would allow all inputs described in
Fig. 1.3 to be used (PWM, Histone binding signals and HLH-1) to produce a pre-
dictive model. GP would select from these inputs to produce the best combination
based on the training set.

Discovering enhancers is a different problem. In this case GP would replace the
Random Forest model. GP generally performs better than Random Forest models
because it combines a global search with a local optima and, because there are a
population of solutions, an ensemble can be discovered based on the best predictors
across multiple runs or folds.

The question of location and extent of an enhancer is an interesting one. Certainly
fusing bins together is an easy and effective way to proceed but adapting (Kotanchek
et al. 2006) suggests another option where a Pareto optimal solution is used to find
those predictors that are both concise and predictive. Adapting this approach to the
problem at hand, it may be possible for GP to find both location and size of an
enhancer where length of sequence associated with the enhancers along with the
ability to predict a location of an enhancer may make it possible to do away with
binning altogether. One may think of this as allowing GP to open and close a sliding
window to find the best location and length for an enhancer.
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1.5.5 Using GP to Predict Cell Cycle Genes

As with the earlier studies, GP can be used as another machine learning approach to
classify genes are being cell-cycle related genes. However another more intriguing
possibility exists. Koza et al. (2001) used GP to model both the topology and the
dynamics of known metabolic pathways that included feedback loops. Though this
was based on part of an already well characterized part of a phospholipid cycle, it
provides an interesting opportunity given the increased data and computing power
available.

Given the nature of cell cycle and the approach described in Sect. 1.4 to char-
acterize the interaction of TFs, HMs, promoters and enhancers, and the ability to
capture time course data for these and correlate them with gene expression data, it
would provide a good test of the ability of GP to build de novo models of a complex
biological system.
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Chapter 2
Identification of Novel Genetic Models
of Glaucoma Using the “EMERGENT”
Genetic Programming-Based Artificial
Intelligence System

Jason H. Moore, Casey S. Greene and Douglas P. Hill

2.1 Introduction

Primary open-angle glaucoma (POAG) is a common eye disease that is character-
ized by an increase in intraocular pressure that, if untreated, can lead to a decrease
in vision or even blindness due to progressive nerve damage. Family studies have
shown that POAG has a heritable component with siblings of those affected having
5-10 times the risk of randomly selected people from the same population (Wang
et al. 2010). As recently reviewed (Cooke Bailey et al. 2013), at least five genomic
regions have been associated with POAG in large genome-wide association stud-
ies (GWAS). While these initial genetic studies provide some clues they do not
come close to explaining the variability in risk due to genetic variation. A signif-
icant limitation of these genetic studies is that they consider each genetic variant
or polymorphisms individually ignoring both genomic and ecological contexts that
are likely to influence how a particular region of the genome impacts risk through
a complex hierarchy of biological systems. The goal of the present study is to more
fully explore the genotype-phenotype relationship in a genome-wide genetic study
of POAG that embraces, rather than ignores, the complexity of the disease. It is our
working hypothesis that alternatives to the one genetic variant at a time framework
implemented using parametric statistical approaches such as logistic regression will
reveal interesting new associations that will spark future work in this area leading
to new predictive models and perhaps increased biological understanding that will
open the door to new treatments.
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The availability of big data in disciplines such as human genetics has rekindled
an interest in artificial intelligence (AI) and machine learning methods that are ca-
pable of identifying complex relationships among measured features such as genetic
variation. This need for more powerful modeling approaches coupled with the avail-
ability of inexpensive high-performance computing and improved human-computer
interaction (HCI) technology means that the timing is perfect to employ these meth-
ods for looking at large-scale human genetics data. A key feature of AI research is
the desire to create a computational system that can reason or make decisions as
a human would. This is in significant contrast to the current GWAS strategy that
carries out each genetic analysis without any input from a human or their abundant
expert knowledge base. The goal of the present study is to utilize an AI approach
to the genetic analysis of POAG that explores complex relationships in the data in a
manner that is much more consistent with how humans would approach manual data
analysis given effectively infinite time.

We introduce here the Exploratory Modeling for Extracting Relationships us-
ing Genetic and Evolutionary Navigation Techniques (EMERGENT) algorithm as
an AI approach to the genetic analysis of common human diseases. At the heart
of EMERGENT is a symbolic discriminant analysis (SDA) approach (Moore et al.
2002; Moore et al. 2007) that performs classification using models constructed from
a list of possible mathematical functions and a list of features or attributes. This
base classification method is appealing because it makes no assumptions about the
functional form of the model. This is in contrast to methods such as logistic regres-
sion that first assume a particular model to which all data are fitted. It is the base
assumption of EMERGENT that human genetics data is sufficiently complex that
we do not know what etiological models for diseases like POAG should look like
beyond what has been learned from rare Mendelian diseases like cystic fibrosis where
it is much easier to pin down the genetic cause. At this level, EMERGENT is like
any other machine learning method that takes features as inputs and that produces a
classifier for prediction. The goal of course is to optimize the selection of functions
and features to maximize the classification accuracy of the model and to do so in
a manner that more closely mimics human problem-solving. It is this last goal that
distinguishes EMERGENT from other machine learning methods like decision trees
or neural networks.

The framework EMERGENT uses for representing models and for exploring an
effectively infinite model space is based on genetic programming (GP). Genetic pro-
gramming is an automated computational discovery tool that is inspired by Darwinian
evolution by natural selection (Banzhaf et al. 1998; Koza 1992). The goal of GP is
to “evolve” computer programs to solve complex problems. This is accomplished by
first generating or initializing a population of random computer programs that are
composed of the basic building blocks needed to solve or approximate a solution
to the problem. Genetic programming and its many variations have been applied
successfully in a wide range of different problem domains including bioinformatics
(Fogel and Corne 2003) and genetic analysis more specifically (Moore et al. 2007;
Moore et al. 2008b; Ritchie et al. 2003). This is an attractive approach to the ge-
netic analysis problem because it is inherently flexible, stochastic, parallel and easily
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adapted to exploit expert knowledge of the type that humans would employ in their
own modeling strategies. Genetic programming falls within the scope of AI as a
computational intelligence method.

The key to EMERGENT as an AI approach is two-fold. First, as described above,
GP provides a flexible way to represent solutions such as symbolic discriminant
functions as computer programs. Second, GP provides a stochastic and parallel
search based on the principles of evolution by natural selection. These first two
characteristics are at the heart of the EMERGENT algorithm and are important
for model discovery. Finally, while the algorithm is discovering good models, we
want the system to learn how to generate good models. This final characteristic
is a meta-layer that is inspired by how humans solve problems. That is, not only
can we as humans solve a complex problem but we can learn at the same time
strategies that make solving the problem faster and easier. To accomplish this we have
implemented a type of GP called computational evolution that learns how to generate
new models while it is learning what a good model is. Computational evolution has
been previously reviewed (Banzhaf et al. 2006) and has been previously employed
in GP systems such as PushGP (Spector and Robinson 2002). The key to our own
implementation of computational evolution within the EMERGENT framework is
the ability of the system to learn to use different sources of expert knowledge to help
guide the search for new models. This is intended to mimic how humans draw on
past experience to solve a problem.

In the next sections we outline our previous work with the EMERGENT system,
the details of the EMERGENT algorithm as employed here and then its application
to a genome-wide genetic study of POAG. Our results suggest both interesting and
novel genetic associations for POAG that have not been previously reported.

2.2 History of the EMERGENT Framework

Development of the EMERGENT framework (formally described generically as a
Computational Evolution System or CES) described in detail below has proceeded in
multiple steps. Moore et al. developed the GP-based symbolic discrimination analysis
(SDA) method for flexible classification of disease using genomics data (Moore et al.
2002). This was later extended to developing models of genetic variation predictive
of common disease endpoints (Moore et al. 2007). This approach was extended to
include some of the features of a computational evolution system (Banzhaf et al.
2006). We developed a hierarchical, spatially-explicit GP-based system that allows
for the evolution of arbitrarily complex solutions and solution operators, and includes
population memory via archives, feedback loops between archives and solutions,
and environmental sensing (Greene et al. 2009a, b; Moore et al. 2008a; Moore et al.
2008c; Payne et al. 2010). Analyses of this system have demonstrated its ability
to identify complex disease-causing genetic architectures in simulated data, and to
recognize and exploit useful sources of expert knowledge. Specifically, we have
shown that statistical expert knowledge, in the form of ReliefF scores (Moore and
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White 2007), can be incorporated via environmental sensing (Greene et al. 2009b)
and population initialization (Payne et al. 2010) to improve system performance.
In addition, we recently showed that biological expert knowledge in the form of
protein-protein interactions could be used to guide EMERGENT toward valid gene-
gene interaction models (Pattin et al. 2010). We also showed how visualization of
EMERGENT results could improve the modeling process (Moore et al. 2011). More
recently, we have demonstrated how Pareto optimization (Moore et al. 2012) and
measures of interestingness (Moore et al. 2013) can be used to improve the search
for novel models. Here, we demonstrate how the EMERGENT framework derived
from the studies summarized above can be used to look at the genetics of POAG in
a novel manner.

2.3 Methods

In this section, we first present a summary of our EMERGENT AI framework
for open-ended genetic analysis of complex human diseases. We then discuss our
application of this approach to POAG.

2.3.1 Overview of the EMERGENT Framework

In Fig. 2.1, we provide a graphical overview of EMERGENT, which is both hierar-
chically organized and spatially explicit. The bottom level of the hierarchy consists
of a lattice of solutions (Fig. 2.1D), which compete with one another within spatially-
localized, overlapping neighborhoods. The second layer of the hierarchy contains
a lattice of arbitrarily complex solution operators (Fig. 2.1C), which operate on the
solutions in the lower layer. The third layer of the hierarchy contains a lattice of
mutation operators (Fig. 2.1B), which modify the solution operators in the second
layer, and the highest layer of the hierarchy governs the rate at which the muta-
tion operators are modified (Fig. 2.1A). EMERGENT includes a source of expert
knowledge (Fig. 2.1E) that can be used with the solution operators and as part of
Pareto optimization (Fig. 2.1F). EMERGENT also possesses an attribute archive,
which stores the frequencies with which attributes are used. The solution operators
can then exploit these data to bias the construction of solutions toward frequently
utilized attributes. We did not use the attribute archive in the present study.

2.3.2 Solution Representation, Fitness Evaluation, Selection,
and Pareto Optimization

Each solution represents a classifier, which takes a set of SNPs as input and produces
an output that can be used to assign diseased or healthy status. These solutions are
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Fig. 2.1 Visual overview of our computational evolution system for discovering symbolic discrim-
inant functions that differentiate disease subjects from healthy subjects using information about
single nucleotide polymorphisms (SNPs). The hierarchical structure is shown on the left while
some specific examples at each level are shown in the middle. At the lowest level (D) is a grid of
solutions. Each solution consists of a list of functions and their arguments (e.g. X1 is an attribute or
SNP) that are evaluated using a stack (denoted by ST in the solution). The next level up (C) is a grid
of solution operators that each consists of some combination of theADD, DELETE and COPY func-
tions each with their respective set of probabilities that define whether attributes are added, deleted
or copied randomly, using an attribute archive (memory) or just randomly. In this implementation
of EMERGENT, we use pre-processed expert knowledge (E) with Pareto optimization (F) to help
reduce overfitting. The top two levels of the hierarchy (A and B) exist to generate variability in the
operators that modify the solutions. This system allows operators of arbitrary complexity to modify
solutions. A 12 ×12 grid is shown here as an example. A 36×36 grid was used in the present study

represented as stacks, where each element in the stack consists of a function and two
operands (Fig. 2.1). The function set contains +, −, ∗, /, %, <, <=, >, >=, ==, !=,
where % denotes protected modulus. Operands are either SNPs, constants, or the
output of another element in the stack.

Each solution produces a discrete output Si when applied to an individual i.
Symbolic discriminant analysis (Moore et al. 2002) is then used to map this output
to a classification rule, as follows. The solution is independently applied to the set
of diseased and healthy individuals to obtain two separate distributions of outputs,
Sdiseased and Shealthy, respectively. A classification threshold S0 is then calculated as
the arithmetic mean of the medians of these two distributions. Each of the possible
relationships between S0 and Si( <, <=, >=, > ) is tested across all individuals
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and the one with best overall accuracy is chosen to classify whether individuals are
healthy or diseased.

Solution accuracy is assessed through a comparison of predicted and actual clinical
endpoints. Specifically, the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) are used to calculate accuracy as

A = (1/2)(TP/(TP + FN) + TN/(TN + FP)

Solution length can be assessed in several ways. The number of elements in
the classifier is the most straightforward. Since many solutions leave results on the
stack that do not contribute to the classification, we can define “number of relevant
elements” as only those contributing to the result. Finally we can count the number
of unique features (i.e. genetic variants) in the relevant elements. We have chosen
to use this as the measure of length in the present study as it makes the resulting
solutions easier to analyze.

The population is organized on a two-dimensional lattice with periodic bound-
ary conditions. Each solution occupies a single lattice site, and competes with the
solutions occupying the eight spatially adjacent sites. In all previous EMERGENT
implementations election has been both synchronous and elitist, such that the solu-
tion of highest fitness within a given neighborhood was always selected to repopulate
the focal site of that neighborhood. In the present study, selection proceeds in two
stages modeled after Pareto domination tournaments and fitness sharing described
by Horn et al. (1994). As described in detail (Moore et al. 2013), we used classifica-
tion accuracy, the number of features or attributes in the model (i.e. complexity) and
interaction information (Moore et al. 2006) as the axes in the Pareto optimization.
Here, the sum of the interaction information for all pairs of attributes in a model is
the measure of interestingness (described in more detail below). First all dominated
solutions and solutions evaluating to a constant are removed from competition. A
solution is dominated if there exists any solution that is equal to it or better for all
Pareto criteria, and better in at least one criterion. If no solution survives this stage,
one of the nine is chosen with equal probability. If more than one solution survives,
each is assigned a probability and a roulette wheel selection is made. In order to
prevent convergence on solutions of a single length, higher selection probability is
assigned to a solution if there are relatively fewer solutions of that length in the
lattice. For the present results we made the probability inversely proportional to the
square of the number of existing solutions of the same length. Reproduction is either
sexual or asexual, as dictated by the evolvable solution operators that reside in the
next layer of the hierarchy.

The population is initialized by randomly generating solutions with one to 15
elements subject to the constraint that they produce a valid output that is not constant
for all input. The functions are selected at random with uniform probability from
the function set. A seed may be specified for the random number generator to make
results deterministic and reproducible. Optionally, some of the initial population may
be replaced by solutions selected from a database. This selection is also deterministic.
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2.3.3 Solution Operators

EMERGENT allows for the evolution of arbitrarily complex variation operators
used to modify solutions. This is achieved by initializing the solution operator lattice
(Fig. 2.1C) with a set of basic building blocks which can be recombined in any way
to form composite operators throughout the execution of the program. The action of
some of these operators is influenced by any of several types of expert knowledge
(EK) that EMERGENT recognizes. In this study we have used two types of EK,
Association EK and Attribute EK. Association EK is used to help EMERGENT to
more quickly find solutions using specific combinations of attributes or SNPs. Here,
we used a measure of interaction information as the expert knowledge. Adding and
altering attributes is based on a lookup table that is constructed from the strength of
interactions between pairs of attributes. Because 486,726 attributes have over 1.1 ×
211 pairs, it was impossible to pre-compute and store all pairs in the memory available.
We pre-computed all pairs but stored only the 1440 most strongly interacting pairs, a
tiny fraction of the total. These are the building blocks and the way they are influenced
by Association EK. Pre-computer ReliefF scores were used as Attribute EK. Both of
these pre-processing steps are described in additional detail below.

1. ADD: Inserts a randomly generated element into the solution at a randomly
selected position.
a. Attribute EK: The selection of attributes in the new element is biased toward

those favored in the Attribute EK file.
b. Association EK: The existing attribute just upstream of the new element is

taken into account. The selection of new attributes is biased toward others in
the same cluster.

2. ALTER: Modifies either the function or an argument of a randomly selected
element.
a. Attribute EK: If an attribute argument is chosen, its selection is biased toward

those favored in the Attribute EK file.
b. Association EK: If an attribute argument is chosen, the nearest upstream

attribute is taken into account as in the ADD operator.
3. COPY: Within a randomly selected neighboring solution, randomly selects an

element and inserts it into a randomly selected position in the focal solution.
a. Attribute EK: The element chosen to copy has an attribute among the most

favored in the Attribute EK file.
b. Association EK: No effect.

4. DELETE: Removes an element from a randomly selected position.
a. Attribute EK: The element chosen for deletion has an attribute among the least

favored in the Attribute EK file.
b. Association EK: No effect.

5. REPLACE: Within a randomly selected neighboring solution, randomly selects a
source position. In the focal solution, REPLACE randomly selects a destination
position. Replaces everything between the destination position and the end (root)
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of the focal solution with everything between the source position and the end of
the source solution.
a. Attribute EK: The source position is chosen to have an attribute among the

most favored in the Attribute EK file.
b. Association EK: No Effect.

The solution operators reside on a periodic, toroidal lattice of coarser granularity than
the solution lattice (Fig. 2.1C). Each site is occupied by a single solution operator,
which is assigned to operate on a 3×3 sub-grid of solutions. These operators compete
with one another in a manner similar to the competition among solutions, and their
selection probability is determined by the fitness changes they evoke in the solutions
they control. For this purpose we assigned the fitness of a solution as we have done
in previous studies: balanced accuracy with a small penalty for number of elements.
We did not adapt a Pareto tournament to the selection of solution operators although
this would be an interesting extension to explore in a future study.

2.3.4 Mutation Operators

The third level of the hierarchy contains the mutation operators, which are used to
modify the solution operators (Fig. 2.1B). These reside on a toroidal lattice of even
coarser granularity, and are assigned to modify a subset of the solution operators.
The mutation operators are represented as three-element vectors, where each element
corresponds to the probability with which a specific mutation operator is used. These
three mutation operators work as follows. The first (DeleteOp) deletes an element
of a solution operator; the second (AddOp) adds an element to a solution operator,
and the third (ChangeOp) mutates an existing element in a solution operator. The
probabilities with which these mutation operators are used undergo mutation at a
rate specified in the highest level of the hierarchy (Fig. 2.1A).

2.3.5 Primary Open Angle Glaucoma (POAG) Data

The data used in this study came from the Glaucoma Gene Environment Initiative
(GLAUGEN) study (Cornelis et al. 2010) that included approximately 1272 subjects
with POAG and 1057 healthy controls. A total of 657,366 single-nucleotide poly-
morphisms (SNPs) were measured across the human genome in these subjects. The
data were obtained through application to the dbGaP resource (Mailman et al. 2007)
at the National Institutes of Health (accession phs000308.v1.p1). Filtering out the
SNPs with very little genetic variation (minor allele frequency < 0.05) or those that
were missing 10 % or more of their values left 486,726 SNPs for analysis. Missing
values were imputed using a frequency-based method. The goal of the modeling ex-
ercise is to identify the optimal subset of SNPs along with the optimal mathematical
model that is predictive of the binary class (POAG vs healthy).
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2.3.6 Pre-Processing, Experimental Design and Post-Processing

The goal of this study was to apply EMERGENT to the genetic analysis of POAG. We
first pre-processed the data by estimating the interaction information for all pairs of
SNPs as described previously (Fan et al. 2011; Hu et al. 2011; Moore et al. 2006). We
considered pairs of SNPs that have higher interaction information more interesting
(Association EK). We also pre-processed the data by running the ReliefF machine
learning algorithm as reviewed by Moore et al. (2010). These pre-processed measures
of interestingness were used as expert knowledge (Association EK and Attribute
EK, respectively) in the CES solution modifiers. Also, the interaction information
measure was used as an additional axis in the three-way Pareto optimization.

Each EMERGENT run was conducted with a 36 × 36 grid of solutions for 2000
generations. The EMERGENT system was implemented in a hierarchical framework
inspired by the age-layered population structure algorithm or ALPS (Hornby 2006).
Here, we implemented a depth 11 binary tree where each node represents an EMER-
GENT run with the leaves of the tree representing the initial runs. Each higher node
run is initialized with Pareto optimal solutions from the lower nodes. We reported the
best models discovered at depths 9, 10 and 11. The interaction information among
the top features was used to build a network for statistical interpretation (Hu et al.
2011; Hu et al. 2013).

2.4 Results

The EMERGENT algorithm was run a total of 1024 independent times at the lowest
level of the tree shown at the bottom of Fig. 2.2. Symbolic discriminant models
of genetic variation from the final Pareto front constructed from sets of two runs
were used to seed a new set of 512 runs. This process was repeated according to
the tree shown resulting in in a final Pareto optimal set of models at the top of the
tree. An advantage of using Pareto optimization is that multiple measures of model
quality or interestingness can be used in the model discovery process and for final
model selection. We decided to focus on picking final models that had the highest
accuracy for classification of POAG, had a moderate number of features (i.e. SNPs)
to guard against overfitting and that maximized the consistency of model discovery
at levels 9, 10 and 11 of the tree of EMERGENT runs. We found that models with
six features were highly consistent across multiple final runs. The top of Fig. 2.2
summarizes simplified versions of the symbolic discriminant models that met our
selection criteria. The accuracies of these best models ranged from 0.611 to 0.615.
Note that the function X1 = X6 and X8 != X18 showed up in all four best models
from level nine and in the best models from the subsequent higher-level runs. In
addition, X3 != X16 and X12 > X7 showed up consistently. As shown in Fig. 2.2,
each of these two-feature functions formed one of three atomistic modules that came
together with an overall function is interpreted as the sum of at least two of the three
simplified functions. The consistency of these models each derived from hundreds
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Fig. 2.2 The EMERGENT algorithm was first run 1,024 times with different random seeds (level
1 of the tree). The Pareto optimal results from pairs of runs were used to seed 512 additional
independent runs. This hierarchical organization of the runs continued until there were four runs
at level 9, two at level 10 and one final run at level 11. Shown are simplified versions of the best
models for levels 9, 10 and 11. Note that we chose models with six features from simpler and more
complex models along the Pareto front because this model size gave the most consistent results
across independent runs

of independent runs with different random seeds was reassuring given the stochastic
nature of the EMERGENT algorithm and the effectively infinite search space. Fig. 2.3
shows the version of the final best model prior to simplification. Note that the Boolean
result of X8 != X18 is added to the Boolean result of X12 > X7. This result, with



2 Identification of Novel Genetic Models of Glaucoma . . . 27

Fig. 2.3 The overall best model discovered by EMERGENT using three-way Pareto optimization
and two sources of expert knowledge. The model includes features or attributes (rectangles), con-
stants (squares) and mathematical functions or nodes (ovals). Each model outputs a discriminant
score for each subject in the data set. These scores are then used for classification in a discriminant
analysis. The numbers shown within each oval are the classification accuracies at each level in the
tree

possible values of {0, 1, 2}, is added to the Boolean result of X1 = X6 yielding
possible values of {0, 1, 2, 3}. These values were then compared to a discovered
threshold of 1.5 using the > function. A result of one would be returned from this last
function if any two or all three of the two-feature functions lower in the tree returned
a one. Otherwise it would return a zero. These final values represent the predicted
values of the class variable where a one indicates a human subject with glaucoma
and a zero indicates a health control. The other best models were of the same form.

Figure 2.4 provides a simple clustered heatmap summarizing whether each best
model piece or the overall best model correctly classified each subject as a case or a
control. Here, each column (blended together) represents a human subject with the
cell of the heatmap color coded light grey for a correct classification of disease and
dark grey for incorrect. As indicated above, the overall best model had a classification
accuracy of 0.615. This can be seen on the bottom row of the heatmap where more
than half of the cells are shaded light grey. Interestingly, the light grey of the overall
best model corresponds to human subjects that were also correctly classified from at
least two of the model pieces. This pattern of classification across the model pieces
is consistent with the symbolic discriminant function described in detail above.

A central goal of this study was to identify models of SNP to disease susceptibil-
ity relationships that are new, novel and interesting. Our strategy for interpreting the
best model was two-fold. First, we performed function mapping (Moore et al. 2007)
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Fig. 2.4 Clustered heatmap summarizing whether each best model piece (e.g. X1 == X6) or
the overall best model correctly classified each subject as a case or a control. Here, each column
(blended together) represents a human subject with the cell of the heatmap color coded light grey
for a correct classification of disease and dark grey for incorrect

Fig. 2.5 Interaction graph providing a statistical interpretation of individual and pairwise SNP
effects on disease susceptibility. The numbers in this graph represent the percentage of entropy or
uncertainty about disease status (i.e. class) that is removed by information about the genotypes of
individual SNPs (nodes) and the joint effects of pairs of SNPs (edges). Larger positive numbers
indicate synergy (red and orange lines), numbers close to zero indicate independence (gold lines)
while larger negative numbers indicate redundancy or correlation

to examine the statistical relationships between the individual SNPs and the output
of each function in the symbolic discriminant tree. Here, we are primarily interested
in the degree of non-additive interaction or synergy between the SNPs and nodes
that is associated with disease as measured by interaction information. Second, we
performed a biological interpretation by examining the genes closest to the six SNPs
identified in the best model. Figure 2.5 shows the result of the synergy analysis in the
form of an interaction graph. The numbers in this graph represent the percentage of
entropy or uncertainty about disease status (i.e. class) that is removed by information
about the genotypes of individual SNPs (nodes) and the joint effects of pairs of SNPs
(edges). Larger positive numbers indicate synergy (red and orange lines), numbers
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Table 2.1 Most relevant pathology and disease association for the best model according to the SNP
and closest gene

Feature SNP Closest gene Relevant pathology Disease association

X1 rs10915315 AJAP1 neuroblastoma Migraine, dental caries

X6 rs1266924 PKHD1 Kidney diseases Glaucoma, weight,
prostate cancer

X7 rs936498 HTR1B Visual cortex None

X8 rs7738052 MARCKS Retina development None

X12 rs2157719 CDKN2B-AS1 Retinal ganglion cells Glaucoma, aneurysm

X18 rs1489169 CTIF mRNA processing Taxane treatment

close to zero indicate independence (gold lines) while larger negative numbers indi-
cate redundancy or correlation. Note that SNP pairs X8 − X18 and X1 − X6 had
evidence of stronger synergistic interaction while X12 −X7 had moderate evidence
of interaction. Also note that the strongest genetic effect involved the synergistic in-
teraction of the X1 −X6 pair. The joint effect of these two SNPs was much stronger
than the sum of the effects of the two individual SNPs and stronger than the effect
of X12 that had the strongest independent effect on POAG susceptibility.

Table 2.1 summarizes the features in the best model, their SNP numbers, the clos-
est gene that they map to, their biological function that might relate to POAG, and
prior genetic evidence for their involvement in POAG or any other disease according
to the National Human Genome Research Institute (NHGRI) catalog of genome-
wide association study (GWAS) results (Welter et al. 2014). Two of the genes are
known to be associated with glaucoma from previous large-scale studies. The oth-
ers represent potential novel findings. We used two functional genomics tools to
facilitate biological interpretation of the gene-gene relationships. The first tool we
used was Integrative Multi-species Prediction (IMP, imp.princeton.edu) software
that brings together experimental data from thousands of sources to infer gene-gene
relationships (Wong et al. 2012). This analysis did not reveal any evidence for bi-
ological relationships among this set of genes. We then used a modified version
of IMP called Genome-scale Integrated Analysis of gene Networks in Tissues (GI-
ANT, giant.princeton.edu) that performs the same analyses using data weighted to
specific tissue types. We repeated the analysis using an eye tissue specific network
and found that the VEGF gene was the gene most highly connected to these query
genes. We assessed the connectivity between the VEGF gene and the genes found
by EMERGENT using a permutation test and found that the association was sta-
tistically significant (p = 0.016). The VEGF gene is a vascular endothelial growth
factor involved in the development of new blood vessels and is known to play a role
in eye diseases including glaucoma. In fact, VEGF is being actively pursued as a
target of new drugs for treating eye diseases such as glaucoma (Horsley and Kahook
2010; Osaadon et al. 2014; SooHoo et al. 2014).

file:giant.princeton.edu


30 J. H. Moore et al.

2.5 Summary and Discussion

Human genetics has quickly transitioned into the big data realm with genome-wide
association studies or GWAS (Bush and Moore 2012; Hirschhorn and Daly 2005;
Wang et al. 2005) and whole-genome sequencing (Dewey et al. 2014) that can rou-
tinely measure hundreds of thousands to millions of single nucleotide polymorphisms
(SNPs) and other genetic variants across the human genome in large population-based
studies of human disease. The goal is to determine which SNPs are associated with
disease susceptibility. This serves two purposes. First, we hope to use models of SNP
variation to predict who is at risk of developing disease in the future. Second, we
hope that the SNPs point to gene regions that might be informative for identifying
new drug targets. One approach to modeling the relationship between SNP genotype
and disease phenotype is to fit univariate models using parametric statistical meth-
ods such as logistic regression. The advantage of this approach is that the results are
simple and easy to interpret and can be generated quickly using desktop computing.
A major disadvantage is that univariate approaches by design ignore environmental
and other genetic factors that likely modulate individual SNP relationships with de-
termining risk (Moore 2003; Moore and Williams 2005, 2009; Moore et al. 2010;
Tyler et al. 2009).

Alternatives to the parametric statistical modeling paradigm include machine
learning and artificial intelligence. Machine learning methods such as multifactor di-
mensionality reduction (MDR) have improved power to detect combinations of SNPs
that have non-additive or synergistic effects on disease risk (Hahn et al. 2003; Ritchie
et al. 2001; Ritchie et al. 2003). These model-free and nonparametric approaches
have the potential to reveal genetic effects missed by forcing the data through a pre-
conceived mathematic framework such as regression. Artificial intelligence-based
methods take this a step further by providing framework by which the algorithms
themselves can learn from the model discovery process. The ultimate goal is to de-
velop computational frameworks that can solve complex modeling problems much
as a human would. To this end, we introduced here the Exploratory Modeling for
Extracting Relationships using Genetic and Evolutionary Navigation Techniques
(EMERGENT) algorithm that uses genetic programming (GP) and, more specifi-
cally, a variation called computational evolution (Banzhaf et al. 2006) that provides
the complexity that GP needs to learn how to solve hard problems. Our previous
work in this area was preliminary with a focus on developing and evaluating differ-
ent features such as how to incorporate expert knowledge and Pareto optimization.
The study presented here is the first full-scale application of EMERGENT to dis-
covering genetic models associated with susceptibility to a complex human disease
in big data.

We applied EMERGENT to the genetic analysis of genome-wide genetic data for
primary open-angle glaucoma (POAG). We first pre-processed the data using two
different machine learning algorithms. First, we pre-computed all pairwise interac-
tion information scores to measure the synergy between SNPs. Second, we applied
the ReliefF algorithm to assign weights to each SNP that reflect their independent
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and/or synergistic effects. These measures were provided to EMERGENT as expert
knowledge to help bias the search toward those SNPs that are likely to have syner-
gistic interactions which scores high on our “interestingness” spectrum (Moore et al.
2013). We then ran EMERGENT thousands of times using a hierarchical design that
aggregates results to seed new runs. This produces a small set of final results that
can be compared and interpreted. Models were selected from a Pareto optimal front
that balanced model complexity, accuracy of the symbolic discriminant classifier
and interestingness as measured by interaction information. We were encouraged
to see that EMERGENT generated highly consistent models at the highest levels
of aggregation each generated by hundreds of independent runs. These models each
consisted of six SNPs mapping to respective closest genes. Not only did these models
classify well with accuracies above 0.6 but they were modular with simple mathe-
matical relationships that captured complex non-additive relationships in addition to
known univariate effects. Biological interpretation using functional genomics data
aggregated from thousands of publically-available experiments revealed that each
of the genes identified had inferred biological interactions with the VEGF gene that
is an actively investigated drug target for treating glaucoma (Horsley and Kahook
2010; Osaadon et al. 2014; SooHoo et al. 2014). Although not experimental proof,
these results provide an important layer of evidence that EMERGENT identified a
novel set of genes that may influence glaucoma risk through VEGF and its affiliated
genetic network.

This study represents one of the first comprehensive artificial intelligence analyses
of a genome-wide genetic study of a common complex disease. Our EMERGENT al-
gorithm was able to identify a compact and biologically relevant model of POAG with
individual genes that have not previously been directly tied to the disease. Our focus
here was on the discovery of new and novel associations. There are several next steps.
First, replication of the model, pieces of the model, the genes or the gene pathways
in independent data would strengthen their validity. Second, additional biological
validation through bioinformatics analysis of existing data and/or directed experi-
mental studies in eye cells or animal models of glaucoma would greatly strengthen
the result. Finally, a more thorough investigation of whether the genes identified here
represent new drug targets for POAG is needed (Clark and Yorio 2003). Computa-
tional approaches like this are needed to provide alternate ways of looking at data
and their relationships that complement the parametric statistical approach that has
dominated this domain.
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Chapter 3
Inheritable Epigenetics in Genetic Programming

William La Cava and Lee Spector

3.1 Introduction

In 1815, Lamarck postulated that organisms acquired adaptations from their environ-
ments during their lifetime and these adaptations were passed along to the offspring
they produced. Four decades later, Darwin showed evidence that organisms instead
evolve traits over millions of years through a combination of random mutation, nat-
ural selection, and the transmission of genetic information to their progeny, rather
than through lifetime adaptations (Darwin 1872). Four decades after that, Baldwin
reconciled the two ideas by asserting that despite the inheritance of purely genetic
material, adaptive changes during an organism’s life affected selection pressures and
thus reproductive dynamics, ensuring that the emergent adaptive ability of a genotype
could be selected for without the information explicitly being transferred in addition
to DNA.

The subsequent discovery of somatic and germ cell architecture and the biological
mechanisms for genetic inheritance caused Lamarck’s ideas to be discredited in bi-
ology. This did not stop researchers from studying the incorporation of Lamarckism
and Baldwinian evolution into genetic algorithms (GAs) (Gruau and Whitley 1993;
Whitley et al. 1994; Ross 1999; Giraud-Carrier 2002). In Lamarckian evolution for
GAs, a local search mechanism is implemented to update the population genomes
each generation. The Baldwin effect is achieved using the same local search to up-
date the population fitness landscape, but the actual genotype changes are discarded.
Whitley showed that both methods were quite useful for improving results for func-
tion optimization problems (Whitley et al. 1994). He noted that Lamarckism tended
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to improve the speed of convergence but for some cases became stuck in the same
local optima as the standard GA, whereas the Baldwinian evolution strategy was
better able to find global optima.

Various Lamarckian updating methods have been implemented for genetic pro-
gramming (GP) as well, such as equation tree snipping (Bongard and Lipson 2007),
reinforcement learning (Mingo and Aler 2007), and parameter updating (Iba 2008;
Topchy and Punch 2001). In symbolic regression in particular, concurrent parameter
updating, either by stochastic hill climbing or gradient methods, is common due to
the vast floating-point search space, and it has been shown to improve convergence
on a number of benchmark symbolic regression problems (Kommenda et al. 2013).

Researchers have been able to exploit the fact that, unlike in nature, little or no
phenotypic-genotypic mapping has to occur in the computational scheme since the
system being evolved is either identical to the genotype or the mapping of phenotypic
traits to genotype is straightforward. Previously it was assumed that the Lamarckian
implementation was extra-biological because phenotypic adaptations in nature did
not have a known physical mechanism for influencing their genotypic origins (Ross
1999). Today, however, physical mechanisms are known to exist and have been
demonstrated in many studies. The studies constitute the growing field of epigenetics,
a term that refers broadly to the ways in which gene expressions are regulated and
inherited (Jablonka and Lamb 2002; Holliday 2006). Recent studies have not only
shown that environmental factors influence gene expression in organisms (Dias and
Ressler 2013), but also that epigenetic mechanisms may be inheritable (Turner 2000;
Kaati et al. 2002; Pogribny et al. 2004; Dias and Ressler. 2014).

We present a GP method that captures this understanding of epigenetics as a
layer of environmentally influenced, evolving gene regulation that interacts with
the genotype to produce the phenotype. This system captures the advantages of
Lamarckian updating without changing the genotype, and yet preserves inheritable
phenotypic improvements in offspring, unlike Baldwinian evolution.

3.2 Background

3.2.1 GP Representation

Biological systems benefit from transmitting and evolving structurally complex sys-
tems at the more flexible genome level. The key to preserving this flexibility in GP
is to create a mapping from the genotype, i.e. the computer encoding, to the phe-
notype, e.g. the candidate equation1. In this way the genotypic search can be free
to vary through evolutionary processes and still produce constrained phenotypes. As
shown in Ryan (1996), lower constraints on evolutionary search generally improve
results. This is the goal of developmental GP approaches such as genotype-phenotype
mapping and gene expression programming (Banzhaf 1994; Ferreira 2001).

1 Note that these definitions distinguish between the program, the resulting equation, and its fitness,
unlike in traditional GP.



3 Inheritable Epigenetics in Genetic Programming 39

Classical GP (Koza 1992) represents individuals using tree structures, and most
practitioners of symbolic regression follow this trend today, as White discovered
in his community survey (White et al. 2012). In addition to tree representations,
other methods have been proposed, for example stack-based GP (Salman et al. 1985;
Spector 2001; Ferreira 2001), linear GP and directed acyclic graphs (Brameier and
Banzhaf 2007; Schmidt and Lipson 2007), tree adjunct grammars (Hoai et al. 2002),
and Cartesian GP (Miller and Thomson 2000). Despite the succinct representation of
nested equations that tree structures provide, they have disadvantages when applied
to evolutionary computation. For example, the tree structure makes it difficult to
deliver uniform variation among instructions because of the effect that the size and
shape of the trees have on the probability of change wrought by standard mutation
and crossover. Whereas in nature chromosomal crossover occurs on homologous or
nearly homologous sections of chromosomes between parents in a somewhat (but not
purely) uniform manner, standard GP crossover consists of the swapping of random
subtrees between parents. In standard GP, subtree mutation also occurs at a random
node location. Therefore the probability of mutation and crossover for terminals and
nodes in a tree is a positive function of its depth. With linear GP, this probability can
be made more uniform. Motivated by evidence that uniformity improves evolution-
ary search (Page et al. 1999), the ULTRA operator (Spector and Helmuth 2013) was
developed that converts nested expressions into linear representations, applies quasi-
uniform crossover, repairs the program parentheses, and converts the representation
back into a tree structure. The need for the ‘R’ (signifying repair) in the ULTRA
operator highlights a second disadvantage of tree representations: random manipu-
lation of tree structures at the level of instructions and literals can easily make them
syntactically invalid, and therefore controls must be in place to ensure that operations
such as mutation, crossover and initialization result in executable programs.

In our work we present a developmental linear genetic programming tool that
evolves equations with an instruction set that is syntax-free with respect to program
validity by using the principles of stack-based, post-fix equation encoding with all
instruction ordering constraints removed. In this way, genotypes are unconstrained
except by initial size during the run, and this opens the door for our investigation
of epigenetics. In most GP systems, it is possible for distinct genotypes to result in
the same phenotype, resulting in higher search flexibility. By applying epigenetic
logic to the genotype, we are able to achieve the reverse as well: different pheno-
typic expression from identical genotypes. This could provide a path for increased
diversity in a population and avoid premature convergence related to bottle-necking,
i.e. genotypic convergence. We will investigate how this affects the performance of
genetic programming in symbolic regression. The proposed epigenetic methods can
also be thought of as a new local search extension to GP that provides a mechanism
for modifying equation form by affecting phenotypic development.
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3.2.2 Epigenetics

There are two main mechanisms by which epigenetics take place in mammalian
DNA: cytosine methylation (Jones and Takai 2001) and histone modification (Turner
2000). Methylation provides a mechanism for silencing portions of genetic code, and
as such is able to determine whether certain genes are expressed during transcription.
Histones, meanwhile, are structures around which base pairs of DNA are wrapped,
and their modification affects the winding of these base pairs, which provide an
epigenetic mechanism by affecting the accessibility of genes for transcription.

These processes result in clusters of genetic material that are not expressed in
the phenotype (a.k.a. non-coding segments or introns). Introns are studied in the
genetic programming world, and initially were linked to bloat, a phenomenon in
which programs grow very large, become resistant to behavioral change, and drain
computer resources without improvement. However, there have been several studies
on the effects of non-coding segments in evolutionary algorithms (EAs) that find that
moderate levels of introns can improve EA performance by reducing the destructive
effect of crossover operations while maintaining blocks of effective code (Nordin
et al. 1995; Brameier and Banzhaf 2007). In Nordin et al. (1995) and Brameier and
Banzhaf (2007), introns are either explicitly declared in place of genes or defined as
such afterwards by observing their behavior. In our work, we instead impose an epi-
genetic condition on each instruction that functions as an on/off switch to determine
whether or not the instruction will execute within the genotype. Therefore, silenced
genes do not affect computation time during genotype to phenotype conversion, but
are present as structural elements during mutation and crossover. Epigenetic acti-
vation and silencing is learned each generation using a stochastic hill climber and
co-evolves with the corresponding genotypes.

There has been work to simulate epigenetics in GP: Tanev (Tanev and Yuta 2008)
developed a genetic programming approach that simulated histone modification for
use in a predator-prey problem. This approach did not include inheritance of epi-
genetic properties during evolution, which Tanev considered to be unrealistic at the
histone level. Studies of artificial ontogeny (Bongard and Pfeifer 2001; Fontana
2011) encompass some of the aspects of epigenetics, particularly the evolution of
phenotype control from a decoupled genotype. Still, an epigenetic approach has not
been presented that attempts to model two salient characteristics: its ability to update
based on environmental changes, and its ability to be inherited.

We make the assumption that epigenetic traits are inheritable, and focus on doing
so in a generic way that can be readily applied to any genetic programming system.
While the method is generic, a flat, syntax-free representation like the one presented
in this paper is advantageous for epigenetic switching because genotypic regulation
can be applied uniformly and easily since it does not require syntactic repair. With
other representations, the probability of epigenetic modifications may not be uniform,
and they may have to undergo a repair step to guarantee execution.

Many researchers in the field of GP see the incorporation of meta-genetic biologi-
cal functions as an open issue in GP, with O’Neill et al. noting that “. . . it can be safely
predicted that epigenetic effects will be important if GP will adopt development as
a scalability mechanism.” (ONeill et al. 2010)



3 Inheritable Epigenetics in Genetic Programming 41

Fig. 3.1 Example encoding
of x + y−3

4(z+4) with the steps of
stack execution and
equivalent tree representation

3.3 Methods

3.3.1 Developmental Linear Genetic Programming

The GP system created for this research is called Develep and the source code is avail-
able online (La Cava 2014a). We represent programs as linear genotypes written in
Reverse Polish Notation (RPN) or “post-fix” notation, as demonstrated in Figure 3.1.
The implementation functions by pushing and pulling floating point numbers on and
off of the stack. For instance, a number or variable instruction will push a floating
point value to the stack, while a binary (i.e. arity 2) operation will pull two numbers
off of the stack, perform its operation on them, and push a new value back to the
stack. This basic representation scheme is used in other GP systems (Salman et al.
1985; Ferreira 2001; Spector and Robinson 2002).

In order to guarantee execution safety in the context of arbitrary execution order,
the instructions are specialized to handle situations in which the stack does not
have the correct number of elements for an operation to occur. For example, binary
functions are ignored if the stack is not at least two elements long. At the end
of genotype execution, the top element of the stack constitutes the equation, the
phenotype, that is then used for fitness assessment. Therefore execution is safe with
respect to the resultant stack length. We distinguish between the genotype, that builds
the stack, and the phenotype, that is the top element of the resultant stack.

3.3.2 Epigenesis

3.3.2.1 Epigenetic Hill Climber

Epigenesis is achieved by creating binary switches associated with the instructions
comprising the genotypes of each individual, and the array of these switches is
referred to as an epiline. During genotype execution, only instructions from the
genotype with a true value in the corresponding epiline are executed. Individuals can
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be initialized with any combination of active and inactive epiline values, and each
generation the population undergoes one iteration of epigenetic hill climbing (EHC)
to optimize the epiline.

gen ←− genotype of individual
epi ←− epigenetic line of individual
phen ←− phenotype equation of individual
L ←− length of genotype
sr ←− switching rate
for number of hill climbing iterations do

epiTemp ←− epi
for i ∈ L do

if rand() < sr then
/ * f lip the on/off state of marked indices in the

epiline */
epiTemp(i) ←− !epi(i)

end
end
/ * get equation from genotype with updated gene expression

*/
phenTemp ←− GenToPhen(gen,epiTemp)

/ * update equation */
if fitness(phenTemp) < fitness(phen) then

epi ←− epiTemp
phen ←− phenTemp

/ * secondary size metric */
else if fitness(phenTemp)== fitness(phen) and size(phenTemp)< size(phen) then

epi ←− epiTemp
phen ←− phenTemp

else

end
end

Algorithm 1 shows the EHC algorithm for updating the epigenetic properties of
an individual in the population. During the hill climbing process, a small percentage
of epiline values are switched on or off and the genotype is re-executed with the
new epiline. For example, compare the phenotype of Fig. 3.1 to that generated
with epigenetic switching in Fig. 3.2. A different equation can be expressed by an
identical genotype in this way. The resulting equation is evaluated and kept (along
with the new epiline) if it results in a better fitness for the individual, or if it results
in a smaller equation size without changing the fitness. Equation size is measured
by the number of characters in the equation string. Using string length is a simple
but crude measure of equation size, and while more sophisticated measures could be
used, calculating string length is very lightweight and inherently penalizes inefficient
equation representations, such as having lots of nesting or many separate constants
in the phenotype.

The EHC is applied after fitness evaluation and before selection. Figure 3.3
shows the implementation within the Develep instruction set. After an initial fitness
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Fig. 3.2 Epigenetics added to
the original encoding of
f = x + y−3

4(z+4) , which in this

example results in f = x−3
(z∗4)

Note that this requires the
replacement of the ‘+’
operator in the tree
representation with the 4
operand. Thus a repair step
would be required for tree
implementation

evaluation, one iteration of epigenetic hill climbing is applied. The better fitness
value and corresponding epiline and phenotype are kept. The EHC is therefore a lo-
cal optimization scheme within the scope of genetic material already available to the
individual. It can both decrease and increase the expressed length of the genotype.
Silenced genes reduce the computational effort of developing the phenotype and
evaluating the fitness of the genotype by lowering the number of point evaluations.

3.3.2.2 Evolution of Epiline

The epiline values for an individual are connected to specific genes. During crossover,
the child inherits its parents’genes along with the genes’epigenetic states. In the case
of swap mutation, the new gene’s epigenetic state is chosen probabilistically from
the chosen percent of active genes in the initial population (i.e. if the population is

Fig. 3.3 Block diagram of developmental epigenetic programming. After fitness evaluation and
before selection, the population undergoes an iteration of epigenetic hill climbing, represented
by the dotted lines on the right. The population then undergoes the typical process of selection,
breeding and survival to produce the next generation, and the process is repeated, as shown on the
left
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initialized to be 50 % active, a new gene mutation will have a 50 % chance of being
active as well).

It should be noted that modeling the epigenetic inheritance after genetic inheri-
tance is biologically questionable. While it is generally agreed that there are sets of
imprinted genes whose epigenetic states are inherited in offspring, there is a repro-
gramming stage in embryonic development during which many epigenetic values
are erased and reapplied. The way that this reprogramming functions and whether it
is itself inherited is not well understood. We assume genotypic analog for epigenetic
inheritance in this work due to the ease with which we can embed the epigenesis
in our representation, and the fact that these values go through a small amount of
reprogramming thanks to the EHC.

3.3.2.3 Evolutionary Parameters

Crossover and mutation are used as genetic operators, with a 90 % rate of crossover
and 10 % rate of mutation. During crossover, a random point is picked in each parent,
and the tails of the two parents are swapped (a.k.a. one-point crossover). The mutation
operator is a pointwise operator inspired by Bongard’s hill climber (Bongard and
Lipson 2007). It can change or delete a randomly selected gene. Whereas all other
instructions are replaced randomly from the instruction set, operand instructions
(e.g. x, y, 1.73, etc.) are mutated by changing the argument they contain. If the
argument is a variable, it is swapped for a randomly picked one. If the argument is a
constant, the constant is adjusted by 0 mean Gaussian noise with standard deviation
equal to half the constant magnitude or replaced with a random constant, with equal
probability. Genes are selected for mutation with a 10 % probability. This probability
may seem high for a standard mutation operator, but due to the typing constraints
described above, is believed to be appropriate.

We use one of two modern evolutionary methods in our trials: deterministic crowd-
ing (DC) or age-fitness Pareto survival (AFP). In deterministic crowding (Mahfoud
1995), children replace the parent with the smallest phenotypic Levenshtein distance
if and only if they have a lower fitness than the parent. In age-fitness Pareto sur-
vival (Schmidt and Lipson 2011), each individual has an age equal to the number of
generations its oldest genes have been in the population. Each generation, a whole
separate population of offspring and one new individual are created. These individ-
uals compete with the current population in a tournament of size two that compares
age and fitness dominance, and the winners survive to the next generation. In both
DC and AFP, parents are randomly selected to produce children.

3.4 Applications

We apply the genetic programming system to a two-state differential equation prob-
lem and two benchmark symbolic regression problems. The first two problems consist
of the partitioned (Bongard and Lipson 2007) states of the Lotka-Volterra interspecies
competition model, defined as
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Table 3.1 Runtime settings

Setting Lotka-volterra Pagie-1 Nguyen-7

Terminal set {+, −,*,/,R[−1.0,1.0],x,y} {+, −,*,/,1.0,x} {+, −,*,/,exp,log,1.0,x}

Initial program length [3, 50] [10, 100] [10, 100]

Method DCa AFPb AFPb

Pop size 1000 1000 1000

Max generations 5000 5000 5000

Initial % active genes 100 50 50

Brackets indicate ranges of values picked uniformly
R ephemeral random constants
aDeterministic Crowding
bAge-Fitness Pareto Survival

ẋ = 3x − 2xy − x2 (3.1)

ẏ = 2y − xy − y2 (3.2)

The benchmark symbolic regression were chosen from the set of recommended
problems emerging from a GP community survey (White et al. 2012). We used
the Pagie-1 and Nguyen-7 problems. The Pagie-1 problem is a two-variable system
defined as

f (x, y) = 1

1 + x−4
+ 1

1 + y−4
(3.3)

The Nguyen-7 problem is defined by the single-variable equation

f (x) = log(x + 1) + log(x2 + 1) (3.4)

The settings for all the trials are shown in Table 3.1. The differential equation prob-
lems were run using deterministic crowding, whereas the benchmark problems were
solved using age-fitness Pareto survival.

Ephemeral random constants were included in the terminal set for the Lotka-
Volterra problems, and the Nguyen-7 addded the exp and log functions. For Lotka-
Volterra, all genes were active in the initial population. After running a parameter
variation study that showed higher rates of beneficial crossover with a mix of active
and inactive genes in the inital population (La Cava et al. 2014b), a starting value of
50% active genes was used for the Pagie-1 and Nguyen-7 problems.

We measured a successful run as one achieving
n∑

i=1

|y∗(i) − ŷ(i)| < 0.0001

where y∗ is the target output, ŷ is the equation output, and n is the number of
data points. The fitness metric F used during the runs includes the coefficient of
determination R2 and is defined as

F =
1
n

∑n
i=1 |y∗(i) − ŷ(i)|

R2
(3.5)
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Table 3.2 Performance comparisons

Problem Trials Method Success
rate (%)

MBF Point evaluations
per fitness case

Mean effective
size

Lotka-Volterra ẋ 50 DLGP 100 0.000 2.7430E07 29.63

50 DLGP+EHC 100 0.000 2.0655E07 24.69

Lotka-Volterra ẏ 50 DLGP 100 0.000 2.5763E07 30.3595

50 DLGP+EHC 100 0.000 2.2529E07 25.1297

Pagie-1 100 DLGP 13 0.086 3.8605E08 68.7337

100 DLGP + EHC 27 0.054 3.8678E08 40.3222

Nguyen-7 50 DLGP 72 0.0021 2.2360E08 68.97

50 DLGP+EHC 100 0.000 2.2781E07 20.2493

Results in italic are significant to p < 0.05, where p is the non-parametric ranked t-test. (Wineberg
and Christensen 1994)

where

R2 = cov(y∗, ŷ)2

var(y∗)var(ŷ)
(3.6)

For these examples, every successful run was an exact match to the target equation
form, with parameters exact to floating-point zero.

A parameter hill climber was used once per generation on each individual in
order to perform local search of constant values in the Lotka-Volterra problems. The
parameter hill climber perturbs each constant value in the expressed genotype with
0 mean Gaussian noise with standard deviation equal to 10 % of the magnitude of
the constant, and keeps the changes if they improve fitness. Likewise, the EHC was
run for one iteration each generation with a switching rate of 10 %.

3.5 Results and Discussion

The results are summarized in Table 3.2. We compare results by success rate (exact
solution), mean best fitness (MBF), mean number of total point evaluations in the
trials, and mean effective program length (number of active instructions) during the
trial. The EHC increased success rate on the Pagie-1 problem from 13 to 27 %,
and increased success rate on the Nguyen-7 problem from 72 to 100 %; meanwhile,
standard DLGP and DLGP+EHC both solved the Lotka-Volterra problem 100 % of
the time.

Despite increasing the number of fitness evaluations per generation by imple-
menting the EHC, we found that the total number of point evaluations during a run
actually decreased for most problems, with statistically significant decreases in the
Lotka-Volterra and Nguyen-7 problem. This is due to a combination of improved
success rate (for Nguyen-7) and the lower effective program length. For the Pagie-1
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Fig. 3.4 Program size comparison during evolution of Pagie-1, averaged over the trials of each
method. Both total and effective length are shown for the regular DLGP method and the additional
EHC implementation

problem there was approximately a 2 % increase in total point evaluations, likely
due to the fact that most trials went to the maximum generations without finding a
solution. While it is difficult to make a direct comparison to previously published
results due to the variability in experimental setup and termination criteria, it is noted
that most algorithms do not find (or do not report) as many exact solutions to the
Pagie-1 problem (Pagie and Hogeweg 1997; Kommenda et al. 2013; Spector and
Helmuth 2013) [eg] or the Nguyen-7 problem (Uy et al. 2011; Krawiec and Pawlak,
2013), especially when using “standard” GP.

We also found that the EHC provided good size control during evolution, as
shown in Figs 3.4 and 3.5. While the total genotypic size remains similar to DLGP,
with EHC activated the effective size of the programs was 17 % shorter for each
Lotka-Volterra state, 41 % shorter for Pagie-1, and 70 % shorter for Nguyen-7. For
the Lotka Volterra cases, the smaller initial program sizes and 0 % inactive genes
may explain why the size difference is less pronounced. Furthermore, as Fig. 3.5
shows, the EHC addition resulted in final solutions with less bloat, meaning that the
expressed genotype of the solution was closer to the smallest possible size by which
the exact solutions could be represented.

3.6 Conclusion

We have demonstrated a straightforward way to incorporate some of the key fea-
tures of epigenetics into linear genetic programming in order to improve symbolic
regression performance. We represented two characteristics of epigenesis in this
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Fig. 3.5 Comparison of solution bloat, which is the difference in size of the solution program and
the smallest possible solution program for the exact solution

implementation: (1) dependence on environmental factors by use of the EHC, and
(2) inheritability by evolution of epilines with their corresponding genotypes. Unlike
previous methods, our system allows offspring to inherit both the learned phenotypic
traits of their parents as well as the genotypic underpinning. With this system we
demonstrate higher success rates and lower solution bloat for a number of symbolic
regression problems, with equivalent or lower computational effort required. This
suggests that the epigenetic implementation is able to capitalize on the benefits of
Lamarckism (fast convergence) and Baldwinian evolution (finding global optima).
We hope this work will provide the basis for further investigation into how epige-
netic learning and evolution can interact to improve genetic programming for many
applications. Namely, further work should address various levels of epigenetic in-
heritability, as well as the contributions of environmental factors or inheritance to
the improvement in success.
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Chapter 4
SKGP: The Way of the Combinator

William P. Worzel and Duncan MacLean

4.1 Introduction

Genetic Programming (GP) has a rich history in both implementation and applica-
tion. It is an evolutionary algorithm that evolves computer programs and is closely
related to Evolutionary Programming and Evolutionary Strategies. GP generally
refers to the thread of development that traces its lineage back to Koza (1992) and is
characterized by three main aspects: a means of representing a population of func-
tions or programs that will allow evolutionary operations to be applied with relative
ease; an implementation of genetic operators, particularly crossover and mutation,
that allows two or more individuals to be combined to produce offspring programs,
which allows an individual program to change its structure or content, or both; and
a way to resolve problems of functionality that arise from crossover and mutation.
While there are other aspects of GP that are significant in their operation, these three
factors: representation, implementation of genetic operators, and resolution of what
may be called “program coherency” are the fundamental characteristics of GP.

There have been many variations in GP implementation starting with “Classic
Koza GP” (Koza 1992) which uses program (parse) trees, Automatically Defined
Functions (ADFs) (Koza 1994), grammatical evolution of GP (Ryan and O’Neill
1998), and stack based GP (Spector 2001). Spector et al. (2005) extended the Push
architecture to include combinators, but has not used them extensively. Briggs and
O’Neill (2006); Briggs and O’Neill (2008) described the use of combinators in GP
and did some brief benchmark tests but seems to have left the pursuit of this approach
behind after publishing two papers. We will describe the use of combinators in
GP more thoroughly, explain an unusual benchmark of the system, and describe
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some “real world” applications of our SKGP system before describing some future
developments that may be of interest to the GP community.

4.2 Combinators

Combinators were first described in Schönfinkel (1967) and were more broadly
developed by Haskell Curry (Curry 1929). They belong in the realm of functional
programming and provide a way to extract variables from expressions which Turner
(1979) demonstrated could be an effective way to implement functional programming
languages. He observed that a result from combinatory logic could be used to remove
variables from functional programs using combinators that were “compiled” into
expressions that can be easily and efficiently evaluated.

The main operation is the “application” of a function to arguments (hence the
alternative name for this style of programming, “applicative”). Function application
is written in prefix notation via juxtaposition. For example, the function “+” which
adds two numbers, would be written

+ 1 2

which would evaluate to 3. We will write this informally as

+ 1 2 → 3

A technique called “Currying”, named for Haskell Curry, but apparently first sug-
gested by Schönfinkel (the term “Schönfinkelling” never caught on), means that we
only have to consider functions of one argument.
Consider again the function “+” above.

+ 1

can be considered to have as value the function “+1” which adds one to things. In
turn, this function is applied to 2 and has a value 3. Hence application associates to
the left, so the original expression would be parenthesized as

( + 1) 2.

A more complex example is the factorial function, which defined recursively in
pseudocode, might be written

let fac n = if (n == 0) then 1 else n ∗ fac(n − 1)

To rewrite this in applicative form, we need to introduce an applicative form of the
conditional, “?”

? true x y → x

? f alse x y → y
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Now we can rewrite the definition of factorial thus

f ac n = (? (=0 n)1 (∗ n(f ac (− n 1))))

How do we evaluate (f ac 3)? We substitute 3 for n (or “bind” n to 3) in the expression
on the right hand side. The recursive call to f ac will create a new binding for n.
This process is relatively simple for this case, but if a function returns a function as
a result, then the system would have to create a closure to remember the bindings.
This complexity resulted in a reputation for functional languages for inefficiency.

Turner observed that a result from combinatory logic could be used to convert
functional programs written in the style we have described into a form from which all
variables have been removed, and “compiled” programs that result can be evaluated
in a particularly simple way.

The key combinators in this process are as follows:

K a b => a

I a => a

S a b c => a c (b c)

Where S, K and I are combinators and a, b, and c are atoms or expressions. As with
most functional programming, combinator expressions are always applied left-to-
right so the result of applying the S combinator: a c (b c) may be read as ‘a’ applied
to ‘c’ and the result of that application is applied to the result of applying ‘b’to ‘c’
(since ‘(b c)’ must be evaluated first due to the parentheses surrounding them).

Armed with these three simple combinators, Turner showed that variables could
be removed from expressions as follows.

We define an operation called abstraction to remove variables. The abstraction of
x from expression E is written [x] E. Abstraction is inverse to application, that is

([x]E)x = E < x is abstracted from E x where ‘E’ is any expression>

In the simplest abstraction algorithm, there are just three rules, depending on the
structure of expression E

If E is atomic (a terminal) then either E = x or E = y �= x

[x]x → I

[x]y → Ky

If E is not atomic, but consists of an application (E1 E2), then we introduce an S

combinator and recurse.

[x]E1E2 → S([x]E1)([x]E2)

It is simple to verify that abstraction is indeed the inverse of application, and that the
process of abstraction does indeed remove all references to the bound variable from
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the expression, at the cost of introducing a quantity of combinators. For functions
of several arguments, recall the currying process and note that each argument can
be removed in turn. This can result in an explosion in the number of combinators,
so in practice, additional combinators are defined and more rules are added to those
above to alleviate this problem. Two simple optimizations deal with the case where
one or the other of the two sub expressions do not depend on x. By introducing new
combinators B and C, with reduction rules

B f g x → f (g x)

C f g x → f x g

and abstraction rules
[x] E1 E2 → K (E1 E2) If neither E1 nor E2 contain x (note that the application

of K selects (E1 E2) and abstracts out x)

[x] E1 E2 → BE1([x]E2) If just E2 contains x

[x] E1 E2 → C ([x]E1)E2 If just E1 contains x

we can optimize the abstraction of variables.
Note however, that not even I is essential since

S K K x → K x (K x) → x

so
I = S K K

So only S and K are necessary (“form a basis”). In fact, a single element basis can
be defined, but the combinator required is so complex that it is not practical for
implementation.

As an example, with these rules, and a couple of other obvious optimizations,
factorial becomes:

f ac = S (C (B ? (= 0)) 1) (S ∗ (B f ac (C − 1)))

4.3 Implementation of SKGP

Diagrammatically, an application (fun arg) may be represented as:

Consider again the function “+” from above (Figs. 4.1, 4.2).

+ 1

can be considered to have as value the function “+1” which adds one to things. In
turn, this function is applied to 2 and has as value 3. Hence application associates to
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Fig. 4.1 Graph representation
of + 1 2 in memory

Fig. 4.2 Graph representation
of (f x y z) in memory

Fig. 4.3 Graph representation
of application of S

combinator

the left, so the original expression would be parenthesized as

( + 1) 2.

And in memory, it would look like Fig. 4.1
In general (f x y z) is interpreted as (((f x) y) z) and in memory it would look like
Fig. 4.2.

Here is what S reduction looks like in graphical terms. The top application node
on the right in Fig. 4.3 has had its fun and arg pointers overwritten with pointers to
two newly created application nodes. Note that the two nodes below the new nodes
are left dangling. They are not deleted, because there may be other pointers to them
elsewhere. If this was the only pointer to them, then they will eventually be reclaimed
by garbage collection.

Using this approach, the factorial program described above: f ac = S (C (B ?
( = 0)) 1)(S ∗ (B f ac (C − 1))) would be implemented as shown in Fig. 4.4.

However, this implementation still leaves a reference to f ac itself in place as the
recursion needed to express the factorial calculation in a functional way. We can even
get rid of the “fac” by introducing another combinator Y , also called the fixed-point
combinator or paradoxical combinator. It has the rule

Y f → f (Y f )

although this is actually implemented as shown in Fig. 4.5.
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Fig. 4.4 Graph
representation of factorial
function

Fig. 4.5 Graph representation
of Y combinator in memory

It is called the fixed-point combinator because Y f is a solution of x = f x

Then we observe that if
f un = E

then f un = ([f un] E) f un since abstraction is the inverse of application, so

f un = Y ([f un] E)

where the right hand side no longer contains any references to fun.
With this, programs move beyond trees to become graphs with cycles. Therefore,

the process of evaluating programs by applying reduction rules is often called “graph
reduction.”

The lambda calculus can represent partial recursive functions, so the lambda
calculus, and hence our combinator calculus, is “Turing complete.” This, together
with the very straightforward uniform implementation, makes it attractive as a GP
representation.

It is this model of functional programming that we have chosen to implement in
the SKGP genetic programming system. As in conventional GP, there are two kinds
of object, terminals and non-terminals. However, there is only one non-terminal,
and that is an application. The terminal consist of built in functions, the combinators
described (and others) and potentially built in functions as well. There are no vari-
ables, which might be substituted by the actual value of arguments in a conventional
GP system. Instead, the program is applied to the arguments and graph reduction
performed until a result is computed.

There may be several reductions that can be performed at any one time. The
Church-Rosser Theorem (Church and Rosser 1936) tells us that it does not matter in
what order these are performed. A reduction order which has a particularly attractive
property is called “normal order reduction.” In this case the left most reduction that
can be performed at any point is the one performed. It can be proven that if any
reduction order terminates, then this one will. Also, normal order reduction has a
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simple implementation. We simply trace down the function side of the program tree
from the root pushing pointers onto a stack until we find a reduction we can perform
and do that, using the stack for convenient access to the arguments.

There is a slight complication to this due to the fact that we have added some
“strict” functions whose arguments must be evaluated before the function itself can
be evaluated. These include the arithmetic functions such as “+”. When we encounter
a “+” to evaluate, we must first evaluate its arguments. To do this we evaluate each
argument in turn as a sub-reduction, creating a new stack frame and repeating the
process we use for the overall program.

4.4 Type System

There is a problem with the system if it is to be used in genetic programming. If you
generate a random program tree, it is very likely to go wrong because an application
tries to apply a function to the wrong kind of argument. The solution to this is to
assign types to terminals and applications and only generate programs where the func-
tion and argument are “compatible” in the sense that the program will not go wrong
when the application is evaluated. This kind of idea was introduced to GP in Montana
(1975). However the approach used there was rather ad-hoc. Clack and Yu (1997)
introduced a formal type system based on a Hindley/Milner polymorphic type system
as used in functional programming systems such as ML or Haskell. Milner (1978)
is a classic reference. Hindley (1997) is a thorough introduction, although develop-
ing a type system for the lambda calculus rather than combinatory logic. Practical
treatments are given in Jones (1987) Chaps. 8 and 9 and Aho et al (1986) Chap. 6.

The development of SKGP is based on the work of Clack andYu (1997), but using
combinators rather than lambda abstractions, as they introduces in later papers, e.g.
Yu and Clack (1998).

Interestingly, programs which can be assigned types under the basic type theory
have the Strong Normalization Property i.e. they must always terminate with the
same result. This seems to solve not only the problem of failure due to type incom-
patibility, but also failure due to non-termination. However, this means that this class
of programs cannot be Turing complete, since otherwise we would have a solution
(the type-checking algorithm) for the halting problem. This raises the question of
whether this class of programs is a powerful enough subset to be useful and will be
discussed a little further at the end of this section.

An informal discussion of the type system and type-checking algorithm will be
presented here though the reader is encouraged to review the above references for
more details.

The type system is static, rather than dynamic. This means that type checking is
performed on the static program source, rather than at runtime, as in a dynamically
typed language such as Smalltalk. This means that we do not need to carry type
information at run time, because the possibility of type errors has been eliminated
by the static analysis.
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Note also that we do not implement any form of coercion or implicit type conver-
sions such as allowing an integer to be used as an argument to a function that requires
a float. Specific conversion functions would have to be provided to allow this.

We will write E : τ to denote that E has type τ .
We have some basic types, which include integers, double precision floating point,

booleans e.g.,

1 : Integer
1.5 : Float
true : Boolean

A function taking an argument of type σ and returning a result of type τ has type
σ → τ , e.g.

sin : Float → Float

Recall that currying means that all functions are of this form (i.e., their application
maps from a type to a result type), but the return type may itself be a function. Take
for example the function + which returns the sum of two floating point numbers

+ : Float → (Float → Float)

That is + takes a floating point number (x) and returns a function from floating point
numbers to floating point numbers, namely the function that adds x. We omit the
parentheses in this case, writing

+ : Float → Float → Float

What about the combinators? Consider I , which has the reduction rule

I x → x

So I can take an argument of any type, and returns a result of the same type. To
denote this, we use a type variable

I : σ → σ

This is called a polymorphic type. σ can be replaced by any type, e.g. Integer,
resulting in Integer → Integer.
What about the other combinators? K x y → x. Assume x : σ and y : τ , so

(K x) : τ → σ

and hence
K : σ → τ → σ

Remember that when fully parenthesized this would be written K : σ → (τ → σ ).
Now Let’s tackle

S f g x → f x (g x)

x is never applied to anything, so it can have the completely general type ρ.

x : ρ

We see g being applied to x. Let us say that it returns a value of type σ , so
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g : ρ → σ

Let us say that when f is applied to two arguments it returns a value of type τ . So
we can deduce from the shape of f x (g x) that when f is applied to an argument
x of type ρ, it return a function which takes an argument of the type of (g x), which
is σ , and returns a value of the type τ so

f : ρ → σ → τ

So now we know the types of all the arguments of S, and the result, so we have

S : (ρ → σ → τ ) → (ρ → σ ) → ρ → τ

The informal process used to find the type for the S combinator actually found the
“Principal Type.” That is, S may be applied to arguments f , g and x of any type for
the type variables ρ σ and τ and not have a type error. The Principal Type is the most
general type that can be assigned to a term, in this sense.

Two types are “compatible” if there is a substitution for the type variables in the
two types that can make them equal. The unification algorithm, first developed in
Robinson (1965) for automated theorem proving, is used to find if such a substitution
is possible. The unification algorithm lies at the heart of our type-checking algorithm.

A more accessible version of Robinson’s original reference is Robinson (1965),
which Robinson calls “the mechanization of deductive reasoning”.

The algorithm takes two types, and returns either false, if they cannot be unified,
or true, and a list of substitutions to unify them if they can be unified.

We perform type checking at three crucial stages

1. When creating programs in the first place. If we create only type correct programs,
we should not get any run time errors. We create programs recursively from the
root. We start with the target type of program we are trying to generate. We then
choose at random to create either an application (non-terminal) or insert a terminal
(subject to other limits on the size or depth of the program tree). If we choose a
terminal, then we pick one at random (subject to the specified weights) and then
try to unify its type (instantiated with new unique type variables) with the required
type. If the types unify, then this terminal is type valid, the substitutions required
for unification are added to the ongoing substitutions for the whole program and
program construction continues. If the types do not unify, then another terminal
is selected and tested in the same way. If no terminal has a type that unifies with
the required type, then we can try generating an application instead, or failing.
This can cause the generation of the whole program to fail, or backtracking to be
applied, depending on runtime flags. If we choose to insert application, we will
make two recursive calls to the creation function, one for the function part of the
application, and one for the argument. If the type required for the application is
Θ , say, then we instantiate a new type variable σ and require the function part
of the application to have type σ → Θ and the argument part to have type σ , so
that when the function is applied to the argument, they are type compatible, and
return a result of type Θ , as required.
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2. When performing crossover, we only cross over type compatible program
fragments. This ensures that if the parents are type correct, then so are the
offspring.

3. When performing mutation. Again, when we replace a part of the program tree
with a newly created branch, we make sure that the new branch is type correct
and compatible with the node it is replacing.

The type system can be extended to cope with structure types such as lists and trees.
In the initial implementation, we provided a list type, providing for homogeneous
lists (all elements have the same type), written [σ ] for the type of a list of elements
of type σ . An empty list is denoted by Nil, which has principal type [σ ]. Functions
hd and tl provide access to the head (first element) of the list and the tail (the rest of
the list) and a pair function P to add elements to the head of a list

Nil : [σ ]
hd : [σ ] → σ

tl : [σ ] → [σ ]
P : σ → [σ ] → [σ ]

There is a problem with these functions, though. If you attempt to take the hd or tl of
Nil, an error results. hd and tl are partial functions. Yu (2000) ran into this problem
and devised a special fitness function to penalize programs that had errors of this
kind. We prefer to use the type system to avoid errors of this type. For this reason
we have introduced two new type operators, union and product, and also a method
for creating user-defined types which will enable new types such as lists or binary
trees to be added to the SKGP system without modifying the core.

The product type is the type of a pair (or “cons cell” for those coming from a
LISP background). If the type of the left element (or “car”) is σ and the type of the
left element (or “cdr”) is τ , then the type of the pair is σ x τ , so the function types
are now

car : σ x τ → σ

cdr : σ x τ → τ

P : σ → τ → σ x τ

The union type means that an object can be one of two types. If the two member types
are σ and τ , then the union type is written σ + τ . A project function is provided
which applies the right sort of function depending on which member of the union it
is, and two injection functions give methods for creating union type objects from the
member type objects

inl : σ → σ + τ

inr : τ → σ + τ

project : (σ → ρ) → (τ → ρ) → σ + τ → ρ

The next new feature is a special Nil type, for denoting empty lists. There is only
one object of the nil type, Nil. At the risk of some notational ambiguity

Nil : Nil
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Finally, in order to get back to a list type again, we introduce user-defined types.
These create new parameterized types by recursion. Currently, we only support user-
defined types with one parameter, but this could be expanded. We define the type
List(σ ) by the following equation

List(σ ) = Nil + (σ x List(σ ))

That is, a list of elements of type σ is either (union) Nil or a pair (product)
consisting of an element of type σ (the head) and a list of elements of type σ (the tail).

We have extended the implementation of the unification algorithm to allow the
expansion of a user-defined type by replacing any occurrence of the user-defined
type by the right hand side of its definition in order to unify.

Now the project function is the only way to pick apart the union in the definition
of a list, so this means that we must always handle the Nil case in order to have a
type correct program. No more taking the hd or tl of an empty list!

That still leaves us with the problem of infinite recursion. So long as we don’t
introduce a recursion combinator like Y , then the strong normalization theorem tells
us that any program that can be typed must terminate. That would seem to be an ideal
solution. However, we have not managed to evolve programs that would normally
be defined using recursion without introducing some sort of explicit recursion mech-
anism. We are not yet sure whether this is because the class of typeable programs is
too small to include programs that can solve these problems, or because our existing
combinator set is not well geared to evolving such programs.

There has been much work on proving termination for functional programs. An
example is Elementary Strong Functional Programming, (Telford 2000). However
this is a method for proving that a particular program will terminate, rather than
constraining any program to terminate, such as we require.

The approach taken by Yu in Yu and Clack (1998) was to provide terminals
such as map and foldr that have the desired termination properties and evolve
functions using these as building blocks without providing any other recursion mech-
anisms. Unfortunately we have not yet seen immediately how to use this approach
to user-defined types, for which we would have to hand-code the map functions.
In languages with pattern-matching primitives, such as Charity (see home page at
http://pll.cpsc.ucalgary.ca/charity1/www/home.html), you effectively get fold and
map functions for free. Whether this can be achieved in a pure combinator language
remains to be seen.

Note that Y cannot be assigned a valid type, since otherwise there would be a
contradiction to the strong normalization theorem.

Another approach is to introduce a recursion combinator R. (This is similar to
the approach taken in Yu (2000)). The R combinator is assigned the same type
as the program being evolved, and represents a recursive call to that function. It
is substituted with a pointer to the root of the function before evaluation. This is
equivalent to abstracting the function name out, then adding the Y combinator and
applying the Y combinator, with the restriction that the Y can only occur at the root
of the program tree.

Using this method we have been able to evolve recursive functions successfully.
This method is still not proof against non-termination due to infinite recursion (just
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making a recursive call passing the original argument.) One possibility is to consider
the recursive case of the user-defined type as a slightly different subtype i.e.

List(σ ) = Nil + (σ x Listsub(σ ))

where the matching of the type and its subtype is restricted, then wherever the type
of the program references List(σ ) then the R combinator would reference Listsub(σ ),
thus forcing the recursive call to refer to just a part of the original argument. This takes
the place of the pattern matching which might be provided in a more “user-friendly”
language such as Charity.

4.5 Real World SKGP

The Briggs and O’Neill (2006) version of GP uses a Hindley-Milner strong type
system with GP. They work through a number of common GP benchmarks includ-
ing Linear Regression, Even Parity, and Stack and Queue evolution and show that
combinator GP works well when compared to more standard representation forms.
However such benchmarks, while demonstrating that and SKGP type approach is
viable, does not in and of itself demonstrate usefulness in a real world setting.

Over the last 20 years, we have applied the SKGP to a number of different problems
and in all cases where GP could be reasonably expected to return a result, we have
reached satisfactory results. A brief summary of a few of these results are given along
with some description of adaptations of the SKGP to solve specific problems.

4.5.1 Modeling Chemical Kinetics

In 1998, we used the SKGP to create a functional model of jet fuel combustion for
NASA under a Small Business Innovation Research grant (SBIR). NASA had an
existing first principles model of this combustion but it was very slow as it involved
a set of complex PDEs to model the dynamics of the combustion of jet fuel. It was
literally faster to test a specific jet fuel than it was to carry out the simulation. We
were asked to “model-the-model” in order to produce a functional rendering of the
model that was accurate within a range of inputs but was faster to compute. Such
models are sometimes called surrogate models or emulators and have been used in
many areas of study.

As a proof of concept, we were tasked with modeling three separate characteristics
(temperature, pressure and velocity) at various points of a jet given a range of inputs
and the resulting outputs of the first principles models. The resulting surrogate model
was accurate to 0.1 % across the range of inputs it was trained on when tested on
unseen combinations of inputs and had a speed of execution that was on average
more than 2500 times faster than the first principles model. Using the SKGP we
produced an empirical description of the reaction surface of the PDEs used in the
model.
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4.5.2 Modeling Molecular Biology

From 2001 through 2012 we applied the SKGP to various problems in molecular
biology, particularly in molecular diagnostics. There were a series of publications
relating to this work including Mitra et al. (2006); Lenehan et al. (2009); Almal et
al. (2006); Yzerman et al. (2010) and Yu et al. (2007).

Most of these were classifier problems where we evolved functions from a training
set of genomic data using the Area Under the Curve (AUC) for the fitness function,
and assigned a slicepoint based on metrics dependent on medical preferences. For
example, in predicting the recurrence of a disease (such as withYzerman et al. (2010)
it may be more desirable to have more false positive cases than false negative due to
the consequences of missing a significant number of disease cases.

Mitra et al. (2006) is a particularly interesting case. We used GP to answer one
question and found that we were asking the wrong question. In this case, Dr. Richard
Cote asked whether we could find a molecular signature that corresponded to T-
staging of bladder cancer tumors. Using the SKGP we analyzed the data but found
that the results were, at best, inconclusive. However, in analyzing the samples that
were misclassified, we noted that they had one unifying characteristic: they were all
samples taken from tumors that had metastasized to local lymph nodes.

This suggested that there was a change in tumors after metastasis took place.
Reanalyzing the samples in this manner found a clear signature associated with
metastasis, though whether it was causative or simply after the fact of metastasis
cannot be known without more experimentation, but the signature is at least sugges-
tive as it seems to involve a molecular pathway known to be implicated in metastasis.
This demonstrated the ability to derive a reliable identifier of metastasis using the
SKGP as well as finding functions that are at least suggestive of the metastatic pro-
cess. It also highlights the importance of “listening to data” in the sense that analyzing
the results for more than success or failure is an important facet of GP.

4.6 Escaping the Bottle

In Daida et al. (2003), a fundamental limitation of tree-based GP was described based
on structural aspects of tree-based GP. He discovered the existence of this problem
and investigated the theoretical causes using a series of tunable problems he devel-
oped that were independent of anything other than the structure of the solution and
showed that regardless of fitness landscapes, control parameters and other assump-
tions, these structural limitations severely limited GP from exploring more than a
tiny fraction of the theoretical space. In essence, Daida described severe limitations
on the space that could be searched due to the fractal nature of the growth of GP
trees and its similarity to diffusion aggregation.

Figure 4.6 shows the constraint. This figure shows the number of nodes that can
be found using one of the tunable problems. The fitness measure was how close to
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Fig. 4.6 GP constraints

a full tree can be created using GP where “full” means all possible nodes at a given
depth are expressed in the tree.

In this figure first note that the plot is on a log scale so that the number of nodes
increases by the power of two along the Y-axis. The two outermost lines show the
theoretically accessible portion of the search space as the depth and number of nodes
increases. Anything outside of those lines are impossible to represent and are labeled
region IV. The innermost shaded area labeled I (which Daida called a “bottle”) is
easily accessible to standard GP. Most reachable solutions are contained within this
region. The area labeled II is seldom reached and the region labelled III is almost never
reached with standard tree-based GP. Note that region III is 15 orders of magnitude
bigger than regions I and II. This means that, based on structure alone, standard GP
cannot effectively search for solutions that are outside the bottle of region I.

Daida went on to observe that structure altering techniques or architectures make
it possible to expand the search space. Such techniques include Automatically De-
fined Functions (ADFs), duplication and deletion operators. He also noted that other
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Fig. 4.7 SKGP results on
LiD problem

representations such as the cyclic graph structures Koza used in Koza et al. (2004) to
create analog circuits also had the property of escaping from this limitation through
creating a meta structure to evolve designs.

With this in mind, given that SKGP uses structure altering operators in the form
of graph reduction operators, we explored the SKGP’s ability to “escape the bottle.”
As Fig. 4.7 shows, the SKGP was able to produce several solutions outside the bottle
including those that were in region III, with one solution reaching approach 10 orders
of magnitude greater number of nodes.

This result demonstrates that combinators are powerful structure altering operators
and, that when they are used in GP, they have the potential to eliminate one of
the structural limits inherent in standard GP. That said, in many cases, adequate
solutions may reside within region I, in which case using non-strict combinators



68 W. P. Worzel and D. MacLean

expands the search space exponentially without any appreciable benefit. Daida et al.
(2003) suggest this may be the case in their conclusion where they state that: ...this
work does not necessarily support the premise that GP is deficient. Linkage between
problem-solving ability and diversity has not been established.

We have found that in many cases, limiting our analyses to 10 % of the possible
solution space that Daida estimated as being accessible within the bottle will solve
many useful problems. In this case, we simply remove structure altering operators
such as S, K, B and C and instead focus on strict operators. However there have been
cases where better solutions were found using structure altering operations as long
as the depth of the allowable graphs are not excessive.

4.7 GP and SKGP in the World of Big Data

While the work described above, including successful “real world” applications,
suggest that combinators and graphs are at least a satisfactory representation method
for GP. The fact that combinators are structure altering operators may provide an
escape from structural limitations inherent in tree-based techniques increases their
value. However, there is more of value in using them in GP.

The first and most obvious value of combinator expressions is that because they
are pure functional expressions, according to the Church-Rosser Theorem each ex-
pression may be evaluated independently of one another and a function composed of
many expressions may be evaluated in parallel. Moreover, while this characteristic
has been known for some time (see for example Turner (1979) and Jones (1987)), it
was never as useful as it might have been because parallel evaluations may lead to
wasted time due to unused expressions being evaluated. To take a trivial example,
consider the expression:

(K(+ 2 3)(∗4 5))

Obviously the (+2 3) and (∗ 4 5) expressions could be evaluated in parallel, ap-
parently saving time. But recall that K x y → x and you see that the evaluation
of (∗ 4 5) is totally useless. Variations on this conundrum reduce the value of the
Church-Rosser Theorem as applied to the evaluation of computer expressions.

However, GP is not a case of a single run on a single set of data. Instead, we
make multiple runs on training data over generations. This means that a component
expression that is reused in future generations may have the graph-reduced value
stored in order to replace the recurring sub-expression wherever it is used. By caching
the reduced subexpression for each training case, it should be possible gain even
more as it will reduce the time needed for each case for multiple training cases. Such
a caching scheme would also apply to entire expressions since, depending on the
selection method, some expressions will remain unchanged for generations.

Moreover Blickle and Thiele (1996); McPhee and Hopper (1999); Daida et al.
(2003) all provide evidence that diversity of building blocks within a population de-
creases quickly (particularly under tournament selection) leaving a relatively small
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subset of sub-expressions that are combined in different ways. This suggests that be-
yond the first few generations, the reuse of expressions should increase the speed of
evaluation of individuals on a multi-processor system from the linear speedup inher-
ent in parallel process to a super-linear speedup as the diversity of sub-expressions
goes down and the available cache of sub-expressions applied to training samples
goes up.

In the world of Big Data, where high-speed machine learning algorithms are of
critical importance, the SKGP offers an inherently fast, parallel structure. Moreover,
the fact that GP embodies a population of solutions means that as real-time data
analysis needs change (eg, because of changes in shopping trends), a continually
evolving solution is possible with subpopulations evolving using sliding time win-
dows of data. In other words, it is not necessary to restart an analysis from scratch
but rather we can continue an “endless” evolution of solutions.

In such an environment, niche solutions can be as important as mainstream so-
lutions as different users may have different tastes. There is anecdotal evidence that
big Internet companies are as interested in niche results as they are of the larger
trends that are easy to find. Real-time analysis of GP populations can identify such
sub-populations which can be presented for minority solution identification.

All told, GP is a useful analytic tool for Big Data and the SKGP is a particularly
flexible and suitable to the existing parallel infrastructure used in this area.
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Chapter 5
Sequential Symbolic Regression with Genetic
Programming

Luiz Otávio V.B. Oliveira, Fernando E.B. Otero, Gisele L. Pappa
and Julio Albinati

5.1 Introduction

Many researchers have been interested in exploring the regularities and modularities
of the search space in order to improve the performance of Genetic Programming (GP)
when dealing with complex problems (Koza 1992a, 1994). A popular approach is to
allow GP to define modules, by either evolving specific code to be used as a module or
identifying potentially useful code in existing individuals, in the hope that a module
will capture regularities in the search space and ultimately decompose the original
problem into small (more tractable) subproblems. While previous approaches have
shown some degree of success, they rely on the idea that useful modules will emerge
during the GP search and they are very much focused on the structure (syntax) of the
individuals. There are potential drawbacks associated with these assumptions: there
is no guarantee that modules are solving different parts of the problem, the quality of
modules is determined indirectly by evaluating the individuals that use the modules
and there is still a pressure on the GP to find the complete solution to the problem at
once—i.e., both modules and the code that uses the modules are evolved at the same
time.

Traditionally, GP search operators perform modifications to individuals’ repre-
sentation (syntax), with the aim that these modification will lead to changes in their
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behaviour (semantics). In other words, traditional GP search operators are blind
operators regarding the semantics of an individual. In the same sense, syntactical
approaches for modularisation are also blind regarding the definition of modules,
since there is no guarantee that their behaviours are different—i.e., that they are
solving different parts of the problem. Moraglio et al. (2012) recently proposed geo-
metric semantic search operators in the context of the Geometric Semantic Genetic
Programming (SGP), which can be used to directly search the semantic space of the
problem. An interesting characteristic of SGP is that the fitness landscape seen by the
search operators is unimodal for problems consisting in finding the correct mapping
for input-output pairs—the fitness is the distance of the output vector of a solution
to the optimum. Therefore, these operators present a new opportunity to explore the
modularity of the GP search.

The problem-solving procedure employed by GP algorithms can be seen as a
supervised learning procedure: given {(c1, o(c1)), . . ., (cn, o(cn))} input-output pairs
representing the training cases C, where each pair (ci , o(ci)) denotes an input value
and its correspondent output value, respectively; the problem can be defined as find-
ing a function f : C → O that maps each case ci in C to its correspondent output
o(ci) in O. Many supervised learning algorithms employs a strategy to decompose
the original into subproblems, find solutions to these subproblems and use them to
generate the solution for the original problem. For example, top-down decision tree
induction employ a divide-and-conquer strategy, where at each decision (internal)
node the training cases are divided based on a test outcome. Each subset of the training
cases, representing a reduced problem, is pushed down the tree and the procedure is
repeated until a leaf node is generated. A similar strategy is used by many rule induc-
tion algorithms, where a sequential covering strategy is used to transform the problem
of finding a list of classification rules into a sequence of smaller problems of finding a
good rule. After a rule is created, the training cases classified by the rule are removed,
reducing the number of training cases for the next iteration of the procedure.

Given that GP is essentially a supervised learning method and geometric seman-
tic operators enable the direct manipulation of the output vectors, could we apply a
heuristic to decompose the problem into smaller subproblems and use GP to solve
them? Otero and Johnson (2013) presented a strategy based on the sequential covering
to decompose a boolean problem into smaller subproblems. Each subproblem is then
solved by a traditional GP and the individual solutions are combined using a geomet-
ric semantic crossover. It uses a property of the geometric semantic crossover for the
boolean domain: individuals are combined using a boolean mask, which acts as a se-
lector to inform when a particular individual solution should be used. While this strat-
egy is successful for boolean domains, there is not a straightforward way to adapt it to
the real domain, since the operation of the geometric semantic crossover is different.

In this chapter we present a method to sequentially solve symbolic regression prob-
lems using a combination of geometric semantic operators and a heuristic inspired
by the traditional sequential covering strategy. The proposed method, Sequential
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Symbolic Regression (SSR), works by sequentially transforming the original prob-
lem, according to the partial solutions generated, into potentially simpler ones. The
rationale behind SSR is that, after generating a suboptimal function f via symbolic
regression, the output errors can be approximated by another function, in a sub-
sequent iteration. In order to transform the original output based on the output of
function f , each iteration of SSR applies a transformation based on a geometric
semantic crossover operator (Moraglio et al. 2012). This procedure allows the GP to
focus, at each iteration, on different aspects (subproblems) of the original problem.

The remainder of the chapter is organised as follows. Section 5.2 reviews previous
works exploring regularities and modularity in GP. Section 5.3 revises the properties
of geometric semantic operators. The proposed strategy for sequential symbolic re-
gression is presented in Sect. 5.4, followed by computational experiments in Sect. 5.5.
Finally, Sect. 5.6 concludes the chapter and presents future research directions.

5.2 Modularisation in Genetic Programming

Since the introduction of genetic programming (Koza 1992a), researchers have been
interested in exploring the regularities and modularity of problem spaces. One of the
main motivations is to identify these regularities to decompose the problem at hand
into more tractable sub-problems; finding solutions to sub-problems should be easier
than finding a solution to the original problem, and these sub-solutions can be used
to create the solution to the whole problem. This process is illustrated in Fig. 5.1.
This is analogous to how human programmers usually tackle problems: instead of
creating a single procedure to implement an entire program, they usually break down
the implementation into several different procedures and the combination of these
procedures compose the complete implementation.

The Automatically Defined Functions (ADFs) proposed by Koza (1992a, b, 1994)
was one of the first ideas to address the automated problem decomposition. ADFs
impose a syntactical structure to individuals: an individual genotype is divided into
a result-producing branch and several function-defining branches. The motivation
is that function definitions potentially exploit the regularities of the problem space
and these definitions can be used from the result-producing branch. On the one
hand, Koza argues that by allowing the definition and use of functions, the prob-
lem is decomposed into subproblems. On the other hand, the modular structure
(syntax) of individuals is manually defined, therefore, the decomposition process
is not autonomous—the number of ADFs and their parameters are controlled by
user-defined values. Additionally, even if functions actually represent solutions to
subproblems, they are being evolved at the same time as the complete solution. There
is a pressure to solve all parts of the problem at once—the definition of the functions
and the correct use of those functions.

A popular idea to explore problem space regularities focused on defining modules
based on the genetic material of individuals. Several involved the random selection
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Fig. 5.1 The hierarchical problem-solving process: the original problem P is decomposed in a set
of subproblems (step 1); the goal is then to solve each of the subproblems (step 2); finally, the
solution S to the original problem P is created by using the solutions to the subproblems (step 3).
Figure adapted from Koza (1992a)

of subtrees to create modules: Koza (1992a) proposed the use of a subtree encapsu-
lation operator, which consists of randomly selecting a subtree from an individual
to create a terminal primitive that encapsulated the subtree; Angeline and Pollack
(1992, 1994) proposed the Genetic Library Builder (GLiB) system, which employs
mutation operators that randomly select subtrees to create modules (the compress
operator) that can be later expanded (the expand operator); similar compress and
expand operators to create and expand modules were more recently proposed by
Walker and Miller (2008) in the context of Embedded Cartesian Genetic Program-
ming (ECGP), with the extension of the use of module-altering operators (module
point mutation, add-input, add-output, remove-input and remove-output operators);
Spector et al. (2011a, b, 2012) proposed the use of ‘tags’ to label fragments of code
that can be later reused by referencing the same label—while this is similar to the
use of a compress operator, it provides the flexibility of partial name matches (a label
will match the closest matching tag).

Other authors followed the idea of identifying useful building blocks (subtrees)
to define modules: Rosca and Ballard (1994) proposed the use of heuristics to create
new modules, selecting fit blocks (blocks with high fitness value) and frequent blocks
(blocks that appear frequently in the population). Similarly, Roberts et al. (2001)
accumulate the frequency information of multiple runs of a GP to create a subtree
database and subsequent runs can use the most frequent subtrees encapsulated as
terminal primitives.
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There are also works that explore the idea of a library of modules created prior to
the run of a GP. Keijzer et al. (2004) introduced the use of Run Transferable Libraries
(RTL). The RTL is created by running GP on lower-order problem instances, consid-
ered as a training phase, and then using it to solve more complex instances of the same
problem. Similarly, Christensen and Oppacher (2007) generated small trees for the
Santa Fe Trail problem to create a library of modules in a training phase, where the
small trees are not necessarily complete solutions, and then using this library to find
the complete solution to the problem. Another approach that uses the idea of training
a GP on smaller problem instances in order to generate modules was presented by
Jackson and Gibbons (2007), where the authors proposed the use of layered learning.
The first layer is used to solve a lower-order version of the original problem and the
final solution at this layer is converted to a parameterised module. The second layer
uses this module to search the solution of a higher-order version of the same problem.
While the creation of a library of modules in a training phase or in different layers
can provide a decomposition of the problem, it represents a single decomposition
step and it is not automated—the user has to manually choose to use either a training
phase or to generate small trees prior to the search for the complete solution.

Considering the initial goal of problem decomposition, the aforementioned ap-
proaches rely on the assumption that the modules created could represent solutions
to subproblems. The main drawback of this assumption is that modules are defined
based on their syntax—i.e., the creation/selection of the modules does not involve
any evidence that the modules are solving different parts of the problem.1 A common
characteristic of these approaches is that they provide a mechanism to create/identify
modules during the run of the GP and expect that good modules will emerge as a
result of the search, but at the same time, they do not employ any control over
whether the use of modules decomposes the problem into subproblems. Perhaps the
emphasis in syntactical approaches to modularity is a result of the tendency of using
syntactical search operators in GP—both crossover and mutation operators are blind
search operators regarding their effect on the individual behaviour, only focusing on
syntactical changes. Additionally, the pressure of solving all parts of the problem at
once might reduce diversity and, in some cases, also prevent the convergence to the
optimal solution (McKay 2000).

Lee (1999) proposed an extension to GP to deal with forecasting of real world
chaotic time series, which resembles the sequential strategy of the algorithm proposed
in this chapter. Lee’s assumption is that a time series is composed by deterministic
and stochastic parts—subtracting the solution found by a run of the GP for the deter-
ministic part from the original time series, the stochastic part is obtained as a residual
time series. Applying this process recursively to the sequence of residual time series,
a set of (sub-)solutions can be created. These are then combined using numerical
coefficients calculated by the least square method with respect to a predetermined

1 The selection of building blocks based on fitness proposed by Rosca and Ballard (1994) is an
exception to the syntax-oriented selection, although there is no guarantee that different modules are
solving different parts of the problem.
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region of the time series—the explicit definition of regions of the time series (regions
of the search space) can be seen as a manual decomposition of the problem. As we
will discuss in the following sections, our proposed algorithm does not rely on the
definition of regions of the search space and the (sub-)solutions evolved are com-
bined using the principle of a geometric semantic crossover to produce the solution
to the original problem.

5.3 Geometric Semantic Operators

Standard genetic programming operators were originally conceived to operate in
the syntatic-level of the solutions being evolved. Consider, for example, a subtree
crossover. It will randomly select subtrees from two previously generated solutions
and swap them, regardless of what the outputs of the selected subtrees are. When tree
outputs are neglected, we ignore the fact that, at the end of the evolutionary process,
what matters is the quality of the best solution found, which is indirectly defined by
the output generated.

The semantics of an individual can be informally defined as the meaning of syn-
tactically correct programs or functions (Uy et al. 2011)—in a GP context, this is
the set of outputs produced by a program or function given a set of inputs. Many
approaches have been previously used to represent and extract semantics from ge-
netic programming (Vanneschi et al. 2014). This section is interested in one of these
approaches: geometric semantic operators.

In order to design operators that directly impact the semantics of a solution,
Moraglio et al. (2012) defined the concept of semantic distance and geometric se-
mantic operators for the real functions domain (e.g., symbolic regression), which
are replicated in Definition 1 and Definitions 2 and 3, respectively.

Definition 1 Let S be the set of solutions and s1, s2 ∈ S. A function SD : S×S → R

is said to be a semantic distance function if SD(s1, s2) = D(O(s1), O(s2)), where
O(s) returns the output vector of s and D is a distance function.

Definition 2 Let S be the set of solutions, XO : S × S → S be a crossover
operator and SD be a semantic distance function. XO is said to be geometric with
relation to SD if, for all s1, s2, s3 ∈ S such that s3 = XO(s1, s2), SD(s1, s2) =
SD(s1, s3) + SD(s3, s2).

Definition 3 Let S be the set of solutions, MT : S → S be a mutation operator and
SD be a semantic distance function. MT is said to be ε-geometric with relation to
SD if, for all s1, s2 ∈ S such that s2 = MT (s1), E[SD(s1, s2)] ≤ ε, where E denotes
the expected value.

Definitions 2 and 3 show that semantic geometric operators generate solutions in
a much more controlled fashion. Particularly, the semantics of a solution generated
through a geometric semantic crossover is guaranteed to be somewhere between the
semantics of its parents. This fact implies in an interesting property: an offspring
will never be worse than the worst of its parents. Similarly, an ε-geometric semantic
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mutation will generate solutions that are, on average, not worse than the original
solution by more than ε.

Moraglio et al. (2012) also proposed specific semantic geometric operators for
regression problems. The crossover operator proposed is essentially a convex com-
bination of functions. Let S be the set of solutions, s1, s2 ∈ S, XO(s1, s2) =
r.s1 + (1 − r).s2, where r is a random real number in the interval [0, 1]. The mu-
tation operator was defined as MT (s) = s + ms.(T R1 − T R2), where s ∈ S, ms

is a real number and T R1, T R2 are randomly generated trees. The authors show
that these operators are geometric with relation to the semantic distance function
SD(s1, s2) = ∑

xi∈T [O(s1)(xi) − O(s2)(xi)]2, where T is a set of training examples.
Figures 5.2 and 5.3 show examples of geometric semantic operators for the real

functions domain. Observe that in Fig. 5.2, each element of the output vector of
the offspring is a convex combination of elements from the parents’ output vectors
using coefficients 0.4 and 0.6. In Fig. 5.3, we notice how the impact of the geometric
semantic mutation operator can be controlled by setting appropriate values for ms.

5.4 Sequential Symbolic Regression

This section introduces Sequential Symbolic Regression (SSR), a method that se-
quentially executes a standard GP for symbolic regression and indirectly considers
the semantic of the solutions being created. SSR is inspired by a sequential covering
strategy, similar to the one employed by Otero and Johnson (2013), where at each
iteration a solution to a transformed (and potentially simpler) problem is evolved.

The main difference between SSR and a traditional sequential covering method
is in the transformation step that occurs at each iteration. In a traditional sequential
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Fig. 5.3 Example of geometric semantic mutation operator of f (x) = x2 using ms = 0.1,
T R1(x) = x and T R2(x) = x/2

covering strategy, the problem is reduced at each iteration—i.e., the training cases
covered by the iteration solution are removed, effectively reducing the problem to
the subsequent iterations. Since SSR deals with problems in the real-valued domain,
the concept of covered training cases is not directly applicable.2 Instead of removing
training cases, at each iteration of SSR, the output values of the original problem
are modified based on the use of a geometric semantic crossover and the iteration
solution output—the transformation of the problem is based on the semantic of
the solution created by the iteration. We hypothesise that the use of the iterative
(sequential) solution construction procedure allows the GP to focus on different
aspects (subproblems) of the original problem, creating individual solutions that are
combined by a geometric semantic crossover.

A typical symbolic regression problem can be defined as follows. Given a set of
input-output pairs C = {(c1, o(c1)), ..., (cn, o(cn))} representing the training cases,
where each pair (ci , o(ci)) denotes an input value and its correspondent output value,
respectively; a symbolic regression problem can be defined as finding a function
f : C → O that minimizes an error metric, such as the mean squared error (MSE),
the mean absolute error (MAE) or the root mean squared error (RMSE).

The metrics described above use the summation of the squared or absolute
residuals—the difference between the current output and the function output—to
compute the error function. Hence, when the absolute value of residuals is mini-
mized, so is the measured error. A residual e(ci) corresponds to the error in the fitting
of the function to the i-th observation, and is defined as

e(ci) = o(ci) − ô(ci) = o(ci) − f (ci). (5.1)

2 It is unlikely that a solution will reach (near) zero error only for a subset of the points (training
cases), unless it is the optimal solution, which in this case it will reach a (near) zero error for all
points.
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The optimal solution to a regression problem is a function f ∗, such that e(ci) =
o(ci) − f ∗(ci) = 0 for i = 1, 2, ..., n, and often a function f found by a regression
method is an approximation of f ∗, not reaching a zero error or the minimum error
defined according to the problem.

The rationale behind the sequential procedure of SSR is that, after generating a
suboptimal function f , the residual can be approximated by another function in a
subsequent iteration. In order to transform the original output based on the output of
function f , each iteration of SSR applies a transformation based on a geometric se-
mantic crossover operator (Moraglio et al. 2012). The geometric semantic crossover
operator for the real-value domain combines the output of two known functions f

and f ′ to generate a new function f ∗, with an a priori unknown output. The princi-
ple used in SSR is that the output of function f and the output of the function f ∗
are known, and therefore, they can be used to define the transformation required to
determine the desired output of function f ′ based on the residual of function f . The
definition of the geometric semantic crossover is given by

f ∗(ci) = r · f (ci) + (1 − r) · f ′(ci), (5.2)

where r is a random real constant in the range [0, 1). Substituting the definition of
function f ∗ to the residual equation, we obtain

e(ci) = o(ci) − [r · f (ci) + (1 − r) · f ′(ci)]. (5.3)

Using Eq. (5.3) and given that f is the function created by an iteration of SSR, the
output o′(ci) for function f ′(ci) that reduces the residual error e to zero is computed as

o′(ci) = o(ci) − r · f (ci)

1 − r
. (5.4)

The transformed output vector o′ defines a new regression problem, where the goal
is to find a function f ′ that minimizes the new residuals e′(ci) = o′(ci) − f ′(ci),
which is the definition of problem for the next iteration.

Another way to see the strategy employed in SSR is to look at the use of the
transformation step: a solution is built starting from the desired output, the output
of the original problem; if the function (individual) f created at an iteration of SSR
does not minimize the error e to zero, a geometric semantic crossover is used to
transform the original problem. Given that we know the desired output—the output
of the individual generated by the crossover operation—and one of the individuals
of the crossover, we can determine the required output of a second individual that
complements the crossover.

Therefore, instead of combining individuals at random as in the Semantic GP, SSR
optimises the effect of the geometric semantic crossover operator by searching for
the individual that represents the best match (minimises the error) given the desired
output vector. At the same time, it indirectly mitigates the problem of exponential
growth of individuals observed in SGP (Moraglio et al. 2012; Vanneschi et al. 2013),
since the solution is created sequentially, without requiring that all individual so-
lutions are kept in memory, and there is only one solution being created using the
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geometric semantic operator, requiring a single simplification step at the end of SSR
if the size of the complete solution needs to be reduced.

Algorithm 1 Sequential Symbolic Regression procedure
input: training points (C), stopping criteria, GP parameters
input ← (c1,c2, ...,cn), for ck ∈ C
output ← (o(c1),o(c2), ...,o(cn)), for o(ck) ∈ C
/* Solution iteratively constructed */
S ← {}
while stopping criteria not reached do

f ← RunGP(input, output)
if (MSE( f ,output) 0.01) then

else
r ←random()
S ←AddFunction( f
output ←AdjustOutputs( f,r,output)

end while
return S

≤
S ← AddFunction( f )

end if

return S

5.4.1 SSR Procedure

Algorithm 1 presents the high-level pseudocode of the SSR procedure. It starts with
an empty solution tree S, which is iteratively incremented by carrying out sequential
regressions using a traditional GP algorithm. At the k-th iteration, a new function fk

is generated by the GP (RunGP procedure). If function fk corresponds to the optimal
solution—i.e., the output of fk is such that MSE(fk , output) ≤ 0.01—fk is added
to the solution tree S and the sequential procedure stops. Otherwise, fk is added to
the solution tree S using a geometric semantic crossover with a random constant rk

in the range [0, 1). Note that at this point the crossover operation is incomplete—i.e.,
only one of the parent individuals is known. Then, the constant rk and the function
fk are used to modify the desired output using the transformation represented by
Eq. (5.4). The iterative transformation step is given by

ok+1(ci) = ok(ci) − rk · fk(ci)

1 − rk

, (5.5)

for k = 1, 2, ..., n, where n is the maximum number of iterations. The sequential
SSR process continues until a minimum error or a maximum number of iterations
is reached. Figure 5.4 illustrate the sequential solution construction, showing the
solution tree S at different iterations of the procedure.

Next, we present an illustrative example of how SSR works. Let us consider
that we want to find a function whose values match those in a set of training input
cases C = {(1, 1), (3, 4), (5, 9)}, i.e., input = (1, 3, 5) and output1 = (1, 4, 9). Let
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f1
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1 r1
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Fig. 5.4 Illustration of the solution tree S and the corresponding expression at different iterations:
a S = f1; b S = r1 · f1 + (1 − r1) · f2; c S = r1 · f1 + (1 − r1) · [r2 · f2 + (1 − r2) · f3]

Table 5.1 Example of SSR execution. The First column presents the current iteration, followed by
the values of rk , the desired outputs outputk (3 columns), the evolved outputs fk (3 columns), the
absolute residuals of fk regarding outputk (3 columns) and MSE (last column)

outputk fk(ci ) |e′
k(ci )| = |ok(ci ) − fk(ci )|

k rk ok(c1) ok(c2) ok(c3) c1 c2 c3 c1, ok(c1) c2, ok(c2) c3, ok(c3) MSE

1 0.4 1.00 4.00 9.00 1.00 3.50 8.00 0.00 0.50 1.00 0.417

2 0.5 1.00 4.33 9.67 1.00 4.00 9.00 0.00 0.33 0.67 0.067

3 0.3 1.00 4.67 10.33 2.00 4.50 11.00 1.00 0.17 0.67 0.044

4 0.2 0.57 4.74 10.05 0.50 5.00 10.50 0.07 0.26 0.45 0.004

us assume the first GP regression generates a function f1 that produces the output
vector (1, 3.5, 8), and the absolute residual vector (0, 0.5, 1). A constant r1 = 0.4
is generated randomly and stored in f1. From there, the new target output vector
is calculated (Eq. 5.4), and is equal to (1, 4.33, 9.67). The process continues until
MSE ≤ 0.01, as shown in Table 5.1. The column outputk represents the target
output points the regression needs to generate (when k = 1, they represent the
original problem output), followed by the generated output (fk(ci)) and the residual
generated by fk (|e′

k(ci)|) and the overall MSE.

5.5 Experiments

This section presents experimental results performed to test SSR. All tests are com-
pared with the semantic GP (SGP) proposed in Moraglio et al. (2012) and a canonical
GP (Koza 1994) in a set of polynomial regression problems. Given that one of the
main characteristics of the method is to use the geometric semantic crossover to
combine solutions sequentially discovered to solve the problem, we use the same
testbed as Moraglio et al. (2012), composed by 8 univariate polynomials functions
of degrees from 3 to 10, with real-valued coefficients uniformly drawn from [−1, 1].
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Table 5.2 Parameter values for the methods used in the experiments

Parameter GP SSR1 SSR2 SGP1 SGP2

Crossover Probability 0.9 0.9 0.9 1 1

Mutation Probability 0.1 0.1 0.1 1 1

Tournament Size 7 3 3 5 5

Population Size 1000 100 100 20 20

Number of Generations 100 50 100 5000 5000

Number of iterations – 20 10 – –

Initialization – – – YES NO

In order to make the comparisons fair, all algorithms were given an execution
budget of 100,000 evaluations, and the parameters used in each algorithm are detailed
in Table 5.2. Note that, as SSR evolves a GP for k iterations, the sizes of populations
vary across different algorithms, always respecting the evaluation budget. Because
of that, different tournament sizes were used in order to balance selective pressure
considering different population sizes. Notice that results of two versions of SSR
and SGP are reported. In the case of SSR, the variation tests the trade-off between
the number of generations of the canonical GP and the number of iterations of SSR.

For SGP, we used the same parameters reported in Moraglio et al. (2012), but
varied the method used for population initialization. The first algorithm configura-
tion (SGP1) initializes with polynomials of degree 10 (the same procedure used in
Moraglio et al. (2012), while the initial population of SGP2 is randomly generated.
One may argue that the assumption that we know the structure of the function we
are looking for makes the use of symbolic regression unnecessary, which is true.
However, the way geometric semantic crossover works depends heavily on the indi-
viduals in the initial population. If the genetic material we start with is not enough
to produce the target function, mutation will probably not be able to insert enough
modifications to the population to change this situation.

The experiments were performed in two phases. First, we ran the methods in a
training set with 20 points. Then, we used the function discovered in the first phase in
a second set of 20 points. The points were uniformly drawn from the [0, 1] interval.
All methods were executed 30 times. Table 5.3 shows the mean squared error (MSE)
and standard deviation obtained by the three methods using different configurations.

Results are compared using a two-step approach. First, we apply Friedman’s test
with the null hypothesis H0 : θ1 = θ2 = ...θ5, where θi represents the MSE of one
of the algorithms tested. If H0 is rejected we apply Nemenyi test (Demšar 2006) as
a post-hoc procedure and make pairwise comparisons between the MSEs. Table 5.4
shows the results of the comparisons. The symbol � indicates that the method in the
column is statistically better than the method indicated in the row.

The results show that there is no evidence for statistical difference among the two
versions of SSR. However there is statistical difference among the SGP versions,
with SGP1 performing statistically better than SGP2. Concerning SSR, there is
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Table 5.3 Average MSE (average [standard error]) for each algorithm in the training set, calculated
over 30 runs

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial4 0.000 [0.001] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial5 0.001 [0.003] 0.000 [0.000] 0.000 [0.001] 0.000 [0.000] 0.013 [0.004]

polynomial6 0.001 [0.001] 0.000 [0.001] 0.000 [0.000] 0.000 [0.000] 0.010 [0.003]

polynomial7 0.002 [0.001] 0.001 [0.002] 0.000 [0.000] 0.000 [0.000] 0.008 [0.002]

polynomial8 0.002 [0.002] 0.000 [0.000] 0.000 [0.000] 0.000 [0.000] 0.009 [0.002]

polynomial9 0.005 [0.004] 0.001 [0.001] 0.001 [0.003] 0.000 [0.000] 0.010 [0.002]

polynomial10 0.002 [0.003] 0.001 [0.001] 0.001 [0.002] 0.000 [0.000] 0.010 [0.002]

Table 5.4 Pairwise Nemenyi test for MSE in the training set. The symbol � indicates the method
in the column is statistically better than the one in the row

SSR1 SSR2 SGP1 SGP2

SSR2 – – – –

SGP1 – – – –

SGP2 � � � –

GP – – – –

no evidence of statistical difference regarding the GP or SGP1 and the results are
statistically better than those obtained by SGP2. In summary, the results of the
proposed approach are as good as the results of the GP and SGP1 and better than the
results of SGP2.

Figure 5.5 shows the results of MSE for different iterations of SSR for the 8
functions tested using 50 and 100 generations over 20 iterations. The behaviour of
the method is the expected one: as iterations go on, the error is reduced. As observed,
in most cases the error converges as we approach 10 iterations. Hence, we can say
that a different stopping criteria—such as convergence—could significantly reduce
the number of evaluations required to obtain the reported results (note that we did
not halt the algorithm and always allowed it to run for the maximum evaluation
budget). A different parameter setting, where the GP ran for less generations at each
iteration of the sequential procedure, combined with an effective stopping criteria
might significantly reduce the fitness budget, making the use of SSR preferable over
a single GP—these parameters can be tuned according to the problem at hand.

Table 5.5 presents the results of generalisation of the functions evolved in the
training set and Table 5.6 the results for the Nemenyi test. The results show again
that GP and SSR present no evidence of statistical difference. However, in this case,
the results obtained by SSR are better than both versions of SGP. Looking at the
values of MSE, we observe that SGP does not generalize well and has a tendency for
overfitting. Therefore, these results show that SSR was successful in reducing the
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Fig. 5.5 Evolution of the error during iterations for both configurations of SSR for each problem,
computed using the median of 30 runs

error of the symbolic regression problems and, at the same time, produced solutions
with good generalisation power.

Regarding the comparisons with SGP, recall that the semantic operator has a
completely different roles in the algorithms. For SGP, experiments showed that data
overfitting (poor generalisation) can be a problem. Overfitting may be caused by the
restrictions imposed by the geometric crossover, which combined with a semantic
mutation designed to produce little semantic impact, makes SGP success heavily
dependent on the initial population. This fact, combined with a small population
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Table 5.5 Average MSE (average [standard error]) for each algorithm in the test set, calculated
over 30 runs

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 0.001 [0.001] 0.001 [0.004] 0.000 [0.001] 4.9e8 [2.6e9] 891.7 [2989.9]

polynomial4 0.001 [0.002] 0.000 [0.000] 0.000 [0.001] 84.33 [231.6] 5.360 [13.186]

polynomial5 0.007 [0.020] 0.001 [0.001] 0.001 [0.002] 8.158 [15.36] 7.158 [17.318]

polynomial6 0.008 [0.011] 0.003 [0.007] 0.002 [0.003] 1.2e5 [6.6e5] 9.350 [16.763]

polynomial7 0.009 [0.034] 0.001 [0.002] 0.001 [0.001] 41.27 [83.21] 6.005 [11.144]

polynomial8 0.004 [0.003] 0.001 [0.001] 0.001 [0.001] 117.0 [350.3] 13.497 [49.12]

polynomial9 0.014 [0.020] 0.006 [0.008] 0.003 [0.004] 43.66 [223.2] 2.811 [2.682]

polynomial10 0.032 [0.027] 0.013 [0.012] 0.011 [0.015] 58.64 [230.4] 3.574 [4.479]

Table 5.6 Pairwise Nemenyi test for MSE in the test set. The symbol � indicates the method in the
column is statistically better than the one in the row

SSR1 SSR2 SGP1 SGP2

SSR2 – – – –

SGP1 � � – –

SGP2 � � – –

GP – – – –

Table 5.7 Number of nodes (average [standard error]) of the resulting function for each algorithm,
calculated over 30 runs

Problem GP SSR1 SSR2 SGP1 SGP2

polynomial3 50.5 [21.0] 1677.9 [242.5] 637.1 [165.3] 2.3e9 [1.2e9] 2.0e9 [1.3e9]

polynomial4 59.7 [28.0] 1720.7 [228.5] 635.2 [164.7] 2.0e9 [1.2e9] 2.3e9 [1.2e9]

polynomial5 68.1 [24.2] 1745.9 [195.9] 729.1 [133.8] 2.2e9 [1.4e9] 2.1e9 [1.2e9]

polynomial6 60.8 [26.9] 1664.9 [257.5] 691.6 [134.0] 1.9e9 [1.1e9] 2.0e9 [1.4e9]

polynomial7 63.2 [21.2] 1752.0 [170.8] 767.0 [140.4] 2.2e9 [1.1e9] 2.0e9 [1.2e9]

polynomial8 57.8 [28.8] 1644.1 [220.0] 712.1 [164.5] 2.1e9 [1.3e9] 2.2e9 [1.4e9]

polynomial9 49.4 [22.1] 1736.7 [197.5] 771.9 [154.9] 1.9e9 [1.3e9] 2.4e9 [1.1e9]

polynomial10 62.6 [24.2] 1786.6 [170.1] 784.3 [142.0] 2.0e9 [1.3e9] 2.0e9 [1.3e9]

size, can make it difficult for SGP to find a good solution. Even if such a solution
is found, it will usually be much more complex than those produced by SSR, also
potentially leading to overfitting, something that has been observed when analysing
the size of the evolved solutions.

Table 5.7 presents the average number of nodes and standard deviation of the
final solutions found by each algorithm. The size of SSR1 and SSR2 solutions re-
flect approximately the number of GP executions within the algorithm, i.e. it is 20
and 10 times the number of nodes of the solutions generated by the canonical GP,
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respectively. The size of the functions generated by both SGP versions, on the other
hand, are at least 106 times greater than the other methods, since the size of SGP
individuals grows exponentially in the number of generations. Note that while SSR
performs as many semantic crossovers as iterations, for SGP this number depends
on the number of individuals, crossover probability and number of generations. The
difference in size of the solutions found by SSR1 and SSR2 can be explained by the
number of iterations of the sequential procedure: while SSR1 has a total of 20, SSR2
has a total of 10 (Table 5.2). This illustrates the impact of the number of crossover
operations—iterations of the sequential procedure in the case of SSR—on the size
of the solutions. At the same time, we don’t see a big impact on the performance of
the SSR algorithm, since the error is minimised after 10 iterations in most cases—as
illustrated in Fig. 5.5.

5.6 Conclusions and Future Work

This chapter proposed Sequential the Symbolic Regression (SSR), a new strategy to
perform symbolic regression by iteratively learning solutions from a transformed set
of problems. The definition of the problem changes according to the semantic distance
(or error rate) generated from the desired and obtained outputs, and different (sub-)
problem solutions are put together using a geometric semantic crossover operator.
The use of the semantic operator guarantees the solutions generated are never worse
than the weakest of their parents.

Experiments were run on a set of eight polynomial functions and results compared
with a canonical GP and a geometric semantic GP (SGP). When compared with SGP,
which has a problem of exponential growth of its individuals, SSR has the advantage
of generating smaller solutions that are less prone to overfitting. Regarding the canon-
ical GP, the method has the potential of improving solutions even when the algorithm
has already converged, by transforming the original problem into a new one.

Experimental results showed SSR presents MSE values that are statistically better
than those generated by the solutions evolved by SGP, specially when a test set of
points is used to evaluate the generalisation of the method. When compared with GP,
there is no evidence of statistical difference among the results. However, we believe
the results can still be improved to use a minimal computational budget (fitness
evaluations).

For future work, a more complete study of the impact of the parameters in SSR
needs to be performed, specially investigating what is the impact of running the GP
for longer or SSR for more iterations. The method also needs to be validated on more
complex symbolic regression problems, such as those suggested as GP benchmarks
(White et al. 2013). Finally, other methods for combining different solutions are
worth further investigation.
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Chapter 6
Sliding Window Symbolic Regression
for Detecting Changes of System Dynamics

Stephan M. Winkler, Michael Affenzeller, Gabriel Kronberger,
Michael Kommenda, Bogdan Burlacu and Stefan Wagner

6.1 Introduction

The idea of sliding window behavior in computer science is not novel; in machine
learning, drifting concepts are often handled by moving the scope (of either fixed
or adaptive size) over the training data (see for example (Widmer and Kubat 1996)
or (Hulten et al. 2001)). The main idea is the following: Instead of considering all
training data for training and evaluating models, the algorithm initially considers only
the first part of the data. Then, after executing learning routines on the basis of this
part of the data, the range of samples under consideration is shifted by a certain offset.
Thus, the window of samples considered is moved; it slides over the training data.

Among modern data modeling techniques, symbolic regression using genetic
programming (GP) distinguishes itself by its ability to identify nonlinear models
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which can be interpreted by domain experts. In comparison to other nonlinear mod-
eling techniques such as artificial neural networks or support vector machines, the
representation of solutions as mathematical terms allows to systematically analyze
and interpret the influence of input variables with respect to the output variable
(Vladislavleva et al. 2010; Affenzeller et al. 2013).

The combination of sliding window approaches and GP based structure identi-
fication (Zuo et al. 2004; Wagner et al. 2007) is not frequently discussed in the
literature; in general, GP is seen as an explicitly offline, global optimization method
(Koza 1992) working on all available training samples. Nevertheless, during research
activities in the field of online systems identification (Winkler et al. 2007a, b), we
discovered several surprising aspects. In general, online GP was able to identify sym-
bolic regression models describing a Diesel engine’s emissions remarkably fast; the
even more astonishing fact was that these models were even less prone to overfitting
than those created using standard methods.

Picking up this line of research, we here investigate the abilities of sliding win-
dow symbolic regression (SWSR) to detect changes in data characteristics occurring
when the underlying system dynamics change. Here we focus on the analysis of
specific algorithm variants, especially generations triggered and selection pressure
triggered SWSR, regarding their ability to detect significant changes of the analyzed
systems’ dynamics. In real-world systems, several causes might change a systems
characteristic; usually, the causes cannot be observed directly and must be consid-
ered as unknown external effects leading to non-stationary system dynamics. In this
chapter, we focus on switching system dynamics, where influencing factors of a
system’s behavior might appear or disappear or change gradually, while other in-
fluencing factors remain unaffected. Other common causes for changes of system
dynamics are gradually changing influences or noise levels over long time periods
as well as changes of the volatility of factors.

We define new analysis methods for detecting such phenomena by observing the
characteristics of SWSR when moving over the data. When entering a data partition
with new characteristics, algorithm parameters such as model quality and selection
pressure are expected to change significantly. Moreover, we present specialized anal-
ysis techniques for SWSR. In the experimental part of this contribution we present
heat map visualizations of the performance of the collected models on all sliding
window positions.

For testing we introduce special benchmark data sets simulating systems with
changing dynamics including abrupt as well as gradual appearance or disappearance
of major influence factors.

6.2 Sliding Window Symbolic Regression

Sliding window evaluation means that during the run of the algorithm, only a portion
or slice of the training data is available to the algorithm. By changing the position
of the sliding window according to the rules described below, we determine which
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Fig. 6.1 Sliding window evaluation displaying the current sliding window, the output of the best
model on the current sliding window (yellow) and the true values of the dependent variable (blue)

part of the training data is visible to the algorithm. This shall allow the evolutionary
system to adapt gradually only to those patterns present in the whole of the training
data, leading to more compact solutions with better generalization capabilities.

From an algorithmic perspective, the population of candidate solutions can be
considered as some kind of implicit memory that stores the models which are able
to adapt sufficiently well to the current sliding window. As the window slowly slides
over the data during the algorithm execution, we assume that those models which are
able to explain the data for a longer time should have a higher survival probability
and are therefore expected to remain in the population, whereas those models which
only describe the current window are more likely to disappear. If this assumption
holds, after the sliding window has moved over the entire data-set, the resulting
models should be those which were able to explain correlations that appear in the
entire data set.

A sliding window approach, as illustrated in Fig. 6.1, is characterized by a trigger
(criteria or condition for moving the window), a step-size and a window-size. The
trigger can either be generational (slide the window every n generations) or based
on the selection pressure value (when using offspring selection). Depending on the
window update settings, the data windows used for training may overlap.

In the following subsections we propose those variants of sliding window symbolic
regression that are used in the later sections for analyzing their respective abilities to
detect and explain dynamic changes of a system.

6.2.1 Generations Triggered Sliding Windows GP

In the most simple variant, which is summarized in Alg. 2, the given data set is split
into partitions. Initially, only the first partition of data is used for evaluating models.
After a certain number of generations, the focus shifts and the next data partition is
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used for evaluation; we here keep the beforehand trained models and continue the
evolutionary process using the previously generated genetic material. Optionally,
the window of the considered samples might grow over time. This procedure of
training and shifting the focus in equidistant intervals is repeated until all partitions
have been considered and the best model found so far is returned as the result of the
whole GP process.

The concept of generations triggered sliding windows can be combined with
different variants of GP, such as standard GP or offspring selection genetic
programming (OSGP, detailed in Sect. 6.2.2). If OSGP with generations triggered
sliding window is used, the selection pressure gives an indication for how difficult
it is for the algorithm to produce better models; the lower the selection pressure,
the less fit are the models on the given data. Thus, the selection pressure seen after
shifting the focus gives an indication whether the behavior learned on previously
considered samples is able to explain the new data—or if there might be a change
of the behavior of the analyzed system.

Algorithm 2 Generations Triggered Sliding Windows GP
Input: Data, GenerationsTrigger, WindowStepSize, WindowSize

Initialize population
Generations← 0
Index1 ← 0
Index2 ← WindowSize
while Index2 ≤Data.Length do

Generate offspring from selected parents
Evaluate offspring on Data[Index1, . . . ,Index2[
Generations ← Generations +1
if Generations mod GenerationsTrigger = 0 then

Index2 ← Index2+WindowStepSize
Index1 ← max(0, Index2 −WindowSize)

end if
end while
return Best model

6.2.2 Selection Pressure Triggered Sliding Window GP

One of the most important problem independent concepts used in our implementation
of GP-based structure identification is offspring selection (Affenzeller et al. 2009),
an enhanced selection model that has enabled genetic algorithms and genetic
programming implementations to produce superior results for various kinds of opti-
mization problems. As in the case of conventional GAs or GP, offspring is generated
by parent selection, crossover, and mutation. In a second (offspring) selection step
(as detailed in Fig. 6.2), only those children become members of the next gener-
ation’s population that outperform their own parents, all other ones are discarded.
The algorithm therefore repeats the process of creating new children until the num-
ber of successful offspring is sufficient to create the next generation’s population.
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Fig. 6.2 a Genetic programming including offspring selection; b Embedding a simplified version
of offspring selection into the GP process

Within this selection model the selection pressure is defined as the ratio of generated
candidates to the population size:

SelectionPressure = |Generated Offspring|
|Population|

The higher these values becomes, the more models have to be created and evalu-
ated in order to produce enough models that form the next generation’s population.
In other words, the selection pressure indicates how hard it is for the algorithm to
produce a sufficient number of successful solution candidates.

The proposed idea is to reduce the amount of data that is available for the algorithm
as identification data. As the identification process is executed, better and better
models are created which leads to a rise of the selection pressure; as soon as the
selection pressure reaches a predefined threshold value, the limits of the identification
data are shifted and the algorithm goes on considering another part of the available
identification data set. This procedure is then repeated until the sliding window has
reached the end of the training data and hence, all training data have been considered.
A benefit of evaluating the models on a much smaller data set, the runtime of the
algorithm is significantly reduced.

In Algorithm 3 we give a sketch of the sliding window GP based structure identi-
fication process incorporating offspring selection. The standard GP parameters (as,
for example, population size, mutation rate and crossover operator combinations) are
hereby omitted; we only describe the sliding window specific process modifications.
As soon as the current selection pressure reaches SelectionPressureTrigger, the win-
dow is moved by WindowStepSize samples. The WindowSize parameter specifies the
maximum size of the current training data scope. This procedure is repeated until
the end of the data set is reached.
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Algorithm 3 Selection Pressure Triggered Sliding Window GP
Input: Data, SelectionPressureTrigger, WindowStepSize, WindowSize

Initialize population
Generations← 0
Index1 ← 0
Index2 ← WindowSize
while Index2 ≤Data.Length do

Generate offspring from selected parents
Evaluate offspring on Data[Index1, . . . ,Index2[
Perform offspring selection
SelectionPressure ← reciprocal of the ratio of successful offspring
if SelectionPressure ≥ SelectionPressureTrigger then

Index2 ← Index2+WindowStepSize
Index1 ← max(0, Index2 −WindowSize)

end if
end while
return Best model

6.3 Analysis Measures

6.3.1 Sliding Window Qualities

In some situations, depending on sliding window size and movement speed, the
population runs the risk of becoming too specialized on the current training partition,
losing its ability to adapt to changing conditions due to the loss of genetic diversity.
In order to identify and avoid such cases in which evolution is hindered, we introduce
an analysis method that calculates the best solution’s quality not only on the current
sliding window, but also on the past training data. Ideally, the algorithm should
produce solutions that perform well on the whole training data up to the current sliding
window position. We can determine if the best solution becomes too specialized if
its quality on past data is much worse than its quality on the current sliding window.
Conversely, if the qualities are similar, we can say that the solution of the algorithm
captures the intrinsic characteristics of the data.

In order to analyze the algorithm’s behavior we also consider future data (the
region of the training partition that the sliding window has not reached yet) in the
best solution qualities analysis.

Figure 6.3 shows an exemplary evaluation using this analyzer as implemented in
HeuristicLab 3.3.

We consider sliding window solutions stable if they maintain a good quality on past
data, as well as current data. If the before window and current window quality curves
converge, then the algorithm has successfully extracted the important patterns from
the data. Ideally, for stable systems characteristics the before window, after window
and test qualities will converge. If the quality curves do not converge, this could be
an indication that the chosen parameter settings are not appropriate for the given data
(sliding window too small, too slow to move, etc.). Additionally, variations in the
convergence of the quality curves can also indicate changes in the data.
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Fig. 6.3 Sliding window qualities, analyzed in HeuristicLab. In this case sliding window ge-
netic programming with strict offspring selection was used to solve the Poly-10 problem (Poli
2003); the population size was set to 100, and the selection pressure trigger was applied with
SelectionPressureTrigger = 15

6.3.2 Sliding Window Best Solutions

To gain further insight about the data itself and the evolution process, we save the
best models on the current sliding window each time before advancing its position.
This is particularly useful for problems where the data is sequential and changing
over time. The resulting collection of best models is displayed as a colored table
(Fig. 6.4) in which warmer colors represent higher qualities. On the horizontal axis
the sliding window positions are given and on the vertical axis from top to bottom the
best solutions for the respective window are listed. The color of the cell represents
the quality of each model when evaluated on all windows, before (left) and after
(right) the current window (diagonal).

As an alternative view, we provide an alternate representation as a heat map which
shows the quality of each model (Pearson’s R2) for each sliding window position.
This view which shows the “big picture" about the data and the generated models, can
make it easier to identify the regions where changes in the data or in the population of
models occurred. Figure 6.5 shows a heat map view for the qualities of 100 models
on 100 sliding windows.
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Fig. 6.4 Sliding window best solutions table. The x-axis shows the sliding window positions while
the y-axis shows the best solutions. Each cell in the table is colored according to quality (Pearson’s
R2), warmer colors represent better qualities

Fig. 6.5 Sliding window best solutions heat map. This representation is not as detailed as the one in
Fig. 6.4, but it provides a more general picture: in this case, the sliding window has been moved 100
times and 100 best solutions were recorded. The heat map is also colored according to the Pearson
R2 quality measure
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Fig. 6.6 The system output is described via a stationary transfer function using the external inputs
and the hidden state as inputs. The system state changes are controlled via the hidden state variable

6.4 Experiments

6.4.1 Design of Experiments

For testing the described approach we created a set of synthetic data sets with con-
trolled system dynamics. In the following we only discuss simulated systems with
multiple input variables and one output variable without feedback loops. These sys-
tems can be easily described via a transfer function mapping input values to the
output value. The system state changes are modeled using a hidden time-dependent
state variable ht . The hidden state variable is set to real values in the range [0,1] and
is used to control which parts of the transfer function are active at each time point.
Figure 6.6 shows an example system with two inputs and the hidden state.

To simulate a time-dependent process we generated the input variables xi by
sampling from a uni-variate zero mean Gaussian process using a squared expo-
nential covariance function (Rasmussen and Williams 2006). Each input vector
xi , i ∈ [1..10] has been sampled independently and has 5,000 elements. Each vector
is scaled to unit variance.

t :=
[

i

200
, i ∈ [0 . . . 5000[

]

Ki,j := exp

(
−1

2
(ti − tj )2

)

xi

i.i.d∼ GP(0, K)

The covariance matrix K is Toeplitz, which means that each descending diagonal
from left to right is constant. Thus, sampling from this Gaussian process can be
implemented efficiently using the O(n) Cholesky transform for Toeplitz systems.

αi

i.i.d∼ N (0, 1)

L :=toeplitz-cholesky(K)

x :=Lα



100 S. M. Winkler et al.

Fig. 6.7 The output targets and the time points of gradual and abrupt system change points

Examples for two sample inputs are shown on the left side of Fig. 6.6. The
generated samples exhibit long term changes and short term fluctuations. Alterna-
tively, input variable values could be generated by simply sampling from a simple
auto-regressive (e.g., AR(1)) process, which is a special case of a Gaussian process.

The values for the hidden state variable h have been created manually to model
several state switches, including slow gradual changes over long time intervals and
abrupt jumps in very short time intervals. In all experiments and all problem instances
we used the same hidden state vector to make it possible to compare the results of
multiple runs and for different problem instances visually.

In the experiments several transfer functions have been used which are shown
below. These functions include a very easy function (f1(x, h)), a function of medium
hardness (f2(x, h)), and one harder function (f3(x, h)). While all functions are static,
the dynamic system behavior is induced through the time-dependent state variable
h. It should be noted that all considered functions are relatively easy when compared
with real-world data sets.

f1(x, h) = x1 ∗ (h ∗ x2 + (1 − h) ∗ x3) (6.1)

f2(x, h) = α2(x1x2 + x3x4) + β2(h ∗ x5 ∗ x6 + (1 − h) ∗ x7 ∗ x8) (6.2)

f3(x, h) = α3(x1x2x3 + x4x5x6) + β2(hx7x8 + (h − 1)x9x10) (6.3)

To control the relative influences of the fixed part and the variable part of each
function, scaling factors α and β are set so that both parts have equal variance. The
state changes induced by the hidden variable are not visible in the resulting outputs
as shown in Fig. 6.7.

To test our hypothesis if it is possible to detect changes in system dynamics using
the sliding window approach we performed experiments using the three data sets
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Table 6.1 Algorithm configurations

Alg-1 Alg-2 Alg-3

Population size 500 500 500

Crossover rate 100 % 100 % 100 %

Mutation rate 25 % 25 % 25 %

Tree size (height/nodes) 12/50 12/50 12/50

Parent selection Tournament Gender-specific Gender-specific
(size = 4) (prop./random) (prop./random)

Offspring selection – Strict Strict
– (comp. factor) = 1.0 (comp. factor) = 0.5

Sliding window size 400 400 400

Sliding window trigger Generation Generation Sel. pressure over 4

Sliding window step size 10 10 10

described above and three different algorithm configurations. The first configuration
uses tournament parent selection and simple generational replacement. The second
configuration uses gender-specific parent selection and strict offspring selection.
The third configuration also uses strict offspring selection but additionally uses the
selection pressure to trigger sliding events. Table 6.1 shows the configurations of all
algorithms.

Gradual and continuous adaptation of the population to the changing conditions in
the data set can be facilitated when the sliding window is moved slowly and smoothly
over the data set. Therefore, the window has been moved after each generation by
10 data points in our experiments. This has the effect that the algorithm produces a
large number of different solutions for the whole run (one for each window). The
speed of sliding is crucial and has to be adapted for each problem instance. On the
one hand, if the window is moved too quickly, then the population might not able to
adapt to the changing conditions quickly enough. On the other hand, if the window
is moved too slowly the population might converge to a good solution for the current
window, leading to a loss in genetic diversity which hampers the ability to adapt to
the new data in the next window.

In our experiments we move the window by 10 samples either in each generation
or when the selection pressure limit is reached. The sliding window size is 400
in all configurations. Therefore, the number of generations is 500 when using a
generational trigger but can be larger for the selection pressure triggered algorithm.

6.4.2 Discussion of Results

The results of our experiments show, that for the simple problem (f1), it is possible to
detect the changes of system dynamics easily with all three algorithm configurations.
The changes in system dynamics can be detected in the heat maps for all three
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Fig. 6.8 Best solutions heat map for standard GP with generational sliding window applied on
benchmark problems (left: f1, middle: f2 right: f3). See Sect. 6.3.2 for the description of the
visualization

test problems. For the harder problems (f2 and f3), the simple GP algorithm leads
to worse results compared to the variants using offspring selection. When using
offspring selection, more effort is spent in each generation to find individuals that
perform well on the current data window compared to the standard GP algorithm.

For the first two algorithm variants the speed of the sliding window has to be
adapted manually to prevent early convergence to a solution with high accuracy and
simultaneous loss of genetic diversity. This is especially problematic if the system
dynamics are changing slowly or seldomly. In our experiment runs, this happened
several times and several retries have been necessary until we found good parameters
for the sliding speed. In the third algorithm variant, the speed of the sliding window
is dynamically adjusted based on selection pressure and need not be configured
manually. However, in this case, the selection pressure threshold must be tuned.

In the following the results of all algorithm variants are discussed and compared.

6.4.2.1 Standard GP with Generational Sliding

Figure 6.8 shows the heat maps of the qualities of the best solutions for each window.
In the heat map on the left side the state changes for f1 are clearly visible. It is also
possible to discern the areas in the data set in which the system dynamics change
gradually over a longer time interval. Due to these windows, the system behavior
cannot be modeled accurately with the available data. The dark squares along the
diagonal represent the areas of the data set where the best solution from the current
window also matches the windows before and after the current window. The heat map
shows six squares along the diagonal representing the six phases of stable behavior
of the system shown in Fig. 6.7. The last phase is not detected correctly because the
window size (400) is larger than the number of samples in the last phase. In the left
heat map, it is also visible that the solutions detected on the later part of the data
describe earlier phases accurately (dark rectangles in the lower triangle).

For the harder problems the results are much worse. For these problems, the
different phases can be hardly discerned in the heat maps. Instead, the algorithm is
only able to produce accurate solutions for the current window only (visible as dark



6 Sliding Window Symbolic Regression for Detecting Changes of System Dynamics 103

Fig. 6.9 Variable frequencies for problem 1 obtained by GA sliding windows

squared along the diagonal) and these solutions do not generalize well for the rest of
the data.

In the variable frequency chart shown in Fig. 6.9, it is also clearly visible that
the algorithm detects the relevant variables for the different phases while sliding the
window over the data set.

6.4.2.2 GP with Offspring Selection and Generational Sliding

The benefit of this configuration is that the algorithm dynamically spends more
effort to adapt the population to the data in the current window. Compared to the
standard configuration the selection pressure is adapted dynamically in order to fill
a population with better individuals.

Figure 6.10 again shows the heat maps for the three data sets. For the first data
set shown on the left hand side the results are very similar. However, for the harder
problems the results are much better with offspring selection and the phase changes
can be discerned rather easily in the heat maps.

6.4.2.3 GP with Offspring Selection and Selection Pressure Triggered Sliding

In this configuration, the window is moved when an upper threshold for the selection
pressure is reached. Using an upper limit prevents that too much effort is spent on
only one window.

Figure 6.11 shows the heat maps produced by this algorithm configuration for
the three data sets. Especially, for the third data set on the right hand side, this
configuration produced very good results. The results for the second data set shown
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Fig. 6.10 Best solutions heat map for OSGP with generational sliding window applied on bench-
mark problems (left: f1, middle: f2, right: f3). See Sect. 6.3.2 for the description of the
visualization

Fig. 6.11 Best solutions heat map for OSGP with selection pressure sliding window applied on
benchmark problems (left: f1, middle: f2, right: f3). See Sect. 6.3.2 for the description of the
visualization

in the middle are similar to those visualized in Fig. 6.10. For this data set, the phase
changes are not visible clearly.

The heat map produced for the first problem shows several white fragments
which are caused by overly adapted models which produce extreme predictions. This
problem instance is very easy, therefore over-adaptation occurred with the selected
parameter settings.

In this configuration, the population is allowed to adapt to the data in the current
window as long as this is possible; the effort is limited by the selection pressure
threshold. This has the effect that the window moving speed is adapted according
to the ability of the population to improve for the current window. When the system
dynamics do not change over long time intervals, this has the effect that the window
is moved quickly until a phase change is reached. At the phase change, the data in
the window changes and the population must adapt. At this point, selection pressure
drops and the window is moved more slowly.

The crucial parameter for this algorithm configuration is the selection pressure
threshold which it has to be fine-tuned manually. On the one hand the window must
not move too quickly to allow adaptation of the population to the current window, and
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on the other hand the window must not move too slowly to prevent loss of diversity.
Usually, it is necessary to hand-tune this parameter for each problem instance based
on several tries.

6.5 Conclusion and Outlook

In this chapter we have described three variants of sliding window based symbolic
regression with the aim to detect changing systems dynamics. Two of these variants
move the sliding window continuously over the data stream, whereas the third variant
uses an adaptive, selection pressure based trigger. In order to emulate changing
environmental conditions we have used several benchmark data sets in which certain
terms of the generating function appear and disappear dynamically (ad-hoc as well
as continuously). All discussed algorithm variants have been analyzed using specific
analysis measures introduced in this chapter, and we have shown that these analysis
methods enable the detection and visualization of changes in systems characteristics.

In terms of practical applicability to real-world data, continuous sliders are com-
putationally less expensive and can therefore be considered for online detection of
changing environmental conditions. The selection pressure triggered sliding window
approach, on the other hand, is better suited for a-posteriori analysis of more complex
dynamic systems. Especially in the analysis of complex, mechatronical systems we
expect this approach to produce more accurate and comprehensive modeling results
as these systems often show system dynamic changes.

Future algorithmic developments in this area could be the introduction of sonar-
like scanning of a short-term preview of data samples; we plan to implement a
measure that compares the models’ fitness on the whole current window to their
fitness on the preview window. This information shall be used to self-adaptively
adjust relevant parameters of the algorithm in order to support genetic diversity,
which is essentially important for enhanced adaptation capabilities.
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Chapter 7
Extremely Accurate Symbolic Regression
for Large Feature Problems

Michael F. Korns

Before we begin, let me warn the reader that this chapter is an extension of Korns
(2013). Due to space restrictions, the editors cannot allow both chapters to be
amalgamated here. Therefore, one really must read Korns (2013) before reading this
chapter in order to have a smooth understanding of the concepts herein.

The discipline of Symbolic Regression (SR) has matured significantly in the last
few years. There is at least one commercial package on the market for several years
http://www.rmltech.com/. There is now at least one well documented commercial
symbolic regression package available for Mathematica www.evolved-analytics.com.
There is at least one very well done open source symbolic regression package avail-
able for free download http://ccsl.mae.cornell.edu/eureqa. In addition to our own
ARC system (Korns 2010), currently used internally for massive (million row) fi-
nancial data nonlinear regressions, there are a number of other mature symbolic
regression packages currently used in industry including Smits and Kotanchek (2004)
and Kotanchek et al. (2007). Plus there is another commercially deployed regression
package which handles up to 50 to 10,000 input features using specialized linear
learning (McConaghy 2011).

Yet, despite the increasing sophistication of commercial SR packages, there have
been serious issues with SR accuracy even on simple problems (Korns 2011). Clearly
the perception of SR as a must use tool for important problems or as an interesting
heurism for shedding light on some problems, will be greatly affected by the demon-
strable accuracy of available SR algorithms and tools. The depth and breadth of SR
adoption in industry and academia will be greatest if a very high level of accuracy
can be demonstrated for SR algorithms.

In Korns (2013) we published a complex algorithm for modern symbolic regres-
sion which is extremely accurate for a large class of Symbolic Regression problems.
The class of problems, on which SR is extremely accurate, is described in detail. A
definition of extreme accuracy is provided, and an informal argument of extreme SR
accuracy is outlined. This algorithm is extremely accurate, on a single processor, for
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up to 25 features (columns); and, a cloud configuration can be used to extend the
extreme accuracy up to as many as 100 features.

While the previous algorithm’s extreme accuracy for deep problems with a small
number of features (25–100) is an impressive advance, there are many very important
academic and industrial SR problems requiring from 100 to 1000 features.

In this chapter we extend the previous algorithm such that extreme accuracy is
achieved on a wide range of problems, from 25 to 3000 features, using only a single
processor. The class of problems, on which the enhanced algorithm is extremely
accurate, is described in detail (mainly up to 3000 features). A definition of extreme
accuracy is provided, and an informal argument of high SR accuracy is outlined in
this chapter.

A set of representative problems on from 25 to 3000 features is learned by the
new enhanced extreme accuracy algorithm. The enhanced algorithm is shown to be
robust, performing well even in the face of testing data containing up to 3000 features.

Before continuing with the details of our extreme accuracy algorithm, we proceed
with a basic introduction to general nonlinear regression. Nonlinear regression is the
mathematical problem which Symbolic Regression aspires to solve. The canonical
generalization of nonlinear regression is the class of Generalized Linear Models
(GLMs) as described in Nelder and Wedderburn (1972). A GLM is a linear combina-
tion of I basis functions Bi ; i = 0,1, … I, a dependent variable y, and an independent
data point with M features x = <x0, x1, x2, …, xM−1 >: such that

• (E1) y = γ (x) = c0 + ΣciBi(x) + err

As a broad generalization, GLMs can represent any possible nonlinear formula.
However the format of the GLM makes it amenable to existing linear regression
theory and tools since the GLM model is linear on each of the basis functions Bi . For
a given vector of dependent variables, Y, and a vector of independent data points, X,
symbolic regression will search for a set of basis functions and coefficients which
minimize err. In Koza (1992) the basis functions selected by symbolic regression
will be formulas as in the following examples:

• (E2) B0 = x3

• (E3) B1 = x1+x4

• (E4) B2 = sqrt(x2)/tan(x5/4.56)
• (E5) B3 = tanh(cos(x2*.2)*cube(x5+abs(x1)))

If we are minimizing the normalized least squared error, NLSE (Korns 2012), once a
suitable set of basis functions B have been selected, we can discover the proper set of
coefficients C deterministically using standard univariate or multivariate regression.
The value of the GLM model is that one can use standard regression techniques and
theory. Viewing the problem in this fashion, we gain an important insight. Symbolic
regression does not add anything to the standard techniques of regression. The value
added by symbolic regression lies in its abilities as a search technique: how quickly
and how accurately can SR find an optimal set of basis functions B. The immense
size of the search space provides ample need for improved search techniques. In
basic Koza-style tree-based Genetic Programming (Koza 1992) the genome and the
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individual are the same Lisp s-expression which is usually illustrated as a tree. Of
course the tree-view of an s-expression is a visual aid, since a Lisp s-expression is
normally a list which is a special Lisp data structure. Without altering or restricting
basic tree-based GP in any way, we can view the individuals not as trees but instead
as s-expressions such as this depth 2 binary tree s-exp: (/(+ x2 3.45) (* x0 x2)), or
this depth 2 irregular tree s-exp: (/(+ x4 3.45) 2.0).

In basic GP, applied to symbolic regression, the non-terminal nodes are all oper-
ators (implemented as Lisp function calls), and the terminal nodes are always either
real number constants or features. The maximum depth of a GP individual is limited
by the available computational resources; but, it is standard practice to limit the max-
imum depth of a GP individual to some manageable limit at the start of a symbolic
regression run.

Given any selected maximum depth k, it is an easy process to construct a maximal
binary tree s-expression Uk , which can be produced by the GP system without vio-
lating the selected maximum depth limit. As long as we are reminded that each f rep-
resents a function node while each t represents a terminal node (either a feature v or a
real number constant c), the construction algorithm is simple and recursive as follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Uk): (f Uk−1 Uk−1)

The basic GP symbolic regression system (Koza 1992) contains a set of functions F,
and a set of terminals T. If we let t ∈ T, and f ∈ F ∪ ξ , where ξ (a,b) = ξ (a) = a, then
any basis function produced by the basic GP system will be represented by at least
one element of Uk . Adding the ξ function allows Uk to express all possible basis
functions generated by the basic GP system to a depth of k. Note to the reader, the ξ

function performs the job of a pass-through function. The ξ function allows a fixed-
maximal-depth expression in Uk to express trees of varying depth, such as might be
produced from a GP system. For instance, the varying depth GP expression x2 + (x3

− x5) = ξ (x2,0.0) + (x3 − x5) =+(ξ (x2 0.0) −(x3 x5)) which is a fixed-maximal-depth
expression in U2.

In addition to the special pass through function ξ , in our system we also make
additional slight alterations to improve coverage, reduce unwanted errors, and restrict
results from wandering into the complex number range. All unary functions, such
as cos, are extended to ignore any extra arguments so that, for all unary functions,
cos(a,b) = cos(a). The sqroot and ln functions are extended for negative arguments
so that sqroot(a) = sqroot(abs(a)) and ln(a) = ln(abs(a)).

Given this formalism of the search space, it is easy to compute the size of the
search space, and it is easy to see that the search space is huge even for rather simple
basis functions. For our use in this chapter the function set will be the following
functions: F = (+ − * / abs inv cos sin tan tanh sqroot square cube quart exp ln ξ )
(where inv(x) = 1.0/x). The terminal set is the features x0 through xM−1 and the real
constant c, which we shall consider to be 218 in size.
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During the writing of Korns (2010, 2011, 2012, 2013) a high level regression
search language was developed called RQL. RQL was inspired by the database
search language SQL. Therefore RQL is analogous to SQL but not similar to SQL.
The algorithm included in this paper is primarily presented in RQL. A very brief, but
hopefully sufficient, description of RQL follows.

Regression Query Language RQL is a high level Symbolic Regression search
language, and consists of one or more search clauses which together make up a sym-
bolic regression request. Each search clause represents an independent evolutionary
island in which a separate symbolic regression search is performed.

• (A1) search goal where island(breeder,strategy,popsize,pool,serial)
...constraints...
...events...

It is assumed that the champions from each independent search island will be accu-
mulated into a final list of champions from which the best champion will become
the answer to the entire search process. The search goal specifies the area to be
searched. For example, a common goal is universal(3,1,t) which searches all single
(1) regression champions from all possible basis functions of depth (3) where the
terminals are both (t) variables (containing features) or abstract constants (contain-
ing real numbers). The goal universal(3,1,t) is also known as U3(1) throughout this
chapter.

Another search goal example might be f0(v0,f1(v1,c0)) which searches for a func-
tion with two arguments where the second argument is also a function with two
arguments, the second of which is a constant. The abstract function variables f0 thru
fK are meant to contain one concrete function from the set F ∪ ξ unless otherwise
constrained. The abstract feature variables v0 thru vJ are meant to contain one con-
crete feature from the set x0 thru xM−1 unless otherwise constrained. The abstract
constant variables c0 thru cL are meant to contain one real number, of size 2cbit ,
unless otherwise constrained. The constraints, located anywhere after the where
keyword, are in the form of limitations on variable and function variable coverage
such as f0(cos,sin,tan,tanh) or v0(x0,x3,x10) or c0(3.45).

The island keyword sets up the parameters of the evolutionary search island. We
use only two breeders: pareto which implements a typical pareto front algorithm
and also understands onfinal and onscore events, and smart which implements a
focused elitist algorithm and also understands onfinal onscore and input events. We
use only one population operator strategy standard which implements typical elitist
mutation and crossover operators, plus standard swarm operators for optimizing
embedded constants, see the baseline algorithm (Korns 2012). The population size
popsize, constant pool size pool, and number of serial iterations per generation serial
vary with each search specification.

Three other constraint and event clauses may appear anywhere after the where
keyword. These are the isolate constraint clauses, and the input onscore and onfinal
events. Each of these will be explained, with brief descriptions and actual examples,
as we detail specific regression search requests required for the extreme accuracy
algorithm.
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Incidentally any reasonable pareto front implementation, any reasonable elitist
implementation, any reasonable standard set of population operators, and any rea-
sonable set of swarm optimizers for embedded constants will work with this extreme
accuracy algorithm. The key to implementing this extreme accuracy algorithm lies
in the number of independent search island requests, and exactly what is searched
for in each independent island. Which brings us to the core issues involved in the
pursuit of extreme accuracy.

The previous extreme accuracy algorithm (Korns 2013), in a laptop configuration,
can manage all problems of universal(2,1,t) and universal(1,3,t) on training data sets
containing up to 25 features. We shall name these U2(1)[25] and in U1(3)[25] respec-
tively. In this chapter our problem is the large number of academic and industrial
SR problems requiring far greater feature counts where training data sets containing
100–1000 features are often encountered.

In this chapter we will introduce extensions to the previous extreme accuracy al-
gorithm (Korns 2013), which will extend the previous extreme accuracy performance
on 25 features and also extend the extreme accuracy performance to training data sets
containing from 150 to 3000 features. The algorithm extensions will be described in
detail and an informal argument of extreme SR accuracy will be presented.

Obviously a cloud configuration will greatly speed up the enhanced extreme ac-
curacy algorithm, and we will address cloud configurations and extreme accuracy in
a later paper. For this chapter, we will develop an extremely accurate SR algorithm
which any scientist can use on their personal laptop.

Our core assertion in this chapter is that the enhanced extreme accuracy algorithm
will achieve, on a laptop computer, extremely accurate champions for all of the
problems in U2(1)[25], U1(25)[25], U1(5)[150], and in F(x)(5)[3000] (note: F(x) = ξ

inv abs sqroot square cube quart exp ln cos sin tan tanh) in reasonable computation
times, of a maximum 60 h (on an advanced laptop built in Jan 2013) and a maximum
120 h (on an advanced laptop built in Jan 2008). Pushing things to the extreme,
the enhanced algorithm will achieve extremely accurate champions for all of the
problems from U2(1)[50] through U1(5)[50] in a maximum of 240 h (on an advanced
laptop built in Jan 2013). Most problems finish far quicker than these maximum time
horizons.

7.1 Example Test Problems

In this section we list the example test problems which we will address. All of
these test problems lie in the domain of either U2(1)[25], U1(25)[25], U1(5)[150], or
F(x)(5)[3000], where the function set F(x) = (ξ inv abs sqroot square cube quart
exp ln cos sin tan tanh), and the terminal set is the features x0 thru xM−1 plus the
real number constant c with cbit = 18. Our training data sets will contain 25 features,
150, and 3000 features as specified. Our core assertion is that the enhanced algorithm
will find extremely accurate champions for all of these problems and for all similar
problems in practical time on a laptop computer.
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Similar problems are easily obtained by substituting all other pos-
sibilities within U2(1)[25], U1(25)[25], U1(5)[150], or F(x)(5)[3000].
For instance one problem in U2(1)[25] might be y = 1.687 +
(94.183*(x3*x2)). By substitution, y = 1.687 + (94.183*(x3/x2)) and
y = 1.687 + (94.183*(x23*x12)) are also in U2(1)[25]. Another problem
in U2(1)[25] might be y = −2.36 + (28.413*ln(x2)/x3). By substitution,
y = −2.36 + (28.413*cos(x12)*x6) and y = −2.36 + (28.413*sqroot(x21)−x10)
are also in U2(1)[25]. Our core assertion is that the extreme accuracy algorithm not
only finds accurate solutions to the 45 test problems listed below, but also to all
other possible test problems in U2(1)[25], U1(25)[25], U1(5)[150], or F(x)(5)[3000].

• Deep problems in U2(1)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T1): y = 1.57 + (14.3*x3)
• (T2): y = 3.57 + (24.33/x3)
• (T3): y = 1.687 + (94.183*(x3*x2))
• (T4): y = 21.37 + (41.13*(x3/x2))
• (T5): y = −1.57 + (2.3*((x3*x0)*x2))
• (T6): y = 9.00 + (24.983*((x3*x0)*(x2*x4)))
• (T7): y = −71.57 + (64.3*((x3*x0)/x2))
• (T8): y = 5.127 + (21.3*((x3*x0)/(x2*x4)))
• (T9): y = 11.57 + (69.113*((x3*x0)/(x2+x4)))
• (T10): y = 206.23 + (14.2*((x3*x1)/(3.821−x4)))
• (T11): y = 0.23 + (19.2*((x3−83.519)/(93.821−x4)))
• (T12): y = 0.283 + (64.2*((x3−33.519)/(x0−x4)))
• (T13): y = −2.3 + (1.13*sin(x2))
• (T14): y = 206.23 + (14.2*(exp(cos(x4))))
• (T15): y = −12.3 + (2.13*cos(x2*13.526))
• (T16): y = −12.3 + (2.13*tan(95.629/x2))
• (T17): y = −28.3 + (92.13*tanh(x2*x4))
• (T18): y = −222.13 + (−0.13*tanh(x2/x4))
• (T19): y = −2.3 + (−6.13*sin(x2)*x3)
• (T20): y = −2.36 + (28.413*ln(x2)/x3)
• (T21): y = 21.234 + (30.13*cos(x2)*tan(x4))
• (T22): y = −2.3 + (41.93*cos(x2)/tan(x4))
• (T23): y = .913 + (62.13*ln(x2)/square(x4))
• Narrow problems in U1(2to3)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T24): y = 13.3 + (80.23*x2) + (1.13*x3)
• (T25): y = 18.163 + (95.173/x2) + (1.13/x3)
• (T26): y = 22.3 + (62.13*x2) + (9.23*sin(x3))
• (T27): y = 93.43 + (71.13*tanh(x3)) + (41.13*sin(x3))
• (T28): y = 36.1 + (3.13*x2) + (1.13*x3) + (2.19*x0)
• Wide problems in U1(5)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
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• (T29): y = −9.16 + (−9.16*x24*x0) + (−19.56*x20*x21) + (21.87*x24*x2) +
(−17.48* x22*x23) + (38.81*x23*x24)

• (T30): y = −9.16 + (−9.16*x24/x0) + (−19.56*x20/x21) + (21.87*x24/x2) +
(−17.48* x22/x23) + (38.81*x23/x24)

• Broad problems in F(x)(5)[3000]
• ..Note: these problems trained on 5000 examples with 3000 features each
• ..Note: F(x) = noop inv abs sqroot square cube quart exp ln cos sin tan tanh
• (T31): y = 50.63 + (63.6*cube(x0)) + (66.54*cube(x1)) + (32.95*cube(x2)) +

(4.87* cube(x3)) + (46.49*cube(x4))
• (T32): y = −9.16 + (−9.16*square(x0)) + (−19.56*ln(x123)) +

(21.87*exp(x254)) + (−17.48* x3) + (38.81*x878)
• (T33): y = 0.0 + (1*square(x0)) + (2*square(x1)) + (3*square(x2)) +

(4*square(x3)) + (5* square(x4))
• (T34): y = 65.86 + (79.4*sin(x0)) + (45.88*cos(x1)) + (2.13*tan(x2)) +

(4.6*sin(x3)) + (61.47* cos(x4))
• (T35): y = 1.57 + (1.57/x923) + (−39.34*sin(x1)) + (2.13*x2) +

(46.59*cos(x932)) + (11.54*x4)
• (T36): y = 50.63 + (63.6*sqroot(x0)) + (66.54*sqroot(x1)) + (32.95*sqroot(x2))

+ (4.87*sqroot (x3)) + (46.49*sqroot(x4))
• (T37): y = 92.25 + (53.53*square(2.3*x0)) + (88.26*cos(x1)) + (42.11/x4) +

(29.0*cube(x3)) + (93.6*tanh(x4))
• Broad problems in U1(5)[150]
• ..Note: these problems trained on 10,000 examples with 150 features each
• (T38): y = −9.16 + (−9.16*x124*x0) + (−19.56*x120*x21) + (21.87*x24*x26)

+ (−17.48*x122*x23) + (38.81*x123*x24)
• (T39): y = −9.16 + (−9.16*x124/x0) + (−19.56*x20/x92) + (21.87*x102/x2) +

(−17.48*x22/x143) + (38.81*x23/x149)
• (T40): y = −9.16 + (−9.16*cos(0)) + (−19.56*x20/x21) + (21.87*square(x125))

+ (−17.48*x22/x23) + (38.81*tanh(x24))
• Dense problems in U1(25)[25]
• ..Note: these problems trained on 10,000 examples with 25 features each
• (T41): y = 50.63 + (63.6*cube(x0)) + (66.54*square(x1)) + (32.95*quart(x2))

+ (4.87* cube(x3)) + (46.49*square(x4)) + (62.85*quart(x5)) +
(90.45*cube(x6)) + (63.28*square(x7)) + (42.15* quart(x8)) + (73.03*cube(x9))
+ (92.2*square(x10)) + (77.99*quart(x11)) + (56.67*cube(x12)) +
(72.51*square(x13)) + (49.77*quart(x14)) + (56.94*cube(x15)) +
(54.76*square(x16)) + (23.11* quart(x17)) + (56.03*cube(x18)) +
(51.98*square(x19)) + (11.71*quart(x20)) + (33.82*cube (x21)) +
(46.25*square(x22)) + (32.98*quart(x23)) + (36.06*cube(x24))

• (T42): y = −9.16 + (−9.16*x4*x0) + (−19.56*x0*x1) + (21.87*x1*x2)
+ (−17.48*x2*x3) + (38.81* x3*x4) + (3.1*x4*x5) + (59.81*x5*x6) +
(93.1*x6*x7) + (.81*x7*x8) + (9.21*x8*x9) + (−5.81*x9*x10) + (−.01*x10*x11)
+ (4.21*x11*x12) + (68.81*x12*x13) + (−8.81*x13*x14) + (2.11* x14*x15)
+ (−7.11*x15*x16) + (−.91*x16*x17) + (20.0*x17*x18) + (1.81*x18*x19)
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+ (9.71*x19* x20) + (8.1*x20*x21) + (6.1*x21*x22) + (18.51*x22*x23) +
(7.1*x23*x24)

• (T43): y = 0.0 + (1*square(x0)) + (2*square(x1)) + (3*square(x2)) +
(4*square(x3)) + (5* square(x4)) + (6*square(x5)) + (7*square(x6)) +
(8*square(x7)) + (9*square(x8)) + (10*square (x9)) + (11*square(x10)) +
(12*square(x11)) + (13*square(x12)) + (14*square(x13)) + (15* square(x14)) +
(16*square(x15)) + (17*square(x16)) + (18*square(x17)) + (19*square(x18)) +
(20*square(x19)) + (21*square(x20)) + (22*square(x21)) + (23*square(x22)) +
(24*square(x23)) + (25*square(x24))

• (T44): y = 65.86 + (79.4*sin(x0)) + (45.88*cos(x1)) + (2.13*tan(x2)) +
(4.6*sin(x3)) + (61.47* cos(x4)) + (30.64*tan(x5)) + (51.95*sin(x6)) +
(47.83*cos(x7)) + (4.21*tan(x8)) + (37.84*sin (x9)) + (62.57*cos(x10)) +
(4.68*tan(x11)) + (32.65*sin(x12)) + (86.89*cos(x13)) + (84.79* tan(x14)) +
(31.72*sin(x15)) + (90.4*cos(x16)) + (93.57*tan(x17)) + (42.18*sin(x18)) +
(47.91* cos(x19)) + (41.48*tan(x20)) + (39.47*sin(x21)) + (48.44*cos(x22)) +
(34.75*tan(x23)) + (56.7* sin(x24))

• (T45): y = 1.57 + (1.57*x0) + (-39.34*sin(x1)) + (2.13*x2) + (46.59*(x3/x2))
+ (11.54*x4) + (30.64*ln(x5)) + (51.95*abs(x6)) + (47.83*(x7*x3)) +
(4.21*quart(x8)) + (37.84*x9) + (62.57* square(x10)) + (4.68*sqroot(x11)) +
(32.65*(x12/x3)) + (86.89*x14) + (84.79*tan(x15)) + (31.72* cube(x16)) +
(90.4*(x17*x18)) + (93.57*(x17/x16)) + (42.18*sin(x18)) + (47.91* cos(x19))
+ (41.48*ln(x20)) + (39.47*square(x21)) + (48.44*x22) + (34.75*(x23*x24)) +
(56.7* x24)

For the sample test problems, we use only statistical best practices out-of-sample
testing methodology. A matrix of independent variables is filled with random num-
bers between −100 and + 100. Then the model is applied to produce the dependent
variable. These steps will create the training data (each matrix row is a training
example and each matrix column is a feature). A symbolic regression will be run
on the training data to produce a champion estimator. Next a matrix of independent
variables is filled with random numbers between −100 and + 100. Then the model
is applied to produce the dependent variable. These steps will create the testing data.
The fitness score is the root mean squared error divided by the standard deviation of
Y, NLSE. The estimator will be evaluated against the testing data producing the final
NLSE and R-Square scores for comparison.

For the purposes of this algorithm, extremely accurate will be defined as any
champion which achieves a normalized least squares error (NLSE) of .0001 or less
on the noiseless testing data. In the table of results, at the conclusion of this chapter,
the noisless test results are listed under the Test-NLSE column header.

All timings quoted in this chapter were performed on a Dell XPS L521X Intel i7
quad core laptop with 16 Gig of RAM, and 1 Tb of hard drive, manufactured in Dec
2012 (our test machine).
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7.2 Large Feature Regression

The currently available techniques for attacking large feature regression problems
include stepwise regression (Draper and Smith 1981), ridge regression (Hoerl 1962),
LASSO (Tibshirani 1996), and elastic nets (McConaghy 2011) among others.

In statistics, stepwise regression refers to a class of regression algorithms in which
the choice of predictive variables are incrementally selected via some automated pro-
cess. Often F-Tests, t-Test, R-Square, Bayesian, and a host of other heuristic decision
metrics are utilized. Ridge regression, LASSO, and elastic nets are similar iterative
techniques in which the heuristic involves varying one or more scalar multipliers in
the general regression equation itself.

For instance, suppose we have a large number of features = |V |, and we wish to
choose a maximum of B basis functions (where B <= |V |) as the largest regression
model that we are willing to accept. If Bf (V) represents our choices for each basis
function on V, then |Bf (V)|B represents the total number of choices required for
exhaustive search. As the set Bf (V) becomes more interesting, the number |Bf (V)|B
often becomes so large that exhaustive search is impractical.

Note that with modern sophisticated multiple regression, selecting a maximum of
B basis functions will automatically include all models of less than B basis functions
which are the most accurate, by assigning zero coefficients to the basis functions
which do NOT improve accuracy.

Therefore, in a highly abstracted idealized stepwise regression algorithm, one
would first search Bf (V) exhaustively with simple regressions, regress(Bf i(V)),
gathering all necessary statistics for each individual simple regression. From those
experiences, a single basis function would be selected for position 1, Bf 1(V). Then
one would next search Bf (V) exhaustively with multiple regressions, regress(Bf 1

(V),Bf i(V)), gathering all necessary statistics for each individual multiple regression.
From those experiences, a single basis function would be selected for position 2,
Bf 2(V). This idealized process would be repeated until B basis functions had been
selected, or until selecting additional basis functions failed to improve accuracy.

All available current large feature regression techniques operate in a variation of
this idealized iterative algorithm. There is great latitude in the statistics and heurisms
used to select optimal basis functions, and there is some latitude in whether or not
and how much backtracking can be utilized. None of the available large feature
regression techniques performs an exhaustive search on all |Bf (V)|B choices. As
one would expect, each available large feature regression technique has its own
advantages and disadvantages.

Ridge regression is a very fast multiple regression technique with a constant
multiplier of the identity matrix which gives a non-zero regression coefficient to
every basis function in the regression model. This will offer extreme accuracy, which
is robust in the face of noisy training data, but not in the face of range shifting.
Furthermore, ridge regression works properly with only a small number of features
in the training data and has a very difficult time dealing with thousands of features
in the training data.
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Stepwise regression, based on F-Test statistics, is an incremental, greedy regres-
sion technique which works well with a large number of features in the training data,
but which does not offer any pretense of extreme accuracy. Similarly, LASSO and
elastic nets are also incremental greedy regression techniques which work well with
a large number of features in the training data, often better than stepwise regression,
but they also do not offer any pretense of extreme accuracy.

Unfortunately, none of the available statistical regression techniques promise
extreme accuracy on large feature regression problems.

Since none of the currently available regression techniques offers extreme accu-
racy on large numbers of features, we will have to break new ground in this chapter.
Our approach will be to extend the previous extreme accuracy algorithm (Korns
2013) with a new technique which merges the lessons learned in evolutionary pro-
gramming with the lessons learned in stepwise regression, ridge regression, LASSO,
and elastic nets.

The previous extreme accuracy algorithm (Korns 2013), consists of 25 separate
search islands, S0 through S24. Each island is an independent RQL search island
capable of being run on a separate computing device. The best regression champion
in any of the islands is automatically considered the answer to the extreme accuracy
regression problem.

The search island S0 is a general pareto front search island which conveys the
power and capabilities of current state-of-the-art pareto front SR to the extreme
accuracy algorithm. Search island S1 provides extreme accuracy for problems in
U1(3)[25] (on a laptop—no cloud). Search islands S2 through S24 jointly provide
extreme accuracy for problems in U2(1)[25] (on a laptop—no cloud).

In this chapter we will leave search islands S2 through S24 unaltered (with the
exception that we have added the unary functions inv and abs everywhere required in
those search islands). We will enhance search islands S0 and S1 to provide extreme
accuracy for problems in U2(5)[25], U1(25)[25], U1(5)[150], up to and including
F(x)(5)[3000] (on a laptop—no cloud).

The previous extreme accuracy RQL (S0) search command is fairly straightfor-
ward and provides Pareto-front-like accuracy for all problems up through UD(B)[25]
(on a laptop—no cloud).

• (S0) search regress(universal(D,B,t)) where island(pareto,standard,100,100,200)
op(ξ ,+,−,*,/,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

The previous extreme accuracy RQL (S1) search command is fairly straightforward
and provides extreme accuracy for all problems in U1(3)[25] (on a laptop only—a
cloud implementation would allow faster completion and a larger maximum number
of features).

• (S1) search regress(f0(v0,v1),f1(v2,v3),f2(v4,v5)) where island(smart,standard,10,
25,200) op(ξ ,+,−,*,/,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln)

If we wish to provide extreme accuracy beyond U2(1)[25], U1(3)[150] through
U1(3)[25], we will have to enhance these two RQL search commands.
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7.3 Search Island S0.0 to S0.B

General pareto front search is a powerful state-of-the-art approach to symbolic re-
gression. Many of the current leading contender algorithms in SR use pareto front
evolution in one form or another. If we wish to extend the power and reach of our
extreme accuracy algorithm into U1(5)[25] and beyond, we will have to enhance the
algorithm with a more formidable pareto front treatment.

The enhancements to search island (S0) expand the number of pareto front is-
lands based on the number of basis functions requested, yielding new pareto front
search islands from (S0.1) through (S0.B) (where B is the number of basis functions
requested). Assuming that B = 5, the new enhanced pareto search islands are as
follows.

• (S0.1) search regress(universal(5,1,t)) where island(pareto,standard,256,25,00,
50,10) op(ξ ,inv,abs,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,+,−,*,/)

• (S0.2) search regress(universal(5,2,t)) where island(pareto,standard,256,25,00,
50,10) op(ξ ,inv,abs,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,+,−,*,/)
reduce(true)
onfinal(’regress(poly)’)

• (S0.3) search regress(universal(5,3,t)) where island(pareto,standard,256,25,00,
50,10) op(ξ ,inv,abs,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,+,−,*,/)
reduce(true)
onfinal(’regress(poly)’)

• (S0.4) search regress(universal(5,4,t)) where island(pareto,standard,256,25,00,
50,10) op(ξ ,inv,abs,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,+,−,*,/)
reduce(true)
onfinal(’regress(poly)’)

• (S0.5) search regress(universal(5,5,t)) where island(pareto,standard,256,25,00,
50,10) op(ξ ,inv,abs,cos,sin,tan,tanh,sqroot,square,cube,quart,exp,ln,+,−,*,/)
reduce(true)
onfinal(’regress(poly)’)

The reduce(true) and onfinal(’regress(poly)’) clauses cause the search island, upon
completion, to try each individual basis function and subgroup of basis functions in
the reigning champion to see if some are not needed.

For instance if the correct answer was y = 45.6 + (23.2*x102) and the reigning
champion, upon completion, was y = 49.1 + (.003*x23) + (25.9*x102) then the
reduce(true) and onfinal(’regress(poly)’) clauses will cause the search island to
discover that y = 45.6 + (23.2*x102) is a better answer.

Taken all together search islands (S0.1) through (S0.B) constitute a concerted
pareto-front attack on all problems from U5(1)[|V|], U5(2)[|V|], . . . U5(B)[|V|]
(where |V| is the number of features in the problem and B is the number of basis
functions). The new pareto front islands consume about one third of the computa-
tional resources of the new enhanced extreme accuracy algorithm. The results are an
amazingly powerful incursion into this vast problem space. Many of the test problems
are solved with these pareto front search islands alone.
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Unfortunately, although powerful, the accuracy is hit and miss. There are a sur-
prisingly high number of deep problems solved by these pareto front islands; but,
from time to time, a problem is missed. There is no informal accuracy argument and
no way of predicting which problems will be missed. Changing the random number
seed only causes the set of missed problems to move mysteriously. Furthermore, as
|V| approaches 25, 150, and 3000, the percent of missed problems grows larger.

If we wish to have extreme accuracy from U2(1)[25], U1(5)[150] through Fx(5)
[3000], we will have to supplement the (S0.i) search islands with the other extreme
accuracy enhancements.

7.4 Baseline Accuracy Measurements

Packaging together RQL search commands ONLY from search islands (S0.0) thru
(S0.B), implemented with the baseline algorithm in Korns (2012), we now have a
way of measuring the baseline accuracy performance of relatively straightforward
pareto-GP symbolic regression on the 45 test problems.

As mentioned, each of the problems were trained and tested on from 25 to 3000
features as specified using out of sample testing. The allocated maximum generations
were set such that the theoretical maximum time to complete a test problem on our
laptop environment was 60 h, at which time training was automatically halted and
the best champion was returned as the answer. However, most problems finished
well ahead of that maximum time limit.

All timings quoted in this table were performed on a Dell XPS L521X Intel i7
quad core laptop with 16 Gig of RAM, and 1 Tb of hard drive, manufactured in Dec
2012 (our test machine)1.

The results in Table 7.1 demonstrate only intermittent accuracy on the 45 test
problems. Baseline accuracy is very good with 1, 2, or 5 features in the training data.
Unfortunately, Baseline accuracy decreases rapidly as the number of features in the
training data increases to 25, 150, and 3000. Furthermore, there is a great deal of
overfitting as evidenced by the number of test cases with good training scores and
very poor testing scores.

In such cases of overfitting, SR becomes deceptive. It produces tantalizing can-
didates which, from their training NLSE scores, look really exciting. Unfortunately,
they fail miserably on the testing data.

Clearly the baseline testing results in Table 7.1 demonstrate an opportunity for
improved accuracy.

Another serious issue with the baseline algorithm is that negative results have no
explicit meaning. For example, Alice runs the baseline algorithm on a large block of

1 Testing a single regression champion is not cheap. At a minimum testing a single regression
champion requires as many evaluations as there are training examples as well as performing a
simple regression. At a maximum testing a single regression champion may require performing a
much more expensive multiple regression.
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Table 7.1 Results demonstrating baseline accuracy

Test WFFsa Train-Hrsb Train-NLSEc Test-NLSEd

T01 1K 0.01 0.0000 0.0000

T02 9K 0.08 0.0000 0.0000

T03 87K 1.00 0.0000 0.0000

T04 11K 0.02 0.0000 0.0000

T05 812K 9.00 0.0000 0.0000

T06 1246K 13.86 0.5364 0.7727

T07 112K 1.29 0.0000 0.0000

T08 1221K 14.40 0.0034 0.1354

T09 1240K 25.86 0.0484 0.9999

T10 1242K 13.97 0.0185 0.9999

T11 817K 10.26 0.0317 0.9999

T12 914K 11.46 0.0244 0.9999

T13 5K 0.05 0.0000 0.0000

T14 9K 0.09 0.0000 0.0000

T15 724K 10.27 0.8540 0.9348

T16 884K 10.66 0.0077 0.9999

T17 10K 0.10 0.0000 0.0000

T18 360K 4.51 0.0000 0.0000

T19 73K 0.86 0.0000 0.0000

T20 356K 4.41 0.0000 0.0000

T21 908K 10.94 0.0560 0.0222

T22 908K 11.05 0.0568 0.0602

T23 621K 8.21 0.0000 0.9999

T24 5K 0.05 0.0000 0.0000

T25 77K 0.88 0.0000 0.0000

T26 17K 0.18 0.0000 0.0000

T27 79K 0.85 0.0000 0.0000

T28 10K 0.10 0.0000 0.0000

T29 870K 10.11 0.1324 0.1334

T30 900K 11.48 0.0290 0.0099

T31 900K 11.48 0.2104 0.2289

T32 179K 8.06 0.0000 0.0000

T33 280K 13.82 0.2435 0.2398

T34 283K 15.44 0.2028 0.2412

T35 251K 13.49 0.0511 0.0540
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Table 7.1 (continued)

Test WFFsa Train-Hrsb Train-NLSEc Test-NLSEd

T36 333K 13.03 0.4524 0.4755

T37 255K 11.97 0.0000 0.0000

T38 275K 3.45 0.7453 0.8026

T39 282K 3.84 0.0403 0.9999

T40 249K 3.14 0.0022 0.9999

T41 854K 26.46 0.0455 0.0645

T42 978K 23.84 0.8415 0.9999

T43 507K 17.46 0.3838 0.8082

T44 517K 17.81 0.0062 0.9999

T45 517K 17.55 0.0024 0.9999

a The number of regression candidates tested before finding a solution is listed in the Well Formed
Formulas (WFFs) column
b The elapsed hours spent training on the noiseless training data is listed in the (Train-Hrs) column
c The fitness score of the champion on the noiseless training data is listed in the (Train-NLSE)
column
d The fitness score of the champion on the noiseless testing data is listed in the (Test-NLSE) column.
Note also search commands (S1) thru (S24) are not included in the baseline algorithm

data for the maximum time specified. At the conclusion of the maximum specified
generations, requiring a maximum of 60 h on our laptop, no candidate with a zero
NLSE (perfect score) is returned. The meaning of this negative result is indeterminate,
as one can argue that perhaps if Alice were to run the baseline algorithm for a few
more generations an exact candidate would be discovered.

This chapter is devoted to enhancing the extreme accuracy algorithm in Korns
(2013) by enhancing search commands (S0) and (S1), then combining the enhanced
search commands (S0) and (S1) with the previous search commands (S2) thru (S24)
together to form the new enhanced extreme accuracy algorithm. At the close of
this chapter, the enhanced extreme accuracy algorithm will be measured against the
45 test problems, and we will see what, if any, accuracy improvements have been
achieved over the baseline algorithm. Note: The baseline algorithm is enhanced
search command (S0) ONLY as implemented by the baseline algorithm in Korns
(2012).

7.5 Search Island S1.0

The enhancements to search island (S1) merge lessons learned from the statisti-
cal stepwise regression techniques together with the lesson learned in evolutionary
symbolic regression. The goal is to achieve extreme accuracy in problems from
U1(5)[150] through Fx(5)[3000].
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All enhanced search islands (S1.0) through (S1.B), taken together, form a kind of
stepwise regression algorithm, but one in which evolutionary pressures take the place
of F-Tests, Bayesian, or other heuristic methods of selecting basis functions. The
(S1.0) RQL search begins this stepwise process with a straightforward elitist attempt
to find B basis functions which minimize the NLSE for the specified problem.

• (S1.0) search regress(universal(1,B,v)) where island(smart,standard,10,0,
400,200) op(ξ ,inv,abs,sqroot,square,cube,quart,exp,ln,cos,sin,tan,tanh,*,/,+,−)
reduce(true)
onfinal(’regress(poly)’)
name(Wide)

Search command (S1.0) performs multiple regressions with B basis functions, each
of which is in U1 and looks like f(t,t). Each of the variables vi contain a single features
such as xj . Each of fk are function variables containing single functions from the set
F ∪ ξ ∪ inv. From the terms, t, all embedded constants can be eliminated because
they cancel out of the basis function and enhance the regression coefficient for the
basis function as shown in the following examples.

• (E1) regress(c0+v0) = a+b*(c0+v0) = a+(b*c0)+b*v0 = regress(v0)
• (E2) regress(c0/v0) = a+b*(c0/v0) = a+(b*c0)/v0 = regress(inv(v0))
• (E3) regress(cos(c0)) = a+b*cos(c0) = c1

Since we can eliminate all of the embedded constants from each term in U1, we are
left with regress(universal(1,B,v)) as our search goal.

The reduce(true) and onfinal(’regress(poly)’) clauses cause the search island,
upon completion, to try each individual basis function and subgroup of basis functions
in the reigning champion to see if some are not needed.

For instance if the correct answer was y = 45.6 + (23.2*x102) and the reigning
champion, upon completion, was y = 49.1 + (.003*x23) + (25.9*x102) then the
reduce(true) and onfinal(’regress(poly)’) clauses will cause the search island to
discover that y = 45.6 + (23.2*x102) is a better answer.

The name(Wide) clause gives the search island a group name, which will be used
in searches (S1.1) through (S1.B) later in this chapter.

Search island (S1.0) starts the stepwise algorithm off with a rapid start due to the
power of evolutionary pressure and the linear nature of the problem. Very quickly
search island (S1.0) will arrive at an approximately accurate answer even for very
difficult problems, and as evolution continues the reigning champion in search island
(S1.0) will get approximately better and better.

Unfortunately, search island (S1.0) will often fail to arrive at an extremely accu-
rate answer. When (S1.0) first starts out, it has many choices for basis functions,
Bf i(V), which will improve accuracy. However, if the problem is difficult, eventu-
ally (S1.0) will arrive at a champion y = regress(...,Bf i(x)(V),...) where the ONLY
mutation, which will improve accuracy, is to change y = regress(...,Bf i(x)(V),...) to
y = regress(...,Bf k(x)(V),...). Now the probability of improvement is 1/(|Bf (x)(V)|B)
which is often too small to reach in practical time.
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Therefore, if we wish to achieve extreme accuracy we will have to add additional
iterative steps in addition to search island (S1.0). These additional iterative steps are
the search islands (S1.1) through (S1.B) which are covered in the next section.

7.6 Search Islands S1.1 to S1.B

The purpose of search islands (S1.1) through (S1.B) is to provide stepwise column
focused serial search on each of the B columns in all cases where the main (S1.0)
evolutionary island has achieved a new best champion. This process starts with a
main search island (S1.0) which searches all columns for all possible basis function
in an elitist evolutionary fashion, and we have B stepwise search islands which search
each of the B columns separately with elitist evolutionary and serial attacks. This
iterative search is performed each time any of these islands discovers a new best
champion.

The number of additional RQL search commands (S1.1) through (S1.B) are deter-
mined by the number of requested basis functions, B. For the purposes of illustration,
let us assume that B = 3. Then the additional search islands (S1.1) through (S1.3)
are as follows.

• (S1.1) search regress(universal(1,1,v),x0,x0) where island(smart,standard,10,0,
400,200) op(ξ ,inv,abs,sqroot,square,cube,quart,exp,ln,cos,sin,tan,tanh,*,/,+,−)
input(Wide,’regress(universal(1,1,v),$B1$,$B2$)’)
delay(15)
name(Wide)
reduce(true)
onfinal(’regress(poly)’)

• (S1.2) search regress(x0,universal(1,1,v),x0) where island(smart,standard,10,0,
400,200) op(ξ ,inv,abs,sqroot,square,cube,quart,exp,ln,cos,sin,tan,tanh,*,/,+,−)
input(Wide,’regress($B0$,universal(1,1,v),$B2$)’)
delay(15)
name(Wide)
reduce(true)
onfinal(’regress(poly)’)

• (S1.3) search regress(x0,x0,universal(1,1,v)) where island(smart,standard,10,0,
400,200) op(ξ ,inv,abs,sqroot,square,cube,quart,exp,ln,cos,sin,tan,tanh,*,/,+,−)
input(Wide,’regress($B0$,$B1$,universal(1,1,v))’)
delay(15)
name(Wide)
reduce(true)
onfinal(’regress(poly)’)

In search islands (S1.1) through (S1.B) the delay(15) clause forces these islands to
start evolution only after 15 generations. This gives search island (S1.0) a chance to
settle down before stepwise iterations are attempted. This parameter is NOT critical
and can be set to any reasonable value without serious effect on the algorithm.
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Also it is important to note that island (S1.0) searches on all columns for all
possible basis functions. However, search island (S1.1) through (S1.B) each search
on only a single but different column. For instance, island (S1.1) will perform a
concentrated elitist evolutionary and serial search on the 1st basis function only,
while island (S1.3) will perform a concentrated elitist evolutionary and serial search
on the 3rd basis function only. In addition, islands (S1.0) through (S1.B) are all
linked together in that they all share the same group name: Wide. This allows them
all to perform iterative stepwise evolutionary searches like dancers whose steps are
coordinated. Here’s how the stepwise search coordination works.

It is the input clause for each island, (S1.1) through (S1.B), which determines
the coordination of the subsequent iterative stepwise evolution. The input clause
tells its island to reset and restart the evolutionary process whenever ANY island
sharing the name Wide achieves a new local best fitness champion. Once triggered
by any local fitness improvement, the specified search island resets its search goal by
replacing its various basis functions, Bf i , with the appropriate basis functions from
the local champion. These are substituted for the specified wild card expressions
shown in each input clause, regress($B0$,$B1$,universal(1,1,v)). Once reset, each
search island resumes the evolutionary process starting from its newly substituted
search goal. Note that the new search goal has most of its basis functions fixed (they
do not evolve) and only one of its basis functions available for evolutionary and serial
search.

One other very important point of note is, in addition to the 200 evolutionary
operations per generation, each of islands (S1.1) through (S1.B) also perform 400
serial iterations per generation. It is these serial iterations which are central to the
informal argument for extreme accuracy.

Let’s follow this iterative stepwise process with a small example as follows.
Assume that the exact solution to our example problem is:

• (E4) y = regress(square(x21),x1/x11,x9)

In the beginning search island (S1.0) performs repeated evolutionary operations
achieving increasingly fit local champions such as:

• (E5) regress(cube(x21),x1/x11,x12)

At that point, in our simplified example, the delay on search islands (S1.1) through
(S1.3) expires, and these three search islands begin iteratively evolving using the
following substituted goals.

• (E6) regress(universal(1,1,v),x1/x11,x12)
• (E7) regress(cube(x21),universal(1,1,v),x12)
• (E8) regress(cube(x21),x1/x11,universal(1,1,v))

After reset, search islands (S1.1) through (S1.3) plus search island (S1.0), which
has never been reset, continue iteratively evolving until ANY one of these islands
achieves a new local best fit champion such as:

• (E9) regress(cube(x21),x1/x11,x9)
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At that point, search islands (S1.1) through (S1.3) are triggered to reset again,
and these three search islands begin iteratively evolving using the following newly
substituted goals.

• (E10) regress(universal(1,1,v),x1/x11,x9)
• (E11) regress(cube(x21),universal(1,1,v),x9)
• (E12) regress(cube(x21),x1/x11,universal(1,1,v))

After reset, search islands (S1.1) through (S1.3) plus search island (S1.0), which
has never been reset, continue iteratively evolving until ANY one of these islands
achieves a new local best fit champion such as.

• (E13) regress(square(x21),x1/x11,x9)

And, of course, (E13) is the answer to our simplified problem. Therefore, the informal
argument for extreme accuracy is asserted as follows.

At the start, search island (S1.0) will perform an elitist evolutionary search discov-
ering increasingly fit champions. Either search (S1.0) will find the global solution,
or it will run into trouble where the probability of finding an improved champion is,
N/(|Bf (V)|B), for some small N > 0. Let’s assume the worst case situation where, N
= 1, and the local champion is y = regress(...,Bf i(x)(V),...) where the ONLY muta-
tion, which will improve accuracy, is to change y = regress(...,Bf i(x)(V),...) to y =
regress(...,Bf k(x)(V),...).

At that point, the search islands (S1.0) through (S1.B) will start evolving more
focused solutions. As mentioned, now the probability of improvement is 1/(|Bf (x)

(V)|B) which is often too small to reach in practical time. However, one of the search
islands (S1.1) through (S1.B) will be searching just that one column and it will need to
search iteratively through only |Bf (x)(V)| possible basis functions which is much eas-
ier. Eventually that particular search island will discover y = regress(...,Bf k(x)(V),...)
serially, and the answer will form a new global best fit champion.

Let’s explore the basic math to see why search islands (S1.1) through (S1.B) are
so helpful. In solving U1(5)[150], there are (1502 * 4) + (13 * 150) = 919505 =
6.57e1024 possibilities which, are far too many to be arrived at serially and often
evolutionary methods are not able to find an exact answer in practical time.

However, each of search islands (S1.1) through (S1.B) perform a multiple re-
gression wherein all of the columns save one are fixed and do not evolve. Only the
ith basis function evolves in each of (S1.i) i.e. y = regress(...,universal(1,1,v),...).
In solving U1(5)[150], islands (S1.1) through (S1.B) only need to address there are
(1502 * 4) + (13 * 150) = 91950 possibilities which, at 400 iterations per generation,
can be serially covered in just 230 generations. Evolutionary pressure, coupled with
the linear nature of the problem, normally arrives at an extremely accurate answer in
less than 10–20 stepwise cycles which is far less than the maximum time required.

Similarly in solving F(x)(5)[3000], there are (13 * 3000) = 390005 = 9.0e1022

possibilities which, are far too many to be arrived at serially or with evolution in
practical time. However, each of search islands (S1.1) through (S1.B) only need
to address there are (13 * 3000) = 39000 possibilities which, at 400 iterations per
generation, can be serially covered in just 98 generations. Evolutionary pressure,
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coupled with the linear nature of the problem, normally arrives at an extremely
accurate answer in less than 10–20 stepwise cycles which is far less than the maximum
time required.

Most often the evolutionary search finds the correct answer in far less time.

7.7 Accuracy Measurements

Packaging together the previous extreme accuracy algorithm (Korns 2013) RQL
search commands (S2) thru (S24), together with search island S0 expanded to new
enhanced search islands (S0.1 thru S0.B) and together with search island S1 expanded
to new enhanced search islands (S1.0 thru S1.B), we create the new enhanced extreme
accuracy algorithm. We apply the new enhanced extreme accuracy algorithm to the
45 test problems using our test machine. As mentioned, each of the problems were
trained and tested on from 25 to 3000 features as specified. The theoretical maximum
time to complete a test problem on our laptop environment is 60 h, at which time
training will automatically halt and the best champion will be returned as the answer.
However, most problems finish well ahead of that maximum time limit.

Significantly, the results in Table 7.2 demonstrate extreme accuracy on the 45 test
problems. This extreme accuracy is robust even in the face of problems with large
number of features.

All timings quoted in this table were performed on a Dell XPS L521X Intel i7
quad core laptop with 16 Gig of RAM, and 1 Tb of hard drive, manufactured in Dec
2012 (our test machine).

Notice the extreme search efficiency which Table 7.2 demonstrates. Our assertion
is that the extreme accuracy algorithm is getting the same accuracy on U2(1)[25],
U1(25)[25], U1(5)[150], and F(x)(5)[3000] as if each and every single element of
those sets were searched serially; and yet we are never testing more than a few
million regression candidates. Notice also the high variance in WFFs evaluated per
test problem. This is the result of the random nature of evolutionary search and how
much of the search burden must be carried by the serial search and mathematical
treatments2.

Obviously extreme accuracy is not the same as absolute accuracy and is therefore
fragile under some conditions. Extreme accuracy will stop at the first estimator
which achieves an NLSE of 0.0 on the training data, and hope that the estimator will
achieve an NLSE of .0001 or less on the testing data. Yes, an extremely accurate
algorithm is guaranteed to find a perfect champion (estimator training fitness of 0.0)
if there is one to be found; but, this perfect champion may or may not be the estimator
which was used to create the testing data. For instance in the target formula y = 1.0 +

2 As a reminder, testing a single regression champion is not cheap. At a minimum testing a sin-
gle regression champion requires as many evaluations as there are training examples as well as
performing a simple regression. At a maximum testing a single regression champion may require
performing a much more expensive multiple regression.
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Table 7.2 Results demonstrating extreme accuracy

Test WFFsa Train-Hrsb Train-NLSEc Test-NLSEd

T01 1K 0.01 0.0000 0.0000

T02 1K 0.01 0.0000 0.0000

T03 1K 0.01 0.0000 0.0000

T04 3K 0.02 0.0000 0.0000

T05 176K 0.43 0.0000 0.0000

T06 424K 0.72 0.0000 0.0000

T07 175K 0.39 0.0000 0.0000

T08 427K 0.68 0.0000 0.0000

T09 5961K 4.84 0.0000 0.0000

T10 3864K 3.19 0.0000 0.0000

T11 529K 0.85 0.0000 0.0000

T12 228K 0.50 0.0000 0.0000

T13 1K 0.01 0.0000 0.0000

T14 688K 1.05 0.0000 0.0000

T15 1423K 1.78 0.0000 0.0000

T16 2049K 2.09 0.0000 0.0000

T17 5771K 4.30 0.0000 0.0000

T18 7249K 5.31 0.0000 0.0000

T19 675K 1.02 0.0000 0.0000

T20 571K 0.89 0.0000 0.0000

T21 14366K 13.03 0.0000 0.0000

T22 18856K 20.29 0.0000 0.0000

T23 1935K 2.46 0.0000 0.0000

T24 1K 0.01 0.0000 0.0000

T25 1K 0.01 0.0000 0.0000

T26 12K 0.11 0.0000 0.0000

T27 11K 0.10 0.0000 0.0000

T28 1K 0.01 0.0000 0.0000

T29 40K 0.22 0.0000 0.0000

T30 27K 0.22 0.0000 0.0000

T31 167K 3.53 0.0000 0.0000

T32 48K 1.00 0.0000 0.0000

T33 73K 1.61 0.0000 0.0000

T34 982K 11.64 0.0000 0.0000

T35 408K 5.69 0.0000 0.0000
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Table 7.2 (continued)

Test WFFsa Train-Hrsb Train-NLSEc Test-NLSEd

T36 255K 4.41 0.0000 0.0000

T37 570K 7.56 0.0000 0.0000

T38 669K 5.26 0.0000 0.0000

T39 192K 1.78 0.0000 0.0000

T40 276K 2.31 0.0000 0.0000

T41 24K 0.38 0.0000 0.0000

T42 218K 3.84 0.0000 0.0000

T43 10K 0.16 0.0000 0.0000

T44 115K 1.81 0.0000 0.0000

T45 150K 2.62 0.0000 0.0000

a The number of regression candidates tested before finding a solution is listed in the Well Formed
Formulas (WFFs) column
b The elapsed hours spent training on the noiseless training data is listed in the (Train-Hrs) column
c The fitness score of the champion on the noiseless training data is listed in the (Train-NLSE)
column
d The fitness score of the champion on the noiseless testing data is listed in the (Test-NLSE) column

(100.0*sin(x0)) + (.001*square(x0)) we notice that the final term (.0001*square(x0))
is less significant at low ranges of x0; but, as the absolute magnitude of x0 increases,
the final term is increasingly significant. And, this does not even cover the many
issues with problematic training data ranges and poorly behaved target formulas
within those ranges. For instance, creating training data in the range −1000 to 1000
for the target formula y = 1.0 + exp(x2*34.23) runs into many issues where the value
of y exceeds the range of a 64 bit IEEE real number. So as one can see the concept
of extreme accuracy is just the beginning of the attempt to conquer the accuracy
problem in SR.

It should be noted that the end user has no knowledge of RQL searches (S0) thru
(S24). These searches are applied, behind the veil, when the user submits a test
problem—nor is it necessary or desirable that the end user have such involvement.

Another very important benefit of extreme accuracy will only be fully realized
when all undiscovered errors are worked out of our informal argument for extreme
accuracy and when our informal argument is crafted into a complete, peer reviewed,
well accepted, formal mathematical proof of accuracy. Once this goal is achieved,
we can begin to make modus tollens arguments from negative results!

For example, our future Alice runs the extreme accuracy algorithm on a large
block of data for the maximum time specified. At the conclusion of the maximum
specified generations, requiring a maximum of 60 h on our laptop, no candidate with
a zero NLSE (perfect score) is returned. Referring to the published, well accepted
formal mathematical proof of accuracy, Alice argues (modus tollens) that there exists
no exact relationship between X and Y anywhere within U2(1)[25], U1(25)[25], and
U1(5)[150] through Fx(5)[3000].
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7.8 Conclusion

In a previous paper (Korns 2011), significant accuracy issues were identified for
state of the art SR systems. It is now obvious that these SR accuracy issues are due
primarily to the poor surface conditions of specific subsets of the problem space.
For instance, if the problem space is exceedingly choppy with little monotonicity or
flat with the exception of a single point with fitness advantage, then no amount of
fiddling with evolutionary parameters will address the core issue.

In Korns (2013), an extreme accuracy algorithm was introduced with an infor-
mal argument asserting extreme accuracy in a number of problems. This enhanced
algorithm contains a search language and an informal argument, suggesting a pri-
ori, that extreme accuracy will be achieved on any single isolated problem within a
broad class of basic SR problems. Furthermore, maximum resource allocations and
maximum timings are given for achieving extreme accuracy.

In this paper we enhance that algorithm to achieve a level of extreme accuracy on
problems with a large number of features.

The new extreme accuracy algorithm introduces a hybrid view of SR in which
advanced evolutionary methods are deployed in the extremely large spaces where
serial search is impractical, and in which the intractable smaller spaces are first
identified and then attacked either serially or with mathematical treatments. All
academics and SR researchers are heartily invited into this newly opened playground,
as a plethora of intellectual work awaits. Increasing SR’s demonstrable range of
extreme accuracy will require that new intractable subspaces be identified and that
new mathematical treatments be devised.

Future research must explore the extreme accuracy algorithm’s robustness in the
face of noisy training data and range shifted training data. In addition to understand-
ing the response surface of our SR tools with noiseless data, we need to understand the
behavior of our SR tools with noisy data and with range shifted data or both. Further-
more it would be useful to know what types of noise effect our SR tools in what ways.

Finally, to the extent that the reasoning in this informal argument, of extreme
accuracy, gain academic and commercial acceptance, a climate of belief in SR can
be created wherein SR is increasingly seen as a “must have” tool in the scientific
arsenal.

Truly knowing the strengths and weaknesses of our tools is an essential step in
gaining trust in their use.
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Chapter 8
How to Exploit Alignment in the Error Space:
Two Different GP Models

Mauro Castelli, Leonardo Vanneschi, Sara Silva and Stefano Ruberto

8.1 Introduction

The use of semantic awareness for improving Genetic Programming (GP) (Koza
1992; Poli et al. 2008) is nowadays a well-established reality. The term semantics
has been used with several different meanings so far, but one of the most recent
and well accepted definitions of semantics is the vector of the output values of an
individual/program on all training cases. This definition makes sense because this
vector encodes the input-output behavior of a program (i.e. its operational semantics)
on that part of the problem that is known (the training set). A survey discussing most
of the existing approaches that use this definition of semantics can be found in
Vanneschi et al. (2014). In particular, in the last few years, semantic awareness has
been used with success to improve GP for symbolic regression applications. Our
team has contributed to the field with several publications. In particular, in Ruberto
et al. (2014), we introduced an idea bound to semantics, that can be represented by
the schema in Fig. 8.1 and sketched by the following points:

• With the term genotypic space, we indicate the space of the genotypes of all the
individuals in the search space. We have represented genotypes as trees in Fig. 8.1,
but our reasoning holds for any other alternative GP representation.

• As already said, the semantics of an individual is the vector of its output values
on the training cases. It can be represented as a point in a space that we call
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Fig. 8.1 Individuals are represented by trees (or any other structure like linear genomes, graphs,
etc.) in the genotypic space. Each one of them maps into its semantic, identified by a point in the
semantic space. The semantic is then translated by subtracting the target, obtaining a point in the
error space. The target, which usually does not correspond to the origin of the Cartesian system in
the semantic space, corresponds to the origin in the error space by construction

semantic space. Usually (except in the rare case where the target value is equal
to zero for each training case), the target is also a point in this space which does
not correspond to the origin of the Cartesian system.

• Each point in the semantic space can be translated by subtracting the target from
it (in symbolic regression problems, the target is known for all the training cases,
and this is the only kind of problem we are considering in this work). In this way,
for each individual, we obtain a new point, that we call error vector (and we call
error space the corresponding space). The target, by construction, corresponds to
the origin of the Cartesian system in the error space.

• As we have shown in Ruberto et al. (2014), and as we will also present in Sect. 8.2,
if we are able to find (for instance using GP) two individuals whose error vectors
are aligned between each other and with the origin, then we are able to reconstruct
a globally optimal solution analytically.

Exploiting this idea, the task of GP now becomes looking for two individuals such
that the segment joining their error vectors also intersects the origin. In Ruberto et al.
(2014) we have presented a possible GP model, called ESAGP (which stands for
Error Space Alignment GP). The objective of this chapter is to deepen and better
specify and discuss ESAGP, and also present an alternative model, which is presented
for the first time here, that we call Pair Optimization GP (POGP). The main difference
between ESAGP and POGP is that, while in ESAGP (as in standard GP), an individual
is a single expression (for instance represented by a tree), in POGP an individual is
a pair of expressions (for instance a pair of trees) and their fitnesses quantify their
respective alignment with the origin in the Cartesian space.
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8.2 Alignment in the Error Space

Let X = {−→x1 , −→x2 , ..., −→xn } be the set of input data, or fitness cases, of a symbolic
regression problem, and −→

t = [t1, t2, ..., tn] the vector of the respective expected
output or target values (in other words, for each i = 1, 2, ..., n, ti is the expected
output corresponding to input −→xi ). A GP individual (or program) P can be seen as a
function that, for each input vector −→xi returns the scalar value P (−→xi ). Consistently
with what we have said in the previous section, we call semantics of P to the vector−→sP = [P (−→x1 ), P (−→x2 ), ..., P (−→xn )] and error vector of P the vector −→eP = −→sP −−→

t . As
Fig. 8.1 shows, an error vector is the translation of a point in the semantic space (by
subtraction of the target) and can be represented as a point in another n-dimensional
space, the error space.

It is worth noticing that, once we have the error vector of an individual P , it
is immediately possible to calculate the root mean square error (RMSE) of P on

training data (RMSE =
√∑n

i=1 e2
i , where ei is the ith coordinate of −→eP ), a measure

that is often used as fitness by standard GP in symbolic regression problems (see for
instance Koza (1992)).

Let us now consider the following definition:

Definition 8.1 Optimally Aligned Individuals Two GP individuals A and B are
optimally aligned if it exists a scalar constant k such that: −→eA = k · −→eB

In other words, two individuals A and B are said to be optimally aligned if their
respective error vectors are directly proportional, with a proportionality constant k.
The reason why we use the term “aligned” for such individuals becomes clear by
looking at Fig. 8.2a, where a simple bi-dimensional error space is represented. In
this figure, A and B are two optimally aligned individuals: the points that represent
their respective error vectors are aligned with each other and with the origin of the
Cartesian system.

Now, let A and B be two optimally aligned individuals. Then, directly applying
Definition 1, we have −→eA = k · −→eB . Applying the definition of error vector, the
previous equation can be rewritten as −→sA − −→

t = k · (−→sB − −→
t ), from which it

follows that −→
t = 1

1−k
· −→sA − k

1−k
· −→sB . This implies that, if we find two optimally

aligned individuals, whose syntactic structure we represent with A and B, and if
we know the proportionality factor k between their respective error vectors, then
individual whose syntactic structure is:

Popt = 1

1 − k
· A − k

1 − k
· B (8.1)

has a semantic vector that perfectly corresponds to target −→
t , and thus it is a globally

optimal solution. Interestingly, this property holds independently from the quality
(for instance measured by means of the RMSE) of A and B: even two extremely
“bad” individuals (in terms of RMSE), if they are optimally aligned, can be used to
produce a globally optimal solution. As a direct consequence, the new objective of
GP can now be to find two optimally aligned individuals, instead of directly finding
a globally optimal solution.
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Fig. 8.2 a Representation of a simple bi-dimensional error space. Individuals A and B are optimally
aligned, i.e. their respective error vectors are directly proportional. The angle between the error
vector of A (as well as B) and the one of C is θ . b A simple tri-dimensional error space. We point
out that it is possible to find a point m that is aligned with the error vectors of any pair of individuals
A and B and optimally aligned with a third individual C

8.3 The First GP Model Based on Error Space Alignment:
ESAGP

In this section, we present and discuss the ESAGP model. In particular, we define
a system, called ESAGP-1, whose objective is to find a pair of optimally aligned
individuals. Successively, we give hints on how to generalize the approach, present-
ing the idea to develop ESAGP-μ systems, with μ > 1. In Ruberto et al. (2014) we
have developed ESAGP-2, so the interested reader is referred to that paper in order
to deepen the subject. The content of this section is inspired by Ruberto et al. (2014).

8.3.1 One Step Error Space Alignment GP: ESAGP-1

ESAGP-1 is based on the idea that GP should work with the objective of minimiz-
ing the angle between the error vectors of pairs of individuals (looking for a pair
for which this angle is equal to zero). Fig. 8.2a graphically represents the angle
θ between the error vectors of individuals A (as well as B) and C. Remembering
that θ = arccos ((−→eA × −→eC )/(||−→eA ||·||−→eC ||)) (where × represents the scalar product
between two vectors and ||−→v || is the Euclidean norm of vector −→v ), the angle be-
tween the error vectors of two individuals is easy to calculate once we have their
semantics. It is worth emphasizing that the objective of ESAGP-1 is to find optimally
aligned individuals, regardless of their individual quality (for instance, as measured
by the RMSE). To achieve this goal, we follow two ideas: (1) all the individuals
found during the evolution, and not only the ones in the population at each genera-
tion, can be potential members of an optimally aligned pair; (2) the search cannot be
driven by a measure of distance to the target in the semantic space (like the RMSE),
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but instead by a different fitness function that promotes the discovery of optimally
aligned individuals.

To implement idea (1), ESAGP-1 maintains an archive of all the “semantically
new” individuals that have been found during the GP run. Every time a new individual
P is generated, the algorithm checks whether it is optimally aligned with any of the
individuals already in the archive. If it is not, P is added to the archive, unless the
archive already contains an individual with the same semantics, and the algorithm
continues. Otherwise, the algorithm terminates returning the newly found pair of
optimally aligned individuals.

To implement idea (2), ESAGP-1 uses a fitness function that has no relationship
with the distance to the target in the semantic space. To define this new fitness
function, ESAGP-1 calculates a particular point in the error space, that we call
center of attraction, or simply attractor. The fitness of an individual is the angle
between its error vector and the attractor, and it has to be minimized (in other words,
small angles are better than large ones). The attractor must be chosen in such a way to
promote the evolution of optimally aligned individuals. Our idea is to choose a point
that, informally, represents the majority of the individuals in a population, standing
“in the middle of” an area where most of the error vectors of the individuals in the
population are found. Therefore, the objective of the algorithm becomes driving the
population towards this central point (as in Ruberto et al. (2014)). Also in this work
we use as attractor the following vector: −→a = ∑

P∈Pop−→eP /||−→eP || where Pop is
the initial population of a GP run and ||−→v || is the Euclidean norm of vector −→v .

8.3.2 Possible Generalizations: ESAGP-μ with μ > 1

Let us assume that we have two individuals, like A and B in Fig. 8.2b, i.e. two
individuals such that the straight line joining their error vectors is not aligned with
the origin. In this case, it is always possible to find a point −→m that lies on the straight
line joining −→eA and −→eB that is aligned with the error vector of another individual
C and the origin. This property holds for any three points, like A, B and C, that
lie on a bi-dimensional plane intersecting the origin. In Ruberto et al. (2014) we
have shown that given three individuals like A, B and C, we can obtain a globally
optimal solution analytically. The proof is simply an “iteration” of the proof used in
Sect. 8.3.1 for two optimally aligned individuals. Thus, in Ruberto et al. (2014), we
have also introduced a system, that we have called ESAGP-2, that can be seen as a
generalization of ESAGP-1 aimed at finding three individuals whose error vectors
lie on a bi-dimensional plane intersecting the origin. Interestingly, this process can
be iterated: for any μ between 1 and the number of fitness cases, it is possible to
define a GP system whose objective is to find μ + 1 individuals that belong to the
same μ-dimensional hyperplane intersecting the origin (a property that can also be
seen as the composition of μ alignments), which we hypothetically call ESAGP-μ.

The focus of this chapter is on the discussion of GP models aimed at finding pairs
of optimally aligned individuals. So, here we concentrate on ESAGP-1, considering
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generalized systems ESAGP-μ, with μ > 1, out of the scope of this manuscript.
Nevertheless, we believe that the definition of a general strategy allowing us to obtain
an ESAGP-μ system for any possible number of dimensions μ is a very promising
research track, and it is an important part of our current work.

8.4 Experimental Study of ESAGP-1

8.4.1 Test Problems

To test ESAGP-1, we have chosen two hard regression problems in the field of
drug discovery. The objective of these problems is the prediction of two important
pharmacokinetic parameters: human oral bioavailability (%F) and median lethal
dose (LD50), also called toxicity, of medical drugs. Both problems have already
been tackled by GP in published literature and for a discussion of them the reader is
referred to Archetti et al. (2007). The %F (respectively LD50) dataset consists in a
matrix of 260 (respectively 234) rows (instances) and 242 (respectively 627) columns
(features). Each row is a vector of molecular descriptor values identifying a drug;
each column represents a molecular descriptor, except the last one, that contains
the known target values of the considered pharmacokinetic parameter. Both these
datasets are freely available from the GP benchmarks website, gpbenchmarks.org.

8.4.2 Experimental Settings

In this section, we compare ESAGP-1 with a standard version of GP (ST-GP from
now on), which is the GP version originally defined by Koza in Koza (1992), and
with geometric semantic GP as implemented in Vanneschi et al. (2013a) (GS-GP
from now on), and deeply described in Vanneschi et al. (2013b).

For each of the three GP variants (ST-GP, GS-GP and ESAGP-1), 30 independent
runs were performed, each using one of 30 different random partitions of the dataset
in training (70%) and test (30%) sets. In each run, for each generation we record
the RMSE of the best individual on the training set, and the RMSE of the same
individual on the test set (and also the number of nodes of that individual). The
results we report are the median values of the 30 runs. All the runs used populations
of 100 individuals. Tree initialization was performed with the Ramped Half-and-Half
method (Koza 1992) with a maximum initial depth of 6. The function set contained
the four binary arithmetic operators +, −, ∗, and / protected as in Koza (1992).
The terminal set contained as many variables as the number of features of each
dataset. Tournaments of size 4 were used to select the parents of the new generation.
To create new individuals, ST-GP and ESAGP-1 used standard (subtree swapping)
crossover (Koza 1992) and (subtree) mutation (Koza 1992) with probabilities 0.9 and
0.1, respectively. GS-GP used geometric semantic crossover (Moraglio et al. 2012)
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and geometric semantic mutation (Moraglio et al. 2012), each with probability 0.5
(the best setting according to Vanneschi et al. (2013a)). Survival was elitist, as it
always copied the best individual into the next generation.

8.4.3 Experimental Results

The results we have obtained are reported in Fig. 8.3. For all the experiments, tests of
statistical significance were performed. In particular, the Kolmogorov-Smirnov test
has shown that, for all our experiments, the data were not normally distributed and
hence a rank-based statistic has been used. The Wilcoxon rank-sum test for pairwise
data comparison with Bonferroni correction has been used under the alternative
hypothesis that the samples do not have equal medians.

Plots (a) and (b) report the results obtained on the %F training and test sets and plots
(c) and (d) report the results on the LD50 training and test sets respectively. In both
cases, the small inset in the upper right corner portrays the results of the evolution
during the first 50 generations. On these small plots we can see that in all cases
ESAGP-1 outperforms ST-GP and GS-GP on both training and test sets. According
to the Wilcoxon test, the differences at generation 50 are statistically significant.
However, as shown in Vanneschi et al. (2013a); Vanneschi et al. (2013b), GS-GP
is a powerful but slow method: geometric semantic operators induce a unimodal
fitness landscape, but also explore it with small steps. Thus, for a fair comparison,
the execution of GS-GP has to be continued for a number of generations larger
than 50. The large plots (a) and (c) show that on the training set ST-GP and GS-
GP at generation 350 find solutions of comparable quality to the ones found by
ESAGP-1 at generation 50 (the differences are not statistically significant). The
large plots (b) and (d) show that on the test set for %F ESAGP-1 in 50 generations
finds results that are comparable with or better than the test set for LD50 found
by GS-GP in 350 generations and always better (for both test problems) than the
ones found by ST-GP in 350 generations. Interestingly, even if we allow GS-GP
to run for 2000 generations (not shown), the results obtained on the test set are
not statistically different from the ones obtained by ESAGP-1 in 50 generations.
Plots (e) and (f) report the evolution of the number of nodes of the best individual
and show that the solutions produced by ESAGP-1 are (in a statistically significant
way) smaller than the ones produced by ST-GP. Looking at the definition of geometric
semantic operators (Moraglio et al. 2012), it is not difficult to see that, if stored in
memory (something that the implementation proposed in Vanneschi et al. (2013a)
does not), the individuals generated by GS-GP at generation 50 would have a length
of approximately 1016 nodes (and this is the reason why the curve of GS-GP is not
shown in these plots). Summarizing, not only ESAGP-1 is able to find solutions of
the same quality as, or better than, GS-GP, much faster, but these solutions are also
smaller, which represents an additional and important advantage.
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Fig. 8.3 Plot (a) shows the evolution of the (median) best fitness on the training and plot (b) shows
the (median) best fitness on the test set for the %F problem. The insets show an enlargement of the
plots for the first 50 generations. Plots (c) and (d) are analogous to plots (a) and (b), but for the
LD50 problem. Plot (e) (respectively plot (f)) shows the evolution of the (median) number of nodes
of the best individual for the %F (respectively LD50) problem
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Fig. 8.4 Optimally aligned
trees

8.5 Pair Optimization GP

In this section we describe a new design of the alignment-based framework described
in the previous sections. In particular, with the model proposed here we want to
address the main problem related to the use of ESAGP-1, namely the computational
complexity and consequent slowness of the algorithm. This slowness is caused by
the process employed by ESAGP-1 in order to find two error vectors that are aligned
in the error space.

In order to introduce the new alignment-based model, called Pair Optimization
GP (POGP), it is necessary to specify what an individual in the GP population is.
From now on, a candidate solution is represented as a couple of trees (but the model
is general and it is independent from the representation of the candidate solutions).
Having a population in which each individual consists of a couple of trees, our
objective is to find an individual such that the error vectors of the two expressions
form an angle of 180◦ between each other (see Fig. 8.4). Thus, the evolutionary
search process is guided by a fitness function that only considers the angle formed
by the two error vectors. Hence, it is possible to avoid the process that was used in
ESAGP-1 in order to find two aligned error vectors. With this individual’s design it
is necessary to explain how crossover and mutation are defined. Let T 1 and T 2 be
the trees that form individual I1, and let T 3 and T 4 be the trees that form individual
I2. The crossover simply swaps a subtree of T 1 with a subtree of T 3 and a subtree
of T 2 with a subtree of T 4. The mutation operator acts probabilistically on one of
the two trees that form an individual or on both the trees.

While this can have a beneficial effect on the speed of the search process, it is
necessary to consider some possible problems. The first one is depicted in Fig. 8.5.
While the error vectors of T1 and T2 form the same angle with respect to the error
vector of T∗, error vectors of T1 and T2 present a different alignment with respect to
the error vector of T∗ and with the origin of the error space axes.
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Fig. 8.5 Alignment and
placement of the trees in the
error space before considering
the projective plane

Fig. 8.6 Trees on the
hyper-sphere in the n − 1
dimensional space

In order to avoid this kind of situations, we consider a projective plane that, in this
study, consists of an hyper-sphere in the n−1 dimensional space (where n is the size
of the original search space). In particular, all the error vectors of all the expressions
forming the individuals in the population are projected on this hyper-sphere before
calculating the angles between each other. This operation allows us to have a search
space in which all the individuals (or, better, the trees forming the individuals) lie
on the circumference of the hyper-sphere of radius 1. The situation is depicted in
Fig. 8.6. Is is important to underline that considering the hyper-sphere is a design
choice and it is possible to project points on a different hyper-shape obtaining a
different arrangement. Anyway, considering the fact that we are considering angles
between vectors the choice of the hyper-sphere is the one that is more natural.

Once the trees have been placed on the hyper-sphere, the search process can start.
At this point, it is important to consider another key factor for the success of the
proposed POGP: as it is possible to note, the error vectors of the trees T 1

x and T 2
x that

form the individual x are perfectly aligned if the angle between them corresponds to a
flat angle or if the angle is a 0◦ angle. While the first angle corresponds to the optimal
solution (considering a search process that uses as fitness function the maximization
of the angle), in this work we penalize a 0◦ angle assigning to the corresponding
individual a very poor fitness. This is exactly what we want: in fact, a 0◦ angle is
formed on the hyper-sphere if and only if T 1

x and T 2
x have the same semantics (hence

they correspond to the same point in the error space). As it is possible to note, having
two trees with the same semantics causes a problem in Eq. 8.1. Hence, also in this
case, we must penalize an individual whose trees T 1

x and T 2
x have the same semantics.
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8.5.1 Technical Problems in the Fitness Calculation

While POGP seems to be able to overcome the main drawback related to the usage
of ESAGP-1, there are other problems that must be considered. In particular, in this
section we want to point out a numerical problem that we have found in the first
experiments that we have performed.

In particular, let IBEST be the individual found at the end of the search process
and T 1

BEST and T 2
BEST be the trees that form TBEST . For reconstructing the opti-

mal solution and calculating its error with respect to the target (hence for applying
Eq. 8.1), we have to calculate the proportionality factor k between the error vectors
of T 1

BEST and T 2
BEST . In order to do that, we have to remap the points lying on the

hyper-sphere on the original n dimensional space. After doing that, we have to con-
sider, for each fitness case fi , the ratio ei1

ei2 , where ei1 and ei2 are respectively the
error obtained from the difference between the output of T 1

BEST and T 2
BEST and the

target ti on the fitness case fi . At this point, a numerical problem may arise: let us
assume that ei1 and ei2 present different orders of magnitude (that is not uncommon
in several applications), but both ei1 and ei2 differ widely from the target ti . Under
this hypothesis we can have two possible situations: (1) ei1 � ei2 (2) ei2 � ei1. In
the first case the ratio ei1

ei2 (used to determine the value of the proportionality constant
k) will be a large number, while in he second case the ratio is approximately 0. This
will create an undesirable effect in Eq. 8.1. In particular, a large value of k suggests
that the semantics of T 2

BEST is able to approximate the target value ti and that the
semantics of T 1

BEST can be basically ignored; on the other hand, a value of k ≈ 0
suggests that the semantics of T 1

BEST is able to approximate the target value ti and
that the semantics of T 2

BEST does not have a significant contribution. In both cases,
under the hypothesis in which both ei1 and ei2 differ widely from the target ti , the
semantics of TBEST on fi will differ widely from the target ti .

This is an important problem that must be taken into account. In particular, this
numerical problem will affect the quality of the predictive model if it affects the
median of the k values obtained considering all the ratios ei1

ei2 for all the fitness cases.
We are currently working on this problem, in order to find solutions that do not

create this problem. Anyway, it seems that there are two conflicting constraints:

• The search process looks for trees that must have a different semantics; if the
semantics are “too similar” we will have a value of k that is not acceptable and
an angle that is close to zero.

• On the other hand, to avoid the numerical problem, the semantics of T 1
BEST and

T 2
BEST cannot be “too different”.

As the reader can understand, it will be necessary to define a smart method in order to
consider both constraints. While we are working on this problem, the experimental
results reported in the next section have been obtained considering an experimental
settings that allows us to avoid the occurrence of it on the studied test functions.
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Table 8.1 Benchmark
problems Name Definition Number of variables

P1 3 + (2.13 ∗ log (x4)) 9

P2 1.3 + (0.13 ∗ √
(x0)) 9

P3 1/(1 + x−4
0 ) + 1/(1 + x−4

1 ) 2

P4 1.57 + (24.3 ∗ x3) 9

Table 8.2 p-values returned by the statistical tests on the considered benchmark problems
considering fitness values at the last generation

TRAINING TEST

ESAGP-1 POGP ESAGP-1 POGP

P1 GS-GP 3.00E-11 3.02E-11 3.00E-11 3.02E-11

ESAGP-1 1.95E-10 3.48E-09

P2 GS-GP 2.96E-11 3.02E-11 2.96E-11 3.02E-11

ESAGP-1 1.15E-09 6.61E-10

P3 GS-GP 1.70E-12 7.88E-12 1.70E-12 2.58E-12

ESAGP-1 5.39E-12 1.66E-08

P4 GS-GP 2.90E-11 3.01E-11 2.90E-11 3.01E-11

ESAGP-1 3.67E-10 1.57E-06

8.6 Experimental Phase

In this section we report the experimental results achieved considering 4 benchmark
problems. In more detail, we compare the results achieved considering the semantic-
based methods already used in the previous sections: GS-GP, ESAGP-1 and POGP.

The benchmark problems are the ones reported in Table 8.1. Benchmark P 1, P 2
and P 4 have 9 independent variables, but only one variable is used to determine the
output of the function. P 3 is a problem in spatial co-evolution and has 2 independent
variables. These functions belong to the set of GP benchmarks discussed in White
et al. (2013).

Regarding the experimental settings, we used the same configuration presented
in Sect. 8.4.2 with two differences: each run consists of 500 generations and the set
of the functional symbols only contains + and −. We decided to consider this set of
functional symbols because it allows us to limit the numerical problem that has been
discussed in the previous section.

The results are reported in Fig. 8.7 in a similar fashion to those shown in Fig. 8.3
and display the curve of the RMSE on training and test instances. In all the plots,
we reported the median RMSE obtained over 30 independent runs. As with the
experiments discussed in sect. 8.4.3, the same statistical tests have been executed
considering training and test fitness obtained at the end of the evolutionary process.
The p-values are reported in Table 8.2.
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Fig. 8.7 Median of training and test fitness obtained over 30 independent runs for the considered
benchmark problems. The legend for all the plots is
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As it is possible to see, on all the problems considered, GS-GP performs worse
than both ESAGP-1 and POGP. This behaviour can be explained by the particular
experimental settings that we have considered. In particular, GS-GP usually needs
more generations (with respect to ESAGP-1) in order to converge to optimal so-
lutions. In the experimental phase that has been performed, this characteristic of
GS-GP is amplified by the presence of only 2 functional symbols. Hence, more and
more iterations are needed in order to have satisfactory fitness value with GS-GP.

Regarding ESAGP-1 and POGP, in all the benchmark problems it is possible to
observe a common behaviour: ESAGP-1 is able to produce better results with respect
to POGP. This result was expected as ESAGP-1 and POGP share a common idea
about the alignment of vectors in the error space. The difference between them is
that POGP tries to find two optimally aligned vectors using only a couple of trees.
On the other hand, ESAGP-1 has a greater degree of freedom, because it tries to
find two optimally aligned vectors using the error vectors of a large number of trees.
For the sake of completeness, it is important to point out that POGP is faster than
ESAGP-1, hence it can adress more complex problems, where a large amount of
data is available, in an acceptable amount of time. Nevertheless, if we consider the
execution time, the best technique is GS-GP, as it is at least 20 times faster than
POGP.

To summarize, the three semantic-based techniques considered in this experi-
mental phase present different trade-offs in terms of speed and performances. While
GS-GP is faster than the other two techniques, it requires a larger number of genera-
tions in order to achieve satisfactory results. On the other hand, POGP and ESAGP-1
are slower than GS-GP but they are able to achieve satisfactory fitness values in a
small number of generations.

8.7 Conclusions and Future Work

We have shown that, if we are able to find a pair of optimally aligned individuals (i.e.
individuals such that the straight line joining their error vectors intersects the origin
of the Cartesian system in the error space), then we can reconstruct a globally optimal
solution in few simple analytical steps. Using this information, the objective of this
chapter was to propose two different models of genetic programming (GP) aimed
at finding, or approximating, pairs of optimally aligned individuals. The models we
have presented are ESAGP-1 (One Step Error Space Alignment GP), that had already
been introduced in Ruberto et al. (2014), and POGP (Pair Optimization GP).

The ESAGP-1 system represents individuals as simple expressions (like standard
GP). It works by updating a repository of semantically different individuals visited
by GP during the evolution and looks for individuals that are optimally aligned
with the ones stored in the repository. In ESAGP-1 fitness is measured as the angle
between the error vector of an individual and a particular point called attractor. In
POGP individuals are pairs of expressions, and fitness is the angle between the error
vectors of these two expressions.
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At the time of the publication of this work, ESAGP-1 is much a more mature
system than POGP. In fact, we have developed, tested and tuned ESAGP-1 for
several months so far. Thus, we have been able to execute ESAGP-1 on complex
real-life problems (including the two regression problems in the drug discovery field
here). The results we have obtained indicate that ESAGP-1 is able to find solutions
that are comparable of even better than standard GP and also than a recently defined
GP system that exploits the geometry of the semantic space to induce unimodal
fitness landscapes (called GS-GP, as defined in Moraglio et al. (2012) and efficiently
implemented in Vanneschi et al. (2013a)). Interestingly, ESAGP-1 finds these results
much faster and also returns significantly smaller models compared to standard GP
and GS-GP.

Compared to ESAGP-1, POGP is a relatively new development for our research
group. We have, in fact, just begun to develop and study it. For this reason, although
the idea that inspires POGP seems very promising, we have been able only to present
a preliminary study on a set of well known hand tailored symbolic regression bench-
marks. The extremely promising results that we have obtained on those benchmarks
encourage us to pursue the study of POGP in the future, extending it to real-life
problems.
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Chapter 9
Analyzing a Decade of Human-Competitive
(“HUMIE”) Winners: What Can We Learn?

Karthik Kannappan, Lee Spector, Moshe Sipper, Thomas Helmuth,
William La Cava, Jake Wisdom and Omri Bernstein

9.1 Introduction

In the field of evolutionary computation (EC) ideas from evolutionary biology—
random variation and selection—are harnessed in algorithms that are applied to
complex computational problems. The origins of EC can be traced back to the 1950s
and 1960s but the field has come into its own over the past two decades, proving
successful in solving numerous problems from highly diverse domains (Sipper 2002).
EC techniques are being increasingly applied to difficult real-world problems, often
yielding results that are not merely academically interesting but also competitive
with the work done by creative and inventive humans. Indeed, a recent emerging
theme is that of human-competitive machine intelligence, produced by evolutionary
means (Koza 2008, 2010).
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A recent survey cited 28 instances in which genetic programming (GP), a form of
EC, “has duplicated the functionality of a previously patented invention, infringed
a previously issued patent, or created a patentable new invention” and cited “over
a dozen additional known instances where genetic programming has produced a
human-competitive result that is not patent related” (Koza 2008). These results come
from an astonishing variety of fields, including image analysis, game playing, quan-
tum computer programming, software repair, and the design of complex objects such
as analog circuits, antennas, photonic crystals, and polymer optical fibers.

We believe this to be more than a mere novel line of research within a single
research community. Surpassing humans in the ability to solve complex problems is
a grand challenge, with potentially far-reaching, transformative implications.

In this chapter we take a close look at the 42 winners of the past decade (2004–
2013) of Human-Competitive (HUMIE) competitions, seeking to draw conclusions
about past and future directions of the field.

We note that two of the authors (Spector, Sipper) have extensive experience in
human-competitive research, having won between them eight HUMIE awards (Koza
2010). In addition, Spector has served as a judge for the HUMIES awards for some
years. Spector and his colleagues earned the competition’s top prize twice, once
for the use of EC to produce quantum computing results that were published in
a top physics journal (Barnum et al. 2000; Spector 2004) and once for results in
pure mathematics that exceeded human performance by several orders of magnitude
(Spector et al. 2008). Sipper, who has six wins, tackled a string of hard games
and puzzles, evolving game-playing strategies that held their own in competition
against humans (Sipper 2006; Hauptman et al. 2009; Benbassat et al. 2012). In
collaborative work with a partner from the semiconductors industry Sipper attained
marked improvement over humans in developing automatic defect classifiers for
patterned wafers (Glazer and Sipper 2008).

9.2 The HUMIES

As of 2004, one of the major annual events in the field of evolutionary computation
— the Genetic and Evolutionary Computation Conference1—boasts a competition
that awards prizes to human-competitive results: The HUMIES. As noted at the
competition site (Koza 2010): “Techniques of genetic and evolutionary computation
are being increasingly applied to difficult real-world problems—often yielding results
that are not merely interesting, but competitive with the work of creative and inventive
humans.”

To set the stage for our current work we provide examples of HUMIE winners in
two important areas: pure mathematics and games.

1 see sigevo.org
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Pure Mathematics
Spector has produced significant new results in the application of genetic pro-
gramming to mathematics, in collaborative work with Distinguished Professor of
Mathematics David M. Clark, at the State University of New York at New Paltz.
Together with two Hampshire College undergraduates and one Hampshire alumnus,
they applied genetic programming to a problem in pure mathematics, in the study of
finite algebras.

Algebraists have been looking at finding “terms” that represent specific functions
in specific algebras for several decades, with particular interest attaching to the dis-
covery of terms for Mal’cev functions (the significance of which was first made
clear in 1954), Pixley functions (1963), the discriminator function (1970), and ma-
jority functions (1975). The most effective methods previously developed for finding
these terms are uniform search (including exhaustive search and random search) and
construction via the primality theorem. In exhaustive search terms are enumerated
systematically from smallest to largest, while in random search terms within a range
of sizes are generated in random order. Exhaustive search will always produce the
smallest term of the required type if such a term exists, but it requires astronomical
amounts of time, except for the very smallest algebras or the very simplest terms.
Random search has similarly problematic performance characteristics but without
any guarantees concerning size or success. Construction via the primality theorem
gives the most time efficient method known to describe these terms that applies to
any primal algebra, but except for the very smallest algebras the terms it produces
have astronomical length.

Spector and colleagues documented the application of genetic programming to
these term-finding problems, producing human-competitive results in the discov-
ery of particular algebraic terms (e.g., discriminator, Pixley, majority, and Mal’cev
terms) and showing that genetic programming exceeded the performance of every
prior method of finding these terms in either time or size by several orders of mag-
nitude (Spector et al. 2008). This result earned the gold medal in the 5th Annual
HUMIES Awards for Human-Competitive Results Produced by Genetic and Evo-
lutionary Computation, held at the 2008 Genetic and Evolutionary Computation
Conference. Subsequently, this work led to the development of new mathematical
theory that has been published independently (Clark 2013).

Games
Ever since the dawn of artificial intelligence in the 1950s, games have been part
and parcel of this lively field. In 1957, a year after the Dartmouth Conference that
marked the official birth of AI, Alex Bernstein designed a program for the IBM 704
that played two amateur games of chess. In 1958, Allen Newell, J. C. Shaw, and
Herbert Simon introduced a more sophisticated chess program (beaten in thirty-five
moves by a 10-year-old beginner in its last official game played in 1960). Arthur L.
Samuel of IBM spent much of the fifties working on game-playing AI programs, and
by 1961 he had a checkers program that could play at the master’s level. In 1961 and
1963 Donald Michie described a simple trial-and-error learning system for learning
how to play Tic-Tac-Toe (or Noughts and Crosses) called MENACE (for Matchbox
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Educable Noughts and Crosses Engine). These are but examples of highly popular
games that have been treated by AI researchers since the field’s inception.

Why study games? On this matter Susan L. Epstein wrote:

There are two principal reasons to continue to do research on games... First, human fasci-
nation with game playing is long-standing and pervasive. Anthropologists have catalogued
popular games in almost every culture... Games intrigue us because they address important
cognitive functions... The second reason to continue game-playing research is that some
difficult games remain to be won, games that people play very well but computers do not.
These games clarify what our current approach lacks. They set challenges for us to meet,
and they promise ample rewards (Epstein 1999).

Studying games may thus advance our knowledge in both cognition and artificial in-
telligence, and, last but not least, games possess a competitive angle which coincides
with our human nature, thus motivating both researcher and student alike.

Over the past 7 years Sipper has done extensive research in the area of games
(Sipper et al 2007; Hauptman and Sipper 2005b, a; Hauptman and Sipper 2007b;
Azaria and Sipper 2005a, b; Benbassat and Sipper 2010; Hauptman and Sipper
2007a; Hauptman et al. 2009; Shichel et al. 2005), which culminated in his recent
book, “Evolved to Win” (Sipper 2011) (see also www.moshesipper.com/games).
Among the games successfully tackled are: chess, backgammon, checkers, Re-
versi, Robocode (tank-war simulation), Rush Hour, and FreeCell. These exhibit
the full range from two-player, full-knowledge, deterministic board games, through
stochastic, simulation-based games, to puzzles.

A recent line of research has attempted to build a more general form of evolution-
based game intelligence by employing a structure known as a policy, which is an
ordered set of search-guiding rules (Hauptman et al. 2009; Elyasaf et al. 2012).
Policies are complex structures that allow one to define specific conditions under
which certain actions are performed. They might specify, for example, that a certain
stratagem for solving a puzzle becomes relevant when certain conditions hold. The
combination of policies and evolution might just prove powerful enough to set up
a general “strategizing machine” (Sipper et al. 2007), i.e., one able to automati-
cally evolve successful game strategies given a description of the game in question.
Sipper’s work on games has garnered five HUMIE awards to date.

9.3 A Compendium of a Decade’s Worth of HUMIE Winners

The main intention behind analyzing a decade’s worth of HUMIE winners is to be
able to determine whether there were any particular aspects that were similar across
the various domains that the winners covered. In 2005, John R. Koza, Sameer H.
Al-Sakran, and Lee W. Jones (Koza et al. 2005) did some preliminary analysis,
looking for cross-domain features of programs evolved using Genetic Programming.
We intend to do something similar, but do so from the specific point of view of
trying to identify the aspects of the applications (of any evolutionary computation
technique, and not just Genetic Programming) that make them human-competitive.
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With the HUMIES over a decade old now, we also have a larger set of results to
analyze relative to the number of results analyzed in the original Koza paper (Koza
et al. 2005).

The actual HUMIES competition is designed to recognize work that has already
been published that holds its own against humans in one of many ways. For example,
a result produced by EC that reproduces a past patent, or qualifies as a new patentable
invention is considered human-competitive. Similarly, a result that is publishable in
its own right as a new scientific result (notwithstanding the fact that the result was
mechanically created) is also considered human competitive (Koza 2010). Table 9.1
lists, in detail, the various criteria for a program to be considered human-competitive,
and also supplies a count of the number of HUMIE winners that have matched each
criterion in the past decade of the HUMIES.

The 42 HUMIE winners of the past decade are listed in Table 9.2. In addition
to a very brief description of the winning entry and its author(s), the table includes
the specific algorithm used by that entry, where GP is Genetic Programming, GA is
Genetic Algorithms, ES refers to Evolutionary Strategies, DE refers to Differential
Evolution and GBML refers to Genetics Based Machine Learning. A special category
for “noise” is also included. An entry is marked as “noisy” if the data that was used
to evolve the solution may inherently have some noise, such as data collected from
say, a physical measurement, where the source of the noise is the measurement error.
An example of an entry that does not have any noise would be trying to perform
symbolic regression to fit a curve that is already known mathematically. Since the
data that must be fit already has a known mathematical function, there’s no real noise
involved here as far as the data points that the program that does the regression sees
— all data points are perfectly accurate. In our analysis of the HUMIES (Tables 9.1,
9.2, 9.3, 9.4, 9.5), we explicitly chose to ignore whether the entry won a gold, silver,
or bronze award, since we believe that this is insignificant to the analysis because an
entry that has won any award at all is necessarily human-competitive.

9.4 Lessons Learned

First and foremost, we note that techniques from evolutionary computation have been
used to solve problems from a very wide variety of domains in a human competitive
way ; the past 10 years of HUMIES awards alone have winners that have solved
problems in a human-competitive way in 21 different domains (see Table 9.4). This
clearly suggests that techniques based on EC are rather widely applicable, and are
not confined to specific fields.

Second, Genetic Programming (GP) and Genetic Algorithms (GAs) certainly
seem to be winning strategies at the HUMIES, with 22 papers based on GP and
15 papers based on GA’s having won the HUMIES so far (See Table 9.3). In other
words, a combined 37 papers out of the 42 overall HUMIE winners, or roughly 88 %
of the winners, used either GP or GAs.
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Table 9.1 Categories A-H, with a count of the number of HUMIE winners so far winning in this
category, and a description of what each category means. Categories and Full Descriptions were
obtained from the HUMIES website (Koza 2010)

Category Brief description Count Full description

A Patented invention 10 The result was patented as an inven-
tion in the past is an improvement
over a patented invention or would
qualify today as a patentable new
invention

B Equal to accepted scientific result 20 The result is equal to or better than
a result that was accepted as a new
scientific result at the time when it
was published in a peer-reviewed
scientific journal

C Could be put in archive of results 8 The result is equal to or better
than a result that was placed into a
database or archive of results main-
tained by an internationally recog-
nized panel of scientific experts

D Publishable as new scientific result 29 The result is publishable in its own
right as a new scientific result in-
dependent of the fact that the result
was mechanically created

E Best incremental solution 25 The result is equal to or better than
the most recent human-created solu-
tion to a long-standing problem for
which there has been a succession of
increasingly better human-created
solutions

F Achievement in field at time of dis-
covery

25 The result is equal to or better
than a result that was considered an
achievement in its field at the time
it was first discovered

G Indisputable difficulty 26 The result solves a problem of in-
disputable difficulty in its field

H Human competition contender 9 The result holds its own or wins
a regulated competition involving
human contestants (in the form of
either live human players or human-
written computer programs)

Next, the problem “type” analysis from Table 9.5 seems to show an interesting
trend, with a lot of the problems that evolutionary computation (EC) seems to solve
human-competitively being design problems. We use the term design in a rather
broad way, to include both designing concrete entities such as an antenna, as well
as designing more subtle entities, such as say, designing a winning strategy for a
game. This leads us to note that EC may be particularly well suited to designing new
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Table 9.3 A summary of the
algorithms used by the
HUMIE winners

Algorithm Count

Genetic Programming (GP) 22

Genetic Algorithms (GA) 15

Evolutionary Strategies (ES) 2

Differential Evolution (DE) 1

Genetics Based Machine Learning (GBML) 1

Metaheuristic 1

Table 9.4 Categorization of the application domains of the HUMIE winners. Note that some winners
may come under multiple application categories. The number in brackets after the application
categories denotes the number of HUMIE winners in that particular application category

Application Count Application category

Antennas 1 Engineering (19)

Biology 2 Science (7)

Chemistry 1 Science (7)

Computer vision 2 Computer science (7)

Electrical engineering 1 Engineering (19)

Electronics 5 Engineering (19)

Games 6 Games (6)

Image processing 3 Computer science (7)

Mathematics 2 Mathematics (3)

Mechanical engineering 4 Engineering (19)

Medicine 2 Medicine (2)

Operations research 1 Engineering (19)

Optics 2 Engineering (19)

Optimization 1 Mathematics (3)

Photonics 1 Engineering (19)

Physics 1 Science (7)

Planning 1 Computer science (7)

Polymers 1 Engineering (19)

Quantum 3 Science (7)

Security 1 Computer science (7)

Software engineering 3 Engineering (19)

entities from scratch in a human-competitive way. The authors note that classifying
problems based on a “type” is a slightly subjective process and that some problems
may fit several types at times, but we believe that the above analysis is still sufficient
to note how good EC is when it comes to design problems.
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Table 9.5 A count of the
broad types of problems that
the HUMIE winners solved

Problem Type Count

Classification 5

Clustering 1

Design 20

Optimization 8

Planning 1

Programming 4

Regression 3

Another interesting trend at the HUMIES seems to be the abundance of papers
that have combined domain specific knowledge effectively with evolution in a way
where evolution helps combine and adapt existing human knowledge in innovative
new ways. For example, Stephanie Forrest’s paper (Forrest et al. 2009) uses existing
human knowledge embedded in non-faulty parts of the code to repair parts of the
code that are faulty. Policy based GP (Hauptman et al. 2009; Elyasaf et al. 2012)
is another such area where human knowledge is integrated into an EC system that
then evolves a solution that is human competitive. This particular trend certainly
suggests a rethink of the artificial (intelligence)-to-(human) intelligence (A/I) ratio,
suggested by John Koza et al., which states that GP delivers a high amount of artificial
intelligence relative to the relatively minimal amount of human intelligence that is
put in to the system (Koza et al. 2003). In the context of human-competitive machine
intelligence, our analysis suggests that looking for a high A to I ratio is not the best
way to seek promising problems. Instead, we suggest that the focus should be on the
additional knowledge gained by some automatic technique that makes the system
human competitive. To quote Moshe Sipper from his book Evolved to Win (Sipper
2011),

Rather than aiming to maximize A/I we believe the “correct” equation is:

A − I ≥ Mε

where Mε stands for “meaningful epsilon”. When wishing to attain machine competence in
some real-life, hard-to-learn domain, then, by all means, imbue the machine with as much
I(ntelligence) as possible! After all, if imbuing the I reduces the problem’s complexity to
triviality, then it was probably not hard to begin with. Conversely, if the problem is truly hard,
then have man and machine work in concert to push the frontiers ofA as far as possible. Thus,
it is not max(A/I) that is of interest but the added value of the machine’s output: Granting the
designer “permission” to imbue the machine with as much I as he can, will it then produce
a ΔA = A − I , namely, added intelligence, that is sufficiently meaningful? Even if this
meaningful epsilon Mε is small in (some) absolute terms, its relative value can be huge (e.g.,
a chip that can pack 1–2 % more transistors, or a game player that is slightly better and thus
world champion).

We believe that this approach of looking at the additional intelligence gained by an
automated system is crucial not just for Genetic Programming, but for Artificial In-
telligence on the whole. We strongly encourage people to build artificial intelligence
systems that make as much use of existing human knowledge as possible.
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9.5 Concluding Remarks

Overall, analyzing a decade’s worth of HUMIES papers seems to suggest that when
combined effectively with domain-specific knowledge, GP and GA are approaches to
EC that are highly effective in producing human-competitive results, in a very wide
array of fields. We strongly encourage further research in the human-competitive
domain, particularly with EC approaches such as GA and GP, used in conjunction
with human knowledge in the current field. One aspect that we note in particular is
the significance of collaboration with experts outside the computer science domain,
which leads to several interesting insights in multiple fields.

We would also like to mention the gradual shift from a high Artificial Intelligence
to Human Intelligence (A/I) ratio, towards a focus on the additional intelligence
gained by using an intelligent system, irrespective of how much human intelligence
one supplies to it. One interesting aspect that must be brought up when moving
away from high (A/I) is interpretability, particularly when a human is involved in a
feedback loop used to improve the system. In her recent work, Cynthia Rudin has
been suggesting interpretability as a key feature in several prediction systems, and
notes that experts are more likely to use an interpretable system compared to a black
box system that they do not understand (Letham et al. 2012; Rudin et al. 2012; Wang
et al. 2013). While most of evolutionary computation has historically been using a
black-box approach, interpretability might eventually become rather important too
(both in EC-based approaches and in other machine learning approaches) to build
human-competitive systems, particularly when human experts are involved in both
building the system and improving its quality.

In a recent paper Kiri Wagstaff argues that much of current machine learning
(ML) research has lost its connection to problems of import to the larger world of
science and society (Wagstaff 2012). In reference to the much-used (and perhaps
much-abused) UCI archive she eloquently writes,

“Legions of researchers have chased after the best iris or mushroom classifier. Yet this flurry
of effort does not seem to have had any impact on the fields of botany or mycology.”

Wagstaff identifies several problems that underlie the “Machine Learning for Ma-
chine Learning’s Sake” stance, including: overly focusing on benchmark data sets,
with little to no relation to the real world; too much emphasis on abstract metrics that
ignore or remove problem-specific details, usually so that numbers can be compared
across domains; and lack of follow-through:

“It is easy to sit in your office and run [some] algorithm on a data set you downloaded
from the web. It is very hard to identify a problem for which machine learning may offer a
solution, determine what data should be collected, select or extract relevant features, choose
an appropriate learning method, select an evaluation method, interpret the results, involve
domain experts, publicize the results to the relevant scientific community, persuade users to
adopt the technique, and (only then) to truly have made a difference.”

She argues for making machine learning matter: asking how one’s work impacts the
original problem domain; greater involvement of domain experts; and considering
the potential impact on society of a problem one elects to work on. She proposes
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a number of admirable Impact Challenges as examples of machine learning that
matters, e.g., a law passed or a legal decision made that relies on the result of an ML
analysis, and $ 100 M saved through improved decision making provided by an ML
system.

We think that Wagstaff actually bolsters research into human-competitive results
produced by EC. Despite her opining that, “human-level performance is not the gold
standard. What matters is achieving performance sufficient to make an impact on
the world”, we think that the problems in Table 9.2 are very strongly coupled to the
real world. Indeed, most, if not all, of them have involved expertise (and often actual
experts) in a real-world problem domain, and the competition itself sets out to under-
score the impact of such research on society at large. Thus, the HUMIE winners may
all be unknowingly responding to Wagstaff’s challenge, creating machine learning
that matters.
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Chapter 10
Tackling the Boolean Multiplexer Function
Using a Highly Distributed Genetic
Programming System

Hormoz Shahrzad and Babak Hodjat

10.1 Introduction

Evolutionary systems are by nature well suited for parallel processing and distribu-
tion (González et al. 2009; Fernndez de Vega et al. 2013; Merelo et al. 2012). The
EC-Star platform (Fig. 10.1) is designed to allow massive distribution of Genetic
Programming by virtue of a hub and spoke architecture, where the evolutionary en-
gines are distributed (the nodes on the spokes), with the processing being aggregated
and coordinated by a server (the hub)(O’Reilly et al. 2013).

EC-Star maximizes efficiency by using an age-layered model that allows par-
tial and incremental fitness evaluations in the evolutionary engines (Merelo et al.
2012; Hodjat and Shahrzad 2013; Jin 2005). Using the multiplexer problem as a
benchmark, it has been shown that partial fitness evaluation speeds up evolution
and allows generalization (Langdon 2011). The addition of age-layering allows for
inclusion of the history of fitness evaluations to be preserved in the genes, and for
validation to continue for surviving genes, reducing the need to validate solutions
after convergence.

In EC-Star, age is defined as the number of fitness samples a gene has been
validated upon. In this system, genes are accepted by the evolutionary coordinator
depending on how they fare compared to their age-peers (i.e., other acceptable genes
in the same age-layer). This allows for more efficient use of processing power, as
genes that are deemed as relatively unfit at an earlier age, need not be evaluated any
further. The genes that do survive this filtration are submitted back to evolutionary
engines for further evaluation so they can move up the age-layers (see Fig. 10.2).

The evolutionary engines, which use an elitist strategy, make use of genes of vari-
ous ages as parents to produce new genes for their respective pools. The coordinator
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Fig. 10.1 The hub-and-spoke architecture of EC-Star

can send more than one copy of a gene down to different evolutionary engines in this
manner. This means that the same gene can be evaluated on more fitness cases in
parallel. The coordinator then has the responsibility of merging the results reported
by the engines before considering them for insertion into their new age-layers. As
a by-product of this give and take between the engines and the coordinator, fitter
genetic material is spread through the system.

In this paper, we assess the EC-Star distributed evolutionary computation platform
using the well-known multiplexer problem. We start by describing our representation
of the problem, which uses EC-Star’s default Pitts-style rule-based representation
(Bacardit et al. 2008) rather than the LISP S-expression representation typically used
in GP systems. Discussion of the 11-multiplexer test runs will follow, demonstrat-
ing the effects of partial evaluation, age-layering, rule-based representation, fitness
function, and distribution on convergence and consumed processing power. We end
the paper with a discussion of the results and proposals for future work.

10.2 Problem Representation

Multiplexer functions have long been identified by researchers as functions that
often pose difficulties for machine learning, artificial intelligence, neural nets, and
classifier systems (Koza 1990). In general, the input to the Boolean multiplexer
function consists of k ‘address’ bitsAi , and 2k ‘data’ bits Di , and it is a string of
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Fig. 10.2 Age-layering in EC-Star

length k+2k of the form Ak−1 . . . AiA0D2k−1 . . . D1D0. The value of the multiplexer
function is the value (0 or 1) of the particular data bit that is singled out by the k
address bits of the multiplexer. For example, for the 11-multiplexer, where k=3, if the
three address bits A2A1A0 are 110, then the multiplexer singles out data bit number
6 (i.e. D6) to be its output.

A Boolean function with k + 2k arguments has 2k+2k

rows in its truth table. Thus,
the sample space for the Boolean multiplexer is of size 2k+2k

. When k=3, the search
space is of size 2211=22048

� 10616. However, since a GP platform can also generate
redundant expressions which will be logically equal with some others, the real size
of the search space for different representations will vary.

EC-Star allows for pluggable representations. The representation chosen for the
purpose of this paper is EC-Star’s default representation, which is a Pitts-Style rule
based representation, where the genotype consists of a header and body. The header
includes such fields such as a unique ID, Age, Master Fitness, which represents the
aggregate fitness over samples evaluated so far, etc. The gene body is a rule set with
the following grammar:

< rules > ::= < rule >|< rule >< rules >

< rule > ::= < conditions > → action

< conditions > ::= < condition >|< condition >&< conditions >

< condition > ::= < predicate >|!< condition >

< predicate > ::= comparative expression on a feature[lag]

< lag > ::= positive numeral, index to prior feature values on time series
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For the multiplexer problem, we define a single feature we call Bit. The lag index
is an index to the multiplexer input bit. N actions (i.e., prediction labels) are defined,
each denoting the input value of one of the multiplexer data bits. The rules for the
multiplexer problem, therefore, will take the following general form:

(< !Bit|Bit >[index] = < 0|1 >[&< conditions >]) → < data − bit − index >

Where index is between 0 and k+2k −1, and data-bit-index is between 0 and 2k −1.
For example, the following rule is mapping the address bits 010 to the data bit 2:

Bit[0] = 0&Bit[1] = 1&!Bit[2] = 1 → 2 (10.1)

Note that with this definition, although logical OR is not explicitly represented in
the grammar, it is conceivable that we can have several rules with the same action.
This is equivalent to a logical OR and allows the representation to be functionally
complete. In other words, the grammar above, which includes the AND, OR and
NOT operators, can be used to express all possible Boolean functions.

This system can produce a range of genes, from only one rule, up to the maximum
number of rules allowed per configuration. In the experiments presented in this paper,
the max number of rules is set to 256, mainly due to memory constraints. Thus, going
back to the 2048 row truth table, if we consider our rules to have all the necessary
conditions to single out one row of the truth table, we can have all the possible
combinations between 1 to 256 rows which will be:

f (2048, 256) =
(

2048

0

)
+

(
2048

1

)
+ . . . +

(
2048

255

)
+

(
2048

256

)

We already know that if we continue the summation all the way to

(
2048
2048

)
, the sum

will be 22048, therefore, intuitively, our search space is smaller than this. But even
in the case of this representation, the search space is comparable in size. The upper
bound estimate for such a function, from Lovsz et al. (2003), is:

f (n, k) ≤ 2nexp
(n − 2k − 2)2

4(1 + k − n)

(where k < n
2 )

f (2048, 256) ≤ 22047exp
2335156

−7164
� 22047e−328

� 10484

However, since we can also have a lower number of conditions per rule, and consid-
ering all the other redundancies the system can represent, the real estimate will be
larger.
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Per Koza’s original fitness-function definition in Koza (1990), a gene’s aggregate
fitness (i.e., master fitness) is incremented every time the value of the data bit its
rules suggest match the expected multiplexer’s output for the given address bits. For
instance, if a gene only had the single rule presented in Eq. (10.1) master fitness on all
2048 fitness samples would end up being 28=256. Now, considering the following
rule:

Bit[0] = 0 → 0 (10.2)

This does not say anything for all the 1024 samples where the address bit zero
has the value of one, and therefore gets a fitness score of zero for those samples, and
its overall master fitness adds up to 640.

Unlike S-expressions, in this representation, the evaluation of a rule set on a fitness
case can sometimes yield more than one action, and as seen above, sometimes it might
not yield any action at all. For example, the rule in Eq. (10.2) does not trigger on
all the odd samples, since their Bit[0] is equal to one. The manner by which such
outcomes are distilled into the gene’s final vote, or what we shall call the election
process, has interesting implications. Here, for instance, is a short list of several
available options when more than one rule fires:

• Ignore them all (i.e., only pick an action if one rule has fired)
• Go with the first one
• Go with the last one
• Pick one of them randomly (note that the result will not be repeatable)
• Go with the first action in the action set
• Go with the last action in the action set
• Go with the most popular action triggered by the majority of rules

10.3 Results

The process to increase confidence in the reported results here was to run each
experimental setting ten times. In this paper, based on the context, we have provided
either the average of the ten runs or a representative sample. To establish a baseline
on the 11-Multiplexer problem, we ran the system with the full set of 2048 evaluation
samples using a single client and a pool size, originally suggested by Koza (1990), of
4000 (i.e., no age-layering or distribution). The system converged to the perfect score
of 2048 on all ten runs, averaging 28 generations to do so. Therefore, on average,
we evaluated a total of 112,000 genes on all 2048 samples before converging.

10.3.1 Tendency to Produce Smaller Solutions

Figure 10.3 shows the maximum fitness over generations along with the total number
of conditions for the smallest gene with the corresponding maximum fitness on a
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Fig. 10.3 A plot of the fitness of the best gene with least total number of conditions in the pool
against that gene’s number of conditions

sample single-client run. The system seems to engage in reducing the total number
of conditions every time it hits a new fitness plateau. In other words, whenever max
fitness stays the same for a few generations, there is a down trend on the total number
of conditions.

This may be due to the manner by which EC-Star manages bloat using its Pitts-
style representation. In order to avoid propagation of redundant or un-evaluable rules,
and to control bloat, EC-Star prevents most cases of tautologies and falsehoods in
rules. It also keeps track of the number of times a rule has fired over all the fitness
cases and does not allow an inactive rule to be passed on to future generations.

For example, in this case, after 42 generations the gene with the least conditions
and optimum fitness only has 15 conditions:

(!Bit[2] = 1) → 3

(Bit[0] = 0) → 6

(Bit[1] = 0) → 5

(Bit[0] = 0&Bit[2] = 0) → 2

(Bit[2] = 0&Bit[1] = 0) → 1

(Bit[1] = 0&!Bit[1] = 1&!Bit[0] = 1&Bit[0] = 0) → 4

(Bit[1] = 0&!Bit[2] = 1&!Bit[0] = 1) → 0

(!Bit[2] = 0) → 7

Note that the system is depending on the election logic in order to optimize the
rule-set. One simple election logic is to take the action from the first firing rule that
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Fig. 10.4 Experiments with decreasing pool size require progressively larger number of genes to
be processed before converging to the optimum

fires to be the gene’s decision on a fitness sample, and to ignore the outcome of the
other rules. Another possible election logic, which is used in these experiments, is to
give the precedence to the most certain action. EC-Star allows for pluggable election
logic but the default election logic implementation is based on fuzzy logic. Since
the rules are not fuzzy here, when more than one action is triggered we need a tie
breaker, which in this case is the action order. In the example above, the rules with
action 0 are evaluated first, then action 1, then 2, . . . This rule processing order has
allowed EC-Star to evolve the rule-set above, which is somewhat analogous to the
Hamming code in its optimized brevity.

10.3.2 Pool Size Effect on Processing

We ran experiments with pool sizes of 4000, 2000, 1000, 500 and 200. Figure 10.4
shows that the size of the pool has an inverse relationship with the total number of
genes required to be processed before convergence on to the optimum. This seems
to hint at the importance of diversity.

10.3.3 Age-Layering Effect on Processing

The age-layer range denotes the age increments at which the genes are considered for
inclusion in their respective age-layers. For instance, in a run with an age-layer range
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Fig. 10.5 Convergence of an age-layered run with pool size=4000

of 1024, all genes that have been evaluated on 1024 fitness samples are compared,
and the best is retained to be aged further to the next age-layer (2048) and so on.

Fitness samples are visited by the genes in random order, and so there is no
guarantee that a gene at age 1024 has actually visited 1024 unique fitness samples.
In order to increase the chances of getting genes in the top age-layer visit all 2048
unique fitness cases, the top-layer age can be set to be higher than the actual number
of fitness cases available. In the experiments here, for example, we set the top-layer
age to be double the number of available fitness cases, at 4096.

To test the effect of age-layering, we ran single-client experiments with age-layer
ranges of 1024, 512, 256, 128, 64, 32, and 16. All of the runs converged to the
optimum 4096 score and we have verified that all top-layer genes with this master
fitness score are indeed solutions to the multiplexer problem (i.e., their master fitness
is 2048 when run on all unique fitness cases). This observation was in agreement with
Langdon (2011), which has shown that even in lower layers a gene with a perfect
score will be a complete solution to the multiplexer problem. Indeed, we observed
this effect down to ages as low as 64.

As an example, the run in Fig. 10.5 converges in 177 generations over a pool
of 4000 genes, so it computes over 700,000 genes only on 32 samples, which is
equivalent to the processing of � 11, 000 genes over the whole 2048 member sample
space. This is roughly one tenth of the processing used to converge the baseline in
Sect. 3.1.

Figure 10.6 shows a sample distribution of the genes in a converged pool. We can
clearly distinguish two clusters, representing the stream of new random genes and
the rest of the evolved population. This shows that the convergence was not due to
random luck and that a healthy subset of the population harbors traits that result in
higher fitnesses.
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Fig. 10.6 A sample snapshot of fitness distribution in a converged pool

Cutting the age range to half consistently improved the efficiency of the run. This
rate held up until we ran experiments with an age-layer range of 16, which took more
processing power compared to our base-line to converge. On a single client, setting
the age-layer range to 8 did not converge within a reasonable amount of time.

10.3.4 Distribution Effect on Processing

In order to test the distribution effect, we set the age-layer range to be 16, and to
keep the diversity constant, we distributed it over 8 Evolutionary Engines with the
pool size of each engine set to 500 to sum up to the same 4000 pool size as the single
run discussed above. As illustrated in Fig. 10.7, the distributed run converged with
less than half of the power we needed for the single age-layered run.

Running the same distribution experiment with age-layer range set to 8 converges
to optimum, taking even less processing power than the distributed run with age-layer
range of 16.

10.3.5 Effect of Fitness Function on Processing

As mentioned, unlike the common S-expression representation where there is always
an output of zero or one, the EC-Star’s Pitts-style representation means that for some
genes, there are fitness cases on which no rules fire. So far, using Koza’s fitness
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Fig. 10.7 Total processed genes before convergence for single-client runs compared to distributed
runs with 8 clients

function (Koza 1990), we have not differentiated between a no output’ and a wrong
output’ in calculating the fitness.

To emphasize that choosing a fitness function should not be taken for granted,
in the next set of experiments, we tried a new tri-value fitness function: increment
the fitness for a correct output, subtract two for an incorrect output, and zero if
no rules fire for the gene over the fitness sample. For example, while the master
fitness for rule in Eq. (10.1) will not change when using this new fitness function,
the new scheme will result in a master fitness of −128 for the rule in Eq. (10.2).
We conducted several experiments with different fitness schemes to come up with
the above mentioned fitness function, however a full analysis of the broad range of
fitness functions which could be used and why they work is beyond the scope of this
work.

As seen in Fig. 10.4, the single client tests requiring the most processed genes was
the run with a pool size of 200, which evaluated over 3,250,000 genes to converge.
Changing the fitness function makes a significant difference, as seen in Fig. 10.8,
only requiring � 160, 000 genes to be evaluated in total before converging to the
optimum.

10.3.6 Scaling to Larger Problems

Higher order multiplexer problems have been tackled before using indirect methods
or by using hierarchical boosting-like knowledge extraction from building blocks of
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Fig. 10.8 Using a fitness function that is more appropriate for the Pitts-style representation yields
significant improvement in total number of genes processed before converging to optimum

smaller order runs (Iqbal et al. 2013). Here we used the distributed age-layered EC-
Star system from the experiments above to run higher order multiplexer problems in
a direct manner, without making use of the above mentioned techniques.

Using an age-layer range of 4096 and a top-layer age set at 1048576=220, the
20-Multiplexer problem was solved in less than 4 h by running on 56 clients (seven
8-core machines running an evolutionary engine per core). These runs, on average,
only needed to process around 500,000 gene evaluations over 4096 samples, which is
approximately equivalent to processing less than 2000 genes over the whole sample
space of 220.

We used the same configuration to solve the 37-Multiplexer problem, again with
an age-layer range of 4096 and the top-layer age set at 220 (instead of 237). These
runs converged in less than one week, processing an average of 3 million genes over
4096 samples, which is less than the equivalent processing of 400 genes over the
whole 237 samples. All genes with a perfect score at age 220 were also verified and
determined to be correct solutions.

An interesting future work would be to compare the overall time and processing
for different distribution settings.

10.4 Conclusions

The experiments in this paper show that when solving the multiplexer problem:
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• Less processing power is needed when using partial evaluations. Lucky’ genes
were not observed in any of the runs, in spite of partial evaluations and the
possibility of genes not having seen every possible fitness sample.

• Runs scale with distribution
• The Pitts-style representation and its implementation in EC-Star seems to push

towards smaller solutions

The system described in this paper can and is being applied to problems where the
determination of the fitness of a gene is made incrementally by virtue of running the
gene on fitness samples. In the multiplexer problem, the Evolutionary Engines are
able to generate the fitness samples automatically, simply by using a random number
generator. In classifier problems, on the other hand, real world data samples may
need to be distributed to the evolutionary engines as fitness samples.

In one application of EC-Star, the fitness samples are time series data from ICU
logs of patient blood pressure readings (Hemberg et al. 2013). The classifier genes
run their rules on the data sample in order to predict the blood pressure level for the
sample labelled based on the level observed after a thirty minute black-out period.
This problem was run on an average of 3000 evolutionary engines over the course
of a month.

EC-Star has also been used successfully to evolve financial trading strategies,
using historical stock data time series as the fitness samples. Typical runs make use
of hundreds of thousands of evolutionary nodes, over periods of months, continuously
yielding diversified and improved solutions.

For future work, we plan to test the effect of using a co-evolutionary island model
in solving the multiplexer problem. This is a feature of EC-Star that allows segregated
evolution of islands’ of evolutionary engines, with each island exclusively running
on a subset of the global feature/action set. The convergence rate of the islands is
monitored by the coordinator and, once at least two islands converge sufficiently,
they are merged. Merging means allowing cross breeding of genes between the
evolutionary engines, using the union of the parent islands’ feature/action sets.
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