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Abstract Performance analysis is vital for optimizing the execution of high
performance computing applications. Today different techniques for gathering,
processing, and analyzing application performance data exist. Application level
instrumentation for example is a powerful method that provides detailed insight
into an application’s behavior. However, it is difficult to predict the instrumentation-
induced perturbation as it largely depends on the application and its input data.
Thus, sampling is a viable alternative to instrumentation for gathering information
about the execution of an application by recording its state at regular intervals. This
method provides a statistical overview of the application execution and its overhead
is more predictable than with instrumentation. Taking into account the specifics of
these techniques, this paper makes the following contributions: (I) A comprehensive
overview of existing techniques for application performance analysis. (II) A novel
tracing approach that combines instrumentation and sampling to offer the benefits of
complete information where needed with reduced perturbation. We provide exam-
ples using selected instrumentation and sampling methods to detail the advantage
of such mixed information and discuss arising challenges and prospects of this
approach.

1 Introduction

Performance analysis tools allow users to gain insight into the run-time behavior
of applications and improve the efficient utilization of computational resources.
Especially for complex parallel applications, the concurrent behavior of multiple
tasks is not always obvious, which makes the analysis of communication and syn-
chronization primitives crucial to identify and eliminate performance bottlenecks.
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Different techniques for conducting performance analyses have been established,
each with their specific set of distinct advantages and shortcomings. These tech-
niques differ in the type and amount of information they provide, e.g., about the
behavior of one process or thread and the interaction between these parallel entities,
the amount of data that is generated and stored, as well as the level of detail that is
contained within the data. One contribution of this paper is to give a structured
overview on these techniques to help users understand their nature. However,
most of these approaches suffer from significant peculiarities or even profound
disadvantages that limit their applicability for real-life performance optimization
tasks:

• Full application instrumentation provides exhaustive information but comes with
unpredictable program perturbation that can easily conceal the performance
characteristics that need to be analyzed. Extensive event filtering may reduce
the overhead, but this does require additional effort.

• Pure MPI instrumentation mostly comes with low overhead, but it provides only
very limited information as the lack of application context for communication
patterns complicates the performance analysis and optimization.

• Pure sampling approaches create very predictable program perturbation, but they
lack communication and I/O information. Moreover, the classical combination
with profiling for performance data presentation squanders important temporal
correlations.

• Instrumentation-based approaches can only access performance counters at
application events, thereby hiding potentially important information from in
between these events.

A combination of techniques can often leverage the combined advantages and
mitigate the weaknesses of individual approaches. We present such a combined
approach that features low overhead and a high level of detail to significantly
improve the usability and effectiveness of the performance analysis process.

2 Performance Analysis Techniques: Classification
and Related Work

The process of performance analysis can be divided into three general steps: data
acquisition, data recording, and data presentation [10]. These steps as well as
common techniques for each step are depicted in Fig. 1. Data acquisition reveals
relevant performance information of the application execution for further processing
and recording. This information is aggregated for storage in memory or persistent
media in the data recording layer. The data presentation layer defines how the
information is presented to the user to create insight for further optimization. In
this section we present an overview of the often ambiguously used terminology and
the state of the art of performance analysis tools.
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Fig. 1 Classification of performance analysis techniques (based on [11]). Valid combinations of
techniques are connected with an arrow. Presenting data recorded by logging as a profile requires
a post-processing summarization step

2.1 Data Acquisition

2.1.1 Event-Based Instrumentation

Event-based instrumentation refers to a modification of the application execution in
order to record and present certain intrinsic events of the execution, e.g., function
entry and exit events. After the modification, these events trigger the data recording
by the measurement environment at run-time. More specific events with additional
semantics, such as communication or I/O operations, can often be derived from the
execution of an API function.

The modification of the application can be applied on different levels. Source
code instrumentation APIs used for a manual instrumentation, source-to-source
transformation tools like PDT [14] and Opari [16], and compiler instrumentation
require analysts to recompile the application under investigation after inserting
instrumentation points manually or automatically. Thus, they can only be used
for applications whose source code is available. Common ways to instrument
applications without recompilation are library wrapping [5], binary rewriting (e.g.,
via DYNINST [3] or PEBIL [13]), and virtual machines [2].

All of these techniques are often referred to as event-based instrumentation,
direct instrumentation [23], event trigger [11], probe-based measurement [17] or
simply instrumentation and it is common to combine several of them in order to
gather information on different aspects of an application run.



126 T. Ilsche et al.

2.1.2 Sampling

Another common technique to obtain performance data is sampling, which
describes the periodic interruption of a running program and inspection of its
state. Sampling is realized by using timers (e.g., setitimer) or an overflow
trigger of hardware counters (e.g., using PAPI [6]). The most important aspects
of inspecting the state of execution are the call-path and hardware performance
counters. The call-path provides information about all functions (and regions) that
are currently being executed. This information roughly corresponds to the enter/exit
function events from event-based instrumentation. Additionally, the instruction
pointer can be obtained, allowing sampling to narrow down hot-spots even within
functions. However, the semantic interpretation of specific API calls is limited
and can prevent the reconstruction of process interaction or I/O due to missing
information. Moreover, the state of the application between two sampling points is
unavailable for analysis.

In contrast to event-based instrumentation, sampling has a much more pre-
dictable overhead that mainly depends on the sampling rate rather than the event
frequency. The user specifies the sampling rate and thereby controls the trade-off
between measurement accuracy and overhead. While the complete information on
specific events is not guaranteed with sampling, the recorded data can provide a
statistical basis for analysis. For this reason, sampling is sometimes also referred to
as statistical sampling or profiling.

2.2 Data Recording

2.2.1 Logging

Logging is the most elaborate technique for recording performance data. A time-
stamp is added to the information from the acquisition layer and all the information
is retained in the recorded data. It can apply to both data from sampling and
event-based instrumentation. Logging requires a substantial amount of memory
and can cause perturbation and overhead during the measurement due to the I/O
operations for writing a log-file to persistent storage. The term tracing is often used
synonymously to logging and the data created by logging is a trace.

2.2.2 Summarization

By summarizing the information from the acquisition layer, the memory require-
ments and overhead of data recording are minimized at the cost of discarding
the temporal context. For event-based instrumentation, values like sum of event
duration, event count, or average message size can be recorded. Summarization
of samples mainly involves counting how often a specific function is on the call-
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path, but performance metrics can also be summarized. This technique is also called
profiling, because the data presentation of a summarized recording is a profile. A
special hybrid case is the phase profile [15] or time-series profile [24], for which the
information is summarized separately for successive phases (e.g., iterations) of the
application. This provides some insight into the temporal behavior, but not to the
extent of logging.

2.3 Data Presentation

2.3.1 Timelines

A timeline is a visual display of an application execution over time and represents
the temporal relationship between events of a single or different parallel entities.
This gives a detailed understanding of how the application is executed on a specific
machine. In addition to the time dimension, the second dimension of the display
can depict the call-path, parallel execution, or metric values. An example is given
in Fig. 2. Necessarily, timelines can only be created from logged data, not from
summarized data.

2.3.2 Profiles

In a profile, the performance metrics are presented in a summary that is grouped by
a factor such as the name of the function (or region). A typical profile is provided in
Listing 1 and shows the distribution of the majority of time spent among functions.
In such a flat profile the information is grouped by function name. It is also possible
to group the information based on the call-path resulting in a call-path profile [24]
(or call graph profile [8]). For performance metrics, the grouping can be done by
metric or a combination of call-path and metric. Profiles can be created from either
summarized data or logs.

Fig. 2 A process timeline displaying the call-path and event annotations
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Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write

Listing 1 Example output of gprof taken from its manual [19]

2.4 Event Types

2.4.1 Code Regions

Several event types are of interest for application analysis. By far the most
commonly used event types are code regions, which can be function calls either
inside the application code or to a specific library, or more generally be any type of
region such as loop bodies and other code structures. Therefore, code regions within
the application are in the focus of this work. The knowledge of the execution time of
an application function and its corresponding call-path is imperative for the analysis
of application behavior. However, function calls can be extremely frequent and thus
yield a high rate of trace events. This is especially true for C++ applications, where
short methods are very common, making it difficult to keep the run-time overhead
of instrumentation and tracing low.

2.4.2 Communication and I/O Operations

The exchange of data between tasks (communication) is essential for parallel
applications and highly influential on the overall performance. Communication
events can contain information about the sender/receiver, message size, and further
context such as MPI tags. File I/O is a form of data transfer between a task and
persistent storage. It is another important aspect for application performance.
Typical file I/O events include information about the active task, direction
(read/write), size, and file name.

2.4.3 Performance Metrics

The recording of the above mentioned events only gives limited information on the
usage efficiency of shared and exclusive resources. Additional metrics describing
the utilization of these resources are therefore important performance measures.
The set of metrics consists of (but is not limited to) hardware performance counter
(as provided by PAPI), operating system metrics (e.g., via rusage), and energy and
power measurements.



Combining Software Traces from Instrumentation and Sampling 129

2.4.4 Task Management

The management of tasks (processes and threads) is also of interest for application
developers. This set of events includes task creation (fork), shutdown (join), and the
mapping from application tasks to OS threads.

2.5 Established Performance Analysis Tools

Several tools support the different techniques mentioned in Sect. 2 and in parts
combine some of them.

The Scalasca [7] package focuses on displaying profiles, but logged data is used
for a special post-processing analysis step. VampirTrace [18] mainly focuses on
refined tracing techniques but comes with a basic profiling mode and external tools
for extracting profile information from trace data. These two software packages rely
mostly on different methods of event-based instrumentation. The Tuning and Anal-
ysis Utilities (TAU) [22] implement a measurement system specialized for profiling
with some functionality for tracing. TAU supports a wide range of instrumentation
methods but a hybrid mode that uses call-path sampling in combination with
instrumentation is also possible [17]. The performance measurement infrastructure
Score-P [12] has both sophisticated tracing and profiling capabilities. It mainly
acquires data from event-based instrumentation, but recent work [23] introduced
call-path sampling for profiling. The graphical tool Vampir [18] can visualize traces
created with Score-P, VampirTrace or TAU in the form of timelines or profiles.
Similar to the above mentioned, the Extrae software records traces based on various
instrumentation mechanisms. Sampling in Extrae is supported by interval timers
and hardware performance counter overflow triggers. The sampling data of multiple
executions of a single code region can be combined into a single detailed view
using folding [21]. This combined approach provides increased information about
repetitive code regions. HPCToolkit [1] implements sampling based performance
recording. It provides sophisticated techniques for stack unwinding and call-path
profiling. The data can also be recorded in a trace and displayed in a timeline
trace viewer. All previously mentioned tools have a strong HPC background and
are therefore designed to analyze large scale programs. For example Scalasca
and VampirTrace/Vampir can handle applications running on more than 200,000
cores [9, 25].

Similar combinations of techniques can also be seen in tools without a special-
ization for HPC. The Linux’ perf infrastructure [4] consists of a user space tool
and a kernel part that allows for application-specific and system-wide sampling
based on both hardware events and events related to the operating system itself.
Support for instrumentation-based analysis is added through kprobes, uprobes, and
tracepoint events. The infrastructure part of perf is also used by many other tools as
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it provides the basis to read hardware performance counters on Linux with PAPI.
The GNU profiler (gprof) [8] provides a statistical profile of function run-times, but
also employs instrumentation by the compiler to derive accurate number-of-calls
figures.

3 Combining Multiple Performance Analysis Techniques:
Concept and Experiences

As discussed in Sect. 2, sampling and event-based instrumentation have different
strengths and weaknesses. A combined performance analysis approach can use
instrumentation for aspects of the application execution for which full informa-
tion is desired and sampling to complement the performance information with
limited perturbation. We discuss two new approaches and evaluate them based
on prototype implementations for the VampirTrace plugin counter interface [20]:
(I) Instrumenting MPI calls and sampling call-paths; and (II) Instrumenting applica-
tion regions but sampling hardware performance counters.

3.1 MPI Instrumentation and Call-Path Sampling

Performance analysis of parallel applications is often centered around messages
and synchronization between processes. In the case of applications using MPI, it is
common practice to instrument the API calls to get information about every message
during application execution [7, 15, 18, 22]. The MPI profiling interface (PMPI)
allows for a convenient and reliable instrumentation that only requires re-linking
and can even be done dynamically when using shared libraries. Using sampling
for message passing information would significantly limit the analysis, e.g., since
reliable message matching requires information about each message. However, only
recording message events lacks context for a holistic analysis, as for example the
root cause of inefficient communication or load imbalances cannot be determined.
Call-path sampling is a viable option to complement message recording, as it
provides rich context information but – unlike compiler instrumentation – does not
require recompilation. The projected run-time perturbation and overhead of this
approach is very promising: On the one hand, the overhead can be controlled by
adjusting the sampling rate. On the other hand, MPI calls for communication can be
assumed to have a certain minimum run-time, thereby limiting the event frequency
as well as the overhead caused by this instrumentation. Some applications that make
excessive use of many small messages, especially when using non-blocking MPI
functions, are still difficult to analyze efficiently with this approach, but this also
applies to MPI only instrumentation.



Combining Software Traces from Instrumentation and Sampling 131

3.1.1 Implementation

We implemented a prototypical sampling support for VampirTrace as a plugin.
Whenever VampirTrace registers a task for performance analysis, the plugin is
activated and initializes a performance counter based interrupt, e.g., every 1 million
cycles. Whenever such a counter overflow occurs, the plugin checks whether the
current functions on the stack belong to the main application, i.e., are not part of
a library, and adds function events for all functions on the call-path. MPI library
calls and communication events are recorded using the instrumented MPI library of
VampirTrace. The application does not have to be recompiled to create a trace.

3.1.2 Results

Figure 3 shows the visualization of a trace using an unmodified version of
Vampir [18], i.e., without specific support for sampled events. The MPI function
calls and messages are clearly visible due to the instrumented MPI library. The
application functions, and thus the context of the communication operation, are
visible as samples. This already allows users to analyze the communication, possible
bottlenecks, and imbalances. Containing the complete call stack in the trace remains
as future work.

Figure 4 shows the measured overhead for recording traces of the analyzed
NPB benchmark. The overhead is very high for the fully instrumented version,
while sampling application functions in addition to the instrumented MPI library
only adds a marginal overhead. Thus, while providing all necessary information

Fig. 3 Vampir visualization of a trace of the NPB BT MPI benchmark created using an
instrumented MPI library (MPI functions displayed red and messages as black lines) and sampling
for application functions (x_solve colored pink, y_solve yellow, z_solve blue). Stack view
of one process shown below the master timeline
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Fig. 4 Run-time of different performance measurement methods for NPB BT CLASS B, SIZE 16
on a dual socket Sandy Bridge system. Median of 10 repeated runs with minimum/maximum
bars. � Filtered functions: matmul_sub, matvec_sub, binvrhs, binvcrhs, lhsinit,
exact_solution; �� Sampling rate of 2.6 kSa/s

on communication events and still allowing the analysis of the application’s call-
paths, the overhead can be decreased significantly. These results demonstrate the
advantage of combining call-path sampling and library instrumentation.

3.2 Sampling Hardware Counters and Instrumenting Function
Calls and MPI Messages

As a second example, we demonstrate the sampling of hardware counter values
while tracing function calls and MPI events with traditional instrumentation. In
contrast to the traditional approach of recording hardware counter values on every
application event, this approach has two important advantages: First, in long
running code regions with filtered or no subroutine calls, the sampling approach
still provides intermediate data points that allow users to estimate the application
performance for smaller parts of this region. Second, for very short code regions, the
overhead of the traditional approach can cause significant program perturbation and
recorded performance data that does not necessarily contain valuable information
for the optimization process. Moreover, reading hardware counter values in short
running functions can cause misleading results due to measurement perturbation.

3.2.1 Implementation

For each application thread, the plugin creates a monitoring thread that wakes up
in certain intervals to query and record the hardware counters and sleeps the rest of
the time.

3.2.2 Results

Figure 5 shows the visualization of a trace of NPB FT that was acquired using
compiler instrumentation and an instrumented MPI library. The trace contains two
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Fig. 5 Vampir visualization of a trace of the NPB FT benchmark acquired through compiler
instrumentation and instrumented MPI library (master timeline, top) including an event-triggered
(middle) and a sampled (bottom) counter for retired instructions. Colors: MPI red, FFT blue,
evolve yellow, transpose light blue

0 0.5 1 1.5 2 2.5

BT∗

EP

FT

LU

MG

1
Normalized Trace Size

Event-triggered Counters

Sampled Counters

Fig. 6 Normalized trace sizes of NPB CLASS B benchmarks containing hardware performance
counters either triggered by instrumentation events or asynchronously sampled (1 kSa/s). Base-
line: trace without counters. � Filtered functions: matmul_sub, matvec_sub, binvcrhs,
exact_solution

different versions of the same counter (retired instructions), one recorded on every
enter/exit event (middle part) and the second sampled every 1 ms (bottom). On the
one hand, the instrumented counter shows peaks in regions with a high event rate
due to very short-running functions. This large amount of information is usually of
limited use except for analyzing these specific function calls. The sampled counter
does not provide this wealth of information but still reflects the average application
performance in these regions correctly. On the other hand, the sampled counter
provides additional information for long running regions, e.g., MPI functions and
the evolve_ function. This information is useful for having a more fine-grained
estimation of the hardware resource usage of these code areas. Furthermore, Fig. 6
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demonstrates that sampling counter values can be used to significantly reduce trace
sizes compared to recording counter values through instrumentation. After all,
combining the approaches outlined in this section and in Sect. 3.1 is feasible and
will remain as future work.

4 Conclusions and Future Work

In this paper, we presented a comprehensive overview of existing performance
analysis techniques and the tools employing them, taking into account their specific
advantages and disadvantages. In addition, we discussed the general approach of
combining the existing techniques of instrumentation and sampling to leverage
each of their potential. We demonstrated this with two practical examples, showing
results of prototype implementations for (I) sampling application function call-paths
while instrumenting MPI library calls; and (II) sampling hardware performance
counter values in addition to traditional application instrumentation. The results
confirm that this combined approach has unique advantages over the individual
techniques.

Based on the work presented here, we will continue to explore ways of combining
instrumentation and sampling for performance analysis by integrating and extending
open-source tools available for both strategies. Taking more event types into
consideration is another important aspect. For instance, I/O operations and CUDA
API calls are viable targets for instrumentation while resource usage (e.g. memory)
can be sampled.

Another interesting aspect is the visualization of traces based on call-path
samples in a close-up view. It is challenging to present this non-continuous
information in an intuitively understandable fashion. We will also further investigate
the scalability of our combined approach. The effects of asynchronously sampling
in large scale systems that require a very low OS noise to operate efficiently needs
to be studied. Our goal is a seamless integration of instrumentation and sampling
for gathering trace data to be used in a scalable and holistic performance analysis
technique.
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