
Tareador: The Unbearable Lightness
of Exploring Parallelism

Vladimir Subotic, Arturo Campos, Alejandro Velasco, Eduard Ayguade,
Jesus Labarta, and Mateo Valero

Abstract The appearance of multi/many-core processors created a gap between the
parallel hardware and sequential software. Furthermore, this gap keeps increasing,
since the community cannot find an appealing solution for parallelizing applications.
We propose Tareador as a mean for fighting this problem.

Tareador is a tool that helps a programmer explore various parallelization strate-
gies and find the one that exposes the highest potential parallelism. Tareador dynam-
ically instruments a sequential application, automatically detects data-dependencies
between sections of execution, and evaluates the potential parallelism of different
parallelization strategies. Furthermore, Tareador includes the automatic search
mechanism that explores parallelization strategies and leads to the optimal one.
Finally, we blueprint how Tareador could be used together with the parallel
programming model and the parallelization workflow in order to facilitate paral-
lelization of applications.

1 Introduction

Parallel programming became an urge, an urge that the programmers community
fails to efficiently respond to. One of the biggest problems in the current computing
industry is the steady-growing gap between the increasing parallelism offered by
state-of-the-art architectures and the limited parallelism exposed in state-of-the-
art applications. Consequently, software parallelism has become concern of every
single programmer. However, parallelizing applications is far from trivial.

The community keeps inventing novel programming models as enablers for
transition to parallel software. These novel programming models come in various
flavours, offering different programming paradigms, levels of abstraction, etc.
However, most of the novel programming models fail to get widely adopted. It takes
a giant leap of faith for a programmer to take the already working application and
to port it to a novel programming model. This is especially problematic because the

V. Subotic (�) • A. Campos • A. Velasco • E. Ayguade • J. Labarta • M. Valero
Barcelona Supercomputing Center, Barcelona, Spain
e-mail: vladimir.subotic@bsc.es; arturo.sanemeterio@bsc.es; alejandro.velasco@bsc.es;
eduard.ayguade@bsc.es; jesus.labarta@bsc.es; mateo@ac.upc.edu

© Springer International Publishing Switzerland 2015
C. Niethammer et al. (eds.), Tools for High Performance Computing 2014,
DOI 10.1007/978-3-319-16012-2_4

55

mailto:vladimir.subotic@bsc.es
mailto:arturo.sanemeterio@bsc.es
mailto:alejandro.velasco@bsc.es
mailto:eduard.ayguade@bsc.es
mailto:jesus.labarta@bsc.es
mailto:mateo@ac.upc.edu


56 V. Subotic et al.

Fig. 1 There is a need to
make the complete
parallelization solution that
will contain not only the
development tool (DT), but
also the proposal of the
programming model (PM)
and the description of
workflow (WF) that guides
the process of parallelizing
applications solu�on

PM

WF

DT

programmer cannot anticipate how would the application perform within the new
programming model and thus whether the porting is worth the effort. Moreover, the
programmer usually lacks development tools and a clear idea how the parallelization
process should be conducted.

It is our belief that the programmers should be offered not only with the
programming model, but with the whole parallelization solution – a solution that
includes parallel programming model, parallelization development tool, and the
parallelization workflow that describes how to use the development tool to port the
sequential application to the selected parallel programming model. We believe that
the three parts of the solution need to be tailored to work together in the bigger
system (Fig. 1). The development tool should instrument the sequential application
and provide to the user the information that is relevant in the context of the target
parallel programming model. Finally, the parallelization workflow should glue the
tool and the programming model and define the process of parallelizing applications.

This paper attempts to paint the big picture of parallelization solution, putting
the special emphasize on the part of the parallelization development tool. More
specifically, this paper contributes in the following two directions:

• We present Tareador – a tool for assisted parallelization of sequential applica-
tions. Tareador allows the programmer to understand the inner workings of the
application, identify the dependencies between different parts of the execution
and evaluate the parallelism inherent in the code. We describe Tareador at its cur-
rent development phase, as a tool to explore potential parallelization strategies.
Furthermore, we also discuss the planed future development of Tareador in an
effort to make it a complete tool for assisted parallelization of applications.

• We describe the parallelization solution that includes Tareador. We propose a
parallel programming model that best suits the Tareador obtained information,
and describe the workflow that uses Tareador to parallelize application by porting
it to the target programming model.

The rest of the paper is organized as follows. Section 2 illustrates the problem of
finding the optimal parallelization strategy. Section 3 describes the implementation
and usage of Tareador environment. Furthermore, in Sect. 4 we describe the
automatic algorithm that automatically drives Tareador in exploration of good



Tareador: The Unbearable Lightness of Exploring Parallelism 57

parallelization strategies. We describe the heuristics and metrics that guide the
automatic search and show the results of automatic search in the case of couple
of well-known applications. Furthermore, we include a broad discussion of how
we see Tareador being a part of the whole environment for easy parallelization of
applications (Sect. 5). We declare our selection of the parallel programming model
and devise a custom parallelization workflow that would facilitate parallelization
of applications. Finally, we conclude the paper with the related work on the topic
(Sect. 6) and the conclusions of our study (Sect. 7).

2 Motivating Example

Parallelization of a sequential application consists of decomposing the code into
tasks (e.g. units of parallelism) and implementing synchronization rules between
the created tasks. However, even if the sequential application is simple, finding
the optimal task decomposition can be a difficult job. The application may exhibit
parallelism that is very distant and irregular, parallelism among sections of code
that are mutually far from each other. This type of parallelism is very hard for the
programmer to identify and expose without any development support. Thus, to find
the optimal parallelization strategy, the programmer must know the source code in
depth in order to identify all the data dependencies among tasks. Furthermore, the
programmer must anticipate how will all the tasks execute in parallel, and what is
the possible parallelism that these tasks can achieve.

Figure 2 shows a simple sequential application composed of four computa-
tional parts, the data dependencies among those parts, and some of the possible
taskification strategies. Although the application is very simple, it allows various
decompositions that expose different amount of parallelism. T 0 puts all the code
in one task and, in fact, presents a sequential code. T1 and T 2 both break the
application into two tasks but fail to expose any parallelism. On the other hand, T 3

and T 4 both break the application into 3 tasks, but while T 3 achieves no parallelism,
T 4 exposes concurrency between C and D. Finally, T 5 breaks the application
into 4 tasks but achieves the same amount of parallelism as T 4. Considering that
increasing the number of tasks increases the runtime overhead, one can conclude

�m
e

A
T1T0

B

T4 T5
applica�on’s
code

data
dependency

task

T3T2

D

c

A A

B B

D

Dc c

A

B

Dc

A

B

D

c

A

B

D

c

Fig. 2 Execution of different possible taskifications for a code composed of four parts



58 V. Subotic et al.

that the optimal taskification is T 4, because it gives the highest speedup with the
lowest cost of the increased number of tasks.

Nevertheless, compared to the presented trivial execution, a real-world appli-
cation would be more complex in various aspects. A real application may have
hundreds of thousands of task instances, causing complex and well populated depen-
dency graphs. The large dependency graph would allow unpredictable scheduling
decisions that would potentially exploit distant parallelism. Also, with the task
instances of different duration, evaluating the potential parallelism would be even
harder. Due to all this complexity, it is unfeasible for a programmer alone to
do the described analysis and estimate the potential parallelism of a certain
task decomposition. Therefore, we believe that it would be very useful to have
an environment that quickly anticipates the potential parallelism of a particular
taskification. We describe such a framework in the following section.

3 Tareador Environment

Tareador allows the programmer to start from a sequential application, propose
some decomposition of the sequential code into tasks and get fast estimation of
the potential parallelism. The input to Tareador is a sequential code. Tareador
compiler marks all logical sections of code as potential tasks. In addition, the
user can manually annotate other potential task. The annotated code is executed
sequentially – all annotated tasks are executed in the order of their instantiation.
Tareador dynamically instruments the sequential execution and collects the log of
memory usage of each potential task. Once the logs are generated, Tareador allows
the programmer to select one task decomposition of the sequential code. For the
selected decomposition, Tareador calculates inter-task dependencies and evaluates
the potential parallelism of the decomposition providing to the user the results in the
form of:

• Simulation of the potential parallel execution;
• Dependency graph of all task instances;
• Visualization of the memory usage of each task.

Tareador environment integrates various internally and externally developed
tools. The framework (Fig. 3) takes the input code and compiles it with LLVM-
based [1] Tareador compiler. The execution of the obtained binary generates
Tareador execution logs. Further post-mortem processing of the execution logs
is encapsulated into Tareador GUI. Tareador GUI allows the user to select one
decomposition. Based on the selected task decomposition, Tareador backend
consumes the execution logs to calculate final results. More specifically, Tareador
backend generates execution trace that Dimemas [2] simulates to obtain Paraver
[3] time-plots of the potential parallel execution. Also, Tareador backend produces
the task dependency graph that can be visualized with Graphviz [4], as well as
dataview information that can be visualized internally by Tareador GUI.



Tareador: The Unbearable Lightness of Exploring Parallelism 59

Sequen�al
Code

(poten�ally
annotated)

Time-plot visualizer (Paraver) Task graph visualizer (Graphviz) Data usage visualizer

instrumented

sequen�al execu�on
execu�on

log
TAREADOR LLVM

compiler

TAREADOR
BACKEND

Dimemas
simulator

TAREADOR GUI

Fig. 3 Tareador framework

3.1 Implementation Details

Tareador uses LLVM framework to dynamically instrument the sequential appli-
cation and collect the log of all potential tasks and their memory usage. Tareador
compiler injects to the original sequential execution instrumentation callbacks that
collect the data needed for Tareador analysis. First, Tareador compiler must mark
all the potential tasks in the execution. The compiler marks as a potential task every
logical code section that can take a significant amount of time – each function,
loop or loop iteration. Also, the compiler allows the user to manually annotate any
potential task by wrapping an arbitrary code sections using Tareador API (example
in Sect. 3.2). Furthermore, Tareador intercepts and processes each memory access of
the sequential execution. Finally, based on the dynamically collected information,
Tareador flushes the execution log that contains all intercepted potential tasks
and their memory usage. The resulting log is indexed to allow fast post-mortem
browsing.

Tareador GUI allows the user to easily browse different task decompositions of
the instrumented execution. Given the configuration of one task decomposition,
Tareador backend consumes the execution logs to evaluate the parallelism of
the decomposition. The backend finds all the specified tasks in the execution
log, calculates data-dependencies between them and prepares outputs for different
visualization tools. Finally, GUI allows the user to see all the obtained results and
select how to refine the decomposition to achieve higher parallelism.



60 V. Subotic et al.

a b

c

d

Fig. 4 Applying Tareador on dot product kernel. (a) Source code. (b) Task dependency graph.
(c) Potential parallel execution (4 cores). (d) Visualization of memory accesses

3.2 Illustration of Tareador Usage

This section illustrates the usage of Tareador by applying it on a simple code of
dot product computation (Fig. 4). Figure 4a shows the original sequential code
(code in black). The code initializes two buffers operands in two loops, and then



Tareador: The Unbearable Lightness of Exploring Parallelism 61

computes the result in function dot_product. In order to prepare the execution for
Tareador instrumentation, the user adds the gray code lines. To mark which code
section will be instrumented by Tareador, the user inserts functions tareador_ON
and tareador_OFF (code lines 16 and 26). Furthermore, to propose one task
decomposition, the user inserts calls tareador_start_task and tareador_end_task.
Additional strings passed to these functions mark the name of the task that is
encapsulated by the matching calls. In the presented examples, the selected task
decomposition splits the sequential execution into 2 initializing tasks (init_A and
init_B) and 16 computational tasks (inner_product), one for each iteration of
the loop in dot_product function. It is important to note that Tareador can work
without these user annotations that mark the decomposition. Tareador compiler can
automatically mark all the potential tasks and then the different task-decomposition
could be browsed through Tareador GUI, without the need to modify the target
sequential code.

For the selected task decomposition, Tareador automatically evaluates the poten-
tial parallelism. First output that evaluates parallelism is a tasks dependency graph
(Fig. 4b). The tasks dependency graph is a directed cyclic graph where each node
represents a task instance, while each edge represents a data-dependency between
two task instances. In the presented example, the blue and red nodes represent tasks
init_A and init_B , while the green nodes represent instances of inner_product. The
graph shows that each instance of inner_product depends on init_A, init_B and the
previous instance of inner_product (if any). The second Tareador output is the time-
plot of the potential parallel execution of the selected decomposition (Fig. 4c). The
figure shows, for each of the 4 cores in the parallel machine (y-axis), which task
executes in any moment of time (x-axis). The colors representing task types match
the colors from the dependency graph. The presented plot confirms that green task
instances (inner_product) are serialized.

Tareador’s dataview visualization can further pinpoint the memory objects that
impede parallelism. Figure 4d shows for all task instances the memory access
patterns within the objects of interest. As expected, the initialization tasks (init_A
and init_B) access only their target arrays. On the other hand, each instance of
inner_product reads one element from both arrays A and B and increments acc
(inout access stands for both input and output). Therefore, dependencies between
instances of inner_product are caused by the memory object acc.

Going back to the source code for from Fig. 4a, we can recognize the dependency
on the object acc as an apparent case that can be avoided using reduction. Thus,
Tareador allows the user to evaluate the potential parallelism if the dependency on
acc is to be avoided using reduction. The user can uncomment the code lines 8

and 10 and declare that, within the encapsulated code snippet, the memory accesses
to acc should be omitted. In other words, the user instructs Tareador to ignore the
dependency on the object acc. Consequently, the resulting decomposition allows
concurrency between instances of inner_product, as shown in Fig. 5.

For the illustration purpose, in this section we decided to describe the usage of
the lite mode of Tareador. The lite mode requires the user to manually mark the
task decomposition of the code. Every time the user specifies the decomposition,



62 V. Subotic et al.

init_A
ID=1

inst=1255
nesting=1

children_pot_tasks=0

inner_product
ID=3

inst=1033
nesting=1

children_pot__0s=0

inner_product
ID=4

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=5

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=6

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=7

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=8

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=9

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=10

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=11

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=12

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=13

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=14

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=15

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=16

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=17

inst=1033
nesting=1

children_pot_tasks=0

inner_product
ID=18

inst=1033
nesting=1

children_pot_tasks=0

init_B
ID=2

inst=388
nesting=1

children_pot_tasks=0

a b

Fig. 5 Applying Tareador on dot product kernel (disabled accesses to acc). (a) Task dependency
graph. (b) Potential parallel execution (4 cores)

Tareador outputs the described results. Conversely, the original Tareador mode
requires no annotations of the target sequential code. In the original mode, Tareador
compiler automatically marks all the potential tasks in the sequential code, and lets
the user browse all the potential decompositions through Tareador GUI. For the
purpose of parallelizing applications, original mode is much more efficient than then
lite mode. However, for demonstrative/teaching purposes, the lite mode is preferred.
This is because the lite mode makes the students be more involved with the actual
target code. Every time the student wants to change the decomposition, she is forced
to interact with the target code and understand better the sources of parallelism. The
lite mode of Tareador has been successfully introduced into the teaching curriculum
of parallel programming courses at the Technical University of Catalonia.

4 Automatic Exploration of Parallelism with Tareador

In our prior work [5] we demonstrated how a programmer can use Tareador to
iteratively explore the task decomposition space and find the decomposition that
exposes sufficient parallelism to efficiently deploy multi-core processors. However,
the presented process relied strongly on programmer’s experience to guide the
search. To further facilitate the process of finding optimal parallelization strategy,
our next goal is to formalize the programmers’ experience into an autonomous
algorithm for automatic search of potential parallelization strategies. The rest of
this section describes the autonomous algorithm and metrics and heuristics that
define it.

The automatic exploration of parallelization strategies is based on: evaluating
parallelism of various decompositions; collecting key parameters that identify
the parallelization bottlenecks; and refining decompositions in order to increase
parallelism. The search algorithm is illustrated in Fig. 6. The inputs of this algorithm
are the original unmodified sequential code and the number of cores in the target
platform. The search algorithm passes through the following steps:

1. Start from the most coarse-grain task decomposition, i.e. the one that considers
the whole main function as a single task.

2. Perform an estimation of the potential parallelism of the current task decompo-
sition (the speedup with respect to the sequential execution).



Tareador: The Unbearable Lightness of Exploring Parallelism 63

sequen�al code
choose the most

coarse-grain
task decomposi�on

iden�fy poten�al
parallelism of the

selected
decomposi�on

con�nue
search ?

(Heuris�c 2)

Refine
decomposi�on

to get more

no
yes

select the
op�mal

decomposi�on
found so far

iden�fy
paralleliza�on

bo�leneck
parallelism

bo�leneck
(Heuris�c 1)

Fig. 6 Algorithm for exploring parallelization strategies

3. If the exit condition is met (Heuristic 2), finish the search.
4. Else, identify the parallelization bottleneck (Heuristic 1), i.e. the task that should

be decomposed into finer-grain tasks.
5. Refine the current task decomposition in order to avoid the identified bottleneck.

Go to step 2.

4.1 Algorithm Heuristics

In the following sections, we further describe the design choices made in designing
the mentioned heuristics. Nevertheless, first we must define more precise terminol-
ogy. Primarily, we must make a clear distinction between a task type (function
that is encapsulated into task) and a task instance (dynamic instance of that
function). For instance, if function compute is encapsulated into a task, we will
say that compute is a task type, or just a task. Conversely, each instantiation of
compute we will call a task instance, or just an instance. A task instance is atomic
and sequential, but various instances (of same or different task type) can execute
concurrently among themselves.

Also, we will often use a term breaking a task to refer to the process of
transforming one task into more fine-grain tasks. For example, Fig. 7 illustrates
decomposition refining in a case of a simple code. The process starts with the most
coarse-grain decomposition (D1) in which function A is the only task. By breaking
task A, we obtain decomposition D2 in which A is not a task and instead its direct
children (B and C ) become tasks. If in the next step we break task B , assuming
that B contains no children tasks, B will be serialized (i.e. B is not a task anymore
and its computation becomes a part of the sequential execution). Similarly, the next
refinement serializes task C and leads to the starting sequential code. At this point,
no further refinement is possible, so the iterative process naturally stops.



64 V. Subotic et al.

void A() {
B();
C();

}

01
02
03
04
05
06 int main () {

A();
}

07
08

A
break A

C

break BB
C

break C

Sequen�al code

poten�al
tasks D1 D2 D3 D4

Fig. 7 Iterative refinement of decompositions

4.1.1 Heuristic 1: Which Task to Break

In the manual search for an efficient decomposition, the programmer decides which
task is the parallelization bottleneck. The practice shows that the bottleneck task is
often one of the following:

1. The task whose instances have long duration, because a long instance may
cause significant load imbalance.

2. The task whose instances have many dependencies, because an instance with
many dependencies may be a strong synchronization point.

3. The task whose instances have low concurrency, because an instance with low
concurrency may prevent other instances to execute in parallel.

Our goal is to formalize this programmer experience into a simple set of metrics that
can lead an autonomous algorithm for exploring potential task decompositions. The
goal is to define a cost function for task type i as:

ti D li .pl / C di .pd / C ci .pc/ (1)

where li , di and ci are functions that calculate the partial costs related to tasks’
length, dependencies count and concurrency level. On the other hand, parameters
pl , pd and pc are empirically identified parameters that tune the weight of each
partial cost within the overall cost. The following paragraphs further describe the
operands from Eq. 1.

Metric 1: Task Length Cost

A task type that has long instances is a potential parallelization bottleneck. Thus,
based on the length of instances, we define a metric called length cost of a task type.
Length cost of some task type is proportional to the length of the longest instance
of that task. Therefore, if task i has instances whose lengths are in the array Ti , the
length cost of task i is:

li D max.t/; t 2 Ti (2)



Tareador: The Unbearable Lightness of Exploring Parallelism 65

Furthermore, we define a normalized length cost of task i as:

li .p/ D .li /
p

NP

jD1

.lj /
p

; 0 � p < 1 (3)

where the control parameter p is used to tune the distribution of normalized costs
(explained later in this section).

Metric 2: Task Dependency Cost

A task type that causes many dependencies is another potential parallelization
bottleneck. Thus, based on the number of dependencies (sum of incoming and
outgoing dependencies), we define a metric called dependency cost of a task
type. Dependency cost of some task is proportional to the maximal number of
dependencies caused by some instance of that task. Therefore, if task i has instances
whose numbers of dependencies are in the array Di , the dependencies cost of task
i is:

di D max.z/; z 2 Di (4)

Furthermore, using a control parameter p, we define the normalized dependency
cost of task i as:

di .p/ D .di /
p

NP

jD1

.dj /p

; 0 � p � 1 (5)

Metric 3: Task Concurrency Cost

A task type that has low concurrency is another potential parallelization bottleneck.
Concurrency of some instance is determined by the overall utilization of the machine
during the execution of that instance. Thus, we define concurrency cost of some
task to be inversely proportional to the average number of cores that are efficiently
utilized during the execution of that task. Therefore, if task i has task instances
which run for time Ti;j while there are j cores efficiently utilized, the concurrency
cost of task i is:

ci D

coresP

jD1

Ti;j
j

coresP

jD1

Ti;j

(6)



66 V. Subotic et al.

Again, using a control parameter p, we define the normalized concurrency cost of
task i as:

ci .p/ D .ci /
p

NP

jD1

.cj /p

; 0 � p � 1 (7)

Control Parameter p

Introduction of the parameter p provides the mechanism for controlling the mutual
distance of the normalized costs for different tasks. For instance, let us assume that
the application consists of two task instances, A and B , where A is two times longer
than B . If the control parameter pl is equal to 1, the normalized length costs for
tasks A and B are 0:67 and 0:33, respectively. However, if the control parameter pl

is equal to 2, the costs for tasks A and B become 0:8 and 0:2, respectively.
Therefore, by changing parameter p of some metric, we can control the impact

of that metric on the overall cost. For example, if the control parameter for length
cost is 0, all task types will have the same normalized length cost, independent of
the length of task instances. Thus, the length of tasks would have no impact on the
overall cost. On the other hand, if the control parameter for length cost is infinite,
the task type with the longest instance will have the normalized length cost of 1,
while all other task types will have the normalized length cost of 0. This way, the
impact of the task length on the overall cost would be maximized.

4.1.2 Heuristic 2: When to Stop Refining the Decomposition

The algorithm also needs a condition to stop the iterative search. Iterative search
leads to fine grain decompositions that instantiate a very high number of tasks.
An excessive number of tasks causes a very complex and computation intensive
evaluation of the potential parallelism. Thus, to make the complete automatic search
viable, we must adopt the exit condition that will prevent processing unnecessary
decompositions.

To construct the Heuristic 2, we must create a system for rating the quality of a
decomposition. Our basic rating system consists of two rules. First, out of all tested
decompositions, the optimal decomposition is the one that achieves the highest
parallelism. Second, if the optimal decomposition achieves the parallelism of sopt

and instantiates topt tasks, and some other decomposition i achieves the parallelism
of si and instantiates ti tasks, the relative quality of decomposition i compared to
the optimal decomposition is:

Qualityi D
�

si

sopt

�

�
�
topt

ti

�exp_tasks

; 0 � exp_tasks � 1 (8)



Tareador: The Unbearable Lightness of Exploring Parallelism 67

Thus, the relative quality of some decomposition drops as the achieved parallelism
drops and as the number of instantiated tasks increases. Furthermore, the parameter
exp_tasks serves to tune the impact of the number of instantiated tasks.

Finally, Heuristic 2 mandates that the iterative search stops if the current
decomposition has relative quality lower than some threshold value:

Qualityi < .Qthreshold/
cores
sopt ; 0 � Qthreshold � 1 (9)

The right side of this expression increases with the increase of the parallelism of
the optimal task decomposition. Thus, if the optimal found parallelism is close
to the theoretical maximum (number of cores in the target machine), finding a
better decomposition is unlikely, so the algorithm should tolerate only low quality
degradations. On the other hand, if the optimal found parallelism is far from the
theoretical maximum, the algorithm should be more aggressive in finding a better
decomposition, and therefore allow high degradations of quality.

4.2 Tareador Environment for Automatic Exploration
of Parallelism

In order to adapt Tareador for automatic exploration of parallelism, into the original
environment we additionally introduced Paramedir and search Driver. Paramedir
[6] (the non-graphical user interface to the Paraver) extracts parallelization metrics
described in Sect. 4.1. On the other hand, the Driver iteratively explores parallelism
by specifying in each iteration a different list of tasks that compose the current
task decomposition (Fig. 8). More specifically, the Driver guides the environment
through the following steps:

1. Generate execution logs: dynamically instrument the sequential application and
derive execution logs.

2. Select the starting decomposition: put the whole main into one task.
3. Estimate the parallelism of the current decomposition: generate traces that

estimate the parallelism of the current decomposition.
4. If the exit condition is fulfilled, finish: if the Quality of the current decomposi-

tion is unsatisfactory (Heuristic 2), end the search.
5. Else, identify the parallelization bottleneck: process the traces with Paramedir

to derive metrics that identify the bottleneck task (Heuristic 1).
6. Refine the current decomposition to increase parallelism: break the bottle-

neck task into its children tasks, if any. Update the list of tasks that should be
included in the next decomposition.

7. Proceed to the next iteration: go to step 3.



68 V. Subotic et al.

Fig. 8 Environment to automatically explore possible task decompositions

Table 1 Empirically
identified parameters
of the automatic search

pl pd pc exptasks Qthreshold

1 1 3 log101:5 0.75

4.3 Experiments

Our experiments explore possible parallelization strategies for two well-known
applications (Cholesky and LU factorization). We select a homogeneous multi-core
processor as the simulated target platform. The goal of our experiments is to show
that the proposed search algorithm, metrics and heuristics can find decompositions
that provide significant parallelism.

Table 1 lists the empirically identified values for the parameters defined in
Sect. 4.1. As already mentioned, the total cost function is a sum of length,
dependency and concurrency cost (Eq. 1). Moreover, since our initial experiments
showed that concurrency criterion prevails very rarely, we decided to increase the
weight of the concurrency cost. Furthermore, in Eq. 8, we set the parameter exptasks

so that the increase of task instances by a factor of 10 is equivalent to the decrease
of parallelism by a factor of 1:5. Finally, in Eq. 9, parameter Qthreshold was set
empirically to allow sufficient quality degradation for a flexible search.

4.3.1 Illustration of the Iterative Search

To illustrate the algorithm we will use the example of parallelizing Cholesky
sequential code on a simulated machine with 4 cores. Figure 9 presents (on the
left) the code of Cholesky and illustrates (one the right) how the code can be
encapsulated into tasks for various decompositions (D1–D6). Note that marked
task types (boxes with numbers) may generate multiple task instances, and that



Tareador: The Unbearable Lightness of Exploring Parallelism 69

Fig. 9 Cholesky: decomposition of the code into tasks

Table 2 Cholesky: task costs (Heuristic 1)

Decomposi�on Speedup Task #1 Task #2 Task #3 Task #4

D1 1.00 1.00 1.00 1.00 3.00
D2 1.30 0.51 0.21 0.24 0.96 0.29 0.25 0.12 0.67 0.03 0.13 0.15 0.31 0.17 0.41 0.49 1.06
D3 1.49 0.59 0.44 0.48 1.51 0.34 0.18 0.22 0.74 0.04 0.18 0.27 0.48 0.03 0.21 0.03 0.27
D4 2.30 0.42 0.25 0.04 0.71 0.49 0.24 0.50 1.22 0.05 0.24 0.42 0.70 0.04 0.28 0.04 0.36
D5 3.41 0.72 0.27 0.11 1.10 0.12 0.17 0.13 0.43 0.09 0.25 0.61 0.95 0.07 0.30 0.15 0.52
D6 3.64 0.31 0.21 0.13 0.30 0.17 0.22 0 70 0.22 0.25 0 50 0 97 0.17 0.36 0.14 0 68

)1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it

D6 0.65 0.70 0.50 0.97 0.68

the code outside of marked tasks belongs to the master task (sequential part of
execution that spawns worker tasks). Table 2 shows the speedup achieved in each
decomposition and the costs that guide the iterative search. The algorithm starts
from the most coarse-grain decomposition D1 that puts the whole execution into
one task. There is only one task (#1, lines 2–11), which is automatically the critical
task that needs to be broken. Refining D1 generates decompositionD2 that achieves
the speedup of 1:30 (Table 2) and consists of 4 different task types (Fig. 9): #1 that
covers the first loop (lines 3–5); #2 that covers the second loop (lines 6–7); #3 that
covers function spotrf_tile (line 8); and #4 that covers the third loop (lines 9–10).
Heuristic 1 identifies task #4 as the most critical, mostly due to its high concurrency
cost. Thus, the following decomposition (D3) breaks the task #4 and obtains the
parallelism of 1:49. In D3, the algorithm identifies task #1 as the bottleneck (due
to its high length). Further iterations of the algorithm pass through decompositions
D4, D5 and D6 that provide speedups of 2:30, 3:41 and 3:64, respectively.

4.3.2 Results

This subsection presents the results obtained by applying our algorithm on a set of
applications. For each application, we present four plots that illustrate the process



70 V. Subotic et al.

Fig. 10 Cholesky on 4 cores

of automatic task decomposition. The first plot presents the parallelism of all tested
decompositions – the speedup over the sequential execution of the application. The
second plot shows the number of task instances generated by each decomposition.
Also, the first two plots show the parallelism and the number of instances in the
reference task decomposition (the decomposition selected and implemented by an
expert programmer). The third plot presents the cost distribution for the bottleneck
task of each iteration. Finally, the fourth plot shows the most dominant cost for the
bottleneck task.

The proposed search algorithm finds decompositions with very high parallelism,
sometimes finding the decomposition manually selected by an expert programmer.
The algorithm finds the reference decomposition for Cholesky in iteration 7

(Fig. 10). In order to get to this decomposition, the algorithm refines decompositions
based on the concurrency criterion in iterations 3 and 5. Soon after finding the



Tareador: The Unbearable Lightness of Exploring Parallelism 71

Fig. 11 Sparse LU on 4 cores

reference decomposition, the algorithm passes through the decomposition that
activates the mechanism for stopping the search (Heuristic 2).

Sparse LU (Fig. 11), as a more complex application, demonstrates the power of
our search. Compared to Cholesky, Sparse LU forces the algorithm to use various
bottleneck criteria through the exploration of decompositions. It is interesting to
note that the search finds a wide range of decompositions (iterations 17–28) that pro-
vide higher parallelism than the reference decomposition. In this case, it is unclear
which of these decompositions is the optimal one. Quantitative reasoning suggests
that the optimal task decomposition is the one that provides highest parallelism with
the lowest number of created task instances. Following this reasoning, the optimal
decomposition (iteration 22) achieves the speedup of 3:98 with the cost of 301

instantiated tasks (note the sudden drop in the number of task instances). On the



72 V. Subotic et al.

Fig. 12 Sparse LU on 8 cores

other hand, qualitative reasoning suggests that, within a set of decompositions that
provide similar parallelism generating a similar number of instances, the optimal
decomposition is the one that is the easiest to express using semantics offered
by the target parallel programming model. For example, our algorithm may find
a decomposition that extracts very irregular parallelism that cannot be expressed
using a fork-join programming model. In that case, it is programmer’s responsibility
to, out of few offered efficient task decompositions, identify the one that can be
straightforwardly implemented using a specific programming model.

It is also interesting to study how the algorithm adapts to the target parallel
machine. Changing the parallelism of the target machine changes the simulation
of the parallel execution of the tested decomposition. Thus, changes the normalized
concurrency cost, while dependency and length cost remain the same. Figures 12
and 13 illustrate potential decompositions for Sparse LU for executing on machines



Tareador: The Unbearable Lightness of Exploring Parallelism 73

Fig. 13 Sparse LU on 16 cores

with 8 and 16 cores. In the experiments with 8-core target machine (Fig. 12), the ref-
erence decomposition achieves the speedup of 7:1 at the cost of generating 316 task
instances. The automatic search finds a wide range of decompositions (iterations 21–
30) that provide slightly higher parallelism than the reference decomposition. On the
other hand, in the experiments with 16-core target machine (Fig. 13), the reference
decomposition achieves the speedup of 8:85 (316 instances). The algorithm finds
only five decompositions (iterations 21–25) that provide higher parallelism than
the default decomposition. It is also interesting to note that in the experiment with
16-core target machine, the algorithm more often refines the decomposition using
the concurrency criterion. This happens because, despite the fine granularity of
decompositions, the algorithm cannot find decomposition with parallelism close to
the theoretical maximum of 16 (number of cores in the target machine).



74 V. Subotic et al.

5 Discussion: Tareador in the Big Scheme of Things

This section describes our idea of Tareador’s role in the complete solution for
parallelizing applications. As already mentioned, the solution for parallelization of
applications must include not only the development tool but also the appropriate
parallel programming model and the parallelization workflow. Parallel program-
ming model should be chosen so the results obtained by the development tool can
be useful in expressing parallelism. On the other hand, the parallelization workflow
should describe how the development tool is used in the process of parallelizing
applications for the target parallel programming model.

5.1 OmpSs (OpenMP 4.0)

In order to design a good parallelization solution, the target parallel programming
model should follow the philosophy of the development tool. Different parallel
programming models mainly differ in the nature of the parallelism that can be
exploited, and the way in which the parallelism is expressed. Most of the mainstream
parallel programming models rely on the fork-join parallelism [7, 8] Fork-join par-
allelism in the original context follows all-or-nothing philosophy – it distinguishes
between the sequential sections that have no parallelism and parallel sections where
everything is parallel. Thus, these programming model allow expressing which code
sections are sequential and which parallel. Other programming models rely on the
dataflow paradigm [9, 10]. Dataflow parallelism tries to define for each pair of tasks
whether they are dependent or not. In most of the dataflow programming models,
the programmer expresses memory usage of each task type and then the runtime
system dynamically calculates intertask dependencies.

In a parallelization solution that includes Tareador, we propose using OmpSs
as the target parallel programming model. OmpSs [9] is a programming model
developed in Barcelona Supercomputing Center as a forefront for OpenMP [7]. In
fact, most of the main OmpSs ideas are already introduced in OpenMP 4.0 standard
[11]. OmpSs is a directive-based dataflow parallel programming model. Figure 14
illustrates how OmpSs extracts parallelism in Cholesky kernel. Figure 14a shows the
sequential Cholesky code (code in black-bold) and the OmpSs pragma directives
needed to expose parallelism (code in gray). Thus, if a programmer wants some
function to execute as a task, she must annotate the function declaration with the
pragma directive that specifies the directionality of each function argument (input,
output, inout). Based on these directives, the runtime system dynamically generates
the dependency graph of all task instances (Fig. 14b). Once the dependency
graph is generated, the runtime can execute task instances out of order, as long
as dependencies are satisfied. This type of dataflow execution allows extracting
very irregular parallelism that cannot be expressed with fork-join parallelism.



Tareador: The Unbearable Lightness of Exploring Parallelism 75

25 33

15147 6

4 3

1

2

9

10 23

5

8

11181226

27 16 19 24

13

17

20

31

32

21 22

28

29

30

34

35

a b

Fig. 14 Cholesky parallelized with OmpSs. (a) Source code. (b) Task dependency graph
(Note: The code listing marks for each function the color of the node that represents it in the
dependency graph)

Furthermore, numerous research papers prove that OmpSs outperforms OpenMP
in many well-known scientific applications [12, 13].

We consider OmpSs programming model as a specially good fit for Tareador
development tool. For a specified task decomposition, Tareador dynamically cal-
culates the memory usage of each task and then calculates potential inter-task
dependencies. Therefore, the information obtained by Tareador naturally maps to
the information needed to express OmpSs parallelism (directionality of function
arguments inside pragmas). Furthermore, OmpSs facilitates automatic generation
of parallel code. Being a directive-based parallel programming model, OmpSs adds
pragma annotations, but maintains the original code structure of the sequential
application. Therefore, it is easy to suggest how to change the sequential code in
order to parallelize it, much easier than in the case when the code structure needs to
be modified (for instance, in the case of pthreads [14]).

5.2 Parallelization Workflow

Figure 15 illustrates the parallelization workflow for using Tareador. At the current
stage of development, Tareador serves as a tool to explore potential parallelism
in sequential applications. Thus, starting from the sequential code (#0), Tareador
LLVM module (#1) generates execution logs (#2). Processing the logs, Tareador
GUI explores various task decompositions (#3) and evaluates their potential



76 V. Subotic et al.

Fig. 15 Parallelization workflow using Tareador

parallelism (#4). Furthermore, Tareador collects and visualizes memory access
patterns of all all tasks (#5). This part of development is already finished.

The rest of the Figure represents planed future development of Tareador envi-
ronment. Currently, Tareador evaluates only unbounded parallelism – parallelism
not limited by constraints of the target parallel programming model. In other words,
Tareador identifies two tasks as dependent iff the first task writes at least on byte
that the second task reads. However, Tareador omits to consider whether the tested
decomposition can be implemented – whether the targeted parallel programming
model offers parallelization primitives that can express the identified parallelism.
Thus, the next step for Tareador is to evaluate the portion of the potential parallelism
that can be expressed using the target parallel programming model (#6). Once this
step is finished, Tareador should output the content of pragma primitives that are
required to expose parallelism (#7). Thus, the correct parallel code could be obtained
(#8). However, in most applications, the parallel efficiency of the code obtained this
way will be unsatisfactory.

The potential of automatic parallelization is limited by unfavorable access pat-
terns to some memory objects. If simple decomposition of the sequential code into
tasks cannot provide sufficient expressible parallelism, Tareador should pinpoint
the memory objects with unfavorable access patterns (#9). Also, Tareador should
suggest to the programmer how to change these access patterns (#10) in order for
the automatic parallelization to be more efficient. Then, the programmer should
manually change the culprit access patterns (#11) and pass the new application
for the next attempt of automatic parallelization. It is important to note that in the
proposed workflow, the programmer modifies only the sequential application and



Tareador: The Unbearable Lightness of Exploring Parallelism 77

adapts it so the automatic parallelization could be more efficient. Finally, Tareador
should process the application for different inputs (#12) that exercise potentially
different parts of the source code. The parallelization strategy that suits all tested
inputs should be accepted as the final one.

Nevertheless, Tareador development will continuously dedicate to optimization
of the instrumentation (#13). Currently we are developing the profiler tools whose
output should facilitate optimization of the original Tareador instrumentation.
Firstly, the profile information should allow better blacklisting of code sections that
are promoted into potential tasks. Furthermore, profiler should allow sampling by
pinpointing smaller parts of execution that can be representatives of the whole run.
Also, profile information should suggest how to parallelize the instrumentation by
separately instrumenting different parts of execution and then merging the obtained
logs. Finally, the profiler should monitor the process of reducing the problem size
while preserving the characteristic behavior of the application.

6 Related Work

Numerous tools to assist parallelization have been proposed in the past years both
from the academia and the industry. Regarding tools proposed by the academia, the
ones closest to the environment that has been proposed in this paper are Embla,
Kremlin, and Alchemist. In particular, Embla [15] is a Valgrind-based tool that
estimates the potential speed-up for Cilk programs. On the other hand, Kremlin
[16] identifies regions of a serial program that can be parallelized with OpenMP
and proposes a parallelization planner for the user to parallelize the target program.
Finally, Alchemist [17] identifies parts of code that are suitable for thread-level
speculation. The major drawbacks of these tools are that they are limited to fork-
join parallelism and that they offer very little qualitative information about the target
program (no useful visualization support).

On the other side, the industry have also been recently developing their solutions
for assisted parallelization. For example, Intel’s Parallel Advisor [18] assists
parallelization with Thread Building Blocks (TBB) [19]. Parallel Advisor provides
timing profile that suggests to the programmer which loops should be parallelized.
Critical Blue provides Prism [20], a tool to do “what-if” analysis that anticipates
the potential benefits of parallelizing certain parts of the code. Vector Fabrics
provides Pareon [21], another tool for “what-if” analysis to estimate the benefits
of parallelizing loop iterations. All the three mentioned tools provide rich GUI
and visualization of the potential parallelization. However, none of the tools offers
automatic exploration of parallelization strategies. Moreover, they do not provide
any API to automate the search for the optimal parallelization strategy as the one
proposed in this paper.



78 V. Subotic et al.

7 Conclusion and Future work

The software community is facing a paramount task of parallelizing the existing
body of sequential applications. Current mainstream hardware provides extremely
high parallelism, but state-of-the-art sequential software cannot take advantage of
this abundance of resources. To adapt current applications for the novel hardware,
we must approach the challenge of parallelization.

In order to tackle this issue, in this paper we present Tareador – a tool for
assisted parallelization. Tareador allows to the programmer to easily browse various
parallelization strategies and choose the one that promises the highest parallelization
potential. Furthermore, Tareador provides very rich visualization of the results,
offering deeper insight into the potential parallelism and pinpointing the culprits
for low performance. We showed how Tareador is used for teaching parallelism at
the University courses, as well as for actually parallelizing sequential applications.

At the current stage of development, Tareador is useful for exploring the potential
parallelism inherent in the applications. However, we describe our future develop-
ment directions in order to upgrade Tareador into a tool for automatic parallelization
of sequential applications. We also blueprint the parallelization process that the
programmer should follow in order to use Tareador to port sequential application
to OmpSs parallel programming model.

References

1. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis and
transformation, San Jose, pp. 75–88 (2004)

2. Girona, S., Labarta, J., Badia, R.: Validation of dimemas communication model for MPI
collective operations. In: EuroPVM/MPI’2000, Lake Balaton (2000)

3. Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: a tool to visualize and analyze parallel
code. In: WoTUG-18, Manchester (1995)

4. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software
engineering. Software – Practice and Experience 30(11), 1203–1233 (2000)

5. Subotic, V., Ferrer, R., Sancho, J.C., Labarta, J., Valero, M.: Quantifying the potential task-
based dataflow parallelism in MPI applications. In: Euro-Par (1), Bordeaux, pp. 39–51 (2011)

6. Jost, G., Labarta, J., Gimenez, J.: Paramedir: a tool for programmable performance analysis.
In: International Conference on Computational Science, Kraków, pp. 466–469 (2004)

7. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory programming.
Comput. Sci. Eng. 5, 46–55 (1998)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an
efficient multithreaded runtime system. J. Parallel Distrib. Comput. 37, 55–69 (1996)

9. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.:
Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Process.
Lett. 21(2), 173–193 (2011)

10. K. Fatahalian, Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez, M., Ren, M.,
Aiken, A., Dally, W.J., Hanrahan, P.: Memory – sequoia: programming the memory hierarchy.
In: SC, New York, p. 83 (2006)



Tareador: The Unbearable Lightness of Exploring Parallelism 79

11. OpenMP Architecture Review Board: OpenMP Application Program Interface Version 4.0.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf. Active on July 2013

12. Pérez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based programming environ-
ment for multi-core architectures. In: CLUSTER, Tsukuba, pp. 142–151 (2008)

13. Marjanovic, V., Labarta, J., Ayguadé, E., Valero, M.: Overlapping communication and
computation by using a hybrid MPI/SMPSs approach. In: ICS, Tsukuba, pp. 5–16 (2010)

14. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming. O’Reilly & Associates,
Sebastopol (1996)

15. Mak, J., Faxén, K.-F., Janson, S., Mycroft, A.: Estimating and exploiting potential parallelism
by source-level dependence profiling. In: Euro-Par (1), Ischia, pp. 26–37 (2010)

16. Garcia, S., Jeon, D., Louie, C.M., Taylor, M.B.: Kremlin: rethinking and rebooting gprof for
the multicore age. In: PLDI, San Jose, pp. 458–469 (2011)

17. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: a transparent dependence distance profiling
infrastructure. In: CGO ’09, Seattle (2009)

18. Intel Corporation: Intel Parallel Advisor. http://software.intel.com/en-us/intel-advisor-xe.
Active on 10.11.2014

19. Pheatt, C.: Intel threading building blocks. J. Comput. Sci. Coll. 23, 298–298 (2008)
20. Critical Blue: Prism. http://www.criticalblue.com/. Active on 10.11.2014
21. Vector Fabrics: Pareon. http://www.vectorfabrics.com/products. Active on 10.11.2014

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://software.intel.com/en-us/intel-advisor-xe
http://www.criticalblue.com/
http://www.vectorfabrics.com/products

	Tareador: The Unbearable Lightness of Exploring Parallelism
	1 Introduction
	2 Motivating Example
	3 Tareador Environment
	3.1 Implementation Details
	3.2 Illustration of Tareador Usage

	4 Automatic Exploration of Parallelism with Tareador
	4.1 Algorithm Heuristics
	4.1.1 Heuristic 1: Which Task to Break
	4.1.2 Heuristic 2: When to Stop Refining the Decomposition

	4.2 Tareador Environment for Automatic Exploration of Parallelism
	4.3 Experiments
	4.3.1 Illustration of the Iterative Search
	4.3.2 Results


	5 Discussion: Tareador in the Big Scheme of Things
	5.1 OmpSs (OpenMP 4.0)
	5.2 Parallelization Workflow

	6 Related Work
	7 Conclusion and Future work
	References


