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Abstract Scalasca is a well-established open-source toolset that supports the
performance optimization of parallel programs by measuring and analyzing their
runtime behavior. The analysis identifies potential performance bottlenecks –
in particular those concerning communication and synchronization – and offers
guidance in exploring their causes. The latest Scalasca v2 release series is based
on the community instrumentation and measurement infrastructure Score-P, which
is jointly developed by a consortium of partners from Germany and the US. This
significantly improves interoperability with other performance analysis tool suites
such as Vampir and TAU due to the usage of the two common data formats CUBE4
for profiles and the Open Trace Format 2 (OTF2) for event trace data. This paper will
showcase recent as well as ongoing enhancements, such as support for additional
platforms (K computer, Intel Xeon Phi) and programming models (POSIX threads,
MPI-3, OpenMP4), and features like the critical-path analysis. It also summarizes
the steps necessary for users to migrate from Scalasca v1 to Scalasca v2.

1 Motivation and Introduction

The Scalasca toolset [10, 23] is a portable, well-established software package which
supports the performance optimization of parallel applications by measuring and
analyzing their dynamic runtime behavior. It has been specifically designed for use
on large-scale systems including IBM Blue Gene and Cray X series, but is also well-
suited for small- and medium-scale HPC platforms. A distinctive feature of Scalasca
is its scalable automatic trace analysis, which identifies potential performance
bottlenecks – in particular those concerning communication and synchronization –
and offers guidance in exploring their causes. Scalasca is available under a 3-clause
BSD open-source license.

I. Zhukov • C. Feld • M. Geimer • M. Knobloch • B. Mohr (�) • P. Saviankou
Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre
52425 Jülich, Germany
e-mail: i.zhukov@fz-juelich.de; c.feld@fz-juelich.de; m.geimer@fz-juelich.de;
m.knobloch@fz-juelich.de; b.mohr@fz-juelich.de; p.saviankou@fz-juelich.de

© Springer International Publishing Switzerland 2015
C. Niethammer et al. (eds.), Tools for High Performance Computing 2014,
DOI 10.1007/978-3-319-16012-2_1

1

mailto:i.zhukov@fz-juelich.de
mailto:c.feld@fz-juelich.de
mailto:m.geimer@fz-juelich.de
mailto:m.knobloch@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:p.saviankou@fz-juelich.de


2 I. Zhukov et al.

Users of the Scalasca toolset can choose between two different analysis modes:
(i) performance overview on the call-path level via profiling and (ii) the analysis
of wait-state formation via event tracing. Wait states often occur in the wake of
load imbalance and are serious obstacles to achieving satisfactory performance
and scalability. The latest release at the time of writing (v2.1) also includes a
scalable critical-path analysis [3]. Analysis results are presented to the user in an
interactive explorer called Cube that allows the investigation of the performance
behavior on different levels of granularity along the dimensions metric, call path,
and process/thread. Selecting a metric displays the distribution of the corresponding
value across the call tree. Selecting a call path again shows the distribution of
the associated value over the machine or application topology. Expanding and
collapsing metric or call tree nodes allows to investigate the performance at varying
levels of detail.

Scalasca and Cube are both under active development. New features – in many
cases triggered by user requests – are developed, tested, and integrated into the
main development branch. In addition, bugs that emerge are fixed and performance
as well as scalability are constantly evaluated and improved. The latest Scalasca v2
release series is based on the community-driven instrumentation and measurement
infrastructure Score-P [15], which is jointly developed by a consortium of partners
from Germany and the US. This significantly improves interoperability with other
performance analysis tool suites such as Vampir [14] and TAU [25], enabled by the
usage of two new common data formats: CUBE4 for profiles and the Open Trace
Format 2 (OTF2) for event trace data.

Re-architecting Scalasca on top of Score-P marked an important milestone for
the Scalasca project. While the previous Scalasca v1 release series provided a rather
monolithic, mostly self-contained toolset which included all components required
to perform measurements and performance analyses of parallel applications in a
single package, the Score-P project followed a component-oriented philosophy from
the very beginning – with the intention to allow a more decoupled development of
the individual components and to share them among several tools. Therefore, the
changeover to Score-P naturally lend itself to also “componentize” the Scalasca
toolset.

From a user’s perspective, the most obvious difference between the Scalasca v1
series and Scalasca v2 is that one now has to install several packages instead of just
one. In terms of actual usage, however, we tried to keep the convenience commands
and their options as stable as possible, although a few changes were necessary to
adapt to new features and to provide new functionality. Nevertheless, we believe that
the benefits of the long-term commitment of the Score-P partners and the increased
tool interoperability overall far outweigh the additional (one-time) learning effort.

The remainder of this article is structured as follows: In Sect. 2, we briefly intro-
duce the community instrumentation and measurement system Score-P. Section 3
then describes the performance analysis toolset Scalasca, and outlines changes and
differences between the old (v1) and new (v2) generation of Scalasca in more detail.
Finally, Sect. 4 gives an overview of new features introduced in the latest versions
of Score-P, Scalasca, and Cube, as well as future plans for enhancements.
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2 Scalable Performance Measurement Infrastructure
for Parallel Codes (Score-P)

The community performance measurement and runtime infrastructure Score-P [15]
– Scalable Performance Measurement Infrastructure for Parallel Codes – is a highly
scalable and easy-to-use tool suite for profiling, event tracing, and online analysis
of HPC applications.

Until 2009, the performance tools landscape was fragmented and revealed
many redundancies – not so much in the analysis parts, but in program instru-
mentation, measurement data acquisition, and data formats. The analysis tools
Scalasca [10], Vampir [14, 27], TAU [25], and Periscope [1] all provided their
native instrumentation and measurement systems, data formats, and configuration
options. Although very similar in functionality, the effort to maintain a portable
and scalable measurement tool with associated data formats was redundantly
expended by every tool developer group. Moreover, on the user’s side, dealing
with different measurement tools that expose incompatible configurations, diverse
feature sets, and different options for equivalent features, created discomfort and
made interoperability between analysis tools difficult.

Therefore, a consortium of tool developer groups from Germany and the US
as well as other stakeholders in 2009 started the Score-P project to remedy this
situation. Score-P aims to provide a single, highly scalable, and easy-to-use tool
suite for profiling, event tracing, and online analysis of HPC applications written in
C/C++ and Fortran. Score-P comes along with scalable, space-efficient, and well-
defined data formats: CUBE4 for profiling and OTF2 [7] for tracing data. Based
on the experience with the existing tools, the interaction with their users, and the
programming paradigms most prevalent in HPC, the Score-P architecture as shown
in Fig. 1 was derived.

The workflow to obtain measurement data usually consists of instrumentation,
measurement configuration, and running the instrumented application. At instru-
mentation time, this typically means to recompile/relink the application using the
scorep compiler wrapper as a prefix to the actual compile/link commands. This
step inserts measurement probes into the application code that collect performance-
related data when triggered during measurement runs. Currently, the following
means of instrumentation are supported:

• Compiler-based instrumentation (entry/exit of functions)
• MPI/SHMEM library interposition
• OpenMP source-code instrumentation using OPARI2
• POSIX thread instrumentation using library wrapping
• CUDA event interception using the CUPTI library
• Source-code instrumentation via the TAU instrumentor [9]
• User instrumentation using convenient macros
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Fig. 1 Score-P architecture overview. Instrumentation wrappers capture important events during
application execution and pass them to the Score-P measurement core. Here, this data is optionally
combined with hardware counter information, and detailed event traces or call-path profiles are
generated, which can be handled by various analysis tools. In addition, an online interface allows
tools to access profiling data already during measurement

The instrumentation probes are placed at performance-relevant regions in the code,
e.g., function entry and exit, thread-management functions, and communication
routines. Once triggered, the probes obtain relevant performance data and pass them
to the Score-P measurement core where they are augmented with timestamps and,
optionally, additional metrics from hardware and OS counter sources. This enhanced
event data is then processed by so-called substrates, currently either profiling and/or
tracing. Substrates collect and process the measurement events thread-locally and
write the results efficiently to file. The profiling substrate writes either CUBE4 or
TAU profiles, while the tracing substrate outputs its data in the space-efficient OTF2
format.

Measurements can be conveniently configured using environment variables. That
is, once instrumented, the application can be run in different measurement con-
figurations without recompilation. Depending on the settings of the configuration
variables, users can

• Switch between profiling and tracing,
• Apply event filters to control overhead,
• Collect additional metrics (e.g., hardware counters),
• Adapt measurement internals (e.g., size of memory buffers),
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• Specify output parameters,
• And much more.1

After its first public release end of 2011, the Score-P infrastructure has become
the default instrumentation and measurement system for Scalasca v2, Vampir, and
Periscope, and is also supported by the TAU performance system as a configuration
option. It is actively maintained and constantly enhanced with new features by the
contributing partners, managed by a meritocratic governance model.

3 Scalasca v2

As already mentioned in the introduction, the changeover to the Score-P instru-
mentation and measurement system as the new foundation of the Scalasca toolset
marked an important milestone for the Scalasca project. While the previous
Scalasca v1 release series provided all components required to perform measure-
ments and performance analyses of parallel applications in a single distribution
package, the Score-P project follows a rather different philosophy. Here, smaller
components are developed and released in a more decoupled fashion – with the
intention to share them among several tools. Therefore, switching to Score-P
naturally lend itself to also “componentize” the Scalasca toolset, eliminate some
legacy components, and substitute a number of previously internal components by
now external components from the Score-P universe:

• The custom instrumentation and measurement system of Scalasca v1 (EPIK) was
replaced by Score-P.

• The libraries to read/write Scalasca’s original custom trace file format (EPILOG)
were substituted by OTF2.2

• The graphical report explorer Cube v3 as well as associated read/write libraries
and command-line tools were split off as a separate component, significantly
improved, and subsequently released in the Cube v4 package.

• The legacy serial trace analyzer from Scalasca’s predecessor project KOJAK as
well as the non-scalable trace converters from the EPILOG to the Jumpshot and
Paraver trace formats were removed.

These substantial changes, however, posed a number of challenges for both the
Scalasca developers and the Scalasca user community.

1The command scorep-info config-vars provides an exhaustive list of options available
for a particular installation.
2A stripped-down EPILOG reader library is still included in Scalasca v2 to provide backwards
compatibility support for existing trace files, except for traces stored in SIONlib [8] containers
which are not supported.
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From a developer’s point of view, adjusting the code base of the remaining
core components of Scalasca (i.e., its scalable trace-based analysis tools) required
a significant development effort. On the one hand, code sections dealing with file
I/O had to be reworked, since the APIs of the Cube v4 and OTF2 libraries differ
significantly from their previous counterparts. Moreover, both Cube and OTF2 are
under continuous development and now provided as external components, thus
creating a need to identify – and potentially deal with – different versions of these
libraries. On the other hand, OTF2 also introduced many small differences in the
trace definition and event data compared to the previous EPILOG format, which
required a careful inspection and adaption of Scalasca’s trace analysis algorithms.

From a user’s perspective, the most obvious difference between the Scalasca v1
series and Scalasca v2 is that now several packages have to be installed instead
of just one. In terms of actual usage, however, we tried to keep the convenience
commands (scalasca and its shortcuts skin, scan, and square) and their
command-line options as stable as possible. Nevertheless, some changes were
necessary, which will be described in more detail below. All in all, however, we
believe that the benefits of the improved functionality, the long-term commitment
of the Score-P partners, and the increased tool interoperability far outweigh the
additional installation and (one-time) learning effort.

3.1 General Comparison of Scalasca v1 and Scalasca v2

As mentioned above, basically all components of Scalasca v2 had to be adjusted
and/or refactored to integrate with the Score-P instrumentation and measurement
system. In the following, however, we focus on the user-visible differences. That
is, we compare the usage of the two generations of the Scalasca toolset to help
existing users with transitioning from the old to the new version more easily. An
initial comparison of their performance and scalability can be found in [28].

Table 1 summarizes the differences between Scalasca v1 and Scalasca v2 from a
high-level perspective. While at first glance the table suggests that there are – except
for the license – no commonalities between the two generations of Scalasca, the
detailed comparisons in the following subsections will show that the differences are
often, especially with respect to the Scalasca convenience commands, only marginal
and in most cases motivated by improved functionality provided by Score-P.

Obviously, some usability changes can barely be avoided when replacing a core
component such as the instrumentation and measurement infrastructure by a unified
solution that emerged from existing measurement systems of multiple tool suites.
For example, Score-P’s instrumenter command uses different command-line options
than the instrumenter provided by Scalasca’s former measurement system EPIK.
Moreover, their manual instrumentation APIs are incompatible, though the API
supported by Score-P is much more feature rich. In addition, the names (and often
also the valid values) of the environment variables used to configure measurements
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Table 1 High-level comparison of Scalasca v1 and Scalasca v2

Scalasca v1 Scalasca v2

Instrumentation system EPIK Score-P

Command line switches Different

Manual instrumentation API Different

Environment variables Different

Filter file syntax Different

Memory buffers separate for each thread memory pool on each process

Experiment directory name epik_### scorep_###

Profile format CUBE3 CUBE4

Trace format EPILOG OTF2

Scalable trace I/O Supports SIONlib Partially supports SIONlib

License 3-clause BSD

have changed. Therefore, it is inevitable that existing users of Scalasca transitioning
to the new version have to familiarize themselves with these modifications.

Another notable change concerns the syntax of filter files, which are commonly
used to control the measurement overhead by excluding source-code regions
from being measured. While Scalasca v1 only supported a simple plain text file
listing function names (optionally using wildcards) that should be ignored during
measurement, Score-P provides the ability to filter based on function names as
well as file names, also supporting wildcards. In addition, both blacklisting and
whitelisting of functions/files are now supported. This, however, necessitated the
introduction of an incompatible, more powerful syntax for filter files.

Finally, handling of memory buffers internal to the measurement system has
changed. Scalasca v1 provided two environment variables to control its memory
usage: one to define the size of a per-process buffer for definition data and another
to set the size of a per-thread trace data buffer, the latter only if tracing mode
is configured. By contrast, Score-P uses a memory pool on each process, whose
total size can be controlled using a single variable. This approach is typically more
memory efficient and in general easier to use.

Other differences such as the experiment directory prefix and the different profile
and trace file formats used by the two generations of Scalasca, although apparent,
usually do not affect the user directly. One notable exception are the different
levels of support for writing trace data in SIONlib [8] containers. At the time of
writing, the current Score-P release (v1.3) only supports SIONlib containers for
OTF2 traces from pure MPI applications, while the former EPIK measurement
system also included support for hybrid MPI+OpenMP codes. This currently limits
the scalability of tracing in Score-P for such applications. However, extending OTF2
and Score-P to support SIONlib for all supported programming models (and their
combination) is already work in progress.
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3.2 Changes in the Scalasca Convenience Commands

Although there are many differences between Scalasca v1 and Scalasca v2, we
tried to preserve the overall usage workflow and the set of associated convenience
commands. Therefore, users already familiar with Scalasca v1 should be able to
continue using these commands to accomplish the most common tasks.

Most of Scalasca’s functionality can be easily accessed through the scalasca
command, which provides action options that in turn invoke the corresponding
underlying commands: scorep for instrumentation, scan for measurement exe-
cution control, and square for analysis report postprocessing and examination.
These actions are:

• scorep
is used to instrument the application during compilation/linking. The former

scalasca -instrument (or short skin) command is now deprecated and
only provided to assist in converting existing measurement configurations to
Score-P. Hence, it tries to map the command-line options of the Scalasca v1
instrumenter onto corresponding options of the scorep command as far as this
is possible, and prints the new command to standard output. However, to take
full advantage of Score-P’s functionality, it is recommended to use the scorep
instrumenter command directly.

• scalasca -analyze (or short scan)
is used to control the Score-P measurement environment during the execution

of the target application, and to automatically initiate Scalasca’s trace analysis
after measurement completion in case tracing was requested.

• scalasca -examine (or short square)
is used to postprocess the analysis report generated by a Score-P profiling

measurement and/or Scalasca’s automatic post-mortem trace analysis, and to
start the analysis report examination browser Cube.

Each of these commands is discussed in further detail below.

3.2.1 Scalasca Application Instrumenter

In order to perform measurements with Scalasca, the application’s source code
has to be prepared, a process called instrumentation. That is, special calls have
to be inserted into the code which trigger measurements at performance-relevant
points during application runtime. The Score-P measurement system can do this
instrumentation in various ways; the most important ones are listed below.

Compiler instrumentation inserts specific instrumentation probes at the enter
and exit of functions. This method is supported by most modern compilers and
can usually be enabled by a particular compiler flag. It is the most convenient
way to instrument an application but may result in high overhead and/or disruptive
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measurements. Both of these issues can be addressed by manual instrumentation
and/or measurement filtering (see Sect. 3.2.2).3

If compiler instrumentation is not possible or it incurs too much overhead, one
can use manual instrumentation. Here, the user manually inserts function calls into
the application’s source code, using the provided manual instrumentation API. Note
that the Score-P API differs from the previous EPIK API. Besides changing the
common prefix of the API calls from EPIK to SCOREP, the calls themselves have
been renamed to be more expressive and now also take different parameter lists.
This, however, allowed to make the API more flexible and powerful, for example, to
support phase and dynamic region profiling. For more detailed information on the
new possibilities, please consult the Score-P user manual [24].

Compiler-based and manual instrumentation can also be used in combination,
thereby allowing to mark specific regions other than function entry and exit and thus
augmenting the measurement output with additional information. While manual
instrumentation is very flexible, it is more time-consuming and requires extra
implementation efforts.

If Score-P has been configured with support for the Program Database Toolkit
(PDToolkit) [9], automatic source-code instrumentation can be used as an alter-
native to compiler instrumentation. In this case, the source code of the target
application is pre-processed before compilation and appropriate calls to the manual
instrumentation API are inserted automatically. PDT instrumentation allows for
instrumentation-time filtering, thus potentially reducing overhead.

In the rare case that neither automatic compiler instrumentation nor automatic
source-code instrumentation via PDToolkit are supported, the user can apply semi-
automatic instrumentation. Here, instrumentation can be accomplished by means
of the Open Pragma And Region Instrumenter (OPARI2) [20], a source-to-source
instrumenter that was originally developed to detect and instrument OpenMP [21]
directives. OPARI2 scans the source code for OpenMP directives, inserting specific
instrumentation probes according to the POMP2 interface [18]. The same procedure
can be used to instrument user regions defined via pragmas or to instrument
directive-based non-OpenMP paradigms [13]. The advantage of this method is that
the pragma-based instrumentation directives will be ignored by the compiler during
“normal” compilation.

Table 2 shows a comparison between the most relevant options that can be
passed to the old and the new instrumentation commands. As can be seen, the
command-line options supported by the scorep command are very similar to
those used by scalasca -instrument or skin, respectively. However, the
Score-P instrumenter command provides many additional options not listed in the
table, making it more flexible and feature rich than its predecessor.4

3Some compilers, e.g., Intel, provide command-line options to control instrumentation-time
filtering, however the functionality provided is typically limited and very compiler (and compiler
version) specific.
4The command scorep --help provides an exhaustive list of instrumentation options.
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Table 2 Comparison between the skin (scalasca -instrument) and scorep commands

Scalasca v1 Scalasca v2
Command Option Command Option Description

skin -v scorep -v Enable verbose mode

--verbose=<value>

-comp=all --compiler Turn on compiler
instrumentation (default)

-comp=none --nocompiler Turn off compiler
instrumentation

-user --user Turn on user
instrumentation

-pdt --pdt Process source files with
PDT instrumenter

-pomp --pomp Process source files for
POMP directives

--dry-run Display executed
commands. No execution

--keep-files Do not delete temporarily
created files

3.2.2 Scalasca Measurement Collection and Analysis Nexus

The Scalasca measurement and analysis nexus (scalasca -analyze or short
scan) configures and manages the collection of performance experiments of an
application instrumented by Score-P. By setting different measurement and analysis
configurations, users can perform various experiments using a single instrumented
executable without re-instrumentation. Typically, a single performance experiment
is collected in an unique archive directory that contains not only measurement and
analysis reports but also a measurement log file and configuration data. Score-P
uses a directory name prefix of scorep_ for this directory, while Scalasca’s EPIK
measurement system used epik_.

Users can choose between generating a summary analysis report (profile) with
aggregate performance metrics for each function call path and/or generating per-
thread event traces recording time-ordered runtime events which are automatically
fed to Scalasca’s trace analyzer to identify potential communication and perfor-
mance bottlenecks. Alternatively, traces can be used for timeline visualization using,
for example, the Vampir trace browser.

Summarization is particularly useful to get a first insight into the performance
behavior of the inspected application as well as to optimize the measurement
configuration for subsequent trace generation. If hardware counter metrics were
requested, these are also included in the summary report. By contrast, tracing
provides detailed insights into the dynamic application behavior.

Measurement overhead can be prohibitive for small, frequently-called routines.
Therefore both Scalasca v1 and Score-P provide measurement filtering capabilities.
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To enable filtering, the user has to prepare a filter file. Scalasca v1 supports a
plain text file containing the names of functions to be excluded from measurement,
whereas Score-P can filter based on region name and source file names. While the
use of wildcards is allowed by both file formats, only Score-P supports white- and
blacklisting – also in combination. The enhanced filtering mechanism in Score-P
requires a more powerful filtering syntax which will be explained in the following
paragraph.

Score-P’s filter file can contain the following two sections:

• A section with rules for region names. This section must be enclosed by
the keywords SCOREP_REGION_NAMES_BEGIN and SCOREP_REGION
_NAMES_END.

• A section with rules for filtering all regions defined in specific source files. This
section must be enclosed by the keywordsSCOREP_FILE_NAMES_BEGIN and
SCOREP_FILE_NAMES_END.

Within these sections, the user can specify an arbitrary number of include and
exclude rules which are processed in sequential order. An exclude rule starts with
the keyword EXCLUDE whereas include rules start with INCLUDE, both followed
by one or several white-space separated file or region names. Bash-like wildcards
can be used in file or/and region names.

By default, all files and regions are included. After all rules of the filter file have
been evaluated, files and regions that were marked as excluded are filtered, i.e.,
excluded from measurement.

Besides the two filter sections, users may also use comments in the filter file.
Comments start with the ‘#’ character and are effective throughout the entire rest of
the line. If a region name or source file name contains the comment character ‘#’,
the user must escape it with a backslash.

Let us consider the following filter file:

#Exclude all regions except bar and foo
SCOREP_REGION_NAMES_BEGIN

EXCLUDE *
INCLUDE foo bar

SCOREP_REGION_NAMES_END
#Exclude all files except *.c
SCOREP_FILE_NAMES_BEGIN

EXCLUDE *
INCLUDE *.c

SCOREP_FILE_NAMES_END

According to this filter file only foo and bar region names in *.c source files
will be recorded by the measurement system.

To collect measurements for profiling or/and tracing, additional memory for
internal data structures as well as for the trace data is required. Even more memory
is needed if hardware counter measurements are requested. This additional memory
in Scalasca v1 and Score-P constitutes the memory buffer. Although memory
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buffers are used in both measurement systems, their handling changed notably.
Scalasca v1 uses separate pre-allocated memory buffers for each thread whereas
Score-P uses a pre-allocated memory pool consisting of a set of chunks on each
process. Score-P’s memory pool dynamically distributes memory chunks to threads
that demand memory to store event data.5 This approach manages memory in a more
flexible but still efficient way and thus minimizes overhead due to run-time memory
allocations.

If tracing is enabled, each thread will generate a trace file containing chrono-
logically ordered local events. However, for applications running at scale the
one file per thread approach might impose a serious I/O bottleneck. To address
this issue Score-P can leverage the SIONlib I/O library. SIONlib improves file
handling by transparently mapping logical thread-local files into a smaller number
of physical files.

Once a measurement run terminates, the Scalasca trace analysis is automatically
initiated to quantify wait states that cannot be determined with runtime summariza-
tion. The report generated by the trace analysis is similar to the summary report but
includes additional communication and synchronization inefficiency metrics.

Table 3 shows a comparison of the most relevant options and environment
variables6 that can be passed to the two different versions of the scalasca
-analyze or scan command that controls measurement collection and analysis.
As can be seen, the command-line options remained unchanged. By contrast, the
names of all environment variables have been changed in Score-P. Score-P provides
more self-explanatory variable names prefixed with SCOREP_ rather than with
EPIK_. We believe that these names can be more easily memorized by users than
their previous counterparts.

3.2.3 Scalasca Analysis Report Explorer

Once measurement and analysis are completed, analysis reports are produced
in either CUBE3 (Scalasca v1) or CUBE4 (Scalasca v2) format, which can be
interactively explored with the Cube GUI and processed by various Cube command-
line utilities. Although the CUBE format has been changed considerably with
the new generation of Scalasca, the Cube GUI and utilities provide the same
functionality as in the previous version.

In the usual workflow, the scalasca -examine (or short square) conve-
nience command will post-process intermediate analysis reports produced by the
measurement and analysis to further derive additional metrics and construct a hier-
archy of measured and derived metrics. The Cube browser will then present the final

5The size of the chunk, a so-called page, is configurable using the SCOREP_PAGE_SIZE envi-
ronment variable. The other memory-related configuration variable isSCOREP_TOTAL_MEMORY,
denoting the total amount of memory reserved by each process.
6For Score-P, the command scorep-info config-vars provides the list of all environment
variables (and their default values) that are available for the current installation.
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Table 3 Comparison of the scalasca -analyze (scan) command-line options and the most
important, associated environment variables

Command Environment variable [default value]
switch Scalasca v1 Scalasca v2 Description

-s EPK_SUMMARY [1] SCOREP_ENABLE_
PROFILING [1]

Enable runtime
summarization

-t EPK_TRACING [0] SCOREP_ENABLE_
TRACING [0]

Enable trace collection
and analysis

-e
<dir_name>

EPK_TITLE SCOREP_EXPERIMENT_
DIRECTORY

Experiment archive to
generate and/or analyze

-f <fil-
ter_file>

EPK_FILTER SCOREP_FILTERING_
FILE

File specifying
measurement filter

ESD_BUFFER_SIZE
[100000],
ELG_BUFFER_SIZE
[10000000]

SCOREP_TOTAL_
MEMORY [16384000]

Total memory in bytes
for the measurement
system

EPK_METRICSa SCOREP_METRIC_
PAPIb

List of counter metrics

ELG_SION_FILES [0] SCOREP_TRACING_
MAX_PROCS_PER_
SION_FILE [1024]

Maximum number of
processes that share one
sion file

a metrics provided as a colon-separated list
b by default metrics provided as a comma-separated list (separator can be configured with
SCOREP_METRIC_PAPI_SEP environment variable)

report. The command-line options supported by scalasca -examine/square
did not change during the transition from Scalasca v1 to Scalasca v2. Therefore
users can continue to work with already familiar commands and command-line
options during this stage of the workflow.

4 New Features and Future Plans

Score-P, Scalasca and Cube are under active development. New features, also
on user request, are developed, tested, and integrated into the main development
branch. Bugs that emerge are fixed and performance is constantly evaluated and
improved. In this section, we highlight recently added features and improvements,
and outline our plans for future work.

4.1 Score-P

In collaboration with our Score-P development partners

• Technische Universität Dresden,
• Technische Universität München,
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• RWTH Aachen University,
• German Research School for Simulation Sciences (Aachen), and
• University of Oregon

we provide a small number of feature releases each year. Each feature release is
usually followed by one or more bugfix releases. We do not follow a fixed release
schedule but ship a new version if one or more user-relevant features become
available.

4.1.1 Score-P v1.3

The last feature release was Score-P v1.3, released August 2014. Significant new
features in Score-P v1.3 include:

• Basic support for the K Computer and Fujitsu FX10 systems. Fujitsu systems are
cross-compile systems using rarely encountered Fujitsu compilers. The porting
effort was significant, but as Score-P is a joint infrastructure, it had to be done
just once.7

• Support for instrumenting programs which use Symmetric Hierarchical Memory
access (SHMEM) library calls for one-sided communication. SHMEM imple-
mentations from Cray, Open MPI, OpenSHMEM, and SGI are supported.

• Basic support for POSIX threads instrumentation. At the moment Score-P is
capable of tracking creation and joining of POSIX threads as well as important
synchronization routines.8

• Support for CUDA [19] versions 5.5 and 6.0.
• Improved event size estimation in scorep-score to adapt memory require-

ments for subsequent trace experiments.

7The Tofu network topology will be supported in a subsequent release.
8Currently supported POSIX threads routines are pthread_create, pthread_join,
pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_lock,
pthread_mutex_trylock, pthread_mutex_unlock, pthread_cond_init,
pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, and pthread_cond_timedwait. The following thread
management functions are currently not supported and will abort the program: pthread_exit
and pthread_cancel. The usage of pthread_detach will cause the program to fail if
the detached thread is still running after the end of the main routine. These limitations will be
addressed in an upcoming version of Score-P. Note that currently every thread creation needs to
be instrumented.
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4.1.2 Upcoming Score-P v1.4

Score-P v1.4, likely to be released by the end of 2014, might include some of the
features we and our project partners are currently working on. The prominent user-
visible ones are:

• Basic OpenCL [26] support by intercepting OpenCL library routines using
library wrapping.

• Intel Xeon Phi support for native and symmetric mode.
• GCC plugin as an alternative to the default compiler instrumentation, allowing

for instrumentation-time filtering.

The next release will also include improved POSIX threads support, internal
refactorings, and bugfixes.

4.1.3 Future Plans

There are a number of features we are working on that eventually will appear in a
future release. Some of them are listed below:

• Experimental support for sampling as an alternative to instrumentation-based
measurement, potentially combined with library wrapping and interposition, will
give opportunity to collect measurements with lower overhead than with full
instrumentation [12].

• Basic OpenACC [5] instrumentation using the OpenACC tools interface.
• A refactored OPARI2 allows to easily add source-to-source instrumentation

directives, i.e., C/C++ pragmas and Fortran special comments, beyond the
already supported OpenMP ones.

• Hardware and application-specific Cartesian topologies that were already sup-
ported by Scalasca v1 will be ported to Score-P and Scalasca v2.

• MPI-3 [17] support. MPI-3.0 is a major update to MPI adding over 100 new
functions and extensions to collective and one-sided communication, which we
expect to be used by scientific applications in the near future. We plan to add
support for MPI-3 features in multiple steps.

In the current release, MPI-3 functions are silently ignored by the mea-
surement system, so first we will provide basic wrappers for all new MPI-3
functions. The next step is adding support for the newly introduced non-blocking
collectives and neighborhood collectives. Non-blocking collectives are similar to
non-blocking point-to-point routines, i.e., they have the same semantics as their
blocking counterparts but can be used to overlap computation and communica-
tion. Neighborhood collectives on the other hand introduce a new semantic to
collective operations, as only neighbors in a defined (Cartesian or distributed
graph) topology communicate with each other. We will initially concentrate
on Cartesian topologies and tackle graph topologies later. Concurrently, we are
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working on support for the new RMA features to analyze applications using one-
sided communication. In all cases profiling support will be implemented first.
Tracing support for these new features may require new OTF2 event records and
adaptations in Scalasca (for analysis) and Vampir (for visualization).

MPI-3 also offers new Fortran 2008 bindings, which will probably be
used once Fortran 2008 features are exploited by more scientific applications.
Currently, all MPI wrappers are implemented in C with Fortran-to-C conversion
to support the Fortran bindings in MPI-2. We will need to implement new native
Fortran wrappers to support the Fortran 2008 bindings in MPI-3.

Finally, we plan to support the MPI Tools interface (MPI_T). MPI_T exposes
performance (and control) variables internal to the MPI library to external tools
to help the advanced user in fine-tuning the MPI usage in their application
(or control the MPI library accordingly). Score-P will primarily focus on
performance variables, though also control variables might be exploited by tools
like Periscope.

• New programming models or extensions of existing ones:

– Support of relevant OpenMP 4.0 [21] features, e.g., target and cancellation
directives, as well as support for the OpenMP Tools Application Programming
Interface for Performance Analysis (OMPT) [6].

– Support for OmpSs [4], an extension to OpenMP to support asynchronous
parallelism with data dependencies.

– Support for Qt, ACE, and TBB threading models using Intel’s dynamic binary
instrumentation tool Pin [16].

– Enhanced tasking support, in particular for MTAPI [11], using Pin as well as
library wrapping.

• Basic support for the Windows platform, however, not targeting distributed-
memory applications. The preferred instrumentation method will be Pin.

• New substrates – substrates are the event consumers – besides profiling and
tracing. We work on a generic substrate layer that allows arbitrary processing of
event data. One could think of online tuning of runtime parameters or streaming
event data to reduce memory demands.

• Improved support for threading. As of Score-P v1.3, the user can either analyze
programs using OpenMP or POSIX threads. Additionally all thread creations
need to be instrumented. This is particularly challenging if the thread creation
takes place in a shared library. A future version of Score-P will allow the
combination of OpenMP and POSIX threading. Additionally, events from unin-
strumented threads will be handled gracefully.

4.2 Scalasca v2

The first version of the Scalasca v2 series based on Score-P v1.2, OTF2 v1.2, and
CUBE v4.2 was released in August 2013. Besides a new build system based on
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GNU autotools, a significant amount of code refactoring, and support for the new
data formats, this release included only minor functional changes and fixes for a
number of bugs uncovered during the refactoring process. This initial release then
served as a basis for all subsequent developments.

4.2.1 Scalasca v2.1

Scalasca v2.1, the first feature release based on the new infrastructure, was released
in August 2014 and included the following new features:

• Support for the K Computer and Fujitsu FX10 systems, to bring Scalasca’s
platform support in line with Score-P v1.3.

• Improved detection of Late Receiver pattern instances. Previously, Late Receiver
instances in non-blocking point-to-point MPI communication could only be
detected in operations finalizing a single request (e.g., MPI_Wait). The
enhanced detection algorithm now also supports multi-request finalization calls,
such as MPI_Waitall.

• Critical-path analysis [3] for MPI- and/or OpenMP-based applications. The
critical-path analysis determines the call-path profile of the application’s critical
path, highlighting the call paths for which optimization will prove worthwhile
and thus guiding optimization efforts more precisely.

4.2.2 Scalasca v2.2

The upcoming Scalasca v2.2 release, planned for early 2015, is likely to include a
number of additional features which will be briefly described below.

• Intel Xeon Phi support for native and symmetric mode.
• Basic OpenMP task support. So far, Scalasca’s automatic trace analyzer has been

unable to handle traces including events related to OpenMP tasking, thus not
even allowing an MPI-only analysis for applications using OpenMP tasks in their
computational phases. We therefore extend the analysis infrastructure to support
tasks, handle (potentially) multiple call stacks, and track the asynchroneous task
behavior. However, this initial tasking support will not include any task-specific
analyses.

• Basic support for create/wait threading models (e.g., POSIX threads). We intend
to implement some basic analyses that should work in many cases, however,
the current OpenMP-based replay analysis approach used by Scalasca’s trace
analyzer may impose some limitations.

• In multi-threaded programs, lock contention can be a serious performance
bottleneck. We are therefore investigating a more advanced analysis to identify
waiting time due to lock contention, supporting both fork/join threading models
(e.g., OpenMP) as well as create/wait threading models (e.g., POSIX threads).
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• Finally, we plan to integrate an updated, production-ready version of the delay
analysis research prototype developed for Scalasca v1 [2]. The delay analysis is
capable to identify the root causes of wait states that materialize at communi-
cation or synchronization operations (i.e., the delays/imbalances causing them),
and to quantify their overall costs.

4.2.3 Future Plans

In future releases, we plan to further improve the analysis capabilities of Scalasca’s
automatic trace analyzer in various ways:

• MPI-3 support. Currently, Scalasca’s trace analyzer focuses exclusively on
communication and synchronizition operations as defined by MPI-2.2. However,
once MPI-3 support has been added to the Score-P measurement system, the
trace analysis will be enhanced to also support MPI-3 features. In this context,
non-blocking and neighborhood collective operations are of particular interest.
While extending the existing trace analysis algorithms to handle non-blocking
collectives should be fairly straightforward, analyzing neighborhood collectives
requires enhanced wait-state detection algorithms which take the neighborhood
information into account. Another area of interest is the extension of the existing
Scalasca RMA analysis to support the new RMA functionality of MPI-3.

• Improved threading support. The support for create/wait thread models planned
for Scalasca v2.2 is very limited and needs to be improved in various ways. For
example, the timestamp correction algorithm implemented in the Scalasca trace
analyzer currently only supports fork/join threading models. Thus, correcting
the timestamps of an application trace using, for example, MPI and POSIX
threads in combination may lead to unexpected clock condition violations due
to corrections applied on the thread executing the MPI calls but not on the other
threads. In addition, the critical-path and delay analyses have to be extended
accordingly to support all threading models handled by the wait-state search
carried out by the automatic trace analyzer.

• Another topic of active research are analyses related to task-based programming
models. However, this is still preliminary work that needs thorough investigation.

4.3 Cube v4

Cube v4 and its predecessor Cube v3 both provide a graphical user interface to
visually examine profile and trace analysis reports, as well as a set of libraries and
tools to read, write, and manipulate such reports. Although, CUBE4 and CUBE3
reports have a very similar structure in the metric tree, call tree, and system tree,
a completely new format for storing the measured data was introduced. While
Cube v3 used a pure XML file format, Cube v4 uses a binary format to store the
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experiment data, whereas XML is only used to store metadata information. The
new format provides both greater scalability and flexibility. In addition, Cube v4
introduced the following new extensions:

• A Java reader library allows TAU to import data from CUBE4 files into
PerfExplorer [22] and opens the opportunity to use CUBE4 files on Android
in the future.

• A flexible remapping based on specification files enables the fine-grained control
of metrics and metric hierarchies that are created during remapping (e.g., for
POSIX threads, CUDA, etc.).

• Support for new platforms, e.g., Windows, K Computer, and Fujitsu FX10.

In addition, we want to highlight two features we believe will benefit many users
of Cube v4: derived metrics and the visualization of high-dimensional Cartesian
topologies.

4.3.1 Derived Metrics in Cube

Derived metrics are a very powerful and flexible tool allowing users to define and
calculate new metrics directly within Cube. While Cube’s predefined metrics are
stored in the analysis report, the values of derived metrics are calculated on-the-fly
when necessary according to user-defined arithmetic expressions formulated using
a domain-specific language called CubePL.9

A first version of CubePL was introduced with Cube v4.1, which had very limited
functionality and allowed only simple expressions for derived metrics. The latest
implementation of CubePL available in Cube v4.2.3 supports different kinds of
derived metrics which will be explained in the following example. This version
features an improved memory layout and added an extended set of predefined
variables. Finally, it also provides better support for string and numeric variables,
thereby allowing the user to define very sophisticated metrics.

The following simple example introduces the basic concept behind derived
metrics and explains why different kinds of derived metrics are needed. Let us
assume that an application with the following call tree was executed:

main
- foo
- bar

where main, foo and bar are function calls, with foo and bar being called from
main. Further, assume that the number of floating-point operations (FLOP) has been
measured for every call-path, as well as the respective execution time. Note that
it is important to distinguish between inclusive and exclusive values of metrics.
An inclusive metric value correponds to the execution of the function including all

9CubePL stands for Cube Processing Language.
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function calls inside it (e.g., the inclusive metric value of main is the value measured
for itself plus the values of foo and bar). An exclusive metric value only corresponds
to the execution of the function itself excluding the values of functions called from
it. In this example exclusive values are stored for every call-path.

To calculate the floating-point operations per second (FLOPS) as a derived metric
for every call path, the naïve approach would be to define a new metric FLOPS
and calculate its values for every call path using the formula FLOPc

timec
, where c is

either main, foo, or bar, and store the resulting values as a data metric within the
corresponding Cube profile.

With this approach, however, a problem arises when the user would like to get an
inclusive value of the metric FLOPS for the main call path. In this case, the Cube
library would sum up all values of the metric FLOPS for every region and therefore
deliver the result of the expression

FLOPmain

timemain
C FLOPfoo

timefoo
C FLOPbar

timebar

However, this expression is the sum of FLOPS of every region instead of the
intended FLOPS of main. So, the correct calculation is

FLOPmain C FLOPfoo C FLOPbar

timemain C timefoo C timebar

which gives the desired floating-point operations per second for main.
As can be seen, the calculation of the FLOP

time ratio should be performed as a last
step – after the aggregation of the corresponding metric values FLOP and time
is done. We call this a postderived metric. In contrast, the case where the derived
metric should be calculated before the aggregation of the involved metrics is called
a prederived metric.

The corresponding CubePL expression for the postderived FLOPS metric reads:

metric::flop()/metric::time()

As another slightly more complicated example of a postderived metric, consider
the CubePL expression for the average time per visit of a function:

metric::time(i)/metric::visits(e)

Here the inclusive value of the time metric has to be used to include the time spent
in child functions. However, for the visits metric, the exclusive value is necessary to
only account for the calls to the function itself.

Generally, we advise users to start with the examples shipped with Cube and use
those as a starting point to develop their own derived metrics.



Scalasca v2: Back to the Future 21

Fig. 2 Cube screenshot showing folding and slicing of multi-dimensional Cartesian topologies

4.3.2 Visualization of High-Dimensional Topologies in the Cube GUI

Many parallel applications define virtual topologies to express neighborhood
relationships between processes, e.g., based on the chosen domain decomposition.
Often, such virtual topologies are specified as multi-dimensional Cartesian grids.
Another type of topologies are physical topologies reflecting the structure of the
hardware the application run on. A typical three-dimensional physical topology
is given by the (hardware) nodes in the first dimension, and the arrangement
of cores/processors on nodes in further two dimensions. Further, some machines
exhibit specific network layouts, like the IBM Blue Gene/Q 5-D torus network.

Until version 3, Cube was only able to handle Cartesian topologies up to three
dimensions (where the folding of the Blue Gene tori into 3 dimensions was hard-
coded). This situation was significantly improved in Cube v4. The Cube display now
supports multi-dimensional Cartesian grids, where grids with higher dimensionality
can be sliced or folded down to two or three dimensions for presentation – where
the details of slicing and folding can be controlled by the user. An example of a
visualization of a four-dimensional topology10 is shown on Fig. 2.

4.3.3 Future Plans

Cube v4 is under continuous development, with two major feature additions coming
up in the near future:

10Note that the topology toolbar is only enabled when a topology is available to be displayed.
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• Plugin interface: We are in the process of designing an open plugin interface
for the Cube GUI, which will allow users to develop problem-specific analyses
based on CUBE4 data. We will provide various example plugins for users and
are planning to establish an open repository for third-party plugins.

• Another major milestone is the transition of the Cube GUI from a monolithic
architecture to a client/server architecture. Here, a client running on, e.g., the
user’s desktop machine can connect to a server started on the HPC system where
the experiments have been collected. This will remove the necessity to transfer
large Cube files between machines or to remotely execute the Cube GUI using
X11 forwarding, and should also lead to increased scalability.

5 Conclusion

Like any other actively used software framework, the Scalasca parallel performance
analysis toolset is constantly under development. Besides fixing bugs uncovered
by our rigorous testing or reported by users, we also develop new features –
often inspired by feedback from our active user community. In addition, the HPC
landscape is also constantly changing due to the introduction of new computer sys-
tems and components, which in turn require new versions of parallel programming
paradigms or sometimes even trigger the invention of new paradigms requiring
further changes, additions, and adaptations in all performance tools. To better cope
with this situation, the Scalasca v2 series is now based on the community-developed
performance measurement and runtime infrastructure Score-P.

This change required significant redesign and implementation efforts of the
Scalasca tool components as outlined in this paper. However, we believe that we
were successful in minimizing the user-visible changes to the absolute necessary.
After one year of deployment of the new Score-P based version of Scalasca, we
see already a much quicker adaption of the infrastructure to new architectures
and paradigms, with much more to come in the short term. Sharing development
efforts for the parallel program instrumentation and measurement components with
other tool developers also allowed us to provide better documentation as well as to
improve the development and testing processes, while at the same time freeing some
highly-needed resources for new and improved analysis features.
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