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Preface

Today advances in computer hardware are no more driven by increased operation
frequencies. They are driven by parallelism and specialised accelerating features—
whether by SIMD registers and compute units inside traditional CPU cores or by
additional accelerator cards. In the field of high-performance computing (HPC), up
to multiple thousands of these compute units can be combined to one big system via
sophisticated high-speed networks nowadays to solve large computational problems
within a reasonable time frame.

These advances steadily allow to solve more complex and even new problems.
But it comes with the cost of complexity of the hardware, which increases the
necessary programming effort to utilise the entire potential of these systems.
Application developers have to write codes which can cope with parallelism keeping
millions of processing elements running today. Therefore, extracting parallelism
and efficient load balancing are becoming more and more an issue. At the same
time the memory system holding computational data is also undergoing massive
changes: Up to four levels of coherent caches can be seen in today’s CPUs, while
accelerators often use directly programmable caches. The arising problems are
absolutely nontrivial to solve as program data structures may not fit for all CPUs
and accelerators. And in a heterogeneous system, this may become even more
complicated.

The European Technology Platform for High Performance Computing, an
industry-led forum, emphasises in its 2013 Strategic Research Agenda the impor-
tance of the programming environment—including tools for performance analysis,
debugging and automatic performance tuning—for the development of efficient,
massively parallel and energy-efficient applications. This shows how vital tools in
the field of HPC are not only for researchers in the academic field but also for more
and more industrial users.

While traditional parallel programming models for distributed and shared mem-
ory systems as well as accelerators exist and are already standardised—just men-
tioning the Message Passing Interface (MPI) and Open Multiprocessing (OpenMP)
API—they may not be easy to use for or even capable to exploit the potential
of today’s and upcoming HPC systems. So besides the traditional standards, new
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vi Preface

parallel programming models are developed—just mentioning dependency-driven
task-based programming models like OmpSs or new functional programming
approaches. These models may not only help programmers to ease the work of
writing parallel programs but also allow the development of tools which can support
them with the task of program parallelisation.

Since 2007 the International Parallel Tools Workshop provides once a year
the opportunity for the leading HPC tool developers worldwide to exchange their
experiences in optimisation techniques and development approaches. It covers the
state-of-the-art development of parallel programming tools, ranging from debugging
over performance analysis to fully and semi-automatic tuning tools as well as
best practices in integrated developing environments for parallel platforms. The
workshop is jointly organised by the High Performance Computing Center Stuttgart
(HLRS)1 and the Center for Information Services and High Performance Computing
of the University of Dresden (ZIH-TUD).2

This book comprises a continuation of a successful series of publications
that started with the first tools workshop in 2007. It contains contributed papers
presented at the 8th International Parallel Tools Workshop,3 held 1–2 October 2014
in Stuttgart, Germany. More than ten different tools covered different aspects of the
software optimisation process and global community developments.

So, the Scalasca tool developers reported on their effort to bring their tool to the
community instrumentation and measurement infrastructure Score-P—which was
introduced to reduce tool development and maintenance effort for different HPC
platforms itself. Allinea MAP was extended to support Hybrid MPI C OpenMP
codes without adding large overheads and also added new power-usage metrics in
the sense of green IT. Two tools introduced their approaches to help developers with
parallelising serial programs: While DiscoPoP uses a bottom-up approach starting
with compute units at the instruction level, Tareador uses an opposed approach
refining tasks from code blocks until it explores enough parallelism for the target
system.

Different tool developers reported on their progress in analysing large applica-
tions by aggregating and filtering important performance parameters and events.
New multidimensional data aggregation methods were shown and evaluated for
the trace analyser Ocelotl. A new approach using tracking analysis techniques
to study performance characteristics of applications was presented, and trace and
sampling data were combined to improve the detail level of performance data for
large parallel programs while not increasing runtime and performance data sets too
much at the same time. The effects of heterogeneous compute environments with
accelerators were analysed by critical-blame analysis on the basis of the Score-P
workflow, and program and runtime parameter tuning techniques were presented
using the Periscope Tuning Framework. And finally a new idea of multidomain

1http://www.hlrs.de
2http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/
3http://toolsworkshop.hlrs.de/2014/

http://www.hlrs.de
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/
http://toolsworkshop.hlrs.de/2014/
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performance analysis was introduced where performance data may be mapped not
only to hardware topology or features but also to actual simulation data.

We appreciate the interesting contributions and fruitful conversations during
the workshop from the speakers and all participants. Special thanks go to Steffen
Brinkmann and Mathias Nachtmann for their support organising the workshop.

Stuttgart, Germany Christoph Niethammer
January 2015 José Gracia

Andreas Knüpfer
Michael M. Resch

Wolfgang E. Nagel
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Scalasca v2: Back to the Future

Ilya Zhukov, Christian Feld, Markus Geimer, Michael Knobloch,
Bernd Mohr, and Pavel Saviankou

Abstract Scalasca is a well-established open-source toolset that supports the
performance optimization of parallel programs by measuring and analyzing their
runtime behavior. The analysis identifies potential performance bottlenecks –
in particular those concerning communication and synchronization – and offers
guidance in exploring their causes. The latest Scalasca v2 release series is based
on the community instrumentation and measurement infrastructure Score-P, which
is jointly developed by a consortium of partners from Germany and the US. This
significantly improves interoperability with other performance analysis tool suites
such as Vampir and TAU due to the usage of the two common data formats CUBE4
for profiles and the Open Trace Format 2 (OTF2) for event trace data. This paper will
showcase recent as well as ongoing enhancements, such as support for additional
platforms (K computer, Intel Xeon Phi) and programming models (POSIX threads,
MPI-3, OpenMP4), and features like the critical-path analysis. It also summarizes
the steps necessary for users to migrate from Scalasca v1 to Scalasca v2.

1 Motivation and Introduction

The Scalasca toolset [10, 23] is a portable, well-established software package which
supports the performance optimization of parallel applications by measuring and
analyzing their dynamic runtime behavior. It has been specifically designed for use
on large-scale systems including IBM Blue Gene and Cray X series, but is also well-
suited for small- and medium-scale HPC platforms. A distinctive feature of Scalasca
is its scalable automatic trace analysis, which identifies potential performance
bottlenecks – in particular those concerning communication and synchronization –
and offers guidance in exploring their causes. Scalasca is available under a 3-clause
BSD open-source license.

I. Zhukov • C. Feld • M. Geimer • M. Knobloch • B. Mohr (�) • P. Saviankou
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2 I. Zhukov et al.

Users of the Scalasca toolset can choose between two different analysis modes:
(i) performance overview on the call-path level via profiling and (ii) the analysis
of wait-state formation via event tracing. Wait states often occur in the wake of
load imbalance and are serious obstacles to achieving satisfactory performance
and scalability. The latest release at the time of writing (v2.1) also includes a
scalable critical-path analysis [3]. Analysis results are presented to the user in an
interactive explorer called Cube that allows the investigation of the performance
behavior on different levels of granularity along the dimensions metric, call path,
and process/thread. Selecting a metric displays the distribution of the corresponding
value across the call tree. Selecting a call path again shows the distribution of
the associated value over the machine or application topology. Expanding and
collapsing metric or call tree nodes allows to investigate the performance at varying
levels of detail.

Scalasca and Cube are both under active development. New features – in many
cases triggered by user requests – are developed, tested, and integrated into the
main development branch. In addition, bugs that emerge are fixed and performance
as well as scalability are constantly evaluated and improved. The latest Scalasca v2
release series is based on the community-driven instrumentation and measurement
infrastructure Score-P [15], which is jointly developed by a consortium of partners
from Germany and the US. This significantly improves interoperability with other
performance analysis tool suites such as Vampir [14] and TAU [25], enabled by the
usage of two new common data formats: CUBE4 for profiles and the Open Trace
Format 2 (OTF2) for event trace data.

Re-architecting Scalasca on top of Score-P marked an important milestone for
the Scalasca project. While the previous Scalasca v1 release series provided a rather
monolithic, mostly self-contained toolset which included all components required
to perform measurements and performance analyses of parallel applications in a
single package, the Score-P project followed a component-oriented philosophy from
the very beginning – with the intention to allow a more decoupled development of
the individual components and to share them among several tools. Therefore, the
changeover to Score-P naturally lend itself to also “componentize” the Scalasca
toolset.

From a user’s perspective, the most obvious difference between the Scalasca v1
series and Scalasca v2 is that one now has to install several packages instead of just
one. In terms of actual usage, however, we tried to keep the convenience commands
and their options as stable as possible, although a few changes were necessary to
adapt to new features and to provide new functionality. Nevertheless, we believe that
the benefits of the long-term commitment of the Score-P partners and the increased
tool interoperability overall far outweigh the additional (one-time) learning effort.

The remainder of this article is structured as follows: In Sect. 2, we briefly intro-
duce the community instrumentation and measurement system Score-P. Section 3
then describes the performance analysis toolset Scalasca, and outlines changes and
differences between the old (v1) and new (v2) generation of Scalasca in more detail.
Finally, Sect. 4 gives an overview of new features introduced in the latest versions
of Score-P, Scalasca, and Cube, as well as future plans for enhancements.
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2 Scalable Performance Measurement Infrastructure
for Parallel Codes (Score-P)

The community performance measurement and runtime infrastructure Score-P [15]
– Scalable Performance Measurement Infrastructure for Parallel Codes – is a highly
scalable and easy-to-use tool suite for profiling, event tracing, and online analysis
of HPC applications.

Until 2009, the performance tools landscape was fragmented and revealed
many redundancies – not so much in the analysis parts, but in program instru-
mentation, measurement data acquisition, and data formats. The analysis tools
Scalasca [10], Vampir [14, 27], TAU [25], and Periscope [1] all provided their
native instrumentation and measurement systems, data formats, and configuration
options. Although very similar in functionality, the effort to maintain a portable
and scalable measurement tool with associated data formats was redundantly
expended by every tool developer group. Moreover, on the user’s side, dealing
with different measurement tools that expose incompatible configurations, diverse
feature sets, and different options for equivalent features, created discomfort and
made interoperability between analysis tools difficult.

Therefore, a consortium of tool developer groups from Germany and the US
as well as other stakeholders in 2009 started the Score-P project to remedy this
situation. Score-P aims to provide a single, highly scalable, and easy-to-use tool
suite for profiling, event tracing, and online analysis of HPC applications written in
C/C++ and Fortran. Score-P comes along with scalable, space-efficient, and well-
defined data formats: CUBE4 for profiling and OTF2 [7] for tracing data. Based
on the experience with the existing tools, the interaction with their users, and the
programming paradigms most prevalent in HPC, the Score-P architecture as shown
in Fig. 1 was derived.

The workflow to obtain measurement data usually consists of instrumentation,
measurement configuration, and running the instrumented application. At instru-
mentation time, this typically means to recompile/relink the application using the
scorep compiler wrapper as a prefix to the actual compile/link commands. This
step inserts measurement probes into the application code that collect performance-
related data when triggered during measurement runs. Currently, the following
means of instrumentation are supported:

• Compiler-based instrumentation (entry/exit of functions)
• MPI/SHMEM library interposition
• OpenMP source-code instrumentation using OPARI2
• POSIX thread instrumentation using library wrapping
• CUDA event interception using the CUPTI library
• Source-code instrumentation via the TAU instrumentor [9]
• User instrumentation using convenient macros
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Application

Vampir Scalasca PeriscopeTAU

Accelerator-based 
parallelism

(CUDA)

Score-P measurement infrastructure

Event traces (OTF2)

User instrumentation

Call-path profiles 
(CUBE4, TAU)

Online 
interfaceHardware counter (PAPI, rusage)

Process-level 
parallelism

(MPI, SHMEM)

Thread-level 
parallelism

(OpenMP, Pthreads)

Instrumentation wrapper

Source code 
instrumentation

CUBE TAUdb

Fig. 1 Score-P architecture overview. Instrumentation wrappers capture important events during
application execution and pass them to the Score-P measurement core. Here, this data is optionally
combined with hardware counter information, and detailed event traces or call-path profiles are
generated, which can be handled by various analysis tools. In addition, an online interface allows
tools to access profiling data already during measurement

The instrumentation probes are placed at performance-relevant regions in the code,
e.g., function entry and exit, thread-management functions, and communication
routines. Once triggered, the probes obtain relevant performance data and pass them
to the Score-P measurement core where they are augmented with timestamps and,
optionally, additional metrics from hardware and OS counter sources. This enhanced
event data is then processed by so-called substrates, currently either profiling and/or
tracing. Substrates collect and process the measurement events thread-locally and
write the results efficiently to file. The profiling substrate writes either CUBE4 or
TAU profiles, while the tracing substrate outputs its data in the space-efficient OTF2
format.

Measurements can be conveniently configured using environment variables. That
is, once instrumented, the application can be run in different measurement con-
figurations without recompilation. Depending on the settings of the configuration
variables, users can

• Switch between profiling and tracing,
• Apply event filters to control overhead,
• Collect additional metrics (e.g., hardware counters),
• Adapt measurement internals (e.g., size of memory buffers),
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• Specify output parameters,
• And much more.1

After its first public release end of 2011, the Score-P infrastructure has become
the default instrumentation and measurement system for Scalasca v2, Vampir, and
Periscope, and is also supported by the TAU performance system as a configuration
option. It is actively maintained and constantly enhanced with new features by the
contributing partners, managed by a meritocratic governance model.

3 Scalasca v2

As already mentioned in the introduction, the changeover to the Score-P instru-
mentation and measurement system as the new foundation of the Scalasca toolset
marked an important milestone for the Scalasca project. While the previous
Scalasca v1 release series provided all components required to perform measure-
ments and performance analyses of parallel applications in a single distribution
package, the Score-P project follows a rather different philosophy. Here, smaller
components are developed and released in a more decoupled fashion – with the
intention to share them among several tools. Therefore, switching to Score-P
naturally lend itself to also “componentize” the Scalasca toolset, eliminate some
legacy components, and substitute a number of previously internal components by
now external components from the Score-P universe:

• The custom instrumentation and measurement system of Scalasca v1 (EPIK) was
replaced by Score-P.

• The libraries to read/write Scalasca’s original custom trace file format (EPILOG)
were substituted by OTF2.2

• The graphical report explorer Cube v3 as well as associated read/write libraries
and command-line tools were split off as a separate component, significantly
improved, and subsequently released in the Cube v4 package.

• The legacy serial trace analyzer from Scalasca’s predecessor project KOJAK as
well as the non-scalable trace converters from the EPILOG to the Jumpshot and
Paraver trace formats were removed.

These substantial changes, however, posed a number of challenges for both the
Scalasca developers and the Scalasca user community.

1The command scorep-info config-vars provides an exhaustive list of options available
for a particular installation.
2A stripped-down EPILOG reader library is still included in Scalasca v2 to provide backwards
compatibility support for existing trace files, except for traces stored in SIONlib [8] containers
which are not supported.
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From a developer’s point of view, adjusting the code base of the remaining
core components of Scalasca (i.e., its scalable trace-based analysis tools) required
a significant development effort. On the one hand, code sections dealing with file
I/O had to be reworked, since the APIs of the Cube v4 and OTF2 libraries differ
significantly from their previous counterparts. Moreover, both Cube and OTF2 are
under continuous development and now provided as external components, thus
creating a need to identify – and potentially deal with – different versions of these
libraries. On the other hand, OTF2 also introduced many small differences in the
trace definition and event data compared to the previous EPILOG format, which
required a careful inspection and adaption of Scalasca’s trace analysis algorithms.

From a user’s perspective, the most obvious difference between the Scalasca v1
series and Scalasca v2 is that now several packages have to be installed instead
of just one. In terms of actual usage, however, we tried to keep the convenience
commands (scalasca and its shortcuts skin, scan, and square) and their
command-line options as stable as possible. Nevertheless, some changes were
necessary, which will be described in more detail below. All in all, however, we
believe that the benefits of the improved functionality, the long-term commitment
of the Score-P partners, and the increased tool interoperability far outweigh the
additional installation and (one-time) learning effort.

3.1 General Comparison of Scalasca v1 and Scalasca v2

As mentioned above, basically all components of Scalasca v2 had to be adjusted
and/or refactored to integrate with the Score-P instrumentation and measurement
system. In the following, however, we focus on the user-visible differences. That
is, we compare the usage of the two generations of the Scalasca toolset to help
existing users with transitioning from the old to the new version more easily. An
initial comparison of their performance and scalability can be found in [28].

Table 1 summarizes the differences between Scalasca v1 and Scalasca v2 from a
high-level perspective. While at first glance the table suggests that there are – except
for the license – no commonalities between the two generations of Scalasca, the
detailed comparisons in the following subsections will show that the differences are
often, especially with respect to the Scalasca convenience commands, only marginal
and in most cases motivated by improved functionality provided by Score-P.

Obviously, some usability changes can barely be avoided when replacing a core
component such as the instrumentation and measurement infrastructure by a unified
solution that emerged from existing measurement systems of multiple tool suites.
For example, Score-P’s instrumenter command uses different command-line options
than the instrumenter provided by Scalasca’s former measurement system EPIK.
Moreover, their manual instrumentation APIs are incompatible, though the API
supported by Score-P is much more feature rich. In addition, the names (and often
also the valid values) of the environment variables used to configure measurements
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Table 1 High-level comparison of Scalasca v1 and Scalasca v2

Scalasca v1 Scalasca v2

Instrumentation system EPIK Score-P

Command line switches Different

Manual instrumentation API Different

Environment variables Different

Filter file syntax Different

Memory buffers separate for each thread memory pool on each process

Experiment directory name epik_### scorep_###

Profile format CUBE3 CUBE4

Trace format EPILOG OTF2

Scalable trace I/O Supports SIONlib Partially supports SIONlib

License 3-clause BSD

have changed. Therefore, it is inevitable that existing users of Scalasca transitioning
to the new version have to familiarize themselves with these modifications.

Another notable change concerns the syntax of filter files, which are commonly
used to control the measurement overhead by excluding source-code regions
from being measured. While Scalasca v1 only supported a simple plain text file
listing function names (optionally using wildcards) that should be ignored during
measurement, Score-P provides the ability to filter based on function names as
well as file names, also supporting wildcards. In addition, both blacklisting and
whitelisting of functions/files are now supported. This, however, necessitated the
introduction of an incompatible, more powerful syntax for filter files.

Finally, handling of memory buffers internal to the measurement system has
changed. Scalasca v1 provided two environment variables to control its memory
usage: one to define the size of a per-process buffer for definition data and another
to set the size of a per-thread trace data buffer, the latter only if tracing mode
is configured. By contrast, Score-P uses a memory pool on each process, whose
total size can be controlled using a single variable. This approach is typically more
memory efficient and in general easier to use.

Other differences such as the experiment directory prefix and the different profile
and trace file formats used by the two generations of Scalasca, although apparent,
usually do not affect the user directly. One notable exception are the different
levels of support for writing trace data in SIONlib [8] containers. At the time of
writing, the current Score-P release (v1.3) only supports SIONlib containers for
OTF2 traces from pure MPI applications, while the former EPIK measurement
system also included support for hybrid MPI+OpenMP codes. This currently limits
the scalability of tracing in Score-P for such applications. However, extending OTF2
and Score-P to support SIONlib for all supported programming models (and their
combination) is already work in progress.
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3.2 Changes in the Scalasca Convenience Commands

Although there are many differences between Scalasca v1 and Scalasca v2, we
tried to preserve the overall usage workflow and the set of associated convenience
commands. Therefore, users already familiar with Scalasca v1 should be able to
continue using these commands to accomplish the most common tasks.

Most of Scalasca’s functionality can be easily accessed through the scalasca
command, which provides action options that in turn invoke the corresponding
underlying commands: scorep for instrumentation, scan for measurement exe-
cution control, and square for analysis report postprocessing and examination.
These actions are:

• scorep
is used to instrument the application during compilation/linking. The former

scalasca -instrument (or short skin) command is now deprecated and
only provided to assist in converting existing measurement configurations to
Score-P. Hence, it tries to map the command-line options of the Scalasca v1
instrumenter onto corresponding options of the scorep command as far as this
is possible, and prints the new command to standard output. However, to take
full advantage of Score-P’s functionality, it is recommended to use the scorep
instrumenter command directly.

• scalasca -analyze (or short scan)
is used to control the Score-P measurement environment during the execution

of the target application, and to automatically initiate Scalasca’s trace analysis
after measurement completion in case tracing was requested.

• scalasca -examine (or short square)
is used to postprocess the analysis report generated by a Score-P profiling

measurement and/or Scalasca’s automatic post-mortem trace analysis, and to
start the analysis report examination browser Cube.

Each of these commands is discussed in further detail below.

3.2.1 Scalasca Application Instrumenter

In order to perform measurements with Scalasca, the application’s source code
has to be prepared, a process called instrumentation. That is, special calls have
to be inserted into the code which trigger measurements at performance-relevant
points during application runtime. The Score-P measurement system can do this
instrumentation in various ways; the most important ones are listed below.

Compiler instrumentation inserts specific instrumentation probes at the enter
and exit of functions. This method is supported by most modern compilers and
can usually be enabled by a particular compiler flag. It is the most convenient
way to instrument an application but may result in high overhead and/or disruptive
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measurements. Both of these issues can be addressed by manual instrumentation
and/or measurement filtering (see Sect. 3.2.2).3

If compiler instrumentation is not possible or it incurs too much overhead, one
can use manual instrumentation. Here, the user manually inserts function calls into
the application’s source code, using the provided manual instrumentation API. Note
that the Score-P API differs from the previous EPIK API. Besides changing the
common prefix of the API calls from EPIK to SCOREP, the calls themselves have
been renamed to be more expressive and now also take different parameter lists.
This, however, allowed to make the API more flexible and powerful, for example, to
support phase and dynamic region profiling. For more detailed information on the
new possibilities, please consult the Score-P user manual [24].

Compiler-based and manual instrumentation can also be used in combination,
thereby allowing to mark specific regions other than function entry and exit and thus
augmenting the measurement output with additional information. While manual
instrumentation is very flexible, it is more time-consuming and requires extra
implementation efforts.

If Score-P has been configured with support for the Program Database Toolkit
(PDToolkit) [9], automatic source-code instrumentation can be used as an alter-
native to compiler instrumentation. In this case, the source code of the target
application is pre-processed before compilation and appropriate calls to the manual
instrumentation API are inserted automatically. PDT instrumentation allows for
instrumentation-time filtering, thus potentially reducing overhead.

In the rare case that neither automatic compiler instrumentation nor automatic
source-code instrumentation via PDToolkit are supported, the user can apply semi-
automatic instrumentation. Here, instrumentation can be accomplished by means
of the Open Pragma And Region Instrumenter (OPARI2) [20], a source-to-source
instrumenter that was originally developed to detect and instrument OpenMP [21]
directives. OPARI2 scans the source code for OpenMP directives, inserting specific
instrumentation probes according to the POMP2 interface [18]. The same procedure
can be used to instrument user regions defined via pragmas or to instrument
directive-based non-OpenMP paradigms [13]. The advantage of this method is that
the pragma-based instrumentation directives will be ignored by the compiler during
“normal” compilation.

Table 2 shows a comparison between the most relevant options that can be
passed to the old and the new instrumentation commands. As can be seen, the
command-line options supported by the scorep command are very similar to
those used by scalasca -instrument or skin, respectively. However, the
Score-P instrumenter command provides many additional options not listed in the
table, making it more flexible and feature rich than its predecessor.4

3Some compilers, e.g., Intel, provide command-line options to control instrumentation-time
filtering, however the functionality provided is typically limited and very compiler (and compiler
version) specific.
4The command scorep --help provides an exhaustive list of instrumentation options.
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Table 2 Comparison between the skin (scalasca -instrument) and scorep commands

Scalasca v1 Scalasca v2
Command Option Command Option Description

skin -v scorep -v Enable verbose mode

--verbose=<value>

-comp=all --compiler Turn on compiler
instrumentation (default)

-comp=none --nocompiler Turn off compiler
instrumentation

-user --user Turn on user
instrumentation

-pdt --pdt Process source files with
PDT instrumenter

-pomp --pomp Process source files for
POMP directives

--dry-run Display executed
commands. No execution

--keep-files Do not delete temporarily
created files

3.2.2 Scalasca Measurement Collection and Analysis Nexus

The Scalasca measurement and analysis nexus (scalasca -analyze or short
scan) configures and manages the collection of performance experiments of an
application instrumented by Score-P. By setting different measurement and analysis
configurations, users can perform various experiments using a single instrumented
executable without re-instrumentation. Typically, a single performance experiment
is collected in an unique archive directory that contains not only measurement and
analysis reports but also a measurement log file and configuration data. Score-P
uses a directory name prefix of scorep_ for this directory, while Scalasca’s EPIK
measurement system used epik_.

Users can choose between generating a summary analysis report (profile) with
aggregate performance metrics for each function call path and/or generating per-
thread event traces recording time-ordered runtime events which are automatically
fed to Scalasca’s trace analyzer to identify potential communication and perfor-
mance bottlenecks. Alternatively, traces can be used for timeline visualization using,
for example, the Vampir trace browser.

Summarization is particularly useful to get a first insight into the performance
behavior of the inspected application as well as to optimize the measurement
configuration for subsequent trace generation. If hardware counter metrics were
requested, these are also included in the summary report. By contrast, tracing
provides detailed insights into the dynamic application behavior.

Measurement overhead can be prohibitive for small, frequently-called routines.
Therefore both Scalasca v1 and Score-P provide measurement filtering capabilities.
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To enable filtering, the user has to prepare a filter file. Scalasca v1 supports a
plain text file containing the names of functions to be excluded from measurement,
whereas Score-P can filter based on region name and source file names. While the
use of wildcards is allowed by both file formats, only Score-P supports white- and
blacklisting – also in combination. The enhanced filtering mechanism in Score-P
requires a more powerful filtering syntax which will be explained in the following
paragraph.

Score-P’s filter file can contain the following two sections:

• A section with rules for region names. This section must be enclosed by
the keywords SCOREP_REGION_NAMES_BEGIN and SCOREP_REGION
_NAMES_END.

• A section with rules for filtering all regions defined in specific source files. This
section must be enclosed by the keywordsSCOREP_FILE_NAMES_BEGIN and
SCOREP_FILE_NAMES_END.

Within these sections, the user can specify an arbitrary number of include and
exclude rules which are processed in sequential order. An exclude rule starts with
the keyword EXCLUDE whereas include rules start with INCLUDE, both followed
by one or several white-space separated file or region names. Bash-like wildcards
can be used in file or/and region names.

By default, all files and regions are included. After all rules of the filter file have
been evaluated, files and regions that were marked as excluded are filtered, i.e.,
excluded from measurement.

Besides the two filter sections, users may also use comments in the filter file.
Comments start with the ‘#’ character and are effective throughout the entire rest of
the line. If a region name or source file name contains the comment character ‘#’,
the user must escape it with a backslash.

Let us consider the following filter file:

#Exclude all regions except bar and foo
SCOREP_REGION_NAMES_BEGIN

EXCLUDE *
INCLUDE foo bar

SCOREP_REGION_NAMES_END
#Exclude all files except *.c
SCOREP_FILE_NAMES_BEGIN

EXCLUDE *
INCLUDE *.c

SCOREP_FILE_NAMES_END

According to this filter file only foo and bar region names in *.c source files
will be recorded by the measurement system.

To collect measurements for profiling or/and tracing, additional memory for
internal data structures as well as for the trace data is required. Even more memory
is needed if hardware counter measurements are requested. This additional memory
in Scalasca v1 and Score-P constitutes the memory buffer. Although memory
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buffers are used in both measurement systems, their handling changed notably.
Scalasca v1 uses separate pre-allocated memory buffers for each thread whereas
Score-P uses a pre-allocated memory pool consisting of a set of chunks on each
process. Score-P’s memory pool dynamically distributes memory chunks to threads
that demand memory to store event data.5 This approach manages memory in a more
flexible but still efficient way and thus minimizes overhead due to run-time memory
allocations.

If tracing is enabled, each thread will generate a trace file containing chrono-
logically ordered local events. However, for applications running at scale the
one file per thread approach might impose a serious I/O bottleneck. To address
this issue Score-P can leverage the SIONlib I/O library. SIONlib improves file
handling by transparently mapping logical thread-local files into a smaller number
of physical files.

Once a measurement run terminates, the Scalasca trace analysis is automatically
initiated to quantify wait states that cannot be determined with runtime summariza-
tion. The report generated by the trace analysis is similar to the summary report but
includes additional communication and synchronization inefficiency metrics.

Table 3 shows a comparison of the most relevant options and environment
variables6 that can be passed to the two different versions of the scalasca
-analyze or scan command that controls measurement collection and analysis.
As can be seen, the command-line options remained unchanged. By contrast, the
names of all environment variables have been changed in Score-P. Score-P provides
more self-explanatory variable names prefixed with SCOREP_ rather than with
EPIK_. We believe that these names can be more easily memorized by users than
their previous counterparts.

3.2.3 Scalasca Analysis Report Explorer

Once measurement and analysis are completed, analysis reports are produced
in either CUBE3 (Scalasca v1) or CUBE4 (Scalasca v2) format, which can be
interactively explored with the Cube GUI and processed by various Cube command-
line utilities. Although the CUBE format has been changed considerably with
the new generation of Scalasca, the Cube GUI and utilities provide the same
functionality as in the previous version.

In the usual workflow, the scalasca -examine (or short square) conve-
nience command will post-process intermediate analysis reports produced by the
measurement and analysis to further derive additional metrics and construct a hier-
archy of measured and derived metrics. The Cube browser will then present the final

5The size of the chunk, a so-called page, is configurable using the SCOREP_PAGE_SIZE envi-
ronment variable. The other memory-related configuration variable isSCOREP_TOTAL_MEMORY,
denoting the total amount of memory reserved by each process.
6For Score-P, the command scorep-info config-vars provides the list of all environment
variables (and their default values) that are available for the current installation.
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Table 3 Comparison of the scalasca -analyze (scan) command-line options and the most
important, associated environment variables

Command Environment variable [default value]
switch Scalasca v1 Scalasca v2 Description

-s EPK_SUMMARY [1] SCOREP_ENABLE_
PROFILING [1]

Enable runtime
summarization

-t EPK_TRACING [0] SCOREP_ENABLE_
TRACING [0]

Enable trace collection
and analysis

-e
<dir_name>

EPK_TITLE SCOREP_EXPERIMENT_
DIRECTORY

Experiment archive to
generate and/or analyze

-f <fil-
ter_file>

EPK_FILTER SCOREP_FILTERING_
FILE

File specifying
measurement filter

ESD_BUFFER_SIZE
[100000],
ELG_BUFFER_SIZE
[10000000]

SCOREP_TOTAL_
MEMORY [16384000]

Total memory in bytes
for the measurement
system

EPK_METRICSa SCOREP_METRIC_
PAPIb

List of counter metrics

ELG_SION_FILES [0] SCOREP_TRACING_
MAX_PROCS_PER_
SION_FILE [1024]

Maximum number of
processes that share one
sion file

a metrics provided as a colon-separated list
b by default metrics provided as a comma-separated list (separator can be configured with
SCOREP_METRIC_PAPI_SEP environment variable)

report. The command-line options supported by scalasca -examine/square
did not change during the transition from Scalasca v1 to Scalasca v2. Therefore
users can continue to work with already familiar commands and command-line
options during this stage of the workflow.

4 New Features and Future Plans

Score-P, Scalasca and Cube are under active development. New features, also
on user request, are developed, tested, and integrated into the main development
branch. Bugs that emerge are fixed and performance is constantly evaluated and
improved. In this section, we highlight recently added features and improvements,
and outline our plans for future work.

4.1 Score-P

In collaboration with our Score-P development partners

• Technische Universität Dresden,
• Technische Universität München,
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• RWTH Aachen University,
• German Research School for Simulation Sciences (Aachen), and
• University of Oregon

we provide a small number of feature releases each year. Each feature release is
usually followed by one or more bugfix releases. We do not follow a fixed release
schedule but ship a new version if one or more user-relevant features become
available.

4.1.1 Score-P v1.3

The last feature release was Score-P v1.3, released August 2014. Significant new
features in Score-P v1.3 include:

• Basic support for the K Computer and Fujitsu FX10 systems. Fujitsu systems are
cross-compile systems using rarely encountered Fujitsu compilers. The porting
effort was significant, but as Score-P is a joint infrastructure, it had to be done
just once.7

• Support for instrumenting programs which use Symmetric Hierarchical Memory
access (SHMEM) library calls for one-sided communication. SHMEM imple-
mentations from Cray, Open MPI, OpenSHMEM, and SGI are supported.

• Basic support for POSIX threads instrumentation. At the moment Score-P is
capable of tracking creation and joining of POSIX threads as well as important
synchronization routines.8

• Support for CUDA [19] versions 5.5 and 6.0.
• Improved event size estimation in scorep-score to adapt memory require-

ments for subsequent trace experiments.

7The Tofu network topology will be supported in a subsequent release.
8Currently supported POSIX threads routines are pthread_create, pthread_join,
pthread_mutex_init, pthread_mutex_destroy, pthread_mutex_lock,
pthread_mutex_trylock, pthread_mutex_unlock, pthread_cond_init,
pthread_cond_destroy, pthread_cond_signal, pthread_cond_broadcast,
pthread_cond_wait, and pthread_cond_timedwait. The following thread
management functions are currently not supported and will abort the program: pthread_exit
and pthread_cancel. The usage of pthread_detach will cause the program to fail if
the detached thread is still running after the end of the main routine. These limitations will be
addressed in an upcoming version of Score-P. Note that currently every thread creation needs to
be instrumented.
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4.1.2 Upcoming Score-P v1.4

Score-P v1.4, likely to be released by the end of 2014, might include some of the
features we and our project partners are currently working on. The prominent user-
visible ones are:

• Basic OpenCL [26] support by intercepting OpenCL library routines using
library wrapping.

• Intel Xeon Phi support for native and symmetric mode.
• GCC plugin as an alternative to the default compiler instrumentation, allowing

for instrumentation-time filtering.

The next release will also include improved POSIX threads support, internal
refactorings, and bugfixes.

4.1.3 Future Plans

There are a number of features we are working on that eventually will appear in a
future release. Some of them are listed below:

• Experimental support for sampling as an alternative to instrumentation-based
measurement, potentially combined with library wrapping and interposition, will
give opportunity to collect measurements with lower overhead than with full
instrumentation [12].

• Basic OpenACC [5] instrumentation using the OpenACC tools interface.
• A refactored OPARI2 allows to easily add source-to-source instrumentation

directives, i.e., C/C++ pragmas and Fortran special comments, beyond the
already supported OpenMP ones.

• Hardware and application-specific Cartesian topologies that were already sup-
ported by Scalasca v1 will be ported to Score-P and Scalasca v2.

• MPI-3 [17] support. MPI-3.0 is a major update to MPI adding over 100 new
functions and extensions to collective and one-sided communication, which we
expect to be used by scientific applications in the near future. We plan to add
support for MPI-3 features in multiple steps.

In the current release, MPI-3 functions are silently ignored by the mea-
surement system, so first we will provide basic wrappers for all new MPI-3
functions. The next step is adding support for the newly introduced non-blocking
collectives and neighborhood collectives. Non-blocking collectives are similar to
non-blocking point-to-point routines, i.e., they have the same semantics as their
blocking counterparts but can be used to overlap computation and communica-
tion. Neighborhood collectives on the other hand introduce a new semantic to
collective operations, as only neighbors in a defined (Cartesian or distributed
graph) topology communicate with each other. We will initially concentrate
on Cartesian topologies and tackle graph topologies later. Concurrently, we are
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working on support for the new RMA features to analyze applications using one-
sided communication. In all cases profiling support will be implemented first.
Tracing support for these new features may require new OTF2 event records and
adaptations in Scalasca (for analysis) and Vampir (for visualization).

MPI-3 also offers new Fortran 2008 bindings, which will probably be
used once Fortran 2008 features are exploited by more scientific applications.
Currently, all MPI wrappers are implemented in C with Fortran-to-C conversion
to support the Fortran bindings in MPI-2. We will need to implement new native
Fortran wrappers to support the Fortran 2008 bindings in MPI-3.

Finally, we plan to support the MPI Tools interface (MPI_T). MPI_T exposes
performance (and control) variables internal to the MPI library to external tools
to help the advanced user in fine-tuning the MPI usage in their application
(or control the MPI library accordingly). Score-P will primarily focus on
performance variables, though also control variables might be exploited by tools
like Periscope.

• New programming models or extensions of existing ones:

– Support of relevant OpenMP 4.0 [21] features, e.g., target and cancellation
directives, as well as support for the OpenMP Tools Application Programming
Interface for Performance Analysis (OMPT) [6].

– Support for OmpSs [4], an extension to OpenMP to support asynchronous
parallelism with data dependencies.

– Support for Qt, ACE, and TBB threading models using Intel’s dynamic binary
instrumentation tool Pin [16].

– Enhanced tasking support, in particular for MTAPI [11], using Pin as well as
library wrapping.

• Basic support for the Windows platform, however, not targeting distributed-
memory applications. The preferred instrumentation method will be Pin.

• New substrates – substrates are the event consumers – besides profiling and
tracing. We work on a generic substrate layer that allows arbitrary processing of
event data. One could think of online tuning of runtime parameters or streaming
event data to reduce memory demands.

• Improved support for threading. As of Score-P v1.3, the user can either analyze
programs using OpenMP or POSIX threads. Additionally all thread creations
need to be instrumented. This is particularly challenging if the thread creation
takes place in a shared library. A future version of Score-P will allow the
combination of OpenMP and POSIX threading. Additionally, events from unin-
strumented threads will be handled gracefully.

4.2 Scalasca v2

The first version of the Scalasca v2 series based on Score-P v1.2, OTF2 v1.2, and
CUBE v4.2 was released in August 2013. Besides a new build system based on
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GNU autotools, a significant amount of code refactoring, and support for the new
data formats, this release included only minor functional changes and fixes for a
number of bugs uncovered during the refactoring process. This initial release then
served as a basis for all subsequent developments.

4.2.1 Scalasca v2.1

Scalasca v2.1, the first feature release based on the new infrastructure, was released
in August 2014 and included the following new features:

• Support for the K Computer and Fujitsu FX10 systems, to bring Scalasca’s
platform support in line with Score-P v1.3.

• Improved detection of Late Receiver pattern instances. Previously, Late Receiver
instances in non-blocking point-to-point MPI communication could only be
detected in operations finalizing a single request (e.g., MPI_Wait). The
enhanced detection algorithm now also supports multi-request finalization calls,
such as MPI_Waitall.

• Critical-path analysis [3] for MPI- and/or OpenMP-based applications. The
critical-path analysis determines the call-path profile of the application’s critical
path, highlighting the call paths for which optimization will prove worthwhile
and thus guiding optimization efforts more precisely.

4.2.2 Scalasca v2.2

The upcoming Scalasca v2.2 release, planned for early 2015, is likely to include a
number of additional features which will be briefly described below.

• Intel Xeon Phi support for native and symmetric mode.
• Basic OpenMP task support. So far, Scalasca’s automatic trace analyzer has been

unable to handle traces including events related to OpenMP tasking, thus not
even allowing an MPI-only analysis for applications using OpenMP tasks in their
computational phases. We therefore extend the analysis infrastructure to support
tasks, handle (potentially) multiple call stacks, and track the asynchroneous task
behavior. However, this initial tasking support will not include any task-specific
analyses.

• Basic support for create/wait threading models (e.g., POSIX threads). We intend
to implement some basic analyses that should work in many cases, however,
the current OpenMP-based replay analysis approach used by Scalasca’s trace
analyzer may impose some limitations.

• In multi-threaded programs, lock contention can be a serious performance
bottleneck. We are therefore investigating a more advanced analysis to identify
waiting time due to lock contention, supporting both fork/join threading models
(e.g., OpenMP) as well as create/wait threading models (e.g., POSIX threads).
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• Finally, we plan to integrate an updated, production-ready version of the delay
analysis research prototype developed for Scalasca v1 [2]. The delay analysis is
capable to identify the root causes of wait states that materialize at communi-
cation or synchronization operations (i.e., the delays/imbalances causing them),
and to quantify their overall costs.

4.2.3 Future Plans

In future releases, we plan to further improve the analysis capabilities of Scalasca’s
automatic trace analyzer in various ways:

• MPI-3 support. Currently, Scalasca’s trace analyzer focuses exclusively on
communication and synchronizition operations as defined by MPI-2.2. However,
once MPI-3 support has been added to the Score-P measurement system, the
trace analysis will be enhanced to also support MPI-3 features. In this context,
non-blocking and neighborhood collective operations are of particular interest.
While extending the existing trace analysis algorithms to handle non-blocking
collectives should be fairly straightforward, analyzing neighborhood collectives
requires enhanced wait-state detection algorithms which take the neighborhood
information into account. Another area of interest is the extension of the existing
Scalasca RMA analysis to support the new RMA functionality of MPI-3.

• Improved threading support. The support for create/wait thread models planned
for Scalasca v2.2 is very limited and needs to be improved in various ways. For
example, the timestamp correction algorithm implemented in the Scalasca trace
analyzer currently only supports fork/join threading models. Thus, correcting
the timestamps of an application trace using, for example, MPI and POSIX
threads in combination may lead to unexpected clock condition violations due
to corrections applied on the thread executing the MPI calls but not on the other
threads. In addition, the critical-path and delay analyses have to be extended
accordingly to support all threading models handled by the wait-state search
carried out by the automatic trace analyzer.

• Another topic of active research are analyses related to task-based programming
models. However, this is still preliminary work that needs thorough investigation.

4.3 Cube v4

Cube v4 and its predecessor Cube v3 both provide a graphical user interface to
visually examine profile and trace analysis reports, as well as a set of libraries and
tools to read, write, and manipulate such reports. Although, CUBE4 and CUBE3
reports have a very similar structure in the metric tree, call tree, and system tree,
a completely new format for storing the measured data was introduced. While
Cube v3 used a pure XML file format, Cube v4 uses a binary format to store the
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experiment data, whereas XML is only used to store metadata information. The
new format provides both greater scalability and flexibility. In addition, Cube v4
introduced the following new extensions:

• A Java reader library allows TAU to import data from CUBE4 files into
PerfExplorer [22] and opens the opportunity to use CUBE4 files on Android
in the future.

• A flexible remapping based on specification files enables the fine-grained control
of metrics and metric hierarchies that are created during remapping (e.g., for
POSIX threads, CUDA, etc.).

• Support for new platforms, e.g., Windows, K Computer, and Fujitsu FX10.

In addition, we want to highlight two features we believe will benefit many users
of Cube v4: derived metrics and the visualization of high-dimensional Cartesian
topologies.

4.3.1 Derived Metrics in Cube

Derived metrics are a very powerful and flexible tool allowing users to define and
calculate new metrics directly within Cube. While Cube’s predefined metrics are
stored in the analysis report, the values of derived metrics are calculated on-the-fly
when necessary according to user-defined arithmetic expressions formulated using
a domain-specific language called CubePL.9

A first version of CubePL was introduced with Cube v4.1, which had very limited
functionality and allowed only simple expressions for derived metrics. The latest
implementation of CubePL available in Cube v4.2.3 supports different kinds of
derived metrics which will be explained in the following example. This version
features an improved memory layout and added an extended set of predefined
variables. Finally, it also provides better support for string and numeric variables,
thereby allowing the user to define very sophisticated metrics.

The following simple example introduces the basic concept behind derived
metrics and explains why different kinds of derived metrics are needed. Let us
assume that an application with the following call tree was executed:

main
- foo
- bar

where main, foo and bar are function calls, with foo and bar being called from
main. Further, assume that the number of floating-point operations (FLOP) has been
measured for every call-path, as well as the respective execution time. Note that
it is important to distinguish between inclusive and exclusive values of metrics.
An inclusive metric value correponds to the execution of the function including all

9CubePL stands for Cube Processing Language.
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function calls inside it (e.g., the inclusive metric value of main is the value measured
for itself plus the values of foo and bar). An exclusive metric value only corresponds
to the execution of the function itself excluding the values of functions called from
it. In this example exclusive values are stored for every call-path.

To calculate the floating-point operations per second (FLOPS) as a derived metric
for every call path, the naïve approach would be to define a new metric FLOPS
and calculate its values for every call path using the formula FLOPc

timec
, where c is

either main, foo, or bar, and store the resulting values as a data metric within the
corresponding Cube profile.

With this approach, however, a problem arises when the user would like to get an
inclusive value of the metric FLOPS for the main call path. In this case, the Cube
library would sum up all values of the metric FLOPS for every region and therefore
deliver the result of the expression

FLOPmain

timemain
C FLOPfoo

timefoo
C FLOPbar

timebar

However, this expression is the sum of FLOPS of every region instead of the
intended FLOPS of main. So, the correct calculation is

FLOPmain C FLOPfoo C FLOPbar

timemain C timefoo C timebar

which gives the desired floating-point operations per second for main.
As can be seen, the calculation of the FLOP

time ratio should be performed as a last
step – after the aggregation of the corresponding metric values FLOP and time
is done. We call this a postderived metric. In contrast, the case where the derived
metric should be calculated before the aggregation of the involved metrics is called
a prederived metric.

The corresponding CubePL expression for the postderived FLOPS metric reads:

metric::flop()/metric::time()

As another slightly more complicated example of a postderived metric, consider
the CubePL expression for the average time per visit of a function:

metric::time(i)/metric::visits(e)

Here the inclusive value of the time metric has to be used to include the time spent
in child functions. However, for the visits metric, the exclusive value is necessary to
only account for the calls to the function itself.

Generally, we advise users to start with the examples shipped with Cube and use
those as a starting point to develop their own derived metrics.
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Fig. 2 Cube screenshot showing folding and slicing of multi-dimensional Cartesian topologies

4.3.2 Visualization of High-Dimensional Topologies in the Cube GUI

Many parallel applications define virtual topologies to express neighborhood
relationships between processes, e.g., based on the chosen domain decomposition.
Often, such virtual topologies are specified as multi-dimensional Cartesian grids.
Another type of topologies are physical topologies reflecting the structure of the
hardware the application run on. A typical three-dimensional physical topology
is given by the (hardware) nodes in the first dimension, and the arrangement
of cores/processors on nodes in further two dimensions. Further, some machines
exhibit specific network layouts, like the IBM Blue Gene/Q 5-D torus network.

Until version 3, Cube was only able to handle Cartesian topologies up to three
dimensions (where the folding of the Blue Gene tori into 3 dimensions was hard-
coded). This situation was significantly improved in Cube v4. The Cube display now
supports multi-dimensional Cartesian grids, where grids with higher dimensionality
can be sliced or folded down to two or three dimensions for presentation – where
the details of slicing and folding can be controlled by the user. An example of a
visualization of a four-dimensional topology10 is shown on Fig. 2.

4.3.3 Future Plans

Cube v4 is under continuous development, with two major feature additions coming
up in the near future:

10Note that the topology toolbar is only enabled when a topology is available to be displayed.
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• Plugin interface: We are in the process of designing an open plugin interface
for the Cube GUI, which will allow users to develop problem-specific analyses
based on CUBE4 data. We will provide various example plugins for users and
are planning to establish an open repository for third-party plugins.

• Another major milestone is the transition of the Cube GUI from a monolithic
architecture to a client/server architecture. Here, a client running on, e.g., the
user’s desktop machine can connect to a server started on the HPC system where
the experiments have been collected. This will remove the necessity to transfer
large Cube files between machines or to remotely execute the Cube GUI using
X11 forwarding, and should also lead to increased scalability.

5 Conclusion

Like any other actively used software framework, the Scalasca parallel performance
analysis toolset is constantly under development. Besides fixing bugs uncovered
by our rigorous testing or reported by users, we also develop new features –
often inspired by feedback from our active user community. In addition, the HPC
landscape is also constantly changing due to the introduction of new computer sys-
tems and components, which in turn require new versions of parallel programming
paradigms or sometimes even trigger the invention of new paradigms requiring
further changes, additions, and adaptations in all performance tools. To better cope
with this situation, the Scalasca v2 series is now based on the community-developed
performance measurement and runtime infrastructure Score-P.

This change required significant redesign and implementation efforts of the
Scalasca tool components as outlined in this paper. However, we believe that we
were successful in minimizing the user-visible changes to the absolute necessary.
After one year of deployment of the new Score-P based version of Scalasca, we
see already a much quicker adaption of the infrastructure to new architectures
and paradigms, with much more to come in the short term. Sharing development
efforts for the parallel program instrumentation and measurement components with
other tool developers also allowed us to provide better documentation as well as to
improve the development and testing processes, while at the same time freeing some
highly-needed resources for new and improved analysis features.
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Allinea MAP: Adding Energy and OpenMP
Profiling Without Increasing Overhead

Christopher January, Jonathan Byrd, Xavier Oró, and Mark O’Connor

Abstract Allinea MAP was introduced in 2013 as a highly scalable, commercially-
supported sampling-based MPI profiler that tracks performance data over time and
relates it directly to the program source code. We have since extended its capabilities
to support profiling of OpenMP regions and POSIX threads (pthreads) in general.
We will show the principles we used to highlight the balance between multi-core
(OpenMP) computation, MPI communication and serial code in Allinea MAP’s
updated GUI. Graphs detailing performance metrics (memory, IO, vectorised
operations etc.) complete the performance profile.

We have also added power-usage metrics to Allinea MAP and are actively
seeking collaboration with vendors, application users and other tools writers to
define how best HPC can meet the power requirements moving towards exascale.
MAP’s data is provided for export to other tools and analysis in an open XML-based
format.

1 Introduction

Allinea MAP is a software performance profiling tool introduced by Allinea in
2013 that provides an intuitive, easy to use overview of the performance of HPC
programs. MAP focuses on low impact measurement with aggregation across
processes resulting in low run-time overhead and small output files. MAP is built on
the same petascale-capable scalable infrastructure [1] as Allinea DDT.

OpenMP [2] is a directive-based multi-language standard for high-level paral-
lelism, including shared memory programming. Many HPC programs use hybrid
MPI and OpenMPI parallel programming in which MPI is used for communication
between compute nodes and shared memory programming is used inside each SMP
node.

C. January (�) • J. Byrd • X. Oró
Allinea Software Ltd., Warwick, UK
e-mail: chris.january@allinea.com

M. O’Connor
Allinea Software GmbH, München, Germany

© Springer International Publishing Switzerland 2015
C. Niethammer et al. (eds.), Tools for High Performance Computing 2014,
DOI 10.1007/978-3-319-16012-2_2

25

mailto:chris.january@allinea.com


26 C. January et al.

2 Multi-threading and OpenMP in MAP

Allinea MAP has scalable support for MPI programs, aggregating data across
processes so the size of the output file is asymptotic with respect to the number of
processes. We have extended its capabilities to support profiling of OpenMP regions
and POSIX threads in general.

2.1 Application Activity

Reducing the amount of computation required to achieve a given result inevitably
results in shorter run-times for a job. Shorter run-times, in turn, allow faster
turnaround and reduced cost. To this end Allinea MAP shows, for example, a
breakdown of where computation occurs by function, and even source line, so that
a user can spot the best candidates for optimization to reduce compute time.

That having been said, one of the primary principles behind the design of Allinea
MAP is that users want to maximise the use of the available compute resources, that
is to say, maximise the amount of time an HPC system is actually computing. Idle
CPU cores are core hours wasted.

The Allinea MAP interface displays time glyphs that show how a program’s
activity varies over time. MAP graphs all of a program’s activity against the same
common axis—wall time. When profiling an MPI program the time glyphs show
how much time is spent in MPI calls vs computation. This allows a user to see hot
spots in their program where MPI communication is stalling, for example. We have
extended this concept to MAP’s profiling of OpenMP regions and POSIX threads—
MAP shows the time split between multi-core, MPI and serial code.

The Application Activity view shows the overall activity of the program over
time—across all processes and the entire source code. The view shows how the
distribution of time in multi-core, MPI and serial code changes as the program
progresses, and each region of time can be tied to the lines of source code that
were executing during it.

Figure 5 shows the full Allinea MAP user interface with the Application Activity
view at the top of the window. The program’s activity is further broken down by
source line. MAP shows the program’s source code front and centre and against each
source line is a time glyph of the program’s activity on that line, and the functions
called by that line.

For performance reasons many MPI and OpenMP instrumentations busy wait
when waiting for messages or work, rather than sleeping. MAP treats all time spent
in an MPI function as MPI activity, regardless of whether a process is running or
sleeping. Similarly MAP treats all time spent in the OpenMP runtime as ‘OpenMP
Overhead’. MAP distinguishes between calls to the OpenMP runtime from inside
an active OpenMP work share and those outside. Calls from inside a parallel region,
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Fig. 1 Application Activity view for an inefficient program. Key: Green OpenMP, Grey OpenMP
Overhead, Blue MPI

Fig. 2 Application Activity view for an optimized version of the same program. Key: Green
OpenMP, Grey OpenMP Overhead, Blue MPI

for example, are associated with the region in question and the time spent in those
calls is shown as ‘OpenMP Overhead’ against the entry point to the parallel region.

A program that uses OpenMP will rarely spend all its runtime in parallel code.
Instead it may have a mixture of serial regions, running on the main thread only,
and parallel regions running on more than one thread. MAP distinguishes between
these serial and parallel divisions. When the program is in a parallel region MAP
gives equal weight to each thread. Inside a serial region time, however, spent in
the OpenMP runtime by other threads is ignored and the main thread is given full
weight.

Figure 1 shows the Application Activity view for a hybrid MPI/OpenMP
program. The x axis corresponds to wall clock time and the y axis to the number
of cores in OpenMP regions. The areas marked in grey show cores busy waiting
in the OpenMP runtime. Much of the available compute power is being left on the
table.

Figure 2 shows the Application Activity view for an optimized version of the
same program. In this example the available compute resources are much better
utilised.

2.2 OpenMP Regions

Allinea MAP uses lightweight instrumentation of MPI functions to, for example,
accurately record the time spent in MPI function calls. In order to support profiling
of OpenMP programs we have added lightweight instrumentation of some OpenMP
runtime functions. Unlike source to source instrumentors such as Opari [7], MAP
uses binary function interception. In many cases a program does not need to be
recompiled at all for use with MAP; in the worst case it needs to be relinked.

The OpenMP regions and other work sharing constructs are shown in a new
view, the OpenMP Regions view. Most work sharing constructs are supported, with
the notable exception of OpenMP tasks.
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Fig. 3 CPU floating point metric graph The x axis corresponds to wall clock time. The y axis
corresponds to the % of all instructions across all processes executed by the program within a
given interval that fell into the given category

The OpenMP runtime instrumentation also allows MAP to associate code
running on an OpenMP worker thread with an invoking call site on the main thread
(or other worker thread in the case of nested parallelism). Code running on the
worker threads is reparented by the GUI so it appears under the invoking call site in
the Stacks view.

2.3 CPU Metrics

Allinea MAP samples the class of CPU instructions being executed by a program
and displays these as CPU metric graphs in the MAP user interface. The graphs
show the fraction of compute resources spent in a particular class of CPU instruction
(e.g. floating point as shown in Fig. 3).

A surprisingly useful metric is the fraction of compute resources spent in floating
point vector operations. The default compiler options for many compilers result in
less vectorisation than may be expected. MAP can not only expose this, but also be
used to measure the effect of different compiler options on performance.

We have extended MAP’s CPU instruction sampling to multi-core programs.
Following the principle that users want to maximise the use of available compute
resources, MAP effectively samples per core rather than per thread. Cores that are
idle are marked as such so that the MAP CPU metrics show the fraction of available
compute resources spent in a particular class of CPU instruction.

The available compute resources are initially assumed to be min(logical cores,
max(active cores)), although the user may override this value in the user interface.

2.4 Worked Example

Figure 4 shows how the performance of the miniMD hybrid MPI/OpenMP bench-
mark code varies with the number of OpenMP threads on a Cray XK7.

miniMD contains two versions of the code—one OpenMP, and one serial—that
are selected at runtime. The same executable is used in both cases. As can be seen
the hybrid MPI/OpenMP kernel performs considerably worse than the pure MPI
kernel. Using Allinea MAP we may explore why this is the case.

Figure 5 shows an Allinea MAP profile of a miniMD hybrid MPI/OpenMP run
with one MPI process per node and 16 threads per MPI process.
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Fig. 4 miniMD Performance on a Cray XK7 (16 cores per compute node; 10,000 steps). The
processes per node was adjusted according to the number of OpenMP threads so the number of
cores in use on each node remained constant

Fig. 5 miniMD profile in Allinea MAP

At the top of the window is the Application Activity view. Figure 6 shows the
view in more detail. The area shown in green represents OpenMP compute time.
The majority of the activity shows in grey—this represents OpenMP overhead, i.e.
time spent in the OpenMP runtime, and as can be seen this represents 62 % of the
program’s run time.

Figure 7 uses the OpenMP Regions view to drill down to see how the OpenMP
region is spending its time. Most of the time is spent in just four lines. A lot of
time is spent in the barrier at the end of the parallel for loop. This may indicate
the OpenMP threads are unbalanced and some are doing more work than others.
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Fig. 6 Application Activity for miniMD. Key: Green OpenMP, Grey OpenMP Overhead, Blue
MPI

Fig. 7 OpenMP Regions view showing most of the program’s runtime is spent in just four lines

Looking at the body of the loop there are several if statements, which would lead
to unbalanced workloads, that support this idea.

As can be seen in Fig. 8 a lot of time is also spent on the three lines that are
preceded by #pragma omp atomic. In this case the atomic directive has two
side effects:

1. Effectively serialises the code because the atomic operations require a memory
barrier.

2. Prevents vectorization.

MAP’s CPU instructions view in Fig. 9 shows that no vectorised floating point
instructions are used in the program. This may be contrasted to the pure MPI version
in Fig. 10. The compiler can vectorize the latter because it does not use OpenMP
atomics.
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Fig. 8 36.7 % of the program’s runtime is spent on the three lines preceded by #pragma omp
atomic

Fig. 9 0 % CPU floating point vector instructions used by the hybrid MPI/OpenMP kernel

Fig. 10 32.8 % mean CPU floating point vector instructions used by the pure MPI kernel

In conclusion Allinea MAP allows us to determine the reasons why the hybrid
MPI + OpenMP version of the miniMD kernel performs much more poorly than the
pure MPI one:

• Use of OpenMP atomics.
• Lack of vectorization.
• Threads not balanced.
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Fig. 11 Metric graphs in Allinea MAP

2.5 Performance Metrics

In addition to the information detailed above Allinea MAP also collects other
performance metrics over the run-time of a job, such as I/O throughput and memory
usage. The values are aggregated across all processes and displayed on metric
graphs in the MAP user interface as shown in Fig. 11.

The metric graphs allows a user to see how a particular value or counter changed
over the run-time of their program. For example, a user may use the metrics view to
see how the memory usage of their program changed over time. A sudden spike in
memory usage may indicate a problem that needs investigating.

We have extended Allinea MAP to collect a new class of measurement: energy
metrics.

3 Energy Metrics

As part of a collaboration with the University of Warwick we have added power
usage metric graphs to MAP that show the power usage of a program over time.
The principle source of data is the Intel RAPL [3] energy counters included in recent
Intel CPUs. We have also added support for the Intel Energy Checker SDK [5] which
includes a number of drivers for external power meters, allowing the power usage
of not only the CPU, but a whole compute node, or even the whole system, to be
recorded.

One way of reducing the energy usage of an HPC job is to offload some, or all, of
the computation to accelerator cards which are more efficient for a given workload.
In addition to the Intel RAPL energy counters for regular Intel CPUs we have also
added power metrics for Intel Xeon Phi accelerator cards and NVIDIA CUDA cards
using the respective system management interfaces.

How best to use power usage metrics and other performance metrics to reduce
the energy consumption of a job is an open question. The biggest factor influencing
the power consumption of a general purpose CPU is the frequency it is running
at. Dynamic frequency scaling is a possible route to reduced energy consumption
[6]. For example: many MPI implementations busy-wait for MPI communications
to complete. The frequency of the CPU can be turned down at these times.
MAP provides the tools to not only identify when a program is waiting for MPI
communication to finish (and how often, and how much), but also to measure the
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impact on both total energy consumption and runtime if frequency scaling is applied
at those times.

3.1 Future Work

CPU and accelerator cards are just part of the story. There are many other sources of
power consumption, both within individual compute nodes, and at other points in an
HPC system. A number of system vendors either already provide their own power
management counters, or are planning on doing so in the future (e.g. Cray’s Power
Management Counters [8]). We are looking to add support for these and to partner
with 3rd parties who have developed, or are thinking of developing, frameworks for
measuring power consumption.

4 Custom Metrics

To make it easy for third parties to add metrics to Allinea MAP we have developed
support for metric plugins which provide custom metrics that are recorded in
addition to MAP’s built-in metrics. This allows a user to see information about
values and counters that are not recorded by MAP out of the box, even values
specific to a particular program.

A metric plugin consists of:

• An XML file that describes the custom metrics that the metric plugin provides
• A shared library that contains the code to sample the custom metrics

The XML descriptor arranges for a function—sample_interrupts in the
example below—in the shared library to be called every time MAP samples the
user’s program. This simple mechanism makes it very easy to add new metrics to
MAP, or to integrate MAP with data sources from other tools. Custom metrics are
pre process, rather than per thread, so the function is always called from the main
thread.

Since the user’s program will have been interrupted by the MAP sampler at
an arbitrary point it is important for custom metrics functions to only call async-
signal-safe functions [4] and thread safe functions. Many commonly used C library
functions, such as malloc, are not async-signal-safe so MAP provides its own
async-signal-safe replacements (e.g. allinea_safe_malloc).
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4.1 Example: System Interrupt Count

The listing below shows the XML descriptor for a plugin that samples the number
of system interrupts taken.

<!-- version is the file format version -->
<metricdefinitions version="1">

<!-- id is the internal name for this metric, as used in the .map XML -->
<metric id="interrupts">

<!-- Data type used to store the sample values Valid data types:
- uint64_t
- double -->

<dataType>uint64_t</dataType>
<!-- The domain the metric is to be sampled in.

Only time is supported. -->
<domain>time</domain>
<!-- Sample source

Specifies the source of data for this metric,
i.e. a function in a shared library.

The function signature depends on the dataType:
- uint64_t: int function(metric_id_t metricId,

struct timespec inCurrentSampleTime,
uint64_t *outValue);

- double: int function(metric_id_t metricId,
struct timespec inCurrentSampleTime,
double *outValue);

If the result is undefined for some reason the function may
return the special sentinel value ˜0 (unsigned integers) or
Nan (floating point)

Return value is 0 if success, -1 if failure (and set errno)

If divideBySampleTime is true then the values returned by outValue
will be divided by the sample interval to get the final value. -->

<source ref="sample_src"
functionName="sample_interrupts"
divideBySampleTime="true"/>

<!-- Display attributes used by the GUI. -->
<display>

<!-- Display name for the metric as used in the GUI. -->
<displayName>Interrupts</displayName>
<!-- Brief description of the metric.. -->
<description>Total number of system interrupts taken</description>
<!-- The type of metric.

This is used by the GUI to group metrics. -->
<type>interrupts</type>
<!-- The colour to use for the metric graphs for this metric. -->
<colour>green</colour>

</display>
</metric>

<!-- Metric group for interrupt metrics.,
These groupings are used in the GUI. -->

<metricGroup id="sample">
<!-- Display name for the group as use din the GUI. -->
<displayName>Sample</displayName>
<!-- Brief description of the group. -->
<description>Interrupt metrics</description>
<!-- References to all the metrics included in the group. -->
<metric ref="interrupts"/>

</metricGroup>

<!-- Definition of the sample source (metric plugin) used for the sample
custom metric. -->

<source id="sample_src">
<!-- File name of the sample metric plugin shared library. -->
<sharedLibrary>libsample.so</sharedLibrary>

</source>
</metricdefinitions>
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5 Summary

We have extended Allinea MAP to add profiling of OpenMP and POSIX threads
by building on our original principles for MPI profiling. MAP is designed to help a
user to maximise the use of available compute resources.

Energy consumption will continue to be an important consideration in HPC.
MAP helps users not only optimize for minimal run-time, but also for minimal
energy consumption.

The addition of custom metrics to MAP not only makes it easy for third parties to
add their own metrics, but also makes it possible to expose program-specific values
in the MAP user interface.

Users benefit when their tools are well integrated. Allinea is committed to
continuing to open up MAP for integration with other tools.
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DiscoPoP: A Profiling Tool to Identify
Parallelization Opportunities

Zhen Li, Rohit Atre, Zia Ul-Huda, Ali Jannesari, and Felix Wolf

Abstract The stagnation of single-core performance leaves application developers
with software parallelism as the only option to further benefit from Moore’s Law.
However, in view of the complexity of writing parallel programs, the parallelization
of myriads of sequential legacy programs presents a serious economic challenge. A
key task in this process is the identification of suitable parallelization targets in the
source code. We have developed a tool called DiscoPoP showing how dependency
profiling can be used to automatically identify potential parallelism in sequential
programs. Our method is based on the notion of computational units, which are
small sections of code following a read-compute-write pattern that can form the
atoms of concurrent scheduling. DiscoPoP covers both loop and task parallelism.
Experimental results show that reasonable speedups can be achieved by parallelizing
sequential programs manually according to our findings. By comparing our findings
to known parallel implementations of sequential programs, we demonstrate that we
are able to detect the most important code locations to be parallelized.

1 Introduction

Although the component density of microprocessors is still rising according to
Moores Law, single-core performance is stagnating for more than ten years now. As
a consequence, extra transistors are invested into the replication of cores, resulting in
the multi- and many-core architectures popular today. The only way for developers
to take advantage of this trend if they want to speed up an individual application
is to match the replicated hardware with thread-level parallelism. This, however,
is often challenging especially if the sequential version was written by someone
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else. Unfortunately, in many organizations the latter is more the rule than the
exception [1]. To find an entry point for the parallelization of an organization’s
application portfolio and lower the barrier to sustainable performance improvement,
tools are needed that identify the most promising parallelization targets in the source
code. These would not only reduce the required manual effort but also provide a
psychological incentive for developers to get started and a structure for managers
along which they can orchestrate parallelization workflows.

In this paper, we present an approach for the discovery of potential parallelism in
sequential programs that—to the best of our knowledge—is the first one to combine
the following elements in a single tool:

1. Detection of available parallelism with high accuracy
2. Identification of code sections that can run in parallel, supporting the definition

of parallel tasks—even if they are scattered across the code
3. Ranking of parallelization opportunities to draw attention to the most promising

parallelization targets
4. Time and memory overhead that is low enough to deal with input programs of

realistic size

Our tool, which we call DiscoPoP (D Discovery of Potential Parallelism),
reverses the idea of data-race detectors. It profiles dependencies, but instead of
only reporting their violation it also watches out for their absence. We use the
dependency information to represent program execution as a graph, from which
parallelization opportunities can be easily derived or based on which their absence
can be explained. Since we track dependencies across the entire program execution,
we can find parallel tasks even if they are widely distributed across the program or
not properly embedded in language constructs, fulfilling the second requirement.
To meet the third requirement, our ranking method considers a combination of
execution-time coverage, critical-path length, and available concurrency. Together,
these four properties bring our approach closer to what a user needs than alternative
methods [2–4] do. We expand on earlier work [5], which introduced the algorithm
for building the dependency graph based on the notion of computational units—
which was, at the time a purely dynamic approach with significant time and memory
overhead. That is why this paper concentrates mainly on the overall workflow,
including a preceding static analysis, the minimization of runtime overhead, the
ranking algorithm, and an evaluation using realistic examples along with a demon-
stration of identifying non-obvious tasks.

The remainder of the paper is structured as follows: In the next section, we review
related work and highlight the most important differences to our own. In Sect. 3, we
explain our approach in more detail. In the evaluation in Sect. 4, we run the NAS
parallel benchmarks [6], a collection of programs derived from real CFD codes,
to analyze the accuracy at which we identify and rank parallelism in spite of the
optimizations we apply. Also, we show how we find parallel tasks and pipeline
patterns that are not trivial to spot. Finally, we quantify the overhead of our tool
both in terms of time and memory. Section 5 summarizes our results and discusses
further improvements.
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2 Related Work

After purely static approaches including auto-parallelizing compilers had turned out
to be too conservative for the parallelization of general-purpose programs, a range
of predominantly dynamic approaches emerged. Such dynamic approaches can be
broadly divided into two categories. Tools in the first merely count dependencies,
whereas tools in the second, including our own, exploit explicit dependency infor-
mation to provide detailed feedback on parallelization opportunities or obstacles.

Kremlin [4] belongs to the first category. Using dependency information, it
determines the length of the critical path in a given code region. Based on this
knowledge, it calculates a metric called self-parallelism, which quantifies the
parallelism of a code region. Kremlin ranks code regions according to this metric.
Alchemist [3] follows a similar strategy. Built on top of Valgrind, it calculates
the number of instructions and the number of violating read-after-write (RAW)
dependencies across all program constructs. If the number of instructions of a
construct is high while the number of RAW dependencies is low, it is considered
to be a good candidate for parallelization. In comparison to our own approach,
both Kremlin and Alchemist have two major disadvantages: First, they discover
parallelism only at the level of language constructs, that is, between two predefined
points in the code, potentially ignoring parallel tasks not well aligned with the
source-code structure. Second, they merely quantify parallelism but do neither
identify the tasks to run in parallel unless it is trivial as in loops nor do they point
out parallelization obstacles.

Like DiscoPoP, Parwiz [2] belongs to the second category. It records data
dependencies and attaches them to the nodes of the execution tree (i.e., a generalized
call tree that also includes basic blocks) it maintains. In comparison to DiscoPoP,
Parwiz lacks a ranking mechanism and does not explicitly identify tasks. They have
to be manually derived from the dependency graph, which is demonstrated using
small text-book examples.

Reducing the significant space overhead of tracing memory accesses was also
successfully pursued in SD3 [7]. An essential idea that arose from there is the
dynamic compression of strided accesses using a finite state machine. Obviously,
this approach trades time for space. In contrast to SD3, DiscoPoP leverages an
acceptable approximation, sacrificing a negligible amount of accuracy instead of
time. The work from Moseley et al. [8] is a representative example of this approach.
Sampling also falls into this category.

Prospector [9] is a parallelism-discovery tool based on SD3. It tells whether a
loop can be parallelized, and provides a detailed dependency analysis of the loop
body. It also tries to find pipeline parallelism in loops. However, no evaluation result
or example is given for this feature.
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3 Approach

Figure 1 shows the work flow of DiscoPoP. The work flow of DiscoPoP is divided
into two phases: In the first phase, we instrument the target program and execute
it. Control flow information and data dependencies are obtained in this phase. In
the second phase, we build computational units (CUs) for the target program, and
search for potential parallelism based on the CUs and dependence among them. The
output is a list of parallelization opportunities, consisting of several code sections
that may run in parallel. These opportunities are also ranked to allow the users focus
on the most interesting opportunities.

3.1 Dependence Profiling

Data dependences can be obtained in two major ways: static and dynamic analysis.
Static approaches determine data dependences without executing the program.
Although they are fast and even allow fully automatic parallelization in some
restricted cases [10, 11], they lack the ability to track dynamically allocated memory,
pointers, and dynamically calculated array indices, which usually makes their
assessment too pessimistic for practical purposes. In contrast, dynamic dependence
profiling captures only those dependences that actually occur at runtime. Although
dependence profiling is inherently input sensitive, the results are still useful in
many situations, which is why such profiling forms the basis of many program
analysis tools [2, 4, 9]. Besides, input sensitivity can be addressed by running
the target program with changing inputs and computing the union of all collected
dependences.

Dependence profiling component serves as the foundation of our tool. The
profiler produces the following information:

• Pair-wise data dependencies
• Source code locations of dependencies and the names of the variables involved
• Runtime control-flow information
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Fig. 1 The work flow of DiscoPoP
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1:60 BGN loop
1:60 NOM {RAW 1:vim} {WAR 1:60|i} {INIT *}
1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}
1:64 NOM {RAW 1:60|i}
1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1} {WAR 1:67|temp2} {INIT *}
1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2} {RAW 1:67|temp1} {INIT *}
1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}
1:70 NOM {RAW 1:67|temp1} {INIT *}
1:74 NOM {RAW 1:41|block}
1:74 END loop 1200

Fig. 2 A fragment of profiled data dependencies in a sequential program

We profile detailed pair-wise data dependencies because we do not want to lose
the chance to report root causes that preventing parallelism. If detailed information
is not required by a certain analysis, dependencies can be easily merged into coarser
grain with the help of control-flow and variable name information, for example,
dependencies between loops, between functions, or between objects. Control-flow
information is necessary for building computational units.

A fragment of profiled data is shown in Fig. 2. A data dependency is represented
as a triple <sink, type, source>.type is the dependency type (RAW, WAR
or WAW). Note that a special type INIT represents the first write operation to
a memory address. In this case, source of the dependency is empty, which is
represented as *.
sink and source are the source code locations of the latter and

the former memory accesses, respectively. sink is further represented as
a pair <fileID:lineID>, while source is represented as a triple
<fileID:lineID|variableName>. As it is shown in Fig. 2, data
dependences with the same sink are aggregated together.

Identifier NOM (short for “NORMAL”) means that the source line specified
by aggregated sink has no control-flow information. Otherwise, BGN and END
represent the entry and exit point of a control region, respectively. In Fig. 2, a loop
starts at source line 1:60 and ends at source line 1:74. The number following END
loop shows the actual number of iterations executed, which is 1,200 in this case.

In order to get pair-wise data dependencies dynamically, every load and store
instruction is instrumented. Entry and exit points of control regions are determined
statically, but loops are still instrumented so that the number of executed iterations
can be recorded. Source code location and variable names are obtained with the
help of debug symbols, thus the compiler option -g must be specified to compile
the program.

3.2 Computational Unit

During the second phase, we search for potential parallelism based on the output of
the first phase, which is essentially a graph of dependencies between source lines.
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This graph is then transformed into another graph, whose nodes are parts of the
code without parallelism-preventing read-after-write (RAW) dependencies inside.
We call these nodes computational units (CUs). Based on this CU graph, we can
detect potential parallelism and already identify tasks that can run in parallel.

A CU is defined as a set of instructions that form a read-compute-write pattern.
A CU differs from the basic block such that a basic block contains operations that
are consecutive and has only one entry and one exit point. A CU however, is a group
of instructions that are not necessarily consecutive but perform a computation and
is based on the use of a set of variables. A single CU or a group of CUs merged
together can provide the code sections that perform a task. These code sections
can be examined to see if they can be run concurrently with other code sections or
themselves to exploit the available parallelism.

To understand what a CU is, consider the example in Fig. 3. The source lines
4 and 8 perform the initialization of variables id_a and id_b with a random value.
Lines 5 and 9 perform the task of calculating elem_a and elem_b by using the value
of id_a and id_b respectively. These two operations are performed independent of
one another. The while loop in the function is responsible for checking if the two
random values are equal and reassigning id_b if it is true. Finally, the lines 16 and
17 are responsible for writing the final computation back to *a and *b. In essence,
the group of LLVM-IR instructions corresponding to the lines {4, 5, 16} perform
one computation and the ones corresponding to the lines {8, 9, 13, 14, 17} perform
another computation and these tasks are independent of each other except for the
equality check condition of the while loop. In case of the while loop, identifying
code sections that require synchronization or replication across concurrent threads
will part of our future work.

The two computations mentioned above follow a basic rule where a variable or
a group of variables are read and then they are used to perform another calculation.
This is followed by the final state being written to another variable as a store
operation. Hence, these two computations can be said to follow a read-compute-
write pattern. The two computations can be visualized as seen in the Fig. 4. The final

1 void netlist:: (netlist_elem** a, netlist_elem** b, Rng* rng)
2 {
3 //get a random element
4 long id_a = rng->rand(_chip_size);
5 netlist_elem* elem_a = &(_elements[id_a]);
6

7 //now do the same for b
8 long id_b = rng->rand(_chip_size);
9 netlist_elem* elem_b = &(_elements[id_b]);

10

11 while (id_b == id_a)
12 {
13 id_b = rng->rand(_chip_size);
14 elem_b = &(_elements[id_b]);
15 }
16 *a = elem_a;
17 *b = elem_b;
18 return;
19 }

Fig. 3 Function netlist::get_random_pair of parsec.canneal that contains two CUs
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Fig. 4 The two CUs contained in Function netlist::get_random_pair of parsec.canneal
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Fig. 5 Example of a CU graph and task formation

store instruction that writes a value to *a uses all the instructions that correspond
to the lines {4, 5, 16} to perform that write operation. Similarly, the group of
instructions that correspond to the lines {8, 9, 13, 14, 17} are used for the final store
instruction that writes *b. These two sets of instructions can individually be defined
as CUs. These CUs form the building blocks of the tasks which can be created for
exploiting parallelism in the sequential programs.

Using the common instructions and the RAW dependencies between the CUs,
a CU graph is constructed. The nodes of this graph are CU IDs. The CU graph
has two types of edges. First type of edge between any two CU nodes signifies
RAW dependence between them and is a directed edge. The weight of an RAW
edge is the number of RAW dependencies between the two CUs. The second type
of edge signifies that there are common instructions between the two CUs. This is
an undirected edge and its weight is the number of common instructions between
the two CUs. Figure 5a shows a CU graph with red edges as RAW dependencies
between the CUs and blue edges as the CUs connected because of the common
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instructions between them. A CU graph is generally a disconnected graph with
several connected components.

3.3 Detecting Parallelism

DiscoPoP finds potential parallelism based on the CU graph. It is well known that
among the four kinds of data dependencies, read-after-read (RAR) does not affect
parallelization. Write-after-read (WAR) and write-after-write (WAW) are easy to
resolve by privatizing the affected variables. Only read-after-write (RAW) seriously
prevents parallelization.

3.3.1 DOALL Loops

A loop can be parallelized according to the do-all pattern if there are no loop-carried
or inter-iteration dependences. A forward or self-dependence is always loop-carried,
as the control flow within a loop iteration moves in a forward direction, which is why
dependences within the same iteration must point backward. Note that inner loops
in loop nests, which may reverse the control flow direction whenever a new inner
iteration starts, are treated separately. The absence of forward or self-dependences
is easy to verify based on the graph matrix, whose upper triangle shows all forward
and self-edges.

Of course, there may also exist loop-carried dependences in backward edges
of the graph matrix. However, to reliably distinguish them from intra-iteration
dependences, our dependence profiler would have to record the iteration number
along with each memory access, substantially increasing its memory overhead.
On the other hand, loop-carried dependences in a backward direction that are not
accompanied by dependences in a forward direction in the same loop are very
rare. Basically, the absence of forward and self-dependences in a loop is a good
indicator of the absence of loop-carried dependences. For this reason, we decided to
refrain from the costly classification of backward dependences into loop-carried or
not loop-carried.

3.3.2 Tasking

To identify potential parallel tasks, we firstly merge CUs contained in strongly
connected components (SCCs) or in chains. In graph theory, an SCC is a subgraph
in which every vertex is reachable from every other vertex. Thus, every CU in
an SCC of the CU graph depends on every other CU either directly or indirectly,
forming a complex knot of dependences that is likely to defy internal parallelization.
Identifying SCCs is important for two reasons:
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Fig. 6 Forming tasks in a code section of fluidanimate

1. Algorithm design. Complex dependences are usually the result of highly opti-
mized sequential algorithm design oblivious of potential parallelization. In this
case, breaking such dependence requires a parallel algorithm, which is beyond
the scope of our method.

2. Coding effort. Even if such complex dependences are not created by design,
breaking them is usually time-consuming, error-prone, and may cause significant
synchronization overhead that may outweigh the benefit of parallelization.

Hence, we hide complex dependences inside SSCs, exposing parallelization oppor-
tunities outside, where only a few dependences need to be considered. Figure 6
shows the task-forming process for a code section (starting from serial.c: 341)
in function RebuildGrid() of fluidanimate, a program from the PARSEC
Benchmark Suite [12]. In step 1, CU F , G and H are grouped into SCCFGH. After
contracting each SCC to a single vertex, the graph becomes a directed acyclic graph.

Moreover, we group CUs that are connected in a row without a branching or
joining point in between into a chain of CU. Although they do not form an SCC,
we still group them together since each CU contains only a few instructions, and
there is no benefit in considering each CU as a separate task. In step 2 of Fig. 6, CU
C , D and E are grouped into the chainCDE. Finally, we declare each SCC or chain
a potential task and derive a parallelization plan from the dependences that exist
between them.

After the process of forming chains and SCCs, we can suggest some task paral-
lelism between independent chains and SCCs, that is, without RAW dependencies
between them. Note that a chain of CUs may start and end anywhere in the program,
without the limitation of predefined constructs, and the code in a chain of CUs does
not need to be continuous.

However, some task parallelism can also be utilized with a small amount of
refactoring effort, assuming, dependences between potential tasks exist but are
weak. We cover these parallelism by applying minimum cut on CU graph. In CU
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graph, a high value of weight on the edges of any two vertices indicates that those
two CUs either share large amount of computation or they are strongly dependent
on one another. Using these two metrics, we calculate a value called affinity for
every pair of CU nodes in the graph. The affinity between any two CU nodes hence
indicates how tightly coupled the two CUs are. A low value of affinity between two
CUs signifies that it’s logical to separate the two CUs while forming tasks. The two
types of edges in the graph are replaced by a single undirected edge. The weight of
this edge is the affinity between the two CUs. Figure 5b demonstrates the graph with
the two types of edges between the vertices replaced by single edge with affinity as
the weight.

The next step is to calculate the minimum cut of a connected component using
Stoer-Wagner’s algorithm [13]. In graph theory, a cut of a graph is a partition of
the vertices of a graph into two disjoint subsets that are joined by at least one edge.
A minimum cut is a set of edges that has the smallest number of edges (for an
unweighted graph) or smallest sum of weights possible (for a weighted graph). A
minimum cut creates a disconnected graph with two connected components, each of
which is further analyzed for finding relevant tasks. Figure 5c shows the CU graph
with a minimum cut.

Identifying the minimum cut of a graph divides the graph into two components
that were weakly linked. This indicates that we are separating our code with
minimum number of dependences and common instructions affected. For each
component, the minimum cut is calculated further to divide it into two more
components. The process is repeated recursively over all the components of the
CU graph until the components available are CUs themselves.

3.3.3 Pipeline

To detect pipeline pattern, we use template-matching [14] technique. Here, both
template and target program are represented by vectors. Cross-correlation between
two vectors is used to determine how similar they are. We adapt this concept for the
detection of parallel patterns in CU graphs.

Algorithm 1 shows the overall work flow of our approach. We first look for
hotspots in the input program—sections such as loops or functions that have to
shoulder most of the workload. For each hotspot and pattern, we then create a
pattern vector p, whose length is equal to the number n of CUs in the hotspot. The
pattern vector plays the role of the template to be matched to the program. After that,
we create the pattern-specific graph vector g of the hotspot’s CU subgraph, which
represents the part of the program to which the pattern vector is matched. Vectors p
and g are derived from adjacency matrices reflecting dependences in the pattern and
in the CU graph, respectively. As a next step, we compute the correlation coefficient
of the two vectors using the following formula:

CorrCoef D p � g
kpk kgk
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Algorithm 1: Parallel pattern detection

tree D getExecutionTree.serialProgram/

Hotspots D findHotspots.tree/

for each h in Hotspots do
CUGraph D getCUGraph.h/

n D getNumberOfCUs.CUGraph/

for each p in ParallelPatterns do
p D getPatternVector.p; n/

g D getGraphVector.p; CUGraph/

CorrCoef Œh; p� D CorrCoef .p; g/

end
end
return CorrCoef

The correlation coefficient of the pattern vector and the graph vector of the selected
section tells us whether the pattern exists in the selected section or not. The value of
the coefficient is always in the range of Œ0; 1�. A 1 indicates that the pattern exists
fully, whereas a 0 indicates that it does not exist at all. A value in between shows
the pattern can exist but with some limitations which we need to work around. Our
tool points out to the dependences, which cause the value of correlation coefficient
of a pattern to be less than 1. This helps the programmer to resolve these specific
dependences, if he wants to implement that pattern.

Implementing a pipeline only makes sense if its stages are executed many times.
For this reason, we restrict our search for pipelines to loops, functions with multiple
loops, and recursions. In order to find a pipeline, we first let DiscoPoP deliver
the CU graphs of all hotspots. Because DiscoPoP counts the number of read and
write instructions executed in each loop or function, we currently use this readily
available metric as an approximation of the workload when searching for hotspots.
A more comprehensive criterion, including execution times and workload, will
be implemented in the future. We then compute an adjacency matrix for each
hotspot graph, which we call the graph matrix. For each graph matrix, we create
a corresponding pipeline pattern matrix of the same size, which we call the pipeline
matrix. Pipeline matrices encode a very specific arrangement of dependences
expected between CUs. For example, there must be a dependence chain running
through all CUs in the graph because a pipeline consists of a chain of dependent
stages. This specific property helps us to derive the pipeline pattern vector from the
matrix.

4 Evaluation and Results

We conducted a range of experiments to evaluate the ability of DiscoPoP to detect
DOALL loops, potential parallel tasks, and parallel patterns. The performance of
DiscoPoP is also analyzed. Test cases are the NAS Parallel Benchmarks 3.3.1 [6]
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(NAS), a suite of programs derived from real-world computational fluid-dynamics
applications, the Starbench parallel benchmark suite [15] (Starbench), which covers
programs from diverse domains, including image processing, information security,
machine learning and so on, benchmarks from PARSEC Benchmark Suite 3.0 [12],
and a few real-world applications. Whenever possible, we tried different inputs to
compensate for the input sensitivity of dynamic dependence profiling.

4.1 DOALL Loops

To evaluate the ability of DiscoPoP to detect DOALL loops, we searched for
parallelizable loops in sequential NPB programs and compared the results with the
parallel versions provided by NPB. Table 1 shows the results of the experiment.
The data listed in the column set “Executed” are obtained dynamically. Column
“# loops” gives the total number of loops which were actually executed. The number
of loops that we identified as parallelizable are listed under “# parallelizable”. At
this stage, prior to the ranking, DiscoPoP considers only data dependencies, which
is why many loops carrying no dependency but bearing only a negligible amount of
work are reported. The second set of columns shows the number of annotated loops
in OpenMP versions of the programs (# OMP). Under “# identified” we list how
many annotated loops were identified as parallelizable by DiscoPoP.

As shown in Table 1, DiscoPoP identified 92.5 % (136/147) of the annotated
loops. A comparison with other tools is challenging because none of them is
available for download. A comparison based exclusively on the literature has to
account for differences in evaluation benchmarks and methods. For Parwiz [2], the
authors reported an average of 86.5 % after applying their tool to SPEC OMP-2001.
Kremlin [4], which was also evaluated with NPB, selects only loops whose expected
speedup is high. While Kremlin reported 55.0 % of the loops annotated in NPB, the
top 30 % of DiscoPoP’s ranked result list cover 65.3 % (96/147).

Table 1 Detection of parallelizable loops in NAS Parallel Benchmark programs

Executed OpenMP-annotated loops

Program # loops # parallelizable # OMP # identified # in top 30 % # in top 10 %

BT 184 176 30 30 22 9

SP 252 231 34 34 26 9

LU 173 164 33 33 23 7

IS 25 20 11 8 2 2

EP 10 8 1 1 1 1

CG 32 21 16 9 5 5

MG 74 66 14 14 11 7

FT 37 34 8 7 6 5

Overall 787 720 147 136 96 45
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4.2 Tasking

We have applied two separate strategies to evaluate the ability of DiscoPoP to detect
parallel tasks. Firstly, we compare the parallel implementations of the applications
from the Starbench benchmark suite with the tasks identified by our analysis.
In this case, our goal is to verify if the approach identifies valuable and logical
homogeneous tasks. Secondly, we use some of the programs from the PARSEC
benchmark and parallelize these applications based on the heterogeneous tasks
which are identified as potential candidates for parallelism.

4.2.1 Comparison with Existing Parallel Implementations

Our first evaluation strategy involves providing a comparison of the identified
tasks with the existing parallel versions of the applications for Starbench parallel
benchmark suite. The Table 2 shows the overview of the evaluation performed.
Column “Task suggestion” shows the location where parallel tasks are identified
using our approach and column “Matched in parallel implementations” shows
whether the identified tasks exist in the official parallel implementations from
Starbench. The tasks were identified by prioritizing the main algorithm functions
and the functions that consumed the majority of the total execution time of the
program as shown in column “Execution time (%)”.

As an example, we show the tasks identified in k-means, a clustering algorithm
widely used in the domains of data-mining and artificial intelligence. The applica-
tion consists of two iteratively repeated phases. One is a clustering phase and the
other is a reduction phase that computes new clusters. In the sequential version, the
function kmeans() calls the function cluster() which performs the clustering
phase. The remaining body of the function kmeans() performs the reduction
phase. The function cluster() takes 99.6 % of the total execution time of the
program. This makes it a good candidate for analysis of the tasks from the list of the
tasks identified for the program.

Table 2 Parallel tasks identified in Starbench compared to existing parallel implementations

Matched in parallel

Program Task suggestion Execution time (%) implementations # CUs used

c-ray render_scanlines() 100:0 Yes 4

k-means cluster() 99:6 Yes 3

md5 MD5_Update() 93:5 Yes 7

rotate RotateEngine::run() 90:3 Yes 6

rgbyuv processImage() 100:0 Yes 7

ray-rot render_scanlines() 97:2 Yes 10

rot-cc RotateEngine::run() 54:7 Yes 13
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CU-102 [72,73,79]

for(i < numObjs){

objects[i]);
membership[i] = index;}

CU-105 [72,73,82,83]

for(i < numObjs){

objects[i]);
for(j < numCoords){

local_newClusters[index*numCoords+j]
 += objects[i][j];}}

CU-107 [73,81]

local_newClusterSize[index]++;

Fig. 7 Connected component of the CU graph of k-means corresponding to function cluster()

Table 3 Speedups obtained by parallelizing identified tasks in PARSEC benchmarks

Program Function Code refactoring # Threads Local speedup

Fluidanimate RebuildGrid() Yes 2 1.60

Fluidanimate ProcessCollisions() No 4 1.81

Canneal routing_cost_given_loc() Yes 2 1.32

Blackscholes CNDF() NA NA NA

The analysis identifies both of the aforementioned phases individually as tasks.
The cluster() function is identified as a task by grouping 3 CUs from the
CU graph. Figure 7 shows the connected component of the graph for the function
cluster(). As for the reduction phase, only the part of the function kmeans()
that performs this phase is identified as task by the analysis. In the pthreads version
of the program, every thread executes the function work(), which contains the
same code as the sequential version of cluster(). The reduction phase is run by
the main thread thereafter.

4.2.2 Parallelization Based on the Suggested Heterogeneous Tasks

In this section we investigate some applications of PARSEC benchmark suite. We
parallelized these applications based on the tasks formed by using CUs or by directly
considering CUs as tasks. We assigned these tasks to separate threads and calculated
the speedup obtained. We parallelized these cases mainly using OpenMP section
and task directives. Table 3 shows the results of the applications parallelized.
The local speedups represent an average of five independent executions of the
programs. Column “# Threads” shows the number of threads used to parallelize
the suggestions. Column “Code refactoring” indicates if the refactoring the code
like adding necessary synchronization or replicating some part of the code across
multiple threads was necessary to parallelize the program based on the suggestion.
For our future work, we would like to predict the various kinds of synchronizations
or code refactoring necessary to parallelize a suggestion based on the available
dependences and CUs identified.
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4.3 Pipeline

We applied DiscoPoP on five benchmarks from PARSEC and libVorbis to detect
pipeline pattern. Among the test cases, three benchmarks (bodytrack, dedup, and
ferret) have pipeline patterns according to their existing parallel implementations,
while two of the test cases (blackscholes and fluidanimate) do not. libVorbis has a
natural pipeline work flow, but we cannot confirm it before applying DiscoPoP since
there is no existing parallel implementation for it.

Table 4 shows the results of detecting pipeline patterns on the test cases. For
all the three cases that contain pipeline patterns in parallel implementations, the
utilized pipeline are successfully identified. Thus we did not parallelize them again.
No pipeline pattern is detected in blackscholes, which is also as expected. However,
pipeline pattern is detected in fluidanimate, which does not have a pipeline in its
parallel implementations. After examining the code, we believe the parallelism
does exist, and we parallelized the code section following the suggestion. Our
parallelization yields a speedup of 1.52 using three threads. Note that the correlation
coefficient for this pipeline pattern is 0.94, which implies that code refactoring may
be needed. Actually, parallelizing this place requires quite a lot of effort.

LibVorbis is a reference implementation of the Ogg Vorbis codec. It provides
both a standard encoder and decoder for the Ogg Vorbis audio format. In this study,
we analyzed the encoder part. The suggested pipeline resides in the body of the loop
that starts at file encoder_example.c, line 212, which is inside the main function of
the encoder. The pipeline contains only two stages:vorbis_analysis(), which
applies some transformation to audio blocks according to the selected encoding
mode (this process is called analysis), and the remaining part that actually encodes
the audio block. After investigating the loop of the encoding part further, we found
it to have two sub-stages: encoding and output.

We constructed a four-stage pipeline with one stage each for analysis, encoding,
serialization, and output, respectively. We added a serialization stage, in which we
reorder the audio blocks because we do not force audio blocks to be processed
in order in the analysis and the encoding phase. We ran the test using a set of
uncompressed wave files with different sizes, ranging from 4 to 47 MB. As a result,
the parallel version achieved an average speedup of 3.62 with four threads.

Table 4 Pipeline patterns identified in PARSEC benchmarks and libVorbis

Program # of pipeline in parallel version Corr. coef. # Detected Speedup

Bodytrack 1 0:96 1 N.A.

Dedup 1 1:00 1 N.A.

Ferret 1 1:00 1 N.A.

Blackscholes 0 0:00 0 N.A.

Fluidanimate 0 0:94 1 1.52 (3T)

LibVorbis N.A. 1:00 1 3.62 (4T)
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4.4 Overhead

We conducted our performance experiments on a server with 2 � 8-core Intel Xeon
E5-2650 2 GHz processors with 32 GB memory, running Ubuntu 12.04 (64-bit
server edition). All the test programs were compiled with option -g -O2 using
Clang 3.3. For NAS, we used the input set W; for Starbench, we used the reference
input set.

4.4.1 Time Overhead

First, we examine the time overhead of our profiler. The number of threads
for profiling is set to 8 and 16. The slowdown figures are average values of
three executions compared with the execution time of uninstrumented runs. The
negligible time spent in the instrumentation is not included in the overhead. For
NAS and Starbench, instrumentation was always done in 2 s.

The slowdown of our profiler when profiling sequential programs is shown in
Fig. 8. The average slowdowns for the two benchmark suites (“NAS-average” and
“Starbench-average”) are also included. As the figure shows, our serial profiler
has a 190� slowdown on average for NAS benchmarks and a 191� slowdown on
average for Starbench programs. The overhead is not surprising since we perform
an exhaustive profiling for the whole program.

When using 8 threads, our parallel profiler gives a 97� slowdown (best case 19�,
worst case 142�) on average for NAS benchmarks and a 101� slowdown (best case
36�, worst case 253�) on average for Starbench programs. After increasing the
number of threads to 16, the average slowdown is only 78� (best case 14�, worst
case 114�) for NAS benchmarks, and 93� (best case 34�, worst case 263�) for
Starbench programs. Compared to the serial profiler, our parallel profiler achieves a
2.4� and a 2.1� speedup using 16 threads on NAS and Starbench benchmark suites,
respectively.
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Fig. 9 Memory consumption of the profiler for sequential NAS and Starbench benchmarks

4.4.2 Memory Consumption

We measure memory consumption using the “maximum resident set size” value
provided by /usr/bin/time with the verbose (-v) option. Figure 9 shows the
results. When using 8 threads, our profiler consumes 473 MB of memory on average
for NAS benchmarks and 505 MB of memory on average for Starbench programs.
The average memory consumption is increased to 649 and 1,390 MB for NAS and
Starbench programs, respectively. The worst case happens when using 16 threads to
profile md5, which consumes about 7.6 GB memory. Although this may exceed the
memory capacity configured in a three-year-old PC, it is till adequate for up-to-date
machines, not to mention servers that are usually configured with 16 GB memory or
more.

5 Conclusion and Outlook

We introduced a novel dynamic tool for the discovery of potential parallelism
in sequential programs. By building the concept of computational units (CUs)
and embedding it in a framework of combined static and dynamic analysis, we
can reconcile the identification of parallel tasks in the form of CU chains with
efficiency both in terms of time and memory. CU chains are not confined to
predefined language constructs but can spread across the whole program. Our
approach found 92.5 % of the parallel loops in NAS Parallel Benchmark (NPB)
programs and successfully identified tasks spanning several language constructs
as well as pipeline patterns. It also helped parallelizing a loop in spite of initial
dependences. Implementing the generated plan achieved reasonable speedups in
most of our test cases: up to 2.67 for independent tasks and up to 3.62 for pipelines
using a maximum of four threads.

In the future, we want to support further types of task parallelism including, for
example, TBB flow graph. Furthermore, we want to develop heuristics to validate
the suggestions before submitting them to the programmer, providing more accurate
and reliable results.
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Tareador: The Unbearable Lightness
of Exploring Parallelism

Vladimir Subotic, Arturo Campos, Alejandro Velasco, Eduard Ayguade,
Jesus Labarta, and Mateo Valero

Abstract The appearance of multi/many-core processors created a gap between the
parallel hardware and sequential software. Furthermore, this gap keeps increasing,
since the community cannot find an appealing solution for parallelizing applications.
We propose Tareador as a mean for fighting this problem.

Tareador is a tool that helps a programmer explore various parallelization strate-
gies and find the one that exposes the highest potential parallelism. Tareador dynam-
ically instruments a sequential application, automatically detects data-dependencies
between sections of execution, and evaluates the potential parallelism of different
parallelization strategies. Furthermore, Tareador includes the automatic search
mechanism that explores parallelization strategies and leads to the optimal one.
Finally, we blueprint how Tareador could be used together with the parallel
programming model and the parallelization workflow in order to facilitate paral-
lelization of applications.

1 Introduction

Parallel programming became an urge, an urge that the programmers community
fails to efficiently respond to. One of the biggest problems in the current computing
industry is the steady-growing gap between the increasing parallelism offered by
state-of-the-art architectures and the limited parallelism exposed in state-of-the-
art applications. Consequently, software parallelism has become concern of every
single programmer. However, parallelizing applications is far from trivial.

The community keeps inventing novel programming models as enablers for
transition to parallel software. These novel programming models come in various
flavours, offering different programming paradigms, levels of abstraction, etc.
However, most of the novel programming models fail to get widely adopted. It takes
a giant leap of faith for a programmer to take the already working application and
to port it to a novel programming model. This is especially problematic because the
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Fig. 1 There is a need to
make the complete
parallelization solution that
will contain not only the
development tool (DT), but
also the proposal of the
programming model (PM)
and the description of
workflow (WF) that guides
the process of parallelizing
applications solu�on

PM

WF

DT

programmer cannot anticipate how would the application perform within the new
programming model and thus whether the porting is worth the effort. Moreover, the
programmer usually lacks development tools and a clear idea how the parallelization
process should be conducted.

It is our belief that the programmers should be offered not only with the
programming model, but with the whole parallelization solution – a solution that
includes parallel programming model, parallelization development tool, and the
parallelization workflow that describes how to use the development tool to port the
sequential application to the selected parallel programming model. We believe that
the three parts of the solution need to be tailored to work together in the bigger
system (Fig. 1). The development tool should instrument the sequential application
and provide to the user the information that is relevant in the context of the target
parallel programming model. Finally, the parallelization workflow should glue the
tool and the programming model and define the process of parallelizing applications.

This paper attempts to paint the big picture of parallelization solution, putting
the special emphasize on the part of the parallelization development tool. More
specifically, this paper contributes in the following two directions:

• We present Tareador – a tool for assisted parallelization of sequential applica-
tions. Tareador allows the programmer to understand the inner workings of the
application, identify the dependencies between different parts of the execution
and evaluate the parallelism inherent in the code. We describe Tareador at its cur-
rent development phase, as a tool to explore potential parallelization strategies.
Furthermore, we also discuss the planed future development of Tareador in an
effort to make it a complete tool for assisted parallelization of applications.

• We describe the parallelization solution that includes Tareador. We propose a
parallel programming model that best suits the Tareador obtained information,
and describe the workflow that uses Tareador to parallelize application by porting
it to the target programming model.

The rest of the paper is organized as follows. Section 2 illustrates the problem of
finding the optimal parallelization strategy. Section 3 describes the implementation
and usage of Tareador environment. Furthermore, in Sect. 4 we describe the
automatic algorithm that automatically drives Tareador in exploration of good
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parallelization strategies. We describe the heuristics and metrics that guide the
automatic search and show the results of automatic search in the case of couple
of well-known applications. Furthermore, we include a broad discussion of how
we see Tareador being a part of the whole environment for easy parallelization of
applications (Sect. 5). We declare our selection of the parallel programming model
and devise a custom parallelization workflow that would facilitate parallelization
of applications. Finally, we conclude the paper with the related work on the topic
(Sect. 6) and the conclusions of our study (Sect. 7).

2 Motivating Example

Parallelization of a sequential application consists of decomposing the code into
tasks (e.g. units of parallelism) and implementing synchronization rules between
the created tasks. However, even if the sequential application is simple, finding
the optimal task decomposition can be a difficult job. The application may exhibit
parallelism that is very distant and irregular, parallelism among sections of code
that are mutually far from each other. This type of parallelism is very hard for the
programmer to identify and expose without any development support. Thus, to find
the optimal parallelization strategy, the programmer must know the source code in
depth in order to identify all the data dependencies among tasks. Furthermore, the
programmer must anticipate how will all the tasks execute in parallel, and what is
the possible parallelism that these tasks can achieve.

Figure 2 shows a simple sequential application composed of four computa-
tional parts, the data dependencies among those parts, and some of the possible
taskification strategies. Although the application is very simple, it allows various
decompositions that expose different amount of parallelism. T 0 puts all the code
in one task and, in fact, presents a sequential code. T1 and T 2 both break the
application into two tasks but fail to expose any parallelism. On the other hand, T 3

and T 4 both break the application into 3 tasks, but while T 3 achieves no parallelism,
T 4 exposes concurrency between C and D. Finally, T 5 breaks the application
into 4 tasks but achieves the same amount of parallelism as T 4. Considering that
increasing the number of tasks increases the runtime overhead, one can conclude
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Fig. 2 Execution of different possible taskifications for a code composed of four parts
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that the optimal taskification is T 4, because it gives the highest speedup with the
lowest cost of the increased number of tasks.

Nevertheless, compared to the presented trivial execution, a real-world appli-
cation would be more complex in various aspects. A real application may have
hundreds of thousands of task instances, causing complex and well populated depen-
dency graphs. The large dependency graph would allow unpredictable scheduling
decisions that would potentially exploit distant parallelism. Also, with the task
instances of different duration, evaluating the potential parallelism would be even
harder. Due to all this complexity, it is unfeasible for a programmer alone to
do the described analysis and estimate the potential parallelism of a certain
task decomposition. Therefore, we believe that it would be very useful to have
an environment that quickly anticipates the potential parallelism of a particular
taskification. We describe such a framework in the following section.

3 Tareador Environment

Tareador allows the programmer to start from a sequential application, propose
some decomposition of the sequential code into tasks and get fast estimation of
the potential parallelism. The input to Tareador is a sequential code. Tareador
compiler marks all logical sections of code as potential tasks. In addition, the
user can manually annotate other potential task. The annotated code is executed
sequentially – all annotated tasks are executed in the order of their instantiation.
Tareador dynamically instruments the sequential execution and collects the log of
memory usage of each potential task. Once the logs are generated, Tareador allows
the programmer to select one task decomposition of the sequential code. For the
selected decomposition, Tareador calculates inter-task dependencies and evaluates
the potential parallelism of the decomposition providing to the user the results in the
form of:

• Simulation of the potential parallel execution;
• Dependency graph of all task instances;
• Visualization of the memory usage of each task.

Tareador environment integrates various internally and externally developed
tools. The framework (Fig. 3) takes the input code and compiles it with LLVM-
based [1] Tareador compiler. The execution of the obtained binary generates
Tareador execution logs. Further post-mortem processing of the execution logs
is encapsulated into Tareador GUI. Tareador GUI allows the user to select one
decomposition. Based on the selected task decomposition, Tareador backend
consumes the execution logs to calculate final results. More specifically, Tareador
backend generates execution trace that Dimemas [2] simulates to obtain Paraver
[3] time-plots of the potential parallel execution. Also, Tareador backend produces
the task dependency graph that can be visualized with Graphviz [4], as well as
dataview information that can be visualized internally by Tareador GUI.
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Fig. 3 Tareador framework

3.1 Implementation Details

Tareador uses LLVM framework to dynamically instrument the sequential appli-
cation and collect the log of all potential tasks and their memory usage. Tareador
compiler injects to the original sequential execution instrumentation callbacks that
collect the data needed for Tareador analysis. First, Tareador compiler must mark
all the potential tasks in the execution. The compiler marks as a potential task every
logical code section that can take a significant amount of time – each function,
loop or loop iteration. Also, the compiler allows the user to manually annotate any
potential task by wrapping an arbitrary code sections using Tareador API (example
in Sect. 3.2). Furthermore, Tareador intercepts and processes each memory access of
the sequential execution. Finally, based on the dynamically collected information,
Tareador flushes the execution log that contains all intercepted potential tasks
and their memory usage. The resulting log is indexed to allow fast post-mortem
browsing.

Tareador GUI allows the user to easily browse different task decompositions of
the instrumented execution. Given the configuration of one task decomposition,
Tareador backend consumes the execution logs to evaluate the parallelism of
the decomposition. The backend finds all the specified tasks in the execution
log, calculates data-dependencies between them and prepares outputs for different
visualization tools. Finally, GUI allows the user to see all the obtained results and
select how to refine the decomposition to achieve higher parallelism.
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Fig. 4 Applying Tareador on dot product kernel. (a) Source code. (b) Task dependency graph.
(c) Potential parallel execution (4 cores). (d) Visualization of memory accesses

3.2 Illustration of Tareador Usage

This section illustrates the usage of Tareador by applying it on a simple code of
dot product computation (Fig. 4). Figure 4a shows the original sequential code
(code in black). The code initializes two buffers operands in two loops, and then
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computes the result in function dot_product. In order to prepare the execution for
Tareador instrumentation, the user adds the gray code lines. To mark which code
section will be instrumented by Tareador, the user inserts functions tareador_ON
and tareador_OFF (code lines 16 and 26). Furthermore, to propose one task
decomposition, the user inserts calls tareador_start_task and tareador_end_task.
Additional strings passed to these functions mark the name of the task that is
encapsulated by the matching calls. In the presented examples, the selected task
decomposition splits the sequential execution into 2 initializing tasks (init_A and
init_B) and 16 computational tasks (inner_product), one for each iteration of
the loop in dot_product function. It is important to note that Tareador can work
without these user annotations that mark the decomposition. Tareador compiler can
automatically mark all the potential tasks and then the different task-decomposition
could be browsed through Tareador GUI, without the need to modify the target
sequential code.

For the selected task decomposition, Tareador automatically evaluates the poten-
tial parallelism. First output that evaluates parallelism is a tasks dependency graph
(Fig. 4b). The tasks dependency graph is a directed cyclic graph where each node
represents a task instance, while each edge represents a data-dependency between
two task instances. In the presented example, the blue and red nodes represent tasks
init_A and init_B , while the green nodes represent instances of inner_product. The
graph shows that each instance of inner_product depends on init_A, init_B and the
previous instance of inner_product (if any). The second Tareador output is the time-
plot of the potential parallel execution of the selected decomposition (Fig. 4c). The
figure shows, for each of the 4 cores in the parallel machine (y-axis), which task
executes in any moment of time (x-axis). The colors representing task types match
the colors from the dependency graph. The presented plot confirms that green task
instances (inner_product) are serialized.

Tareador’s dataview visualization can further pinpoint the memory objects that
impede parallelism. Figure 4d shows for all task instances the memory access
patterns within the objects of interest. As expected, the initialization tasks (init_A

and init_B) access only their target arrays. On the other hand, each instance of
inner_product reads one element from both arrays A and B and increments acc
(inout access stands for both input and output). Therefore, dependencies between
instances of inner_product are caused by the memory object acc.

Going back to the source code for from Fig. 4a, we can recognize the dependency
on the object acc as an apparent case that can be avoided using reduction. Thus,
Tareador allows the user to evaluate the potential parallelism if the dependency on
acc is to be avoided using reduction. The user can uncomment the code lines 8

and 10 and declare that, within the encapsulated code snippet, the memory accesses
to acc should be omitted. In other words, the user instructs Tareador to ignore the
dependency on the object acc. Consequently, the resulting decomposition allows
concurrency between instances of inner_product, as shown in Fig. 5.

For the illustration purpose, in this section we decided to describe the usage of
the lite mode of Tareador. The lite mode requires the user to manually mark the
task decomposition of the code. Every time the user specifies the decomposition,
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Fig. 5 Applying Tareador on dot product kernel (disabled accesses to acc). (a) Task dependency
graph. (b) Potential parallel execution (4 cores)

Tareador outputs the described results. Conversely, the original Tareador mode
requires no annotations of the target sequential code. In the original mode, Tareador
compiler automatically marks all the potential tasks in the sequential code, and lets
the user browse all the potential decompositions through Tareador GUI. For the
purpose of parallelizing applications, original mode is much more efficient than then
lite mode. However, for demonstrative/teaching purposes, the lite mode is preferred.
This is because the lite mode makes the students be more involved with the actual
target code. Every time the student wants to change the decomposition, she is forced
to interact with the target code and understand better the sources of parallelism. The
lite mode of Tareador has been successfully introduced into the teaching curriculum
of parallel programming courses at the Technical University of Catalonia.

4 Automatic Exploration of Parallelism with Tareador

In our prior work [5] we demonstrated how a programmer can use Tareador to
iteratively explore the task decomposition space and find the decomposition that
exposes sufficient parallelism to efficiently deploy multi-core processors. However,
the presented process relied strongly on programmer’s experience to guide the
search. To further facilitate the process of finding optimal parallelization strategy,
our next goal is to formalize the programmers’ experience into an autonomous
algorithm for automatic search of potential parallelization strategies. The rest of
this section describes the autonomous algorithm and metrics and heuristics that
define it.

The automatic exploration of parallelization strategies is based on: evaluating
parallelism of various decompositions; collecting key parameters that identify
the parallelization bottlenecks; and refining decompositions in order to increase
parallelism. The search algorithm is illustrated in Fig. 6. The inputs of this algorithm
are the original unmodified sequential code and the number of cores in the target
platform. The search algorithm passes through the following steps:

1. Start from the most coarse-grain task decomposition, i.e. the one that considers
the whole main function as a single task.

2. Perform an estimation of the potential parallelism of the current task decompo-
sition (the speedup with respect to the sequential execution).
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Fig. 6 Algorithm for exploring parallelization strategies

3. If the exit condition is met (Heuristic 2), finish the search.
4. Else, identify the parallelization bottleneck (Heuristic 1), i.e. the task that should

be decomposed into finer-grain tasks.
5. Refine the current task decomposition in order to avoid the identified bottleneck.

Go to step 2.

4.1 Algorithm Heuristics

In the following sections, we further describe the design choices made in designing
the mentioned heuristics. Nevertheless, first we must define more precise terminol-
ogy. Primarily, we must make a clear distinction between a task type (function
that is encapsulated into task) and a task instance (dynamic instance of that
function). For instance, if function compute is encapsulated into a task, we will
say that compute is a task type, or just a task. Conversely, each instantiation of
compute we will call a task instance, or just an instance. A task instance is atomic
and sequential, but various instances (of same or different task type) can execute
concurrently among themselves.

Also, we will often use a term breaking a task to refer to the process of
transforming one task into more fine-grain tasks. For example, Fig. 7 illustrates
decomposition refining in a case of a simple code. The process starts with the most
coarse-grain decomposition (D1) in which function A is the only task. By breaking
task A, we obtain decomposition D2 in which A is not a task and instead its direct
children (B and C ) become tasks. If in the next step we break task B , assuming
that B contains no children tasks, B will be serialized (i.e. B is not a task anymore
and its computation becomes a part of the sequential execution). Similarly, the next
refinement serializes task C and leads to the starting sequential code. At this point,
no further refinement is possible, so the iterative process naturally stops.
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void A() {
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}
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06 int main () {

A();
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tasks D1 D2 D3 D4

Fig. 7 Iterative refinement of decompositions

4.1.1 Heuristic 1: Which Task to Break

In the manual search for an efficient decomposition, the programmer decides which
task is the parallelization bottleneck. The practice shows that the bottleneck task is
often one of the following:

1. The task whose instances have long duration, because a long instance may
cause significant load imbalance.

2. The task whose instances have many dependencies, because an instance with
many dependencies may be a strong synchronization point.

3. The task whose instances have low concurrency, because an instance with low
concurrency may prevent other instances to execute in parallel.

Our goal is to formalize this programmer experience into a simple set of metrics that
can lead an autonomous algorithm for exploring potential task decompositions. The
goal is to define a cost function for task type i as:

ti D li .pl / C di .pd / C ci .pc/ (1)

where li , di and ci are functions that calculate the partial costs related to tasks’
length, dependencies count and concurrency level. On the other hand, parameters
pl , pd and pc are empirically identified parameters that tune the weight of each
partial cost within the overall cost. The following paragraphs further describe the
operands from Eq. 1.

Metric 1: Task Length Cost

A task type that has long instances is a potential parallelization bottleneck. Thus,
based on the length of instances, we define a metric called length cost of a task type.
Length cost of some task type is proportional to the length of the longest instance
of that task. Therefore, if task i has instances whose lengths are in the array Ti , the
length cost of task i is:

li D max.t/; t 2 Ti (2)
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Furthermore, we define a normalized length cost of task i as:

li .p/ D .li /
p

NP

j D1

.lj /p

; 0 � p < 1 (3)

where the control parameter p is used to tune the distribution of normalized costs
(explained later in this section).

Metric 2: Task Dependency Cost

A task type that causes many dependencies is another potential parallelization
bottleneck. Thus, based on the number of dependencies (sum of incoming and
outgoing dependencies), we define a metric called dependency cost of a task
type. Dependency cost of some task is proportional to the maximal number of
dependencies caused by some instance of that task. Therefore, if task i has instances
whose numbers of dependencies are in the array Di , the dependencies cost of task
i is:

di D max.z/; z 2 Di (4)

Furthermore, using a control parameter p, we define the normalized dependency
cost of task i as:

di .p/ D .di /
p

NP

j D1

.dj /p

; 0 � p � 1 (5)

Metric 3: Task Concurrency Cost

A task type that has low concurrency is another potential parallelization bottleneck.
Concurrency of some instance is determined by the overall utilization of the machine
during the execution of that instance. Thus, we define concurrency cost of some
task to be inversely proportional to the average number of cores that are efficiently
utilized during the execution of that task. Therefore, if task i has task instances
which run for time Ti;j while there are j cores efficiently utilized, the concurrency
cost of task i is:

ci D

coresP

j D1

Ti;j

j

coresP

j D1

Ti;j

(6)
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Again, using a control parameter p, we define the normalized concurrency cost of
task i as:

ci .p/ D .ci /
p

NP

j D1

.cj /p

; 0 � p � 1 (7)

Control Parameter p

Introduction of the parameter p provides the mechanism for controlling the mutual
distance of the normalized costs for different tasks. For instance, let us assume that
the application consists of two task instances, A and B , where A is two times longer
than B . If the control parameter pl is equal to 1, the normalized length costs for
tasks A and B are 0:67 and 0:33, respectively. However, if the control parameter pl

is equal to 2, the costs for tasks A and B become 0:8 and 0:2, respectively.
Therefore, by changing parameter p of some metric, we can control the impact

of that metric on the overall cost. For example, if the control parameter for length
cost is 0, all task types will have the same normalized length cost, independent of
the length of task instances. Thus, the length of tasks would have no impact on the
overall cost. On the other hand, if the control parameter for length cost is infinite,
the task type with the longest instance will have the normalized length cost of 1,
while all other task types will have the normalized length cost of 0. This way, the
impact of the task length on the overall cost would be maximized.

4.1.2 Heuristic 2: When to Stop Refining the Decomposition

The algorithm also needs a condition to stop the iterative search. Iterative search
leads to fine grain decompositions that instantiate a very high number of tasks.
An excessive number of tasks causes a very complex and computation intensive
evaluation of the potential parallelism. Thus, to make the complete automatic search
viable, we must adopt the exit condition that will prevent processing unnecessary
decompositions.

To construct the Heuristic 2, we must create a system for rating the quality of a
decomposition. Our basic rating system consists of two rules. First, out of all tested
decompositions, the optimal decomposition is the one that achieves the highest
parallelism. Second, if the optimal decomposition achieves the parallelism of sopt

and instantiates topt tasks, and some other decomposition i achieves the parallelism
of si and instantiates ti tasks, the relative quality of decomposition i compared to
the optimal decomposition is:

Qualityi D
�

si

sopt

�

�
�

topt

ti

�exp_tasks

; 0 � exp_tasks � 1 (8)
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Thus, the relative quality of some decomposition drops as the achieved parallelism
drops and as the number of instantiated tasks increases. Furthermore, the parameter
exp_tasks serves to tune the impact of the number of instantiated tasks.

Finally, Heuristic 2 mandates that the iterative search stops if the current
decomposition has relative quality lower than some threshold value:

Qualityi < .Qthreshold/
cores
sopt ; 0 � Qthreshold � 1 (9)

The right side of this expression increases with the increase of the parallelism of
the optimal task decomposition. Thus, if the optimal found parallelism is close
to the theoretical maximum (number of cores in the target machine), finding a
better decomposition is unlikely, so the algorithm should tolerate only low quality
degradations. On the other hand, if the optimal found parallelism is far from the
theoretical maximum, the algorithm should be more aggressive in finding a better
decomposition, and therefore allow high degradations of quality.

4.2 Tareador Environment for Automatic Exploration
of Parallelism

In order to adapt Tareador for automatic exploration of parallelism, into the original
environment we additionally introduced Paramedir and search Driver. Paramedir
[6] (the non-graphical user interface to the Paraver) extracts parallelization metrics
described in Sect. 4.1. On the other hand, the Driver iteratively explores parallelism
by specifying in each iteration a different list of tasks that compose the current
task decomposition (Fig. 8). More specifically, the Driver guides the environment
through the following steps:

1. Generate execution logs: dynamically instrument the sequential application and
derive execution logs.

2. Select the starting decomposition: put the whole main into one task.
3. Estimate the parallelism of the current decomposition: generate traces that

estimate the parallelism of the current decomposition.
4. If the exit condition is fulfilled, finish: if the Quality of the current decomposi-

tion is unsatisfactory (Heuristic 2), end the search.
5. Else, identify the parallelization bottleneck: process the traces with Paramedir

to derive metrics that identify the bottleneck task (Heuristic 1).
6. Refine the current decomposition to increase parallelism: break the bottle-

neck task into its children tasks, if any. Update the list of tasks that should be
included in the next decomposition.

7. Proceed to the next iteration: go to step 3.
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Fig. 8 Environment to automatically explore possible task decompositions

Table 1 Empirically
identified parameters
of the automatic search

pl pd pc exptasks Qthreshold

1 1 3 log101:5 0.75

4.3 Experiments

Our experiments explore possible parallelization strategies for two well-known
applications (Cholesky and LU factorization). We select a homogeneous multi-core
processor as the simulated target platform. The goal of our experiments is to show
that the proposed search algorithm, metrics and heuristics can find decompositions
that provide significant parallelism.

Table 1 lists the empirically identified values for the parameters defined in
Sect. 4.1. As already mentioned, the total cost function is a sum of length,
dependency and concurrency cost (Eq. 1). Moreover, since our initial experiments
showed that concurrency criterion prevails very rarely, we decided to increase the
weight of the concurrency cost. Furthermore, in Eq. 8, we set the parameter exptasks

so that the increase of task instances by a factor of 10 is equivalent to the decrease
of parallelism by a factor of 1:5. Finally, in Eq. 9, parameter Qthreshold was set
empirically to allow sufficient quality degradation for a flexible search.

4.3.1 Illustration of the Iterative Search

To illustrate the algorithm we will use the example of parallelizing Cholesky
sequential code on a simulated machine with 4 cores. Figure 9 presents (on the
left) the code of Cholesky and illustrates (one the right) how the code can be
encapsulated into tasks for various decompositions (D1–D6). Note that marked
task types (boxes with numbers) may generate multiple task instances, and that
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Fig. 9 Cholesky: decomposition of the code into tasks

Table 2 Cholesky: task costs (Heuristic 1)

Decomposi�on Speedup Task #1 Task #2 Task #3 Task #4

D1 1.00 1.00 1.00 1.00 3.00
D2 1.30 0.51 0.21 0.24 0.96 0.29 0.25 0.12 0.67 0.03 0.13 0.15 0.31 0.17 0.41 0.49 1.06
D3 1.49 0.59 0.44 0.48 1.51 0.34 0.18 0.22 0.74 0.04 0.18 0.27 0.48 0.03 0.21 0.03 0.27
D4 2.30 0.42 0.25 0.04 0.71 0.49 0.24 0.50 1.22 0.05 0.24 0.42 0.70 0.04 0.28 0.04 0.36
D5 3.41 0.72 0.27 0.11 1.10 0.12 0.17 0.13 0.43 0.09 0.25 0.61 0.95 0.07 0.30 0.15 0.52
D6 3.64 0.31 0.21 0.13 0.30 0.17 0.22 0 70 0.22 0.25 0 50 0 97 0.17 0.36 0.14 0 68

)1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it )1(il )1(id )3(ic it

D6 0.65 0.70 0.50 0.97 0.68

the code outside of marked tasks belongs to the master task (sequential part of
execution that spawns worker tasks). Table 2 shows the speedup achieved in each
decomposition and the costs that guide the iterative search. The algorithm starts
from the most coarse-grain decomposition D1 that puts the whole execution into
one task. There is only one task (#1, lines 2–11), which is automatically the critical
task that needs to be broken. Refining D1 generates decomposition D2 that achieves
the speedup of 1:30 (Table 2) and consists of 4 different task types (Fig. 9): #1 that
covers the first loop (lines 3–5); #2 that covers the second loop (lines 6–7); #3 that
covers function spotrf_tile (line 8); and #4 that covers the third loop (lines 9–10).
Heuristic 1 identifies task #4 as the most critical, mostly due to its high concurrency
cost. Thus, the following decomposition (D3) breaks the task #4 and obtains the
parallelism of 1:49. In D3, the algorithm identifies task #1 as the bottleneck (due
to its high length). Further iterations of the algorithm pass through decompositions
D4, D5 and D6 that provide speedups of 2:30, 3:41 and 3:64, respectively.

4.3.2 Results

This subsection presents the results obtained by applying our algorithm on a set of
applications. For each application, we present four plots that illustrate the process
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Fig. 10 Cholesky on 4 cores

of automatic task decomposition. The first plot presents the parallelism of all tested
decompositions – the speedup over the sequential execution of the application. The
second plot shows the number of task instances generated by each decomposition.
Also, the first two plots show the parallelism and the number of instances in the
reference task decomposition (the decomposition selected and implemented by an
expert programmer). The third plot presents the cost distribution for the bottleneck
task of each iteration. Finally, the fourth plot shows the most dominant cost for the
bottleneck task.

The proposed search algorithm finds decompositions with very high parallelism,
sometimes finding the decomposition manually selected by an expert programmer.
The algorithm finds the reference decomposition for Cholesky in iteration 7

(Fig. 10). In order to get to this decomposition, the algorithm refines decompositions
based on the concurrency criterion in iterations 3 and 5. Soon after finding the
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Fig. 11 Sparse LU on 4 cores

reference decomposition, the algorithm passes through the decomposition that
activates the mechanism for stopping the search (Heuristic 2).

Sparse LU (Fig. 11), as a more complex application, demonstrates the power of
our search. Compared to Cholesky, Sparse LU forces the algorithm to use various
bottleneck criteria through the exploration of decompositions. It is interesting to
note that the search finds a wide range of decompositions (iterations 17–28) that pro-
vide higher parallelism than the reference decomposition. In this case, it is unclear
which of these decompositions is the optimal one. Quantitative reasoning suggests
that the optimal task decomposition is the one that provides highest parallelism with
the lowest number of created task instances. Following this reasoning, the optimal
decomposition (iteration 22) achieves the speedup of 3:98 with the cost of 301

instantiated tasks (note the sudden drop in the number of task instances). On the
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Fig. 12 Sparse LU on 8 cores

other hand, qualitative reasoning suggests that, within a set of decompositions that
provide similar parallelism generating a similar number of instances, the optimal
decomposition is the one that is the easiest to express using semantics offered
by the target parallel programming model. For example, our algorithm may find
a decomposition that extracts very irregular parallelism that cannot be expressed
using a fork-join programming model. In that case, it is programmer’s responsibility
to, out of few offered efficient task decompositions, identify the one that can be
straightforwardly implemented using a specific programming model.

It is also interesting to study how the algorithm adapts to the target parallel
machine. Changing the parallelism of the target machine changes the simulation
of the parallel execution of the tested decomposition. Thus, changes the normalized
concurrency cost, while dependency and length cost remain the same. Figures 12
and 13 illustrate potential decompositions for Sparse LU for executing on machines
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Fig. 13 Sparse LU on 16 cores

with 8 and 16 cores. In the experiments with 8-core target machine (Fig. 12), the ref-
erence decomposition achieves the speedup of 7:1 at the cost of generating 316 task
instances. The automatic search finds a wide range of decompositions (iterations 21–
30) that provide slightly higher parallelism than the reference decomposition. On the
other hand, in the experiments with 16-core target machine (Fig. 13), the reference
decomposition achieves the speedup of 8:85 (316 instances). The algorithm finds
only five decompositions (iterations 21–25) that provide higher parallelism than
the default decomposition. It is also interesting to note that in the experiment with
16-core target machine, the algorithm more often refines the decomposition using
the concurrency criterion. This happens because, despite the fine granularity of
decompositions, the algorithm cannot find decomposition with parallelism close to
the theoretical maximum of 16 (number of cores in the target machine).
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5 Discussion: Tareador in the Big Scheme of Things

This section describes our idea of Tareador’s role in the complete solution for
parallelizing applications. As already mentioned, the solution for parallelization of
applications must include not only the development tool but also the appropriate
parallel programming model and the parallelization workflow. Parallel program-
ming model should be chosen so the results obtained by the development tool can
be useful in expressing parallelism. On the other hand, the parallelization workflow
should describe how the development tool is used in the process of parallelizing
applications for the target parallel programming model.

5.1 OmpSs (OpenMP 4.0)

In order to design a good parallelization solution, the target parallel programming
model should follow the philosophy of the development tool. Different parallel
programming models mainly differ in the nature of the parallelism that can be
exploited, and the way in which the parallelism is expressed. Most of the mainstream
parallel programming models rely on the fork-join parallelism [7, 8] Fork-join par-
allelism in the original context follows all-or-nothing philosophy – it distinguishes
between the sequential sections that have no parallelism and parallel sections where
everything is parallel. Thus, these programming model allow expressing which code
sections are sequential and which parallel. Other programming models rely on the
dataflow paradigm [9, 10]. Dataflow parallelism tries to define for each pair of tasks
whether they are dependent or not. In most of the dataflow programming models,
the programmer expresses memory usage of each task type and then the runtime
system dynamically calculates intertask dependencies.

In a parallelization solution that includes Tareador, we propose using OmpSs
as the target parallel programming model. OmpSs [9] is a programming model
developed in Barcelona Supercomputing Center as a forefront for OpenMP [7]. In
fact, most of the main OmpSs ideas are already introduced in OpenMP 4.0 standard
[11]. OmpSs is a directive-based dataflow parallel programming model. Figure 14
illustrates how OmpSs extracts parallelism in Cholesky kernel. Figure 14a shows the
sequential Cholesky code (code in black-bold) and the OmpSs pragma directives
needed to expose parallelism (code in gray). Thus, if a programmer wants some
function to execute as a task, she must annotate the function declaration with the
pragma directive that specifies the directionality of each function argument (input,
output, inout). Based on these directives, the runtime system dynamically generates
the dependency graph of all task instances (Fig. 14b). Once the dependency
graph is generated, the runtime can execute task instances out of order, as long
as dependencies are satisfied. This type of dataflow execution allows extracting
very irregular parallelism that cannot be expressed with fork-join parallelism.
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Fig. 14 Cholesky parallelized with OmpSs. (a) Source code. (b) Task dependency graph
(Note: The code listing marks for each function the color of the node that represents it in the
dependency graph)

Furthermore, numerous research papers prove that OmpSs outperforms OpenMP
in many well-known scientific applications [12, 13].

We consider OmpSs programming model as a specially good fit for Tareador
development tool. For a specified task decomposition, Tareador dynamically cal-
culates the memory usage of each task and then calculates potential inter-task
dependencies. Therefore, the information obtained by Tareador naturally maps to
the information needed to express OmpSs parallelism (directionality of function
arguments inside pragmas). Furthermore, OmpSs facilitates automatic generation
of parallel code. Being a directive-based parallel programming model, OmpSs adds
pragma annotations, but maintains the original code structure of the sequential
application. Therefore, it is easy to suggest how to change the sequential code in
order to parallelize it, much easier than in the case when the code structure needs to
be modified (for instance, in the case of pthreads [14]).

5.2 Parallelization Workflow

Figure 15 illustrates the parallelization workflow for using Tareador. At the current
stage of development, Tareador serves as a tool to explore potential parallelism
in sequential applications. Thus, starting from the sequential code (#0), Tareador
LLVM module (#1) generates execution logs (#2). Processing the logs, Tareador
GUI explores various task decompositions (#3) and evaluates their potential
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Fig. 15 Parallelization workflow using Tareador

parallelism (#4). Furthermore, Tareador collects and visualizes memory access
patterns of all all tasks (#5). This part of development is already finished.

The rest of the Figure represents planed future development of Tareador envi-
ronment. Currently, Tareador evaluates only unbounded parallelism – parallelism
not limited by constraints of the target parallel programming model. In other words,
Tareador identifies two tasks as dependent iff the first task writes at least on byte
that the second task reads. However, Tareador omits to consider whether the tested
decomposition can be implemented – whether the targeted parallel programming
model offers parallelization primitives that can express the identified parallelism.
Thus, the next step for Tareador is to evaluate the portion of the potential parallelism
that can be expressed using the target parallel programming model (#6). Once this
step is finished, Tareador should output the content of pragma primitives that are
required to expose parallelism (#7). Thus, the correct parallel code could be obtained
(#8). However, in most applications, the parallel efficiency of the code obtained this
way will be unsatisfactory.

The potential of automatic parallelization is limited by unfavorable access pat-
terns to some memory objects. If simple decomposition of the sequential code into
tasks cannot provide sufficient expressible parallelism, Tareador should pinpoint
the memory objects with unfavorable access patterns (#9). Also, Tareador should
suggest to the programmer how to change these access patterns (#10) in order for
the automatic parallelization to be more efficient. Then, the programmer should
manually change the culprit access patterns (#11) and pass the new application
for the next attempt of automatic parallelization. It is important to note that in the
proposed workflow, the programmer modifies only the sequential application and
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adapts it so the automatic parallelization could be more efficient. Finally, Tareador
should process the application for different inputs (#12) that exercise potentially
different parts of the source code. The parallelization strategy that suits all tested
inputs should be accepted as the final one.

Nevertheless, Tareador development will continuously dedicate to optimization
of the instrumentation (#13). Currently we are developing the profiler tools whose
output should facilitate optimization of the original Tareador instrumentation.
Firstly, the profile information should allow better blacklisting of code sections that
are promoted into potential tasks. Furthermore, profiler should allow sampling by
pinpointing smaller parts of execution that can be representatives of the whole run.
Also, profile information should suggest how to parallelize the instrumentation by
separately instrumenting different parts of execution and then merging the obtained
logs. Finally, the profiler should monitor the process of reducing the problem size
while preserving the characteristic behavior of the application.

6 Related Work

Numerous tools to assist parallelization have been proposed in the past years both
from the academia and the industry. Regarding tools proposed by the academia, the
ones closest to the environment that has been proposed in this paper are Embla,
Kremlin, and Alchemist. In particular, Embla [15] is a Valgrind-based tool that
estimates the potential speed-up for Cilk programs. On the other hand, Kremlin
[16] identifies regions of a serial program that can be parallelized with OpenMP
and proposes a parallelization planner for the user to parallelize the target program.
Finally, Alchemist [17] identifies parts of code that are suitable for thread-level
speculation. The major drawbacks of these tools are that they are limited to fork-
join parallelism and that they offer very little qualitative information about the target
program (no useful visualization support).

On the other side, the industry have also been recently developing their solutions
for assisted parallelization. For example, Intel’s Parallel Advisor [18] assists
parallelization with Thread Building Blocks (TBB) [19]. Parallel Advisor provides
timing profile that suggests to the programmer which loops should be parallelized.
Critical Blue provides Prism [20], a tool to do “what-if” analysis that anticipates
the potential benefits of parallelizing certain parts of the code. Vector Fabrics
provides Pareon [21], another tool for “what-if” analysis to estimate the benefits
of parallelizing loop iterations. All the three mentioned tools provide rich GUI
and visualization of the potential parallelization. However, none of the tools offers
automatic exploration of parallelization strategies. Moreover, they do not provide
any API to automate the search for the optimal parallelization strategy as the one
proposed in this paper.
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7 Conclusion and Future work

The software community is facing a paramount task of parallelizing the existing
body of sequential applications. Current mainstream hardware provides extremely
high parallelism, but state-of-the-art sequential software cannot take advantage of
this abundance of resources. To adapt current applications for the novel hardware,
we must approach the challenge of parallelization.

In order to tackle this issue, in this paper we present Tareador – a tool for
assisted parallelization. Tareador allows to the programmer to easily browse various
parallelization strategies and choose the one that promises the highest parallelization
potential. Furthermore, Tareador provides very rich visualization of the results,
offering deeper insight into the potential parallelism and pinpointing the culprits
for low performance. We showed how Tareador is used for teaching parallelism at
the University courses, as well as for actually parallelizing sequential applications.

At the current stage of development, Tareador is useful for exploring the potential
parallelism inherent in the applications. However, we describe our future develop-
ment directions in order to upgrade Tareador into a tool for automatic parallelization
of sequential applications. We also blueprint the parallelization process that the
programmer should follow in order to use Tareador to port sequential application
to OmpSs parallel programming model.
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Tuning Plugin Development for the Periscope
Tuning Framework

Isaías A. Comprés Ureña and Michael Gerndt

Abstract Periscope, the automatic performance analysis tool, was extended in the
European AutoTune project to support automatic tuning. As part of the extension,
the tool provides a framework for the development of automatic tuners. The
Periscope Tuning Framework (PTF) facilitates the development of advanced tuning
plugins by providing the Tuning Plugin Interface (TPI). The tuners are implemented
as plugins that are loaded at runtime. These can access the performance analysis
features of Periscope as well as its automatic experiment execution support. The
partners in AutoTune developed tuning plugins for compiler flag selection, MPI
library parameters, MPI IO, master/worker applications, parallel pattern applica-
tions, and energy efficiency. This presentation will outline the development of tuning
plugins and gives examples from the plugins developed in AutoTune.

1 Introduction

Current computing hardware is undeniably parallel. In mobile and embedded sys-
tems, low power multi-core CPUs are already the norm. In high-end workstations,
common configurations consist of multi- and many-core CPUs with accelerators
that integrate thousands of vector processing units. In HPC systems, the amount
of parallel processing capacity is further increased by attaching nodes with already
highly parallel processing hardware through high performance networks. Tools that
help developers extract acceptable performance on these parallel systems are of
increased importance given the current trend towards parallelism, and this is more
so in the context of HPC, where the trend can be observed in its strongest form.
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Current tools used in HPC systems are actively improved in terms of their
scalability. In this area of computing, tools that are not able to adapt to thousands of
MPI processes in the global scope and tens of threads at the node level, risk limiting
their usability and, in the worst case, becoming obsolete.

The improved scalability of the tools to cope with the increased amount of
parallelism is today not sufficient. In addition to the tools actually running efficiently
in these new systems, the presentation of information to the user needs to be adapted,
and aspects of performance that were addressed directly by the users now should,
as much as possible, be automated.

Most of the current tools focus on the presentation of information for the users,
while a few focus on the automation of the optimization process. The tool presented
in this paper focuses on the later. The Periscope Tuning Framework (PTF) provides
a generic platform that can be used by programmers to develop automatic tuners.
The framework is also distributed with automatic tuners that can be used directly by
users. PTF differs from other tools, in that the tuning process is based on a mix of
expert knowledge, Periscope analyses and search strategies.

The aim of this paper is to first introduce the Periscope Tuning Framework (PTF)
from an abstract software architecture, and second give a concrete introduction to
the actual C++ framework with a sample implementation. Section 2 introduces the
general architecture of the framework. In Sect. 3 the expert knowledge utilized in
the implementation of the distributed tuning plugins is explained. The interface
provided for the development of automatic tuners is introduced in Sect. 4, followed
by an explanation on how to use it in Sect. 5. After that, a sample OpenMP plugin
that optimizes thread counts is presented in Sect. 5.3. The Sects. 5.4 through 5.8
cover some of the features of PTF, as individual extensions to the OpenMP plugin.
Finally, results from applying the sample OpenMP plugin to the NAS Parallel
Benchmark’s Block Tridiagonal solver are presented in Sect. 6.

1.1 Related Work

The HPC tools community has produced a rich collection of tools that scale to
current petascale systems and continue to improve in anticipation of exascale
systems. The community produces tools with relatively low overlap; the tools tend
to focus on precise areas of interest depending on the type of parallel hardware
platform, programming model, runtime environment and programming language.
From the vast list of available tools, some of them will be briefly mentioned in this
section.

Scalasca [4] provides information about possible performance bottlenecks; in
particular, it tries to identify those related to communication and synchronization.
Vampir [3] focuses on the collection and graphical representation of performance
data, in particular traces and profiles. The TAU Performance System [8] is a
toolkit for tracing and performance analysis of parallel applications. A common
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infrastructure for the collection of traces and generation of profile information is
ScoreP [7].

Tools that focus particularly on automatic tuning have been widely developed
by compiler and runtime vendors. Active Harmony [9] has targeted the task of
automating tuning with a more general scope, and has been successful in optimizing
both parallel and single node software automatically.

The Periscope Tuning Framework (PTF) and Active Harmony differ from other
tools in that they attempt to optimize the application automatically. PTF differs from
Active Harmony in the way that it attempts to reduce parameter spaces; in PTF, this
is done through the use of algorithms based on expert knowledge together with
Periscope analyses, while in Active Harmony this is achieved through parameter
sensitivity tests and elaborate search mechanisms.

2 Periscope Tuning Framework (PTF)

The Periscope Tuning Framework (PTF) consists of Periscope and the tuning
plugins developed in the AutoTune project. The most important novelty of PTF
is the close integration of performance analysis and tuning. It enables the plugins to
shrink the search space, to increase the efficiency of the tuning plugins and to gather
detailed information during the evaluation of tuning scenarios. The performance
analysis determines information about the execution of an application in the form
of performance properties.

The overall architecture of the framework is shown in Fig. 1. It consists of the
user interface, frontend, analysis agent network, and the MRI monitor that is linked
to the application.

The analysis capabilities of Periscope are implemented by all these layers. The
user interface allows to inspect the found performance properties in Eclipse, the
frontend triggers performance analysis strategies that are executed by the analysis
agents, and the MRI monitor measures performance data required for the automatic
identification of performance properties.

The framework goes beyond automatic performance analysis and allows for the
tuning of applications with respect to various performance aspects. It provides a
rich collection of tools for implementing tuning plugins. Tuning plugins optimize
specific aspects of applications’ performance. Performance aspects can be hardware
and software platform, programming model or parallel pattern specific. The plugins
follow a predefined tuning model (Sect. 2.1) that defines the sequence of operations
that all plugins have to implement. The operations are defined by the Tuning Plugin
Interface (TPI) that is described in Sect. 4. Plugins are loaded dynamically and can
be provided in source or binary form.

The sequence of TPI operations is determined by the frontend. It calls the
plugin operations and implements the interface between the plugins and the rest
of Periscope. The plugins typically investigate a number of variants of the execution
to identify optimizations. In this process, analysis information is used to shrink the
search space and to improve the search efficiency of plugins. On request of the
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Fig. 1 Architecture of the Periscope Tuning Framework

plugins, analysis strategies are executed and the found properties are returned to the
plugin to provide dynamic information.

In addition to dynamic information, Periscope also provides static information
that is gathered during program instrumentation and passed to the system in the
Standard Intermediate Program Representation (SIR). It provides, for example, the
available program regions which can be investigated for tuning purposes.
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Tuning plugins run experiments and measure the effect of an optimization on
the tuning objective. While the tuning objectives are standard Periscope properties,
the implementation of an optimization is realized by tuning actions. These tuning
actions might be executed at runtime to, for example, assign a certain value to a
variable. They are propagated by the analysis agents to the MRI monitor, which
performs the action at a predefined state of the program execution.

The implementation of tuning plugins is supported by a set of standard search
algorithms that can be used to generate the variants of the tuning space. The search
algorithms are dynamically loaded on request of tuning plugins. Thus, as the plugins
itself, search algorithms can be provided in source or binary form. Alternatively, a
plugin may also implement its own search algorithm internally.

2.1 Tuning Model

The tuning plugins of PTF follow the tuning model shown in Fig. 2. The plugin is
first initialized and it creates the tuning parameters defining the tuning space. These
tuning parameters either result from the tuning approach or might be given via a
configuration file to the plugin. Then the plugin goes through one or more tuning
steps. Each tuning step may start with a pre-analysis that runs one of Periscope’s
analysis strategies to gather properties of the application. Based on these properties,
the variant space is determined, i.e., a subspace of the tuning space. The variant
space and the variant context then determine the search space.

The plugin will use one of PTF’s search algorithms or a plugin-specific search
algorithm to search for the best variant in the space. It constructs for each of the
variants a scenario. The framework provides single- and multi-step algorithms. A
single-step algorithm generates all the different scenarios at the beginning while
the other class goes through multiple search steps. In each search step, a multi-step
algorithm will create new scenarios based on the results of the previous search step.

The scenarios are then executed on the target system and the objectives are
measured. Before the execution of an experiment starts, the scenario can be
prepared, e.g., in this step the application can be recompiled. While the experiment
is executed, the plugin can request any PTF analysis strategy to be run during the
experiment to get detailed information on the effect of the tuning.

Once all the search steps were executed, the plugin can decide to go for additional
tuning steps, determining a new variant space based on the previous results or
results of a new pre-analysis. When the last search step is completed, the plugin
will generate the advice for the user.
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Fig. 2 Model of the tuning strategy of a plugin
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3 Use of Expert Knowledge in Tuning Plugins

The tuning space of certain program aspects is typically quite large requiring a lot
of experiments if it would be explored exhaustively. Therefore, tuning plugins in
PTF explore expert knowledge about the tuning aspect in their tuning strategy. This
section presents the different tuning plugins currently provided in PTF and how they
explore expert knowledge in their tuning strategy.

3.1 MPI Parameters

The MPI Parameters plugin developed by Universitat Autònoma de Barcelona
(UAB) explores tuning parameters of the MPI library. They provide parameters such
as the eager limit, i.e., defining for which message sizes the library applies the eager
transfer protocol, and the internal message buffer size. Libraries like Intel MPI, IBM
MPI, and OpenMPI provide between 50 and 150 of such parameters where several
of them are performance related.

Besides exhaustive search, the plugin offers a genetic search strategy that
optimizes the parameter configuration based on an evolutionary approach. Instead of
going through all the combinations, it goes through sequences of populations where
new individual variants are generated based on the best configurations by crossover
and mutation operations.

The plugin implements a special automatic strategy for tuning the eager limit. It
is based on an analysis of the messages sizes transferred in the application. Based
on the sizes, PTF identifies a property that indicates that the application is sensitive
to changes of the eager limit. The plugin takes this property and the distribution of
messages in the possible range for the eager limit to shrink the search space.

3.2 DVFS

The Leibniz Supercomputing Centre implemented the DVFS plugin that tunes the
energy usage of applications based on setting the clock frequency of the processors.
It tunes the global frequency setting for the entire application but also recommends
special frequencies for individual program regions. For example, memory bound
program regions can be executed with a smaller clock frequency then compute
bound region without significantly increasing the execution time.

The plugin is based on an energy model that predicts the best frequency
and execution time. To apply the model, the plugin first uses PTF’s analysis to
gather hardware counter metrics. Then, the prediction is performed. The predicted
frequency and the next lower and higher frequency are experimentally evaluated.



88 I.A. Comprés Ureña and M. Gerndt

For tuning specific program regions, a PTF analysis strategy is used to gather
the hardware counter values and also determines regions that are suited for energy
tuning. These regions have to have a granularity larger than a millisecond. When
the experiments for the three frequency are executed, the plugin requests also the
energy values for those suited regions. Based on these measurements, the plugin
can give a recommendation which of the three frequencies is best suited for each of
the regions.

3.3 Parallelism Capping

The Parallelism Capping plugin explores the selection of the best number of threads
for OpenMP parallel regions to reduce the applications energy consumption. It
explores the cross product of setting this parameter for all parallel regions. This huge
search space is then evaluated by the Generalized Differential Evolution 3 (GDE3)
algorithm [6] for multi-objective tuning. Multi-objective tuning is used here to find
the best points on the Pareto curve for the possibly conflicting objective to reduce
the energy and to reduce the execution time.

3.4 Master Worker

The Master Worker plugin developed by Universitat Autònoma de Barcelona (UAB)
targets the tuning of the execution time of MPI applications following the master-
worker parallel pattern. The master splits the computational domain into chunks and
distributes the tasks to the workers. The tuning parameters are the block sizes for
the chunks as well as the number of workers.

This plugin executes the tuning in two steps. First, its runs an analysis of the load
imbalance between the workers based on a block sizes of one. From these analysis
results, the plugin uses a performance model to predict the best block size. In the
second step, the analysis is repeated with the new block size and the best number of
workers is given by a second performance model.

3.5 Parallel Pattern

The Parallel Pattern plugin, developed at University of Vienna, optimizes the
execution time of applications following a pipeline design. These applications are
written in the high-level programming framework developed in the context of the
European PEPPHER project [2]. Its tuning parameters are the replication factor for
stages in the pipeline, the size of buffers to hold data packets between the stages,
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the number CPU cores and GPUs as well as the scheduling policy of the underlying
runtime system.

The tuning strategy uses the results of an analysis of the application’s execution,
as well as user given hints, to shrink the search space. The analysis determines
limiting stages in the pipeline. The tuning strategy then focuses on these limiting
stages and investigates the stage replication factor and the buffer size settings. These
parameters are evaluated in combination with the global tuning parameters (i.e., the
CPUs, GPUs, and the scheduling policy).

3.6 MPI-IO

The MPI-IO plugin, developed at Technical University of Munich (TUM), improves
the execution of MPI-IO operations in parallel applications. MPI-IO offers two
tuning techniques for IO operations. Two-phase IO first gathers IO requests of the
individual ranks in a certain number of aggregators. They aggregate the requests
into larger requests that are then more efficiently executed by the IO subsystem.
The other technique is called data sieving. The MPI ranks use a sieving buffer and
fill this buffer with a data block of the file. Instead of writing or reading individual
requests for the parts of the block, these requests read/write the data from/to the
block.

As tuning parameters, MPI-IO considers the number of aggregators in two-
phase IO (for collective operations) and the buffer size for aggregated requests.
Additionally, the buffer size for the data-sieving optimization of individual MPI-
IO operations.

Instead of exploring the cross product of these tuning parameters, the plugin
applies two tuning steps. It exploits that the buffer sizes and the number of
aggregators are independent tuning parameters. In the first step, the plugin optimizes
the sieving buffer size for non-collective IO call sites and the collective buffer size
for collective IO call sites. In the second tuning step, the plugin tunes the aggregator
number for two-phase IO and collective call sites.

3.7 Compiler Flags

The Compiler Flags Selection (CFS) plugin, developed at Technical University of
Munich (TUM), determines the best combination of compiler switches for a given
application. The switches to be explored are given in a configuration file. The plugin
applies expert knowledge in several ways to reduce the search space.

Since its evaluation is based on a recompilation of the application with the
selected number of switches, it is important to reduce the compilation time. This
is either done by the user giving the important files to recompile or the plugin
determines the files automatically based on profiling results of the application.
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Besides the exhaustive search strategy, the plugin provides the individual search
strategy where the switches are evaluated in the order given by the configuration
file. The breadth of the search can be controlled by the so called keep factor.
It determines how many best settings of the last tuning parameter are taken into
account in the evaluation of the next compiler switch.

Finally, the plugin provides a machine learning component, that is trained by
collecting results from previous tunings of applications. The gathered information
is used to compute probabilistic distributions for the values of the switches for
the given application. Settings that were successful for similar applications have
a higher probability than others. These distributions are then used in a probabilistic
random search.

4 Tuning Plugin Interface (TPI)

All PTF’s tuning plugins implement the Tuning Plugin Interface (TPI). The frontend
includes a driver that triggers these functions in a certain order.

The plugin interface is shown in Fig. 3. The frontend first calls initialize
and provides a context object and the set of scenario pools used to manage scenarios
from their creation until their evaluation was finished.

The driver context provides basic information, like the SIR file (introduced in
Sect. 2), the number of threads and MPI processes specified at the command line,
or general information (e.g. whether the program is instrumented or not). It also
provides a timer which can be used to limit the search to a predefined search time.

The plugin can go through any number of tuning steps. The frontend triggers
TPI functions in accordance to the general flow described in Fig. 4. Here is a short
description of each of the interface methods in the base plugin class:

virtual void initialize(DriverContext *context,
ScenarioPoolSet *pool_set) = 0;

virtual void startTuningStep(void) = 0;
virtual bool analysisRequired(StrategyRequest** strategy) = 0;
virtual void createScenarios(void) = 0;
virtual void prepareScenarios(void) = 0;
virtual void defineExperiment(int numprocs,

bool *analysisRequired,
StrategyRequest** strategy) = 0;

virtual bool restartRequired(string *env, int *np,
string *cmd, bool *instrumented) = 0;

virtual bool searchFinished(void) = 0;
virtual void finishTuningStep(void) = 0;
virtual bool tuningFinished(void) = 0;
virtual Advice *getAdvice(void) = 0;
virtual void finalize(void) = 0;
virtual void terminate(void) = 0;

Fig. 3 Specification of the Tuning Plugin Interface functions
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Fig. 4 Plugin flow chart and PTF runtime interaction
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• initialize: All operations that are done once should be performed here.
These include: memory allocations, required objects instantiation, storing the
context and pool_set addresses passed to the plugin by the runtime system,
etc.

• startTuningStep: Perform tuning step specific initialization. For example,
set up relevant tuning parameters and variant spaces.

• analysisRequired: Indicates whether a pre-analysis is to be executed.
Properties of the application can be determined before any tuning is performed.
For example, code regions that take a significant amount of execution time and
thus are good candidates for further tuning can be determined with a pre-analysis
step.

• createScenarios: Creates a set of scenarios based on the pre-analysis
results and a search algorithm.

• prepareScenarios: Executes pre-execution tuning actions. For example,
the code can be recompiled if necessary.

• defineExperiment: Selects scenarios for the next experiment. It also can
request the execution of a Periscope analysis strategy during the execution of
the experiment. For example, a plugin can request an MPI analysis during the
evaluation of a scenario to check which MPI calls have significant waiting time,
if a certain tuning action is applied.

• restartRequired: Determines whether to restart the application possibly
with other command line parameters. Different number of MPI processes can be
requested, if necessary.

• searchFinished: Checks whether the search in this tuning step is finished or
a new set of scenarios is to be created. For example, if a genetic search algorithm
is used, it goes through a sequence of generations per search cycle.

• finishTuningStep: Finalizes the tuning step. Any required post-processing
of the results of the particular tuning step takes place in this operation.

• tuningFinished: Checks, whether the plugin requires a next tuning step.
As an example, the Master-Worker plugin (Sect. 3.4) splits the tuning into two
tuning steps, the first for the partitioning factor and the second for the number of
workers.

• getAdvice: Returns the tuning advice based on the findings of the plugin.
Each plugin attempts to generate optimal settings for the tuning parameters of
the application. The found combinations are presented to the user as a summary
on the screen, and in complete form in a file in a specified XML format.

• finalize: Finish the plugin normally. Clean up memory and close file
descriptors, etc.

• terminate: Terminate the plugin safely in case of error. This will be called in
case of errors and does not appear in Fig. 4.

The frontend triggers prepareScenarios, defineExperiment, and
restartRequired as often as necessary to execute all the created scenarios.
Only after all created scenarios were evaluated, searchFinished is called to
check whether this tuning step needs to create additional scenarios.
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The scenarios are managed in a set of pools. First, all the created scenarios
are inserted into the Created Scenario Pool (CSP). During prepareScenarios
some scenarios are popped, prepared, and inserted into the Prepared Scenario
Pool (PSP). In the defineExperiment call, the plugin decides which prepared
scenarios can be run in a single experiment and are thus forwarded into the
Experiment Scenario Pool (ESP). Once they are executed, the scenarios are moved
to the Finished Scenario Pool (FSP). All these pools are part of a pool set that is
passed to the plugin when it is initialized.

The execution of a plugin’s search is controlled by the search strategy used. In
addition, the plugin can define a timer giving a certain time budget for the search.
This timer can be configured to call a function provided by the plugin when it
expires. This function can then, for example, ensure that the plugin terminates
without experimenting with any additional scenarios. The timer functionality is part
of the plugin context.

A PTF plugin is a shared library that contains a specific implementation of the
Tuning Plugin Interface (TPI), as well as management calls that provide information
and allow it to be instantiated.

The TPI allows the plugin to define what is done in the operations of PTF’s
generic tuning flow. Some of the operations are optional, while many are mandatory.
In the case of optional operations, empty implementations with default return values
are sufficient. The flow chart of the generic tuning flow of PTF is presented in Fig. 4.
The labeled enclosures are used to indicate which operations take place in the plugin
and which take place in the Periscope runtime system. The operations that are in the
center column are performed by PTF plugins, while the operations on the right are
performed by the runtime system.

4.1 Plugin Management Operations

In addition to the Tuning Plugin Interface (TPI), management calls need to be
included with every plugin implementation. These are C functions, since they
have to be in the global scope without any C++ mangled names. Here is a short
description about each C call:

• getPluginInstance: Returns an instance of the plugin.
• getVersionMajor: Returns the digit on the left of the dot of the plugin’s version,

as an integer type.
• getVersionMinor: Returns the digit on the right of the dot of the plugin’s version,

as an integer type.
• getName: Returns a string with the name of the plugin.
• getShortSummary: Returns a string with a short description of the plugin. This

is recommended to be kept as a single line.
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4.2 Data Model

In this section, a brief introduction to the core classes of the framework is presented.
The classes in the data model of PTF are mostly data objects used by the plugins to
tell the runtime system what to do.

4.2.1 Scenario Class

A PTF plugin needs to tell the framework what to set, where to set it, and what
should be measured after that. This transfer of information is achieved through the
Scenario data structure. It can be said that the main task of the PTF plugins is to
create and track Scenario objects.

The Scenario class contains the following members:

• id: A unique identifier.
• description: A string with a short description.
• tuned_region: The code Region where it applies.
• ts: A TuningSpecification list.
• pr: A PropertyRequest list.
• results: The measurements from its evaluation.

The id is a unique number given to the Scenario once created and is used to
track it. The description is an optional string that describes what the Scenario
represents. The tuned_region is the location where the Scenario can be applied.
The rest of the members require a more detailed description.

The TuningSpecification objects contain information about concrete values and
location of parameters used for tuning. The TuningSpecification class contains the
following members:

• variant: Set of concrete values to be written to the relevant TuningParameter
objects.

• context: The context (location) where the variant will be applied.
• ranks: Ranks where the variant should be applied.

The variant is an instance of the Variant class. This class is used to represent
concrete values for tuning parameters (represented by the TuningParameter class);
a variant is in essence a point in a search space. The context is an instance of
the VariantContext class. A VariantContext instance contains location information;
locations can be files or code regions. Finally, the ranks member is an instance of
the Ranks class. An instance of this class can represent all ranks, a set of ranks or a
set of rank ranges.

The next member of the Scenario class in the list of PropertyRequest instances.
As its name suggests, it contains a list of PTF properties to be collected by the
experiments. This class contains the following members:

• property_ids: List of ID numbers of the properties to collect.
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• ranks: Ranks where the properties should be collected. Object of the same type
as in the TuningSpecification.

• regions: List of code locations where these properties are to be collected.

4.3 ScenarioPool Class

The ScenarioPool class is a collection of Scenario instances. These pools are used to
coordinate work between the runtime system, the plugins and the search algorithms;
these pools are core components of the tuning framework.

There are four such pools to be manipulated by the plugin (in the creation,
preparation and experiment definition process) and the runtime system (in the
evaluation process):

• Created Scenario Pool (CSP): Contains all created scenarios in a search step.
• Prepared Scenario Pool (PSP): Scenarios that are prepared are moved here from

the CSP. Preparation can be application re-compilation, environment setup, etc.
• Experiment Scenario Pool (ESP): Scenarios that were mapped to the execution

environment (cores, threads, regions, etc.) and are ready for the next experiment
are moved from the PSP to this pool.

• Finished Scenario Pool (FSP): When the relevant experiment is finished and
results collected, a Scenario is moved from the ESP to this pool.

4.4 Performance Properties

In the Periscope Tuning Framework (PTF), the result of experiments or analyses
requested by the plugins are performance properties. A performance property
characterizes a specific performance behavior, such as network performance, load
imbalances, cache miss rates, etc. Performance properties can be specific to the type
of parallel application, such as OpenMP or MPI specific properties. Properties can
also be hardware specific, for example, they can belong to a specific Intel CPU or
IBM Power CPU family. They can also be common across architectures, such as
cache miss rates at different levels.

A property instance will contain the following members:

• Condition: Indicates whether the property was found in the program.
• Confidence: Degree of certainty on the condition as a percentage.
• Severity: Importance of the property, as a percentage.

The severity is the most relevant one when tuning automatically, since a higher
or lower severity is a direct indication of the quality of the results gathered through
an experiment.
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4.5 Results Pools

Once the experiments required by specific scenarios and analyses requested by
a plugin are completed, the results are collected and the scenarios are moved to
the Finished Scenario Pool (FSP) from the Prepared Scenario Pool (PSP). The
collection of properties, that result from the Scenario instances’ PropertyRequest
lists, are placed into two result pools:

• Analysis Results Pool (ARP): Contains properties that were collected as part of
PTF analyses.

• Scenario Results Pool (SRP): Properties that were collected as requested by
Scenario instances are placed here.

These pools provide convenience methods for accessing the results (performance
properties) based on common criteria, such as the Scenario ID or the search step
where the relevant experiment or analysis took place.

5 Development of Tuning Plugins

This section describes how to initially configure the Periscope Tuning Framework
(PTF) for plugin development, as well as how to utilize the development specific
functionality to write an automatic tuning plugin.

5.1 Initial Configuration in Developer Mode

Extra features for plugin developers are included with the source code distri-
bution of the framework. To enable these features on a particular build, the
--enable-developer-mode option needs to be passed to the configure
script. This flag will enable scripts that help in the generation of skeleton plugins
and search algorithms, as well as provide the location of source code and installation
locations for the different components of the framework.

The configure script distributed with the framework follows the conventions of
the GNU coding standards [5]. In general, it is recommended to have a separate
directory for the build, and that the configure script be called from it. The following
is an example call to configure with the developer features enabled and with a
custom install location:

<source-code-location>/configure
--prefix=<install-location> --enable-developer-mode
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In this case, PTF will be installed under the directory install-location.
The distributed source code is located under the directory source-code-
location; this can be specified as a relative or absolute path. If the --prefix
option is not specified, the tool will be installed in the default location (refer to the
GNU [5] conventions for a list of defaults). For more information about available
options, pass the --help option to the configure script. After configuration, the
framework can be built and installed by calling make.

The build system of the framework generates Makefiles that work well with the
-j option of make. This flag specifies the number of threads used in the build
process and can greatly accelerate the compilation. The following is an example
call to make with n number of build threads:

make install -j <n>

The above command will build and install the framework in a single operation.
After building and installing with development features enabled, developers are
ready to start implementing automatic tuning plugins for the Periscope Tuning
Framework (PTF).

5.2 Generating Empty Plugins with Stubs

As part of the Periscope Tuning Framework’s source distribution, a set of skeletons
are provided for developers to get started on automatic tuners. Currently, a skeleton
for search algorithms and a skeleton for plugins are provided. Developers may want
to start with a clean plugin that is essentially a clone of the provided skeleton, with
modified names for the class and target library names. To achieve this, a convenience
script has been distributed with the framework. If the PTF installation is up to date
(and configured with the --enable-developer-mode option set), it can be
verified that the generator script is available in the path:

which psc_generate_bare_plugin_from_skeleton

If the script is correctly installed, then you can proceed to generate a new plugin
from the PTF skeleton. For example, to generate a minimal plugin where its desired
class name is Foo and the target library is foo (to be passed to the psc_frontend
at runtime, with the --tune=foo option), execute the following command:

psc_generate_bare_plugin_from_skeleton -c Foo -l foo

If there were no errors during this operation, the expected output is presented
in Fig. 5. The <path-to-source> and <version> values should match the
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Attempting to generate a new plugin with the provided information:
Class name: Foo
Library name: foo

PTF source code location:
<path-to-source>
PTF version:
<version>

Generating new plugin at <path-to-source>/autotune/plugins/foo...

Making the initial skeleton copy...

Processing the class header file...

Processing the class implementation file...

Processing the Makefile.am file...

Adding the new plugin to the build system...

Finished generating the new plugin.
Once installed (after ’make install’ on your build directory) it should
be available with the ’psc_frontend’ command by passing the option:
’--tune=foo’ .

Fig. 5 Output while generating plugin skeleton

location and versions of the PTF source tree being used. A common error occurs
when the desired directory already exists:

ERROR: <path-to-source>/autotune/plugins/foo exists.
Aborting the plugin creation process.

The issue can arise due to previous files from earlier runs of the script, or due to a
name conflict with one of the available plugins of PTF. To check already used names
(for the target library of the plugin) list the contents of the autotune/plugins/
directory under the PTF’s source directory.

The psc_generate_bare_plugin_from_skeleton script generates
the class header, the C++ implementation file, its Makefile.am and the
required directories. Additionally, the script adds the required include line into
autotune/plugins/Makefile.am. For the removal of the plugin, the
plugin directory with these files needs to be removed and the relevant line in
autotune/plugins/Makefile.am deleted by the developer.

Once the skeleton has been generated, the build system should be able to compile
and install the plugin in the configured install directory (with the --prefix=
<install-path> option of the configure script). After a successful make
install executed from the build directory, the foo directory should appear under
<install-path>/plugins/foo.

The new plugin should now be loadable with the --tune=foo option of the
psc_frontend program. The source code for the new generated plugin should be
found under the directory <path-to-source>/autotune/plugins/foo.
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Fig. 6 Generated header for plugin class Foo

The generated header file Foo.h under its include/ folder should match the
source code presented in Fig. 6.

In case of adding new headers and implementation files, the plugin’s Makefile.am
should be updated. This file is found under src/.

Additionally, the programmer should verify that the Foo.cc file under src/
contains the required stubs for the Foo class specified in the above header.

5.3 OpenMP Scalability Example

Annotating code with OpenMP (http://openmp.org/) pragmas allows for the conver-
sion of serial programs to parallel ones through multi-threading. After compiling a
program with OpenMP enabled, the number of threads can be modified; the number
of threads is a runtime option, not a compiled one. In this section, a plugin that
performs basic scalability tests with OpenMP is presented. If the PTF installation is
configured with the --enable-developer-mode then the plugin will be built
and installed, as part of the tutorial plugins. Some sample output of the plugin, being

http://openmp.org/
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Periscope Performance Analysis Tool (ver. 1.1.0)
[psc_frontend][INFO:fe] Preparing to start the performance analysis...

Loaded Autotune components:

Plugin: TutScalabilityBasic
Version: 1.0
Description: Explores scalability of OpenMP codes with exhaustive search.

Search Algorithm: Exhaustive Search
Version: 1.0
Description: Explores the full space spanned by all tuning parameters.

[psc_frontend][INFO:fe] Starting agents network...
[psc_frontend][INFO:fe] Starting application ./bt-mz.C.1 using 1 MPI procs

and 4 OpenMP threads...

NAS Parallel Benchmarks (NPB3.3-MZ-MPI) - BT-MZ MPI+OpenMP Benchmark

Number of zones: 16 x 16
Iterations: 200 dt: 0.000100
Number of active processes: 1

Use the default load factors with threads
tal number of threads: 4 ( 4.0 threads/process)

Calculated speedup = 4.00

Time step 1
[psc_frontend][INFO:fe] Prepared scenario pool not empty, still searching...
[psc_frontend][INFO:fe] Prepared scenario pool not empty, still searching...
[psc_frontend][INFO:fe] Prepared scenario pool not empty, still searching...
Optimum Scenario: 3

All Results:
Scenario | Threads | Time | Speedup
0 | 1 | 3.42629 | 1
1 | 2 | 1.99972 | 1.71338
2 | 3 | 1.40804 | 2.43338
3 | 4 | 1.15698 | 2.96141

------------------------

[psc_frontend][INFO:fe] Plugin advice stored in: advice_17612.xml

----------------
Finished Periscope run! Search took 10.6839 seconds ( 0.0350299 seconds for startup )
----------------
[psc_frontend][INFO:fe] Experiment completed!
[psc_frontend][INFO:fe] Exporting results to properties_tune_17612.psc

Fig. 7 Output of the sample plugin running one of the NAS Parallel Benchmarks

run with the multi-zone version of the NAS Parallel Benchmark’s block-tridiagonal
solver, is presented in Fig. 7.

The remainder of the section will be dedicated to describing this plugin’s
implementation. In each subsection, the source code of one interface method is
presented and then explained. The operations are organized in the order that they
are called from the runtime system.
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void TutScalabilityBasic::initialize(DriverContext *context,
ScenarioPoolSet *pool_set) {

psc_dbgmsg(PSC_SELECTIVE_DEBUG_LEVEL(AutotunePlugins),
"TutScalabilityBasic: call to initialize()\n");

this->context = context;
this->pool_set = pool_set;

TuningParameter *numberOfThreadsTP = new TuningParameter();
numberOfThreadsTP->setId(0);
numberOfThreadsTP->setName("NUMTHREADS");
numberOfThreadsTP->setPluginType(TUTSCALABILITYBASIC);
numberOfThreadsTP->setRange(1, context->getOmpnumthreads(), 1);
numberOfThreadsTP->setRuntimeActionType(FUNCTION_POINTER);
tuningParameters.push_back(numberOfThreadsTP);

int major, minor;
string name, description;
context->loadSearchAlgorithm("exhaustive",

&major, &minor, &name, &description);
searchAlgorithm = context->getSearchAlgorithmInstance("exhaustive");
if (searchAlgorithm){

print_loaded_search(major, minor, name, description);
searchAlgorithm->initialize(context, pool_set);

}
}

Fig. 8 Plugin initialization with a loaded search algorithm

5.3.1 Plugin Initialization

The source code for this operation is presented in Fig. 8. As can be seen, the
very first operation is a debugger output call. To allow PTF to selectively dis-
play debug messages that are produced by plugins, the developer should set
the PSC_SELECTIVE_DEBUG_LEVEL(AutotunePlugins) debug level as
the first parameter of the psc_dbgmsg call. This debug level can then be
selected at runtime by passing --selective-debug=AutotunePlugins to
the psc_frontend command.

The next two operations set the local context and pool_set references with
the ones passed by the runtime system. This must be done by all plugins. The
context object is an instance of the DriverContext class, that is instantiated by
the runtime system and is used to offer services to the plugins. The pool_set
contains the scenario pools and results pools described in Sect. 4.3.

The next step is to define a tuning parameter (instance of the TuningParameter
class). These parameters represent aspects of the application that can affect its
performance and can be modified. In the case of this plugin, the parameter represents
the number of OpenMP threads that will be created at runtime. After creating the
object, its ID number, name, type, range and action type are set. The number of
threads specified through the command line options is acquired, and then set as the
maximum in the tuning parameter’s range. This is indeed a sensible way of setting
the maximum, but there are other good alternatives that developers can use, such
as the maximum number of cores or hardware threads in the system. Finally, the
new parameter is pushed to the tuningParameters vector. This C++ std::vector
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was defined in the plugin’s header (under autotune/plugins/tutorials/
include/TutScalabilityBasic.h).

The final task done at initialize is the creation of a search algorithm
instance. There are multiple search algorithms available in the PTF distribution.
Developers are also free to develop their own. Once a search algorithm has been
made available in the framework, it can be loaded through one of the services
provided through the context. This is done in two steps: first, the implementation
is loaded with the loadSearchAlgorithm call, and second, an instance is
acquired with the getSearchAlgorithmInstance call. Once the search
algorithm instance is loaded, its information is printed and it is initialized with the
same context and pool_set that was provided to the plugin by the runtime
system.

5.3.2 Start Tuning Step

The source code for this operation is presented in Fig. 9. This plugin contains
a single tuning step. Before this step can be performed, the variant space and
the search space need to be created and configured for the search algorithm.
First, the VariantSpace and SearchSpace instances are created. After that, the
tuningParameters vector is iterated and each parameter is added to the variant
space. Only one parameter is added to this vector, but iterating is good practice since
it allows for code reuse if the plugin is extended. Once the variantSpace is
ready, it is set in the searchSpace instance. The SearchSpace class consists of its
VariantSpace and additional information, such as restrictions and the location
where the variants should be applied. In this case, the location where to apply it is set
as the phase region. The phase region is either the main procedure of a program, or
a user region defined with PTF pragmas. Once the search space is set up, it is passed
to the search algorithm with the addSearchSpace call.

void TutScalabilityBasic::startTuningStep(void) {
VariantSpace *variantSpace=new VariantSpace();
SearchSpace *searchSpace=new SearchSpace();

for (int i = 0; i < tuningParameters.size(); i++) {
variantSpace->addTuningParameter(tuningParameters[i]);

}
searchSpace->setVariantSpace(variantSpace);
searchSpace->addRegion(appl->get_phase_region());

searchAlgorithm->addSearchSpace(searchSpace);
}

Fig. 9 Example implementation of startTuningStep()



Tuning Plugins for PTF 103

bool TutScalabilityBasic::analysisRequired(StrategyRequest** strategy) {
return false;

}

Fig. 10 Minimal implementation of analysisRequired()

void TutScalabilityBasic::createScenarios(void) {
searchAlgorithm->createScenarios();

}

Fig. 11 Example of createScenarios() with a loaded search algorithm

void TutScalabilityBasic::prepareScenarios(void) {
while(!pool_set->csp->empty()) {

pool_set->psp->push(pool_set->csp->pop());
}

}

Fig. 12 Minimal implementation of prepareScenarios() (no preparation)

5.3.3 Analysis Required

The relevant source snippet for this operation is presented in Fig. 10. In this
particular plugin, no analysis is performed on the application before the search.
Therefore, returning false is all that has to be done here.

5.3.4 Create Scenarios

The relevant scenario creation code is shown in Fig. 11. Because a search algorithm
(with an instance reference in the searchAlgorithm pointer) was loaded, the
createScenarios() operation should be offloaded to it. The search algorithm will
generate the scenarios and put them in the Created Scenario Pool (CSP).

5.3.5 Prepare Scenarios

The scenarios created require no preparation; they should simply be moved to the
Prepared Scenario Pool (PSP). The minimal required code for this operation is
presented in Fig. 12. If the thread number would have to be changed through the
OpenMP environment variable OMP_NUM_THREADS, then it would have to be
updated here. The framework has support for thread changes in the runtime system,
so no environment preparation needs to take place here.
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void TutScalabilityBasic::defineExperiment(int numprocs,
bool *analysisRequired, StrategyRequest** strategy) {

Scenario *scenario = pool_set->psp->pop();
scenario->setSingleTunedRegionWithPropertyRank(

appl->get_phase_region(), EXECTIME, 0);
pool_set->esp->push(scenario);

}

Fig. 13 Example of defineExperiment() with a execution time objective

bool TutScalabilityBasic::restartRequired(string *env,
int *numprocs, string *command, bool *is_instrumented) {

return false;
}

Fig. 14 Minimal implementation of restartRequired()

5.3.6 Define Experiment

The experiment definition code is presented in Fig. 13. When an experiment is
defined, the Scenarios are mapped to the runtime environment (processes, threads
and code locations). In this example, one scenario at a time is taken, and its objective
is set as the execution time property of the phase region. This is requested with the
setSingleTunedRegionWithPropertyRank() call of the Scenario class.

Once the scenario is set up, it is pushed to the Experiment Scenario Pool
(ESP), and the runtime system will perform the required experiments to acquire
its properties (only the execution time in this case).

5.3.7 Restart Required

For the evaluation of the Scenario that was pushed to the ESP, no restart is required
because the number of OpenMP threads can be changed at runtime; therefore,
returning false here is sufficient. The minimal code required for this operation is
presented in Fig. 14.

5.3.8 Search Finished

Since the plugin relies on a search algorithm for Scenario creation, it also delegates
this decision to it. The search algorithm will take a look at the results pool and make
a decision. In the case of the ExhaustiveSearch algorithm loaded in this plugin, this
call always returns true since all possible Scenarios are created at the first call of its
createScenarios method. The implementation of this operation is presented
in Fig. 15.
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bool TutScalabilityBasic::searchFinished(void) {
return searchAlgorithm->searchFinished();

}

Fig. 15 Example of searchFinished() with a loaded search algorithm

void TutScalabilityBasic::finishTuningStep(void) { }

Fig. 16 Minimal implementation of finishTuningStep()

bool TutScalabilityBasic::tuningFinished(void) {
return true;

}

Fig. 17 Minimal implementation of tuningFinished()

5.3.9 Finish Tuning Step

There are no operations to be done at the end of this plugin’s single tuning step. An
empty implementation here is sufficient and is shown in Fig. 16.

5.3.10 Tuning Finished

In this plugin, the search is performed in a single tuning step. Returning true here
is sufficient. The implementation is presented in Fig. 17.

5.3.11 Get Advice

The code to generate the advice to the user is presented in Fig. 18. This operation
presents information to the user and generates XML output for further processing.

After a few declarations, the ID of the scenario with the best time is collected
from the search algorithm and presented. This is done with the getOptimum() call.
After that, all results are presented in tabular form. All scenarios in the Finished
Scenario Pool (FSP) are iterated and for each the ID, number of threads, execution
time and speed up over the single threaded case is presented.

Finally, an Advice instance is built that is passed to the runtime system. This
object is then used by the runtime system to generate the XML output of the advice.

5.3.12 Finalize

All created objects need to be freed in this operation. Loaded components through
the context will be unloaded by the runtime system, but obtained instances must
be deleted here. The pool_set is also handled by the runtime system. The relevant
source code is presented in Fig. 19.
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Advice *TutScalabilityBasic::getAdvice(void) {
std::ostringstream result_oss;
map<int,double> timeForScenario=searchAlgorithm->getSearchPath();
double serialTime = timeForScenario[0];

int optimum = searchAlgorithm->getOptimum();
result_oss << "Optimum Scenario: " << optimum << endl << endl;

result_oss << "\nAll Results:\n";
result_oss << "Scenario\t| Threads\t| Time\t| Speedup\t\n";

for (int scenario_id = 0;
scenario_id < pool_set->fsp->size(); scenario_id++) {

Scenario *sc = (*pool_set->fsp->getScenarios())[scenario_id];
list<TuningSpecification*>* tuningSpec =

sc->getTuningSpecifications();
map<TuningParameter*,int> tpValues =

tuningSpec->front()->getVariant()->getValue();
int threads = tpValues[tuningParameters[0]];
double time = timeForScenario[scenario_id];

result_oss << scenario_id << "\t\t| " << threads << "\t\t| "
<< time << "\t| " << serialTime/time << endl;

}
result_oss << "\n------------------------" << endl << endl;

cout << result_oss.str();

map<int, Scenario*>::iterator scenario_iter;
for(scenario_iter = pool_set->fsp->getScenarios()->begin();

scenario_iter != pool_set->fsp->getScenarios()->end();
scenario_iter++){

Scenario *sc=scenario_iter->second;
sc->addResult("Time", timeForScenario[sc->getID()]);

}

Scenario *bestScenario= (*pool_set->fsp->getScenarios())[optimum];
return new Advice(getName(), bestScenario, timeForScenario,

"Time", pool_set->fsp->getScenarios());
}

Fig. 18 Example implementation of getAdvice() using an Advice constructor

void TutScalabilityBasic::finalize() {
delete searchAlgorithm;
for (int i = 0; i < tuningParameters.size(); i++) {

delete tuningParameters[i];
}

}

Fig. 19 Example of finalize(). Allocated memory must be deleted in this operation

5.4 Vector Range Restriction

In this section, the reader’s understanding on the concept of a TuningParameter
is extended, and then a description of how to restrict the possible values that a
TuningParameter instance can take is given. Finally, the plugin (started in Sect. 5.3)
will be extended in its initialization() step, to make use of the Restriction class of
the framework.
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5.4.1 Tuning Parameter

The TuningParameter class represents a range of integer values that affect perfor-
mance. In this case, these parameter represents the number of OpenMP threads in a
parallel region. The TuningParameter class has the following members:

• ID: A unique identifier.
• runtimeActionType: The runtime tuning action type. A tuning action is the

operation that is required to set the concrete value given to the parameters in
a variant (a value between the from and to value that fits the step size and/or the
Restriction).

• name: A name given to it.
• from: The lowest possible value of the parameter.
• to: The highest possible value of the parameter.
• step: The value that is used to increment from the from value until the to value.
• restrictions: This further restricts the possible values that the parameter can take.

This is described in the next subsection.

The TuningParameter instances are aggregated as concrete values into a vector
class called Variant. A Variant therefore represents a point in the search space; a
unique combination of parameters that may result in better or worse performance.
In that sense, a TuningParameter instance represents a dimension in a search space.

5.4.2 Initialization

The Restriction member will be further explained here. This member can be
accessed through getters and setters and allows to restrict the possible values that the
parameter can take. If the from, to, and step are sufficient for a particular plugin’s use
case, then the Restriction member can be left unset. This section shows how to set
it to powers of 2 between the TuningParameter value boundaries. The relevant code
snippet is presented in Fig. 20. The relevant changes are indicated by the comment
lines.

First, a new Restriction object is created. After that, a counter is incremented in
powers of 2 and its value is added as an element of the Restriction instance. The
region and the type are then set to some default value, and finally, this restriction is
set on the TuningParameter instance. This restricts the TuningParameter so that it
only takes power of 2 values for the OpenMP threads value.

5.5 Working with Regions

In PTF, a region represents a location in the source code. Regions are static
information collected by the instrumenter and stored in the SIR file (in XML
format). Region information can be obtained by the plugins and used to target
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void TutVectorRange::initialize(DriverContext *context,
ScenarioPoolSet *pool_set) {

this->context = context;
this->pool_set = pool_set;

TuningParameter *numberOfThreadsTP = new TuningParameter();
numberOfThreadsTP->setId(0);
numberOfThreadsTP->setName("NUMTHREADS");
numberOfThreadsTP->setPluginType(TUTVECTORRANGE);
numberOfThreadsTP->setRange(1, context->getOmpnumthreads(), 1);

// start of changes for the restriction
Restriction *r = new Restriction();
for (int i=1; i<=context->getOmpnumthreads(); i=i*2){

r->addElement(i);
}
r->setRegion(NULL);
r->setType(2);
numberOfThreadsTP->setRestriction(r);
// end of changes for the restriction

numberOfThreadsTP->setRuntimeActionType(FUNCTION_POINTER);
tuningParameters.push_back(numberOfThreadsTP);

int major, minor;
string name, description;
context->loadSearchAlgorithm("exhaustive",

&major, &minor, &name, &description);
searchAlgorithm = context->getSearchAlgorithmInstance("exhaustive");
if (searchAlgorithm){

print_loaded_search(major, minor, name, description);
searchAlgorithm->initialize(context, pool_set);

}
}

Fig. 20 Extended initialize() method with vector range restriction

optimizations only to relevant locations, depending on the aspect to be tuned in
the application.

All regions are stored in a tree structure (similar to an Abstract Syntax Tree, as
produced by compiler frontends). The phase region can be the main() procedure
of the application, if only automatic instrumentation has been performed. If the
user added a user region through the framework’s pragmas, then this region will
be the phase region. This has consequences for the plugins, since static information
will be contained in the SIR file about all regions, but experiments will be started
either at the main() procedure or at the user region, depending on the situation.
Well developed plugins should take both of these situations into consideration and
adjust their mode of operation accordingly. In this section, the plugin is extended
to illustrate how to process region information. The changes are described in the
following subsections.
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void TutRegions::initialize(DriverContext *context,
ScenarioPoolSet *pool_set) {

this->context = context;
this->pool_set = pool_set;

// added validation before processing region information
if (appl->get_regions().empty()) {

psc_errmsg(PSC_SELECTIVE_DEBUG_LEVEL(AutotunePlugins),
"TutRegions plugin : No Region found. Exiting.\n");

throw 0;
}

...
}

Fig. 21 Extended initialize() method with region information

5.5.1 Initialization

In the initialization, the application object app is initialized. After that, a check is
added to verify that the list of regions is not empty. This is in general good practice
and a check prevents plugins that depend on region information from executing and
terminating with an error after the application was launched. The relevant changes
are presented in Fig. 21.

5.5.2 Start Tuning Step

To set up the single tuning step, the list of regions is obtained from the app object.
Although in general not done in real plugins, an application specific selection of
the region is shown here. The OpenMP parallel region that belongs to the file z_
solve.f, of the NPB’s BT-MZ benchmark, is detected. After that, a new search
space and variant space are created. The TuningParameter instances are added to
the variant space by iterating through them. Afterwards, the region information is
printed to the screen and the region is added to the new search space instance. The
parameters that are part of the search space are then set for this region, during the
experiments. Finally, the search space is passed to the search algorithm, so that
scenario creation and results processing operations are delegated to it. The relevant
code is presented in Fig. 22.

5.5.3 Define Experiment

The last extension done to the plugin is a change in the experiment definition. The
changes are presented in Fig. 23. Similarly to the previous step, the list of regions are
acquired and the one that belongs to the file z_solve.f is selected. One scenario
is then taken from the Prepared Scenario Pool (PSP) and its objective property is
requested for this particular region only.
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void TutRegions::startTuningStep(void) {
// Tuning Parallel Regions
std::list<Region*> code_regions;
code_regions = appl->get_regions();
std::list<Region*>::iterator region;

// iterating over all regions
for (region = code_regions.begin();

region != code_regions.end(); region++) {
if ((*region)->get_type() == PARALLEL_REGION

|| (*region)->get_type() == DO_REGION) {
if((*region)->getFileName() == "z_solve.f" ) {

SearchSpace *searchspace = new SearchSpace();
VariantSpace *variantSpace = new VariantSpace();

for (int i = 0; i < tuningParameters.size(); i++) {
variantSpace->addTuningParameter(tuningParameters[i]);

}
searchspace->setVariantSpace(variantSpace);

searchspace->addRegion(*region);
searchAlgorithm->addSearchSpace(searchspace);

}
}

}
}

Fig. 22 Extended startTuningStep() method with region selection

void TutRegions::defineExperiment(int numprocs,
bool *analysisRequired, StrategyRequest** strategy) {

Scenario *scenario = pool_set->psp->pop();

// Tuning Parallel Regions
std::list<Region*> code_regions;
code_regions = appl->get_regions();
std::list<Region*>::iterator region;

// iterating over all regions
for (region = code_regions.begin();

region != code_regions.end(); region++) {
if ((*region)->get_type() == PARALLEL_REGION

|| (*region)->get_type() == DO_REGION) {
if((*region)->getFileName() == "z_solve.f" ) {

scenario->setSingleTunedRegionWithPropertyRank(
(*region), EXECTIME, 0);

}
}

}
pool_set->esp->push(scenario);

}

Fig. 23 Extended defineExperiment() method with region specific objective

5.6 Mapping Scenarios to the Execution Environment

In this section, the defineExperiment() method of the plugin will be modified, so
that the available parallelism in the running job can be used to accelerate the search
process. In the plugin, a search is performed to find the best number of OpenMP
threads; the threads have been manipulated across the complete program, in a user
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defined region, as well as in a specific parallel region (in the file z_solve.f). Now
another dimension of control will be added, by specifying specific thread counts per
rank.

5.6.1 Define Experiment

As can be seen in the code snippet in Fig. 24, the only difference in the defineExper-
iment() method is that the TuningSpecification instance of the scenario is updated.
The TuningSpecification is changed from the default (to apply the tuning action to
all ranks) to now apply the tuning action only to a specific rank. The property request
is also set to the same rank, through the setSingleTunedRegionWithPropertyRank()
call.

This is done for each rank in the process list; this allows the plugin to evaluate as
many scenarios as there are ranks, in parallel, in a single experiment.

void TutMultiRank::defineExperiment(int numprocs,
bool *analysisRequired, StrategyRequest** strategy) {

for(int i=0; i<numprocs; i++) {
if(pool_set->psp->empty()) {

break;
}

Scenario *scenario = pool_set->psp->pop();
const list<TuningSpecification*> *ts =

scenario->getTuningSpecifications();
ts->front()->setSingleRank(i);

// Tuning Parallel Regions
std::list<Region*> code_regions;
code_regions = appl->get_regions();
std::list<Region*>::iterator region;

// iterating over all regions
for (region = code_regions.begin();

region != code_regions.end(); region++) {
if ((*region)->get_type() == PARALLEL_REGION

|| (*region)->get_type() == DO_REGION) {

if((*region)->getFileName() == "z_solve.f" ) {
scenario->setSingleTunedRegionWithPropertyRank(

(*region), EXECTIME, i);
}

}
}
pool_set->esp->push(scenario);

}
}

Fig. 24 Extended defineExperiment() method with different tuning action per MPI rank
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void TutMultipleRegions::startTuningStep(void) {
std::list<Region*> code_regions;
code_regions = appl->get_regions();
std::list<Region*>::iterator region;

// iterating over all regions
int count = 0, parallel_regions = 0;
for (region = code_regions.begin();

region != code_regions.end(); region++) {
if ((*region)->get_type() == PARALLEL_REGION) {

parallel_regions++;
code_region_candidates[(*region)->getIdForPropertyMatching()]

= *region;
}

}
}

Fig. 25 Extended startTuningStep() method with parallel regions selection

5.7 Analysis and Region Selection

This section presents the usage of a PTF analysis in a plugin. It is shown how
it can be used to detect areas of interest. The Region class is used to represent
locations of interest in the source code of the application that is being tuned. In this
section, it will be shown how to acquire region information and process it. Finally,
an explanation on how to filter the Region instances to include only the ones that
impact performance significantly is presented.

5.7.1 Start Tuning Step

In this example, the single tuning step approach is continued. The code snippet for
its startTuningStep() method is presented in Fig. 25. In it, the list of regions extracted
by the instrumenter is acquired from the SIR file, with the get_regions() method.
Afterwards, only the OpenMP parallel regions are added to a list of candidates for
tuning (this list of candidates is declared in the header of the plugin). The type of a
Region instance can be inspected with the get_type() method.

5.7.2 Analysis Required

In order to obtain performance information about the OpenMP parallel regions, an
analysis is requested. To perform an analysis, the plugin needs to return true and
pass a StrategyRequest object by reference to the runtime system. This is done in the
analysisRequired() method and the relevant code is presented in Fig. 26. To create
this object, a new instance of the class StrategyRequestGeneralInfo is created and
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bool TutMultipleRegions::analysisRequired(StrategyRequest** strategy) {
StrategyRequestGeneralInfo* analysisStrategyGeneralInfo =

new StrategyRequestGeneralInfo;
std::map<string, Region*>::iterator region;

analysisStrategyGeneralInfo->strategy_name = "ConfigAnalysis";
analysisStrategyGeneralInfo->pedantic = 0;
analysisStrategyGeneralInfo->delay_phases = 0;
analysisStrategyGeneralInfo->delay_seconds = 0;

PropertyRequest *req = new PropertyRequest();

req->addPropertyID(EXECTIME);
for (region = code_region_candidates.begin();

region != code_region_candidates.end(); region++) {
req->addRegion(region->second);

}
req->addAllProcesses();

list<PropertyRequest*>* reqList = new list<PropertyRequest*>;
reqList->push_back(req);

*strategy = new StrategyRequest(reqList, analysisStrategyGeneralInfo);
return true;

}

Fig. 26 Initial initialize() method with analysis strategy request

its members are filled in: the name, the pedantic flag, the number of delay phases
and seconds. Here is a brief explanation of their meaning:

• strategy_name: Name of the strategy to perform.
• pedantic: If set, all properties are reported, regardless of their severity.
• delay_phases: Number of times to run the phase region before collecting data.
• delay_seconds: Number of seconds to run before collecting data.

After the StrategyRequestGeneralInfo object was ready, a new PropertyRequest
instance is created. In this case, the plugin requests an EXECTIME property for
the regions. After that, it adds all the candidate regions (the parallel ones that were
collected previously) to the request. To request these properties from all processes,
a call to its addAllProcesses() method is done. The StrategyRequest constructor
requires a list of PropertyRequest objects and one StrategyRequestGeneralInfo
object; therefore, a list is created, the single request is added to it and then the
constructor is called with the StrategyRequestGeneralInfo instance.

After returning true, the runtime system proceeds to perform the analysis and
will populate the Analysis Results Pool (ARP) with the resulting properties.

5.7.3 Create Scenarios

The extended implementation of createScenarios() is presented in Fig. 27. In this
operation, the SearchSpace instance to pass to the search algorithm is set up, so that
the plugin can delegate the creation and evaluation of scenarios to it.
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void TutMultipleRegions::createScenarios(void) {
list<MetaProperty>::iterator property;
MetaProperty longest_running_property;
list<MetaProperty> found_properties =

pool_set->arp->getPreAnalysisProperties(0);
double severity = 0;

SearchSpace *searchspace = new SearchSpace();
VariantSpace *variantSpace = new VariantSpace();

for (int i = 0; i < tuningParameters.size(); i++) {
variantSpace->addTuningParameter(tuningParameters[i]);

}
searchspace->setVariantSpace(variantSpace);

for (property = found_properties.begin();
property != found_properties.end(); property++){

if (property->getSeverity() > severity){
severity = property->getSeverity();
longest_running_property = *property;

}
}
selected_region =

code_region_candidates[longest_running_property.getRegionId()];
searchspace->addRegion(selected_region);

searchAlgorithm->addSearchSpace(searchspace);
searchAlgorithm->createScenarios();

}

Fig. 27 Extended createScenarios() method with region selection based on runtime

First, the SearchSpace and VariantSpace instances are created. The TuningPa-
rameter instances are added to the VariantSpace instance iteratively.

The properties are stored in the AnalysisResultsPool instance based on the tuning
step number. In this example, only one tuning step (number zero) is done. To acquire
these properties in a list, the getPreAnalysisProperties() method of the pool is called.
After that, the list of properties that were collected by the runtime system as part
of the previously requested analysis is iterated. The longest running property is
collected during the iteration and its corresponding region is selected for tuning.

The selected Region is then set on the search space for the search algorithm. After
that is done, the plugin can call the search algorithm’s createScenarios() method,
to delegate the creation of new scenarios. All new scenarios will be placed in the
Created Scenario Pool (CSP) by the search algorithm.

5.7.4 Define Experiment

The defineExperiment() operation is also extended; the changes are presented in
Fig. 28. To define the experiment, a single scenario is taken and its objective
property set to EXECTIME in the previously selected region at rank 0. It is then
moved to the Experiment Scenario Pool (ESP). The runtime system takes the
scenarios in that pool and evaluates them. These operations are repeated until the
scenarios in the pools are all evaluated.
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void TutMultipleRegions::defineExperiment(int numprocs,
bool *analysisRequired, StrategyRequest** strategy) {

Scenario *scenario = pool_set->psp->pop();
scenario->setSingleTunedRegionWithPropertyRank(

selected_region, EXECTIME, 0);
pool_set->esp->push(scenario);

}

Fig. 28 Extended defineExperiment() method with specific region objective

5.8 Experiments with Scenario Analysis

As has been covered earlier, the automatic tuning process with PTF relies on
the setting of tuning parameters in particular code regions and measuring the
effects through the collection of performance properties. These structures, used
to set parameters and measure effects, are contained in Scenario instances that
are evaluated in experiments. Along with the experiments specified through the
Scenarios, a plugin can request analysis strategies. Analysis strategies were covered
already in Sect. 5.7, where a pre-analysis is requested and its results used to select
the longest running parallel region of type OpenMP, and therefore the most relevant
for the automatic tuner. This section shows how to request for an analysis along
with an experiment, in order to collect additional performance properties under the
conditions set by a specific scenario.

5.8.1 Defining an Experiment with an Analysis

The only changes required take place at the defineExperiment() method; the relevant
code snippet is presented in Fig. 29. The operation starts with a pop, configure and
push sequence, just like in previous examples. In this case, the plugin selects the
phase region and requests its time of execution at rank zero. In addition to this, it
then needs to define the analysis. For this example, the regions of interest that were
detected in the pre-analysis are selected. Finally, the StrategyRequest instance is set
to this new analysis and the analysisRequired flag is set to true.

5.8.2 Providing Extra Information to the User

The getAdvice() method is updated to show the extra information that was collected
with the analysis, along with the experiment. For that, the best times per sub-region
are collected and presented to the user, as shown in the code snippet presented in
Fig. 30.
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void TutScenAnalysis::defineExperiment(int numprocs, bool *analysisRequired,
StrategyRequest** strategy) {

Scenario *scenario = pool_set->psp->pop();
scenario->setSingleTunedRegionWithPropertyRank(appl->get_phase_region(),

EXECTIME, 0);
pool_set->esp->push(scenario);

// requesting region specific properties
StrategyRequestGeneralInfo* analysisStrategyRequest =

new StrategyRequestGeneralInfo;
analysisStrategyRequest->strategy_name = "ConfigAnalysis";
analysisStrategyRequest->pedantic = 1;
analysisStrategyRequest->delay_phases = 0;
analysisStrategyRequest->delay_seconds = 0;

list<PropertyRequest*>* reqList = new list<PropertyRequest*>;
for(int i=0; i<noSigRegions; i++) {

PropertyRequest *req = new PropertyRequest();
req->addPropertyID(EXECTIME);
req->addRegion(code_region_candidates[regionExectimeMap[i].first]);
req->addSingleProcess(0);
reqList->push_back(req);

}

StrategyRequest *sub_strategy = new StrategyRequest(reqList,
analysisStrategyRequest);

(*strategy) = sub_strategy;
(*strategy)->printStrategyRequest();
(*analysisRequired) = true;

}

Fig. 29 Extended defineExperiment() method with an analysis request

...
result_oss << endl << "Best configurations for individual regions:" << endl;

for(int i=0; i<noSigRegions; i++) {
result_oss << "Region: " << regionName[i] << " " ;
result_oss << "Threads: " << regionBestThreads[i] << " ";
result_oss << "ExecTime: " << regionExecTime[i] << endl;

// accumulating best scenario description
Scenario *sc = (*pool_set->fsp->getScenarios())[regionBestScenario[i]];
string scenDescription = sc->getDescription();
std::stringstream strStream;
strStream << "Best scenario for region: " << regionName[i];
if(scenDescription.empty()) {

sc->setDescription(strStream.str());

} else {
scenDescription = scenDescription + " | " + strStream.str();
sc->setDescription(scenDescription);

}
}
...

Fig. 30 Added detailed performance information output to getAdvice()
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6 OpenMP Scalability Plugin Results

As part of the source code distribution of the Periscope Tuning Framework (PTF),
a set of plugins and their documentation, as well as a complete tutorial covering the
topics in this presentation and more (with partial implementations), are included.
One of the distributed plugins implements many of the techniques presented in
preceding sections: the OpenMP Scalability Plugin. In this section, single node
results from this plugin, applied to several of the NPB benchmarks and run on the
SuperMUC [1] system, are presented.

6.1 SuperMUC Nodes

The SuperMUC system contains two types of nodes referred to as thin and fat. The
fat nodes contain 40 cores in total, from 10 core CPUs in a 4 socket configuration.
The thin nodes contain 16 cores total, from 8 core CPUs in a 2 socket configuration.
Both types of nodes have Intel’s HyperThreading enabled. In depth detail about
the system and these nodes can be found under http://www.lrz.de/services/compute/
supermuc/systemdescription/.

6.2 Thin Node Scaling

The results of OpenMP scaling on the SuperMUC’s thin nodes are presented in
Fig. 31. As can be seen, there is acceptable scaling up to 16 threads; after that,
the change to 32 threads still produce significant increases in performance but not
close to doubling what is observed under the lower thread count changes. This is
expected since in the last step 16 cores with 32 hardware threads are at work.
With Intel’s HyperThreading technology, the computational units and the caches
are shared among hardware threads, so a doubling of performance is not realistic.
From the figure, it can also be observed that scaling differs per application.

6.3 Fat Node Scaling

The results of OpenMP scaling on the SuperMUC’s fat nodes is presented in Figs. 32
and 33. The plots with powers of 2 was included to allow direct comparisons to the
results collected on the thin nodes. The scalability on these nodes is very different,
when compared to the thin nodes, particularly on HyperThreading situations.

http://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.lrz.de/services/compute/supermuc/systemdescription/


118 I.A. Comprés Ureña and M. Gerndt

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

Sp
ee

du
p

OpenMP Threads

BT C LU C SP C CG C FT C MG C

Fig. 31 SuperMUC thin node scaling, NPB MZ benchmarks (powers of 2 OpenMP threads)
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Fig. 32 SuperMUC fat node scaling, NPB MZ benchmarks (powers of 2 OpenMP threads)

Once the 40 physical cores threshold is exceeded, the overall performance of the
benchmarks is reduced. In the multiple of 10 case, performance degrades even
before the maximum thread count is reached.
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Fig. 33 SuperMUC fat node scaling, NPB MZ benchmarks (multiples of 10 OpenMP threads)

6.4 Performance Summary

In general, the results of this section show that performance with OpenMP is
hardware platform specific as well as application specific. Automatic tuners can
be of benefit to users and system administrators when migrating to new systems,
even with well optimized and mature code bases.

Execution time results were presented in this section. While time is still an
essential metric in HPC, energy consumption has been gaining importance in
recent years. Looking at the scalability plots, it is apparent that certain thread
changes bring minimal benefits to the performance metric. It is under such cases
that multi-objective optimizations can bring forth near peak performance with
significant reductions on energy consumption. For example, in Fig. 31 it is shown
that the performance of the multi-grid solver does not scale as strongly as the other
benchmarks past the 4 thread threshold. This can motivate us to limit this application
to 1 socket with 4 threads, and use the available power budget for higher frequencies.

The results were collected with a single pinning strategy that maximizes the
bandwidth available to each thread. Most HPC workloads benefit from increased
bandwidth, so this is a sensible default. Nevertheless, thread pinning can affect
performance significantly, and is a worthwhile parameter to tune as well, particularly
when dealing with core counts that are lower than the available hardware threads in
NUMA systems.

It can be concluded that automatic tuning techniques are already valuable for
tuning single aspects of parallel applications. Their utility can only increase, as
different aspects and tunable parameters are added to the search spaces considered
and manual evaluation processes become increasingly unmanageable for users.



120 I.A. Comprés Ureña and M. Gerndt

The Periscope Tuning Framework (PTF) provides automatic tuning plugins for
common programming models and use cases, as well as an infrastructure for quick
development of custom ones. Applications that do multi-threading through OpenMP
are already supported by the framework, through the OpenMP scalability plugin
evaluated in this section.

7 Conclusions

This article presented the Periscope Tuning Framework (PTF) that was developed in
the European AutoTune project. It supports automatic tuning for HPC applications
via tuning plugins. Tuning plugins are aspect specific and exploit expert knowledge
to handle big search spaces.

Several plugins were developed for different programming models and program-
ming aspects in the project. PTF is designed to be extensible with new tuning
plugins. We gave an introduction into how to program such new tuning plugins.
We presented the general structure of a plugin as well as how it can be extended.
Examples were given for features such as pre-analysis to guide the tuning plugin
in exploring the tuning space, the usage of analysis services during the experiment
with a certain tuning scenario and the parallel evaluation of scenarios if multiple
MPI processes are available.

Additional information on how to write tuning plugins in more detail is available
at the Periscope home page (http://periscope.in.tum.de) as well as in upcoming
tutorials.
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Combining Instrumentation and Sampling
for Trace-Based Application Performance
Analysis

Thomas Ilsche, Joseph Schuchart, Robert Schöne, and Daniel Hackenberg

Abstract Performance analysis is vital for optimizing the execution of high
performance computing applications. Today different techniques for gathering,
processing, and analyzing application performance data exist. Application level
instrumentation for example is a powerful method that provides detailed insight
into an application’s behavior. However, it is difficult to predict the instrumentation-
induced perturbation as it largely depends on the application and its input data.
Thus, sampling is a viable alternative to instrumentation for gathering information
about the execution of an application by recording its state at regular intervals. This
method provides a statistical overview of the application execution and its overhead
is more predictable than with instrumentation. Taking into account the specifics of
these techniques, this paper makes the following contributions: (I) A comprehensive
overview of existing techniques for application performance analysis. (II) A novel
tracing approach that combines instrumentation and sampling to offer the benefits of
complete information where needed with reduced perturbation. We provide exam-
ples using selected instrumentation and sampling methods to detail the advantage
of such mixed information and discuss arising challenges and prospects of this
approach.

1 Introduction

Performance analysis tools allow users to gain insight into the run-time behavior
of applications and improve the efficient utilization of computational resources.
Especially for complex parallel applications, the concurrent behavior of multiple
tasks is not always obvious, which makes the analysis of communication and syn-
chronization primitives crucial to identify and eliminate performance bottlenecks.
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Different techniques for conducting performance analyses have been established,
each with their specific set of distinct advantages and shortcomings. These tech-
niques differ in the type and amount of information they provide, e.g., about the
behavior of one process or thread and the interaction between these parallel entities,
the amount of data that is generated and stored, as well as the level of detail that is
contained within the data. One contribution of this paper is to give a structured
overview on these techniques to help users understand their nature. However,
most of these approaches suffer from significant peculiarities or even profound
disadvantages that limit their applicability for real-life performance optimization
tasks:

• Full application instrumentation provides exhaustive information but comes with
unpredictable program perturbation that can easily conceal the performance
characteristics that need to be analyzed. Extensive event filtering may reduce
the overhead, but this does require additional effort.

• Pure MPI instrumentation mostly comes with low overhead, but it provides only
very limited information as the lack of application context for communication
patterns complicates the performance analysis and optimization.

• Pure sampling approaches create very predictable program perturbation, but they
lack communication and I/O information. Moreover, the classical combination
with profiling for performance data presentation squanders important temporal
correlations.

• Instrumentation-based approaches can only access performance counters at
application events, thereby hiding potentially important information from in
between these events.

A combination of techniques can often leverage the combined advantages and
mitigate the weaknesses of individual approaches. We present such a combined
approach that features low overhead and a high level of detail to significantly
improve the usability and effectiveness of the performance analysis process.

2 Performance Analysis Techniques: Classification
and Related Work

The process of performance analysis can be divided into three general steps: data
acquisition, data recording, and data presentation [10]. These steps as well as
common techniques for each step are depicted in Fig. 1. Data acquisition reveals
relevant performance information of the application execution for further processing
and recording. This information is aggregated for storage in memory or persistent
media in the data recording layer. The data presentation layer defines how the
information is presented to the user to create insight for further optimization. In
this section we present an overview of the often ambiguously used terminology and
the state of the art of performance analysis tools.
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Fig. 1 Classification of performance analysis techniques (based on [11]). Valid combinations of
techniques are connected with an arrow. Presenting data recorded by logging as a profile requires
a post-processing summarization step

2.1 Data Acquisition

2.1.1 Event-Based Instrumentation

Event-based instrumentation refers to a modification of the application execution in
order to record and present certain intrinsic events of the execution, e.g., function
entry and exit events. After the modification, these events trigger the data recording
by the measurement environment at run-time. More specific events with additional
semantics, such as communication or I/O operations, can often be derived from the
execution of an API function.

The modification of the application can be applied on different levels. Source
code instrumentation APIs used for a manual instrumentation, source-to-source
transformation tools like PDT [14] and Opari [16], and compiler instrumentation
require analysts to recompile the application under investigation after inserting
instrumentation points manually or automatically. Thus, they can only be used
for applications whose source code is available. Common ways to instrument
applications without recompilation are library wrapping [5], binary rewriting (e.g.,
via DYNINST [3] or PEBIL [13]), and virtual machines [2].

All of these techniques are often referred to as event-based instrumentation,
direct instrumentation [23], event trigger [11], probe-based measurement [17] or
simply instrumentation and it is common to combine several of them in order to
gather information on different aspects of an application run.
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2.1.2 Sampling

Another common technique to obtain performance data is sampling, which
describes the periodic interruption of a running program and inspection of its
state. Sampling is realized by using timers (e.g., setitimer) or an overflow
trigger of hardware counters (e.g., using PAPI [6]). The most important aspects
of inspecting the state of execution are the call-path and hardware performance
counters. The call-path provides information about all functions (and regions) that
are currently being executed. This information roughly corresponds to the enter/exit
function events from event-based instrumentation. Additionally, the instruction
pointer can be obtained, allowing sampling to narrow down hot-spots even within
functions. However, the semantic interpretation of specific API calls is limited
and can prevent the reconstruction of process interaction or I/O due to missing
information. Moreover, the state of the application between two sampling points is
unavailable for analysis.

In contrast to event-based instrumentation, sampling has a much more pre-
dictable overhead that mainly depends on the sampling rate rather than the event
frequency. The user specifies the sampling rate and thereby controls the trade-off
between measurement accuracy and overhead. While the complete information on
specific events is not guaranteed with sampling, the recorded data can provide a
statistical basis for analysis. For this reason, sampling is sometimes also referred to
as statistical sampling or profiling.

2.2 Data Recording

2.2.1 Logging

Logging is the most elaborate technique for recording performance data. A time-
stamp is added to the information from the acquisition layer and all the information
is retained in the recorded data. It can apply to both data from sampling and
event-based instrumentation. Logging requires a substantial amount of memory
and can cause perturbation and overhead during the measurement due to the I/O
operations for writing a log-file to persistent storage. The term tracing is often used
synonymously to logging and the data created by logging is a trace.

2.2.2 Summarization

By summarizing the information from the acquisition layer, the memory require-
ments and overhead of data recording are minimized at the cost of discarding
the temporal context. For event-based instrumentation, values like sum of event
duration, event count, or average message size can be recorded. Summarization
of samples mainly involves counting how often a specific function is on the call-
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path, but performance metrics can also be summarized. This technique is also called
profiling, because the data presentation of a summarized recording is a profile. A
special hybrid case is the phase profile [15] or time-series profile [24], for which the
information is summarized separately for successive phases (e.g., iterations) of the
application. This provides some insight into the temporal behavior, but not to the
extent of logging.

2.3 Data Presentation

2.3.1 Timelines

A timeline is a visual display of an application execution over time and represents
the temporal relationship between events of a single or different parallel entities.
This gives a detailed understanding of how the application is executed on a specific
machine. In addition to the time dimension, the second dimension of the display
can depict the call-path, parallel execution, or metric values. An example is given
in Fig. 2. Necessarily, timelines can only be created from logged data, not from
summarized data.

2.3.2 Profiles

In a profile, the performance metrics are presented in a summary that is grouped by
a factor such as the name of the function (or region). A typical profile is provided in
Listing 1 and shows the distribution of the majority of time spent among functions.
In such a flat profile the information is grouped by function name. It is also possible
to group the information based on the call-path resulting in a call-path profile [24]
(or call graph profile [8]). For performance metrics, the grouping can be done by
metric or a combination of call-path and metric. Profiles can be created from either
summarized data or logs.

Fig. 2 A process timeline displaying the call-path and event annotations
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Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write

Listing 1 Example output of gprof taken from its manual [19]

2.4 Event Types

2.4.1 Code Regions

Several event types are of interest for application analysis. By far the most
commonly used event types are code regions, which can be function calls either
inside the application code or to a specific library, or more generally be any type of
region such as loop bodies and other code structures. Therefore, code regions within
the application are in the focus of this work. The knowledge of the execution time of
an application function and its corresponding call-path is imperative for the analysis
of application behavior. However, function calls can be extremely frequent and thus
yield a high rate of trace events. This is especially true for C++ applications, where
short methods are very common, making it difficult to keep the run-time overhead
of instrumentation and tracing low.

2.4.2 Communication and I/O Operations

The exchange of data between tasks (communication) is essential for parallel
applications and highly influential on the overall performance. Communication
events can contain information about the sender/receiver, message size, and further
context such as MPI tags. File I/O is a form of data transfer between a task and
persistent storage. It is another important aspect for application performance.
Typical file I/O events include information about the active task, direction
(read/write), size, and file name.

2.4.3 Performance Metrics

The recording of the above mentioned events only gives limited information on the
usage efficiency of shared and exclusive resources. Additional metrics describing
the utilization of these resources are therefore important performance measures.
The set of metrics consists of (but is not limited to) hardware performance counter
(as provided by PAPI), operating system metrics (e.g., via rusage), and energy and
power measurements.
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2.4.4 Task Management

The management of tasks (processes and threads) is also of interest for application
developers. This set of events includes task creation (fork), shutdown (join), and the
mapping from application tasks to OS threads.

2.5 Established Performance Analysis Tools

Several tools support the different techniques mentioned in Sect. 2 and in parts
combine some of them.

The Scalasca [7] package focuses on displaying profiles, but logged data is used
for a special post-processing analysis step. VampirTrace [18] mainly focuses on
refined tracing techniques but comes with a basic profiling mode and external tools
for extracting profile information from trace data. These two software packages rely
mostly on different methods of event-based instrumentation. The Tuning and Anal-
ysis Utilities (TAU) [22] implement a measurement system specialized for profiling
with some functionality for tracing. TAU supports a wide range of instrumentation
methods but a hybrid mode that uses call-path sampling in combination with
instrumentation is also possible [17]. The performance measurement infrastructure
Score-P [12] has both sophisticated tracing and profiling capabilities. It mainly
acquires data from event-based instrumentation, but recent work [23] introduced
call-path sampling for profiling. The graphical tool Vampir [18] can visualize traces
created with Score-P, VampirTrace or TAU in the form of timelines or profiles.
Similar to the above mentioned, the Extrae software records traces based on various
instrumentation mechanisms. Sampling in Extrae is supported by interval timers
and hardware performance counter overflow triggers. The sampling data of multiple
executions of a single code region can be combined into a single detailed view
using folding [21]. This combined approach provides increased information about
repetitive code regions. HPCToolkit [1] implements sampling based performance
recording. It provides sophisticated techniques for stack unwinding and call-path
profiling. The data can also be recorded in a trace and displayed in a timeline
trace viewer. All previously mentioned tools have a strong HPC background and
are therefore designed to analyze large scale programs. For example Scalasca
and VampirTrace/Vampir can handle applications running on more than 200,000
cores [9, 25].

Similar combinations of techniques can also be seen in tools without a special-
ization for HPC. The Linux’ perf infrastructure [4] consists of a user space tool
and a kernel part that allows for application-specific and system-wide sampling
based on both hardware events and events related to the operating system itself.
Support for instrumentation-based analysis is added through kprobes, uprobes, and
tracepoint events. The infrastructure part of perf is also used by many other tools as
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it provides the basis to read hardware performance counters on Linux with PAPI.
The GNU profiler (gprof) [8] provides a statistical profile of function run-times, but
also employs instrumentation by the compiler to derive accurate number-of-calls
figures.

3 Combining Multiple Performance Analysis Techniques:
Concept and Experiences

As discussed in Sect. 2, sampling and event-based instrumentation have different
strengths and weaknesses. A combined performance analysis approach can use
instrumentation for aspects of the application execution for which full informa-
tion is desired and sampling to complement the performance information with
limited perturbation. We discuss two new approaches and evaluate them based
on prototype implementations for the VampirTrace plugin counter interface [20]:
(I) Instrumenting MPI calls and sampling call-paths; and (II) Instrumenting applica-
tion regions but sampling hardware performance counters.

3.1 MPI Instrumentation and Call-Path Sampling

Performance analysis of parallel applications is often centered around messages
and synchronization between processes. In the case of applications using MPI, it is
common practice to instrument the API calls to get information about every message
during application execution [7, 15, 18, 22]. The MPI profiling interface (PMPI)
allows for a convenient and reliable instrumentation that only requires re-linking
and can even be done dynamically when using shared libraries. Using sampling
for message passing information would significantly limit the analysis, e.g., since
reliable message matching requires information about each message. However, only
recording message events lacks context for a holistic analysis, as for example the
root cause of inefficient communication or load imbalances cannot be determined.
Call-path sampling is a viable option to complement message recording, as it
provides rich context information but – unlike compiler instrumentation – does not
require recompilation. The projected run-time perturbation and overhead of this
approach is very promising: On the one hand, the overhead can be controlled by
adjusting the sampling rate. On the other hand, MPI calls for communication can be
assumed to have a certain minimum run-time, thereby limiting the event frequency
as well as the overhead caused by this instrumentation. Some applications that make
excessive use of many small messages, especially when using non-blocking MPI
functions, are still difficult to analyze efficiently with this approach, but this also
applies to MPI only instrumentation.
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3.1.1 Implementation

We implemented a prototypical sampling support for VampirTrace as a plugin.
Whenever VampirTrace registers a task for performance analysis, the plugin is
activated and initializes a performance counter based interrupt, e.g., every 1 million
cycles. Whenever such a counter overflow occurs, the plugin checks whether the
current functions on the stack belong to the main application, i.e., are not part of
a library, and adds function events for all functions on the call-path. MPI library
calls and communication events are recorded using the instrumented MPI library of
VampirTrace. The application does not have to be recompiled to create a trace.

3.1.2 Results

Figure 3 shows the visualization of a trace using an unmodified version of
Vampir [18], i.e., without specific support for sampled events. The MPI function
calls and messages are clearly visible due to the instrumented MPI library. The
application functions, and thus the context of the communication operation, are
visible as samples. This already allows users to analyze the communication, possible
bottlenecks, and imbalances. Containing the complete call stack in the trace remains
as future work.

Figure 4 shows the measured overhead for recording traces of the analyzed
NPB benchmark. The overhead is very high for the fully instrumented version,
while sampling application functions in addition to the instrumented MPI library
only adds a marginal overhead. Thus, while providing all necessary information

Fig. 3 Vampir visualization of a trace of the NPB BT MPI benchmark created using an
instrumented MPI library (MPI functions displayed red and messages as black lines) and sampling
for application functions (x_solve colored pink, y_solve yellow, z_solve blue). Stack view
of one process shown below the master timeline
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Fig. 4 Run-time of different performance measurement methods for NPB BT CLASS B, SIZE 16
on a dual socket Sandy Bridge system. Median of 10 repeated runs with minimum/maximum
bars. � Filtered functions: matmul_sub, matvec_sub, binvrhs, binvcrhs, lhsinit,
exact_solution; �� Sampling rate of 2.6 kSa/s

on communication events and still allowing the analysis of the application’s call-
paths, the overhead can be decreased significantly. These results demonstrate the
advantage of combining call-path sampling and library instrumentation.

3.2 Sampling Hardware Counters and Instrumenting Function
Calls and MPI Messages

As a second example, we demonstrate the sampling of hardware counter values
while tracing function calls and MPI events with traditional instrumentation. In
contrast to the traditional approach of recording hardware counter values on every
application event, this approach has two important advantages: First, in long
running code regions with filtered or no subroutine calls, the sampling approach
still provides intermediate data points that allow users to estimate the application
performance for smaller parts of this region. Second, for very short code regions, the
overhead of the traditional approach can cause significant program perturbation and
recorded performance data that does not necessarily contain valuable information
for the optimization process. Moreover, reading hardware counter values in short
running functions can cause misleading results due to measurement perturbation.

3.2.1 Implementation

For each application thread, the plugin creates a monitoring thread that wakes up
in certain intervals to query and record the hardware counters and sleeps the rest of
the time.

3.2.2 Results

Figure 5 shows the visualization of a trace of NPB FT that was acquired using
compiler instrumentation and an instrumented MPI library. The trace contains two
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Fig. 5 Vampir visualization of a trace of the NPB FT benchmark acquired through compiler
instrumentation and instrumented MPI library (master timeline, top) including an event-triggered
(middle) and a sampled (bottom) counter for retired instructions. Colors: MPI red, FFT blue,
evolve yellow, transpose light blue

0 0.5 1 1.5 2 2.5

BT∗

EP

FT

LU

MG

1
Normalized Trace Size

Event-triggered Counters

Sampled Counters

Fig. 6 Normalized trace sizes of NPB CLASS B benchmarks containing hardware performance
counters either triggered by instrumentation events or asynchronously sampled (1 kSa/s). Base-
line: trace without counters. � Filtered functions: matmul_sub, matvec_sub, binvcrhs,
exact_solution

different versions of the same counter (retired instructions), one recorded on every
enter/exit event (middle part) and the second sampled every 1 ms (bottom). On the
one hand, the instrumented counter shows peaks in regions with a high event rate
due to very short-running functions. This large amount of information is usually of
limited use except for analyzing these specific function calls. The sampled counter
does not provide this wealth of information but still reflects the average application
performance in these regions correctly. On the other hand, the sampled counter
provides additional information for long running regions, e.g., MPI functions and
the evolve_ function. This information is useful for having a more fine-grained
estimation of the hardware resource usage of these code areas. Furthermore, Fig. 6
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demonstrates that sampling counter values can be used to significantly reduce trace
sizes compared to recording counter values through instrumentation. After all,
combining the approaches outlined in this section and in Sect. 3.1 is feasible and
will remain as future work.

4 Conclusions and Future Work

In this paper, we presented a comprehensive overview of existing performance
analysis techniques and the tools employing them, taking into account their specific
advantages and disadvantages. In addition, we discussed the general approach of
combining the existing techniques of instrumentation and sampling to leverage
each of their potential. We demonstrated this with two practical examples, showing
results of prototype implementations for (I) sampling application function call-paths
while instrumenting MPI library calls; and (II) sampling hardware performance
counter values in addition to traditional application instrumentation. The results
confirm that this combined approach has unique advantages over the individual
techniques.

Based on the work presented here, we will continue to explore ways of combining
instrumentation and sampling for performance analysis by integrating and extending
open-source tools available for both strategies. Taking more event types into
consideration is another important aspect. For instance, I/O operations and CUDA
API calls are viable targets for instrumentation while resource usage (e.g. memory)
can be sampled.

Another interesting aspect is the visualization of traces based on call-path
samples in a close-up view. It is challenging to present this non-continuous
information in an intuitively understandable fashion. We will also further investigate
the scalability of our combined approach. The effects of asynchronously sampling
in large scale systems that require a very low OS noise to operate efficiently needs
to be studied. Our goal is a seamless integration of instrumentation and sampling
for gathering trace data to be used in a scalable and holistic performance analysis
technique.
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Ocelotl: Large Trace Overviews Based
on Multidimensional Data Aggregation

Damien Dosimont, Youenn Corre, Lucas Mello Schnorr, Guillaume Huard,
and Jean-Marc Vincent

Abstract Performance analysis of parallel applications is commonly based on
execution traces that might be investigated through visualization techniques. The
weak scalability of such techniques appears when traces get larger both in time
(many events registered) and space (many processing elements), a very common
situation for current large-scale HPC applications. In this paper we present an
approach to tackle such scenarios in order to give a correct overview of the behavior
registered in very large traces. Two configurable and controlled aggregation-based
techniques are presented: one based exclusively on the temporal aggregation,
and another that consists in a spatiotemporal aggregation algorithm. The paper
also details the implementation and evaluation of these techniques in Ocelotl, a
performance analysis and visualization tool that overcomes the current graphical
and interpretation limitations by providing a concise overview registered on traces.
The experimental results show that Ocelotl helps in detecting quickly and accurately
anomalies in 8 GB traces containing up to 200 million of events.

1 Introduction

Performance analysts commonly use execution traces collected at runtime to
understand the behavior of applications running on distributed and parallel systems.
These traces are then inspected post mortem using various interactive visualization
techniques. They are used by performance analysts to detect unexpected behavior,
correlating the events to the application source code and its components, execution
settings or the configuration of the runtime platform. A very common example of
visualization technique is the Gantt-like space/time visualization, which represents
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the behavior of the application components along a time axis. The problem is that
such visualization technique is incapable to scale properly for an increasing number
of events. This issue is mainly due to the bounded screen resolutions, preventing
the proper drawing of many graphical objects (see Fig. 1 for an example). Another
problem is the natural limitation of human perception, which cannot handle too
much irregular information. From the technical side, long processing time and
interaction delay, caused by the trace event handling, may hinder and discourage
the analyst to conduct further behavior investigation.

We present Ocelotl, a tool that overcomes the graphical and interpretation
limitations of current visualization techniques. It provides a concise overview of the
trace behavior, as the result of a user-configurable and controlled data aggregation
process. The aggregation process gathers parts of the trace where behavior is
homogeneous. Such homogeneity is determined by a user-configurable trade-off
between the information lost by the aggregation process, and the complexity
reduction of the visual representation. The user dynamically adjusts the balance
between both metrics to get a level of details that helps him understand the
application behavior.

We propose two different trace visualization overviews based on this trade-
off principle: a temporal and a spatiotemporal-based approach. In the former, the
aggregation is applied exclusively on the time dimension. The obtained aggregated
view is mainly aimed at analyzing applications expected to be regular along time.
Examples of such applications are the software of multimedia players or algebraic
computation: we easily highlight temporal perturbations and phases on these use-
cases. The later, spatiotemporal, is when the aggregation is mutually applied in time
and space dimensions. By space we mean the hardware and software component
hierarchy. This second technique is efficient to detect problematic behaviors that
touch only a subset of resources, which is typical of network sharing issues or
unbalanced performances of machines and clusters running a parallel application.

Because of the computational cost derived from the efficient implementation
of these techniques, we have designed a clever reuse of results provided by
previous analysis sessions. It helps to drastically reduce the computation time
and improve the interaction responsiveness and the general utilization of the tool.
The experimental results show that Ocelotl helps to quickly and accurately detect
anomalies in 8 GB traces containing up to 200 million of events.

This text is organized as follows. Section 2 presents the state-of-the-art on
performance analysis visualization tools, with a focus on the relationship with visual
and semantic aggregation mechanisms that are present on related work. Section 3
reminds two aggregation methodologies based on a trade-off between information
loss and complexity reduction that were described in previous documents. Section 4
presents the Ocelotl performance visualization tool that implements the overviewing
techniques of our approach. Section 5 closes the paper with a work summary and
future work.
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2 Trace Overview Common Issues

Different analysis tools propose several methods to improve scalability and provide
decent overviews over time and space. In this section, we describe several common
issues related to the techniques they employ.

2.1 Pixel Guided Representations

Pixel-guided representations, present in some tools, like Vampir or Paraver [5, 14],
associate each screen pixel to a set of data. As the pixel is incapable of representing
all the information, the rendering algorithm decides what is shown or hidden. We
claim that this aggregation process misguides the user: a pixel might correspond to a
raw data or be the aggregation of several data. Moreover, some tools do not provide
clear indication about the aggregation operation used to render the pixel. Pixel-
guided representations also suffer from a fidelity issue: for instance, resizing the
window may modify strongly the visualization content because the pixel allocation
changes.

2.2 Visual Aggregation

In a visual aggregation, the rendering tries to preserve the graphical object scales,
whose size depends on their contents. When it is impossible, e.g. when the size is
less than one pixel, it generates aggregates gathering close objects. In Pajé [1] and
LTTng Eclipse Viewer [11], such aggregates are just used to avoid visual clutter, but
do not represent the data they contain.

2.3 Spatiotemporal Entity Budget Management

Techniques based on Gantt Chart-like space-time diagrams [1, 5, 11, 12, 14, 15] have
an issue to keep a reasonable budget of graphical entities present on the screen.
Indeed, since the temporal and the spatial dimensions behave differently, visual-
ization techniques do not treat both axis the same way. KPTrace Viewer [15], for
instance, proposes an interactive hierarchical aggregation for the space dimension
and a mechanism that compresses time whenever an event lasts too long. However,
if the spatial reduction technique is efficient, the time compression does not manage
sufficiently the time entity budget. Other space-time tools [1, 5, 11, 12, 14] lack
reduction technique on space and disrespect the vertical budget, which forces the
user to scroll over y-axis and prevents him from getting a spatial overview.
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2.4 Monodimensional Representations

Conversely, other techniques [5, 16] propose unidimensional overviews that better
manage the entity budget. Vampir’s task profile [5] clusters the most similar
processes according to a distance measure based on the duration of the functions
executed by each process. However, the temporal dimension is lost in the process,
and this technique is thus more adapted for profiling. One of our previous works,
Viva [10], provides a treemap view showing the hardware and software component
hierarchy. Entities having the most homogeneous behavior are aggregated using
a compromise between the representation complexity and the information loss
induced by the aggregation. This technique highlights troubles characterized by an
heterogeneous behavior. However, time dimension is missing from the representa-
tion, although it is used to compute the entities values through a time integration.
It is thus difficult to find local temporal perturbations, and this technique is thus
mainly aimed at finding bottlenecks that concern the whole execution.

3 Provide a Trace Overview Using Data Aggregation

In this section, we remind two applications of an aggregation methodology we
already described in previous documents: temporal [3, 4, 13] and spatiotemporal [2]
data aggregations that provide overviews of the trace and address issues evoked
in Sect. 2. For each technique, we designed an algorithm which gathers the parts
of the trace where the behavior is homogeneous. The aggregation strength is
tuned thanks to a parameter set by the user, which balances a trade-off between
the information lost by the aggregation process and the complexity reduction
compared to a representation without aggregation. We also designed visualization
techniques to represent the algorithm output. They may involve visual aggregation
to help providing a clean representation of the algorithm output. With the set of
techniques we use to build our overviews, we reach the objective of reducing
the complexity of the representation while keeping important information about
the application behavior. We thus address in priority the screen limitations and
the analyst understanding issues. Nevertheless, the complexity of our algorithms
enables to keep reasonable computation times, and ensures a good interactivity.
Both overviews are implemented in the Ocelotl analysis tool, which we describe
in Sect. 4.

3.1 Aggregation Methodology

The analytic approach consists in analyzing separately each constituent of a
system. However, when the system contains too many entities, it is not possible
to understand its global behavior from the behavior of each of its components.
On the opposite, the systemic approach consists in analyzing the system globally,
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using a macroscopic point of view, in order to provide the analyst with a quantity
of information he is able to work with. Lamarche-Perrin proposes an aggregation
methodology [7–10], based on the systemic approach, that we follow to build our
overview techniques. Since this methodology is generic, we can adapt it to trace
analysis.

In order to build the macroscopic overview that represents the behavior of
our whole system, we start by observing the system from a microscopic point of
view. This observation generates microscopic data, which are, in principle, too
complex and too numerous to be analyzed using the analytic approach. Collected
information are organized using data structures and metrics which can describe the
system behavior. In particular, data are structured over temporal and spatial discrete
dimensions.

The microscopic data can be considered as a set of entities x. The aggregation
process, which leads to a macroscopic point of view from these microscopic data, is
constituted by two steps. First, we partition the entities x, which gives us a partition
P of the microscopic model. We name P the set of all possible partitions P .
Then, we generate a result value VX associated with each part X 2 P using an
aggregation operator. In order to give meaning to this process, we propose several
steps to fulfill:

1. Choose the dimensions where to perform the aggregation. This choice depends
on the behavior to study and the visualization that is planned. In this step, we
also structure these dimensions (ordered set, hierarchy, etc.).

2. Choose the operand, e.g. the entities that can be aggregated. In our case, it
corresponds to the entities x.

3. Constrain the aggregation: determine the set P of partitions that are allowed.
This constraint has several roles. First, it forbids aggregations that cannot
translate into an understandable behavior (for instance, in the case of a temporal
analysis, we forbid the aggregation of two discontinuous time part). Second,
it insures coherence with the structure of the dimensions (for instance, for a
hierarchy, we aggregate the nodes into their parents). And last, it reduces the
number of possible partitions to limit the aggregation algorithm complexity.

4. Choose the aggregation operator that will generate the aggregation result. This
operator can be a mathematical function but also a visual technique.

5. Choose a condition, provided by the user or the environment, which determines
how to aggregate the system, i.e. the way the microscopic model is partitioned.

In our methodology, we will use systematically the sum operation to fulfill the
step 4: VX D P

x2X vx

3.2 Trigger the Aggregation with Information Loss
and Complexity Reduction

A particularity of Lamarche-Perrin methodology is the use of information theory
concepts to build the condition triggering the aggregation (step 5). To bring meaning
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to the analyst, we want to aggregate the microscopic model by gathering in
priority the most homogeneous spatiotemporal areas, while preserving data about
the heterogeneous ones. In this way, aggregation consists in optimizing a trade-off
between data reduction and information loss.

Measures have been proposed in previous work [3, 4, 9, 10, 13] to express
such a trade-off. For each part X obtained from a partition P of our microscopic
model, we associate measures of information loss (loss), data reduction (gain) and a
parametrized Information Criterion (pIC). We use Kullback-Leibler divergence [6]
as a measure of information loss:

lossX D
X

x2X

vx log2

� jX jvx

VX

�

(1)

Shannon entropy [17] as a measure of data reduction,

gainX D VX log2 VX �
X

x2X

vx log2 vx (2)

and define the parametrized Information Criterion [9] as follow:

pICX D p gainX �.1 � p/ lossX (3)

where p 2 Œ0; 1� is the parameter used to balance this trade-off.
These measures are additive. The gain, the loss and the pIC associated with a

partition P is defined as the sum of the gain, the loss or the pIC of the parts X that
compose it. Finally, we define the optimal partition for a given parameter p as the
one that has the highest pIC. This process tends to select partitions that aggregates
in priority entities with the closest associated values, since it enables to reduce data
complexity while minimizing information loss. For p D 0, the analyst wants to be
as accurate as possible (the microscopic partition is optimal) and, for p D 1, he
wants to be the simplest (the full aggregation is optimal). When p varies from 0

to 1, a whole class of nested representations arises. The choice of this parameter
is deliberately left to the analyst, so he can adapt the entity budget to the analysis
purposes.

3.3 Trace Microscopic Models

In order to apply Lamarche-Perrin methodology to trace analysis, it is mandatory
to generate a microscopic model structured by discrete dimensions, and providing a
metric that can represent the behavior an analyst wants to analyze. This microscopic
model is thus generated from the raw trace and can be considered as a first
abstraction of it.
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We formalize our microscopic models as matrices involving temporal dimension,
spatial dimension, and event type dimension.

• The time dimension is defined as the set T D ft1; : : : ; tng of the observed
microscopic time periods. This dimension is discrete, whereas the raw trace time
is continuous. To fit with the microscopic model, the raw trace is divided in jT j
(regular) time periods and the events are associated with the periods where they
are active. Each period t has a duration d.t/ 2 R

C and the whole set is naturally
ordered by “the arrow of time”. Formally, a total order < on T provides the
concept of interval: T.i;j / D ft 2 T j ti � t � tj g with ti � tj . We mark I .T /

the set of intervals of T .
• The spatial dimension is defined as the set S D fs1; : : : ; smg of the platform

microscopic resources. For the computing platforms we are interested in, this
set has a hierarchical structure: resources are organized in processes, running
on cores, each one being associated with a machine, themselves organized in
clusters, and so on. Formally, a hierarchy is a set H .S/ D fS1; : : : ; Spg of
subsets of S that contains the whole resource set (S 2 H .S/), each singleton
(8s 2 S; fsg 2 H .S/), and such that any two parts in H .S/ are either disjoint
or included one in another (8.Si ; Sj / 2 H .S/2, either Si \ Sj D ; or Si � Sj

or Si � Sj ). A hierarchy is thus equivalent to a rooted tree where the nodes
correspond to these hierarchical subsets, the leaves corresponds to the singletons,
the root to the whole set, and the tree-order to the subset relation.

• The event type dimension is defined as the set U D fu1; : : : ; ulg of the different
possible types of events that occur during the trace execution.

We define our microscopic models as 3D matrices M � with dimensions jS j �
jT j � jU j, and we name v.s;t;u/ each entry associated with coordinates .s; t; u/

We propose different metrics that can be used to fill the microscopic model from
the data contained in the raw trace:

• Event occurrence number corresponds to the number of events of a certain type
u that occurs during a time interval t and generated by a resource s. This is the
simplest approach.

• State duration corresponds to the total time passed in a particular state type u (a
state is an event, like a function call, associated with start and end timestamps)
over a time interval t , for a given resource s.

• Variable mean is the mean value of a variable associated with a resource s over a
time interval t , and of a given type u.

3.4 Temporal Overview

In order to detect temporal anomalies in the application behaviors, our first
contribution was a temporal overview for trace analysis fitting with Lamarche-Perrin
methodology.
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3.4.1 Methodology Application

1. We aggregate over time dimension.
2. The operands are the time periods t 2 T . For each time period t 2 T , we

associate a value constituted by the sub matrix M �.t/, with the dimensions
jS j � jU j.

3. We constrain the aggregation by allowing only the aggregation of contiguous
time periods (I .T /), without overlapping.

4. The result of time period aggregation is the sum of their associated matrices:
M �.T.i;j // D P

t2T.i;j /
M �.t/.

The algorithms and complexity measure calculation are presented in our previous
works [3, 4, 13]. The aggregation steps are the following: the algorithm first
calculates the quality measures of each possible time interval. Then, the user
provides a value for p. The aggregation algorithm gives in return the best partition
associated with p. To do that, we use dynamic programming and take advantage of
the partition lattice structure and the additivity of their gain, loss and pIC, which
helps us to decompose this set partition problem.

3.4.2 Visualization

The algorithm output is the set of aggregated time periods as a function of the
parameter p. In order to provide a visualization that brings meaning to the user,
we show a stacked bar chart, where the time is used as abscissa. Each stack of
rectangles is associated with a temporal aggregate, organized following the same
order over time. Its width is determined by the number of time slice aggregated.
Each layer is associated with a type u. Its amplitude is computed as followed:

Q.T.i;j /; u/ D
P

t2T.i;j /

P
s2S v.s;t;u/

j � i C 1
(4)

In the case where layers are too small to be printed correctly, e.g., their sizes are
less than one pixel, we visually aggregate them and show them differently.

3.4.3 Examples

In our previous works [3, 4, 13], we describe examples of applications where
the temporal overview shows anomalies. For instance, we perturbed a GStreamer
multimedia application playing a video with a CPU stress. The perturbation is
easily detectable with Ocelotl (Fig. 2). We also analyzed MPI applications where
we expected a regular temporal behavior. We were able to detect some perturbations
provoked by a concurrency access to the network with other user running applica-
tions on the same platform (Figs. 3 and 4).
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0 s 8.5 s 17.0 s 25.5 s 34.0 s

Fig. 2 Temporal overview showing a GStreamer multimedia application perturbed by a CPU
stress (around 15 s). State colors correspond to the following GStreamer debug levels: Grey – LOG,
Blue – DEBUG, Yellow – WARNING

0 s 13.25 s 26.5 s 39.75 s 53.0 s

Fig. 3 Temporal overview showing a MPI application (NASPB CG class C, 64 processes) with
two perturbations (around 35 and 40 s) provoked by a concurrency access to the network. State
colors correspond to following the MPI calls: Yellow – MPI_Init, Green – MPI_Send, Red –
MPI_Wait

3.5 Spatiotemporal Overview

Temporal overview can show temporal anomalies, but is limited to represent
phenomena that also involve the application structure. This issue is at the bottom
of the design of a new overview, showing both space and time.
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3.5.1 Methodology Application

1. We aggregate simultaneously over time and space dimension.
2. The operands are the area determined by the Cartesian product of the time periods

t 2 T , and space elements s 2 S . For each couple .s; t/, the associated metric is
the row matrix M �.s; t/ with the dimension jU j.

3. We constrain the aggregation as the Cartesian product of the contiguous time
periods I .T / and the hierarchy H .S/, without overlapping.

4. The result of spatiotemporal elements aggregation is the sum of the associated
vectors: M �.Sk; T.i;j // D P

s2Sk

P
t2T.i;j /

M �.s; t/.

The corresponding algorithm and complexity measure calculation are presented in
our previous works [2]. Similarly to what we did for temporal aggregation, we first
compute the quality measures, but this time, for each time interval associated with an
element of the hierarchy (leaves or nodes). Then, the user provides a value for p and
the algorithm returns the best associated partition. The algorithm takes advantage
of the same properties than for the temporal aggregation (dynamic programming,
lattice structure, quality measure additivity). It is mainly constituted by iterative-
recursive sequences searching successively for spatial partitions and temporal cuts.

3.5.2 Visualization

We represent as algorithm output the spatiotemporal area that are aggregated, as a
function of a parameter p. With each area, we associate a color, that corresponds to
the event type umode 2 U such as:

M �.Sk; T.i;j /; umode/ D max
u2U

 P
t2T.i;j /

P
s2Sk

v.s;t;u/

jT.i;j /j � jSkj

!

(5)

When the number of resources jS j is greater than the amount of pixels in
the spatial axis, we use visual aggregation (during rendering) to keep a clean
visualization: if an aggregate has a visual height inferior to a threshold (in pixels),
its parent in the spatial hierarchy is drawn instead. Visually-aggregated areas are
marked differently: by a diagonal line, if underlying resources have the same
temporal data partitioning, or by a cross otherwise. Figure 5 shows these different
aggregation patterns.

3.5.3 Example

We mainly provide MPI application use cases to show the relevancy of our spatio-
temporal overview technique. In these cases, we still show temporal perturbations
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0 s 18.5 s 37.0 s 55.5 s 74.0 s

Fig. 4 Temporal overview showing a MPI application (NASPB LU class C, 700 processes) with
one perturbation (37 s) provoked by a concurrency access to the network. State colors correspond to
the following MPI calls: Yellow – MPI_Init, Brown – MPI_Allreduce, Green – MPI_Send,
Red – MPI_Wait, Blue – MPI_Recv

0 s 13.25 s 26.5 s 39.75 s 53.0 s

Fig. 5 Spatiotemporal overview of the application shown by Fig. 3. We still see the two temporal
perturbations (around 35 and 40 s). State colors correspond to following the MPI calls: Yellow –
MPI_Init, Green – MPI_Send, Red – MPI_Wait

that can be detected with the temporal algorithm (Fig. 4), but also spatial hetero-
geneity that indicates that resources behave differently, which can be a problem
(Fig. 5).
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0 s 18.5 s 37.0 s 55.5 s 74.0 s

Fig. 6 Spatiotemporal overview of the application shown by Fig. 6. We find the temporal
perturbation again (37 s) but now, we can see that it concerns only one cluster. Moreover, another
cluster behaves heterogeneously during the computation phase. State colors correspond to the
following MPI calls: Yellow – MPI_Init, Brown – MPI_Allreduce, Blue – MPI_Recv

4 Ocelotl Tool

In this section, we present Ocelotl, an analysis tool that implements the overviews
presented in Sect. 3. We first describe its global architecture. In particular, we
give details about the interaction features that provide the capability of a dynamic
analysis. We then insist on the interactivity and the performance by showing
techniques we use to reduce the computation times.

4.1 Global Architecture

Ocelotl is written in Java and is an Eclipse plug-in. It is a module of Framesoc [3],
a trace and tool manager and analysis infrastructure. Framesoc provides an API to
access traces, stored as data bases using a generic data model. Each trace is imported
only once into Framesoc, and remains accessible for the following analysis sessions.
Framesoc also provides a graphical interface and a bunch of tools (statistics, Gantt
chart-like space-time diagram) classically used in the trace analysis domain.

4.1.1 Component Organization

Ocelotl is composed of a core and a graphical interface. The part related to the aggre-
gation algorithm is a shared library we have written in C++ and interfaced through
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Fig. 7 Screenshot of Ocelotl showing its graphical interface. On the left, the overview composed
by a temporally aggregated visualization. On the bottom right, curves show the complexity of the
different possible representations (in green) and the information quantity contained inside (in red)

JNI (Java Native Interface). The libraries are named lpaggreg and lpaggregjni. This
design choice was motivated by performance reasons (computation time, accurate
memory management).

The core is responsible of the computations. The graphical interface provides
various settings to the user. An area is dedicated to the rendering of the algorithm
output. Another one is used to represent gain and loss curves that help to browse
through the different aggregations. A screenshot of the GUI is shown in Fig. 7.

Ocelotl is relatively modulable; we provide three types of extension points:

• microscopic model: an extension that generates a microscopic model as a matrix
over time, space and type dimensions. The currently implemented metrics to fill
the matrices are the event occurrence number, the state duration, or the variable
mean (cf. Sect. 3.3). Other metrics can be added by providing new extensions
using the interface we provide.

• aggregation type: an extension that determines on which dimension aggregate
and which algorithm of the C++ library is chosen. We currently propose temporal
and spatiotemporal aggregations. As for microscopic models, new extensions can
be added.

• visualization: an extension to draw the algorithm output. For the temporal
aggregation, we draw the output as a simple partition using colored rectangles
or as a stacked bar chart (cf. Sect. 3.4.1). For the spatiotemporal aggregation, we
represent the aggregated area, or the mode (cf. Sect. 3.5.1). Other visualizations
can also be added.
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These extensions are dynamically detected when Ocelotl is launched. The user
chooses, thanks to combo boxes, which microscopic model, which aggregation type,
and which visualization he wants.

4.1.2 Pipelined Analysis Process

The analysis process is a pipeline composed of different steps:

1. The analyst tunes the different settings (choice of the trace, microscopic model,
aggregation type, visualization, time bounds, resources and event types, time
slice number and so on.) in the graphical interface. Extensions can also have
their own settings. Once done, the user launches the analysis.

2. Ocelotl generates a query using the parameters defined by the user, provides it
to Framesoc and gets a result set containing the events matching with the query.

3. Ocelotl fills the microscopic model, whose dimensions are determined by step
1 settings, while reading the result set. This process is multithreaded.

4. Ocelotl provides the microscopic model to the aggregation algorithm library.
5. Ocelotl calls the quality computation function of the shared library. This

function computes the gain and loss associated with each possible aggregates.
6. Ocelotl calls the bissection function of the library, which returns a list of

parameter p values, such as each partition P of this list is unique. This list
is used to build an interactive graph of the gain and loss associated with P as a
function of p. This graph is shown on the bottom right of the Fig. 7.

7. The user can click on this graph to select a value of p.
8. Ocelotl calls the algorithm function that provides the partition for a value of p

in input. Since the user can manually provide a parameter p that is not contained
in the list, this partition is recomputed and not retrieved from the step 6.

9. Ocelotl generates a visualization from the algorithm output and the microscopic
data.

10. The user can change the partition by choosing another p value. Back to the step
8.

11. The user can change other settings (change time bounds to zoom, modify
resources involved, change time slice number to generate microscopic model,
etc.). Back to the step 1.

4.1.3 Interaction

We provide different types of interaction in Ocelotl. First, as presented in Sect. 4.1.2
(step 7), the user can click on the gain and loss curves in order to select a parameter
p. The objective is to choose the most interesting values of p thanks to the curve
shapes. Second, we provide a zoom mechanism in the visualization. By selecting an
area with the mouse, the user changes the time bounds and can relaunch an analysis
on this area. The pipelined process is started from the beginning: indeed, the zoom
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Fig. 8 Example of the Gantt chart provided by Framesoc, focused on one of the temporal
perturbations detected by Ocelotl in the use case NASPB CG class C, 64 processes (Fig. 3)

is not graphical, but performs a reiteration of the full process on the selected subpart
of the trace. The new visualization obtained this way is thus more accurate. Last, the
user can switch to a space-time Gantt chart-like diagram. By clicking on a button,
Framesoc opens a new Gantt chart window on the selected time bounds. Here, the
objective is to provide more details on an interesting time part detected thanks
to Ocelotl. An example of Gantt chart is given by Fig. 8, showing a perturbation
detected by Ocelotl.

4.2 Performance

Regarding the Ocelotl performances, three points have to be evaluated separately:

• The microscopic model building: it corresponds to the steps 1–4 of the pipelined
process. It consists in reading the trace and getting its events through a query
to the database, and filling the microscopic model using aggregation. Figure 9
shows that for a given time slice number, the time of microscopic model building
from the database is linear to the event number. As trace reading is a costly
process, we have implemented a way to save microscopic models associated
with a trace, which reduces dramatically the microscopic model building time
for further analysis sessions (reading the trace is mandatory at least once). We
describe this feature in Sect. 4.2.1.
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Fig. 9 Microscopic building computation time, including the trace reading from the database, as
a function of event number contained in the trace. Time slice number is symbolized by a color
gradient. For a given time slice number, execution time is linear to the event number. Most part of
execution time is due to database trace reading

• The algorithm computation: it depends mainly on the microscopic model dimen-
sions. In the temporal algorithm case, the costliest part is the quality computation,
whose complexity is O.jT j2 � jS j � jU j/. The time slice number is the main
parameter the user tunes. Increasing its value provides more precision, but
leads to longer computation times. In the spatiotemporal algorithm case, quality
computation and bissection time have the same order of magnitude. Its total
complexity (sum of the different operations) is O.jT j3 � jH .S/j/. In practical,
jT j should be left less than 30 time slices to keep reasonable computation delays.
In both temporal and spatiotemporal cases, part computation times are marginal
compared to quality and bissection times. Figures 10 and 11 show the algorithms
execution time as a function of the microscopic model size. Bissections are
computed with a maximum difference of 0.001 between two values of p.

• The rendering: the time needed to build the visualization from the algorithm
output. It depends mainly on the graphical object number, and is thus related
to the time slice number in the case of the temporal overview, and to the space
and time dimension elements in the case of the spatiotemporal overview. In the
worst cases, this time reaches about 10 s. Responsiveness depends partially on
the SWT and Draw2D Eclipse libraries performances.

Table 1 shows Ocelotl execution times for real MPI traces of different sizes. All
our tests have been performed using a desktop computer, composed of 4 cores Intel
Xeon CPU E3-1225 v3 at 3.20 GHz, 32 GB DDR3, 256 GB SSD. All the traces and
their caches were stored on the SSD, which had a SATA-3 interface and a reading
capacity of 530 MB/s.
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Fig. 10 Total computation time of the temporal aggregation algorithm. We represent execution
time as a function of jT j2 � jS j � jU j to highlight the algorithm complexity. As an indication, the
complexity of the temporal analysis of NASPB LU class C, 700 processes (Fig. 6) is jT j2 � jS j �
jU j D 1002 � 700 � 10 � 108
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Fig. 11 Total computation time of the spatiotemporal aggregation algorithm. We represent execu-
tion time as a function of jT j3 �jH .S/j to highlight the algorithm complexity. Tree corresponds to
the hierarchy structure (number of child per node). As an indication, the complexity of the spatial
analysis of NASPB LU class C, 700 processes (Fig. 5) is jT j2 � jH .S/j D 303 � 801 � 2 � 107

4.2.1 Trace Reading Time Reduction

Reuse Generated Microscopic Models

In order to speed up the access to a trace data, we implemented a cache. This cache
works by saving in a file the microscopic model the first time it is built. Since all the
computations performed by Ocelotl are based on this microscopic model, the cache
avoids the necessity to go through the costly process of reading the whole trace
in the database in later analysis sessions. The microscopic model is based on an
aggregation of the events which depends on the used metric (i.e. event occurrence,
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Table 1 Ocelotl execution times for various trace sizes (temporal analysis, jT j D 100)

Case A Case B Case C Case D

Application CG, class C CG, class C LU, class C LU, class B

Processes 64 512 700 900

Site Rennes Grenoble Nancy Rennes

Event number 3,838,144 49,149,440 218,457,456 177,376,729

Trace size (in DB) 136.9 MB 1.8 GB 8.3 GB 6.7 GB

Ocelotl computation times

Trace reading 4 s 50 s 224 s 181 s

C Microscopic model

Qualities computation <1 s 1 s 2 s 3 s

Bissection <1 s <1 s <1 s <1 s

Total preprocess 4 s 51 s 226 s 184 s

Parts computation <1 s <1 s <1 s <1 s

C Rendering

state duration, variable mean) and, for a given metric, this microscopic model does
not change from one analysis to another, thus allowing its reuse. Thanks to the
aggregation, the size (memory footprint) of a microscopic model is much smaller
than the raw trace stored in database and consequently is much faster to load. To
further reduce the footprint and improve performance, we only save non-null values
of the microscopic model. As an illustration of the obtained footprint reduction, a
trace with 1 billion events takes 35.6 GB in database but takes only 34.8 MB as a
cache file of 1,000 time slices.

As explained in Sect. 3.3, the size of a microscopic model depends on three
dimensions: the number of time slices, the number of event producers and the
number of event types (i.e. the temporal, the spatial and event type dimensions
respectively in Sect. 3.3). However the number of time slices is the only dimension
that has an influence on the values stored in the microscopic model. Indeed,
modifications in the number of event producers or in the number of event types
can be dealt with in the later computations by simply ignoring the stored values
corresponding to the ignored event producers or event types. As a consequence, the
saved microscopic model is built with a high number of time slices,1 in order to
have a microscopic model with a high granularity. This allows us to use the cache
for all the analyses performed with a number of time slices lower than the one used
in the cached microscopic model. For example, suppose that a cache was generated
with 1,000 time slices (jT j D 1;000), and the analyst wants to perform an analysis
with 100 time slices (jT j D 100). Then a time slice of the microscopic model
will be build by using 10 time slices of the cached one. The operation performed
for rebuilding is a simple addition of the values of the cached time slices. More

1This number is configurable through the GUI in Ocelotl.
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a Example of microscopic model rebuilding using perfect cache

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Cache: |T | = 10

t ′1 t ′2 t ′3 t ′4 t ′5

|T | = 5

b Example of microscopic model rebuilding with dirty time slices (in red)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Cache: |T | = 10

t ′′1 t ′′2 t ′′3 t ′′4

|T | = 4

Fig. 12 Illustration of the rebuilding of a microscopic model using a 10 time slice cached
microscopic model: (a) Cache time slice number fits with generated microscopic model (b) Cache
time slice number does not fit, which is responsible of dirty time slices

formally, for a time slice tbui lt using the cached time slices from tcachei to tcachej , the
value of tbuilt is:

tbuilt D
jX

nDi

tcachen (6)

This is illustrated by the Fig. 12a: in this example, each new time slice is composed
of two time slices of the cache, e.g. t 0

1 D t1 C t2. Figure 13 shows the improvement
when using a presaved microscopic model instead of reading the trace events.

Generate an Approximated Microscopic Model

Rebuilding the microscopic model works well when the number of time slices in
the cached microscopic model is divisible by the number of time slices used in the
newly built microscopic model. However, when this is not the case, it can lead to
problematic cases where some of the cached time slices are split over two time
slices. This phenomenon is illustrated in the Fig. 12b. In this figure, we can see
that the time slices t3 and t8 each overlaps over two time slices, and thus cannot
be used “as is” to build the new microscopic model. We call these cache time
slices split across two time slices, “dirty” time slices. This problem can also occur
when performing a zoom on a region of the trace. To deal with those problems, we
implement an approximate strategy. The strategy is a tradeoff between speed and
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Fig. 13 Microscopic building computation time as a function of event number contained in the
trace. Time slice number varies from 10 to 200. We distinguish several cases: events are retrieved
by a query to the database to build the microscopic model, or microscopic model is generated from
a previously saved data cache. We distinguish the case where both microscopic model time slices
fit perfectly (perfect), and the case where an approximation has to be done (non perfect)

accuracy. It consists in computing for each dirty time slice, the proportions of the
time slice which overlaps the currently built time slices, which gives a value between
0 and 1. We then multiply the values of the dirty time slice, with the corresponding
proportion. More formally, with the notations introduced in Sect. 3.3, for a given
dirty time slice tdirty and the two built time slices tbuilt1 and tbuilt2 it overlaps, we
compute prop1 and prop2, with:

prop1 D �end.tbuilt1/ � �start.tdirty/

d.tdirty/
(7)

where �start.t/ and �end.t/ correspond respectively to the start and the end timestamp
of the timeslice t . We can then compute prop2 as prop2 D 1 � prop1. Then for
each value in the time slice tbuilt1 in the built microscopic model, we perform the
following operation:

vbuilt.s;tbuilt1;u/ D vbuilt.s;tbuilt1;u/ C vcache.s;tdirty;u/ � prop1 (8)

and a similar operation for tbuilt2 with prop2.
This strategy provides good results in term of performance (Fig. 13), and only has

a small overhead compared to using a cache with no dirty time slices. However, the
performed approximations can lead to discrepancies between the microscopic model
obtained and the original one. In our experiments, we have observed that, when
existing, the large majority of the differences are minor, as illustrated by Fig. 14,
and do not hinder the analysis results. However in some rare cases, especially when
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Fig. 14 Example of the differences obtained with the approximate strategy: (a) is the view
obtained when using no cache, (b) is the view obtained when using the approximate strategy and
(c) highlights in red the differences between the two views

the ratio of dirty time slice number to time slice number is high, more problematic
cases can appear, leading to different aggregations. This is why this strategy should
be used with caution and used to quickly explore the trace. In the case where the
user wants to keep maximum fidelity in the microscopic model, an option can be
selected to get the events from the database trace when the cache does not fit well,
instead of using the approximate strategy.

5 Conclusion

We have presented Ocelotl, a visualization tool that provides multidimensional
overviews for trace analysis. These overviews are built upon an aggregation
methodology that involves information quantities, and gather trace parts that behave
homogeneously. This method enables to reduce the visualization complexity while
keeping useful information and highlighting application phases and anomalies. We
present various examples showing the relevancy of our temporal and spatiotemporal
overviews. We succeed in finding anomalies in 8 GB traces containing up to 218
millions events.

The Ocelotl tool has features that help the analysis. Its modularity allows to add
new components adapted to particular needs. Interaction mechanisms like zoom and
switches to other representations help to get easily more details on subparts of the
trace. Regarding the performance and the interactivity, we profit from the Framesoc
framework that stores traces in databases. We succeed in reading 1 billion event
traces of 35 GB in 18 min. As reading the trace remains globally a costly process,
we save intermediate trace abstractions, the microscopic models, for further analysis
sessions. This enables to get a result in up to 30 s, whatever the original trace size
and event number.
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Our future work concerns many domains. Aggregation methodology could be
extended on other dimensions to represent trace aspects like communications, which
we are unable to manage for now. Some efforts have to be done on the visualization,
in particular by providing dynamically more information about the aggregates.
Regarding the performance, the aggregation algorithms could be parallelized, which
could help us to be more accurate, in particular on the temporal dimension of
spatiotemporal overview.
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Integrating Critical-Blame Analysis
for Heterogeneous Applications into
the Score-P Workflow

Felix Schmitt, Robert Dietrich, and Jonas Stolle

Abstract High performance computing (HPC) systems increasingly deploy accel-
erators and coprocessors to achieve maximum performance combined with high
energy efficiency. Thus, application design for such large-scale heterogeneous
clusters often requires to utilize multiple programming models that scale both within
and across nodes and accelerators. To assist programmers in the complex task
of application development and optimization, sophisticated performance analysis
tools are necessary. It has been shown that CASITA, an analysis tool for complex
MPI, OpenMP and CUDA applications, is able to effectively identify valuable
optimization targets by means of critical-blame analysis for applications utilizing
multiple programming models. This paper presents the integration of CASITA
into the Score-P tool infrastructure. We depict the complete Score-P measurement
and analysis workflow, including the performance data collection for the CUDA,
OpenMP and MPI programming models, tracking of dependencies between work
performed on the host and on the accelerator as well as waiting-time and critical-
blame analysis with CASITA and visualization of analysis results in Vampir.

1 Introduction

Since the fastest supercomputer in the 2010 top 500 list [23] deployed GPUs as
hardware accelerators, the number of hybrid system is increasing. Currently the
systems with accelerators or coprocessors (12.8 %) yield 34.5 % of the theoretical
peak performance. Due to the complexity of these systems their programming is
challenging. Several programming interfaces (e.g. MPI, CUDA, OpenMP) have
to be applied and supported by development and analysis tools. CASITA, a tool
for critical-blame analysis for heterogeneous, distributed applications, has been
developed to guide developers to critical optimization targets in their programs. The
critical-blame analysis bases on two fundamental properties of parallel programs:
the critical path and load-imbalances. It has been proven in [21] that these prop-
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erties are important to identify bottlenecks in complex heterogeneous applications.
CASITA incorporates both into its analysis and final score that rates activity types
for the potential to optimize the total program execution. It supports the most
commonly used paradigms in HPC: MPI, OpenMP and CUDA. With CUDA and
OpenMP 4.0 offloading the two dominant accelerator or coprocessor types are
supported [7, 20].

As the concepts of critical-path analysis and blame distribution are not new, other
tools co-exist with overlapping functionality as well as complementary features. To
not worsen the fragmentation of the tools landscape we integrate our analysis in the
scorep workflow. The integration into scorep avoids redundant effort in development
and maintenance of the measurement system. Furthermore, this lowers the initial
hurdle to use the analysis and improves the user experience for the overall concept
of Score-P. Using Score-P we build on a common data format (OTF2) [9], which is
also the basis for the well-known Scalasca analysis.

The remainder of this paper is organized as follows: Sect. 2 introduces the con-
cept of critical-blame analysis and its implementation in the tool CASITA. Section 3
presents the integration of this tool into the Score-P and Vampir measurement and
analysis workflow. In Sect. 4, we cover related work of other tools from the domain
of critical-path and blame performance analysis. Finally, Sect. 5 summarizes the
contributions of this paper and investigates future work.

2 Background: Critical-Blame Analysis

The critical-blame analysis is based on two important properties of a parallel
program, its critical path and the blame assigned to activities for causing waiting
time. Locating the critical path is important to analyze the performance of parallel
programs as shown by Yang and Miller [24]. Since it determines the program’s
execution time, optimizing activities on this path can improve the total runtime. As
a result, knowledge about the critical path helps performance analysts to identify
most relevant optimization targets. Derived metrics can prove even more purposeful
to identify inefficiencies with a high potential to reduce the program execution
time. Boehme et al. [3] present a scalable performance analysis method that uses
performance indicators based on the critical path for an MPI execution trace.

A requirement for locating the critical path is the identification of waiting time in
the parallel program which appears when an activity is stalled by another concurrent
event. This commonly occurs in barrier operations and (mostly blocking) synchro-
nization or communication functions. A wait state for a certain programming model
can be identified by applying a set of pattern matching rules. Figure 1 illustrates the
rule for the CPU waiting on a CUDA kernel. This specific rule is e.g. triggered by
the end event of the CUDA stream synchronization.

Once wait states have been located, the blame metric can be computed as a
quantification of the delay caused by each activity in the program execution. Late
activities forcing other program parts to wait are therefore attributed with this
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Fig. 1 CUDA Kernel Rule: On a blocking CUDA stream synchronization (1), the kernel stalling
this activity is identified on the referenced CUDA stream (2). A dependency edge is inserted in the
dependency graph (3a) and the waiting time is computed (3b) (Reprinted from [20])

Fig. 2 Hierarchical Blame Distribution in CASITA: When distributing blame in traces contain-
ing multiple programming models (e.g. MPI, OpenMP and CUDA), it is important not to assign a
penalty to activities for the time they are a wait state themselves (Reprinted from [21])

penalty. HPCToolkit applies the approach of blame shifting [22] to attribute blame to
the potential root cause of a wait state. The performance analysis tool Scalasca [10]
uses the term cost of idleness instead to identify performance-relevant activities in
large-scale MPI applications.

The combination of critical-path and blame analysis has been investigated by
Schmitt et al. in [20] for applications utilizing both the MPI and CUDA pro-
gramming model. This concept has been further extended for non-nested OpenMP
codes as well as compiler-instrumented regions. Its implementation in the critical-
blame analysis tool CASITA has been presented in [21]. CASITA thereby respects
the hierarchy of programming models. This avoids that blame for a wait state
in one paradigm (e.g. MPI) is assigned to a wait state in another programming
paradigm (e.g. OpenMP). Hierarchy-aware blame shifting is shown in Fig. 2. The
tool computes the performance metric critical blame for an activity type (i.e. all
instances of a particular function or kernel) from its exclusive time on the critical
path combined with the aggregated blame, which is attributed to this activity for the
overall waiting time it caused.

The metric critical blame quantifies regions on the critical path according to
the load imbalance they induced in the parallel execution [21]. To compute wait
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states and distribute blame, CASITA uses programming-paradigm specific rules to
insert dependency edges in its internal distributed event dependency graph. Each
edge reflects the dependency introduced into the program flow by synchronization
or communication operations such as MPI_Barrier. The analysis generates an
optimization guidance report along with an OTF2 trace. This trace is enriched
with counter information for waiting time, blame and the critical path and can be
visualized in the trace browser Vampir [12].

3 Integrating CASITA into Score-P

This section depicts the analysis workflow we propose to perform critical-blame
analysis. Starting with performance measurement using Score-P and requirements
for the analysis with CASITA we describe the additional counter data generated by
CASITA as well as their visualization in Vampir. We briefly present the new analysis
capabilities with two use cases. Figure 3 shows where CASITA positions among the
available analysis tools that base on the Score-P infrastructure.

3.1 Score-P Measurement Environment

Score-P [15] is a state-of-the-art performance measurement run-time infrastructure
with a focus on HPC programming paradigms and applications. It evolved as
a joined measurement backend for several previously separate tools, including
Periscope, Scalasca, TAU and Vampir. With Score-P, these tools can make use
of a unified data collection infrastructure, thereby significantly increasing the
interoperability between them. The run-time measurement supports a large variety
of data sources such as library wrapping, common tools interfaces (e.g. PMPI and
CUPTI), external counters (e.g. PAPI) as well as compiler-aided instrumentation.
Focusing on commonly used programming models in the domain of scientific HPC
applications, Score-P can record data for MPI, OpenMP, CUDA, SHMEM and
PThreads. Collected run-time information is stored in CUBE format profiles or
OTF2 trace files. Both are open formats which can be used as input to multiple
open source and proprietary analysis or visualization tools. Since the detection of
an application’s critical path requires its complete execution timeline, the remainder
of this work is concerned with the creation of OTF2 trace files where all activities
are captured and logged for each event stream.

Score-P consists of a frontend part, a set of external tools for the quick
investigation of result files and a measurement backend. The latter comprises so
called adapters, each handling data collection for a specific programming model.
With respect to the CASITA critical-blame analysis tool, the most interesting
adapters are for CUDA, OpenMP and MPI. Their implementation is covered in the
following.
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#1 codelet_x
#2 codelet_y
#3 codelet_z
#4 ...

Fig. 3 Score-P Measurement and Analysis Workflow using CASITA: All commonly used
paradigms in HPC are supported

The CUDA adapter’s primary mean of data collection is the CUDA Profiling
Tools Interface (CUPTI) [17], which provides several APIs aimed at performance
tools to capture run-time information on CUDA programs. The callback API allows
the tool to register for CUDA API calls on both the runtime and driver API level.
Before and after the execution of a registered function in the CUDA driver a tool
receives a callback including all function parameters. Score-P uses them to record
performance events. Additionally, a tool is notified on resource-related events, e.g.
the creation of a CUDA stream or context. In Score-P tracing mode CUDA streams
are mapped to appropriate OTF2 locations in the trace file. Using CUPTI’s activity
API on the other hand, Score-P collects information on device-side activities,
especially begin and end time stamps of kernels and asynchronous memory copies
as well as their execution context. To handle different clocks on the host and the
accelerator, Score-P integrates various time synchronization mechanisms.

For OpenMP 4.0, the adapter uses different data sources on the host and on
the accelerator. On the host, the application source code is instrumented using
OPARI2 [16]. It parses the code for OpenMP directives and inserts appropriate
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calls to the POMP2 interface. On the accelerator, a device-specific measurement
approach is used. For the Intel Xeon Phi target device, we use a small measurement
library [6] based on the OpenMP Tools Interface (OMPT) [8]. For ctitical-blame
analysis, CASITA itself is not restricted to OPARI’s instrumentation approach
but relies on specific event records that allow to recognize dependencies between
OpenMP threads. Those records carry information on OpenMP’s fork-join execu-
tion model, allowing tools to identify which threads are spawned by each parallel
region. As dependencies between tasks are not yet tracked, tasks are not covered in
the CASITA analysis.

Finally, the MPI adapter is based on the PMPI interface [14]. Weak object
symbols are replaced by the Score-P library so that MPI function calls can be
intercepted and logged during run-time. The OTF2 format includes MPI-specific
records that include, among others, information on the current MPI communicator
and the root rank of a collective operation. OTF2 trace files consist of global
and local definitions that avoid the need for unification of identifiers between
recording MPI processes. Furthermore, its separation into multiple (logical) files
enables analysis tools to access the trace concurrently, i.e. by using multiple analysis
processes themselves.

3.2 Requirements and Analysis

CASITA requires dependency information embedded in the trace to reconstruct
all runtime dependencies for the analysis. Such dependencies include for example
the ranks participating in an MPI point-to-point or collective operation and the
respective rank, the threads executing the same OpenMP barrier directive or
the CUDA kernel initiated by a specific CUDA launch function call. For both
MPI and OpenMP, all dependency information is already available in traditional
OTF2 traces. In the case of MPI, OTF2 already provides specific records car-
rying model-specific information such as the participating MPI ranks. OpenMP
is integrated similarly using records that capture its fork-join semantics. For
CUDA, additional dependency attributes must be recorded at runtime to enable a
subsequent critical-path and blame analysis. From a user’s perspective, it is only
required to set Score-P’s environment variable SCOREP_CUDA_ENABLE to at
least kernel,memcpy,driver,references before running the measured
application. This notifies Score-P to collect records for CUDA kernels and memory
copies using the CUPTI activity API and driver calls using the callback API.

Specifying references adds OTF2 attributes to certain CUDA records. There
are currently three types of Score-P-specific attributes (called keys) that are required
for a complete subsequent dependency analysis: Stream keys annotate which CUDA
stream is referenced by a kernel launch, host-device or intra-device synchronization
function. Event keys allow the tool to uniquely identify CUDA events issued to any
stream for the purpose of synchronization, e.g. using cuEventSynchronize.
Result keys capture the function return code of certain CUDA API calls such as
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cuEventQuery to store whether or not the call was successful. Those dependen-
cies are available without additional performance measurement overhead as they
are provided by the CUPTI callback API. However, some effort is required post-
mortem for pattern matching in CASITA’s analysis phase. Attributes are transparent
to all other analysis tools that work with the respective trace file, e.g. Scalasca.
The overhead for storing additional references in memory and on disk primarily
depends on the rate of annotated CUDA API calls. It is typically very low but can
be increasingly significant for frequently polling applications, e.g. an excessive use
of cuEventQuery, for which the rate of API calls is very high, compared to the
program execution time.

An OTF2 trace including additional CUDA dependency information can be used
as input for CASITA’s critical-blame analysis. It implements several phases. For all
phases, the tool uses the same number of MPI analysis processes as in the original
application, thus being a parallel application in its own right. Initially, the input trace
is read from disk in parallel. Internal object representations for relevant events such
as MPI or CUDA function calls are created. Second, a rule-based pattern matching
approach is used to identify inefficiency patterns between multiple event streams.
Dependency edges are added in the created event dependency graph. In the third
phase, CASITA applies a parallel reverse replay to identify the critical path over MPI
events. Re-enacting the original MPI communication structure has two advantages:
It avoids the need for a global, unified dependency graph in favor of distributed
sub-graphs that are only connected by the semantics of the MPI API. Moreover, the
analysis exhibits similar scalability as the original program execution and can utilize
the same number of HPC resources. Once global MPI critical path and blame have
been computed, the same pattern matching is applied to critical sub-paths between
two MPI events on the global critical path. Matching in all sub-paths located on
one analysis process is parallelized using OpenMP. This creates the advantage that
available compute resources are utilized more efficiently, even if the critical path is
not distributed evenly over analysis processes. Finally, in the last phase, critical path
and blame statistics are summarized to a optimization guidance report. For each
activity type, i.e. all instances of a specific function call, the critical blame [21]
metric is computed and used to rank activity types according to their potential for
optimizing the parallel application. For comparison, exclusive runtime, critical-path
time and blame on a percentage basis are printed for each activity type.

3.3 Visualization

Besides the report profile, the user can choose to re-write the original OTF2 trace
with additional metrics for each event, covering critical path, wait states, (total)
blame and critical blame. This enriched trace can be visualized using Vampir for
further manual inspection and analysis. Vampir features three options to visualize
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the included metrics1: The counter data timeline plots the value of any metric for a
specific event stream over time. The performance radar allows the user to inspect
a metric’s values over time for all event streams simultaneously using color coding.
The third option is the performance overlay mode where a color-coded version of
any metric is displayed transparently over the original activity timeline.

In addition to counters added to the trace by CASITA, Vampir provides the ability
to create user-defined customized metrics. In their most simple application, they
can be used to create a base-ten logarithmic version of each initial counter. This is
helpful because the value range of aggregated waiting time or blame per activity can
be very large, spanning multiple orders of magnitude. Creating a logarithmic derived
metric allows to visualize the whole value range more easily using color coding.
However, re-writing the original trace to include the raw analysis results has several
limitations. The trace size grows significantly as for every event of any analyzed
programming model, one or multiple performance counters must be additionally
stored. For large-scale traces, simply storing the trace a second time on disk can
therefor require an unpleasant amount of the tool’s runtime. Section 5 therefore
addresses strategies for reducing this overhead in future work.

3.4 Use Cases

In the following, the applicability of CASITA’s critical-blame analysis capabilities
and its integration into the Score-P/Vampir measurement and visualization workflow
is demonstrated using two sample programs. As examples, we use a multi-paradigm
implementation of the Jacobi method as well as a hybrid MPICOpenMP version of
LULESH.

3.4.1 Jacobi Method

The chosen implementation of the Jacobi method exploits MPI, OpenMP and
CUDA [2]. At benchmark start, one can specify the ratio of work that will be
offloaded to the CUDA device. The remainder is computed using OpenMP on the
available host CPU threads. Figure 4 shows a scenario where the workload is almost
equally balanced between host and CUDA device. Neither the CPU nor the GPU
is dominating the critical path. However, the performance radar on the bottom of
Fig. 4 shows that the OpenMP threads 1:1 and 1:0 are blamed for the waiting time
they are causing in other OpenMP threads of their team, which reveals a load-
imbalance between the OpenMP threads. The hot spot analysis clearly identifies
an OpenMP for loop on line 177 as runtime dominating. However, optimizing this
OpenMP region would only result in additional waiting time on the host (for the

1The terms metric and counter are used interchangeably by Vampir.
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Fig. 4 Jacobi Method: Vampir screenshot for a scenario where the workload is almost equally
balanced between CPU and CUDA device. The Master Timeline (top display) distinguishes
activities according to the instrumentation. The Function Summary (top right display) shows the
results of the hot-spot analysis (exclusive runtime) for each activity type. The Performance Radar
(middle display) exposes the critical path (red), which changes between all available execution
streams. The bottom Performance Radar uses color coding to illustrate the blame distribution

GPU). The critical-blame analysis identifies both CUDA kernels (jacobi_kernel
and copy_kernel) as most viable optimization candidates. These are the correct
optimization targets to reduce the total program runtime, which can be seen in the
figure for the shorter running copy_kernel that causes the CPU to be unused for a
period of time (white areas in the Master Timeline on the top). Note that the critical-
blame metric used in the optimization rating is calculated for the full trace, whereas
zooming in Vampir enables the user to analyze arbitrary time ranges.

3.4.2 LULESH

The second use case is based on the popular LULESH benchmark [11], a proxy code
representing a real-world three-dimensional Lagrangian hydrodynamics simulation
software. The application implements MPI and OpenMP and features the option
to induce artificial load imbalances between MPI ranks. Figure 5 visualizes an
OTF2 trace with additional counter data generated by CASITA. It shows two
representative iterations of the code that has been executed with eight MPI processes
each spawning two OpenMP threads. The hot-spot analysis points towards the most
runtime consuming function omp@lulesh.cc:810 (topmost entry, right display).
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Fig. 5 LULESH: Two representative iterations visualized with Vampir. The additional counter
data generated by CASITA enable a detailed visualization of hybrid load-imbalance problems.
Typical hot-spot analysis is based on the exclusive runtime (right display) and therefore highlights
the longest running activity (yellow). However, its execution is very balanced (top display). In
contrast, other OpenMP loops (blue) induce load-imbalances and therewith waiting time between
processes and threads (bottom display). At the MPI_Barrier, all processes must wait on Process
0 which is detected as the critical path (center display)

.

However, critical-blame analysis reveals four other OpenMP loops (blue) as more
important optimization candidates. Although omp@lulesh.cc:810 has a higher total
exclusive runtime, it is balanced across all threads and processes. The OpenMP
loops marked blue in the figure induce much more waiting time (bottom display) for
which they are attributed higher blame values. Hence, CASITA is able to accurately
identify wait states and their root causes for hybrid MPI/OpenMP applications. The
global load-imbalance in the execution results in all processes being stalled waiting
on Process 0 in the MPI_Allreduce (red) at the end of each iteration. As a result, the
critical path is solely on Process 0 and OpenMP Thread 0:1 spawned by this process
(see center timeline display).

4 Related Work

The critical path is an important property of parallel programs. It has been widely
discussed in literature, especially for message-passing programming paradigms.
Schulz [19] describes a method to extract the critical path from MPI applications
as a graph. Boehme et al. [3] present a scalable approach to compute performance
metrics based on the critical path of an MPI trace. They implemented it as part
of the commonly-known Scalasca toolset [10]. For example, their critical-path
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imbalance indicator determines the load-imbalance in an activity that executes
across multiple processes with respect to the time it is contributing to the program’s
critical path. Similarly to CASITA, Scalasca is based on the Score-P measurement
infrastructure [15], using both CUBE profiles as well as OTF2 trace files as input
formats.

Additionally, Scalasca can perform a root-cause analysis on traces of MPI
and OpenMP programs and to generate call-path profiles. As shown by Boehme
et al. in [4], it is able to identify direct waiting time, occurring as a result of
synchronization or communication inefficiencies along with indirect wait states. The
latter arise from a propagation of direct inefficiencies through the program execu-
tion. Subsequently to the wait-state analysis, the program is replayed backwards,
beginning from the last MPI_Finalize call, to locate the critical path of the MPI
execution. This approach scales very well since the analysis runs as many processes
as the analyzed program and the original communication pattern is re-enacted.
This parallel reverse replay has been adopted by CASITA for its MPI critical-path
analysis stage, too. The analysis report generated by Scalasca can be investigated
with CUBE as well as other third-party tools such as ParaProf [18]. With respect
to result visualization, Scalasca is not able to present generated information along a
timeline and across multiple processes and threads.

HPCToolkit [1] consists of a set of tools for various aspects of performance
data collection, analysis and visualization. It uses blame shifting [22] to attribute
a penalty cost to the root cause or possible suspects of a wait state in a parallel
application. This is possible for both MPI and OpenMP codes but can also be used
to investigate contention problems in locking-based models [13]. HPCToolkit can
apply its blame-shifting approach to CUDA programs by attributing blame to CUDA
kernels on the device that force the host execution to wait on their completion or vice
versa [5]. However, it can not analyze waiting time or distribute blame occurring
as a result of intra-device dependencies. Unlike Score-P, HPCToolkit collects data
using sampling instead of instrumentation. For every sampling point, the active
call path along with further performance metrics is captured and combined in a
calling-context tree. Idle regions such as wait states are detected by identifying
blocking routines by name. HPCToolkit is able to blame certain activities for
generating waiting time, however, it does not provide insight on functions that
are critical for the global program runtime. Additionally, it can not apply wait-
state analysis to codes that use a combination of all three levels of parallelism
(CUDACOpenMPCMPI) and for OpenMP analysis, an altered version of the GNU
OpenMP runtime is necessary.

A reasonable visualization of program traces facilitates the detection of a
performance problem which has been shown in [12]. Nevertheless, it is hard to
identify potential optimization candidates that determine the global runtime by
investigating process time lines and applying hot spot analysis, only. This work adds
the possibility to highlight the critical path and blame in the Vampir time line view,
which guides the application developer to optimization spots that are most relevant
for global program runtime reduction.
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5 Conclusion and Future Work

This work presented our integration of CASITA’s hierarchical critical-blame anal-
ysis for multiple programming models into the Score-P performance analysis
environment. During measurement, the user is only required to set an additional
environment variable flag to enable dependency tracking. Afterwards, Score-P’s
OTF2 trace output can be used directly as input to CASITA’s scalable analysis. The
generated optimization guidance profile aids the user in quickly identifying valuable
optimization targets based on the critical-blame performance metric. Additionally,
CASITA can create an enriched OTF2 trace including various performance-relevant
metrics such as the critical path, waiting time and distributed blame. Modifications
to input and output traces are purely based on the OTF2 standard and are thus non-
intrusive to other tools in the Score-P workflow. Analysis results in the re-written
trace can be manually investigated using the trace browser Vampir.

There are several issues and aspects that will be addressed in the future
development of CASITA. Although many traces could be successfully analysed we
are aware that in a few cases the analysis still fails or does not provide correct results.
Therefore, the program stability will be addressed by implementing automated
testing. To improve the user experience it has to be integrated into a stable Score-P
release and the resulting software package. Second, we are investigating options to
integrate CASITA’s analysis results more tightly into Vampir. The primary challenge
is the costly trace re-write, in terms of required time and disk size. Extending the
OTF2 library to enable adding counter data streams in an existing OTF2 trace
will address both issues. A closer integration into Vampir would also enable new
visualization approaches. For example a new general profile display could be used
to present the optimization guidance report.
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Studying Performance Changes with Tracking
Analysis

Germán Llort, Harald Servat, Juan Gonzalez, Judit Gimenez,
and Jesús Labarta

Abstract Scientific applications can have so many parameters, possible usage
scenarios and target architectures, that a single experiment is often not enough for
an effective analysis that gets sound understanding of their performance behavior.
Different software and hardware settings may have a strong impact on the results,
but trying and measuring in detail even just a few possible combinations to decide
which configuration is better, rapidly floods the user with excessive amounts of
information to compare.

In this chapter we introduce a novel methodology for performance analysis based
on object tracking techniques. The most compute-intensive parts of the program are
automatically identified via cluster analysis, and then we track the evolution of these
regions across different experiments to see how the behavior of the program changes
with respect to the varying settings and over time. This methodology addresses
an important problem in HPC performance analysis, where the volume of data
that can be collected expands rapidly in a potentially high dimensional space of
performance metrics, and we are able to manage this complexity and identify coarse
properties that change when parameters are varied to target tuning and more detailed
performance studies.

1 Background and Motivation

The execution of a scientific code is dependent on a variety of parameters that may
have a strong impact on its performance. Some examples include the size of the
input problem, the number of processes running in parallel, the physical mapping
and sharing of the resources, the parallel programming model used, and many
other settings. Anticipating the impact of different configurations on the achieved
performance, work balancing or memory usage of the program is far from trivial
and not seldom leads to discover unexpected issues.
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Analyzing these effects is important not only to get better understanding of the
program behavior, but also to foresee improving or degrading trends in the different
parts of the code, identify the main limiting factors, and in the end, to help the users
making the right decisions to tune the application to achieve the most performace
outcome. To this end, it is necessary to have tools to easily compare different
experiments and correlate observations between them.

In order to deal with the difficulties inherent to running, measuring and com-
paring multiple experiments, we have designed a tool to conduct very diverse
parametric and evolutionary studies, enabling to correlate performance information
either from multiple runs with different configurations, or different time intervals
within the same experiment. Our approach focuses on the computational behavior
of the most relevant code regions and shows their evolution with respect to several
performance metrics to explain which factors lead the different parts of the code to
improve or degrade. In this context, object tracking techniques become a natural and
intuitive way to detect the performance changes sustained by each part of the code
automatically, and represent the information in a clear and visual manner.

While previous approaches for comparing experiments or phases [12, 25, 26]
have been proposed, our work goes one step further and presents a novel technique
that does not rely on preselected metrics and profile data for static code phases,
such as routines, loops or user-defined sections. One problem of summarizing the
data at these levels is that one same section of code can exhibit behavior variations,
thus making averages will hide divergent performance trends. Our position is that
it is necessary not to consider averages, but every independent instance to detect
fine-grain structure and capture multi-modal variability.

2 Object Tracking for Performance Analysis

Tracking techniques have been traditionally used to follow moving objects in an
image or video sequence. Practical examples include augmented reality, medical
imaging, surveillance or traffic control. A first step to these problems is to delimit
the objects of interest within the scene depicted in the image. Therefore, object
recognition algorithms (e.g. image segmentation and edge detection) will look for
appearance characteristics and distinguishing features (e.g. color, direction or shape)
that identify them. Then, consecutive frames in the sequence are compared to find
correspondences between the objects and their displacements.

Analogously, we represent different executions as images, each one picturing
the program behavior for a given configuration, and arrange them as a sequence of
images that expresses the evolution of the application behavior across experiments.
Code regions are drawn in the images as independent trackable objects, in a
space whose dimensions are not the actual physical dimensions of height, length
and breadth, but performance metrics that describe how these regions behave.
Movements in the performance space across the images highlight changes in the
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application behavior, that can be modeled into metrics to evaluate the performance
trends of the different regions of code.

This approach is useful to discover valuable performance insights about the
application response to different configurations, enabling the analyst to draw quick
conclusions on the key factors limiting performance, direct the optimization effort
and easily determine the best setup to maximize a certain performance requirement.
Throughout this chapter, we will be showing how this method applies to very diverse
cases of analysis to get better understanding of the impact of different architectures,
input problems, workloads, memory and resource sharing schemes, and levels of
scalability on several parallel programs.

2.1 Application Structure Characterization

Analysis tools usually display performance data to the user in the form of profiles
at the level of syntactic program structures (i.e. subroutines, loops, or user-defined
sections). This has the advantage of providing a very natural and understandable
representation, but also carries some drawbacks along. Prior knowledge of the
application may be required to determine which functions are relevant, so as to skip
too fine-grain routines that would perturb the execution due to the instrumentation
overhead. When no automatic interposition mechanisms are available [4], access
to the sources and manual modifications are needed to inject measurement probes
in these points of interest. Moreover, considering a whole routine as a single unit
of behavior can be deceitful, because different invocations may behave differently,
depending on the parameters and conditional phases leading to distinct code flows
with divergent performance. In these cases, a global average may convey the wrong
idea of a reasonable overall behavior, while specific sub-phases may be reporting
low performance and their optimization could lead to significant improvements, as
proven in [23, 24].

A different granularity to characterize the application performance is the com-
puting regions (i.e. CPU bursts). These are defined as the sequential computations
between calls to the MPI or OpenMP runtime. Delimiting these regions only
requires library interposition to instrument the parallel programming API, thus
there is no need for user intervention nor access to the sources. Each CPU burst
is described by its duration, call stack references that point to the corresponding
source code, and a vector of hardware counters metrics describing how it performed.
Considering every CPU burst rather than simple averages, we can detect variabilities
across processes and time, exposing a fine-level characterization of every code
region and the nature of their inefficiencies.

This approach is less attached to the structure of the source code, but focuses
on the performance properties of the actual computations. In [9], the authors prove
that this granularity is useful for the analysis of parallel programs, as it reflects
an intermediate point of view between very low level characterizations (i.e. basic
blocks or instruction-level simulators) and higher abstractions (i.e. functions, loops
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or user-defined sections). Regardless of our implementation, which selects CPU
bursts as the target granularity, the technique presented would as well be applicable
using other abstractions.

2.2 Generation of Tracking Images

In computer vision, one or more particular objects (e.g. humans, cells or cars) are
first identified within a frame (a single picture in a video or series of images) and
then tracked as they move through a sequence of frames. Likewise, we are going to
identify the computing regions of interest and keep track on how their performance
evolves along multiple experiments. To this end, we first need to represent the
performance measurements observed in each experiment graphically, or in other
words, to capture our sequence of frames. This process consists in selecting any pair
of metrics to draw a two-dimensional space where we express the behavior of every
individual CPU burst with a point in the plane. Typically, we select Instructions
per Cycle (IPC) and Instructions Completed, which are useful to bring insight into
the overall performance: trends in Instructions Completed indicate regions with
different workloads, while IPC measures how fast the work is done. Anyhow, this
process can be applied to any arbitrary combination of metrics that may be used
to describe the CPU bursts (e.g. cache misses, floating-point operations or power
consumption) to support even more precise multi-dimensional characterizations of
the data.

With the images generated, the next step is to identify the objects of interest
within them. Due to the highly iterative nature of HPC applications, many compu-
tations will be very alike in terms of the performance they achieve. In the image,
this translates as clouds of points that are close in the space, which can be grouped
into a single entity according to their similitude. Therefore, we apply density-based
cluster analysis [9, 11] in order to group similar CPU bursts with respect to the
metrics selected.

The result of this process is a scatter-plot representation of the performance
space, where the axes correspond to the metrics used to cluster the data, and all
CPU bursts that are similar with respect to these metrics get grouped into the same
object. Clusters are then intrinsically connected to the source code regions of their
belonging CPU bursts, and both terms will be indistinctly used for clarity, but
this connection is not necessarily unambiguous: a single region presenting bimodal
behavior will result in two distinct clusters, while two different regions with similar
behavior will conform the same cluster. So in essence, what each cluster represents
is a behavioral trend, independently of the code region that exhibits it.

One question that may arise about the benefits of using these performance images
is to what extent they are better than just a straightforward profile. To dispel the
doubt, we have selected as example the BT-MZ benchmark [18], a solver for block
tri-diagonal systems that performs computations of uneven size. Table 1 shows the
average IPC, total instructions and L1 misses scored by three of the main functions,
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Table 1 User functions
profile for BT-MZ

IPC Instructions L1 miss

x_solve 2.16 43.04 M 295:92 K

y_solve 2.16 43.83 M 323:07 K

z_solve 2.17 46.22 M 55:63 K

Fig. 1 Clusters for 3 main
functions of BT-MZ (Class B,
4 tasks)

measurements obtained by instrumenting the routines at their start and end points.
From these numbers, we can easily infer that all three routines present a similar
computational behavior, with the same amount of work (Instructions) executed at
the same speed (IPC), yet they show different memory efficiency with lower L1
cache misses in the Z-direction, certainly due to the data access pattern. One could
expect this result, as these functions perform the same kind of computation over
different axes.

Figure 1 shows the performance image generated for these functions, with each
point in the plot being a single instance of invocation, and grouped in clusters with
respect to the IPC achieved and the number of instructions executed. A function-
agnostic view of the data brings new insights about the application structure:
all three functions show eight different computational behaviors with increasing
amounts of work and decreasing speed. Computations with high amount of work but
low performance are interesting to study, as well as those with the same amount of
work at different speeds, or vice-versa, as these indicate potential load-imbalances.
All eight behaviors are exhibited by all three functions, which still conveys the idea
that these functions are similar, but exposes their inner variability as they behave
more or less optimal depending on the size of the workload.

Table 2 shows the same statistics for the clusters, and now you can easily see
a large dynamic range in the metrics. Most significantly, a standard deviation of
30 M of instructions reveals a large work imbalance between all clusters, which was
masked in a traditional function-based profile. Column % Time shows the fraction
of the total execution time that these computational behaviors cover, and it is clear
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Table 2 Clusters profile for
BT-MZ

IPC Instructions L1 miss % time

Region 1 2.21 19:15 M 56:45 K 36:95 %

Region 2 2.13 53:46 M 266:33 K 12:28 %

Region 3 2.16 42:36 M 194:32 K 12:08 %

Region 4 2.12 65:79 M 363:01 K 11:43 %

Region 5 2.18 33:87 M 133:19 K 11:42 %

Region 6 2.11 83:27 M 494:41 K 9:68 %

Region 7 2.05 101:61 M 949:55 K 4:01 %

Region 8 2.10 109:46 M 115:66 K 2:13 %

that their weight is not negligible, and thus the importance of being aware of these
variabilities. This example highlights the importance of focusing on the dynamic
behavior of the regions rather than static code structures to guarantee that we detect
performance variabilities and direct the analysis towards the zones of real interest.

2.3 Tracking Difficulties

The main difficulty in the use of tracking techniques arises due to abrupt object
motions and noise in the images. When applied to performance analysis the problem
is the same. Even though one would normally expect the application performance
not to radically change all of a sudden, performance variations may result in
large changes of behavior, preventing us from borrowing any assumption about the
clusters’ position, direction or shape in the performance space.

The clustering process of a frame assigns numbers and colors to every cluster
identified. Since this is an independent, non-supervised process, the clustering of a
second, different frame does not necessarily have to result in the same number of
objects, assign the same identifiers, or exist a direct correspondence between their
numberings. Figure 2 shows the structure of the 12 most time-consuming regions
of WRF [29] ran with 128 processes. Clusters are formed according to similarities
in the achieved performance (X-axis) and number of instructions (Y-axis). Those
that stretch vertically (e.g. Region 2) denote instructions imbalance, while those
that stretch horizontally (e.g. 7 and 11) reflect IPC variations. Figure 2b shows
the structure of WRF doubling the number of cores. The number of instructions
executed per core has reduced in inverse proportion, and so all clusters have moved
downwards the Y-axis. Intuitively, we can see that cluster 2 (yellow) turned into 3
(red). And a few clusters have slightly improved their performance (e.g. 4 and 6
moved right with higher IPC), while cluster 11 significantly degraded. But some
changes are far from evident: zooming into the boxed areas, you can see a fourth
cluster appearing. Is that the left-most cluster in the 128-task case redistributed into
the two small ones on the left of the 256-task case? Or these two come from split
parts of the two left-most clusters?
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Fig. 2 Structure of WRF computing bursts. (a) 128 tasks. (b) 256 tasks. (c) 256 tasks normalized

With changing scenarios that may affect the application performance, clusters
can not only move long distances or change their shape between frames, they
can also vary in density, split, or merge together. And if the configurations that
differentiate the experiments vary significantly, the frames to compare can be
remarkably different, which makes even more difficult to detect the interesting
regions and see how they change from one frame to the next. Although in some
cases it would be possible to determine who-is-who by visual inspection, this is not
obvious in the general case, and so the benefits of an automated mechanism able to
detect abrupt changes amongst many clusters become palpable.

The first difficulty in determining which objects within a frame correspond to
the ones in the next lies on the fact that the respective scales may be different,
so they can not be compared directly. For example in a strong-scaling case, when
the number of cores increases, the number of instructions executed per core will
decrease in proportion. A step prior to track the evolution of the objects consists in
normalizing the performance scales so that they are comparable. Such metrics that
are correlated with the number of processes of the application (e.g. Instructions) are
weighted by the number of cores, while the scale for the rest (e.g. IPC) is adjusted
to the minimum and maximum values seen along all experiments. Figure 2c shows
the 256-tasks case with the performance scales normalized. The relative distances
compared to the base 128-tasks case are kept almost constant, and the experiments
can now be easily compared.

In the next section we present a tracking algorithm that performs an automatic
correlation of equivalent code regions that are subject to performance variations
along multiple experiments. To this end, we extrapolate the concept of recognizing
moving objects in a sequence of images to the displacement of clusters within the
metrics space across experiments. Clustering the application performance can be
seen as identifying the objects of interest (regions of code with a certain behavior)
in a single frame. Subsequent clusterings result in a sequence of images that can
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be compared to see how these objects move, shape-shift, merge or split in the
performance space, reflecting changes in the application behavior. Tracking their
evolution across experiments enables us to study the performance characteristics of
the different code regions, and to understand how the different configurations get to
influence their behavior.

2.4 Implementation Details

The current implementation uses the Extrae tracing toolkit [3] to automatically
instrument MPI and/or OpenMP codes through library preloading techniques. For
each entry and exit point of the parallel runtime, the tool writes a per-thread
timestamped event trace, and collects hardware counters data through PAPI [1],
and source code references by using libunwind [28] to walk the call stack and GNU
binutils [8] to fetch human-readable debugging information from the binary. In our
experiments, the size of the traces generated ranged from tens of MB to tens of GB.

The clustering tool extracts the CPU bursts data comprised in the trace and runs
a basic DBSCAN algorithm to identify the main computing trends. In this process,
bursts with very short duration are considered negligible and discarded, so as to
avoid the high cost of processing many small points. In [9], the authors prove that
one can discard up to 80 % of the data, while preserving the 99 % of the computation
representativity. This clustering tool can process up to 100 K points under 1–2 min.

As reported in the literature, tracing tools already scale to hundreds of thousands
of cores [7], and parallel density-based algorithms are able to manage millions
of points [21]. Once the data has been reduced to representative clusters in the
performance image, the tracking algorithm presented next works with a very
reduced number of objects, enabling low response times from few seconds to
few minutes, and so the technique presented, relying on large-scale tracing and
clustering tools, is perfectly applicable with large volumes of data and totally
scalable.

3 The Tracking Algorithm

The objective of this algorithm is to automatically correlate equivalent computa-
tional components that are subject to performance variations, tracking how they
move along a sequence of images that represent the application’s performance
behavior. Let A and B be two images, as depicted in Fig. 3, where n and m objects
are respectively detected, say A D fA1; A2; : : : ; Ang and B D fB1; B2; : : : ; Bmg.
The objective is to find the maximum number of relations k, so that exists a k-
partition P D fP1; : : : ; Pkg of A, and a k-partition Q D fQ1; : : : ; Qkg of B , that
fulfill the condition:

8i W 1 � i � k W Pi � Qi
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Fig. 3 Tracking scheme

Where the optimal k is bounded above by the image with the fewer number
of objects detected, i.e. min.n; m/, and the equivalence relation Pi � Qi is the
assumption that objects in partition Pi correspond to those in partition Qi .

In order to determine whether two clusters are equivalent, there are three
principal properties of the computations that can be considered: the position in the
performance image, the position in the source code, and the position in the execution
trace. Based on these characteristics, we define five complementary heuristics to
evaluate the clusters equivalences that are detailed in the next section.

3.1 The Tracking Heuristics

Recalling the difficulties to apply tracking on performance data that we previously
discussed in Sect. 2.3, deciding whether two clusters from different experiments rep-
resent the same computational behavior requires to consider several characteristics
of the computations. In our implementation, each characteristic is evaluated with a
different heuristic. Applying just a single heuristic is generally not enough, because
as we will discuss throughout this section, most of the characteristics inspected are
to some extent ambiguous and do not allow to perfectly differentiate between the
objects. Moreover, not all the information required to apply all the heuristics is
always present (that depends on the system and the amount of information collected
during the instrumentation phase). Therefore, we employ multiple heuristics and
combine their results to decide the equivalences between all objects. Each heuristic
focuses on a particular characteristic of the computations:

• Distance of the movement. Clusters can move in any direction of the space as
a consequence of performance variations, but in the general case, these will
manifest as smooth, directed transitions rather than swift leaps. For example,
if we keep increasing the size of the workload, we can expect the total number
of instructions executed in all computations to increase as well, and make certain
assumptions on the directions of the movements.
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• SPMDiness. In SPMD applications, all processes must be executing the same
code phase simultaneously. If two different clusters happen at the same time,
since the application is SPMD they can not refer to different code phases, and so
they must be the same code phase that is presenting multi-modal behavior.

• Call stack references. Call stack information links every CPU burst in a cluster
to the function, file and line in the source code where it is executed. Different
clusters can not be the equivalent if the computations that form them do not share
any call stack reference to the same point in the source code.

• Clusters density. If there are performance variabilities that make the clusters split,
there must be a combination of the split clusters so that the sum the computations
that form each cluster equals the total number of computations that form the
equivalent unsplit cluster in the previous experiment.

• Chronological sequence. Two experiments running the same program will show
the same time-ordered sequence of computations, so those that appear in the same
order of occurrence must be equivalent.

The following Sects. 3.1.1–3.1.5 describe each of the heuristics in more detail.
Then in Sect. 3.2 we explain how the information provided by the different heuristics
is combined to maximize the number of objects successfully tracked.

3.1.1 Distance of the Movement

This heuristic takes a pair of images and performs a cross-classification of every
computing burst from the first into the latter, and vice versa. The classification is
based on a nearest-neighbor criteria, so that all points will get classified to the
nearest counterpart cluster. This can be seen as projecting each object from one
image to the next, and see which object in the second image is closer.

The idea that lies behind supports on the fact that the behavior of a parallel
application will not radically change along images, and so the objects displacements
will generally be short. This assumes a certain ordering in the pairs of images that
are compared, as the more different they are, the more difficult becomes to find
correspondences. However, for the majority of analyses an implicit order emerges.
Consider again the previous example where we doubled from 128 to 256 the number
of cores in WRF (see Fig. 2a, c). The general structure for both experiments hardly
differs, with very slight movements.

There are situations where a cluster may split into two or more. For example,
when new zones of imbalance appear and separate one region into several distinct
performance behaviors. This case can be seen in Fig. 4, where region A4 shifts to
two behaviors, namely B4 and B11. Also, there are cases where clusters can move a
long way in the space, which is the case of regions 11 and 12 in Fig. 2a to regions
12 and 15 in Fig. 2c, respectively. In these situations, cross-classification based on
distance is likely not to assign the points to the correct cluster (both get assigned to
12 because 15 is too far away, which illustrates a mapping error), but we can then
use the next heuristics to discern whether those regions are the same or not.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 B2 B3 B4 B5 B6 B10 B11 B12

A1 100% 0 0 0 0 0 0 0 0
A2 0 0 100% 0 0 0 0 0 0
A3 0 99% 0 0 0 0 1% 0 0
A4 0 0 0 34% 0 0 0 65% 0
A5 0 0 0 0 100% 0 0 0 0
A6 0 0 0 0 0 100% 0 0 0
..

. . .

.
A11 0 0 0 0 0 0 0 0 100%
A12 0 0 0 0 0 0 0 0 100%

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4 Cross-classification between WRF-128 and WRF-256

3.1.2 SPMDiness

This heuristic exploits the SPMD structure of the applications to match computing
regions that happen simultaneously in different processes. Assuming this execution
model, all processors are expected to be executing the same phase of code at a
time. In this case, if multiple processes are executing different types of computations
concurrently, they are likely to refer to the same code region, although there might
be performance variations that make them shift apart (e.g. the application presents
work imbalance).

Figure 5a shows a detailed view of the temporal sequence of clusters at the
beginning of one iteration of WRF 128-tasks. All processes (Y-axis) execute the
same computations over time (X-axis). The same pattern can be seen in Fig. 5b
for the 256-tasks case, meaning that the code phases and the order in which they
get executed are the same in both runs. However, in this case some processes are
undergoing duration imbalances and execute longer computations, shown as stride
lines with distinct colors. The new behavior is identified as a different cluster, but
these are actually the same computing phases and can be linked together.

The application SPMDiness is evaluated with the technique presented in [10].
The algorithm takes as input the sequence of clusters for every task of the
application, and performs a Multiple Sequence Alignment (MSA). Clusters from
different tasks that fall into the same position of the globally aligned sequence are
those that get executed simultaneously, and we use this information to mark them
as equivalent. If the application follows a programming model that may result in
different processes running different parts of the code at the same time (e.g. task-
based parallelism), this heuristic alone may lead to inconclusive decisions.

3.1.3 Call Stack References

This heuristic prunes the search space by discarding matchings between regions
that do not have call stack references in common. Call stack information points to
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Fig. 5 Correlations from SPMDiness heuristic for WRF. (a) SPMD computations for WRF-128.
(b) SPMD computations for WRF-256

Table 3 Correlations from
call stack heuristic for WRF

128 tasks Callstack references 256 tasks

Region 1 4939 (module_comm_dm.f90) Region 1

Region 2

Region 5
6474 (module_comm_dm.f90)

Region 3

Region 5

Region 13

Region 3 6060 (module_comm_dm.f90) Region 2

Region 4 2472 (module_comm_dm.f90)
Region 4

Region 11

Region 7
5734 (module_comm_dm.f90)

6275 (module_comm_dm.f90)

Region 7

Region 11 Region 12

Region 12 Region 15

the function, file and source code line where the CPU burst starts, linking them to
specific points of code. If two clusters from two different frames do not share code
references, they are certainly not equivalent.

Table 3 illustrates a subset of the relations that can be outlined between regions
from their code references. The reason why some relations are ambiguous is because
the clustering process groups computations based on their similarity with respect
to the selected metrics to generate the performance images, so it is possible that
different points of code behave the same and get grouped under the same cluster.
Also, if a single code region presents multi-modal behaviors, it will appear as part
of multiple clusters. This information alone is insufficient to discriminate more, but
effectively reduces the combinatorial explosion.
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Fig. 6 Correlations from clusters density heuristic. The aggregate density of the split clusters on
the right is lower or equal than the merged clusters on the left

3.1.4 Clusters Density

This heuristic is applicable when comparing experiments that have computed the
same number of CPU bursts. In those cases, the aggregate of computations of all
the clusters in each performance image will be the same. If the points distribution
in the performance space does not change between experiments, the densities of the
clusters will also be the same. When a cluster splits, two or more sub-clusters will
have formed, and the sum of their densities will equal the density of the original
super-cluster that contained them all, as illustrated in Fig. 6.

This problem can be formulated as a variant of the 0/1 knapsack problem
[13]: given a cluster i in the experiment A with a certain density D.Ai /, find the
combination of sub-clusters in the second experiment B that maximizes the sum of
their densities D.Bsum/ D D.B1/ C D.B2/ C : : : C D.BN / so that the aggregate
density D.Bsum/ is lower or equal than the limit density D.Ai /.

3.1.5 Chronological Sequence

This heuristic assumes that the program execution order will not change between
experiments, and so the sequence of computing bursts over time will preserve the
same chronological order. If the execution flow of the program varies between
experiments (e.g. the program is dependent on the input data set, and triggers
different algorithms optimized for specific data sets), then this heuristic is not
applicable. When the execution order is preserved, it is possible to determine
equivalent code regions by looking into the position where the computations appear
in the execution sequence and matching those in the same position.

The sequence alignment technique referred in [10] is applied now on two
experiments, and we then compare the order of occurrence of the computations. For
example, consider an experiment that executes a loop comprising four computing
regions with different performance behavior, and so these get classified in four
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Fig. 7 Correlations from chronological sequence heuristic. (a) Sequence of computations in two
different experiments. (b) Aligned subsequences between selected pivots, given that cluster 1 and
4 in the first sequence correspond to 2 and 3 in the second. Attending to their chronological order
all clusters that fall the same column would be equivalent

different clusters. The top timeline in Fig. 7a depicts 2 iterations of this loop, with
each computation colored according to the cluster to whom it belongs. A second
experiment that uses more processes and a bigger problem size results in shorter
computations and more iterations of the loop, as illustrated in the bottom timeline
in Fig. 7a.

As we have discussed earlier in Sect. 2.3, the clustering process applied to
different experiments can result in different clusters, hence having the same clusters
colors or identifiers does not necessarily imply that they represent the same
computing region, and so these sequences can not be compared directly. However,
if we could guarantee some correspondences between clusters, for example, that
regions 1 and 4 in the top experiment correspond to 2 and 3 in the second, then we
can split the sequences between this points and align all the resulting subsequences,
as shown in Fig. 7b. Now if we only pay attention to the order of occurrence of the
computations, all those that appear in the same column are equivalent with respect
to their chronological order.

In order to decide which are the points to split the sequences, this heuristic uses
the matchings discovered so far by the previous heuristics to establish pivots in both
sequences, and align the subsequences with respect to these points of reference to
discover new matchings.
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3.2 Combining Tracking Heuristics

Build upon the combination of these five heuristics, the tracking algorithm proceeds
as follows to determine a global matching between all clusters. Every heuristic
is applied separately and reports one or more correlation matrices representing
relations between objects. Depending on the heuristic, what these matrices express
is different. Figure 4 shows the correlations computed by the density heuristic
for experiments WRF-128 (A) and WRF-256 (B). In this case, it indicates the
percentage of computations that conform object Ai for which object Bj is closer.
As you can see, there are cases where one object is close enough to two others or
more, so it is not immediate to determine the appropriate correspondences when the
objects are moving arbitrarily around the performance space. For the SPMDiness
heuristic one correlation matrix per frame is built, each expressing the probability
of two different computations to be executed at the same time by different processes
within the same experiment. The call stack heuristic calculates the percentage of
computations that are part of object Ai whose call stack references point to the
same source code than those of object Bj . The density heuristic represents groups
of clusters that have the same aggregate density. Lastly, the chronological sequence
heuristic reflects the percentage of times where computations Ai and Bj happen
in the same order of occurrence. In all cases, non-zero cells evince that a given
pair of objects are the same with a certain probability, according to that heuristic.
Occurrences with a very small probability (5 % by default) are neglected as outliers.

Since every heuristic considers different properties of the objects, there might be
contradictions on the correspondences found, and the results have to be combined to
complement the correspondences that a given heuristic might fail to discern. To this
end, a combination algorithm extracts from each correlation matrix a set of rules
in the form Ai � Bj expressing which objects between two frames are equivalent,
and reduces the rules applying a series of union and intersection operations. The
union operation computes a logical OR and can be seen as complementing the
results of different heuristics (e.g. one heuristic finds that A1 � B1, and another
finds that A1 � B2, so we add up the results and consider that A1 � B1 [ B2).
In this case, an equivalence between two objects is kept always that at least one
heuristic confirms it. The intersection operation computes the logical AND, and can
be seen as the agreement between heuristics (e.g. in the previous example, there is
no valid correspondence for A1 because the heuristics did not agree). In this case,
an equivalence between two objects is kept only if all the heuristics find that same
correspondence, or discarded otherwise.

The first rules to take into account are always those found by distance, because
the information required to compute the distances between objects is always present
in the frames. Then the resulting rules are united with those found by SPMDiness.
For example, if the first finds that the nearest object for A5 is B5, and the latter finds
that B5 and B13 always happen simultaneously, all objects merge into a more general
relation A5 � B5[B13. The call stack and density rules are then intersected to prune
incorrect relations that may appear due to mapping errors in the former heuristics.
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For example, all related clusters must share the same references to the source code,
so we discard those not having any in common.

We search for correspondences between objects reciprocally, this is to say,
comparing frame A with B and vice versa, extracting a final set of rules that
correlate the objects between both frames. When the information available leads the
heuristics to not be able to clearly distinguish one region from another, the regions
in doubt are grouped together, resulting in wide relations of multiple objects. The
chronological sequence heuristic is finally used to refine the results, splitting wide
relations into more specific ones.

The analysis is repeated for every pair of consecutive frames, obtaining in the
end k tracked regions, relations of objects that are equivalent along the whole
sequence of images. Additionally, the tool generates plots describing the evolution
of each tracked region. Next section gives an overview of the results of the tracking
algorithm.

3.3 Tracking Results

In this section we present the results of the tracking algorithm, following on from
the WRF example used to guide the explanation of the technique through the former
sections. For the two configurations presented, runs with 128 and 256 tasks, we will
conduct a brief scalability study to explain how the tracking results yield practical
insights that help in understanding and improving the code.

First, the tool reconstructs the input images for the tracking algorithm with all
objects identifiers renamed, so that all equivalent regions keep the same numbering
and color. The whole sequence of images can be displayed in a simple animation,
or in a single plot showing the trajectory that every different object follows, so that
is very easy to identify variations in the performance space, as shown in Fig. 8 (in
logarithmic scale for better readability, refer to Fig. 2 for the real scales).

Here we can observe two main trends: clusters whose shape hardly varies
between experiments (e.g. Regions 1 to 3), and those that become more distorted
when the scale increases (e.g. Regions 4, 5 and 7). Focusing on the latter which
are most affected by the scale, the developers made an effort to balance the amount
of work, as they appear as flat clusters with low variation in the instructions axis.
However, they present large IPC variability that increases at higher scale. In the
256-tasks case Regions 4, 5 and 7, that cover altogether the 30 % of the total time,
split into new zones of imbalance on their left with lower performance. Clusters
becoming more disperse indicate an increasing problem of time imbalance.

Amongst the regions that do not deteriorate due to the scale increase, Region
2 stands out for covering all alone the 15 % of the execution time, and exhibiting
an elongated cluster in the Y-axis that reflects large instructions imbalance, within
a dynamic range that doubles from 1.5e9 for the 128-tasks case (top), and 8e8 for
the 256-tasks case (bottom). Despite the IPC variability partially compensates the
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Fig. 8 Trajectories of clusters from WRF-128 to WRF-256

Fig. 9 Performance trends for WRF code regions. (a) IPC evolution. (b) Instructions evolution

instructions imbalance and the performance is maintained at scale, this region was
already inefficient from the start.

In addition, the tool presents the evolution of every computing region from the
first scenario to the last, with respect to the metrics selected to generate the images.
Figure 9a shows a trend chart displaying the evolution in IPC for the 128 and 256-
tasks runs of WRF. For better readability, only the most significant regions and
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those with higher IPC variations (above 3 %) are depicted. While there is a slight
improvement for regions 4, 6 and 7 under 4 %, regions 10 to 12 present a sharp
decline up to 20 %. Regions 1 to 3 remain constant, yet is important to remark that
being the most important computations covering 50 % of the total time, these are
also the ones achieving lower IPC around 0.70. Figure 9b shows the evolution in
the number of instructions for the regions that execute the most, as the percentage
over the 128-tasks base case. When the number of cores increases, so does the total
number of instructions, revealing code replication below 8 % in all regions of the
program, which is reasonable but warns us about an increasingly detrimental effect
at higher scales, in particular for regions 3 and 10.

For a production class application with a long-term development, a brief analysis
of the clusters trajectories and the metrics trends has quickly diagnosed several
performance weaknesses and potential problems at higher scales. In general, the
information presented allows to perform parametric studies on the influence of
different configurations, as well as to study the evolution of a single experiment
over time, enabling an intuitive analysis that gets straight to the points of interest
and their major causes of inefficiency. Having call stack references associated to
every cluster, it is possible to connect the observed performance artifacts to specific
points in the code and extract useful recommendations on which way to direct the
optimization process.

4 Cases of Study

The aim of this section is to demonstrate the added value of using tracking,
where the importance lays on understanding how and why the performance of
the application changes along multiple experiments. We want to highlight the
versatility of the technique for a variety of parametric studies, tossing ideas about
the kind of cases of study that could be interesting for the analyst. To this end,
we have selected configurations that would produce unpredictable sets of clusters
and arbitrary displacements to prove the algorithm working under stress. Moreover,
we present a real-case study to show that this technique can be useful to provide
valuable insights to the users and successfully lead to improvements in their codes.

Therefore, a variety of proxy and production codes from different fields such as
astrophysics, molecular dynamics and meteorology; were run in MareNostrum II,
MareNostrum III and MinoTauro [2]. MareNostrum II is a cluster of 2,560 nodes,
each containing 2 IBM PowerPC 970MP 2-Core at 2.3 GHz with 8 GB of RAM.
MareNostrum III comprises 3,028 nodes, each containing 2 Intel SandyBridge-EP
E5-2670 8-Core at 2.6 GHz with 32 GB of RAM. MinoTauro comprises 126 nodes,
each containing 2 Intel Xeon E5649 6-Core at 2.53 GHz with 24 GB of RAM.

Table 4 illustrates the ability of the algorithm to identify and keep track of the
different computing regions in 11 studies. The objects detected are automatically
reduced to the ones considered more relevant, those that represent a high percentage
of the total application time, usually above 5–10 %. Coverage is calculated as the
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Table 4 Summary of
experiments

Application Input images Tracked regions Coverage

Gadget 2 8 88 %

QuantumE 2 6 66 %

WRF 2 12 100 %

Gromacs 3 5 100 %

CGPOP 4 2 66 %

NAS BT 4 6 100 %

OpenMX 7 7 100 %

Hydro 8 3 100 %

MR-Genesis 12 2 100 %

NAS FT 15 2 100 %

Gromacs 20 4 80 %

percentage of objects tracked with respect to the maximum number of identifiable
objects in the input images. 100 % in coverage denotes that the algorithm has been
able to find unambiguous correspondences between all the objects. Values below
the optimal reflect that there were nearby objects in the input images that the
tracking heuristics could not distinguish as separate individuals with the information
available, grouping them as a single entity. On average, the algorithm successfully
discriminates 90 % of the objects. The following sections present seven case studies
in more detail.

4.1 Studying the Scalability of the Computing Regions

The objective of this experiment is to conduct a real-case study of the scalability
of the computing regions of an application. The selected code is OpenMX [19], a
software package designed for the realization of large-scale ab initio calculations.
To this end, we run OpenMX v3.6p1 in MareNostrum III increasing the number of
MPI tasks from 64 to 512 using a single OpenMP thread per task.

As we are running a strong-scale test (fixed-size problem on a varying number of
processors), the application would ideally see the execution time reduced inversely
proportional to the number of processors used. However, multiplying by 8 the
number of tasks, the speedup achieved in a single time-step is lower than 2. In terms
of work executed, the total number of instructions should have got evenly distributed
amongst all processes, and thus remain constant when the scale increases. Withal,
Fig. 10a shows the total number of instructions increasing by 100 % from the 64
to the 512-tasks case, which is far from the ideal scaling and too significant to be
due to a problem of code replication. Applying tracking, we can now break-down
this aggregate for the whole program and study the evolution of the relevant code
regions per separate, to understand which parts prevent the application from scaling
better.
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Fig. 10 Scalability of OpenMX. (a) Application scalability. (b) Computations scalability

The input to the tracking algorithm is the collection of images that depict the
performance of each individual experiment. Unlike in other experiments where the
images are two-dimensional (Instructions and IPC), in this case we used the metric
L1 data cache misses as a third dimension to cluster the data, which results in a
more precise characterization of the relevant computational behaviors. Figure 11a
shows the result of the tracking algorithm applied to the sequence of experiments
from 64 to 512 tasks (only 6 out of 7 depicted due to space constraints, and plotted
in 2D in the Instructions and IPC axes for clarity).

A quick glance at the evolution of the main behaviors reveals two main issues:
First, most regions progress vertically downwards the Y-axis (instructions decrease),
as one would expect for a strong-scaling case. Figure 11b shows the trajectories that
follow the different regions from one experiment to the next, represented by their
centroids. It is easy to see that regions 3, 6 and 7 do not move, meaning that they
perform constant work despite the scale, as if they were ran in a weak-scaling mode.

Figure 10b shows the ratio of surplus work executed per region with respect to
the ideal case where all regions scaled perfectly. In the 512-tasks case, regions 3, 6
and 7 which should have seen reduced their work by a factor of 8, actually execute
7.5 times more work than the expected. With this progression, these three regions
that represented altogether the 20 % of the iteration time in the 64-tasks case, now
dominate the iteration representing the 65 % of the total time, and have become the
main bottlenecks to the computation scalability. Namely, these correspond to the
computing phases starting at lines 289, 589 and 129 of routine Set_XC_Grid. Here,
the programmer has put effort to use shared memory programming, but has not taken
advantage of distributing the workload amongst processes. Likely, the developers
considered more efficient to replicate this code to avoid the cost of communications,
which may be worthwhile at small scales, but the increasing costs do not pay off
at larger scales. These observations were reported to the developers, suggesting to
study the feasibility of partitioning the work so as to fully exploit the distributed
resources.
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Fig. 11 Tracking results for OpenMX. (a) Sequence of output images from the tracking algorithm.
(b) Trajectories of clusters from 64 to 512-tasks runs

The second important observation is that most behaviors grow more and more
disperse. In particular, it is the regions that scale better the ones that present more
variability, namely 1, 2 and 4. The parallel efficiency [5] of these regions decreases
from 0.80 in the 64-tasks case to 0.60 in the 512-tasks case, meaning that the 40 %
of resources are wasted due to time imbalances, where some processes have to wait
for others to finish their work, and such imbalance gets absorbed in subsequent
synchronizations. These correspond to the computing phases starting at lines 732 of
Krylov_Col, 256 of Set_Hamiltonian, and 288 of Set_Density_Grid. In this case,
a second precise recommendation could be made to the user to study the load-
balancing characteristics of these particular regions.

As a final remark, the detected hazards could have been inferred just from the
first three frames in the sequence, and so our technique can be used with few cores
to anticipate problems at higher scales, saving on time and resources.
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4.2 Studying the Impact of Multi-core Sharing

MR-Genesis [17] employs a finite volume approach in order to evolve the Rela-
tivistic Euler equations combined with a Constrained Transport scheme to account
for the divergence free evolution of the dynamically included magnetic field. MR-
Genesis was run in MinoTauro using 12 processes, changing the maximum number
of processes allowed per node from 1 to 12. Being 12 the number of available cores
per node in MinoTauro, the configuration for the first experiment corresponds to
12 different nodes running a single process each, and a single full node for the last
experiment, with all the intermediate cases also tested. The objective is to study the
effect of memory bandwidth and caches contention on the application performance
when sharing resources.

Figure 12a shows the result of the tracking algorithm applied to the sequence of
experiments from 1 to 12 processes per node, which reveals two main computing
phases with analogous behavior. Since it is only the physical mapping of processes
what changes, the total number of instructions executed remains constant in all
trials. However, as nodes get more populated, the achieved performance of the
application decreases. Up to the 66 % of the node occupation (8 tasks per node)
the IPC presents a slight reduction under 1.5 % from one experiment to the next,
but starts presenting sharper drops beyond this point, with an 8.5 % loss when an
additional process is collocated in the node. Overall, the achieved IPC degrades a
total of 17.5 % when the node is full.

Figure 12b correlates all performance metrics for Region 1. The Y-axis reflects
the percentage of variation of each metric with respect to its maximum value for all
trials. The number of L2 cache misses grows inversely to the IPC degradation rate,
and the TLB misses also increase as the node gets more populated.

In this case, a fair trade-off between maximum utilization of the resources and
the application performance is met at two-thirds of the node occupation.

Fig. 12 Tracking results for MR-Genesis. (a) Clusters trajectories mapping from 1 to 12 processes
per node. (b) Region 1 evolution
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4.3 Studying the Impact of the Program Block Size

HYDRO [15] is a proxy benchmark that solves a large scale structure and galaxy
formation problem using a rectangular 2D space domain split in blocks. HYDRO
was run in MinoTauro, and the sequence of images in this case is built doubling
the block size from 8 to 1,024 KB. The objective of this experiment is to determine
which is the best setting for a particular parameter of the program to minimize the
execution time.

Figure 13a shows the evolution of the three main computing phases of the
application, which actually refer to the same source code region with tri-modal
behavior. The trajectories reflect the number of instructions initially decreasing for
all three regions with drops from 1 to 3 % up to a block size of 32 (movement
downwards the Y-axis), and keeps steady beyond this point. IPC also decreases with
a total deviation of 5 % for Region 1, and 10 % for Regions 2 and 3, all presenting
a sharp dip when the block size increases from 64 to 128 (movement leftwards the
X-axis). At this point, the number of L1 data cache misses rockets 40 % more, as
shown in Fig. 13b.

Using small block sizes the application gets more blocks to compute, which
entails executing more control instructions. Since the blocks are bi-dimensional and
store 8-bytes elements, when the block size is set to 64 the limit of the L1 cache is
reached, which is 32 KB. With bigger sizes, the block does not fit in the cache, and
so the miss rate increases to the detriment of IPC.

Correlating the evolution of all metrics, the point where highest performance
and lowest workload and cache misses converge is at a block size of 16, which
results in the fastest execution of all proposed setups, so this one would be the most
recommendable to minimize the response time.

a b

Fig. 13 Tracking results for Hydro. (a) Clusters trajectories doubling the block size from 8 to
1,024 KB. (b) Region 1 evolution
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4.4 Studying the Impact of the Problem Input Size

The NAS Parallel Benchmarks [18] are a small set of programs designed to assess
the performance of parallel supercomputers. In this experiment we evaluate version
2.3 of the BT solver with increasing problem sizes. Problem sizes are predefined and
indicated as different classes, where Class W corresponds to a small workstation
problem size, and A, B and C correspond to standard test problems with a 4X
size increase going from one class to the next. For all classes, BT was run in
MareNostrum II with 16 processes.

Figure 14 shows the trajectories of the clusters through classes W to C. The
starting experiment corresponds to Class W, which can be located at the bottom
part of the plot. Class W presents large variability in IPC, which is depicted with
the elongated clusters in the X-axis. As the experiments move forward, all clusters
move to the top-left part of the plot. This transition shows a large dynamic increase
of two orders of magnitude in the number of instructions from Class W to Class C.
Also, clusters become more compact, indicating a reduction in the IPC variability
except for Region 2, which corresponds to the Gaussian elimination performed in
routines Œxjyjz�_solve_cell.

In contrast, the achieved performance in all code regions degrades as the size
of the problem increases. Figure 15a shows there are two decreasing trends for the
IPC. For regions 1, 2, 4 and 5, a sharp loss ranging from 40 to 65 % happens as soon
as we move from Class W to A and then stabilizes, while for regions 3 and 6 the
IPC keeps decreasing and does not stabilize until Class B. Correlating the evolution
of all available metrics, we can see that this IPC degradation can be explained due
to an increase in the L2 data cache misses, as shown in Fig. 15b.

Fig. 14 Trajectories of clusters through BT experiments
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Fig. 15 Performance trends for NAS BT code regions. (a) Evolution of IPC. (b) Evolution of L2
cache misses

4.5 Studying the Impact of Different Hardware and Compilers

In this experiment we are going to stress the performance variations in the
application changing the machine where it is executed and also changing from
a generic to an architecture specific compiler. This test shows that even in very
different scenarios that may result in large performance variations, the tracking
algorithm is able to follow the evolution of the clusters.

CGPOP [27] is a proxy application of the Parallel Ocean Program [14]. POP
simulates the global climate model and is a component of the Community Earth
System Model. CGPOP was run with 128 processors both in MareNostrum II
and MinoTauro, and compiled with GNU Fortran 4.1.2 (gfortran) and IBM XL
Fortran 12.1 (xlf) in MareNostrum, and GNU Fortran 4.4.4 and Intel Fortran 12.0.4
(ifort) in MinoTauro. In all cases, the application was compiled with an aggressive
optimization flag (�O3) and debug (�g).

Figure 16 shows the trajectories that follow the two main computing behaviors
with respect to the number of instructions, which are subdivided into several regions
due to differences in the achieved IPC. In MareNostrum, when the application is
compiled with xlf (see Fig. 16b) all computations see the number of instructions
significantly reduced (36 and 33 %, respectively) compared to using gfortran (see
Fig. 16a), but the IPC degrades practically in the same proportion and the overall
execution time remains almost constant. The situation in MinoTauro is very similar
(see Fig. 16c, d), with an overall improvement in terms of less instructions executed
and higher IPC achieved, yet the same degradation effect when changing compilers
can be easily identified.

Changing the platform also alters the behavior of code, as can be seen for Region
2 in MareNostrum which splits into Regions 2 and 3 in MinoTauro, no matter the
compiler used. They all refer to the same point in the code, but it now presents
two distinct behaviors. The tracking algorithm automatically identifies and groups
together those regions that are equivalent despite the performance variations, as
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Fig. 16 Trajectories of clusters through CGPOP experiments: (A) MareNostrum GNU (B)
MareNostrum IBM XL (C) MinoTauro GNU (D) MinoTauro Intel

Table 5 CGPOP performance results

MareNostrum II MinoTauro
gfortran xlf gfortran ifort

Region 1 IPC 0.25 0.16 0.42 0.30

Instructions 6.8 M 4.3 M 5 M 3.5 M

Duration 12.09 s 12.11 s 4.82 s 4.68 s

Region 2 IPC 0.25 0.16 0.50 0.36

Instructions 4.5 M 3 M 3.3 M 2.3 M

Duration 2.13 s 2.14 s 0.71 s 0.69 s

illustrated by the bounding boxes, and then numerically calculates their evolution
along experiments. Table 5 summarizes the averages for IPC and instructions for
both tracked regions, and their elapsed execution time.

In this case, the specialized compilers xlf and ifort attain a reduction of 36 and
30 % of the number of instructions with respect to gfortran in both machines, but at
the expense of an average IPC loss of 36 % in MareNostrum and 28 % in MinoTauro.
Likely, they reduced index arithmetic but the performance did not change much
because the computation is still memory bound. The integer instructions saved were
likely traded for idle issue slots while waiting for the memory hierarchy, leading to
negligible variations in the execution times lower than ˙0.03 %.
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4.6 Studying the Effect of Optimal and Non-optimal Grid
Geometries

HACC (Hardware/Hybrid Accelerated Cosmology Code) is a framework that melds
particle and grid methods to satisfy the requirements of cosmological surveys,
exploiting hybrid and accelerator-based architectures with millions of cores, includ-
ing CPU/GPU, multi/many-core, and Blue Gene systems. HACC is designed to
scale weakly by dividing the working data set in cubes. In this experiment we
stressed the application setting different geometries other than a perfect cube, in
order to see how much is the performance affected. The program was run in
MareNostrum III, doubling the number of tasks from 16 to 1,024 tasks, as well as
the size of the problem, with 1 single MPI task per node (so neither multi-core nor
memory caches sharing), using the Intel MPI message passing library, and without
support for threads.

Figure 17 shows the trajectories of the main computing regions of HACC. Here
we can observe zigzag movements back and forth: as we increase the number of
tasks (and so the size of the problem in proportion), all regions move upward
(more instructions executed) and rightward (more IPC achieved). However, when
the number of tasks is cubic (i.e. 64 and 512 tasks), the regions move back in the
opposite direction (down and left; meaning less instructions executed and less IPC
achieved). Figures 18 and 19 show this effect more clearly. Figure 18 shows the

Fig. 17 Trajectories of clusters through HACC weak scale experiments
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Fig. 18 Average instructions executed per computing region in HACC

Fig. 19 Average IPC achieved per computing region in HACC

amount of instructions executed per region across experiments. The lower workload
is found at experiments 3 and 6 (the cubic cases with 64 and 512 tasks). Correlating
with Fig. 19, these two experiments are also the ones achieving lower IPC.

The differences in the number of instructions can be explained due to the work
distribution scheme: when the number of tasks is not cubic there is extra work
to distribute among the available tasks. Although the IPC achieved also becomes
higher, the increase in performance does not compensate for the increase of work,
and the computation time becomes higher in the uneven cases. This can be seen
in Fig. 20, that compares the computation times for the main computing region
of the program (Region 1) in the cubic runs (64 and 512 tasks), and an uneven
intermediate case (256 tasks). In these histograms, the rows represent processes and
the columns are bins of computation durations increasing from left to right, and the
colors represent the time spent on a particular bin, ranging from green (low time) to
blue (high time). In the cubic cases (see Figs. 20a, c), the computing times are very
similar in the range of 310 to 323 ms, but in the 256 tasks case (see Fig. 20b), all
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Fig. 20 Histograms of durations for computing region 1 in HACC. (a) 64 tasks. (b) 256 tasks. (c)
512 tasks

computations are shifted to the right, having increased their times ranging from 323
to 343 ms.

Even though the overall performance of the computations is better in the cubic
cases, we can also observe that the time to solution degrades as we increase the
scale. Comparing the two cubic cases with 64 and 512 tasks, we see that the
percentage of time spent in computations decreases from 60 to 45 %, and so the
communications start to dominate the execution time. Analyzing the trace, the time
spent in MPI_Wait calls increases from 30 to 50 % because of the serializations in
the program caused by a pipelined communication pattern, where some processes
can not progress until they have received messages they are waiting on. One
recommendation that could be given in this case to improve the scalability of the
program is to change the communication pattern so as to overlap communications
with computations, reducing the serializations.
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4.7 Studying the Effects of Memory Congestion

LULESH is a shock hydro mini-app. While designed to test many machine and
hardware features in particular it stresses compiler vectorization and OpenMP
overheads. LULESH performs a hydrodynamics stencil calculation using both MPI
and OpenMP to achieve parallelism. In general the compute performance properties
of LULESH are more interesting than messaging as on a typical modern machine
only about 10 % of the runtime is spent in communication.

In this experiment we measure how sensitive are the computations of this
program to memory congestion. To do so, we interfere the execution collocating
gremlin processes [6] in the same nodes where the application is running, constantly
consuming a large amount of memory bandwidth by contaminating the L3 shared
memory cache. One gremlin is activated at a time every few seconds across the
execution. So the application starts running clean, then it is interfered by one gremlin
after a while, then by a second gremlin and so on until a maximum of six gremlins
per socket and node are interfering. Every single gremlin consumes an average
memory bandwidth of 600 Mb/s. The bandwidth has been approximated with the
following formula: BW D .L3miss 	 Lsize/=Tburst; where L3miss is the number of
misses in the last level cache, and so is the number of times that data is fetched from
the main memory; Lsize is the size of the cache line, and Tburst is the duration of the
computing region.

Figure 21 shows the average bandwidth consumed by the different computing
regions of LULESH with increasing number of gremlins. As the reader can see,
each new gremlin increases the average bandwidth consumed by the application

Fig. 21 Memory bandwidth consumed by the main computing regions of LULESH with increas-
ing levels of interference
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Fig. 22 Trajectories of clusters through LULESH experiments (from bottom to top, 0–6 gremlins
per socket)

due to the extra memory accesses needed to cope with the higher number of cache
misses.

Figure 22 shows the trajectories of the main four computing regions of LULESH
with respect to the IPC achieved (X-axis) and the number of L3 misses (Y-axis).
All regions move upwards (meaning that the number of L3 cache misses increase
with the number of interfering gremlins), and also move leftwards (meaning that
all regions loose performance with higher levels of interference). Region 3 (red)
is the one that moves further in both axes, which means that is the computation
most affected by the interferences, and corresponds to the computations performed
at the CommMonoQ routine. This routine copies data from several structures with
a non-consecutive stride, making more misses because the application is not taking
advantage of the temporal data locality.

5 Related Work

Our work draws inspiration from a motion detection algorithm of moving biological
objects that are similar but non-homogeneous [20]. They apply multi-feature
contour segmentation and flux tensors for identifying the boundaries of biological
objects and the detection of deformable motion and complex behaviors (e.g. cell
crawling or division) along a time-lapse collection of images.

In a broader sense, object tracking is applied in the context of applications that
require to associate target objects in consecutive frames to detect how they move
around the scene. Practical applications include: automated surveillance, gesture
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recognition, traffic monitoring or path planning and obstacle avoidance. Yilmaz
et al. [30] presents an extensive review of the state-of-the-art of tracking methods,
and discusses related issues including the use of appropriate image features, motion
models and object recognition.

ETRUSCA [22] is a post-mortem performance tool that includes a jitter reduction
analysis that attempted to relate the clusters found in one time interval with the
clusters found in the next interval. Selecting a representative process in each
interval, they would minimize the data captured. Our approach does not look for
representative processes, but representative behaviors for all computing phases
within all processors, and track how they change not only across time intervals,
but also across experiments with different configurations.

Multi-experimental analysis has been approached by several performance anal-
ysis tools. SCALASCA [26] includes a tool called performance algebra that can
be used to merge, subtract, and average the data from different experiments and
view the results as a single derived experiment. PerfExplorer [12] supports data
mining analyses on multi-experiment parallel performance profiles. Its capabilities
include general statistical analysis of performance data, dimension reduction,
clustering and correlation of performance data, and multi-experiment data query and
management. TAU [25] incorporates the concept of phase profiling for the study
of the evolution within a single experiment. This is an approach to profiling that
measures performance relative to a phase of execution, having its entry and exit
marked by the user. HPCToolkit [16] merges profile data from multiple performance
experiments into a database file and perform various statistical and comparative
analyses.

While they compute averages for predefined metrics and fixed phases such as
functions, iterations or sections marked beforehand, we report arbitrary metrics at
the level of computing regions. By doing so, we abstract the structure of the appli-
cation to the behavior of its computing phases, taking into account the performance
measurements of every single computation rather than profiled averages that may
hinder their actual behavior.

The fundamental difference that distinguishes our approach from the previous
ones is that we do not merely report the outcome of different experiments together.
We automatically determine the regions of interest and track their evolution along
multiple executions. To this end, we translate performance data from different
execution scenarios into a sequence of images, detect structure in each image and
automatically correlate them.

6 Closing Remarks

In this chapter we have demonstrated that it is possible to draw an analogy
between tracking techniques applied to the automatic detection of an object’s
motility, and the performance analysis of a parallel application’s evolution along
multiple execution scenarios. This approach mimics the common phase structure



Studying Performance Changes with Tracking Analysis 207

of a tracking algorithm, including the generation of a sequence of images, object
recognition within each frame and motion analysis across scenes.

Different scenarios are represented as a sequence of performance images that
expresses the evolution of the application either along different experiments with
changing configurations, or along time intervals within the same experiment.
Computing regions of the application are represented as objects in these images,
described by how they behave in terms of selected performance metrics. Then,
we find a correspondence between objects along the whole sequence of images,
keeping track of their possible motions and structural changes due to performance
variations. To this end, we use a variety of heuristics that take into account different
characteristics of the computing regions: the distances in the performance space, the
SPMDiness of the application, the code region they refer to, the clusters densities
and the chronological sequence. Combining their use, we are able to automatically
identify the global evolution of the main computational behaviors and illustrate their
performance trends.

Our technique offers a different viewpoint to the task of analysis that is more
agnostic of the syntax of the code, but brings into focus the main performance
characteristics of the program and the nature of their inefficiencies, enabling the
identification of the most appropriate solution for the bottlenecks observed. Then,
these observations can be correlated with the source code, to know which sections
exhibit a given behavior. There are two remarkable benefits to this approach. First,
the same solution can be applied to multiple code sections that present the same
deficiency, without having to reappraise the same problems repeatedly. Second, we
are able to detect multi-modal behavior and variations along time and processors,
two important effects often masked by profiling tools. In this way, a single
code section undergoing performance variabilities will be expressed as divergent
behaviors that can be studied separately, revealing more room for improvement.

All in all, this work presents a versatile tool applicable in very varied scenarios,
enabling the analyst to study the impact of virtually any configuration on the appli-
cation performance without prior knowledge of the program; compare and correlate
performance data between experiments; determine the best setup to meet specific
performance requirements; and ultimately helps to gain better understanding of the
application behavior, much beyond what can be learned from a single experiment.

This work opens up interesting lines of future research. On one hand, predictive
models could be built next that would enable us to foresee the performance of
experiments beyond the sample space. On the other hand, further on-line integration
could be developed, in order to analyze the evolution over time of adaptative
applications automatically.
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A Flexible Data Model to Support Multi-domain
Performance Analysis

Martin Schulz, Abhinav Bhatele, David Böhme, Peer-Timo Bremer,
Todd Gamblin, Alfredo Gimenez, and Kate Isaacs

Abstract Performance data can be complex and potentially high dimensional.
Further, it can be collected in multiple, independent domains. For example, one can
measure code segments, hardware components, data structures, or an application’s
communication structure. Performance analysis and visualization tools require
access to this data in an easy way and must be able to specify relationships and
mappings between these domains in order to provide users with intuitive, actionable
performance analysis results.

In this paper, we describe a data model that can represent such complex
performance data, and we discuss how this model helps us to specify mappings
between domains. We then apply this model to several use cases both for data
acquisition and how it can be mapped into the model, and for performance analysis
and how it can be used to gain insight into an application’s performance.

1 Motivation

High Performance Computing (HPC) application developers are facing increasing
complexity in supercomputer architectures as well as increasing complexity in
the simulations that run on them. Modern HPC machines have deep memory
hierarchies, complex network topologies, and accelerators such as GPUs and many-
core chips. Applications use adaptively refined domain decompositions [1, 4, 9] and
require complex coupling between disparate physics for scale-bridging. To under-
stand these complexities and their interactions, developers must rely on tools for
detailed performance information to optimize their codes. Moreover, measurements
must be presented clearly and intuitively to enable actionable insights.
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Performance tools have a bad track record in this respect. While they can collect
a wide range of performance data and do so efficiently, the data reported by the tools
is often very low-level and demands detailed system knowledge from the developer.
Some tools, like Scalasca [23] or PerfExpert [3], try to close this gap by presenting
higher level analysis results, but such tools are often limited by prior knowledge
about potential bottlenecks that had to be coded into the tools; the detection of new
bottlenecks or performance problems is often not possible, since it requires an in-
depth understanding of code properties and performance data.

One fundamental problem with current tools is that data is displayed in a manner
closely related to the way it was measured. While this is straightforward from a
tool perspective, it often does not match the intuition of the developer and is hard
to understand. For example, counts of cache misses or branch mispredictions are
collected using hardware counters, then displayed on a per-core basis or, at best,
mapped to source code. Their relationship to application physics, however, is left
for users to infer.

We are addressing this issue with a data model that allows tool developers to (a)
abstract measurements as values in independent data domains, (b) define mappings
between domains to describe data transformations and (c) use data mapped into
more intuitive domains for the visualization of performance information. We build
on top of our previous work that proposed a simplified and limited three domain
model [17] and we base our model on discussions at a recent Dagstuhl seminar,
which covered the fundamentals of performance visualization [2]. This data model
will enable developers to gain insights into the performance of complex systems
using intuitive performance visualizations.

We are currently developing an architecture for multi-domain performance
analysis, from data acquisition that is capable of gathering data from the entire
software stack (including application level information), to data storage and queries,
to novel visualization tools that utilize this information and are able to make use of
the multi-domain nature of the data. In this paper we present three case studies: the
use of hardware to simulation domain mappings, a tool to enable topological views
of network data, and a tool to track data movements on NUMA systems. In all cases,
the ability to map data from one domain into another for analysis and visualization is
instrumental in extracting and understanding the insights necessary for performance
optimization.

The remainder of this paper is organized as follows: Sect. 2 discusses how current
tools collect and visualize data and how in some cases this does not match the
intuition the user would like to see. We then briefly discuss our previous model [17]
and its shortcomings. Based on these observations, we formulate the basics of
a generalized model in Sect. 3 and then introduce an architecture to implement
this model on large scale systems in Sect. 4. In Sect. 5 we present three case
studies showing how the concept of cross-domain analysis can help in detecting
performance problems, before we conclude in Sect. 6.
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2 Tools and Their Data Domains

Performance analysis is a well established area in High Performance Computing
(HPC) and many tools have been built and are in active use on HPC systems.
Examples include OpenjSpeedShop [16] and TAU [18], two general performance
analysis frameworks; HPCToolkit [13], specializing in sampling based performance
analysis; Vampir [15] and Jumpshot [24] for the analysis of communication traces;
or mpiP [22] and ompP [7], two profilers for MPI and OpenMP communication
respectively. These tools enable users to collect a wide variety of performance
measurements based on timing information or using hardware performance counters
exposing execution characteristics in the underlying system. In all cases, perfor-
mance measurements are either tied to the physical hardware they were collected in
or to execution objects, such as processes or threads, as defined by the programming
model. We refer to this as the measurement domain.

While the information available is vast, it is also very low-level and requires
substantial effort by a performance analyst to interpret the data and to convert the
information into actionable insights. Because of this, many tools aim to automate
performance analysis by detecting common bottlenecks, rather than by displaying
raw performance information. The APART project [6] was among the first to
formally define a catalogue of bottlenecks. Tools like Scalasca [23] or PerfExpert [3]
use such information to search and identify predefined bottleneck patterns.

This approach, though, is naturally limited to existing, well-understood bottle-
necks. While this is an important class of problems, new problems, including those
caused by emerging architectures and applications, cannot be detected. Those will
always require some manual analysis and will have to be done in close collaboration
between a performance analyst and an application developer.

2.1 Collection vs. Analysis/Visualization Domain

For application developers, the information is not represented in an intuitive manner.
One of the main reasons for this is that most tools deliver performance analysis
results in the domains they were collected in. For example, hardware performance
counters are shown per core ID or MPI message traffic is shown per MPI rank. Both
are arbitrary spaces that have no intuitive meaning for the developer when taken
alone. Developers are more familiar with different domains, like the application
domain, e.g., the 2D or 3D domain of a physical phenomena that is being simulated,
or the communication structure implemented on top of the MPI rank space.

While we cannot directly measure performance data in these intuitive domains,
we can map data from a measurement domain into a (potentially) different



214 M. Schulz et al.

visualization or analysis domain.1 This decouples these two domains: data can
be measured in arbitrary domains where it is available, while the user picks the
(possibly different) domain in which she wants to see the data. This provides tools
with a new flexibility that gives developers a novel way to interpret the data and
thereby characterize the performance of their applications.

2.2 The HAC Model

The HAC (Hardware–Application–Communication) model, which we introduced
in our previous work [17], was a first attempt to characterize and abstract this
concept of decoupling the collection from the visualization domain. This model
defined three domains, which we saw as the three most important domains, as well
as mappings between them. This is illustrated in Fig. 1. The three domains were:
H—the hardware domain, which can be used to represent the physical elements of a
machine, like cores or network links, and which is used to measure hardware-related
data like cache misses, floating point operations or number of packet sent over a
link; A—the application domain in which the application’s data resides, e.g., the
simulated structure in a numerical simulation; and C—the communication domain,

Fig. 1 Domains and mappings in the HAC model

1We will use these two terms interchangeably in the remainder of the paper.
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which is used to abstract the communication between processes or threads within
an application.

Each of these domains has its own properties and is associated with its own
analysis and visualization techniques. Mappings between the domains can therefore
help widen the number of analysis and visualization techniques on the data collected
in any of the three domains and can make data collected in two different domains
comparable. A straightforward example, which we will discuss in more detail
in Sect. 5.1, is a mapping from the hardware to the application domain that can
help attribute performance data collected on hardware resources to the sections of
simulation data, which are computed by those resources.

2.3 Missing Elements in the HAC Model

While the HAC model provides the intended abstractions and enables us to provide
users with the intended new insights, it only includes three very specific data
domains. Information on data structures and memory distributions is not included,
and the source code and time domains are handled separately and are not part of
the model. Reasoning about them is a special case, limiting the scope of possible
analyses.

Further, in HAC we treat mappings as static properties, which only holds
for simple, non-adaptive cases. Codes with dynamic data and execution, such as
Adaptive Mesh Refinement codes (AMR) [1, 4, 9], or dynamic environments, e.g.,
with thread migration among hardware threads or process migration for load balance
optimization, however, need mappings that can be updated based on runtime events.
This requires the online collection and integration of metadata.

3 A Generalized Data Model for Performance Tools

We present a generalization of the HAC model that overcomes the limitation
described above. This model was the result of discussions at a Dagstuhl seminar
on Performance Visualization [2] and has input from both the performance analysis
and visualization communities. Figure 2 provides a high-level sketch of the concepts
explained below.

3.1 Spaces and Domains

At the core of the abstraction is a set of spaces. Each space is represented by a finite
set of tuples and has a cross product of types associated with it, such that each type
describes one element of the tuple. The number of spaces is not limited. Time and
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Fig. 2 A generic data model to capture relationships between domains

code (represented by calling context trees [20]) are treated the same as any other
space. A domain is represented by a cross product of spaces.

3.2 Metrics

Metrics are units for individual data points. Examples are floating point operations
and MPI message counts. Metrics are typically represented by infinite sets, as not to
restrict what can be measured, but may in individual cases be a finite set of possible
outcomes.

3.3 Measurements

Measurements capture the data acquisition in performance tools. They are rep-
resented as mappings of a cross product of spaces, the domain the performance
data is collected in, to a metric, the set of possible values for this measurement.
To make reasoning about measurements easier, we define a measurement as a
unique mapping or function, i.e., for each element of the measurement domain the
measurement only maps to at most one element in the metric set. If this is not the
case for an experiment, e.g., in profiling tools that provide multiple data points for
each element of a space over time, the domain needs to be modified to allow for this
uniqueness, in the example by adding a space representing real or virtual time to the
cross product that forms the domain.
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3.4 Mappings

A mapping, in the sense of the data model, maps one or more spaces (the origin
domain) to one or more spaces (the target domain). This allows measurements
represented in the target domain to be used in analysis operations on the origin
domain. In general, we can distinguish three types of mappings, which are also
illustrated in Fig. 3:

• 1:1 Mappings: each element of the origin domain is mapped to exactly one
element of the target domain. An example of such a 1:1 mapping is the mapping
between node coordinates in a network to node IDs, since both domains describe
the same physical entity, but using different names or numbering schemes. 1:1
mappings allow a direct translation of measurements in one domain to another.

• 1:N Mappings: each element of the origin domain is mapped to one or more
elements of the target domain. An example for a such a 1:N mapping is the
mapping from node IDs in a system to process or MPI rank, since multiple
ranks can be on each node. When mapping measurements using a 1:N mapping,
measurements from all elements in target domain that map to a single element in
the origin domain have to be combined using an aggregation operation. This can
be as simple as a sum or average, but can also be a more complex operation such
as clustering or statistical outlier detection.

• N:1 Mappings: each element of the origin domain is mapped to at most one,
not necessarily unique, element of the target domain. An example for a such a
N:1 mapping is the mapping of MPI ranks to nodes in a system, since multiple
ranks can be on each node. When mapping measurements using a N:1 mapping,
a measurement from an element in the target domain must be distributed or
spread over all elements in the origin domain that map to it. The semantics of
this operation depends on the semantics of the domains. For example, the same
measured value could be attributed to each element in the origin domain in full,
or the value could be split up based on a distribution function.

Mappings can further be combined into new mappings, allowing a translation
over multiple domains from an origin to a target domain. This could also lead
to situations in which multiple translations between two domains using different
compositions, i.e., a different route through the set of available domains, are

Fig. 3 Types of mappings
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possible. Note, though, that not all combined mappings between the same domains
carry the same semantics. For example, a 1:1 mapping between two domains may
also be representable by a combination of a N:1 and a 1:N mapping, but the latter
would include a loss of information by first aggregating measured values before
spreading them out again. Choosing the right combination of mappings based on
the intended analysis is therefore crucial.

4 An Architecture to Enable Cross-Domain Analysis

To implement this model, we require a performance analysis pipeline that allows
us to not only collect performance data, but also collect the necessary context to
establish the mappings between spaces. Both should then be stored in a scalable data
store that offers a flexible query API to tools so they can extract the data based on the
intended visualization domain. We are currently developing such an infrastructure
and Fig. 4 shows its high-level architecture.

4.1 Software Stack Instrumentation

To extract the necessary context that allows us to establish mappings between
spaces, we need access to information from the entire software stack, including
from the OS and adaptation decisions it makes, and from runtime systems and
their abstractions established for application programmers. For this purpose we
need access to the necessary interfaces, such as the /proc/ interface in Linux,

Fig. 4 An architecture for multi domain performance analysis
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or access to machine specific instructions and APIs providing us with core and node
information. On the programming model side we need standardized mechanism
to bridge the abstraction provided by the model. For MPI, the standardized
interfaces PMPI (the MPI Profiling Interface) and MPI_T, the newly defined MPI
tool information interface [14], can provide the necessary information, but other
programming models and runtime systems do not provide the necessary information
through a standardized interface.

Over the last year, though, the tools working group in the OpenMP language
committee has been developing a new interface that will allow tools to interface
with any OpenMP runtime and export the information necessary. This interface,
OMPT [5], provides a series of routines to extract runtime information, e.g., to
cleanly assemble callstacks, and to insert hooks for events of interest, such as the
start of parallel regions or tasks. Initial prototype implementations of OMPT are
available on BlueGene/Q machines and Intel platforms. We are currently integrating
OMPT into our tools.

4.2 Creating Context

In many cases, though, information provided transparently by runtimes is not
sufficient to provide all metadata needed to establish mappings. Many kinds of
information are application specific and we need application semantics to properly
represent, capture, and store them. Examples are program phases, associations of
tasks and data structures, or application specific properties of an input deck. We
therefore need an API that enables developers to expose this information in an
unobtrusive and tool-independent way.

For this purpose, we have developed a context recording library that gives
developers simple commands to annotate application source code and provide
context information through key/value pairs. The library then records this context
information and makes it available to performance data collection tools. The latter
is done by providing a reference to a context information structure, which allows
the context recording library to maintain a highly efficient internal representation of
the data. At program termination, the library then writes this context information to
disk, which later can be extracted during the analysis phase.

Figure 5 shows a few code snippets illustrating how context annotation calls
are added to the application source code. In this example, one context key/value
pair consists of key iteration, which expresses the current iteration that
the execution of the target code is in. Developers can also define hierarchical
annotations, as shown with the phase annotation in the example.
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1 Annotation("phase").begin("main"); // phase="main"
2

3 Annotation("phase").begin("loop"); // phase="main/loop"
4 while ( i < count ) {
5 Annotation("iteration").set(i);
6 do_something( i );
7 }
8 Annotation("phase").end(); // ends "main/loop"
9 Write_results();

10 Annotation("phase").end(); // ends "main"

Fig. 5 Example of source code context annotations

4.3 A Distributed Data Store with Query Access

Once collected, data and metadata will be stored in a large and distributed data store
to make it available to tools, enabling queries across different data sources, runs,
systems and applications. Our initial implementation used for Boxfish [12] relies on
simple, self-describing text files, which capture information from multiple domains
with a column per measured metric. This data format has generally been very
effective in order to achieve the necessary cross-space connections, but naturally
has its limits in terms of scalability and performance. We are therefore currently
analyzing both SQL and non-SQL based stores as possible alternatives.

One key aspect of the data store will be that it can execute complex queries, which
requires it to track existing mappings and apply them in a suitable order to achieve
the necessary transformations. The latter includes finding the right combination
of mappings as well as the scheduling of necessary aggregation and spreading
functions. If multiple chains of mapping between targets and sources are available
and are feasible, the query API should first select a set of likely paths, e.g., ones
without huge amounts of data loss due to combining N:1 and 1:N mappings, and
then, if ambiguity persists, should forward the decision to the user.

4.4 Analysis and Visualization Tools

From this data store, tools can query performance data based on the visualization
domain they prefer or need for their analysis. Generally speaking, we envision three
types of tools: (a) performance visualization tools, such as Ravel [11], Boxfish [12]
and communication visualizations as the one by Sigovan et al. [19], (b) analysis
tools that preprocess the data and only deliver reduced performance analysis results,
or (c) tools that can autonomously use the information for tuning, such as Active
Harmony [21].
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5 Case Studies

In the following we show the advantages and capabilities of our multi-domain
approach using three case studies.

5.1 Hardware to Simulation Domain Mappings

To demonstrate how our new abstract data model described above can be instan-
tiated, we first show a straightforward example from a CFD simulation at LLNL,
which we previously analyzed using the HAC model [17], and show how it can
be represented in the new, more general model. In this experiment, we simulate an
ablator driving a shock into an aluminum section containing a void, producing a jet
of aluminum. The simulation results are from a 12 h run using a 2D grid running
on 256 (8 � 32) cores of a Linux based cluster with nodes consisting of four Quad-
Core AMD processors each. The interconnecting network is Infiniband and we use
the MVAPICH MPI implementation. Figure 6b, c show the results of the simulation
using nine selected timesteps in regular intervals sorted from left to right. The figures
clearly show the aluminum jet on the left side as well as the created shockwave
traveling from top to bottom.

Figure 6a shows the instantiation of the data model for this experiment: in total
we have three domains: the 2D application domain (defined by two spaces for X and
Y coordinates) representing the physical structure being simulated, in this case the
aluminum shock wave; the MPI rank domain (defined by a single space holding the
rank ID), in which most tools operated; and the hardware domain (defined by three
spaces, one for each dimension of the machine structure), describing the structure
of the machine and its node architecture. During the experiment we collect metrics
both in MPI rank space (number of floating point operations and number of L1
cache misses) and two physical properties of the shockwave (the material density
itself and the material velocity).

Each of the three domains has its own visualization technique associated with it:
the MPI rank space is represented by a simple bar graph (Fig. 6f shows the number
of floating point operations natively collected in this domain), the application space
is shown using a 2D scientific visualization (Fig. 6b, c show the two metrics natively
collected in this domain); and a representation of the hardware domain with nodes,
sockets, and cores is shown in Fig. 6g. Just looking at these native representations,
the performance data collected in MPI rank space cannot easily be correlated with
any other measurement, which makes it hard to interpret the variations in floating
point operations that we observe.

Using mappings between the domains, we can establish such a correlation: based
on our machine and MPI setup, we can assume a fixed mapping of MPI ranks to
cores and therefore we can map the MPI rank domain into the hardware domain
(and vice versa) using a static 1:1 mapping. We can further map the rank domain
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Fig. 6 Example instantiation of the data model using a CFD code. (a) Abstract representation
using the generalized data model. (b) Aluminum in 2D scientific vis. (c) Velocity in 2D scientific
vis. (d) Flop/s in 2D scientific vis. (e) Cache Misses in 2D scientific vis. (f) Flop/s, measured per
rank, displayed per rank. (g) Cache Misses display in machine topology
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into the application domain by following the domain decomposition: an MPI rank is
mapped to all elements in the application domain it is responsible for computing. In
this case, the domain decomposition splits up a dense matrix in a 8x32 grid, making
each MPI rank responsible for one of 256 sub-squares of the full problem. Since
there are more data points in the application domain, the mapping from MPI rank
domain to the application is a 1:N mapping, while the reverse direction is a N:1
mapping.

Figure 6d, e show the two metrics measured in the MPI rank domain mapped into
the 2D application domain and shown using the matching visualization technique.
Since multiple elements in the application domain map to a single MPI rank, the
associated N:1 mapping from the application domain to the rank domain spreads
the measurements of a single rank to all elements in application domain, resulting
in a more coarse-grained representation. Nevertheless, this displays shows a clear
correlation with the simulated physics in Fig. 6b, c for both metrics, which wasn’t
obvious before in the MPI rank display.

The visualization of the L1 cache misses in Fig. 6e shows a second phenomenon:
a series of ranks with high numbers of cache misses represented by dots on the right
side of the figure for each timestep, which overlays the physics, but does not seem
to be correlated. When we map the same data into the hardware domain (Fig. 6g) we
see that each of these cores maps to the same core ID on each node, and we tracked
this phenomena to the MPI library, which uses this core for aggregating node local
information for collective operations.

Using the two different mappings into two domains enabled us to distinguish
these two separate phenomena and what they correlate to. It also showed that they
need to be analyzed separately since they have two different sources: one related
to the physics being simulated, i.e., input dependent, and one related to the base
architecture, i.e., input independent.

5.2 Domain Mappings in Boxfish

In order to automate the analysis process described above, we have implemented
a prototype of the query and mapping functionality in the Boxfish toolset [12]. An
annotated screenshot of our tools with example mappings is shown in Fig. 7.

The tool offers a range of visualization techniques, shown in the bottom left
of the figure. Our current implementation focuses mainly on visualization of
communication data, but it can be extended with plugins to other domains. The
input data and its metrics are shown in the top left window in the figure. Each table
represents one measurement domain and the elements below it show the various
metrics available in that domain.
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Fig. 7 Multidomain visualization in Boxfish

A user can select any visualization domain by dragging it into the main window.
The example shows a 3D visualization of a torus network, as used in Blue Gene/L
and P as well as Cray HPC systems. Once the display is activated, the user can select
any number of metrics available as input data and attempt a mapping of this data
onto the visualization domain, again by simply dragging the metric onto the display.
At that time, Boxfish searches all available mappings, provided through plugins into
the tool, to see if a mapping from the selected visualization to the selected input
metrics and domain can be established. If the mapping is unique, the data is simply
displayed accordingly. If multiple mappings are available, though, the tool presents
this choice to the user. In the example in the figure, the user drags a node metric
onto the torus display. However, since the tool also knows how to map node IDs to
link IDs (since this is how link data is measured on Blue Gene systems), Boxfish
offers the user the choice of visualizing the data on nodes or links. The user picks
the intended one by dragging the data onto that choice.

While the choice is clear to a human user in this case, the system cannot
distinguish between these two choices without further semantic information. This
shows the generality of the approach, but also a shortcoming. We will investigate
how to add semantic information to reduce choices offered by Boxfish to reasonable
mappings in future work. In other examples, though, several choices do make sense
(e.g., attributing packets sent over a link can be to a link to show network traffic vs.
to a node to show network load on a node). In these cases the system provides users
with the necessary flexibility to choose the option suitable for the intended analysis.
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5.3 NUMA Optimizations with MemAxes

In addition to Boxfish, we started using the concept of domain mappings in other
tools. One example is MemAxes [8], a tool to visualize memory traffic in NUMA
nodes. It uses Intel’s Precise Event Based Sampling (PEBS) to sample all memory
accesses and their attributes, including latency, target address and memory hierarchy
they hit. This information is further enhanced with context information containing
both source code meta data (e.g., which element in which structure an address maps
to) and machine information (e.g., core ID to NUMA domain mappings). Figure 8
shows an overview of the graphical user interface. The elements labeled with A
show the application view of the collected data, mapping it to data structures and
source code. The view labeled B shows a mapping of the collected data to the
hardware architecture of the underlying system: HW threads are aligned on the outer
most ring, following by the—partially shared—caches all the way to the two NUMA
domains in the innermost circle. The amount of communication between the layers
is shown through the thickness of the lines between the layers. Users can select only
parts of the data being shown, which updates the various views in the GUI. The
graph in window labeled with C shows the percentage of the data that is currently
shown.

The selection can be done using a parallel coordinates view in the bottom most
window D. Each vertical bar (axis) represents one measurement on one metric
(across all spaces in which data is collected) and a single sample is drawn as a
line between all axes showing the value in that particular measurement for this
sample. Users can select arbitrary ranges on any of the shown measurements by
marking a region of the axis, which will then color all lines crossing the axis at that

Fig. 8 The Memaxis user interface
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Fig. 9 Using MemAxes to expose memory traffic in NUMA systems. (a) Initial version of
LULESH: memory accesses across NUMA domains. (b) LULESH after memory access optimiza-
tions

measurement red. This visualization shows how other measurements and spaces
correlate to elements being selected in the chosen space.

An example of how this can be used is shown in Fig. 9: We ran LULESH [10],
a shock-hyrdo proxy application developed at LLNL, on a NUMA system with 32
hardware threads split into two NUMA domains. The results of the default run are
shown in Fig. 9a. Using the tool, we selected all samples representing a continuous
range in the code’s main data structure (right bar) and observed the corresponding
memory traffic. As the architectural view clearly shows, the contiguous mapping of
this data structure matches the contiguous set of core IDs, but those are mapped
in alternating order to both NUMA nodes (second bar from the right). As a
consequence, the system experiences significant traffic between NUMA regions.
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To optimize this behavior we rearrange the cores by alternating core IDs, shown
in Fig. 9b. As a result, consecutive ranges in the main data structure are now
mapped to core IDs in the same way they are in the NUMA domain. This lead
to a performance improvement of over 10 %.

6 Conclusions

Performance analysis plays a critical role in optimizing codes on current and
future platforms. The ever increasing complexity of both system architectures and
applications makes this a difficult task and application developers rely on tools
to provide them with sufficient insights into the performance behavior of their
applications. While many tools exist and can provide a vast amount of data, the
resulting information is often low-level and hard to interpret. One reason for this is
that information is displayed in domains in which data was collected, but those
domains are not necessarily the intuitive ones that help application developers
extract actionable insights.

In this work we introduced a generic data model that helps us describe inde-
pendent data domains for both the collection of measurements and their visual-
ization/analysis. By establishing mappings between domains we can then translate
data collected in one domain into another and use this to show performance data
in other domains, to make data comparable across domains, and to provide intuitive
visualizations in domains that application developers are familiar with. This concept
has already been helpful in many cases and we showed three of them in this paper:
mapping of performance data to the application domain of a CfD simulation helped
us correlate performance data with the underlying physics being simulated and
to distinguish those effects from a machine related phenomena; the Boxfish tool
enabled us to understand network performance data by mapping it to the underlying
physical network architecture, in our case a 3D torus; and correlating memory
access information from the machine architecture and the application data structures
allowed us to identify and correct excessive NUMA accesses for a shock-hydro
code.

In summary, the new data model and its ability to map performance data across
domains enables us to create a new generation of tools that provide more insights
into an application’s performance and provide this information in an intuitive
way that enables optimizations. It is also flexible enough to carry forward to
next generation systems and applications, including new programming models and
abstractions, by integrating more diverse domains and measurement techniques.
Equally important, it provides a way to formalize performance data to enable a
closer interaction between the performance analysis community on one side and the
data visualization and analysis communities on the other, which will allow for an
easier transfer of tools and techniques.
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