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Abstract

Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative bio-

transformation of a vast array of natural and xenobiotic compounds.

Reducing equivalents required for dioxygen cleavage and substrate

hydroxylation originate from different redox partners including diflavin

reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase

(PDR)-type proteins. Accordingly, circumstantial analysis of structural

and physicochemical features governing donor-acceptor recognition and

electron transfer poses an intriguing challenge. Thus, conformational

flexibility reflected by togging between closed and open states of solvent

exposed patches on the redox components was shown to be instrumental

to steered electron transmission. Here, the membrane-interactive tails of

the P450 enzymes and donor proteins were recognized to be crucial to

proper orientation toward each other of surface sites on the redox modules

steering functional coupling. Also, mobile electron shuttling may come

into play. While charge-pairing mechanisms are of primary importance in

attraction and complexation of the redox partners, hydrophobic and van

der Waals cohesion forces play a minor role in docking events. Due to

catalytic plasticity of P450 enzymes, there is considerable promise in

biotechnological applications. Here, deeper insight into the mechanistic

basis of the redox machinery will permit optimization of redox processes

via directed evolution and DNA shuffling. Thus, creation of hybrid

systems by fusion of the modified heme domain of P450s with proteina-

ceous electron carriers helps obviate the tedious reconstitution procedure

and induces novel activities. Also, P450-based amperometric biosensors

may open new vistas in pharmaceutical and clinical implementation and

environmental monitoring.
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10.1 Introduction

Cytochrome P450 (CYP or P450) enzymes,

occurring in organisms from all domains of

life [1–5], represent a superfamily of ever-

growing b-type heme-thiolate proteins [6]. The

metalloenzymes are of major importance in both

the biosynthesis of endogenous compounds [7, 8]

and oxidative clearance of a vast array of drugs,

toxins and environmental pollutants

characterized by high structural diversity [9,

10]. These processes require the consecutive

delivery of two electrons to the ferric P450

catalysts to convert the unreactive atmospheric

dioxygen via a generally accepted O-O bond

activation cycle to a high-valent iron-oxo species

capable of attacking C-H entities and

heteroatoms in substrate molecules [11,

12]. Apart from this consensus mechanism,

recent data spark particular interest in a “multi-

oxidant” concept, providing a rationale for the

striking catalytic diversification of P450s

[13–15].

Although it would appear that the plethora of

CYP genes evolved from a common ancestor

[16], there exist variations in the nature of the

intermediate carrier systems bridging NAD(P)H-

derived reducing equivalents to specific terminal

P450 acceptors [17]. Thus, in class I P450s com-

prising bacterial and eukaryotic mitochondrial

hemoproteins, a flavin-containing ferredoxin

reductase (FdR) usually operates in conjunction

with an [Fe2-S2] cluster-bearing ferredoxin (Fdx)

to shuttle electrons from the reduced cofactor to

the heme iron [18]. Noteworthy, in the

CYP107H1- and CYP176A1-dependent micro-

bial electron transport chains, unusual

FMN-carrying flavodoxins act as functional

substitutes for ferredoxins [19–24]. In the class

II monooxygenase apparatus comprising micro-

somal P450 proteins, FAD/FMN prosthetic

components in the structure of NADPH-

cytochrome P450 oxidoreductase (POR) foster

swift electron delivery to the various candidates;

here, the NADH-driven cytochrome b5 (b5)/b5
oxidoreductase pair can serve as an alternate

redox partner [18]. On the other hand, the unique

CYP55A1 enzyme, promoting reductive conver-

sion of nitric oxide to the gaseous nitrous oxide,

utilizes NADH as a direct electron supplier with-

out the need for any auxiliary mediator

[25]. With other P450s such as human CYP2S1

or bacterial CYP152A/B, the typical O2/2e
�/2H+

proteinaceous systems fail to stimulate catalytic

activity, while utilization of H2O2 or fatty acid

hydroperoxides permits efficient substrate turn-

over via the peroxygenase main route based on

homolytic peroxy O-O bond scission

[26–28]. Similarly, biocatalysts such as CYP5A

or CYP74, bringing about rearrangement of

endoperoxides and hydroperoxides, respectively,

require neither oxygen nor an NAD(P)H-type

electron source [29, 30].

As can be readily seen, the pronounced P450-

dependent specification of the redox machinery

creates the challenging task of more detailed

analysis of the structural and functional

characteristics of the diverse electron transfer

entities to improve our understanding of the

observed electrochemical phenomena. In this

respect, molecular modeling of composite 3D

P450 constructs on the basis of the crystal struc-

ture, chemical modification and genetic engi-

neering of a broad spectrum of hemoproteins

provided an appreciable picture of both the over-

all topology of key determinants dictating donor

docking/orientation and the nature of the driving

forces supporting these events [31, 32]; this also

helped assess the redox dynamics of the systems

[33]. Circumstantial insight into these processes

will be beneficial to the development of novel

strategies serving to simplify transmission of

248 P. Hlavica



reducing power, such as efficient installation of

the peroxide shunt pathway to overcome the pro-

hibitive costs for NAD(P)H as the constant elec-

tron donor or curtailing of the complex electron

transfer conduits [34]; this will give an impetus

to exploitation of more flexible P450s in biotech-

nological areas encompassing the production of

fine chemicals, drug processing or degradation of

environmental pollutants [35, 36]. The present

chapter thus highlights significant breakthroughs

in our knowledge about the mechanistic basis of

donor/acceptor interactions in the functionally

diversified domain of P450s, paving the way for

innovative tailoring of versatile redox modules.

10.2 Mechanistic Principles
of Electron Transport by
Natural Redox Partners
of P450s

10.2.1 NADPH-Cytochrome P450
Oxidoreductase (POR)

10.2.1.1 Evolutionary History
Microsomal POR represents a prototypicmember

of the fairly small family of diflavin redox

proteins. The enzyme bears one molecule each

of FAD and FMN as cofactors and favors electron

transfer from NADPH to eukaryotic P450s or

cytochrome c as the ultimate acceptors [37,

38]. Precursors of the 78-kDa POR proteins

have been hypothesized to arise from ancestral

fusion of genes encoding an FMN-binding bacte-

rial flavodoxin and a plant-type FAD-complexed

ferredoxin-NADP+ reductase. Subsequent evolu-

tionary steps helped create an α-helical
interdomain linker, allowing efficient functional

coupling of the two flavins and an N-terminal

membrane anchor region (Fig. 10.1)

[39–41]. Flavodoxins as such operate in photo-

synthetic processes or participate in nitrate reduc-

tion as well as in methionine and biotin producing

pathways [42]. Similarly, ferredoxin-NADP+

reductases display high functional plasticity in

supporting auto- and heterotrophic reactions [43].

Analysis of the genetic code for representative

PORs from taxonomically diverse eukaryotic

species mostly points at the involvement of a

single gene in protein expression. Thus, the

human gene, located on chromosome 7, contains

16 exons and has been found to be highly poly-

morphic [44–46]. Likewise, the rat gene carries

16 exons, 15 of which are coding exons. Organi-

zation of the latter strictly correlates with func-

tional or structural domains [47]. Moreover,

cytogenetic mapping of insect and fungal

oxidoreductases suggests them to be single-

copy products [48, 49]. Exception to this rule is

given by the widespread polyploidy in plants,

giving rise to gene duplication and divergence.

In this respect, about 54 gene sequences

encoding PORs derived from a total of 35 differ-

ent plant species have as of now been identified,

most of the paralogous enzymes at least partially

complementing each other [50, 51]. Multiple-

alignment studies revealed the majority of full-

length POR proteins isolated from mammalian,

insect, fungal and plant phyla to share 33–38 %

amino acid sequence homology [49].

10.2.1.2 Electrochemical Features
of Electron Transfer

The family of POR proteins mediates electron

transfer in the NADPH!FAD!FMN!P450

redox system. Here, the flavin cofactors have a

vital function in the step-down process from the

obligatory two-electron donor NADPH to the

one-electron acceptor P450. Using rabbit POR as

a probe, flavins were shown to exist as

one-electron reduced air-stable blue (neutral)

semiquinones (FMN/FMNH•, E
0
0 ¼ �110 mV

and FAD/FADH•, E
0
0 ¼ �290 mV ) or

two-electron fully reduced red (anionic) forms

(FMNH•/FMNH2, E
0
0 ¼ �270 mV and FADH•/

FADH2, E
0
0 ¼ �365 mV) equilibrating between

these states [52–55].Noteworthy, no shift from the

blue di-semiquinone (FMNH•, FADH•) toward the

red species is observed upon increasing the pH of

the reactionmedia [56]. However, the lipid bilayer

of membrane-tethered POR was found to impact

the redox potential of the FMN/FAD prosthetic

groups: application of anionic phospholipids was

shown to drive the E0

0
for the red forms of both

cofactors to more negative values, favoring
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electron transfer to P450s [57]. Similarly, struc-

tural aberrations in the flavin-binding domains of

reductases from different taxa may dramatically

affect the redox parameters and abilities to support

the catalytic activity of P450s. For example, the

redox potential of the FMNH•/FMNH2 pair in

yeast POR was shown to be more positive than

that for the blue couple. This behavior contrasts

the situation in the rat and plant POR species and is

similar to the inversion observed with the reduc-

tase moiety of the bacterial flavocytochrome

CYP102A1 [58, 59].

Elucidation of the precise pathway of flavin-

driven redox cycling during electron donation to

heme catalytic centers has been fuelled by

techniques such as deflavination and reconstitu-

tion [60] or dissection of PORs into their compo-

nent domains [61], permitting more detailed

studies on the kinetic and thermodynamic

properties of the enzymes. Thus, triggering of

the cycle is thought to be brought about by the

stable, 635 nm-absorbing FAD-FMNH•

semiquinone potentially generated during a

priming reaction [62]. Upon hydride transfer

from NADPH (E
0
0 ¼ �320 mV) to the latter spe-

cies, interflavin electron flow proceeds from

FADH�-FMNH• to yield FADH•-FMNH�. At

high molar excess of NADPH, this process is

reversible [63]. However, under in vivo

conditions, the FMNH� entity acts as the major

one-electron supplier to the ferric heme iron of

P450s, thereby returning to the resting

semiquinone form in the FADH•-FMNH• duo

[52, 64]. Electron cycling between the essentially

equipotential members of this redox couple to

regenerate FMNH� seems fairly unfavorable

and, indeed, occurs as a single-exponential pro-

cess at a modest rate of 55 s�1, even dropping to a

value of 11 s�1 when dithionite substitutes for

NADPH as the reductant. This suggests cofactor

binding to play a pivotal role in regulating inter-

nal electron flux [65]. Fully reduced FMN

released in the gated electron transfer event

serves in P450 reduction via a one-electron step.

In summation, microsomal PORs usually cycle in

a 1-3-2-1 sequence, denoting the total number of

electrons carried by the flavins (Fig. 10.2) [64,

66]. Opposite to this, the microbial CYP102A1

fusion protein undergoes a reduction cycle of 0-2-

1-0 lacking any priming reaction [67].

10.2.1.3 Structural Elements Governing
Intramolecular Electron Transfer

A drastic step forward in the study of functional

domains in POR proteins was made by compari-

son of the full-length amino acid sequences

derived from a broad spectrum of species to

unveil highly conserved signature motifs amena-

ble to circumstantial analysis by genetic engi-

neering [49, 50]. Moreover, availability of

crystallographic data for human, rat and yeast

PORs [68–70] enabled three-dimensional

modeling of critical enzyme structures [71,

72]. Thus, investigation of the N-terminal

α-helical signal anchor segments of mammalian

oxidoreductases disclosed the carboxy termini to

be located on the cytoplasmic side of the endo-

plasmic reticulum, with the first 55–56 amino

acid residues being sufficient for stable mem-

brane insertion/retention, proper orientation and

maintenance of catalytic efficiency [73–75].

Fig. 10.1 Molecular evolution of NADPH-cytochrome

P450 oxidoreductase (POR). The mammalian diflavin

protein POR originates from ancestral fusion of the

genes of flavodoxin and ferredoxin oxidoreductase with

the subsequent creation of a flexible interdomain linker

and a membrane anchor serving in proper orientation of

the electron donor toward P450s (Data taken from Ref.

[51])
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Despite the fairly low overall sequence iden-

tity (33–43 %) of POR enzymes from various

organisms [49, 50], the FMN-binding domains

exhibit a high degree of conservation [76]. Chain

tracing in the scaffolds of human and rat proteins

revealed an α-β-α architecture composed of a

five-stranded parallel β-sheet in the core fold

flanked by a variable number of α-helices, with
the FMN cofactor positioned at the tip of the

C-terminal side of the β-sheet [69, 71,

77]. Using the human enzyme (hPOR; NCBI

reference sequence NP_000932.3) as a template,

molecular docking and site-directed mutagenesis

experiments suggested a set of residues such as

Q90, T91, T142, H183 and N185 to be involved

in FMN fixation, though Y143 and Y181 obvi-

ously act as key players [76, 78, 79]. The aro-

matic side chains of the two tyrosines, sitting on

the re- and si-face, respectively, of the isoalloxa-

zine ring, clasp the FMN unit at nearly the same

distance of 3.5 Å [71, 77]. Both positions are

conserved in the rat homolog [69] sharing 94 %

sequence identity with the human counterpart

[79], and Y!D exchange in the rodent protein

was shown to indeed block efficient electron

transfer [80]. Moreover, replacement in the

human catalyst of F184, lying close to the pyrim-

idine tail of the cofactor, with leucine or gluta-

mine caused a 40- to 50-fold increase in the Kd

value for FMN association. This was interpreted

to reflect a vital role of F184 in stabilization of

the electron carrier [78]. Strikingly, L86 and

L219, deeply buried in two hydrophobic cores

of the FMN domain of POR from Anopheles

minimus, aligns with F86 and F219 in the

human analog. Experimental introduction into

the insect enzyme of phenylalanine residues in

place of the leucines proved to be beneficial to

FMN docking and protein folding [75]. Of note,

X-ray crystallography of oxidoreductase from

the yeast Saccharomyces cerevisiae helped dis-

cover a second FMN-binding region at the inter-

face of the linker and standard cofactor-bearing

domain. The novel site displays low conservation

throughout the gene family, with only two

residues, namely, T71 and D187 corresponding

to T93 and D211 in hPOR, being invariant

[70]. It has been hypothesized that a single

FMN molecule shuttles between the structural

doublet associated with semiquinone transition

from the neutral to the anionic state [70].

A fragment spanning about 40 amino acid

residues of predominantly polar character

bridges the gap between the FMN/FAD-

harboring loci. This linker is speculated to serve

in proper orientation of the flavins, the isoalloxa-

zine rings of which make an angle of about 150�

to each other and reside at a minimum distance

of 3.5 Å [41, 69, 79]. In fact, mutations in

the short random-coil hinge, preceding the

FAD-connecting unit composed of residues

G235 to R246 in the hPOR structure, induce

drastic rearrangement of the FMN/FAD topology

impacting intramolecular electron transfer

[81]. Crystallographic analysis of the

FAD-docking region in the rat protein showed

the isoalloxazine entity to be hosted at the bound-

ary between the cofactor- and NADPH-binding

site, with the remainder of the molecule

extending to the interface between the

FAD-binding pocket and the connecting domain

[69]. Site-directed mutagenesis was used to ver-

ify the functional importance of the various

determinants. This demonstrated Y456 to make

Fig. 10.2 POR-supported intra- and intermolecular elec-

tron conduction to P450s. Hydride transfer from NADPH

to the stable semiquinone (a) elicits sequential formation

of the fully reduced (b, c) intermediates to enable

one-electron supply to ferric P450 associated with release

of a resting semiquinone duo (d). Electron swapping

between the latter redox couple regenerates a fully

reduced cofactor (e) again permitting electron donation

to P450s. The mammalian oxidoreductase thus cycles

between the 1- and 3-electron reduced states
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van der Waals contact with the si-side of the

FAD isoalloxazine structure and to hydrogen-

bond to the ribityl 40-hydroxyl, while amino

groups in the side chains of R454 (equivalent to

R457 in hPOR), G488 and T491 stabilize the

negatively charged pyrophosphate. Moreover,

the aromatic nucleus of Y478 stacks on one

side of the adenine moiety [68, 69, 82]. Interest-

ingly, the interplay of the S457/D675/C630 triad

may have a dual role in the control of the flavin

redox potential and stabilization of the transition

state to facilitate hydride transfer [83, 84].

A set of homologous residues lining the

NADPH-binding cavity, constituted of alternating

α-helices and β-strands, operate in fixation and

orientation of the cofactor in a bipartite mode.

Thus, highly conserved amino acids encompassing

C566, S596, R597, K602 and Y604 (rat POR

numbering) make up a specific motif attracting

the 20-phosphate of NADPH via H-bonding or

salt-bridging, such as to cause discrimination

against NADH [79, 85–87]. In accord with this,

introduction of hydrophobic elements in place of

the positively charged arginine and lysine residues

at positions 597 and 602 to create the triple mutant

R597M/K602W/W677A resulted in a 170-fold

increase in the apparent binding affinity for

NADH compared to the wild-type enzyme,

paralleled by an IC50 value for inhibition by

NADP+ that was 50-times higher than that of the

parent enzyme [88]. Similarly, simple W676A

exchange in hPOR allowed the NADH-dependent

reductive potency to become equivalent to that of

the NADPH-driven event [87]. On the other hand,

this manipulation was found to compromise

NADPH-promoted reduction beyond the

two-electron level owing to slow release of

NADP+ from the active site upon first hydride

transfer, suggestive of a vital function of the

C-terminal tryptophan in electrochemical pro-

cesses [89]. The mechanistic basis of such an

action relies on the assumption that the

π-stacking indole of W677, building a lid above

the re-face of the FAD isoalloxazine, moves away

to permit direct contact of the flavin moiety with

the nicotinamide ring of NADPH required for effi-

cient hydride transfer [69, 72]. Here, local move-

ment of the short G631-N635 loop may be

beneficial to NADPH/NADP+ binding/release

[90]. An overall diagram of the POR polypeptide

fold disclosing the topology of the diverse

cofactor-binding domains is presented in Fig. 10.3.

It should be pointed out that POR enzymes are

highly polymorphic proteins. Currently, about

48 missense mutations have been identified in

the human reductase (www.cypalleles.ki.se/por.

Fig. 10.3 Ribbon diagram

illustrating the overall

polypeptide fold and

topology of POR. The

FMN-binding domain is

given in blue, while the
NADP(H)- and

FAD-docking sites are

presented in green. The
connecting interdomain

fragment is depicted in red.
Cofactors are presented in

the ball and stick mode

(PDB ID: 1AMO)

(Reproduced from Ref.

[69])
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htm), part of which overlap with conserved

residues critical for FMN/FAD/NADPH fixation

[45, 79, 91]. Examples of this are found in the

most important variants T142A, Y181D, R457H,

Y459H, V492E, C569Y, R600W and Y607C

[45, 79]. These amino acid substitutions have

been recognized to be deleterious to electron

transfer and, consequently, cause disordered ste-

roidogenesis along with skeletal malformations

when the allelic hPORs are to serve as obligatory

donors to CYP17A1 and CYP19A1 [91,

92]. Moreover, the altered phenotypes may

impact the P450-catalyzed metabolic biotrans-

formation of both curative drugs/prodrugs and

toxins [45, 46, 93]. Noteworthy, the Y181D-

induced perturbation of electron flow/P450 activ-

ity has been reported to undergo restoration upon

the addition of excess FMN to the assay media

[76, 94]. In this case, the potential existence of a

second FMN-binding site (see above) might per-

mit the exogenous cofactor to act as a bypass.

10.2.1.4 Structural Features Steering
Functional POR Docking
to P450s

To bring about efficient electron shuttling from

POR enzymes to P450s, a large-scale conforma-

tional rearrangement of the FMN domain is

required. Available 3D structures of mammalian

reductases display a closed conformation of the

core region with the isoalloxazine ring of FMN

being shielded by the FAD cofactor at a distance

ranging from 4 to 5 Å [68, 69]. Hence, electron

donation to P450s necessitates concerted move-

ment of the domains leading to an open state

associated with exposure of the FMN moiety to

the solvent to enable contact with the

hemoproteins. In this regard, the “closed-open”

transition, as studied with free or membrane-

anchored POR, was recognized to be conducted

by the flexible hinge motif adjusting the distance

between the FAD/FMN entities to 29–60 Å [81,

95, 96]. More detailed analysis by sophisticated

spectroscopic techniques revealed the POR mol-

ecule to, indeed, toggle between a multiplicity of

closed and open conformations in solution [97,

98]. Generally, opening is driven by flavin reduc-

tion, whereas closure predominates in the

oxidized enzyme and is supported by NADPH

binding to facilitate loading of reducing

equivalents [99, 100]. These findings are in line

with the “swinging” model of POR-mediated

electron transfer from the nicotinamide coen-

zyme to the heme iron of P450s [101].

Based on the construction of model

complexes between the redox partners, a docking

area of ~870 Å2 was calculated to guide produc-

tive encounter of the solvent-exposed FMN

domain with P450s [81]. This patch, located on

the surface of the extended reductase molecule,

bears an electronegative profile arising from

accommodation of three clusters of putative

salt-bridging residues encompassing E92, E93,

D113, E115, E116, E142, D144, D147 and

D208 (rat POR numbering), speculated to pro-

vide a rationale for snuggly fit of the electroposi-

tive proximal face of the different P450s

obviously binding in a very similar fashion [69,

71, 81, 102, 103]. The negatively charged

elements surrounding the FMN moiety were

predicted to form a cleft allowing a minimal

distance of ~12 Å between the cofactor and the

heme group [81]. The hypothetical acidic contact

sites were substantiated by genetic engineering:

Mutation of D113, E115 and E116 to alanine

disclosed the residues to stabilize the CYP2B1/

POR adduct on the one hand and open new

avenues to more efficient electron transfer to

the hemoprotein partner on the other [103].More-

over, replacement of hPOR amino acids

corresponding to E142, D144 and D147 in the

rat homolog with the less bulky polar serine or

glycine substitutes was found to moderately

impinge on the catalytic efficiency (kcat/Km) of

CYP2D6, while D208N exchange caused a dras-

tic fall in P450-dependent activities [71,

104]. Two thirds of the determinants examined

display 60–90 % conservation across the multi-

tude of taxonomically diverse reductase species,

the rest being invariant [76].

10.2.2 Cytochrome b5

Cytochrome b5 (b5), occurring in a wide range of

phyla, is a membrane-anchored amphipathic
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hemoprotein operating in concert with POR or

NADH-cytochrome b5 oxidoreductase as elec-

tron donor to desaturating systems involved in

fatty acid synthesis and plasmalogen-producing

enzymes [105]. Of note, soluble forms of human

b5 and NADH-cytochrome b5 oxidoreductase

found in erythrocytes were shown to be capable

of reducing methemoglobin [106, 107]; here,

deletion of codon 298 in the gene of the flavo-

protein component was detected to cause func-

tional deficiency associated with hereditary

methemoglobinemia [108]. Moreover, the

ferrihemoglobin-coupled redox triad brought

about O2-dependent substrate turnover in a

monooxygenase-type reaction [109]. In parallel,

a considerable number of P450s were recognized

to have substrate-specific obligatory requirement

for electron supply by b5 [110, 111].

10.2.2.1 Topology of the Membrane-
Spanning and Heme-Binding
Domains of Cytochrome b5

Two mammalian b5 isoforms were identified, one

inserted into the endoplasmic reticulum and the

other bound to the outer membrane of

mitochondria. These proteins arise from different

genes [112]. The hydrophobic membrane anchor

of the microsomal homolog, functioning as a

static retention signal, was shown to span the

bilayer of the endoplasmic reticulum such that

the carboxy-terminus extends to the lumen of the

organelle [113, 114]. However, mutation of the

C-terminal L124/M125/Y126 triad in rat b5 to

alanine was found to induce location of the

engineered hemoprotein in both the cytosol and

microsomal membrane, suggestive of the exis-

tence of loosely- and firmly-integrated forms dif-

fering by the overall content of α-helical
structure [115, 116]. In fact, the membrane-

interactive tail of b5 has been detected to function
as a stop-transfer sequence giving rise to inver-

sion of protein orientation in the endoplasmic

reticulum to permit versatile processing of

nascent precytochrome b5 during topogenesis,

resulting in final positioning of the integral elec-

tron carrier in the Nout-Cin mode [117]. Another

triad of potential interest embedded in the

43-amino-acid membrane-binding domain of b5

refers to tryptophan residues at locations

108, 109 and 112. However, studies with the

W108L/W112L double mutant failed to disclose

any impact on electron transfer to CYP2B4 as a

probe acceptor [118]. Finally, attention was

drawn to P115, forming a 26� kink in a helix

when occurring in the trans conformation. Sur-

prisingly, P!A exchange resulted in normal

insertion of the mutant into the membrane and a

wild-type enzyme level of activity in a P450 test

system [119].

Microsomal b5, being 60 % α-helical, is a

fairly small polypeptide composed of

134 amino acid residues, with the cytosolic

heme-containing region showing ~92 %

sequence identity throughout the different mam-

malian isoforms [105, 120]. Availability of the

crystal and solution structure of the protein per-

mitted insight into the architecture of the heme-

binding pocket. Thus, the prosthetic group was

shown to reside in a hydrophobic crevice, the

iron atom being coordinated to histidines at

positions 39 and 63; the latter reactant has some

exposure to solvent via a water channel

[121–123]. Dependence of the heme-holding sta-

bility on the histidine axial ligation was con-

firmed by H39S/C mutations, also affecting the

spin state of the heme iron [124]. Apart from

steric factors, changes in hydrophobicity of the

heme microenvironment may modulate the elec-

trochemical properties of the hemoprotein

[125]. In accord with this, V45H/E substitutions

were found to shift the redox potential of the

wild-type protein (E
0
0 ¼ �10 mV) to values of

+8 mV and �26 mV, respectively [126]. Simi-

larly, manipulation of hydrophobicity by replace-

ment of V61 with histidine revealed to influence

interaction of the heme with its pocket, resulting

in broadening of the latter; this moved E0

0
of the

mutant by +21 mV [127]. Special interest focuses

on the interplay of the F35/F58 duo, stabilizing

heme docking through π-stacking overlap with

the porphyrine macrocycle [128, 129]. Moreover,

phenylalanine-35 is part of a hydrophobic patch

of 350 Å2 on the surface of b5 [130] and member

of a network that includes Y74 and the axial H39

being in direct van der Waals and electrostatic
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contact with the heme [131, 132]. Apart from

this, the conserved F35 is pivotal to fine tuning

of the redox potential: F35Y exchange was

discerned to make E0

0
66 mV more negative com-

pared to the parent protein [133]. Finally, P40,

another component of the surface patch produc-

ing a sharp γ-bend in the polypeptide chain, is

believed to significantly contribute to a fixed

folding pattern of the heme pocket due to its

rotational restriction [134]. It should be kept in

mind that, in contrast to the crystalline state, b5 is

heterogenous in solution due to the presence of

two isomers, differing with respect to 180� rota-
tion of the heme plane around the axis defined by

α,γ-meso protons [135]. A diagram of key struc-

tural motifs in the b5 backbone chain is given in

Fig. 10.4.

10.2.2.2 Interaction of Cytochrome b5
with Electron Donors

The microsomal FAD-containing NADH-cyto-

chrome b5 oxidoreductase acts as a physiological
electron donor to the ferric b5. Anaerobic photo-

reduction of the FAD moiety was observed to

form the red anionic semiquinone being in equi-

librium with the blue neutral species. The latter

turned out to be the primary intermediate in the

NADH-driven hydride transfer process [136,

137]. Here, the conserved T66 entity in the

reductase structure was shown to participate in

modulation of the rate-limiting interconversion

of the semiquinone forms [137]. Furthermore,

mutation experiments verified the importance of

the specific arrangement of R63, Y65 and S99 in

the β-sheet barrel core of the flavoprotein in

maintenance of FAD docking by electrostatic

and H-bonding attraction of the si-face of the

isoalloxazine ring [138, 139]. Similarly, the

backbone amide nitrogen of M126 forms a

hydrogen bond to the phosphate oxygen of the

cofactor [140]. In addition, a series of residues

including K110, S127, G179 and P275 were

predicted to participate in the anchoring and

proper positioning of the NADH electron donor

[140–145]. In this regard, the active-site C273

was considered to be critical for accurate orien-

tation of the nicotinamide nucleus prior to

hydride transfer [146]. Most interestingly, G179

and D239 were recognized to be required for

efficient NADH/NADPH selectivity [144, 147].

Rapid electron transfer from NADH-

cytochrome b5 oxidoreductase to b5 was shown

to require N-terminal myristoylation of the flavo-

protein to stabilize its orientation in the endoplas-

mic reticular membrane as a prerequisite for

optimal productive encounter of the redox

partners [148]. Here, circumstantial analysis

implicated three reductase lysine residues hosted

at positions 41, 125 and 163 in complementary

charge pairing with the single exposed porphyrine

propionate and a cluster of glutamate carboxyl

groups at locations 43, 48, 49 and 53 (rat hemo-

protein numbering) in the b5 polypeptide,

surrounding the heme edge at a distance of

~12 Å [149–152]. Qualitatively, the same b5
carboxyls were recognized to be essential for elec-

trostatic interaction with prospective cationic

groups in the alternate POR electron donor

Fig. 10.4 Schematic structure of bovine cytochrome b5.
The approximately cylindrical molecule (PDB ID:

1CYO) houses α-helices 2–5 (in red) clustering around

the prosthetic heme group given in grey balls and sticks. A
five-stranded β-sheet (in yellow) in the center of the

amphiphilic polypeptide separates the heme-binding

pocket from a more peripheral helical segments 1 and

6 (in violet) (Data taken from Ref. [122])
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[153]. Employing the covalently cross-linked

diflavoprotein/b5 heterodimer as a model for a

functional electron-transfer complex, FMNdeple-

tion unveiled the cofactor-binding POR domain to

be the active center for responsiveness to the

hemoprotein. Here, lysines at positions 72, 74

and 75 are likely candidates for charge pairing

with the b5 carboxyls [154]. As evidenced by the

detrimental effect of removal of the N-terminus of

POR on the functional coupling with b5, the intact

hydrophobic tails of both redox proteins are

required for efficient cross-talk between the

partners facilitated by free lateral movement in

the plane of the membrane [155]. Here, the nature

of the system utilized for reconstitution of the

matrix may steer the kinetics of intra- and inter-

molecular electron transfer [156]. Noteworthy,

flash-induced b5 reduction by POR was found to

proceed at a first-order rate about 10 % that

measured with NADH-cytochrome b5 oxidore-

ductase [157, 158].

10.2.2.3 Characteristics of the Catalytic
Cytochrome b5/Cytochrome
P450 Redox Adduct

Cytochrome b5 plays a supportive role as a mod-

ifier of NADPH/POR-driven monooxygenations

depending on the type of substrate and P450

species involved. For example, the presence of

b5 invariably improves efficiency of product for-

mation from methoxyflurane by CYP2B4 [159],

fosters mephenytoin and chlorzoxazone turnover

by CYP2C19 and CYP2E1 [160], and stimulates

testosterone biotransformation by

CYP3A4 [161].

The mechanism by which b5 impacts P450

activity has been extensively studied. When

bound to ferric P450, the intermediate carrier

elicits a low-to-high spin transition in the iron

coordination sphere of the heme chromophore of

the terminal pigment [162, 163]. Owing to the

unfavorable discrepancy in the midpoint poten-

tial between the Fe3+/Fe2+ couples of b5 (�2.6 to

+5.1 mV) and substrate-free ferric P450 (~ �400

to �300 mV), acceptance by the latter species of

the first electron from the presumed donor pro-

tein can be excluded [33, 125]. In contrast, E0

0
for

the labile oxyferrous P450 form is raised to

50 mV [164], permitting introduction of the sec-

ond electron by ferrous b5 [111, 165] at a rate

faster than autoxidation of the Fe3+-O2
� interme-

diate associated with H2O2 release. This is

expected to enhance economy of product forma-

tion at the expense of superoxide [166, 167]. It

has to be noted that b5 may also exert non-redox,

conformational effects on P450s. Thus, the mod-

ifier was shown to increase the steady-state level

of the substrate-bound iron-oxo complex through

lowering the energy of activation [162, 168] and

to influence the rate of regeneration of ferric

P450 from the oxygenated precursor as an

index of the velocity of oxidative substrate turn-

over [169]. Precedent to this kinetic behavior is

given by the action of apocytochrome b5 on the

rate of productive decay of substrate-bound

oxyferrous CYP101A1 [170]. Moreover, interac-

tion of holo-/apo-b5 with CYP17 triggers rear-

rangement of the iron-dioxygen ligand necessary

to awaken lyase activity [171, 172] or promotes

repositioning of substrate to favor 16-

α-hydroxylation [173]. Generally, incorporation

of heme-depleted b5 into reconstituted systems

containing members of the CYP2 and CYP3

families was found to enhance typical catalytic

activities to differing extents [174, 175]. Specific

studies with the CYP4A7 species suggested

apo-b5 to possibly alter the conformation of the

substrate-binding pocket and/or accelerate

product release [176]. In summation, these

findings point at a dual role of b5 as an electron

donor on the one hand and an allosteric effector

on the other [177, 178].

The hydrophobic α-helical, membrane-

spanning domain of b5 was demonstrated to

play a dominant role in productive association

with CYP2B4 [179]. However, introduction of

alanines into the membrane anchor, expected to

cause all amino acids distal to the insertion to

undergo a 100� rotation, failed to disrupt any

specific helix-helix interactions. This was

interpreted to mean that b5/P450 binding pro-

ceeds through a nonspecific mechanism

[180]. In contrast, the S90-D104 fragment,

linking the heme domain of b5 with the

C-terminal hydrophobic sequence, was

postulated to restrict orientation of the donor/
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acceptor heme regions, facilitating formation of a

functional complex [181]. Stability of the latter

was shown to be granted by electrostatic and

H-bonding attraction of complementary P450

residues by the invariant b5 amino acids Y30,

E44, E48, D60 and T65, cooperating with the

exposed heme propionate group [182–184].

10.2.3 Ferredoxins

Ferredoxins are small, soluble iron-sulfur

proteins mediating electron transfer to P450s

and other proteins such as nitrate and sulfite

reductase. Classification of the intermediate

carriers comprises different prototypes

depending on the total number as well as Fe/S-

proportion of the prosthetic clusters defining the

active-site structure of the various electron

shuttles [185]. In this regard, [Fe2-S2]-bearing

ferredoxins, occurring in plants, bacteria and

vertebrates, are of special interest [186]; the lat-

ter category includes both pro- and eukaryotic

representatives [187]. Here, most extensive stud-

ies focus on the mammalian mitochondrial

adrenodoxin (Adx) and the microbial

putidaredoxin (Pdx) [188, 189], donating

electrons to class I P450s [18]. Electron bridging

requires prior transfer of reducing equivalents to

ferredoxins by FAD-carrying NAD(P)H-ferre-

doxin reductases generally belonging to distinct

types of unrelated protein families [40]. With

respect to this, NADPH-adrenodoxin reductase

(AdR) and NADH-putidaredoxin reductase

(PdR) were uniformly assigned glutathione

reductase-type redox proteins [190, 191].

10.2.3.1 Recognition of Adrenodoxin
by Redox Partners

Site-directed mutagenesis experiments revealed

the core domain of Adx, housing a single [Fe2-

S2] cluster, to be mandatory for Adx/AdR asso-

ciation, while a second, acidic interaction site

encompassing residues at positions 56–90 serves

in docking of both AdR and P450s [192]. In

accord with this, D72, D76 and D79 of Adx

build up a tight H-bonding network with R211,

R240 and R244 of AdR [193], but equally well

operate in fixation of the steroidogenic

CYP11A1 [194]. Noteworthy, the salt bridge

between the invariant E74/R89 residues turned

out to exert a principal stabilizing force

impacting the orientation and redox properties

of the iron-sulfur motif in parallel to AdR and

CYP11A1 binding [195]. Genetic engineering of

Y82 suggested the amino acid to be of impor-

tance in complex formation of Adx with

CYP11A1 and CYP11B1, but to leave electron

transfer unaffected [196]. In contrast, histidine at

position 56 was recognized to control the integ-

rity and ligand field of the protein region

surrounding the [Fe2-S2] cluster [197]. Thus,

H56T exchange was found to shift the redox

potential of the wild-type Adx (�274 mV) to a

value of �340 mV, causing a ~2.3-fold increase

in the rate of CYP11A1 reduction [198]. Simi-

larly, the vicinal T54 was recognized to modulate

the protein’s redox state: conservative T!S

replacement lowered E0

0
by ~60 mV as compared

to the native ferredoxin without affecting AdR

coupling and CYP11A1 reduction, though there

was a marginal decrease in Kd for spectral bind-

ing of the hemoprotein [199, 200]. Of note,

C-terminal truncation (Δ113–128) of Adx

followed by S112W substitution was found to

cause an 11-fold increase in the rate of

CYP11A1 reduction associated with a 60-fold

rise in the enzyme’s catalytic efficiency

[200]. Finally, sequential deletion of residues

E47, G48, T49, L50 and A51, located in a surface

loop covering the iron-sulfur center, disclosed

the domain to be crucial to regulation of the

redox potential and functional coupling of AdR

and CYP11A1 [201, 202].

As can be readily seen, the extensive spacial

overlap of the interaction sites of Adx for AdR

and P450 makes formation of a ternary complex

improbable [203]. This view is substantiated by

results from carbodiimide-mediated covalent

crosslinking of Adx carboxylates to lysines on

either AdR or CYP11A1. Structure-based assess-

ment of the individual crosslink positions

excluded a cluster model, but unequivocally

suggested the ferredoxin to act as a mobile elec-

tron shuttle [204, 205]. Here, transport of reduc-

ing equivalents was hypothesized to proceed via
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both monomeric or dimeric Adx species

[206]. The architecture of Adx-Adx assembly

resulting in an asymmetric dimer was disclosed

by crystal-based molecular modeling [207].

10.2.3.2 Molecular Recognition
of Putidaredoxin by Redox
Partners

Major driving forces in Pdx/PdR recognition

were proven to encompass steric complementar-

ity along with hydrophobicity and polarity. Thus,

modeling studies combined with crystal-based

mutagenesis experiments to modify both bulki-

ness of prospective key amino acids and their

efficiency in charge pairing or van der Waals

contacts identified the voluminous Y33 and R66

of Pdx, flanking the 365 Å2 protein-protein inter-

face, to bind to R65/T66 and E335, respectively,

in PdR. Substitution of the two ferredoxin

residues with amino acids of lower molecular

mass significantly increased the binding affinity

of mutated Pdx to PdR, but drastically dimin-

ished kcat for electron transfer to the iron-sulfur

cluster in view of moderate effects on E0

0
[208,

209]. This was interpreted to mean that the bulky

side chains of tyrosine and arginine prevent tight

docking of Pdx, so that transfer of reducing

equivalents may occur via alternate pathways.

In fact, optimal orientation for swift electron

flow from FAD to the [Fe2-S2] center was

predicted to be provided by interaction of W310

of PdR with D38 of the intermediate carrier [208,

209]. Moreover, ion pairing of the two residues is

expected to lower the activation free energy for

reduction of the metal cluster [189]. Evaluation

of mutation and crosslinking data suggested the

α-helical E72 of Pdx to form a salt bridge with

K409 of PdR serving to establish and stabilize

the electron transfer complex [209, 210], while

the adjacent C73 seems to not only modulate the

ferredoxin’s redox potential but to also define

spacial approach of the subunits of the redox

partners [208, 211]. Owing to flexibility of its

aromatic ring, the C-terminal W106 of Pdx, ori-

ented toward the center of the groove close to

W330 of PdR [208], is thought to play a

mediating and/or regulating role in the electron

transfer process [212].

Importantly, the tryptophan at position 106 is

of dominant importance in functional coupling of

Pdx with the camphor-hydroxylating bacterial

CYP101A1. Here, W106 is of higher relevance

to transfer of the second electron to the

oxyferrous hemoprotein than to donation of the

first reducing equivalent to the ferric enzyme.

This was argued to arise from the fact that the

bulky, rigid indole ring of the tryptophan residue

is apt to penetrate deep enough to approach the

heme-binding loop of CYP101A1 [213] and

induce structural changes required for accelera-

tion of dioxygen activation, thus assisting the

role of Pdx as an allosteric effector [189,

214]. It thus appears that the essential tryptophan

exists in a conformational microheterogeneity

[215]. In addition, D38 of the ferredoxin compo-

nent was recognized to represent another hot spot

in the two-step reductive event [214]. Starting

from 3D modeling and molecular dynamics

simulations, a series of amino acids such as

D34 of the intermediate carrier were

hypothesized to be likely candidates for intermo-

lecular salt bridge formation, affording fixation

of the Pdx/CYP101A1 complex [216]. In fact,

D34N mutation was shown to depress catalytic

efficiency (Vmax/Km) of the P450 system to a

level 44 % of that found with the wild-type Pdx

species [217]. Moreover, S42C exchange in the

polypeptide clearly impacted donor/acceptor

interaction [211].

Comparative evaluation of the general

docking mode of the redox partners disclosed

partial overlap of the proposed binding areas for

PdR and CYP101A1 on the surface of the Pdx

molecule, suggesting that the reductase and the

hemoprotein cannot simultaneously interact with

the ferredoxin [211]. This view seems to be in

contrast to the competent function of a ternary

PdR-Pdx-CYP101A1 fusion protein reported by

others. Mobility of the fixed Pdx subunit of the

latter construct appeared to be, nonetheless, high

enough to pass electrons to exogenous native

CYP101A1 introduced into the assay mixture

[218]. In accord with this, analysis by optical

biosensor techniques demonstrated the cova-

lently immobilized three-component complex to

exhibit only loose arrangement between Pdx and
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the terminal acceptor [219]. Also, studies on the

kinetic behavior in dependence on the molar

proportion of the individual redox partners

supported the notion that Pdx acts as an electron

transfer shuttle between PdR and CYP101A1 in

analogy to the Adx-promoted route [220]. This

raises the question as to what extent the bacterial

CYP101A1-dependent system might be compa-

rable to the mitochondrial CYP11A1-steered

redox chain. Thus, inspection of the

superimposed Adx/Pdx 3D structures, no doubt,

permits one to discern significant homology

(Fig. 10.5). Despite this, the two ferredoxins

cannot substitute for each other in the two cata-

lytic pathways owing to pronounced

discrepancies in a series of functional

determinants: (1) none of the acidic residues of

Pdx corresponding to those vital to Adx fixation

to CYP11A1 participate in intermolecular

interactions with CYP101A1; (2) while T49 of

Adx controls the redox dynamics of the iron-

sulfur cluster, the equivalent S44 in Pdx fails to

play such a role; (3) whereas the C-terminal

aromatic tryptophan of Pdx is pivotal to tight

CYP101A1 docking, the extended analogous

region of Adx is deficient in such a P450-binding

element. The interplay of these shortcomings

causes Pdx and Adx to be unable to donate the

second electron to the oxyferrous forms of the

heterologous hemoproteins [221].

10.2.4 Unorthodox Electron Transfer
Chains

Though P450s usually receive reducing

equivalents from their dedicated redox partners,

nonconventional electron transfer chains are fre-

quently constructed to facilitate in vitro reconsti-

tution of the donor/acceptor modules. For this

purpose, the vertebrate-type ferredoxin/ferre-

doxin reductase components belong to the most

frequently used surrogates of native intermediate

carriers. Thus, the mitochondrial AdR/Adx cou-

ple turned out to interact with intact microsomal

CYP1A1 such as to support erythromycin N-
demethylation at higher efficiency compared to

the inherent electron donor [222]. Similarly, Adx

was demonstrated to cross-react with CYP2B

enzymes, N-terminal hemoprotein truncation

eliciting balanced reductive potency between

the ferredoxin-promoted and P450 reductase-

driven systems [223, 224]. Also, the truncated

microsomal CYP17A1 and CYP21A2 proteins

show higher steroid 17α-hydroxylase and

21-hydroxylase activity, respectively, with

AdR/Adx compared to POR as the electron sup-

plier [225]. Interestingly, CYP46A1, predomi-

nantly functional in cholesterol

24-hydroxylation in the brain, was found to inter-

act with Adx as a redox component [226]. The

mitochondrial carrier also sustains electron dona-

tion to the bacterial steroid 15β-hydroxylase
CYP106A2 from Bacillus megaterium

[227]. The system even operates at elevated cat-

alytic capacity when AdR is replaced with

NADPH-flavodoxin reductase from Escherichia

coli to establish a novel robust redox chain

[228]. Noteworthy, a mitochondrial ferredoxin

Fig. 10.5 Superposition of the three-dimensional

structures of adrenodoxin (top) and putidaredoxin (bot-
tom). The Adx (PDB ID: 1AYF) and Pdx (PDB ID:

1PUT) proteins, representing typical examples for

vertebrate-type ferredoxins characterized by a sequence

homology of ~35 %, display a similar planar geometry of

the iron-sulfur cluster-containing region (spheres in yel-
low and blue). Generally, the overall folding topology of

the α-helical and β-sheet elements shows a high degree of

identity, with a 1.64 Å r.m.s. deviation between the two

electron carriers (Reproduced from Ref. [221])

10 Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural. . . 259



reductase/ferredoxin unit from the fission yeast

Schizosaccharomyces pombe was found to have

>50 % sequence similarity with the mammalian

AdR/Adx counterpart. The redox pair supports

CYP11A1-catalyzed biotransformation of

7-dehydrocholesterol [229].

In addition, [Fe2-S2] proteins from

non-mitochondrial sources have been

demonstrated to transfer electrons to heterolo-

gous P450s. For example, plant-type ferredoxin

and NADPH-ferredoxin reductase from spinach

chloroplasts promote oxidative substrate turn-

over by microsomal CYP1A2 and CYP3A4

[230, 231] as well as 25-hydroxylation of vitamin

D2 by CYP105A1 from Streptomyces griseolus
[232]. Furthermore, bacterial electron transport

systems such as the PdR/Pdx pair proved to fos-

ter β-carotene hydroxylation by the thermostable

CYP175A1 species [233]. When working in con-

cert with PdR, the microbial palustrisredoxin A

factor readily feeds reducing equivalents to

CYP199A2, preferentially metabolizing four-

substituted benzoates [234]. Also, reconstitution

of linredoxin and linredoxin reductase from a soil

pseudomonad with CYP2B4 yields a collective

efficiently metabolizing benzphetamine [235].

In some instances, Escherichia coli
flavodoxin/flavodoxin reductase was detected to

provide a basis for facile electron donation to

microsomal P450s such as CYP1A2 [230],

CYP3A4 [231] and CYP17A1 [236], but to

equally-well pass electrons via a ping-pong

mechanism to the microbial fatty acid oxidases

CYP102A1 and CYP152A2 [237, 238]. Of note,

a catalytically active system could also be

established by employing flavodoxin reductase

together with the unusual flavodoxin cindoxin

from Citrobacter braakii as redox partners for

CYP107H1 from Bacillus subtilis, having a role

in biotin biosynthesis [19]. Finally, electron sup-

ply by POR from the yeast Candida apicola to

the myristate-metabolizing CYP109B1 seems to

be a unique case, where a eukaryotic diflavin

reductase acts as a versatile electron donor to a

bacterial hemoprotein [239]. In summation,

cross-reactivity of electron carriers with a diver-

sity of heterologous P450s can be reconciled

with evolutionary conservation of a common

functional domain architecture steering donor/

acceptor interactions [32].

10.3 Topology of Critical Regions
in P450s Dictating Interaction
with Natural Redox Partners

10.3.1 Docking of NADPH-Cytochrome
P450 Oxidoreductase

Data from chemical/immunochemical modifica-

tion, molecular modeling and targeted mutagen-

esis were collated to generate an overall picture

of key determinants in P450s responsible for

POR fixation. Here, the N-terminal membrane-

spanning signal anchor sequence of microsomal

P450s seems to have a general role in protein-

protein association: deletion of the membrane-

immersed portion of CYP1A2 drastically

decreases affinity for POR [230]. Genetic tailor-

ing of a (Δ2–27)-variant of CYP2B4 proved to

be detrimental to POR binding, resulting in a

pronounced drop in the efficiency of electron

transfer to the recipient [179, 240]. Chemical

modification of the enzyme’s N-terminal

α-amino group through covalent attachment of

fluorescein isothiocyanate was recognized to

compromise reductase docking via motional per-

turbation of the fluorophore-labeled region,

eliciting a long-range effect on some distant

patch involved in productive POR complexation

[241]. Similarly, truncation of CYP2D6 was

found to increase the Kd value for reductase

binding by a factor of 11 [242]. Surprisingly,

analogous manipulation of CYP2C3 and

CYP2E1 failed to impede fixation of the flavo-

protein [243, 244]. In contrast, the N-terminus of

CYP6B33 from the insect Papilio multicaudatus

is likely to maintain a protein fold obviously

instrumental to communication with POR

[245]. Also, construction of the (Δ1–66)-deriva-
tive of CYP52A3 from the yeast Candida
maltosa was found to diminish reactivity toward

POR [246].

To assess critical residues in P450s involved

in the functional coupling of POR, CYP1A1 was

covalently modified through treatment with
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acetic anhydride or an azido analog of

benzphetamine. Selective blockage of four

lysines at positions 97, 271, 279 and 407 was

found to eliminate POR-dependent enzyme

activity [247, 248]. This finding corresponds to

results from studies with antibody targeted

against a K271/K279-containing fragment of

the hemoprotein, disclosing inhibition of meta-

bolic turnover as the potential consequence of a

rise in Km for POR [249]. In addition, attachment

of 4,40-dithiodipyridine to C293 in the CYP1A1

polypeptide was shown to be reversible upon

incorporation of POR into the assay media,

suggesting the residue to be located close to the

reductase-binding motif [250]. This view

receives support from antibody-directed suppres-

sion of substrate turnover following blockage of

a region in the CYP1A2 homolog aligning with

positions C293 to N301 in CYP1A1 [251]. More-

over, nitration of Y243 and Y271 in the CYP1A2

molecule was found to slow down electron trans-

fer from POR to the acceptor [252]. Finally, site-

directed mutagenesis helped verify prospective

key players: Replacement in CYP1A1 of lysine

at positions 271 and 279 with isoleucine caused a

severe loss of responsiveness to POR for the

hemoprotein [253]. Similarly, there was a 2- to

4-fold increase in the Kd value for POR anchor-

ing when the basic lysines occurring at positions

94, 99, 440 and 453 in CYP1A2 were exchanged

for an acidic residue [254, 255].

Within the plethora of drug-metabolizing

P450s, inhibition of CYP2B1-mediated substrate

oxidation by immunoprecipitation of the

enzyme’s K122 to T231 sequence was shown to

be less pronounced when antipeptide was added

after reconstitution of the system with POR, pro-

posing the epitope to be most likely engaged in

POR association [256]. This concept is in line

with R125 obviously having a critical role in this

event [257]. Further lysine residues in CYP2B1,

putatively serving as candidates for reductase

recognition, reside at positions 251, 384,

422 and 433 [258]. Kinetic analysis of the chem-

ically modified CYP2B4 analog in the absence

and presence of protective amounts of POR

disclosed lysines 139, 144, 251 and 384 to be in

presumptive contact with the electron donor at a

distance of about 3–4 Å [259]. Moreover, substi-

tution of predominantly basic amino acids,

hosted in the polypeptide fragment spanning

residues R122 to K139, with the hydrophobic

alanine entity drastically increased the Kd value

for reductase binding to CYP2B4 [260]. Addi-

tional positively charged elements in the surface

structure of the hemoprotein, identified by

genetic engineering to promote electron flow

from POR, include K225, H226, R232, R253

and H285 along with R422, K433 and R443

located in the vicinity of the heme edge

[260–262]. On the other hand, a series of aro-

matic and hydrophobic amino acids such as

F223, F227, F244, V267 and L270 were uncov-

ered to participate in π-π-stacking and H-bonding
interactions with POR [261, 263]. Of note,

charge-reversal mutation K139E in the polymor-

phic CYP2B6.8 variant was found to impair

functional complexation with POR [264]. This

finding agrees with data from cross-linking

experiments with the wild-type enzyme, disclos-

ing competition of the latter with the synthetic

D134-R140 peptide in reductase capture [265]. It

should be mentioned that arginines at positions

139, 144 and 442, hypothesized to be beneficial

to contacts with the electron donor in allelic

CYP2C8 and CYP2C9 proteins as well as in

CYP2C19, coincide with corresponding patches

on CYP2B members [266–268]. Also, homology

modeling of CYP2E1 in parallel with chemical

inactivation by nitration of a series of tyrosines

elucidated a close relationship between the FMN

domain of POR and Y422 [269]. Noteworthy,

C98W mutation in CYP3A4 was found to signif-

icantly hamper affinity to POR, associated with a

41 % diminution in the maximum rate of electron

flow between the P450 and flavoprotein [270]. In

addition, molecular modeling revealed the neigh-

boring Y99 to be in close proximity to the

cofactor-binding region of POR, while Y430

forms a hydrogen bond with an acidic reductase

residue at a distance of 2.3 Å [271].

Inspection of microsomal P450s involved in

the biosynthesis of natural products helped res-

cue further information about the architecture of

donor/acceptor complexes. Thus, chemical and

genetic modification of CYP17A1, lying at the
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crossroad of androgen and corticoid formation,

unveiled the positively charged amino acids

K326, K327, R347 and K358 to constitute part

of the POR-contacting area [272, 273]. Similarly,

a set of missense mutations at K121, R339, R341

and R356 provided clues to better understanding

of the mode of interaction of POR with the ste-

roid 21-hydroxylase CYP21A2

[274–276]. Finally, construction of a molecular

model of the lanosterol 14α-demethylase

CYP51F1 from yeast allowed identification of

unique residues such as H101, K358, R426 and

K433, serving as prospective sites for reductase

association [277]. A compilation of the topologi-

cal data for POR docking to the diverse P450s is

given in Table 10.1.

10.3.2 Docking of Cytochrome b5

In cases where P450s exhibit an obligatory

requirement for electron donation by b5 to main-

tain optimal rates of substrate turnover, structural

integrity of the hydrophobic tail portion of the

oxidases seems to be pivotal to productive donor/

acceptor coupling. For example, optical biosen-

sor studies with CYP2B4 lacking amino acids

2–27 disclosed removal of the signal anchor to

result in defective binding of the intermediate

carrier accompanied by a pronounced drop in

the reductive force [179, 240]. Apart from this,

circumstantial exploration of a set of CYP2

members helped ascertain an array of critical

b5-docking entities sitting remote from the

enzymes’ N-terminus. Thus, strongly perturbed

donor anchoring upon generation of the R129S

derivative of CYP2A5 suggested the RRFS frag-

ment in the polypeptide chain to be a key recog-

nition motif [278]. This conclusion nicely

coincides with the fact that the homologous

CYP2A4, bearing a R129S point mutation, fails

to stimulate substrate oxidation [279]. Interest-

ingly, site-specific attack on K122, R125 and

S128 in the CYP2B1 polypeptide by immuno-

chemical manipulation or protein kinase-

mediated phosphorylation was found to be com-

petitively antagonized by the presence of b5,

suggesting these residues to be in contact with

the electron donor [280, 281]. Moreover,

elements R122, R126, R133, F135, M137,

K139, H226 and K433, selected by computer

docking of a CYP2B4 model, were substituted

with alanine to evaluate the function of the amino

acid side chain distal to the β-carbon. All the
mutants tested displayed diminished ability to

bind b5 [260]. Genetic engineering was also

employed to confirm the biological importance

of K428 and K434 in CYP2E1/b5
complexation [282].

Studies extended to other P450 families

verified sites K127 and K421 on CYP3A4 to be

essential for efficient b5 coupling [283]. More-

over, impairment of the fundamental chemistry

by introduction of mutations at positions 83, 88,

347, 358 and 449 in CYP17A1 was demonstrated

to hamper propensity for 17,20-lyase activity by

disrupting responsiveness to the b5 component

[171, 273, 284]. Table 10.1 provides a synopsis

of key amino acids in P450s governing interac-

tion with b5.

10.3.3 Docking of Ferredoxins

Use of a specific fluorescence probe localized the

heme group of the mitochondrial CYP11A1 pro-

tein ~26 Å remote from the binding surface for

adrenodoxin (Adx) [285]. Here, basic residues

K73, K109, K110, K126, K145, K267, K270,

K338 and K342 on the mature hemoprotein

form were substantiated to govern reactivity

toward Adx by the ferredoxin’s ability to act as

an almost complete protector against the lysine-

modifying agents, succinic anhydride or fluores-

cein isothiocyanate, employed for enzyme engi-

neering [286, 287]. Two additional lysines

corresponding to K377 and K381 in the precursor

form of steroidogenic CYP11A1 were identified

by site-directed mutagenesis as also being vital to

Adx association. Estimated Kd values for donor

docking increased about 150- to 600-fold com-

pared to the wild-type enzyme depending on the

particular lysine substitute [288]. This finding fits

data from specific chemical labeling of lysines in

the peptide comprising amino acids M369 to

K381 in the CYP11A1 molecule, eliciting a
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Table 10.1 Prospective key amino acids of P450 enzymes governing interactions with redox partners: representative

results from molecular modeling, genomic analyses and site-directed mutagenesis

CYP enzyme Residue modified Alignment positiona Location in 2� structureb

Interacting redox

partner

Refs.POR b5 Fdxc

51F1 H101 57 αB + [277]

1A1 K97 59 αB + [247]

1A2 K94 59 αB + [254]

17A1 K83 59 αB + [171]

101A1 R72 59 αB + + [298]

11A1 K73 63 αB + [286]

101D1 R77 63 αB + [304]

1A2 K99 64 αB + [254, 255]

17A1 K88 64 αB + [171]

2B1 K122 97 αC + [280]

2B4 R122 97 αC + + [260]

11A1 K109 97 αC + [286]

101A1 R109 97 αC + [299]

119 R109 97 αC + [303]

3A4 K127 98 αC + [283]

11A1 K110 98 αC + [286]

2B1 R125 100 αC + + [257]

101A1 R112 100 αC + [299–301]

101D1 R113 100 αC + [304]

2A5 R129 101 αC + [278, 279]

2B4 R126 101 αC + + [260]

21A2 K121 101 αC + [274]

2B1 S128 103 αC + [281]

2B2 S128 103 αC + [281]

2B4 S128 103 αC + [281]

102A1 L104 104 αC + [354]

2B4 R133 108 αC1 + + [260]

2B4 F135 110 αC1 + + [260]

2B4 M137 112 αC1 + + [260]

2B4 K139 113 αC1 + + [259, 260]

2B6 K139 113 αC1 + [264]

11A1 K126 114 αC1 + [286]

2C9 R144 118 αD + [267]

11A1 K145 133 αD + [286]

2B4 H226 197 αG + + [260, 261]

2B4 F227 198 αG + [261]

2B4 R232 203 αG + [261]

101A1 K197 209 αG + [302]

2B4 F244 215 αG + [261]

1A1 K271 221 αG + [247]

2B1 K251 222 αG + [258]

2B4 K251 222 αG + [259]

1A2 Y271 224 αG + [252]

2B4 R253 224 αG + [261]

1A1 K279 229 αG-αH + [253]

2B4 V267 236 αH + [263]

2B4 L270 239 αH + [263]

1A1 C292 241 αH-αI + [250]

(continued)



Table 10.1 (continued)

CYP enzyme Residue modified Alignment positiona Location in 2� structureb

Interacting redox

partner

Refs.POR b5 Fdxc

11A1 K267 245 αH-αI + [286]

11A1 K270 248 αH-αI + [286]

2B4 H285 250 αI + [262]

17A1 K326 288 αJ + [272]

17A1 R347 308 αJ‘ + + [273, 284]

21A2 R339 308 αJ‘ + [276]

21A2 R341 310 αJ‘ + [276]

51F1 K358 310 αJ‘ + [277]

11A1 K338 315 αK + [286, 287]

27A1 K354 315 αK + [296]

199A2 R285 315 αK + [305]

11A1 K342 319 αK + [286]

17A1 R358 319 αK + + [273, 284]

27A1 K358 319 αK + [296]

21A2 R356 325 αK + [276]

1A1 K407 349 β2(2)-β1(3) + [247]

2B1 K384 349 β2(2)-β1(3) + [258]

2B4 K384 349 β2(2)-β1(3) + [259]

51F1 R426 377 MR + [277]

3A4 K421 380 MR + [283]

27A1 R418 380 MR + [296]

11A1 K405 383 MR + [292]

101A1 K344 383 MR + + [298]

51F1 K433 384 MR + [277]

2B1 K422 386 HBR + [258]

2B4 R422 386 HBR + [260]

2E1 Y422 386 HBR + [269]

102A1 Q387 387 HBR + [354]

1A2 K440 388 HBR + [254]

3A4 Y430 388 HBR + [271]

2E1 K428 391 HBR + [282]

1A2 K453 397 HBR + [255]

2B1 K433 397 HBR + [258]

2B4 K433 397 HBR + + [260]

2E1 K434 397 HBR + [282]

1A2 R455 399 HBR + [254]

11A1 R426 404 αL + [292]

24A1 R466 404 αL + [294]

2B4 R443 407 αL + [260]

2C19 R442 407 αL + [268]

17A1 R449 407 αL + [284]

101D1 R371 407 αL + [304]

199A2 L369 408 αL + [305]

aPositions were determined by screening the sequences of the target P450 enzymes against the crystal structure of

substrate-bound CYP102A1 (PDB ID: 1ZO9) as described previously [277, 307]
bAllocation of the alignment positions to definite domains of α-helical or β-sheet structure is based on the CYP102A1

architecture [314]. MR meander region, HBR heme-binding region
cThe category of ferredoxins includes Adx, Arx, Pdx and Pux



drastic fall in responsiveness to the electron-

supplying factor [289]. Of note, point mutation

R!C at position 366 in CYP11B1,

corresponding to K377 in the CYP11A1 conge-

ner, was detected to give rise to breakdown of the

catalytic efficiency of 11β-hydroxylation to a

level ~25 % that of the native protein. This has

been interpreted to mean that a change to cyste-

ine eliminates a positive charge and leaves a cove

on the enzyme’s surface, most likely impacting

Adx fixation [290]. Interest also focused on resi-

due C264 lying proximate to K267 in the

so-called “hinge” region. Indeed, chemical

blockage of the surface cysteine was found to

hamper CYP11A1-promoted turnover through

curtailing the catalyst’s capacity to interact with

Adx [291]. Moreover, biochemical and molecu-

lar modeling studies based on the crystal struc-

ture of the redox partner jointly supported the

concept that K405 and R426 (numbering of the

mature hemoprotein form) participate in electro-

static contacts with Adx [292]. There seems to

exist an interplay between the latter amino acid

and the conserved vicinal E429 residue responsi-

ble for fine tuning of the stability of the assem-

bled complex [293]. Crystallographic analysis of

the 24-hydroxylase CYP24A1 from rat again

revealed structural elements K378 and K382,

aligning with lysines at positions 377 and

381 in bovine CYP11A1, to operate as key

players in Adx recognition. In addition, the

invariant R466, located 8–10 Å remote from the

conserved lysines, was assigned a dominant

function in ferredoxin-driven electron transfer

[294]. The critical arginine aligns with R426 in

CYP11A1 and R458 in the murine CYP27B1. In

fact, R458Q substitution was detected to induce a

36-fold rise in the apparent Km value for Adx

associated with a drastic decrease in electron

pressure [295]. Finally, introduction of the

K354A/K358A/R418S triad into CYP27A1

involved in bile acid biosynthesis was shown to

be destructive to ferredoxin binding [296].

Epitope mapping, carried out with bacterial

CYP101A1 from Pseudomonas putida in the

presence of a set of antigenic peptides directed

against areas presumed to be of functional rele-

vance, suggested regions spanning residues

63–72 and 108–117, respectively, to potentially

participate in putidaredoxin docking [297]. This

view was underpinned by the severe loss of reac-

tivity toward Pdx upon creation of hemoprotein

variants bearing non-ionic amino acids in place

of the positively charged arginine at positions

72, 109 and 112 [217, 298, 299]. It should be

emphasized that ferredoxin binding to R112 has

been recognized to also be beneficial to

intracomplex electron transfer to the ferric

heme iron-oxo species [300, 301]. Moreover,

the ability of the intermediate carrier to shield

K197 in the P450 molecule from attack by chem-

ical modifiers qualifies the lysine residue as part

of the Pdx recognition site [302]. Similarly,

reversal of the cationic charge by K344E muta-

tion was demonstrated to cause perturbation of

donor docking [298]. Interestingly, CYP119A1

from thermophilic Sulfolobus acidocaldarius

utilizes Pdx as the electron supplier. Here,

D77R mutation of the hemoprotein was detected

to markedly enhance fixation of the redox partner

and stimulate electron flow by a factor of about

5 compared to the parent enzyme, obviously

eliminating a potentially repulsive protein-

protein interaction [303]. The repellent effect of

D77 thus might serve in proper Pdx orientation.

Other bacterial P450s receive electrons via

[Fe2-S2]-type ferredoxins genomically

associated with the individual oxidases. For

example, evaluation of the electrostatic surface

profile of CYP101D1 from the oligotrophic

Novosphingobium aromaticivorans suggested

amino acids such as R77, R113 and R371 to

contribute to specificity in [2Fe-2S]-type ferre-

doxin (Arx) recognition [304]. Furthermore, the

benzoic acid-oxidizing CYP199A2 from

Rhodopseudomonas palustris was recognized to

carry two surface hot spots presumed to be sig-

nificant factors in steering cross-reactivity of

ferredoxins. Thus, the presence of R285 as well

as charge reversal at L369 were hypothesized to

be responsible for preferential functional cou-

pling of the physiological redox partner

palustrisredoxin compared to the heterologous

Pdx [305, 306]. A summary of data for ferre-

doxin docking to vertebrate-type P450s is

presented in Table 10.1.
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10.3.4 Overall Architecture of Redox
Domains and Mechanism
of Electron Donor Docking

Increasing interest in elucidation of the molecu-

lar mechanism of electron transfer in P450

systems creates fundamental demand for visuali-

zation of the architecture of donor-binding sites

ruling catalytic potency of the enzymes. To

accomplish this goal, homology modeling has

to be carried out using sophisticated strategies

for construct building. Judging from data for

root mean square (r.m.s.) deviation of critical

Cα atoms and φ/ψ-angle distribution, compara-

tive alignment by knowledge-based techniques

of P450s from different phyla with the bacterial

CYP102A1, having its 3D structure determined,

suggested the microbial enzyme to be a robust

template for elucidation of structure-function

relationships [277, 307]. Thus, mapping of key

amino acid residues from microsomal, mitochon-

drial and bacterial hemoprotein species

recognized to contribute to redox partner

interactions (Table 10.1) onto the CYP102A1

scaffold yielded a scenario (Fig. 10.6) describing

the general spatial distribution of contact

sites [32].

As can be seen, the majority of points pre-

sumed to dictate contact with redox proteins

cluster close to the center of the proximal face

of the hemoprotein model. Highest density of

binding sites, amounting to 47 % of the total

number of key players, is found in the triad

formed by α-helical structures C/C1, bordering

the core fold on the top, the G-helical fragment,

located more in the periphery of the P450 mole-

cule, and the heme-binding region. The

remaining interaction sites appear to be of

minor importance, each housing but 5–8 % of

the overall volume of anchoring elements

(Table 10.1). Surprisingly, the population of

functional determinants in the various target

P450s, residing in the three preeminent donor-

docking epitopes, displays a very low to moder-

ate extent of conservation ranging from 9 % to

27 %. This might arise from the need for confor-

mational flexibility to enable encounter with

heterologous redox proteins. Indeed, ~38 % of

the contact sites harbored in helices C/C1/G and

the heme-binding domain have overlap of POR

fixation with b5 recognition. This behavior agrees

with the ability of increasing amounts of b5,

integrated into assay media containing a constant

level of POR, to gradually transform the biphasic

kinetic tracings, prototypic of NADPH-driven

P450 reduction, to a sluggish monophasic reac-

tion as is characteristic of electron donation by b5
[308, 309]. This lends support to the notion of a

functional antagonism between the two redox

proteins. On the other hand, b5 fails to interfere

with nonproductive physical anchoring of reduc-

tase to P450, as evidenced by visible difference

spectrometry [308]. This seems to hint at func-

tional diversification of the POR-docking loci

[310] potentially acting in substrate-induced

cooperativity [241]. Though overlap of regions

involved in POR and ferredoxin association is

lacking, the redox domain architecture

(Fig. 10.6) displays epitopes fostering binding

of the two carrier species to cluster in close

proximity to each other in helices B/C and the

H-I interhelical loop, possibly caused by certain

analogy in the structural organization of the elec-

tron transfer proteins [185]. Similarly, evolution-

ary commonality induces joint contact points for

b5 and ferredoxins on the proximal face of P450s

constituted by portions of helices B, C, K and the

meander stretch (Table 10.1). It should be men-

tioned that the crystal structure of an archetypal

b5 homolog isolated from a bacterial strain has

been identified [311]. This prompts one to spec-

ulate that b5-type proteins may act as natural

electron donors also to certain microbial P450s.

Evaluation of the array of data summarized in

Table 10.1 disclosed 81 % of the overall popula-

tion of amino acids predicted to operate in redox

partner binding in the various target P450s to

belong to the category of positively charged

entities, about two thirds of the reactants being

represented by lysine residues and one third by

arginines. Indeed, calculation of the electrostatic

surface potential for a series of P450s showed the

dipole moment of the hemoproteins to be ori-

ented such as to help direct the intermediate
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carriers toward a patch of positively charged

elements on the proximal face [312–314]. This

behavior underpins salt-bridge formation with

carboxylates in the donor proteins (see

Sect. 10.2) to be the most salient driving force

in complexation, as exemplified by the allocation

of interfacial residues involved in the CYP3A4-

b5 encounter [283] depicted in Fig. 10.7. In

agreement with this principle, charge shielding

by high concentrations of mobile ions was shown

to elicit disintegration of donor/acceptor anchor-

ing associated with a drop in electron flow [255,

293, 298]. Moreover, ~10 % of the key players

bear a polar side group serving in generation of a

flexible H-bonding link to some basic group(s) in

the intermediate carriers, with tyrosines presum-

ably being favored mediators of weakly polar

inter-residue contacts [252, 269, 271].

Since electrostatic phenomena, no doubt, pre-

vail in functional coupling of redox partners, it

does not seem surprising that only a minority

(~9 %) of the total of sites attracting electron

donors can be assigned to the class of lipophilic

amino acids largely accommodated in helices C1

and G. Here, aromatic and aliphatic

representatives cooperate in π-π-stacking and

van der Waals interactions with reactants in the

diverse redox proteins [260, 261, 263, 305].

10.3.5 Factors Impacting Organization
of Protein-Protein Association

10.3.5.1 The Role of Phospholipids
The phospholipid matrix serving in insertion and

assembly of the components of the P450-

Fig. 10.6 Generalized molecular model featuring criti-

cal surface sites in P450s operating in recognition and

binding of redox proteins. The composite profile was built

by mapping the topological data of key determinants

steering electron donor fixation onto the substrate-bound

CYP102A1 template. The color code denotes: yellow

spheres, POR-binding sites; blue spheres, b5-binding
sites; green spheres, sites common to POR and b5; red
spheres, Fdx-binding sites; purple spheres, sites common

to Fdx and b5. For top and bottom views, the coordinates

of the images were rotated by 90� in the x-axis (Data

taken from Ref. [32])
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dependent redox machinery was detected to

strongly impact efficiency of electron transport

in microsomal and mitochondrial systems by

providing structural features permitting

improved recognition, ordering and alignment

of redox partners [315]. In this respect, the syn-

thetic dilauroyl phosphatidylcholine as well as

natural phospholipids were shown to decrease

the apparent dissociation constant for P450/

POR complexes to an extent depending on both

the chain length of the lipids and the mode of

reconstitution, yielding either micellar or vesicu-

lar systems [316–318]. Owing to predominance

of positive charges on the proximal profile of

P450s (see above), mixtures containing anionic

lipids such as phosphatidylserine were found to

favor P450/POR association by forcing the

proteins into correct orientation toward each

other [319–321]. Facilitated donor/acceptor

binding appears to generally require prior

phospholipid-induced relaxation of the tight

multimeric P450 aggregates [322]. Indeed, dis-

placement of the P450 oligomerization equilib-

rium toward monomers by use of a nanoscale

construct bearing a palmitoyl-oleoyl phosphati-

dylcholine bilayer drastically improved

flavoprotein-promoted P450 reducibility

[323]. Collectively, phospholipids were

recognized to act as allosteric effectors eliciting

conformational alterations in P450s associated

with an increase in α-helical content of the

hemoproteins. This fosters functional coupling

of different types of electron carriers [324,

325]. Thus, lipid was demonstrated to also mod-

ulate affinity of b5 for CYP2B4 [326]. Con-

versely, b5 binding to the enzyme caused a ~2-

fold rise in reactivity of phosphatidylcholine to

CYP2B4 [327]. Similarly, cholesterol lowers Kd

for Adx docking to cardiolipin-saturated

CYP11A1 by a factor of up to 20, while the

ferredoxin, in its turn, improves cholesterol bind-

ing to steroidogenic CYP11A1 [328].

Fig. 10.7 Functional importance of electrostatic

interactions between the protein surfaces of cytochrome

b5 and CYP3A4. The monooxygenase and the

electron carrier are presented in white and green, with
their heme groups being shown in red and orange, respec-
tively. The interacting residues on the redox partners are

depicted in magenta and blue, while the critical R446 is

colored golden. As is evident, b5 approaches the B-B0

loop region and helix C of CYP3A4 via helices α4
and α5. Protein domains on the oxygenase far from

the docking surface are truncated (Reproduced from

Ref. [283])
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10.3.5.2 The Role of P450-P450
Aggregation

Formation of hetero-oligomers of P450 is well

documented and may play a decisive role in

regulatory mechanisms of electron transfer

[329]. In fact, the combined presence of

CYP1A2 and CYP2B4 reconstituted with POR

in the same phosphatidylcholine vesicles

provides conclusive evidence from changes in

the enzyme-specific monooxygenase activities

that the CYP1A2 moiety of the heteromeric

P450 complex generates a high-affinity reductase

adduct more effectively competing for the redox

protein than CYP2B4 [330]. Comparable results

were obtained when the CYP2E1/CYP2B4 pair

was embedded into a phospholipid matrix in the

presence of POR to probe competition for the

reductant. Here, low levels of CYP2E1 turned

out to cause a 23-fold increase in the apparent

Km value of CYP2B4 for the donor protein, while

the analogous Km of CYP2E1 for POR decreased

significantly, allowing CYP2E1 to outact

CYP2B4 [331]. Of note, CYP2A6/CYP2E1/

POR co-expression in microsomal membranes

disclosed the presence of a prototypic CYP2A6

substrate to impair electron flow to CYP2E1,

suggestive of a regulatory function of substrate

in P450 aggregation [332]. This view is

substantiated by drug-drug interactions occurring

as the output of competition for the ancillary

POR enzyme of co-reconstituted P450 couples

such as CYP2C9/CYP2C19 or CYP2D6/

CYP3A4 [333, 334]. Furthermore, the formation

in liposomal membranes of an equimolar com-

plex between the mitochondrial CYP11A1 and

CYP11B1 enzymes was found to have a stimula-

tory effect on the CYP11B1-dependent 11β-
hydroxylase activity as the consequence of a

conformational alteration, corresponding to

changes in the Km value for Adx [335]. A mathe-

matical model taking account of the possible

existence of multiple types of P450-based dimer

formations was developed to explore the most

probable mechanism(s) of such interactions in

more detail [336].

One would be remiss without mentioning that

a fraction of P450s integrated into membranous

systems may also exist as homo-oligomers. Here,

formation of large aggregates causes P450

immobilization to an extent depending on the

lipid-to-protein ratio [337, 338]. Interestingly,

incorporation of POR or b5 was shown to readily

disrupt the aggregation state of P450s, when in a

membrane, via transient complexation with the

monooxygenases. This might influence the

amount of productive donor/acceptor adducts

determining catalytic activity [339, 340]. Again,

substrate may interfere with the docking events

to modulate reactivity of the redox partners

[33, 177].

10.4 P450/Redox Partner Fusion
Enzymes

10.4.1 Natural Fusion Proteins

Among fusion enzymes, the cytosolic

CYP102A1 from Bacillus megaterium represents

a unique self-sufficient flavohemoprotein

catalyzing (ω–n)-hydroxylation of medium- to

long-chain saturated fatty acids [341]. Owing to

its soluble nature and applicability as an excel-

lent paradigm for the understanding of structure/

function relationships in class II-type P450s,

CYP102A1 represents the most extensively stud-

ied member of the CYP102A subfamily

consisting of a large number of relatives, though

only four additional homologs, namely

CYP102A2/A3/A5 and A7 from diverse Bacillus
strains, have so far been characterized. Here,

comparison of the polypeptide structures

revealed some deviations in active-site architec-

ture [342–344].

The CYP102A1 enzyme is composed of an

N-terminal heme domain connected via a short

protein linker with a eukaryotic-like diflavin

reductase module bearing one equivalent each

of FAD and FMN [345]. Availability of the crys-

tal structure of the FAD/NADPH-binding

domain helped identify sites involved in

NADPH fixation such as S965, R966, K972 and

Y974 [346]. Noteworthy, the side chain of

W1046 shields the FAD isoalloxazine ring from
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NADPH, and motion of this residue drives pyri-

dine nucleotide specificity to the formation of an

FADH2-NAD(P)
+ charge-transfer intermediate

[347]. Aromatic stacking with W854 and Y860

was shown to stabilize the FAD cofactor, while

amino acids at positions 729–743 have the poten-

tial to make contacts with the cognate FMN

domain [346]. Due to the dimeric nature of

CYP102A1, the obligatory electron tunneling

route traverses both constituents of the dimer

during a single turnover by switching from the

FAD-binding site of one monomer to the FMN

domain of the other one prior to passing on to the

terminal acceptor [348]. Interestingly, modula-

tion of the electrostatic microenvironment of

the FMN-docking pocket, housing critical

residues Y536 and G570 [349], by unusual inte-

gration of positively charged lysines at positions

572 and 580 as well as decreased flexibility of the

short cofactor-binding loop were presumed to be

jointly responsible for the observed repression of

the neutral, blue FMN semiquinone radical

paralleled by stabilization of the red, anionic

hydroquinone species. This was shown to be

coupled with a change in the E0

0
values of the

redox pairs securing electron flow to the heme

unit [350–352]. In this regard, W574, located in

the FMN domain, was demonstrated to provide a

direct through-bond electron transfer pathway

including P382 and C400 in the heme-binding

peptide [349, 350], while the highly conserved

W96 turned out to have a function in heme asso-

ciation and control of the spin state of the iron

[353]. Moreover, the area around L104 and Q387

in the intact heme/FMN-binding fragment

(Fig. 10.8) revealed to be vital to efficient func-

tional association of the partners [354]. It has to

be mentioned that a soluble form of microsomal

b5 was found to also undergo tight binding to

CYP102A1, eliciting a low-to-high spin transi-

tion in the enzyme’s heme iron. This suggested

the electron donor to occupy a contact site on the

proximal face of the P450 heme that overlaps

with that for the FMN domain of the diflavin

reductase [355].

Genetic exploration of the fungus Fusarium

oxysporum revealed the existence of a loosely

membrane-associated, self-sufficient

flavocytochrome termed CYP505A1, sharing

~41 % sequence identity with the P450 moiety

of the bacterial CYP102A1 counterpart

[356]. The enzyme catalyzes pyridine

nucleotide-driven (ω-1)- to (ω-3)-hydroxylation
of saturated C9 to C16 fatty acids [357]. The

reductase unit in the primary CYP505A1 struc-

ture, having 35 % sequence identity with that of

CYP102A1, was shown to be fixed to the heme

region via a linker consisting of 20 amino acids of

mainly hydrophilic character [356]. Noteworthy,

28 % of the residues hosted in fractions forming

the NADPH/FAD- and FMN-binding domains

disclosed to be invariant, with hydrophilicity

clearly prevailing in the bond-making events

[356]. Here, electron transfer was shown to be

strongly stimulated by the presence of substrate

[358]. Another self-sufficient member of the

CYP505 family, classified CYP505B1,

Fig. 10.8 View of the 3D structure of the complex

between the heme- and FMN-binding domains of bacte-

rial CYP102A1. The flavin-binding domain (green)
hosting the FMN cofactor (yellow) is physically linked

on the same polypeptide to the region (blue) surrounding
the iron-porphyrin macrocycle (red). In this complex, the

dimethylbenzene ring of FMN is oriented perpendicular

to the heme plane at a distance of ~18 Å (Data taken from

Ref. [350])
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was isolated from the ascomycete Fusarium
verticillioides and found to participate in the bio-

synthesis of the polyketide mycotoxin fumonisin.

The flavohemoprotein displays 41 % sequence

identity to CYP505A1 and 33 % identity to

CYP102A1, with the putative cofactor-docking

regions being arranged in the same order as in

the homologs cited [359].

In addition, new types of P450-redox partner

fusions have been unveiled. An example is bacte-

rial P450 XplA (CYP177A1) from the

Rhodococcus rhodochrous strain 11Y, catalyzing

reductive denitration of the military explosive

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)

[360]. The enzyme has an unusual structural orga-

nization comprising the N-terminal P450 heme

domain fused to a flavodoxin unit [361, 362]. The

latter was shown to containmost of the elements of

a signature typical for FMN binding [360]. Unex-

pected features include the low affinity of the

non-covalently bound FMN to its docking site (Kd

¼ 1.09 μM) compared to reactivity of the cofactor

toward flavodoxins from other bacterial sources

and the strong positive shift of the redox potential

of the FMN semiquinone/hydroquinone couple

E
0
0 ¼ �172 mV

� �
, being the likely electron

donor to the XplA heme [363].

Efficient RDX degradation was shown to

require expression of the partnering reductase

XplB. The FAD-containing carrier transfers

reducing equivalents to the XplA-FMN in a 1:1

complex with high specificity for NADPH as the

electron source [362, 363]. Here, collision of the

two subunits represents a rate-limiting step. Of

note, the deduced amino acid sequence of XplB

has 42 % similarity to bovine mitochondrial AdR

[360]. In accord with this, the XplA flavodoxin

domain is capable of receiving electrons also

from ferredoxin reductase before transferring

them to the P450 heme [364].

Circumstantial exploration of the bacterial

genome sequence library uncovered a

completely novel class of self-sufficient P450

systems, representing a distinctive community

of enzymes C-terminally fused to a phthalate

dioxygenase reductase (PDR) module as the

redox partner. The latter is folded into three

domains involved in NADH/FMN binding and

docking of the [Fe2-S2] cluster [365]. Thus,

CYP116B1 from Cupriavidus metallidurans, a

thiocarbamate herbicide-oxygenating fusion pro-

tein, displays stoichiometric binding of both

FMN and the iron-sulfur center, electron transfer

being supported by NAD(P)H with clear domi-

nance of the triphosphopyridine nucleotide

[366]. Similarly, CYP116B2 from a

Rhodococcus species was demonstrated to be

composed of an N-terminal P450 moiety

separated by a short segment of about 16 amino

acids from the reductase-like fragment, sharing

34 % sequence identity with the PDR family

[367]. Closer investigation of the electron-

supplying subunit predicted P578 to contact pyr-

idine nucleotides, with NADPH having a ~500-

fold preference over NADH in terms of the

estimated Kd values [367, 368]. Moreover, the

stretch spanning residues S532 to S536 was

found to conform to the consensus motif for

binding of the phosphate group of FMN, while

a cluster of four highly conserved cysteines at

positions 722, 727, 730 and 760 constitutes a

[Fe2-S2] ferredoxin-type center [367]. The reduc-

tion potentials of the FMN semiquinone/hydro-

quinone and FeS entities were calculated to be

approximately �270 mV and �214 mV, respec-

tively [369]. Substrate screening for CYP116B2

revealed the enzyme to mediate dealkylation of

substituted aromatic alkyl ethers, catalytic effi-

ciency being higher with compounds bearing a

shorter alkyl chain [370]. In addition, a new self-

sufficient member of the CYP116 family was

identified in Rhodococcus ruber. The fusion pro-

tein was recognized to have >90 % amino acid

sequence identity to CYP116B2 and to consist of

a heme domain, an FMN-hosting region and an

iron-sulfur unit. In the presence of NADPH, the

enzyme shows hydroxylase activity toward poly-

cyclic aromatic hydrocarbons such as naphtha-

lene or fluorene [371].

10.4.2 Artificial Self-Sufficient Fusion
Proteins

The catalytic diversity of P450s has high poten-

tial for biotechnological exploitation. However,
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industrial application is frustrated by the need of

costly NAD(P)H cofactors, cumbersome recon-

stitution of auxiliary electron donor systems and

fairly low metabolic turnover. To simplify the

procedure and improve the catalytic outcome,

the natural P450/redox partner fusion proteins

addressed above may represent excellent

paradigms for the sculpturing of man-made chi-

meric analogs of desired autonomic electron

transport [372]. This requires cDNA shuffling

to design assembly of redox chain building

blocks on a “molecular Lego” principle

[373]. Also, a versatile “drop-in” vector for

rapid creation of self-sufficient P450s has been

developed [374].

10.4.2.1 P450/Diflavin Reductase Fusion
Enzymes

A useful tool for the generation of simplistic

P450 redox systems is featured by covalent fixa-

tion of the hemoprotein portion to a POR-like

unit with the aim to construct the most suitable

fusion [375]. In this way, the (Δ1–41)-truncated
reductase moiety from yeast was genetically

attached to rat CYP1A1. The construct displayed

rotational mobility of the P450 fragment higher

than that of CYP1A1 alone [376]. In the presence

of NADPH, the rate of reduction of the substrate-

bound fusion enzyme was found to be >50 s�1,

suggesting that electrons were rapidly transferred

from the cofactor through FAD and FMN to the

heme iron [377]. Similarly, human CYP1A1 was

connected to N-terminally truncated rat POR via

a Ser-Thr dipeptide linker. Activity toward

resorufins was shown to be 11- to 22-fold higher

compared to the control [378]. Of note, human

CYP1A2 genetically engineered with yeast

reductase proved to be about twice as efficient

in oxidative ethoxyresorufin biotransformation

relative to the CYP1A1 fusion system

[379]. Moreover, a fused construct derived from

the cDNA for canine CYP2B11 in tandem with

the code for the modified rat oxidoreductase

exhibited an androstenedione metabolite profile

very similar to that found with the reconstituted

components [380]. The same approach was

adapted to arrange chimeras produced by joining

the C-terminus of mammalian CYP2C11 or

CYP2D6 to the cytoplasmic domain of the cog-

nate flavoproteins via a dipeptide linker. In either

case, molecular organization seemed to be sub-

optimal, as judged from comparison of the kcat
values for substrate turnover with those of the

non-fused systems [381, 382]. Similar

observations were made upon linkage of human

CYP3A4 to rat POR. Addition of excess exoge-

nous POR and b5 to the reaction mixtures were

found to drastically enhance the rate of testoster-

one 6β-hydroxylation [161]. Deficiency in cata-

lytic capacity of the fused construct may arise

from the fairly short linker region restricting

flexibility in orientation toward each other of

the functional interfaces of the CYP3A4 and

POR modules required to permit swift electron

transfer. Optimization was achieved by engineer-

ing a number of triple adducts, among which the

CYP3A4/reductase/b5 product turned out to

reflect the most appropriate ordering for high

activity compared to the reconstitution premixes

[383]. Though fusion of rat CYP4A1 with the

native reductase unit gave a biocatalyst

mediating lauric acid ω-hydroxylation at a rate

threefold higher than that determined in reconsti-

tution assays, metabolic capacity was not fully

exhausted: supplementation with purified flavo-

protein/b5 strongly stimulated fatty acid con-

sumption by potentially increasing collision

frequency of the redox partners [384, 385].

The fusion strategy was also extended to

microsomal steroidogenic P450s. Thus, the multi-

functional CYP17A1 domain of different mam-

malian species was connected to a truncated form

of yeast or rat reductase to yield a self-contained

unit characterized by 17α-hydroxylase and 17,20-
lyase activity, promoting biotransformation of

progesterone and pregnenolone to the

corresponding C19-derivatives [386, 387]. Here,

the length and amino acid sequence of the hinge

region between the redox components was

demonstrated to play a decisive role in efficient

intramolecular electron transfer [388]. Of interest,

donation to the fused adduct of reducing

equivalents by exogenous b5 was shown to boost

the lyase pathway to an extent depending on the

genetic ancestry of the CYP17A1 moiety exam-

ined [389]. Similarly, linkage of bovine
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CYP21A2 to N-terminally modified yeast POR

gave a flavohemoprotein driving conversion of

17α-hydroxyprogesterone to 11-deoxycortisol at

a catalytic efficiency two- to four-times greater

than that found with the reconstituted CYP21A2

redox chain [390]. Surprisingly, a mitochondrial

form of rat CYP27A1, when fixed to a heterolo-

gous POR motif, displayed notable potency for

27-hydroxylation of 5β-cholestanetriol in the

absence of its native electron suppliers [391].

A suit of vectors for the expression of fungal

and plant P450s as non-natural genetic fusions

with various reductase isoforms have been devel-

oped. Thus, engineering of CYP51 from Saccha-

romyces cerevisiae to allow connection with its

cognate redox partner resulted in swift

3-hydroxylanostenol demethylation [392]. Also,

chimeric plant P450s CYP71B1, CYP73A and

CYP76B1were shown toworkwith higher overall

capacity when plant reductases were permitted to

act as fusion partners. Here, cinnamate

4-hydroxylation, a key reaction in phenyl-

propanoid biosynthesis, induces swift production

of relevant secondary metabolites steering plant

development, while catabolism of recalcitrant

herbicides such as chlortoluron is of major impor-

tance in defense reactions [393–396].

Efforts were also undertaken to evaluate

exploitation of the Bacillus megaterium

(CYP102A1) reductase component (BMR) as a

surrogate of POR, having 35 % sequence identity

with the microbial analog [397]. In this way, a

series of soluble self-sufficient CYP2C chimeras,

generated by gene-fused assembly of the

N-terminally modified P450s with BMR via a

Pro-Ser-Arg linker, displayed activities toward

prototypic marker substrates comparing favor-

ably with those reported for the wild-type

enzymes [381, 398, 399]. Similar observations

were made with the CYP2E1/BMR and

CYP3A4/BMR constructs, though coupling

levels between product formation and NADPH

consumption did not exceed 8–15 % [398, 400,

401]. Furthermore, swapping of the oxidoreduc-

tase module of the P450-like self-sufficient neu-

ronal nitric oxide synthase for BMR was found to

give rise to a manipulated multi-domain con-

struct of low stability, nevertheless displaying

appreciable oxygenase activity prone to the reg-

ulatory action of the calmodulin messenger pro-

tein [402]. Finally, fusion-mediated development

of a reaction host for efficient 30-hydroxylation of
40,7-dihydroxyisoflavone (daidzein) was carried

out by cross-linking CYP105D7 via a 20 amino

acid peptide to the BMR-like reductase fragment

of the self-contained CYP102D1 from Strepto-

myces avermitilis. The engineered enzyme

metabolized daidzein at a kcat/Km value 24-fold

higher than that measured with CYP105D7

reconstituted with Pdx/PdR [403].

10.4.2.2 P450/Ferredoxin/Ferredoxin
Reductase Fusion Enzymes

A novel type of architecture was tested for utility

in simplifying the P450-dependent redox

machinery. Thus, microsomal rat CYP1A1 was

manipulated by gene fusion to obtain a triple

adduct encompassing Fdx and FdR from plant

chloroplasts. Here, the CYP1A1/Fdx/FdR order

revealed to permit the most efficient oxidative

turnover of 7-ethoxycoumarin and the herbicide

chlortoluron [404]. Similarly, mammalian mito-

chondrial CYP11A1, CYP11B1 and CYP27A1

enzymes were tethered to their native accessory

redox partners via the production of a series of

expression cassettes. Again, arrangement of the

ligated modules was recognized to have a pivotal

impact on the catalytic potency of the individual

constructs, with the P450/AdR/Adx congener

being superior to other species. This suggested

Adx to be a key factor in determining the reaction

rate [405–407].

Moreover, bacterial CYP101A1 from Pseudo-

monas putida was fixed to its dedicated electron

donors to yield a tandem linear fusion enzyme.

Of note, highest NADH-promoted camphor turn-

over was attained with an assembly, where the

PdR/Pdx duo, linked by peptides of variable

length, preceded the P450 domain, though activ-

ity as such was but 30 % that of the reconstituted

wild-type system [218]. In contrast to this, a

novel site-specific, branched CYP101A1 fusion

protein with spatially equal geometry of the

three-redox-component adduct was created to

minimize structural constraints. To this end, the

P450 module cross-linked with PdR via a
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peptide, including a reactive glutamine residue

and Pdx attached to a lysine-bearing tag at the

C-terminus, were associated with each other by

the help of transglutaminase. This product

displayed tenfold higher activity compared to

the simple chimera described above

[408]. Using PCNA, a DNA sliding clamp, as a

scaffold in the engineering of a ring-shaped

heterotrimeric complex of CYP101A1 tightly

juxtaposed to its attendant electron donors, cata-

lytic activity of the resulting construct could be

raised to a level two orders of magnitude higher

than that of the P450 alone [409]. Notably, a

thermostable system was modeled by linkage of

CYP175A1 from Thermus thermophilus to a new
type of FdR and Fdx, with five small amino acids

being inserted as a hinge between each compo-

nent to increase flexibility. The fused protein

displayed full NADPH-driven reactivity toward

β-carotene even at 70 �C [410].

10.4.2.3 P450/Dioxygenase Reductase-
Like Fusion Enzymes

Stimulus was given by the CYP116B2 precedent

to mimicking the fusion organization of the

enzyme’s redox center. Thus, a plant-bacterial

chimera was created by ligating the P450 domain

of CYP93C1 from the soybean Glycine max to

the PDR-like reductase module of the

rhodococcal monooxygenase, catalyzing

naringenin-to-genistein transformation at

improved efficiency compared to hemoprotein

mated with a usual plant reductase [395]. The

same procedure was employed to engender

genetically engineered merging of the

FMN/Fe2S2-containing carrier moiety with the

C-terminal heme unit of CYP101A1, CYP153A

or CYP203A, yielding biocatalysts avidly

attacking a diversity of compounds such as d-

camphor, alkanes and 4-hydroxybenzoate [374,

411–413]. Also, interest focused on harnessing

improved catalytic potency and broadening of

substrate spectra upon fusion of the native or

mutated, macrolide biosynthetic CYP107L1 pro-

tein with the PDR-type building block [414,

415]. Moreover, strategies were developed to

attach the isolated heme domain of the

explosive-degrading CYP177A1(XplA) via a

16-amino-acid-linker to the modified C-terminal

reductase partner of CYP116B2. The artificial

adduct revealed substrate specificities compara-

ble to those of the wild-type enzyme with a Kd

value for RDX docking of ~5 μM [362, 374]. It

should be noted that a rare bacterial reductase has

been purified from Nocardia farcinica bearing

some resemblance to the molecular organization

of PDR, though carrying an NADPH/FAD-

binding module and an Fe4S4 cluster. Fusion of

the electron donor with CYP51 gave a chimera

that demethylated lanosterol at a 35-fold higher

efficiency relative to the P450 unit alone [416].

10.5 Procedures to Evade
Requirements for Supporting
Redox Proteins and Cofactor
Utilization

10.5.1 The Peroxide Shunt Pathway

The peroxide shunt serves in driving P450-

catalyzed monooxygenations in the absence of

an NADPH-dependent redox partner by reacting

ferric hemoprotein with H2O2 or organic

peroxides to generate the Fe3+-OOH� intermedi-

ate, protonation of which leads to release of

water and formation of the high-energy iron-

oxene species [417]. In this regard, the single-

component bacterial peroxygenases CYP152B1

from Sphingomonas paucimobilis, CYP152A1

from Bacillus subtilis and CYP152A2 from Clos-

tridium acetobutylicum, primarily catalyzing α-
and β-hydroxylation of long-chain fatty acids,

may be ideal model systems [28, 238, 418];

here, salt bridge formation between the fatty

acid’s carboxylate and an arginine located near

the heme was shown to be essential to H2O2

ligation and proton delivery to initiate facile

O-O bond cleavage [419]. More recently, a new

member of the CYP152 family was purified from

a Jeotgalicoccus species, operating in the

peroxide-dependent biosynthesis of 1-alkenes

via fatty acid decarboxylation [420]. Moreover,

the microbial CYP107AJ1 from Streptomyces

peuceticus has been ascribed to a putative

peroxygenase class of P450s owing to lack of

reactivity toward NADPH-driven redox partners,

contrasting with the high catalytic efficiency in
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H2O2-supported 7-ethoxycoumarin dealkylation

[421]. Similarly, human CYP2S1 was found to

be resistant to reduction by POR, while

mediating swift oxidative metabolism of a series

of environmental carcinogens in the presence of

hydrogen peroxide, cumene hydroperoxide or

fatty acid hydroperoxides [26, 27]. In analogy,

mammalian brain CYP2D18 was detected to sup-

port conversion of dopamine to aminochrome

exclusively in a peroxygenase mode [422].

Apart from this specific behavior, P450s usu-

ally accepting reducing equivalents from a natu-

ral redox partner may, nevertheless, exploit

peroxides as alternative oxygen donors in sub-

strate biotransformations. For instance, CYP2B4

was demonstrated to utilize cumene hydroperox-

ide or fatty acid hydroperoxides to bring about

N-oxidation of 4-chloroaniline. Albeit, turnover

was found to occur at a rate not exceeding 25 %

of that observed with the pyridine nucleotide-

driven process [423, 424]. Notably, exchange of

the enzyme’s highly conserved T302 for alanine

was recognized to accelerate inactivation of the

mutant through peroxide-induced denaturation of

the apoprotein matrix and degradation of the

heme macrocycle, pointing at a function of the

threonine residue in P450 stabilization or dimi-

nution of the level of free reactive oxidant

[425]. Employing CYP2D6 and CYP3A4 as

probe catalysts because of their high substrate

promiscuity, efficiency of the peroxygenase-like

metabolic route relative to that determined by the

action of natural cofactors was shown to largely

rely on the type of “oxygen surrogate” employed

[231, 426]. To maximize productive interactions

of P450s with peroxides and minimize oxidative

hemoprotein damage, substantial work was done

by genetic enzyme engineering. Thus, CYP3A4

was subjected to random and site-directed muta-

genesis to engender formation of a F228I/T309A

variant characterized by a Vmax/Km for cumene

hydroperoxide-supported 7-benzyloxyquinoline

debenzylation 11-fold higher than the value

observed with the wild-type enzyme. However,

kcat as such only amounted to ~18 % the level

measured with CYP3A4 fortified with NADPH

[427]. Among bacterial P450s, three random

mutants that showed improved capacity for

H2O2-dependent naphthalene oxidation were

generated from CYP101A1. Here, DNA

sequencing revealed that amino acid

substitutions C242F, R280L and E331K poten-

tially interfered with peroxide binding

[428]. Kinetic analysis of the F87A mutant of

full-length CYP102A1 unveiled the modified

enzyme to be a somewhat more efficient utilizer

of H2O2 in medium-chain fatty acid hydroxyl-

ation compared to the parental species, where

peroxide-supported activity is hardly detectable,

but to shift C-H bond functionalization away

from the terminal position [429]. Applying

sequential rounds of random mutagenesis,

peroxidative catalyst performance of the F87A-

modified heme domain of CYP102A1 was dras-

tically improved by evolution of an allelic vari-

ant carrying nine additional amino acid

substitutions dispersed throughout the protein

scaffold, with exception of the active-site cavity

and substrate access channel [430]. Enhanced

H2O2-driven peroxygenase activity was shown

to extend to fatty acid substrates and styrene,

although major limitations of this system are

rapid suicide inactivation as the result of

peroxide-mediated heme destruction and signifi-

cant decrease in thermostability [430]. Here,

quantum mechanical and molecular mechanical

calculations allowed rational identification of

key oxidizable targets, permitting replacement

of the latter with less sensitive entities. In fact,

the double mutant W96A/F405L gave a more

stable construct [431]. Moreover, thermostabi-

lization of the laboratory-evolved heme-domain

peroxygenase variant was achieved by further

directed evolution, leading to the introduction

of eight new amino acid substitutions [432].

10.5.2 Photo- and Electrochemical
Manipulation of the P450
System

Innovative approaches to supersede the obliga-

tory proteinaceous redox chains in the P450 tool-

box include light-induced electron transfer to the

heme iron via photoactivatable mediators or

direct delivery of reducing equivalents from
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electrodes to promote substrate metabolism [34,

433]. In this way, light-induced reductive

dehalogenation of environmental pollutants

such as pentachloroethane was brought about in

reaction mixtures containing EDTA/proflavin

and CYP101A1. Activity remained unaffected

upon the addition of exogenous Pdx

[434]. Great promise was also shown by the

construction of hybrid CYP102A1 heme

domains consisting of Ru(II)-diimine photosen-

sitizers attached to the single cysteine residues of

the K97C, Q109C, Q397C and L407C mutants,

strategically positioned in close proximity to the

heme. Continuous irradiation of the systems with

visible light permitted hydroxylation of lauric

acid with variable total turnover numbers, with

the L407C variant being the most efficient cata-

lyst despite some degradation due to oxidative

damage [435]. Similarly, cadmium sulfide semi-

conductor nanoparticles, frequently referred to as

quantum dots (QDs), have attracted interest due

to their unique size-tunable properties and high

photostability during the light-dependent genera-

tion of free superoxide and hydroxyl radical spe-

cies [436]. Adsorption of the positively charged

hexahistidine-tagged CYP152A1 on the

mercaptoacetic acid-capped QD surface was

recognized to yield nanohybrids of differential

spatial conformation [437]. UV light-induced

triggering of the hemoprotein’s peroxygenase

activity was shown to cause α- and

β-hydroxylation of myristic acid as well as con-

version of N-acetyl-3,7-dihydroxyphenoxazine
to resorufin at a rate 50 % of that found with

H2O2 as the oxidant [438, 439].

Interfacing of P450s to viable amperometric

devices to obtain highly efficient catalysis

through direct mediator-free transfer of reducing

equivalents requires modification of electrodes

with agents that facilitate electron flow, prevent

protein denaturation and cause appropriate orien-

tation of the enzymes. To attain this goal, differ-

ent types of bioelectrocatalysts have been

developed [440]. Thus, riboflavin-bearing

CYP1A2, CYP2B4 and CYP11A1 enzymes

entrapped in a phospholipid vesicular system

were cross-linked via glutaraldehyde to screen-

printed (SP) thick film rhodium-graphite working

electrodes, poised at �500 mV vs. Ag/AgCl ref-

erence electrodes. Rates of biosensor-driven p-

hydroxylation of aniline, N-demethylation of

aminopyrine and cholesterol side-chain cleavage

were close to those obtained with NAD(P)H as

the electron source [441]. Alternatively,

CYP2B4 was adsorbed onto SP electrodes coated

with colloidal gold nanoparticles stabilized with

didodecyldimethylammonium bromide (DDAB)

in the presence of the Nafion ionomer to improve

film permeability. The construct adequately

mediated benzphetamine N-dealkylation
[442]. Modifying the immobilization scheme,

studies were carried out with monomerized

CYP2B4 incorporated into thin layers of non-

ionic detergent and montmorillonite, a member

of the mineral group of clays, on glassy carbon

(GC) electrodes. Here, kcat for aminopyrine turn-

over was shown to be comparable to the value of

the microsomal system [443]. Moreover, a bio-

compatible film containing colloidal gold

nanoparticles and chitosan was used to encapsu-

late CYP2B6 on GC sensors. Product analysis

confirmed C-hydroxylation and heteroatom

release from bupropion, lidocaine and cyclo-

phosphamide to be the main pathways of drug

oxidation [444]. Studies were also conducted

with carbon cloth (CC) electrodes coated by

immersion into DDAB dispersions embedding

bacterial CYP101A1. Electrolyses performed

under aerobic conditions in the presence of sty-

rene and cis-β-methylstyrene as the probe

substrates revealed styrene oxide and trans-β-
methylstyrene oxide to be the major products

resulting from oxidative attack by the P450,

while some byproducts were speculated to rather

arise from H2O2-driven reactions [445].

Substantial progress was achieved by con-

struction of enzyme films of predesigned archi-

tecture via layer-by-layer self-assembly of

hemoproteins and oppositely charged polyions

on the surface of electrodes. Applying this regi-

men, CC sensors elaborated by casting CYP1A2/

poly(styrenesulfonate) (PSS) microemulsions

onto the solid supporters displayed good

electrocatalytic performance of O2 reduction to

hydrogen peroxide, mediating epoxidation of

styrene faster than CYP101A1 [446].
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Electrochemical exploration was extended to

assembly of enzyme films on the surface of

derivatized gold electrodes by alternate adsorp-

tion of a P450 layer on top of a poly

(diallyldimethyl-ammonium) (PDDA) layer. In

this way, immobilization of CYP2E1 and

CYP3A4 resulted in sensor devices mediating

oxidative turnover of p-nitrophenol and

midazolam, respectively, at fairly low catalytic

rates [447, 448]. Here, covalent enzyme linkage

to gold electrodes via flexible spacer molecules,

bearing both thiol and disulfide groups as well as

anchors to the proteins, was shown to increase

metabolic efficiency. Making use of this strategy,

the exposed C261 and C268 residues of CYP2E1

were intimately connected with cystamine-

maleimide on gold biosensors. This procedure

stimulated conversion of p-nitrophenol to p-
nitrocatechol by a factor of 22 relative to the

Au/PDDA array [447]. Similarly, human

CYP2C9 was bonded to a gold electrode by the

aid of its N-terminal lysine fixed to an

11-mercaptoundecanoic acid and octanethiol

self-assembled monolayer. Electron transfer

was calculated to proceed at a rate ranging from

6 to 31 s�1, with warfarin being metabolized to

the 7-hydroxy derivative at an apparent Km of

3 μM [449].

10.6 Conclusions and Future
Prospects

The present review focuses on the description of

electron transfer events with emphasis on topo-

logical and functional features in the P450-

dependent redox chain to gain a more detailed,

structure-based insight into fundamental molec-

ular principles steering donor-acceptor

interactions. Improved comprehension may per-

mit engineering to introduce more efficient elec-

trochemical properties into the system such as

facilitated redox partner association and intermo-

lecular electron flow [200, 303], but equally-well

may pave the way for the development of

technologically viable hemoprotein species for

extensive exploitation as versatile biocatalysts

[35]. Here, directed evolution and DNA shuffling

may be useful in the sculpturing of self-sufficient

fusion proteins for preselected metabolic imple-

mentation [376, 395, 404] or in the development

of peroxygenase-like P450s with upgraded resis-

tance toward oxidative destruction [430, 431] to

obviate the tedious reconstitution procedure.

Also, artificial photo- and electrocatalytic

devices might help avoid costly NAD(P)H utili-

zation [434, 442].

Despite conspicuous biotechnological

advances [450], industrial large-scale production

of fine chemicals is presently limited to a fairly

low number of processes making preferential use

of microbial whole-cell catalysts harboring

recombinant P450s co-expressed with an appro-

priate electron donor [451]. Relevant examples

include hydrocortisone production via P450lun-

mediated 11β-hydroxylation of 11-deoxycortisol

in a fungal bioreactor [452] or manufacture of the

cholesterol-lowering drug pravastatin by

CYP105A3-driven attack on compactin,

employing the Streptomyces sp. Y-110 as the

host [453]. Moreover, CYP71AV1-promoted

three-step oxidation of amorphadiene to

artemisinic acid, the immediate precursor of the

antimalarial drug artemisinin, permitted indus-

trial scale-up due to high productivity of the

engineered Saccharomyces cerevisiae factory

[454]. Similarly, long-chain α,ω-dicarboxylic
acids, widely used as raw materials for the syn-

thesis of products such as perfumes, hot-melting

adhesives, engineering plastics or high quality

lubricants, have been generated on a commercial

scale from n-alkanes by fungal fermentation

catalyzed by Candida tropicalis, housing

CYP52A1 in conjunction with POR as the

redox machinery [455].

Specialized exploitation of manipulated

hemoproteins was recognized to be of high inter-

est in gene-directed enzyme prodrug therapy

(GDEPT) of cancer. Here, introduction of

tumor-selective retroviral vectors, encoding

P450s characterized by high metabolic potency

in the reductase-supported intratumoral conver-

sion of anticarcinogenic compounds such as

cyclophosphamide or ifosfamide to their active

intermediates, displayed a substantial therapeutic

progress [456]. This has given an impetus to
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improvement of reactivity of CYP2B enzymes

toward the oxazaphosphorines [457, 458]. In

this regard, creation of the 114V/477W double

mutant of human CYP2B6 increased the catalytic

efficiency of cyclophosphamide oxidation by a

factor of 4 [459]. Also, there is clear opportunity

to expedite therapeutic efficacy by utilization of

the fusion gene of the self-sufficient CYP2B6/

POR chimera for infection of tumor cells

[460]. The current advances lend confidence

that this novel strategy may be promoted by the

development of more sophisticated vector and

promotor systems.

The engineered P450 redox machinery may

also be exploited in phyto- and bioremediation

processes. Thus, expression in tobacco plants of

human CYP1A proteins or CYP76B1 from

Helianthus tuberosus as hybrid enzymes fused

with POR increased herbicide resistance toward

a series of phenylureas such as chlortoluron due

to swift detoxification [379, 396]. Similarly,

transduction of rice plants with human CYP2B6

or CYP2C19 enhanced the ability to remove

atrazine and metolachlor herbicides from soil

[461]. Interest has also arisen in transgenic

Arabidopsis plants producing the bizarre fusion

protein CYP177A1(XplA) for targeted degrada-

tion of the widespread military explosive RDX, a

priority pollutant contaminating liquid culture

and soil leachate [462]. One factor complicating

introduction of such technologies for environ-

mental clean-up may be concerns about field

application of genetically modified organisms,

possibly entailing certain risks. Nevertheless,

remediation of the biotope needs a robust cata-

lytic apparatus capable of killing off hazardous

anthropogenic toxicants via more flexible,

pollutant-specific oxyfunctionalization. Here,

polycyclic aromatic hydrocarbons such as phen-

anthrene, naphthalene, fluorene or benzo[a]

pyrene proved to be targets for optimized bio-

transformation by chimeric CYP1A1/POR,

mutated CYP102A1, fused CYP116B3 or

modified CYP5136A3, expressed in microbial

recombinant cells [371, 463–465]. However,

inoculation and efficient maintenance of the pop-

ulation density of the engineered microbial bio-

mass in terrestrial habitats still need

improvement [466].

Finally, exploitation of P450-based electroan-

alytical techniques may become of increasing

interest to enable more practical applications.

Given appreciable sensitivity and recognition

selectivity, miniaturized amperometric biosensors

might be utilized for the determination of

compounds important in pharmaceutical industry,

clinical practice and environmental monitoring

[467, 468]. Also, microfluidic devices were devel-

oped to improve analytical performance by

decreasing analysis time and increasing reliability

through automation [440]. This may foster high-

throughput screening during the search for struc-

tural features of dynamicmolecules having poten-

tial for therapeutic implementation [469].

Collectively, catalytic versatility, no doubt,

adds the P450 redox system to the enzymatic

armory for large-scale exploitation in a vast

array of biotechnological areas. Despite huge

progress in recent years, members of the hemo-

protein family are, nevertheless, thought of as

relatively fragile biocatalysts prone to spontane-

ous structural disruption or rapid inactivation at

temperatures >40 �C [430]. Hence, future engi-

neering strategies will have to focus on erasure of

these shortcomings and evolution of novel

activities to allow widespread application in met-

abolic processes.

Reviews Abbreviations: AdR NADPH-adrenodoxin

reductase, Adx adrenodoxin, Arx [2Fe-2S]-type ferre-

doxin, b5 cytochrome b5, BMR Bacillus megaterium
(CYP102A1) reductase component, CC carbon cloth elec-

trode, CYP or P450 cytochrome P450, FdR NAD(P)H-

ferredoxin reductase, Fdx ferredoxin, GC glassy carbon

electrode, PCNA proliferating cell nuclear antigen, PdR
NADH-putidaredoxin reductase, PDR phthalate

dioxygenase reductase, Pdx putidaredoxin, POR
NADPH-P450 oxidoreductase, Pux palustrisredoxin, r.
m.s. root mean square deviation, SP screen-printed

electrode.
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202. Zöllner A, Hannemann F, Lisurek M, Bernhardt R

(2002) Deletions in the loop surrounding the iron-

sulfur cluster of adrenodoxin severely affect the

interactions with its native redox partners

adrenodoxin reductase and cytochrome P450scc
(CYP11A1). J Inorg Biochem 91:644–654

203. Vickery LE (1997) Molecular recognition and elec-

tron transfer in mitochondrial steroid hydroxylase

systems. Steroids 62:124–127

204. Lambeth JD, Geren LM, Millett F (1984)

Adrenodoxin interaction with adrenodoxin reductase

and cytochrome P-450scc. Cross-linking of protein

complexes and effects of adrenodoxin modification

by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.

J Biol Chem 259:10025–10029

205. Müller EC, Lapko A, Otto A, Müller JJ, Ruckpaul K,

Heinemann U (2001) Covalently crosslinked

complexes of bovine adrenodoxin with adrenodoxin

reductase and cytochrome P450scc. Mass spectrome-

try and Edman degradation of complexes of the

steroidogenic hydroxylase system. Eur J Biochem

268:1837–1843

206. Beilke D, Weiss R, Löhr F, Pristovsek P,
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