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Abstract
This chapter describes observed changes in atmospheric conditions in the Baltic Sea drainage
basin over the past 200–300 years. The Baltic Sea area is relatively unique with a dense
observational network covering an extended time period. Data analysis covers an early period
with sparse and relatively uncertain measurements, a period with well-developed synoptic
stations, and a final period with 30+ years of satellite data and sounding systems. The
atmospheric circulation in the European/Atlantic sector has an important role in the regional
climate of the Baltic Sea basin, especially the North Atlantic Oscillation. Warming has been
observed, particularly in spring, and has been stronger in the northern regions. There has been
a northward shift in storm tracks, as well as increased cyclonic activity in recent decades and
an increased persistence of weather types. There are no long-term trends in annual wind
statistics since the nineteenth century, but much variation at the (multi-)decadal timescale.
There are also no long-term trends in precipitation, but an indication of longer precipitation
periods and possibly an increased risk of extreme precipitation events.
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4.1 Introduction

This chapter reports on trends and variability in atmospheric
parameters over the past 200–300 years. The focus is on
large-scale atmospheric circulation and its changes, as well
as on observed changes in surface variables such as wind,
temperature and precipitation. Situated in the extra-tropics of
the Northern Hemisphere, the Baltic Sea basin is under the
influence of air masses from the Arctic to the subtropics. It is
therefore a region of very variable weather conditions. From
a climatological point of view, the region is controlled by
two large-scale pressure systems over the north-eastern
Atlantic Ocean—the Icelandic Low and the Azores High—
and a thermally driven pressure system over Eurasia (high
pressure in winter, low pressure in summer). In general,
westerly winds predominate, although any other wind
direction is also frequently observed. As the climate of the
Baltic Sea basin is to a large extent controlled by the pre-
vailing air masses, atmospheric conditions will therefore be
controlled by global climate as well as by regional circula-
tion patterns. The atmospheric parameters are strongly in-
terlinked (i.e. the circulation influences the wind,
temperature, humidity, cloudiness and precipitation patterns,
and the radiation and cloudiness influence surface
temperature).

4.2 Large-Scale Circulation Patterns

The atmospheric circulation in the European/Atlantic sector
plays an important role in the regional climate of the Baltic
Sea basin (Hurrell 1995; Slonosky et al. 2000, 2001; Moberg
and Jones 2005; Achberger et al. 2007). The Baltic Sea
region is influenced in particular by the North Atlantic
Oscillation (NAO; Hurrell 1995). The NAO influences
northern and central Europe and the north-east Atlantic and
therefore also the climate in the Baltic Sea basin. The impact
of the NAO is most pronounced during the winter season,
November to March (Hurrell et al. 2003). While the NAO is
defined in relation to conditions within the European/
Atlantic sector, it is in fact part of a hemispheric circulation
pattern, the Arctic Oscillation (AO; e.g. Thompson and
Wallace 1998). See Box 4.1.

Box 4.1 North Atlantic Oscillation
The NAO is the dominant mode of near-surface
pressure variability over the North Atlantic and
neighbouring land masses, accounting for roughly

one-third of the sea level pressure (SLP) variance in
winter. In its positive (negative) phase, the Icelandic
Low and the Azores High are enhanced (diminished),
resulting in a stronger (weaker) than normal westerly
flow (Hurrell 1995). For strongly negative NAO
indices, the flow can even reverse when there is higher
pressure over Iceland than over the Azores.

There is no unique way to define the spatial
structure of the NAO. One approach uses one-point
correlation maps (Hurrell et al. 2003). These can be
used to identify the NAO as regions of maximal
negative correlation over the North Atlantic (e.g.
Wallace and Gutzler 1981). Points identified by this
procedure are situated near or over Iceland and over
the Azores extending to Portugal, respectively. Other
approaches use principal component analysis, in
which the NAO is identified by the eigenvectors of the
cross-correlation matrix which is computed from the
temporal variation of the grid point values of SLP,
scaled by the amount of variance they explain (e.g.
Barnston and Livezey 1987) or clustering techniques
(e.g. Cassou and Terray 2001a, b). A third option uses
latitudinal belts. An index defined this way yields
higher correlations with air temperature and precipi-
tation in the eastern Baltic Sea region (e.g. Li and
Wang 2003).

The NAO is the first mode of a principal compo-
nent analysis of winter SLP. The second mode is
called the east Atlantic pattern (Wallace and Gutzler
1981) and represents changes in the north–south
location of the NAO (Woolings et al. 2008). It is
characterised by an anomaly in the north-eastern North
Atlantic Ocean, between the NAO centres of action.
Negative values mean a southward displacement of the
NAO centres of action and lower temperatures (Moore
and Renfrew 2012), positive values correspond to
more zonal winds over Europe and expected higher
temperatures. The third dominant mode is the Scan-
dinavian pattern, also called the Eurasian (Wallace and
Gutzler 1981) or blocking pattern (Hurrell and Deser
2009), which in its positive phase is characterised by a
high-pressure anomaly over Scandinavia and a low-
pressure anomaly over Greenland. This indicates an
east–west shift of the northern centre of variability
defining the NAO.

As shown in Fig. 4.1, the strongly positive NAO
phase in the 1990s can be seen as a component of
multi-decadal variability comparable to conditions at
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the beginning of the twentieth century rather than as
part of a trend towards more positive values.

The long-term annual variations in the NAO are in
good agreement with 99th percentile wind speeds
(Wang et al. 2011) over western Europe and the first
principal component (PC1) calculated over eight dif-
ferent pressure-based storm indices over Scandinavia
(Bärring and Fortuniak 2009), showing large multi-
(decadal) variations in atmospheric circulation and
related wind climates (Fig. 4.2 and further discussed in
Sect. 4.3.2).

4.2.1 Circulation Changes in Recent
Decades

From a long-term perspective, the behaviour of the NAO is
irregular. However, for the past five decades, specific peri-
ods are apparent. Beginning in the mid-1960s, a positive
trend has been observed, that is towards more zonal circu-
lation with mild and wet winters and increased storminess in
central and northern Europe, including the Baltic Sea area
(e.g. Hurrell et al. 2003). After the mid-1990s, however,
there was a trend towards more negative NAO indices, in
other words a more meridional circulation. These circulation
changes are apparently independent of the exact definition of

Fig. 4.1 NAO index for boreal winter (DJFM) 1823/1824–2012/2013
calculated as the difference between the normalised station pressures of
Gibraltar and Iceland (Jones et al. 1997). Updated via www.cru.uea.ac.

uk/*timo/datapages/naoi.htm and renormalised for the period 1824–
2013
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Fig. 4.2 Time evolution of the
99th percentiles of the
geostrophic wind index
(Alexandersson et al. 1998, 2000,
top), a reconstructed NAO index
(Luterbacher et al. 2002, centre)
and the first principal components
of the Lund and Stockholm
storminess indices (PC1) over the
Baltic Sea region. Thick curves
are filtered with a Gaussian filter
(σ = 4) to focus on inter-decadal
variations (Bärring and Fortuniak
2009)
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the NAO (see also Jones et al. 1997; Slonosky et al. 2000,
2001; Moberg et al. 2005).

Kyselý and Huth (2006, see Fig. 4.3) discussed the
intensification of zonal circulation, especially that during the
1970s and 1980s. The stronger zonal circulation does not
appear isolated, but coincides with changes in other atmo-
spheric modes. In recent winters, the authors noted an
intensification of cyclonic activity over Fennoscandia along
with more frequent blocking situations over the British Isles.
At the same time, less cyclonic activity is observed over the
Mediterranean. While there is a general increase in the zo-
nality of the flow in winter, the opposite appears to occur in
summer (Kaszewski and Filipiuk 2003; Wang et al. 2009a).

There are also indications (Kyselý 2000; Werner et al.
2000; Kyselý 2002; Kyselý and Huth 2006) that weather
types (as defined, for example, by Hess and Brezowksy
1952) are more persistent than in earlier decades. For all
weather types (zonal, meridional or anticyclonic), an
increase in persistence of the order of 2–4 days is found from
the 1970s to the 1990s. This increase in persistence may be
reflected in the increase in the occurrence of extreme events.

Getzlaff et al. (2011) and Lehmann et al. (2011, Fig. 4.4)
showed intensified cyclonic circulation and stronger
westerlies for the 1990s and 2000s compared to the 1970s
and 1980s.

Interpretation of circulation changes must be done with
care, and reanalysis products are often used (such as the
reanalysis from the National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric
Research (NCAR) NCEP/NCAR, or the reanalysis of the
European Centre of Medium Range weather forecasts;
ERA). Despite inhomogeneities in the NCEP/NCAR
reanalysis data, both before and after the introduction of
satellites as a source of environmental monitoring data in
late 1978 (the same holds for ERA products), the results in
Fig. 4.4 probably mirror real changes. Lack of data over
ocean areas before the introduction of satellites might not
introduce major problems since several Ocean Weather
Ships (OWS) were on duty after the Second World War in
the north-east Atlantic. It appears probable that deep
cyclones were identified in particular by OWS ‘C’ (south of
Greenland) or OWS ‘M’ (east of Greenland). For the Barents
Sea region, inhomogeneities in the data cannot be com-
pletely ruled out. However, periods P3 and P4 (see Fig. 4.4
for definition), both occurring after the transition to satellites,
should be directly comparable.

Jaagus (2006) investigated the large-scale circulation over
Estonia during the second half of the twentieth century and
found a general increase in westerlies, particularly in Feb-
ruary and March with a decrease in May. Such an increase

Fig. 4.3 Temporal changes in
the relative frequencies of
occurrence (in %; solid curve)
and mean lifetime (in days;
dashed curve) of groups of large-
scale circulation patterns
(‘Großwetterlagen’; GWL) in
winter in the period 1958–2000.
Five-year running means are
shown. The capital letters
indicate the circulation pattern:
W (westerly), N (northerly),
S (southerly), E (easterly), NW
(north-westerly) and HM
(anticyclonic; ‘Hoch
Mitteleuropa’). GWL are defined
in detail by Hess and Brezowski
(1952)and Kyselý and Huth
(2006)
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may have caused additional coastal erosion along the eastern
margin of the Baltic Sea (see Chap. 20), as well as changes
in other parameters in the region (Klavinš et al. 2007, 2009;
Valdmann et al. 2008; Draveniece 2009; Rivza and Brunina
2009; Avotniece et al. 2010; Klavinš and Rodinov 2010;
Lizuma et al. 2010).

4.2.2 Long-Term Circulation Changes

There are a large number of studies discussing the influence
of long-term change in atmospheric circulation on surface
characteristics of the Baltic Sea region. Early publications,
for example, by Tinz (1996), Chen and Hellström (1999),
Koslowski and Glaser (1999), Jevrejeva (2001), Omstedt
and Chen (2001) and Andersson (2002) agreed that there has
been a north-eastward shift in low-pressure tracks, which is
consistent with a more zonal circulation over the Baltic Sea
basin and the observed trend of a more positive NAO index,
at least up to the 1990s (Trenberth et al. 2007). A northward
shift in low-pressure tracks is also consistent with model
projections of anthropogenic climate change, as pointed out
by Leckebusch and Ulbrich (2004), Bengtsson et al. (2006),
Leckebusch et al. (2006), Pinto et al. (2007) and, more
recently, Lehmann et al. (2011).

Jacobeit et al. (2001, 2003) and Hurrell and Folland
(2002) discussed the strong temporal variability in the rela-
tionship between the general circulation of the atmosphere
and surface climate characteristics over the past 300 years.
Their studies suggested that the increased frequency of both
anticyclonic circulation and westerly wind types result in a
warmer climate with reduced sea-ice cover and a reduced
seasonal amplitude in temperature. Their studies concluded
that long-term (multi-decadal) climate change in the Baltic

Sea region is at least partly related to changes in atmospheric
circulation.

Omstedt et al. (2004) made a thorough investigation of the
past 200 years of climate variability and changes based on the
long Stockholm time series of temperature and sea level as
well as ice cover and circulation types based on pressure data
(Fig. 4.5; see also Chap. 9 for further discussion). Over the
entire period, the authors found positive trends in temperature
and sea level, increased frequencies in both westerlies and
anticyclonic circulation and negative trends for the amplitude
of the seasonal temperature cycle and sea-ice cover.
Increased westerlies indicate a stronger than normal zonal
flow with a positive NAO index, whereas anticyclonic cir-
culation indicates a north-eastward movement of the low-
pressure tracks. This is consistent with the observed upward
trend in the NAO index (Hurrell and Folland 2002) and cir-
culation changes as reported by Jacobeit et al. (2003). Eri-
ksson et al. (2007) and Eriksson (2009) extended the analysis
of Omstedt et al. (2004) by examining the covariability of
long time series from the Baltic Sea region over different
timescales during boreal winter. Over a period of 500 years,
15 periods with a clearly distinct climatic signature with
respect to circulation patterns, inter-annual variability and the
severity of winters were identified (see Chap. 3, Fig. 3.10).
The onsets of these periods appear to have been mainly dri-
ven by internal perturbations, although volcanic activity and
solar variability may also have played a role at certain times.
The analysis indicates a clear increase in mean and maximum
temperatures beginning at the end of the nineteenth century.
The seasonal index (i.e. the magnitude of the annual tem-
perature amplitude) shows a negative trend. Further inspec-
tion reveals that the frequency of both westerlies and
anticyclonic circulation is considerably higher in the twen-
tieth century than in the nineteenth century.

Fig. 4.4 Total number of deep
(core pressure < 980 hPa)
cyclones counted for four 20-year
periods P1–P4, based on NCEP/
NCAR reanalysis four times daily
SLP data for winter (DJFM). Unit
is number of deep cyclones, with
an increment of 100 (Lehmann
et al. 2011). See discussion of
inhomogeneities in Sect. 4.2
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Sepp (2009) examined the increase in cyclonic activity
and the frequency of westerlies over the Baltic Sea basin
during the twentieth century and the tendency for increased
cyclogenesis. In recent years, an increase in the percentage
of deep cyclones has been observed, while the total number
has not changed. There is also a dependence on the NAO:
during its positive phase, less, but stronger cyclones form
over the Baltic Sea region.

4.2.3 NAO and Blocking

Blocking of the atmospheric flow is frequently observed in
the Baltic Sea region. Since blocking situations, once they
have developed, are often quasi-stationary and can persist
for extended periods, they are often responsible for extreme
weather events and have quite early raised the interest of
scientists (for example Namias 1947; Rex 1950b; Green
1977). Figure 4.6 gives an example of a blocking pattern
over central Europe.

Rex (1950a) subjectively defined a blocking event as a
quasi-persistent (more than 10 days) split of the mid-tropo-
spheric flow over more than 45° in longitude. Numerous
authors have suggested modifications to this definition,
including objective measures based on meridional height
gradients. These approaches were reviewed by Barriopedro
et al. (2006). Vial and Osborn (2012) discussed the poor
performance of models with respect to simulating number,

frequency and spatial extent of blocking situations, a prob-
lem that had persisted for many years (d’Andrea et al. 1998).

Rimbu and Lohmann (2011) used south-western Green-
land temperature measurements and stable isotope records
from ice cores as a proxy for North Atlantic atmospheric
blocking and found that in winter, warm (cold) conditions
over south-western Greenland were related to high (low)

Fig. 4.5 Anomalies in the Stockholm climate record together with the
circulation types that describe the vorticity of the atmospheric
circulation. Red indicates anticyclonic circulation and blue cyclonic
circulation. a Air temperature and anticyclonic circulation, b sea level
and anticyclonic circulation, c seasonal index, defined as the difference

between summer (JJA) and winter (DJF) seasonal temperatures, and
cyclonic circulation, and d ice cover and cyclonic circulation. 15-year
averages for 1800–1815, 1811–1825, 1826–1840…, 1961–1975,
1976–1990, 1986–2000 (Omstedt et al. 2004)

Fig. 4.6 The 500 hPa height field on 6 March 1948, showing a typical
blocking situation (Barriopedro et al. 2006)

74 A. Rutgersson et al.



blocking activity and a negative (positive) phase of the NAO.
For summer, however, the authors found the opposite, that
warm (cold) conditions over south-western Greenland were
related to low (high) blocking activity and a positive (nega-
tive) phase of the NAO, even though a significant part of the
North Atlantic blocking variability was not directly related to
NAO variability, but rather to the exact position of the centre
of blocking, which, in turn, did show dependence on the NAO
phase. Furthermore, it is well known (e.g. Luo andWan 2005;
Barriopedro et al. 2006) that the frequency of blocking
exhibits considerable inter-decadal variation. Rimbu and
Lohmann (2011) constructed a North Atlantic blocking index
(Fig. 4.7) which shows pronounced decadal variations with
frequent blocking in the 1910s, 1940s and 1960s as well as
after 1995, and low blocking particularly in the 1920s, 1950s,
1970s and early 1990s, in good agreement with the observed
temperature anomalies in the Baltic Sea region during the
twentieth century. The relationship, first discussed by van
Loon and Rogers (1978), also holds further back in time; very
mild south-western Greenland winter temperatures during the
Late Maunder Minimum (late seventieth and early eightieth
centuries, see Chap. 3, Sect. 3.5) coincides with above normal
blocking frequency over Europe, cold winters and above
(below) normal pressure over northern (southern) Europe
(Luterbacher et al. 2001) and above normal sea ice (Ko-
slowski andGlaser 1999). It has also been possible to simulate
these changes in blocking frequency in reconstructed (Casty
et al. 2005) and model data (Stendel et al. 2006).

4.2.4 Distant Controls of Circulation
Changes

There are also indications that circulation changes in the
Baltic Sea region are related to climate anomalies at further
distances. Several authors have addressed the question

whether the NAO is influenced by ENSO (El Niño/Southern
Oscillation). Since there is no significant correlation between
the two indices, the effects seem to be small (e.g. Rogers
1984; Pozo-Vázquez et al. 2001; Sutton and Hodson 2003).
However, it can be expected that the influence of ENSO on
the European climate is nonlinear and so should be analysed
in terms of composites of strong anomalies of ENSO
(Brönnimann et al. 2007). In this way, in periods of pro-
nounced La Niña or El Niño, the European climate can be
indirectly influenced by ENSO through teleconnections via a
downstream propagation of tropical disturbance from the
Pacific to the North Atlantic (Fraedrich 1994) to the sta-
tionary Rossby waves. Another indirect link exists via the
effect of ENSO on tropical North Atlantic temperatures (e.g.
Chiang et al. 2002). Jevrejeva et al. (2003) discussed the
influence of the Arctic Oscillation (of which the NAO can be
regarded as the European/North Atlantic part) and of ENSO
on ice conditions in the Baltic Sea and found a weak, but
non-negligible contribution from the latter. García-Serrano
et al. (2011) applied a principal component analysis to the
North Atlantic/European winter 200 hPa stream function and
found a discernible El Niño signature. In contrast, von
Storch (1987) did not find a robust ENSO signal in winter.
Thus, many different mechanisms for controlling European
climate have been suggested, but with little predictive skill.

Graf and Zanchettin (2012) discussed the effects of El
Niño on North Atlantic/European climate. Distinguishing
between ‘central Pacific’ and ‘east Pacific’ El Niños, they
found a teleconnection via a ‘tropospheric bridge’ between
the latter and cold European winters. Seager et al. (2010)
related positive snowfall anomalies in the Arctic to excess
moisture due to anomalously warm conditions in the pre-
ceding summer and autumn and stated that most models are
unable to capture this wintertime cooling due to their poor
representation of snow cover variability. Stroeve et al.
(2011) and Jaiser et al. (2012) showed from ERA-Interim

Fig. 4.7 Blocking index (bars) and its decadal variation (seven-year
running mean; red) for boreal winter (DJF) 1908–2005. The blocking
index takes into account spatial aspects and persistence, and it is
defined as the number of blocked days per winter in the sector 80°–

10°W. The blocking condition must be satisfied for an interval of at
least 12.5° for at least five consecutive days (persistence criteria),
Rimbu and Lohmann (2011)
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data that low ice concentrations over the Arctic Ocean lead
to an increase in heat released into the atmosphere and, as a
consequence, to a reduction in vertical static stability, lead-
ing to circulation anomalies over Europe in winter that
resemble the negative phase of the NAO. In contrast, Ineson
et al. (2011) related weaker winter westerlies and a negative
NAO phase-like pattern to a minimum in solar ultraviolet
(UV) irradiance. If this finding proves correct, it implies that
low solar activity drives a cold winter in northern Europe
and the United States.

Overland and Wang (2010) found a relationship between
changes in atmospheric circulation in the Baltic Sea region
and the loss of sea ice in the Arctic. Triggered by a reduction
in Arctic summer sea ice caused by anomalous meridional
flow, the resulting additional heat stored in the Arctic Ocean
due to the increase in late summer open water area con-
tributed to an increase in the lower tropospheric relative
topography (500/1000 hPa), but not necessarily to changes
in SLP. As a consequence, anomalous easterly winds were
observed in the lower troposphere along 60°N in many
regions, including northern Europe and the Baltic region.
This is in contrast to early findings by Glowienka-Hense and
Hense (1992), who concluded that Arctic sea-ice variability
may have an effect on mid-latitude circulation through
synoptic transient eddy forcing.

More specifically, Petoukhov and Semenov (2010) per-
formed a series of experiments with the ECHAM5 model at
low resolution (T42, i.e. approximately 300-km grid point
spacing with 19 vertical levels) and found a dependence of
central European winter temperatures from sea-ice cover in
the Barents andKara Seas. A gradual decrease in sea-ice cover
from 100 % to ice-free conditions led to a strong temperature
increase, and via a nonlinear relationship between convection
over the ice-free parts and baroclinic effects triggered by
changes in temperature gradients near the surface heat source,
this resulted in a warming, then a cooling and at very low ice
cover, again a warming over central Europe. Yang et al.
(2011), using the EC-Earth model (Hazeleger et al. 2012) with
considerably higher resolution (T159, i.e. approximately
80 km between grid points, with 31 vertical levels), confirmed
a decrease in winter temperature with decreasing sea ice in the
Barents and Kara Seas, but in a more linear way than by
Petoukhov and Semenov (2010). In the light of the record, low
Arctic ice cover and recent cold winters over Europe, these are
interesting findings. As a consequence, transitions between
different regimes of the atmospheric circulation in the sub-
polar and polar regions may be very likely. Mesquita et al.
(2010) even found a connection to positive sea-ice anomalies
in the Sea of Okhotsk via a westward shift in cyclosis and the
build-up of a pattern resembling the negative phase of the
NAO over the North Atlantic.

Many other authors have also discussed the low tem-
peratures of the 2009/2010 and 2010/2011 winters over large

parts of Europe (including the Baltic Sea region). Taws et al.
(2011) observed a tripole pattern in sea-surface temperature
(SST) anomalies related to a negative NAO phase. Guirguis
et al. (2011) and Cattiaux et al. (2010) argued that only parts
of Europe, Russia and the United States experienced cold
anomalies, while extreme warm events were observed at
several other locations in the Northern Hemisphere, thus
providing a consistent picture of a regional cold event under
global warming conditions. Cattiaux et al. (2010) and Ou-
zeau et al. (2011) highlighted the importance of an adequate
representation of the stratosphere in the ARPEGE model for
reproducing the cold anomalies over Europe. Cohen et al.
(2010) related stratospheric temperature anomalies and their
interaction with the troposphere. On the other hand, Jung
et al. (2011) stated that internal atmospheric dynamic pro-
cesses were responsible for the extended negative NAO
phase in 2009/2010. Stroeve et al. (2011) argued that neg-
ative AO indices and corresponding low sea-ice volumes at
the beginning of the melt season result in the summer melt of
much of the multi-year sea ice due to ice transport into
warmer southerly waters related to the atmospheric circula-
tion anomalies. Some studies also suggest a link between
autumn snow cover in Eurasia and Northern Hemisphere
winter circulation (see Chap. 6).

4.2.5 Controls of the NAO

A spectral analysis of the NAO time series revealed little
evidence for the NAO index to vary on any preferred
timescales (Hurrell and Deser 2009). There were large
changes from winter to winter and even within a season, but
a decadal signal was also visible. For example, high NAO
index values prevailed during the 1920s, while the 1960s
were characterised by low values. Very high values were
observed in the 1990s, together with a north-eastward dis-
placement of the centres of action (Hurrell and van Loon
1997). Whether this is related to anthropogenic climate
change or to what extent the NAO might change in the future
due to global warming is still a matter of conjecture. The
Intergovernmental Panel on Climate Change (IPCC) Fourth
Assessment Report (AR4) (Meehl et al. 2007) stated that ‘…
the most consistent results from the majority of the current
generation of models show, for a future warmer climate, a
poleward shift of storm tracks in both hemispheres…’.
Ulbrich et al. (2009) concluded that most models agree that
there are fewer, but more intense cyclones in many parts of
the extra-tropics, including the North Atlantic/European
region. They also noted that this conclusion can only be
drawn when ‘extreme’ is defined as a function of core
pressure, whereas no such increase (actually, a slight
decrease in several models) is found when ‘extreme’ is
instead defined from pressure gradients.
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4.2.6 Circulation Changes in Contrast
to Global Warming

In two recent articles, Bhend and von Storch (2008, 2009)
presented a method to compare the consistency of observed
trends with climate change projections, even if no estimates
of natural variability exist. They found that anthropogenic
forcing can explain a large part of the observed changes in
temperature and precipitation over the Baltic Sea region and
that this correlation is unlikely to be occurring by chance.
However, it cannot fully explain the observed trends. Since,
due to its stochastic nature, a relatively large part of the
NAO could be unrelated to anthropogenic climate change,
the NAO signal was removed and the analysis was repeated.
The results indicate that the climate change signal in tem-
perature and precipitation is robust with respect to the
removal of the NAO for long-term means, whereas seasonal
as well as spatial variability is underestimated. This may be
due to additional forcing mechanisms not included in their
model set-up (e.g. the indirect aerosol effect) or to a general
underestimate of the model response to anthropogenic
forcing (see Chap. 10 as well as Chaps. 23–25).

4.3 Surface Pressure and Winds

The wind climate, described through the statistics of near-
surface wind speed and direction, has a strong impact on
human activities and the Baltic Sea ecosystem. Extreme
wind speeds are a direct threat to life and property and an
indirect threat through wind waves, storm surges (Chap. 9)
and coastal erosion (Chap. 20) leading to high economic
loss. However, on the European scale at least, no trends were
found for storm losses adjusted for inflation and changes in
population and wealth in the period 1970–2008 (Barredo
2010). Nilsson et al. (2004) calculated a storm damage index
for Sweden for the period 1901–2000 based on storms suf-
ficient to cause forest damage. Although the 1980s suffered
most extreme storm events in terms of windthrow, the
authors noted several factors other than wind that increased
or decreased storm damage. Widespread and severe damage
usually relates to severe winter storms. A positive NAO
index is generally associated with an increased number of
extreme cyclones although they can also occur at negative
phases of the NAO (Pinto et al. 2009). Among others,
typical examples of severe winter storms causing widespread
damage in the last decade have been Gudrun/Erwin on 8/9
January 2005 (Haanpää et al. 2006; Suursaar et al. 2006) and
Kyrill on 18/19 January 2007 (Fink et al. 2009). Negative
economic effects can also result from unusually calm

conditions, especially for activities with an increasing
dependence on wind energy.

Storms are also an essential factor for ventilation and
mixing of the strongly stratified Baltic Sea. Inflow events
from the North Sea importing salt and oxygen into the Baltic
Sea basin are highly dependent on the wind climate and
atmospheric pressure differences (Lass and Matthäus 1996;
Gustafsson and Andersson 2001) and have a strong impact
on the Baltic Sea ecosystem (see also Chap. 7). Warm water
inflows into the Baltic Proper in summer indicate that
pressure systems and wind conditions in summer also play a
vital role (Feistel et al. 2004).

4.3.1 Wind Climate in Recent Decades

The temporal and spatial covariance of the wind climate is
generally related to large-scale variations in atmospheric
circulation over the North Atlantic and in winter to the NAO.
Hence, changes in the synoptic-scale wind climate over the
Baltic Sea region are closely related to variability in atmo-
spheric circulation, baroclinic activity and changes in the
North Atlantic storm tracks.

During the latter half of the twentieth century, the wind
climate over the north-east Atlantic and northern Europe
underwent large changes. Based on NCEP/NCAR reanalysis
data (Kalnay et al. 1996; Kistler et al. 2001), the number of
deep cyclones (core pressure < 980 hPa) in winter (DJFM)
reached a minimum in the early 1970s and increased over
the following decades peaking around the last decade of the
twentieth century (Lehmann et al. 2011, Fig. 4.4). At the
same time, a continuous north-eastward shift in the storm
tracks regionally increased the impact and number of storms
over northern Europe and thus the Baltic Sea in winter and
spring, although there was a decrease in autumn (Fig. 4.8).

Consequently, a strong increase in storminess in the
1980s and 1990s across the North Sea (e.g. Carter and
Draper 1988; Hogben 1994) raised public concern about the
possible impact of increased greenhouse gas concentrations
on the rougher wave and storm climate (Schmidt and von
Storch 1993). Based on high-resolution meteorological data
from SMHI for the period 1970–2007, regional changes
were also found in the wind climate over the Baltic Sea
region (Lehmann et al. 2011). Although wind speeds
returned to average values by the last decade of the inves-
tigated period, there was a clear increase in mean geo-
strophic wind speed of 1.5 ms−1 for the period 1989–2007
compared to 1970–1988 in the southern and central Baltic
Sea region in winter (DJF). This coincided with an increase
in the number and spatial extent of deep lows (Fig. 4.8) over
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the Baltic Sea region. While the increase in mean geo-
strophic wind speeds in winter over the Bothnia Bay was
only 0.5 ms−1 over this period, a general increase of 0.5–
1 ms−1 took place over most areas in spring (MAM) together
with a change to more westerly than south-westerly winds.

Comparable shifts for early spring were also reported for
Finland by Keevallik and Soomere (2008) and Keevallik
(2011) from the 1960s to 1990s with changes to more
westerly than north-westerly winds. For the period 1966–
2011, Jaagus and Kull (2011) also found a clear change in
the main wind direction over Estonia in winter changing
from south-east in the 1970s to south-west in the last decade.
A general tendency towards more zonal and less meridional

flow in winter is also confirmed for the easternmost Baltic
Sea region for the period 1961–2003 accompanied by
increasing variability (Khokhlova and Timofeev 2011).

In contrast, wind speeds in autumn (SON) decreased over
the western and central Baltic Sea (by 1.5–2 ms−1) and the
Bothnia Bay (by 0.5 ms−1) explained by a general decrease
in the number and spatial extent of deep lows in 1989–2007
compared to 1970–1988 (Fig. 4.8). Over the Kiel Bight, this
change in strong wind speeds (>13.9 ms−1) is accompanied
by a marked change in the frequency distribution of wind
direction with a decrease in south-westerly and an increase
in the easterly component of the winds (Lehmann et al.
2011).
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Fig. 4.8 Changes in the number
of deep cyclones (core
pressure < 980 hPa) between
1970–1988 and 1989–2008 over
the Baltic Sea region for winter
(DJF), spring (MAM) and autumn
(SON) from SMHI data
(Lehmann et al. 2011). Note
different scales and contour
intervals for the different seasons.
Scale (contour interval, cintv)
refers to the number of cases
below 980 hPa
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The increase in mean wind speed since the 1960s and
1970s is accompanied by a relative increase in the frequency
of storms over the southern North Sea and Baltic Sea (*1–
2 % per year) in the period 1958–2001 based on numerically
downscaled NCEP/NCAR reanalysis data (Weisse et al.
2005). Including also the Norwegian Sea, the positive trends
in storm frequency were found to be statistically significant
(p < 0.05). Although high annual geostrophic wind speeds
(above the 99th percentile) returned to average or calm
conditions over the north-east Atlantic, central Europe, the
North Sea and the Baltic Sea at the end of the twentieth
century (Matulla et al. 2008), there has been an upward trend
in winter storminess for the past 50 years over northern
Europe (Donat et al. 2011). Whether this trend is likely to
persist over the longer term or is due to large (multi-)decadal
variability is addressed in the following section.

4.3.2 Long-Term Wind Climate

Long data series of direct wind observations are sparse, and
most measurements even in recent decades suffer from
potential inhomogeneities due to changes in the environment
(growing trees or new buildings in the vicinity, station
relocation, etc.) or changes in methodology (different
instruments, number of measurements per day, etc.) as dis-
cussed by the group ‘Waves and Storms in the North
Atlantic’ (WASA 1998; von Storch and Weisse 2008; Lin-
denberg et al. 2012). Also, cyclone detection and tracking
algorithms to derive the frequency and intensity of deep
lows as a proxy for storminess from historical pressure fields
face the problem of lower data density and quality back in
time (Smits et al. 2005), possibly leading to an apparent
increase in high-latitude cyclone activity that is actually due
to higher data density (see Sect. 4.3.4).

As synoptic-scale storms are generally linked to large-
scale forcing over the pressure field, pressure gradients can
be used to derive geostrophic wind speeds based on surface
pressure readings (Krueger and von Storch 2011). A first
study based on geostrophic wind speeds calculated from a
triangle of station pressure over the German Bight by
Schmidt and von Storch (1993) showed no long-term trend
for the wind climate of 1876–1990. High annual wind
speeds in the 1990s appeared to be comparable to high wind
speeds in the 1880s as well as in the early and mid-twentieth
century. Kaas et al. (1996) found no overall trends but
considerable decadal variability. This was further confirmed
by studies from the WASA group (WASA 1998), Alexan-
dersson et al. (2000) and Matulla et al. (2008) using different
pressure triangles over Europe, mainly the North Sea. For
Finland, Suvilampi (2010) found a slight decrease in annual

geostrophic wind speeds since 1884 and a weak but non-
significant upward trend for the past 50 years. The tendency
for a long-term decrease in annual wind speeds is also
confirmed by Wern and Bärring (2009) for southern Sweden
based on geostrophic wind speeds derived from pressure
triangles. For the period 1901–2008, the authors found sta-
tistically significant negative trends in annual potential wind
energy and mean and extreme (>25 ms−1) geostrophic wind
speeds. For the shorter period, 1951–2008, a tendency to
negative trends in mean wind speeds was found for northern
Sweden, while weak non-significant trends of both signs
were found for central and southern Sweden. In general, the
authors concluded that (multi-)decadal scale variations
dominate rather than any long-term trends.

While the decrease in storminess from a peak around the
1880s happened quite suddenly in central Europe, there was
a gradual slow-down over a period of decades in northern
Europe until the 1960s (Figs. 4.8 and 4.9 in DJF). Matulla
et al. (2008) found the increase in storminess starting in the
late 1970s was most pronounced in NW Europe and more
steady in central Europe. They also found general agreement
between storminess over central Europe and NW Europe
despite some difference in timing and/or magnitude. Bärring
and Fortuniak (2009) also showed a correlation between
inter-decadal variations over southern Scandinavia and
similar variations over NW Europe.

Another way to estimate historical storminess is by using
pressure-based single-station proxies such as different pres-
sure tendencies per unit time, mean or low percentiles of
surface pressure or, for example, the annual number of deep
lows. Based on different storm indices derived from single-
station pressure readings for Lund and Stockholm, Bärring
and von Storch (2004) and Bärring and Fortuniak (2009)
found no robust signs of any long-term trend in southern
Sweden for the period 1780/1800 to 2005. Hanna et al.
(2008) found similar results based on a daily pressure vari-
ability index calculated as absolute 24 h pressure differences,
that is Dp = |pt+24 − pt+0|, for the British Isles since 1830 and
for Denmark since 1874 confirming increased storminess at
the end of the nineteenth century and the 1980s to 1990s,
with the 1880s being the stormiest decade. The informa-
tional value of five different pressure-based storminess
indices including those used by Bärring and von Storch
(2004) and Hanna et al. (2008) was evaluated by Krueger
and von Storch (2012). The authors confirmed the general
usefulness of the indices as storminess proxies, with absolute
pressure tendencies per six or eight hours containing the
highest informational value.

Schenk and Zorita (2011) released a new reconstruction
of HIgh RESolution Atmospheric Forcing Fields (HiRe-
sAFF) for northern Europe for the period 1850–2009
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including wind. Based on the pattern similarity between
daily SLP station data starting in 1850 and SLP observations
since 1958, Schenk and Zorita (2012) reconstructed histor-
ical atmospheric fields by taking the daily atmospheric fields
of regionally downscaled ERA reanalysis for any day for
which the pattern similarity is maximised for an analogous
day in 1958–2007. As shown in Fig. 4.9, the reconstructed
99th percentile of annual wind speeds from HiResAFF in the
vicinity of Stockholm gives comparable results regarding
long-term features of annual storminess derived from single-
station proxies of Stockholm used by Bärring and Fortuniak
(2009). The different storminess measures agree in showing
increased annual wind speeds in the 1880s and 1990s and an
unusually calm period around the 1960s to 1970s and a
return to average conditions in recent years although the
number of deep lows does not indicate calm conditions.
Figure 4.9 also confirms the gradual decline in wind speeds
since the end of the nineteenth century as reconstructed by
Matulla et al. (2008) for northern Europe.

As discussed by Bärring and Fortuniak (2009), up to
eight different proxies for storminess calculated from single-
station pressure data represent different aspects related to
storminess. Estimating the covariance over all indices, the
derived first principal component (PC1) shows good agree-
ment with the 99th percentiles of the geostrophic wind index
from Trenberth et al. (2007) and the reconstructed NAO
index from Luterbacher et al. (2002) with respect to long-
term variability (see Fig. 4.1). In contrast to the number of
deep lows (N < 980 hPa) in Fig. 4.9, the PC1 over all eight

indices captures the calm period of the 1960s and 1970s
indicating that it is better to use a number of different indices
rather than relying on only one. The highest correlation
between HiResAFF annual extreme wind speeds and single-
station proxies was achieved for the pressure tendency over
8 h (r = 0.50) confirming the work of Krueger and von
Storch (2012). Remarkably high values for the 8-h pressure
tendencies on the one hand and very low values for the
number of deep lows on the other hand indicate low confi-
dence in the data before around 1850 probably due to
irregular pressure readings. As irregular sub-daily observa-
tions hamper the detection of deep lows or pressure changes
over 6 h, the estimate using annual numbers of days
exceeding a pressure change of 25 hPa per 24 h in Fig. 4.9
(green line) is likely to be more reliable prior to around 1850
as only one observation per day is required. Also, the large
differences between the Stockholm and Lund time series in
the early historical period should be noted with care (Bärring
and von Storch 2004).

While the previous studies analysed historical storminess
on an annual basis only, Wang et al. (2009a) repeated and
updated (1874–2007) previous studies based on the 99th
percentiles of geostrophic wind speed over the NE Atlantic,
and northern and central Europe and focused more on sea-
sonal and regional differences. They found that the maxima
in the 1990s were due to winter storminess, while the high
annual storm values in the 1880s were mainly due to sum-
mer storminess. For the period 1878–2007, Wang et al.
(2011) found weak negative trends in the 99th percentiles

Fig. 4.9 Storminess indices of the annual number of deep lows
(N < 980 hPa), the 99th percentile of pressure tendency per 8 h, the
annual number of days exceeding a pressure tendency of 25 hPa for the
Stockholm station 1785–2005 (Bärring and Fortuniak 2009) compared
to the reconstructed annual 99th percentile of wind speeds in the

vicinity of Stockholm 1850–2009 from HiResAFF (Schenk and Zorita
2011, 2012). Data normalised with respect to the period 1958–2005.
Bold lines represent the 11-year running mean to highlight decadal
variability
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over central Sweden and the south-western Baltic Sea in
winter (DJF) and a significant (p < 0.05) negative trend over
the south-western Baltic Sea in summer (JJA).

As shown in Fig. 4.10, HiResAFF confirms decreasing
seasonal mean wind speeds in summer (Wang et al. 2011)
and the peak in summer wind speeds in the 1880s (Wang
et al. 2009a), that is over the southern Baltic Sea region.
However, no increased summer winds are reconstructed for
the 1880s over the northern and eastern Baltic Sea region
highlighting regional differences in the wind climate. While
Wang et al. (2009a) attributed high annual storminess in the
1880s mainly to higher storminess in summer, HiResAFF
shows higher mean wind speeds in all seasons except
autumn over the southern and central Baltic Sea region in the
1880s.

So far, all long-term reconstructions of the wind climate
discussed here have been derived from (sub-)daily pressure
observations relying on physical (triangle method) and
empirical (analogue-upscaling) methods or from pressure
tendencies and the number of deep lows as indirect stormi-
ness indices. While the reconstructions show good agree-
ment in terms of a dominance of (multi-)decadal variability
rather than robust long-term trends in wind speed, a recent
study by Donat et al. (2011) differs in showing a significant
long-term increase in winter storminess since 1871 for
Europe based on the twentieth-century reanalysis (20CR)
data (Compo et al. 2011). The model used for 20CR is very
similar to those used for NCEP/NCAR reanalysis but uses a
different data assimilation technique. Unlike NCEP/NCAR,
20CR uses only daily station SLP monthly SST and sea ice
for data assimilation of historical observations since 1871.
As the density of stations with daily SLP increases strongly
over time, potential users of 20CR should be cautious about

whether the 20CR trend is in fact an artefact caused by the
lower station density in earlier times (e.g. Krueger et al.
2013) similar to other long-term trends found in reanalysis
data subsequently identified as spurious (see Sect. 4.3.4).

4.3.3 Long-Term Trends Versus Decadal
Variability

The findings of reconstructions based on geostrophic wind
speeds derived from pressure triangles, different storminess
proxies using single-station pressure indices and field
reconstructions using analogue-upscaling, are in good
agreement showing large decadal variability rather than
robust trends in storminess over northern Europe since 1850.
The 1880s and 1990s show maxima in annual mean and
extreme wind speeds, while the 1970s were unusually calm.
The past decade shows a return to average conditions, and
only the summer wind climate over the southern Baltic Sea
region shows a slight negative long-term trend. Studies
analysing the wind climate of the past 40–60 years detect
large changes in the recent past (Sect. 4.3.1) that are char-
acterised by the rebound from very calm conditions in the
1960s at the beginning of many observational time series for
wind, followed by the very stormy 1990s. Hence, while
positive trends in this period indeed describe a dramatic
change in wind state, the return to average conditions in the
past decade and the long-term analysis of the wind climate
over more than 150 years clearly commute the decadal trend
into (multi-)decadal variability.

The physical explanation for these large changes from the
1970s to the 1990s relates to dynamical changes in the large-
scale atmospheric circulation over the North Atlantic and the

Fig. 4.10 Sliding decadal (11-year) mean seasonal wind speed
anomalies for the Baltic Sea region for 1850–2009. Anomalies are
calculated by subtracting the mean for 1958–2007. Time series are

drawn from the gridded fields of HiResAFF (Schenk and Zorita 2011,
2012). Grid points are selected in the closest vicinity of Haparanda, St
Petersburg, Helsinki, Stockholm, Kaliningrad and Copenhagen
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NAO. Over this period, the NAO index switched from
strongly negative to unprecedentedly high positive values
highlighting the strong correlation of storminess with the
NAO (Sect. 4.2). The NE shift of the NAO together with the
increased pressure gradient over the North Atlantic extended
the geographical influence and numbers of deep lows
towards the Baltic Sea region (Fig. 4.8, Wang et al. 2006;
Lehmann et al. 2011), explaining upward trends in annual
and winter to spring storminess from the 1960s to 1990s.
However, this relation depends on the region and time period
(Matulla et al. 2008), where recent decades show a very high
influence of the NAO (Alexander et al. 2005) with a weaker
link in previous times (Alexandersson et al. 1998).

Regarding atmospheric circulation and weather type,
there is a corresponding change from calm anticyclonic
conditions towards more active cyclonic conditions at the
end of the twentieth century for the winter season (Hurrell
et al. 2003). In addition, the remarkably calm period during
1960s and 1970s coincides with a period of very high Euro-
Atlantic atmospheric blocking frequency in winter (e.g.
Rimbu and Lohmann 2011, Fig. 4.7) relative to the period
1908–2005, preventing or weakening zonal (westerly) flow
and leading to low wind speeds and fewer storms over
Scandinavia. In contrast, the 1990s show low blocking and
high wind speeds.

The long-term negative trend in the wind climate for
summer (Wang et al. 2009a, 2011) over the southern Baltic
Sea region agrees with the findings of Kaszewski and Fili-
piuk (2003). Based on weather type classifications over
central Europe for summer 1881–1998, they found a ten-
dency towards less zonal and increased meridional flow
which could explain the decreasing wind speeds in summer.

Whether external forcing over the past half century has
influenced trends in atmospheric circulation and storminess
is difficult to identify due to the large natural variability over
the North Atlantic and northern Europe. According to Wang
et al. (2009b), combined anthropogenic and natural forcing
have had a detectable influence on the pattern of atmospheric
circulation during boreal winter showing an upward trend in
storminess and ocean wave heights in the high northern
latitudes and a decreasing trend in the lower northern lati-
tudes for 1955–2004. Further analysis for the first half of the
twentieth century suggests that external forcing is less likely
to have been an important factor for surface pressure and
storminess (see Chaps. 23–25 for attribution). From the
different long-term reconstructions of storminess based on
surface pressure observations covering more than 150 years,
the wind conditions of recent decades seem not to be unusual
and to fall within the large range of natural variations which
are to a large extent explained by the NAO.

4.3.4 Potential Inconsistencies
in Long-Term Trends

As direct wind observations usually cover limited time
periods and/or suffer from strong inhomogeneities in the data
(Sect. 4.3.2), many studies rely either on reanalysis data or
on different reconstructions derived from pressure observa-
tions. As previously discussed, the different pressure-based
reconstructions show good overall agreement regarding
long-term variations in storminess independent of the
method used. The conclusion drawn from these studies—
that northern European storminess is dominated by large
multi-decadal variations rather than long-term trends—
appears robust given that Krueger and von Storch (2011,
2012) also confirmed the informational value of most
reconstruction methods used.

The analysis by Donat et al. (2011), however, does not
agree with the previous reconstructions in suggesting a
significant long-term increase in winter storminess since
1871 for Europe based on the 20CR data (Compo et al.
2011). Assimilating only daily station SLP monthly SST and
sea ice from historical observations since 1871, the density
of stations with daily SLP strongly increases over time in the
20CR model. As the discrepancy in 20CR compared to other
reconstructions reduces in parallel to the increase in number
of stations, increasing storminess with time could be an
artefact due to the changing station density (Krueger et al.
2013) comparable to other spurious long-term trends found
in reanalysis data (cf. Trenberth and Smith 2005 and Hines
et al. 2000 in case of the of SLP, Bengtsson et al. 2004;
Paltridge et al. 2009; Dessler and Davis 2010). At least
average or higher wind speeds in the 1880s (in contrast to
what is suggested by 20CR) are supported by direct obser-
vations for western Europe (Clarke and Rendall 2011) such
as sand dune studies in southern Wales (Higgins 1933) and
severe storm analysis by Lamb and Frydendahl (1991).
Furthermore, Omstedt et al. (2004) found an unusually high
frequency of cyclonic circulation at the end of the nineteenth
century with a pronounced peak in cyclonic weather types in
1871–1885 relative to 1800–2000. According to historical
weather records of gale days for Scotland, remarkably high
values were recorded for 1884–1900 (Dawson et al. 2002)
which contrasts with very low storm activity in the 1880s
derived from the 20CR model data.

To what extent reanalysis products like ERA40 and
NCEP/NCAR might also be compromised by similar prob-
lems regarding spurious long-term trends in pressure and
wind needs further investigation. In general, variables
derived from reanalysis data (wind speeds, pressure etc.) are
assumed to be closely co-related to observations through
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data assimilation into state-of-the-art climate models. Even
though reanalysis datasets are often referred to as ‘obser-
vations’, several studies highlight the possibility of detecting
spurious long-term trends in reanalysis data caused, for
example, by a regionally changing density of assimilated
stations over time. As an example, Smits et al. (2005) found
no trend in observed storminess over the Netherlands for
1962–2002, in contrast to the trend seen in NCEP/NCAR
reanalysis data.

In addition to issues with data assimilation, there is also a
resolution issue with the relatively coarse gridded NCEP/
NCAR and ERA reanalysis. As might be expected (see
Raible et al. 2008), this is more of a problem with NCEP/
NCAR (triangular truncation of T62, approximately 1.9° in
latitude and longitude) than ERA (for ERA40; T106,
approximately 1.1°). Analysing storm tracks over the Euro-
Atlantic sector (Trigo 2006) and the cyclone lifetime char-
acteristics of the Northern Hemisphere (Löptien et al. 2008)
in NCEP/NCAR and ERA, the results are comparable, or the
summer season for the two different reanalysis products.
Apart from spatial resolution issues, differences in dynamics,
physical parameterisations of the models and assimilation of
observations may also play a role in the quality of the data
(see Ulbrich et al. 2009 and references therein).

4.4 Surface Air Temperature

4.4.1 Long-term Temperature Climate

Earlier studies detected a significant increase in surface air
temperature in the Baltic Sea region during 1871–2004
(BACC Author Team 2008). Rather than showing a steady
increase, however, temperature showed large (multi-)decadal
variations dividing the twentieth century into three main
phases: warming until the 1930s, followed by cooling until
the 1960s and then another distinct period of warming dur-
ing the final decades of the time series. Linear trends of the
annual mean temperature anomalies during 1871–2011 were
0.11 °C per decade north of 60°N and 0.08 °C per decade
south of 60°N in the Baltic Sea basin (Table 4.1). This is
greater than for the trend in global mean temperature, which
is about 0.06 °C per decade for 1861–2005 (IPCC 2007). All
seasonal trends are positive and significant at the 95 % level,
except winter temperature north of 60°N (lower significance
due to the large variability). The largest trends are observed

in spring (and winter south of 60°N) and the smallest in
summer. The seasonal trends are also larger in the northern
area, than the southern area. The annual and seasonal time
series of surface mean air temperature for the Baltic Sea
basin presented by the BACC Author Team (2008) have
been updated and are shown in Fig. 4.11. The warming has
continued over the past few years during spring and summer
in the southern area and in autumn and spring in the northern
area, and the winters of 2009/2010 and 2010/2011 were
relatively cold.

Similar features are also evident in the long Stockholm
temperature series (Fig. 4.12). Based on the same period
(1871–2011), the trends and significance resemble those in
the Baltic Sea basin north of 60°N.

Long-term variations and trends in the Baltic Sea basin
are similar to those for European mean air temperature
(Casty et al. 2007). A number of studies show similar
warming trends for areas of the Baltic Sea basin and its
vicinity: Finland (Tietäväinen et al. 2009), Sweden (Hell-
ström and Lindström 2008, see Chap. 5, Fig. 5.18), Nor-
way (Hanssen-Bauer et al. 2009), Czech Republic (Brázdil
et al. 2009), Latvia (Lizuma et al. 2007; Klavinš and Ro-
dinov 2010), Estonia (Kont et al. 2007, 2011; Russak
2009) and for the three Baltic countries together (Kriauci-
uniene et al. 2012). Long and homogeneous time series of
spatial mean air temperature were created for Finland
covering 1847–2008 (Tietäväinen et al. 2009). Trends were
calculated for three periods: 1909–2008, 1959–2008 and
1979–2008. An increase in annual mean temperature was
significant at p < 0.05 level for all three periods. Tietä-
väinen et al. (2009) found significant warming in winter
(1959–2008 and 1979–2008), spring (1909–2008 and
1959–2008), summer (1909–2008 and 1979–2008) and
autumn (1979–2008). The increase in annual mean air
temperature for Finland during 1909–2008 was 0.09 °C per
decade. The annual mean temperature time series for Fin-
land agrees with the results in Fig. 4.11. The most sig-
nificant warming in Finland was typical for spring where
the trend value was 0.15 °C per decade during 1847–2004
(Linkosalo et al. 2009).

Temperature increased in south-eastern Norway during
the twentieth century and the first decade of the twenty-first
century by an average of 0.07 °C per decade (Hanssen-Bauer
et al. 2009). However, the long-term temperature trend has
varied throughout the century, starting with relatively low
temperatures, followed by the well-known increase in the

Table 4.1 Linear surface air temperature trends (°C per decade) for 1871–2011 in the Baltic Sea basin

Datasets Annual Winter Spring Summer Autumn

Northern area (north of 60°N) 0.11 0.10 0.15 0.08 0.10

Southern area (south of 60°N) 0.08 0.10 0.10 0.04 0.07

Trends shown in bold are significant at the p < 0.05 level. The trends were also tested by the nonparametric Mann–Kendall test. The results were
consistent with the linear trend test. Data from the CRUTEM3v dataset (Brohan et al. 2006)
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1920s, referred to as ‘the early twentieth-century warming’,
which ended in the 1930s. After this warm decade, tem-
perature then decreased until the 1980s after which there has
been a still ongoing rapid increase. The first decade of the
twenty-first century has been the mildest of the series. In
terms of seasonal trends, the trend for summer is weaker
than for the other seasons. The strongest trend is for spring
(Hanssen-Bauer et al. 2009).

The strong warming during spring is also supported by
the work of Nordli et al. (2007). Using a composite series for
February–April temperature based on ice break-up records
on Lake Randsfjorden (1758–1874) and instrumental
observation since 1875 (Fig. 4.13), these authors found that

the high temperatures in spring and late winter between 1989
and 2011 were unprecedented since 1758.

Long-term series of annual mean air temperature in Rīga,
Latvia, indicate a significant warming since 1850 of 1.4 °C
(Lizuma et al. 2007). For the shorter period (1948–2006),
statistically significant trends (p < 0.05) were found at all
five stations studied in Latvia (Klavinš and Rodinov 2010).
The highest temperature increase occurred in spring and
winter. During the whole observation period (1795–2007),
mean air temperature at Rīga-University Meteorological
Station increased by 1.9 °C in winter, 1.3 °C in spring,
0.7 °C in autumn and 1.0 °C for the year as a whole (Klavinš
and Rodinov 2010).
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Fig. 4.11 Annual and seasonal
mean surface air temperature
anomalies (relative to 1960–
1991) for the Baltic Sea basin
1871–2011, calculated from 5° by
5° latitude, longitude box average
taken from the CRUTEM3v
dataset (Brohan et al. 2006) based
on land stations (from top to
bottom: a annual, b winter (DJF),
c spring (MAM), d summer (JJA),
e autumn (SON). Blue comprises
the Baltic Sea basin north of 60°N
and red south of 60°N. The dots
represent individual years and the
smoothed curves (Gaussian filter,
σ = 3) highlight variability on
timescales longer than 10 years
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4.4.2 Temperature Trends in Recent
Decades

The reanalysis data compiled from the mesoscale analysis
system (MESAN) and ERA40 dataset indicated that during
the period 1990–2004, all years except one, 1996, had a
mean temperature above normal for most of Europe (Jansson
et al. 2007). Lehmann et al. (2011) showed a warming trend
in annual mean temperature of 0.4 °C per decade over the
Baltic Sea basin with the strongest change in its northern
part using the SMHI database with a 1° × 1° horizontal
resolution and 3 h time step during 1970–2008 (Fig. 4.14).
The strongest trend in the Gulf of Bothnia occurred in

autumn and winter (0.5–0.6 °C per decade), while in the
central and southern part of the Baltic Sea region, significant
changes occurred in spring and summer (0.2–0.3 °C per
decade). This is in agreement with annual mean surface air
temperature at coastal stations in Estonia having increased
by about 0.3 °C per decade during 1950–2009 (Russak
2009; Kont et al. 2011) and the Russian part of the Baltic
Sea drainage basin, where temperatures increased by 0.4 °C
per decade during 1976–2006 (Chap. 6). In terms of seasonal
change, statistically significant warming occurred in winter,
spring and summer, but not autumn, and in terms of months
during the first half of the year (JFMAM) with the greatest
change in March and April.
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Fig. 4.12 Annual and seasonal
mean surface temperatures (°C) in
Stockholm 1756–2011, calculated
from the homogenised daily mean
temperature series by Moberg
et al. (2002) after a correction for
a suspected positive bias in
summer temperature before 1859
(Moberg et al. 2003). The
correction is the same as used by
Moberg et al. (2005). Smoothed
curves (Gaussian filter, σ = 3)
highlight variability on timescales
longer than 10 years

4 Recent Change—Atmosphere 85

http://dx.doi.org/10.1007/978-3-319-16006-1_6


4.4.3 Daily Cycle and Seasonality

Not only are the annual mean and seasonal mean tempera-
tures changing, but the daily temperature cycle, which is
reflected in the daily maximum and minimum temperatures,
is also changing. Previous studies have shown that the daily
minimum temperature has increased much more than the
daily maximum causing a decreasing trend in diurnal tem-
perature amplitude (BACC Author Team 2008). In Rīga, the
mean minimum temperature increased by 1.9 °C during
1913–2006, while the mean maximum temperature increased
by 1.7 °C. The mean maximum temperature increased most
rapidly in the later part of spring (April–May), while the

minimum temperature increased most in winter (Lizuma et al.
2007). Consequently, the daily temperature range has
decreased (Avotniece et al. 2010).

Climate change is expressed not only in time series of
climatic parameters but also in changes in seasonality. The
length of the growing season and the sums of positive degree-
days have previously been shown to increase, whereas the
length of the cold season and the frost days have decreased
(BACC Author Team 2008). Trends in start dates and dura-
tion of climatic seasons were analysed for Tartu, Estonia,
during 1891–2003 by Kull et al. (2008). Some statistically
significant changes (p < 0.05) were detected. The start of late
autumn (i.e. the end of the growing season, indicated by a
continuous drop in daily mean air temperature below 5 °C)
became 8 days later and the start of winter (indicated by the
formation of a permanent snow cover) 17 days later. The
duration of summer increased by 11 days and of ‘early
winter’ by 18 days, while the duration of winter proper has
decreased by 29 days. Here, ‘early winter’ means the tran-
sition period with unstable weather conditions with the
forming and melting of snow cover before the beginning of
winter proper, which is defined by the presence of a perma-
nent snow cover. The length of the growing season (defined
by a daily mean air temperature permanently above 5 °C)
increased by 13 days (Kull et al. 2008). In Poland, the
number of ice days (Tmax ≤ 0 °C) and frost days (Tmin ≤ 0 °C)
decreased by 2 and 3 days per decade, respectively, while the
mean monthly minimum and maximum temperatures and the
frequency of warm days (Tmax ≥ 25 °C) generally increased
during 1951–2006. A warming trend occurred in winter,
spring and mid- and late summer, but not in June or autumn
(Wibig 2008a).

4.4.4 Temperature Extremes

Changes in temperature extremes may influence human
activity much more than changes in average temperature.
There have been a number of projects and studies on
changes in temperature extremes over the past decade.
Examples of projects investigating extremes of relevance for
the Baltic Sea region include the following: European Cli-
mate Assessment (Klein Tank and Können 2003), Statistical
and Regional dynamical Downscaling of Extremes for
European regions (STARDEX; Haylock and Goodess 2004),
European and North Atlantic daily to MULtidecadal cli-
mATE variability (EMULATE; Moberg et al. 2006) as well
as several national projects. A large number of indices
describing extremes have been elaborated (BACC Author
Team 2008).

Using ensembles of simulations from a general circula-
tion model (HadCM3), large changes in the frequency of
10th percentile temperature events over Europe in winter

Fig. 4.13 Late winter/early spring (FMA) temperature for south-
eastern Norway (Austlandet) based on ice break-up data from Lake
Randsfjorden (1758–1874) and instrumental observations (1875–2011),
updated from Nordli et al. (2007). Filter 1 means 10-year moving
average series of original data

Fig. 4.14 Linear trend in annual mean surface air temperature during
1970–2007 based on the SMHI dataset. Trends in the light-shaded areas
(as over parts of the Scandinavian mountains) are statistically non-
significant at the p < 0.05 level (Lehmann et al. 2011)
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appear mainly explained by related changes in the NAO
from the 1960s to 1990s (Scaife et al. 2008). A decreasing
tendency in the frequency of very low daily minima in
winter surface temperatures has been present across most of
Europe including the Baltic Sea region over the past 50 years
(Fig. 4.15). The number of frost days between the winters
1964/1965–1968/1969 and 1990/1991–1994/1995 decreased
by 20–30 days in that region (Scaife et al. 2008).

Nine temperature indices were used for analysing weather
extremes at 21 stations in Poland during 1951–2006 (Wibig
2008a). The indices are based on daily maximum and daily
minimum temperatures. A statistically significant increase
was detected for the annual numbers of days with daily
maximum temperature above both 25 and 30 °C, while a
statistically significant decrease was observed in the length
of the frost season and in the annual number of frost days
(daily minimum below 0 °C) and ice days (daily maximum
below 0 °C). Positive trends in monthly temperature indices
were observed from February to May and from July to
September (Wibig 2008a).

Changes in temperature extremes were also observed in
Latvia using daily data from two stations for the period
1924–2008 and three stations for the period 1946–2008
(Avotniece et al. 2010). The Mann–Kendall test indicates
statistically significant positive trends in the number of
tropical nights (Tmin ≥ 20 °C) and of summer days
(Tmax ≥ 25 °C) and negative trends in the number of frost
days (Tmin ≤ 0 °C) and of ice days (Tmax ≤ 0 °C). The
number of hot days and nights increased in Lithuania during

1961–2010 particularly in July and August and in 1998–
2010 (Kažys et al. 2011). Abnormally warm or cold weather
conditions over several consecutive days can be used as an
alternative to studying temperature extremes. An analysis of
extremely warm and cold days in Łódź, Poland, during
1931–2006 was undertaken by Wibig (2007). A particular
day was included in a warm (cold) period if its daily mean
temperature was higher (lower) than 1.28 (−1.28) standard
deviations for this particular calendar day, which corre-
sponds to the 90 % (10 %) percentile in the case of a normal
distribution. The duration of extremely mild periods has
increased significantly in winter, while the number of heat
waves has increased in summer as well as during the year as
a whole. Accordingly, the length of cold waves has
decreased significantly in winter. The annual number of cold
days decreased by 0.87 days per decade (Wibig 2007). In
spite of general warming, the frequency of cold periods in
Poland has not decreased significantly (Wibig et al. 2009).
Time series of the number of days with Tmin ≤ 15 °C,
Tmin ≤ 20 °C and Tmax ≤ 10 °C show a significant trend at
only one of the nine stations (Zakopane) during 1951–2006.
An increase in the frequency of heat waves occurred in the
Czech Republic in 1961–2006 (Kyselý 2010). Owing to the
increase in mean summer temperature, the probability of
very long heat waves in the Czech Republic has risen by an
order of magnitude over the past 25 years (Kyselý 2010).

Changes in surface air temperature are determined mostly
by large-scale atmospheric circulation. As this influences
large geographical areas, it is not surprising that temperature
studies focusing on different areas show similar fluctuations
and trends. Nevertheless, data quality is also very important
in trend analysis, and thus, time series based on data from
different sources and might contain significant
inhomogeneities.

4.5 Precipitation

4.5.1 Long-Term Precipitation Climate

Change in precipitation during the twentieth century in the
Baltic Sea basin has been more variable than for tempera-
ture. There have been regions and seasons of increasing
precipitation as well as those of decreasing precipitation
(BACC Author Team 2008). Time series of European mean
precipitation is characterised by large inter-annual and inter-
decadal variability and with no long-term trends apparent for
1766–2000 (Casty et al. 2007). There were no clear trends in
Latvia during 1922–2003 (Briede and Lizuma 2007). Vari-
ations in annual precipitation with a periodicity of 26–
30 years were detected for all three Baltic countries during
1922–2007 (Kriauciuniene et al. 2012). The periodicity
varied by season: spring (24–32 years), summer (21–

Fig. 4.15 Fractional change in the frequency of very low daily minima
in winter surface temperature. The fractional change in occurrence of
below-10th percentile daily minimum temperature events is plotted
between the winters 1964/1965–1968/1969 and 1990/1991–1994/1995.
The 10th percentile is defined over the former period for each ensemble
and at each grid point. In order that the existing dataset could be used,
percentiles are calculated over 1961–1990. All daily values for the
model were pooled together over the December–February (DJF) period
to calculate both percentile thresholds and changes in frequency (Scaife
et al. 2008)
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33 years), autumn (26–29 years) but with no periodicity
evident in winter. Summer precipitation in Finland during
1908–2008 showed a positive trend (Ylhäisi et al. 2010). A
statistically significant trend in south-western Finland was
detected in June and in north-eastern Finland in May, July
and for the whole summer period (MJJAS). An increase in
precipitation was detected in south-eastern Norway where
annual precipitation increased by about 15–20 % during
1900–2010, with a higher increase in autumn and winter and
a lower increase in spring and summer (Hanssen-Bauer et al.
2009). There has been no trend in autumn precipitation over
the past 30 years in this area but a marked increase in winter
precipitation (Hanssen-Bauer et al. 2009).

4.5.2 Precipitation Climate in Recent
Decades

A general increase in precipitation during winter is typical for
northern Europe over the past few decades. The greatest
increase has been observed in Sweden and on the eastern
Baltic Sea coast, while southern Poland has on average
received less precipitation. A tendency of increasing precip-
itation in winter and spring was detected during the latter half
of the twentieth century. Benestad et al. (2007) compared
downscaled and modelled precipitation at 27 stations in
Fennoscandia for 1957–1999. Only a few locations exhibited
trends that were statistically significant at the 5 % error level.

A comparison of annual mean precipitation for 1994–
2008 with that for 1979–1993 showed less precipitation in
the northern and central Baltic Sea region and more in the
southern region (Lehmann et al. 2011). The pattern also
varied by season (Fig. 4.16). Spatial distribution and trends
in precipitation related to large-scale atmospheric circulation
and local landscape factors were analysed for the three Baltic
countries (Jaagus et al. 2010). A statistically significant
positive trend for 1966–2005 was detected only for eastern
Estonia, eastern Latvia and Lithuania as a whole in winter
and for western Estonia in summer. A detailed study of
summer precipitation data for Helsinki during 1951–2000
did not indicate any trends (Kilpeläinen et al. 2008).

4.5.3 Precipitation Extremes

According to the BACC Author Team (2008) and more
recent studies, precipitation increase in northern Europe is
associated with an increase in the frequency and intensity of
extreme precipitation events. The climatology of extreme
precipitation events is usually described by several indices of
heavy precipitation. Zolina et al. (2009) showed mostly
positive trends in daily precipitation and precipitation totals
at 116 stations across Europe, including the Baltic Sea
region, during 1950–2000. Although most of the trends are
not statistically significant, some positive trends were iden-
tified for winter and spring, while negative trends mostly

Fig. 4.16 Change in total
precipitation between 1994–2008
and 1979–1993 by season based
on SMHI data (Lehmann et al.
2011)
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occurred in summer and, in some cases, in autumn
(Fig. 4.17).

Using ensembles of simulations from a general circula-
tion model (HadCM3), Scaife et al. (2008) found large
changes in the frequency of 90th percentile precipitation
events over Europe in winter, which are related to changes in
the NAO from the 1960s to 1990s. This relationship is likely
to have led to an increased occurrence of heavy precipitation
events over northern Europe and a decreased occurrence
over southern Europe and extratropical North Africa during
high NAO periods.

The duration of wet periods with daily precipitation
exceeding 1 mm increased by 15–20 % across most of
Europe during 1950–2008 (Zolina et al. 2010). The
increased duration of wet periods was not caused by more
wet days, but by short rain events having been regrouped
into prolonged wet spells. Becoming longer, wet periods in
Europe are now characterised by heavier precipitation.
Heavy precipitation events during the past two decades have
become more frequently associated with longer wet spells,
and precipitation is now heavier than during 1950s and
1960s (Zolina 2011).

Wibig (2009) used daily data at five stations in Poland
during the latter half of the twentieth century to analyse the
number of days with precipitation exceeding given thresh-
olds, the duration of wet and dry spells and precipitation
amount in a single event. A positive trend was detected in
the number of wet spells and days with precipitation and a
negative trend in mean precipitation during any given spell.

Very few changes were detected at a number of stations
in Poland during 1951–2006 (Wibig 2008a; Łupikasza
2010). Only the number of days with precipitation increased
significantly. Positive as well as negative trends in indices of
precipitation extremes were detected (Fig. 4.18). Decreasing
trends dominated in summer, while increasing trends were

more pronounced in spring and autumn. In summer and
winter, decreasing trends were more spatially coherent in
southern Poland (Łupikasza 2010). A similar result (i.e. lack
of significant trends in extended precipitation time series)
was found in Łódź for 1904–2000 (Podstawczyńska 2007);
the only trends were an increase in dryness indices in Feb-
ruary, April and August.

Trends in extreme precipitation in western Germany
during 1950–2004 were analysed by Zolina et al. (2008).
Only the northernmost part of the territory belongs to the
Baltic Sea basin. Increasing trends in the 95th and 99th
percentiles were detected in winter, spring and autumn and
with a negative trend occurring in summer in northern
Germany.

Kažys et al. (2009) and Rimkus et al. (2011) analysed
long-term changes in heavy precipitation events in Lithuania
during 1961–2008. They found increasing trends for the
number of days with heavy precipitation (above 10 mm) and
for heavy precipitation as a percentage of total annual pre-
cipitation (Fig. 4.19).

Mean values of daily heavy precipitation as a percentage
of the annual total range from 33 to 44 % in Lithuania and in
some years can be close to 60 %. In summer and autumn, the
percentage of heavy precipitation is much higher than during
the rest of the year. Analysis showed positive but mostly
non-significant tendencies across large parts of Lithuania
during the study period. This means that the temporal vari-
ability of precipitation has increased. This tendency is
especially clear in summer when an increase in precipitation
extremes can be observed in spite of neutral or negative
tendencies in the total summer precipitation (Rimkus et al.
2011).

Valiukas (2011) analysed long-term fluctuations and
trends in the occurrence of dry periods for Vilnius, Lithua-
nia, during 1891–2010. Two indices—the Standardized

Fig. 4.17 Linear trends (% per
decade) in the R95tt index
(fraction of total precipitation
above 95th percentile of rain-day
amounts) for a winter, b spring,
c summer and d autumn for the
period 1950–2000. Open circles
show all trend estimates and
closed circles denote locations
where the trends are significant at
95 %. Blue indicates negative
trends and red indicates positive
trends (Zolina et al. 2009)
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Precipitation Index (SPI) for different time steps and the
Selyaninov Hydrothermic Coefficient (HTC—ratio of pre-
cipitation and sum of daily mean temperatures divided by
10)—were used for identifying drought. Statistically signif-
icant trends were not detected. A small decrease in dryness
was observed, however. A significant increase in the number
of days with heavy precipitation (≥10 mm) was observed in
Latvia during 1924–2008 (Avotniece et al. 2010). Analysis
of extreme precipitation and drought events in Estonia using
moving averages of daily precipitation revealed an increase
in the occurrence of extreme events (Tammets 2007, 2010).
During the period 1957–2006, the sum of wet and dry days
has grown considerably in Estonia. The main cause was two
extremely dry summers, 2002 and 2006. An increase in the
number of wet and dry days and persistence of precipitation

events could be due to the increase in persistence of weather
patterns discussed in Sect. 4.2.

Przybylak et al. (2007) used the climate extreme index
(CEI) according to Karl et al. (1996) to determine the vari-
ability of all climate extremes together for Poland over
1951–2005. Using gridded data from the NCEP/NCAR
reanalysis, they found that CEI was at a maximum in the
1990s with a non-significant upward trend for the period as a
whole. Increasing trends was seen for annual mean number
of days with Tmax and Tmin above the 90th percentile and for
percentage changes in areas of Poland where the precipita-
tion minus potential evapotranspiration is considerably
below normal. A decreasing trend was found for percentage
changes in area of Poland with precipitation minus potential
evapotranspiration considerably above normal, spatially

Fig. 4.18 Percentage of statistically significant trends in extreme
precipitation indices calculated for each station and for each of the 30-
year moving periods within 1951–2006 in Poland. a cool half-year,
b summer, c spring, d warm half-year, e winter, f autumn. Weak trends
—significant at 0.1 < p ≤ 0.2, and strong trends—significant at p ≤ 0.1.

The number of possible cases was counted by multiplying the number
of stations by number of 30-year moving periods (26 stations with data
covering the period 1951–2000 multiplied by 21 time series or 21
stations with data covering the period 1951–2006 multiplied by 27 time
series) (Łupikasza 2010)

Fig. 4.19 Number of days with heavy precipitation a >10 mm per day
and b >20 mm in three consecutive days in Nida (western Lithuania)
and Varėna (south-eastern Lithuania) in 1961–2008. All trends are

statistically significant according to a Mann–Kendall test (Rimkus et al.
2011)
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averaged frequency of extreme 1-day precipitation totals
above 15 mm and a considerably greater than normal mean
number of days with precipitation (Przybylak et al. 2007).

4.6 Cloudiness and Solar Radiation

4.6.1 Cloudiness

Records of cloudiness and solar radiation are generally
shorter than for temperature and precipitation. There were
remarkable long-term fluctuations in mean cloudiness and
sunshine duration over the Baltic Sea basin during the
twentieth century. The trends were of almost opposite sign
between the northern (Estonia) and southern (Poland) parts
of the study region (BACC Author Team 2008). From the
1950s until the 1990s, total cloud cover decreased over
Poland, while the amount of low-level clouds increased over
Estonia. The trends were reversed in the 1990s. Fluctuations
in sunshine duration were more or less of opposite sign
compared to cloudiness. There is a trend of decreasing cloud
cover over the Baltic Sea basin of 1 % per decade for 1970–
2008 (Fig. 4.20), mostly in spring and autumn (Lehmann
et al. 2011). However, cloud cover increased over parts of
the mountainous regions of Scandinavia and the south-
eastern Gulf of Finland, mainly during winter and summer.

Filipiak and Miętus (2009) undertook a detailed study of
spatial and temporal variability in cloudiness at 41 stations in
Poland for 1971–2000. Positive as well as negative changes
in cloudiness were detected, mainly related to local vari-
ability; only a few were statistically significant. Time series
of cloudiness in Łódź, Poland, for 1951–2000 indicate some

trends in the frequency of specific cloud types (Wibig
2008b). Total cloud cover significantly decreased, while
low-level clouds increased during the warm season. Strati-
form clouds became less frequent and convective clouds
more frequent. An increasing trend in high-level clouds was
also observed (Wibig 2008b). A clear decrease in cloudiness
after the 1980s was recorded in Lund, Luleå, Sodankylä and
Hamburg, that is in the Baltic Sea region (Stjern et al. 2009)
mainly in March and September. An increase in annual mean
low-level clouds was reported at Tartu-Tõravere, Estonia,
from the 1960s to 1980s, and a rapid decrease since 1990s
(Russak 2009).

4.6.2 Sunshine Duration and Solar
Radiation

Stjern et al. (2009) presented surface solar radiation data
from 11 stations in north-western Europe and the European
Arctic within the context of the ongoing discussion on global
dimming and global brightening. They compared the records
to records of cloud cover and to qualitative information on
aerosol concentrations and atmospheric circulation patterns.
The authors found a decrease in solar radiation of 18.3 % or
21.5 W m2 during 1955–2003 (Fig. 4.21), while the 1983–
2003 period showed a 4.4 % increase. The earlier part of the
time series (before 1965) contains data from only two sta-
tions (Hamburg, Copenhagen) and so is less reliable. After
1965, no trend can be distinguished. Similar results on
change in solar radiation were obtained for the Tartu-Tõra-
vere Meteorological Station in Estonia during 1955–2007
(Russak 2009). A decrease in global and direct radiation
occurred from the 1950s until the end of the 1980s
(Fig. 4.22). After that an increasing trend is evident. The

Fig. 4.20 Linear trend of total cloud cover during 1970–2008 based
on meteorological data obtained from SMHI (Lehmann et al. 2011)

Fig. 4.21 Mean surface solar radiation at 11 stations. Solid line
indicates where the mean comprises more than three stations and the
dotted line an envelope of ±1 standard deviation. The dashed line
represents a second-degree regression fit (Stjern et al. 2009)
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trend in solar radiation is opposite to that in low-level cloud
cover.

Changes in global solar radiation based on the NCEP/
NCAR dataset were analysed by Uscka-Kowalkowska et al.
(2007) for central Europe during 1951–2005. The study area
had 35 grid points and covered Poland, eastern Germany,
Czech Republic, Slovakia, western Ukraine and Belarus,
Lithuania and southern Sweden, areas which mostly belong
to the Baltic Sea basin. A general increase in solar radiation
was detected during the study period. The strongest trends
were found in April, May, November and December, while
little change was detected in March and October. Higher
trend values are characteristic for the northern part of the
study area (Uscka-Kowalkowska et al. 2007). Net radiation
and net long wave radiation show a significant positive trend
in Tartu-Tõravere, Estonia, during 1961–2002 (Fig. 4.22)
(Russak 2009). Variability in the individual components of
the radiation budget for the Baltic Sea region was discussed
by the BACC Author Team (2008). No new evidence is
available.

The studies mentioned here generally indicate negative
trends in cloudiness and coincident positive trends in sun-
shine duration and solar radiation in the major parts of the
Baltic Sea basin over recent decades. The number of
investigations to date is not sufficient to enable more detailed
and reliable conclusions.

4.7 Conclusion

Variations and trends of atmospheric parameters in the
Baltic Sea region during the last 200–300 years can be
summarised as follows. A northward shift in storm tracks
and increased cyclonic activity have been observed in recent
decades with an increased persistence of weather types. No
long-term trend have been observed in annual wind statistics

since the nineteenth century, but considerable variations on
(multi-)decadal timescales have been observed. An anthro-
pogenic influence cannot be excluded since the middle of the
twentieth century. The pattern in wind and wave heights
over the Northern Hemisphere with a NE shift of storm
tracks appears to be consistent with combined natural and
external forcing. Continued warming has been observed,
particularly during spring and is stronger over northern
regions (polar amplification) than southern. Bhend and von
Storch (2009) detected that the significant warming trends
over the Baltic Sea region are consistent with future climate
projections under increased greenhouse gas concentrations.
No long-term trend was observed for precipitation, but there
is some indication of an increased duration of precipitation
periods and possibly an increased risk of extreme precipi-
tation events.
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