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Abstract. We are developing a smart phone application that provides irrigation 
water management advice using satellite imagery, weather stations and field-
scale farmer provided data. 

To provide tailored advice we use high resolution satellite imagery with na-
tional coverage provided by Google Earth Engine services to estimate field-
specific crop growth information – crop coefficients – and we are among the 
first systems to do so. These coefficients combined with regional scale weather 
station data for major cotton growing regions and farmer-supplied data means 
we can run daily water balance calculations for every individual cotton field in 
Australia and provide irrigation decision support advice. 

We are using automated data processing to ensure the latest satellite and 
weather data is used for advice without manual effort.  

We will also deliver benchmarking data to farmers based on their previous 
seasons as well as peers’ farms in order to compare absolute (calculated) and 
relative (benchmarked) advice. 

Keywords: irrigation, satellite data, weather station, mobile phone app, evapo-
transpiration. 

1 Background 

IrriSAT is a weather based irrigation scheduling service which is used to inform far-
mers how much water their crop has used and how much how much irrigation they 
need to apply. Information is produced daily, and can work with different crop types, 
across large spatial scales.  The system is being developed by the Commonwealth 
and Industrial Research Organisation (CSIRO) for the Cotton Research and Devel-
opment Corporation (CRDC). 

The system uses satellite images to determine the Normalized Difference Vegeta-
tion Index (NDVI) for each field, from which the plant canopy size can be determined 
and a specific crop coefficient (Kc) can be estimated (Hornbuckle et al, 2009).  By 
combining Kc with daily reference Evapotranspiration (ET0) observations from a 
nearby weather station, the crop water usage can be determined and advice can be 
provided regarding the amount of irrigation to be applied. 
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inputs (irrigation and rainfall).  Whilst irrigation and rainfall simply can be obtained 
observations with appropriate shaping (reduction) functions to cater for runoff, the 
crop evapotranspiration (ETc) is determined by a variant of the Penman-Montieth 
equation according to (Allen et al, 1998). The modification is for ‘tall crops’ which 
models cotton better than the standard for ‘short crops (grass). 

ௗܤܹ  ൌ ∑ ௜ ௗ௜ܤܹ  (1) ݀ ሺ݀ܽ݊݋ݏܽ݁ݏ ݊݅ ݕሻ א ሾ1 െ ݊ሿ ܹ݀ܤ ൌ  ݀ ݕܽ݀ ݋ݐ ݈ܾ݁ܿ݊ܽܽݎ݁ݐܽݓ ݊݋ݏܽ݁ݏ ݈ܽݐ݋ݐ

௜ܤܹ  ൌ ݄ܵூܫ௜ ൅  ݄ܵோܴ௜ െ ሺܧ ଴ܶܭ௖ሻ  (2) ܹܤ௜ ൌ ூ݄ܵ ݈ܾ݁ܿ݊ܽܽݎ݁ݐܽݓ ݕ݈݅ܽ݀ ൌ ோ݄ܵ ݈݈݂ܽ݊݅ܽݎ ݎ݋݂ ݊݋݅ݐܿ݊ݑ݂ ݃݊݅݌݄ܽݏ ൌ ܧ ݈݈݂ܽ݊݅ܽݎ ݎ݋݂ ݊݋݅ݐܿ݊ݑ݂ ݃݊݅݌݄ܽݏ ଴ܶ ൌ ௖ܭ ݊݋݅ݐܽݎ݅݌ݏ݊ܽݎݐ݋݌ܽݒ݁ ݁ܿ݊݁ݎ݂݁݁ݎ ൌ  ݐ݂݂݊݁݅ܿ݅݁݋ܿ ݌݋ݎܿ
 

WBd is translated from millimeters depth into irrigation pump run times by knowing 
the application rate of the field’s irrigation system. This allows a user to program a 
system to run in order to return WBd to zero (or other desired level) without further 
calculation. 

In addition to this water balance rule-based decision support advice, the next gen-
eration of IrriSAT will deliver case-based, benchmarked decision support advice to 
irrigators via the methods described in Section 3.4. 

3 Establishing the Next Generation IrriSAT 

In recent years smartphones and tablets have become very popular, and we now aim-
ing to make IrriSAT services more easily accessible through Android and iOS appli-
cations.  A key factor to making these services functional are the data feeds which 
are required as inputs to the decision support system (DSS).  These data feeds need to 
be: made available on demand for near real time decision support; be encoded in 
standardized data exchange formats;  and be easily accessible over the internet via 
web services.  Alternate forms of decision support advice are able to generated by 
non-rule-based artificial intelligence systems such as Case-Based reasoning. The next 
generation IrriSAT system will test one such form. 

3.1 Remotely Sensed Imagery 

Within previous trials of the IrriSAT service, Landsat 5 imagery was used which pro-
vided a spatial resolution of 30m which was sufficient for capturing the spatial varia-
bility of the crop water use across an irrigator’s field.  An email would be sent to the 
IrriSAT administrator when new Landsat imagery was made available.  The tasks the 
administrator would then undertake would be: 
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1.  Downloaded the latest imagery 
2. Manually screen away the clouds based upon inspection within ERDAS IMAGINE 
3. Execute an ERDAS script to produce a CSV file containing field Kc values 
4. Upload the CSV to the IrriSAT database for further processing 

This process was often time-consuming for the administrator, and had to be repeated 
approximately every 8 days as new imagery became available.  However recent ad-
vancements in accessing remotely sensed data warehouses and executing scientific 
algorithms aim to make tasks like these mentioned more efficient.  Two services 
currently in development include: The Australian Geoscience Data Cube (AGDC); 
and Google Earth Engine (GEE).  Both of these services utilize supercomputing to 
allow users to run custom algorithms upon remotely sensed imagery via API’s.  
Here, we have undertaken a scoping study to assess whether GEE is capable of being 
used for processing the modeling required for the backend IrriSAT services. 

The GEE platform allows users to run algorithms on satellite imagery and earth 
observation data for scientific analyses and visualisation (Gorelick, 2013).  It con-
tains a petabyte-scale archive of global imagery which spans the past 40 years and 
uses a distributed computational model using a just-in-time approach, meaning that 
processing is run in real-time, however won’t occur until it is required as an output or 
as an input to another process.  This is achieved by exchanging a description of the 
processing activities and their sequences with GEE servers through a restful web ser-
vices.  Algorithms can be written using the GEE Application Programming Interface 
(API) which is available in both Python and Javascript programming languages. 

For this study we used a combination of Landsat 8 OLI and Landsat 7 ETM+ im-
agery since the Landsat 5 program is no longer operational.  Similarly to Landsat 5, 
both Landsat 8/7 exhibits a 30m spatial resolution, takes 16 days to observe Earth, 
and is made available in 8-day cycles.  Given that Landsat 8 is offset by 8 days to 
Landsat 7 our approach was to combine Landsat 8/7.  Whilst differences exist be-
tween the OLI and ETM+ sensors, it has been shown that the two sensors are broadly 
compatible across the Australian landscape with differences of approximately 5% for 
NDVI  (Flood, 2014).  

 

 

Fig. 2. Landsat 8 (left), Landsat 7 (centre) and combined Landsat 8/7 (right) TOA reflectance 
for 16 October 2014 
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The approach of combining the two datasets typically provides near full coverage for 
Australia every 8 days (Fig. 2), which would provide the most up to date crop water 
usage information to irrigators in near real time. 

It is well known that the influence of cloud cover can cause remotely sensed NDVI 
to be underestimated (Liaw, et al 1995).  In order to address this problem we are 
using the SimpleCloudScore algorithm which is provided within the GEE Algorithms 
API (Fig. 3). This algorithm works by determining a cloud-likelihood score in the 
range [0,100] using a combination of brightness, temperature, and NDSI from the 
TOA reflectance imagery. 

 

 

Fig. 3. Illustration of Landsat 8 TOA reflectance for 16 irrigation fields with visible cloud 
cover (left).  The GEE SimpleCloudScore algorithm used to generate a mask for removing 
cloud cover from Landsat imagery (right).  Detected clouds are shown in magenta. 

The SimpleCloudScore algorithm is not a robust cloud detector, and is intended 
mainly to compare multiple looks at the same point for relative cloud likelihood, 
however we have found it to give adequate performance at detecting clouds when a 
cloud-likelihood score threshold of 17 is set.  At present, an implementation of the 
Fmask v3.2 automated cloud detection algorithm (Z. Zhu and C.E. Woodcock, 
2012) is being incorporated into the GEE API.  The Fmask algorithm is an object-
based cloud detection algorithm which is able to detect clouds, cloud shadows and 
snow with an average overall accuracy of 96.41%.  When the algorithm is made 
available it would be useful to trial it out as cloud shadows can also lead to NDVI 
misinterpretations. 

By combining a cloud mask with the Landsat NDVI datasets available within GEE 
we are then able to determine the pixels which represent a valid values. 
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Fig. 4. Landsat 8 NDVI for the same day as is Fig. 3.  The cloud mask is used the remove 
pixels which are determined to be invalid data (left).  This image is then used to determine the 
crop coefficient (Kc) for cotton using a linear scaling (right). 

Examining one of these fields over the 2013-2014 cotton growing season (Fig. 5) 
illustrates how the crop coefficient initially starts with values of ~0.1 (bare soil) and 
increases to ~1.0 (grown cotton), with harvesting taking place usually at the end of the 
first quarter of each year.  
 

 
Fig. 5. Crop coefficient for an irrigators field over the 2013-2014 cotton growing season 

3.2 On-ground Weather Observations 

In order to provide regionalized evapotranspiration observations to irrigators, CSIRO 
maintains a network of Automatic Weather Stations (AWS). These services are currently 
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tightly-coupled to the current IrriSAT system, however we will be working to expose this 
data via web services.  This allows users or devices to be able to query and retrieve ob-
servations over the web which will play an important role for consuming data within a 
mobile app.  To improve the accessibility of this data we are currently implementing the 
Sensor Observation Service (SOS) which provides a way to query real-time sensor data 
in a standardized data exchange.  Utilising this standardized exchange format will allow 
us to easily expand upon our current coverage of weather stations, allowing us to query 
and consume SOS observations from other organisations such as the Bureau of Meteor-
ology and also enables this technology to also work internationally. 

3.3 Irrigation and Rainfall 

The mobile app will provide a way for irrigators to enter how much irrigation they 
have applied to each field, and also how much rainfall has fallen as it occurs.  This 
information needs to be supplied by the user since most irrigation pumps are not te-
lemeted, and rainfall from a nearby weather station is not local enough to accurately 
determine how much rainfall was observed on their fields.  The new application user 
interface will provide a richer user experience, and more accurate methods of data 
entry over the previous SMS message approach.  The application being developed 
will be similar in functionality to the Smartirrigation Cotton app (Vellidis et al, 2014) 
which has been developed for use in the United States (Fig. 6) 

 

Fig. 6. Smartirrigation Cotton application developed for iOS 
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3.4 Benchmarking-Based Irrigation Decision Support 

Unlike the previous generation of IrriSAT system, this next generation will deliver 
advice to irrigators based initially on the water balance (rule-based) system and then, 
after a season of operation for baselining, advice from a benchmarking, case-based 
reasoning system will also be delivered. 

Time-delimited periods of irrigation practice (weekly or monthly) will be treated as 
cases in a Case-Based Reasoning (CBR), as described by Aamodt & Plaza (1994). 
The input conditions to these cases (the weather and crop data) will be used with a 
measure of utility of the case results (the irrigation decision(s) made within the time-
frame) according to standard CBR methodology. The utility measure will be gathered 
from yield data at the end of the first season’s operation. 

From the start of the second season’s operation (2015/2016) onwards, the CBR sys-
tem will compare a current irrigator’s situation (the ‘current case’ in CBR terminology) 
with past, similar situations (the ‘case base’) and provide advice in parallel with the 
rule-based advice. How this advice will be presented to the irrigators is future work. 

4 Conclusion  

Through the GEE case study, we have found the API to be adequate for undertaking 
the desired processing tasks required for determining paddock scale crop coefficients 
required by IrriSAT.  The work from this case study is currently further being inte-
grated into the next generation IrriSAT DSS which will be capable of: providing more 
regular Kc estimates than previously by using both Landsat 8 and Landsat 7 imagery; 
and will also provide a completely automated data processing pipeline.  Adopting the 
GEE platform will allow us to access and run algorithms on the full Earth Engine data 
archive, all using Google's parallel processing platform in real time, enabling the next 
generation IrriSAT to easily scale across all of Australia. 

Exposing the weather observations via SOS allows our applications and any other 
applications, to easily query and retrieve information over the web.  We have cur-
rently migrated all historic weather station data into 52 north’s SOS implementation.  
Further work involves developing automated data ingestion routines to ensure the 
datasets are kept up to date for near-real time accessibility.  

Once the application is developed, irrigation information will be able to be collected 
from a limited selection of farmers throughout the first cotton growing season.  This will 
enable us to develop the benchmarking products required to compare water usage against 
other cotton irrigators in nearby regions and also against previous growing seasons. 

Our use of new and sophisticated datasets and web services at the national and re-
gional (weather station) levels will enable us to avoid much of the data preparation 
complexity of previous generation DSS.  The DSS core application will be capable of 
requesting information from the external data services to run a water balance calcula-
tion; whilst all of the raw data management and preparation steps generating the re-
quired products have already been undertaken by the data providers. 
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