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Preface

We welcome you to the proceedings of CCIW 2015, the Computational Color Imaging
Workshop, held in Saint-Etienne, France, during March 24-26, 2015.

This fifth CCIW was organized by University Jean Monnet, Saint-Etienne, with the
endorsement of the International Association for Pattern Recognition (IAPR), the Asso-
ciation Frangaise pour la Reconnaissance et I’ Interprétation des Formes (AFRIF) affil-
iated with IAPR, and the Groupe Francais de I’Imagerie Numérique Couleur (GFNIC).

The aim of the workshop was to bring together engineers and scientists of various
imaging companies and research laboratories from all over the world, to discuss diverse
aspects of their latest work, ranging from theoretical developments to practical applica-
tions in the field of color imaging, as well as color image processing and analysis.

Since the first Computational Color Imaging Workshop organized in 2007 in Mod-
ena, Italy, CCIW has been an inspiration for researches and practitioners in the fields of
digital imaging, multimedia, visual communications, computer vision, and consumer
electronics, who are interested in the fundamentals of color image processing and its
emerging applications.

For CCIW 2015 there were many excellent submissions of high scientific level.
Each paper was peer reviewed by at least two reviewers. Only the best 17 papers were
selected for presentation at the workshop. The final decision for the papers selection
was based on the criticisms and recommendations of the reviewers, and the content
relevance of papers to the goals of the workshop. In addition to the submitted papers, six
distinguished researchers were invited to this fifth CCIW to present keynote speeches.

In this 5th Computational Color Imaging Workshop, challenging issues and open
problems not sufficiently addressed in the state of the art were addressed. In the fol-
lowing, we summarize issues and problems that were covered by the papers accepted
in CCIW 2015 or invited speeches, and put in perspective these papers relative to the
other papers published recent in the state of the art.

The 5th Computational Color Imaging Workshop (CCIW 2015) was started on
March 24, 2015 with a keynote presentation by Mathieu Hébert on Color and Spec-
tral Mixings in Printed Surfaces. Meanwhile, many studies addressed issues related
to color mixing, but very few studies were carried out on spectral mixing within the
visible range. In his presentation, Mathieu Hébert presented different computational
mixing models (additive, non linear additive, multiplicative, non linear multiplicative,
etc.,) of spectra data for modeling of heterogeneous surfaces (e.g., textured materials,
goniochromatic surfaces, printed samples, etc.,). Recently, spectral variability within
an image has raised more attention in the field of hyperspectral images and some tech-
niques have been proposed to address this issue, e.g., spectral bundles [33], but most of
these techniques have been developed for spectral data outside the visible range.

In the Color reproduction session, Dmitry Kuzovkin et al. proposed an automatic
method for example-based image colorization and a robust color artifact regularization
method [15]. This paper proposed new improvements for color mapping which were not
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covered by the recent survey on color mapping written by H.S Faridul et al. [9]. In the
next presentation, G.M. Atiqur Rahaman et al. proposed to extend the Murray—Davies
reflectance model used for modeling spectral halftone images and to improve the ef-
ficiency prediction of this model to changes in reflectance by a power function [27].
Lastly, Ryosuke Nakahata et al. proposed a dynamic relighting method for moving pla-
nar objects with unknown reflectance [25]. By acquiring the surface spectral reflectance
of moving objects, this method is able to reproduce accurate colors on a display device.
This research topic is still largely unexplored. Most of the solutions using a projector-
camera system were published recently in the state-of-the-art address issues related to
photometric compensation but not to color compensation. Moreover, most of these pa-
pers deal with static surfaces and not with moving surfaces. However, wide range of
applications such as augmented reality, education, cultural heritage, and interactive art
installations could benefit from progress in this field.

Another challenging issue in computational color imaging is related to the color
rendering of color reproduction. Some authors tried to improve this issue by improving
first the color acquisition. In his invited speech, titled The good, the bad and the ugly:
the color we would like, the color we have, its appearance and dynamic range, Alessan-
dro Rizzi discussed some “hidden” issues, often not taken into account, related to color
acquisition that can introduce severe errors in the color information [22]. Among these
issues, he focused on the limits of accurate camera acquisition, the usable range of light
of our vision system, and the role of accurate versus non-accurate luminance recording
for the final appearance of a scene.

In the Color sensation and perception session, G.M. Atiqur Rahaman et al. investi-
gated issues related to the acquisition and analysis of memory colors of objects found
in natural scenes [28]. In the next presentation, Jodo M.M. Linhares et al. investigated
the effect on a display gamut of varying the optical density and the position of the
maximum sensitivity of the cones spectra of anomalous trichromatic observers [16].
Lastly, Jorge L.A. Santos et al. investigated reaction times for normal color and dichro-
matic observers in a visual search experiment. [29]. These three papers addressed a
wide range of problems related to vision science (i.e., to sensation and perception). As
discussed by J.J. McCann in [23], the problems investigated in color image processing
community are not only related to digital imaging disciplines but define an area of re-
search on the frontier between vision science and image/display technology and must be
addressed from several different perspectives/disciplines (physics, psychophysics, arti-
ficial intelligence, and fine arts). Thus, for example, according to J.J. McCann, the color
appearance of a scene is not only correlated to the surfaces reflectance (which depend
on the spectral distribution and the dynamic range of the illumination) and to the scene
spatial content (e.g., a flat representation or a 3D scene), but also to the sensitivities of
the human L, M, S cones.

The 5th Computational Color Imaging Workshop (CCIW 15) continued till March
25, 2015 with a presentation, by invited speaker, Joost Van de Weijer on Color features
in the era of big data. The process of unsupervised feature learning (e.g., deep learn-
ing) has recently received a lot of attention in the field of computer vision. Meanwhile
many studies were carried out only on color data, since recently few studies have been
carried out on multimodal data (e.g., RGB and depth data [12] or RGD and temporal
data [26]). However, several papers have demonstrated that machine learning plays an
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important role in bridging the gap between feature representations and decision making
(e.g., for object/scene recognition, human pose estimation, and gesture/activity recog-
nition) by learning useful information from a large set of RGB-D data [2]. In [2], Kai
Berger discussed challenging issues related to the use of the publicly available datasets
and suggested that in the following years there will still be challenges for multiple
RGB-D sensors relying on the emission of light to be addressed by the community.
One challenging issue of unsupervised feature learning is to benchmark dataset with
ground truth (e.g., for video labelling). Unfortunately, very interesting datasets, such
as the KITTI dataset, do not provide a semantic segmentation benchmark yet. In [32],
Joost Van de Weijer et al. provided an overview of color name applications in com-
puter vision, including image classification, object recognition, texture classification,
visual tracking, and action recognition and demonstrated that in general color names
outperform photometric invariants.

In the Color image processing session, Pablo Martinez-Canada et al. proposed a
configurable simulation platform that reproduces the analog neural behavior of differ-
ent models of the human visual system at the early stages [21]. Next, Yann Gavet et al.
proposed to use the Color Logarithmic Image Processing (CoLIP) for white balance cor-
rection and color transfer [11]. Yann Gavet demonstrated that the CoLIP framework is
correlated to the human visual perception system, as first, it follows the Weber/Fechner
law with its logarithmic model and second, it is based on the opponent-process theory
from Hering. Next, Gianluigi Ciocca et al. investigated the influence of color on the
perception of image complexity. To this end they performed two different types of psy-
chophysical experiments that they reported [6]. These three papers addressed a wide
range of color image processing solutions related to vision science. Lastly, Andreas
Kleefeld et al. proposed a new framework for color-valued median filters [14].

Another challenging issue in computational color imaging is related to the process-
ing of spectral imaging data. In his invited speech, titled Optics and Computational
Methods for Hybrid Resolution Spectral Imaging, Masahiro Yamaguchi introduced the
concept of “Hybrid Resolution Spectral Imaging” (HRSI) and presented algorithms for
reconstructing a spectral images [35]. The goal is to combine a high-resolution RGB
image and a low-resolution spectral image in order to capture high resolution spectral
video with a compact and handy camera system. Thanks to hybrid spectral imaging
systems, it becomes possible to think of new applications and new developments in
spectral imaging.

In the Spectral imaging session, Simone Bianco investigated if the performance of
hyperspectral face recognition algorithms can be improved by considering 1D projec-
tions of the whole spectral data along the spectral dimension [3]. Feature band selection,
dimensionality reduction, and feature extraction are challenging issues for face recog-
nition task and also for other computer vision tasks. Even if, in the last ten years, many
studies tried to solve these issues in the field of face recognition, several of them re-
main to be overcome. Similar issues remain to be overcome in other application fields.
For example, Naveed Akhtar et al. proposed a sparse representation-based approach for
hyperspectral image super-resolution [1]. They tested their approach using the hyper
spectral images of objects, real-world indoor and outdoor scenes, and remotely sensed
hyper-spectral images. In the next presentation, Hilda Deborah et al. proposed a spectral
noise model using spectral database of uniform color/pigment patches, which answers
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the challenge of identifying spectral noise model [8]. Lastly, Xingbo Wang et al. inves-
tigated the colorimetric performance of CFA/MSFA-based image acquisition system
[34]. Despite the number of studies dealing with spectral imaging, little attention has
been given to the evaluation of the quality of spectral images and of spectral imaging
systems. However, we can note that there is a general tendency to address this issue
from several different perspectives (physics and psychophysics).

Next, in cooperation with the European COST action TD 1201, on March 26, 2015,
a special session on Color in digital cultural heritage was organized.

The process of color digitization of 3D objects in cultural heritage has recently
received much attention due to still improving quality and resolution of digital objects
[19, 4, 5]. One tendency to improve color accuracy is to use a multispectral system.
Thus, Jay Arre Toque et al. proposed to use a high-resolution multispectral scanning
for mesoscopic investigation of discoloration of traditional Japanese pigments [30]. On
the other hand, Ailin Chen et al. proposed to use a hyperspectral camera to visualize
invisible information (i.e., outside the visible range) in paintings for restoration purpose
[7].

Another tendency is to improve the performance of color-difference formulas [24]
or to evaluate with these formulas if a color digitization system is accurate enough.
Thus, Tatiana Vitorino et al. proposed to use the ColorChecker chart to assess the use-
fulness and comparability of data acquired with two hyper spectral systems [31]. On
the other hand, Juan Martinez-Garcia et al. proposed to use a specular color chart to
calibrate the color digitization of highly specular materials with a microscopic imaging
system [20].

The process of 3D objects visualization in cultural heritage has also received much
attention due to the development of color rendering and color correction algorithms.
Some authors studied these issues from the observer’s perspective (i.e., visual observa-
tion). Thus, Sergio Nascimento et al. investigated which color compositions observers
prefer when they look at some paintings [17]. Other authors proposed to address these
issues using photometry/spectrophotometry models. For example, Lindsay MacDonald
in his invited speech, titled Representation of Cultural Objects by Image Sets with Di-
rectional Illumination addressed problems related to the modeling of the diffuse and
specular reflectance of 3D objects and to the 3D surface reconstruction from photomet-
ric stereo [18]. Another approach consists of addressing these issues using computer
vision models. For example, Zoltan Kato in his invited speech, titled Relative Pose Es-
timation and Fusion of 2D Spectral and 3D Lidar Images discussed problems related to
the pose estimation without the use of any special calibration pattern or explicit point
correspondence [13]. This paper addressed one of the most challenging issues in dig-
ital cultural heritage, which is the fusion of 2D RGB/spectral imagery with other 3D
range sensing modalities (e.g., Lidar). On the other hand, Citlalli Gamez Serna et al.
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proposed a semi automatic 2D-3D registration framework to produce accurate realistic
results from a set of 2D uncalibrated images and a sparse 3D point cloud representation
of an object digitized with laser scanning [10].

March 2015 Alain Trémea
Raimondo Schettini
Shoji Tominaga

Acknowledgments

Many organizations and people helped us in the planning of this meeting. Among them,
we are pleased to acknowledge the generous support of the University Jean Monnet at
Saint-Etienne, the Laboratoire Hubert Curien (UMR 5516) and Télécom Saint-Etienne,
France, the University of Milano-Bicocca, Italy, and the Graduate School of Advanced
Integration Science, Chiba University, Japan.

Special thanks to the COSCH action (COST action TD 1201) for the co-organization
and co-funding of the special session on color in digital cultural heritage. The research
laboratory hosting this workshop was supported by Saint-Etienne Métropole, the Ré-
gion Rhone-Alpes (ARC 6, programme MONEITHS), and the PRES of Lyon (pro-
gramme PALSE IRF).

Special thanks also go to all our colleagues on the Conference Committee for their
dedication and hard work, without which this workshop would not have been possible.

References

1. Naveed Akhtar, Faisal Shafait, Ajmal Mian, Sparse Spatio-spectral Representation
for Hyperspectral Image Super-resolution, Lecture Notes in Computer Science,
Proceedings of ECCV Volume 8695, pp 63-78, 2014.

2. Kai Berger, A State of the Art Report on Multiple RGB-D Sensor Research and on
Publicly Available RGB-D Datasets, Chapter 2, pp 27-44, Book titled Computer
Vision and Machine Learning with RGB-D Sensors, Springer, 2014

3. Simone Bianco, Can linear data projection improve hyperspectral face recogni-
tion?, Proceedings of the 5* International Workshop CCIW’2015.

4. F. Boochs, A. Bentkowska, C. Degrigny, M. Karaszewski, A. Karmacharya, Z.
Kato, M. Picollo, R. Sitnik and A. Trémeau, Colour and space in cultural heritage.
Key questions in 3D optical documentation of material culture for conservation,
study and preservation, Proceedings of the 5th International Conference EuroMed
2014, Best paper award, pp 11-14, Limassol, Cyprus, november 3-8, 2014.

5. F.Boochs, A. Trémeau, O. Murphy, M. Gerke, J.L.. Lerma, A. Karmacharya, and M.
Karaszewski. Towards a knowledge model bridging technologies and applications
in cultural heritage documentation, Proceedings of the ISPRS Technical Commis-
sion V Symposium, pp 81-88, 23-25 June, Riva del Garda, Italy, 2014.

6. Gianluigi Ciocca, Silvia Corchs, Francesca Gasparini, Emanuela Bricolo, and Ric-
cardo Tebano, Does color inuence image complexity perception? Proceedings of
the 5" International Workshop CCTW’2015.



X

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Preface

Ailin Chen, Colour Visualisation of Hyperspectral Images in Art Restoration. CIMET
Master Thesis, Gjgvik University College, Norway.

. Hilda Deborah, Noél Richard and Jon Yngve Hardeberg. Spectral Impulse Noise

Model for Spectral Image Processing, Proceedings of the 5! International Work-
shop CCIW’2015.

H. S. Faridul, T. Pouli, C. Chamaret, J. Stauder, A. Tremeau, and E. Reinhard, A
Survey of Color Mapping and its Applications, Eurographics 2014 - State of the
Art Reports, pp. 43-67,2014.

Citlalli Gamez Serna, Ruven Pillay, and Alain Trémeau, Data fusion of objects
using techniques such as Laser Scanning, Structured Light and Photogrammetry
for Cultural Heritage Applications, Proceedings of the 5 International Workshop
CCIW’2015.

Yann Gavet, Johan Debayle, and Jean-Charles Pinoli, The Color Logarithmic Image
Processing (CoLIP) antagonist space and chromaticity diagram, Proceedings of the
5" International Workshop CCIW’2015.

Md. Abul Hasnat, Olivier Alata and Alain Trémeau, Unsupervised RGB-D image
segmentation using joint clustering and region merging, Oral presentation (7.7%)
in the British Machine Vision Conference (BMVC), Nottingham, UK, Nottingham,
Sept 2014.

Zoltan Kato, and Levente Tamas, Relative Pose Estimation and Fusion of 2D Spec-
tral and 3D Lidar Images, Proceedings of the 5! International Workshop
CCIW’2015.

Andreas Kleefeld, Michael Breub, Martin Welk, and Bernhard Burgeth, Adaptive
Filters for Color Images: Median Filtering and its Extensions, Proceedings of the
5" International Workshop CCTW’2015.

Dmitry Kuzovkin, Christel Chamaret, and Tania Pouli, Descriptor-based Image
Colorization and Regularization, Proceedings of the 5* International Workshop
CCIW’2015.

Jodo M.M. Linhares, Jorge L. A.Santos, Vasco M. N. de Almeida, Catarina A.R.
Jodo, and Sérgio M.C. Nascimento, The display gamut available to simulate colors
perceived by anomalous trichromats, Proceedings of the 5 International Work-
shop CCIW’2015.

Sérgio M.C. Nascimento, Jodo M.M. Linhares, Catarina A. R. Jodo, Kinjiro Amano,
Cristina Montagner, Maria J. Melo, Marcia Vilarigues, Estimating the colors of
paintings, Proceedings of the 5 International Workshop CCIW’2015.

Lindsay MacDonald, Representation of Cultural Objects by Image Sets with Direc-
tional Illumination, Proceedings of the 5 International Workshop CCIW’2015.
Maciej Karaszewskil, Krzysztof Lech, Eryk Bunsch, Robert Sitnik, In the pursuit
of perfect 3D digitization of surfaces of paintings : geometry and color optimiza-
tion, Proceedings of the 5th International Conference EuroMed’ 2014, pp 25-34,
Limassol, Cyprus, November 3-8, 2014.

Juan Martinez-Garcia, Mathieu Hébert, and Alain Trémeau, Color calibration of an
RGB digital camera for the microscopic observation of highly specular materials.
Proceedings of the SPIE conference on Measuring, Modeling, and Reproducing
Material Appearance, 9 - 10 February 2015.



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Preface XI

Pablo Martinez-Canada, Christian Morillas, Juan Luis Nieves, Begona Pino,and
Francisco Pelayo, First Stage of a Human Visual System Simulator: the Retina,
Proceedings of the 5" International Workshop CCTW’2015.

John J. McCann and Alessandro Rizzi, The Art and Science of HDR Imaging,
Wiley-IS&T Series in Imaging Science and Technology, ISBN: 978-0-470-66622-
7,416 pages, November 2011.

John J. McCann, Spatial imaging in color and HDR: Prometheus unchained, Pro-
ceedings of SPIE, Human Vision and Electronic Imaging XVIII, Vol. 8651, pp
865107, 2013.

Manuel Melgosa, Alain Trémeau, and Guihua Cui, Colour Difference Evaluation,
Chapter 3, pp 59-79, Book title Advanced Color Image Processing and Analysis,
C. Fernandez-Maloigne eds., 2013.

Ryosuke Nakahata, Keta Hirai, Takahiko Horiuchi, and Shoji Tominaga, Develop-
ment of a Dynamic Relighting System for Moving Planar Objects with Unknown
Reflectance, Proceedings of the 5! International Workshop CCIW’2015.

M. M. Nawaf, A. Trémeau, M.D. Abul Hasnat, D. D. Sidibé, Color and Flow Based
Superpixels for 3D Geometry Respecting Meshing, Proceedings of the IEEE Win-
ter Conference on Applications of Computer Vision (WACV 2014), Steamboat
Springs, pp 147-154, march 24-26, 2014.

G M Atiqur Rahaman, Ole Norberg, and Per Edstrom, Experimental analysis for
modeling color of halftone images, Proceedings of the 5! International Workshop
CCIW’2015.

G M Atiqur Rahaman, and Md. Abul Hasnat, Collection, Analysis and Representa-
tion of Memory Color Information, Proceedings of the 5! International Worshop
CCIW’2015.

Jorge L. A. Santos, Vasco M. N. de Almeida, Catarina A. R. Joa, Joao M. M. Lin-
hares, and Sérgio M. C. Nascimento, Visual search for normal color and dichro-
matic observers using a unique distracter color, Proceedings of the 5" International
Workshop CCIW’2015.

Jay Arre Toque, Pengchang Zhan, Peng Wang, and Ari Ide-Ektessabi, High-resolution
multispectral scanning for mesoscopic investigation of discoloration of traditional
Japanese pigments, Proceedings of the 5 International Workshop CCIW’2015.
Tatiana Vitorino, Andrea Casini, Costanza Cucci, Ana Gebejes, Jouni Hiltunen,
Markku Hauta-Kasari, Marcello Picollo, and Lorenzo Stefani, Accuracy in colour
reproduction: using a ColorChecker chart to assess the usefulness and compara-
bility of data acquired with two hyper-spectral systems, Proceedings of the 5"
International Workshop CCIW’2015.

Joost Van de Weijer and Hahad Khan, Color features in the era of big data, Pro-
ceedings of the 5¢" International Workshop CCTW’2015.

Miguel Angel Veganzones, Lucas Drumetz, Guillaume Tochon, Mauro Dalla Mura,
Antonio Plaza, José M. Bioucas-Dias, and Jocelyn Chanussot, A New Extended
Linear Mixing Model to Address Spectral Variability, Proceedings of the IEEE
Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS 2014), Jun 2014, Lausanne, Switzerland.

Xingbo Wang, Phlip Green, Jean-Baptiste Thomas, Jon Hardeberg and Pierre Gou-
ton. Evaluation of the colorimetric performance of single-sensor image acquisition



X1I Preface

systems employing colour and multispectral filter array, Proceedings of the 5¢" In-
ternational Workshop CCIW’2015.

35. Masahiro Yamaguchi, Optics and computational methods for hybrid resolution spec-
tral imaging, Proceedings of the 5** International Workshop CCTW’2015.



Organization

CCIW 2015 was organized by University Jean Monnet, Saint-Etienne, France, in coop-
eration with the University of Milano-Bicocca, Italy and the Graduate School of Ad-
vanced Integration Science, Chiba University, Japan.

Executive Committee

Conference Chairs

Alain Trémeau
Raimondo Schettini
Shoji Tominaga

University Jean Monnet, Saint-Etienne, France
University of Milano-Bicocca, Italy
Chiba University, Japan

Program Committee

Ide-Ektessabi Ari, Japan
Sebastiano Battiato, Italy
Simone Bianco, Italy
Frank Boosch, Germany
Francesca Gasparini, Italy

Katsushi Ikeuchi, Japan
Hiroaki Kotera, Japan
Lindsay Macdonald, UK
Yoshitsugu Manabe, Japan
Damien Muselet, France

Theo Gevers, The Netherlands
John Ynge Hardeberg, Norway
Markku Hauta Kasari, Finland
Mathieu Hébert, France

Javier Hernandez-Andrés, Spain

Sergio Nascimento, Portugal
Shigeki Nakauchi, Japan
Juan Luis Nieves, Spain
Jussi Parkkinen, Finland
Bogdan Smolka, Poland

Keigo Hirakawa, USA
Takahiko Horiuchi, Japan

Maria Vanrell, Spain
Joost van de Weijer, Spain

Local Arrangements Committee

Alain Trémeau University Jean Monnet, Saint-Etienne, France
Eric Dinet University Jean Monnet, Saint-Etienne, France
Mathieu Hébert University Jean Monnet, Saint-Etienne, France
Juan Martinez University Jean Monnet, Saint-Etienne, France
Damien Muselet University Jean Monnet, Saint-Etienne, France
Olivier Alata University Jean Monnet, Saint-Etienne, France



XIV Organization

Keynote/Invited Talks

Alessandro Rizzi Universita degli Studi di Milano

Mathieu Hébert University Jean Monnet, Saint-Etienne, France

Joost van de Weijer Computer Vision Center, Barcelona, Spain

Masahiro Yamaguchi Tokyo Institute of Technology, Tokyo, Japan

Zoltan Kato Institute of Informatics, University of Szeged,

Hungary

Lindsay McDonald 3DIMPact Research Group, University College

London, UK

Sponsoring Institutions

University Jean Monnet, Saint-Etienne, France

University of Milano-Bicocca, Italy

Graduate School of Advanced Integration Science, Chiba University, Japan
International Association for Pattern Recognition (IAPR)

Groupe Francgais de I'Imagerie Numérique Couleur (GFINC), France

Association Francgaise pour la Reconnaissance et I’ Interprétation des Formes (AFRIF)
Laboratoire Hubert Curien (UMR 5516), Saint-Etienne, France

Télécom Saint-Etienne, France

COSCH action (COST action TD 1201), Germany

Saint-Etienne Métropole, France



Contents

Invited Talks

Color and Spectral Mixings in Printed Surfaces . .. ..................

Mathieu Hébert, David Nebouy, and Serge Mazauric

An Overview of Color Name Applications in Computer Vision . . ........

Joost van de Weijer and Fahad Shahbaz Khan

Optics and Computational Methods for Hybrid Resolution Spectral Imaging . . .

Masahiro Yamaguchi

Relative Pose Estimation and Fusion of 2D Spectral and 3D Lidar Images . . .

Zoltan Kato and Levente Tamas

Representation of Cultural Objects by Image Sets with Directional

THumination . . . ... .. e

Lindsay W. MacDonald

Color Reproduction

Descriptor-Based Image Colorization and Regularization. . .. ...........

Dmitry Kuzovkin, Christel Chamaret, and Tania Pouli

Experimental Analysis for Modeling Color of Halftone Images .. ........

G.M. Atiqur Rahaman, Ole Norberg, and Per Edstrom

Development of a Dynamic Relighting System for Moving Planar Objects

with Unknown Reflectance .. ........... ... .. ... .. .. .. ... . .....

Ryosuke Nakahata, Keta Hirai, Takahiko Horiuchi, and Shoji Tominaga

Color Sensation and Perception

Collection, Analysis and Representation of Memory Color Information. . . . .

G.M. Atiqur Rahaman, Md. Abul Hasnat, and Rahul Mourya

The Display Gamut Available to Simulate Colors Perceived

by Anomalous Trichromats . .. ...... ... .. .. .. ... .. .. .. .. .....

Jodo M.M. Linhares, Jorge L.A. Santos, Vasco M.N. de Almeida,
Catarina A.R. Jodo, and Sérgio M.C. Nascimento

16

23

33

43

59

69

81

93



XVI Contents

Visual Search for Normal Color and Dichromatic Observers

Using a Unique Distracter Color. . . .. ... ... ... ... ... ... ........ 111
Jorge L.A. Santos, Vasco M.N. de Almeida, Catarina A.R. Jodo,
Jodo M.M. Linhares, and Sérgio M.C. Nascimento

First Stage of a Human Visual System Simulator: The Retina . . ... ...... 118
Pablo Martinez-Caiiada, Christian Morillas, Juan Luis Nieves,
Begoiia Pino, and Francisco Pelayo

Color Image Processing

The Color Logarithmic Image Processing (CoLIP) Antagonist Space
and Chromaticity Diagram. . . . ......... ... .. . . . 131
Yann Gavet, Johan Debayle, and Jean-Charles Pinoli

Does Color Influence Image Complexity Perception? . ... ............. 139
Gianluigi Ciocca, Silvia Corchs, Francesca Gasparini, Emanuela Bricolo,
and Riccardo Tebano

Adaptive Filters for Color Images: Median Filtering and Its Extensions . ... 149
Andreas Kleefeld, Michael Breufs, Martin Welk, and Bernhard Burgeth

Spectral Imaging

Simone Bianco

Spectral Impulse Noise Model for Spectral Image Processing . .......... 171
Hilda Deborah, Noél Richard, and Jon Yngve Hardeberg

Evaluation of the Colorimetric Performance of Single-Sensor Image

Acquisition Systems Employing Colour and Multispectral Filter Array . . . . . 181
Xingbo Wang, Philip J. Green, Jean-Baptiste Thomas,
Jon Y. Hardeberg, and Pierre Gouton

Color in Digital Cultural Heritage

High-Resolution Multispectral Scanning for Mesoscopic Investigation
of Discoloration of Traditional Japanese Pigments . . ... .............. 195
Jay Arre Toque, Pengchang Zhang, Peng Wang, and Ari Ide-Ektessabi

Data Fusion of Objects Using Techniques Such as Laser Scanning, Structured
Light and Photogrammetry for Cultural Heritage Applications . .......... 208
Citlalli Gdmez Serna, Ruven Pillay, and Alain Trémeau



Contents XVII

Accuracy in Colour Reproduction: Using a ColorChecker Chart to Assess

the Usefulness and Comparability of Data Acquired with Two

Hyper-Spectral Systems. . . ... ... 225
Tatiana Vitorino, Andrea Casini, Costanza Cucci, Ana Gebejes,
Jouni Hiltunen, Markku Hauta-Kasari, Marcello Picollo,
and Lorenzo Stefani

Estimating the Colors of Paintings . . . ....... ... ... ... ... ... ..... 236
Sérgio M.C. Nascimento, Jodo M.M. Linhares, Catarina A.R. Jodo,
Kinjiro Amano, Cristina Montagner, Maria J. Melo, and Marcia Vilarigues

Author Index . . .. ... ... . .. . e 243



Invited Talks



Color and Spectral Mixings in Printed Surfaces
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Abstract. The present paper discusses the concept of subtractive color mixing
widely used in color hardcopy applications and shows that a more realistic con-
cept would be “spectral mixing”: the physical description of the coloration of
light by printed surfaces comes from the mixing of light components selectively
absorbed by inks or dyes during their patch within the printing materials. Some
classical reflectance equations for continuous tone and halftone prints are
reviewed and considered as spectral mixing laws. The challenge of extending
these models to new inkless printing processes based on laser radiation is also
addressed.

Keywords: Color mixing - Printing - Halftone colors - Spectral reflectance

1 Introduction

Color mixing is a key-concept in color reproduction, either by painting, printing, or
displaying. It refers to the observation that a large panel of colors (the color gamut)
can be achieved by varying the amount of a limited set of base colors, called prima-
ries. With light emitting systems, the primaries are light sources, often with red, green
and blue color, that are either superposed or juxtaposed with a shorter period than the
visual acuity. Since the tristimulus values of the produced colors is a linear, additive
combination of the tristimulus values of the three primaries, this type of color mixing
has been called additive color mixing. This concept, based on Grassman’s additivity
law, enabled the color matching experiments at the basis of colorimetry [1]. In oppo-
sition to the light emitting systems, paintings and printed hardcopies selectively atte-
nuate the incident white light in different proportions according to the wavelength.
Layers of primaries, paints or inks, are coated on a reflecting support and play a role
of spectral filtering of light. This type of color mixing is improperly called subtractive
color mixing [2], by reference to the fact that part of the incident light is removed by
filtering, but the tristimulus values of paint or ink mixtures cannot be obtained by
combining the tristimulus values of the primaries; it is therefore not a color mixing in
the sense of colorimetry.

However, the subtractive color mixing is also related to a physical experience,
which consists in producing many colors by mixing nonscattering dyes, usually
of cyan, magenta and yellow color. According to the Beer-Lambert-Bouguer law [1],
the spectral absorption coefficient of the dye mixture, K (L), is a linear, additive

© Springer International Publishing Switzerland 2015
A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 3-15, 2015.
DOI: 10.1007/978-3-319-15979-9_1
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combination of the spectral absorption coefficients K; (A) of the individual dyes.

“Spectral mixing” would therefore be more exact than “color mixing”. As the light
is exponentially attenuated as a function of the traveled distance in the mixture layer,
the internal spectral transmittance of a layer of mixture with thickness 7 is

t()\‘):e—l((x)h :H Ae_cjkj(}»)h (1

J

where c¢; denotes the relative concentration of each dye. By defining a reference con-
centration of each dye and a reference layer thickness, an internal transmittance

1 (A) can be attached to each primary, and the internal transmittance of the mixture

can be written
(=TT, (v) 2

where ¢; denotes the relative optical thickness of each dye, i.e. the product of its rela-
tive concentration and the layer thickness. Note that doubling the amounts of prima-

ries or doubling the layer thickness yields same internal transmittance *(\), ie. a
double optical thickness. Mixing the dyes or coated them on top of each other would
yields exactly the same color.

The Beer-Bouguer-Lambert law is an essential physical law to explain the colors
achieved by painting and prints, but not sufficient because no object is a simple mix-
ing or superposition of absorbing media. At least, the mixture has an interface with air
whose optical effect cannot be neglected [3-4], and it is generally deposited on a sup-
port, specular or diffusing, whose internal reflectance has obviously capital impact of
the final color. The refractive index of the layers may also have significant impact, as
observed by stacking colored films on a white background with or without optical
contact [5-7]. Lastly, the Beer-Bouguer-Lambert law is restricted to non-scattering
media; extension to scattering media is possible but more difficult, except when scat-
tering is sufficiently strong so that the Kubelka-Munk model applies [8-9].

Our intension in this paper is to review some spectral reflectance models developed
for predicting the color of printed surfaces and present them as so many examples of
spectral mixing laws. By recalling some of the main spectral mixing equations that
have been physically validated on different types of printed surfaces [10-11], this
study extends the recent study aiming at defining different color mixing systems for
computer graphics applications [12]. For the sake of simplicity, we address only the
case of printing on diffusing supports (paper, white polymer...) with inks assumed to
be nonscattering. This already covers most classical printing systems such as wood-
cut, analog photography, offset, inkjet, laser jet, dye diffusion thermal transfer (D2T2)
printing techniques [13]. We also address, in the last section, new inkless printing
technologies being currently developed, which produce colors on laser-sensitive lay-
ers [14-15]. For the surfaces colored with these new processes, the classical concept
of internal transmittance of primary, introduced above in the context of the Beer-
Lambert-Bouguer law and used in most of the models reviewed here, needs to be
revisited.
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2 Spectral Mixing Laws for Contone Printing

Printing systems capable of depositing variable amounts of dyes on the support on
each printable pixel, therefore able to produce uniformly colored surfaces as analog
photographs, are called continuous tone, or ‘“contone” printing systems. Thermal
transfer and thermal diffusion printers belong to this category, especially dye diffu-
sion thermal transfer (D2T2) printers used for proofing applications [13]. On an
optical point of view, the structure of the print comprises: a diffusing support, a dye
mixture layer, and the dye-air interface. The optical equation proposed in 1953 by
Williams and Clapper for photograph prints [16], which have comparable structure,
applies. Berns used a simplified version of this equation in 1993 to predict the spectral
reflectance of D2T?2 prints [17] by ignoring the diffuse or collimated angular distribu-
tion of light in the dye layer. The model is based on the spectral internal reflectance

p(A) of the support and the spectral internal transmittance #(A) of the dye layer

assumed to have same refractive index m (typically around 1.5). The reflectance and
transmittance of the dye-air interface are computed on both faces according the angu-
lar distribution of the light and the measuring geometry: 7, denotes the specular
reflectance of the interface (it is zero when the specular reflection is not viewed by the
detector), T, =0.95 is the transmittance for incoming light at 45°, T,, =0.96/ m? is
the transmittance for the exiting radiance at 0° (the term 1/m? accounts for the effect
of the refraction on the radiance [18]), and r, =0.6 is the reflectance at the dye side

for the light diffuse by the support [18, 19]. The flux transfers between the support,
the dye layer and the interface are presented in Fig. 1.

Incident flux Reflected flux
A

air-layer N

. SC

dye mixture
layer Em
€y

diffusing G
support s CL p(\) :
) H

Fig. 1. Path of light in a coloring layer made of three dyes on top of a diffusing support, accord-
ing to Berns” model

Finally, Berns equation is written:

2
R(x):rs+w “
1-rp(X)* (L)
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When the dye layer is a mixture (or equivalently a superposition) of primary dyes,
according to Beer’s law (2), the internal transmittance #(A) is given by (2). The sup-
port’s internal reflectance is deduced from the measured reflectance of the unprinted
support. The internal transmittance of each primary, at unit optical thickness (maxi-
mum amount of dye), is deduced from the spectral reflectance measured on a color
patch where this primary is alone.

3 Spectral Mixing Laws for Halftone Printing

Most traditional printing systems cannot transfer variable amount of ink on the sup-
port but deposit it according to a binary process. Color variations are thus produced
by covering partially the surface according to a screen of patterns. this technique is
called halftoning [20]. Once printed, the surface looks like a mosaic of colored areas,
called Neugebauer primaries, resulting from the partial overlap of the primary ink
patterns. For N printed inks, we have 2" Neugebauer primaries. In classical clustered-
dot or error diffusion prints, the fractional area occupied by each Neugebauer primary
can be deduced from the surface coverages of the primary inks according to the De-
michel equations [21], valid in all cases where the ink halftone dots are laid out inde-
pendently, e.g. in stochastic screening, in error diffusion, or in mutually rotated clus-
tered dot screens. For three primary inks with respective surface coverages ¢, m, and
y, the surface coverages a; of the eight primaries are respectively:

0y = (=) 1=m)(1=2) ey =(1=C)my
a,=c(l-m)(1-y) a.py=c(l-m)y

4y =(=)m(1=3) = am(i-y) @
a,=(1-c)(1-m)y Aoy = CNTY

3.1 The Yule-Nielsen Modified Spectral Neugebauer Equation

The Neugebauer equation is the only additive color mixing law applicable to printed
surfaces. It relies on the simple idea that each primary k in the halftone, i.e. each area
in the mosaic, contributes to the total reflectance of the surface in proportion of its

surface coverage ay, and with the same reflectance R, (X) as in a large patch where it

is printed alone. The spectral reflectance of a halftone print is thus written [22]
M=Y ar, (V) 5)

This linear equation can be equivalently expressed in terms of tristimulus values,
for example in the CIEXYZ 1931 color space:

(XH’YH*ZH)ZZkak(Xk’Y}c’Zk) (©)
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However, the use of the Neugebauer equation is very limited because it does not
account for the possible travels of photons through different primaries, especially due
to the scattering of light by the support. This phenomenon, called optical dot gain or
Yule-Nielsen effect [23-24], may have considerable consequence on the spectral ref-
lectance of the printed surface. The Neugebauer model is therefore limited to configu-
rations without any scattering of light (e.g. transparent inks on nonscattering printed
supports such as transparency films or mirrors) or where edge effects can be neglected
because the primary areas are very large (very low halftone screen frequency).

In order to correct the Neugebauer model, Yule and Nielsen [23] established an
empirical law that Viggiano used as a correction of the Neugebauer equation [25],
yielding the Yule-Nielsen modified Spectral Neugebauer (YNSN) equation:

RV =X ar" (V)] )

The n value is a real number, usually higher than 1, which generally increases as
the printing support is more scattering or the halftone screen frequency increases [11].
However, it has been noticed that values below 1 or even negative could provide bet-
ter agreement with the measurements, especially when the ink deeply penetrates the
support [26-28].

The physical interpretation of the Yule-Nielsen correction has been explored along
various axes, for example by modeling photon path probabilities in the different pri-
maries [29-31]. Recently, an unsuccessful attempt to find other empirical corrections
[32] suggests that this correction is the best expression of the physical reality. In most
cases, its capacity to match the measured reflectance of halftones is very good, despite
its disconcerting simplicity. However, the use of an exponential function in this cor-
rection is rather consistent with the physics of attenuation of light in absorbing media.

In addition to the already proposed interpretations, we add a simple one that, as far
as we can see, has never been exposed. Let us first schematically consider that the
reflection process of light is a succession of two events: the reflection by the support,
with reflectance p(A), and the attenuation through the halftone ink layer. The reflec-
tance of one Neugebauer primary printed alone is written

R, (M) =p(MT, (M), )

where T}, (L) can be assimilated to an internal transmittance of the primary, and the
Yule-Nielsen modified Spectral Neugebauer equation (7) is written

R =pW[ X, a1 (1)] ©)

If we subdivide the halftone layer into » identical sublayers of relative thickness
1/n, the internal transmittance of each one, assuming that no scattering is allowed
within it, is

> a1 (1) (10)
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where the power 1/n comes from the relative thickness 1/n of the sublayer, according
to Beer’s law.

The Yule-Nielsen equation (9) means that the light, while crossing the n sublayers,
mixes completely between each sublayer as represented in Fig. 2 for n = 2: the prima-
ries met by photons through the different sublayers are not correlated. Therefore, the
Yule-Nielsen correction actually models the optical dot gain by an alternation of
transmissions without scattering through the primaries and complete mixings of the
transmitted light components. The n values determines the number of mixing events
(which may be extended to real numbers) in the halftone layer, therefore the number
of transitions between primaries statistically carried out by the photons. Note that
even on transparency films where scattering is very low, the optimal » value is not 1
but rather around 2 [4].

Reflection by st attenuation by a 2nd attenuation by a
the support  sublayer (half thickness) sublayer (half thickness)
PN, A NG
1/2 1/2
«—> >

mixing

Reflected
flux

Incident
flux

Fig. 2. Physical interpretation of the Yule-Nielsen model for n =2

3.2 Multiplicative Equation for Halftone Colors

It is interesting to analyze the limit of the Yule-Nielsen modified Spectral Neugebauer
model as n tends to infinity [26-28]. Let us write equation (7) as follows

R(k)zexp[nlog(zkakR,l/”(k))] (11)

As n tends to infinity, 1/n tends to O and the terms R,l/ " (k) tend to 1. Since the

sum of the surface coverages a, is 1, the term in the log function tends to 1, and the
log function tends to its first order Taylor expansion:

lim log(Y a R/ (1)) = Jiilo(zkakR,i’” (A))-1 (12)

n—oo

Using the first order Taylor expansion of the exponential function, we also have

n—oo n—oo n—oo

lim R" ()= lim exp(llog R, (k)j = lim [1+llog R, (X)} (13)
n n



Color and Spectral Mixings in Printed Surfaces 9

Finally, we can easily show from (12) and (13) that (11) tends to

,H,x,(k)—hmexp[ Zkak( log R, ( ))}zexp[zkaklong(K)}

=TT &" ()

or, according to the notation introduced in (8), to

R . M =p(M]], 7" (V) (15)

This surprising result means that the Yule-Nielsen correction with infinite n trans-
forms the additive Neugebauer equation into a multiplicative one, and the surface
coverages into optical thickness as in (2). Pursuing our physical interpretation of the
correction, infinite » means infinity of infinitesimal sublayers, which is comparable to
a homogenous mixture of the inks for which the Beer-Lambert-Bouguer law applies.
This model is particularly suitable to halftones printed on very porous supports such
as cotton fabrics, in which the inks deeply penetrate and strongly spread so that the
halftone patterns almost completely disappear.

(14)

3.3  The Clapper-Yule Equation

The model introduced in 1953 by Clapper and Yule [33] for the spectral reflectance of
single-ink halftone prints follows the same approach as Berns’ model for contones
with a halftone ink layer in place of the dye mixture layer. The Clapper-Yule equation
extended to multi-ink halftones is

2
. T, T,.p M| Y a1, V)] a6)
Tl-pWn[ e W]
where ry, Tin, T, 1; and p(L) have same meaning as in Berns’ equation (3).
Incident flux Reﬂected flux
Air-ink Tox Xaili»)
interface
Halfione
ink layer
Diffusing
support

Fig. 3. Path of light in a halftone ink layer on top of a diffusing background, according to the
Clapper-Yule model
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The squared sum in the numerator of (16) denotes the transmissions of the incident
light and the exiting light through the halftone ink layer. The sum in the denominator
denotes the double attenuation of light issued from the diffusing support that is inter-
nally reflected by the interface through each primary, as represented in Fig. 3.

The corresponding reflectance is rl-Zakt,? . The diffusing support collects the light

components issued from the primaries and mixes them completely.

As for Berns’ model, the internal reflectance of the support and the internal trans-
mittance of primaries are deduced from the spectral reflectances measured on the
unprinted support and on patches where each Neugebauer primary is printed alone.

Note that both Yule-Nielsen modified Spectral Neugebauer model and the Clapper-
Yule model have been transposed to transmittance, including the possibility to ad-
dress duplex prints [34-37].

4 Real and Virtual Primaries

The previously introduced spectral mixing laws are adapted to classical printing sys-
tems where the number of primaries is finite: woodcut printing, offset, inkjet, electro-
photography, dye sublimation... [13]. However, they appear to be too limited for new
inkless printing technologies based on laser-sensitive layers being currently devel-
oped. The concept of primary needs to be reviewed. In order to better understand the
challenge of calibrating these printing processes, it is useful to recall how the classical
prediction models mentioned above are calibrated.

4.1 Calibration of Models for Traditional Printing Systems

The reflectances of the primaries in the Yule-Nielsen modified Spectral Neugebauer
model, or their internal transmittances in the Berns and Clapper-Yule models, are
directly deduced from the measured spectral reflectances of the single-primary color
printed on the support. Then, in order to predict the spectral reflectance of any printa-
ble color, there is nothing else but getting the quantities (optical thicknesses or,
accordingly, surface coverages) of the different primaries that have been actually
transferred on the support.

In D2T?2 printing, for example, we can verify that, for any printed color, we can
find values for the optical thicknesses &, €, and g, of the three primaries so that the
spectral reflectance predicted by (3) and the measured one correctly match. According
to our experiments carried out over 54 patches, the deviations between predicted and
measured spectra, assessed in terms of CIELAB 1994 AE, were 0.43 unit in average,
and 1.3 at maximum, which enables validating the accuracy of Berns’ equation.

Full calibration of the predictive models also includes the correspondence between
the amounts of transferred dyes or printed inks and the CMYK color coordinates of
the digital layout. Detailed methods are described in [12] for halftone printing and
[17] for contone printing.
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4.2  Challenges of Calibrating Inkless Printing Technologies

A new generation of inkless printing techniques is currently developed where an ach-
romatic photosensitive layer is coated on a support, then irradiated with lasers in order
to reveal the colors. A first example is the laser microinscription system on silver-
containing titania films presented in [14]. Many different angle- and polarization-
dependent colors may be produced by varying the laser command parameters (irra-
diance, wavelength, polarization, exposure...). The concept of primary would need to
be extended at least to angle and polarization variations.

Another example is the color laser marking (CLM) system based on the selective
bleaching of a mixture of cyan, magenta and yellow dyes under laser irradiation [15].
the bleachable dye mixture is coated on a polymer substrate then overlaid by a clear
polymer sheet. The laser irradiation enables bleaching uniformly the dye mixture
layer over a large area (see examples in Fig. 4). The structure of the print is compara-
ble to the contone prints and Berns’ equation (3) applies.

Fig. 4. Microscopic images of areas printed with the CLM technology by using different laser
wavelengths and powers. The coloring layer is nearly continuous, no halftoning is needed.

The ideal bleaching process would transform the initial colored dyes into clear
ones, but in practice, new color dyes appear due to photo- or thermo-chemical me-
chanisms. The consequence is that the initial mixture of the three dyes with known
internal transmittances is transformed into a mixture containing more dyes with un-
known internal transmittances.

We tried to reproduce the classical calibration procedure explained in Section 4.1
for the D2T2 printer, by using samples where each of the three bleachable dyes cyan,
magenta and yellow are coated alone. From the spectral reflectances of these samples,
we deduced their respective internal transmittances. Then, for 570 other printed
patches, we searched for their respective optical thicknesses in order to have the best
agreement between the spectral reflectance predicted by the Berns’ equation (3) and
the measured one. The average CIELAB 1994 AE value over these 570 patches was
of 4.2 units, with a maximum of 7.1 units. This poor accuracy shows that this method
fails with the CLM printing whereas is was performing for the D2T2 printing. The
question is therefore how to obtain effective primaries able to reconstruct the spectral
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space generated by the printing process. One possible solution to get them is to use a
principal component analysis (PCA) [17].

4.3 Mixing Virtual Primaries Obtained by PCA

We selected a set of 130 patches printed in CLM, measured their spectral reflectances,
deduced from them the 130 spectral internal transmittances of transformed dye mix-
tures, and finally performed the PCA on these 130 internal transmittances. The PCA
is computed by creating a rectangular matrix M whose rows correspond to the spec-
tral internal transmittances, then by diagonalizing the Gramian matrix M™ [38-39].
Most eigenvalues of M'M are close to zero; the number of eigenvalues with signifi-
cant value indicates the dimensionality of the spectral space [40], the significance of
eigenvalues being assessed by the cumulative percentage variance defined in [38].
The corresponding eigenvectors will be used as the spectral internal transmittances of
virtual primaries.

The ten highest eigenvalues obtained from 130 spectral reflectances of CLM
patches are shown in Table 1. The cumulative percentage variance reaches 100% with
the four highest eigenvalues: the dimensionality of the spectral space generated by the
CLM is therefore 4. By using the four corresponding eigenvectors as internal spectral
transmittances in equations (2) and (3), and by searching for their respective optical
thicknesses yielding the best agreement between the predicted and measured spectral
reflectances for each of the 570 printed patches, we obtained an average CIELAB
AEq, value between predicted and measured spectra of 0.55 units (maximum of 1.88
units). With six eigenvectors instead of four, the average AEo, became 0.10 unit (max-
imum of 0.39 unit). This represents an appreciable gain in accuracy compared to the
classical method based on 3 real primaries, and shows that the spectral mixing con-
cept can be extended to “virtual primaries” (containing however all physical informa-
tion from the measured spectra used in the learning step of the model) when the “real
primaries” cannot be clearly identified.

For comparison, we also tested this method from 54 CMY patches printed in
D2T2. Compared to CLM printing, similar cumulative variances are achieved with
one primary less (Table 1). We can estimate that the dimensionality of the spectral
space in D2T2 printing is 3, which is consistent with the fact that three dyes are trans-
ferred almost independently of each other [17].

Table 1. Ten highest eigenvalues of the Gramian matrix computed from spectral reflectances of
patches printed with the CLM printing process and a D2T2 printer

CLM printing process
Eigenvalue e; 2401 65.6 145 4.0 037 030 0.03 0.02 0.01 0.005
Cumulative % variance 96.6 99.2 998 100 100 100 100 100 100 100
D2T2 printer
Eigenvalue e; 529 1464 1060 0.12 0.11 0.03 0.01 0.008 0.002 0.001

Cumulative % variance 67.7 864 100 100 100 100 100 100 100 100




Color and Spectral Mixings in Printed Surfaces 13

5 Conclusions

In this work, we recalled the main predictive equations for the spectral reflectance of
printed surfaces: Berns’ equation, applicable to contone prints, and the Yule-Nielsen
modified Spectral Neugebauer and the Clapper-Yule model applicable to halftone
prints, by showing explicitly how they model the spectral attenuations of fluxes in
the colored primaries. We espcially reviewed the physical interpretation of the Yule-
Nielsen correction for the Neugebauer equation by showing that it actually models
the optical dot gain as an alternation of transmissions of light through the primaries
(pure absorption without scattering and transition to other primaries), and complete
mixings of the transmitted light components. We also highlighted the two limits of
this model according to the value of its tunable parameter n: one limit is the additive
Neubaeur equation (only case of additive color mixing applicable to printed surfaces),
and the opposite limit is the multiplicative equation where the halftone ink layer tends
to become a continuous ink layer. These equations can be considered as spectral mix-
ing laws giving a more physical meaning to the usual concept of subtractive color
mixing.

For the new inkless printing technologies based on laser irradiation, these classical
models must be extended in order to cope with angle- and polarization dependent
colors or to cope with the apparition of unknown primaries without simple correlation
with the input parameters of the printing system. However, using a principal compo-
nent analysis on a large set of printed samples, we can obtain the spectral parameters
of a finite number of “virtual primaries” and use them in the classical mixing laws,
while keeping satisfying agreement between the predicted and measured spectral
reflectances of the printed samples.
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project PHOTOFLEX n°ANR-12-NANO-0006 and the LABEX MANUTECH-SISE (ANR-10-
LABX-0075) of Université de Lyon.

References

1. Wyszecki, G., Stiles, W.S.: Color science: Concepts and methods, quantitative data and
formulae, 2nd edn. Wiley, New York (1982)

2. Sharma, G.: Color fundamentals for digital imaging. In: Color imaging handbook. CRC
Press, New-York (2003)

3. Saunderson, J.L.: Calculation of the color pigmented plastics. J. Opt. Soc. Am. A 32,
727-736 (1942)

4. Machizaud, J., Hébert, M.: Spectral transmittance model for stacks of transparencies
printed with halftone colors. In: Proc. IS&T/SPIE Electronic Imaging Symposium, SPIE
Vol. 8292, pp. 829240.1-10 (2012)

5. Simonot, L., Hébert, M., Hersch, R.D.: Extension of the Williams-Clapper model to
stacked nondiffusing colored coatings with different refractive indices. J. Opt. Soc. Am. A
23, 1432-1441 (2006)



14

13.
14.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

M. Hébert et al.

. Hébert, M., Hersch, R.D., Simonot, L.: Spectral prediction model for piles of nonscattering

films. J. Opt. Soc. Am. A 25, 2066-2077 (2008)
Hébert, M., Machizaud, M.: Spectral reflectance and transmittance of stacks of nonscatter-
ing films printed with halftone colors. J. Opt. Soc. Am. A 29, 2498-2508 (2012)

. Kubelka, P.: New contributions to the optics of intensely light-scattering material, part L. J.

Opt. Soc. Am. A 38, 448-457 (1948)
Emmel, P.: Physical models for color prediction. G, Bala, R. Digital Color Imaging Hand-
book. CRC Press, New York, In Sharma (2003)

. Wyble, D.R., Berns, R.S.: A critical review of spectral models applied to binary color

printing. Color Res. Appl. 25, 4-19 (2000)

. Hébert, M., Hersch, R.D.: Review of spectral reflectance prediction models for halftone

prints: calibration, prediction and performance. Color Res. Appl. (2014).
doi:10.1002/c0l.21907

. Simonot, L., Hébert, M.: Between additive and subtractive color mixings: intermediate

mixing models. J. Opt. Soc. Am. A 31, 58-66 (2014)

Kipphan, H.: Handbook of Print Media. Springer Verlag, Berlin (2001)

Crespo-Monteiro, N., Destouches, N., Bois, N., Chassagneux, F., Reynaud, S., Fournel, T.:
Reversible and irreversible laser microinscription on silver-Containing mesoporous titania
films. Adv. Mater. 22, 3166-3170 (2010)

. Lutz, N., Zinner, G.: Plastic body, which is provided in the form of a film, for example, a

transfer film or laminate film or which is provided with a film of this type, and method for
producing color image on or in a plastic body of this type. Patent US2004043308 (2004)

. Williams, F.C., Clapper, F.R.: Multiple Internal Reflections in Photographic Color Prints.

J. Opt. Soc. Am. 43, 595-597 (1953)

. Berns, R.S.: Spectral modeling of a dye diffusion thermal transfer printer. J. Electron. Im-

aging 2, 359-370 (1993)

. Hébert, M., Hersch, M.: Classical Print Reflection Models: A Radiometric Approach. J.

Im. Sci. Technol. 48, 363-374 (2004)

Judd, D.B.: Fresnel reflection of diffusely incident light. Journal of the National Bureau of
Standards 29, 329-332 (1942)

Kang, H.R.: Digital color halftoning. SPIE Publications, Washington (1999)

Demichel, M.E.: Procédés 26, 17-21 (1924)

Neugebauer, H.E.J.: Die theoretischen Grundlagen des Mehrfarbendrucks. Zeitschrift fuer
wissenschaftliche Photographie 36, 36-73 (1937). Translated into English: The theoretical
basis of multicolour letterpress printing. Color Res. App. 30, 322-331 (2005)

Yule, J.A.C., Nielsen, W.J.: The penetration of light into paper and its effect on halftone
reproduction. Proc. TAGA 3, 65-76 (1951)

Ruckdeschel, F.R., Hauser, O.G.: Yule-Nielsen effect in printing: a physical analysis.
Appl. Opt. 17, 3376-3383 (1951)

Viggiano, J.A.S.: The Color of Halftone Tints, Proc. TAGA, 647-661 (1985)
Lewandowski, A., Ludl, M., Byrne, G., Dorftner, G.: Applying the Yule-Nielsen equation
with negative n. J. Opt. Soc. Am. A 23, 1827-1834 (2006)

Viggiano, J.A.S.: Ink Penetration, Isomorphic Colorant Mixing, and Negative Values of
Yule-Nielsen n. In: Proc. IS&T 18th Color and Imaging Conference (Springfield, VA),
pp. 285-290 (2010)

Viggiano, J.A.S.: Physical Significance of Negative Yule-Nielsen n-value. In: Proc. IS&T
International Congress of Imaging Sciences (Rochester, NY), pp. 607-610 (2006)

Arney, J.S.: A probability description of the Yule-Nielsen effect, I: Tone reproduction and
image quality in the graphic arts. J. Im. Sci. Technol. 41, 633-636 (1997)



30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Color and Spectral Mixings in Printed Surfaces 15

Arney, J.S., Kutsube, M.: A probability description of the Yule-Nielsen effect. II : The im-
pact of halftone geometry : Tone reproduction and image quality in the graphic arts. Re-
cent Progress in Digital Halftoning II 41, 637-642 (1999)

Ruckdeschel, F.R., Hauser, O.G.: Yule-Nielsen effect in printing: a physical analysis.
Appl. Opt. 17, 3376-3383 (1997)

Hébert, M.: Yule-Nielsen effect in halftone prints: graphical analysis method and im-
provement of the Yule-Nielsen transform. In: Proc. SPIE 9015, Color Imaging XIX: Dis-
playing, Processing, Hardcopy, and Applications, (San Francisco, CA) 90150R (2014)
Clapper, F.R., Yule, J.A.C.: The Effect of Multiple Internal Reflections on the Densities of
Halftone Prints on Paper. J. Opt. Soc. Am. 43, 600-603 (1953)

Hébert, M., Hersch, R.D.: Reflectance and transmittance model for recto-verso halftone
prints. J. Opt. Soc. Am. A 23, 2415-2432 (2006)

Hébert, M., Hersch, R.D.: Reflectance and transmittance model for recto-verso halftone
prints: spectral predictions with multi-ink halftones. J. Opt. Soc. Am. A 26, 356-364
(2009)

Mazauric, S., Hébert, M., Simonot, L., Fournel, T.: Two-flux transfer matrix model for
predicting the reflectance and transmittance of duplex halftone prints. J. Opt. Soc. Am. A
31, 2775-2788 (2014)

Hébert, M., Hersch, R.D.: Yule-Nielsen based recto-verso color halftone transmittance
prediction model. Applied Optics 50, 519-525 (2011)

Tzeng, D.Y., Berns, R.S.: A review of principal component analysis and its applications to
color technology. Color Research & Application 30, 84-98 (2005)

Bugnon, T.: Flexible and Robust Calibration of the Yule-Nielsen Model for CMYK Prints.
PhD Dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2011)
Hardeberg, J.Y.: On the spectral dimensionality of object colours. In: Proc. IS&T
Conference on Colour in Graphics, Imaging, and Vision (CGIV2002), pp. 480—485 (2002)



An Overview of Color Name Applications
in Computer Vision

Joost van de Weijer! ®) and Fahad Shahbaz Khan?

1 Computer Vision Center Barcelona, Edifici O, Campus UAB,
Bellaterra 08193, Spain
joost@cvc.uab.es
2 Computer Vision Laboratory, Linképing University, Linkoping, Sweden

Abstract. In this article we provide an overview of color name
applications in computer vision. Color names are linguistic labels which
humans use to communicate color. Computational color naming learns a
mapping from pixels values to color names. In recent years color names
have been applied to a wide variety of computer vision applications,
including image classification, object recognition, texture classification,
visual tracking and action recognition. Here we provide an overview of
these results which show that in general color names outperform photo-
metric invariants as a color representation.

Keywords: Color features + Color names - Object recognition

1 Introduction

Color is one of the important characteristics of materials in the world around
us. As such it is one of the important features for computer vision systems in
their task to understand visual data. Its description however is complicated due
to many scene accidental events such as unknown illuminant, presence of shad-
ows and specularities, unknown acquisition system and image compression. As
a result many researchers ignored color and only extracted information from the
luminance channel. However, it has been shown that for many applications, rang-
ing from image retrieval and object recognition to visual tracking and texture
recognition, color description is crucial for obtaining state-of-the-art results.
There exist two main methodologies to the color description problem. The
first methodology is based on reflection models which describe the interaction
of light, material and sensors [5,6,8]. From these reflection models photometric
invariant descriptions of the material color can be derived. Given certain assump-
tions these descriptors can overcome the dependence of the color description on
scene accidental events. Examples are color descriptions which are invariant to
illuminant color, shadow-shading and specularities[4,19,22]. The main advan-
tage of these methods is that they do not need training data and therefore do
not require a laborious and costly labeling phase. The main drawback of these
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Fig. 1. Example of pixelwise color name annotation. The color names are represented
by their corresponding color.

methods is that the assumptions on which they are based (for example white illu-
mination, known acquisition device, etc) limit their application. Typically they
require high-quality images without compression artifacts, and are not very effec-
tive for the medium quality images which are currently used in the many large
scale data sets which have been collected from the internet.

The second methodology to color description is based on color names. Color
names are words that refer to a specific color and are used by humans to commu-
nicate colors. Examples of color names are ’blue’, ’crimson’ and ’amber’. Humans
use color names routinely and seemingly without effort. They have been primar-
ily studied in the fields of visual psychology, anthropology and linguistics [7].
Basic color terms have been studied in the influential work of Berlin and Kay
[2]. They are defined as those color names in a language which are applied to
diverse classes of objects, whose meaning is not subsumable under one of the
other basic color terms, and which are used consistently and with consensus
by most speakers of the language. Basic color names were found to be shared
between languages. However the number of basic terms varies from two in some
indigenous languages to twelve in for example Russian. Most computer vision
works, and also this paper, consider the eleven basic color terms of the English
language: black, blue, brown, grey, green, orange, pink, purple, red, white, and
yellow.

Computational color naming[1,18,23] aims to learn a mapping from pixel
values to color name labels (see Fig. 1). A clear example in computer vision
where color names are desired is within the context of image retrieval, where a
user might want to query for images with ”blue sofas”. The system recognizes
the color name ”blue”, and orders the retrieved results on ”sofa” based on their
resemblance to the human usage of ”blue’. Later research showed that color
names actually also constitute an excellent color descriptor. They where found to
be robust to photometric variations, while having in general higher discriminative
power than the photometric invariants.

In recent years, the two approaches to color description, namely, the physics-
based and the color name methods, have been compared on a wide variety of
computer vision applications. Constantly, color names where found to outper-
form the physics-based approaches by a significant margin. Color names have
been extensively tested in image classification tasks [11,13], object recogni-
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Fig. 2. Overview of approach to learn color names presented in [23]

tion [12], and action recognition [9]. Similar results where reported for texture
classification[10], visual tracking [3] and person reidentification [24]. For image
retrieval results for color names are reported in [16][25] and recently it was used
for improved illumination estimation[20]. The main reason for this success is
the high discriminative power which color names possess, while being robust to
photometric variations in images.

In this paper, we first outline the different approaches which exist to com-
putational color naming. In section 3 we present an overview of the results we
obtained when comparing color names to other color representations. After which
we discuss conclusion and future outlook for color name research in section 4.

2 Color Names

There are two main approaches to computational color naming, the main differ-
ence is the nature of their training data, either being calibrated or uncalibrated.
In a calibrated setup, multiple subjects are asked to label hundreds of color
chips within a well-defined experimental setup [15,17]. The colors are to be cho-
sen from a preselected set of color names (predominantly the set of 11 basic
color terms). Examples of color name mappings based on calibrated data are
the work of Mojsilovic [18] and Benavente et al. [1]. The latter proposed a para-
metric method to model color names. They introduce a fuzzy model which is
fitted to data obtained from psychophysical experimental data. This data is well
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calibrated, meaning that the color samples are presented in a controlled labora-
tory environment under stable viewing conditions with known illuminant. These
studies are very relevant within the fields of linguistics and color science. How-
ever, for applications in computer vision which are often based on uncalibrated
data, these mappings learned under perfect circumstances were often found to
underperform.

In [23], we proposed a different approach to learning color name mappings,
which is based on uncalibrated data obtained from ’Google image’. For this data
the illuminant, acquisition system and amount of compression are unknown. An
overview of this method is provided in Fig. 2. The images from ’Google images’
are represented as LAB histograms after which they are joined in one large data
matrix. An adapted probabilistic latent semantic analysis (PLSA) is applied to
factorize the matrix into mixture coefficients and topic distributions. Here the
topic distributions are the probabilities of colors to occur for a certain color
name. An advantage of this method, over the calibrated mappings described
above, is that it is more robust to scene accidental events, such as slight illumi-
nant changes, shadows, image compression, etc. Therefore this approach is more
popular for computer vision applications, and in the next section we provide an
overview of its usage.

It is interesting to interpret color names in terms of photometric invariance
theory which was developed by physics-based research to color. Color names
typically are elongated along the intensity axes (or achromatic axis) of the color
space, and more compact in the hue direction. As a result color names typically
describe a group of colors which have similar hue but vary significantly in sat-
uration and luminance. The hue is known to be a photometric invariant with
respect to shadow, shading and specularities. Since the color names typically
group colors of equal hue it can be said to be photometrically robust. Color
names however significantly differ from photometric invariants along the achro-
matic axes. Here photometric invariance do not differ between light and dark
colors and are often instable for dark and achromatic colors. On the other hand
there are three color names, black, grey and white, which allow to distinguish
between these sections of the color space. As a result, color names do not have
the drop in discriminative power along the achromatic axis which is observed for
photometric invariants [14].

3 Color Names Applications in Computer Vision

Here we provide an overview of the experiments over the last couple of years,
where we have used color names and compared them to photometric invariants.

As discussed above, the main advantage of color names is that they main-
tain the discriminative power while possessing a certain degree of photometric
robustness. In addition, they yield a very compact color representation of only
eleven dimensions. This also compares favorable with respect to photometric
invariants. For example the hue and opponent angle invariants of [21] are 36
dimensions. The popular color SIFTS [19] perform the SIFT operation on the
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Table 1. Comparison of color-name results versus baseline (either luminance or stan-
dard RGB) and versus the best reported photometric invariant. Results are provided for
several applications and different data sets. The final column indicates the performance
measure which is used. The results show that color names consistently outperform the
photometric invariants.

|applications Hdata set [baseline phot. inv.|color names[measure ‘
image class. flower-17 [11] 69.0 87.0 88.0 class. rate
birds-200 [13] 12.9 14.0 17.0 class. rate
object detection ||cartoons [12] 27.6 35.3 41.7 mAP
pascal 2007 [12]  [32.2 30.6 34.8 mAP
action recognition||willow[9] 66.6 67.2 68 mAP
Pascal 2010 [9] 55 54.8 56.3 mAP
standford-40 [9] (39 38.7 39.8 mAP
texture KTH-TIPS-2a [10][55.5 54.3 56.8 class. rate
KTH-TIPS-2b [10]]42.1 45.4 44.2 class. rate
FMD [10] 20.3 22.2 25.6 class. rate
Texture-10 [10] 52.3 52.7 56.0 class. rate
visual tracking  [JOTB [3] [545 [57.6 [74.0 [distance prec.

separate color channels of colorspaces. As a result the dimensionality increment
is either of 128 or 256 dimensions.

When incorporating color into a computer vision application, one has to
decide on the color feature to use, and on how to combine the shape and
color information. Standard approaches include early and late fusion methods,
but especially for image classification it was found that more complex fusion
approaches can significantly improve the overall results [13] [11]. The main idea
behind these more complex fusion methods is that they aim to ’bind’ the color
and shape information locally.

Our results of using color names for various application domains have been
summarized in Table 1. The results are compared to a baseline performance,
which is either the results based on luminance only or on RGB (if luminance
results are not reported). In addition, the best results reported with photometric
invariants for these data sets are given. One can observe that for all applications
the best results are obtained with color names. It is also interesting to note
that photometric invariants do not always outperform the baseline. The highest
performance increases are reported for object detection and visual tracking.

Next to our efforts to evaluate color name performance several other research
groups have resulted similar conclusions. A recent paper, which proposes to use
16 color names (fuchsia, blue, aqua, lime, yellow, red, purple, navy, teal, green,
olive, maroon, black, gray, silver and white) for person re-identification obtains
excellent results without using uncalibrated images to train. Most probably this
is due to the fact that colors are grouped based on their distance to the color
centers which represent these color names. As a result they do not obtain the
very compact color distributions for the achromatic colors which are typical for
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color mapping learned from calibrated data. In addition Zheng et al. [25] report
excellent image retrieval results based on color names.

4 Discussion and Future Research Directions

We have summarized recent evaluation results on color descriptors. Results on
various computer vision applications, including image classification, object recog-
nition, texture classification, visual tracking and action recognition, show that
color names outperform color descriptors based on photometric invariance.

Several future research directions can be considered to further improve color
representations. In a recent paper [14], we show that there is a third approach to
color description. This method directly optimizes the discriminative power of the
color representation given a classification problem. For the same dimensionality
as the color names (11 dimensions) this method reported slightly inferior results
than color names. However, for higher dimensions, this method obtained better
results on various data sets. This method could be further improved by learning
from larger data sets.

Also the approach of Zheng et al. [25], which extends the set of color names
to 16 color names, could be further investigated. Analysis of the optimal number
of color names, and the correct probabilistic representations of these overlapping
color name sets should be considered. Finally, applying recent advances in con-
volutional neural networks (deep learning) to the problem of discriminative color
representations learning is also expected to improve results.

Acknowledgments. This work is funded by the Project TIN2013-41751 of Spanish
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Abstract. The concept and computational methods for hybrid resolution spec-
tral imaging (HRSI) are introduced. In HRSI, a high-resolution spectral image
is reconstructed with combining a high-resolution RGB image and a low-
resolution spectral image. An important difficulty in high-resolution spectral
imaging is that the light-energy is reduced at the image sensor. Such problem
can be solved by the hybrid resolution approach, since the image resolution and
quality are mostly determined by the high-resolution RGB image, which can be
captured by commercial high-performance cameras. Different reconstruction
methods suitable for a hybrid resolution system are reviewed and the perfor-
mance of those methods is discussed. The hybrid resolution spectral video
system is also demonstrated.

Keywords: Spectral imaging - Multispectral imaging - Hybrid resolution - Color
reproduction - Low-resolution spectral sensor - Piecewise Wiener - Regression

1 Introduction

A spectral imaging technology will be more widely adopted if high-resolution imagery
can be acquired in video-rate with a compact and easy-to-handle imaging device.

Multispectral and hyperspectral imaging has been applied in remote-sensing [1],
industrial inspection [2], security, biomedical imaging [3-5], digital archive of cultural
heritage, and color reproduction [6-9]. Spectral video is also promising in those fields
[10-12]. However, there are still some limitations in spectral video, such as the scan-
ning time, the signal-to-noise (S/N) ratio, the less amount of light energy incident on
an image sensor, and the processing of huge amount of data. There have been re-
ported snapshot spectral camera systems recently [13-17], but it is yet difficult to
capture high-resolution spectral video with a compact and handy camera system.

In the author’s group, a hybrid-resolution spectral imaging (HRSI) have been de-
veloped for the solution to this problem. In HRSI, a low-spatial-resolution spectral
(LR-Spec) image and a high-spatial-resolution 3-band image (HR-RGB) are captured
simultaneously, and a spectral image with high-resolution in both spectral and spatial
dimensions is reconstructed, as shown in fig. 1. The image reconstruction method is a
key technology in HRSI, and this paper introduces some methods developed in our
group, along with the optical systems for this purpose.

© Springer International Publishing Switzerland 2015
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Fig. 1. The concept of hybrid resolution spectral imaging

2 Optical Systems for Spectral Imaging

Classical devices for capturing multispectral or hyperspectral images require spatial
or spectral scanning, for example, filter-wheel cameras [6] and push-broom type sen-
sors with diffraction grating [2]. Liquid crystal tunable filters [4] are also used for
spectral scanning. Nevertheless, single-shot (or snapshot) imaging is expected for
photographing moving objects or video imaging. Single-shot imaging is possible by
using multiple sensors and dichroic-mirrors, and multiband video systems were dem-
onstrated [11,12]. But the number of spectral channels is limited, as well as
the optics design becomes difficult because the optical path becomes longer for the
dichroic-mirror-based spectral imaging.

Advanced spectral imaging techniques suitable for video or single-shot imaging
have been studied recently, such as Fourier Transform Imaging Spectrometer (FTLS)
[13], Computed Tomography Imaging Spectrometer (CTIS) [14,15], Coded Aperture
Snapshot Spectral Imaging (CASSI) [16], and Image Mapping Spectrometer (IMS)
[17]. They enable the single-shot capture, but the spatial resolution is reduced.

For the application of spectral imaging to color reproduction, the display of realistic
image is important, and high-resolution spectral imaging is crucial. One of the difficulties
in high-resolution spectral imaging is the reduced light energy on the image sensor. It is
known that the signal-to-noise (S/N) ratio is highest in the dichroic-mirror-based optical
system, but the narrower the spectral bandwidth is, the less light intensity can be de-
tected. In our previous 6-band high-definition video experiment [6, 11], the lens aperture
was set larger so that enough light energy could be exposed to all the six image sensors.
Then the depth of field became shallow, and the captured images were sensed as rather
blurred. Moreover, the light intensity was sometimes not satisfactory yielding poor S/N
ratio. Therefore, a method to breakthrough the trade-off between the spatial resolution
and the image quality is needed for high-resolution spectral imaging.

3 Hybrid-Resolution Spectral Imaging System

The concept of HRSI is shown in fig. 1. It consists of two input devices; one with
high-spatial-resolution but small number of spectral channels, and another one with
high-spectral-resolution but low-spatial-resolution. Then the image data captured by
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those two devices are fused to derive an image with high spatial and spectral resolu-
tion. In the case of aiming at spectrum-based color reproduction, the former device
with high-spatial-resolution can be a conventional RGB (Red, Green, Blue) camera.

The image quality including S/N ratio and sharpness is mainly depends on the for-
mer imaging device, i.e., a high-resolution RGB camera. It is possible to employ wide
variety of high-performance digital cameras for both still and video imaging. The LR-
Spec imaging device is used for improving the spectral and color fidelity, and thus
this is a practical way to obtain high-resolution high-quality spectral images. Ob-
viously there is a limitation if the target object is very small and has unique spectral
characteristics, but in the application to color reproduction, the color difference in a
small object is hardly noticed by human vision. Hence the hybrid-resolution approach
is especially suitable for spectrum-based color imaging applications.

The idea of HRSI was originally introduced in remote sensing applications [18,19].
High-resolution spectral images are obtained by an image fusion of a low-resolution
multispectral image and a panchromatic high-resolution image, or a low-resolution
hyperspectral image and a high-resolution image with small number of bands.

We proposed the application of this concept to spectral color imaging [20-25].
In the earlier papers, the LR-Spec image was captured by scanning the fiber-based
spectrometer. In [24, 25], we reported the hyperspectral video imaging with quasi-
real-time spectrum-based color reproduction, using a low-resolution spectral sensor
(LRSS) as described in chapter 5. Cao, Ma et. al., also reported spectral video system
based on the similar approach [26, 27].

There are two ways for capturing HR-RGB and LR-Spec images, one is to use dif-
ferent cameras (a) and another way is to combine two systems using a beam splitter
(b). In satellite or airborne imaging, (a) is suitable because the object is located very
far from the two cameras, and the disparity can be ignored. If the objects are three-
dimensional and located near the camera, the disparity between the two cameras
should be taken into account. In such case, (b) seems to be better because the pixel-
wise registration is possible. But the optical system becomes complicated, the amount
of light energy is reduced by the beam splitter, and the handiness and the image quali-
ty are lost. If the method for reconstructing a spectral image is robust to the image
registration error, the optical system (a) is preferable.

4 Reconstruction Methods for HRSI

The optical system as shown in fig.1 enables the simultaneous acquisition of an HR-
RGB image and an LR-Spec image. Then, how can we reconstruct a spectral image
with both spatially and spectrally high-resolution? In this subsection, let us firstly
discuss the spectral estimation from the RGB data with the assistance of the spectral
dataset obtained from the LR-Spec image.

Spectral Estimation with the Aid of Spectral Measurements

When the number of channels is not satisfactory high in a spectral imaging device,
the spectral reconstruction is needed at each pixel of a spectral image. In color
reproduction applications, it was reported that the surface spectra can be represented
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by small number of parameters by a linear model [28]. Then it is possible to recon-
struct continuous spectrum from the measurement data of small number of spectral
channels, e.g., RGB 3-channels. Various reconstruction techniques have been
presented until now, including linear and nonlinear methods.

If we consider that continuous spectral data are sampled in N-wavelengths, then the
spectral data can be represented as a vector in an N-dimensional space. In the linear mod-
el, the reconstructed spectra are located within the 3-dimensional (3D) subspace as
shown in fig.2 (a). For example, in Wiener estimation method, which is one of common-
ly used technique, the 3D subspace for reflectance estimation is determined by the spec-
tral sensitivity of the input device, the illuminant spectrum, and the covariance matrix of
the object spectra. As it is not always possible to obtain the covariance matrix for specific
objects to be imaged, a mathematical model is sometimes employed, e.g., the covariance
matrix is derived based on Markov model [29]. In this case, the signals of closer wave-
lengths are considered to be more correlated, and the spectral distribution is assumed to
be smooth. Although it is mostly true for various cases, it is more preferable employ the
covariance matrix generated from the target object itself.

Thus, the LR-Spec data can be utilized to produce the covariance matrix of spectral
characteristics of the target object, i.e., Wiener estimation [fig. 2 (b)]. It is also possible to
derive the basis functions from the LR-Spec data by principal component analysis
(PCA). The basis functions becomes adaptive to the target object as they are obtained
from the measurement data. However, since only one set of three basis functions is used
in the entire image, the accuracy of reconstructed spectra is limited especially when there
are various objects that have different spectral characteristics in a scene.

Spatio-Spectral MAP Estimation

In fact, the LR-Spec image holds the information outside the subspace spanned by the
three basis functions derived by the PCA of the covariance matrix. In order to make
use of the information that lies outside the subspace, a method based on maximum a
posteriori probability (MAP) was proposed [20]. This method is called spatio-spectral

MAP (ss-MAP) estimation hereafter. The estimated spectral image f is given by
f = argmax, P(f|g,1) (1)

where f, g, and r represent the original spectral distribution of the target object, the
HR-RGB image, and the LR-Spec image, respectively. Under the assumption that the
spatial and spectral correlation is separable, the solution of eq.(1) becomes the form:

f=M;g+M,r )

where M, and M, express the estimation operators based on spectral and spatial corre-
lation, respectively. The first term is the same as the method described in the previous
paragraph, shown in fig. 2 (b). The second term is the estimation in the (N—-3) dimen-
sional subspace that is orthogonal to the three basis functions, derived from the spatial
correlation of the HR-RGB image [Fig. 3 (a)]. Therefore, the location information of
the LR-Spec image is exploited, and the component that is orthogonal to the 3D sub-
space spanned by the basis functions can be determined by this method. A problem in
this method is the calculation cost.



Optics and Computational Methods for Hybrid Resolution Spectral Imaging 27

High-resolution RGB image
B N-dimensional space

High-resolution RGB image

N-dimensional space
R OooooOoag
—| OooooOoao
OooooOoao
OooooOoag
Oooooao

Low-resolution spectral image

(a) (b)
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Fig. 3. Schematic illustration of (a) MAP estimation and (b) piecewise Wiener estimation in
hybrid resolution spectral imaging

High-resolution RGB image High-resolution RGB image

B N-dimensional space N-dimensional space

[T MRA
with unmixi

L:

ooo
DDDEEI"
o

O

Ooo0Ooano
Ooooo
ooooo

Low-resolution spectral image Low-resolution spectral image

(a) (b)
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Piecewise Wiener Estimation

Another way to overcome the limit of the 3D subspace is to use different sets of basis
functions depending on the location in the image. Piecewise Wiener (PW) estimation
technique utilize different estimation matrices derived from the spectral measure-
ments near the target pixel, as shown in fig. 3 (b) [21]. Then the estimation accuracy
is improved when multiple classes of objects are present in the image. The computa-
tional cost is not very high, where multiple matrices are prepared from the LR-Spec
image and applied to each pixel of the HR-RGB image. Then it is possible to imple-
ment the method in real-time without using special dedicated hardware. In practice,
adjacent blocks should be overlapped to avoid the block artifact at the boundary.

Regression-Based Reconstruction Methods

Multiple regression analysis (MRA) has also been applied to the spectral estimation
from multiband or RGB data, and can be applied to HRSIL. In contrast to the above
methods like ss-MAP and PW estimation that employ the spectral sensitivity of the
input device to derive estimation matrices, it is not needed in regression-based me-
thods. It is beneficial as the accurate spectral sensitivity measurement is not an easy
task.

To apply MRA to HRSI, the pixel correspondence is required. Since the pixel aper-
ture of LRSS is often larger than the RGB imager, a virtual low-resolution RGB im-
age is generated from its high-resolution version, to attain the correspondence in the
low-resolution pixels. Then MRA is applied to derive a matrix for spectral estimation,
and the matrix is applied to each pixel of the RGB image to generate a high-resolution
spectral image. In principle, the performance is equivalent to the Wiener estimation of
fig. 2 (b), except that the spectral sensitivity is not explicitly needed in MRA process.

It is also possible to apply the concept similar to the PW technique in MRA, which
was reported in [25]. As shown in fig. 4 (a), the image is divided into multiple blocks,
and the regression coefficient matrix is derived for each block. The spectral data from
LRSS are weighted depending on the distance from the center of each block. Then
different matrices are applied to every location in the image.

The method of fig. 4 (a) is based on the idea that the correlation of spectral charac-
teristics is higher if two pixels are closer. However, there are often cases where mul-
tiple objects in the scene have same spectral characteristics. In such case, the spectral
correlation is high even if multiple objects are apart from each other. Then a class-
based reconstruction technique was proposed [22]. Fig. 4 (b) shows the overview of
the method. Firstly an HR-RGB image is segmented based on the color information,
where each segment is not necessarily aggregated in the image; multiple separated
objects in the image can belong to the same class. Then the class of each pixel in the
LR-Spec image is determined from the corresponding region in the image, and MRA
is applied to each class. But there is a question: how do we handle the case when the
pixel in the LR-Spec image is larger and corresponds to the pixels of multiple classes
in HR-RGB image? In the method presented in [22], the spectral unmixing is applied
to a pixel that belongs to multiple classes and MRA is adopted to the unmixed classes.
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Bilateral and Trilateral Interpolation

Moreover, there have been reported hybrid systems for spectral video using bilateral
and trilateral interpolation [26, 27]. The spectrum of a pixel in high-resolution spec-
tral image is interpolated from neighboring pixels of LR-Spec data, with weighting
based on the Euclidian distances in both the spatial domain and the RGB color space.
In the video application, the interpolation was done in temporal direction as well after
an optical flow is adopted. The interpolation technique is designed for the system in
which the image set consists of RGB pixels with the spectral measurements and RGB
pixels that do not have correspondence to the spectral data. It is expected to extend
the interpolation method in future to the case when the pixel aperture sizes are differ-
ent in RGB and spectral images, like the instances shown in figs. 2-4.

5 Experiments

Performance of Different Reconstruction Methods

In [21], the performance of the PW and ss-MAP estimation was compared and it was
shown that the estimation accuracy was almost equivalent, while the computational
cost in ss-MAP estimation was much higher. The accuracy of PW estimation was
shown to be significantly higher than 3-band cameras without low-resolution spectral
measurement, and Wiener estimation using the low-resolution spectral data. Although
the accuracy depends on the image content, PW technique gives better results espe-
cially in the images that hold multiple objects of various colors. The results of
the class-based regression method with spectral unmixing were reported in [22],
where the performance is similar to PW, but sometimes better accuracy is achieved
depending on the constituents in the image.

The accuracy of the image registration between HR-RGB and LR-Spec images is
not serious in Wiener and PW techniques, where pixel-wise registration is needed in
MRA or LW-MRA. Bilateral and trilateral interpolation technique also requires high-
accuracy registration. In practice, a reconstruction method that is robust to the image
registration error is expected.

Experiments Using a Hybrid Resolution Spectral Video System

We have demonstrated a hybrid resolution spectral video system [24] that employs a
LRSS system [3], shown in fig. 5. It should be noted that the pixel size in the LRSS is
considerably large, where the 2D fiber array corresponds a set of pixels. It is an im-
portant issue for achieving higher sensitivity in the LRSS. In the video system,
the reproduction of a color or gray-scale image is not difficult even though spectral
processing, because the spectral processing is linear and only 3x3 or 1x3 matrix
multiplications are required for image reproduction. It is possible to reproduce an
image with spectrum-based color reproduction and single wavelength image in almost
real-time, and if a certain point on the image is clicked by a mouse, the spectral distri-
bution at the pixel is exhibited in another window.
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Table 1 shows the results on the evaluation of color reproduction accuracy. The
error was slightly large in PW estimation using LRSS data. We consider this unex-
pected larger error is caused by the error in the spectral sensitivity of the RGB cam-
era. In MRA and LW-MRA, the spectral sensitivity data is not used in the estimation
process, and the error became smaller. Additionally, the color differences are larger
because the difference was calculated from objects that have color variation measured
by a spectroradiometer and the HRSI system. Despite of those issues in the experi-
ment, it can be confirmed that the LW-MRA gives the best performance among the
tested methods. The image quality was basically determined by the HR-RGB camera,
and good-quality results were obtained.

Table 1. Color estimation error (average CIELAB AE) in
the estimated colors under D50 from the spectral images
captured under artificial sunlight (Seric Solax XC-100AF).

(a) ) (b) (a)-(c) indicate the images shown in figs. 6 (a)-(c).
Fig. 6. (a)-(c) Three images used | mage | ViENer | Wiener | = PW MRA | LW-MRA
in the experiment. The small (Markov) | (LRSS) (LRSS)
squares in the images indicate the (a) 13.1 13.0 26 75 34
regions used in the color differ- | (b) 125 9.1 8.1 5.5 5.2
ence calculations. (c) 124 7.9 5.6 8.8 5.5

6 Conclusion

This paper introduces the concept of HRSI and the algorithms for reconstructing a
spectral image. The HRSI enables to reconstruct a high-resolution spectral image from
LR-Spec and HR-RGB images. As the image quality mainly depends on the HR-RGB
image in HRSI, it becomes possible to obtain high-resolution and high-quality spectral
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images by a single-shot. It should be mentioned that the hybrid resolution approach is
not suitable for the application that requires to detect small regions with abnormal
spectral characteristics that cannot be distinguished by the HR-RGB image.

From the review of different reconstruction methods and the experimental compar-
ison presented in this paper, it is needed to undertake more comparative evaluations to
explore a practical reconstructing method for HRSI. Then it is also expected to
explore the applications of the hybrid-resolution systems that enables to capture high-
resolution and high-quality spectral images.
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Abstract. This paper presents a unified approach for the relative pose
estimation of a spectral camera - 3D Lidar pair without the use of any
special calibration pattern or explicit point correspondence. The method
works without specific setup and calibration targets, using only a pair of
2D-3D data. Pose estimation is formulated as a 2D-3D nonlinear shape
registration task which is solved without point correspondences or com-
plex similarity metrics. The registration is then traced back to the solution
of a non-linear system of equations which directly provides the calibration
parameters between the bases of the two sensors. The method has been
extended both for perspective and omnidirectional central cameras and
was tested on a large set of synthetic lidar-camera image pairs as well as
on real data acquired in outdoor environment.

1 Introduction

In the past years there was a considerable research effort invested in the fusion
of heterogeneous image data acquired from 2D and 3D sensors [24]. The need for
fusing such sensory data is common to various research fields including remote
sensing [17], medical image processing [3,12,20], mobile robotic applications [6],
urban autonomous driving [5], geodesic information fusion [27], cultural heritage
documentation [1], or entertainment related commercial depth cameras[2]. One
of the most challenging issues is the fusion of 2D RGB imagery with other
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3D range sensing modalities (e.g. Lidar) which can be formulated as a camera
calibration task. Internal calibration refers to the self parameters of the camera,
while external parameters describe the pose of the camera with respect to a
world coordinate frame. The problem becomes more difficult, when the RGB
image is recorded with a non-conventional camera, such as central catadioptric
or dioptric (e.g. fish-eye) panoramic cameras. This paper focuses on the extrinsic
parameter estimation for a range-camera sensor pair, where the 3D rigid motion
between the two camera coordinate systems is determined. Due to the different
functionality of the ranger (e.g. lidar) and central camera, the calibration is
often performed manually, or by considering special assumptions like artificial
markers on images, or establishing point matches. These procedures tend to be
laborious and time consuming, especially when calibration has to be done more
than once during data acquisition. In real life applications, however, it is often
desirable to have a flexible one step calibration without such prerequisites.
Based on our earlier works [25,26], this paper presents a region based cal-
ibration framework for spectral 2D central cameras and 3D lidar. Instead of
establishing point matches or relying on artificial markers or recorded intensity
values, we propose a relative pose estimation algorithm which works with seg-
mented planar patches. Since segmentation is required anyway in many real-life
image analysis tasks, such regions may be available or straightforward to detect.
The main advantage of the proposed method is the use of regions instead of
point correspondence and a generic problem formulation which allows to treat
several types of cameras in the same framework. Basically, we reformulate pose
estimation as a shape alignment problem, which is accomplished by solving a
system of nonlinear equations. The method has been quantitatively evaluated
on a large synthetic dataset both for perspective [26] and omnidirectional [25]
cameras, and it proved to be robust and efficient in real-life situations.

1.1 Related Work

There are various techniques applied for camera calibration, e.g. point or line
correspondence finding [13], intensity image based correlation [19], use of spe-
cific artificial land-marks [8] or mutual information extraction and parameter
optimization[11]. The extrinsic calibration of 3D lidar and low resolution color
camera was first addressed in [28] which generalized the algorithm proposed
in [29]. This method is based on manual point feature selection from both sen-
sory data and it assumes a valid camera intrinsic model for calibration. A similar
manual point feature correspondence based approach is proposed in [21]. There
are also extensions to the simultaneous intrinsic-extrinsic calibration presented
in the work [16] which used the intensity information from lidar to find corre-
spondences between the 2D-3D domains. Other works are based on the fusion of
IMU or GPS information in the process of 2D-3D calibration [18], mainly in the
initialization phase of the calibration [27]. Recently there has been an increasing
interest in various calibration problem setups ranging from high-resolution spa-
tial data registration [13] to low-resolution, high frame rate depth commercial
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cameras such as Kinect [9], or in the online calibration during different measure-
ments in time such as in case of a traveling mobile robot [19].

The most commonly used non-perspective central camera systems, especially
for robotics and autonomous driving, are using omnidirectional (or panoramic)
lenses. The geometric formulation of such systems were extensively studied
[15,22,23]. The internal calibration of such cameras depends on these geometric
models. Although different calibration methods and toolboxes exist [10,14,22]
this problem is by far not trivial and is still in focus [23]. While internal calibra-
tion can be solved in a controlled environment, using special calibration patterns,
pose estimation must rely on the actual images taken in a real environment.
There are popular methods dealing with point correspondence estimation such
as [22] or other fiducial marker images suggested in [10], which may be cumber-
some to use in real life situations. This is especially true in a multimodal setting,
when omnidirectional images need to be combined with other non-conventional
sensors like lidar scans providing only range data. The Lidar-omnidirectional
camera calibration problem was analyzed from different perspectives: in [21],
the calibration is performed in natural scenes, however the point correspon-
dences between the 2D-3D images are selected in a semi-supervised manner.
The method in [16] tackles calibration as an observability problem using a (pla-
nar) fiducial marker as calibration pattern. In [19], a fully automatic method is
proposed based on mutual information (MI) between the intensity information
from the depth sensor and the omnidirectional camera. Also based on MI, [27]
performs the calibration using particle filtering. However, these methods require
a range data with recorded intensity values, which is not always possible and
often challenged by real-life lighting conditions.

2 Region-Based Calibration Framework

Consider a lidar camera with a 3D coordinate system having its origin O in
the rotation center of the laser sensor, x and y axes pointing to the right and
down, respectively, while z is pointing away from the sensor. Setting the world
coordinate system to the lidar’s coordinate frame, we can always express a 3D
lidar point X with its homogeneous world coordinates X = (X1, Xo, X3,1)T.

A classical perspective camera sees the same world point X as a homogeneous
point x = (x1,22,1)7 in the image plain obtained by a perspective projection P:

x = PX = KR[I[t]X, (1)

where P is the 3 x 4 camera matrix, which can be factored into the well known
P = KR[I|t] form, where I is the identity matrix, K is the 3 x 3 upper triangular
calibration matrix containing the camera intrinsic parameters, while R and t are
the rotation and translation, respectively, aligning the camera frame with the
world coordinate frame. A classical solution of the calibration problem is to
establish a set of 2D-3D point matches using a special calibration target [9,16],
and then solve for P via a system of equation based on (1) or the minimization
of some error function. When a calibration target is not available, then solutions
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typically assume that the lidar points contain also the laser reflectivity value
(interpreted as a gray-value), which can be used for intensity-based matching or
registration [13,21].

However, in many practical applications (e.g. infield mobile robot), it is not
possible to use a calibration target and most lidar sensors will only record depth
information. Furthermore, lidar and camera images might be taken at differ-
ent times and they need to be fused later based solely on the image content.
Therefore the question naturally arises: what can be done when neither a spe-
cial target nor point correspondences are available? Herein, we present a solution
for such challenging situations. In particular, we will show that by identifying a
single planar region both in the lidar and camera image, the extrinsic calibra-
tion can be solved. When two such non-coplanar regions are available then the
full calibration can be solved. Of course, these are just the necessary minimal
configurations. The more such regions are available, a more stable calibration is
obtained.

Hereafter, we will focus only on the relative pose (R,t) estimation, hence
we assume that for perspective cameras K is known. As for omnidirectional
cameras, the intrinsic parameters and relative pose is discussed below.

2.1 Omnidirectional Camera Model

A unified model for central omnidirectional cameras was proposed by Geyer
and Daniilidis [7], which represents central panoramic cameras as a projection
onto the surface of a unit sphere. This formalism has been adopted and models
for the internal projection function have been proposed by Micusik [15] and
subsequently by Scaramuzza [22] who derived a general polynomial form of the
internal projection valid for any type of omnidirectional camera. In this work,
we will use the latter representation.

Let us first see the relationship between a point x in the omnidirectional
image Z and its representation on the unit sphere S (see Fig. 1). Note that
only the half sphere on the image plane side is actually used, as the other half
is not visible from image points. Following [22], we assume that the camera

Fig. 1. Omnidirectional camera model
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coordinate system is in S, the origin (which is also the center of the sphere)
is the projection center of the camera and the z axis is the optical axis of the
camera which intersects the image plane in the principal point. To represent
the nonlinear (but symmetric) distortion of central omnidirectional optics, [22]
places a surface g between the image plane and the unit sphere S, which is
rotationally symmetric around z. Herein, as suggested by [22], we will use a
fourth order polynomial g(||x||) = ag + az||x||?> + as||x||* + a4||x||* which has 4
parameters representing the internal parameters (ag, as,as,as) of the camera.
The bijective mapping @ : Z — S is composed of 1) lifting the image point x € Z
onto the g surface by an orthographic projection

Xg = 2 x 3 4 (2)
ao + az[|x||* + as[|x|[|” + aal/x||

and then 2) centrally projecting the lifted point x, onto the surface of the unit

sphere S:
X

g
%5 =009 = | )
Thus the omnidirectional camera projection is fully described by means of unit
vectors xg in the half space of R3.

The projection of a 3D world point X € R? onto S is basically a traditional
central projection onto S taking into account the extrinsic pose parameters (R,
t) acting between the camera (represented by S) and the world coordinate frame.
Thus for a world point X and its image x in the omnidirectional camera, the
following holds on the surface of S:

RX +t

P(x)=xs=¥(X) = TRX 7]

(4)

2.2 Pose Estimation

Our solution for the relative pose is based on the 2D shape registration approach
of Domokos et al. [4], where the alignment of non-linear shape deformations are
recovered via the solution of a special system of equations. Here, however, the
calibration problem yields a 2D-3D registration problem in case of a perspective
camera and a restricted 3D-3D registration problem on the spherical surface
for omnidirectional cameras. These cases thus require a different technique to
construct the system of equations.

2.3 Relative Pose of Perspective Cameras

Since correspondences are not available, (1) cannot be used directly. However,
individual point matches can be integrated out yielding the following integral

equation:
/xdx:/ zdz, (5)
D PF
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where D corresponds to the region visible in the camera image and PF is the
image of the lidar region projected by the camera matrix P. The above equation
corresponds to a system of 2 equations only, which is clearly not sufficient to
solve for all parameters of the camera matrix P. Therefor we adopt the general
mechanism proposed in [4] to construct new equations. Indeed, (1) remains valid
when a function w : R? — R is acting on both sides of the equation

w(x) = w(PX), (6)

and the integral equation of (5) becomes [26]

[ wtix= [ w(za (7)

Adopting a set of nonlinear functions {wi}f:h each w; generates a new equation
yielding a system of ¢ independent equations. Hence we are able to generate suffi-
ciently many equations. The parameters of the camera matrix P are then simply
obtained as the solution of the nonlinear system of equations (7). In practice, an
overdetermined system is constructed, which is then solved by minimizing the
algebraic error in the least squares sense via a standard Levenberg-Marquardt
algorithm.

Note that computing the integral on the right hand side of (7) involves the
actual execution of the camera projection P on F, which might be computation-
ally unfavorable. However, choosing power functions for w; [26]:

wi(x) = z]2y", n; <3 and m; <3 (8)

and using a triangular mesh representation F% of the lidar region F, we can
adopt an efficient computational scheme. First, let us note that this particular
choice of w; yields the 2D geometric moments of the projected lidar region PF.
Furthermore, due to the triangular mesh representation of F, we can rewrite the
integral adopting w; from (8) as [26]

/x?ix;nidx = / 21 zy  dz ~ E /z?z;”dz (9)
D PF Viaera D

The latter approximation is due to the approximation of F by the discrete mesh
F%. The integrals over the triangles are various geometric moments which can
be computed using efficient recursive formulas [26].

2.4 Relative Pose of Spherical Cameras

For omnidirectional cameras, we have to work on the surface of the unit sphere
as it provides a representation independent of the camera internal parameters.
Therefore the system of equation has the following form [25]:

//W(Xs)st = //W(Zs)dfs (10)
Ds Fs
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Ds and Fs denote the surface patches on S corresponding to the omni and lidar
planar regions D and F, respectively. To get an explicit formula for the above
integrals, the surface patches Ds and Fs can be naturally parameterized via
@ and ¥ over the planar regions D and F. Without loss of generality, we can
assume that the third coordinate of X € F is 0, hence D C R?, F C R?; and
Vxs € Ds : xs = P(x),x € D as well as Vzs € Fs : zs = ¥(X),X € F yielding
the following form of (10) [25]:

deydes = // Hax ax
1 2

where the magnitude of the cross product of the partial derivatives is known as
the surface element. Adopting a set of nonlinear functions {w; }{_,, each w; gen-
erates a new equation yielding a system of ¢ independent equations. Although
arbitrary w; functions could be used, power functions are computationally favor-
able [4,26] as these can be computed in a recursive manner:

o) 3 = wxax ()

wi(xs) = xlfxg”’x?, with 0 < I;,m;,n; <2and l; + m; +n; <3 (12)

2.5 Algorithm Summary

The summary of the numerical implementation of the proposed method is pre-
sented in Algorithm 1. Note that normalization is critical in the perspective case
to ensure a numerically stable solution (see [4,26] for details). In the omnidirec-
tional case, we use the coordinates on the spherical surface which are already
normalized as S is a unit sphere.

Algorithm 1. The proposed calibration algorithm

Input: 3D point cloud and 2D binary image representing the same region, and the
internal camera parameters (either K or (ao, az, as, as)).

Output: Relative pose (R, t).

1: For perspective cameras, normalize 3D points into the unit cube and the 2D points
into the unit square centered in the origin. For omnidirectional cameras, project
3D points and 2D image pixels onto the surface of S using (3) and (4).

2: Triangulate the region represented by the 3D point cloud.

3: Construct the system of equations. For perspective cameras, use (9) with the poly-
nomial w; functions of (8), whereas for omnidirectional cameras, use (11).

4: Initialize the relative pose (I, 0) for perspective cameras and follow the initialization
procedure from [25] for omnidirectional cameras.

5: Solve the nonlinear system of equations using the Levenberg-Marquardt algorithm

6: Unnormalize the solution.
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£

RGB image 3D data fused 3D image

Fig. 2. Cultural heritage use case example with the Bremen Cog. Segmented planar
regions are shown in yellow (best viewed in color).

Fig. 3. Dioptric (fish eye) and lidar images with segmented area marked in yellow, and
the fused images after pose estimation (best viewed in color)

3 Discussion

In this paper a method for relative pose estimation of central cameras has been
presented. The method is based on a point correspondence-less registration tech-
nique, which allows reliable estimation of extrinsic camera parameters. The pre-
sented algorithms have been applied to various datasets. Three representative
examples are shown in Fig. 2, Fig. 4, and Fig. 3. The perspective images in Fig. 2
and Fig. 4 were obtained with a commercial camera while the omnidirectional
images were captured with a catadioptric lens in Fig. 4 and a fish-eye in Fig. 3,
respectively. After the raw data acquisition, the segmentation was performed in
both domains. Finally, the estimated transformation was used to fuse the depth

Perspective case Omnidirectional case

Fig. 4. Perspective, catadioptric and lidar images with segmented area marked in yel-
low, and the fused images after pose estimation (best viewed in color)
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and RGB data by reprojecting the point cloud on the image plane using the
internal and external camera parameters, and thus obtaining the color for each
point of the 3D point cloud. The method proved to be robust against segmen-
tation errors, but a sufficiently large overlap between the regions is required for
better results.
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Representation of Cultural Objects by Image
Sets with Directional Illumination

Lindsay W. MacDonald™”
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Abstract. In a dome illumination system, many different images can be
captured in pixel register from the same viewpoint, each illuminated from a dif-
ferent direction. This is a much richer representation than a single image, and
has many applications in cultural heritage for the digitising and display of ob-
jects that are flattish with surface relief, such as coins, medals, fossils, rock art,
incised tablets, bas reliefs, engravings, canvas paintings, etc. The image sets can
be used in three ways: (1) visualisation by interactive movement of a virtual
light source over the enclosing hemisphere; (2) 3D reconstruction of the object
surface; (3) modelling of the specular highlights from the surface and hence
realistic rendering.

Keywords: Illumination - Surface normals - 3D reconstruction - Specular model

1 Dome Photography

It has long been recognised that illumination incident at low angles can help to visual-
ise the relief on surfaces. In the study of canvas paintings it has been used for examin-
ing the artist’s technique [1], identification of retouching [2] and detection of forgery
[3]. In astronomy the oblique direction of the sun’s rays has shown the structure of
craters on the moon [4]. In archaeology raking light has been used to reveal inscrip-
tions on marble and stone that were otherwise invisible [5]. In palaeographic studies
of incised wooden and lead curse tablets from the Roman empire, directional illumi-
nation has been used to enhance the marks left by the stilus [6]. Generally it has been
employed in an empirical way, with the observer or photographer moving the object
relative to the light source (or vice versa) until the desired effect was achieved.
Directional lighting has also been key to the measurement of angular reflectance dis-
tributions from the surfaces of materials. In a gonioreflectometer, by moving the source
of illumination relative to the sample and/or detector, the bidirectional reflectance dis-
tribution function (BRDF) can be obtained. Ward developed an automated system for
BRDF measurement with a movable light source and rotating sample, under a hemi-
spherical mirror [7]. Malzbender showed how directional illumination could be used in
a systematic way for digital photography [8]. He built an illumination dome at HP Labs
from an acrylic hemisphere of diameter 18 inches (45 cm) with 24 fixed flash lights.
The camera was mounted at the ‘north pole’ and the object placed on a horizontal sur-
face beneath. This enabled sets of 24 images to be taken in pixel register.
© Springer International Publishing Switzerland 2015

A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 43-56, 2015.
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The UCL Dome is an acrylic hemisphere of nominal diameter 1030 mm, fitted with
64 flash lamps, each mounted on a separate circuit board (Fig. 1). The lamps are distrib-
uted around the hemisphere, arranged in three tiers of 16, one tier of 12, and one tier of
4 lights at approximately equal intervals. The lowest tier produces raking light across
the equatorial plane (<10°), whereas the highest tier is nearly polar (>80°). The Nikon
D200 digital camera is mounted on a rigid steel frame above the dome.

Fig. 1. (left) Hemispherical dome with the camera mounted above the north pole, with 64 flash
lights on circuit boards, connected by ‘daisy chain’ ribbon cables; (right) flash lamp firing

Because both the cam-
era mounting point and the
lamp positions are fixed,
the dome geometry can be
characterised  precisely.
Although the original con-
cept design called for the
flash lights to be placed at
regular intervals over the
surface of the hemisphere,
the positions of the lamps
in the actual dome, as
constructed, differ from
the ideal. Three techniques
were employed for the
geometric calibration of
flash light positions in the
dome: (1) the shadow cast

Fig. 2. Coordinates of 64 flash lamp centroids plotted on he-
mispherical dome, with representation of lens and sensor (top)

by a vertical pin onto graph paper; (2) multi-image photogrammetry with retro- reflective
targets; and (3) multi-image photogrammetry using the flash lights themselves as targets.
It was found that although photogrammetric methods could locate individual target coor-
dinates to an accuracy of 20 microns, the uncertainty of locating the centroids of the flash
lights was approximately 1.5 mm [9]. This result is considered satisfactory for photometric

imaging purposes.
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2 Visualisation of Surfaces T,

The set of images from the dome can be used to visualize ||\ /1~ L* SN
the effect of moving a virtual light source over the object, | /" ol T
illuminating its surface from any angle in the hemisphere. || [
The question is how to interpolate the 64 angles of the 7
lights in the dome to achieve a continuous movement? One || / 1~
approach would be to make an azimuthal equidistant pro- |/ -~ e 1o

jection of the lamp coordinates onto the equatorial plane === —5==

and then to triangulate the network (Fig. 3). The image
intensity could then be estimated as a weighted linear Fig. 3. Delaunay triangula-
combination of the three nearest neighbours of the pro- ton of XY coordinates of
jected virtual light source. Better results could be obtained a,Zlmmhal equidistant projec-
. . e e tion of dome lamps

by fitting surface patches to the intensity distribution.

An alternative approach is to fit a continuous function
to all intensity values over the hemisphere. Malzbender showed that the intensity
distribution over all angles of the hemisphere could be approximated by a biquadratic
function with six parameters, in a method he called polynomial texture mapping
(PTM). Singular value decomposition (SVD) is applied to determine the projection of
each of the lamp vectors onto the biquadratic components, and then regression with
least-squares minimisation to obtain the six coefficients for each pixel [9]. PTM as-
sumes separability of the reconstruction function, with a constant ‘base colour’ per
pixel modulated by an angle-dependent luminance factor:

I=L(O;,d;,u,v)R(u,v) (1)

for R(u,v) and similarly for G(u,v) and B(u,v). The dependence of the luminance on
light direction is modelled by the biquadratic function:

L(u,v; L, 1,) = aolu2 + all,,2 +a,l,l, +asl, +a,l, +as 2)

where (L, [,,) are projections of the normalised light vector into the local texture coor-
dinate system (u, v) and L is the resultant luminance. A separate set of six coefficients
(ag-as) is fitted to the image data for each pixel and stored in the PTM file at the
same spatial resolution as each of the original images. For reconstruction in the
viewer software, the position of the virtual light source is expressed in coordinates
(u,v) and the intensity of every pixel calculated by Eq. (2). The PTM has the same
spatial resolution as each of the original images, but has a low resolution in the angu-
lar space of incident illumination, because the n directions of the image set are
approximated by only 6 coefficients at each pixel.

PTM has found favour with the museum and cultural heritage community because
it provides a convenient and attractive way to visualise objects in collections. The
interactive control of lighting direction in the viewer software facilitates perception of
the surface structure compared to static photographs, thereby enhancing the legibility
of surface relief and inscriptions [10]. The illusion of a 3D surface lit by a movable
light source is compelling, even though there is no underlying 3D representation.
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Fig. 4. Angular distributions of intensity, plotted in the azimuthal equidistant projection, for
four approximations to the measured intensity distribution. The black dots represent actual
reflected intensity of the 64 lamps. All intensities are normalised to a maximum of 100.

An improved method of fitting the directional distributions was introduced by
Gautron et al [11] by limiting the domain of the orthogonal basis functions of spherical
harmonics to a hemisphere instead of the full sphere. These hemispherical harmonic
(HSH) functions provide a more compact and accurate way of representing hemispheri-
cal distributions than the biquadratic function used in PTM. They have since been
widely adopted for a variety of computer graphic applications where only half of the
spherical distribution needs to modelled, such as the representation of BRDFs, environ-
ment map rendering of non-diffuse surfaces and global-illumination computation.

HSH components are expressed as functions of angles for azimuth 8 and co-
latitude ¢ over the hemisphere [12]. Good results are obtained with sixteen compo-
nents, which include four first-order, five second-order and seven third-order terms.
Fitting of the coefficients follows the same SVD-based procedure as for PTM, and
can be applied to the image luminance (weighted sum of R,G,B channels) to provide
the angular modulation at each pixel of a constant R,G,B colour value. These compo-
nents can be conveniently visualised by projecting the hemisphere onto a plane
through an azimuthal equidistant projection. Comparison of the HSH and PTM ren-
derings (Fig. 4) shows that HSH (2nd-order with nine coefficients) gives a better rep-
resentation of the directionality of the surface, with higher contrast for local gradients.

How many images are needed to give an accurate rendering of the angular reflec-
tance distribution in PTM or HSH? Ideally one should capture images with illumina-
tion from all necessary angles but no more. The challenge is to reduce the number of
photographic image samples that need to be acquired while preserving the power of
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the digital model to represent the object realistically. A full BRDF analysis requires a
systematic sampling of a four-dimensional space, with both illumination and view
angles able to range over the full hemisphere. In the PTM and RTI scenarios, the view
direction is always fixed (usually at the zenith, perpendicular to the centre of the
object surface) and only the illumination direction is variable.

Gunawardane et al analysed the

sampling of both view and lighting 0551 M\ \
directions and whether methods for o5l 07 order SH (avg %,\

by a hemispherical dome with 64 | .

interpolation could be improved if 0.45! \
both view and lighting information % 04l E “:‘) uq 2
were available [13]. They con- ¢ 3 \&8 \% \%
A : 8 0.35) Vo \» o w
ducted a data-driven study in 3 \; T 3 \=
which a test object was illuminated % o3 =\
Z0.25 e S N o o

/
.f
&

tungsten lights. The object sat on a
turntable and a full set of 64 im- 015,
ages was captured for 360 rota- 0.1 i 20 - W % -

tional angles of the object, at 1° Nurmber of Lights

intervals for a total of 23,040 im-  Fig, 5. Error vs number of lights for four orders of
ages. The complete image set was  hemispherical harmonics (Gunawardane, 2009)
then sub-sampled for intervals of

both lighting and view angles and the errors calculated between HSH fittings of both the
full and subsampled image sets. The results (Fig. 5) indicated that the minimum number
of lamps is approximately 10, 20, 36 and 56 for the 1* to 4™ harmonic orders respec-
tively. The pitfall in interpolation of images from different lighting directions was found
to be that errors in flow vectors caused pixels to move to incorrect positions, producing
visible tearing artifacts and structural discontinuities.

Drew et al observed that for non-Lambertian phenomena matrix factorisation
methods can produce inaccurate surface normals and lighting directions [14]. Because
the basic PTM method relies on a matte surface and linear regression, it fails to model
phenomena such as inter-reflections, specularities and shadows. Increasing the degree
of the PTM polynomial model, for example by the use of HSH basis functions, may
help to model these effects but at the expense of degrading the interpolated results at
non-sampled light directions due to over-fitting. For finding the matte part of the
photometric model, they used the Least Median of Squares (LMS) method, which
provides automatic identification of outliers, both specular highlights and shadows.
Knowledge of the inlier pixel values means that the recovered surface albedo, chro-
maticity and surface normals are robust, in the sense of ignoring outlier contributions
and thus more accurately mapping surface reflectance, colour and shape. They also
altered the polynomial used in PTM so as to generate a subset of three regression
coefficients that is exactly correct in the case when the inliers are Lambertian.

Brady et al developed an alternative method of visualizing the relief of incised tab-
lets, called shadow stereo, after observing how a professional palacographer exam-
ined a stilus tablet, holding it horizontally on his upturned palm to be illuminated at a
grazing angle, and slowly rotating it to change the angle of elevation [15].
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3 3D Reconstruction

The image sets captured in the dome contain information about the geometry of the
object surface. The photometric stereo technique enables the normal at each point to be
determined for a single viewpoint, using the principle that the intensity of reflected light
depends on the angle of incidence of the light onto the surface and the reflectance factor.
With a perfectly Lambertian surface and in the absence of noise, only three intensity
values [I3, I, I3] from non-coplanar light sources with unit direction vectors [Lq, L,, L3]
would be sufficient to solve for both the normal direction N and the surface albedo p:

Iy = pL; - N =p|L] cos a; 3)

where «; is the angle between the normal and lamp vector i. In practice, normals
calculated in this way from three light directions exhibit an unacceptable level of
noise and vary widely according to the particular combination of lamps selected. Bet-
ter results can be obtained for noisy image data by calculating normals for many trip-
lets of light sources. By selecting suitable combinations of three lamps, candidates for
the normal can be calculated for every pixel. For a non-Lambertian surface, however,
the above method gives incorrect results, because the effect of surface gloss is to
exaggerate the apparent gradient of the surface.

A new method for estimating normals has been developed, which is robust and
adapts to the presence of both shadows and surface gloss [12]. First all of the intensity
values at a pixel are extracted from the image set and treated as a vector. The intensity
values are then sorted into ascending order and the cumulative sum calculated. The
subset of lamps is selected for which the normalised cumulative values lie between
two thresholds, nominally 0.10 and 0.25. These thresholds are chosen to select a re-
gion of the sorted distribution that follows the slope of the cumulative sorted cosine,
i.e. related to the diffuse component of the reflection. Fig. 6 shows the results of ap-
plying the technique to a 19"™-century terracotta roundel of Chopin, and the derived
gradients P = (31 /0x) and Q = (01 /0y), encoded in false colour.

Fig. 6. (left) Photometric normal vectors in false colour (Nx red, Ny green, Nz blue); (right)
False colour composite of gradients (P red, Q green)
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A novel method for integrating the gradients to reconstruct height was introduced
by Frankot & Chellappa [16], using the Fourier transform to regularise (i.e. to enforce
integrability of) the gradients in the frequency domain. This is neatly implemented in
Matlab by a few lines of code, taken from the library developed by Kovesi [17].

Fig. 7. (left) Oblique view and (right) elevation of Chopin surface reconstructed by the basic
Frankot & Chellappa integration of gradients in the frequency domain

Applying this technique to the Chopin gradients (Fig. 6 right) yields a 3D surface that
is continuous and is recognisably Chopin, but is distorted over the whole area with the
height greatly amplified. Fig. 7 (left) shows an oblique view, which looks very plausi-
ble, but when the same structure is viewed in elevation (Fig. 7 right) it is seen that the
height range is from -27.6 to +79.9, an overall maximum height of 107.5 mm, compared
with the true maximum height above the baseplane of 22.5 mm. Also there is a false
undulation of the base with a period of approximately one cycle over the whole width.
The problem is that although the photometric gradients give a good representation of the
spatial frequencies in the surface, right up to the Nyquist frequency, they are not accu-
rate for very low frequencies of a few cycles over the full object diameter. Such fre-
quencies are represented in the Fourier plane by only a few sample points close to the
(shifted) origin. Errors in these frequencies can result in ‘curl’ or ‘heave’ in the base-
plane, even though the superimposed higher spatial frequencies may be accurate.

Fig. 8. (left) Using a height measuring gauge; (right) Heights of selected points in mm, super-
imposed on an image of the Chopin terracotta taken under all lights in Tier 3
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The solution is to replace the inaccurate low frequencies of the photometric nor-
mals by the more accurate low frequencies of a surface constructed from a few known
heights [18]. This can be conveniently achieved from the values measured by a digital
height gauge (Fig. 8) by first interpolating them to produce a smooth ‘hump’ and then
transforming into the frequency domain by an FFT (Fig. 9).

Fig. 9. (left) Smooth surface of hump produced by interpolation of measured points; (centre and
right) Log(power) distribution of spatial frequencies of hump and photometric gradients

The low spatial frequencies of the gradients from the Frankot-Chellappa integration
are replaced by the corresponding frequencies from the hump. Rather than an abrupt
change at a given threshold frequency, they are blended over a radial distance in the
range 1.5 to 4.0 pixels by a linear interpolation function (Fig. 10 left). The power of
the high frequencies from the gradients is scaled by the ratio of the low/high power in
the region affected, in order to maintain the correct overall power distribution.

, .
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Fig. 10. (left) Cross-over of low and high frequency components; (right) Reconstructed surface

onstructed height, min = 1.5, rmas = 4.0
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the reconstruction.

Fig. 11. Measured and reconstructed heights
and their differences (mm)
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4 Specular Modelling

The image sets captured in the dome, illuminated from 64 known directions over the
hemisphere, contain information about the directionality of reflection from an object
surface. The aim is to model the luminance variation at each point on the object sur-
face as a function of the angle of illumination, in such a way that the reconstructed
images are indistinguishable from the original photographs. This would also enable
views of the object to be ‘relit’ for a continuous range of illumination angles in
between those of the fixed lamps in the dome.

The decorative test object used in this study was a polished brass dish, 125 mm in
diameter, embellished in the Damascene fashion with inlaid copper and silver ara-
besques (Fig. 12 left). There is a significant trade-off in choosing the exposure setting
when photographing the object in the dome: if too low then most of the non-specular
pixels are of very low intensity (as in this case) and hence greatly affected by sensor
noise; if too high then most of the specular pixels are over-exposed, producing the
maximum output value and causing blooming in neighbouring pixels by spill-over of
photoelectrons in the sensor.

Fig. 12. Damascene dish: (left) image illuminated by four lamps in tier 5 of dome; (centre)
normal vectors in false colour; (right) albedo

The normal vector and albedo were computed for every pixel (Fig. 12 centre and
right). The normals are quite subtle because most of the surface is horizontal and the
relief of the decoration is shallow. The albedo is surprisingly dark and chromatic,
representing the diffuse ‘base colour’ of the metal without any specular component.

The ‘specular quotient’ is calculated as the ratio between the actual intensity for
each lamp direction and the intensity that would be produced by a perfect diffuser in
the same direction. The more shiny the surface, the greater the quotient value (Fig. 13
left). The specular direction vector is calculated as a weighted sum of the lamp vec-
tors exceeding a threshold, multiplied by the corresponding specular quotient values.
The same weighted sum gives the colour of the specular reflection (Fig. 13 right). For
most materials this would be the same colour as the illumination, i.e. white, but for
metals the specular component carries the colour of the metal. Here for the Damas-
cene dish the colours of the brass, copper and silver are clearly defined.
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Fig. 13. (left) Specular quotient = ratio of specular/diffuse intensities; (centre) specular colour;
(right) Specular direction vectors in false colour

The resulting specular direction vectors 9 / P
(Fig. 13 right) have the same general ap- /
pearance as the normals (Fig. 12 centre) but
are more chromatic because the specular
gradients are greater with respect to the view
vector. In conventional practice in computa-
tional photography it is almost universally
assumed that the specular angle should be
exactly double that of the normal, and for a
perfect mirror this would of course be true.
But the surfaces of real objects have a meso-
structure with fine texture and granularity. L ,
One pixel as sampled by the camera may R i A L
span a number of micro-facets at different
angles, which reflect light differently from
the incident illumination.

The approach taken here is to use the ideal specular (at double the angle of the nor-
mal) as a guide to where the specular angle should be. A weighted sum is taken of all
lamp vectors within a cone of 45° around this direction, weighted by their quotient val-
ues. It is clear from scatter-plotting the specular vs normal angles for a random selection
of 10,000 pixels (Fig. 14) that there is a considerable amount of variation around the
line of slope 2 (i.e. specular angle = 2x normal angle), which is a genuine indication of
the roughness of the surface. Pixels with low values of specular quotient (blue in the
figure) generally have a greater scatter. Some clustering onto the five tier angles of the
dome is evident in the pixels of high quotient values (red in the figure). The figure sug-
gests that the maximum normal angle that can be quantified by the photometric stereo
technique is ¢.35°, with corresponding maximum specular angle of ¢.70°.

In the general case the bidirectional reflectance distribution function (BRDF) has
four degrees of freedom, giving the reflectance of the surface at any viewpoint when
illuminated from any direction. In the case of dome imaging, however, the viewpoint
is fixed with the camera always at the ‘north pole’ of the hemisphere and the object
lying in the equatorial plane. So the problem is simplified to finding a two-
dimensional function of the reflectance factor toward the camera, given the normal

Specquat <5

5 < Specquot < 10
* Specquat> 10

T T

Fig. 14. Specular vs normal angles, classi-
fied by quotient value
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and lamp vectors. A further simplification is to assume that the function of reflectance
is isotropic and therefore rotationally symmetric, i.e. dependent only on the radial
angle w from the peak but not on the phase angle around the peak. The required func-
tion needs to be positive, continuous and monotonic, with a peak at w = 0 and as-
ymptotic to zero as w — 90° (excluding the Fresnel component at grazing angles).
The model adopted to fit the specular peak
is based on the Lorentzian function,
because it naturally conforms to the observed
shape and is mathematically convenient [12].
In particular the broad flanks enable the scat-
tered light at perispecular angles to be mod-
elled more effectively than the Gaussian
function, which falls too quickly to zero. The
comparison can be seen by fitting both func-
tions empirically to the distribution (Fig. 15).
An offset in the X axis has been made to
accommodate the horizontal scatter, and
the scale factors (divisors of X value) are
different. But it is clear that the Gaussian Fig. 15. Comparison of Gaussian and Lo-
approaches zero too rapldly and therefore rentzian functions against a real distribution
underestimates the reflected intensity in the of reflected intensities
critical intermediate angles between peak and flank. The Lorentzian can be written as a
function of three variables:

]

Function vaiug

a

fx)=—015+c )
1+(3)

where a is the amplitude of the peak, s is the scale factor (horizontal spread), and c is

a constant (uplift).

5 Specular Classification

A detail of the specular colour image of the Damascene dish shows clearly that the
specular highlights of the three metallic components carry the colour of the metal
(Fig. 16 left). Scatter-plotting 10,000 points chosen at random by their colours and loca-
tions in RGB space shows (Fig. 16 right) that they lie in an oblate region around the
long diagonal of the colour cube, i.e. the neutral axis. There is a surprising amount of
colour variation for what appears to be a surface composed of only three materials, and
the tonal variation is continuous from black to the lightest points at about 0.7 of full
range.

The pixel colours are converted from RGB via XYZ to CIELAB, assuming the
SRGB colour space and the CIE standard 2° observer with D65 white point. Plotting
the same points on the a*~b* chromatic plane shows that the colours of the three met-
als, brass, copper and silver, have distinctly different hue angles (Fig. 17). This pro-
vides the opportunity to segment the image pixels into four categories, corresponding
to the three metals plus black.
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Fig. 16. (left) Detail of specular colour image of Damascene dish, size 500x500 pixels; (right)
scatter plot of 10,000 pixels in R,G,B colour space

The simple way to classify is by hue angle around the centroid of the three category
centres, where reddish colours in the range [-45°, +70°] correspond to copper; the yel-
low-greenish colours in [70°, 180°] to brass; and the slightly bluish colours in [180°, -
45°] to silver. A more effective method is to categorise each pixel by its nearest distance
to one of the focal colours for the three metals. The resulting ‘posterised’ image is
equivalent to a K-means classification with four cluster centres (including black).

Fig. 17. (left) 10,000 pixels plotted on the CIELAB a*-b* chromatic plane, with centroids for
the three metals; (centre) classification by hue angle; (right) classification by nearest colour

The ability to classify different regions of a heterogeneous surface according to their
gloss enables each region to be modelled and rendered in a different way. This is an
important capability for objects that are made of multiple materials, such as inlays, and
also for objects that were once homogeneous but have weathered variably across the
surface. It is interesting to consider whether metals could be classified in the same way.

In an attempt to differentiate the specular curves of the three metals in the Damas-
cene dish, the map generated by image classification (Fig. 17 right) was used to select
500 random samples of each of the three metals. Curves were fitted by the Lorentzian
model and plotted in superimposition (Fig. 18 left). All three sets of curves show a
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Fig. 18. (left) Specular curves fitted by the Lorentzian model to 500 pixels of silver on the
Damascene dish; (right) Characteristic curves for the three metals for peak amplitudes >15

similar behaviour, with a few cases having peak values of very high amplitude, in
excess of 500, but the majority much lower.

Taking the median of each parameter in the sets for each metal for those cases
where the amplitude exceeds 15, and using the median parameter values in the Lor-
entzian model gives the indicative curves of Fig. 18 right. The ordering of amplitude
is: silver highest, copper second and brass lowest, but the relative differences are
small and the variance of the curves for individual pixels is so great that these curves
could not be used as a reliable diagnostic to determine the type of metal. The colour in
the albedo and specular highlights is a much more reliable guide. All that one can say
in this case is that the freshly polished silver is likely to be slightly brighter in the
specular highlights than the other two metals.

6 Conclusion

A set of images in pixel register under controlled directional lighting provides a much
richer representation of an object than a single image, because it contains information
about both the topography and specularity of the surface. With appropriate metadata,
including the directions of the incident light sources, camera position and lens distor-
tion, such a dataset can be considered as a valid archival representation of the object,
with many applications for education, conservation and interpretation.

Through an interactive visualisation technique, such as PTM, the sense of material-
ity of the object can be conveyed much more strongly than through a static image
display. This is an example of how, as Witcomb says, “multimedia installations in
museums can enhance ... the ‘affective’ possibilities of objects” [19]. They can “act
as releasers of memory in much the same way as objects can make unconscious
memories conscious. This they achieve through their power to affect us by ‘touching’
us or ‘moving’ us.”

Acknowledgements. Thanks to colleagues in the 3DImpact Research Group, especially
Stuart Robson, Mona Hess and Ali Ahmadabadian, for assistance and encouragement
in this research.
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Abstract. We propose a new, fully automatic method for example-
based image colorization and a robust color artifact regularization
solution. To determine correspondences between the two images, we sup-
plement the PatchMatch algorithm with rich statistical image descrip-
tors. Based on detected matches, our method transfers colors from the
reference to the target grayscale image. In addition, we propose a general
regularization scheme that can smooth artifacts typical to color manip-
ulation algorithms. Our regularization approach propagates the major
colors in image regions, as determined through superpixel-based seg-
mentation of the original image. We evaluate the effectiveness of our
colorization for a varied set of images and demonstrate our regulariza-
tion scheme for both colorization and color transfer applications.

Keywords: Colorization - Regularization - Color transfer

1 Introduction

Colorization — the process of adding color to grayscale content — is crucial
for giving a new lease of life to legacy movies or photographs. Historically, col-
orization has been a time-consuming, manual task, however in recent years,
automated solutions have emerged for colorizing content. Existing automatic
colorization solutions rely on a user-provided reference image [16], a palette
specifying the colors the image should obtain [11] or set of strokes [10] drawn
directly on the image to define colors.

Our work falls within the first category, known as example-based coloriza-
tion, and relies on a reference color image with semantically similar content
to the target grayscale image. To transfer color information from the reference
to the target, our method finds correspondences using a modified version of
the PatchMatch algorithm [2]. Although typically this algorithm considers only
color information in the image, this often does not provide enough distinguishing
information when the two images are not depicting the same scene. To that end,
we supplement PatchMatch with a series of statistical descriptors that provide
a rich representation of the structure in the two images.

© Springer International Publishing Switzerland 2015
A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 59-68, 2015.
DOI: 10.1007/978-3-319-15979-9_6
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In addition to our colorization method, we propose a novel regularization
scheme to remove artifacts typical to such color manipulations. In processes such
as colorization or color transfer, small discontinuities in the luminance (e.g. due
to compression artifacts) may lead to corresponding anomalies in chromaticities.
To remove such artifacts, regularization methods aim to smoothly propagate
colors within coherent regions. Our solution relies on superpixel segmentation
and subsequent merging to robustly divide the image into coherent areas. A
stroke is automatically created for each region and propagated depending on
adjacent luminance information [10].

Experiments conducted on various types of images demonstrate that our
method can provide visually appealing colorization results in different scenarios,
competitive with the state of the art, at a lower computational cost. Additionally,
we demonstrate the usefulness of our regularization approach in the context of
color modification methods. Our work offers the following contributions:

— A novel, fully automatic colorization approach

— A combination of image descriptors that allows using a wider set of images
as references in colorization

— A regularization scheme for correcting artifacts typically seen after color
processing such as colorization or color transfer

2 Related Work

Given areference color image, example-based methods aim to find correspondences
with the grayscale target in order to define how colors should be distributed. Earlier
methods rely only on luminance information to determine correspondences [16],
which can often fail when corresponding areas (e.g. sky) do not have corresponding
luminance. Additionally, small irregularities in the luminance can lead to spatial
consistency issues.

To address some of these limitations, the higher-level context of each pixel
needs to be considered. Irony et al. [8] use a supervised classification scheme
based on image features and can provide plausible colorization results, however
it requires manual segmentation into corresponding regions, making it ill-suited
for automatic colorization. To obtain better correspondences, Charpiat et al. [4]
further exploit the idea of feature descriptors by using SURF descriptors incor-
porated into a probability estimation model. Probabilistic information is also
used by Bugeau et al. [3], where a variational energy minimization framework is
employed to simultaneously find candidate colors and regularize results.

The closest to our approach is the work of Gupta et al. [7], which relies on
a cascade feature matching scheme to find correspondences between reference
and target images. The spatial consistency of matching is improved by a voting
step, which is based on mean-shift segmentation together with k-means clus-
tering. Each segment is assigned with a color, and obtained colors are used to
produce micro-scribbles in the center of each segment. These are propagated
across the entire image using the algorithm by Levin et al. [10]. In contrast to



Descriptor-Based Image Colorization and Regularization 61

their approach, we use a smaller and more general set of descriptors, allowing
us to colorize using a less restrictive selection of reference images. At the same
time, we take advantage of the robustness of the PatchMatch algorithm to obtain
correspondences, which leads to more accurate assignment of colors as will be
shown in Section 5. Finally, we ensure a better propagation of colors in our reg-
ularization scheme by creating large skeleton-based strokes that span coherent
areas in the image. The following sections will describe our colorization solution
and regularization scheme in detail.

3 Colorization

The general scheme of the proposed method is shown in Figure 1. The input is
represented by two images: a target grayscale image I; to be colorized, and a
reference color image I,.. The images are smoothed using a Gaussian filter before
analysis to remove small artifacts, such as noise or painterly texture, that might
influence the matching step (w = 5x5, o = 1.0). Then, our method finds corre-
spondences between the intensity channels of the two images (Y; and Y. respec-
tively), using their descriptor representations. The obtained correspondences are
used to map chroma information from the reference to the target image, pro-
ducing an initial colorization result. Finally, a regularization step (Section 4) is
applied to suppress color artifacts that might be present in the initial result.

. Descriptors Descriptor | ! Color
Pre-processing [~ ptors L | P .
computation PatchMatch | mapping
Patch-based descriptor matching I P ———— = -

] |
1 | Superpixel-based segmentation | 1
|

|
Initial Colorization Regularization 1 N 1
. | Color strokes creation | |

I I
1 | Levin propagation of strokes | 1
1

Fig. 1. Overview of the proposed colorization framework

3.1 Descriptor Computation

Intensity information by itself is not sufficient to provide reliable matches
between similar but not identical objects in images, as it has been demonstrated
since the pioneer work by Welsh et al. [16]. Even for identical objects, illumina-
tion changes or other factors might significantly affect their appearance. Image
descriptors can enrich the available intensity information and represent object
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structures and textures in a more robust way. Thus, the influence of changes in
object appearance is reduced, and more accurate matching can be achieved.

Our approach computes 38-dimensional descriptors D; and D,. for the target
and reference images respectively by concatenating grayscale intensity, texture
gradients and histogram of oriented gradients descriptors. The descriptor vector
for a pixel p is given by:

D(p) = Droc(p) U Dig(p) UY (p), (1)

where Dgoc(p) is the 31-D histogram of oriented gradients descriptor, Dy4(p) is
6-D texture gradients descriptor and Y (p) is the intensity for that pixel.

Grayscale Intensity. Although intensity information is not invariant to global
changes in illumination between the two images, it can still provide useful infor-
mation to guide matching. Therefore, in our algorithm the intensity Y (p) of each
pixel is used as an auxiliary descriptor.

Texture Gradients. Texture information around each pixel can help describe
the local structure in the scene. To make use of such information we include
texture gradients in our descriptor, relying on the approach of Martin et al. [13].
To compute this descriptor, responses for several filters are first collected for each
pixel and categorized according to a set of representative precomputed responses
known as textons [12]. Textons identify the presence of image structures, such
as bars, corners or various levels of contrast. Once textons are computed, a disc
is considered around each pixel and for each half of the disc, a texton histogram
is computed. The distance between the histograms of each half, computed for 6
different orientations, forms the 6-D vector Dy4(p).

Histogram of Oriented Gradients. The final descriptor used in our method
is the histogram of oriented gradients (HoG), denoted by D g, which is aimed
at representing local object appearance and shape by the distribution of intensity
gradients and edge directions [5]!. To compute the HoG for a given pixel p, first,
horizontal and vertical gradients are computed at that location. To compute the
histogram for each pixel, a cell (4x4 pixels in our case) is considered around it,
and the gradient of each pixel within the cell is allocated to one of 9 orientation
bins. These responses are then locally normalized and processed into contrast-
sensitive, contrast-insensitive and texture features, which are combined into a
31-dimensional HoG descriptor.

3.2 Descriptor PatchMatch

Once the descriptors D, and D, are computed for the reference and target
images, correspondences can be determined between them. We rely on the Patch-
Match algorithm [2] for this task but apply it on the 38-D space spanned by our
descriptor. PatchMatch computes an approximate nearest neighbor field (NNF),

! We use the implementation from Yamaguchi: http://www3.cs.stonybrook.edu/
~kyamagu/software/misc/dense_hog.m.
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which provides dense, global correspondences between image patches. The Patch-
Match algorithm works over image patches, but the final correspondence field is
created at the pixel level. Given a pixel p; in the target image, NNF provides us
the matching pixel p, in the reference image:

NNF(D; «— D,) : p — pr (2)

Descriptor-based matching is able to provide matches not only between same
objects, but also between generally similar objects. In our approach, Patch-
Match is used with a patch size of 9x9 pixels and 5 iterations, following the
recommendations in [2], as after 4-5 iterations the NNF typically converges.

3.3 Color Mapping

Using the correspondences determined through PatchMatch, colors can be
mapped from the reference to the target image. This is performed in the Y CbCr
space and information from the Cb and Cr channels of the reference I, are used
to populate the corresponding channels of the target I;, while intensity infor-
mation in I; is left unchanged. Given the correspondences defined by Eq. (2),
chromatic information for a pixel p; is given by:

C{olr}i(pe) = CLolr}r(pr) 3)

After reconstructing the Cb and Cr channels of I, the image is converted back to
RGB, producing an initial colorization result I.. Although the global assignment
of colors in I, is correct in most cases at this stage of our algorithm, small
local artifacts can appear, due to inaccurate correspondences. To correct such
artifacts, a regularization step takes place, described in the next section.

Fig. 2. Regularization of the colorization result. (a) Initial colorization without
regularization. (b) SLIC superpixels. (¢) Superpixel-based segmentation. (d) Resulting
color strokes. (e) Final regularized colorization after stroke propagation.

4 Regularization of Color Artifacts

To regularize color artifacts, first, the target image I; is segmented using a
superpixel-based approach. Then, strokes that span each segment are created
and assigned with colors representing the color distribution of the corresponding
segments from the initial colorization result I.. The color strokes are marked on
the I; and propagated to the rest of the pixels using Levin’s approach [10]. The
results of main regularization steps are shown in Figure 2.
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4.1 Superpixel-Based Segmentation

The first step of our regularization scheme segments I, into coherent areas based
on intensity information. Using the SLIC method [1], the segmentation starts
from the computation of a set of n superpixels S = [s1, ..., s,] which span the
image, where adjacent similar pixels form coherent superpixel units.

To avoid oversegmentation of large homogeneous regions, the obtained super-
pixels are further processed, producing a coarser set of segments Ss.4. To com-
pute each segment s,.4 ;, adjacent superpixels with similar statistics are merged
together, forming larger segments. Merging is based on the DBSCAN clustering
algorithm [6], where for each superpixel s; a set of adjacent superpixels N; is
considered. If a distance € between s; and an adjacent superpixel s; does not
exceed threshold T, s; is taken as a new point of a cluster. Any other superpixel
reachable from s; is taken as part of the cluster as well. For grayscale images, €
is a distance based on simple statistics expressed by the mean and variance of
the intensity within considered superpixels.

Sseg,i = Si U Sj | €< T7 where €= \/(,usj - ,usi)Q + (Usj - gsi)Q’ (4)
JEN;

For the choice of parameters in this step, we use the values that provide a
reasonable trade-off between over- and undersegmentation, given the lack of
color information. The initial set of superpixels is computed using n = 250,
and the threshold T in the clustering step is set to 2.75. Higher value of n would
provide more detailed segmentation causing preservation of undesirable artifacts,
whereas higher value of T' might lead to excessive merging and diffusion of colors.

4.2 Color Stroke Creation and Propagation

Each segment obtained from the previous step is used to create a continuous
stroke, which spans that segment and contains the dominant color of that area.
The created strokes serve as input to the stroke-based colorization approach
of Levin et al. [10], where colors of strokes placed on the grayscale image are
smoothly propagated to the rest of the image. Since the stroke colors are taken
from our initial colorization result I, this process smooths colors within coherent
areas, removing wrong local assignments that might have created artifacts before.

The color propagation method of Levin et al. [10] relies on the premise that
nearby pixels with similar intensities are likely to have the same color. Previ-
ous approaches that automatically create strokes for this process opt for micro-
strokes placed in the center of each area [7]. In practice, we have found that
larger strokes that span the area to be colorized can lead to better coverage once
propagated. Based on that, to create strokes we compute the binary skeleton of
each segment using the thinning morphological operation [9].

To determine the color of a stroke, the Cb and Cr values of each pixel within
a segment are quantized into 48 clusters using k-means clustering, and the major
chromatic component of a segment is assigned to the stroke. This clustering step
is necessary to determine a single representative color for each region. Figure
2(d) shows the color strokes for an image as colorized skeleton shapes.
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5 Colorization Evaluation

We compare results obtained from our method with the results of previous
example-based colorization methods. Figure 3 depicts the final results of our
combined colorization and regularization approach as well as results from the
methods of Gupta et al. [7], Charpiat et al. [4] and Welsh et al. [16]. Input
images are taken from [7] and represent typical scenes with semantically simi-
lar content, but demonstrating different characteristics of intensity, textures and
overall appearance.

Target image Reference image Our method Gupta et al. Charpiat et al. Welsh et al.

Fig. 3. Comparison with existing example-based colorization methods. Represented
methods: Gupta et al. [7], Charpiat et al. [4], Welsh et al. [16].

Due to complex image content, the method by Welsh et al. [16] fails in almost
all cases since it is based only on direct intensity matching. Charpiat’s method
[4], which is based on SURF descriptors and multimodal probability distribution
estimation, is more robust to differences in intensity. It can produce successful
matches between identical or very similar objects in input images, as it can be
seen on landscape images in rows (b) and (d). However, this method can fail
when changes of visual features are more significant, as shown in examples (a)
and (c). In contrast to the previously discussed methods, our approach and the
approach by Gupta et al. [7] lead to comparable results with fewer artifacts and
a more satisfactory colorization.

Additional comparisons with Gupta et al. [7] are shown in Figure 4 to assess
the effectiveness of our descriptors. Despite the similarities in the input images,
the descriptors used in [7] cannot accurately determine correspondences for
ambiguous areas, such as the clouds seen in row (a), where our method pre-
serves the white of the clouds. Similarly, our method is robust to global changes
as shown in row (b). In this case the input images vary significantly in global
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luminance and contrast, even though they depict the same structures. Our tex-
ture and gradient based descriptors successfully determine correspondences in
this case. Similar observations can be made about the last example (c), where
the same objects are depicted but with changes in pose.

Target image Reference image Our method Guptaetal.

Fig. 4. Additional comparisons with method by Gupta et al. [7]. The intensity of the
reference image is also shown in example (b). Our method preserves the white of the
clouds (a) and can successfully colorize images despite global luminance and contrast
changes (b) or changes in pose (c).

Our method achieves qualitative improvements and more robust performance
over the state of the art for a large selection of images, while offering a 2 to 4-fold
computational improvement against the method by Gupta et al. [7].

6 Color Artifact Removal by Regularization

Application of the proposed regularization method is not limited to coloriza-
tion. Our method can also be applied for artifact suppression in a more general
scenario of color manipulations, e.g. color transfer. In Figure 5, an image (a) is
recolored according to the reference image (b), using the color transfer method
by Pitié et al. [14]. In this case, the result (c) shows distinctive color artifacts,
which can be regularized with our approach requiring only minimal adjustments.
To regularize artifacts in this case, the original color image is considered for the
superpixel segmentation process, while the recolored result serves as input for the
computation of strokes. As the original image here contains color information,
all three channels are used for the superpixel segmentation and clustering, lead-
ing to more accurate results. Given the additional color information, we found
that a larger number of superpixels could be used in this case: we set n = 750,
allowing the segmentation to follow image edges more closely. At the same time,
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a higher threshold was used for DBSCAN (7' = 5 in this case), allowing for
smaller clusters to form, therefore better respecting image detail.

After the segmentation, color strokes are automatically created and propa-
gated as described in Section 4. Note that the colors of strokes are extracted
from the result of color transfer, but the strokes are marked onto the luminance
channel of the original artifact-free image, to allow for smoother propagation.
Figure 5 shows a comparison of our regularized result as well as those of com-
peting methods [14,15]. In contrast to other solutions, we only regularize in the
chromatic domain, leaving luminance information unchanged.

Fig. 5. Regularization of color transfer artifacts. (a) Original image. (b) Reference
image. (c) Color transfer by Pitié et al. [14]. Regularization using (d) our method, (e)
regraining method [14] and (f) TMR filter [15].

7 Conclusions

We presented a new, automatic method for colorizing grayscale images. Our
method combines advantages of example-based and stroke-based techniques,
requiring minimal levels of user interaction. Using descriptor representations
of the input images, the matching step can provide meaningful correspondences
between images, even under global contrast and illumination changes or differ-
ences in scene structure. In addition, we proposed a robust regularization scheme
for reducing artifacts due to color manipulations, which we demonstrated in the
context of colorization and color transfer. We applied our technique to several
image pairs with varied content and compared our results to the state of the
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art, showing that the proposed colorization method is competitive with recent
methods, providing robust colorization at a lower computational time.
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Abstract. Reflectance models such as the monochrome Murray—Davies (MD)
and the Neugebauer color equations make inaccurate predictions owing to
changes in reflectance or tristimulus values (TSVs) of halftone dots and the pa-
per between the dots. In this paper, we characterize the change of micro-TSVs
as a function of printed area in spectral halftone image by a power function
and compare its prediction efficiency using theoretically and experimentally
measured limiting TSVs assuming dots of uniform thickness. We found that
experimentally accounting for dot thickness variations as solid and mixed areas
more precisely explained the single-model parameter that captured the observed
lateral light scattering effect. The results showed that incorporating empirically
modeled TSVs of the dots and the paper between dots, as well as introducing a
new term addressing mixed area in the MD equation, produced CIE AE} in the
range 1.22-1.76, and the overall gain was more than 1 AE};.

Keywords: Spectral image - Halftone - Color - Light scattering - Murray-Davies

1 Introduction

In printing, the surface coverage of ink is varied to reproduce different tones or light-
ness levels in a halftone image. A halftone reflection prediction model establishes the
correct relation between the reflectance of printed surfaces and the amount of printed
ink to render the reproduction system reliable [1]. The prediction is mainly made by
using the measured average reflectance of a set of halftone patches. Successful mod-
els account for the observed effect because of lateral light scattering within the sub-
strate as a function of printed dot coverage. Furthermore, accounting for the
ink-spreading effect generates more accurate results. However, currently available
empirical models find the connection to the classical Murray—Davies (MD) model for
monochrome [2] because the MD model is theoretically successful in establishing a
linear relation between the fractional coverage of fulltone ink (a) and the average
reflectance of the halftone image by assuming uniform thickness and constant reflec-
tance of the ink and the paper, as follows:

Rhalﬁone =a Rink + (1 - a) Rpaper (1)
© Springer International Publishing Switzerland 2015
A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 69-80, 2015.
DOI: 10.1007/978-3-319-15979-9_7
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In principle, the formula represents the conservation of energy by summing up all
light reflected off the components. In practice, this equation predicts values different
from the actual values because of mechanical and optical dot gains. The following
correction was subsequently made to the equation by adding an empirical factor,
known as the Yule—Nielsen n-value, to account for the optical dot gain [2]:

Ruaigeone = @ Rifi + (1= @) Rylper 2)

The n-value improves prediction accuracy but explains light interactions for only a
limited class of cases [3]. Furthermore, the linearity of the MD model is lost. This can be
traced to the false assumption of the constant reflectance of the ink and the paper over the
entire surface. Internal changes in reflectance values were subsequently characterized
mathematically by an additional parameter to account for the effect of variations in color-
imetric values surrounding the dot boundary [4]. Modification was made to Eq. 1 by
retaining its original form but accommodating variable reflectances [4].

P.G. Engeldrum empirically studied changes in the reflectance of dots and the pa-
per between dots in halftone prints, and reported results in terms of the International
Commission on Illumination’s (CIE) tristimulus values (TSVs) [5]. He showed that
paper TSVs are linear mixtures of plain paper and a limiting TSV, whereas dot TSVs
are linear mixtures of fulltone ink and the same limiting TSV. The limiting TSV re-
fers to the TSVs of the paper when the dot coverage approaches 1.0 or the TSVs of
the dots when the coverage approaches zero. The limiting value was theoretically
calculated as identical to the product of the reflectance of the paper and the spectral
transmittance of the ink [4, 5]. If T represents the TSV (X, Y, or Z), T}, the limiting
TSV, and p represents the exponent, the equations proposed by Engeldrum to charac-
terize the changes of the TSVs of the paper and the dots, respectively, are as follows:

Tpap (a) = (Tpaper' Tlimit) (1 - a)p+ Tlimit (3)
Tdat (a) = Tlimit - (Tlimit' Tink) ar (4)

Eq. 1 was modified to incorporate these changes as a function of fractional cover-
age to calculate the average tint of the halftone image as formulated in Eq. 5:

Thalﬁane (a) =a Tdot (a) + (1 - a) Tpap (a) (5)

The accuracy of Egs. 3-4 is determined by the accuracy of fitting the exponent p to
the measured data. The parameter p is described in order to capture the light scattering
effect as a function of paper light spread function, dot geometry, and screen frequen-
cy. However, P.G. Engeldrum assumed ink dots of uniform thickness, and the results
were based on halftone prints of low screen frequency [5]. However, we show in the
current study that a numerically calculated 7}, does not optimally fit the data for
medium or high screen frequency.

In a previous study [6], we reported using experimental image analysis that effec-
tive dot area in a single-ink halftone image consists of a solid ink area and a mixed
area. Solid ink refers to the dot part close to fulltone density, and mixed area refers to
the periphery or edge of the dot, where ink thickness varies and light diffusion adds
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blurriness. Due to variation in reflectance values in these two parts, we proposed in
[6] an extension of Eq. 1 (formulated in Eq. 6 in TSV) to adjust the amount of lights,
primarily assuming constant reflectance of fulltone ink and paper:

Thalftone = Apaper Tpaper + Agolia Tvolld + Apix Tmix (6)

The contribution of the current study is twofold. First, to the best of the author’s
knowledge, this study is the first to characterize changes of color in the mixed area, in
addition to those in the paper and the solid ink, by analyzing single-colorant halftone
microscale spectral images. Second, the accuracy of the extended MD halftone model
is studied by incorporating variable colorimetry and preserving the law of conserva-
tion of energy that is suitable for explaining the physics behind the formula. Cyan,
magenta, and yellow inks on two types of paper with different screen frequencies for
the same printing technology are analyzed. The limiting case is measured separately
for paper and dots, and the effects of solid ink as well as the mixed area are analyzed
using Egs. 3-6. The crucial parameter, i.e., the model exponent, and the relevant accu-
racies of the modified MD model are reported in terms of CIE AEy,,.

The research here is motivated to gain greater insight into the interactions between
halftone ink, paper, and light, and a linear model is chosen for this background study
in support with the principle of conservation of energy. A microscopic analysis should
allow us to systematically discover the relevant parameters, properly relate them, and
to formulate the ultimate predictions with more subtle explanations of the non-
linearity. This advanced understanding can help to improve state-of-the-art spectral
printing systems incorporating the variations of the colorimetry of the paper and the
ink in existing models that characterize multichannel printers.

2 Materials and Methods

2.1  Samples

A sequence of halftone patches of cyan, magenta, and yellow ink was printed on coat-
ed and uncoated papers of different optical and surface properties. The range of ink
surface coverage was 0%, 3%, 10%, 20%, ..., 90%, 95%, and 100%. The halftone
screen frequency was 175 Ipi for coated paper and 144 [pi for uncoated paper, as is
suitable for optimized print and color quality. Rotated screen amplitude modulated
(AM) halftone cell produced ink dots to form the image structure on the paper.

The thickness and grammage values of the coated and uncoated paper were 0.12
mm and 150 gsm, and 0.22 mm and 200 gsm, respectively. The samples were printed
using a commercial prepress printer (HP indigo 5000) that used liquid electro-
photographic ink to produce images with sharp edges, uniform gloss, and thin layers.

2.2 Measurements

A microscopic spectral camera system was used to capture the images of halftone dot
patterns and to perform measurements at the pixel level. The measurements required
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in this study for each colorant were: (1) the microspectral reflectance of the solid ink,
the mixed area, and the paper between the dots, (2) the corresponding fractional ink
coverages, (3) the overall reflectance of halftone tints, and (4) the transmittance of the
dots. The imaging setup consisted of a microscope (Nikon Eclipse MA200) with a CRi
Nuance spectral camera attached to it. The ring-shaped illumination from the halogen
lamps approximately made an 8° angle, whereas the detection angle was 0°. The spa-
tial resolution given the chosen objective was approximately 1 pm and the captured
area was approximately 1 mm x 1.3 mm. The spectral resolution of the camera varied
from 420 nm to 700 nm in increments of 10 nm, its bit depth was 12, and all images
were directly stored as radiance images.

The spectral reflectance of each pixel was obtained by dividing the spectral radiance
image by the spectral radiance image of a reference white (Spectralon Standard), and
the values were multiplied by the known reflectance factors of the reference. The square
root of the measured reflectance value of the fulltone image divided by the reflectance
of the bare paper gave the transmittance value of the ink. Pixel reflectance was classi-
fied into that of the paper, the mixed area, and the solid ink based on the segmentation
of the corresponding RGB image. The RGB image was captured at the same time and
under the same conditions as the spectral radiance images. The segmentation results
were also used to calculate respective fractional coverage as the ratio of the correspond-
ing number of pixels to the total number of pixels in the image.

For segmentation, the RGB image was first converted to CMY(K) space because
cyan, magenta, and yellow ink in the corresponding space provide the best contrast
with the paper. The segmentation technique was based on hierarchical cluster analysis
[7], which calculated two optimal threshold values to segment the gray-level image
into three regions. The dynamic threshold selection technique began with the assump-
tion that each nonempty gray level of an image histogram was a cluster. Following
this, clusters closest to one another were merged together in the next level; this con-
tinued up to three levels. The mean and variance values of existing clusters and clus-
ters formed after the possible merging operation were used to measure the distance of
cluster center. The highest gray-level values in the three remaining clusters at the end
of the iterative merging process were chosen as the optimal threshold values. The
details of the mathematical formulation and the calculation are provided in [8, 9].

3 Results

The segmented images were used as masks to collect reflectance spectra from the
corresponding spectral image. The mean spectrum of each class defined the character-
istic spectral reflectance of the relevant area type. The reflectance spectra were con-
verted to TSVs for D50 illumination and 1931 standard observers. The measured
micro-TSVs of the dots and the paper between the dots as a function of printed cover-
age for the coated paper are shown in the xy-chromaticity diagram in Fig. 1. The co-
ordinates of the theoretical limit represent TSVs of the paper when the fractional area
approaches 1.0 or those of the dots when the fractional area approaches zero [5]. The
chromaticity values of the paper between the dots are close to those of the bare paper,
which is represented by the central convergent point that connects the limit through a
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straight line. The chromaticity values of the dots are at the other end of the graph.
According to [5], all dot chromaticity values should lie between the limit and the
fulltone, but the chosen set of samples did not exhibit this behavior because the limit-
ing case crossed a few dot coverages. Nevertheless, the results of the linear mixtures
of TSVs [5] for both the paper and the dots are still valid because their chromaticity
values fall on a line connecting the bare paper or fulltone ink to the limit.
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Fig. 1. CIE xy-chromaticity coordinates of white paper and fulltone ink (circles), paper between
ink dots and fractional inks (dots), and the theoretical limits (triangles)

3.1 Full Dots and the Theoretical Limit

A nonlinear least-squares optimization technique was applied in order to fit Egs. 3-4 to
the measured data shown in Fig. 1. The performance of the characterization technique to
predict TSVs as a function of fractional coverage is shown for the paper between the dots
as well as for the dots in Figs. 2 and 3, respectively. The data points represent the meas-
ured CIE X, Y, and Z micro-TSVs and the lines through the points represent the predict-
ed values. The TSVs of the paper between the dots at coverage 1.0 are the limiting values
shown in the plots. Because of high color variation in the paper between the cyan and
magenta dots, the predictions were not as good as for the yellow dots. Note the impact on
prediction performance of a distracted data point for the cyan ink in Fig. 3.

. 90 . 90 . 90
[} [} [}

= __ =) = ot eesee,
S 803 ¢ 5 80¢ 5 805@90'09-0-90.0
> Oo. > > 70 D
5 70 o 5 70 E e

E Foofougly| S | ER DL

E 60 oih 5 60 E o LN

= 50 £ 50 = 40 '
[ [} [

=3 40 =3 40 2 30 &
a o g a

30
0 0.20.40.60.8 1
Cyan Dot area

30
0 0.20.40.60.8 1

Magenta Dot area

20
0 0.20.4060.8 1
Yellow Dot area

Fig. 2. The CIE X (circles), Y (dots), and Z (squares) TSVs of coated paper between the dots as
a function of dot area. The lines represent the predicted values.
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Table 1 lists all parameters fitted to the data for coated paper. The paper exponent
was correlated with the light spread function of the paper. The exponent p to account
for light scattering varied between 0.172 and 0.262, with an average value of 0.216
(root mean square (7ms) error 1.65). For uncoated paper, the value of p ranged from
0.660 to 1.20, with an average value of 0.590 (rms error 2.88). However, the dot
exponent p recorded notably higher values such that the average value of p was
10.5 (rms error 2.76) for the coated paper and 7.17 (rms error 2.54) for the uncoated

paper.
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Fig. 3. The CIE X (circles), Y (solid dots), and Z (squares) TSV of ink dots on coated paper as
a function of fractional coverage. The lines represent the predicted values.

The average dot exponent p was consistently largest for cyan dots and lowest for
yellow dots depending on the magnitude and uniformity of TSV changes as a function
of printed area (Fig. 3). Although p was described in [5] as the parameter to capture
the complex interaction of light as a function of paper spread function and halftone
cell frequency, the large dot exponent value in this study indicates that it may also
reveal spatial variations in reflectance around the dot edge as an effect of ink spread,
absorption, and light diffusion.

Table 1. Parameters of power function fittings to the data (coated paper)

Paper between dots Dots
Toap-Thimit ~ Timic p rms Thimic—Taor ~ Thimic p rms
error error
X 47.21 3096 0202 2.82 15.14 30.95 1506 4.66
Cyan Y 41.19 40.08 0.193  2.29 16.45 40.07 1418 442
Z 9.44 57.90 0.172  0.44 7.85 57.89 14.63 1.87
X 29.11 49.05 0217 2.01 12.04 49,05 11.85 279
Magenta | Y 46.15 3512 0215 335 14.68 3512 1258 3.46
zZ 34.38 3296 0.205  2.28 16.39 3296 1072 3.55
X 6.98 71.19 0238 0.56 258 71.18 521 0.66
Yellow | Y 4.70 76.56 0.242  0.36 2.89 76.56  5.01 0.68
Y4 40.59 26.75 0262  3.27 15.06 2675 527 281
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Table 2 lists the prediction accuracy of average halftone tints in terms of CIE AEy,
calculated by the modified MD equation (Eq. 5) proposed in Ref. [5]. This data also
serves as a metric of goodness for the fitting procedure. However, the average
prediction error was lowest for cyan ink even though the data-fitting error for it was
the largest. Therefore, Eq. 5 should be corrected for better explanation, and prediction
accuracy of overall halftone tints.

Table 2. Prediction performance of the halftone model (Eq. 5) in terms of average CIE AE;,

Uncoated Paper Coated Paper

Average | Maximum | Average | Maximum

Cyan 1.94 291 1.32 233
Magenta 3.86 7.89 2.95 7.15
Yellow 2.49 4.68 2.83 7.09

3.2 Full Dots and Measured Individual Limits

The TSVs of the paper between the dots given 99% coverage (reference 95%) and of
the dots given 2.4% coverage (reference 3%) were measured and considered as limit-
ing cases for the paper and the dot (Fig. 4). For comparison, the theoretical limit was
also calculated numerically. Fig. 4 shows that the measured limits were close to one
another, but at a notable distance from the theoretical value.
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Fig. 4. CIE xy-chromaticity coordinates of measured paper limit (circled crosses), the dot limit
(circled dots), and the theoretical limit (triangles)

The same optimization procedure was applied to fit the same set of measured data
but with distinct measured limits. Table 3 lists the parameters fitted to the measured
data. The use of measured limits improved the prediction accuracy of both the dot and
the paper TSVs in comparison with the theoretical limit in terms of rms difference.
Fig. 5 compares the difference in the characterization performances as a function of
the limits.
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Fig. 5. Measured and predicted CIE X (circles), Y (dots), and Z (squares) TSVs of paper
between the ink dots. The lines represent the predicted values (gray line: measured limit).

The exponent increased for the paper and significantly decreased in value for the
dots, suggesting a dependency of the exponent on the limiting value. Note the drastic
changes, especially in the value of the dot exponent p. Its value for coated paper
ranged from 2.01 to 4.97, with an average of 4.08 (rms error 2.33), and that for
uncoated paper ranged from 1.13 to 4.75, with an average of 2.37 (rms error 1.86).
The value of p for the paper varied between 0.58 and 1.05, with an average of 0.83
(rms error 1.01) for the coated paper, and between 0.76 and 2.14, with an average of
1.25 (rms error 1.47), for uncoated paper.

Table 3. Parameters of power function fittings to the data (coated paper) with measured limits

Paper between dots Dots
Tpap'TIimil Thimit P rms Thimit—Taot Timit P rms
error error
X 20.82 5734 0.84 1.22 23.90 39.71 494 277
Cyan Y 17.70 63.56 0.81 0.99 25.04 4867 491 2389
Z 3.90 63.43 0.71 022 11.76 61.80 4.63 148
X 12.58 65.58 097 1.16 17.50 5451 497 2.86
Magenta | Y 19.41 61.85 1.05 1.81 20.82 4127 560 3.62
Z 14.39 5294 094 133 23.47 40.04 4.58 3.85
X 3.67 7449 0.73 037 3.67 7228 2.19 045
Yellow | Y 2.72 78.54 0.58 0.30 4.20 77.88 2.01 043
Z 21.16 46.17 087 1.72 18.3 30.07 295 264

Table 4 reports improvements over the results listed in Table 2 for evaluating the
modified MD equation (Eq. 5). Although the measured limits improved the character-
ization of internal changes of micro-TSVs, note that prediction of average TSVs of
the halftone patch was not remarkably different (Table 4). Even overall prediction
accuracy decreased for cyan and magenta colorants for the coated paper. This result
also indicates that the modified MD equation (Eq. 5) needs to be corrected to improve
average tint predictions.
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Table 4. Prediction accuracy of the halftone model (Eq. 5) in CIE AE;, with measured limits

Uncoated Paper Coated Paper

Average | Maximum | Improvements | Average | Maximum | Improvements

Cyan 1.90 3.78 0.04 1.72 3.48 -0.40
Magenta 3.25 9.65 0.61 3.25 6.46 -0.30
Yellow 246 5.14 0.03 278 8.9 0.05

3.3 Dot Segmentation into Solid ink and Mixed Area

The full dot was separated as solid dot and mixed area for an advanced analysis of
color change within the ink region. The limiting TSVs for the paper (called limit-1)
were the same as before, measured using 95% reference coverage, and the TSVs of
the solid area comprising 3% reference ink were taken as the limit of the solid dots
(called limit-2). Since the xy-coordinates of the mixed area frequently occupied the
space between limit-1 and limit-2, these two limits were used to characterize the
change of TSVs of the mixed area. This change is prominent for the magenta and
yellow colorants in Fig. 6, which also shows that changes in the coordinates of solid
inks were smaller, less scattered, and oriented more straightly than the full dots, as
shown in Fig. 1. This means that the mixed area significantly affects the change of
colorimetric values of a halftone image.
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Fig. 6. CIE xy-chromaticity coordinates of solid ink (squares), mixed area (dots), the measured
solid ink limit (circled square) and paper limit (circled cross)

In Eq. 3, Tpaper Was replaced by Tiimicr, and Tiimie by Tiimirx to predict the changes of
the mixed TSVs by fitting p to the measured data, as listed in Table 5 and illustrated
in Fig. 7. For both coated and uncoated paper, the Y TSV in case of yellow colorants
produced an unrepresentative value of p to reduce the number of ignorable rms errors.
Therefore, in order to avoid misleading values, this particular p was replaced by the
average p of X and Z TSVs. However, the average of X, Y, and Z exponents required
to characterize the changes in the mixed area on coated paper ranged from 0.046 to
0.186 with an overall average of 0.106, and on uncoated paper from 0.069 to 0.334
with an average of 0.175. The low exponent value indicated small changes of color in
the mixed area. The coated paper had smaller color variations in the mixed area
because the ink spread and absorption was less than on uncoated paper. Therefore, the
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exponent manifested the effect of ink spread and penetration properties of the halftone
imaging system. Fig. 7 shows small changes of TSVs in mixed area and random vari-
ations in X for cyan or Y for magenta due to possible noise or measurement errors.
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Fig. 7. Measured and predicted CIE TSVs X (circles), Y(dots), and Z (squares) of the mixed
area as a function of printed area in coated paper. The lines represent the predicted values.

Table 5. Parameters of power function fittings for the dot and mixed TSVs (coated paper)

Mixed area Solid dots
Timitt-Ttimiz~ Tlimit1 P rms Tiimi2 ~Tsotia~ Tiimit2 )4 rms
error error
X 18.51 57.34 0.110 295 19.94 3883 0.792 191
Cyan Y 15.33 63.56 0.105 2.48 21.22 4822 0.838 1.97
Y4 1.61 63.43  0.043 0.87 10.24 61.82 1.13  0.84
X 9.30 65.58 0.186 1.62 16.85 56.28 0.612 1.76
Magenta | y 18.06 61.85 0.195 3.20 20.64 43.78 0.519 2.32
Y4 11.00 5294 0.178 1.71 22.17 4193 0.650 2.17
X 1.96 7449  0.024 0.58 3.70 72.53  0.696 0.23
Yellow |y 0.45 78.54 0.046 0.54 4.11 78.08 0.776 0.24
Y4 13.41 46.17 0.068 2.85 19.56 32.75 0.636 1.06
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Fig. 8. Measured and predicted CIE X (circles), Y(dots), and Z (squares) TSVs of solid ink on
coated paper. The lines represent the predicted values.

The average solid dot exponents required to account for light scattering on coated
paper were ranged from 0.593 to 0.920 with an overall average of 0.738, and on un-
coated paper ranged from 0.622 to 0.700 with an average of 0.655. Thus, the recorded
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values were comparable to the values of exponents of the paper between the dots in
order to correlate the effect of the light spread function and the halftone cell frequen-
cy. For example, a higher dot exponent for coated paper was because of the higher
screen frequency of 175 Ipi. Fig. 8 shows that the characterization performance of
solid ink TSVs change was also convincing.

The halftone tint prediction accuracy, evaluated by Eq. 6, which also includes the
effect due to the mixed area [6], is shown in Fig. 9 and listed in Table 6. The average
accuracy for both coated and uncoated papers was identical at 1.53 AE},. Except for
cyan on coated paper, all other ink-paper combinations recorded better prediction
accuracies than the values in Table 2. The highest improvement was 2.64 AE}, and
the global improvement was slightly higher than 1AE},,.
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Fig. 9. Measured and predicted CIE TSVs X (circles), Y(dots), and Z (squares) of halftone
patches in coated paper. The lines represent the predicted values.

Table 6. CIE AE}, of the extended MD model (Eq. 6) that includes the effect of mixed area

Uncoated Paper Coated Paper

Average | Maximum | Improvements | Average | Maximum | Improvements

Cyan 1.76 2.96 0.18 1.56 3.08 -0.24
Magenta 1.22 3.29 2.64 1.75 471 1.20
Yellow 1.62 2.92 0.87 1.29 2.94 1.54

4 Conclusions

The change of colorimetric values of the halftone dots was larger than the paper
between the dots for the electroink printing technology. The color of the dots or the
paper between the dots was a mixture of colorimetric values of fulltone ink or base
paper, respectively, and a limiting value. The simulated common limit used for
characterizing the changes did not match with the measured limit. The measured dis-
tinct limits for the paper and the dots produced better characterization accuracy than a
numerically calculated limit. However, the only empirical parameter — the model
exponent — captured light scatter in the paper between the dots, but high values for the
dots were not appropriate to explain the cause and effect. Nevertheless, the character-
ization of the dot area segmented into solid and mixed areas produced exponents
comparable to the paper exponents. Notably, the low exponent value indicated small
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changes of color in the mixed area as a function of printed coverage. Thus, the corre-
sponding exponent manifested variation in ink thickness due to ink spreading and
penetration of the halftone imaging system. In general, the empirical model parameter
was a function of paper properties, inks, and halftone screen frequency.

A modified MD halftone equation to incorporate the variable colorimetry of the
dots and the paper produced overall tint prediction accuracy ranging from 1.32 to 3.86
with an average of 2.56 CIE AE}, using a theoretical limit. Although the use of
measured limits improved characterizations of paper or the dot TSVs, the overall tint
prediction accuracy was not significant. However, linearly adding the effect due to the
mixed area in an expanded MD model yielded accuracy values ranging from 1.22 to
1.76 with an average of 1.53 AE},. The overall gain was more than 1 AE},. There-
fore, segmenting the inked area into solid ink and mixed area generates more accurate
predictions and better explanations of observed color changes.

This study showed that an expanded MD equation that follows the law of conser-
vation of energy can predict halftone tints with satisfactory accuracy. Therefore,
incorporating the concepts of dot area fragmentation, the change of paper and dot
reflectance variations in the Neugebauer equations, for instance, should yield better
prediction accuracy for color halftone prints. Testing these concepts for multicolor
halftone images and rendering them practically useful require a simple method based
on traditionally measured reflectance values.
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Abstract. Relighting is a technique to modify an image to account for alternate
illumination conditions. Conventionally, the reflectance characteristics of an
object are provided, and a relighted image is calculated using input light source
information. In this paper, we propose a dynamic relighting system for moving
planar objects with unknown reflectance. By acquiring the surface spectral
reflectance of moving objects, our system is able to reproduce accurate colors
on a display device. In the reflectance acquisition, we use a programmable light
source that can produce any spectral curve. The surface spectral reflectance of
an object in a darkroom is obtained based on the lighting technique with five
spectral basis functions that are generated by the programmable light source.
The acquired reflectance and user-input illumination information are used to
calculate accurate CIEXYZ values of the relighted image. Finally, CIEXYZ
values are accurately transformed to RGB values. In the experiment, illuminant
A and D65 are used as the illuminants for relighting. As a result, by comparing
a computer simulation with actual experiments with real objects, we observe an
average color difference AE,, of approximately 7. This system operates at
a rate of 1 frame per second. In addition, in this study, we have implemented
another relighting system for objects under an environmental lighting condition
by determining the spectral power distribution of the illumination source.

Keywords: Relighting - Spectral reflectance estimation - Color reproduction -
Dynamic system - Illuminant estimation

1 Introduction

In general, when looking at an object, brightness and color in human perception de-
pend on the type of the light source. Relighting is a technique to change the illumina-
tion environment within an image. Relighting is used in industrial product design to
simulate the appearance of objects under a variety of light sources.

In previous studies, relighting has been implemented by various approaches. Zhen
et al. [1] proposed a relighting method for human faces by changing the coefficients
of the spherical harmonic function of the radiance environment map. This approach is
based on the acquisition of three-dimensional model of a human face using a morph-
ing model. Then the human face was relighted using this three-dimensional shape.
The light source environments were approximated by a spherical harmonic function
as a basis function. They performed this process in real time by only estimating the
© Springer International Publishing Switzerland 2015

A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 81-90, 2015.
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diffuse reflection. Debevec et al. [2] acquired a large number of shading images by
using a lighting device called Light Stage. They were able to realize relighting under
any illumination condition. However, these conventional methods perform poorly
with RGB signals, as there is a limitation in the color reproduction accuracy. Accurate
color reproduction is extremely important in relighting technology. In this regard,
spectral imaging may perform better. Manakov et al. [3] have proposed a relighting
technique that uses a multiband camera for obtaining spectral information. Park et al.
[4] proposed a relighting technique by obtaining surface spectral reflectance of target
objects from multispectral illumination with various types of LEDs. However, these
relighting techniques using spectral information require a significant amount of time
to acquire spectral reflectance of object surfaces. Then, the relighted objects are
processed offline. Real-time relighting based on spectral information has not yet been
established.

In this study, a dynamic relighting system is proposed for moving planar objects
with unknown reflectance. We develop a high-speed spectral reflectance acquisition
technique based on spectral basis lighting. In the proposed system, we assume that the
target object is flat, and that the input illumination for relighting is a collimated light
source. Under these conditions, our system can dynamically relight objects. In order
to display an accurate color image, the tristimulus CIEXYZ values are calculated
using the acquired surface spectral reflectance and the input illuminant spectrum.
Finally, we display an RGB image sequence that has been properly transformed from
the CIEXYZ values.

2 Proposed System

2.1 System Configuration and Processing Flowchart

In this study, we use a high-speed spectroscopic imaging system [5]. Figure 1 shows
the configuration of the proposed system. The system is configured with a programm-
able light source device (Optronic Laboratories OL490), high-speed CMOS monoch-
rome camera (EPIX SV642M), and a control computer. The advantage of this
programmable light source is the ability to acquire a spectral image in real time by
synchronizing with the frame rate of the camera. This source can be switched faster
than the LCD-based light source. We also use a high-speed monochrome CMOS
camera SV643M (resolution: 640 x 476 pixel, quantization bits: 10bit, frame rate:
200fps). The display used in the present study is EIZO ColorEdge (CG 221). The
color gamut of the display is Adobe RGB. The CPU has an Intel Core i5-3470
3.2GHz and 3.48GB of RAM.
Figure 2 shows our processing flowchart. The sequence is:

1: Irradiate the object with the spectral basis illumination to acquire the corresponding
pixel values of the target objects.

2: Calculate the spectral reflectance from the pixel values (See details in Section 2.2).
In order to reduce the calculation time, we calculate the reflectance in 31-
dimensional wavelengths in 10 nm intervals over the visible wavelength range from
400 nm to 700 nm.
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3: Load the light source information. The light source for relighting is determined by
the user in advance.

4: Calculate the tristimulus values (CIE XYZ) using the loaded light source informa-
tion, the recovered spectral reflectance of objects, and the color matching functions.
In our dynamic process, we can change the relighting conditions by reloading a va-
riety of light sources. (See Section 2.3)

5: Convert CIE XYZ to RGB values. We properly reproduce a relighted RGB image
on the display. (See also Section 2.3)

Target Object

Light Source Pixel Value Acquisition

> 'S o —
H A = Calculation

Oooe

—l—

Fig. 1. Configuration of the proposed system

1 Loading of 2.Calculation 3,L.oari1_ug E?f 4 Relighting 5 Caleulation
the pixel values of reflectance the light source (Section 2.3) of the RGB
Py (Section 2.2) information - (Section 2.3)

Light source
information

Fig. 2. Algorithm of the proposed system

2.2  Reflectance Estimation Method

The reflectance estimation used in this study is described in [6]. We use an orthogonal
basis , (1) to represent the surface spectral reflectance. The surface spectral reflec-

tance S(A) can be expressed as
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SH=Y ww, (A  (m=12,...M) (1)

m=1

where M is the number of principal components of the orthogonal basis, w, are the
weights of the basis and A indicates the wavelength. In this study, we selected five
spectral basis functions, i.e., M = 5. The basis functions were computed from a spec-
tral reflectance database with 507 samples. Figure 3 shows the five orthogonal basis
functions. We were unable to irradiate with the light source that is calculated from Eq.
(1), because the orthogonal basis can include negative values. In this study, we irra-
diated with an orthogonal basis light source divided into positive and negative func-
tions. We estimate the spectral reflectance using acquired values:
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Fig. 3. Orthogonal basis used in our experiment

We divided the orthogonal basis into positive and negative elements from Eq. (2).
We determined the camera output 07 (z,),0 (1,)by irradiating with an illumination

light source calculated from Eq. (1). We estimated the surface spectral reflectance by
substituting Eq. (3) into Eq. (1). Using this method, the dynamic range of the base is
retained, without the need to generate a flat offset value. Figure 4 shows the illumina-
tion designed in this study. The figure shows the waveforms of nine orthogonal bases
with the negative values inverted and which are divided by the spectral sensitivity of
the camera R(1). The solid lines are the waveforms that are divided by the spectral
sensitivity R(4) of the camera in the positive original orthogonal basis; a dashed lines
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are the waveforms that are divided by spectral sensitivity R(1) of the camera to re-
verse the negative component. The second to fifth main components require illumina-
tion of two sources each, in order to design the illumination light source from a total
of nine waveforms.

0.48
A — Ist component/R( A
o4 % — 2nd component/R{ A
. 1 —  3rd component/R( A
: —  4th component/R( A
0.36 — 5th component/R( A

Normalized value
(=]
(3]
=

400 500 600 700

Wavelength (nm)
Fig. 4. Waveforms divided by the camera sensitivity are decomposed into positive and negative
orthogonal basis (Solid line: Waveforms obtained by dividing the camera sensitivity are the

positive values of the principal component. Dashed line: Waveforms divided by the camera
sensitivity are the inverted negative values of the main component.)

2.3  Principle of Relighting

In general, the tristimulus values (CIE XYZ) at a certain point on the object surface
are obtained by Eq. (4).

X xX(2)
Y = [SQE )| 7(2) a2 )
z zZ(2)

Where S(4) is the acquired surface spectral reflectance of the object described in the
previous section, E{(4) is the spectral power distribution of the light source for relight-

ing as input by the user, and (x(4),¥(1),z(1)) is the color-matching function. We
calculate CIE XYZ from Eq. (1) and the estimated reflectance. We then converted to
RGB from the CIE XYZ values. After that, we displayed the image on the monitor.
By setting the light source information E7(1) appropriately in Eq. (1), the image is
relighted. The relighting is performed assuming the two-dimensional, light source
used is collimated.
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We compute the monitor RGB by substituting CIE XYZ into Eq. (5). Mj,; is the
matrix used to convert RGB from CIE XYZ in this display. We also used a correcting
LUP (Look Up Table) for the RGB values.

R X
G|=M,,|Y &)
B z

3 Experiments

3.1 Experimental Setup

To verify the accuracy of the proposed system, an X-Rite Mini ColorChecker was
used as a target object for relighting under the illuminant D65 and illuminant A. The
object was moved to the left and right at a constant speed of 20 mm/sec by a stepping
motor (Sigma Koki TSDM60-20). Figure 5 shows the experimental setup. The system
is configured with a programmable light source, a high-speed CMOS monochrome
camera, and a calibrated monitor.

Calibr ated

Programmable light SOUI ce
Target Ob]ECt

——

“Light emlttmc

Fig. 5. Relighting system

3.2  Relighting Accuracy

In order to verify the accuracy of the relighting system, an X-Rite Mini ColorChecker
was compared by setting the illuminant D65 illuminant A and re-lighting. We show
the results in Fig.6. The system can process the data dynamically, and display a mov-
ing object with relighting on the calibrated monitor. Figure 7 shows the results for a
moving object.

The results of the measurement are summarized in Table 1 showing CIE 1976
AE’,, color differences with respect to the 24 colors of the ColorChecker. The average
color difference is 7.17 for illuminant A and 6.55 for illuminant D65, respectively.
Table 2 shows CIE 1976 AE',, color difference of spectral reflectance estimation
with respect to the 24 colors of the ColorChecker and color reproduction error of the
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display. The accuracy of this study is due to the errors on reflectance estimation (Sec-
tion 2.2) and color reproduction of the display (Section 2.3). In this study, the spectral
reflectance with respect to moving object is estimated with an average color differ-
ence of about 5.36. In Ref. [6], the spectral reflectance with respect to a stationary
object is estimated with an average color difference of about 2.5. The accuracy of our
experiment is lower than Ref. [6], probably due to noise and variations in the lighting.
The color reproduction error of the display is a 2.1. Total speed of the proposed sys-
tem was 1 fps (frame per second).

Fig. 6. Relighting result (Left: Illuminant A, Right: Illuminant D65)

Fig. 7. Relighting result for moving object (ColorChecker is moving from right to left.)

Table 1. Color reproduction error in this system

Illuminant A IIluminant D65
Average color difference AE ab 7.17 6.55
Maximum color difference AE ab 14.1 15.5
Minimum color difference AE ab 3.11 1.93

Table 2. Color differences of spectral reflectance estimation and color reproduction of the
display

Color reproduction
of display
Average color difference AE ab 5.36 2.1

Reflectance estimation




88 R. Nakahata et al.

3.3  Relighting of Commonly used Objects

We tested our relighting system using a real-world object. The target light sources
were illuminant A and illuminant D65. Figure 8 shows a real sample object of a piece
of cloth. Figure 9 shows the relighting result. The system is able to reproduce the
appearance under a different light source illumination on the monitor. This demon-
strates that our system is capable of relighting commonly used objects.

R

Fig. 8. Target object

Fig. 9. Relighting results for a plaid cloth (Left: A light source, Right: D65 light source)

3.4  Relighting Under Environment Lighting Condition

The spectral power distribution by illuminating with a different light source is given
by the product of the spectral distribution of the light source and the surface spectral
reflectance of the object. Therefore, the surface spectral reflectance of the object can
be estimated by detecting the spectral distribution of the light source. By using a ref-
erence object in the image with known surface spectral reflectance, the spectral distri-
bution of the light source can be detected.

In this study, we conducted an experiment using artificial sunlight as the environ-
mental light source. Figure 10 shows the setup of the experiment. We used X-Rite
Mini ColorChecker as the moving object and a white patch was used as the reference
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for detecting the spectral distribution of the light source. Figure 11 shows one expe-
rimental result. The left figure shows an input image taken under artificial sunlight,
and the right figure shows a relighting result under the illuminant D65.

Artificial sunlight

Fig. 10. Experimental setup under environment lighting condition

Fig. 11. (Left) Image captured under artificial sunlight. (Right) Image relighted by illuminant
D65.

4 Conclusion

In this study, we have constructed a dynamic relighting system for moving planar
objects with unknown reflectance. The averaged color difference AE',, between the
measured value and the true colors of X-Rite Mini ColorChecker was 7.17 for the
illuminant A, and 6.55 for the illuminant D65. We demonstrated the capability of our
system by relighting to a real object, in this case a piece of cloth.

One problem with the proposed system is the low processing speed of 1 fps. This
could be improved in the future by using a GPU and multi-core CPU system. Since the
application to glossy objects is very difficult, we will address to glossy object in the



90 R. Nakahata et al.

future. By using an RGB-D camera, a relighting system for an object with a compli-
cated shape could be tackled as a future problem.
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Abstract. Memory color plays an important role in the perceptual
process. The aim of this research is to collect, analyze and represent
memory color data for certain natural scenes objects: sky, grass and tree
leaves. To emphasize reliable data collection, we consider several sources:
(a) psychophysical experiment; (b) multispectral image; (c¢) standard
image database and (d) random image collection. Moreover, we con-
sider different daylight conditions and locations. We perform an in-depth
analysis of the collected information in the CIE-xy chromaticity space
and present the natural scene objects as a memory color ellipse or poly-
gon. Finally, we demonstrate a potential use of the collected information
for natural image segmentation and enhancement.

Keywords: Memory Color - Natural Scene Objects

1 Introduction

Memory colors are those colors which are recalled in association with familiar
objects in long-term memory Bartleson [1960]. They have influence on the color
appearance of objects, and hence play an important role on comparison and
decision process. The naturalness of the images in the visuo-cognitive processing
depends on the closeness of match between the representation of the image and
memory Janssen [2001]. Natural objects like sky, grass etc. has the naturalness
property and good candidate of objects containing memory color. These objects
should be considered within the context of the entire image. Moreover, since
memory colors are those that people often see in life, remember them and can
tell when they look right, these objects must have very small gamut. Therefore,
it is necessary to define a certain range of values for these objects. This research
is motivated by such observations and hence contributes to collect reliable mem-
ory color information of certain natural scene objects and represent them in a
standard form.

Heretofore, the concept of memory color has been widely studied
by the scientific communities from different perspectives Bartleson [1960];
Pérez Carpinell et al. [1998]; Vurro et al. [2013]; Xue et al. [2014]. In image
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processing, it has been successfully adopted in numerous tasks Boust et al.
[2006]; Xue et al. [2014], e.g., image quality evaluation, matching, segmenta-
tion and enhancement. For image enhancement, an expert first segments it into
regions of interest. A set of these regions correspond to the natural objects. Then
s/he changes the colors of these objects such that they match with the color that
s/he recalls from memory. Likewise, naive observers use memory colors to judge
an image for preference. It is found that, an image is preferred if the colors of
the scene objects match with the colors that are stored in memory Boust et al.
[2006]. Memory colors have been used for image enhancement through automatic
color constancy. Most digital cameras apply color constancy (white balancing)
algorithms to estimate the illumination, which ensures that color casts are com-
pensated and colors (other than the neutrals) appear as correct or pleasing
Rahtu et al. [2009]. A dataset was collected for such study Rahtu et al. [2009],
which is not publicly available. Moreover, it was collected by maintaining sev-
eral constrains. Therefore, more interests are grown towards conducting similar
research with a dataset obtained from restricted as well as publicly available
images. This eventually motivates us to collect memory color data that com-
bines information from different sources and conditions.

In this research, our aim is to: (a) collect reliable memory color data for cer-
tain natural scenes objects; (b) analyze the data in a widespread color space and
(c) provide a standard representation of the memory color. To this aim, first we
collect memory color data from several sources, such as: psychophysical exper-
iments, images from internet and personal collection, standard image dataset
and multispectral image. Next, we analyze the data in the CIE xy-chromaticity
space by observing the color variations of each object. Finally, we represent the
objects as an ellipse or polygon in the color space.

A practical use of memory color is image segmentation and enhancement
Xiao-Ning Zhang et al. [2010]; Xue et al. [2014]. We observe that, this can be
accomplished by exploiting our analyzed data. Therefore, although it is not our
primary interest, yet in this paper we demonstrate such an application to clarify
the use of our data. Our segmentation procedure consists of simply verifying
the pixels color location w.r.t. the memory color ellipse or polygon. We perform
image enhancement with a directional shift of the input color of memory objects
towards the preferable region.

In the rest of this paper we discuss data collection strategies in Section 2.
Then, we present our analysis and observations in Section 3. We present the
data representation method in Section 4. Next, we demonstrate an application
in Section 5. Finally, we draw conclusions in Section 6.

2 Memory Color Data Collection

We collect memory color data for three natural objects: sky, grass and tree leaves.
Our data collection procedure consists of two main strategies: (1) psychophysical
experiment, similar to Bartleson [1960]; Pérez Carpinell et al. [1998] and (2)
image based data collection.
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2.1 Psychophysical Experiment

The aim of psychophysical experiment is to find out what would be the response
of an observer when he/she is asked to choose a particular color corresponding to
a certain natural scene object. In general, such experiments are conducted in a
control environment and the observer does not have any contextual information,
i.e., surrounding objects or a reference object.

Similar to Bartleson [1960], we use the Munsell color chart. The color chart is
placed in the light cabinet under different light sources. In order to stabilize the
light source, we switch ON the light booth for 2 hours before the experiments.
At the beginning, the observer is asked to look at the walls of the cabinet for
a certain period of time, so that s/he can adapt with the light source. The
geometry used here is 0/45.

We consider 18 observers from different backgrounds, i.e., from different coun-
tries, male and female, with/without prior knowledge of color. We ask the fol-
lowing questions: (a) “what is the possible color of an object (sky, grass and
tree leaves)” and (b) “what is the most preferable color for that object?”. The
preferred color is considered as “favorite color”. The observers are not allowed
to take a reference color. We measure the reflectance spectra for the selected
color chips using Perkin-Elmer Lambda 18 UV/VIS spectrophotometer (specu-
lar excluded), between the wavelength 380 nm - 780 nm in step of 1 nm. From
the measured spectra, we calculate the tristimulus values for further analysis.

2.2 Image Based Data Collection

In this strategy, an observer can select the memory color (image pixel) regardless
of any controlled environment as well as considering the surrounding objects
present in the image. A digital image is displayed to an observer. The task here
is to select at least 3 pixels for certain natural object. Moreover, they select at
least 1 pixel as preferred (“favorite”) color.

We consider images from three different sources: (a) multispectral images;
(b) standard image database and (b) random images from internet/personal
collection. Table 1 provides a list of the number of images and selected data
points for each source and object category.

Table 1. Number of images and selected data points for each memory color objects

Sky Grass Tree leaves
images|points|images|points|images|points
Psychological n/a | 48 n/a | 44 n/a | 60
Spectral 13 384 15 428 20 828

Digital image( internet) | 155 | 307 79 155 75 150
Digital image (standard)| 188 | 200 | 183 | 551 | 110 | 224
Total data 356 | 939 | 277 | 1178 | 205 | 1262
Total after clean up - 922 - 1138 - 1243
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Multispectral Images: We collect 26 spectral reflectance images. These images
are in the following wavelength ranges with different spatial resolution: (a) 420
nm to 721 nm at the interval of 7 nm; (b) 400 nm to 720 nm at the interval of 10
nm and (c¢) 450 nm to 800 nm at the interval of 10 nm. Several images consist
of a mixture of rural scenes from the Minho region of Portugal, containing trees
leaves, grass, earth and urban scenes. These images were used in the study by
Foster et al. Foster et al. [2004]. Other images are obtained from the image collec-
tion of the Spectral Color Research Group in the University of Eastern Finland.

Due to several limitations, it was not possible to ensure that the collected
spectral images are captured in different daylight conditions. Therefore, we use
the SPDs of daylight simulators in order to simulate the effect of different day
times. We consider four day light CIE standard illuminants: D50, D55, D65 and
D75, which typically represent: Horizon light, Mid-morning/Midafternoon, Noon
daylight and North sky daylight.

Standard image database: We emphasize to collect memory color data from
the images of a renowned, color research oriented and publicly available database.
Such an image database! Gehler et al. [2008] was created at Microsoft Research
Cambridge for color constancy based research. It consists of 568 images, from
which we consider 481 images of outdoor natural scenes. Additionally, we label
the images as either mid-day or morning/afternoon images.

Random images: We collect 309 natural objects (sky, grass and tree leaves)
specific images from internet and personal collection. The aim of this collection is
ensure that the images are from different daylight conditions, places and times.
Moreover, such images are taken by arbitrary unknown imaging sensors. We
label these images based on different times of a day.

3 Data Analysis and Observations

First, We transform the memory color data from each source into the CIE xy-
chromaticity space. Next, we identify and use particular thresholds to remove
outliers through the data cleanup process. For each object category, we ana-
lyze: (a) variations of chromaticity coordinates for different data sources and (b)
directions of shift for different daylight conditions. Finally, we store these data
as training data for potential applications. Table 2 provides a list of minimum
and maximum coordinates found from each data source and for each object.

psychophysical experiments: Fig. 1 illustrates the memory colors obtained
from psychophysical experiments, where green indicates “favorite color”. We
observe that, the sky color in the chromaticity space justifies the identified region
of sky color in the image based data collection. The grass color region in the
chromaticity space is not in good agreement with the identified region of grass
in other data sources. More specifically, they are within the range of 0.26 to 0.38

! http://files.is.tue.mpg.de/pgehler /projects/color /index.html
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Table 2. Analysis of different datasets for memory color objects

lMin X‘M&X X‘Mil’l ylMax y

Sky
Psychophysical [0.20 |0.32 [0.25 |0.35
Spectral 0.24 10.32 |0.26 |0.35

Image (random) [0.21 [0.31 (0.21 [0.34
Image (standard)|0.27 |0.35 |0.28 [0.36

Grass
Psychophysical [0.26 (0.38 [0.37 |0.56
Spectral 0.30 [0.40 |0.35 |0.47

Image (random) [0.36 |0.41 |0.47 ]0.54
Image (standard)|0.34 [0.42 |0.40 [0.54
Tree Leaves
Psychophysical [0.27 [0.36 |0.42 |0.56
Spectral 0.24 (0.41 ]0.26 |0.51
Image (random) [0.35 |0.44 |0.43 [0.56
Image (standard)|0.33 [0.43 |0.38 [0.54

in x-coordinate whereas the range is between 0.30 to 0.42 for other datasets.
The tree color shows good correlation with other source of images. Moreover, we
notice that the favorite colors chosen by different observers are scattered within
the region.

Sky Grass Tree
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Fig. 1. Illustrations of results from psychophysical experiments. Plots show the CIE-xy
coordinates of the natural objects: (from left) of sky, grass and tree leaves.

Spectral Images: Fig. 2 presents the memory color data obtained from the
spectral images. Moreover, it illustrates the changes of colors as a function of
different illuminations. We see that, due to simulations with different daylight,
the memory colors of each object spans wider range in the CIE-xy diagram.
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Tree leaves
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Fig. 2. Illustration of memory colors obtained from spectral images in the CIE-xy
chromaticity space. From left, Sky, grass and tree leaf in: D50 (green), D55 (red), D65
(cyan) and D75 (pink).

Standard image database: Fig. 3 illustrates the memory colors obtained from
the images of this category. From the analysis of variations, in Fig. 2 and Fig. 3,
we found that the sky color regions in the chromaticity space justify the identi-
fied region from spectral image. Similar analysis on other objects reveals that,
although grass and leaves colors have overlapping with colors data from different
sources, yet there are some regions which mismatch.

Tree leaves
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Fig. 3. Illustration of memory colors in the CIE-xy chromaticity space, obtained from
standard image database Gehler et al. [2008]. In the plots, blue color indicates mid-day
and green color indicates objects memory color in morning/afternoon.

Random image collection: Fig. 4 shows the memory color of objects from the
random image collection. This analysis revealed that sky color at the mid-day
shift diagonally from the yellow color region. This is because of the dominance
of yellow color in the morning / afternoon. Grass and tree-leaves colors show
very little amount of shift. Grass colors shift diagonally downwards and from
tree-leaves colors no conclusion is possible to make. We can use this shifting
directional information during enhancement.

Next, we analyze the data jointly from different sources. We observe that
the combined data consists of few outliers. Based on observations, we define
thresholds for each memory object to clean up the data. We determine these
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Fig. 4. Illustration of memory colors in the CIE-xy chromaticity space, obtained from
randomly collected images. In the plots, blue color indicates mid-day and green color
indicates objects memory color in morning/afternoon.

thresholds empirically by examining the Euclidean distances between each data
point and the mean of all data. First, we remove the 5% - 10% most distant
points from the entire data. Then, as the threshold values, see Table 3, we keep
the minimum and maximum coordinates of the remaining data.

Table 3. Thresholds (chromaticity values) for memory color objects

Min x|Max x|Min y|Max y
Sky 0.21 0.345 |0.205 [0.356
Grass 0.30 0.42 0.35 0.56
Tree leaves|0.24 0.435 |0.262 [0.562

In the chromaticity space, because of the changes in daylight situations the
same object color may shift in any direction from a particular point. To accu-
rately locate such shifts in color, it is necessary to identify the direction of
changes. For this reason, based on the data collected from multispectral images,
we calculate and study the angle of changes in different daylight conditions.
Table 4 gives the analysis of the angular changes under different illuminations.

Table 4. Intra variation of Angles of colors in different illumination (The unit is in
degree between two corresponding colors).

Sky Grass Tree Leaves
Max |Min |[Avg |SD |Max|Min |Avg |[SD |Max|Min [Avg |SD
D65(48.17]46.00(47.36{0.56|52.25]46.99(49.77|1.08|53.18|46.19(49.44|1.66
D50(48.66(46.02(47.61{0.66|51.61]46.23|49.04|1.12]52.39|45.71|48.95|1.39
D55(48.54]46.08]47.58(0.61(51.90(46.57|49.37|1.10{52.71|45.95|49.19|1.47
D75(47.84]45.81]47.06(0.53|52.42(47.22|49.99|1.07|53.59|46.14|49.53|1.84
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4 Memory Color Representations

In order to exploit the collected data for practical tasks, it is necessary
to establish a meaningful form to represent them. Following existing work
Xiao-Ning Zhang et al. [2010], we use the notion of ellipse and polygon to rep-
resent memory color data. Particularly, the ellipse and polygon are used for all
memory colors, whereas, only the polygon is used to represent the favorite color.
Total numbers of favorite points are around 10% of the total number of con-
sidered data points. Fig. 5 illustrates the obtained ellipses and polygons for the
memory color data obtained in Section 2.

Tree leaves

Fig. 5. Illustrations of Memory color ellipses (first row) and polygons (second row) for
the entire data collected for different natural objects. The favorite color polygons are
shown w.r.t. both ellipses and polygons.

First, we define memory color region in the CIE xy-chromaticity space using
an ellipse. From the xy-coordinates, an ellipse is defined using least squares
criterion as:

ar®> +bxy+cy? +dr+ey=f (1)

We observe that, an ellipse fitted with Eq. (1) tends to exclude many data
points which belong to the memory color of certain objects. Moreover, it often
encompasses unwanted regions. To handle such cases we manually correct the
semi-major axis, semi-minor axis and the center of ellipse. The correction is done
with the principle of minimizing false rejection and false selection. The first row
of Fig. 5 illustrates the ellipses after correction. We see that they cover most of
the regions while excluding few color points.

Experimentally (see Fig. 7(a)) we observed that, memory color ellipse, even
after manual correction, may lead to segmentation fault due to false consider-
ation of some unwanted region. In order to eliminate this problem, we propose
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the use of polygon rather than ellipse. The polygons are defined based on man-
ual observation in the chromaticity space. The second row of Fig. 5 illustrates
the polygons. Fig. 7(a) shows that, such polygons can successfully handle false
selection and rejection.

We define favorite color polygon from the favorite memory color data. In
Fig. 5, it is the most interior and smaller polygon. We observe that favorite
color polygon is well suited inside the memory ellipse and polygon. Similar to
Xiao-Ning Zhang et al. [2010], we will use the it for image enhancement.

5 Application: Image Segmentation and Enhancement

For image enhancement, first we employ a well-known color constancy algorithm
called gray-world algorithm Gehler et al. [2008]. Next, we convert the white bal-
anced image from RGB space to xyY space. After that, we apply segmentation
based on the defined ellipse/polygon in order to obtain the region of interest
(ROI). Any pixel is added to the ROI if it belongs to the ellipse/polygon. Finally,
we shift the chromaticity coordinates of the segmented pixels based on its rela-
tive distance and subtended angle to the center of favorite color polygon. The
distance according to which the data should be shifted depends on two para-
meters: the distance and the angle of the point in relation to the center of the
rectangle Xiao-Ning Zhang et al. [2010].

F

Fig. 6. Color shifting distance in the enhancement process

Fig. 6 illustrates the color shifting method. Point F' is the candidate to shift
towards the memory color rectangle. According to the rule: OF : EF = EF! :
F'F, the colors which are further away from the center should be enhanced more
than the closer ones. Let us observe points F' "and F. Even though the distance
from the center to the colors are same, F' " is closer to the DC boundary, and
therefore should be enhanced less than F'. To satisfy this rule, we must consider
the angle from the rectangle boundary to the color point. The pixels within the
memory rectangle should remain the same. If d is the distance from the center
of the rectangle to the color F' (let d = OF), then the distance from the center
to the enhanced point F!(d! = OF?') should be:
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where, h is the distance from the center to the middle of the rectangle edge (i.e.,
O to DC). Finally, we convert shifted pixels from xyY to RGB space.

Fig. 7(a) illustrates the results of segmentation using ellipse/polygon. In the
segmented image, the colored portions are the regions where enhancement will
be applied. We observe undesirable result in middle column as the pixels belong
to the cloud are segmented as sky. This indicates that, segmentation with ellipse
produces incorrect segmentation (false selection). On the other hand, based on
the result in the last column, we see that memory color polygon performs better.

(b)

Fig. 7. (a) Result of segmentation: (left) original image, (middle) segmented image
generated by memory ellipse, (right) segmented image generated by memory polygon.
(b) Results of enhancement of images with sky. Left column shows the original image
and right column shows the enhanced image.

Fig. 7(b) illustrates the results of image enhancement. Note that, the pro-
posed method only enhances a particular segment of the image that consist of
certain natural object. We observe that, such an enhancement increases the con-
trast between the memory color objects and other objects of the image. There-
fore, it is necessary to perform global enhancement to preserve the coherency of
colors, which we consider as a potential future work. Additionally, we observe
that: (a) performance of enhancement depends on the accuracy of segmenta-
tion and (b) amount of enhancement depends on the area as well as location of
polygon in the chromaticity space.

6 Conclusions

The fundamental contribution of this research is to perform acquisition and
analysis of memory color information for several objects commonly appears in
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natural scenes. Therefore, we consider different data sources and devices to col-
lect memory color information. We study the collected data and provide in-depth
analysis to ensure reliability and better understanding. We represent object spe-
cific data as an ellipse or polygon. As a potential use, we demonstrate applica-
tions in image segmentation and enhancement. Results show that, the collected
data is reliable and hence can be used for different image processing tasks which
concern about the natural scenes objects. In future, this fundamental research
can be enhanced by providing different forms of representation of the collected
memory color data, e.g., probabilistic representation of the decision boundary of
memory color regions in the color spaces. Moreover, we can investigate different
color spaces and evaluate them. For the application, we can focus on developing
more robust methods and compare them with existing methods.
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Granada, and Gjovik University College.
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Abstract. The aim of this work was to investigate the effect on a display gamut
of varying the optical density and the position of the maximum sensitivity of the
cones spectra of anomalous trichromatic observers. The anomalous cone
spectral sensitivities were estimated for a set of varying optical density and
maximum sensitivity spectra conditions and used to compute the display color
gamut. The computed display gamut simulated for normal observers the chro-
matic diversity perceived by anomalous observers. It was found that even small
variations on the optical density and on the position of the maximum sensitivity
spectra have an impact on the simulations of the display gamut for anomalous
observers. It was also found that simulations for deuteroanomalous observers
are the ones with greater impact if the estimation of the corresponding color
display gamut is not carefully adjusted for the observer.

Keywords: Anomalous color vision - Color gamut - Color deficient

1 Introduction

The chromatic diversity experienced by normal color vision observers encloses
millions of individually discernible colors [1]. These cones are sensitive to the long,
middle and small regions of the visible spectrum and are denominated L, M and S-
cones, respectively [2]. Anomalous trichromats observers still retain the functional
use of the three color sensors, but their spectral sensitivity by the means of a pigment
that is photosensitive to visible light is different from the normal color vision observer
on the M and L cones [3], [4] and are named deuteroanomalous and protoanomalous,
respectively. The differences in the spectral sensitivity of anomalous observers will
impair their color vision [5], [6] and might limit their ability to perform some tasks
[7]. This limitation is found to be the confusion of some colors that are identified
as different by normal color vision observers with a direct impact on color vision
perception [8], [9].

The simulation of anomalous color vision as perceived by normal observers is then
of valuable use when trying to ascertain anomalous colored vision perception, as by
doing so improvements to their color vision might be attempted [10], [11].

© Springer International Publishing Switzerland 2015
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This simulation is very dependent on the spectral sensitivity of the anomalous con-
es, the concentration of photopigment available at each individual class of cones (or
their optical density) and ocular media transparency [3], [8], [12]. Small variations on
each of these quantities will have an impact on anomalous color vision, which might
compromise proper color vision assessment by the means of computer color vision
tests [13].

The purpose of this work is to study how variations on the optical density and spec-
tral sensitivity of anomalous cones impact the display color gamut simulated for nor-
mal observers as a perception of anomalous observers color vison. Simulations of
anomalous color vision were computed by fixating the anomalous spectral shift and by
independently varying the M or L cones optical density or by fixating the optical densi-
ty of the M and L cones and varying their spectral position. In each case the simulation
of the display color gamut was estimated and its area in CIE 1976 UCS [14] computed
as a measurement of the chromatic impact in anomalous color vision. The results ob-
tained here seem to show that each condition variation affects at least 20% on the si-
mulated gamut, amount that can be around 70% in some extreme conditions.

2 Methods

2.1 General Estimation of the Anomalous Cone Spectral Sensitivity Curve

The method used to estimate the anomalous cone sensitivities to simulate for normal
observers the colors perceived by anomalous observers was the one described else-
where [3]: a normal cone spectral sensitivity curve estimated at the cornea [2] was
used as template. Average normal observer lens and macular pigment absorption
spectra [3] were used to estimate the spectral sensitivity at the retina [15]. The cone
photopigment optical density was then corrected for self-screening assuming the orig-
inal maximum optical (OD,,,x) and converted into wavenumber to ensure that the
wavelength shift was shape independent [16]. The shift was then produced as desired.
To reconstruct the anomalous spectral sensitivity curve at the cornea the reversed
process was used: the shifted spectrum was converted into wavelength, corrected for
self screening and for lens and macular pigment absorption. All computations were
done in quantal. Whenever conversion from energy to quantal was needed energy data
was divided by its corresponding wavelength.

2.2  Estimating Protoanomalous Spectral Sensitivity Curve

Three assumptions were made to estimate the protoanomalous (L) spectral sensitivity
curve:

1. M cone was used as template and MOD,,,,x was used to compensate for self screen-
ing;

2. After shifting the M cone spectral sensitivity spectra towards longer wavelengths
the self screening was compensated using the normal LOD,,, to obtain anomalous
L cone sensitivity spectra or L’;
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3. The amplitude of the L’ cone spectral sensitivity was assumed to be equal to the
normal L cone.

Using these three assumptions, the L’ anomalous cone spectral sensitivity was es-
timated by:

(a) Fixating the spectral shift in 10 nm and the MOD,,,, to 0.3 and vary the LOD .
from 0.3 to 0.5 in 0.01 steps;

(b) Fixating the spectral shift in 10 nm and the LOD,, to 0.4 and vary the MOD,,
from 0.2 to 0.4 in 0.01 steps;

(c) Fixating the LOD,,, to 0.4 and the MOD,,,, to 0.3 and vary the spectral shift
towards longer wavelength from 5 to 15 nm in 0.5 nm steps;

2.3  Estimating Deuteroanomalous Spectral Sensitivity Curve

Three assumptions were made to estimate the deuteroanomalous (M’) spectral sensi-
tivity curve:

4. L cone was used as template and LOD,,,, was used to compensate for self screen-
ing;

5. After shifting the L cone spectral sensitivity spectra towards shorter wavelengths
the self screening was compensated using the normal MOD,,,, to obtain anomalous
M cone sensitivity spectra or M’;

6. The amplitude of the M’ cone spectral sensitivity was assumed to be equal to the
normal M cone.

Using these three assumptions, the M’ anomalous cone spectral sensitivity was
estimated by:

(d) Fixating the spectral shift in 6 nm and the MOD,,,, to 0.3 and vary the LOD,,,
from 0.3 to 0.5 in 0.01 steps;

(e) Fixating the spectral shift in 6 nm and the LOD,,,x to 0.4 and vary the MOD,,,,
from 0.2 to 0.4 in 0.01 steps;

(f) Fixating the LOD,,, to 0.4 and the MOD,,,, to 0.3 and vary the spectral shift
towards shorter wavelength from 2 to 10 nm in 0.5 nm steps;

2.4 Estimating the Display Color Gamut

The three phosphors of a CRT monitor (Sony Trinitron GDM-F520, Sony Corp.,
Japan) were measured using a calibrated telespectroradiometer (PR-650 SpectraScan
Colorimeter; Photo Research, Chatsworth, CA). The stimulus was presented in the
display by using a video display card (ViSaGe Visual Stimulus Generator; Cambridge
Research Systems, Rochester, Kent, UK) to power each phosphor individually at its
maximum intensity. The measured spectral radiance was then converted into CIE 1976
UCS chromaticity coordinates [14] assuming each cone sensitivity spectra estimated in
(a) to (f). The CIE 1931 standard observer was assumed on all estimations [14].
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The CIE 1976 UCS chromaticity coordinates were then used to estimate the triangular
color gamut. The area occupied by it was estimated by using a convex hull algorithm
available in MatLab (MathWorks, Inc., Natick, MA, United States of America) which
is based on the Qhull algorithm [17]. The estimated area was then normalized to its
maximum to estimate the variations on the color gamut across the (a) to (f) conditions.
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Fig. 1. Protoanomalous and deuteroanomalous spectral sensitivity curves obtained assuming
the conditions described in (c) as (1) and in (f) as (2), respectively. (3) and (4) represent the
corresponding display color gamut assuming the same conditions. For easier reading only the
extreme (blue and black lines) and the middle (red line) of the conditions tested are represented.

3 Results

Figure 1 represents as an example of the estimated spectral sensitivity curves the pro-
toanomalous (1) and deuteroanomalous (2) spectral sensitivity curves obtained assum-
ing the conditions described in (c) and (f), respectively. Also represented are the
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corresponding display color gamut for protoanomalous (3) and deuteroanomalous (4)
observers. For clarity only the extreme and middle conditions are represented. Actual
estimations were computed from 5 nm to 15 nm in 0.5 nm steps for protoanomalous
and from 2 nm to 10 nm in 0.5 nm steps for deuteroanomalous.
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Fig. 2. Top panel represents the variations on computer color gamut area for a protoanomalous
observer, assuming conditions (a) as a black line and (b) as a red line. Bottom left panel
represents the same variations for the deuteroanomalous, assuming conditions (d) as a red line
and (e) as a black line. Bottom right panel shows both observers and same variations as pre-
viously described varying only the peak sensitivity of the anomalous cone, assuming conditions
(c) as a red line and (f) as a black line.

Figure 2 represents the estimated variations in display color gamut area for all the
conditions tested from (a) to (f). The top panel represents the protoanomalous observ-
er with fixed shifted sensitivity peak at 10 nm and independent variations on the
LOD,,,.x (black line) and MOD,,,, (red line), normalized to its maximum. It was found
that the maximum variation of the display color gamut between extreme conditions



The Display Gamut Available to Simulate Colors Perceived 109

was of 15% in both cases. Bottom left panel represents the deuteroanomalous observ-
er with fixed shifted peak sensitivity at 6 nm and independent variations on the
MOD,,.x (black line) and LOD,,,, (red line), normalized to its maximum. It was found
that the maximum variation between extreme conditions was of 30% in both cases.

The bottom right panel represents the protoanomalous (black line) and deuteroa-
nomalous (red line) observers with fixed MOD,,,, and LOD,,,,x and varying the shifted
peak sensitivity as described in condition (c) and (f), respectively. It was found that
the maximum variation between the extreme conditions was of 59% for the protoa-
nomalous observer and of 71% for the deuteroanomalous observer.

4 Discussion and Conclusions

As observed elsewhere [8], [12], varying the optical densities or the position of the
maximum spectral sensitivity of the anomalous cone can impact the perceived color
vision simulations. The results presented here show that such findings can be express
in terms of a display color gamut and estimated in terms of its occupied area. The
same magnitude of variations on LOD,,,, or MOD,,,,x seems to affect more deuteroa-
nomalous rather than protoanomalous observers. Despite these variations the major
effect comes from varying the peak of maximum spectral sensitivity, affecting more
the deuteroanomalous observers. Such effects on deuteroanomalous observers might
be explained by the higher proximity of the normal L cone and the anomalous M’
cone (only 6 nm apart, in average) than in protoanomalous observers where the nor-
mal M cone and the anomalous L’ cone are separated by 10 nm in average. All com-
putations assumed that the estimated display gamut represented for a normal observer
the color gamut perceived by the anomalous observer.

The data presented here are consistent with those presented elsewhere [12] with
chromatic diversity increasing with increase OD,,,, variations and decreasing with
increasing OD,,,,x in protoanomalous and deuteranomalous observers, repectively.

These results seem to indicate that the simulation of deuteroanomalous observers
color vision might have a greater impact if the tested assumptions are not carefully
adjusted.
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Abstract. It is well known that color coding facilitates search and iden-
tification in real-life tasks. The aim of this work was to compare reac-
tion times for normal color and dichromatic observers in a visual search
experiment. A unique distracter color was used to avoid abnormal color
vision vulnerability to background complexity. Reaction times for nor-
mal color observers and dichromats were estimated for 2° central vision
at 48 directions around a white point in CIE L*a*b* color space for
systematic examination on the mechanisms of dichromatic color percep-
tion. The results show that mean search times for dichromats were twice
larger compared to the normal color observers and for all directions.
The difference between the copunctual confusion lines and the confusion
direction measure experimentally was 5.5° for protanopes and 7.5° for
deuteranopes.

Keywords: Visual search *+ Dichromatic vision - Color vision tests -
Color deficiencies

1 Introduction

Color is a relational attribute of objects that facilitates search and identification
tasks [1][2]. This attribute is explored in the natural environment by plants and
animals as well by humans in urban environment such as transports, medical
diagnosis or commercial purposes. Observers with abnormal color vision may
perform many of these tasks poorly. Particularly, the dichromatic population
that comprise about 2% of the male population [3], seems to have longer search
times and the target color object was less salient to them compared with normal
color observers [4]. Although this is an important result no systematic examina-
tion was performed for dichromatic observers around a white point.

It has also been reported that reaction time depends on the color difference
between a target and a distracter color. That is, the reaction time increases for

© Springer International Publishing Switzerland 2015
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small color differences, but for large color differences response time was con-
stant [5]. Two distracters color are typically used [6], being the target color in
between the distracters at the middle chromatic distance. Although this is a con-
venient configuration the number of distracters is a significant factor in search
time whereas the color deficient observers are more vulnerable to increased back-
ground clutter [4]. Therefore, in experiment 1, we tested a visual search paradigm
with a unique distracter color in order to determine (1) how critically the chro-
matic separation between the target color and the unique distracter color influ-
ence reaction time and (2) to characterize the response direction produced by
the visual search paradigm.

Finally, in experiment 2 we used the visual search paradigm for systematic
reaction time examination of normal and dichromatic observers for 48 positions
around a white point in the CIE L*a*b* color space.

2 Methods

2.1 Stimuli

Stimulus was a target color with a diamond like shape and 150 color distracters
(50 circles, 50 triangles and 50 squares) on a gray background as shown in
Figure 1. The centre of the monitor was market with a plus sign and constitutes
the fixation point. The target was always displayed 2° around the centre of
the monitor in one of eight possible positions (up, down, left, right, up-left,
up-right, down-left, down-right) whereas distracters were randomly distributed
over 391 positions across the scene. The background subtended a visual angle
of 6.7°x 8.5° and both target and distracters subtended a visual angle of 0.2°.
This configuration resembles that of Cole et al. 2004 [4].

The target color was uniquely color coded, i.e. none of the distracters was
the same color as the target. All distracters had the same hue and one of five
luminance levels (9.5, 11.4, 13.2, 15.1 and 17.0 cd/m?) attributed randomly.
The background had chromaticity (0.31, 0.316) expressed in CIE 1931 (x,y)
diagram and luminance 13.2 cd/m?2. The luminance of the target and the mean
luminance of the distracters were identical to that of the background. The color
of the target and distracters were always AF,, = 20 units from the background
color represented in Figure 2 at coordinates (0,0) assuming the CIE L*a*b* color
space.

In experiment 1 the color of the target and distracters varied along 24 posi-
tions centered on the color of the background and the hue angle between target
and distracters was +60°, -60°, +90°, -90°, +120° or -120°. In experiment 2
we duplicated the number of positions corresponding to a hue-angle variation
of 7.5° and the target color was always at a hue angle of +60° relative to the
distracter color. Both experiments enable two opposite colors to be collinear to
the deutan confusion line and almost collinear to the protan confusion line.
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Fig. 1. Stimulus of the visual search paradigm viewed from observers point of view. The
background had a mean chromaticity equivalent to illuminant C (CIE 1931 x=0.31,
y=0.316) and subtended a visual angle of 6.7°x 8.5° provided by the monitor screen.
The color target was always a diamond located 2° around the centre of the monitor
(plus sign) and in one of eight cardinal positions. The distracters were 50 circles, 50
triangles and 50 squares randomly distributed over 391 positions across the scene. Both
target and distracters subtended a visual angle of 0.2°. None of the distracters had the
same color as the target and all distracters had the same hue and one of five levels of
luminance in the range 9.5-17cd/ m?. The luminance for the target, background and
mean of the distracters was 13.2 cd/m? .
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Fig. 2. The 48 testing directions around the background color used in experiment 2.
It shows an example of a target color (T) at the fixed hue angle of +60° relative to the
distracter color (D). In experiment 1 only 24 directions were tested. The two collinear
colors to the deutan confusion line and the two almost collinear colors to the protan
confusion line were present on both experiments.
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2.2 Apparatus

Stimuli were displayed on a 19-inch CRT monitor (Samsung Sync-Master 750p,
Samsung Electronics Corp. Ltd, RPC) driven by a Visual Stimulus Generator
VSG2/3 graphics card (Cambridge Research Systems, Rochester, Kent, UK).
The monitor was calibrated by a telespectroradiometer (SpectraScan Colorime-
ter PR-650; Photo Research, Inc., Chatsworth, CA). The stimuli were displayed
with a refresh rate set at 80 Hz with a spatial resolution of 1024x768 pixels.
The maximum error allowed in chromaticity was 0.0035 in the CIE (z,y) dia-
gram and 0.4 cd/m? in luminance. The stability of the color and luminance was
checked in the beginning of the sessions and once per day. The reaction time was
measured by means of a custom-made response box with precision of 2 ms.

2.3 Procedure

In each trial, observers saw the stimulus monocularly after a 3 min adaptation
to the background color. Observers were instructed to find a diamond-shaped
target among the circles, triangles and squares, in one of eight possible cardinal
positions, and signal its presence as quick as possible by pressing the response
box. The stimulus was immediately replaced by the uniform background color
after target-detection response or if there was no response after a 1 sec interval
for experiment 1 or after a 3 sec interval for experiment 2. If there was a response
observers were asked to indicate on a numeric keyboard the cardinal position of
the diamond-shape target. If observers press the response box unintentionally
they were asked to press the central key on the numeric keyboard. This error and
any keyboard mismatch or no response after a 3 sec interval were not accounted
as a response but repeated once again at the same session. The experiments were
carried out in a dark room.

In experiment 1 the target color was shown counterclockwise compared to
the distracter color (Figure 1) for three hue angles (+60° , +90° and +120° )
and also for the clockwise direction (-60° , -90° and -120° ). There were two
sessions and 6x24 trials were randomized over session. For experiment 2 only
the 460° combination were used. Each session consisted of 144 trials and a
sequence of three different sessions was generated so that all observers saw the
same sequence. The trials were randomized over session.

2.4 Observers

Five normal color observers participated in experiment 1. In experiment 2 there
were thirteen observers; six had normal color vision, two were deuteranopes and
five were protanopes. Color vision was assessed using the Ishihara plates, the
City University Color Vision Test (Keeler Ltd) and the Nagel Anomaloscope
(Oculus Heidelberg Multi Color). All subjects had monocular visual acuity of at
least logMAR 0.00 with correction if needed. Two of the authors (J.S. and V.A.)
served as observers and had prior experience in visual search experiments, all
other observers were naive.
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3 Results

The results for experiment 1 (Figure 3) represents the reaction time as a function
of the response direction. The response direction, calculated as:

T—<T2D+7.5), (1)

where T is the target-angle and D the distracter-angle, corresponds to the
direction that best tune the six target-distracter pairs of colors or any other
pair. This response direction fit in between the target-distracter pair and differs
from the mean direction by 7.5° clockwise. Reaction time tended to be constant
with large color differences (+ 120° ) and increase nonlinearly for small color
differences (£ 60° ). The +60° target-distracter pair corresponds to the best
amplification.
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Fig. 3. Results for experiment 1. Represents the variation on reaction time as a function
of the direction that best tune any target-distracter pair (response direction). The
response direction was calculated as T — ((T'— D)/2+7.5), where T is the target-angle
and D the distracter-angle. The plot shows the results of six target-distracter pairs for
five normal color observers. Symbols represent the mean reaction time and the lines
the interpolation sino functions of the data.

Figure 4 shows the results of experiment 2 for normal color and dichromatic
observers for 48 positions and the +60° target-distracter pair. On the left side
the reaction time for six normal color, two deuteranopes and five protanopes
are expressed as a function of the response direction for the 48 directions. The
interpolation line corresponds to the sino function that best fit the data. Error
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Fig. 4. Results for experiment 2. On the left side are represented the data for six
normal color, two deuteranopes and five protanopes for 48 directions using a +60°
target-distracter pair. The interpolation line corresponds to the sino function that best
fit the data. Error bars represent standard deviation across trials. On the right side
the mean data and the interpolation line for the 48 directions were plotted in polar
coordinates, signaling the CIE L*a*b* color space directions. The confusion line for
deuteranopes (green line) and protanopes (red line) are also showed. The thick-black
line corresponds to the confusion direction.
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bars represent standard deviation across trials. On the right side the mean data
and the interpolation line were plotted in polar coordinates, signaling the CIE
L*a*b* color space directions. Each circle corresponds to a 500 ms increment.
The confusion line for deuteranopes (green line) and protanopes (red line) are
also shown. The thick-black line, collinear to the minimum response direction,
corresponds to the confusion direction. That is, color pairs along or parallel to
this line show the highest reaction time.

4 Conclusions

It has been reported that the number of distracter colors is a significant factor for
search time being the color deficient observers more vulnerable to background
complexity [4]. A visual search paradigm using a unique distracter color was
first tested to characterize the response direction (experiment 1) and then used
for systematic examination on the mechanisms of dichromatic color perception
(experiment 2).

The response direction for this unique-distracter paradigm fit in between the
target-distracter pairs and differs from the mean direction by 7.5° clockwise. The
results also show that decreasing the color difference between target and distracter
amplifies the reaction time signal. This result agree to Nagy (1990) observation.

Mean search times for dichromats were twice larger (1.92 for deuteranopes
and 2.16 for protanopes) compared to normal color observers and for all direc-
tions. Protanopes performed poorly on the yellow-green direction comparatively
to the opposite blue-red direction. If the pop-out occurred in the initial 500 ms
interval only the normal color observers could detected it on the yellow-green
and blue-red directions. Finally, the results show that for both dichromats the
difference between the conpuctual confusion lines and the confusion direction
measure experimentally was 7.5° for deuteranopes and 5.5° for protanopes.
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Abstract. We propose a configurable simulation platform that repro-
duces the analog neural behavior of different models of the Human Visual
System at the early stages. Our software can simulate efficiently many
of the biological mechanisms found in retina cells, such as chromatic
opponency in the red-green and blue-yellow pathways, signal gathering
through chemical synapses and gap junctions or variations in the neuron
density and the receptive field size with eccentricity. Based on an image-
processing approach, simulated neurons can perform spatiotemporal and
color processing of the input visual stimuli generating the visual maps of
every intermediate stage, which correspond to membrane potentials and
synaptic currents. An interface with neural network simulators has been
implemented, which allows to reproduce the spiking output of some spe-
cific cells, such as ganglion cells, and integrate the platform with models
of higher brain areas. Simulations of different retina models related to the
color opponent mechanisms, obtained from electro-physiological exper-
iments, show the capability of the platform to reproduce their neural
response.

Keywords: Retina simulator - Human visual system - Color oppo-
nency * Neural network - Spikes

1 Introduction

The first stages of the Human Visual System (HVS), from the retina up to the
primary visual cortex, have been extensively studied and there exist numerous
models that characterize their anatomy and most of their biophysical functions.
Considering the retina, for example, it is possible to find models able to repro-
duce a specific physiological experiment in great detail [3,6,33,36] and models
that aim to mimic the retina processing as a whole [4,11,17,20,21,27,28,39].
Computations performed by these models reproduce those retina behaviors that
they have been intentionally designed for, but lack the configurability to modify
their simulation circuitry and adapt to new experiments.

© Springer International Publishing Switzerland 2015
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Among all retina simulators that include all retina stages, Virtual Retina
[39] is probably the most complete and detailed one, which is able to repro-
duce the biological complexity while maintaining the efficient filtering scheme
of functional models. One of the contributions of Virtual Retina is the shunt-
ing feedback mechanism via amacrine cells towards bipolar cells, also called fast
adaptation layer, which allows to reproduce the contrast gain control performed
by the retina. At small contrasts, the system has a quasi-linear transformation
function but at higher contrasts the retina starts responding sub-linearly and
the gain in the bipolar transformation curve is lowered, saturating the output.

We find fewer references of retina simulators that include color processing.
Color components are often disregarded in most of retina models, e.g. Virtual
Retina, and when they are considered the model simply matches RGB image
components with the three types of cones. However, there are remarkable excep-
tions such as the multi-stage color model by De Valois[11] that includes a quite
detailed study of color mechanisms present in the retina, including for instance
luminance and color separation of the input visual stimuli by adding the oppo-
nent responses of midget bipolar cells. This model also considers random periph-
eral connectivity for midget bipolar cells, proposing that both type of cones, L
and M, connect to the surround of the receptive field and this fact could be
enough to generate a cone-opponent signal. Other authors have also implemented
the chromatic opponency, red-green and blue-yellow, based on random periph-
eral connectivity and similar density schema of cones in the fovea [26,29,40] but
considering more than one type of cone in the center of the receptive field.

Neural network simulators, on the other hand, describe the low-level bio-
physics of large and heterogeneous networks of neurons. The user can create
neurons individually, or in layers, and then establish connections among them.
These simulators have been widely used to simulate, for example, models of the
visual cortex. Some of the best known neural network simulators are Neuron[22],
STEPS[37], NEST|[18], PyNN[9] and Topographica[5]. However, these simulators
are computationally time consuming and in most of cases the user needs a back-
ground knowledge in Neuroscience.

The platform we propose is halfway between these two approaches and com-
bines the efficient filtering scheme of retina simulators based on image-processing
techniques and some biological concepts and implementations considered in neu-
ral network simulators. In agreement with other authors [19], we consider that
there are sufficient examples of single cell types that serve quite different roles in
retina processing to motivate the generalization of basic retinal circuits. More-
over, many retina models are composed of similar processing modules that only
change their connection scheme. The platform we describe in this paper is a
general-purpose simulation environment that adapts to different retina models
and provides a set of elementary simulation modules. The software can be easily
used as an efficient benchmark to simulate and understand the visual processing
at low-level.

The rest of the paper is organized as follows. In section 2 we describe the
biophysical functions of retina cells that have been implemented in the platform.
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A general overview of the software is included in section 3. Section 4 explains
some of the simulations conducted to evaluate the platform and in section 5 we
discuss the conclusions and future work.

2 Anatomy and Physiology of the Retina

In the retina, neurons are arranged in layers that contain cells of the same type.
In the brain, most neurons fire action potentials, or spikes, which are electrical
impulses well suited to relay the neural signal over long distances. By contrast,
most retinal cells form organized maps, with only local interactions between
neighboring cells that modify their membrane potential. Neighboring cells are
then linked together through two types of synapses: gap junctions (also called
electrical synapses) and chemical synapses.

In the simulator, non-linear temporal models can be defined based on single-
compartment equations. The basic equation that explains the temporal evolution
of a single-compartment model is [10]:

Cn T = S 1)+ Y 0B, - VD)

where the index ¢ indicates the input ionic channel, C), is the membrane
capacitance, V' the membrane potential, g; is the conductance of the channel,
E; the reversal potential of the channel and the term ), I; denotes external
input currents to the neuron. Both the input currents to the neuron and its
ionic conductances can be modified by other neurons to model different temporal
neural responses.

For some type of cells, the membrane potential integration from controlled
physiological experiments can be approximated by linear models. A linear
approximation of this neural response of a cell, L(t), can be defined based on
the linear kernel K (z,y,7) [10,38]:

o0
L(t) = / ar / K (2 y,7)(z0 — 20 — 9.t — 7)dady
0 (z,y)eRF

where s(z,y,t) is the visual stimulus and RF the receptive field of the cell.
The neural response of the cell depends linearly on all past values of the input
stimulus located in the cells receptive field RF'. This integral corresponds to the
well-defined convolution operation:

L(t) = (s * K)(x0, Y0, 7)

For some neurons K (x,y,7) can be broken down as a product of two func-
tions, one that accounts for the spatial receptive field and the other one for the
temporal receptive field:

K(Z, Y, T) = Ks(xa y)Kt(T)
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The linear temporal receptive field can be simulated by exponential and
gamma filters that model effects such as the membrane signal integration and
synaptic transmission. For the spatial receptive field we have considered a set
of spatial filters that are based on Gaussian functions, similarly to the kernels
used in the receptive field model proposed by Rodieck [30] and Enroth-Cugell
and Robson [15]. These filters model spatial integration from chemical synapses
in the receptive field and also gap junctions. The three kernels included in the
simulation platform are: Gaussian, approximation of a Gaussian and sum of two
Gaussians. These three kernels have been implemented based on the recursive
approach by Deriche [12-14,32,34].

The software also models the retina morphological and physiological varia-
tions associated with eccentricity. It is possible to simulate the spread of neuron
dendrites with eccentricity and its consequent increase of the receptive field size.
We can also configure the spatial distribution of cells according to predefined den-
sity functions and probabilistic connections among neurons. Experiments that
simulate inter-cell variability and loss of spatial resolution across the human
visual field can be reproduced using the topological functions provided by the
simulation platform.

Regarding the transformation of the input visual stimuli to the cone responses
we use the Hunt-Pointer-Estevez (HPE) matrix [16] to get the different L-, M-,
and S-cone values.

3 Overview of the Platform

The basic structure implemented in the platform is a neural layer of cells of the
same type, such as horizontal or bipolar cells present in the retina. Spatiotem-
poral equations of neural layers are updated using an image-based processing
approach that benefits from the fact that cells in the retina are arranged in
planar maps. A time-driven simulation core is responsible for modifying the
membrane potential and synaptic currents associated to each neuron in every
discrete time step. When interfacing the platform with models of higher brain
areas the neural network simulator integrates our software efficiently and the
retina module can be easily loaded in the neural network script. A scheme of the
platform connected to a neural network simulator can be seen in figure 1.

The software, which is implemented in C+4++, has been optimized to run
on CPU-based architectures. Space-variant filters are based on the Deriche’s
recursive approach [12-14,32,34]. The main advantage of these filters is that
the number of operations per pixel is constant and does not depend on the
size of the kernel. Moreover, kernel coefficients can be modified at every pixel
to simulate a foveated retina [32]. The performance of the spatial filtering has
been significantly improved in a multi-core processor that takes advantage of the
fact that every row and every column of the image are processed independently
according to the Deriche’s recursive algorithm and can be executed in different
threads.

Temporal equations are also updated recursively. Linear filter implementa-
tion, i.e. exponential and gamma functions, has been adapted from the IIR
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Fig.1. Scheme of the simulation platform connected to a neural network simulator.
The analog outputs of the platform correspond to the ganglion synaptic currents, which
are processed by the neural network simulator to produce the spiking output. The neu-
ral network simulator drives the simulation time and synchronizes the update process
of spatiotemporal equations in the retina model. In the figure we show simultaneously
two possible retina configurations where the only difference is the red arrow that links
L-cones and horizontal cells. For example, when this link is considered the surround
of the receptive field, via horizontal cells, is fed by both M- and L-cones. Other dif-
ferent retina architectures can be easily configured by creating new neural layers and
modifying the connection scheme among them.
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Fig. 2. Outline of two of the retinal circuits simulated by the platform. These retina
models have been proposed by Crook et al. [7] and Lee et al. [25] to explain the
physiological behavior observed in the blue-yellow and red-green pathways, respectively.
The structure of the ganglion receptive field is depicted at the bottom of each circuit.
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(Infinite Impulse Response) implementation of Virtual Retina [39] and single-
compartment equations are integrated by the so-called Euler method [10]. Pro-
vided that the temporal step is sufficiently small, repeated application of these
updating methods provides an accurate way of determining the membrane poten-
tial.

The platform has been tested under a Linux operating system and connected
to the NEST simulator. The processed output of our software can be also adapted
to feed other computer vision applications that require a retina input. The source
code of this simulator will be open source, following the roadmap of the Human
Brain Project [1], and available for download from [2].

4 FEvaluation

A set of electrophysiological experiments that reproduce the red-green and blue-
yellow opponent pathways in the retina have been simulated to evaluate the
capability of the platform to adapt to different retina models. We compare our
software with other retina simulators in terms of configurability and scalability.
To the best of our knowledge, this is the first simulator that can reproduce retinal
circuits as different as those shown in figure 2.

We have simulated two different retina models of the red-green pathway,
proposed by Lee et al. [25] and Crook et al. [8] respectively, and one model of
the blue-yellow pathway, whose retina circuitry was proposed by Crook et al.
[7]. Simulated models are tuned by exhaustive search of parameters that best
fit the available published data. There are two different theories explaining the
physiological recordings obtained in the red-green pathway: the cone-type selec-
tive surround [23-25,31] and the random-wiring or mixed surround [8,35]. While
supporters of the cone-type selective surround argue that there is a single cone
that feeds the periphery of the receptive field, some research groups proposed
that both type of cones, L. and M, connect to the surround and this fact could
be enough to generate a cone-opponent signal.

With the mixed surround model, a bandpass tuning curve is obtained for a
cone-isolating grating targeting the center cone class (see blue graph in figure 2).
With the cone-selective surround circuit, the platform reproduces the low-pass
shape of the contrast sensitivity function for a cone-isolating grating targeting
the center cone class alone (red graph in figure 3). In this figure, the response
of the Lee’s model for the M-cone isolating grating is also plotted in green to
compare the different high-frequency cutoffs of the center, connected to a L-
cone, and the periphery, connected to a M-cone, of an L-ON receptive field.
Considering there is a 180 deg out of phase between the center and the periphery,
which is not represented in this figure, the resulting spatial filtering profile of
this cell resembles the typical DoG model.

Some examples of intermediate images produced by the platform and the
spiking output generated by the neural network simulator are shown in figures 4
and b, respectively. A retina density scheme has been configured in the simulation
of figure 4 so that the receptive field size of cells is increased with eccentricity.
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Fig. 3. Contrast sensitivity functions computed from simulation of the retina models
proposed for the red-green pathway by Lee et al. [25] and Crook et al. [8]. With the
mixed surround model, a bandpass tuning curve is obtained for a cone-isolating grating
targeting the center cone class (blue graph). With the cone-selective surround circuit,
the platform reproduces the low-pass shape of the contrast sensitivity function for a
cone-isolating grating targeting the center cone class alone (red graph). The absolute
response of the Lee’s model for the M-cone isolating grating is also plotted in green to
compare the different high-frequency cutoffs of the center, connected to a L-cone, and
the periphery, connected to a M-cone, of an L-ON receptive field.

Input image

Fig. 4. Example of intermediate outputs generated by the software for a L-cone isolat-
ing grating of 5 cpd. The simulated model corresponds to the Lee’s retina architecture.
It is shown: the input image, membrane potential of L-cones and bipolar cells and input
synaptic current of ganglion cells. A retina density scheme has been configured in the
simulation so that the receptive field size of cells is increased with eccentricity. This
phenomenon produces a decrease of sensitivity in the peripheral area of the simulated
retina compared to the center. The horizontal intensity profile of the input image is
compared with the profile of the L-cones to further explain this phenomenon.
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Fig. 5. Raster plot of the spiking outputs generated by NEST [18] for a population of
2500 ganglion cells. The simulation time considered is 1000 ms and the spatial frequency
of the input pattern is 0.5 cpd. Every blue spot corresponds to the time a neuron fire
a spike. Cell IDs are numbered by rows so that the first 25 cell IDs correspond to cells
situated in the top first 25-pixel row. A zoomed area of the raster plot is shown on the
right to better visualize the spiking pattern resulting from the input grating.

This phenomenon produces a decrease of sensitivity in the peripheral area of the
simulated retina compared to the center.

5 Conclusions and Future Work

A general-purpose simulation environment of the first stages in the visual system
is presented. The main contribution is that it can reproduce efficiently the ana-
log neural response of different retina models by modifying not only the model
parameters but also its architecture and interconnections of neural layers. The
software can be easily used as an efficient benchmark to simulate and understand
the visual processing at low-level. Our software can simulate many of the biolog-
ical mechanisms found in retina cells, such as signal gathering through chemical
synapses and gap junctions or variations in the neuron density and the receptive
field size with eccentricity. Based on an image-processing approach, simulated
neurons perform spatiotemporal and color processing of the input visual stim-
uli generating the visual maps of every intermediate stage, which correspond to
membrane potentials and synaptic currents. An interface with neural network
simulators has been implemented, which allows to reproduce the spiking output
of some specific cells, such as ganglion cells, and integrate the platform with
models of higher brain areas.

The platform has been evaluated based on simulations of different retina
models that reproduce the red-green and blue-yellow opponency obtained in elec-
trophysiological experiments. The neural behavior of three retina architectures
has been reproduced, the cone-type selective surround and the mixed surround
of the red-green pathway and the coextensive receptive field in the blue-yellow
pathway, approximating the experimental curves. Simulations of other retina
models, concerning contrast and mean luminance adaptation mechanisms in the
retina, are being configured to complement the evaluation of the platform.
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Abstract. The CoLIP framework defines a vectorial space for color
images. It is in accordance with the theories of visual perception (Weber,
Fechner) as well as Hering’s trichromacy theory. It is mathematically well
defined and computationally usable. This article recalls the fundamentals
of the LIP framework for graytone images, and introduces the elemen-
tary operations of the vectorial structure for color images. It illutrates the
representation of the chromaticity diagram with color modification appli-
cation, namely white balance correction and color transfer. The results
show that the hull of the diagram are not modified, but the colors are.

Keywords: Color logarithmic image processing - Chromaticity dia-
gram - Image processing

1 Introduction

Regarding the fact that the current color spaces (e.g., RGB, CIE XYZ, CIE
L*a*b*, CIECAMO02) do not follow an additive law, and therefore fail to obey
the linear concept that is of a very high theoretical and practical interest in math-
ematics and their applications, the Color Logarithmic Image Processing (CoLIP)
framework was developped, in accordance with the main laws and characteristics
of the human color visual perception.

The trichromacy theory [13] states that humans have three different receptors
sensitive to color stimuli. Indeed, the color photoreceptors in the retina, namely
the cones, are sensitive to 3 different wavelength ranges: long, medium and short
wavelengths, and thus classified into 3 types of cones: L, M and S, respectively.

The CoLIP theory is based on the Logarithmic Image Processing (LIP) the-
ory that was developed for the representation and processing of images valued
in a bounded intensity range [6]. As for the LIP theory [8], the CoLIP theory
is physically and psychophysically well justified since it is consistent with the
multiplicative image formation model and is consistent with several laws and
characteristics of human brightness perception (e.g., Weber’s law, Fechner’s law,
saturation effect, brightness range inversion). The Weber’s law [12], and its gen-
eralization with Fechner’s law [2], are translated into a logarithmic relationship

© Springer International Publishing Switzerland 2015
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between the perceived brightness versus the stimulus. For each channel LMS, a
Weber’s fraction does exist, yielding a LMS Fechner’s law, respectively [9].

Another important theory is called opponent-process theory. Hering [5], and
later Svaetichin [10] noticed that particular colors like reddish-green or yellowish-
blue would never be observed. Schematically, the color informations are coded
in opponent red-green (denoted rg) and yellow-blue (denoted yb) channels to
improve the efficiency of the transmission (reducing the noise) and to decorrelate
the LMS channels [1].

2 LIP Theory

The LIP theory (Logarithmic Image processing) has been introduced in the
middle of the 1980s [8]. It defines an algebraic framework that allows operations
on images in a bounded range [6]. This model is mathematically well defined as
well as physically consistent with the transmitted light imaging process.

2.1 Gray Tone Functions

In the LIP theory, a graytone function f is associated to an intensity image F'.
f is defined on a spatial support D C R? and has its values in the real-number
range [0; My[, with My being a strictly positive real number. In the context of
transmitted light imaging, the value 0 corresponds to the total transparency and
M to the total opacity. Thus, the gray tone function f is defined, for F},,, being
the saturating light intensity level (glare limit), by:

= (1- ). 1)

2.2 The Vectorial Structure

The vectorial space S of gray tone functions is algebraically and topologically

isomorphic to the classical vector space of real-valued functions, defined through

the following isomorphism ¢ and the inverse isomorphism ¢~ !:

o) = —Moln (1 - ]\J;O) = () = My (1 ~ exp (— 2l ))) 2)

This isomorphism ¢ allows the introduction of notions and structures out-
coming from Functional Analysis, like the Euclidean norm:

viesS, I lla=le(lr,

with | - |g being the usual absolute value.
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Then, the following operations of addition, scalar multiplication, opposite
and subtraction are defined:

VigeS fag=f+g- 1L, 3)
erS,VAeR,/\Af_MO—M()(l—AgO)/\, (4)
Vf €S, Af:]\}?{w;, (5)

Vf.g €S, ng:MOJ\];(;_gg. (6)

The definition of the opposite operation A f extends the gray tone range to
the unbounded real-number range | — oco; My|.

3 CoLIP Theory

The previous section has introduced the LIP theory for graytone images. This
section presents the color space CoLIP, previously defined in [3,4]. It models the
different stages of the human color vision, and also defines a vector space for
color images.

The starting point for all CoLIP operations is the LMS color space [1]. The
numerical applications (conversions from the different color spaces) are per-
formed using the OptProp toolbox!.

3.1 From Cone Intensities to Achromatic and Chromatic Tones

In the CoLIP framework, the chromatic tones are defined from the cone inten-
sities L, M and S, as:

C
Ve e {l,m,s},C € {L,M,S},c= M, (1—C>, (7)
0
with Cp is the maximal transmitted intensity level. My is arbitrarily chosen at
normalized value 100. Notice that C €]0; Cy] and ¢ € [0; Mo|.
The logarithmic response of the cones, as in the LIP theory, is modeled
through the isomorphism ¢.

For c € {I,m, s}, ¢ =p(c) = —MyIn (1 - AZ)) (8)

(1,7, 3) are called the logarithmic chromatic tones.
To follow the opponent-process theory of Hering, the three logarithmic color
channels (I,m, §) are represented by a logarithmic achromatic tone a, and two

! By Jerker Wagberg, More Research and DPC, www.more.se
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logarithmic chromatic tones, rg and gjb, where rg opposes red and green, and y~b
opposes yellow and blue. The conversion is obtained by the Eq. 9. The antagonist
transformation matrix P is defined as follows according to the CIECAMO02 spec-
ifications [1]. The achromatic channel is computed considering a ratio 40:20:1 in
red, green and blue sensibility of the eye [11].

a I 40/61  20/61  1/61
r:g =Px|m]|, with P= 1 —12/11 1/11 . (9)
yb H 1/9 1/9 —2/9

3.2 The Trichromatic Antagonist Vectorial Structure

A color tone function, denoted f, is defined on a compact set D, with values in
] - OO;MO[37 by

L(2) as(z)
reD, Fa)= | M(2) | = f(a) = | rgs(a) | - (10)
S(a) yby ()

Thus, the operations of addition, scalar multiplication and subtraction can
be defined in Eq. 11, and 12.

ar A ag A A ay
fag=|rgrarg |, \af=|Xarg |, (11)
yby & yby A A yby
A ag af A ag
sg=|argy |, fag=|rg &gy |. (12)
A yby yby & yby

The set I of color tone functions defined on D and valued in | —oo; My [3, with
the operations of multiplication A and internal addition 4 is a real vector space.
With the logarithmic color tone functions, f = ¢(f), the classical operations are
used (4, x, —).

3.3 Bounded Vector Space

The vector space I defines a framework for manipulating color tone functions
with values in | — oo; My[?. The opponent channels rg and yb are thus not sym-
metric, which can cause problems for computational manipulation and storage,
or for representation. To handle this, it is proposed to introduce the three chan-
nels f = (a, g, yb) defined by:

i=a (13)
A rg if r¢g >0
rg{—Arg if rg <0 (14)
N yb if yb>0
yb_{—Ayb if yb<0 (15)

This representation is illustrated in the next sections.
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3.4 Summary

The different conversion operations are presented in the following diagram:

[ (L’ZEL S) ]}OL%,[ (1,m, 5) ]—‘p—[ (1,70, 8) ]

Mpre pPa- Px-
Y A, —1
(& v, z) ) [ (, 79 yb) ]‘ﬁ—{ (a, 7‘”;, yb) ]
E/2
\ v

(sRGB: (R.G.B) | [ (argyh) |

LIP operations:
AL A A
A A A

Classical
operations

Now that the formal definitions are introduced, the next section will show
the connections with the psychophysical theories.

4 Applications

The chromaticity diagram is the representation of colors in a given space, for
example (z,y), and in the case of the CoLIP space, (rAg,yAb). The purple line is
a virtual straight line that links extreme values of the spectrum in (z,y). The
Maxwell triangle is the representation of all RGB colors in this space (it has a
shape of a triangle in (x,y)). The following applications will focus on the effect
on the chromaticity diagram.

4.1 White Balance Correction

The proposed white balance correction method derives from the Von Kries adap-
tation model [1,7]. If L, M and S represent the cone responses, and L', M’ and S’
represent the adapted cone responses, this model can be written as L' = LWLI —,
M = M ’r_ S

Mwnite’ " Swhite L . .
The Figure 1 presents the effects of the correction in the chromaticity dia-

gram. The new white appears at coordinates (0,0), all colors appear more blue
and brighter. This operation is not a translation in the (rg, yb) subspace.

4.2 Color Transfer

Color transfer is another application of white balance correction. Let us consider
two images f1 and f5. The following notation is introduced, for a given collection
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O

(a) MacBeth colorchecker. The cho- (b) White balance correction for one
sen color is delineated with a red color. The red square designates the

square. white after correction.
- -
“ «
. . . e
N ° » ® o0 ©
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(c) Chromaticity diagram of the (d) Chromaticity diagram of the
MacBeth colorchecker. All achro- MacBeth colorchecker after white
matic tones (gray values from white balance correction.

to black) appear at coordinates

(0,0).

Fig. 1: White balance correction with a manual selection of the White, with rg

in absissa and yb). in ordinates.

of values ¢: p(c) is the mean of ¢, and o(c) is the standard deviation of c¢. For a
color image in the CoLIP space,

(a) o(a)
uw(f) = | n(rg) | and o(f) = | o(rg) (16)
w(yd) a(yb)

The transfer of colors of image f; into image fs corresponds to the Eq. 17,
that gives the resulting image fpew. This formula centers and normalizes the
distribution of colors in the original image f7, and applies the same distribution
as in image fo to the new image frew.

_(a(f1)
oo = (20 (2 2 (12D ) & () (17)

The Figure 2 shows the results of the transfer of the colors of two paintings
(from VanGogh and Monet) into the painting of Guillaumin. The hull of the
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(a) Guillaumin painting.  (b) Vangogh painting. (c) Monet painting.

(d) Chromaticity dia- (e) Chromaticity dia- (f) Chromaticity dia-
gram of 2a. gram of 2b. gram of 2c.

(g) Transfer of color (h) Transfer of color
of 2b into 2a. of 2c into 2a.

(i) Chromaticity dia- (j) Chromaticity dia-
gram of 2g. gram of 2h.

Fig. 2: Color transfer of different paintings and the representation of the colors
in the (rg, yb) space.

color diagrams in (r'g, yb) are similar to the original one, but the colors are now
similar to the transfered paintings ones.
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5 Concluding Discussion and Perspectives

This article has introduced the CoLIP framework and the representation of the
colors of images in the form of a chromaticity diagram in the (ry,gjb) space.
The effects of basic operations like white balance correction or color transfer are
proposed and illustrated, showing that the hull of the diagram is conserved, and
the new colors are applied. The CoLIP framework presents two connections with
the human visual perception system: it follows the Weber/Fechner law with its
logarithmic model, and it also takes into account the opponent-process theory
from Hering. Some other color spaces try have psychophysical justifications. For
example, the L*a*b* space represents the opponent process with a* (red-green
opposition) and b* (yellow-blue opposition), and the non linearity follows more
or less the Stevens law (power law). In the case of the Y'C,C, color space, the
non linearity coming from the gamma correction can be seen as a Stevens law,
but the opponent-process theory is not included in this model.

The perspectives in the field of the CoLIP framework are to define color
attributes like hue, saturation, and more mathematically, develop a distance
between colors and define CoLIP mathematical morphology operators.
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Abstract. In this paper we investigate if color influences the percep-
tion of image complexity. To this end we perform two different types
of psycho-physical experiments on color and grayscale images. In the
first experiment, images are ranked based on their complexity (image
ranking), while in the second experiment the complexity of each image
is assessed on a continuous scale (image scaling). Moreover, we investi-
gate if ten image features, that measure colors as well as other spatial
properties of the images, correlate with the collected subjective data.
The performance of these correlations are evaluated in terms of Pear-
son correlation coefficients and Spearman rank-order correlation coeffi-
cients. We observe that for each type of experiment, subjective scores
for color images are highly correlated with those of the corresponding
grayscale versions suggesting that color is not a relevant attribute in
evaluating image complexity. Moreover none of the tested simple image
features seem to be adapt to predict the image complexity according to
the human judgments.

Keywords: Image complexity - Psycho-physical experiment - Color
image features

1 Introduction

There exist in the literature many different definitions of image complexity. For
example, it can be analyzed by using mathematical treatments based on Kol-
mogorov complexity theory [1]. Snodgrass et al. [2] refer to the visual complexity
as the amount of detail or intricacy in an image. Birkhoff [3] relates the image
complexity to visual aesthetics. Researchers from various fields have conducted
psycho-physical experiments to study the subjective perception of visual com-
plexity and some studies exist where experimental estimation of image complex-
ity is correlated to objective measures. The state of the art studies differ in the
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kind of stimuli used during the experimental sessions and on the type of objective
measures used to correlate the subjective scores. Chikhman et al. [4] use Chinese
hieroglyphs and outline images of well known common objects as stimuli sets.
On the other side, experiments exist that address the image complexity of real
world scenes, like the study by Oliva et al. [5]. Recently, Purchase et al. [6] use
sixty images, including landscapes, domestic objects and city scenes, as stimuli.
Further efforts attempt to describe the image complexity using different mathe-
matical models like fuzzy approaches [7,8], information-theoretic approaches [9]
and independent component analysis [10]. Rosenholtz et al. [11] associate the
concept of complexity to that of visual clutter. They have tested three measures
of visual clutter: Feature Congestion (FC), Subband Entropy (SE) and the edge
density measure used to predict subjective judgments of image complexity by
Mack and Oliva [12].

Image complexity can be useful in many different domains. It finds applica-
tion to context-based image retrieval [10], icons and symbol search, particularly
relevant in human computer interaction [13,14], and computer graphics, where
a better understanding of visual complexity can aid in the development of more
advanced rendering algorithms [15]. Other fields of application are image recog-
nition [16], watermarking [17], compression [18], and image quality [19,20]. The
image complexity concept is also used by neuroscientists, interested in the mech-
anisms of object recognition, learning and memory [21].

Aim of this paper is to investigate the role of color when evaluating image
complexity. To this end, two types of experimental setups have been performed
on a set of 29 color images and on the set of the corresponding grayscale images.
These are real-world images, belonging to the image quality database LIVE [22].
Setup 1 is a ranking experiment, where observers rank the 29 images in increas-
ing order of complexity. Setup 2 is a scaling experiment, where observers judge
the image complexity on a continuous scale [0-100]. We point out that no defi-
nition of image complezity is provided to the observers during the experimental
sessions. We investigate the effect of color on the perception of image complex-
ity comparing the subjective results obtained with color and grayscale sets of
images for both experimental setups. Moreover, we also consider ten image fea-
tures as complexity measure candidates, and we evaluate their correlation with
subjective data. The performance of these correlations are evaluated in terms of
the linear Pearson Correlation Coefficient (PCC) and the Spearman Rank Order
Correlation Coefficient (SROCC).

2 Color versus Grayscale: Subjective Data

The 29 images belonging to the LIVE database [22] have been used as stimuli for
estimating subjective perception of image complexity. They have been chosen to
sample different contents both in terms of low level features (frequencies, colors)
and higher ones (face, buildings, close-up, outdoor, landscape). Their thumbnail
color versions are shown in Figurel, and the corresponding greyscale versions
are shown in Figure 2.
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Fig.1. Thumbnails of the color images used as stimuli in the psycho-physical
experiments

Fig. 2. Thumbnails of the grayscale images used as stimuli in the psycho-physical
experiments

2.1 Experimental Setup 1: Image Ranking

A group of 76 observers with normal or corrected-to-normal visual acuity and nor-
mal color vision took part in this psycho-physical experiment. Ishihara color test
plates printed on paper have been preliminarily presented to the observers for
detecting color vision deficiency. The images in the LIVE database were profes-
sionally printed on a high quality paper to create the cards for the psycho-physical
experiment. The cards with the color images were given to 37 observers. Cards with
the same greyscale images from the LIVE database were given to the remaining 39
observers. Observers could look at all the stimuli simultaneously for an unlimited
time. The task of the observer was to arrange the images in order of increasing com-
plexity. No definitions of complexity were imposed to the observers. The final rank
of each image was obtained ranking the average of the positions assigned by the
observers (from 1 the simplest image to 29 the most complex one).
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2.2 Experimental Setup 2: Image Scaling

A group of 31 observers with normal or corrected-to-normal visual acuity and
normal color vision took part in the psycho-physical experiment. A single stimu-
lus method was adopted, where all the images are individually shown. No specific
task was provided, just assessing the image complexity of each image using a
scale in the range [0-100]. 14 observers evaluated the 29 color images, while
the remaining 17 observers judged the grayscale counterparts. The images were
shown on a web-based interface in a random order, different for each subject. The
subjects reported their complexity judgments by dragging a slider onto a contin-
uous scale. The position of the slider is automatically reset after each evaluation.
A grayscale chart was shown to calibrate the brightness and the contrast of the
monitor. Ishihara color test have been preliminarily presented to the observers
for estimating color vision deficiency.

Seven training images were presented to the observers prior to the 29 test
ones. These images have been used to train the subjects about the range of
complexity to be evaluated. The corresponding data has been discarded and not
considered as experimental result.

We have applied Z-score and outliers detection to obtain the final Mean
Opinion Scores (MOS) of each image. The raw complexity score r;; for the i-th
subject (i = 1,...14 in case of color images or ¢ = 1,...17 in case of grayscale
images) and j-th image (j = 1,...29) was converted into Z scores:

Zij = — (1)

g3
where 7; is the average of the complexity scores over all images ranked by
the subject, and o; is the standard deviation. The Z scores were then averaged
across subjects after the removal of the outlier scores. A score for an image was
considered to be an outlier, and thus removed from the average computation, if
it was outside an interval of width two standard deviations about the average
score for that image.

3 Color versus Grayscale: Assessing Image Complexity

The following features have been considered as candidate complexity measures:

— F1 Contrast, extracted applying the MATLAB function graycoprops to the
gray-level co-occurence matrix.

— F2 Homogeneity, Extracted applying the MATLAB function graycoprops to
the gray-level co-occurence matrix.

— F3 Edge density [12]: the MATLAB’s Canny edge detector is applied to the
image to measure the density of edge pixels.

— F4 Feature Congestion [11]: its implementation involves: (1) computation
of local measures (color, orientation, and luminance contrast) covariance at
multiple scales and computing the volume of the local covariance ellipsoid, (2)
combine clutter across scale and feature types, (3) pooling over space to get
a single measure.
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— F5 Subband Entropy [11]: it is based on the notion of clutter as related to
the efficiency with which the image can be encoded and inversely related to
the amount of redundancy and grouping in the image.

— F6 Compression Ratio of the image JPEG compressed with Q factor = 100.

— F7 Number of Regions, calculated using the mean shift algorithm [23].

— F8 Colorfulness [24]: linear combination of the mean and standard deviation
of the pixel cloud in the color plane of CIELab.

— F9 Number of colors [26]: number of distinct color in the image.

— F10 Color harmony [25][26]: it is based on the perceived harmony of color
combinations.

The first three features, labeled F'1, F2, F'3 work on grayscale images, fea-
tures from F'4 to F'7 are mainly developed for color images but they are also
meaningful for grayscale images while F'8, F'9, and F'10 are meaningful only for
color images.

These features are correlated with the subjective data obtained in the psycho-
physical experiments. In the case of the ranking experiment we are interested in
assessing if the features are able to replicate the subjective ranks. In the case of
the scaling experiment the aim is to assess the ability of the features to predict
the MOS. For the latter case a proper logistic regression is used as follows.

Denoting by y; the MOS of the j — th image and by z; the corresponding
objective feature value, the logistic transformation reads:

@
flaj) = 1+ B

where the parameters «, 3, v and ¢ are chosen to minimize the mean square
error between the MOS {y;} and the predicted values {f(x;)}.

+6 (2)

4 Experimental Results

We initially investigate if color influences the perception of image complexity
by analyzing the subjective data collected within each experimental setup. To
this end we consider the raw data for both the experimental setups. In case
of ranking experiment, we consider as raw data the average of the positions
assigned by the observers. In case of scaling experiment, the raw data are the
mean of the scores. The raw data collected for the grayscale images are corre-
lated with those collected for the corresponding color images within each type
of experiment. In Figure 3 on the left, the raw data of the ranking experiment
are considered: the raw data of the 29 grayscale images are plotted with respect
to the corresponding data of color images. In Figure 3 on the right, the raw data
of the scaling experiment of the 29 grayscale images are plotted with respect to
the raw data of the corresponding color versions. To measure the linear correla-
tion between grayscale and color data for each experimental setup we evaluate
the PCC, while to quantify their rank-order correlation we use the SROCC. In
Table 1 these coefficients are reported for the two experimental setups.
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Fig. 3. Correlation between grayscale and color image data. Left: results from ranking
experiment. Right: results from scaling experiment.

Table 1. Correlation coefficients between grayscale and color data for each experimen-
tal setup
Setup H PCC ‘SROCC

Ranking||0.877| 0.903
Scaling {{0.914| 0.926

Subjective evaluations of color and grayscale images are highly correlated
within each experimental setups. In particular in the case of scaling experiment
these results suggest that the perception of image complexity is not significantly
influenced by color. To have further insight into this issue, we evaluate the cor-
relation between subjective and objective data. As objective data we adopted
the ten features listed in Section 3. The last three features can not be evaluated
for grayscale images as they are designed to measure color properties only.

In the case of the ranking experiment we consider the performance of the
features in predicting the subjective rank. The results are presented using the
SROCC and reported in Table 2 first row for the color images, second row for
the grayscale images.

In the case of the scaling experiment we consider the performance of the
features in predicting the MOS, using a proper logistic regression. The results
are presented in terms of PCC and SROCC and reported in Tables 3 and 4.

In general we can notice that in the case of ranking experiment all the fea-
tures evaluated on grayscale images better predict the subjective ranks than the
corresponding ones on color images. Instead, in the case of scaling experiment all

Table 2. SROCC of the ten features in the ranking experiment

SROCC || F1 F2 F3 |F4 F5 F6 F7 | F8 F9 FI10
Color ||0.649 0.600 0.587{0.600 0.497 0.568 0.544|0.076 0.380 0.308
Grayscale||0.763 0.726 0.755|0.759 0.655 0.727 0.675| - - -
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Table 3. PCC of the 10 features in the scaling experiment

PCC F1 F2 F3 | F4 F5 F6 F7 | F8 F9 FI10
Color ||0.751 0.656 0.740(0.622 0.604 0.683 0.583|0.211 0.321 0.128
Grayscale||0.696 0.736 0.740/0.628 0.762 0.777 0.427| - - -

Table 4. SROCC of the 10 features in the scaling experiment

SROCC || F1 F2 F3 | F4 F5 F6 F7 | F8 F9 FI10
Color ||0.759 0.721 0.734|0.692 0.624 0.738 0.582|0.030 0.247 0.188
Grayscale||0.721 0.738 0.746|0.669 0.709 0.740 0.500| - - -

Fig. 4. Images in the first four rank positions (low complexity) in the ranking experi-
ment for color and grayscale images

Fig. 5. Images in the last four rank positions (high complexity) in the ranking experi-
ment for color and grayscale images

the features perform similarly for both color and grayscale data. This behavior
is related to the higher correlation between color and grayscale data in the scal-
ing experiment than in the ranking one (see Figure 3). The three color features
F8 F9, and F'10 are not appropriate to correlate subjective color data. This
analysis suggests that the perception of image complexity is slightly influenced
by color especially in the second experimental setup. The four lowest and four
highest complexity images for both color and grayscale datasets and for both
experimental setups are shown in Figures 4-7.
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Fig. 6. Images with the four lowest MOS (low complexity) in the scaling experiment
for color and grayscale images

Fig. 7. Images with the four highest MOS (high complexity) in the scaling experiment
for color and grayscale images

5 Conclusions

In this work we have shown that there is a significant correlation between psycho-
physical data on color and grayscale images when observers are asked to evaluate
image complexity. This suggests that color does not influence significantly the
perception of image complexity. Moreover, features that are developed only to
measure color properties seem not to be suitable to correlate with the psycho-
physical data. We recall that we have here considered real world images, where
the lightness component provides enough information about the image content.
Other kind of experiments, for example using images of color patches could
yield different conclusions, as the grayscale images could be less meaningful. As
a future work we plan to extend the psycho-physical experiments both in number
of observers and in number of images. However psycho-physical experiments with
a huge amount of images are a difficult task. In fact images should be divided
into different groups to be judged by different groups of observers and the final
data should be properly aligned. Furthermore we plan to investigate if a proper
combination of metrics that takes into account simultaneously spatial, frequency
and color image characteristics can better predict subjective evaluations.
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Abstract. In this paper we are concerned with robust structure-preser-
ving denoising filters for color images. We build on a recently proposed
transformation from the RGB color space to the space of symmetric
2 X 2 matrices that has already been used to transfer morphological
dilation and erosion concepts from matrix-valued data to color images.
We investigate the applicability of this framework to the construction of
color-valued median filters. Additionally, we introduce spatial adaptivity
into our approach by morphological amoebas that offer excellent capa-
bilities for structure-preserving filtering. Furthermore, we define color-
valued amoeba M-smoothers as a generalization of the median-based
concepts. Our experiments confirm that all these methods work well
with color images. They demonstrate the potential of our approach to
define color processing tools based on matrix field techniques.

Keywords: Matrix field - Color image - Median filter - M-smoother -
Amoeba filter

1 Introduction

Thanks to modern technology, digital color images have become a ubiquitous
element of our every-day life, creating an ever-increasing demand for efficient
algorithms to process color image data. With noise being one of the most wide-
spread sources of image degradation, denoising is a crucial task of image process-
ing. Despite decades of research, it continues to pose new challenges, not least
due to the ongoing spread of imaging into new application fields with unfavorable
acquisition conditions with higher noise levels and an increasing diversity of noise
sources. For example, low-light photography by mobile phones combined with
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compression for low-rate data transfer may lead to mixtures of significant sensor
noise with scattered light and compression noise. To cope with such application
contexts requires robust and structure-preserving denoising approaches. Whereas
the present work does not aim at giving a fully developed algorithm for a spe-
cific application problem, it intends to contribute to the development of robust
denoising algorithms. Our approach combines a suitable choice of color space
with multi-channel median filtering on adaptive neighborhoods. The median fil-
ter component is later generalized by so-called M-smoothers. In the following,
we therefore provide some background on these four concepts.

Color Spaces. Since the output of most digital image sensors consists of red,
green, and blue intensity values, the corresponding RGB color space is often used
to perform color image processing. Targeting at the enhancement of images for
human observers, it makes sense, however, to adopt a color space that reflects
better the sensitivity and contrast perception of the human visual system. In the
latter, the excitations of retina cones, which are close to an RGB model, undergo
several transformation steps before they become color impressions, giving rise to
several color spaces that relate to different steps in this chain. From this realm,
the hue-chroma-luminance (HCL) lends itself as a good compromise for image
denoising because it is on one hand close enough to the RGB input and thereby
to the physical noise process, whilst at the same time it reflects reasonably the
perceptual metric of human color vision.

Color image processing is embedded in the context of multi-channel image
processing, which includes e.g. processing of tensor fields [11] as well. An inter-
esting link between the concepts developed there and color image processing
results from the structure of the HCL, HSV and similar color spaces. The latter
model the gamut of colors as a cone or bi-cone with a luminance or brightness
value as axial dimension. Likewise, symmetric positive definite matrices as are
used to represent diffusion tensors form a cone whose axial dimension represents
an overall intensity. In [4] this relation has been fruitfully exploited to transfer
multi-channel morphology concepts from tensor data to color image processing.

Median Filtering. For gray-scale images, a time-proven method for robust
denoising is median filtering [10], which establishes a filtered image by assigning
to each pixel the median of gray values from the input image within a neigh-
borhood of that pixel. Neighborhoods for all pixels are generated by shifting a
fixed-shape mask across the image. The process can be iterated, by computing
a first filtered image from the input, a second filtered image from the first one,
and so on. This procedure can cope with heavy-tailed noise distributions such
as salt-and-pepper noise, whilst preserving important image features like edges
that are crucial for human interpretation of images.

Attempts to transfer median filtering to multi-channel contexts like color
images have therefore been made as early as 1990 [2]. The notion of vector
median introduced there selects as median of a finite set of vectors always one of
the input vectors. While this is advantageous in terms of algorithmic complexity,
it leads to discontinuous dependence of output data from input data, and applied
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to color images, to noticeable color artifacts, as demonstrated in [8]. Indeed, a
median concept that drops the restriction to select one of the input values has
already been proposed several decades before by Weiszfeld [12]. Following these,
the median of data points in a metric space is the point in the same space that
minimizes the sum of distances to the input values. This notion of median has
been applied to color images in [8] via the RGB color space. The same approach
has been introduced to tensor field processing in [15].

Adaptive Neighborhoods. For each pixel, the median filtering procedure
involves two steps: a sliding-window selection step, and the aggregation of selected
input values via the median. To increase the sensitivity to important image struc-
tures, the selection step can be modified by using spatially adaptive neighbor-
hoods. One representative of these are morphological amoebas as introduced by
Lerallut et al. [5], see also the further analysis in [13,14]. In this approach, spa-
tial distance in the image plane is combined with contrast into an image-adaptive
metric. On the basis of this metric, adaptive neighborhoods called amoebas are
established and used to replace the sliding window in median filtering in order to
perform adaptive filtering.

M-Smoothers. Combining the sliding-window selection step with different aggre-
gation operators leads to other well-known image filters, such as average filter (with
aggregation by mean value), morphological dilation and erosion (with maximum
or minimum). A general class of position estimators for univariate distributions are
M-estimators, which include median and mean value as special cases [7]. In com-
bination with the sliding-window procedure they give rise to image filters called
M-smoothers [9].

Our Contributions. In this paper, we combine the ideas reviewed in the pre-
ceding paragraphs in several ways. First, we use the color-tensor link from [4] to
transfer the median filtering idea of [15] to color images and compare the result-
ing version of a color median filter with the RGB-based approach from [8]. This
is further combined with the amoeba approach [5] for spatial adaptive filtering
to yield a color amoeba median filter with enhanced structure preservation. Sec-
ond, we transfer the tensor-valued M-smoothers studied in [15] to color images
and combine them with the amoeba approach.

2 Color Images and Matrix Fields

In this section, we briefly recall the conversion of RGB-images to matrix fields
as introduced in [4]. Given an RGB-image we transform it in two steps into
a matrix field F of equal dimensions, i.e. we assign each pixel of the image a
symmetric 2 X 2 matrix.

In the first step, we transform the color values of the image from the RGB
representation to the HCL color space. We assume that red, green and blue
intensities are normalized to [0, 1]. For a pixel with red, green and blue intensities
r, g, b, resp., we obtain its hue h, chroma ¢ and luminance ! via M = max{r, g, b},
m = min{r,g,b}, c=M —m, | = %(M—Fm), and h = é(g —b)/M modulo 1 if
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M=r h= é(b—r)/M—i—%ifM:g, h = %(T—g)/M—I—% if M = b, compare
[1, Algorithm 8.6.3]. Replacing further the luminance I with [:=20—1, and
interpreting ¢, 2wh, and [ as radial, angular and axial coordinates, resp., of a
cylindrical coordinate system, we have so far a bijection from the unit cube of
triples (r, g,b) onto a solid bi-cone, see Figure 1. Its base is the unit disc in the
plane [ = 0, while its tips correspond to [ = +1 on the l-axis. The bi-cone is
then transformed from cylindrical to Cartesian coordinates via z = ccos(27h),
y = csin(27h), z = 1.

The second step takes the Cartesian
coordinate triples (z,y, z) and maps them
to symmetric matrices A € Sym(2) via

A:ﬂ(zy v ) "

2 T zZ+y

compare [4]. Note that the mapping ¥ :
R3 — Sym(2) defined by (1) is bijective
and even an isometry from the Euclidean
space IR? to the space Sym(2) with the
metric defined by the Frobenius norm
|- |lg, d(A, B) := ||A = B||g. Denoting by
M C Sym(2) the set of all matrices A
which correspond to points of the bi-cone,  gig 1. Color bi-cone, figure adapted
we have therefore a bijection between the  from [3)
RGB color space and the bi-cone M in
Sym(2). The inverse transform from matrices to RGB triples is obtained in a
straightforward way, compare [4].

To illustrate the conversion of color values, we state RGB, Cartesian bi-cone
and symmetric matrix representations of exemplary colors in Table 1.

3 Constructing Amoebas

In this section, we explain how to construct an adaptive, pixel-wise varying
filtering domain, amoeba for short, for a given matrix field F. In doing this we

Table 1. Colors and their RGB, Cartesian bi-cone and matrix representations

Color Black Red Green Blue
(r,9,b) (0,0,0) (1,0,0) (0,1,0) (0,0,1)
(z,y,2) (\07[07 -1 \/(}»070) (-1/2,v3/2,0)  (=1/2,-v/3/2,0)

2(10 2 (01 L (V6 V2 L (—v6v2
S e B S O B RO B LW V)

Color Yellow Magenta Cyan White
(r,g,b) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
(z,y,2) | (1/2,v3/2,0) (1/2,-+3/2,0) (=1,0,0) (0,0,1)

1 /-6 V2 1/v6 V2 V2 (01 V2 (10
S OO B O R B (1) B €Y
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extend the approach of Lerallut et al. in a straightforward fashion: In [5], color
channels have been considered separately for amoeba construction.

Let (z;,y;) be the coordinates of the i-th pixel of an image with gray-value
fi. For a given pixel i with coordinates (x;,,yi,) the amoeba is constructed as
follows. As a first step, we only consider pixels i* that are located in a prescribed
maximal Euclidean distance o of pixel iy which limits the maximal size of the
amoeba. As a second step, we take these pre-selected pixels and consider paths
(i, i1, - .., 9, = 4*) which connect ig with * allowing only pixels that are neigh-
bors to enter P. We determine the shortest path P among all those possibilies
using the amoeba distance L(P), a combination of spatial and tonal distances,
defined by

k—1 k—1
L(P):Z]'+O—Z’fim+1ffim|a (2)
m=0 m=0

where o > 0 is a given parameter that penalizes large deviations in gray-valued
data. If L(P) < p for P holds, then pixel i* is a member of the amoeba.

Because the amoeba distance includes a tonal dis-
tance, the amoeba has the ability to grow around
structures given by large tonal differences, compare
the sketches in Figure 2: A filter applied over fixed
masks takes into account all values as e.g. here both o X ]
white and gray region, while an amoeba may grow
around corners as indicated.

Note that modifications of this approach are pos-
sible and have been done by Welk et al. [14]. Precisely,
they considered 8-point instead of 4-point neighbors
as we do in this work, and different distance measures.
To efficiently implement the amoeba computation we []
use the fast marching method similarly as in [13,14].

Since we deal with matrix fields, we have to con- i
sider an amoeba distance defined for matrices. A nat-
ural extension of (2) is

k—1 k—1
L(P) = Z l+o Z HFim+1 - B,
m=0 m=0

where F; is the symmetric matrix of size 2 x 2 at
the coordinate (z;,y;). Here, ||- || denotes the Frobe-
nius norm, which we employ in all computations. Of
course, also other norms like e.g. the nuclear norm
[6, p. 615] are possible, however, one should not employ different norm defini-
tions for amoeba distance and the filtering methods described in the following.

S C))

Fig. 2. Masks centered at
marked pixels. Top. Spa-
tially fixed window. Bot-
tom. Amoeba domain.

4 Median Filtering and Its Generalizations

Given a color image, we first convert it to a matrix field as described in Section 2.
Then amoebas are constructed via the procedure given in Section 3 for all pixels.
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For an amoeba as an adaptive structuring element, it is possible to extract the
matrices Ay, ..., A, that participate in it.

Median Filters. The Frobenius matrix median M of this set of symmetric 2 x 2
matrices is given by

M :=medp(Ay, ..., Ay) = argminy cg ez Y I1X = Aillg (4)

i=1

compare for example [15]. Note that the matrices Aj,..., A, represent points
in a solid bi-cone defining a convex set. The resulting median is located in the
convex hull of this set and hence, the median operation never leads to RGB color
values outside the unit cube, see [15, Proposition 2]). To calculate the median
numerically one may reformulate the problem as a convex minimization problem;
compare [15, Section3.2.1] for the reformulation and a discussion.

Given a matrix field F() := F, an amoeba median filter works now as follows.
For each matrix in the matrix field, one computes the amoeba, selects the set of
matrices Ay, ..., A,, and computes the Frobenius matrix median. The resulting
matrix is stored in the matrix field F().

An iterated amoeba median filter TAMF) applies this procedure iteratively p
times yielding matrix fields F(© ... F®) At the end, the resulting matrix field
F(®) is converted back to a RGB image. In the subsequent section we report the
experimental results when this procedure is applied to various color test images.

M-Smoothers. Next, we consider a generalization of the median filter that can
be traced back to Barral Souto [7] by modifying (4) as

My, = arg My cgym(2) Z X — Ai“g (5)

i=1

where we assume p > 1 to ensure uniqueness of the minimizer, cf. [13, pp.20-
21]). The symmetric matrix M, is called a matriz-valued M-smoother. For p =1
we recover the median, for p = 2 we obtain the arithmetic mean, and for the
limiting case p — oo the mid-range. Using amoebas and calculating the M-
estimators iteratively leads to an iterated amoeba M-smoothers (IAMS).

5 Experiments

The structure of our experimental section is as follows. First we confirm that
the use of our new color scheme for both amoeba construction and filtering gives
better results than simpler amoeba-based methods employed in a similar style as
by Lerallut et al. [5] where experiments were designed to give a proof of concept.
Then we show an experiment demonstrating benefits of amoeba structuring ele-
ments over fixed filtering masks. This is followed by a comparison of our new
set-up for median filtering with a recent method for median computation work-
ing with RGB data, namely the method of Spence and Fancourt [8]. Finally, we
present some results of our new amoeba-based M-smoothers.
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Comparison with a Simple Amoeba-Based Median Filter. The purpose
of this experiment is to demonstrate that the use of amoebas alone without a
proper median computation cannot give high-quality results.

To this end we take up a test image used in [5], see Figure 3. The image in
the middle is obtained by a simple, amoeba-based iterated median filtering. Here
the median is determined channel-wise in RGB, iterating three times amoeba
construction and median filtering analogously to IAMF. This is compared with
three iterations TAMF by our method, see the image on the right hand side.

Fig. 3. TAMF versus amoeba-based simple median computation, amoeba parameters
are p = 5 and o = 5. Left. Input image, size 131 x 173. Middle. Result for amoebas
and channel-wise median filter. Right. Result of IAMF with three iterations.

Our method yields reasonable colors after filtering, while the simple channel-
based median exhibits the expected problems of color distortions, e.g. have a look
at the left part of the nose or at green spots around the eyes and at the tran-
sition of hat to background. Let us also note that the expected edge-preserving
properties of the amoebas are clearly observable when using a proper median as
performed by our method.

Comparison of Amoebas with Fixed Filtering Masks. The purpose of this
experiment is to verify that the edge-preserving properties of median amoeba
filters that can be observed for gray-valued images [5,13] are carried over to
filtering of color images. Because of the well-known difficulties in dealing with
color vectors we do not expect that this is self-evident.

In order to illuminate the mentioned effect we employ a low resolution test
image of size 64 x 64, see Figure 4. In the first row we demonstrate the edge-
preserving capability of the amoebas and show that our color scheme for median
filtering gives reasonable results. The shape of the peppers is well-preserved
while regions of similar color are more uniform after TAMF, in contrast to plain
median filtering which shows expected rounding effects of image structures. By
the second row we demonstrate that our method is capable of delivering reason-
able shape information if the input is perturbed by noise. Note that the stipe
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_-T

Fig. 4. Amoebas versus fixed filtering mask with iterated median filter. Left column.
Input images, original (top) and with added Gaussian noise in each channel (bottom).
Middle column. Iterated median filtering with our color scheme for 3 x 3 masks and
three iterations. Right column. TAMF with ¢ = 5, ¢ = 3 and three iterations.

of the thin pepper is not well preserved in the filtering process. The filtering of
this kind of thin, oblique structures can be improved by using 8-neighborhoods
instead of 4-neighborhoods in the amoeba construction; however, we leave this
algorithmical improvement to future research. Note also that we employed o = 3
in this test instead of ¢ = 5 in Fig. 3, since the resolution of the input image
in Fig. 4 is much lower and the parameter ¢ controls the maximal size of the
structuring element.

Comparison to RGB-Based Color Median Approach. The aim of this
experiment is to show that our median filter based on our specific color rep-
resentation yields competitive results compared to a RGB-based method for
median filtering, namely the approach of Spence and Fancourt [8].

The Figure 5 shows results for the Hamburg test image. We filter the image
with TAMF with parameters o = 5, 0 = 5 and perform three iterations. Let us
note that in order to achieve directly comparable results, we adjust the parameter
o by the factor \/m when using the method of Spence and Fancourt. This
factor can be derived by considering the distances between black and white
in RGB space and our color space, respectively. As can be expected from the
similarity of the methods, the results of our approach and that from [8] are
largely comparable.
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~ g

Fig.5. Comparison of IAMF with 5 iterations, o = 5, o = 5, for different color median
filters. Left. Input image, size 213 x 213. Middle. Method of Spence and Fancourt.
Right. Our color scheme.

Iterated Amoeba M-Smoothers. For demonstrating the flexibility of our
framework we present in Figure 6 results for IAMS with several values for p, see
(5). The results show that image simplification can be achieved by our method
without color distortions. Results with fixed structuring elements are equally pos-
sible but not very illustrative here. We observe the expected increased smoothing
effect when letting p grow combined with the edge-preserving mechanism of the
amoebas.

Fig. 6. Matrix-valued M-smoothers with exponent p and 5 iterations. Left. TAMS
with p = 1 identical to IAMF. Middle. TAMS with p = 2, i.e. the image shows an
amoeba-based arithmetic mean. Right column. TAMS with p = 5.

6 Conclusion

In this paper we have extended the work from [3] on using matrix fields for the
processing of color images. We have introduced a color median filter concept
based on this approach and used it in connection with morphological amoe-
bas for robust, structure-preserving image denoising. We have also formulated a
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more general filter class of color amoeba M-smoothers. Our experiments demon-
strate the viability and versatility of the approach. Ongoing work is directed
at generalizations to further image filters and applications for color image pro-
cessing. For future work we aim to make our algorithm more efficient and to
exploit theoretical connections of our approach to bilateral filtering and related
concepts.
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Abstract. This paper investigates if the performance of hyperspec-
tral face recognition algorithms can be improved by considering 1D
projections of the whole spectral data along the spectral dimension.
Three different projections are investigated: single spectral band selec-
tion, non-negative spectral band combination, and unbounded spectral
band combination. Experiments are performed on a standard hyperspec-
tral dataset and the obtained results outperform seven existing hyper-
spectral face recognition algorithms.

1 Introduction

Since intra-person differences are often larger than inter-person ones in presence
of variations in viewing point and illumination conditions, face recognition is
still a challenging problem.

Most of the current research is based on features extracted from grayscale or
RGB images, which are usually acquired in the visible spectrum [1,2].

With the aim of increasing the dimensions in face images, many researchers
have considered the use of hyperspectral imaging [3-7]. Hyperspectral imaging
can increase facial discrimination by capturing more biometric measurements
such as the spectral response of faces. A hyperspectral image is a data cube with
two spatial dimensions and one spectral dimension. It is captured by a hyper-
spectral camera which operates in multiple narrow bands and densely samples
the radiance information in both space and wavelength, producing a radiance
spectra at every pixel.

In addition to face appearance, spectral measurements in multiple wave-
lengths can also measure subsurface tissue features [4] which may be significantly
different for each person.

Although the high dimensionality of hyperspectral data is a desirable feature
for separating the different identities, at the same time it poses new challenges
such as inter-band misalignments and low signal to noise ratio (SNR) in certain
spectral bands.

Due to the high dimensionality of hyperspectral data, discriminative feature
extraction for face recognition is more challenging than 2D images. The different
approaches for dimensionality reduction and feature extraction range from the
sub-sampling of the hyperspectral data [4,5,7] to the more promising approaches
which use whole-band features [3,8].
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Starting from the best hyperspectral method in the state of the art [8], this
paper investigates if the use of linear projections along the spectral dimension
can improve face recognition performance with respect to the use of the full
hyperspectral data.

The experiments are performed on the PolyU Hyperspectral [3,9] standard
hyperspectral face database. The results are compared with seven existing hyper-
spectral face recognition algorithms.

2 Baseline Method

The proposed method builds on the method of Uzair et al. [8], which has three
main steps respectively related to the normalization of illumination variations,
feature extraction and classification.

The first step consists in filtering the individual bands with a circular (8,1)
neighborhood LBP [12] filter to normalize for the illumination variations.

The second step is the feature extraction step which is based on a
three-dimensional Discrete Cosine Transform (3D-DCT). The Discrete Cosine
Transform (DCT) [13] decomposes a discrete signal into linear combination of
independent cosine basis functions. DCT tends to generate a representation in
which the low-frequency coefficients encode most of the signal information. A
compact representation can be obtained by selecting as features only the low-
frequency coefficients. The 3D-DCT of a hyperspectral cube H (z,y, \) with size
Ny X No x N3 is given by

Ni—1No—1N5—1

F<u7 v, w) = Ql(u)Q2<v)Q3(w) Z Z Z H(l‘, Y, )‘)
z=0 y=0 X=0
72z +Du  wR2y+1v w22+ 1w
1
cos —— N, cos —— N, cos —— N, (1)

withu=1{0,...,Ny —1},v={0,...,No — 1}, w ={0,..., N3 — 1}, and Q;(-) is
defined /1/N; if its argument is zero, and 1/2/N; otherwise.

The low frequency coefficients near the origin of F'(u,v,w) represent most
of the energy of the hyperspectral cube, and therefore the high-frequency coeffi-
cients can be discarded. In order to construct the feature vector, in [8] a frequency
sub-cube I'(u,v,w) of dimensions (a x B x «) is sampled by retaining only the
low-frequency elements around the origin of F'(u,v,w). The sub-cube I'(u, v, w)
is then vectorized and normalized to unit magnitude to obtain the final feature
vector f € RY, where d = a7, which is then used for classification.

The last step consists in the use of the Partial Least Squares (PLS) regression
[14] for the classification. PLS models the relations between sets of observed
variables by means of latent variables. In its general form, PLS creates orthogonal
score vectors by maximizing the covariance between different variable sets. The
only parameter to be set in PLS is the number of latent variables to use.
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3 The Proposed Method

Building on top of the method of Uzair et al. [8], this work wants to understand if
the full hyperspectral information is actually needed to improve face recognition
accuracy or if a projection of it suffices. The projection is applied directly to
the hyperspectral cube H(xz,y, A) (i.e. the radiance data), before any step of the
method in [8], and depends on the set of weights W (\;) = w;, i =1,..., N3:

i=1,...,N3

The projection P(z,y) is thus a 2D image, forcing v = 1 for the sub-cube size.
In this work three different projections are considered. The first one is

0 otherwise

WA(A) = 83y (A) = {1 A= (3)

and can be seen as a band selection operator, or a pass-band optical filter.
The second projection is

Wg(/\i):wi,izl,...,Ls.t.Vwi:wiGIR,OSwigl (4)

which can be seen as a non-negative linear combination of the different hyper-
spectral bands. This is an operation analogue to what optical filters do in tradi-
tional imaging, and could be done using a monochrome digital camera coupled
with a custom designed filter.

The third projection is an unbounded linear combination of the hyperspectral
bands, and can be defined as in equation 4 removing the lower and upper bounds
on the filter coefficients w;, i.e.:

Wg()\l):w“%:].,,L s.t. Vw; 1 w; € IR (5)

This is a generalization of the second one, and is the only one that cannot be
realized through an optical filter since it could have negative coefficients as well
as |w;| > 1.

The optimal Wi (A) projection is obtained by exhaustive search, while for
both W3 (A) and W5(\) a Particle Swarm Optimization (PSO) [10,11] is used.
PSO is a population based stochastic optimization technique. A population of
individuals is initialized as random guesses to the problem solutions and a com-
munication structure is also defined, assigning neighbors for each individual to
interact with. These individuals are candidate solutions. The particles iteratively
evaluate the fitness of the candidate solutions and remember the location where
they had their best success. The best solution of each individual is called the
particle best or the local best. Each particle makes this information available
to its neighbors. Movements through the search space are guided by these suc-
cesses. The swarm is typically modeled by particles in multidimensional space
that have a position and a velocity. These particles move into the search space
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Fig. 1. A hyperspectral face cube from the PolyU-HSFD dataset

and have two essential reasoning capabilities: the memory of their own best posi-
tion and the knowledge of the global best position (or the best position of their
neighbors). Members of a swarm communicate good positions to each other and
adjust their own position and velocity based on these good positions.

4 Experiments

4.1 Dataset

The hyperspectral face database used is the Hong Kong Polytechnic University
Hyperspectral Face Database(PolyU-HSFD) [3,9]. It consists of hyperspectral
image cubes acquired using a CRIs VariSpec Liquid Crystal Tuneable Filter.
Each cube contains 33 bands acquired in the 400-720nm spectral range in 10nm
steps. The database has been collected over a long period of time and shows
significant appearance variations of the subjects (e.g. changes of hair style, skin
conditionss, etc.). Signal to noise ratio (SNR) in bands near the blue wavelength
is very low, and the database contains inter-band misalignments due to subject
movements during the acquisition at the different wavelengths.

The database contains a total of 48 subjects (13 females and 35 males). For
each of the first 25 subjects four to seven cubes are available, while the remaining
23 subjects only have one cube each. Following the experimental protocol of [3,7],
only the first 25 subjects are used in the experiments. For each subject, two cubes
are randomly selected for the gallery and the remaining cubes are used as probes.
The random selection is repeated ten times and the results are averaged. As in
[3] the eye, nose tip, and mouth corners coordinates were located manually for
image registration, and a subregion containing the face was cropped from each
band, normalized, and scaled to one quarter size.

An example of the hyperspectral face cubes used is reported in Figure 1,
while examples of appearance variations are reported in Figure 2.

4.2 Compared Hyperspectral Face Recognition Algorithms

The seven existing hyperspectral face recognition algorithms used for compar-
isons include Spectral Signature Matching [4], Spectral Angle Measurement [6],
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Fig. 2. Examples of appearance variations. The same hyperspectral band correspond-
ing to A5 = 540nm is selected for all subjects.

Spectral Eigenface [5], 2D PCA [3], 3D Gabor Wavelets [7], and 2D and 3D-DCT
with PLS regression [8]. The parameters of these algorithms are set as follows.
For spectral signature matching algorithm [4], five adjacent square regions of
size 17x17 pixels arranged in a cross pattern are used to represent hair, forehead
and cheeks. For the lips, square regions of size 9x9 pixels are used . For Spectral
Eigenface [5], 99% energy is preserved by retaining 48 PCA basis vectors. For
2D PCA [3], 99% energy is preserved by retaining 27 PCA basis vectors. For the
3D Gabor method, 52 Gabor wavelets are used for feature generation as recom-
mended by [7]. For the 2D and 3D-DCT [8] method the parameters are taken as
suggested by the authors: « = 8 = v = 10 for the sub-cube size to extract the
features, and 45 PLS basis.

4.3 Results

The results of the hyperspectral face recognition algorithms compared are reported
in terms of average recognition rate in Table 1. The results of Spectral Signature
Matching [4], Spectral Angle Measurement [6], Spectral Eigenface [5], 2D PCA [3],
3D Gabor Wavelets [7], and 2D and 3D-DCT with PLS regression [8] are all taken
from [8], with the only exception of the 3D-DCT method for which the results using
an our implementation are also reported.

It is possible to notice that the proposed method outperforms the best algo-
rithm in the state of the art by 4.3% up to 6.11%. The best projections found
for Wy (A), Wa(\), and W3(A) are reported in Figure 3. Interestingly, the band
selected by Wi(\) and the bands receiving higher weights by Wa(\) and W3()\)
are localized at the oxyhemoglobin peak absorption valley [3,15].

As already said in Section 3 the projections W7 (A\) and Wa(A) could both
be realized through an optical filter since they do not have negative coefficients.
The projection W3()\), instead can not be realized through a single optical filter,
but exploiting the linearity of equation 2 it could be realized by subtracting two
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Table 1. Average recognition rates and standard deviations (%) for ten-fold experi-
ments on the database

Algorithm Average recognition rate (std)
Spectral Signature [4] 24.63 (3.87)
Spectral Angle [6] 25.49 (4.36)
Spectral Eigenface [5] 70.30 (3.61)
2D PCA [3] 71.11 (3.16)
3D Gabor Wavelets [7] 90.19 (2.09)
2D-DCT + PLS [8] 91.43 (2.10)
3D-DCT + PLS [8] 93.00 (2.27)
3D-DCT + PLS (author’s implementation) 93.32 (3.13)
Proposed (W1(A), single band selection) 97.20 (1.66)
Proposed (W2(A), non-negative band combination) 98.34 (1.83)
Proposed (W3(A), unbounded band combination) 99.11 (1.21)

different optical filters W (\;) and Wy (\;):

P(I7y) = Z H(Ivyv)‘l)WS—i_()‘z) - Z H("Ea?ﬁ)‘?)WS_()‘z) (6)

i=1,...,N3 i=1,...,N3
where
Wg(/\i) ifw; >0
Wi (\i) = Ny (7)
0 otherwise
and

—Wg()\z) if w; <0
0 otherwise

w0~ ®

Some examples of the projected output given by applying equation 2 with
the optimal W1y (A), Wa(X), and W3(A) projections are reported in Figure 4.

From the images reported it is possible to see that using the Wj(\) projection
results in sharper images, due to the fact that only one spectral band is used. On
the contrary, since Wa(\) and W3(\) use the whole spectra, they make inter-band
misalignments evident resulting in more blurred images.

In Figure 5 some examples of errors across the ten-fold experiments when
using the Ws5(A) projection are reported. The two gallery images are reported
for each example together with the probe image and the gallery images of the
incorrectly assigned identity.

The sensitivity of the proposed method is analyzed in Figure 6 by plotting
equal recognition rate curves as a function of number of PLS basis and sub-cube
size (a« = 8 and v = 1, due to the effect of the projection).
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Fig. 3. Best projections found: Wi (top left), Wa (top right), and W3 (bottom left)

Fig. 4. Examples of the projections obtained by applying the optimal projections
found. Wi (A), single band selection (left); Wa2(\), non-negative linear combination
(middle); W5(X) and unbounded linear combination (right).
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Fig.5. Examples of errors for the ten-fold experiment using the W3(\) projection:
gallery cubes (top), probes (middle), gallery cubes for the predicted identity (bottom)
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Fig. 6. Equal recognition rate curves as a function of sub-cube size (y-axis) and number
of PLS basis (x-axis): single band selection (top left), non-negative linear combination
(top right), and unbounded linear combination (bottom left)
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5 Conclusion

In this paper it is shown that the performance of hyperspectral face recognition
algorithms can be improved by just considering 1D projections along the spectral
dimension of the full spectral cube. Three different projections have been inves-
tigated: single spectral band selection, non-negative spectral band combination,
and unbounded spectral band combination.

Experiments were performed on a standard hyperspectral dataset and the
results of the proposed algorithm were compared with seven existing hyperspec-
tral face recognition algorithms. Experimental results showed that the applica-
tion of the optimal linear projections can improve the performance of the best
hyperspectral face recognition algorithm in the state of the art by more than
6%, reaching an average recognition rate on a ten-fold experiment of more than
99%.

As future work it will be investigated the use of linear projections compati-
ble with physically plausible optical filters, by adding smoothness constraint on
the projection weights. It will be also studied if multiple linear projections can
further improve the recognition rate and which are the best fusion strategies.
Furthermore, it will be investigated if the approach proposed in this work can
be applied to hyperspectral images recovered from traditional RGB images using
spectral recovery techniques [16].
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Abstract. The performance of an image processing algorithm can be
assessed through its resulting images. However, in order to do so, both
ground truth image and noisy target image with known properties are
typically required. In the context of hyperspectral image processing,
another constraint is introduced, i.e. apart from its mathematical proper-
ties, an artificial signal, noise, or variations should be physically correct.
Deciding to work in an intermediate level, between real spectral images
and mathematical model of noise, we develop an approach for obtaining
suitable spectral impulse signals. The model is followed by construction
of target images corrupted by impulse signals and these images will later
on be used to evaluate the performance of a filtering algorithm.

Keywords: Hyperspectral image - Image processing - Impulse noise

1 Introduction

One way to evaluate the performance of an image processing algorithm is through
its resulting images, and thus to employ full-reference image quality assessment
(IQA). In order to conduct full-reference IQA, both reference and target images
are required. Reference image will be image of an ideal case that is to be achieved
by the algorithm. Target image is usually the modification of the reference image
by certain criteria that is defined according to its application, e.g. filtering, seg-
mentation, classification, etc. It is therefore by having the target image with
known properties that we are able to measure the performance of image process-
ing algorithms, e.g. stability, robustness, etc.

The performance of filtering algorithms are evaluated by means of signal/
image denoising or frequency-band decomposition. However, for nonlinear fil-
ters, the relationship between spatial frequency and the parameters of the filters
are not straightforward. Therefore, filtering performance is assessed through its
performance in denoising task, given a certain noise model. Among the existing
noise models, nonlinear impulse noise is most often used [2,5,8] as it models or
approximates the malfunctioning pixels in camera sensor, transmission problems
over a noisy channel, or faulty memory locations in data storage [6]. Interestingly,
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Table 1. Notation
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=S Image function at location z, I(x) C R"
An image disturbed by noise or unwanted variations
A spectrum describing image value at I(z), S = {s;, 1 C [1,n.]}
Number of channels
Average spectrum
A set of spectra, & = {S;,i C [1,ns]}
A set of candidate impulse signals
Random variable
Probability value of a pixel to be corrupted by impulse
Probability threshold
Impulse signal
Heavyside function, H(y) =1, Yy > 0
d(S1,S52) Distance between 2 spectra S1 and So
td, 04  Mean and standard deviation of distance
c A constant number
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even assuming a calibrated imaging system, in spectral image domain impulse
noise is said to be ubiquitous [10]. It is therefore necessary to extend the model of
impulse noise in the context of spectral image processing, and to do it correctly
by taking a careful consideration of the nature of spectral data.

This article is organized as follows. Section 2 describes the existing impulse
noise model that is widely used for grayscale and color images extended to spec-
tral images. Furthermore, an extension to spectral images at an intermediate
level which embeds mathematical model and real physical properties of noise is
proposed. In Section 3 we study the characteristics of several pigment patches
that were acquired by a hyperspectral scanner. The patches will then be used
construct ground truth and noisy target images that will be used to assess the
performance of a filtering algorithm in Section 4. The conclusion of this study
is finally drawn in Section 5.

2 Impulse Noise Models

Impulse noise model was initially defined for grayscale image and is characterized
by very large positive and negative values corrupting an image value for a short
duration; these short-lived noise introduces speckles to an image. Impulse noise
will then result in black and white spots in an image, hence the name salt-and-
pepper noise. This noise model has uniform probability density function, i.e. a
random variable R is independent and identically distributed over the image.

2.1 Salt-and-Pepper Noise

By definition there are two different models of salt-and-pepper noise, i.e. fixed
and randomized noise signals [7]. In the case of grayscale image, fixed noise
signals means that noise signals will be of value 0 or 1, while randomized signals
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Fig. 1. The probability range of an image value being disturbed by an impulse

means that its value will lie between [0, 1]. The randomized approach has been
used to extend this noise model to color image domain. In color image, impulse
noise is modeled by randomly and independently generating the impulse in each
color channel [4,9], causing the occurrences of false colored pixels. In other words,
the extension of impulse noise to color image takes a marginal approach. To
extend this model to spectral images, we choose to use a fixed signals approach
rather than the randomized one. Two spectra A7 and N3 that are randomly
generated will be used as noise signals corrupting an image value.

Ni={si =y, i C[l,nc],y C[0,1]} (1)

As mentioned previously, this noise model has a uniform probability density
function, see Fig. 1. The probability of having either N7 or Ay disturbing an
image value is identical, i.e. T} = 1 — Ty = T. Consequently, the probability of
having an image value corrupted by impulse signals is 27". Finally, an image in
the presence of impulse noise is classically described as follows:

I(z) = I(z) + H(T - 7“) (/\/1 — I(a:)) n H(r 1y T) (N2 - I(x)) 2)

2.2 Spectral Impulse Noise

Extending the construction of impulse noise to spectral images, especially hyper-
spectral image, induces a question whether the model is suitable for these images.
Hyperspectral acquisition captures the physical composition of scenes or objects.
The imaging system is calibrated and the acquired image is given after several
corrections, e.g. radiometric, geometric, etc. Nevertheless, impulse noise is ubig-
uitous [10]. The origin of impulse signals in hyperspectral images might then
be due to physical variations of the object itself or factors that affect photons
arriving on the sensor.

Knowing that the impulse signals mostly originate from factors that happen
before the sensor, it should rather be considered as spectral variations as opposed
to spectral noise. Image examples in Fig. 2 show that variations that appear in
uniform regions vary from the initial color by certain hues and magnitudes. With
this consideration, we define a spectral impulse noise model that is not only a
mathematical model but is also integrating the physical aspects of data by using
a dataset of real impulse signals, where the noise signals Ay and N5 can be
obtained by defining local constraints on the uniform regions.
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(a) Yellow, 21040 b) Orange, 21080 (c) Red, 21110

(d) Blue, 44450 ) Green, 44500 (f) Purple, 45120

Fig. 2. Pigment patches of several different color hues. In addition to having several
hues, each of the hues are given in four different saturations.

The construction of dataset of real impulse signals is as follows. Given a
uniform region of Np pixels, in which the uniformity is defined as satisfying
certain external criteria, we extract all the spectra within this uniform region
forming a set of spectra &. For a specific uniform region, a subset of furthest
spectra from the average spectrum is extracted, see Eq. 5 where ¢ allows to
reduce the subset size. Then, the candidate impulse signals are the two furthest
signals obtained from within the subset, see Eq. 6.

_ 1 ¥
S:N—P;Si (3)
L 1 & 2
a N—P;dwz,sx oz N—P;(d(&ﬁ) ) (4)
&, ={S;:d(S;,S) > (pta+c-04),S; € S} (5)
(N1, N2) ={ argmax d(S;,S;)} (6)

V(Si,Sj)GGZ

3 Experimental Study and Discussion

More than 50 pigment patches of different hues were acquired using a pushbroom
hyperspectral scanner HySpex [1]. This hyperspectral scanner provides data with
160 spectral bands in the range of 414.2 to 993.7 nm, in 3.6 nm interval. Some
of the acquired images are shown in Fig. 2. In addition to hue variations, each
patch comes with four different saturation levels. Spatial regions or pixels having
the same hue and saturation level are defined as uniform region; further on, this



Spectral Impulse Noise Model for Spectral Image Processing 175

(a) 21080: Patch

(c) 45120: Patch (d) 45120: Var.

Fig. 3. Cutouts of two pigment patches, showing variations in regions that are never-
theless defined as uniform regions

21080:: Ave. distance per channel to ave. spectrum 45120:: Ave. distance per channel to ave. spectrum
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Fig. 4. Average spectral variations in original image computed channel-by-channel to
the average spectrum for each pigment shade

uniform region will be referred to as pigment shade. Using the pigment patches
we are able to obtain the dataset of impulse signals using the model explained in
Section 2.2, as the patches provide us with uniform regions. Two impulse noise
spectra NF and NV} are therefore defined for each uniform region R*. With this
noise generation, we are able to construct both ground truth and noisy target
images required by full-reference image quality assessment in order to estimate
the performance of spectral image processing algorithms.

3.1 Spectral Variations in Uniform Regions

By saying that each of the pigment shades is a uniform region, we are making
a hypothesis that these regions are not textured. And consequently, spectral
variations originating from physical composition of the materials, e.g. surface
thickness and pigment density variations, are unwanted. The aforementioned
variations can be observed in more details for several pigment patches in Fig. 3.

To investigate the distribution of spectral variations that exist in all pigment
patches, we compute an average spectrum for each pigment shade giving four
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45120 SH1: Average spectrum 45120 SH2: Average spectrum
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Fig.5. Average spectrum for each shade in pigment patches 45120, and how spectra
within these shades vary around the average spectrum

average spectra for each pigment patch; pixels located around edges are not
taken into account. Spectral variations for all pixels in the image are then com-
puted relative to its corresponding average spectrum, in terms of average and
standard deviation of channel-by-channel difference. The average difference of
several pigment patches to its respective average spectrum is provided in Fig. 4.
By the two examples, we can observe that there is a lack of correlation between
the magnitude of spectral variations and the spectral structures which corre-
spond to hue and saturation differences. In Fig. 5 we can observe the magnitude
of unwanted spectral variations to average spectrum of pigment 45120.

From this observation it can be seen that the magnitude of spectral variations
cannot be predicted easily. It is certainly not independent from the choice of
color or pigment and does not correlate to saturation; not to mention many other
factors that have not been taken into account. Finally this observation lead us to
take another hypothesis, i.e. each pigment spectrum has its particular unwanted
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Original Salt-and-pepper Spectral impulse

Fig. 6. Color images of several pigment patches acquired using a hyperspectral scanner
and its corresponding artificial noisy images that are constructed using two impulse
noise models with 7" = 0.15, i.e. salt-and-pepper and spectral impulse noise model.

spectral variations that are different from other spectra. Nevertheless, we can
consider that between two spectra, the spectral variations can be interpolated
knowing the nature of continuous world.

3.2 Artificially Noisy Pigment Patches

To obtain noisy spectral images required to evaluate the performance of spectral
image processing algorithms, those that are with known properties and similar
to real spectral images, the dataset of spectral impulse noise is used. We consider
the proposed model described in Subsection 2.2 to be generic, although to this
point it has only been investigated for water-based pigment that are applied to
its substrate by screen-printing.

In Fig. 6 we can see the acquired images of several pigment patches and also
its corresponding artificial target images. The target images were constructed
using two models, i.e. salt-and-pepper and the proposed spectral impulse noise
model, with probability threshold 7" = 0.15. Distortion measures relative to
ground truth images are given for each pigment patch in Table 2. This table
allows us to compare the distortion level of artificial target images constructed
using the two different models. Salt-and-pepper model needs probability thresh-
old T' < 0.05 to have a similar distortion level to that of the acquired images.
However, with such low amount of variations in a target image we will be unable
to evaluate filtering performance, as the algorithm will perform the task per-
fectly. On the other hand with spectral impulse noise model, we can achieve a
similar distortion level to that of the original image, i.e. with 7' = [0.15,0.2].
Eventually by comparing the artificial target to acquired images, we can say
that spectral impulse noise model is more realistic than salt-and-pepper.
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Table 2. Distortion measures relative to ground truth images. The measures are given
for originally acquired images and artificial target images constructed using salt-and-
pepper and spectral impulse noise model. Values are given in unit of 1072,

Pigment . . Salt & pepper Spectral impulse
patch Original T=005 [T=005 01] 015 ] 02 | 025
Yellow, 21040 7.884 25.814 3.279] 6.212| 8.885(11.349(13.441
Orange, 21080 7.776 27.076 2.356| 4.405| 6.338| 8.046| 9.627
Red, 21110 7.875 24.936 2.514| 4.799| 6.877| 8.759(10.398
Blue, 44450 10.868 21.383 3.983| 7.553| 10.871|13.766(16.538
Green, 44500 7.565 23.917 2.333| 4.467| 6.418| 8.144| 9.745
Purple, 45120 8.789 21.615 2.810| 5.348| 7.645| 9.701(11.667
Original Impulse T=0.05 Impulse T=0.15

Fig. 7. Two cutouts taken from hyperspectral images of two different paintings. Orig-
inal images are provided in the leftmost, and followed by the versions corrupted by
impulse signals generated using spectral impulse noise model. The probability thresh-
old are T' = 0.05,0.15.

3.3 More Examples

The use of the obtained dataset of spectral impulse noise is not limited to images
containing uniform regions. In Fig. 7 we show several cutouts taken from hyper-
spectral images of different paintings. In the case of such images, a pixel that
is corrupted by spectral impulse noise will be corrupted by an impulse signal
that is taken from the dataset and has the most similarity to the original signal.
However, as the number of colors are reduced to patches that are available in our
database, a weak density is obtained in spectral space and consequently some
color noise are not processed at a sufficient realistic level. Such case is illustrated
in the green images shown in Fig. 7.

4 Application for Filtering Assessment

The main objective of this work on spectral noise model construction is to com-
pare the performance of spectral image processing tools under controlled set-
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Table 3. Distortion measure of several images before and after filtering process using
Vector Median Filter embedding ECS distance. The corrupting impulse signals were
generated with spectral impulse noise model and 7' = 0.15.

Pigment Original Salt & pepper | Spectral impulse
patch Before | After | Before | After |Before After
Yellow, 21040 7.884| 6.786| 69.306 2.427| 8.885 0.919
Orange, 21080 7.776| 6.611] 71.901 2.590| 6.338 0.709
Red, 21110 7.875| 7.028| 72.849 1.524| 6.877 0.509
Blue, 44450 10.868| 7.835| 58.291 2.582| 10.871 0.522
Green, 44500 7.565| 6.271] 62.197 1.205 6.418 0.488
Purple, 45120 8.789| 6.657| 62.428 2.251|  7.645 0.621

tings. Therefore in this section, we provide an application of the noise model
construction on the assessment of spectral filtering performance. Vector Median
Filter (VMF) by Astola et al. [3] is a median filtering algorithm suitable for mul-
tivariate data; its performance in the removal of impulse noise has been proven
theoretically and numerically. We will use the artificial target images that have
been constructed in Section 3.2 as filtering input; the ground truth is averaged
image of the corresponding pigment patch.

In Table 3 distortion measures of several images before and after VMF are
provided. For the original spectral images, VMF does not result in large mod-
ifications. VMF is effective for removing uniformly distributed impulse signals,
while the distribution of variations in these images is certainly not uniform, for
example see Fig. 3. Thus, VMF is not able to modify further the initial content
of the images. When target images are corrupted with salt-and-pepper noise
(T = 0.15), the initial distortion values are increased with ratio of ~ 10. Nev-
ertheless, the filtering impact allows to obtain images with reduced distortions
compared to their corresponding original images, i.e. ratio of =~ 20. In the case
of the proposed spectral impulse noise model, the initial distortion measure is
similar from the original real spectral images and the filtering process is able to
reduce it with ratio of &~ 9. Finally, the proposed spectral impulse noise model
modifies the initial local statistics of the images, i.e. 30% of pixels in a local
neighborhood are corrupted when T = 0.15, and thus simplifies the filtering
process of the images as shown by the corresponding distortion measures for the
original/ corrupted and filtered images.

5 Conclusion

Having a realistic model of spectral noise is crucial in order to assess the perfor-
mance of spectral image processing tools. We have shown that theoretical models
without inter-channel correlations are not suitable to model spectral noise, as
theoretical models provide us with unrealistic aspect and behavior of spectral
data. In this work we proposed a suitable spectral noise model using spectral
database of uniform color/ pigment patches, which answers the challenge of iden-
tifying spectral noise model. This noise construction allows to produce realistic
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model that is suitable for the assessment of spectral filtering algorithms perfor-
mances. The limitation of this model is due to the reduced number of uniform
color patches that are available in our database. However, by adding more color
patches into the database such limit can be overcome and will eventually enable
us to produce more complex spectral noise.

Acknowledgments. Authors would like to thank Norsk Elektro Optikk AS (NEO) for
providing the hyperspectral scanner HySpex and the hyperspectral images of uniform
pigment patches.
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Abstract. Single-sensor colour imaging systems mostly employ a colour
filter array (CFA). This enables the acquisition of a colour image by a
single sensor at one exposure at the cost of reduced spatial resolution.
The idea of CFA fit itself well with multispectral purposes by incorpo-
rating more than three types of filters into the array which results in
multispectral filter array (MSFA). In comparison with a CFA, an MSFA
trades spatial resolution for spectral resolution. A simulation was per-
formed to evaluate the colorimetric performance of such CFA/MSFA
imaging systems and investigate the trade-off between spatial resolu-
tion and spectral resolution by comparing CFA and MSFA systems util-
ising various filter characteristics and demosaicking methods including
intra- and inter-channel bilinear interpolation as well as discrete wavelet
transformed based techniques. In general, 4-band and 8-band MSFAs
provide better or comparable performance than the CFA setup in terms
of CIEDE2000 and S-CIELAB colour difference. This indicates that
MSFA would be favourable for colorimetric purposes.

Keywords: Colorimetric performance - Colour filter array - Multispec-
tral imaging - Single-sensor

1 Introduction

Single-sensor trichromatic imaging systems mostly employ a colour filter array
(CFA) in order to sense a portion of the incoming spectra selectively on a pixel-
by-pixel basis. An example of CFA that has achieved commercially notable suc-
cess is known as Bayer filter mosaic consisting of three types of filters, i.e., red,
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blue and green [2], as shown in Figure 1. Thanks to the spatial and spectral inter-
pixel correlation an image may possess, the lost information about the incident
stimuli can be estimated through demosaicking. Demosaicking is an operation
in the image processing chain carried out on the mosaicked image read from the
sensor. Consequently each pixel will comprise three components, thereby recov-
ering a full colour image. The success gained by the CFA based single-sensor
colour imaging systems has awakened particular interest from the academia and
the industries in generalise this concept to the multispectral domain by inte-
grating more than three types of filters into one filter array, which results in
the multispectral filter array (MSFA). Two instances of MSFAs can be seen in
Figure 2 and 3.

Fig. 1. Bayer CFA Fig. 2. 4-band MSFA Fig. 3. 8-band MSFA

In general, the development of a MSFA based imaging system involves design
of filter transmittances, spatial arrangement of mosaic patterns paired with an
associated demosaicking algorithm, and a regression process to recover colori-
metric or spectral information.

In recent years, sustained research effort went into designing multispectral
filter array (MSFA) [15] and developing associated demosaicking algorithms [1,3,
14,16,17,21,22]. Also widely explored is the influence of filter characteristics on
colour/spectrum reproduction [9,19,23,24]. Nevertheless, to our best knowledge,
little is known about how filter design and demosaicking algorithms affect the
colorimetric performance of a CFA and particularly MSFA image acquisition
system.

In comparison with CFAs, MSFAs populate higher number of channels, thus
reducing the number of pixels assigned to a certain channel for a given sensor.
Obviously this lowers spatial resolution, however MSFA may offer higher spectral
resolution. While the former effect generally lowers the colorimetric performance
of the system, the latter should improve the accuracy of colour reproduction. It is
therefore of particular interest to evaluate the colorimetric performance of such
MSFA imaging systems and investigate the trade-off between spatial resolution
and spectral resolution by comparing CFA and MSFA systems utilising various
filter characteristics and demosaicking methods.

The following sections of the paper are organised as follows. We first present
the methods used including the simulated framework illustrated in Section 2.1,
the filter design strategy described in Section 2.2, the mosaic generation demon-
strated in Section 2.3, the demosaicking algorithms introduced in Section 2.4,
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the colour and spectral reflectance estimation method for device calibration pre-
sented in Section 2.5, the evaluation means explained in Section 2.6 and the
experimental conditions listed in Section 2.7. Results are shown in Section 3
that leads to reasonable conclusions drawn in Section 4.

2 Methods

2.1 Simulated Framework

A simulated workflow was constructed so as to conduct the research due to
practical difficulties in physical implementation of the MSFAs [12]. As shown in
Figure 4, the framework consists of a chain of processing that starts from the
hyperspectral images used as virtual optical images. A MSFA mounted sensor is
merely a combination of the filter array and the image sensor, and the mosaicked
optical image is therefore formed in between. As a result, a hyperspectral image
can be considered as a spectrally sampled optical image which will then be
spectrally filtered and spatially interleaved by the filter array. In this manner,
the process of mosaicking is simulated.

CIE
Colorimetry

Mosaicking Sensing
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= =
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reproduction
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Fig. 4. The experimental framework

Next, an ideal image sensor populating the same number of pixels as the
images integrates the incident power at each pixel over the spectrum. Quantum
efficiency of the sensor is integrated with the spectral transmittance of filters, so
that filter characteristics referred to in this work represent sensor sensitivities.
And neither optical crosstalk nor optical/electronic noise is considered in this
work.

Mosaic image, namely the sensor output, is actually a digital representation
of a spatially or spectrally subsampled and interleaved trichromatic or multispec-
tral image. Therefore, it needs to be interpolated spatially and/or spectrally, in
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order to recover the information lost in the mosaicking process. In other words,
interpolation yields a colour or multispectral image of full spatial resolution.

At this stage, the recovered image is not colorimetrically meaningful as the
digital counts have not been assigned any physical meaning. This is addressed by
device colour calibration. It first models the device by associating stimuli with
known colorimetric characteristics and the corresponding sensor response, and
later estimates original colorimetric information of the unknown stimuli from
the corresponding sensor response.

CIE tristimulus values are computed before colour difference between the
original and reproduced hyperspectral images is calculated.

2.2 Filter Design in MSFA Systems

Among the derivatives of Bayer mosaic, some possess complementary colour fil-
ters in comparison to the primary colour filters utilised in the original patent [2].

Literature presents distinct results. It is obvious that complementary colour
filters intrinsically bear wider pass-band than their primary counterparts, and it
is widely accepted that the former gives rise to better colour reproduction and
signal-to-noise ratio in sufficient lighting conditions, whereas the latter offers
higher sensitivity as well as resolution [18,19]. Our results, nevertheless, show
that appropriate pass-bands outperforms some narrower ones [23,24]. In addi-
tion, our previous research on multispectral demosaicking poses the question of
filter design in relation to the inter-band correlation [21,22].

10nm bandpass 40nm bandpass 10nm bandreject
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Fig. 5. Transmittances of a 4-band filter set

An instance of 4-band filter set used in this research is depicted in Figure 5.
Following the aforementioned findings, we are interested in narrowband and
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broadband bandpass filters as well as corresponding inverted ones such as band-
stop filters. The FWHM (Full Width at Half Maximum) of passband and stop-
band have been set to 10 nm and 40 nm respectively. In practice, a passband of
10 nm simulates very narrow bandpass filters like LCTF (Liquid Crystal Tunable
Filter), a stopband of 10 nm mimics notch filters relying on destructive inter-
ference. Similarly, a passband and a stopband of 40 nm resemble the spectral
transmittances of thin-film filters.

In addition to the filters mentioned above, we introduced two more types.
One is based on the principle that the transmittances of filters should sample
the spectrum evenly with their FWHM. The other is in fact the result produced
by a filter selection algorithm [7] that chooses a given number of optimal(or sub-
optimal) filters from a set of available candidates that are physically practicable,
on the assumption that high spectral performance is yielded by the “brightest”
filter that transmits the most light combined with other filters which are orthog-
onal to each other in a vector space. Here we employ a set of transmittance data
measured from Wratten filters produced by Kodak, as shown in Figure 6.

< o
o)) ®

o
'S

transmittance

0.2

wavelength (nm)

Fig. 6. Transmittances of a set of Wratten filters

2.3 Mosaic Pattern Generation

Filter arrays experimented with in this project were designed with the help of a
generic binary tree based generation method of MSFA spatial arrangement start-
ing from a chequerboard pattern introduced by Miao et al. [15]. By manipulating
the pattern through a combination of decomposition and subsampling steps, the
method presented may generate MSFAs that satisfy varied design requirements
proposed by the authors including probability of appearance, spectral consis-
tency and uniform distribution. It is shown, through case studies, that most of
the CFAs currently used by the industry can be derived as special cases.
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2.4 MSFA Demosaicking

A large number of CFA demosaicking algorithms have been proposed over the
decades [13]. In this work, we used intra-channel bilinear interpolation, chan-
nel difference bilinear interpolation [11] and discrete wavelet transform (DWT)
based demosaicking [5].

Bilinear interpolation makes use of merely intra-pixel correlation and esti-
mates unknown colour components by exploiting the spatial correlation between
sampled colours in a certain spectral plane, and function plane by plane.

Channel difference interpolation brings inter-channel correlation into play
and interpolates the difference between one colour plane and another [11] on the
assumption that hue changes smoothly in images.

DWT transforms an image into various frequency bands, and natural images
often possess rather similar high-frequency information among these bands,
which provides yet another solution to demosaicking problem. This algorithm
has been extended to a 4-band MSFA as reported in the literature [22].

2.5 Device Calibration

Colour calibration is an inverse problem aimed at an estimation of the tristim-
ulus values of the stimuli from the corresponding measurements obtained from
sensors. In concrete terms, a colour acquisition process can be described in a
linear form as

R=0QS (1)

where R refers to the sensor responses, () corresponds to system responsivities
and S represents the incoming stimuli.

Colour calibration aims at an estimation of S from R. Equation 1 is solvable
if @ is known and invertible, however it is not true in the case of colorimet-
ric calibration. Nevertheless it can be estimated by means of training where a
collection of training stimuli S; and corresponding responses R; are utilised to
derive an approximation of Q~!. In this work, we employed the method of linear
least squares [8] which attempts to solve (1) by means of pseudoinverse which
leads to (2)

S = S,RfR (2)
where S’ is an estimation of S and Rf is a right pseudoinverse of R; : R:‘ =
R (R.RY)™1.

2.6 Performance Evaluation

An evaluation of the colorimetric performance of CFA and MSFA based imaging
systems can be solved by means of colour difference formula. However, consid-
ering that the targets are digital images rather than uniform colour patches, a
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metric incorporating some low-level HVS features, such as S-CIELAB, might be
suitable as well and may provide more information.

CIEDE2000 is the latest colour difference formula developed and recom-
mended by the CIE [4]. It further improves perceptual uniformity in comparison
with the CIE94 formula by introducing a few revised compensation terms for
lightness, chroma and hue respectively. In addition, there are three correspond-
ing parameters that are usually set to 1:1:1 and can be adjusted according to
specific applications. For instance, CIE recommended 2:1:1 for textile industry.
In this work, we used 2:2:1 to evaluate image colour difference.

The S-CIELAB metric extends the CIELAB Delta E metric to colour images
by adding a spatial pre-processing step to the standard CIE AFE,«,« metric to
account for the spatial-colour sensitivity of the human eye [26]. It measures how
accurate the reproduction of a colour is to the original when viewed by a human
observer.

2.7 Experimental Conditions

The experiments were conducted in such conditions as follows. Spectral range
covers the spectrum between 400 nm and 700 nm with 10 nm interval. CIE D65
was used as the illuminant. Among the 48 hyperspectral images used as virtual
scenes, 16 are from Foster database [6] and 32 are from CAVE database [25].
Three types of MSFA were considered, namely 3-band CFA, 4-band and 8-band.
For the least-square regression, 170 spectral reflectances of natural objects [20]
and the corresponding CIE XYZ tristimulus values were utilised as the train-
ing targets. Tristimulus values were calculated with colour-matching functions
for the CIE 1931 standard colorimetric observer [10]. For the calculation of S-
CIELAB colour difference, the viewing distance was set to 60 cm, and the reso-
lution was set to 95.78 dpi, so as to mimic a 23-inch LCD monitor of 1920 x 1080
pixels and an aspect ratio of 16:9.

3 Results and Discussion

Results are presented in Figure 7 and 8. It is of great moment to realise that
the colour difference shown here reflect the overall performance of the system
consisting of filter characteristics, spatial arrangements, demosaicking methods
as well as colour estimation techniques. However, a comparative analysis of the
results reveal some clues.

From the results we can observe that increased number of bands in general
offer lower or comparable colour difference especially when paired with 10 nm
and 40 nm bandpass filters and a selected range of Wratten filters. In partic-
ular, the 40 nm bandpass filters result in the lowest colour difference among
all of the methods and configurations, whereas the 10 nm bandstop filters yield
significantly larger errors.

In general, the DWT based demosaicking outperforms the other two where
the widths of passband are significantly broader, whereas bilinear interpolation
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carried out on channel differences does not perform satisfactorily. This is also
related to insufficient high-frequency components in the image databases [22],
as inter-channel demosaicking should benefit from inter-channel correlation at
high frequencies and broader passbands may boost this correlation.

In most cases S-CIELAB results coincide with CIE DE2000 ones, although
the former tends to exaggerate the discrepancy of the results between the CFA
and the MSFAs.

4 Conclusion

A simulation was performed to investigate the colorimetric performance of MSFA
based image acquisition systems. In total, 48 virtual scenes were captured by
the simulated camera for 3-band, 4-band and 8-band MSFAs respectively, each
paired with 6 different types of filter characteristics and 3 demosaicking algo-
rithms. Results were all transformed to CIE XYZ tristimulus values and evalu-
ated with CIEDE2000 (2:2:1) and S-CIELAB colour difference. CIEDE2000 and
S-CIELAB results coincide in most cases. In general, the 4-band MSFA provides
better or comparable performance in comparison with the 3-band setup except
the case of 10 nm bandreject and normal bandpass filters. Similarly the 8-band
MSFA delivers higher colour accuracy expect the case of 10 nm and 40 nm
bandreject filters. Therefore MSFA is generaly helpful for an application where
colorimetric reproduction is required.

Moreover, it is obvious to see that spectral characteristics of a filter set not
only make a direct impact on the colour reconstruction, but also influence the
spectral correlation of the observed image on which some demosaicking methods
depend.

Certainly the validity of the results obtained in this work is limited by the
realisticness of the simulation. In a real system, the presence of various types of
noise will probably impact the results. However, this laid a foundation for the
design of a new MSFA sensor planned in 2015 [12].
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Abstract. This study describes a non-invasive analytical imaging scanning tech-
nique utilizing multispectral images to study discoloration and degradation of
pigments used in traditional Japanese artworks. The images have high spatial reso-
Iution which can achieve mesoscopic resolution (typically 0.lmm-10mm). Since
the images are being scanned line by line instead of being recorded frame by frame,
this enables accurate color and spectral recording of the material response from vis-
ible and near infrared irradiation. The multispectral images were used to recon-
struct color information and spectral reflectance. The mathematical model is based
on the Moore-Penrose pseuodoinverse. Using mesoscopically resolvable images, it
is possible to measure the spectral reflectance of pigments ranging from pm-mm
ROI unlike conventional spectrometers that requires big sampling area. The signi-
ficance of mesoscopically-resolved analysis is demonstrated by investigating the
discoloration and degradation of natural and artificial Japanese pigments. The pig-
ments were heated in air at 300°C and sampled every 10 minutes. It was observed
that the pigments discolored at seemingly random clusters. The reconstruction of
the spectral reflectance at different sizes of ROI reveals strong correlation with
background reflection. The size of the initial discoloration sites makes it impossible
to measure using conventional spectrometers. It was observed that by using sub-
mm ROI, it is possible to observe reflection and absorption patterns in the pigments
which does not register with mm-scale ROI. The results have shown that mesos-
copically resolvable multispectral images can be used effectively to study degrada-
tion and discoloration in pigments.

Keywords: Analytical imaging - Spectral reflectance - Mesoscopic - Multispectral -
Japanese pigments

1 Introduction

Noninvasive and nondestructive analysis is important in the field of cultural heritage
[1-3]. This is particularly significant since they are irreplaceable treasures which are
in the making over centuries and even millennia. As a result, a lot of effort has been
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given to the preservation, conservation and investigation of these objects. However,
there is always conflict between conservators and investigators. On the one hand,
conservators wants to preserve the integrity of the object by minimizing its exposure
to damaging conditions such as prolonged exposure to uncontrolled humidity and
temperature as well as unsafe ambient light. This meant that a lot of these precious
artifacts are locked in a safe place never seeing the light of day. On the other hand,
investigators could become overzealous in documenting and acquiring as much in-
formation as possible without so much regard on the integrity of the object. This is
justified by saying that deterioration is inevitable no matter how careful the objects
are stored. Objects are still deteriorating even if it is kept in a controlled storage and
not exposed to any harmful environment. Therefore this could warrant the argument
for recording the state of the object before it is completely destroyed. Both arguments
have merits but in the end, these cultural treasures belong to the world; not to the
museum that is keeping them or the researchers that study them. Therefore there is
need for an accurate but safe technique for investigating cultural treasures.

The most common analytical technique used for investigating cultural heritage is
either based on X-ray or infrared radiation [4-13]. Some of the common techniques in
art analysis are synchrotron radiation X-ray fluorescence (XRF) [4-7], X-ray absorp-
tion fine structure (XAFS) [7], X-ray absorption near edge structure (XANES) [8],
x-ray diffraction (XRD) [9-10], particle induced x-ray emission (PIXE) [11], neutron
diffraction [10], laser induced breakdown spectroscopy (LIBS) [12], Fourier trans-
form infrared spectroscopy (FTIR) [8], Raman spectroscopy [13] and many more
others. Visible light radiation is also used but mostly for qualitative analysis and visu-
alization. However, like other forms of electromagnetic radiation, the interaction of
visible light with matter can be quantified. We refer to this as analytical imaging.

Analytical imaging refers to the technique which uses image processing, data min-
ing and pattern recognition to extract useful and relevant information about different
properties of a material. This is based on the fact that a material subjected to an inci-
dent electromagnetic radiation behaves in a predictable and quantifiable way. The
characteristic material response depends on the energy and frequency of the radiation.
In the past imaging only refers to the visible region but due to the developments in
optical sensors, images can be formed with almost any electromagnetic spectrum. In
this study, focus was given to the visible to near infrared range of the electromagnetic
spectrum. This radiation spectrum provides useful information about pigment charac-
teristics which are not readily observable in other spectrum [14]. The material re-
sponse is quantified based on its spectral properties, colorimetric information and
spatial features. It is believed that the most important aspect of an imaging system is
the acquisition of the images. Especially, in art investigation, it is vital to have not
only an accurate digital archive of the artwork but as well as being able to use it for
analysis. Without an image that has reliable spectral, spatial and color information, it
would remain to be usable only as a visual tool. Therefore there is a great need for the
development and implementation of a nondestructive and noninvasive means of
analytical imaging which is capable of acquiring uninterpolated high resolution im-
ages able to accommodate small- to large-sized objects. The images should have high
color reproducibility, reliable spectral information and accurate spatial resolution.
This is the reason why the analyses were performed multispectrally with mesoscopic
resolutions.
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The use of multispectral system for material analysis has been investigated in the
past [15-18]; the advances in CMOS and CCD technologies have enabled the produc-
tion of high quality images with good color reproduction; finally, spectrometer tech-
nologies are making strides in producing devices with high spectral resolutions. These
three aspects are important in analytical imaging. Although these technologies have
been around for quite some time, there are still limitations. As mentioned previously;
color reproducibility, spectral accuracy and spatial resolution is important. With the
previous multispectral imaging systems, they have high spectral accuracy but lack in
good color reproduction and spatial resolution. The advanced imaging devices have
high color fidelity but lacks readily usable spectral information. Conventional spec-
trometers could only produce accurate spectral data. In addition, there is a limitation
in the spot size or the region of interest (ROI). Normally, the ROI is in the range of
few millimeters to centimeters. This could affect the accuracy of the spectral data
when analyzing sub-millimeter spots. This is why a system capable of extracting color
and spectral information with mesoscopic resolution is important. Mesoscopic
(~0.1mm-10mm) dimension refers to the resolution between macroscopic (>1cm) and
microscopic (<100um) scale.

Mesoscopic imaging has been widely used biology but is still considered in its in-
fancy compared to microscopic and macroscopic techniques [19]. In cultural heritage
investigation, it is almost unheard of. However, there are parallels that can be drawn
between biological imaging and cultural heritage imaging. In biological imaging,
there are living organisms that remain largely inaccessible by current optical imaging
methods due to the limitation on depth resolution that can be achieved beyond several
microns [20]. Similarly, pigment analysis in cultural heritage requires sub-mm
resolution since discoloration and degradation occur on random spots. Without the
capability of resolving the images mesoscopically, it is very easy to miss important
information. To address this concern, an analytical imaging technique using mesos-
copically-resolved images was used to analyze pigment discoloration and degradation
patterns on selected Japanese mineral pigments.

The pigments were artificially degraded by heating at high temperatures (~300°C)
and observed at short time lapses to investigate the structural, colorimetric and spec-
tral changes in situ and noninvasively. The influence of the ROI size on the spectral
measurement was discussed as well as its dependence on background reflection.
Based on the results, there is a strong argument that high resolution multispectral
imaging could be a very useful tool for cultural heritage investigations.

2 Methods and Experiments

2.1  Multispectral Imaging and Spectral Reflectance Reconstruction

The multispectral images were captured with a monochromatic CMOS line-camera
using spectral-cutting and band-pass filters. A total of eight images were taken which
contain spectral information from 380-850 nm. The images were used to reconstruct
spectral data cubes with a 5-nm resolution. The spectral data were then used to recon-
struct spectral reflectance and colorimetric information. Referring to the physical model
shown in Fig. 1, it may be inferred that the sensor response of an imaging device
when an object is irradiated with visible and near infrared radiation is proportional to its
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spectral reflectance. The sensor response, characterized by the image pixels, can be
mathematically expressed as a function of the object’s spectral reflectance, camera sen-
sitivity, light source spectral radiance and system error. This is shown in Eq.1:

p= | cOLrddA+e )

pisan M X 1 sensor response vector from the M channel sensor, C(A) isan M X 1
vector of spectral sensitivity of the sensor, L(A) is the spectral radiance of the illumi-
nation, r(A) is the spectral reflectance of the object, and e is an M X 1 additive noise
vector. For mathematical convenience, Eq.1 can also be expressed in vector form as
follows:

p=CLr+e (2)

where C is an M X N matrix of spectral sensitivity of the sensor, L is an N X N
diagonal matrix of spectral radiance of the light source, and r is an N X 1 spectral
reflectance vector of the target. In this study, an indirect method of solving the vector
relationship between the sensor response and spectral reflectance is implemented. The
technique is based on Moore-Penrose pseudoinverse. The vector relationship is solved
without the prior knowledge of the spectral characteristics of the system by using a
learning sample. The learning sample can be used to estimate a conversion matrix to
approximate the camera and light source spectral characteristics without having to
worry about systemic changes. This makes the method device independent.

Since the samples characterized in this study are Japanese pigments, a specially de-
signed and selected palette of Japanese organic and inorganic mineral pigments was
used as the learning sample. The learning sample is composed of 173 pigments. They
represent a wide variety of pigments including natural and artificial; organic and inor-
ganic; ancient and modern; and a broad spectrum of colors with distinct spectral
sensitivities at the infrared region. These learning samples are used to estimate the
spectral reflectance. Going back to Eq. 2, it can be rewritten as,

p=Hr ©

where H represents the camera and light source spectral characteristics and e is omit-
ted for simplicity. H in this case represents an M x N matrix with M being the number
of spectral channels and N as the number of spectral interval covering the desired
spectral range. The pseudoinverse model is a modification of the Wiener estimation
by regression analysis [14]. In this model, a matrix W is derived by minimizing
||R —WP" from a known spectral reflectance of a learning sample, R, and the corres-

ponding pixel values, P, captured at a certain spectral band. The matrix W is given by
Eq.4:

W =RP* =RP'(PP")"' “)
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Where P represents the pseudoinverse matrix of P. By multiplying the derived
matrix W to the pixel value of the target image, p, the spectral reflectance r can be
estimated using Eq.5:

r = Wp ©)

The size of the matrices used in Eq.4 and Eq.5 is a function of the number of learn-
ing sample k, number of multispectral bands M and number of spectral reflectances N.
In this study, the value of M and N depends on the spectral range and number of fil-
ters used. The number of filters used is M=8 while N is either 95 for the 5-nm interval
spectral reconstruction between 380-850 nm. The images were taken at 600 dpi (~42
pm/pixel). Since the images have high spatial and spectral resolution, the ROI for
spectral reflectance reconstruction is reliable up to pixel level. This enables spectral
measurement at spatial resolutions which are not possible with conventional spectro-
meters. The effect of the ROI size is investigated by reconstructing the spectral reflec-
tance of the discolored Japanese pigments.

2.2  Pigment Discoloration and Characterization

In this study, a method for investigating pigment discoloration and degradation me-
soscopically is described. This was achieved by taking an accurate recording of disco-
loration as it happens in sifu using high resolution multispectral imaging and spectral
reflectance reconstruction. There are two groups of pigments selected as test cases.
All pigments are in powder form. The first group is composed of copper-based pig-
ments such as malachite and azurite. The second group includes iron-based pigments
specifically hematite and ochre. Whenever possible, both natural and artificial pig-
ments were used. All but ochre has an artificial pigment corresponding to the natural
pigment. A total of seven pigments were subjected to extreme temperature.

The pigments were heated at 300°C in air for 36 hours. Sampling was done for the
first hour of heating every 10 minutes. At this interval, the pigments were taken out of the
heating chamber, scanned multispectrally then returned to the chamber for additional
heating. Extra care was observed when taking the pigments in and out of the chamber to
minimize the disturbance. This was done to preserve the initial discoloration sites which
occur at random. After one hour, the sampling was halted until the pigments underwent a
36-hour heating at extreme temperature. At this point, the pigments would have had
enough time to decompose completely. The recorded multispectral images where then
used for spectral reflectance measurement with pin-point accuracy.

The analytical imaging results provides a lot of useful information on the degrada-
tion mechanism of the pigments. Through the analysis performed in this study, it was
possible to observe degradation and discoloration associated with structural changes,
reflectance and absorbance patterns.

3 Results and Discussion

Spectral reflectance is the plot of the reflectance of a material as a function of wave-
length. In optics and photometry, reflectance is the fraction of the incident radiation
that is reflected by a surface. It is a directional property of materials. Similar to other
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properties which can be characterized by advanced analytical techniques (e.g. X-ray
analysis), the response from visible light and near infrared irradiation is characteristic
of the material and can provide useful insight on its properties. In this study, spectral
reflectance measurements were performed on discolored and degraded Japanese pig-
ments by analytical imaging. This was achieved by acquiring high-resolution multis-
pectral images of the pigments using a flat-bed scanner. The method of reconstructing
spectral and colorimetric information is described in the pervious section. The scan-
ning resolution was 42pum/pixel. Since the images were taken at high resolution it has
good spatial resolution. This enables spectral reflectance measurement at mesoscopic
levels. What is significant about this is that conventional spectrometers require a big
sampling area, normally about few millimeters. This ROI is acceptable for investigat-
ing bulk samples with homogeneous spectral distribution but this is not usually the
case. Some of these spectrometers may also require contact with the sample to minim-
ize ambient light interference. This can become problematic when investigating cul-
tural heritage which requires non-invasive analysis.

ROI is not only an issue connected to the sampling area but it is also related to the
amount of reflection from the background. For thick and homogenous sample this is
not a problem since the re-reflection is less likely but for thin samples this is a serious
concern. The background reflection is proportional to the size of the ROI. Since the
usual method takes the average of big sampling area, a lot of background re-reflection
is also recorded. This is demonstrated by Fig. 1. In this figure, the spectral reflectance
of the pigment were measured for eight different square ROI with 1pxl, 2pxls, 4pxls,
8pxls, 16pxls, 32pxls, 64pxls and 128pxls corresponding to dimensions depicted in
the figure. It can be seen from the figure that the reflectance is not homogeneous
where white spots on the images corresponding to specular reflection are visible. The
figure shows the strong correlation of background reflection to ROI.

The strong background reflection from big ROI spectral reflectance measurement
is acceptable in some cases as long as this is carefully observed. Since measurements
are usually done using a fixed ROI, it is possible to subtract the background effective-
ly. However the issue with big ROI is not only because of this but mainly because of
its limitation in size. Big ROl is not a problem if the area of interest is bigger than the
sampling area. However, there are cases that it is the other way around. For example,
in the discoloration and degradation experiment performed in this study, it was ob-
served that pigment discoloration initiates at seemingly random spots. Although in
theory these events are not really random. This initiation at certain spots may be ana-
logous to how mechanical defect, like cracks propagate. Cracks are initiated and
propagate from regions of high stress concentration. Similarly, the pigment’s initial
discoloration spots are region with high chemical reaction sites. These sites require
less time and push for chemical reaction to begin. Since the pigments were being
heated at a fast rate, the pigment particles will degrade at different rates. This pheno-
menon is depicted by Fig.2. This behavior may also be attributed to the form of the
pigments used as samples. The pigments were prepared as powders. Since there was
no binding media holding the particles together, the surface to volume ratio is magni-
fied significantly at the micron or submicron level as compared to bulk samples [21].
This then raises a question whether studying the discoloration and degradation in
powder form is a good idea since pigments are applied with a binding media when
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Fig. 1. Pictogram of the sampling area for measurement with the corresponding spectral reflec-
tance. The graph shows the effect of ROI to the background re-reflection.
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Fig. 2. Schematic diagram depicting how pigments degrade and discolor. The sites seem to
appear at random but are actually associated to the surface energies of the pigments.

used in cultural heritage pieces. Although this is true, the mechanism for pigment
degradation would still be the same. It will begin at favorable spots and not happen
instantaneously through out the entire object. The binding media would affect the rate
of degradation since it holds agglomerates of powder which could behave as bulk
samples instead of particles. The discoloration and degradation of painted pigments
were reported elsewhere [3]. In this study, the focus was given to how discoloration
sites are initiated and the scale at which it happens.

The size of the initial discoloration site is in order of sub-mm to few millimeters.
Measurement of the spectral reflectance can be a problem. This is where a mesoscop-
ic spectral reflectance measurement is advantageous. Since these sites are very small,
they are very easy to miss and not very visible with the naked eye. The problem with
conventional spectral measurement is that it normally does not have a high-resolution
display of where the measurements are being taken. This entails that the measure-
ments were taken as-detected or by blind-sampling. Using the high-resolution record-
ing of the pigments sample, it is very easy to pan through the entire surface and zoom
in to specific area with great details. As a test case, Fig.3 shows the discoloration of
natural azurite taken at 10-minute interval. It was observed (circled in red) that disco-
loration site started to appear after 10minutes of exposure. After 20 minutes, more
sites started to appear and continued to appear until the pigments were completely
transformed after 36 hours of heating. A similar observation was seen for natural
malachite pigments. However, in the case of artificial azurite and malachite pigments,
there were no visible signs of degradation. This would be discussed in detail in the
succeeding section.



High-Resolution Multispectral Scanning for Mesoscopic Investigation 203

20 min 30 min

36 hrs

40 min 50 min

25mm

Fig. 3. Discoloration and degradation pattern of natural azurite pigments. It was observed that
the discoloration sites seemed to appear sporadically.

Fig.4 shows another type of spectral measurements. In this case, three spots were
selected the spots were measured using two different ROI size. The first one is 42um
and the other one is 2.7mm. P1 and P3 are points with visible discoloration while the
color in P2 remained unchanged after 20 minutes. The size of the discoloration sites at
P1 and P3 is about Imm. Since the second ROI is bigger than the desired sampling
area, the measurement includes area which are does not exhibit visible discoloration
yet. The effect of ROI to the accuracy of the measurement is shown in Fig.5. Using
the small ROI it was possible to distinguish between discolored and not discolored
pigments. Unfortunately, this is still a physical limitation of normal spectrometers.
However this highlights the advantage of using analytical imaging. With this method,
it is not only possible to measure mesoscopically but the measurements need not be
taken blindly. The accuracy of the spectral reflectance reconstruction is reported
elsewhere [22].
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Fig. 4. Spectral reflectance measurement at different spots on the pigment after 20 minutes of
exposure to high temperature
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Fig. 5. Spectral reflectance at three different points measured at two ROIL. It was not possible to
distinguish the spectral reflectance of discolored pigments using the big ROL.
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Finally, Fig.6 shows another advantage of using small ROI for spectral reflectance
measurement. The figure shows the spectral reflectance of heated artificial azurite.
Visually, there was no distinguishable change in color but the spectral measurement at
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42pum reveals otherwise (Fig.8a). This suggests that it is not often reliable to depend
on visual signs as indicator for degradation since the human vision is sensitive to a
limited spectrum of visible radiation. Fig.8b seems to support this observation as cha-
racterized by overlapping spectral reflectance. These measurements were performed
at big ROI (~2.7mm). However, XAFS and XANES measurements agree with the
pattern observed at small ROI measurements. More discussion is reserved for the next
section. In addition, as pointed out previously, high background reflection is observed
with big ROL
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Fig. 6. Spectral reflectance measurement of degraded artificial azurite at (a) 42um ROI and
(b) 2.7mm ROI



206 J.A. Toque et al.

4 Conclusion

This study presented a method for investigating the discoloration and degradation
mechanism of traditional Japanese paintings. The technique is based on analytical
imaging through spectral reflectance reconstruction from multispectral images. The
data processing technique used a mathematical model based on the Moore-Penrose
pseudoinverse. The images were taken at high resolutions (~42pum/pixel) which
means that it has high spatial resolution, good color reproduction and accurate spec-
tral reconstruction. The spectral measurements could be done remotely and noninva-
sively which satisfies an important requirement of cultural heritage investigation. Due
to the high spatial resolution of the images, the spectral measurements can be done at
mesoscopic scale. This proved to be useful in understanding the discoloration and
degradation patterns of selected Japanese mineral pigments. The technique provided
great flexibility in the ROI size which is not usually available with conventional spec-
trometers. The results have shown that the ROI size is highly correlated with the
background reflection which is important in detecting small changes in spectral ref-
lectance. In addition, it is crucial that the ROI of the measurement is smaller than the
size of the object. In the case of the initiation site of pigment discoloration this usually
is in the sub-mm or mesoscopic scale. Accurate spectral reflectance measurements
were done using mesoscopic ROI from multispectral images. It was also possible to
detect small changes in the spectra which are not observed from big ROI. Overall, the
results have shown that high resolution multispectral scanning has great potential for
the noninvasive investigation of cultural heritage.
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Abstract. In this paper we present a semi-automatic 2D-3D local reg-
istration pipeline capable of coloring 3D models obtained from 3D scan-
ners by using uncalibrated images. The proposed pipeline exploits the
Structure from Motion (SfM) technique in order to reconstruct a sparse
representation of the 3D object and obtain the camera parameters from
image feature matches. We then coarsely register the reconstructed 3D
model to the scanned one through the Scale Iterative Closest Point
(SICP) algorithm. SICP provides the global scale, rotation and trans-
lation parameters, using minimal manual user intervention. In the final
processing stage, a local registration refinement algorithm optimizes the
color projection of the aligned photos on the 3D object removing the
blurring/ghosting artefacts introduced due to small inaccuracies during
the registration. The proposed pipeline is capable of handling real world
cases with a range of characteristics from objects with low level geometric
features to complex ones.

Keywords: Cultural heritage - 3D reconstruction - 2D-3D registration -
Local error

1 Introduction

Digitization of cultural heritage objects has gained great attention around the
world due to the importance and awareness of what they represent for each
culture. Researchers have been trying to achieve the same goal: capturing a 3D
digital representation together with its color information to be able to pass them
down safely to future generations.

The recovery and generation of the 3D digital representation requires high
geometric accuracy, availability of all details and photo realism [1]. Any single
3D imaging technique is unable to fulfill all of these requirements and the only
way to solve this problem is through the fusion of multiple techniques.
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There have been a number of recent studies which have tried to map auto-
matically, semi-automatically or manually a photo-realistic appearance onto a
3D model. Some of these have used only photogrammetry [2],[3], which provides
poor geometric precision. However for cultural heritage applications, especially
for conservation, a high density of the 3D point cloud is needed. In order to satisfy
the demanding needs of cultural heritage, the combination of both photogram-
metry and range scans [4-6] have been considered. These approaches generally
start by computing an image-to-geometry registration, followed by an integra-
tion strategy. The first one generally seeks to find the calibration parameters of
the set of images, while the second tries to select the best color for each of the
images.

There has been research focusing on improving the alignment in all the images
[7-9] (global registration). However, the visual results show significant blurring
and ghosting artefacts. Others have proved that a perfect global registration is
not possible because the two geometries come from different devices and conse-
quently the only solution available is to consider a local registration refinement
[10-12].

This paper proposes a solution for a full end-to-end pipeline in order to
process data from different acquisition techniques to generate both a realistic
and accurate visual representation of the object. Our solution recovers the 3D
dimension from 2D images to align the 3D recovered object with a second more
geometrically accurate scan. The input 2D images are enhanced to improve the
feature detection by the Structure from Motion algorithm (SfM) which provides
the position and orientation of each image together with a sparse 3D point cloud.
The idea behind the 3D reconstruction is to perform the alignment in 3 dimen-
sions through the Scale Iterative Closes Point (SICP) algorithm obtaining the
transformation parameters to be applied in the extrinsic ones of the cameras.
Even though, the alignment is performed minimizing the distance between both
3D models, it is approximate for different reasons (sparseness, noise) and a local
registration refinement is needed. In the last stage of our pipeline, color projec-
tion, an algorithm to correct the local color error displacement is performed. Our
local correction algorithm works in an image space finding the correct matches
for each point in the 3D model.

2 Related Work

The main related issues taken into account in our pipeline can be divided into
3 major fields: (1) 2D/3D registration, (2) color projection, and (3) registration
refinement process. The important related work in these fields is outlined below.

2.1 2D/3D Registration

Image to Geometry registration consists of registering the images with the 3D
model defining all the parameters of the virtual camera (intrinsic and extrinsic)
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whose position and orientation gives an optimal inverse projection of the image
onto the 3D model.

Numerous techniques exist and a number of different ways try to solve this
problem. The methods can be classified into (i) manual, (ii) automatic or semi-
automatic depending mainly on matches or features. In the (i) manual methods
the registration is performed manually selecting correspondences between each
image and the 3D geometry. This technique is often used for medical applications
[13]. Others instead, have used features in order to automate the process, but
finding consistent correspondences is a very complex problem. Due to the differ-
ent appearance of photographs and geometric models, (i) automatic methods
are limited to some specific models and information. For example, line features
are mostly used for urban environments [7],[14]; and silhouette information is
used when the contour of the objects is visible in the images and the 3D model
projected onto an image plane [15-17].

Nevertheless there are 3D scanners which provide also reflectance images and
the registration is performed in a 2D space [18],[19]. On the other hand, some
authors perform their registration in a 3D space reconstructing the 3D object
from the 2D images and aligning both 3D objects [5],[9],[20]. This procedure
is carried out in two steps: (1) 3D reconstruction and (2) point cloud align-
ment. Through the widely used Structure from Motion technique (SfM), a 3D
reconstruction and intrinsic and extrinsic camera parameters are recovered with-
out making any assumptions about the images in the scene. The registration is
usually performed by selecting correspondences [9] that minimize the distances
between a set of points.

Our work is based on SfM approach and the use of the SICP algorithm
[21] to register both point clouds with the only constraint being to locate them
relatively close to each other.

2.2 Color Projection

Once the images are registered onto the 3D model, the next step is to exploit
the photo-realistic information (color, texture) obtained by an optical sensor,
together with the geometric details (dense point cloud) obtained by some type
of 3D scanner (laser scanner, structured light). The aim is to construct a virtual
realistic representation of the object.

As a point in the 3D model projects onto different images and images may
possess some artefacts (highlights, shadows, aberrations) or small calibration
errors, the selection of the correct color for each point is a critical problem. In
order to deal with this task, research has been based on different solutions, each
one with its own pros and cons.

Orthogonal View. In [16],[22], the authors assign the best image to each
portion of the geometry. This assignment relies on the angle between the viewing
ray and the surface normal. As the color of a group of 3D points comes from
one image, seams are produced when adjacent groups are mapped with different
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images and also artefacts such as differences in brightness and specularities are
visible. Even though some research has dealt with the seams by smoothing the
transitions [16], important and critical detail can be lost.

Weighting Scheme. In these kind of approaches [4],[9],[23], an specific weight
is assigned to each image or to each pixel in the images according to different
quality metrics. The metrics vary between authors considering visible points,
borders or silhouettes, depth [9],[23] or the distance to the edge of the scan [4].
All these methods, in comparison with orthogonal view, are able to eliminate
the artefacts previously mentioned but instead introduce blurring/ghosting when
the calibration of the images is not sufficiently accurate.

INumination Estimation. Alternatively, approaches such as [24] attempt to
make an estimation of the lighting environment. This approach is able to remove
possible illumination artefacts presented in the images (shadows/highlights).
Unfortunately, in real scenarios it is difficult to accurately recover the posi-
tion and contribution of all the light sources in the scene. Furthermore they will
complicate the photo acquisition step and processing phases, leaving apart this
kind of approaches.

Due to the evaluation criteria used and advantages provided by all of these
approaches, a weighting procedure was selected as the best option for our work.
We used the approach by Callieri et al. [23] because of its robustness, availability
and the good results obtained with it from our data set.

2.3 Registration Refinement

Since the data comes from 2 different devices and the geometry and camera cal-
ibration is imprecise after the 2D /3D registration; blurring or ghosting artefacts
appear once the color projection is performed. In order to remove them, a global
or local refinement is necessary.

Global Refinement. Some approaches try to correct the small inaccuracies in
a global manner [7-9],[16] by computing a new registration of the camera param-
eters according to the dense 3D model obtained with the scanner. The goal is
to distribute the alignment error among all the images to minimize the inaccu-
racies and improve the quality of the final color of the model. Unfortunately as
the registration is mostly based on features, an exact alignment will not be pos-
sible due to image distortions or low geometric features. Nevertheless even if the
global alignment refinement finds the best approximate solution, the matches
will not be exactly the same. As a consequence blurry details (ghosting effects)
will appear after the color projection [10], especially when the color details are in
areas with low geometric features. The only straightforward solution to correct
these small inaccuracies, is to perform a local refinement.
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Local Refinement. A number of studies have been carried out based on local
refinements which locally analyze the characteristics of each point and try to
find the best correspondence in the image series [10-12]. Finding these corre-
spondences locally has been addressed in the literature by using optical flow.
Some studies have computed dense optical flow [10],[11] but the results depend
on the image resolution and the amount of mismatch (displacement) together
with the computational power available. On the other hand, others instead of
working in the image space, have tried to optimize the 3D geometry in order to
deform textures more effectively [12]. As our 3D geometry cannot be modified,
these kind of approaches are not feasible for our purpose.

Computing dense optical flow in our datasets was impossible due to relatively
high resolution of the images, e.g. 4008 x5344 pixels compared to the 1024 x768
pixels used in the literature in [11]. For this reason we decided to use sparse
optical flow to compute the color for each point in the 3D geometry limiting the
number of images to the best three, evaluated according to the quality metrics
of Callieri et al. [23].

3 Data Fusion

Our goal is to fuse the information provided by the two different devices (3D
scanner and 2D camera) in order to recreate a high resolution realistic digital
visualization with both very accurate geometric and visual detail. The procedure
to achieve this result needs to take into account various problems which will be
solved in essentially four main stages (see figure 1): (1) Image preprocessing,
(2) Camera calibration through Structure from Motion, (3) Cloud registration
to align the images to the geometry, and (4) Color projection which involves
the most correct images to project the color onto the 3D geometry. The whole
process is designed to consider as input a set of uncalibrated images and a dense
3D point cloud or a 3D triangulated mesh. By uncalibrated images we refer to
images in which the intrinsic and extrinsic camera parameters are unknown.

3.1 Stage 0: Image Preprocessing

Even though a number of studies have used a set of uncalibrated images to
perform camera calibration and 3D reconstruction through some Structure from
Motion algorithm [5],[9],[20],[27], very few have considered a preprocessing step
[27].

This stage is performed in order to improve the camera calibration procedure
(Stage 1) and consequently obtain more accurate camera parameters together
with a better 3D representation.

Three preprocessing steps were considered. The first two had already been
applied by the C2RMF to their data sets and the introduction of a third pre-
processing step also enabled an improvement for the next stage.

1. Color calibration. Performed to accurately record the colorimetric appear-
ance of the object in the set of color images and to eliminate mis-matches
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Fig. 1. General overview of the pipeline
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caused by varying lighting conditions. In order to calibrate, a color chart
is used during the image acquisition to determine a color transformation
between the captured values and the reference color target.

2. Background subtraction. As a SfM procedure is based on feature matching,
features will be detected in the foreground as well as in the background. In
order to avoid the reconstruction of unwanted points (outliers) and have a
clean 3D object, the background was removed manually. There are many
segmentation techniques available in the literature [25] but in order to be
precise the manual method was considered by the C2RMF.

3. Image enhancement. Through histogram equalization, we enhance the image
contrast in order to find a larger number of features and generate more 3D
points in the next stage. The original principle applies to gray-scale images,
but we used it in color, changing from RGB to the HSV color space and
equalizing the Value (V) channel in order to avoid hue and saturation changes
[26]. This step is very useful especially when the object lacks texture details.
The same idea was exploited in [27] with a Wallis filter.

3.2 Stage 1. Camera Calibration and 3D Reconstruction

The second stage of our pipeline consists of a self-calibration procedure. It
is assumed that the same camera, which is unknown, is used throughout the
sequence and that the intrinsic camera parameters are constant. The task con-
sists of (i) detecting feature points in each image, (ii) matching feature points
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between image pairs, and (iii) running an iterative robust SfM algorithm to
recover the camera parameters and a 3D structure of the object.

For each image, SIFT keypoints are detected [28] to find the corresponding
matches using approximate nearest neighbors (ANN) kd-tree package from Arya
et al. [29] and the RANSAC algorithm [30] to remove outliers. Then a Struc-
ture from Motion (SfM) algorithm [31],[32] is used to reconstruct a sparse 3D
geometry of the object and obtain the intrinsic (i.e. focal length, principal point
and distortion coefficients) and extrinsic (i.e. rotation and translation) camera
parameters.

In order to achieve a more geometrically complete surface of the 3D object,
Clustering Views from Multi-view Stereo (CMVS) [33] and Patch-based Multi-
view Stereo (PMVS) [34] tools are used. This aims to increase the density of the
3D geometry and be able to obtain a more precise parameter estimation during
the cloud registration (stage 2).

3.3 Stage 2. Cloud Registration

After the 3D geometry obtained with the SfM algorithm and from the 3D scan-
ner, a 3D-3D registration process is performed. As both points clouds possess
different scales and reference frames, we will need to find the affine transforma-
tion that determines the scale (s), rotation (r) and translation (t) parameters
which align better both 3D geometries.

Usually a 3D-3D registration refers to the alignment between multiple point
clouds scanned with the same device. Algorithms like Iterative Closest Point
(ICP) [35] and 4 Point Congruent Set [36] evaluate the similarity and mini-
mize the distance between the 3D point clouds considering only the rotation
and translation parameters. But when a scale factor is involved it can be solve
separately or together from the registration procedure.

Calculating a bounding box for both 3D geometries and applying the ratio
found between them seems to solve the scale problem, but if some outliers are
present in one of the geometries the result will not be correct. Therefore Zhu et
al. [21], extended the Iterative Closest Point algorithm to consider also the scale
transformation (SICP), introducing a bidirectional distance measurement into
the least squared problem. This algorithm works as follows: (i) define a target
(fixed) and source (transforming) point clouds, which will be the scanned and
reconstructed point clouds respectively in order to bring the camera parameters
from the image space to the real object space; and (ii) perform iteratively the
distance error minimization using the root mean square error (RMSE), until the
best solution is found. The output is a set of 3D points aligned to the object
coordinate system (real scale) by means of a 3x3 rotational matrix, 3x1 scale
matrix and vector indicating the translation in X, Y and Z axis.
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3.4 Stage 3. Color Projection

Color projection is the last and the core of our proposed pipeline. The aim
is to project accurate color information onto the dense 3D model to create a
continuous visual representation from the photographic image set.

Selecting the best color is not an easy task; first because a single point in
the 3D geometry is visible in multiple images and those may present differences
in illumination. Secondly small errors in the camera parameters cause small
misalignments between the images, and in consequence, a point which projects
onto a specific location in one image plane will project onto a slightly different
area in another one. This can result in different colors for each 3D point projected
from several 2D images.

In order to address this problem, some research based the color selection
on the most orthogonal image for a certain part of the 3D geometry [16],[22]
generating artefacts like highlights, shadows and visible seams.

Others project all images onto the 3D mesh and assign some weight to each
image, as, for example, in [4],[9],[23], which remove artefacts that the orthogonal
view is not capable of removing, but this can produce some ghosting artefacts
when the alignment is not perfect.

In order to deal with less artefacts, we consider the approach based on Callieri
et al. [23], which weights all the pixels in the images according to geometric,
topological and colorimetric criteria.

The general procedure to perform the color projection in our pipeline takes
into account two steps: (1) a color selection considering weights assigned accord-
ing to the quality of each pixel, and (2) a local error correction in the image
space in order to produce sharp results.

Weighted Blending Function. Through the approach by Callieri et al. [23]
it is possible to compute the weights for each 3D point in the number of images
they are visible. The three metrics are based on: angle, depth and borders. For
each of these metrics, a mask is created which has the same resolution as the
original image. The aim is, therefore, to create a unique mask combining the
three masks through multiplication. The result is a weighting mask for each
image that represents a per-pixel quality (see an example in figure 2).

Once the weights are defined for each image, and knowing the camera param-
eters obtained in Stage 1, it is possible to perform a perspective projection from
the 3D world onto an image plane. This projection allows us to know the color
information for each 3D point in the geometry. The final color for each point is
a weighted mean obtained by multiplying the RGB values from the pixels with
their respective weights.

Local Error Correction. The results obtained projecting the color informa-
tion with the quality metrics of Callieri et al. [23] into the 3D geometry, generated
blurring/ghosting effects in some parts of the mesh. These problems appear due
to small inaccuracies introduced in the image-to-geometry registration [10].



216 C.G. Serna et al.

Fig. 2. Example of weighting masks [23]. From left to right: Angle mask, Depth mask,
Border mask. Right-most, the combination of the previous three masks. For illustration
purposes the contrast for the depth and border mask have been increased.

Research such as that by [10-12],[37] have considered these kind of artefacts;
but their origin, is explained by Dellepiane et al. [10] in figure 3 .
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Fig. 3. Graphic representation of the local displacement defined by Dellepiane et al.
[10] where p, is the original point located in the scanned surface geometry; ¢;(po)
represents the projection from the 3D world int a 2D image plane; ; ;(p;) is the
relation between corresponding points on different images; A; ;(p;) is the necessary
displacement required to find the correct matches; and W; ;(p;) is the warping function
necessary to find the correspondent point in the second image plane.

The simplest way to correct these inaccuracies which generate the blurring
artefacts, consists of finding for each 3D point, the local displacement in the best
3 image planes where it is visible. This local error estimation algorithm, based
on [10], is performed through a template matching algorithm shown in figure 4.

The reason for considering only the best three images for each point, instead
of all where it is visible, is to speed up the process in the final color calculation.
Instead of computing (n-1)p evaluations, we reduce them to (3-1)p where n is
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images are enough to correct illumination artefacts.
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Fig. 4. Illustration of the local error estimation procedure

The size of the block and template was defined according to some experimen-
tal evaluation performed on the highest resolution dataset (FZ36147). Normally
if the cloud registration step in Stage 2 is accurate enough, the different 3D
points projected in the image plane will not be so far from each other. For this
reason the same parameters can be applied to lower resolution images, but they
cannot be considered for even higher ones. The most straightforward solution
is to tune the parameters depending on the image resolution and the 3D cloud
registration output.

Considering the parameters defined, the matching procedure is done on a
pixel-by-pixel basis in a Luminance-Chrominance color space. The conversion of
the RGB values into YCbCr color space was performed directly with the built-
in Matlab function 'rbg2ycber’ and the similarity measurement, mean square
error (MSE,) was defined considering also changes in brightness for each block
by subtracting the average value in each channel. Through this subtraction we
account for big changes in illumination between images. The notation is the
following:

N—-1N-—

DD Sy =S — (T, —T))°
s 0

[
=

1
MSE = —5 (1)

1=

<

where N is the total number of pixels in each block, S is the block in the
source/reference image, T is the block inside the template of the target image,
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S and T are the mean values of their respective channels. At the end the error
with the minimum value is considered as the best match.

MSEy+MSECb+MSECT 9
K 2)
In the case where there is more than one block matching the same criterion,
a comparison of the colors from the center points will decide which block in the
template is the closest to the block from the reference image.
When the three RGB color values are found for each point, we proceed with
the multiplication of them with their respective weights to average the results
and assign final color values to each point in the 3D geometry.

FError =

4 Experimental Results

In this section we present experiments performed on real data from the C2RMF.
3D Scans from objects from the Department of Roman and Greek Antiquities
at the Louvre museum were considered in order to assess the performance of the
proposed pipeline. The data had been captured at different times using different
equipment. Each object had data from a structured light scanner and a set of
color images used for photogrammetry.

The 2 data sets (FZ36147 and FZ36152) contain information with differ-
ent qualities and sizes. A small description of the datasets used, is listed below
together with a brief explanation of the criteria used for a visual quality evalu-
ation.

— Dataset FZ36147. This Greek vase, an Oenocho from around 610BC,
contains 1,926,625 3D points (pts) and 35 high resolution images (4008 x 5344
pixels). The images were acquired under an uncalibrated setup, but our
method was capable to remove the lighting artifacts and preserve details in
its decorations. For the final evaluation of our proposed local error estimation
algorithm implemented as part of the color projection procedure (stage 3),
three small patches selected manually from the 3D geometry were extracted.
Each patch was carefully selected according to visual details where mis-
registration of the camera parameters led to blurring artifacts.

— Dataset FZ36152. This Greek vase, an Oenocho from between 600-625BC,
is represented by a 3D model which contains 1,637,375 points and 17 images
of resolution 2152x3232 pixels. With this dataset, the registration in the
second stage of our pipeline, was not accurate enough to avoid blurring
effects appearing in the whole 3D geometry. The local error correction in
our method, brings sharp results in the three patches extracted in the same
way as in the previous dataset.

Due to the fact that the images of the datasets are uncalibrated (no ground
truth is available) only qualitative, meaning visually, evaluations were performed,
as found also in the state of the art [10], [20].
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The reason for performing the evaluation only in small patches, refers to the
high density of points each 3D geometry contains and the programming language
used for the implementation (CPU programming).

Our algorithm, implemented in stage 3, corrects the small errors in the pro-
jected image planes, converging to good results regardless the initial rough align-
ment obtained during stage 2. Figure 5 shows the results of the color projection
once the small errors are corrected. The quality of the appearance in the new
projections (down red squares) is improved, removing the unpleasant blurring
artefacts. Table 1 shows a summary of the characteristics of the datasets used,
together with the patches evaluated and their corresponding computational time.

Table 1. Overview of tests performed with our Local error estimation algorithm

Dataset|3D model size| N. of images |Patch|S. Patch|Computational
(Resolution) Time
FZ36147| 1,926,625 pts |35 (4008x5344)| Up | 4049 pts | 2 hrs 30 min
Middle| 4834 pts 3 hrs 3 min
Down | 3956 pts 6 hrs 40 min
FZ36152| 1,637,375 pts |17 (2152x3232)| Up |4750 pts | 3 hrs 10 min
Middle| 4903 pts | 2 hrs 46 min
Down | 6208 pts 3 hrs 8 min

The time required to perform the local error estimations, depends on the
amount of 3D points the geometry has, and on the displacement found for every
projected point in the 2D image plane. If the density increases, the computational
time will be higher.

Discussion. A visible comparison with the state of the art [10] is presented in
figure 6. Dellepiane et al. also evaluated their method with one dataset from the
Louvre museum, but it possess different resolution characteristics. The imple-
mentation in [10] is based on dense optical flow and GPU programming, for
which really high resolution images are a disadvantage. The maximum resolu-
tion tested by Dellepiane et al. [10] was 3000x 1996 (5,988,000 pixels) which took
around 5 hours in 6 images. In our dataset FZ36147, its resolution is 4008 x 5344
and contains 35 images. The pixels needed to be evaluated with our dataset in
[10] will be 21,418,152 which is at least 5.57 times more than in their dataset
with maximum resolution, and 6 times more the number of images. Only with
extremely powerful processing capable of handling such computations can their
approach be applied, otherwise their method is not a feasible solution with our
data set.

In general the state of the art methods [11], [10] are based on dense optical
flow which is the main reason there is no possible comparison with our datasets.

Even though our implementation has proven to be robust and reliable, some
limitations still remain. The main one relates to the programming language for
the acceleration of the computational time (from CPU to GPU programming).
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Fig.5. Final color projection in datasets from left to right FZ36147 and FZ36152.
In the first row some of the original images are illustrated; second to fourth represents
the 3 patches used for the direct color projection with Callieri et al. approach [23] and
the local error correction results for each of them (down red squares).
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(b) Rendering of the colored model {(dataset FZ36152) without and with our local error correction algorithm

Fig. 6. Final color projection comparison with the State of the Art

Also, in the evaluations performed, the maximum local displacement found was
not large (10 pixels); but for other cases (e.g. images with higher resolution), the
displacement can be bigger and in consequence, the parameters for the template
matching algorithm in Stage 3, have to be adjusted.

There are also some limitations related to lighting artefacts. Factors like high-
lights/shadows may complicate the estimation of the local error displacement,
and inclusive mislead the motion to totally wrong values. Nevertheless , these
drawbacks are shared with every method based on optical flow calculations.

5 Conclusion

We have proposed a semi-automatic 2D-3D registration pipeline capable to pro-
vide extremely accurate realistic results from a set of 2D uncalibrated images
and a 3D object acquired through laser scanning.

The main advantage of our pipeline is the generality, since no assumption is
made about the geometric characteristics or shape of the object. Our pipeline
is capable of handling registration with any kind of object, since the algorithm
used is a brute force (SICP) which evaluates every single point and finds the



222 C.G. Serna et al.

best position. The only requirements needed are a set of 2D images containing
sufficient overlapping information to be able to use the Structure from Motion
(SfM) technique in stage 1; and a user intervention during stage 2 to locate
the dense point cloud, coming from the scanner, closer to the one obtained by
SfM, in order to provide the input that the Scale Iterative Closest Point (SICP)
algorithm needs to converge. This user intervention during the second stage in
our pipeline is what makes our approach semi-automatic.

In conclusion, our main contribution is the local error correction algorithm
in stage 3 which proved to be:

1. Robust: it works with low and high resolution images, as it considers only the
interest points (projected 3D points into the image plane) for the matching.
Not even the state of the art [10], [11] is capable of dealing with as high
resolution images as our algorithm does.

2. Accurate: it finds the best possible matching for the small error displace-
ments considering luminance and chrominance channels. Through the best
match, it removes the unpleasant blurring artefacts and produces sharp
results.

3. Photo-realistic: with the point cloud generated by SFM [31],[32] and the
registration algorithm SICP [21], the color information from the 2D images
is projected onto the 3D object transferring the photo-realistic appearance.

An interesting direction for future research would be to define a criterion with
a respective threshold to identify the possible borders where the sharp results
start to blur (in the cases where only some parts of the 3D object are visible
with ghosting effects). This identification has to be based on depth differences
between the 2 registered point clouds, and probably a segmentation according
to depth may help to optimized our proposed local error estimation algorithm.
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Abstract. Hyper-spectral imaging has been applied as an in situ technique for the
study and accurate digital documentation of coloured artworks. Providing spectral
and colorimetric characterisation across the entire surface of an object, it can be
used to identify the coloured materials, measure colour changes, and document it
with high fidelity. However, depending on the system used, data accuracy and re-
liability may vary. In this work, developed within the Round Robin Test being
carried out by COSCH Working Group 1, an X-Rite® ColorChecker Classic chart
was analysed with two push-broom hyper-spectral systems developed by different
groups (IFAC-CNR and IP-UEF), in the 400-1000 nm range, and the data ob-
tained were compared. This comparison allowed to assess the accuracy of colour
reproduction processes performed by the two systems. The results obtained are
satisfactory in terms of spectral and colorimetric accuracy for some colours, but
show differences at both ends of the visible range.

Keywords: Hyper-spectral imaging - Spectral and spatial resolution - Accuracy -
Colour reproduction - ColorChecker - CIELAB colorimetric values - COSCH

1 Introduction

We are not only inheriting cultural heritage from our ancestors, but we are also bor-
rowing it from our children. Starting from this premise, curators and conservators
realise that the study and documentation of the artworks that constitute our cultural
heritage is important to preserve them and to increase accessibility and possibilities
for our and for future generations [1]. For either of these purposes - study and docu-
mentation -, accuracy and high quality are very important features concerning the data
that is acquired and kept [2]. These records have to be true and accurate representa-
tions that show the required information, without anything added to or taken away
from the original artwork [3]. This is particularly important when coloured materials
are concerned.
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Colour is an essential language of cultural heritage that often needs more decoding
than what was originally intended by the artist. Coloured materials are generally
prone to changes, leading to alterations in the artworks visual appearance and, conse-
quently the objects are interpreted differently from the artists’ intention. Often con-
servators need to go beyond what is seen, and to successfully conserve the artworks,
they need to identify and document colours with as much accuracy as possible.

The study of colour in artworks using in situ spectral imaging techniques, there-
fore avoiding that colour measurement is restricted to a limited number of points on
the surface of the object, is of great importance [4,5]. These techniques provide a
highly accurate way to measure colour across the entire surface of the object, and may
indeed be crucial to guarantee a high-quality colorimetric reproduction [2], [5]. They
allow to acquire the objects’ spectral reflectance, which is a physical quantity charac-
teristic of the material [6,7]. In other words, for each spatial pixel (picture element), a
reflectance spectrum is acquired in a determined spectral region. This is obtained by
recording a collection of reflectographic images of the same area at almost contiguous
spectral bands (hundreds in the case of hyper-spectral systems). From the acquired
data-set it is therefore possible to extract the spectral reflectance of each pixel, which
has several advantages such as: the possibility to reconstruct it in the CIE colour
space with any choice of illuminant and of the colour matching functions; the possi-
bility to monitor the conservation state of the object since a change in the spectral
reflectance evidences the alterations of the material; and the possibility to reliably
identify and discriminate the coloured materials used by the artists [6,7,8,9,10].

In the context of the promotion of research, development and application of spec-
tral imaging techniques towards the study and documentation of cultural heritage,
COSCH' Working Group 1 (WG1) aims to identify and explore important character-
istics of different spectral imaging systems and understand how they influence data
accuracy and information reliability with respect to the various types of studied art-
works [11]. As a matter of fact, several different types of devices have been devel-
oped to implement spectral imaging techniques for applications in cultural heritage
[12]. These devices are commonly categorised according to the portion of the file-
cube (the complete dataset formed by the three dimensions - two spatial and one spec-
tral - over which data is collected) that is acquired in a single detector readout [13].
They can consist in cameras equipped with filtering systems for the optical selection
of the wavelengths, or they can be constituted by scanners equipped with dispersive
systems for the selection of the spectral bands (such as push-broom spectrometers), or
they can also be based on snap-shot imaging systems, which collect the entire 3D file-
cube in a single integration period without scanning [4], [13]. However, in practical
terms, for the same object the acquired information can be significantly influenced by
the method of data collection, the system used, and any other parameters influencing
the general experimental setup. As such, WGI is performing a Round Robin Test
(RRT) with four objects of distinct characteristics, to explore different spectral imag-
ing systems, identify the impact of each instrumentation on the results obtained, and
ensure the usefulness, accuracy and comparability of the data. Colour being such an

' COST Action TD120: Colour and Space in Cultural Heritage (COSCH, www.cosch.info).
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important issue, one of the objects that integrates the RRT is a ColorChecker refer-
ence chart.

ColorChecker charts are used as a colour reference, and are very important when
colour image processing is concerned [6], [14]. Constituted by several standard co-
loured patches, these charts allow to assess the accuracy of the colour reproduction
processes of the systems used, to guarantee that the information obtained is valuable
and represents the true colours of the object that has to be studied and documented
(31, [5], [15].

This contribution presents the comparison between data acquired from the Color-
Checker chart used in the RRT with two hyper-spectral devices from different re-
search groups that are part of the COSCH WGI1 RRT: the “Nello Carrara” Institute of
Applied Physics of the National Research Council (IFAC-CNR), in Florence, Italy;
and the Institute of Photonics - University of Eastern Finland (IP-UEF), in Joensuu,
Finland. Both groups measured the ColorChecker in their own laboratory with push-
broom hyper-spectral systems that collect data with a 2D array detector at all wave-
lengths simultaneously for one spatial line of the object so that only one spatial di-
mension needs to be scanned to fill out the file-cube [13]. However, even though both
systems are based on the same working principle, they were designed and optimised
in different ways depending on the purpose of analysis of each group (for example, if
they are seeking for high spatial or spectral resolution, or high colour accuracy). For
this contribution, the data acquired with IFAC-CNR and IP-UEF systems were first
used to confirm the homogeneity of the ColorChecker coloured patches. Afterwards,
both set of data were compared with respect to the spectral reflectance curves, and,
finally, colorimetric CIELAB values were calculated for a standard illuminant (D65)
and observer (10°) and also compared.

2 Experimental Design

2.1 X-Rite® ColorChecker Classic

The X-Rite® ColorChecker Classic target is a matt chart with dimensions 279.4 mm x
215.9 mm. It has twenty-four coloured square patches, each with 40 mm of side, dis-
played in a 4 by 6 array, that include the representation of true colours of natural mat-
ter (such as skin, foliage and sky), additive and subtractive primary colours, various
steps of grey, and black and white [15,16].

2.2  Methodology

The X-Rite® ColorChecker was analysed by the two different groups using their own
push-broom hyper-spectral system. In each case, the working conditions and technical
parameters were not predetermined, since the point was that each group used the
setup commonly used in their laboratories. However, for treatment of the hyper-
spectral file-cube (that contains both spatial and spectral information, and can easily
reach several tens of megabytes), the participants were asked to follow a few guide-
lines.
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The reflectance spectrum of ten selected coloured patches (Blue Sky 03, Foliage
04, Orange 07, Purple 10, Blue 13, Green 14, Red 15, Yellow 16, Magenta 17, Cyan
18) were extracted from centred squares with 35 mm of side, to represent the average
of each patch. Reflectance spectra were also extracted from five different small areas
(squares with 1 mm of side) of each patch (in the middle and in the four corners), to
see if the colour within each coloured patch is uniform. Reflectance data were ex-
tracted as well from centred squares with 8 mm of side in order to resemble the
common area of analysis of a contact colorimeter. The spectra extracted from each
coloured patch were then used to calculate the colorimetric values of the same areas,
using the CIELAB system with the CIE illuminant D65 (natural daylight) and the CIE
1964 standard observer (10°). From the L*, a* and b* coordinates, the colour-
difference parameter, AE, was also calculated using the CIEDE2000 formula [17].

2.3  Apparatus

IFAC-CNR’s hyper-spectral imaging spectroscopic measurements were carried out in
the 400-960 nm range with the hyper-spectral scanner designed and assembled at
IFAC-CNR. The system is based on a prism-grating-prism line-spectrograph ImSpec-
tor™ V10E (SpecIm Ltd), with a 30 pum slit, which is connected to a high sensitivity
CCD camera (Hamamatsu ORCA-ERG). The line-segment analysed is focused on the
entrance slit of the spectrograph by means of a telecentric lens (Opto-Engineering
Srl), which performs a parallel projection of the points falling within its working dis-
tance (3 cm deep at 23 cm from the lens), thus avoiding perspective displacements
when the imaged points lie on a not perfectly planar surface. [llumination of the line-
segment is made by two Schott-Fostec fibre-optic line-lights equipped with focusing
lenses that are fixed to the scan-head and symmetrically project their beams at 45°
angles with respect to the normal direction at the imaged surface (0°/2x45° observa-
tion/illumination geometry). Light is supplied by a QTH-lamp. The mechanical sys-
tem can scan a maximum area of about 1 x 1 m% with 20 vertical line-scan stripes.
The spatial sampling rate guarantees a spatial sampling of ~ 11 points/mm (~ 279 ppi)
and resolution better than 2 lines/mm at 50% of contrast reduction. The system’s
spectral sampling is about ~ 1.2 nm and resolution is ~ 2.5 nm at half maximum. The
scan is carried out in the “free-run” mode: the vertical movement runs freely at a con-
stant speed of 1.5 mm/sec, while the acquisition of the camera images proceeds inde-
pendently at a constant rate of 15 frames/sec. [18,19,20]

IP-UEF’s hyper-spectral imaging spectroscopic measurements were carried with
IP-UEF line scanning based spectral imaging system that uses a Speclm VNIR cam-
era (with a sSCMOS detector) working in the 400-1000 nm range. The system consists
of moving the camera and illumination unit together while the sample lies over a table
with adjustable height. [llumination is carried out by QTH lamps on both sides of the
camera, with a 0°/2x45° observation/illumination geometry. 240 spectral bands were
recorded with a 2.8 nm nominal spectral resolution. The spatial resolution used is of
0.2 mm. 1032 spatial pixels were recorded with every line leading to about 0.23 mm
resolution in spatial direction. Reflectance data were extracted in the 400-1000 nm
range, with a 5 nm step. Colour calculations were performed in the 400-780 range,
also with a 5 nm step. [21].
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3 Results and Discussion

With respect to handing and organisation of data, the guide-lines provided to each
group were of high significance since they allowed to compare information extracted
from areas of the same size (considering size in millimetres, and not in pixels) and
with approximate positions. Moreover, since each group has its own software to han-
dle data, it was also important to prepare the information in a way easily accessible
for the two research groups.

Both hyper-spectral systems provided high-quality RGB images of the Color-
Checker (Fig. 1). To discuss the results obtained, in terms of spectral and colorimetric
data, five coloured patches are presented: Blue 13, Green 14, Red 15, Yellow 16 and
Magenta 17 (patches are numbered from left to right, and from up to bottom in the
ColorChecker chart).

Fig. 1. RGB colour images of the X-Rite® ColorChecker chart reconstructed from the hyper-
spectral file-cube from IFAC-CNR (left) and IP-UEF (right)

To check the uniformity of the colours in the chart, the comparison between reflec-
tance spectra extracted from 1 mm x 1 mm areas at different places of each coloured
patch showed that, although not completely homogenous, there is a satisfactory de-
gree of uniformity within the respective patch (Fig. 2). Not only that, spectra from
such a small area present fairly good resolution. This was observed for both hyper-
spectral systems. When comparing the data obtained with the different systems,
spectra are similar with the exception of the lower and higher wavelengths that show
differences in intensity (ca. 0.08 in reflectance factor) and shape.

The colorimetric values are also in agreement between the different areas of each
patch, apart from some small variations of 1-2 units in the L*, a* and b* coordinates
that can be observed and which indicate that colours are not totally homogenous. On
the other hand, when comparing the colorimetric values between the two hyper-
spectral systems, L* and a* values are similar but significant differences are observed
for the b* coordinate (Table 1). In fact, for the blue colour, an average b* value
of -41.8 was obtained with IFAC-CNR’s system, while an average b* value of -46.8
was obtained with IP-UEF’s system. A similar difference was observed with the red
colour that presents average b* values of 26.5 and 19.0, respectively.
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Fig. 2. Reflectance spectra from 1 mm x 1 mm areas of coloured patches Blue 13 and Red 15
from the X-Rite® ColorChecker chart extracted from the hyper-spectral file-cube from IFAC-

CNR and IP-UEF

Within the same coloured patch, reflectance spectra extracted from areas of differ-
ent size are the same. As a matter of fact, the spectral resolution of spectra extracted
from areas of 8 mm x 8 mm and 1 mm x Imm (high spatial resolution) was proved to
be as good as that of spectra extracted from the average areas of 35 mm x 35 mm,
showing that there is a good compromise between spectral and spatial resolution for
both systems (Figs. 3 and 4). However, the increase of spatial resolution to 1 pixel
had an obvious influence in the spectral resolution, particularly in the case of IFAC-
CNR’s system, for which spectra present more noise probably due to the higher rate
of spectral acquisition step and spatial resolution (than that of IP-UEF system). When
comparing between systems, as was already noticed, spectra are identical with the
exception of differences in intensity (ca. 0.07 in reflectance factor for the magenta
colour, and 0.04 for the green and yellow colours) and shape observed at the lower

and higher wavelengths.
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Table 1. Colour coordinates from 1 mm x 1 mm areas of patches Blue 13 and Red 15 from the
X-Rite® ColorChecker chart extracted from the hyper-spectral file-cube from IFAC-CNR and
IP-UEF

Blue 13 Red 15

L* a* b* L* a* b*

323 12,3 42,4 41,9 425 26,1

324 11,6 414 42,8 422 28,1

IFAC-CNR 32,7 11,7 41,7 423 42,0 24,8
33,7 10,6 -40,9 43,0 42,0 27,8

36,4 12,6 -46,5 43,8 444 18,5

37,0 12,6 47,0 439 44,1 18,3

IP-UEF 36,1 12,7 46,3 438 448 194
36,7 12,8 472 43,8 44,7 19,4

Regarding the colorimetric values, they are also constant within the same coloured
patch (only some small variations of 1-2 units in the L*, a* and b* coordinates can be
observed), regardless of the area size (Table 2). However, when comparing the L*, a*
and b* values from both systems, again the most notable difference is observed for
the b* coordinate and especially for the magenta colour (together with the blue and
red ones, already discussed). Indeed, considering the 35 mm x 35 mm area, for the
magenta colour, a b* value of -13.9 was obtained with IFAC-CNR’s system, while a
b* value of -20.2 was obtained with IP-UEF’s system. It is possible to conclude that
the colours presenting bigger differences for the b* coordinate are the magenta, bluish
and reddish ones (AE 3.7, 3.8 and 5.1, respectively), which are at both ends of the
visible range, where the reflectance spectra also present variations. On the other hand,
colours as green and yellow present a higher similarity between the values obtained
with the different systems, with only variations of 2-3 units in the L*, a* and b* coor-
dinates (AE 3.3 and 2.5, respectively).

Table 2. Colour coordinates of patches Green 14, Yellow 16 and Magenta 17 from the X-Rite®
ColorChecker chart extracted from the hyper-spectral file-cube from IFAC-CNR and IP-UEF

Size of Green 14 Yellow 16 Magenta 17
square side  L* a* b* L* a* b L a* b
35 mm 55,5 -35,5 324 80,5 4,0 78,4 52,6 442 -139
IFAC- 8mm 55,7 -359 32,6 80,7 4,0 79,0 52,6 444  -140
CNR 1 mm 55,6 -35,8 32,6 80,6 4,1 78,7 52,6 44,5 -14,1
1 px 55,5 -36,1 33,6 80,7 3,7 81,6 52,4 440  -122
35 mm 59,1 -332 303 82,6 6,9 75,8 54,6 45,1 -20,2
8 mm 59,1 -33,3 30,3 82,7 6,8 75,6 54,7 45,1 -20,3
1 mm 59,0 333 30,2 82,5 6,9 75,3 54,6 450  -20,3
1 px 59,1 -332 30,1 82,5 6,9 75,6 54,7 449  -20,0

IP-UEF
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The differences observed at the lower and higher wavelengths can be due to the
different ways in which each system was designed, as well as to their sensitivities and
distinct technical features. The optical module of IFAC-CNR’s scanner has been op-
timised to reduce internal stray-light through the use of additional optical filters.
Thus, the spectral variations observed near the 400 nm end are very likely due to dif-
ferences in the method used to compensate for the internal stray-light. Moreover, at
the higher wavelengths of the spectrographs small errors can arise when blue targets
are measured due to the insufficient rejection of the Speclm filter that blocks the sec-
ond order visible spectrum. However, for a better understating of these differences,
further work is needed, which goes beyond the scope of the present contribution.
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Fig. 3. Reflectance spectra from coloured patches Green 14 and Yellow 16 from the X-Rite®
ColorChecker chart extracted from the hyper-spectral file-cube from IFAC-CNR and IP-UEF
(data in millimetres correspond to the size of side of the squares of analysis)

In general, the results obtained indicate that the colorimetric data acquired with
the two hyper-spectral systems have to be carefully used, and they should be always
reported together with the specification of the instrumentation and experimental setup
used, mostly if it will be necessary to compare results from both systems and for the
same objects. On the other hand, the differences obtained between the two colour
reproduction processes can be relevant to provide information about the way the hu-
man observer would see colour in pictures imaged by each system. Considering that
magenta, blue and red colours show the most significant differences, if colours such
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as green, orange and yellow, which show small unnoticeable changes, are imaged
with each system they should look like the same to the human eye. In this case, both
hyper-spectral systems would be equally useful to image an artwork.
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Fig. 4. Reflectance spectra from coloured patch Magenta 17 from the X-Rite® ColorChecker
chart extracted from the hyper-spectral file-cube from IFAC-CNR and IP-UEF (data in milli-
metres correspond to the size of side of the squares of analysis)

4 Conclusions and Future Research

This paper presents the preliminary results obtained from the comparison of data from
an X-Rite® ColorChecker chart acquired with different hyper-spectral systems devel-
oped by two different groups that are participating in the COSCH WGI1 Round Robin
Test. Both systems showed very good spectral and spatial resolution, being able to
acquire information from areas as small as 1 mm x 1 mm and obtain spectra of high
quality. Moreover, the spectral results from the different systems were in agreement,
with the exception of information at the lower and higher wavelengths that show
some variations. Consequently, colorimetric values can be comparable for colours
such as green and yellow, but are not so accurate for the magenta, bluish and reddish
hues that present more significant differences with respect to the b* coordinate. In
order to further understand these differences and which system, or if both, is repro-
ducing colour in a more accurate way, after the Round Robin Test is finished, the
results obtained from the different participants will be all compared and further ana-
lysed. Future calculations should be performed as well, to provide numerical results
for the comparison between the spectral shapes obtained with the two systems, to
assess which range of wavelengths is the most comparable or different. Also, this
approach to the use of an X-Rite® ColorChecker chart as a form of evaluating colour
accuracy of hyper-spectral systems revealed that each coloured patch is not com-
pletely homogenous. In fact, data extracted from sub-areas in different places within
the same patch showed small variations. This is an important aspect to take into con-
sideration whenever the ColorChecker chart is used to assess the accuracy of a sys-
tem’s colour reproduction process.
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Abstract. Observers can adjust the spectrum of illumination on paintings for
optimal viewing experience. But can they adjust the colors of paintings for the
best visual impression? In an experiment carried out on a calibrated color moni-
tor images of four abstract paintings obtained from hyperspectral data were
shown to observers that were unfamiliar with the paintings. The color volume
of the images could be manipulated by rotating the volume around the axis
through the average (a* b*) point for each painting in CIELAB color space.
The task of the observers was to adjust the angle of rotation to produce the best
subjective impression from the paintings. It was found that the distribution of
angles selected for data pooled across paintings and observers could be de-
scribed by a Gaussian function centered at 10° i.e. very close to the original
colors of the paintings. This result suggest that painters are able to predict well
what compositions of colors observers prefer.

Keywords: Colors of paintings - Color vision - Art visualization - Color render-
ing - Aesthetics

1 Introduction

The visual impression from paintings and other artworks is dramatically influenced by
the energy and color of the illumination. It has been shown empirically that an ideal
illumination spectrum can be spectrally tuned for each painting [1-4]. Although a light
source with a correlated color temperature close to that of skylight appears to be
suited for most of the paintings [3] it is still unclear what determines observers’ prefe-
rences. These results are relevant for museums to optimize their art displays but also
for virtual displaying of artworks.

What chromatic composition would be obtained if instead of spectrally tuning the
illumination observers tune the colors of the paintings by some global transformation?
How close that composition would be to the original one produced by the artist?

© Springer International Publishing Switzerland 2015
A. Trémeau et al. (Eds.): CCIW 2015, LNCS 9016, pp. 236-242, 2015.
DOI: 10.1007/978-3-319-15979-9_22
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The aim of this work was to investigate which composition of colors selected from
a large set of possibilities observers prefer for each artwork. Abstract paintings were
digitalized by hyperspectral imaging and their spectral reflectance estimated for each
pixel. The transformation of colors selected was a rotation of the color volume. Thus,
the original colors of the paintings could be changed by rotating the corresponding
color volume around the axis defined by the average color in CIELAB color space. In
an experiment on a calibrated color monitor observers that were unfamiliar with the
paintings adjusted the rotation angle to obtain the preferred composition. Results indi-
cate that they select a composition very close to the original one.

2 Methods

2.1  Paintings

Four paintings from Amadeo de Souza-Cardoso (1887-1918) were selected for test-
ing. Images of the paintings are shown in Figure 1. The paintings belong to the collec-
tion of Centro de Arte Moderna da Fundacdo Calouste Gulbenkian, Lisboa, Portugal.
These paintings were selected because they are of abstract nature and chromatically
rich (see Figure 1).

2.2 Stimulus

The paintings were digitalized at the museum with a hyperspectral imaging system.
Detailed description of the system and methodology is given elsewhere [2]. Only the
essential information is repeated here. The digitalization was from 400 to 720 nm at
10 nm intervals using a fast-tunable liquid-crystal filter (Varispec, model VS-VIS2-
10-HC-35-SQ, Cambridge Research & Instrumentation, Inc.,Massachusetts) and a
low-noise digital camera (Hamamatsu, mod. C4742-95-12ER, Hamamatsu Photonics
K. K., Japan), with a spatial resolution of 1344 x 1024 pixels and 12 bit intensity. The
spectral reflectance of each pixel of the paintings was estimated from a gray reference
surface present close to the painting at the time of image acquisition. [lluminant spa-
tial non-uniformities and angular variations in the system transmittance were compen-
sated using measurements of a uniform surface imaged in the same location and under
the same illuminating conditions as the paintings.

Stimuli were images of the paintings transformed by a variable chromatic rotation
around an axis in the in CIELAB color space. First, the painting was simulated illu-
minated by Dgs and the corresponding coordinates of each pixel in CIELAB space
were computed. Figure 2 shows for illustrative purposes the tridimensional represen-
tation of the top right painting shown in Figure 1. The chromatic center of this volume
was then computed and an axis parallel to the L* dimension through this point
adopted as the axis of the chromatic rotation. In the experiment the observer could
adjust the angle of rotation by actuating on a joy-pad. The rotational step could be
selected by the observers to be 1°or 6°.
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The paintings were presented on the computer screen with an average luminance of
20 cd/m’. The viewing distance was 1 m and the paintings subtended on the screen a
visual angle of about 10° x10°.

Al i AT
Fig. 1. Images of the four paintings tested. They are from Amadeo de Souza-Cardoso (1887-1918)
and belong to the collection of Centro de Arte Moderna da Fundacéo Calouste Gulbenkian, Lisboa,
Portugal. The stimuli for the experiments were images of the paintings derived from hyperspectral
imaging data collected at the museum.
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Fig. 2. Representation of the CIELAB color volume of the top right painting shown in Figure 1. In
the experiment the observers could vary the angle of rotation of the color volume around the axis
through the average (a* b*) in CIELAB space and view the corresponding image on the screen.

2.3  Apparatus

The images were displayed on a CRT monitor (GDM-F520, Sony Corp., Japan) con-
trolled by a video board (ViSaGe Visual Stimulus Generator; Cambridge Research
Systems, Rochester, Kent, UK) in 24-bits-per-pixel true-color mode. The monitor was
calibrated in color and luminance with a telespectroradiometer (PR-650 SpectraScan
Colorimeter; Photo Research, Chatsworth, CA). The stimuli were displayed with half
of the original spatial resolution and a frequency of 80 Hz.

2.4 Procedure

In the beginning of each trial a painting selected at random from the set of four was
presented with its colors rotated in CIELAB color space by angle selected at random
in the range +180° - -180°. The task of the observer was to adjust the angle of the
chromatic rotation such that the painting produced the best subjective impression. For
the adjustment the observers used a joy-pad. No indication was given to the observers
about the effect of the adjustment, they just perceive a change of the colors of the
paintings. There was no time limit for each trial. Experiments were carried out in a
darkened room. In each session each painting was tested 3 times in a random order.
Each observer performed a total of 3 sessions.
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2.5 Observers

There were 7 normal observers all unware of the purpose of the experiment and with-
out previous knowledge of the paintings to be tested. They also did not have any for-
mal artistic education. Each had normal or corrected-to-normal acuity. Their color
vision was teste with Rayleigh anomaloscope (Oculus Heidelberg Multi Color), Cam-
bridge Colour Test[5], Ishihara plates and the Color Assessment and Diagnosis
Test[6]. The experiments were performed in accordance with the tenets of the Decla-
ration of Helsinki, and informed consent was obtained from all observers.

3 Results

Figure 3 shows the histogram of the responses for two of the paintings tested with
data pooled across observers. The histogram on the left corresponds to the painting
represented on the bottom right of Figure 1 and the histogram on the right to the
painting represented on the top left of the same figure. Figure 4 shows the histogram
of the responses of observers with data pooled across observers and paintings. The
horizontal axis represents the angular rotation of the adjustments in degree. The ver-
tical axis represents the number of times each angle was selected as producing the
best subjective impression. Bin size is 20°. In Figure 4 the solid line represents a
Gaussian fit to the data with a maximum at 10° and FWHW of 80°.

The data shows that observers have a clear common preference which is very close
(within about 10°) to the original composition. As they were unfamiliar with the
paintings and did not have any formal artistic education, the selection of colors may
be determined by some fundamental property of the visual system.
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Fig. 3. Histogram of observers’ responses based on data pooled across observers for two of the
paintings tested. The histogram on the left corresponds to the painting represented on the bottom
right of Figure 1 and the histogram on the right to the painting represented on the top left of Figure
1. The horizontal axis represents angular rotation and the vertical axis represents the number of
times each angle was selected as producing the best visual impression. Bin size is 20°.
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Fig. 4. Histogram of observers’ responses based on data pooled across observers and paintings.
The horizontal axis represents angular rotation and the vertical axis represents the number of
times each angle was selected as producing the best visual impression. Bin size is 20°. The
solid line represents a Gaussian fit to the data with a maximum at 10° and FWHW of 80°.

4 Discussion and Conclusions

In the psychophysical experiment described here observers adjusted the chromatic
composition of unfamiliar abstract paintings to obtain the best subjective visual im-
pression. The results show that they clearly prefer a chromatic composition very close
to the original.

The chromatic transformation selected to manipulate the colors of the paintings
was a rotation of the color volume around the axis through the average color of the
paintings. Although other kinds of global chromatic transformations could have been
selected this choice is convenient as it is simple to implement, provides a continuous
change of each color, avoids gamut problems like those posed by volume expansion-
compression and does not produce spatial artifacts like those posed by permuting the
colors of the palette.

What information are observers using to select a specific chromatic composition
for each painting that is unfamiliar? They could be using memory color based on
realistic elements of the paintings. The representations of real elements, e.g. windows,
guitar, face, among others, is so distorted in these painting that it is unlikely they can
be seen as chromatic references.
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Several studies have been exploring quantitatively the relationships between art-
works and the visual system [7] and, in particular, to what extent they reproduce
properties of natural scenes [8]. The properties of the paintings tested here do not
have evident similarities with natural scenes thus it is unlikely they underlie observ-
ers’ choices. In any case, the findings reported here suggest that some fundamental
property of vision is intuitively known by painters.
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