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Preface

Exascale supercomputers will deliver an unprecedented computing power of 1018

floating point operations per second through extreme parallelism likely achieved from
hybrid computer architectures. Software and scientific applications running on exascale
supercomputer face the challenge of effectively exploiting this computing power.
To address this challenge, many potentially disruptive changes are needed in software
and applications. The Exascale Applications and Software Conference (EASC) brings
together all developers and researchers involved in solving the software challenges
of the exascale era. This volume collected selected contributions from the second EASC
in Stockholm during April 2–3, 2014. The volume is intended for use by researchers and
students of computer science and computational physics. In particular, the volume is
very well suited for use by developers of parallel codes, new programming models, run-
time systems, and tools for petascale and exascale supercomputers.

This volume is organized into two parts. The first series of articles presents the new
developments and algorithms in large scientific applications from different scientific
domains, such as biochemistry, computational fluid dynamics, and neutronics. In
particular, these articles show how to exploit different levels of parallelism (vector
instructions, intra-node and inter-node levels) on hybrid supercomputers in the
molecular dynamics GROMACS and computational fluid dynamics Nek5000 codes.
Innovative algorithms for reducing memory storage in Monte Carlo methods for
neutronics and for improving the quality of sparse domain decomposition in lattice-
Boltzmann methods are presented. The second part of the volume presents advance-
ments in software development environments for exascale. The performance modeling
of the HPX-5 run-time system for the LULESH proxy application is presented and the
co-design work is explained. One article analyzes the effect of system noise on dis-
tributed applications at large scale. The new developments in the MUST MPI cor-
rectness checker and the VAMPIR performance monitoring tool are presented. Finally,
an article on the Vistle visualization tool for distributed environments concludes the
volume.

January 2015 Stefano Markidis
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Towards Exascale
Scientific Applications



Tackling Exascale Software Challenges
in Molecular Dynamics Simulations

with GROMACS

Szilárd Páll1, Mark James Abraham1, Carsten Kutzner2, Berk Hess1,
and Erik Lindahl1,3(B)

1 Department of Theoretical Biophysics, Science for Life Laboratory, KTH Royal
Institute of Technology, 17121 Solna, Sweden

erik.lindahl@scilifelab.se
2 Theoretical and Computational Biophysics Department, Max Planck Institute for

Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
3 Department of Biochemistry & Biophysics, Center for Biomembrane Research,

Stockholm University, 10691 Stockholm, Sweden

Abstract. GROMACS is a widely used package for biomolecular sim-
ulation, and over the last two decades it has evolved from small-scale
efficiency to advanced heterogeneous acceleration and multi-level paral-
lelism targeting some of the largest supercomputers in the world. Here,
we describe some of the ways we have been able to realize this through
the use of parallelization on all levels, combined with a constant focus on
absolute performance. Release 4.6 of GROMACS uses SIMD acceleration
on a wide range of architectures, GPU offloading acceleration, and both
OpenMP and MPI parallelism within and between nodes, respectively.
The recent work on acceleration made it necessary to revisit the fun-
damental algorithms of molecular simulation, including the concept of
neighborsearching, and we discuss the present and future challenges we
see for exascale simulation - in particular a very fine-grained task paral-
lelism. We also discuss the software management, code peer review and
continuous integration testing required for a project of this complexity.

1 Introduction

Molecular Dynamics simulation of biological macromolecules has evolved from a
narrow statistical-mechanics method into a widely applied biophysical research
tool that is used outside theoretical chemistry. Supercomputers are now as impor-
tant as centrifuges or test tubes in chemistry. However, this success also consid-
erably raises the bar for molecular simulation implementations - it is no longer
sufficient to reproduce experimental results or e.g. show proof-of-concept rel-
ative scaling. To justify the substantial supercomputing resources required by
many computational chemistry projects the most important focus today is sim-
ply absolute simulation performance and the scientific results achieved. Exascale

The authors ‘S. Páll and M.J. Abraham’ contributed equally.

c© Springer International Publishing Switzerland 2015
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4 S. Páll et al.

computing has potential to take simulation to new heights, but the combination
of challenges that face software preparing for deployment at the exascale to
deliver these results are unique in the history of software. The days of simply
buying new hardware with a faster clock rate and getting shorter times to solu-
tion with old software are gone. The days of running applications on a single
core are gone. The days of heterogeneous processor design to suit floating-point
computation are back again. The days of performance being bounded by the
time taken for floating-point computations are ending fast. The need to design
with multi-core and multi-node parallelization in mind at all points is here to
stay, which also means Amdahl’s law [3] is more relevant than ever.1

A particular challenge for biomolecular simulations is that the computational
problem size is fixed by the geometric size of the protein and the atomic-scale
resolution of the model physics. Most life science problems can be reduced to
this size (or smaller). It is possible to simulate much larger systems, but it is
typically not relevant. Second, the timescale of dynamics involving the entire
system increases much faster than the length scale, due to the requirement of
sampling the exponentially larger number of ensemble microstates. This means
that weak scaling is largely irrelevant for life science; to make use of increasing
amounts of computational resources to simulate these systems, we have to rely
either on strong-scaling software engineering techniques, or ensemble simulation
techniques.

The fundamental algorithm of molecular dynamics assigns positions and
velocities to every particle in the simulation system, and specifies the model
physics that governs the interactions between particles. The forces can then
be computed, which can be used to update the positions and velocities via
Newton’s second law, using a given finite time step. This numerical integra-
tion scheme is iterated a large number of times, and it generates a series of
samples from the thermodynamic ensemble defined by the model physics. From
these samples, observations can be made that confirm or predict experiment.
Typical model physics have many components to describe the different kinds
of bonded and non-bonded interactions that exist. The non-bonded interactions
between particles model behaviour like van der Waals forces, or Coulomb’s law.
The non-bonded interactions are the most expensive aspects of computing the
forces, and the subject of a very large amount of research, computation and
optimization.

Historically, the GROMACS molecular dynamics simulation suite has aimed
at being a general-purpose tool for studying biomolecular systems, such as shown
in Fig. 1. The development of the simulation engine focused heavily on maximiz-
ing single-core floating-point performance of its innermost compute kernels for
non-bonded interactions. These kernels typically compute the electrostatic and
van der Waals forces acting on each simulation particle from its interactions with
all other inside a given spherical boundary. These kernels were first written in C,

1 Amdahl’s law gives a model for the expected (and maximum) speedup of a program
when parallelized over multiple processors with respect to the serial version. It states
that the achievable speedup is limited by the sequential part of the program.
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then FORTRAN, and later optimized in assembly language, mostly for commod-
ity x86-family processors, because the data dependencies of the computations in
the kernels were too challenging for C or FORTRAN compilers (then or now).
The kernels were also specialized for interactions within and between water mole-
cules, because of the prevalence of such interactions in biomolecular simulations.
From one point-of-view, this extensive use of interaction-specific kernels can be
seen as a software equivalent of application-specific integrated circuits.

Recognizing the need to build upon this good work by coupling multiple
processors, GROMACS 4.0 [14] introduced a minimal-communication neutral
territory domain-decomposition (DD) algorithm, [7,8] with fully dynamic load
balancing. This spatial decomposition of the simulation volume created
high-level data parallelism that was effective for near-linear scaling of the com-
putation at around 400 atoms per core. The DD implementation required the
use of MPI for message-passing parallel constructs. However, the needs of many
simulation users can be met within a single node, [23] and in that context the
implementation overhead of MPI libraries was too high, not to mention it is
difficult to employ in distributed computing. In GROMACS 4.5, [20] we imple-
mented a multi-threaded MPI library with the necessary subset of the MPI
API. The library has both POSIX and Windows threads back-ends (hence called
thread-MPI) and uses highly efficient hardware-supported atomic and lock-free
synchronization primitives. This allows the existing DD implementation to work
across multiple cores of a single node without depending on any external MPI
library.

However, the fundamental limitation remained of a one-to-one mapping of
MPI ranks to cores, and to domains. On the one hand, there is always a limit to
how small a spatial domain can be, which will limit the number of domains the
simulation box can be decomposed into, which in turn limits the number of cores
that a parallelization with such a mapping can utilize. On the other hand, the
one-to-one domains to cores mapping is cache-friendly as it creates independent
data sets so that cores sharing caches can act without conflict, but the size of
the volume of data that must be communicated so that neighboring domains
act coherently grows rapidly with the number of domains. This approach is only
scalable for a fixed problem size if the latency of communication between all
cores is comparable and the communication book-keeping overhead grows only
linearly with the number of cores. Neither is true, because network latencies
are orders of magnitude higher than shared-cache latencies. This is clearly a
major problem for designing for the exascale, where many cores, many nodes
and non-uniform memory and communication latencies will be key attributes.

The other important aspect of the target simulations for designing for strong
scaling is treating the long-range components of the atomic interactions. Many
systems of interest are spatially heterogeneous on the nanometer scale (e.g. pro-
teins embedded in membranes and solvated in water), and the simulation arte-
facts caused by failing to treat the long-range effects are well known. The de
facto standard for treating the long-range electrostatic interactions has become
the smooth particle-mesh Ewald (PME) method, [12] whose cost for N atoms
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Fig. 1. A typical GROMACS simulation system, featuring the ligand-gated ion-channel
membrane protein GLIC (colored), embedded in a lipid membrane (grey). The whole
system is solvated in water (not shown), giving a total of around 145,000 atoms. Image
created with VMD [15] (Colour figure online).

scales as N log(N). A straightforward implementation where each rank of a par-
allel computation participates in an equivalent way leads to a 3D Fast Fourier
Transform (FFT) that communicates globally. This communication quickly lim-
its the strong scaling. To mitigate this, GROMACS 4.0 introduced a multiple-
program multiple-data (MPMD) implementation that dedicates some ranks to
the FFT part; now only those ranks do all-to-all FFT communication.
GROMACS 4.5 improved further by using a 2D pencil decomposition [11,16] in
reciprocal space, within the same MPMD implementation. This coarse-grained
task parallelism works well on machines with homogeneous hardware, but it is
harder to port to accelerators or combine with RDMA constructs.

The transformation of GROMACS needed to perform well on exascale-level
parallel hardware began after GROMACS 4.5. This requires radical algorithm
changes, and better use of parallelization constructs from the ground up, not as
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an afterthought. More hands are required to steer the project, and yet the old
functionality written before their time must generally be preserved. Computer
architectures are evolving rapidly, and no single developer can know the details
of all of them. In the following sections we describe how we are addressing some
of these challenges, and our ongoing plans for addressing others.

2 Handling Exascale Software Challenges: Algorithms
and Parallelization Schemes

2.1 Multi-level Parallelism

Modern computer hardware is not only parallel, but exposes multiple levels of
parallelism depending on the type and speed of data access and communication
capabilities across different compute elements. For a modern superscalar CPU
such as Intel Haswell, even a single core is equipped with 8 different execution
ports, and it is not even possible to buy a single-core chip. Add hardware threads,
complex communication crossbars, memory hierarchies, and caches larger than
hard disks from the 1990s. This results in a complex hierarchical organization
of compute and communication/network elements from SIMD units and caches
to network topologies, each level in the hierarchy requiring a different type of
software parallelization for efficient use. HPC codes have traditionally focused on
only two levels of parallelism: intra-node and inter-node. Such codes typically rely
solely on MPI parallelization to target parallelism on multiple levels: both intra-
socket, intra-node, and inter-node. This approach had obvious advantages before
the multi-core and heterogeneous computing era when improvements came from
CPU frequency scaling and evolution of interconnect. However, nowadays most
scientific problems require complex parallel software architecture to be able use
petaflop hardware efficiently and going toward exascale this is becoming a neces-
sity. This is particularly true for molecular dynamics which requires reducing the
wall-time per iteration to improve simulation performance.

On the lowest level, processors typically contain SIMD (single instruction
multiple data) units which offer fine-grained data-parallelism through silicon
dedicated to executing a limited set of instructions on multiple, currently typically
4–16, data elements simultaneously. Exploiting this low-level and fine-grained par-
allelism has become crucial for achieving high performance, especially with new
architectures like AVX and Intel MIC supporting wide SIMD. One level higher,
multi-core CPUs have become the standard and several architectures support mul-
tiple hardware threads per core. Hence, typical multi-socket SMP machines come
with dozens of cores capable of running 2–4 threads each (through simultaneous
multi-threading, SMT, support). Simply running multiple processes (MPI ranks)
on each core or hardware thread is typically less efficient than multi-threading.
Achieving strong scaling in molecular dynamics requires efficient use of the cache
hierarchy, which makes the picture even more complex. On the other hand, a chip
cannot be considered a homogeneous cluster either. Accelerator coprocessors like
GPUs or Intel MIC, often referred to as many-core, add another layer of com-
plexity to the intra-node parallelism. These require fine-grained parallelism and
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carefully tuned data access patterns, as well as special programming models. Cur-
rent accelerator architectures like GPUs also add another layer of interconnect in
form of PCIe bus (Peripheral Component Interconnect Express) as well as a sep-
arate main memory. This means that data movement across the PCIe link often
limits overall throughput. Integration of traditional latency-oriented CPU cores
with throughput-oriented cores like those in GPUs or MIC accelerators is ongo-
ing, but the cost of data movement between the different units will at least for the
foreseeable future be a factor that needs to be optimized for.

Typical HPC hardware exhibits non-uniform memory access (NUMA) behav-
ior on the node level: accessing data from different CPUs or cores of CPUs
has a non-uniform cost. We started multithreading trials quite early with the
idea of easily achieving load balancing, but the simultaneous introduction of
NUMA suddenly meant a processor resembled a cluster internally. Indiscrim-
inately accessing memory across NUMA nodes will frequently lead to perfor-
mance that is lower than for MPI. Moreover, the NUMA behavior extends to
other compute and communication components: the cost of communicating with
an accelerator or through a network interface typically depends on the intra-node
bus topology and requires special attention. On the top level, the interconnect
links together compute nodes into a network topology. A side-effect of the multi-
core evolution is that, while the network capacity (latency and bandwidth) per
compute node has improved, the typical number of CPU cores they serve has
increased faster; the capacity available per core has decreased substantially.

In order to exploit the capabilities of each level of hardware parallelism,
a performance-oriented application needs to consider multiple levels of paral-
lelism: SIMD parallelism for maximizing single-core/thread performance; multi-
threading to exploit advantages of multi-core and SMT (e.g. fast data sharing);
inter-node communication-based parallelism (e.g. message passing with MPI);
and heterogeneous parallelism by utilizing both CPUs and accelerators like GPUs.

Driven by this evolution of hardware, we have initiated a re-redesign of
the parallelization in GROMACS. In particular, recent efforts have focused on
improvements targeting all levels of parallelization: new algorithms for wide
SIMD and accelerator architectures, a portable and extensible SIMD paral-
lelization framework, efficient multi-threading throughout the entire code, and
an asynchronous offload-model for accelerators. The resulting multi-level paral-
lelization scheme implemented in GROMACS 4.6 is illustrated in Fig. 2. In the
following sections, we will give an overview of these improvements, highlighting
the advances they provide in terms of making efficient use of current petascale
hardware, as well as in paving the road towards exascale computing.

2.2 SIMD Parallelism

All modern CPU and GPU architectures use SIMD-like instructions to achieve
high flop rates. Any computational code that aims for high performance will
have to make use of SIMD. For very regular work, such as matrix-vector multi-
plications, the compiler can generate good SIMD code, although manually tuned
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vendor libraries typically do even better. But for irregular work, such as short-
range particle-particle non-bonded interactions, the compiler usually fails since
it cannot control data structures. If you think your compiler is really good at
optimizing, it can be an eye-opening experience to look at the raw assembly
instructions actually generated. In GROMACS, this was reluctantly recognized
a decade ago and SSE and Altivec SIMD kernels were written manually in assem-
bly. These kernels were, and still are, extremely efficient for interactions involving
water molecules, but other interactions do not parallelize well with SIMD using
the standard approach of unrolling a particle-based Verlet-list [25].

It is clear that a different approach is needed in order to use wide SIMD exe-
cution units like AVX or GPUs. We developed a novel approach, where particles
are grouped into spatial clusters containing fixed number of particles [17]. First,
the particles are placed on a grid in the x and y dimensions, and then binned
in the z dimension. This efficiently groups particles that are close in space, and
permits the construction of a list of clusters, each containing exactly M particles.
A list is then constructed of all those cluster pairs containing particles that may

Fig. 2. Illustration of multi-level parallelism in GROMACS 4.6. This exploits sev-
eral kinds of fine-grained data parallelism, a multiple-program multiple-data (MPMD)
decomposition separating the short-range particle-particle (PP) and long-range Parti-
cle Mesh Ewald (PME) force calculation algorithms, coarse-grained data parallelism
with domain-decomposition (DD) over MPI ranks (implemented either on single-node
workstations or compute clusters), and ensembles of related simulations scheduled e.g.
by a distributed computing controller.
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be close enough to interact. This list of pairs of interacting clusters is reused over
multiple successive evaluations of the non-bonded forces. The list is constructed
with a buffer to prevent particle diffusion corrupting the implementation of the
model physics.

The kernels that implement the computation of the interactions between two
clusters i and j use SIMD load instructions to fill vector registers with copies
of the positions of all M particles in i. The loop over the N particles in j
is unrolled according to the SIMD width of the CPU. Inside this loop, SIMD
load instructions fill vector registers with positions of all N particles from the
j cluster. This permits the computation of N interactions between an i and all
j particles simultaneously, and the computation of M × N interactions in the
inner loop without needing to load particle data. With wide SIMD units it is
efficient to process more than one j cluster at a time.

M , N and the number of j clusters to process can be adjusted to suit the
underlying characteristics of the hardware. Using M = 1 and N = 1 recovers the
original Verlet-list algorithm. On CPUs, GROMACS uses M = 4 and N = 2,
4 or 8, depending on the SIMD width. On NVIDIA GPUs, we use M = 8 and
N = 4 to calculate 32 interactions at once with 32 hardware threads executing in
lock-step. To further improve the ratio of arithmetic to memory operations when
using GPUs, we add another level of hierarchy by grouping 8 clusters together.
Thus we store 64 particles in shared memory and calculate interactions with
about half of these for every particle in the cluster-pair list.

The kernel implementations reach about 50 % of the peak flop rate on all
supported hardware, which is very high for MD. This comes at the cost of calcu-
lating about twice as many interactions as required; not all particle pairs in all
cluster pairs will be within the cut-off at each time step, so many interactions are
computed that are known to produce a zero result. The extra zero interactions
can actually be put to use as an effective additional pair list buffer addition-
ally to the standard Verlet list buffer. As we have shown here, this scheme is
flexible, since N and M can be adapted to current and future hardware. Most
algorithms and optimization tricks that have been developed for particle-based
pair lists can be reused for the cluster-pair list, although many will not improve
the performance.

The current implementation of the cluster-based non-bonded algorithm alre-
ady supports a wide range of SIMD instruction sets and accelerator architectures:
SSE2, SSE4.1, AVX (256-bit and 128-bit with FMA), AVX2, BG/Q QPX, Intel
MIC (LRBni), NVIDIA CUDA. An implementation on a field-programmable
gate array (FPGA) architecture is in progress.

Multi-threaded Parallelism.

Before GROMACS 4.6, we relied mostly on MPI for both inter-node and intra-
node parallelization over CPU cores. For MD this has worked well, since there is
little data to communicate and at medium to high parallelization all data fits in
L2 cache. Our initial plans were to only support OpenMP parallelization in the
separate Particle Mesh Ewald (PME) MPI ranks. The reason for using OpenMP
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in PME was to reduce the number of MPI ranks involved in the costly collective
communication for the FFT grid transpose. This 3D-FFT is the only part of
the code that involves global data dependencies. Although this indeed greatly
reduced the MPI communication cost, it also introduced significant overhead.

GROMACS 4.6 was designed to use OpenMP in all compute-intensive parts
of the MD algorithm.2 Most of the algorithms are straightforward to parallelize
using OpenMP. These scale very well, as Fig. 3 shows. Cache-intensive parts of
the code like performing domain decomposition, or integrating the forces and
velocities show slightly worse scaling. Moreover, the scaling in these parts tends
to deteriorate with increasing number of threads in an MPI rank – especially
with large number of threads in a rank, and when teams of OpenMP threads
cross NUMA boundaries. When simulating at high ratios of cores/particles, each
MD step can take as little as a microsecond. There are many OpenMP barriers
used in the many code paths that are parallelized with OpenMP, each of which
takes a few microseconds, which can be costly.

Accordingly, the hybrid MPI + OpenMP parallelization is often slower than
an MPI-only scheme as Fig. 3 illustrates. Since PP (particle-particle) ranks only
do low-volume local communication, the reduction in MPI communication from
using the hybrid scheme is apparent only at high parallelization. There, MPI-only
parallelization (e.g. as in GROMACS 4.5) puts a hard upper limit on the number
of cores that can be used, due to algorithmic limits on the spatial domain size, or
the need to communicate with more than one nearest neighbor. With the hybrid
scheme, more cores can operate on the same spatial domain assigned to an MPI
rank, and there is no longer a hard limit on the parallelization. Strong scaling
curves now extend much further, with a more gradual loss of parallel efficiency.
An example is given in Fig. 4, which shows a membrane protein system scaling
to twice as many cores with hybrid parallelization and reach double the peak
performance of GROMACS 4.5. In some cases, OpenMP-only parallelization can
be much faster than MPI-only parallelization if the load for each stage of the
force computation can be balanced individually. A typical example is a solute in
solvent, where the solute has bonded interactions but the solvent does not. With
OpenMP, the bonded interactions can be distributed equally over all threads in
a straightforward manner.

Heterogeneous Parallelization.

Heterogeneous architectures combine multiple types of processing units, typically
latency- and throughput-oriented cores – most often CPUs and accelerators like
GPUs, Intel MIC, or FPGAs. Many-core accelerator architectures have been
become increasingly popular in technical and scientific computing mainly due to
their impressive raw floating point performance. However, in order to efficiently
utilize these architectures, a very high level of fine-grained parallelism is required.

2 At the time of that decision, sharing a GPU among multiple MPI ranks was inef-
ficient, so the only efficient way to use multiple cores in a node was with OpenMP
within a rank. This constraint has since been relaxed.



12 S. Páll et al.

The massively parallel nature of accelerators, in particular GPUs, is both an
advantage as well as a burden on the programmer. Since not all tasks are well
suited for execution on the accelerators this often leads to additional challenges
for workload distribution and load balancing. Moreover, current heterogeneous
architectures typically use a slow PCIe bus to connect the hardware elements
like CPUs and GPUs and move data between the separate global memory of
each. This means that explicit data management is required. This adds a further
latency overhead to challenge algorithms like MD that already face this as a
parallelization bottle-neck.

GPU accelerators were first supported experimentally in GROMACS with
the OpenMM library, [10] which was used as a black box to execute the entire
simulation on the GPU. This meant that only a fraction of the diverse set of
GROMACS algorithms were supported and simulations were limited to single-
GPU use. Additionally, while OpenMM offered good performance for implicit-
solvent models, the more common type of runs showed little speedup (and in

Fig. 3. Comparison of single-node simulation performance using MPI, OpenMP, and
combined MPI+OpenMP parallelization. The OpenMP multi-threading (blue) achieves
the highest performance and near linear scaling up to 8 threads. It only deteriorates
when threads on OpenMP regions need to communicate across the system bus. In
contrast, the MPI-only runs (red) that require less communication scale well across
sockets. Combining MPI and OpenMP parallelization with two ranks and varying the
number of threads (green) results in worse performance due to the added overhead of
the two parallelization schemes. Simulations were carried out on a dual-socket node
with 8-core Intel Xeon E5-2690 (2.9 GHz Sandy Bridge). Input system: RNAse protein
solvated in a rectangular box, 24k atoms, PME electrostatics, 0.9 nm cut-off (Colour
figure online).
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Fig. 4. Improvements in strong scaling performance since GROMACS 4.5, using the
M×N kernels and OpenMP parallelization in GROMACS 4.6. The plot shows simula-
tion performance in ns/day for different software versions and parallelization schemes.
Performance with one core per MPI rank is shown for GROMACS 4.5 (purple) and 4.6
(black). Performance with GROMACS 4.6 is shown using two (red) and four (green)
cores per MPI rank using OpenMP threading within each MPI rank. Simulations were
carried out on the Triolith cluster at NSC, using two 8-core Intel E5-2660 (2.2 GHz
Sandy Bridge) processors per node and FDR Infiniband network. The test system
is the GLIC membrane protein shown in Fig. 1 (144,000 atoms, PME electrostatics.)
(Colour figure online).

some cases slowdown) over the fast performance on multi-core CPUs, thanks to
the highly tuned SIMD assembly kernels.

With this experience, we set out to provide native GPU support in GROMACS
4.6 with a few important design principles in mind. Building on the observation
that highly optimized CPU code is hard to beat, our goal was to ensure that all
compute resources available, both CPU and accelerators, are utilized to the great-
est extent possible. We also wanted to ensure that our heterogeneous GPU accel-
eration supported most existing features of GROMACS in a single code base to
avoid having to reimplement major parts of the code for GPU-only execution.
This means that the most suitable parallelization is the offload model, which other
MD codes have also employed successfully [9,18]. As Fig. 5 illustrates, we aim to
execute the compute-intensive short-range non-bonded force calculation on GPU
accelerators, while the CPU computes bonded and long-range electrostatics
forces, because the latter are communication intensive.
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The newly designed future-proof SIMD-oriented algorithm for evaluating
non-bonded interactions with accelerator architectures in mind has been dis-
cussed already. It is highly efficient at expressing the fine-grained parallelism
present in the pair-force calculation. Additionally, the atom cluster-based app-
roach is designed for data reuse which is further emphasized by the super-cluster
grouping. As a result, our CUDA implementation is characterized by a high ratio
of arithmetic to memory operations which allows avoiding memory bottlenecks.
These algorithmic design choices and the extensive performance tuning led to
strongly instruction-latency bound CUDA non-bonded kernels, in contrast to
most traditional particle-based GPU algorithms which are reported to be mem-
ory bound [4,9]. Our CUDA GPU kernels also scale well, reaching peak pair-force
throughput already around 20,000 particles per GPU.

In contrast to typical data-parallel programming for homogeneous CPU-only
machines, heterogeneous architectures require additional code to manage task
scheduling and concurrent execution on the different compute elements, CPU
cores and GPUs in the present case. This is a complex component of our het-
erogeneous parallelization which implements the data- and control-flow with the
main goal of maximizing the utilization of both CPU and GPU by ensuring
optimal CPU-GPU execution overlap.

We combine a set of CPU cores running OpenMP threads with a GPU.
As shown in Fig. 5, the pair-lists required for the non-bonded computation are
prepared on the CPU and transferred to the GPU where a pruning step is carried
out after which the lists are reused for up to 100 iterations. The extreme floating-
point power of GPUs makes it feasible to use the much larger buffers required for
this. The transfer of coordinates, charges, and forces as well as compute kernels
are launched asynchronously as soon as data becomes available on the CPU.
This ensures overlap of CPU and GPU computation. Additional effort has gone
into maximizing overlap by reducing the wall-time of CPU-side non-overlapping
program parts through SIMD parallelization (in pair search and constraints)
and efficient multi-threaded algorithms allowing GROMACS to achieve a typical
CPU-GPU overlap of 60–80 %.

This scheme naturally extends to multiple GPUs by using the existing effi-
cient neutral territory domain-decomposition implemented using MPI paral-
lelization. By default, we assign computation on each domain to a single GPU
and a set of CPU cores. This typically means decomposing the system into as
many domains as GPUs used, and running as many MPI ranks per node as
GPUs in the node. However, this will often require to run a large number of
OpenMP threads in a rank (8–16 or even more with a single GPU per node),
potentially spanning across multiple NUMA domains. As explained in the pre-
vious section, this will lead to suboptimal multi-threaded scaling – especially
affecting cache-intensive algorithms outside the CPU-GPU overlap region. To
avoid this, multiple MPI ranks can share a GPU, which reduces the number of
OpenMP threads per rank.

The heterogeneous acceleration in GROMACS delivers 3-4x speedup when
comparing CPU only with CPU-GPU runs. Moreover, advanced features like
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arbitrary simulation box shapes and virtual interaction sites are all supported
(Fig. 6). Even though the overhead of managing an accelerator is non-negligible,
GROMACS 4.6 shows great strong scaling in GPU accelerated runs reaching
126 atoms/core (1260 atoms/GPU) on common simulation systems (Fig. 7).

Based on a similar parallelization design, the upcoming GROMACS version
will also support the Intel MIC accelerator architecture. Intel MIC supports
native execution of standard MPI codes using the so-called symmetric mode,
where the card is essentially treated as a general-purpose multi-core node. How-
ever, as MIC is a highly parallel architecture requiring fine-grained parallelism,
many parts of typical MPI codes will be inefficient on these processors. Hence,
efficient utilization of Xeon Phi devices in molecular dynamics – especially with
typical bio-molecular simulations and strong-scaling in mind – is only possible
by treating them as accelerators. Similarly to GPUs, this means a parallelization
scheme based on offloading only those tasks that are suitable for wide SIMD and
highly thread-parallel execution to MIC.

2.3 Ensemble Simulations

The performance and scaling advances in GROMACS (and many other pro-
grams) have made it efficient to run simulations that simply were too large only
a few years ago. However, infrastructures such as the European PRACE provide
access only to problems that scale to thousands of cores. This used to be an
impossible barrier for biomolecular dynamics on anything but ridiculously large
systems when an implementation could only run well with hundreds of parti-
cles per core. Scaling has improved, but the number of computational units in
supercomputers is growing even faster. There are now multiple machines in the
world that reach roughly a million cores. Under ideal conditions, GROMACS
can scale to levels where each PP rank handles 40 atoms, but there are few if
any concrete biological problems that require 40 million atoms without corre-
sponding increases in the number of samples generated. Even in the theoretical
case where we could improve scaling to the point where each core only contains
a single atom, the simulation system would still be almost an order of magnitude
larger than the example in Fig. 1.

To adapt to this reality, researchers are increasingly using large ensembles of
simulations, either to simply sample better, or new algorithms such as replica
exchange simulation, [24] Markov state models, [22] or milestoning [13] that
analyze and exchange data between multiple simulations to improve overall
sampling. In many cases, this achieves as much as two-fold superscaling, i.e.,
an ensemble of 100 simulations running on 10 nodes each might provide the
same sampling efficiency as a single simulation running on 2000 cores. To auto-
mate this, GROMACS has been co-developed with a new framework for Parallel
Adaptive Molecular Dynamics called Copernicus [19]. Given a set of input struc-
tures and sampling settings, this framework automatically starts a first batch
of sampling runs, makes sure all simulations complete (with extensive support
for checkpointing and restarting of failed runs), and automatically performs the
adaptive step data analysis to decide what new simulations to start in a sec-
ond generation. The current ensemble sampling algorithms scale to hundreds
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Fig. 5. GROMACS heterogeneous parallelization using both CPU and GPU resources
during each simulation time-step. The compute-heavy non-bonded interactions are
offloaded to the GPU, while the CPU is responsible for domain-decomposition book-
keeping, bonded force calculation, and lattice summation algorithms. The diagram
shows tasks carried out during a GPU-accelerated normal MD step (black arrows) as
well as a step which includes the additional pair-search and domain-decomposition
tasks are carried out (blue arrows). The latter, as shown above in blue, also includes
an additional transfer, and the subsequent pruning of the pair list as part of the non-
bonded kernel (Colour figure online).
Source: http://dx.doi.org/10.6084/m9.figshare.971161. Reused under CC-BY; retriev-
ed 22:15, March 23, 2014 (GMT).

http://dx.doi.org/10.6084/m9.figshare.971161
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Fig. 6. An important feature of the current heterogeneous GROMACS GPU implemen-
tation is that it works, and works efficiently, in combination with most other features of
the software. GPU simulations can employ domain decomposition, non-standard boxes,
pressure scaling, and virtual interaction sites to significantly improve the absolute sim-
ulation performance compared to the baseline. Simulation system: RNAse protein sol-
vated in rectangular (24 K atoms) and rhombic dodecahedron (16.8 k atoms) box, PME
electrostatics, cut-off 0.9 nm. Hardware: 2x Intel Xeon E5650 (2.67 GHz Westmere), 2x
NVIDIA Tesla C2070 (Fermi) GPU accelerators.

or thousands of parallel simulations (each using up to thousands of cores even
for small systems). For the first time in many years, molecular dynamics might
actually be able to use all the cores available on next-generation supercomputers
rather than constantly being a generation or two behind.

2.4 Multi-level Load Balancing

Achieving strong scaling to a higher core count for a fixed-size problem requires
careful consideration of load balance. The advantage provided by spatial DD is
one of data locality and reuse, but if the distribution of computational work is not
homogeneous then more care is needed. A typical membrane protein simulation
is dominated by

• water, which is usually treated with a rigid 3-point model,
• a lipid membrane, whose alkyl tails are modeled by particles with zero partial

charge and bonds of constrained length, and
• a protein, which is modeled with a backbone of fixed-length bonds that require

a lengthy series of constraint calculations, as well as partial charge on all
particles.
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Fig. 7. Strong scaling of GROMACS 4.6 on the HYDRA heterogeneous GPU-equipped
machine in Garching, Germany. Grey lines indicate linear scaling. The hybrid version
of GROMACS scales very well and achieves impressive absolute performance for both
small and large systems. For the smaller systems, peak performance is achieved with
150 atoms per core, and the larger systems achieve sustained effective flop rate of
0.2 petaflops (only counting the number of useful floating-point operations, not the
total). Simulation systems: typical production systems of 81 k atoms (circles), 2 M
atoms (stars), and 12 M atoms (triangles) in size. Hardware (per node): 2 10-core Xeon
E5-2680v2 (2.8 GHz Ivy Bridge), 2 NVIDIA K20X, InfiniBand FDR14 (4×14 Gb/s)
network.

These problems are well known, and are addressed in the GROMACS DD
scheme via automatic dynamic load balancing that distributes the spatial vol-
umes unevenly according to the observed imbalance in compute load. This app-
roach has limitations because it works at the level of DD domains that must map
to MPI ranks, so cores within the same node or socket have unnecessary copies
of the same data. We have not yet succeeded in developing a highly effective
intra-rank decomposition of work to multiple cores. We hope to address this via
intra-node or intra-socket task parallelism.

One advantage of the PME algorithm as implemented in GROMACS is that it
is possible to shift the computational workload between the real- and reciprocal-
space parts of the algorithm at will. This makes it possible to write code that
can run optimally at different settings on different kinds of hardware. The per-
formance of the compute, communication and bookkeeping parts of the overall
algorithm vary greatly with the characteristics of the hardware that implements
it, and with the properties of the simulation system studied. For example,
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shifting compute work from reciprocal to real space to make better use of an
idle GPU increases the volume that must be communicated during DD, while
lowering the required communication volume during the 3D FFTs. Evaluating
how best to manage these compromises can only happen at runtime.

The MPMD version of PME is intended to reduce the overall communication
cost on typical switched networks by minimizing the number of ranks partici-
pating in the 3D FFTs. This requires generating a mapping between PME and
non-PME ranks and scheduling data transfer to and from them. However, on
hardware with relatively efficient implementations of global communication, it
can be advantageous to prefer the SPMD implementation because it has more
regular communication patterns [2]. The same may be true on architectures with
accelerators, because the MPMD implementation makes no use of the accelera-
tors on the PME ranks. The performance of both implementations is limited by
lack of overlap of communication and computation.

Attempts to use low-latency partitioned global address space (PGAS) meth-
ods that require single-program multiple-data (SPMD) approaches are particu-
larly challenged, because the gain from any decrease in communication latency
must also overcome the overall increase in communication that accompanies the
MPMD-to-SPMD transition [21]. The advent of implementations of non-blocking
collective (NBC) MPI routines is promising if computation can be found to over-
lap with the background communication. The most straightforward approach
would be to revert to SPMD and hope that the increase in total communica-
tion cost is offset by the gain in available compute time, however, the available
performance is still bounded by the overall cost of the global communication.
Finding compute to overlap with the NBC on the MPMD PME ranks is likely
to deliver better results. Permitting PME ranks to execute kernels for bonded
and/or non-bonded interactions from their associated non-PME ranks is the
most straightforward way to achieve this overlap. This is particularly true at the
scaling limit, where the presence of bonded interactions is one of the primary
problems in balancing the compute load between the non-PME ranks.

The introduction of automatic ensemble computing introduces another
layer of decomposition, by which we essentially achieve MSMPMD parallelism:
Multiple-simulation (ensemble), multiple-program (direct/lattice space), and
multiple-data (domain decomposition).

2.5 Managing the Long-Range Contributions at Exascale

A promising candidate for exascale-level biomolecular simulations is the use of
suitable implementations of fast-multipole methods such as ExaFMM [6,27]. At
least one implementation of FMM-based molecular dynamics running on 100,000
cores has been reported, [5] but so far the throughput on problems of comparable
size is only equivalent to the best PME-based implementations. FMM-based
algorithms can deliver linear scaling of communication and computation with
both the number of MPI ranks and the number of particles. This linear scaling
is expected to be an advantage when increasing the number of processing units
in the exascale era. Early tests showed that the iteration times of ExaFMM
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doing only long-range work and GROMACS 4.6 doing only short-range work
on homogeneous systems of the same size were comparable, so we hope we can
deploy a working version in the future.

2.6 Fine-Grained Task Parallelism for Exascale

We plan to address some of the exascale-level strong-scaling problems men-
tioned above through the use of a more fine-grained task parallelism than what
is currently possible in GROMACS. Considerable technical challenges remain to
convert OpenMP-based data-parallel loop constructs into series of tasks that
are coarse enough to avoid spending lots of time scheduling work, and yet fine
enough to balance the overall load. Our initial plan is to experiment with the
cross-platform Thread Building Blocks (TBB) library, [1] which can coexist with
OpenMP and deploy equivalent loop constructs in the early phases of develop-
ment. Many alternatives exist; those that require the use of custom compil-
ers, runtime environments, or language extensions are unattractive because that
increases the number of combinations of algorithm implementations that must
be maintained and tested, and compromises the high portability enjoyed by
GROMACS.

One particular problem that might be alleviated with fine-grained task paral-
lelism is reducing the cost of the communication required during the integration
phase. Polymers such as protein backbones are modeled with fixed-length bonds,
with at least two bonds per particle, which leads to coupled constraints that
domain decomposition spreads over multiple ranks. Iterating to satisfy those
constraints can be a costly part of the algorithm at high parallelism. Because
the spatial regions that contain bonded interactions are distributed over many
ranks, and the constraint computations cannot begin until after all the forces
for their atoms have been computed, the current implementation waits for all
forces on all ranks to be computed before starting the integration phase. The
performance of post-integration constraint-satisfaction phase is bounded by the
latency for the multiple communication stages required. This means that ranks
that lack atoms with coupled bonded interactions, such as all those with only
water molecules, literally have nothing to do at this stage. In an ideal imple-
mentation, such ranks could contribute very early in each iteration to complete
all the tasks needed for the forces for the atoms involved in coupled bond con-
straints. Integration for those atoms could take place while forces for interactions
between unrelated atoms are being computed, so that there is computation to
do on all nodes while the communication for the constraint iteration takes place.
This kind of implementation would require considerably more flexibility in the
book-keeping and execution model, which is simply not present today.
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3 Handling Exascale Software Challenges:
Process and Infrastructure

3.1 Transition from C to C++98

The major part of the GROMACS code base has been around 1–1.5 million
lines of C code since version 4.0 (http://www.ohloh.net/p/gromacs). Ideally,
software engineering on such moderately large multi-purpose code bases would
take place within the context of effective abstractions [26]. For example, someone
developing a new integration algorithm should not need to pay any attention to
whether the parallelization is implemented by constructs from a threading library
(like POSIX threads), a compiler-provided threading layer (like OpenMP), an
external message-passing library (like MPI), or remote direct memory access
(like SHMEM). Equally, she/he should not need to know whether the kernels
that compute the forces they are using as inputs are running on any particular
kind of accelerator or CPU. Implementing such abstractions generally costs some
developer time, and some compute time. These are necessary evils if the software
is to be able to change as new hardware, new algorithms or new implementations
emerge.

Considerable progress has been made in modularizing some aspects of the
code base to provide effective abstraction layers. For example, once the main
MD iteration loop has begun, the programmer does not need to know whether
the MPI layer is provided by an external library because the computation is
taking place on multiple nodes, or the internal thread-based implementation is
working to parallelize the computation on a single node. Portable abstract atomic
operations have been available as a side-effect of the thread-MPI development.
Integrators receive vectors of positions, velocities and forces without needing
to know the details of the kernels that computed the forces. The dozens of
non-bonded kernels can make portable SIMD function calls that compile to the
correct hardware operations automatically.

However, the size of the top-level function that implements the loop over time
steps has remained at about 1800 code and comment lines since 4.0. It remains
riddled with special-case conditions, comments, and function calls for differ-
ent parallelization conditions, integration algorithms, optimization constructs,
housekeeping for communication and output, and ensemble algorithms. The
function that computes the forces is even worse, now that both the old and
new non-bonded kernel infrastructures are supported! The code complexity is
necessary for a general-purpose multi-architecture tool like GROMACS. How-
ever, needing to be aware of dozens of irrelevant possibilities is a heavy barrier
to participation in the project, because it is very difficult to understand all side
effects of a change.

To address this, we are in the process of a transition from C99 to C++98
for much of this high-level control code. While we remain alert to the possibility
that HPC compilers will not be as effective at compiling C++98 as they are
for C99, the impact on execution time of most of this code is negligible and the
impact on developer time is considerable.

http://www.ohloh.net/p/gromacs
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Our expectation is that the use of virtual function dispatch will eliminate
much of the complexity of understanding conditional code (including switch
statements over enumerations that must be updated in widely scattered parts of
the code), despite a slightly slower implementation of the actual function call.
After all, GROMACS has long used a custom vtable-like implementation for run-
time dispatch of the non-bonded interaction kernels. Objects managing resources
via RAII exploiting compiler-generated destructor calls for doing the right thing
will lead to shorter development times and fewer problems because developers
have to manage fewer things. Templated container types will help alleviate the
burden of manual memory allocation and deallocation. Existing C++ testing
and mocking libraries will simplify the process of developing adequate testing
infrastructure, and existing task-parallelism support libraries such as Intel TBB
[1] will be beneficial.

It is true that some of these objectives could be met by re-writing in more
objected-oriented C, but the prospect of off-loading some tedious tasks to the
compiler is attractive.

3.2 Best Practices in Open-Source Scientific Software Development

Version control is widely considered necessary for successful software devel-
opment. GROMACS used CVS in its early days and now uses Git (git clone
git://git.gromacs.org/gromacs.git). The ability to trace when behavior changed
and find some metadata about why it might have changed is supremely valuable.

Coordinating the information about desires of users and developers, known
problems, and progress with current work is an ongoing task that is difficult
with a development team scattered around the world and thousands of users
who rarely meet. GROMACS uses the Redmine issue-tracking system3 to dis-
cuss feature development, report and discuss bugs, and to monitor intended and
actual progress towards milestones. Commits in the git repository are expected to
reference Redmine issues where appropriate, which generates automatic HTML
cross-references to save people time finding information.

Peer review of scientific research is the accepted gold standard of quality
because of the need for specialist understanding to fully appreciate, value, criti-
cize and improve the work. Software development on projects like GROMACS is
comparably complex, and our experience has been that peer review has worked
well there. Specifically, all proposed changes to GROMACS – even from the core
authors – must go through our Gerrit code-review website4, and receive positive
reviews from at least two other developers of suitable experience, before they
can be merged. User- and developer-level documentation must be part of the
same change. Requiring this review to happen before acceptance has eliminated
many problems before they could be felt. It also creates social pressure for peo-
ple to be active in reviewing others’ code, lest they have no karma with which
to get their own proposals reviewed. As features are implemented or bugs fixed,

3 http://redmine.gromacs.org.
4 http://gerrit.gromacs.org.

http://redmine.gromacs.org
http://gerrit.gromacs.org
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corresponding Redmine issues are automatically updated. Gerrit also provides
a common venue for developers to share work in progress, either privately or
publicly.

Testing is one of the least favourite activities of programmers, who would
much rather continue being creative in solving new problems. The standard pro-
cedure in software engineering is to deploy continuous integration, where each
new or proposed change is subjected to a range of automatic tests. In the GRO-
MACS project, we use Jenkins5 to build the project on a wide range of oper-
ating systems (MacOS, Windows, flavours of Linux), compilers (GNU, Intel,
Microsoft, clang; and several versions of each), and build configurations (MPI,
thread-MPI, OpenMP, different kinds of SIMD), and then automatically test
the results for correctness. This immediately finds problems such as program-
mers using POSIX constructs that are not implemented on Windows. Most of
our tests detect regressions, where a change in the code leads to an unintended
change in behavior. Unfortunately, many of these tests are still structured around
executing a whole MD process, which makes it difficult to track down where a
problem has occurred, unless the code change is tightly focused. This moti-
vates the discipline of proposing changes that only have one logical effect, and
working towards adding module-level testing. New behaviors are expected to be
integrated alongside tests of that behavior, so that we continue to build upon
the test infrastructure for the future. All tests are required to pass before code
changes can be merged.

Testing regularly for changes in execution speed is an unsolved problem that
is particularly important for monitoring our exascale software developments. It
is less suited for deployment via continuous integration, because of the quantity
of computation required to test the throughput of code like GROMACS with
proper load-balancing, at-scale, and on a range of hardware and input condi-
tions. It would be good to be able to execute a weekly end-to-end test run that
shows that unplanned performance regressions have not emerged, but we have
not prioritized it yet. Waiting to do these tests until after feature stability is
achieved in the software-development life cycle is not appropriate, because that
requires extra work in identifying the point in time (i.e. the git commit) where
the problem was introduced, and the same work identifying the correct way to
manage the situation. This is much better done while the change is fresh in devel-
opers’ minds, so long as the testing procedure is reasonably automatic. Also, in
the gap between commit and testing, a regression may be masked by some other
improvement. More extensive human-based testing before releases should still be
done; but avoiding protracted bug hunts just before releases makes for a much
happier team.

Cross-platform software requires extensive configuration before it can be
built. The system administrator or end user needs to be able to guide what kind
of GROMACS build takes place, and the configuration system needs to verify
that the compiler and machine can satisfy that request. This requires searching
for ways to resolve dependencies, and disclosing to the user what is being done

5 http://jenkins.gromacs.org.

http://jenkins.gromacs.org
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with what is available. It is important that compilation should not fail when
configuration succeeded, because the end user is generally incapable of diag-
nosing what the problem was. A biochemist attempting to install GROMACS
on their laptop generally does not know that scrolling back through 100 lines of
output from recursive make calls is needed to find the original compilation error,
and even then they will generally need to ask someone else what the problem is
and how to resolve it. It is far more efficient for both users and developers to
detect during configuration that compilation will fail, and to provide suggested
solutions and guidance at that time. Accordingly, GROMACS uses the CMake
build system (http://www.cmake.org), primarily for its cross-platform support,
but makes extensive use of its high-level constructs, including sub-projects and
scoped variables.

3.3 Profiling

Experience has shown that it is hard to optimize software, especially an HPC
code, based on simple measurements of total execution speed. It is often neces-
sary to have a more fine-grained view of the performance of individual parts of
the code, details of execution on the individual compute units, as well as commu-
nication patterns. There is no value in measuring the improvement in execution
time of a non-bonded kernel if the execution time of the FFTs is dominant!

Standard practice is to use a profiling/tracing tool to explore which func-
tions or code lines consume important quantities of time, and to focus effort
on those. However, if the measurement is to provide useful information, the
profiler should perturb the execution time by a very small amount. This is par-
ticularly challenging with GROMACS because in our case an MD iteration is
typically in the range of a millisecond or less wall clock time around the cur-
rent scaling limit, and the functions that are interesting to profile might execute
only for microseconds. Overhead introduced by performance measurement that
is acceptable in other kinds of applications often leads to incorrect conclusions
for GROMACS. Statistical sampling from periodically interrupting the execu-
tion to observe which core is doing which task could work in principle, but (for
example) Intel’s VTune 3 Amplifier defaults to a 10 ms interval, which does
not create confidence that use of the tool would lead to accurate observations
of events whose duration is a thousand times shorter. Reducing the profiling
overhead to an acceptable level while still capturing enough information to be
able to easily interpret the performance measurements has proved challenging.
Additionally, this often required expert knowledge, assistance of the developers
of the respective performance measurement tool. This makes it exceptionally
hard to use in-depth or large-scale profiling as part of the regular GROMACS
development workflow.

However, we have not been optimizing in the dark; the main mdrun simula-
tion tool has included a built-in tracing-like functionality for many years. This
functionality relies on manual instrumentation of the entire source code-base
(through inlined start/stop timing functions) as well as low-overhead timing
measurements based on processor cycle counters. The great benefit is that the

http://www.cmake.org
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log output of every GROMACS simulation contains a breakdown of detailed
timing measurements of the different code parts. However, this internal trac-
ing functionality does not reach its full potential because the collected data is
typically displayed and analyzed through time-averages across MPI ranks and
time-steps, often hiding useful details.

To realize more of this potential, we have explored the possibility of more
detailed MPI rank-based statistics, including minimum and maximum execu-
tion times across ranks as well as averages. However, this information is still less
detailed than that from a classical trace and profile visualizer. We are explor-
ing combining our internal instrumentation with a tracing library. By adding
API calls to various tracing libraries to our instrumentation calls, we can pro-
vide native support for detailed trace-generation in GROMACS just by linking
against a tracing library like Extrae6. This will make it considerably easier to
carry out performance analysis without the need for expert knowledge on col-
lecting performance data while avoiding influencing the program behavior by
overhead.

4 Future Directions

GROMACS has grown from an in-house simulation code into a large interna-
tional software project, which now also has highly professional developer, testing
and profiling environments to match it. We believe the code is quite unique in
the extent to which it interacts with the underlying hardware, and while there
are many significant challenges remaining this provides a very strong base for
further extreme-scale computing development. However, scientific software is
rapidly becoming very dependent on deep technical computing expertise: Many
amazingly smart algorithms are becoming irrelevant since they cannot be imple-
mented efficiently on modern hardware, and the inherent complexity of this
hardware makes it very difficult even for highly skilled physicists and chemists
to predict what will work. It is similarly not realistic to expect every research
group to afford a resident computer expert, which will likely require both research
groups and computing centers to increasingly join efforts to create large open
source community codes where it is realistic to fund multiple full time develop-
ers. In closing, the high performance and extreme-scale computing landscape is
currently changing faster than it has ever done before. It is a formidable chal-
lenge for software to keep up with this pace, but the potential rewards of exascale
computing are equally large.
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Abstract. Obtaining a good load balance is a significant challenge in
scaling up lattice-Boltzmann simulations of realistic sparse problems to
the exascale. Here we analyze the effect of weighted decomposition on the
performance of the HemeLB lattice-Boltzmann simulation environment,
when applied to sparse domains. Prior to domain decomposition, we
assign wall and in/outlet sites with increased weights which reflect their
increased computational cost. We combine our weighted decomposition
with a second optimization, which is to sort the lattice sites according
to a space filling curve. We tested these strategies on a sparse bifurca-
tion and very sparse aneurysm geometry, and find that using weights
reduces calculation load imbalance by up to 85%, although the overall
communication overhead is higher than some of our runs.

Keywords: High performance computing · Lattice-Boltzmann · Domain
decomposition

1 Introduction

The lattice-Boltzmann (LB) method is widely applied to model fluid flow, and
relies on a stream-collision scheme applied between neighbouring points on a
lattice. These local interactions allow LB implementations to be efficiently par-
allelized, and indeed numerous high performance LB codes exist today [10,14].

Today’s parallel LB implementations are able to efficiently resolve large non-
sparse bulk flow systems (e.g., cuboids of fluid cells) using Petaflop supercom-
puters [10,12]. Efficiently modelling sparse systems on large core counts is still an
unsolved problem, primarily because it is difficult to obtain a good load balance
in calculation volume, neighbour count and communication volume for sparse
geometries on large core counts [13]. Additionally, the presence of wall sites,
inlets and outlets create a heterogeneity in the computational cost of different
c© Springer International Publishing Switzerland 2015
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lattice sites. Here we test two techniques for their potential to improve the load
balance in simulations using sparse geometries, and their performance in general.

We perform this analysis building forth on existing advances. Indeed, several
LB codes already provide special decomposition techniques to more efficiently
model flow in sparse geometries. For example, Palabos [1], MUSUBI [14] and
WaLBerla [10] apply a block-wise decomposition strategy, while codes such as
HemeLB [13] and MUPHY [19] rely on third-party partitioning libraries such as
ParMETIS and PT Scotch.

Here we implement and test a weighted decomposition technique to try and
improve the parallel simulation performance of the HemeLB simulation environ-
ment for sparse geometries [16], by adding weights corresponding to the compu-
tational cost of lattice sites which do not represent bulk fluid sites. In addition,
we examine the effect of also pre-ordering the lattice via a space-filling curve
when applying this method.

Several other groups have investigated the use of weighted decomposition
in other areas, for example in environmental fluid mechanics [5]. In addition,
Catalyurek et al. [9] investigate adaptive repartitioning with Zoltan using
weighted graphs. Specifically, Axner et al. [4] applied a weighting technique to a
lattice-Boltzmann solver for sparse geometries. Whereas we apply weights to ver-
tices, they applied heavier weights to edges near in- and outlets, to ensure that
these regions would not be distributed across several processes.

2 HemeLB

HemeLB is a high performance parallel lattice-Boltzmann code for large scale
fluid flow in complex geometries. It is mainly written in C++. HemeLB sup-
ports a range of boundary conditions and collision operators [18] and features a
streaming visualization and steering client [13,17]. In addition, we have equipped
HemeLB with a coupling interface, allowing it to be used as part of a multiscale
simulation [11]. HemeLB uses the coalesced communication design pattern to
manage its communications [8], and relies on non-blocking point-to-point MPI
send and receive calls to perform data movements during the simulation. We
present the improvement in performance of HemeLB over time in Fig. 1. We
obtained the performance data for this figure from a variety of sources (e.g.,
[13,16,17]). Overall, the peak performance of HemeLB has improved by more
than a factor 25 between 2007 and 2014, although we do now distinguish some
difference in peak performance between simulations with sparse geometries (e.g.,
aneurysm models) and those with non-sparse geometries (e.g., cylinders). Most
recently, we obtained a performance of 153 MSUPS using 49,152 cores on the
ARCHER supercomputer [2]. The geometry used in these runs was a cylinder
containing 230 million lattice sites.

HemeLB originally performs decomposition in two stages, making use of the
ParMETIS graph partitioning library [3] version 4.0.2. In the first stage it loads
the lattice arranged as blocks of 8 by 8 by 8 lattice sites. These blocks are dis-
tributed across the processes, favoring adjacent blocks when a process receives
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Fig. 1. Overview of the obtained calculation performance (in billions of lattice site
updates per second as a function of the years in which the simulation runs were per-
formed. The runs were performed on a variety of supercomputers, each of which is
briefly described above or below the respective data points. The number of cores used
is shown by the size of the circle, ranging from 2,048 cores (smallest circles) to 49,152
cores (largest circles). The fluid fraction is shown by the color of the circle. These
include very sparse simulation domains such as vascular networks (red circles), sparse
domains such as bifurcations (green circles), ranging to non-sparse domains such cylin-
ders (blue circles) (Color figure online).

multiple blocks [16]. After this initial decomposition, HemeLB then uses the
ParMETIS V3 PartKWay() function to optimize the decomposition, abandoning
the original block-level structure [13]. This function relies on a K-way partition-
ing technique, which first shrinks the geometry to a minimally decomposable
size, then performs the decomposition, and then refines the geometry back to
its original size. One of the ways we can assess the quality of the decomposition
is by examining the edge cut, which is equal to the number of lattice neighbour
links that cross process boundaries.

3 Description of the Optimizations

We have implemented and tested two optimizations in the decomposition.

3.1 Weighting

Within sparse geometries, lattice-Boltzmann codes generally adopt a range of
lattice site types to encapsulate all the functionalities required to treat flow in
bulk, near walls and near in- and outlets. We provide a simple example of a
geometry containing these lattice site types in Fig. 2. By default, all types of lat-
tice sites are weighted equally in HemeLB, which means that graph partitioners
such as ParMETIS treat all site types with equal importance when creating a
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Fig. 2. 2D example of a sparse domain with the different types of lattice sites. In/outlets
are given by the blue bars and vessel walls by the red curves. Bulk sites are shown by
yellow dots, wall sites by green dots, wall in/outlet sites by red dots, and in/outlet
sites by blue dots (Color figure online).

domain decomposition. However, we find that both sites adjacent to walls and
sites adjacent to in- and outlets require more computational time to be updated.
To optimize the load balance of the code, we therefore assign heavier weights to
sites which reside adjacent to wall or in/outlet boundaries.

We are currently developing an automated tuning implementation to obtain
these computational costs at run-time. However, as a first proof of concept,
we have deduced approximate weighting values by running six simulations of
cylinders with different aspect ratios. The shorter and wider cylinders have a
relatively high ratio of in- and outlet sites, while the longer and more narrow
cylinders have a relatively high ratio of wall sites. In addition, the cylinders with
an aspect ratio near 1:1 have a relatively high ratio of bulk flow sites.

Based on these runs we have obtained estimated values for the computational
cost for each type of lattice site, by using a least-square fitting function. We
present the values of these fits, as well as rounded values we use in ParMETIS,
in Table 1. ParMETIS supports using weights in graphs, provided that these
weights are given as integers. As we found that using large numbers for these
weights has a negative effect on the stability of ParMETIS, we chose to normal-
ize and round the weightings such that bulk sites are given a weight of 4, and the
other site types are given by values relative to that base value. Because the test
runs contained only a very small number of wall + in/outlet sites, we choose
to adopt the weighting for in/outlet sites also for the in/outlet sites which are
adjacent to a wall boundary.

3.2 Using a Space-Filling Curve

A second, and more straightforward, optimization we have applied is by tak-
ing the Cartesian x, y and z coordinates of all lattice sites, and then sorting
them according to Morton-ordered space-filling curve. We do this prior to par-
titioning the simulation domain, and in doing so, we effectively eliminate any
bias introduced by the early stage decomposition scheme described in [16]. We
do this by replacing the ParMETIS V3 PartKWay() in the code function with a
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Table 1. Weight values as obtained from fitting against the runtimes of six test sim-
ulations on two compute architectures (Intel SandyBridge and AMD Interlagos). The
site type is given, followed by the weigh obtained from fitting the performance data
of the six runs, followed by the simplified integer value we adopted in ParMETIS. In
this work we use Bouzidi-Firdaouss-Lallemand (BFL) [7] wall conditions and in and
outlet conditions described in Nash et al. [18]. We observed rather erratic fits for the
weightings of in/outlet sites that are adjacent to walls, as these made up only a very
marginal fraction of the overall site counts in our benchmark runs (less than 1% in
most cases).

Site type Obtained weight Rounded weight

Intel AMD

Bulk 10.0 10.0 4

Wall (BFL) 18.708 20.226 8

In/outlet 40.037 37.398 16

Wall and in/outlet 22.700a 34.577a 16
aOnly very few sites in a given geometry are both adjacent
to a wall and to an in/outlet. As such, the weighting values
we obtained for this site type are considerably less accurate
than those for the other site types.

ParMETIS V3 PartGeomKWay() function. This optimization is functionally inde-
pendent from the weighted decomposition technique, but can lead to a better
decomposition result from ParMETIS when applied.

3.3 Other Optimizations We Have Considered

After having inserted these optimizations, we have also tried improving the par-
tition by reducing the tolerance in ParMETIS. The amount of load imbalance
permitted within ParMETIS is indicated by the tolerance value, and a lower
value will increase the number of iterations ParMETIS will do to reach its
final state. Decreasing the tolerance from 1.001 to 1.00001 resulted for us in
an increase of the ParMETIS processing time while showing a negligible differ-
ence in the quality of partitioning. As a result, we have chosen not to investigate
this optimization in this work.

4 Setup

In our performance tests we used two different simulation domains. These include
a smaller bifurcation geometry and a larger aneurysm geometry (see Fig. 3 for
both). The bifurcation simulation domain consists of 650492 lattice sites, which
occupy about 10 % of the bounding box of the geometry. The aneurysm simu-
lation domain consists of 5667778 lattice sites, which occupy about 1.5 % of the
bounding box of the geometry. We run our simulations using pressure in- and
outlets described in Nash et al. [18], the LBGK collision operator [6], the D3Q19
advection model and Bouzidi-Firdaouss-Lallemand wall conditions [7].
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Fig. 3. Overview of the bifurcation geometry (left) and the aneurysm geometry (right)
used in our performance tests. The blue blob in the aneurysm geometry is a marker
indicating a region of specific interest to the user. The bifurcation geometry has a
sparsity of about 10 % (i.e., the lattice sites occupy about 10% of the bounding box
of the geometry), and the aneurysm geometry a sparsity of about 1.5 % (Color figure
online).

For our benchmarks we use the HECToR Cray XT6 supercomputer at EPCC
in Edinburgh, and compile our code using the GCC compiler version 4.3.4. We
have run our simulations for 50000 time steps using 128–1024 cores for the
bifurcation simulation domain, and 512–12288 cores for the aneurysm simula-
tion domain. We repeated the run for each core count five times and averaged
the results. We do this because the scheduler at HECToR does not necessar-
ily allocate processes within a single job to adjacent nodes; and as a result the
performance differs between runs. We have also performed several runs using
the aneurysm simulation domain on the ARCHER Cray XC30 supercomputer
at EPCC. These runs were performed with an otherwise identical configuration.
ARCHER relies on an Intel Ivy Bridge architecture and has a peak performance
of about 1.6 PFLOPs in total.

5 Results

We present our measurements of the total simulation time and the maximum
LB calculation time for the bifurcation simulation domain in Fig. 4.

We find that both incorporating a space-filling curve and using weighted
decomposition results in a reduction of the simulation time. However, the use
of a space-filling curve does little to reduce the calculation load imbalance,
whereas enabling weighted decomposition results in a reduction of the calcu-
lation load imbalance by up to 85 %. We also examined the edge-cut returned
by ParMETIS during the domain decomposition stage. For each core count, the
edge cut obtained in all the runs was within a margin of 4.5 %, with slightly
higher edge cuts for runs using a space-filling curve or weighted decomposition.



34 D. Groen et al.

 30

 50

 75

 100

 150

 200

 128  256  512  1024

si
m

ul
at

io
n 

tim
e 

[s
]

number of cores

Original
SpaceFillingCurve

Weighted
Weighted+SFCurve

(linear scaling)

 5

 7.5

 10

 15

 20

 30

 50

 75

 100

 150

 200

 128  256  512  1024

M
ax

im
um

 ti
m

e 
sp

en
t o

n 
LB

, c
al

cu
la

tio
n 

on
ly

 [s
]

number of cores

Original
SpaceFillingCurve

Weighted
Weighted+SFCurve

(averages)

Fig. 4. Total simulation time and maximum LB calculation time for the simulation
using the bifurcation model, run on HECToR. We performed measurements for the
non-optimized code, a code with only weighting enabled, a code with only the space-
filling curve enabled, and a code with both enabled. We provide lines to guide the eyes.
In the image on the left we plotted a linear scaling line using a thick gray dotted line.
In the image on the right we plotted the average LB calculation time of all our run
types using thin gray dotted lines (Color figure online).
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Fig. 5. Total simulation time and maximum LB calculation time for the simulation
of the aneurysm model, run on HECToR. See Fig. 4 for an explanation of the lines
and symbols. Here we only performed measurements for the non-optimized code, a
code with only the space-filling curve optimization enabled, and a code with both
optimizations enabled.

We present our measurements of the total simulation time and the maximum
LB calculation time for the aneurysm simulation domain in Fig. 5. Here we find
that applying weighted decomposition results in an increase of runtime by ∼5 %
in most of our runs. Using the space-filling curve in addition to the weighted
decomposition results in a further increase in runtime, especially for runs per-
formed on 4096 and 8192 cores. However, the use of weighted decomposition also
results in a calculation load imbalance which is up to 65 % lower than that of
the original simulation, while we again observe little difference here between runs
that use a space-filling curve and the runs without. When we examine the edge
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Fig. 6. Total MPI communication time for the simulation of the bifurcation model
(left, from the run presented in Fig. 4) and the aneurysm model (right, from the run
presented in Fig. 5).

cut obtained by ParMETIS in different runs, we find that using weighted decom-
position results in a slightly lower edge cut (∼0.5 %) and using a space-filling
curve results in an edge cut which is up to 5.3 % higher.

To provide more insight into the cause of the increase in simulation time,
we present our measurements of the MPI communication overhead in these runs
in Fig. 6. Here the runs which use our optimization strategies take less time to
do MPI communication when applied to the bifurcation simulation domain, and
more time to do MPI communications when applied to the aneurysm domain.
These differences match largely with the differences we observed in the over-
all simulation time. Because the total time spent on MPI communications is
generally larger than the calculation time for high core counts, and the differ-
ences between the runs are considerable, the communication performance is a
major component of the overall simulation performance. However, the commu-
nication performance correlates only weakly with the edge cut values returned
by ParMETIS and therefore the total communication volume. For example, the
slightly lower edge cut for the aneurysm simulations with weighted decomposi-
tion is in contrast with the slightly higher communication overhead. This means
that the communication load imbalance is likely to be a major bottleneck in the
performance of our larger runs, and should be investigated more closely.

5.1 Performance Results on ARCHER

We have repeated the simulations using the aneurysm simulation domain on the
ARCHER supercomputer, both with and without using weighted decomposition.
We present the measured simulation and calculation times of these runs in Fig. 7,
and the MPI communication time in Fig. 8. In these runs, we obtained approxi-
mately three times the performance per core compared to HECToR. When using
weighted decomposition, the calculation load imbalance was reduced by up to
70 %, the simulation time by approximately 2–12 % and the MPI communication
time by approximately 5–20 %. In particular, the reduction in communication
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Fig. 7. Total simulation time and maximum LB calculation time for the simulation of
the aneurysm model, as run on ARCHER. See Fig. 4 for an explanation of the lines
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time contrasts with the measured increase in communication time, which we
observed in the HECToR runs. This difference could be attributed to the supe-
rior network architecture of ARCHER, and/or the large memory per core, which
may have resulted in ParMETIS reaching a domain decomposition with better
communication load balance.

6 Discussion and Conclusions

We presented an approach for weighted decomposition and assessed its effect
on the performance of the HemeLB bloodflow simulation environment. The use
of lattice weights in our decomposition scheme provides the strongest improve-
ment in calculation load balance, and delivers an improvement in the simulation
performance for the bifurcation geometry. However, the use of weighted decom-
position (both with and without the space-filling curve optimization) sometimes
results in a higher communication overhead of the aneurysm simulations, despite
negligible changes in the communication volume. Indeed, for these blood flow
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simulations it appears that a low edge cut is only a minor factor in the overall
communication performance for sparse problems, even though graph partition-
ing libraries are frequently optimized to accomplish such a minimal edge cut.
This is in accordance with some earlier conclusions in the literature [15]. We
intend to more thoroughly investigate the communication load imbalance of our
larger runs. As part of preparing HemeLB for the exascale within the CRESTA
project, we are working with experts from the Deutschen Zentrums für Lucht
und Raumfahrt (DLR) to enable domain decompositions using PT-Scotch and
Zoltan. The use of these alternate graph partitioning libraries may result in fur-
ther performance improvements, especially if these libraries optimize not only for
a calculation load balance and a low edge cut, but also take into account other
communication characteristics. Furthermore, since we have observed differences
in site weights between different computer architectures, we are looking into an
“auto-tuning” function that automatically calculates the weights at runtime or
compilation time.
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Abstract. Current Monte Carlo neutron transport applications use con-
tinuous energy cross section data to provide the statistical foundation
for particle trajectories. This “classical” algorithm requires storage and
random access of very large data structures. Recently, Forget et al. [1]
reported on a fundamentally new approach, based on multipole expan-
sions, that distills cross section data down to a more abstract mathe-
matical format. Their formulation greatly reduces memory storage and
improves data locality at the cost of also increasing floating point com-
putation. In the present study, we abstract the multipole representation
into a “proxy application”, which we then use to determine the hard-
ware performance parameters of the algorithm relative to the classical
continuous energy algorithm. This study is done to determine the viabil-
ity of both algorithms on current and next-generation high performance
computing platforms.

Keywords: Monte carlo · Multi-core · Neutron transport · Reactor sim-
ulation · Multipole · Cross section

1 Introduction

Monte Carlo (MC) transport algorithms are considered the “gold standard” of
accuracy for a broad range of applications – e.g., nuclear reactor physics, shielding,
detection, medical dosimetry, and weapons design to name just a few examples.
In the design and analysis of nuclear reactor cores, the key application driver of
the present analysis, MC methods for neutron transport offer significant potential
advantages compared to deterministic methods given their simplicity, avoidance
of ad hoc approximations in energy treatment, and lack of need for complex com-
putational meshing of reactor geometries.

On the other hand it is well known that robust analysis of a full reactor core
is still beyond the reach of MC methods. Tremendous advances have been made
in recent years, but the computing requirements for full quasi-static depletion
c© Springer International Publishing Switzerland 2015
S. Markidis and E. Laure (Eds.): EASC 2014, LNCS 8759, pp. 39–56, 2015.
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analysis of commercial reactor cores is a performance-bound problem, even on
existing leadership class computers. It is also clear that many of the issues related
to scalability on distributed memory machines have been adequately addressed in
recent studies [2,3], and that the path to future speedups involves taking better
advantage of a broad range of multi-core systems. For MC methods this is most
naturally done, as a first step, in a MIMD context, which allows us to most eas-
ily exploit the natural parallelism over particle tracks, each with complex, nested
branching logic. Siegel et al. [4] carried out an in-depth study of on-node scala-
bility of the OpenMC [2] transport code, showing encouraging results as well as
limitations due to memory contention. Tramm et al. [5,6] carried out an in-depth
study based on the XSBench mini-application, further elucidating the underlying
performance bottlenecks that inhibit scalability. Indeed, with less memory band-
width per core as nodes become more complex, developing new approaches that
minimize memory contention and maximize use of each core’s floating point units
becomes increasingly important.

Recently, Forget et al. [1] proposed a new algorithm for representing neutron
cross section data in a more memory efficient manner. This algorithm, based on
multipole expansions, compresses data into a more abstract mathematical format.
This greatly reduces the memory footprint of the cross section data and improves
data locality at the expense of an increase in the number of computations required
to reconstruct it when it is needed. As next-generation leadership class computers
are likely to favor floating point operations over data movement [7–10], the mul-
tipole algorithm may provide significant performance improvement compared to
the classical approach.

In this analysis we study in-depth two different implementations of the MC
neutron transport algorithm – the “classical” continuous energy cross section for-
mat and the multipole representation format. Then, we assess the on-node scaling
properties and memory contention issues of these algorithms in the context of a
reactor physics calculation.

1.1 The Reactor Simulation Problem

Computer-based simulation of nuclear reactors is a well established field, with ori-
gins dating back to the early years of digital computing. Traditional reactor sim-
ulation techniques aim to solve deterministic equations (typically a variant of the
diffusion equation) for a given material geometry and initial neutron distribution
(source) within the reactor. This is done using mature and well understood numer-
ical methods. Deterministic codes are capable of running quickly and providing
relatively accurate gross power distributions, but are still limited when accurate
localized effects are required, such as e.g. at sharp material interfaces.

An alternative formulation, the Monte Carlo (MC) method, simulates the path
of individual neutrons as they travel through the reactor core. As many particle
histories are simulated and tallied, a picture of the full distribution of neutrons
within the domain emerges. Such codes are inherently simple, easy to understand,
and potentially easy to restructure when porting to new systems. Furthermore, the
methodologies utilized by MC simulation require very few assumptions, resulting
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in highly accurate results given adequate statistical convergence. The downside to
this method, however, is that a huge number of neutron histories are required to
achieve an acceptably low variance in the results. For many problems this means
an impractically long time to solution, though such limitations may be overcome
given the increased computational power of next-generation, exascale supercom-
puters.

1.2 OpenMC

OpenMC is a Monte Carlo particle transport simulation code focused on neutron
criticality calculations [2]. It is capable of simulating 3D models based on con-
structive solid geometry with second-order surfaces. The particle interaction data
is based on ACE format cross sections, also used in the MCNP and Serpent Monte
Carlo codes.

OpenMC was originally developed by members of the Computational Reactor
Physics Group at the Massachusetts Institute of Technology starting in 2011. Var-
ious universities, laboratories, and other organizations now contribute to its devel-
opment. The application is written in FORTRAN, with parallelism supported by
a hybrid OpenMP/MPI model. OpenMC is an open source software project avail-
able online [11].

1.3 XSBench

The XSBench proxy application models the most computationally intensive part
of a typical MC reactor core transport algorithm – the calculation of macroscopic
neutron cross sections, a kernel which accounts for around 85 % of the total run-
time of OpenMC [4]. XSBench retains the essential performance-related compu-
tational conditions and tasks of fully featured reactor core MC neutron transport
codes, yet at a fraction of the programming complexity of the full application [6].
Particle tracking and other features of the full MC transport algorithm were not
included in XSBench as they take up only a small portion of runtime in robust
reactor computations. This provides a much simpler and far more transparent
platform for testing the algorithm on different architectures, making alterations
to the code, and collecting hardware runtime performance data.

XSBench was developed by members of the Center for Exascale Simulation of
Advanced Reactors (CESAR) at Argonne National Laboratory. The application is
written in C, with multi-core parallelism support provided by OpenMP. XSBench
is an open source software project. All source code is publicly available online [12].

1.4 RSBench

The RSBench proxy application is similar in purpose to XSBench, but models an
alternative method for calculating neutron cross sections – the multipole method.
This method organizes the data into a significantly more compact form, saving
several orders of magnitude in memory space. However, this method also requires
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“unpacking” of this data by way of a significant number of additional compu-
tations (FLOPs). The multipole algorithm has also been experimentally imple-
mented intoOpenMC, but is only capable of simulating several select nuclides with
this method due to limited multipole cross section library support.

RSBench is in active development by members of the CESAR group at
Argonne National Laboratory. The application is written in C, with multi-core
parallelism support provided by OpenMP. RSBench is an open source software
project. All source code is publicly available online [13].

2 Algorithm

2.1 Reactor Model

When carrying out reactor core analysis, the geometry and material properties of
a postulated nuclear reactor must be specified in order to define the variables and
scope of the simulation model. For the purposes of XSBench and RSBench, we use
a well known community reactor benchmark known as the Hoogenboom-Martin
model [14]. This model is a simplified analog to a more complete, “real-world”
reactor problem, and provides a standardized basis for discussions on performance
within the reactor simulation community. XSBench and RSBench recreate the
computational conditions present when fully featured MC neutron transport
codes (such as OpenMC ) simulate the Hoogenboom-Martin reactor model, pre-
serving a similar data structure, a similar level of randomness of data accesses,
and a similar distribution of FLOPs and memory loads.

2.2 Neutron Cross Sections

The purpose of an MC particle transport reactor simulation is to calculate the
distribution and generation rates of neutrons within a nuclear reactor. In order to
achieve this goal, a large number of neutron lifetimes are simulated by tracking the
path and interactions of a neutron through the reactor from its birth in a fission
event to its escape or absorption, the latter possibly resulting in subsequent fission
events.

Each neutron in the simulation is described by three primary factors: its spatial
location within a reactor’s geometry, its speed, and its direction. At each stage of
the transport calculation, a determination must be made as to what the particle
will do next. Possible outcomes include uninterrupted continuation of free flight,
collision, or absorption (possibly resulting in fission). The determination of which
event occurs is based on a random sampling of a statistical distribution that is
described by empirical material data stored in main memory. This data, called
neutron cross section data, represents the probability that a neutron of a particular
speed (energy) will undergo some particular interaction when it is inside a given
type of material.

To account for neutrons across a wide energy spectrum and materials of many
different types, the classical algorithm, as represented by XSBench, requires use
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of a very large data structure that holds cross section data points for many dis-
crete energy levels. In the case of the simplified Hoogenboom-Martin benchmark,
roughly 5.6 GB1 of data is required. The multipole method greatly reduces these
requirements down the the order of approximately 100 MB or less for all data.

2.3 Classical Continuous Energy Cross Section Representation

The classical continuous energy cross section representation, as used by real world
applications like OpenMC, is abstracted in the proxy-application XSBench. This
section describes the data structure used by this algorithm along with the access
patterns of the algorithm.

Data Structure. A material in the Hoogenboom-Martin reactor model is com-
posed of a mixture of nuclides. For instance, the “reactor fuel” material might
consist of several hundred different nuclides, while the “pressure vessel side wall”
material might only contain a dozen or so. In total, there are 12 different mate-
rials and 355 different nuclides present in the modeled reactor. The data usage
requirements to store this model are significant, totaling 5.6 GB, as summarized
in Table 1.

Table 1. XSBench data structure summary

Nuclides tracked 355

Total # of energy gridpoints 4,012,565

Cross section interaction types 5

Total size of cross section data structures 5.6 GB

For each nuclide, an array of nuclide grid points are stored as data in main
memory. Each nuclide grid point (as represented in Fig. 1) has an energy level,
as well as five cross section values (corresponding to five different particle inter-
action types) for that energy level. The grid points are ordered from lowest to
highest energy levels. The number, distribution, and granularity of energy lev-
els varies between nuclides. One nuclide may have hundreds of thousands of grid
points clustered around lower energy levels, while another nuclide may only have a
few hundred grid points distributed across the full energy spectrum. This obviates
straightforward approaches to uniformly organizing and accessing the data. Col-
lectively, this data structure (depicted in Fig. 2) is known as the nuclide energy grid.

In order to increase the speed of the calculation, the algorithm utilizes another
data structure, called the unionized energy grid, as described by Leppänen [16] and
Romano [2]. The unionized grid facilitates fast lookups of cross section data from

1 We estimate that for a robust depletion calculation, in excess of 100GB of cross
section data would be required [15].
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Fig. 1. A cross section data packet for a neutron within a given nuclide at a given energy
level, Ei.

the nuclide grids. This structure is an array of grid points, consisting of an energy
level and a set of pointers to the closest corresponding energy level on each of the
different nuclide grids (Fig. 3).

N0: E2 E4 E5 E9

N1: E0 E10

N2: E1 E3 E6

Nn: E7 E8 Em

Fig. 2. Simplified example of the nuclide energy grid. Note how each nuclide has a vary-
ing number and distribution of energy levels.

Access Patterns. In a full MC neutron transport application, the data struc-
ture is accessed each time a macroscopic cross section needs to be calculated. This
happens anytime a particle changes energy (via a collision) or crosses a mate-
rial boundary within the reactor. These macroscopic cross section calculations
occur with very high frequency in the MC transport algorithm, and the inputs
to them are effectively random. For the sake of simplicity, XSBench was written
ignoring the particle tracking aspect of the MC neutron transport algorithm and
instead isolates the macroscopic cross section lookup kernel. This provides a large
reduction in program complexity while retaining similarly random input condi-
tions for the macroscopic cross section lookups via the use of a random number
generator.

In XSBench, each macroscopic cross section lookup consists of two randomly
sampled inputs: the neutron energy Ep, and the material mp. Given these two



Performance Analysis of a Reduced Data Movement Algorithm 45

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 Em

N0: 0 0 0 0 1 2 2 2 2 3 3

N1: 0 0 0 0 0 0 0 0 0 0 1

N2: 0 0 0 1 1 1 2 2 2 2 2

Nn: 0 0 0 0 0 0 0 1 2 2 3

Fig. 3. Simplified example of the unionized energy grid. Each grid element is the index
where the energy level Ei can be found in the nuclide energy grid for nuclide Ni.

inputs, a binary search that executes in log(n) time is done on the unionized energy
grid for the given energy. Once the correct entry is found on the unionized energy
grid, the material input is used to perform lookups from the nuclide grids present
in the material. Use of the unionized energy grid means that binary searches are
not required on each individual nuclide grid. For each nuclide present in the mate-
rial, the two bounding nuclide grid points are found using the pointers from the
unionized energy grid and interpolated to give the exact microscopic cross section
at that point.

All calculated microscopic cross sections are then accumulated (weighted by
their atomic density in the given material), which results in the macroscopic cross
section for the material. Algorithm 1 is an abbreviated summary of this calculation.

Algorithm 1. Classical Continuous Energy Macroscopic Cross Section Lookup
1: R(mp, Ep) � randomly sample inputs
2: Locate Ep on Unionized Grid � binary search
3: for n ∈ mp do � for each nuclide in input material
4: σa ← n, Ep � lookup bounding micro xs’s
5: σb ← n, Ep + 1
6: σ ← σa, σb � interpolate
7: Σ ← Σ + ρn · σ � accumulate macro xs
8: end for

In theory, one could “pre-compute” all macroscopic cross sections on the uni-
onized energy grid for each material. This would allow the algorithm to run much
faster, requiring far fewer memory loads and far fewer floating point operations
per macroscopic cross section lookup. However, this would assume a static distri-
bution of nuclides within a material. In practice, MC transport nuclide-depletion
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calculations are quasi-static; they will need to track the burn-up of fuels and acc-
ount for heterogeneous temperature distributions within the reactor itself. This
means that concentrations are dynamic, rather than static, therefore necessitat-
ing the use of the more versatile data model deployed in OpenMC and XSBench.
Even if static concentrations were assumed, pre-computation of the full spectrum
of macroscopic cross sections would need to be done for all geometric regions
(of which there are many millions) in the reactor model, leading to even higher
memory requirements.

We have verified that XSBench faithfully mimics the data access patterns of
the full MC application under a broad range of conditions [6]. The runtime of
full-scale MC transport applications, such asOpenMC, is 85 % composed of macro-
scopic cross section lookups [4]. Within this process,XSBench is virtually indistin-
guishable from OpenMC, as the same type and size of data structure is used, with
a similarly random access pattern and a similar number of floating point oper-
ations occurring between memory loads. Thus, performance analysis done with
XSBench provides results applicable to the full MC neutron transport algorithm,
while being far easier to implement, run, and interpret.

2.4 Multipole Cross Section Representation

A multipole representation cross section algorithm is abstracted in the proxy-
application RSBench. This section summarizes the data structure used by this
algorithm along with the access patterns and computations performed by the algo-
rithm. The multipole representation stores cross section data in the form of poles.
Each pole can be characterized by several variables that define the parameters
(residues) of the resonance that can be used to compute the actual microscopic
cross section contribution at any energy from the pole. Forget et al. also utilize a
“window” methodology that limits the number of poles that need to be evaluated
for a given cross section calculation [1]. The energy spectrum is broken up into a
series of windows, each covering a specific energy range and storing a set of fitting
factors. These fitting factors represent a “background” function that can be eval-
uated to represent the contributions from all poles outside the window. Use of the
windowing method saves time by requiring that only poles within a single energy
window need to be evaluated to determine the microscopic cross sections, rather
than all poles in the entire energy spectrum. A more in-depth explanation of the
mathematics behind the multipole representation is offered by Forget et al. [1].

Data Structure. The primary data structures employed by RSBench are two
separate 2-D jagged arrays. The first 2-D array contains the resonance data for all
poles and accompanying residues. The first dimension correlates to each nuclide
present in the reactor. The second dimension correlates to the number of poles
present in that nuclide (each nuclide has a different number of poles, varying from
100 to 6,000) [1]. For the purposes of this mini-app, a representative average num-
ber of poles per nuclide is set at 1,000 as default. Each element of this array is a
“pole” data structure that holds several pieces of information including the center
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energy for the pole, resonance residues for several reaction types, and the l index,
as depicted in Fig. 4.

The second 2-D array contains data for all windows. The first dimension cor-
relates to each nuclide present in in the reactor. The second dimension correlates
to the number of windows used for that particular nuclide. Window sizing is an
empirical process done when building a library of multipole cross section data,
where each nuclide is likely to require a different window size to achieve a given
accuracy. Thus, each nuclide inRSBench has a different number of windows (rang-
ing from 4 to 25 poles per window [1]). For the purposes of this mini-app, a repre-
sentative number of windows is set to 250 as default. Each element of this array is a
window data structure that holds several pieces of information including the func-
tion fitting factors for several reaction types and the start and end pole indices,
as represented in Fig. 5.

Compared to the classical method, such as used by XSBench, these 2-D arrays
together are in total much smaller as no unionized energy grid is necessary and
far fewer data points are needed, as summarized in Table 2. Use of the multipole
method in this case results in a memory footprint reduction of over two orders of
magnitude.

Note that the average number of poles per nuclide and windows per nuclide
used in RSBench are only approximations. Multipole data requirements are well
understood for U-235 and U-238, but library files have yet to be computed for
the other 353 nuclides in our simulation. Approximations were selected based on
interpolation, under the assumption that multipole memory requirements from
U-235 and U-238 will have similar ratios of data memory requirements compared
to the other nuclides for the classical continuous energy cross section storage
method. E.g., the ratio of data storage needed between U-238 and Ni-58 for con-
tinuous energy representation will remain the same for multipole representation.

P

Energy Ei

RT

RA

RF

l index

Fig. 4. Data structure representing a pole and accompanying residues, centered at Ei.

Access Patterns. The macroscopic cross section algorithm used by RSBench is
similar to XSBench at a high level, only deviating at the lower level where micro-
scopic cross sections are determined. A macroscopic cross section lookup begins
with the same two randomized inputs: the neutron energy and the material the
neutron is located in. From here, the nuclides that the material contains are looped
over. For each nuclide, a modulus operation is done to determine the index of the
window that covers the neutron’s energy. The fitting parameters from the win-
dow are applied to the various microscopic cross sections. Finally, using the start
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W

FitT

FitA

FitF

Start pole index

End pole index

Fig. 5. Data structure representing a window.

Table 2. RSBench data structure summary

Nuclides tracked 355

Average resonances per nuclide 1,000

Average windows per nuclide 250

Total # of resonances 355,000

Cross section interaction types 4

Total size of cross section data structures 27MB

and end pole indices of the window, the “pole” data structures are retrieved and
used in several lengthy computations to determine their contributions to the var-
ious microscopic cross sections. Macroscopic cross sections are then accumulated.
This process is summarized in Algorithm 2.

Algorithm 2. Multipole Macroscopic Cross Section Lookup
1: R(mp, Ep) � randomly sample inputs
2: for n ∈ mp do � for each nuclide in input material
3: Locate W Covering Energy Ep � modulus operation
4: Calculate Σl � energy specific reaction channel values
5: σT ← WT � apply window’s fitting function
6: σA ← WA

7: σF ← WF

8: for P ∈ W do � for each pole in window
9: σT ← PRT , Σl � apply pole’s residues

10: σA ← PRA

11: σF ← PRF

12: end for
13: σE = σT − σA

14: Σ ← Σ + ρn · σ � accumulate macro xs
15: end for

The equations used to assemble microscopic cross sections out of multipole res-
onance data are described in detail by Forget et al. [1]. Simplified forms of the 0 K
multipole equations used by RSBench, are given in Eqs. 1, 2, and 3. Note that the
effects of neutron spin are neglected under the assumption that all neutrons are
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spin zero, which in our experience does not impact performance. This simplifica-
tion is made to reduce the programming complexity of the RSBench application,
making it easier to instrument and port to new languages and systems, while still
retaining a similar performance profile to the full multipole algorithm.

σx(E) =
1
E

∑

lj

N∑

λ=1

2(l+1)∑

j=1

Re

[
−ir

(j)
xλ

p
(j)∗
λ − √

E

]
(1)

σt(E) = σp(E) +
1
E

∑

lj

N∑

λ=1

2(l+1)∑

j=1

Re

[
exp(−i2φl)

−ir
(j)
tλ

p
(j)∗
λ − √

E

]
(2)

where the potential cross section is given by

σp(E) =
∑

lj

4πλ2gjsin2φl (3)

and where r
(j)
xλ and r

(j)
tλ are the residues for reaction x and total cross section

around resonance λ, gj is the spin statistical factor, p
(j)∗
λ is the complex conju-

gate of the pole, and φl is the phase shift. In this form, the cross sections can
be computed by summations over angular momentum of the channel (l), chan-
nel spin (j), number of resonances (N) and number of poles associated to a given
resonance type 2(l + 1).

3 Application

To investigate the performance profiles of our two MC transport cross section algo-
rithms on existing systems, we carried out a series of tests using RSBench and
XSBench on single node, multi-core, shared memory system. The system used
was a single node consisting of two Intel Xeon E5-2650 octo-core CPUs for a total
of 16 physical CPUs. All tests, unless otherwise noted, were run at 2.8 GHz using
Intel Turbo Boost.

We performed a scaling study to determine performance improvements as
additional cores were added. We ran both proxy applications with only a single
thread to determine a baseline performance against which efficiency can be mea-
sured. Then, further runs were done to test each number of threads between 1 and
32. Efficiency is defined as

Efficiencyn =
Rn

R1 × n
(4)

where n is the number of cores, Rn is the experimental calculation rate for n cores,
and R1 is the experimental calculation rate for one core.

The tests reveal that even for these proxy-applications of the MC transport
algorithm, perfect scaling was not achievable. Figures 6 and 7 show that efficiency
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Fig. 6. Strong scaling

degraded gradually as more cores were used on the nodes. For the Xeon system,
efficiency at 16 cores degraded to 69 % for XSBench and 83 % for RSBench.

One might reasonably conclude that 69 % or 83 % efficiency out to 16 cores
is adequate speedup. However, next-generation node architectures are likely to
require up to thousand-way on-node shared memory parallelism [7–10], and thus
it is crucial to ascertain the cause of the observed degradation and the implica-
tions for greater levels of scalability. Considering nodes with 32, 64, 128, or 1024
shared memory cores and beyond, it cannot be taken for granted that performance
will continue to improve. We thus seek to identify to the greatest extent possible
which particular system resources are being exhausted, and how quickly, so that
designers of future hardware systems as well as developers of future MC particle
transport applications can avoid bottlenecks.

High performance computing (HPC) applications generally have several pos-
sible reasons for performance loss due to scaling:

1. FLOP bound – A CPU can only perform so many floating point operations per
second.

2. Memory Bandwidth Bound – A finite amount of data can be sent between
DRAM and the CPU.

3. Memory Latency Bound – An operation on the CPU that requires data be sent
from the DRAM can take a long time to arrive.
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Fig. 7. Efficiency scaling

4. Inter-Node Communication Bound – Nodes working together on a problem
may need to wait for data from other nodes, incurring large latency and band-
width costs. This is not an issue for this application since we are focusing only
on single node, shared-memory parallelism.

Given these potential candidates for bottlenecks, we aim to determine which
exact subsystems are responsible for performance degradation by performing a
series of studies to identify which specific resources our two kernels exhaust first.

4 Experiment andResults

To investigate theperformanceand resourceutilizationprofiles of bothproxyappli-
cations, and todetermine the cause ofmulti-core scalingdegradation,weperformed
a series of experiments. Each experiment involves varying a system parameter,
monitoring hardware usage using performance counters, and/or altering a portion
of the XSBench and RSBench codes. The following section presents descriptions,
results, and preliminary conclusions for each experiment. For the purposes of sim-
plicity, we concentrate our analysis on the Intel Xeon system described in Sect. 3.
This allows us to get highly in-depth results as we are able to run experiments deal-
ing with architecture-specific features and hardware counters.
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4.1 Resource Usage

To better understand scaling degradation in our kernels, we implemented perfor-
mance counting features into the source code of XSBench and RSBench using the
Performance Application Programming Interface (PAPI) [17]. This allowed us to
select from a large variety of performance counters (both preset and native to our
particular Xeon chips). We collected data for many counters, including:

– ix86arch::LLC MISSES - Last Level (L3) Cache Misses.
– PAPI TOT CYC - Total CPU Cycles.
– PAPI FP INS - Floating point instructions.

These raw performance counters allowed us to calculate a number of composite
metrics, including bandwidth usage, FLOP utilization, and cache miss rate. Each
of the metrics are discussed in the following subsections.

Bandwidth. Consumption of available system bandwidth resources used by
XSBench and RSBench is calculated using Eq. 5.

Bandwidth =
LLC MISSES × Linesize

PAPI TOT CYC
× Clock (Hz) (5)

Fig. 8. Bandwidth usage scaling
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Using Eq. 5, we collected the bandwidth usage for our proxy applications as
run on varying numbers of cores, as shown in Fig. 8. Note that the maximum the-
oretically available bandwidth for the Xeon node is 51.2 GB/s [18]. Figure 8 shows
that less than half the available bandwidth is ever used by either of our proxy
applications, even when running at 32 threads per node2.

There is, however, the question as to how much bandwidth is realistically
usable on any given system. Even a perfectly constructed application that floods
the memory system with easy, predictable loads is unlikely to be able to use the
full system bandwidth. In order to determine what is actually usable on our Xeon
system, we ran the STREAM benchmark, which measures “real world” band-
width sustainable from ordinary user programs [19]. Results from this benchmark
are shown in Fig. 8, and compared to XSBench and RSBench. As can be seen,
XSBench converges with STREAM, leading us to believe that the classical cross
section algorithm is bottlenecked by system bandwidth. In contrast, we find that
the bandwidth usage of RSBench is much more conservative – using only 1 GB/s,
a factor of over 20 less than what XSBench uses.

Fig. 9. FLOP usage

2 The 16-core Xeon node used in our testing features hardware threading, supporting
up to 32 threads per node.



54 J.R. Tramm et al.

Table 3. Performance Profile Comparison

Performance parameter Classical (XSBench) Multipole (RSBench)

Calculation rate (XS/s) 2,075,457 1,017,772

Bandwidth usage (GB/s) 23.7 0.91

Floating point usage (GFLOPs) 3.6 10.8

Cross section data structure size (MB) 5,734 27

FLOPs. Consumption of available system floating point resources used by
XSBench and RSBench is calculated using Eq. 6.

FLOPs =
PAPI FP INS

PAPI TOT CYC
× Clock (Hz) (6)

Using Eq. 6, we were able to determine the FLOP performance of our proxy
applications, as shown in Fig. 9. We found that XSBench achieved at most 3.6
GFLOPs, while RSBench achieved three times the FLOP performance, at 10.8
GFLOPs.

5 Conclusions

We have performed an in-depth analysis of two different implementations of the
MC neutron transport algorithm – the “classical” continuous energy cross section
format (i.e., XSBench) and the multipole representation format (i.e., RSBench).
We have also assessed the on-node scaling properties and memory contention iss-
ues of these algorithms in the context of a robust reactor physics calculation.

Through our investigations of the classical MC neutron cross section lookup
algorithm, via XSBench, we found that it achieves bandwidth usage extremely
close to the practical maximum of 25.8 GB/s when running 32 threads per node.
At this point, the MC particle transport algorithm becomes limited by the avail-
able system bandwidth. Adding cores, hardware threads, or improving other
latency masking techniques will not result in faster calculation rates; bandwidth
must be increased for performance to increase for this algorithm.

We also found that the multipole algorithm (i.e., RSBench) uses over an order
of magnitude less bandwidth (less than 1 GB/s) when compared to the classical
approach while achieving over three times the FLOP performance. Scaling of mul-
tipole algorithm has been shown to be capable of better scaling (83 % efficiency
at 16 cores per node vs. 69 % for the classical algorithm). On top of these impres-
sive performance features, the multipole representation allows for a reduction in
memory footprint of over two orders of magnitude.

Our performance analyses, summarized in Table 3, suggest that the multipole
algorithm is purely FLOP bound and should scale well to hundreds or thousands of
cores due to the algorithm’s extremely low bandwidth requirements. Even though
on today’s systems the multipole algorithm only runs about half as fast, it has
a significantly more desirable performance profile for scaling on next-generation
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systems, as processor cores per node and computational capacity are expected to
greatly outpace increases in bandwidth to main memory. This is an important
result, as the multipole method is not widely used in monte carlo transport codes
yet exhibits an ideal performance profile for on-node scaling on many-core exascale
architectures of the near future.

6 FutureWork

There are additional capabilities that do not yet commonly exist in full-scale MC
neutron transport algorithms, such as on-the-fly Doppler broadening to account
for the material temperature dependence of cross sections, that we plan to imple-
ment in XSBench and RSBench for experimentation with various hardware archi-
tectures and features. This addition is predicted to enhance the advantages of the
multipole algorithm as Doppler broadening is an inherently easier task when cross
section data is already stored in the multipole format.
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Abstract. Nek5000 is a computational fluid dynamics code based on
the spectral element method used for the simulation of incompressible
flows. We follow up on an earlier study which ported the simplified ver-
sion of Nek5000 to a GPU-accelerated system by presenting the hybrid
CPU/GPU implementation of the full Nek5000 code using OpenACC.
The matrix-matrix multiplication, the Nek5000 gather-scatter operator
and a preconditioned Conjugate Gradient solver have implemented using
OpenACC for multi-GPU systems. We report an speed-up of 1.3 on single
node of a Cray XK6 when using OpenACC directives in Nek5000. On 512
nodes of the Titan supercomputer, the speed-up can be approached to
1.4. A performance analysis of the Nek5000 code using Score-P and Vam-
pir performance monitoring tools shows that overlapping of GPU kernels
with host-accelerator memory transfers would considerably increase the
performance of the OpenACC version of Nek5000 code.

Keywords: Nek5000 · OpenACC · GPU programming · Spectral ele-
ment method

1 Introduction

Nek5000 is an open-source code for simulating incompressible flows [1]. The code
is widely used in a broad range of applications. The various research projects
at KTH Royal Institute of Technology Mechanics Department using Nek5000
include the study of turbulent pipe flow, the flow along airplane wings, a jet in
cross-flow and Lagrangian particle motion in complex geometries [2].

TheNek5000 discretization scheme is based on the spectral-elementmethod [3].
In this approach, the incompressible Navier-Stokes equations are discretized in
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space by using high-order weighted residual techniques employing tensor-product
polynomial bases. The tensor-product-based operator evaluation can be imple-
mented as matrix-matrix products. This implementation makes it is possible to
port the most time-consuming parts of the code into a GPU-accelerated system.

OpenACC [4,5] enables existing HPC application codes to run on accelerators
with minimal source-code changes. This is done using compiler directives and
API calls, with the compiler being responsible for generating optimized code and
the user guiding performance only where necessary.

In [6] we presented a case study of porting NekBone, the simplified version
of Nek5000, to a parallel GPU-accelerated system. In this paper, we follow on
from the work developed in [6] and take advantage of the optimized results to
port the full version of Nek5000 to a GPU-accelerated system.

The paper is organized as follows. We introduce the theoretical background
in Sect. 2. In Sect. 3, the technique used to port the Nek5000 application onto a
multi-GPU system is described in detail. In Sect. 4 we present the profiling and
performance results from pipe simulations using the ported code. Finally, Sect. 5
summarizes the results and draws relevant conclusions.

2 Theoretical Background

In Nek5000 the incompressible Navier-Stokes equations in 3-D are written

∂u
∂t

+ Re(u · ∇u) = −∇p + ∇2u + f , in Ω ∈ R3

∇ · u = 0 in Ω ∈ R3
(1)

where u = (u, v, w) is the velocity, p is the pressure and f = (fx, fy, fz) is the
forcing function.

The weak form of Eq. (1) is to find v = (u′, v′, w′) and q such that

∫
Ω

v · ∂u

∂t
dΩ + Re

∫
Ω

v · (u · ∇u)dΩ = −
∫

Ω

v · ∇pdΩ +

∫
Ω

v · ∇2udΩ +

∫
Ω

v · fdΩ

∫
Ω

q(∇ · u)dΩ = 0

(2)

When the spectral element method (SEM) [7] is employed in spatial dis-
cretization, the variable u (and v, w, p) and its first derivatives can be continu-
ously represented as

u(x, y, z) =
N∑

i=0

N∑

j=0

N∑

k=0

uijkψi(x)ψj(y)ψk(z)

∂u(x, y, z)
∂x

=
N∑

i=0

N∑

j=0

N∑

k=0

uijk
2

|J |ψ
′
i(x)ψj(y)ψk(z)

(3)
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for all elements e = 1, 2, · · · . where ψijk is the SEM function representation on
the Gauss-Lobatto-Legendre points. The local tensor product form in Eq. (3)
allows derivatives to be evaluated as matrix-matrix products or using matrix-
matrix-based derivative evaluation (for more detail see [7]).

Nek5000 supports two distinct algorithms PN -PN and PN -PN−2 for solving
Eq. (4). In this paper, we focus on the PN -PN algorithm: we first discretize in
time and then take the continuous divergence of momentum equation to obtain
a Poisson equation for pressure. When high-order backward-difference schemes
(BDFk) in time are used, the discretized matrix form of the Navier-Stokes equa-
tion can be written ⎡

⎢⎢⎣

H 0 0 0
0 H 0 0
0 0 H 0
0 0 0 A

⎤

⎥⎥⎦

⎡

⎢⎢⎣

un
1

un
2

un
3

pn

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

fn
1

fn
2

fn
3

gn

⎤

⎥⎥⎦ (4)

where H = 1
ReA+ β0

ΔtB is the discrete Helmholtz operator and A is the symmet-
ric positive-definite Laplace operator. Note that fn accounts for all the terms
known prior to time tn. The resultant linear system is computed with Conjugate
Gradient (CG) linear solver accelerated with convenient preconditioners.

3 Accelerating and Optimizing Nek5000 on Multi-GPU

3.1 Profiling Analysis

An initial performance profiling of the Nek5000 application on a single CPU
was carried out using the Cray Performance Analysis Tool (CrayPAT) profiler.
The goal of this profiling work was to identify which subroutines are the most
time consuming and can provide enough workload to exploit GPU computational
power. The profiling table below shows the profiling results.

Time% | Time | Imb. | Imb.| Calls |Group
| | Time |Time%| | Function

100.0% | 191.107502 | -- | -- | 44148206.0 |Total
|------------------------------------------------------------
| 99.3% | 189.766300| -- | -- | 42866946.0 |USER
||-----------------------------------------------------------
|| 33.5% | 63.981577 | -- | -- | 30584418.0 |mxf10_
|| 19.6% | 37.490228 | -- | -- | 2450.0 |axhelm_
|| 9.7% | 18.620119 | -- | -- | 40.0 |cggo_
|| 8.8% | 16.788978 | -- | -- | 5118400.0 |mxf12_
|| 8.3% | 15.881574 | -- | -- | 10.0 |hmh_gmres_
|| 4.4% | 8.406132 | -- | -- | 914.0 |h1mg_schwarz
|| 2.4% | 4.595712 | -- | -- | 914.0 |hsmg_do_fast_
|| 2.4% | 4.544659 | -- | -- | 457.0 |h1mg_solve_
|| 1.4% | 2.630254 | -- | -- | 2924800.0 |mxf6_

Profiling results of Nek5000 on single node with the CrayPAT profile
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It is clear from the profiling results that the subroutines mxf6, mxf10 and
mxf12 for calculating the matrix-matrix product required approximately 43.7 %
of the time. Other subroutines (axhelm, cggo, hmh gmres, h1mg schwarz,
hsmg do fast and h1mg solve) for solving a preconditioned CG solver required
approximately 46.8 % of the total time. The matrix-matrix multiplication and
the linear algebra solvers dominate the execution time of Nek5000.

3.2 Matrix-Matrix Production

The implementation of matrix-matrix multiplication presented in Ref. [6] was
followed. The subroutine axhelm was implemented with OpenACC directives as
shown in the code below. The code on the left side of the table is the original
Nek5000 code, while the code in the right part of the table is the new imple-
mentation using OpenACC.

!$ACC DATA PRESENT(u,w)
!$ACC& PRESENT(D,g)
!$ACC PARALLEL LOOP COLLAPSE(4)
!$ACC& GANG WORKER VECTOR
!$ACC& VECTOR_LENGTH(128)

do e=1,nel do e=1,nel
call mxm(...) do k=1,n
do j=1,n do j=1,n

call mxm(...) => do i=1,n
enddo temp = 0
call mxm(...) !$ACC SEQ

enddo do l=1,n
temp = temp + D(i,l)*u(l,j,k,e)

enddo
w(i,j,k,e) = g(i,j,k,e)*temp

enddo
enddo
enddo

enddo

Optimized OpenACC derivatives for the matrix matrix production.

3.3 Gather-Scatter Operator

In the traditional finite element methods, the global matrix is typically assembled
by the distinct nodes associated with the global indices. However, in Nek5000,
the linear system is written as ALuL = b, where uL is the vector of values for
each node associated with local indices based on elements.

As an example, a mesh of 4 elements in 2-D is shown in Fig. 1. In this mesh
there are 9 global nodes (0, . . . , 8) and 16 local nodes (0, . . . , 15). One global
node may correspond to several local nodes. The solution of the linear system
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ALuL = b is neither reasonable nor converged, because the values of uL on
a particular global node that is shared with different local nodes are usually
inconsistent, e.g.

u4
L �= u7

L �= u11
L �= u13

L

on the shared global node 4. The gather-scatter method is employed to remove
the effect of such inconsistencies in every time-step. The method firstly summa-
rizes all values on the same global node and calculates the average, and then
redistributes the value to the original local node. The gather-scatter method can
be denoted in matrix form as

Fig. 1. A mesh of four elements in 2-D

ũL = QT uG = QT QuL (5)

where the Boolean matrix Q is the gather operator and its transform QT is the
scatter operator. Notice that matrix Q is not explicitly implemented in Nek5000,
instead a local-global map lgl(local index, global index) is used. The local-
global map for the mesh in Fig. 2 is

procs: 0 0 0 0 0 0 || 1 1 1 1 1 1
local_indices: 1 3 5 4 7 9 || 10 11 13 12 14 15

global_indices: 1 3 3 4 4 7 || 1 4 4 5 5 7

To reduce MPI global communication, those nodes that share a global index in
the same processes are summed locally and then exchanged with other proces-
sors. For example, the parallel version of the gather-scatter operator (gs op) for
the value on global node 4 shared with local nodes 4, 7, 11, and 13 is
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u4
G =

u4
L + u7

L

2
(Proc 0), u4

G =
u11

L + u13
L

2
(Proc 1)

u4
G =

u4
G (on Proc 0) + u4

G (on Proc 1)
2

, (MPI gs op)

ũ4
L = ũ7

L = u4
G (Proc 0), ũ11

L = ũ13
L = u4

G (Proc 1)

This allows us to adapt the modified gather-scatter method for OpenACC as
shown below.

unew_l = u_l
! u_g = Q u_l Local Gather
!$ACC PARALLEL LOOP
u_g = 0
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
u_g(gi) = u_g(gi)+u_l(li)

enddo

gs_op(u_g,1,1,0) ! MPI

! u_l = Q^T u_g Local Scatter
!$ACC PARALLEL LOOP
do i = 1, nl

li = lgl(1,i)
gi = lgl(2,i)
unew_l(li) = u_g(gi)

enddo

The modified gs op operator with local gather and scatter

3.4 Preconditioned Conjugate Gradient Solver

The OpenACC code of the preconditioned conjugate gradient solver CG for cal-
culating the pressure field is shown below.

!$ACC DATA PRESENT(r,w,z,d,p,h1,h2)
!$ACC& PRESENT(mask,mult,nel,ktype)

do iter=1,niter
call fdm_h1_acc(z,r,d,mask,mult,nel,ktype,w)
call crs_solve_h1_acc (w,r)
call add2_acc (z,w,n)
call add2s1_acc (p,z,beta,n)
call axhelm_acc (w,p,h1,h2,imsh,isd)
call gs_op (w,nx1,ny1,nz1)
call col2_acc (w,mask,n)
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rho = glsc3_acc(w,p,mult,n)
alpha=rtz1/rho; alphm=-alpha
call add2s2_acc (x,p,alpha,n)
call add2s2_acc (r,w,alphm,n)

enddo

The OpenACC version of the preconditioned Conjugate Gradients solver. In the
OpenACC implementation, the subroutine gs op needs to be called once to
exchange the interface data between GPUs.

4 Performance Results

A Nek5000 simulation of the flow in a straight pipe with 400 elements and
polynomials of order 10 was used to test the performance of the Nek5000 with
OpenACC simulation. These tests were carried out on a Cray XK6 consisting
of four compute nodes with a 2.1 GHz AMD Interlagos 16-core processor, 16 GB
memory and one Kepler K20 GPU. The version 8.1 of the Cray Compilation
Environment (CCE) supporting OpenACC was used. The execution times per
iteration with different orders of polynomial using the CG linear solver and
Schwarz preconditioner are compared in Table 1. The speed-up achieved using
OpenACC directives is 1.3 with 15th order polynomial on a single GPU compared
to single nodes with 16 CPU cores. In addition, the Nek5000 code with OpenACC
directives have been profiled with CrayPAT. The profiling results are shown
below. The execution time of the subroutine axhelm reduces to 2.1 s (37.5 s in
the original Nek5000) when using OpenACC. The subroutine mxf10 reduces to
10.7 s (63.9 s in the original Nek5000).

Table 1. Execution time in seconds with different orders of polynomial using the CG
linear solver and Schwarz preconditioner. 400 elements and the CG solver with Schwarz
preconditiones were used.

Order 1 node (s) 1 GPU (s) Speed-up

12th 5.6 6.3 0.89

13th 8.7 8.7 1.0

14th 11.9 11.2 1.1

15th 15.5 11.8 1.3

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | |Function

100.0% | 30.070742 | -- | -- | 6545592.0 |Total
|---------------------------------------------------------
| 96.0% | 28.866030 | -- | -- | 5342163.0 |USER



64 J. Gong et al.

||-------------------------------------------------------
|| 35.7% | 10.748494 | -- | -- | 4998018.0 |mxf10_
|| 8.3% | 2.495744 | -- | -- | 30.0 |char_conv1_
|| 7.0% | 2.103028 | -- | -- | 142.0 |axhelm_
|| 6.9% | 2.070768 | -- | -- | 228.0 |convop_fst_3d_
|| 3.6% | 1.093646 | -- | -- | 1028.0 |glsc3
|| 3.5% | 1.047823 | -- | -- | 390.0 |hsmg_do_fast_
|| 1.9% | 0.571661 | -- | -- | 10.0 |makeuf_
|| 1.4% | 0.429575 | -- | -- | 3079.0 |vlsc3_acc_
|| 1.3% | 0.392988 | -- | -- | 50.0 |chktcg1_
|| 1.3% | 0.380326 | -- | -- | 1.0 |eigenv_
|| 1.3% | 0.378630 | -- | -- | 390.0 |hsmg_tnsr1_3d_
||========================================================
| 2.3% | 0.701164 | -- | -- | 3609.0 |LAPACK
||--------------------------------------------------------
| 2.3% | 0.701164 | -- | -- | 3609.0 | dsygv_
||========================================================
| 1.6% | 0.475458 | -- | -- | 1181795.0 |BLAS
|=========================================================

Profiling results of Nek5000 with OpenACC on a single node
In addition, we report the initial results for the multi-GPU OpenACC version

of Nek5000 on the Titan supercomputer. This is a Cray XK7 supercomputer,
consisting of 18, 688 AMD Opteron 6274 16-core CPUs and 18, 688 Nvidia Tesla
K20X GPUs. For the tests on Titan, a case with a total of 36, 400 elements and
16th-order polynomials (for a total of approximately 149 M points) was used [10].
Table 2 shows the execution times per iteration with 512 CPU nodes and 512
GPUs. When using 512 nodes with 512 GPUs on Titan supercomputer, the
speed-up reduces to 1.39.

Table 2. Execution time per iteration in seconds on 512 Titan supercomputer
nodes using only CPU and on 512 GPUs. 36400 elements and 16th order polynomial
were used.

512 nodes (s) 512 GPU (s) Speed-up

7.02 5.07 1.39

4.1 Performance Analysis with Score-P and Vampir

A more detailed application performance analysis of Nek5000 with OpenACC
was completed by tracing Nek5000 with the Score-P [8] performance monitoring
tool. The tracing of the GPU kernels was carried out by intercepting the under-
lying CUDA calls via the CUDA profiling interface CUPTI. The monitoring was
completed on one node of Titan at Oak Ridge National Laboratory. The visual-
ization of the resulting monitoring information was done with the performance
visualizer Vampir [9].
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Figure 2 shows the color-coded application run-time behavior over the whole
run-time of 151.93 s for the CPU process (Master thread) and the GPU stream
(CUDA[0:2]). The figure shows the three main phases of the Nek5000 code
nek init (initialization), nek solve (main calculation), and nek post (post-
processing). These three phases can be easily distinguished by comparing the
different color-coded patterns in the timeline of the CPU process. All compiler
generated OpenACC kernels are grouped in CUDA Kernel. The overall run-time
of these kernels was 102.416 s (67.41 % of the application run-time) while the
GPU was idle for the rest of the time (32.59 % of the application run-time).

Fig. 2. Function-based, color-coded visualization of the CPU process and GPU stream
over the full application run-time and additional statistics of the groups of the functions
and the GPU kernels. In the timeline of the metric duration of the main iteration the
dynamic behavior of the duration of each iteration over is visualized.

Figure 3 shows the zoomed-in, color-coded run-time behavior of the applica-
tion during the main calculation phase over ten Nek5000 computational itera-
tions. It shows that the idle time of the GPU was reduced in comparison to the
whole run-time to 25.35 %. The ten different iterations have different duration,
varying from 15.16 s (first iteration) to 12.32 s (tenth iteration). This can be seen
in the metric timeline of the metric duration over time.

The main GPU kernels are the matrix-matrix multiplication in the subroutine
axhelm taking 36.43 % of the run-time and a kernel that consumes 28.06 % of
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Fig. 3. Zoomed-in, function-based, color-coded visualization of the CPU process and
GPU stream of the main calculation phase with ten iterations and additional statistics
of the groups of the functions and the GPU kernels.

the run-time. 24.68 % of the GPU run-time was spent in kernels that are used to
do a mapping between the coarse and the fine mesh. An important result of this
analysis is that it shows that only one CUDA stream is used by the compiler-
generated OpenACC code. For this reason, all the GPU kernels are executed
sequentially and therefore there is no overlapping of the CUDA kernels during
the execution. As a result, the achieved performance of the GPU relies on the
degree of vectorization of each OpenACC kernel, i.e. how many massively parallel
threads can be created within each kernel. The main CPU process routine is a
synchronization of CUDA called cuda StreamSynchronize and uses in fact 90 %
of the CPUs application run-time. This function is part of the group CUDA API,
which includes all CUDA API calls monitored on the CPU process and was
introduced by the compiler and used in the OpenACC regions.

Figure 4 presents the color-coded visualization of the first iteration on the
Nek5000 simulation. This iteration has a duration of 15.154 s and the idle time
of the GPU for this phase is 3.441 s (22.7 %). The CPU process spent most of its
time in the CUDA synchronization routine (light blue color in Fig. 4). The most
time consuming kernels of the GPU are again the matrix-matrix computation
with 4.631 s and respectively 3.363 s. In future work, to improve the performance
of Nek5000 with OpenACC by decreasing the GPU idle time, it will be important
to use overlapping of kernels and/or host-device memory transfers.
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Fig. 4. Zoomed-in, function-based, color-coded visualization of the CPU process and
GPU stream of the first iteration and additional statistics of the groups of the functions
and the GPU kernels.

5 Conclusions

The full Nek5000 code has been ported to multi-GPU systems using OpenACC
compiler directives. The work focused on porting the most time-consuming parts
of Nek5000 to the GPU systems, namely the matrix-matrix multiplication and
the preconditioned CG linear solver. The gather-scatter method with MPI oper-
ations has been redesigned in order to decrease the amount of data to transfer
between host and accelerator. A speed-up of 1.3 times was found on a single
node of a Cray XK6 when using OpenACC. On 512 nodes of the Titan super-
computer, the speed-up can be approached to 1.6 times. A performance analysis
of the Nek5000 code using Score-P and Vampir performance monitoring tools
was carried out. This study showed that overlapping of GPU kernels with host-
accelerator memory transfers would largely increase the performance of the Ope-
nACC version of Nek5000 code. This will be part of future research.
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Abstract. Accelerators and, in particular, Graphics Processing Units
(GPUs) have emerged as promising computing technologies which may
be suitable for the future Exascale systems. However, the complexity of
their architectures and the impenetrable structure of some large appli-
cations makes the hand-tuning algorithms process more challenging and
unproductive. On the contrary, auto-tuning technology has appeared as
a solution to this problems since it can address the inherent complex-
ity of the latest and future computer architectures. By auto-tuning, an
application may be optimised for a target platform by making automated
optimal choices. To exploit this technology on modern GPUs, we have
created an auto-tuned version of Nek5000 based on OpenACC directives
which has demonstrated to obtained improved results over a hand-tune
optimised version of the same computation kernels. This paper focuses
on a particular role for auto-tuning Nek5000 to utilise a massively par-
allel GPU accelerated system based on OpenACC directive to adapt the
Nek5000 code for the Exascale computation.

Keywords: Computational fluids · Nek5000 · OpenACC · GPU ·
Auto-tuning

1 Introduction

The use of Graphics Processing Units (GPUs) for general purpose in High Per-
formance Computing (HPC) has been dramatically increased in recent years.
GPUs are nowadays broadly used to solve computational problems in a wide
range of areas such as engineering, computational chemistry or physics [1,2].
They have gained a vast popularity as a cost-effective platform in High Perfor-
mance Computing and Scientific applications in the recent years due to their
parallel computation capabilities and computational power. Modern GPUs are
able to run thousands of hardware threads concurrently which allows applications
to decompose their workloads into the threads without introducing a significant
overhead [3]. The market leader of these devices at present is NVIDIA with
their current generation Tesla [4] GPUs installed in a large number of petascale
c© Springer International Publishing Switzerland 2015
S. Markidis and E. Laure (Eds.): EASC 2014, LNCS 8759, pp. 69–81, 2015.
DOI: 10.1007/978-3-319-15976-8 5
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HPC systems. Motivated by this we choose to investigate the performance of
our experiments on the Tesla architecture.

One of the major drawbacks of programming NVIDIA GPUs has been that
the programming model, CUDA [5], is not a recognised standard and is com-
pletely proprietary to NVIDIA. CUDA (Compute Unified Device Architecture)
is a parallel computing architecture developed by NVIDIA Corporation and is
the computing engine in NVIDIA GPUs that is accessible to software develop-
ers [7]. Although there has been a large volume of research into porting HPC
kernels to GPUs [6,7], the HPC community is nervous about investing substan-
tial software development effort in converting applications to use a programming
language that is not portable between different architectures. Although signifi-
cant additions for accelerators have been included to the existing OpenMP stan-
dard [8] for shared-memory directives, this is likely to be a long process until
the technology reaches maturity. To address this, a number of HPC hardware
and software vendors got together to produce an interim standard for accelera-
tor directives, OpenACC [9], based on their own experiences and guided by the
direction of the OpenMP efforts. OpenACC allows the application developer to
express the offloading of data and computations to GPUs, such that the porting
process for legacy CPU based applications can be significantly simplified [10].

In the past, OpenACC has already demonstrated to work well with some
computational codes which implement relatively simple operations [11,12]. Fur-
thermore, OpenACC has already been successfully introduced in Nek5000 [13], a
more computationally-demanding code that implements a Computational Fluid
Dynamics (CFD) solver based on the spectral element method. In this paper
we report an extensive auto-tuning study of a skeleton application of Nek5000,
Nekbone [14]. The previous OpenACC accelerated code by Markidis, S. et al. [15]
is used as the base to compare our results. The performance results of auto-tuning
Nekbone using OpenACC for a single GPU are presented.

In Sect. 2, we present the necessary background information where Nekbone,
Nek5000 are briefly described. Furthermore, a stand-alone kernel benchmark
based on the computation of Nekbone is presented in Sects. 2.2. In Sect. 3, we
briefly describe the structure of the implemented OpenACC kernels. Section 4
shows the performance the results of different implementations. Finally, Sect. 5
summarizes the results and draws relevant conclusions.

2 Background

2.1 Nek5000

Nek5000 is a scalable open-source code which simulates incompressible flow with
thermal and passive scalar transport. Its discretization scheme is based on spectral
element methods [17] and covers a wide range of application areas, such as nuclear
reactor modeling, astrophysics, climate modeling, combustion and biofluids [16].
The code is written in Fortran, C and uses Message Passing Interface (MPI) for
message passing and some LAPACK routines for eigenvalue computation.
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The core computational kernel of Nek5000 is dominated by a large number
of matrix-matrix operations that could be implemented by a call to the standard
DGEMM function from level 3 of the BLAS library [18]. However, the particular
calculation required in Nek5000 has a number of distinguishing features:

1. It requires multiplications between a large number of independent small matri-
ces as opposed to a small number of multiplications of large matrices. This
means that memory bandwidth is stressed as well as floating-point perfor-
mance, which is not the case for a typical large DGEMM test case.

2. A wide range of matrix sizes are employed although all are small.
3. The matrices are not always square: for a given value of N the benchmark has

three cases with matrices of size N x N , N2 x N and N x N2. The values of N
range between 1 and 24.

2.2 Nekbone

Nekbone is a standard program provided with the Nek5000 application and it has
been configured to capture the basic structure and user interface of the exten-
sive Nek5000 software. It requires F77 and C compilers and it has been tested
and supported by IBM, Intel, PGI Portland and GNU compilers although other
compilers may be used. Nek5000 is a complex Navier-Stokes solver based on the
spectral element method, whereas Nekbone solves a Helmholtz equation in a box
using the same method. Nekbone exposes the main computational kernel to reveal
the essential elements of the algorithm-architectural coupling that is relevant to
Nek5000 [14], therefore our work here focuses only on the optimization and auto-
tuning process of Nekbone since it is understood that any improvement achieved
on the computational structure of Nekbone could also be applied to Nek5000.

2.3 Stand-Alone Kernel Benchmark

A standard program that executes some low level benchmarks without requiring
any input files is supplied with the Nek5000 distribution. It runs both computa-
tion and (matrix-matrix operations) and communication (ping-pong, reduction,
etc.) kernels. Although it would have been possible to comment out the commu-
nication operations of the benchmark, it was finally decided to extract the min-
imal amount of code needed to run the calculation benchmark. For the purpose
of this investigation, new kernels were to be added therefore a verification rou-
tine was introduced to ensure correctness. A reference solution is computed using
the simplest version of the kernels. All subsequent results are compared to this
reference by computing the RMS difference, and if this exceeds a certain toler-
ance (set to 1.0−12), then an error is reported. All calculations are done in double
precision, although this is actually achieved by promoting reals to doubles using
compiler flags.

The existing DGEMM benchmark originally had the following structure:

1. Declare three arrays A, B and C, each containing M matrices
2. Loop over a high number of repetitions for timing purposes



72 L. Cebamanos et al.

– Loop over i = 1, 2, ....,M
• Compute matrix-matrix multiplication C(i) = A(i) ∗ B(i)

3. End repetitions

The sizes of the individual matrices are determined by the value of N , which cor-
responds to the order of the spectral elements in Nek5000. The benchmark con-
siders three cases for a given value of N each of which uses matrices of different
dimension. The three test cases of C = A ∗ B are:

1. N2 x N matrix times N x N matrix equals N2 x N matrix
2. N x N matrix times N x N matrix equals N x N matrix
3. N x N matrix times N x N2 matrix equals N x N2 matrix

The value of M is related to the size of the problem that is being solved in
Nek5000. In the kernel benchmark, a fixed amount of memory comprising
NFLOAT floating-point numbers is declared. The value of M is then set to fill
this array with as many matrices as possible, i.e. for each case:

– Case 1 → M = NFLOAT/(N3)
– Case 2 → M = NFLOAT/(N2)
– Case 3 → M = NFLOAT/(N3)

This means that the inner loop always has roughly the same number of floating-
point operations of order M x N3. Although there is a factor of N more matrices
for case 2, the matrices themselves are smaller so each matrix multiplication has
corresponding a factor of N fewer floating-point operations.

The kernels included in the benchmark implement a simple computation as it
is shown in Algorithm 1.

Algorithm 1. Näıve matrix-matrix computation
do j = 1, n3

do i = 1, n1

c( i, j ) = 0.0

do k = 1, n2

c ( i, j ) = c ( i, j ) + a ( i, k ) * b ( k, j )

end do

end do

end do

In order to investigate the performance of Nekbone through the use of the
mentioned extracted stand-alone benchmark it is important to highlight the how
the kernel benchmarks relate to the Nekbone computational kernels. The num-
ber of elements, nel, corresponds to setting a particular value of floating-point
value, NFLOAT , in the kernel benchmarks. As each element requires N3 storage,
nel = NLFOAT/N3. In Nekbone, updating a single element requires six kernel
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calls: two separate calls for each of the three cases. These cases actually corre-
spond to operations across different spatial dimensions of the 3D elements. In the
Nekbone kernel, the computational load is equally distributed between the three
kernel cases. In terms of the number of elements nel, the value of M in the bench-
mark is set as M = nel for cases 1 and 3, and M = nel ∗ N for case 2. The core
operation in Nekbone is implemented by a routine called ax e and considering that
the repetition of its inner operations are not relevant in terms of performance and
neither the order of the calls to the three different cases, we could re-write it in
the following form:
loop e = 1 to nel

Update e using kernel case 1
loop k = 1 to N

Update e using kernel case 2
end loop
Update e using kernel case 3

end loop
Given that nel and N are likely to be fixed for many runs of Nek5000 (as they
correspond to the basic discretization parameters of the simulation) the way for
a user to optimize Nekbone performance using the benchmark is as follows:

1. Set NFLOAT based on nel; the precise choice is not important with respect to
performance, e.g. assuming that nel is large then it only has to be large enough
to ensure that data is read from memory and is not cache resident.

2. Run the benchmark and find the routine with the best harmonic mean perfor-
mance across all three cases.

3. Compile that single version and use in all calls.

3 OpenACCKernels

Since GPUs require many independent floating-point operations in order to exploit
massive parallelism, and a single kernel do not provide sufficient parallelism it was
decided that the accelerated kernels would have to operate on a whole array of ele-
ments at once. Furthermore, the kernel benchmarks were updated to perform as
in Nekbone. In Nekbone one of the matrices (either A or B) was actually fixed
throughout the loop. The new accelerated Nekbone kernel has the following form:

– Call accelerated kernel case 1 for C(i) = A(i) ∗ B (vector length = nel)
– Call accelerated kernel case 2 for C(i) = A(i) ∗ B (vector length = nel * N)
– Call accelerated kernel case 3 for C(i) = A ∗ B(i) (vector length = nel)

Over 10 different implementations of each kernel have been included in the
benchmark providing many different computation paths for the Nekbone kernel
and exploring the following types of optimizations:

– specific hard-coded versions for different values of n1, n2 and n3 so that these
are constant at compile time;
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– different loop orderings;
– loop unrolling;
– hand tiling into blocks for better cache reuse;
– calls to DGEMM routines;
– matrix values stored explicitly in temporary scalars;
– loop collapsing.

Therefore, our new kernel routines using OpenACC accelerated code could be re-
written in the following form:
Call OpenACC kernel case 1
Call OpenACC kernel case 2
Call OpenACC kernel case 3
Update values
Call OpenACC update kernel case 1
Call OpenACC update kernel case 2
Call OpenACC update kernel case 3

and the new OpenACC kernels included now implement variations of OpenACC
optimized code

Algorithm 2. Simple OpenACC matrix-matrix computation

!$acc parallel loop present(a,b,c) private(i,j,k)

do j = 1, n3

do i = 1, n1

#ifdef SCALAR

tmp = 0.0

#else

c( i, j ) = 0.0

#ifdef SCALAR

tmp = tmp + a( i, k ) * b ( k, j )

#else

do k = 1, n2

c ( i, j ) = c ( i, j ) + a ( i, k ) * b ( k, j )

end do

#ifdef SCALAR

c( i, j ) = tmp

#endif

end do

end do

3.1 Auto-tuning Technology

In the interest of obtaining the best performance results of Nekbone here we
employed auto-tuning technology developed under the EU CRESTA research
project [25]. As part of a wider study to define a domain-specific language
(DSL) appropriate for auto-tuning aspects of parallel applications a mock-up
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implementation was developed within the project. This implementation can ex-
plore a tuning parameter space by repeatedly building and running an application.
The best run is chosen using a metric obtained from the program execution and
currently this is done by exhaustive search. To accomplish a tuning run the source
is appropriately preprocessed or compiled and an optimization process organized.
The tuning session is controlled by DSL either from a global configuration file or
embedded in application source.

The DSL is a component of an auto-tuning framework and at the highest level
it is assumed that this framework can optimize an application over a set of tuning
parameters. Some parameters we term here scenario characterization parameters
and these may for example, map to input parameters relating to problem size.
This is illustrated in Fig. 1.

Fig. 1. Scenario and tuning spaces

For each scenario, we aim to pick the best values for a set of tuning parameters
(see Fig. 1: t1, t2, and t3). The tuning parameters will relate to build and runtime
optimization choices which we can choose to give for example the best runtime.
At its simplest, the auto-tuner framework can optimize over the tuning parame-
ters, at the most complex it can build routines and applications choosing the best
tuning parameters for a set of scenario characterization parameters.

The structure for a DSL tuning parameters configuration file can be seen as
follow:

begin parameters

begin typing

<type-entity>

end typing

begin constraints

<constraint-entity>

end constraints

begin collections

<collection-entity>

end collections
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begin dependencies

depend: <depend-list>

end dependencies

end parameters

The typing section allows parameters to be typed as int, real or label. The
set of allowed values of a parameter are defined in the constraints section. This
supports specific sets of values, ranges, parameter relationships and legality con-
straints. Parameters may be grouped into collections and the dependency section
allows us to say which parameters should be treated as dependent where depend-
list is either a list of parameters or a list of collections.

For the purpose of this investigation we used this framework to set build para-
meters which chose code variants or values in OpenACC clauses. The parameters
targeted for the auto-tuning on each algorithm are the number of elements, nel;
matrix size, N ; scalar reduction, the number of OpenACC gangs and workers and
the OpenACC vector length. An example of DSL script can be seen in Appendix.

4 Performance Results

The performance tests of the stand-alone benchmark and NekBone version with
OpenACC have been carried out on a Cray XK6/XK7 system consisting of eighth
compute nodes that comprises a 2.1 GHz AMD Interlagos 16-core processor,
16GByte memory and one Kepler K20 NVIDIA Tesla GPU with 5 GByte of mem-
ory. Version 8.1 of the Cray Compilation Environment(CCE) supporting Open-
ACC was used and the computational performance is measured in Gflops.

4.1 Benchmark

We first tested the performance of our stand-alone benchmark based on the num-
ber of elements. It is expected that the performance characteristics for the GPU
will vary significantly with nel. In Fig. 2 we present the results for cases 1 and 2
running a default version of the kernels, i.e. the simplest OpenACC accelerated
kernel which would let the compiler to take optimization decisions.

The performance of the auto-tuned version for cases 1 and 2 is also shown in
Fig. 3. The performance results of case 3 are not shown due to they are very simi-
lar to case 2. The performance results obtained from auto-tuning show significant
improvements over the default option in all situations. Furthermore, there is very
little difference between the auto-tuned performance for case 1, 2 and 3.

4.2 Nekbone

Our main goal is to investigate what effect the kernel auto-tuning has on over-
all Nekbone performance. Therefore, after obtaining the optimal parameter set-
tings from auto-tuning our stand-alone benchmark, they are now introduced into
an OpenACC accelerated version of Nekbone. As useful reference values we have
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Fig. 2. Default performance of cases 1 (left) and 2 (right)
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Fig. 3. Auto-tuned performance of cases 1 (left) and 2 (right)

used the previous performance results obtained by Markidis et al. using an accel-
erated OpenACC hand-tuned version of Nekbone. This performance result of a
hand-tuned version can be seen on Fig. 4 (left). The maximum value of nel is often
smaller than the previous value of 81292 used in the kernel benchmarks and the
reason is that Nekbone uses more memory, and the application run into memory
limits on the GPU (generally at large N).

To illustrate the effect of parameter tuning, Fig. 4 (right) shows the perfor-
mance results of an auto-tuned version of Nekbone. This performance results
demonstrates that auto-tuning technologies can be able to achieve similar or even
improvedperformance results over hand-tuned codes. InFig. 5wehave represented
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Fig. 4. Performance of a hand-tuned (left) by Markidis et al. and an auto-tuned (right)
OpenACC Nekbone
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Fig. 5. Performance ratio of auto-tuned, hand-tuned and default OpenACC settings

the ratio between of our auto-tuned performance results over the hand-tuned per-
formance results achieved by Markidis et al. and and using default
OpenACC settings. It can be seen in Fig. 5 (right) that in some occasions the
auto-tuned optimized version of Nekbone has achieved up to 20 % of performance
improvement over the hand-tuned version. Note the difference in scale between
the graphs shown in Fig. 5.

Thanks to the new Nekbone structure developed for this purpose and the ex-
haustive exploration of different parameter values carried out by the auto-tuner
we have accomplished a simpler, better structured and faster implementation of



Auto-tuning an OpenACC Accelerated Version of Nek5000 79

Nekbone. Furthermore, the exploration of different OpenACC optimization algo-
rithms has revealed that loop collapsing techniques have given the best perfor-
mance improvement among all the other techniques listed in Sect. 3. Although
scalar reduction showed little performance improvement, the best performance
vector-length values were 128 and 256.

5 Conclusions

The focus of this work was on accelerating Nek5000 using OpenACC compiler
directives and auto-tuning technologies. Due to the complexity of Nek5000, our
experiments have been carried out on a simplified version of the Nek5000 code,
called Nekbone; and an extracted computational benchmark also based on
Nek5000. A naive implementation using OpenACC showed little performance
compared to an auto-tuned implementation where performance improvements of
over 2x have been achieved. In addition, we have developed an OpenACC accel-
erated auto-tuned version of Nekbone. In this paper we have demonstrated that
our auto-tuned version was able to reach, and some occasions improve, the per-
formance accomplish by an OpenACC hand-tuned version.

A Example of DSL Script

begin configuration

begin tune

mode: scenarios

scenario-params: ALG

scope: VECTOR_LENGTH N NEL NUM_GANGS VECTOR_LENGTH

target: max

metric-source: file

postrun-metric-file: Output/output.$run_id

metric-placement: lastregexp

metric-regexp: tune run metric +(\S+)

end tune

end configuration

begin parameters

begin typing

label NUM_GANGS

label NUM_WORKERS

int VECTOR_LENGTH

int N

int NEL

int ALG

end typing

begin constraints

range NUM_GANGS none default none

range NUM_WORKERS none 1 2 4 8 16 32 default none

range VECTOR_LENGTH 128 256 512 1024 default 128

range ALG 101 102 103 104 105 106 107 108 109 110 default 101

range N 8 10 12 14 16 18 20 default 8
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range NEL 32 64 128 512 1024 2048 4096 8192 default 32

! runtime parameters first in this list

depends NUM_WORKERS VECTOR_LENGTH N NEL

end constraints

!anything changed here, need to re-compile

begin collections

BUILD: NUM_WORKERS VECTOR_LENGTH

end collections

end parameters

begin build

command: cp sizes/mysize.$N.$NEL SIZE; ./makenek xx $NUM_WORKERS $VECTOR_LENGTH

end build

begin run

command: aprun -n1 -N1 ./nekproxy $ALG > Output/output.$run_id

end run
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Abstract. Achieving the performance potential of an Exascale machine
depends on realizing both operational efficiency and scalability in high
performance computing applications. This requirement has motivated
the emergence of several new programming models which emphasize fine
and medium grain task parallelism in order to address the aggravat-
ing effects of asynchrony at scale. The performance modeling of Exas-
cale systems for these programming models requires the development of
fundamentally new approaches due to the demands of both scale and
complexity. This work presents a performance modeling case study of
the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) proxy application where the performance modeling approach
has been incorporated directly into a runtime system with two modal-
ities of operation: computation and performance modeling simulation.
The runtime system exposes performance sensitivies and projects oper-
ation to larger scales while also realizing the benefits of removing global
barriers and extracting more parallelism from LULESH. Comparisons
between the computation and performance modeling simulation results
are presented.

1 Introduction

Understanding and managing asynchrony effects in simulating Exascale parallel
machines with eventual billion-way parallelism is a crucial factor in achieving
application efficiency and scalability. Efforts to manage asynchrony have resulted
in the creation of a number of emerging programming models and the renovation
of several traditional programming models all with the aim to utilize asynchrony
and extract more parallelism from applications at large scale. A key component
of these efforts is performance modeling.

Several performance models have been created specifically to highlight short-
comings in how traditional programming models fail to adequately address asyn-
chrony. One of these is the Starvation-Latency-Overhead-Waiting for Contention
(SLOW) performance model [14] where each letter of the acronym SLOW iden-
tifies one of the key causes for constrained scalability in an application and
c© Springer International Publishing Switzerland 2015
S. Markidis and E. Laure (Eds.): EASC 2014, LNCS 8759, pp. 85–99, 2015.
DOI: 10.1007/978-3-319-15976-8 6
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highlights a challenge when programming using the conventional practice. Sev-
eral alternatives to conventional practice have been developed to better address
the issues highlighted by SLOW by utilitizing lightweight concurrent threads
managed using synchronization primitives such as dataflow and futures in order
to alter the application flow structure from being message-passing to becoming
message-driven.

However, the performance modeling necessary to understand and manage asy-
nchrony effects at scale can be especially challenging for emerging programming
models that rely on lightweight concurrent threads. Trace-driven approaches for
such programming models tend to substantially alter the application execution
path itself while cycle-accurate simulations tend to be too expensive for co-design
efforts. While discrete event simulators have been successfully used for the perfor-
mance modeling of many-tasking execution models before [4], they require both
an implementation of the execution model in the simulator as well as a skeleton
application implementation. This skeleton code has to preserve the dataflow of
the original application while appropriately modeling the computational costs
of the full application in between communication requests.

A robust implementation of the execution model in the discrete event simula-
tor and a close representation between the skeleton code and the full application
are both crucial in order to achieve accurate performance predictions from the dis-
crete event simulator. A skeleton code which closely represents the computational
costs and dataflow of the full application code can be especially difficult to achieve
because a significant code fork is necessary in order to develop the skeleton code.
Updates and improvements made to the full application code are not automati-
cally reflected in the skeleton code and inconsistencies between the two codes are
easily introduced. Likewise, accuracy in implementing the execution model in the
event simulator is also difficult to achieve: modeling the contention on resources,
the variable overheads when using concurrent threads, the highly variable com-
munication incidence rates, the network latency hiding, the thread schedulers and
associated contention, and the oversubscription behavior all contribute in compli-
cating the implementation of the execution model in the discrete event simulator.

This paper presents a performance modeling case study for many-tasking
execution models which incorporates performance modeling directly into the
runtime system implementation of the execution model without requiring a skele-
ton code or application traces. A runtime system is the best equipped tool for
performance modeling an application as it comes with the necessary introspec-
tion capability, it does not require a skeleton code separate from the applica-
tion for modeling, and is itself already a robust implementation of the execution
model it represents. For this case study, the performance modeling capability
of the HPX-5 runtime system is explored for a proxy application developed by
one of the US Department of Energy co-design centers: the Livermore Unstruc-
tured Lagrangian Explicit Shock Hydrodynamics (LULESH) proxy application
code [1]. LULESH has been ported to multiple programming models, both emerg-
ing and traditional, and its scaling behavior has been extensively explored mak-
ing it a good candidate for this case study. More importantly, the scientific kernel
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encapsulated in the LULESH proxy application is expected to be representative
of computational science applications requiring future Exascale resources.

The HPX-5 runtime system is an implementation of the ParalleX execu-
tion model [9] and supports message-driven computation as well as two different
modalities of operation: full computation and performance modeling simulation,
hereafter referred to as simulation. The simulation modality in this case study is
restricted to those cases where the prototype Exascale node is already available
for simulation. This enables the runtime system to produce performance predic-
tions for large systems composed of those prototype nodes. This approach that
does not require a separate skeleton code nor code tracing instrumentation for
use in performance studies and application co-design.

Overall, this work provides the following new contributions:

– It presents a port of LULESH proxy application to the ParalleX execution
model.

– It presents a performance modeling approach for many-tasking execution mod-
els where the performance modeling has been incorporated into the runtime
system.

– It presents a performance modeling approach that is not trace-driven and does
not require a skeleton code.

– It explores a runtime system with two modalities of operation for both per-
formance modeling simulation and full computation operation.

This work is structured as follows. Related work is given in Sect. 2, followed
by a description of the performance modeling approach proposed here. Details
about the runtime system used in the case study are given in Sect. 4 along
with motivation why modern runtime systems are well suited for performance
modeling when using a many-tasking execution model. Secton 5 gives details
about the HPX-5 implementation of LULESH used here while Sect. 6 presents
the results of the LULESH case study. Our conclusions and directions for future
work are given in Sect. 7.

2 Related Work

While there have been a large number of approaches to developing perfor-
mance modeling techniques which are application independent, most of these
have centered around the Communicating Sequential Processes (CSP) execu-
tion model. Trace-driven approaches are a key component in many performance
modeling and co-design frameworks, including DUMPI in SST/Macro [11], Log-
GOPSim [10], and the Performance Modeling and Characterization (PMaC)
framework [6]. A key challenge in trace-driven approaches is the trace collection
overhead. Carrington et al. [5] demonstrate how to reduce the trace collection
overhead by extrapolating results to larger core count sizes using smaller core
count traces. While trace-based approaches generally do not require changes to
the user application and work well with the coarse-grained computation style
favored by CSP, trace collection overhead can significantly alter the execution
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path for the fine-grained computation style favored in many-tasking execution
models.

A domain specific language (DSL) approach to performance modeling was
introduced by Spafford et al. [13], named Aspen. Aspen provides a common set of
tools and concepts to more easily enable coarse-grained exploration of algorithms
and co-design. However, Aspen also makes some limiting assumptions which
could prevent fine-grained, message-driven style computations. To work around
such shortcomings, the message-driven toolkit Charm++provides its own trace-
driven parallel discrete event simulator, BigSim [15], which is itself capable of
parallel computation. When used in conjunction with the Charm++performance
emulator, BigSim Emulator [16], coarse timing predictions can be made to
guide co-design decisions. As it is a trace-driven approach, the traces can impact
the execution path of sufficiently fine-grained computations.

In the context of fine-grained computations with significant resource oversub-
scription, performance modeling options for many-tasking execution models are
very few and, up to now, require skeleton code creation in order to avoid trace-
driven approaches. Sottile et al. [12] present a semi-automatic way of extracting
software skeletons using source-to-source code generation as one way to avoid
forking application codes for discrete event simulation. Robust, generic, and fully
automatic approaches for skeleton code generation are difficult to find.

Programming Model
(MPI, HPX, Charm++)

Execution Model
(Runtime System)

Execution
Traces

Simulator
(SST, BigSim)

Machine Model

Application

Computation

Execution
TracesSkeleton

Machine Model
(Abstract or Actual)

SimulationEmulation

Programming Model
(HPX)

Execution Model
+ Simulator

(HPX runtime system)

Machine Model

Application

Computation SimulationEmulation

Fig. 1. An illustration comparing the traditional performance modeling approaches
with what is proposed here.
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3 Performance Modeling

This case study targets performance modeling scenarios where the actual or
prototype Exascale node is available. Unlike traditional simulation approaches,
the proposed simulation methodology does not involve generating traces nor
a skeleton code but rather integrating the simulation capability with the run-
time system. Figure 1 highlights the differences between traditional simulation
approaches and what is proposed here. This alternative approach is motivated
by the goal of improving user access to performance modeling, the rapid increase
in the number of many-tasking execution models, and the ability for modern run-
time systems to incorporate all necessary introspection mechanisms to properly
operate in a performance modeling simulation mode. Further motivation as to
why the runtime system is well suited for this type of modeling is provided in
Sect. 4.

For any application, the many-tasking runtime system has full and direct
access to the task phase information. When the runtime is operating in a simu-
lation modality on prototype Exascale nodes, a sample of nodes is selected for
performing the application simulation. Other nodes that directly interact with
these nodes are also simulated but only for a small set of communication iter-
ations to provide accurate message incidence rates for the sample nodes. Using
select iteration snapshots in the course of the application simulation, the run-
time system uses these sample nodes to predict application performance at the
scale indicated by the user. While this approach does not require traces, it has
a disadvantage of not providing performance predictions for the entire duration
of application execution. The performance predictions are provided only for a
specific subset of communication iterations.

The approach is illustrated in Fig. 2. Each square and circle represents a
node in an Exascale simulation while arrows indicate communication. When the
runtime system is in simulation mode, a user defined set of sample nodes, indi-
cated by the red outlined boxes, is selected for running the application. Nodes
which interact with this sample set, indicated by blue circles, are identified by
the runtime system accessing the node interaction data. The application is also
run on these nodes in order to provide correct incidence rates and phase informa-
tion to the sample nodes but their runtime information, such as specific execution
times of various subroutines, is not used in the performance prediction. Network
communication is performed between all nodes that are running the applica-
tion while a network model handles communication between circle nodes and
non-running ghost nodes, indicated by blue squares. Green arrows indicate net-
work traffic approximated by a network model, red arrows indicate real network
traffic, and black arrows indicate traffic not modeled.

The accuracy of the predictions relies on how well the sample nodes repre-
sent the overall state of the application. For static dataflow applications which
are well-balanced, this would be easily achieved with a very small sample size.
For highly dynamic applications, it would not be unlikely to require terascale
computing in order to predict Exascale performance.
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This runtime system based approach can be improved and refined in sev-
eral ways. The number of buffer nodes which provide incidence rate and node
interaction information to the sample set can be increased to improve accuracy.
Likewise, the introspection capability of the runtime system can be expanded
to directly model these phases and incidence rates while in full computation
mode and then later re-used in the simulation modality while still avoiding trace
collection. In this case study, we present results from the simplest performance
modeling approach where sample nodes operate in full computation mode with
all other nodes operating as ghost (non-computing) nodes. The following section
gives details about the runtime system selected for this case study and how run-
time system capabilites are well suited for taking on the role of performance
modeling.

Fig. 2. A runtime system based performance modeling approach. Each square and
circle represents a node in an Exascale simulation while arrows indicate communication.
When the runtime system is in simulation mode, a user defined set of sample nodes,
indicated by the red outlined boxes, is selected for running the application. Nodes which
interact with this sample set, indicated by blue circles, are identified by the runtime
system accessing the node interaction data. The application is also run on these nodes
in order to provide correct incidence rates and phase information to the sample nodes
but their runtime information is not used in the performance prediction. Network
communication is performed between all nodes that are running the application while
a network model handles communication between circle nodes and non-running ghost
nodes, indicated by blue squares. Green arrows indicate network traffic modeled by
a network model, red arrows indicate real network traffic, and black arrows indicate
traffic not modeled.

4 Runtime Systems and Performance Modeling

Performance modeling of Exascale systems requires development of fundamen-
tally new approaches due to demands of both scale and complexity. The trace
based methodologies are infamous for generating prohibitively large volumes of
data when run on many nodes of a large system, necessitating the use of the
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on-the-fly compression that potentially distorts timing, or decimation of data,
which reduces overall accuracy. Full scale fine-grain discrete event simulation
may easily exceed the application’s run time on the actual hardware. The skele-
ton based approximations may result in faster simulation, but also tend to reduce
the accuracy due to overly simplified models of execution resources, memory, and
network, as well as their interactions. To address these shortcomings, an app-
roach inspired by and integrated with the model of execution is proposed. Unlike
most existing solutions that necessarily restrict their functionality to a single or
at most a few layers of system software stack, execution model spans the whole
gamut of software services and underlying hardware, permitting more thorough
analysis. The ParalleX execution model and its associated HPX-5 runtime sys-
tem implementation are used for this case study.

ParalleX is a new model of execution explicitly created to identify and
mitigate the effects of primary sources of performance degradation in parallel
applications. They include: (i) Starvation, or insufficient amount of work nec-
essary to efficiently utilize the available execution resources, (ii) Latency, or
delay in accessing remote resources and services, (iii) Overhead, or additional
work required for management of parallel computations and resource allocation
on critical path, but absent from the sequential variant, and (iv) Waiting for
resolution of contention on concurrently accessed resources and services. The
newly added extensions of the ParalleX model deal with Energy efficiency of
computation and its Resilience, or achieving reliable execution in the presence
of faults (SLOWER). ParalleX addresses many limitations of commonly used
application programming models such as MPI, by breaking free of Communicat-
ing Sequential Processes scheme (which frequently results in overly constrained
implementations abusing global barriers). Instead ParalleX relies on message-
driven approach that avoids predetermined patterns of interaction by combin-
ing lightweight threads, fine-grain synchronization, and active messages called
parcels.

Even though some of the model components have been known for more than
a decade, ParalleX organizes them into a novel parallel execution framework
with unified semantics. The system is subdivided into a number of localities,
or physical resources with bounded service response time. In typical platforms
(clusters, constellations), locality corresponds to a computational node. The
localities are connected by asynchronously operating network. Application state
may be arbitrarily distributed across any number of localities in the system.
Local modifications of application state are carried out by threads. In Par-
alleX, threads are by definition ephemeral, created for and existing only long
enough to execute a specific task. This makes them a convenient medium to
represent the unconstrained parallelism available in the application. Thread exe-
cution is synchronized by Local Control Objects (LCOs). These structures imple-
ment high-level synchronization primitives, such as futures or dataflow elements,
although support of traditional atomic operations is also possible. Both threads
and LCOs are closely integrated with scheduling algorithms to permit event-
driven operation (and avoiding busy-waits and polling) as much as possible.
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Threads and LCOs along with related data structures can be embedded in
ParalleX processes — entities that hierarchically organize parallel computa-
tion and provide logical encapsulation for its individual components. Unlike
UNIX processes, they can span multiple localities (and therefore multiple address
spaces). Processes, threads, and LCOs may migrate between the nodes and are
globally addressable, permitting the programmer to access them from anywhere
in the system. This is controlled by the Active Global Address Space (AGAS),
a distributed service that maintains lookup tables storing physical locations of
all first class objects of the computation. ParalleX functionality manifests itself
primarily in the runtime system layer, which, through its proximity to the appli-
cation code permits additional optimizations and acts as an intermediate layer
for access to expensive (in terms of overhead and latency) OS kernel services.
ParalleX compliant runtime system implements introspection, supporting direct
access to integrated performance counters and enabling monitoring of application
activity. This is particularly valuable for low overhead collection of performance
data.

HPX-5 is a high performance runtime system that implements the ParalleX
model, providing the ability to run HPC applications at-scale and to simu-
late the performance characteristics of code without actually fully running the
application.

Written in C and assembly, the HPX-5 runtime system is focused primarily
on algorithmic correctness, performance, and stability. To achieve this, HPX-5
is developed with an extensive suite of tests that execute well known scientific
codes with published results and uses these to ensure correctness and stability.

The runtime is highly modular and is comprised of several components,
including:

– A user-space thread manager made up of M:N coroutines similar to Python
Green Threads. HPX-5 threads are continously rebalanced across logical CPU
cores in a NUMA-aware way that ensures a high degree of continuous work.

– An asynchronous network layer built on RDMA verbs capable of running on
InfiniBand, Cray Gemini, and Ethernet networks as well as in a non-networked
(SMP) environment.

– A parcel dispatch system that routes messages between objects and makes run-
time optimizations through direct integration with the node’s network inter-
face controller (NIC).

– A variety of distributed lock-free control structures, including futures and
logical gates that provide programmers with an easy-to-use environment in
which to define application dataflow.

– An active global address space (AGAS) that automatically distributes and
balances data across all nodes in an HPC system.

– Support for multi-core embedded architectures (such as ARM).
– Instrumentation to perform simulations of application runs in a variety of

environments, using spec files that describe several well-known machines.

In addition to normal operation, the HPX-5 runtime supports a simula-
tion mode in which it models performance of a full (non-skeleton) computation
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application as it would run on a target system. It achieves this in two ways: a)
by directly modeling performance on the target system (simulation), and b) by
emulating the performance of system other than the one it is running on through
the use of pre-generated specification files that detail the typical performance
characteristics of the target system’s hardware as well as interconnect network
topology and other features.

Using the ParalleX execution model, the MPI based LULESH proxy applica-
tion has been ported to the HPX-5 runtime system. The following section briefly
describes this port and how it differs from the MPI implementation.

5 ParalleX LULESH

The implementation of LULESH in ParalleX is optimized by removing global
barrier calls like Allreduce and overlapping the communcation needed for the
reduction operation with computation. Owing to this, ParalleX is able to extract
some performance benefits over the original MPI implementation of LULESH.
The HPX-5 implementation of the LULESH application is based on the same
domain-element hierarchy employed in the MPI version available at [2]. But it
differs from the MPI implementation in three aspects.

First, the two implementations differ in how they determine the time incre-
ment. Specifically, at the end of each iteration, each element computes a time
increment satisfying the local Courant and Hydro constraints and the mini-
mum value among all elements is used as the next time step. In the MPI-
implementation, this is done by placing a blocking collective MPI Allreduce
at the beginning of each iteration (see Fig. 3a). In contrast, the HPX-5 imple-
mentation replaces the MPI Allreduce call with a nonblocking future and does
not wait for its completion until after completing ApplyAccelerationBoundary
Condition, where the time increment is first needed (see Fig. 3b). As a result,
the HPX-5 implementation can effectively overlap the communication and com-
putation phases associated with the reduction operation.

The second difference between the two versions is oversubscription. In the
MPI-implementation, each core on a compute node is responsible for one domain.
For the HPX-5 implementation, it is normal to assign more than one domain to
one core. Oversubscription in conjunction with nonblocking synchronization
semantics enable computation to overlap with communication effectively hid-
ing network latency.

Lastly, each domain has three fixed communication patterns in the course of
the computation in the HPX-5 implementation. The MPI-implementation regen-
erates the communication pattern with neighboring domains each time commu-
nication occurs even though it is always the same.

These changes have an immediate and visible impact on the computational
phases of LULESH. Figure 4 compares the computational phases between MPI
LULESH and HPX-5 LULESH on 64 processors where red indicates computation
and white indicates communication. By replacing global barriers with futures
based nonblocking communication, the time spent waiting for communication to
complete can be reduced substantially in an application.
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Fig. 3.
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Fig. 4. A comparison of computational phases between MPI and HPX versions of
LULESH.

6 Results

Strong and weak scaling results for HPX-5 LULESH are presented in this section
along with the runtime system’s performance predictions. All computations and
simulations were performed on 16-node Xeon E5-2670 2.60 GHz based cluster
with an Infiniband interconnect. The oversubscription factor for all distributed
cases was two; that is, the entire LULESH computational domain was partitioned
into twice as many subdomains as available cores.

Our simulation approach is most similar to SMPI [7] where online simulation
(or emulation) is performed on a subset of the nodes. The rest of the nodes
in the simulation are either ignored or simulated depending on the applica-
tion requirements. In case of LULESH, we computed the global values offline
such that there were no message dependencies from the simulated nodes to
the emulated nodes. For structured communication patterns, we use periodic
boundary conditions to meet the receive depenences from the simulated nodes
to the emulated nodes. Since the pending receives can generate load on the emu-
lated nodes, we are presently working on recovering these dependences through
offline traces. Communication is performed only between emulated nodes. For
network simulation, we used the LogP cost model [8] to calculate communica-
tion time for the simulated nodes. Under the assumption that each parcel is sent
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using a single message1, per the LogGP [3] model, a send was computed to take
(2×o)+(n−1)G+L cycles where L is the network latency, o is the overhead of
transmission and G is the gap per byte. The LoGP parameters for the 16-node
Xeon E5-2670 2.60 GHz based cluster were measured empirically for the above
experiments.

In Fig. 5, the workload was increased from 1 to 512 domains as the num-
ber of nodes were increased from 1 to 16. The simulator introduces some over-
head since it has to inspect every message and either emulate or simulate it.
We found that the predicted value was within 25 % of the actual running time.
The strong-scaling results in Fig. 6 confirm the above observation. For the above
runs, each “simulated” workload was run with half the number of actual nodes.
Figure 7 shows the simulation accuracy of our online simulation approach. We
see that the accuracy improves (that is, the difference between the emulated
and simulated value decreases) as the number of emulated nodes are increased.
This confirms the trade-off between simulation accuracy and the computation
requirements for the simulation. As stated previously, simulating the perfor-
mance of the application at Exascale levels might demand considerable compu-
tation resources. Hence, such an approach where the accuracy can be bounded
by sampling a subset of the available nodes might be favorable.
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Fig. 5. Weak scaling results for HPX-5 LULESH. “Computation” represents the actual
running time for a fixed workload for 500 iterations. “Full Emulation” indicates the time
to perform full emulation of the workload using our hybrid emulation and simulation
approach. “Simulation” shows the running time predicted by the simulator.

1 Almost all messages were under 32K for our HPX-5 port of the LULESH application.
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Fig. 6. Strong scaling performance of HPX-5 LULESH across 16 nodes. The description
of the legend is same as the previous figure, Fig. 5.
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Fig. 7. Simulation accuracy as the number of emulated nodes are increased. A predic-
tion is more accurate if the difference between the computation and simulation times
is lower.

7 Conclusions

Efficiency and scalability requirements for high performance computing applica-
tions has cultivated the development of new programming models which employ
fine and medium grain task parallelism creating challenges for performance mod-
eling at Exascale. In particular, task-driven approaches cause significant prob-
lems for runtime systems using lightweight concurrent threads while discrete
event simulators require skeleton codes which are difficult to reliably extract
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from the full application codes. At the same time, runtime systems now reg-
ularly provide the introspection capability to reliably carry out performance
modeling within the runtime system itself. An approach to incorporating perfor-
mance modeling in the runtime system has been described here for use in cases
where a prototype Exascale node is available for computation. Using a sam-
pling approach in conjunction with a network model, a runtime system can be
quickly transformed into a performance modeling tool without requiring traces
nor discrete event simulation.

A case study has also been presented here where the LULESH proxy appli-
cation has been ported to the HPX-5 runtime system and run in both of the
computation and simulation modalities provided by the runtime. The HPX-5
LULESH port illustrates all of the features of a many-tasking implementation,
including oversubscription, asynchrony management semantics, and active mes-
sages. Strong and weak scaling results were provided for comparison between
the computation and simulation modalities.

Incorporating performance modeling into modern runtime systems resolves
several issues when operating at Exascale while also simplifying co-design for
application developers. While such an approach is new and mostly untested, it
ultimately can remove one layer of separation between application development
and performance modeling for approaches employing fine and medium grain task
parallelism.
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Abstract. A simple model of noise with an adjustable level of asynchrony
is presented. The model is used to generate synthetic noise traces in the
presence of a representative bulk synchronous, nearest neighbor time step-
ping algorithm. The resulting performance of the algorithm is measured
and compared to the performance of the algorithm in the presence of
Gaussian distributed noise. The results empirically illustrate that asyn-
chrony is a dominant mechanism by which many types of computational
noise degrade the performance of bulk-synchronous algorithms, whether
or not their macroscopic noise distributions are constant or random.

Keywords: Performance analysis · Exascale · Noise · Stencil methods ·
Optimization · Fault tolerance · Resilience

1 Introduction

Understanding the sources and impact of computational noise on application
performance is a growing concern for the HPC community [10]. Put simply, it
is anticipated that next-generation HPC architectures will be characterized by
inherent load imbalances arising from a broad range of noise sources. Details are
discussed at length by Brown et al. [3], Snir et al. [10] and references therein.
The net effect though is well understood – for applications, equal node work
will not in general equate to equal execution time, and thus bulk synchronous
algorithmic formulations will experience exceptional performance degradation.

This realization has forced us to re-examine research on both the sources of
noise, and noise/algorithm interaction. While a number of related studies in this
area (e.g. [1,2,4,6–8,11,12]) have advanced our understanding of computational
noise, it is also safe to say that we have only begun to scratch the surface when
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it comes to understanding the full range of complexity of this problem. One case
in point is the recent study by Beckman et al. [2] where the authors define and
identify noise asynchrony as a key property in understanding how noise degrades
application performance. Furthermore, they show that asynchronous noise has a
much greater negative impact on the performance of global collective operations
than synchronized noise.

We have observed similar phenomenon in previous work, in which a classic
bulk-synchronous nearest neighbor time stepping algorithm was compared to a
new, resilient formulation [5]. In this case, application runtime in the presence
of Gaussian random noise was consistently underestimated by our predictions.
We attributed this discrepancy to a failure to properly account for complex
asynchronous-type properties characteristic of randomly distributed noise.

To our knowledge, no one has attempted to quantify asynchronous noise or
its impact on the performance of bulk-synchronous codes. This realization has
motivated our current study, where we present a simple quantitative model for
asynchronous noise. Furthermore, we demonstrate that the mechanisms underly-
ing asynchronous noise result in bounding behavior of the performance of bulk-
synchronous algorithms in the presence of arbitrary and non-deterministic noise.

This work provides a valuable and necessary first step towards developing
closed-form analytical models of the runtimes of general scientific computations
in the presence of computational noise. Such work can provide valuable insight to
hardware vendors and system software and middleware developers in designing
the next generation hardware architectures and runtime environments. Moreover
these insights themselves have intrinsic value at a time where computational
noise is becoming an increasingly prominent and necessary evil on the path to
exascale.

2 Characterization of Noise Profiles

In order to properly examine how the performance of bulk-synchronous compu-
tations are impacted by asynchronous noise, it is necessary to rigorously define

Fig. 1. Figure Illustrating Physical Interpretation of α, asynchrony. α is simply the
fraction by which neighboring process detours are offset from each other. The black
squares represent detours and the lines through them represent the normal execution
of an application on each process.
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Table 1. Table of the Defining Variables of Noise.

Variable Term Definition

T Detour duration The length of time a process spends unable to perform
the work of an application’s code

π Period The period of time between every detour

α Asynchrony The term which governs the phase difference in periods
between adjacent processes (α ∈ [0, 1])

η Lag The lag before the first detour. It differs on each process
according to Eq. (1)

what is meant by noise broadly, and then specifically what is meant by asyn-
chronous noise.

As done in a previous study [5], we refer to each individual delay in an
application’s execution caused by an event external to the application itself as a
detour. Noise then refers to the aggregate phenomena of every detour over some
period of time.

If every detour occurs with a specified period, asynchrony can be thought of
as the extent to which adjacent processes experience a phase difference between
each other’s periods. This in turn will affect the extent to which detours on
neighboring processes overlap. Each processor experiences its first detour after
a lag, η, defined by

η ≡
{

π if process is odd
π + α ∗ T o/w.

(1)

Here, 0 ≤ i ≤ nprocs−1 and nprocs are the number of processes involved in a sim-
ulation. The full parameter space governing the manifestation of asynchronous
noise is given in Table 1. For an illustration of asynchrony, see Fig. 1.

3 Experiments

We now examine the impact of asynchronous noise on bulk-synchronous algo-
rithms. In order to simulate both constant frequency noise and Gaussian distri-
buted noise, we utilize a set of noise generation utilities, developed initially for
previous work [5], documentation of which can be found with its source code
online [9]. As a representative bulk-synchronous algorithm, we utilize an explicit
time implementation of the 2D heat equation as a simple representative stencil
computation. Following [5], we refer to the traditional bulk synchronous imple-
mentation as the classic algorithm. Each experiment is parameterized by the
number of timesteps, nsteps, the number of processes, nprocs, and the computa-
tion time for a single timestep in seconds, C. While C is determined by other
underlying algorithmic features, C is a more useful quantity since we are ulti-
mately concerned with the runtimes of bulk-synchronous codes.
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The experiments in this section are carried out on the Argonne Leadership
Computing Facility’s Cetus machine; an IBM BG/Q with 1600 MHz PowerPC
A2 cores, 1 GB RAM per core, 16 cores per node, and a 5D Torus Proprietary
Network interconnect. Each experiment uses a stencil size of 2, 5002 points per
process which resulted in the classic algorithm step duration of C = 0.626 s. Fur-
thermore each experiment is run on 5, 016 processes, for nsteps = 100. All com-
munication uses the eager protocol, and MPI asynchronous progress is enabled
so as to avoid analyzing the complicating secondary impacts of asynchrony on
rendezvous handshakes and other pieces of communication overhead.

3.1 Experiment 1: The Impact of Asynchrony

As a first step, we measure the impact of asynchrony on the runtime of the
classic algorithm for two different detour durations, T = 5C and T = 10C using
a value π = T . Figure 2 shows these results for the full range of asynchrony,
from completely synchronous noise (α = 0.0) to completely asynchronous noise
(α = 1.0).
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Fig. 2. The Relative Runtime of the classic algorithm for various levels of asynchrony,
α. Relative Runtime is just the runtime of each data point divided by the runtime of the
very first data point for each curve (where α = 0, T = 5C and T = 10C, respectively).
In these experiments π = T , and experiments where T = 5C and 10C are plotted.

The curves in Fig. 2 illustrate a few important characteristics of asynchrony.
The most obvious is that as asynchrony approaches its maximum setting, per-
formance degrades sharply. It provides a clear illustration of the massive impact
which subtle mechanisms of computational noise can have on application per-
formance.
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In addition, the rate at which asynchrony, α, degrades the performance of the
classic algorithm depends strongly on the detour duration, T . When T = 5C,
asynchrony has almost an imperceivable impact on the performance of the classic
algorithm when α ≤ 0.5. For T = 10C, the threshold of perceivable performance
degradation occurs for α > 0.2. The differences in these thresholds with respect
to α masks their equivalence with respect to αT . When α = 0.2 and α = 0.5
for T = 10C and T = 5C respectively, αT = 2C in both cases. Moreover for
both curves, any αT > 2C results in an increase in the runtime of the classic
algorithm relative to its runtime in the presence of synchronous noise. It makes
sense that αT is the point of similarity in the performance between the 2 curves
given that the asynchrony of both is set by αT given by Eq. (1).

All of these observations point to the fact that for a given process of the
classic algorithm, if the lag on an odd process is greater than its neighbor’s by
2 steps worth of computation time, this detour will be ‘felt’ by processes beyond
it. A difference of 2C between neighboring η represents a threshold beyond which
the effects of detours propagate from the processes on which they occur to their
neighboring processes. We therefore refer to the quantity, 2C, as the ‘propagation
threshold’ of the classic algorithm.

Finally, Fig. 2 points out the discrete nature in which asynchrony degrades
performance. For the curve of runtimes where T = 5C, one can see that when
α > 0.5, the increase in runtime of the classic algorithm as asynchrony is in-
creased proceeds in a stepwise manner. This can be explained as follows. When
T = 5C, and α is increased above 0.5, the runtime of the classic algorithm only
increases when αT

C yields an integer. Stated in other words, αT must equal an
integer number of step durations of the classic algorithm in order for increases
in asynchrony to have a noticeable impact on performance. The reason this
characteristic is not seen for T = 10C, is because for every increase in α, where
α = 0.2, 0.3, ..., 0.9, 1.0, αT is equal to a monotonically increasing integer number
of step durations of the classic algorithm.

These fascinating results, indicate that while noise on a given process may
effect that process’ performance, this effect will not propagate beyond itself
unless the noise has very specific characteristics. In particular, the detour dura-
tions, T , of a given noise profile need to be greater than 2C, and they need to be
integer multiples of the step duration of the nearest neighbor bulk-synchronous
algorithm in question. There are therefore significant degrees of freedom for these
types of algorithms with respect to the manifestations of noise which they can
tolerate.

3.2 Experiment 2: Using Frequency to Dampen the Impact
of Asynchrony

In this experiment, we examine the effects that the frequency of detours has on
the performance of the classic algorithm for both completely synchronous noise
and completely asynchronous noise (α = 0.0 and α = 1.0 respectively). Here,
frequency is simply the inverse period between detours ( 1

π ). The results of these
experiments are plotted in Fig. 3. The figure plots the period between detours,
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Fig. 3. The Runtime of the classic algorithm, given a range of constant period detours.
π is plotted in units of 1

C
. Every simulation has the same detour duration throughout

with a value of T = 5C.

π on the horizontal axis in units of 1
C , and runtimes of the classic algorithm on

the vertical axis.
The most obvious observation of Fig. 3 is that, when π > T , the impact of

noise on application performance is significantly dampened. Recall that T = 5C,
and therefore the leftmost data points in Fig. 3 plot points where π = T . As
periods between detours, π, increases beyond the duration of detours themselves,
the impact of each type of noise significantly decreases. The curve plotting the
runtimes of completely asynchronous noise (α = 1.0) provides the most striking
illustration of this observation. The runtimes given by this curve approach those
of the runtime of completely synchronous noise at the point when π ≈ 15C.

Known statistics about present day state of the art machines tend to have
fault rates whose periods are typically many times larger than their duration [10].
If these faults propagate linearly to the application layer, and if they provide
any indication of what can be expected on future machines, asynchrony may be
of small concern to HPC scientists of the future. However, how reliable these
assumptions are, is still very much an open question.

3.3 Experiment 3: Using Asynchrony to Understand Gaussian
Noise

In this experiment, we return to the original question – can we explain a bulk-
synchronous algorithm’s performance in the presence of Gaussian distributed
noise? We replace the constant frequency detours employed in previous exper-
iments with randomly sampled spacings. Furthermore, the lag on each process
(formerly given by Eq. (1)) is given by sampling from a uniform distribution,
seeded by the process rank. After the first detour, a Gaussian distribution is
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sampled at the end of each detour. Experiments with an appropriately chosen
distribution mean, μ and standard deviation, σ, are performed and their run-
times are overlaid with those given by Fig. 3. This allows us to examine how much
of the performance degradation experienced by the classic algorithm in the pres-
ence of random noise is captured by the mechanisms of asynchrony presented in
Sect. 2. The results of these experiments are given in Fig. 4.

Figure 4a and b plot runtimes of the classic algorithm against the period, π,
of constant frequency noise and the average period, μ, of Gaussian distributed
noise. These periods are plotted in units of 1

C . Every curve employs the same
detour duration, T = 5C. Furthermore, each figure plots 2 constant frequency
curves, and 1 Gaussian distributed frequency curve. The constant frequency
curves display runtimes for completely synchronous and completely asynchro-
nous noise (α = 0.0 and α = 1.0, respectively). The Gaussian distributed curve
displays runtimes in the presence of Gaussian distributed noise with a standard
deviation σ = 3C

2 ≈ T
3 .

The only difference between Fig. 4a and b, is that in Fig. 4a there is effec-
tively no limit on the number of detours that can occur over the course of a
simulation for every curve plotted. Figure 4b on the other hand limits the num-
ber of detours that can occur for the curve whose standard deviation, σ = 3C

2 .
The limitation is set according to the number of detours incurred for the cor-
responding simulation of completely asynchronous constant frequency noise. In
other words, if an execution of the classic algorithm in the presence of completely
asynchronous noise (α = 1.0) indicates that each process experienced X detours
on average, when a similar experiment is performed for Gaussian noise (i.e. when
the experiment where μ = π is performed), the number of detours allowed on
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(a) Deterministic asynchrony compared to Gaussian noise
without limits on the number of detours.
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(b) Deterministic asynchrony compared to Gaussian noise
with limits on the number of detours.

Fig. 4. The Runtime of the classic algorithm, given a range of constant period detours
and random period detours (with a constant period of π and an average period of μ
respectively). μ and π are plotted on the same axis in units of 1

C
. This allows for a com-

parison between deterministic noise simulations with predefined levels of asynchrony
and nondeterministic noise simulations with less predictable levels of asynchrony. Every
simulation has the same detour duration throughout with a value of T = 5C.
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each process is limited by X. The reason we do this is to remove the secondary
effects on the frequency of detours which the standard deviation might have on
Gaussian distributed noise simulations. Because these simulations are relatively
small (nsteps = 100), we cannot necessarily assume that a law of large numbers
applies. The goal of removing these secondary effects is to isolate the elements of
asynchrony which impact the performance of the classic algorithm, and to test
how well our model represents this mechanism.

What is immediately clear from Fig. 4 is that the model of asynchrony pre-
sented in Sect. 2 is limited in its explanatory power. The runtimes of the classic
algorithm for the simulation of Gaussian noise are not bounded by the runtimes
of simulations which experienced completely asynchronous noise (α = 1.0). This
is true for both the detour bounded and unbounded simulations. While it is clear
that our model of asynchrony does not capture all of the complexities of the per-
formance of the classic algorithm, we still believe that asynchrony is responsible
for the gap between our expectations and the performance realities illustrated
by Fig. 4; there is simply a more complex model of asynchrony underlying these
results.

One way in which such a model might manifest itself is illustrated by Fig. 5.
Figure 5 illustrates how the asynchrony caused by Gaussian noise may not be
entirely captured by the model of asynchronous noise presented in Sect. 2. The
vertical black lines in the figure indicate the progress of a simulation of constant
frequency detours with an asynchrony, α = 1.0, and π > T . The red lines indicate

Fig. 5. An illustration of additional manifestations of asynchrony that could explain
the runtimes of the classic algorithm in the presence of Gaussian noise. The vertical
black lines indicate the progress of a simulation of constant frequency detours with an
asynchrony, α = 1.0, and π > T . The red line indicates randomly distributed detours.
As can be seen the time in which every process usually proceeds in a completely
noiseless fashion, is offset by a randomly placed detour (Colour figure online).
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randomly distributed detours. The illustration of Fig. 5 further shows that what
is completely noiseless execution time for constant frequency asynchronous noise
is diminished by the randomly occurring detour in the π −T time window. This
explanation further explains why completely asynchronous noise does bound the
performance of the classic algorithm for the case where π = μ = T . In this case,
the time window of π − T = 0. Understanding this data, and our hypothesis
requires further analysis and research.

4 Conclusions

This study has presented a model for asynchronous noise, and examined the
impact that such noise has on the runtimes of nearest neighbor synchronizing
bulk-synchronous codes. The analysis of these runtimes has indicated that asyn-
chrony acts as a bounding property of the performance of bulk-synchronous
algorithms in the presence of arbitrary noise profiles, be they deterministic or
non-deterministic. That having been said, the model of asynchrony developed in
this study cannot explain all of the performance observed. The model’s limita-
tions need to be further explored, and refined. The power of these results, and the
promise of further research in this vein is that we have identified a deterministic
mechanism of what more often than not results from very randomly occurring
sources of performance degradation in HPC applications. Understanding this
mechanism gives some insight into how best to work around it.
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Abstract. Tools are essential for application developers and system
support personnel during tasks such as performance optimization and
debugging of massively parallel applications. An important class are
event-based tools that analyze relevant events during the runtime of
an application, e.g., function invocations or communication operations.
We develop a parallel tools infrastructure that supports both the obser-
vation and analysis of application events at runtime. Some analyses—
e.g., deadlock detection algorithms—require complex processing and
apply to many types of frequently occurring events. For situations where
the rate at which an application generates new events exceeds the process-
ing rate of the analysis, we experience tool instability or even failures,
e.g., memory exhaustion. Tool infrastructures must provide means to
avoid or mitigate such situations. This paper explores two such tech-
niques: first, a heuristic that selects events to receive and process next;
second, a pause mechanism that temporarily suspends the execution of
an application. An application study with applications from the SPEC
MPI2007 benchmark suite and the NAS parallel benchmarks evaluates
these techniques at up to 16,384 processes and illustrates how they avoid
memory exhaustion problems that limited the applicability of a runtime
correctness tool in the past.

1 Introduction

High Performance Computing (HPC) architectures feature increasing compute
core counts, such as the Sequoia system at the Lawrence Livermore National
Laboratory with more than 1.5 million cores. This trend challenges both devel-
opers of HPC applications as well as the maintainers of tools that aid these
developers. Especially tools that operate at application runtime must provide
sufficient scalability to be applicable for application runs with large core counts.
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Fig. 1. Illustration of a runtime tool with a TBON layout.

We develop the Generic Tools Infrastructure (GTI) [8] to simplify the devel-
opment of such scalable runtime tools, in particular tools that analyze large
numbers of events (function invocations or communication events) in Message
Passing Interface (MPI) [15] applications. Those tools analyze events for use
cases such as performance optimization or debugging. Performance analysis tools
like Vampir [17] and Scalasca [5] use traces to store events during the runtime of
an application and then apply a post-mortem analysis. However, tool exclusive
computing resources and a Tree-Based Overlay Network (TBON) abstraction
allow tools built upon GTI to analyze such event data already during the run-
time of an application; in other words online.

GTI uses extra processes as additional compute resources for the tool itself.
These tool processes—called places in GTI—can analyze events outside of the
critical path of the application. Additionally, GTI organizes places in hierarchy
layers that can apply stepwise event analysis (TBON layout), e.g., all application
processes provide an event with an integer value and the hierarchy layers sum
these events up until the root of the layout retrieves a global sum. This combina-
tion of event offloading, analysis outside the critical path, and hierarchic event
analysis enables wide ranges of scalable tools. Figure 1(a) illustrates the layout
of a GTI tool for four application processes—represented as circles with labels
T0,0–T0,3—and three tool places T1,0, T1,1, and T2,0. The lines between the circles
indicate the communication channels for events, e.g., the application process T0,0

would usually forward events to tool place T1,0 for analysis. The tool places can
analyze events from the application processes, but also use the communication
capabilities of the layout to exchange information with each other.

The GTI-based tool MUST [7] analyzes all communication operations of
an application to reveal MPI usage errors. The tool applies a comparatively
expensive event analysis as part of its deadlock detection scheme. Thus, the
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envent handling and analysis cost of MUST may exceed the original cost of
the communication operations on the application. Under such a scenario an
online event analysis tool like MUST can consume increasing amounts of mem-
ory and may fail due to memory exhaustion. Even on a compute system with
24 GB of main memory per compute node—shared between 12 cores—MUST
repeatedly exhausted memory for one benchmark application in a study of its
deadlock detection capabilities [7]. This paper describes and studies two tech-
niques for TBON-based event analysis tools to avoid memory exhaustion prob-
lems. Specifically, these techniques avoid storing data into files since the use of
the I/O subsystem imposes further challenges at scale [11,22]. This research may
particularly enable new tool workflows for Exascale-level compute systems that
increase challenges around massively parallel I/O system use. An increasing use
of online tools could circumvent the challenges that these systems impose onto
traditional post-mortem tools.

Section 2 first presents related work and Sect. 3 then details our assumptions
for the communication channels of a TBON and refines our problem statement.
Section 4 contains our first technique, a heuristic that provides tool places a
communication channel selection that offers a tune-able selection between perfor-
mance and memory consumption. Section 5 then describes our second technique
that temporarily pauses the execution of an application to let a tool “catch up”
with its event analysis. We implement these techniques in our tool infrastructure
GTI and evaluate it with the runtime MPI correctness tool MUST that previ-
ously failed for some SPEC MPI2007 benchmarks. An application study with
MPI2007 and the NAS Parallel Benchmarks (NPB) evaluates our techniques at
up to 16,384 processes and avoids memory exhaustion in practice (Sect. 6).

2 Related Work

We describe techniques that overcome deficiencies [7] in the GTI-based tool
MUST. These deficiencies result from online event analysis on large event counts
where the analysis requires increasing amounts of memory for some series of
events. The techniques that we describe apply to tools that handle events in
TBONs. Besides MUST, various existing tools and tool infrastructures for high
performance computing use TBONs, but often operate on very few events per
MPI process. Examples for performance optimization include Periscope [6] that
applies an analysis on profiling data for application phases; and TAUoverMR-
Net [18] that analyses profiling data at user specified execution points or for
periodic time intervals. Debugging tools like STAT [1] retrieve call stack infor-
mation from all processes to represent a global execution state, this data could
hardly exhaust memory on any node of the TBON layout. Implementations of
our techniques are not bound to GTI, but can also be used to improve the reli-
ability of infrastructures such as MRNet [20], CBTF [13], STCI [4] or SCI [12].

MALP [3] also targets the analysis of large event counts at scale. However,
its analyses provide profiling-based performance reports for which a constant
amount of memory suffices to handle any event series. Event sizes that increase
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with application scale [14] are a related problem that can limit the applicability
of an online tool.

File system traces represent an alternative to our techniques that target
reduced memory needs during event analysis. Our analyses could store tempo-
rary event information into traces to avoid memory exhaustion. Tools such as
Vampir [17] and Scalasca [5] successfully employ traces for their performance
analysis. However, file systems can impose scalability challenges [11,22] as well.
Various approaches exist to mitigate the effect of this bottleneck, e.g., trace
reduction [21], trace compression [19], and I/O forwarding [11].

3 Channels and Memory

Figure 1(a) illustrates a TBON layout. For GTI, application processes and tool
places use up to three different communication directions as Fig. 1(b) illustrates.
The application direction allows a place to receive events that travel from the
application processes towards the root, the root direction allows a place to receive
events that travel from the root towards the application processes (usually con-
trol and steering), and the intralayer direction provides GTI tools a point-to-
point communication means within a hierarchy layer. The latter communication
direction facilitates tool analyses such as point-to-point message matching for
which pure TBON layouts could limit scalability [10]. The arrows in Fig. 1(b)
illustrate that tool places can probe any communication channel from any of
these three communication directions to receive a new event. Each communi-
cation channel is bidirectional and has a certain event capacity. That is, if an
application process or a tool place sends an event over a channel it can continue
its execution before the receiver side handled the event, as long as the capacity of
the channel suffices to store the new event. If a communication channel reaches
its capacity it will block any subsequent send operations until the receiver side
drains some events from the channel. In GTI, this capacity depends on the selec-
tion of the communication system, which can either be optimized for bandwidth,
offering high capacities, or latency, offering only low capacities.

Analysis algorithms such as point-to-point message matching [10] or deadlock
analysis [7], as well as tool infrastructure services such as order preserving event
aggregation [9] can consume increasing amounts of memory if newly received
events do not satisfy certain conditions. In such scenarios, the channel selection of
a tool place can heavily impact the memory consumption of a tool. We illustrate
this with MPI point-to-point message matching as an example analysis that
searches for pairs of send and receive events with matching message envelopes. If
a new send/receive event arrives and no matching receive/send is available, then
the analysis stores information on the new event in a matching table, i.e., memory
consumption increases. Otherwise, if a new send/receive event completes a pair—
a matching receive/send event was present in the matching table—the analysis
can remove the latter event from the table. Thus, the memory consumption
of the analysis decreases. This analysis enables correctness tools like MUST to
implement MPI type matching checks that can reveal incorrect data transfers.
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MPI Comm size(&p)
MPI Comm rank(&r)
for i ∈ {1, 2, . . . , iterations} do

MPI Isend(to:(r + 1)%p, &req)
MPI Recv(from:(r − 1)%p)
MPI Wait(&req)

end

(a) Homogeneous.

MPI Comm size(&p)
MPI Comm rank(&r)
assert (p%3 == 0)
for i ∈ {1, 2, . . . , iterations} do

switch r%3 do
case 0

MPI Send(to:(r + 1))
end
case 1

MPI Recv(from:(r − 1))
MPI Recv(from:(r + 1))

end
case 2

MPI Send(to:(r − 1))
end

end

end

(b) Process behavior differs.

Fig. 2. Communication pattern examples (pseudo code).

As an example, a single tool place could receive events from all applica-
tion processes in order to match MPI point-to-point operations; in other words,
the tool uses a TBON that consists of the application processes and a root.
In that case, the single tool place exclusively uses the application communica-
tion direction and only needs to select which application process to receive an
event from. A round-robin scheme efficiently handles homogeneous applications
where all MPI processes execute similar events, such as the example pattern
in Fig. 2(a). Given that all channels provide an event when probed, the match-
ing table of the point-to-point matching analysis would store at most p opera-
tions for a round-robin channel selection. The analysis reaches this peak after it
handled an MPI Isend event from each process. At the same time, application
processes can exhibit different MPI operations such as in the communication
pattern of Fig. 2(b). This example1 uses process triples where two processes
send to the third process, which in turn receives the two send operations. A
round-robin scheme would behave poorly for this example since one process in
each triple issues twice as many operations than the other processes. The match-
ing table could use up to iterations · (p

3 ) entries for unmatched send operations
for the round-robin approach. In practices, functional decomposition and border
processes for domain decompositions can cause different MPI operation work-
loads, such a in the example of Fig. 2(b).

In summary, the memory consumption of an analysis depends on the channel
selection scheme of the tool places, the communication pattern of the applica-
tion, the capacity of the communication channels, and the analysis algorithm.
1 Uses numbers of processes that are a multiple of three.
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The previous example illustrated the impact of the communication pattern. The
capacity of a communication channel together with the number of synchronization
points in the application also impacts the memory consumption of tool analy-
ses. Once a channel reaches its capacity, no further events can be processed
causing the application process to be blocked. This will then indirectly block
other processes in their synchronization operations, leading to a cascading effect.
Blocked processes can continue their execution once higher hierarchy layers of
the tool drain some events from the communication channels.

4 Selection Heuristic

To avoid this kind of impact on application execution, we develop and implement
two techniques in GTI. The first one is a heuristic solution to select a communi-
cation channel when a place tries to receive a new event. The heuristic targets
low-overhead channel selection with a consideration of memory usage. On each
tool place, a penalty score for each communication channel represents how often
events from this channel increased memory consumption as well as how often
the channel failed to provide an event when probed. The score starts at 0 and
GTI adds a penalty of α when an event increases memory consumption and a
penalty of β when a channel failed to provide an event. Places sort all channels
with increasing penalty into a list. When a place probes for a new event it starts
with the first channel in the list. Channels that fail to provide an event receive
the penalty increase of β and the place advances to the next channel in the list.
If a channel provides an event, the place processes the event and any analysis
can return feedback whether the event increased their memory consumption via
an API. If so, the place applies the penalty of α to the channel that provided
the event, otherwise the score remains unchanged. Afterwards, a place reorders
the list and probes the first channel in the list again.

This heuristic targets a flexible selection between low memory consumption
and low overhead where the values of β and α allow an adaption between the two
goals. A selection of α > 0 and β = 0 would only organize channels based on their
memory impact and a selection of α = 0 and β > 0 would prefer channels that
usually provide events as to avoid unsuccessful probes. Additionally, the num-
ber of channels along the application direction is usually low and about constant
across scales (most TBON-based tools use constant fan-ins across scale), while
the number of channels along the intralayer communication direction usually
increases with scale. The organization of increasing numbers of channels in a
priority list would impact the performance of the selection heuristic at scale.
Thus, GTI uses a wildcard receive semantic for the intralayer channel and rep-
resents it as a single entry in its channel lists.

5 Application Pause

The channel selection heuristic attempts to receive events that will not increase
memory, but bases its selection on past behavior. GTI incorporates a second tech-
nique to avoid memory exhaustion when the heuristic fails to restrict memory
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usage. GTI-based tools can request an application pause such that application
processes will not generate new events. A place should invoke such a request if
its memory usage exceeds a threshold σ. Once the application is paused, tool
places can process all existing events to reduce their memory usage. For appli-
cations that synchronize within some regular interval, any intermediate execu-
tion state of the application should have a limited number of open operations
(e.g., unmatched communications) for which analyses need to store information.
As a result, memory consumption of analyses can decrease towards the mem-
ory demand for these open operations, which should be far below the original
threshold that caused a place to request an application pause. Once the memory
usage of a place that requested an application pause decreases below a second
threshold σ′ (σ′ < σ), it will request that the application should be resumed.

GTI handles this technique with events that any place can inject. These tool
specific events travel either along the application or the root communication
direction. Four events implement the technique:

– requestPause:
• A tool place injects this event if an analysis exceeds its memory threshold,
• Tool places forward these events towards the root of the TBON,

– broadcastPause:
• The root of the TBON injects this event when it received one more
requestPause events than requestResume events,

• The root broadcasts the event towards the application processes,
• When an application process receives this event it waits until it receives

a broadcastResume event.
– requestResume:

• Tool places inject this event if they injected a requestPause event and
their memory usage decreases below σ′

• Tool places forward these events towards the root of the TBON,
– broadcastResume:

• The root of the TBON injects this event when it received as many request
Resume events as it received requestPause events,

• The root broadcasts the event towards the application processes.

This handling continuously votes for an application pause. The root of the
TBON manages the voting and holds an application pause until all places that
previously requested a pause agree to resuming the application. The implemen-
tation in GTI uses a scalable event aggregation on all levels of the TBON to
combine requestPause and requestResume events.

6 Application Study

We use the Juqueen system at the Forschungszentrum Jülich and the NAS Paral-
lel Benchmarks (NPB) [2] (v3.3-MPI) for our measurements. This Blue Gene/Q
system features 28,672 nodes with 16 cores and 16 GB of main memory each.



Memory Usage Optimizations for Online Event Analysis 117

Fig. 3. Channel selection strategy comparison for NPB sp on Juqueen.

We implement our techniques in GTI and use the distributed deadlock detec-
tion in MUST as an expensive tool analysis that keeps a queue of active MPI
operations for deadlock detection. We use the size of this queue to both apply
the α penalty of our heuristic and to request an application pause, where we
use values of σ = 106 events and σ′ = σ

2 events in all runs with our techniques.
As kernel we select sp since it combines high communication frequency with
longer runtime. We use problem size D at up to 4,096 processes and size E at
up to 16,384 processes; hence, the dip at 8,192 in Fig. 3(a). Figure 3 shows the
application slowdown (as runtime with MUST divided by the runtime of a refer-
ence run) and the maximum queue size of MUST’s analysis for increasing scales.
We compare five different channel selections where we use two static approaches
(previous version of GTI) and three selections with our new techniques that differ
in their choices for α and β. The static selection intra-root-app selects channels
in rounds where it first tries to receive an event from the intralayer direction,
afterwards—irrespective of whether it received an event—it tries to receive from
the root direction, and finally it tries to receive from the application direction.
This scheme is a compromise between a performance impact due to unnecessary
probes and serving all three directions. The second static selection app||intra-
root receives events from the application direction whenever possible and only
investigates the other directions if no application event is available. This scheme
tries to avoid blocked application processes that satisfy their communication
channel capacity towards low tool overhead. The selections with our techniques
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Fig. 4. Channel selection strategy comparison for MPI2007 on Sierra.

use α = β = 1 as a compromise between performance and memory usage, α = 10
with β = 1 to prefer lower memory use, and α = 1 with β = 10 to prefer channels
that usually provide events towards low tool overhead.

The static selection app||intra-root already uses exhaustive amounts of mem-
ory at 2,116 processes and causes an out-of-memory crash for this scale. This
selection fails to probe communication channels that offer events that would
decrease memory usage in practice. A selection with intra-root-app provides low
queue sizes for the homogeneous communication pattern of sp, but issues many
irrelevant probes on communication channels. Thus, it causes higher overheads
than the heuristic selection with α = β = 1, especially at 4,096 and 16,384
processes. The latter heuristic selection provides the best results for sp overall.
It causes marginally higher queue lengths than intra-root-app or α = 1 with
β = 10, but has the lowest overall slowdown. A selection of α = 10 with β = 1
can provide good performance, e.g., at 1,024 processes, but quickly causes exces-
sive queue lengths that trigger the application pause technique at 2,116 and
4,096 application processes with 3 and 4 pauses respectively. The application
pauses along with the increased memory usage increase tool overheads for scales
above 1,024 processes.
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A second set of experiments uses the Sierra system at the Lawrence Livermore
National Laboratory, a Linux cluster with 1,944 nodes of two 6 core Xeon 5660
processors each (24 GB of main memory per node, and a QDR InfiniBand inter-
connect). We run the lref data set of the SPEC MPI2007 [16] (v2.0) benchmark
suite on up to 2,048 cores2 on this system to study less homogeneous applications.
Particularly, these applications are derived from real world applications and pro-
vide a challenging test case. We select the applications 121.pop2, 128.GAPge-
ofem, 137.lu, and 143.dleslie for our runs since they particularly stress MUST
or even caused memory exhaustion previously. Figure 4(a) and (c) present appli-
cation slowdown and maximum queue length for our previous version of GTI
and MUST that uses the static selection intra-root-app. The irregular communi-
cations in both 121.pop2 and 128.GAPgeofem cause MUST to exhaust memory
even at 256 processes. Figure 4(b) and (d) present application slowdowns and
maximum queue sizes for our techniques with α = β = 1. The heuristic suffices
to handle 121.pop2 at 256 processes without the application pause technique,
i.e., it adapts better than intra-root-app to the communication pattern of this
application. The application pause technique avoids memory exhaustion for the
remaining runs of 121.pop2 and 128.GAPgeofem. The numbers above/below the
bars in Fig. 4(d) indicate the number of pauses that each run uses. The figure
also highlights that processing all remaining non-application events during an
application pause does not cause excessive increases in the maximum queue size
for the MPI2007 applications. The highest queue size for these runs was about
5% above σ.

7 Conclusions

We present two techniques to avoid memory exhaustion in online analysis tools
for high performance computing. These techniques facilitate use cases where
complex tool analysis algorithms are used to process a large numbers of events.
Our first technique provides a heuristic that selects a communication channel by
using feedback from the tool infrastructure as well as the analysis itself to rank
channels in a priority list. A performance study with up to 16,384 application
processes shows that this heuristic provides an event selection that causes no
memory exhaustion for homogeneous applications and that it reduces tool over-
head compared to static selection approaches. Notably, this technique allows the
tool to analyze applications such as 121.pop2 at 256 processes where the static
selection already exhausts memory.

Our second technique uses the management capabilities of a TBON to pause
the execution of all application processes if a tool analysis uses large amounts
of memory. Once the application pauses its execution a tool can analyze all
events in the system in order to reduce the memory consumption of the analy-
ses. This mechanism handles cases where the heuristic channel selection would
2 The lref data set operates with up to 2,048 processes (http://www.spec.org/mpi/

docs/faq.html#DataSetL).

http://www.spec.org/mpi/docs/faq.html#DataSetL
http://www.spec.org/mpi/docs/faq.html#DataSetL
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exhaust memory otherwise and application studies on two different compute sys-
tems show its practicability. Particularly, this technique allows MUST to handle
applications for which it previously failed, e.g., 121.pop2 and 128.GAPgeofem.
Thus, our approach increases the applicability of runtime correctness tools such
as MUST.

We implement both techniques in the open source tool infrastructure GTI
that targets efficient development of online tools. Increased scalability and avail-
ability of online tools for tasks such as performance analysis and debugging are
an essential step to provide an alternative for trace-based tool workflows, which
are increasingly impacted by I/O limitations.
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7. Hilbrich, T., de Supinski, B.R., Nagel, W.E., Protze, J., Baier, C., Müller, M.S.:
Distributed wait state tracking for runtime MPI deadlock detection. In: Proceed-
ings of SC13: International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC 2013, pp. 16:1–16:12. ACM, New York (2013)

8. Hilbrich, T., Müller, M.S., de Supinski, B.R., Schulz, M., Nagel, W.E.: GTI: a
generic tools infrastructure for event-based tools in parallel systems. In: Proceed-
ings of the 2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium, IPDPS 2012, pp. 1364–1375. IEEE Computer Society, Washington (2012)



Memory Usage Optimizations for Online Event Analysis 121

9. Hilbrich, T., Müller, M.S., Schulz, M., de Supinski, B.R.: Order preserving event
aggregation in TBONs. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra,
J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 19–28. Springer, Heidelberg (2011)

10. Hilbrich, T., Protze, J., de Supinski, B.R., Schulz, M., Müller, M.S., Nagel, W.E.:
Intralayer communication for tree-based overlay networks. In: 42nd International
Conference on Parallel Processing (ICPP), Fourth International Workshop on Par-
allel Software Tools and Tool Infrastructures, pp. 995–1003. IEEE Computer Soci-
ety Press, Los Alamitos (2013)

11. Ilsche, T., Schuchart, J., Cope, J., Kimpe, D., Jones, T., Knüpfer, A., Iskra, K.,
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Abstract. We introduce novel ideas involving aspect-oriented instru-
mentation, Multi-Faceted Program Monitoring, as well as novel tech-
niques for a selective and detailed event-based application performance
analysis, with an eye toward exascale. We give special attention to the
spatial, temporal, and level-of-detail aspects of the three important
phases of compile-time filtering, application execution, and runtime fil-
tering. We use an event-based monitoring approach to allow selected and
focused performance analysis.

Keywords: Multi-Faceted program monitoring · Aspect-oriented
instrumentation · Selective event tracing · Vampir · Performance analysis

1 Introduction and Motivation

Today’s leading edge HPC systems are composed of millions of homogeneous
or even heterogeneous processing elements. Running applications efficiently in
such highly parallel and complex systems requires orchestrating different levels of
concurrency. Therefore, it will be necessary to discover performance bottlenecks
originating from the increase of complexity of each level of concurrency and to
correct them in the application source codes.

The state and the behaviour of an application over runtime can be observed
by using instrumentation, by using a sampling approach or by a combination of
both. The selection of the right technique for a given performance issue is always
a trade-off between intrusion and the level of detail with emphasis on reducing
the intrusiveness while providing enough information needed to detect different
kinds of performance bottlenecks.

While sampling relies on its sampling frequency to gain information about
the application, event-based monitoring only records information if a specific pre-
defined event occurs, e.g., function entry/exit. The level of detail therefore dep-
ends on the events that should be monitored, their occurrence, and also their
duration. Using event-based monitoring can result in detailed information, but
as the level of detail increases, the intrusion will become more and more critical,
especially when tiny and often-used functions are monitored, e.g., inline functions.
c© Springer International Publishing Switzerland 2015
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Event-based and sampling information can be aggregated to statistical data
of the application during runtime with various profiling approaches or recorded
individually with tracing techniques. Profiling with its nature of summarization
offers an opportunity to be extremely scalable, since the reduction of informa-
tion can be done during the application runtime. Nevertheless, profiles may lack
crucial information, e.g., about message runtimes and bandwidth, since mes-
sage matching is usually infeasible during profiling. In contrast, event tracing
records each event of a parallel application in detail. Thus, it allows capturing
the dynamic interaction between thousands of concurrent processing elements,
and it is possible to identify outliers from the regular behaviour. As a result,
for millions of processing elements this monitoring technique can result in huge
amounts of information. Monitoring long running applications is also challenging.

Therefore, monitoring everything in detail over millions of processing ele-
ments will not be a smart strategy to monitor future exascale applications. It
will be much better to combine different strategies and techniques, i.e., using
sampling and profiling approaches to get an overview of the application and
using selective event tracing techniques to monitor specific functions, regions,
and processing elements of interest in detail. In this paper, we focus on event-
based monitoring and present existing and novel techniques to monitor and
analyse specific parts of the application in detail.

2 Selective Monitoring

Selective monitoring is one component for a detailed performance analysis of
exascale applications. The main intention is to reduce the amount of data with-
out losing significant information. For an event-based monitoring approach there
are basically two techniques that can be used to reach this goal, selective instru-
mentation (compile time filtering) and filtering at application runtime. Depend-
ing on the parallel paradigm and the corresponding instrumentation technique
used, different selection mechanisms are available.

2.1 Compile Time Filtering

In contrast to runtime filtering, where the decision whether to profile or not is
made during execution, compile time filtering makes this decision at compile
time and thus decreases the runtime overhead.

By default, the selective monitoring capability of today’s monitoring systems
like Score-P [1], TAU [2], Extrae [3], and VampirTrace [4] mainly depend on the
event-based automatic compiler instrumentation technique used.

With the exception of GNU and Intel, none the commonly used compilers
in the HPC field support any kind of compile time filtering. And even the fil-
tering capabilities of these two compilers are very limited. For other compilers
like PGI and Cray there is only the possibility to exclude whole source files
from the instrumentation by the monitoring system. Source-to-source instru-
mentors like PDT [5] and Opari [6] can also be executed on selected files by
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the monitoring system. In addition, PDT allows to specify lists of functions
and regions that should be excluded from the source-to-source instrumentation.
Binary instrumentor like DynInst [7] also allow to specify white-list and black-
lists of functions that should be instrumented.

The support for sophisticated compile time filtering is desperately needed in
the HPC community, especially for exascale applications. GCCs filtering capa-
bility is restricted to sub-string matching for the function and source file name.
Imagine two functions, one is named foo the other barfoo. In case you want to
filter foo, this also filters barfoo, rendering the filter useless.

Frameworks for code instrumentation like InterAspect [8], an aspect-oriented
instrumentation framework for GCC plug-ins, can be used to replace the com-
piler instrumentation and use the available filtering features from the framework
to extend it at will. The plug-ins are developed using the familiar vocabulary of
Aspect-Oriented Programming (AOP) in which instrumentation is done using
pointcuts (a set of join points, special points in the code). These plug-ins are
then part of the GCC compiler and are executed in the code transformation
phase of the compiler. A runtime filter typically is a piece of code that evalu-
ates at program execution whether an event (function entry and exit) should
be logged, normally using hooks provided by the compiler. With InterAspect,
one can not only filter functions by name as is done by GNU or Intel, parame-
ters of the function calls, the return type and so on can be included within the
instrumentation process too. It is also possible to duplicate each functions body,
instrument only the duplicate, and provide a runtime governor, who decides
which of the two functions are executed. This yields reduced data overhead since
only desired information is gathered with better reliability. Figures 1 and 2 illus-
trate the effect of runtime vs. compile time filtering. The benchmark used mea-
sures the performance of multiple matrix-matrix multiplication permutations.
Beside these 7 functions of interest, the benchmark executes a lot of helper func-
tions (i.e., timer accuracy, timer overhead, memory allocation/confusion, . . . ).
These functions aren’t of interest but, in the case of runtime filtering, contain the
instrumentation code plus the runtime filtering code. This alters the resulting
function statistic of the main function when filtered with an runtime filter as
shown in Fig. 1 because the instrumentation wastes time profiling unreported
functions. The function statistic in Fig. 2 accurately reflect the distribution of
the runtime for the 7 functions as it would look like without any instrumentation.

Fig. 1. Runtime filtering Fig. 2. Compile time filtering
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2.2 Dynamic Runtime Filtering

Each of the before mentioned monitoring tools provides different strategies to
filter functions at application runtime. Score-P and VampirTrace allow to exclude
all functions from monitoring, record only the first n occurrences of a function,
or record an interval of occurrences of a function. Extrae is able to start the
recording after n occurrences of a global communication function or if a specific
file exists. However, all strategies are applied on a global function-based context,
i.e., each process uses the same runtime filtering rules, and there is actually no
functionality to distinguish a function by different criteria.

To enable a more specific and dynamic runtime filtering, filter rules and
specifications should be more flexible and context-dependent, i.e., depending on
the temporal, spatial (processes, threads), and calling context. This means, that
the filtering should be tailored to each processing element, to the calling context,
and to specific phases/intervals of the application measurement.

The combination of selective instrumentation with temporal, spatial, and
calling-context specific filtering at runtime will allow us to monitor applications
in detail in more a dynamic and flexible way. For example, this may allow us to
monitor specific iterations of an application and to disable the monitoring for
the rest of the runtime.

2.3 Multi-Faceted Program Monitoring

The general work-flow of today’s event-based monitoring is to instrument an
application, to execute it multiple times at once (SPMD), and to record event
information for each process. In general, this results in similar information about
the application for each process. Within this context, the challenge of monitoring
future exascale applications will be to handle the enormous amount of data with
an high percentage of similar information while millions of processes or threads
will be executed and monitored simultaneously. Dynamic runtime filtering (see
Sect. 2.2) is able to reduce the amount of data but not to address the overhead
issue introduced by entering and leaving an instrumented function and checking
the corresponding filter rules. The monitoring overhead can be controlled using
selective instrumentation techniques (see Sect. 2.1) to filter the to be monitored
events by their parallel paradigm and name.

With the ability of modern MPI’s to run MPMD programs, on either task or
node basis, it is possible to execute different instrumented versions of the appli-
cation simultaneously and to gain different level of details about the application
on each process. This novel way of a selective event-based monitoring based on
executing different instrumented versions of an application with a MPMD app-
roach simultaneously in combination with dynamic filtering for each process is
what we call Multi-Faceted Program Monitoring.

This strategy will allow us for example to monitor only a subset of processes
like representatives of a class of similar processes instead of every process. For an
exascale application this helps us to reduce the amount of data and to focus the
monitoring on selected processes. One extreme case scenario would be to use the
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original unmodified application and one instrumented version of this application,
to execute the instrumented version only on one selected node and on the other
hundreds of thousand nodes the unmodified application will be executed. This
scenario is beneficial if we know for example by using profiling approaches that
processes of this selected node are the cause for performance bottlenecks and we
want to monitor the runtime behaviour of theses processes in detail over time
to detect the reason for the performance bottlenecks.

2.4 Example of Use

To demonstrate how event-based performance monitoring can benefit from the
Multi-Faceted Program Monitoring approach, we monitored a tri-hybrid MPI/
OpenMP/CUDA version of Gromacs 4.6.5 [9] running on a Cray XC30 with
four nodes, with each node hosting one MPI process with six OpenMP CPU
threads and two GPU CUDA streams first with a traditional monitoring app-
roach and after this with the Multi-Faceted Program Monitoring approach for
4000 iterations. For the traditional monitoring approach we used one instru-
mented version of Gromacs in such a way that MPI functions, OpenMP regions,
CUDA kernels, and applications are monitored for every process. In contrast to
the traditional approach we used three different instrumented versions of Gro-
macs for the Multi-Faceted Program Monitoring approach and executed these
versions simultaneously as follows: On the first node we executed the version used
for the traditional monitoring; on the second node we also used this version and
combined it with a runtime filtering of selected application functions; on the
third node we used a version that monitors MPI functions, OpenMP regions,
CUDA kernel; and on the fourth node we monitored only MPI functions and
CUDA kernels.

Figure 3 shows the colour-coded performance visualisation of Gromacs with
the traditional monitoring approach with Vampir for an interval of 2.3 s. The
monitored data per node ranges from 523 MByte to 1126 MByte. Figure 4 shows
the colour-coded performance visualisation of Gromacs with the Multi-Faceted
Program Monitoring approach with Vampir for the same interval. With this
monitoring approach we were able to monitor the application in various level of
detail on each node and to reduce the amount of data by 70.5 percent on the
second node up to 97.2 percent on the fourth node.

3 Selective Visualisation

Besides selective monitoring, selective trace analysis and visualisation is a key
prerequisite for a detailed exascale performance analysis. With limited screen
resolution, only partial data or statistically aggregated data, e.g., clustering or
wavelet analysis information, can be displayed at once. Therefore, to display
detailed information of specific events, intervals or processing elements, the per-
formance visualiser should be able to selectively load and analyse the corre-
sponding trace data.
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Fig. 3. Colour-coded performance visualisation of Gromacs monitored with the tradi-
tional monitoring approach running on a Cray XC30 with four nodes, with each node
hosting one MPI process with six OpenMP CPU threads and two GPU CUDA streams
for an interval of 2.3 s. On each process MPI functions, OpenMP regions, CUDA ker-
nels, and application functions are monitored and the amount of data monitored per
node ranges from 523MByte to 1126MByte.

Fig. 4. Colour-coded performance visualisation of Gromacs monitored with the Multi-
faceted Program Monitoring approach running on a Cray XC30 with four nodes, with
each node hosting one MPI process with six OpenMP CPU threads and two GPU
CUDA streams for the same interval. On each node different level of details are moni-
tored and the amount of data was reduced by 70.5 up to 97.2 percent.
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The performance visualiser Vampir [4] allows to load and analyse spatially,
temporally selected data, i.e., the user can select and deselect specific processes
and threads for the analysis and analyse only selected phases of the monitoring
run. For this, the native trace data has to be enriched with so-called snapshot
information, i.e., information about the state of the application at a certain
point of the measurement run, to enable a consistent stack view and a consistent
message matching of the trace information. With a strategy presented in [10],
we additionally ensure a correct matching of send or receive events even under
the presence of missing MPI message events.

Another level of selective trace analysis could be the analysis of trace data
dependent on the level of detail. Using information about the stack level and
the duration of events, the performance analyser and visualiser could be able to
regard or neglect performance information. This strategy will of course affect the
inclusive and exclusive metric information of an event but allows to analyse and
visualize different levels of detail (coarse grained vs. fine grained information). In
addition, in combination with a trace format organized in a similar way, like the
hierarchical in-memory buffers [11], or with knowledge about the distribution of
events over the different stack levels, this selected level of detail strategy can
be used to load, analyse, and visualise only a given percentage of the original
monitored trace information.

4 Conclusion and Outlook

Selective monitoring and visualisation are key prerequisites for a detailed exascale
performance analysis. We will therefore research the strategies and techniques
presented in this paper in more detail in the near future. The instrumenta-
tion prototype created with InterAspect encourages us to develop a production
quality GCC instrumentation plug-in for Score-P. It will have the least instru-
mentation overhead of any compiler vendor provided instrumentation we know
of. Results for these measurements will be provided in the future.
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Abstract. In order to achieve exascale performance it is important to
detect potential bottlenecks and identify strategies to overcome them.
For this, both applications and system software must be analysed and
potentially improved. The EU FP7 project Collaborative Research into
Exascale Systemware, Tools & Applications (CRESTA) chose the app-
roach to co-design advanced simulation applications and system software
as well as development tools. In this paper, we present the results of a
co-design activity focused on the simulation code NEK5000 that aims
at performance improvements of collective communication operations.
We have analysed the algorithms that form the core of NEK5000’s com-
munication module in order to assess its viability on recent computer
architectures before starting to improve its performance. Our results
show that the crystal router algorithm performs well in sparse, irreg-
ular collective operations for medium and large processor number but
improvements for even larger system sizes of the future will be needed.
We sketch the needed improvements, which will make the communica-
tion algorithms also beneficial for other applications that need to imple-
ment latency-dominated communication schemes with short messages.
The latency-optimised communication operations will also become used
in a runtime-system providing dynamic load balancing, under develop-
ment within CRESTA.

Keywords: MPI · Collective operations · Performance tuning

1 Introduction

The development of applications showing exascale performance proves to be very
challenging. On one side, it comprises efforts to scale today’s numerical algo-
rithms, system software, and development tools with proven methods as well
as the refactoring of non-optimal code pieces that would become bottlenecks
in runs at larger scale. On the other side, the development of exascale appli-
cations includes the search for qualitatively new approaches that reduce the
computational complexity especially of algorithms with non-linear scaling for
c© Springer International Publishing Switzerland 2015
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increasing processor counts. Collaborative Research into Exascale Systemware,
Tools & Applications (CRESTA) is an EU FP7 project that concentrates on the
study and solution of issues that are connected with the development towards
exascale computing [1]. CRESTA chose an approach based on the co-design of
advanced simulation applications and system software. The development of sim-
ulation codes has been flanked with the further development of necessary devel-
oper tools like parallel debuggers and performance analysis tools. CRESTA’s
co-design applications are running at the limits of available HPC computer instal-
lations while researchers create an ever-increasing demand for larger, respectively
faster simulations and new application fields. This tension provides require-
ments and challenges for system software and tool developers. More demanding
use cases can be used at the same time as test cases of new developments and are
checkpoints to assess improvements though, for the time being still on current
computers. Additionally, this approach provides general lessons usable in more
simulation applications like those developed in the Swedish e-Science Research
Centre (SeRC) as well as in the development of future software development
tools [2].

In this paper, we present the results of a co-design activity focused on the
simulation code NEK5000 that aims at performance improvements of collective
communication operations. NEK5000 can be used for simulations of fluid flow,
heat transfer and magnetohydrodynamics problems. It is an open-source code
mainly developed at the Mathematics and Computer Science Division of the
Argonne National Lab.

NEK5000 is a mature solver for incompressible Navier-Stokes equations. The
numerical algorithm utilises high-order spatial discretisation with spectral
elements and high-order semi-implicit time stepping for the calculations [12].
An important property of the algorithm is its fast convergence and the compara-
tively low complexity with respect to the number of grid points n. The
complexity limits are for the discretisation at O(n6). The computational work
and memory accesses only require costs of O(n4) and O(n3) respectively [13]. The
application has won the Gordon Bell Prize in 1999 and many simulation projects
on different HPC computer installations show its scalability up to one million
cores. Despite its excellent scaling behaviour, the crystal router still exposes
areas for improvements. Our on-going co-design activity aims at implementa-
tions of effective collective communication operations for large-scale runs as well
as the reduction of the communication volume using a hybrid parallelisation
scheme [9].

In this paper, we present an analysis of the crystal router algorithm, which
is the base of NEK5000’s central communication module. It will allow to use this
solution as a base for the implementation of alternative, improved collective com-
munication operations. We identify bottlenecks and sketch strategies to overcome
these. These new collective operations can be used also in other applications as
well as a building block in a runtime-system, which helps to dynamically improve
load balancing [8]. The remainder of this paper is organized as follows: After a
discussion of related work in Sect. 2 we describe the functionality of the crystal
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router in Sect. 3. Benchmark results will be presented and discussed in Sect. 4.
Section 5 concludes the paper with an outlook on future work.

2 Related Work

Sur et. al. developed efficient routines for personalized all-to-all exchange on
Infiniband clusters [10]. They use Infiniband RDMA operations combined with
hypercube algorithms and achieved speedup factors of three for short messages
of 32 B on 16 nodes.

Li et. al. use Infiniband’s virtual lanes for the improvement of collective MPI
operations in multi-core clusters [6]. These virtual lanes are used for balancing
multiple send requests active at the same time and to increase the throughput
for small messages. This implementation showed a performance improvement of
10–20 %.

Li et. al. analyse the influence of synchronisation messages on the communi-
cation performance. Those messages are used in collective operations to control
of the exchange of large messages [7]. They found that contention of synchroni-
sation messages accounts for a large portion of the operation’s overall latency.
Their algorithm optimises the exchange and achieved improvements of 25 % for
messages between 32 and 64 kB length.

Tu et. al. propose a model of the memory-hierarchy in multi-core clusters that
uses horizontal and vertical levels [11]. Their experimental results show that this
model is capable to predict the communication costs of collective operations
more accurately than it was possible before. They developed a methodology to
optimize collective operations and demonstrated it with the implementation of
a multi-core aware broadcast operation.

3 Functionality of the Crystal Router

The crystal router as developed by Fox et. al. [4] is an algorithm that allows
sending messages of arbitrary length between arbitrary nodes in a hypercube
network. It is advantageous especially in irregular applications where the exact
nature of the communication is not known before it occurs or where the message
emergence changes dynamically.

Communication operations in hypercube networks are often implemented by
routing algorithms that iterate over the dimensions of the cube and execute in
each step one point-to-point communication operation with the partner node at
the other end of the respective edge. As explained for example in [5], the result of
the binary xor function with the processor numbers of sender and receiver node
as arguments provides a routing path that can be used to transport the message.
Therefore, messages can be delivered in algorithms following this pattern from
each node to each other node in at most d communication steps where d is the
dimensionality of the hypercube network. In our implementation, we interpret
MPI processes as nodes of a hypercube network and use MPI ranks as processor
numbers.
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It has been proven that such a choice of paths provides load balancing in
the communication of several typical applications as well as it is optimal if all
processors are used in a load balanced way [5]. The crystal router has been
developed to handle one typical situation of processes in hypercube networks. In
each process, there is a set of messages, which must be sent to other processes.
Destination processes expect messages, but they know neither exactly how many
messages will arrive nor from which processes they will be sent. Nevertheless,
the communication happens for many algorithms typically in communication
phases between computations in a time-synchronised manner. One example is
the irregularity in the communication of molecular dynamics algorithms. The
real amount of data that has to be communicated between neighbouring subdo-
mains is not known before the data exchange itself. Another example of slightly
irregular communication can be found in finite element calculations where the
meshes must be decomposed over several processors. This decomposition will
be perfect only to a certain degree. Therefore, the communication between the
nodes holding the different subdomains will show some load-imbalance.

Algorithm 1 explains how the transport of messages between arbitrary
processes works. First, all messages are stored in a buffer for outgoing
messages of the sender process (msg out). During the iteration over the different
channels (i.e. the bits of rank numbers), some messages will be transmitted in
each iteration step according to their routing path. For that, those messages
that must be transferred through a certain channel will be copied from msg out
to a common transfer buffer (msg next). The buffer msg next of each process
will be exchanged through the active channel of the current iteration step with
the respective buffer of a partner process. Thereafter, all messages that had to
be routed from this partner over this channel can be found in msg next. They
will be inspected there. Messages that are addressed to the receiving process will
be copied into the buffer for incoming messages (msg in) from where they can
be accessed by the application code later. Messages that have to be forwarded
further in one of the following iteration steps will be kept and put into msg out.

Algorithm 1. Pseudocode of the crystal router algorithm, adapted from [4].

begin crystal_router
declare buffer msg_out; /* buffer for messages to send */
declare buffer msg_in; /* buffer for received messages */
declare buffer msg_next; /* buffer for messages to send */

/* in the next communication step */

for each msg in msg_out do
if dest_rank(msg) == myrank then

copy msg into msg in;
end for
for each dimension of the hypercube i = 0,...,d-1 do

for each message msg in msg_out do
if (dest_rank(msg)&myrank)ˆ2i then
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copy msg into msg next;
end for
exchange buffer msg next with process(rank == myrankˆ2i);
for each message msg in msg_next do

if dest_rank(msg) == myrank then
copy msg into msg in;

if msg needs to be routed further then
copy msg into msg out;

end for
end for

end crystal_router

Summarizing, this algorithm guarantees message delivery between arbitrary
processes within d steps where d is the dimensionality of the hypercube network.
Furthermore, it maximises the message lengths for each communication step
by bundling messages that have a segment of their routing paths in common,
provided that the necessary buffers can be allocated with a sufficient size.

4 Performance Analysis of the Crystal Router

We developed a synthetic benchmark for the analysis of the original crystal
router algorithm. Its design has been based on the communication pattern in
NEK5000. There, elements usually have 26 neighbour elements. Each of them
could be located in a different process, i.e. processes have to exchange data
with at least 26 neighbours due to spatial domain decomposition. The element
distribution logic tries to keep neighbouring elements in processes on nodes near
to each other, but, it is also possible that some elements will be placed on distant
nodes. Our benchmark allows to define the number of communication partners
of each process as well as their distance in form of a stride that will be used
to select them. Selected nodes will exchange messages during the benchmark
run. The overall number of spectral elements per node, which corresponds to
a certain message length, could be adapted in order to test strong scaling. In
the strong scaling case, the volume-surface ratio of the elements located in one
process causes a communication amount per node that is proportional to the
number p of processes with O(p−2/3). The aggregated communication of the job
then follows the function O(p1/3). The number of elements as well as the amount
of communication per process remains constant for weak scaling. The aggregated
communication of the parallel job will be limited by O(p) though.

The measurements have been done on KTH’s system Lindgren. It is a Cray
XE6 installation equipped with two AMD Opteron 6172 processors (“magny
core”) and 32 GB RAM per compute node. It has a size of 1516 nodes, i.e. 36384
cores, and provides 305 TFLOPS peak performance. The system interconnect is
a Cray Gemini network with a 3D-torus topology [3].

The first benchmark shows the performance of the crystal router for
different message lenghts and numbers of nodes in comparison to the standard
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MPI library of Lindgren. The benchmarked operation is a personalized all-to-
all communication that is provided as MPI Alltoallv. The crystal router based
implementation is called Cr Alltoallv. The benchmark has been setup in such
a way, that each MPI process communicates with its 26 nearest neighbours. The
results for runs with 256 and 512 processes are shown in Fig. 1. The results for
1024 and 2048 processes are shown in Fig. 2. Finally, Fig. 3 provides results for
4096 and 8192 processes.

The crystal router based implementation Cr Alltoallv is much faster than
MPI Alltoallv in runs of all sizes especially for short, latency-bound messages.
For example, 85µs are needed for a Cr Alltoallv operation that lets each rank
exchange 8 Bytes with its partner processes in a run with 256 processes. The
operation takes 273 µs for 8192 processes. The ratio of these times is 1 : 3.2.
The same operation needs 3 227µs for 256 processes and 187 000µs with 8192
processes with the function MPI Alltoallv. The ratio of the times is 1 : 58. This
result demonstrates that sparse communication patterns involving all processes
of a parallel program can be realised efficiently by the crysral router.

The speed advantage of the crystal router becomes smaller for longer mes-
sages. The speeds of the MPI system function and of the crystal router are almost
equal for the longest messages of 128 kB in the smallest test of 256 processes. The
speed difference increases for this message length with an increasing processor
count and reaches a factor of 19 for the largest run utilising 8192 processes.

Furthermore, the benchmarks show that the number of communication part-
ners respectively the size of the stride do not noticeably influence the duration of
the operation for the MPI system function. The crystal router implementation
contrastingly is more sensitive to these parameters. Figure 4 shows measurements
for a varying stride length utilizing 2048 processes and transmitting messages

Fig. 1. Benchmark of personalized all-to-all communication implemented with the crys-
tal router based function Cr Alltoallv and the MPI function MPI Alltoallv. Each
process sends and receives data from 26 neighbouring processes. The measurements
have been executed with 256 respectively 512 processes.
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Fig. 2. Benchmark of personalized all-to-all communication implemented with the crys-
tal router based function Cr Alltoallv and the MPI function MPI Alltoallv. Each
process sends and receives data from 26 neighbouring processes. The measurements
have been executed with 1024 respectively 2048 processes.

Fig. 3. Benchmark of personalized all-to-all communication implemented with the crys-
tal router based function Cr Alltoallv and the MPI function MPI Alltoallv. Each
process sends and receives data from 26 neighbouring processes. The measurements
have been executed with 4096 respectively 8192 processes.

of 8 resp. 512 byte length. The crystal router needs an increasing runtime for
increasing strides. This reflects that the increasing stride length between the
communications causes increasing data amounts that must be transfered the
processes that are located on other numa nodes, on other sockets and on other
nodes. For example, the time needed for the communication operation with a
stride of 24 (i.e. each process communicates only with processes that reside
on other nodes) is compared to a 1-stride 59 % longer for messages of 8 byte
length, and it needs 51 % more time for messages of 512 byte length. Such a
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systematic trend could not be observed with the MPI routine. Its variability is
clearly smaller than 10 %.

Figure 5 presents a benchmark that has been executed with 256 processes.
Here, the number of communication partners of the processes has been varied.
The MPI system routine again does not show significant variations in their run-
time. The crystal router implementation needs longer runtimes for an increasing
number of communication partners per process. The result reflects the increasing
communication volume that has to be processed by the constant number of
processors.

Fig. 4. Benchmark of all-to-all personalized communication as function of the distance
between communicating processes in the process list (stride). The measurement has
been executed with 256 processes.

Finally, the evaluation with respect to weak scaling in Fig. 6 demonstrates
that Cr Alltoallv scales very uniformly for short messages. Its scaling behav-
iour is noticeable better than that of MPI Alltoallv.

Our analysis shows that the crystal router algorithm is beneficial for medium-
sized and large parallel programs. It can unfold its capabilities compared to
the function MPI Alltoallv especially in situations with sparse communication
patterns and for large processor counts. Its uniform scaling into ranges of large
processor counts indicates that there are no effects of performance degeneration
in the algorithm itself and that it can be a viable choice for the implementation
of collective communication operations. However, several improvements of the
original algorithm are needed, particularly

– the reduction of data copies,
– the exploitation of multiple communication paths, and
– the overlapping of data transfers with the processing of the messages.

Specifically on Cray systems, the exploitation of multiple communication
paths and the overlapping of data transfers with the process-internal message
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Fig. 5. Benchmark of all-to-all personalized communication as function of the number
of communication partners of each process. The measurement has been executed with
256 processes.

Fig. 6. Weak-scaling of all-to-all personalized communication with Cr Alltoallv for
message lengths of 8, 512, and 1024 B. For comparison the scaling of MPI Alltoallv

for a message length of 1024 B has been given.

handling will provide significant performance improvements. The 3D-torus
connects to each Gemini chip with several links. The Block Transfer Engine
(BTE) of the Gemini chip allows to offload the transfer of larger messages from
the CPU. Therefore, a refatcoring of the original algorithm using these hardware
capabilities will extend the range of its applicability.

5 Conclusions and Future Work

We evaluated the original crystal router algorithm in an implementation of a per-
sonalized all-to-all communication on a recent computer architecture. It shows
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a superior exchange performance especially for short messages up to 4 kilobyte
and parallel runs of medium and large sizes. It showed furthermore a uniform
scaling over the whole range of job sizes. This is possible because it bundles short
messages into larger packages that will be transferred at once. The influence of
latency is reduced in that way, and MPI library optimisations with respect to
the bandwidth of larger message lengths become useable for shorter messages
too. The crystal router is sensitive slightly to the distance of the communicating
processes and to a larger extend to the number of communication partners per
process, i.e. the degree of sparsity. These comparatively small variations and the
high overall efficiency that is achieved at the same time are an effect of the algo-
rithm’s properties. The message bundling and the algorithm design guarantee
the message delivery within a fixed number of communication steps. Finally, the
hypercube algorithm involves all nodes equally into the transport of messages
during each communication step.

Our benchmarks confirm that the crystal router algorithm could be used
efficiently also on modern computer architectures, however, to make it ready
for exascale, the efficiency on higher processor counts needs to be improved
furthermore. We have sketched key aspects of these improvements, particularly
the reduction of data copying and the use of multiple network connections. These
improvements will make the crystal router based communication substrate a
viable choice for exascale applications.
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Abstract. Vistle is a scalable distributed implementation of the visu-
alization pipeline. Modules are realized as MPI processes on a cluster.
Within a node, different modules communicate via shared memory. TCP
is used for communication between clusters.

Vistle targets especially interactive visualization in immersive virtual
environments. For low latency, a combination of parallel remote and local
rendering is possible.
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1 Overview

Vistle [10] is a modular and extensible implementation of the visualization
pipeline [8]. It integrates simulations on supercomputers, post-processing and
parallel interactive visualization in immersive virtual environments. It is designed
to work distributed across multiple clusters. The objective is to provide a highly
scalable system, exploiting data, task and pipeline parallelism in hybrid shared
and distributed memory environments with acceleration hardware. Domain
decompositions used during simulation shall be reused for visualization as far as
possible for minimizing data transfer and I/O.

A Vistle work flow consists of several processing modules, each of which is
a parallel MPI program that uses OpenMP within nodes. Shared memory is
used for transferring data between modules within a single node, MPI within a
cluster, TCP across clusters.

2 Related Work

Data parallelism is available in several distributed systems based on the visual-
ization pipeline: VisIt [2] and ParaView [13] rely on algorithms implemented by
VTK [12] for many of their modules, while EnSight [3] has dedicated implemen-
tations. They all implement a client-server architecture, which only allows for
restricted distributed processing: data objects can travel from one remote clus-
ter server to a local display client system, but they cannot be routed between
c© Springer International Publishing Switzerland 2015
S. Markidis and E. Laure (Eds.): EASC 2014, LNCS 8759, pp. 141–147, 2015.
DOI: 10.1007/978-3-319-15976-8 11
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remote servers in an arbitrary order. Modules share a single address space on
each node, which allows for embedding the complete visualization tool within
the simulation application [15].

COVISE [16], the system we use currently, implements a fully distributed
visualization pipeline: modules running on arbitrary systems can be chained
together in any order. Each module is mapped to a separate operating sys-
tem process. Data objects to be transferred to other modules are created in
shared memory. They are transferred as needed to other systems transparently
for the module programmer. Because of its multi-process architecture, task par-
allelism is inherent to the system. The most significant short-coming is the lack
data-parallelism in distributed memory systems. COVISE has a strong focus on
simulation steering, visualization and interaction in immersive virtual environ-
ments and supports collaboration between desktop and VR systems. Its render
component OpenCOVER [11] builds on OpenSceneGraph.

3 Process Model

In Vistle, modules in the visualization pipeline are realized as individual MPI
processes. MPI Comm spawn multiple is used for controlling on which hosts they
are started: in order for the shared memory mechanism to work, equivalent ranks
of different processes have to be placed on the same host. But as this requirement
for starting modules has proven to be difficult to realize in a portable manner
with MPI, we are looking into alternatives for launching modules. One approach
could be to spawn independent MPI jobs on the same nodes via mpirun. Figure 1
shows the process layout within a cluster.

The decision for multiple processes instead of multiple threads was made in
order to decouple MPI communication in different stages of the pipeline without
requiring a multi-thread aware MPI implementation.

Within individual nodes, OpenMP is used to exploit all available cores. We
work on implementing the most important algorithms with the parallel building
blocks supplied by Thrust [5] in order to achieve code and performance portabil-
ity across OpenMP and CUDA accelerators. We hope that this reimplementation
provides speed-ups for unstructured meshes of the same magnitude as has been
achieved in PISTON [7] for structured grids.

4 Data Management

All data objects are created in shared memory managed by Boost. Interprocess
[1]. This minimizes the communication overhead and data replication necessary
for Vistle’s multi-process model. As the function pointers stored in the virtual
function table of C++ classes are valid only within the address space of a single
process, virtual methods cannot be called for objects residing in shared mem-
ory. For the class hierarchy of shared memory data objects, there is a parallel
hierarchy of proxy accessor objects, as shown in Fig. 2. Polymorphic behavior is
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Fig. 1. Process layout, control flow and data flow within a single cluster: controller
and modules are realized as MPI processes. Within a node, shared memory queues are
used to route control messages through the controller; if necessary, they are routed via
MPI through rank 0 of the controller to other ranks. Down-stream modules retrieve
their input data from shared memory after being passed an object handle.

Fig. 2. Parallel class hierarchies for data objects residing in shared memory and acces-
sor objects providing polymorphic behavior for modules.

restored by creating a corresponding proxy object within each process access-
ing a shared memory object. Life time of data objects is managed with reference
counting. Caching of input objects for modules is implemented by simply keeping
a reference to the objects.

The most important component of data objects are scalar arrays. They pro-
vide an interface compatible with STL’s vector [6]. As an optimization for the
common case of storing large arrays of scalar values, they are not initialized dur-
ing allocation, as most often these default values would have to be overwritten
immediately. These arrays are reference counted individually, such that shal-
low copies of data objects are possible and data arrays can be referenced from
several data objects. This allows to e. g. reuse the coordinate array for both an
unstructured volume grid and a corresponding boundary surface.
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Data objects are created by modules, modification of data objects is not
possible after they are published to other modules. The only exception to this
rule is that any module can attach other objects to arbitrary objects. This is
used to tie them to acceleration structures that can be reused across modules.

Data objects can be transmitted between nodes, but we try to avoid this
overhead: we assume that in general the overhead of load balancing is not war-
ranted as most visualization algorithms are fast and as the imbalances vary with
the parameterization of the algorithm (e. g. iso value).

Objects carry metadata such as their name, source module, age, simulation
time, simulation iteration and the number of the partition for domain decom-
posed data. Additionally, textual attributes can be attached to objects. This
provides flexibility to e. g. manage hierarchic object groups or collections and to
attach shaders to objects.

The hierarchy of data object classes comprises object types for unstructured
grids, structured grids and collections of polygons and triangles, lines and points,
the celltree [4] for accelerated cell search as well as scalar and vector data mapped
onto these geometric structures. Users can extend the system with their own data
types.

5 Control Flow and Message System

The central instance for managing the execution is the controller. Its main task
is to handle events and manage control flow between modules. Messages for
this purpose are rather small and have a fixed maximum size. MPI is used for
transmitting them from the controller’s rank 0 to other ranks. Within a rank,
they are forwarded using shared memory message queues. The controller polls
MPI and message queues in shared memory on the main thread. TCP is used
for communicating them to user interfaces and other clusters. They are used
to launch modules, trigger their execution, announce the availability of newly
created data objects, transmit parameter values and communicate the execution
state of a module.

Work flow descriptions are stored as Python scripts and are interpreted by
the controller.

6 Modules

Modules are implemented by deriving from the module base class. During con-
struction, a module should define its input and output ports as well as its para-
meters. For every tuple of objects received at its inputs, the compute() method
of a module is called. By default, compute() is only invoked on the node where
the data object has been received. In order to avoid synchronization overhead,
MPI communication is only possible if a module explicitly opts in to parallel
invocation of compute() on all ranks. If only a final reduction operation has
to be performed after all blocks of a data set have been processed, a reduce()
method can be implemented by modules. Compared to parallel invocation of
compute(), this has lower synchronization overhead.
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7 User Interfaces

User interfaces attach to or detach from a Vistle session dynamically at run-
time. User interfaces connect to the controller’s rank 0. For attaching to sessions
started as a batch job on a system with limited network connectivity, the con-
troller will connect to a proxy at a known location, where user interfaces can
attach to instead. Upon connection, the current state of the session is commu-
nicated to the user interface. From then on, the state is tracked by observing
Vistle messages that induce state changes. An arbitrary number of UIs can be
attached at any time, thus facilitating simple collaboration. Graphical and com-
mand line/scripting user interfaces can be mixed at will. Their state always
remains synchronized.

Graphical UIs provide an explicit representation of data flow: this makes the
configured visualization pipeline easy to understand.

8 Rendering

Vistle is geared towards immersive virtual environments, where low latency is
very important. For rendering, Vistle implements a plug-in for OpenCOVER.
Visualization parameters can be manipulated from within the virtual environ-
ment. Large data sets can be displayed with sort-last parallel rendering and depth
compositing implemented using IceT [9]. To facilitate access to remote HPC
resources, a combination of local and parallel remote rendering called remote
hybrid rendering [14] is available to decouple interaction from remote rendering.
There is also a ray casting based backend renderer running entirely on the CPU,
which enables access to remote resources without GPUs.

9 First Results

Performance of the system was evaluated with the visualization of the simula-
tion of a pump turbine. The simulation was conducted by the Institute of Fluid
Mechanics and Hydraulic Machinery at the University of Stuttgart with Open-
FOAM on 128 processors. Accordingly, the data set was decomposed into 128
blocks. This also limits the amount of parallelism that can be reached. Figure 3
shows runtime and parallel efficiency. Isosurface extraction is interactive at rates
of more than 20/s and runtime does not increase until full parallelism is reached.
While this suggests that the approach is suitable for in-situ visualization, the
impact on the performance of a simulation will have to be assessed specifically
for each case: often, the simulation will have to be suspended while its state is
captured, the visualization might compete for memory with the simulation, and
the visualization will claim processor time slices from the simulation as it will be
scheduled on the same cores. However, these costs are only relevant when in-situ
visualization is actively used, as Vistle’s modular design requires only a small
component for interfacing with the visualization tool to remain in memory all
the time.
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Fig. 3. Isosurface extraction on 13 timesteps of 5.8 million moving unstructured cells,
runtime in s (left), parallel efficiency (right): runtime does not increase significantly
until the number of ranks for the original simulation is reached. Extraction happens at
interactive rates.

10 Current Status and Future Work

Not all features described here are already implemented. The most significant
gap is the lack of most distributed features: only user interfaces and display
modules can run remotely. Also, support for structured grids is still missing.

Current projects are the handling of halo cells in order to support algorithms
which require data from neighboring cells. The next mile stones that we aim to
achieve are to couple the system to OpenFOAM and to provide the infrastruc-
ture for algorithms which require tight coupling between the MPI processes of a
module and, building on that, the implementation of a particle tracer for decom-
posed data sets that are spread across the nodes of a cluster. Additionally, the
scalability of the system will be improved by making better use of OpenMP and
acceleration hardware.
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