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Abstract This chapter summarizes methods of inferring information about drivers

of global dryland vegetation changes observed from remote sensing time series data

covering from the 1980s until present time. Earth observation (EO) based time

series of vegetation metrics, sea surface temperature (SST) (both from the AVHRR

(Advanced Very High Resolution Radiometer) series of instruments) and precipi-

tation data (blended satellite/rain gauge) are used for determining the mechanisms

of observed changes. EO-based methods to better distinguish between climate and

human induced (land use) vegetation changes are reviewed. The techniques

presented include trend analysis based on the Rain-Use Efficiency (RUE) and the

Residual Trend Analysis (RESTREND) and the methodological challenges related

to the use of these. Finally, teleconnections between global sea surface temperature

(SST) anomalies and dryland vegetation productivity are illustrated and the asso-

ciated predictive capabilities are discussed.
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9.1 Introduction

The United Nations Convention to Combat Desertification (UNCCD) definition of

desertification, or dryland degradation (used synonymously) is:

land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors,

including climatic variations and human activities” followed by “land degradation” means

reduction or loss, in arid, semi-arid and dry sub-humid areas, of the biological or economic

productivity and complexity of rainfed cropland, irrigated cropland, or range, pasture,

forest and woodlands resulting from land uses or from a process or combination of

processes, including processes arising from human activities and habitation patterns

(UNCCD homepage, www.unccd.int).

This definition implies that change in vegetation productivity is a key indicator

(but not the only one) of land degradation. Furthermore, vegetation productivity is

of great economic importance because crop and livestock production is the most

essential economic activity in many arid and semi-arid regions. Moreover, primary

production is an important element in dryland key supporting ecosystem services,

as defined by the Millennium Ecosystem Assessment (MEA) Desertification Syn-

thesis (Adeel and World Resources Institute 2005). Therefore, spatially and tem-

porally consistent, long-term data on changes and trends in vegetation productivity

are of great interest for the assessment of environmental conditions and their trends

in dryland regions. Earth Observation (EO) satellite data provide the only suitable

means of temporally and spatially consistent global scale data, covering the last

three decades (Prince 2002).

According to Adeel and World Resources Institute (2005), at least 10–20 % of

drylands are already degraded and a recent publication from the UNCCD (UNCCD-

secretariat 2013) states that global assessments indicate an increase in the percent-

age of highly degraded land area from 15 % in 1991 to 25 % by 2011. Many

reputable sources rank desertification among the greatest environmental challenges

today and a major impediment to meeting basic human needs in drylands (MEA &

UNCCD). It is, however, also underlined that more elaborate studies are needed to

identify where the problems occur and what is their true extent. This chapter

introduces different EO-based methods for monitoring indicators of land degrada-

tion and to gain insight into the driving mechanisms of observed changes in

vegetation productivity.

9.2 Inferring Causes for Observed Changes

Trends in vegetation productivity may be related to climatic as well as non-climatic

causes of change (e.g. management), and it is obviously of great policy relevance to

better understand the drivers and causal mechanisms of observed productivity

trends. There is good correspondence between EO-based vegetation dynamics

and precipitation in most dryland areas (Fig. 9.1) which is not surprising since
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vegetation growth is primarily water constrained in these areas (Nemani

et al. 2003). However, large dryland regions of non-significant correlation between

rainfall and vegetation growth can also be observed.

Different datasets of precipitation exist for continental to global scale analysis

based on a combination of rain gauge measurements and a variety of different

satellite observations (Huffman et al. 2009; Huffman et al. 2007; Xie and Arkin

1997). Three different products have been used in this chapter (GPCP (Global

Precipitation Climatology Project), CMAP (CPCMerged Analysis of Precipitation)

and TRMM (Tropical Rainfall Measuring Mission)) and are summarized in

Table 9.1.

It has been shown that dryland areas across the globe, on average have experi-

enced an increase in greenness during the satellite record, from 1981 till present

(Fig. 9.2, previous chapter). However, similar increases in greenness over the last

three decades in the same or different regions may have widely different explana-

tions (Fensholt et al. 2012; Mao et al. 2013) including driving mechanisms of both

climate and human induced changes in land use and land cover. Mao et al. (2013)

estimated satellite-derived relative change in annual LAI (leaf area index) from the

years 1982 to 2009 at the global scale and found a South-to-North asymmetry in the

trends coinciding with trends in temperature over the same period. Precipitation

patterns were found to decrease this asymmetric-latitudinal LAI trend, with strong

local effects. By combining EO data analysis with model simulations it was found

that positive and negative vegetation trends in dryland areas were primarily driven

by changes in climate, with positive trends dominating. de Jong et al. (2013a) used

an additive spatial model with 0.5� resolution, including climate-associated effects

and influence of other factors such as land use change to separate possible drivers of

observed changes. They attributed just above 50 % of the spatial variance in global

productivity to changes in climate variables.

Fig. 9.1 Significance of linear correlation between annual integrated GIMMS3g NDVI and

annual summed CMAP precipitation 1982–2010 for dryland areas (hyper-arid not included).

CMAP precipitation has been resampled to match the spatial resolution of the GIMMS3g NDVI
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The relative importance of precipitation, air temperature and incoming solar

radiation for vegetation growth across the globe has been mapped by (Nemani

et al. 2003) showing regions of different climatic dominant limiting factors. Areas

primarily constrained by precipitation occupied approximately 50 % of the global

Table 9.1 Precipitation datasets used in this chapter and their main characteristics

Satellite

product

CPC Merged Analysis of

Precipitation (CMAP)

Global Precipitation

Climatology Project

(GPCP)

Tropical Rainfall

Measuring Mission

(TRMM)

Spatial

resolution

2.5� 2.5� 2.5� 2.5� 0.25� 0.25�

Spatial

coverage

Global Global Latitude: 50 N – 50 S

Longitude: 180 W – 180 E

Temporal

resolution

Monthly Monthly Aggregated to monthly

(from 3 hourly)

Temporal

coverage

1979–present 1979–present 1998–present

Sensors

included

GPCC rain gauge, SSM/I emission, SSM/I,

IR-based GOES precipita-

tion index,

SSM/I scattering, Advanced Microwave

Scanning Radiometer for

Earth Observing System

(AMSR-E),

OLR precipitation index,

Microwave Sounding

IR-based Goddard

Earth Observing Sys-

tem (GEOS) precipita-

tion index,

Advanced Microwave

Sounding Unit-B (AMSU-

B),

Unit (MSU), Television and Infrared Infrared (IR) data from the

international constellation

of geosynchronous earth

orbit (GEO) satellites,

Gauge,

SSM/I scattering, Observation Satellite

Operational Vertical

Sounder (TOVS)-

based estimates,

GPCC,

SSM/I emission, Outgoing longwave

radiation (OLR) pre-

cipitation index,

GPCC,

Climate Assessment and

Monitoring System

(CAMS).

National Centers for Envi-

ronmental Prediction–

National Center for Atmo-

spheric Research (NCEP–

NCAR) reanalysis.

Global Historical Cli-

mate Network

(GHCN, produced by

NOAA) and CAMS.

Download

address

ftp://ftp.cpc.ncep.noaa.

gov/precip/cmap/monthly

http://www1.ncdc.

noaa.gov/pub/data/

gpcp/v2/sat_gauge_

precip

http://daac.gsfc.nasa.gov/

data/datapool/TRMM/

References Xie and Arkin (1997) Adler et al. (2003) Huffman et al. (2007)
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semi-arid areas, 7 % by air temperature and<1 % by incoming shortwave radiation

(the remaining 42 % of semi-arid pixels were not characterized by a single

predominant driver) (Fensholt et al. 2012). The NDVI trend coefficients of these

three categories of potential climatic constraints to plant growth for semi-arid areas

across the globe (Fig. 9.2a–c) were found to be positive on average for all three

constraints (mean NDVI trend coefficients of 0.019, 0.013, and 0.015 for precipi-

tation, air temperature, and incoming shortwave radiation, respectively). This

implies that current generalizations, claiming that land degradation is ongoing in

dryland areas worldwide (Adeel and World Resources Institute 2005; UNCCD

Secretariat 2013) are not supported by the most recent satellite based analysis of

vegetation greenness (being closely related to the key indicator of biological

productivity).

co
un

ts

co
un

ts

co
un

ts

Air temperature 
constrained environments

Mean = 0.013
SD = 0.026
N = 31830

Incom. shortwave radiation 
constrained environments

Mean = 0.015
SD = 0.035
N = 683

Precipitation 
constrained environments

Mean = 0.019
SD = 0.039
N = 221324

NDVI slope value (in NDVI units over the period 1981-2007)

90

80

70

a b

c

60

50

40

30

20

10

0

70000

60000

50000

40000

30000

20000

10000

0

60000

50000

40000

30000

20000

10000

0

-0
.1

5

-0
.1

3

-0
.1

1

-0
.0

9

-0
.0

7

-0
.0

5

-0
.0

3

-0
.0

1

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

NDVI slope value (in NDVI units over the period 1981-2007)

-0
.1

5

-0
.1

3

-0
.1

1

-0
.0

9

-0
.0

7

-0
.0

5

-0
.0

3

-0
.0

1

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

NDVI slope value (in NDVI units over the period 1981-2007)

-0
.1

5

-0
.1

3

-0
.1

1

-0
.0

9

-0
.0

7

-0
.0

5

-0
.0

3

-0
.0

1

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

Fig. 9.2 Histograms of the NDVI slope in semi-arid areas from July 1981 to December 2007 in

environments constrained by, (a) precipitation, (b) air temperature and (c) incoming shortwave

radiation. Dashed vertical line represents NDVI trend values of 0 (NDVI units over the total period

1981–2007). Note the different scale on the y-axis value for each sub-plot due to the different

number of pixels in each category
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9.2.1 Precipitation Controlling Observed Vegetation
Changes in the Sahel

The Sahel is one of the world’s largest dryland areas bordering the Sahara Desert to
the north. Sahel has been referred to as the region of largest global rainfall

anomalies during the last century (Nicholson 2000), suffering from recurrent

droughts and large inter-annual variations in vegetation productivity. The grass-

lands of the Sahel constitute the basis for livestock production and the livelihoods

of millions of people. Since the ‘Sahel drought’ of the 1970s and early 1980s, this

zone has been described as a hotspot of land degradation, threatened both by

recurrent droughts (Nicholson 2000) and by human overuse, e.g., through

overgrazing (Hulme 2001; Lamb 1982) which is in contrast to more recent EO

findings (Anyamba and Tucker 2005; Eklundh and Olsson 2003; Fensholt and

Rasmussen 2011; Herrmann et al. 2005; Prince et al. 1998; Rasmussen

et al. 2001). The productivity of the semi-natural grasslands of the Sahel is to a

considerable extent controlled by precipitation. Recent analyses of trends in pre-

cipitation based on rain gauge measurements (Lebel and Ali 2009), as well as on

global precipitation datasets (Fensholt and Rasmussen 2011; Fensholt et al. 2013;

Huber et al. 2011) show that precipitation has increased in the Sahel since the mid-

1980s. Thus the greening, observed in the field and by use of time series of satellite

images, is not surprising. Linear regression analysis of GIMMS3g (Global Inven-

tory Monitoring and Modeling System) NDVI (Normalized Difference Vegetation

Index) against the CMAP (CPC Merged Analysis of Precipitation) precipitation

(Xie and Arkin 1997) was conducted by Fensholt et al. (2013) for the period 1982–

2010 (Fig. 9.3). An overall strong linear correlation between growing season

integrated NDVI and precipitation is observed for the Sahel with 65.1 and 47.7 %

of the pixels analysed being significantly positively correlated (p< 0.05 and 0.01,

respectively).

9.2.2 Assessing Drivers of Observed Changes Based
on Rain-Use Efficiency

If the greening in drylands is predominantly an effect of increased precipitation, it

could be argued that this may disguise continued degradation caused by other

factors, such as excessive cultivation and overgrazing. Over the last decades several

studies have attempted to eliminate the effect of rainfall change (by a normalization

procedure) on biological productivity, to better isolate the impact of non-rainfall

related changes, e.g. human impacts (Evans and Geerken 2004; Prince et al. 1998;

Wessels et al. 2007). This is sought to be captured by the concept of Rain-Use

Efficiency (RUE), defined as the ratio of ANPP (aboveground net primary produc-

tivity) to annual precipitation (Le Houérou 1984, 1989; Prince et al. 1998). Conse-

quently, changes in RUE have been suggested as an integral measure for evaluating
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land degradation and desertification and a number of authors have attempted to

assess non-precipitation related land degradation – or the reverse – in global

drylands. Time series of RUE have been estimated wholly or partly from satellite

remote sensing or using only ground measurements (Bai et al. 2008; Hein and de

Ridder 2006; Hein et al. 2011; Prince et al. 1998, 2007).

The basic assumption involved in the use of RUE is that NPP (net primary

productivity) is proportional to (or at least linearly related to, see below) precipi-

tation in the absence of human-induced land degradation. If this assumption of

proportionality does not hold, the normalization for precipitation, which is the basis

for the use of RUE is not successful (Prince 2002) and the use of RUE to detect non-

precipitation related land degradation will become biased by changes in precipita-

tion. Several papers have questioned this proportionality. It is well known that for

increasing amounts of rainfall, the importance of water availability will at some

point decrease (Prince et al. 2007) violating the assumption of proportionality

between productivity and precipitation. An important question is whether the

transition from water being the primary constraint for vegetation growth into

other factors such as nutrients and incoming solar radiation, is observed for dryland

areas. Using ground data from a variety of semi-arid rangelands in the Sahel and

elsewhere, (Hein and de Ridder (2006), Hein et al. (2011)), as well as Hein (2006)

argued that at high precipitation levels RUE will tend to decrease in dryland areas,

because other production factors than water availability become limiting. The

interval of annual precipitation in which proportionality may be assumed is debated

and varies with vegetation, soil and climate. Hein et al. (2011) cited Breman and

Fig. 9.3 Significance of correlation between GIMMS3g NDVI and precipitation from CMAP

(Table 9.1) 1982–2010 for (a) Annually integrated NDVI (b) growing season integrated NDVI.

CMAP precipitation has been resampled to match the spatial resolution of the GIMMS3g NDVI
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Dewit (1983) for the statement that the proportionality breaks down at/above

around 300 mm of rainfall per year.

Hein and de Ridder (2006) further argued that RUE will also decrease in areas of

very low precipitation because most of the precipitation will evaporate and thus not

be available for vegetation. Thus, they suggested that a quadratic or cubic relation-

ship between productivity and precipitation should replace the assumption of

proportionality for dryland areas. Prince et al. (2007) however challenged this

interpretation with respect to the lack of an ecological justification. Other publica-

tions based on in situmeasurements suggest that biome-specific RUE values should

be applied depending on the rainfall regime (Huxman et al. 2004; Paruelo

et al. 1999; Ruppert et al. 2012). However, Hu et al. (2010) concluded that inter-

annual variation in RUE is not correlated with precipitation at the site level from a

large dataset of in situ observations from dryland areas in China. The hypothesis of

a constant of RUE for different species/rainfall regimes has implications for

interpreting values of EO-based (Earth Observation) RUE in both the temporal

and spatial domain since RUE values might not be directly inter-comparable across

space for drylands receiving different amounts of rainfall (Prince et al. 1998). Also,

if the amount of rainfall for a given pixel changes towards wetter or dryer condi-

tions over time, this will have implications for the interpretation of RUE if a non-

proportional relation between productivity and precipitation exists.

Based on annually integrated NDVI and annual precipitation (Fensholt and

Rasmussen (2011), Fensholt et al. (2013)) demonstrated that for most pixels in

the Sahel there is no proportionality, but sometimes a linear relation between

ΣNDVI (seasonal or annual) and annual precipitation exists (as in Fig. 9.3). Pro-

portionality is mathematically defined as the relationship of two variables whose

ratio is constant, and unless the linear relationship between the vegetation metric

and precipitation crosses the origin (0,0) of the Cartesian coordinate plane, propor-

tionality is not obtained. It is argued that this lack of proportionality undermines the

general use of satellite-based RUE time series as a means of identifying non-

precipitation related land degradation (Fensholt et al. 2013), Veron et al. (2005).

The specific data pre-processing of EO-based metrics for vegetation productivity

have implications for the proportionality between productivity and precipitation

and will therefore impact on the degradation/recovery assessment results obtained

when using RUE. Fensholt et al. (2013) studied the sensitivity of the RUE approach

to the EO-based proxies used (Fig. 9.4). Annually summed AVHRR GIMMS3g

NDVI was shown to be linearly related to annual precipitation but no proportion-

ality was found, thereby making a normalisation impossible (the inability of RUE to

normalise for variability in precipitation is obvious from a remaining high per-pixel

temporal correlation between RUE and precipitation). The results show significant

negative trends in RUE (Fig. 9.4a) (primarily western and central Sahel). If

substituting annually summed AVHRR GIMMS3g NDVI with a different vegeta-

tion productivity metric (the growing season integrated NDVI) in the RUE calcu-

lation (Fig. 9.4b), proportionality between productivity and precipitation was

attained for the majority of pixels in the Sahel allowing for a successful use of

RUE (no correlation between RUE and precipitation). The use of a growing season
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integral of NDVI, which does not violate proportionality, produces very different

results in trends of RUE, with the majority of pixels being characterised by

significant positive RUE trends across the entire Sahelian belt. Clearly, this exam-

ple illustrates that widely different conclusions concerning drivers of observed

changes in vegetation trends and land degradation in the Sahel may be obtained

depending on the vegetation parameterization approach used for the RUE analysis.

Care must be taken that the assumed precipitation normalisation is in fact success-

ful; otherwise trends in RUE will be nothing but a simple reflection of the trend in

the precipitation dataset or perhaps other factors controlling NPP.

A different use of RUE as a measure of land degradation has been suggested by

(del Barrio et al. 2010). The RUE values for each site and date were rescaled

according to the upper and lower bounds of the VI (vegetation index)/precipitation

point scatter to calculate the performance of RUE for a given landscape location to

a reference potential conditions (i.e. maximum RUE observed) for this landscape

type. However, the reference values depend on the actual observations, and assume

that some areas are in their potential condition and others are fully degraded. It

could also be that the RUE of a given pixel as compared to a reference landscape

will be dependent on local soil variability and topographic conditions.

Fig. 9.4 RUE linear trends 1982–2010 based on (a) Annual sums of AVHRR GIMMS3g NDVI.

(b) Growing season integrals of AVHRR GIMMS3g NDVI. Both productivity estimates are

divided by annual sums of precipitation from GPCP (Table 9.1) to obtain Rain-Use Efficiency

(RUE). GPCP precipitation has been resampled to match the spatial resolution of the

GIMMS3g NDVI
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9.2.3 Assessing Drivers of Observed Changes Using
the Residual Trends Productivity Approach

A different approach, called Residual Trend Analysis (RESTREND), has been

developed in an attempt to distinguish rainfall-related variations and trends from

human-induced land degradation (Archer 2004; Evans and Geerken 2004; Wessels

et al. 2007). Following this method, per-pixel ΣNDVI (seasonal or annual) is

regressed against annual precipitation, as with RUE, and then residuals are calcu-

lated for each site/time point from the best-fit linear regression for all sites. These

residuals are then plotted against time to detect any temporal trends in deviations

from the potential (as estimated by the best-fit regression). Just as with RUE,

RESTREND seeks to expose factors other than precipitation, including a human-

induced change (Herrmann et al. 2005; Huber et al. 2011; Wessels et al. 2007) that

affect NPP.

In Fig. 9.5 AVHRR GIMMS3g NDVI was regressed against satellite-measured

precipitation data from TRMM (Tropical Rainfall Measuring Mission; latitudinal

coverage: 50 N-50S) from 1999 to 2011 and then used in a RESTREND analysis.

Mixed patterns of increasing and decreasing trends of residual NDVI can be

observed, with large negative values in eastern Africa and southern America and

mainly positive trends in Australia and northern America.

Fig. 9.5 Linear trends in Residual NDVI (RESTREND) 1999–2011. The residuals were esti-

mated from linear regressions between annual integrated AVHRR GIMMS3g NDVI and annual

summed TRMM (Table 9.1) rainfall. TRMM precipitation has been resampled to match the spatial

resolution of the GIMMS3g NDVI
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9.2.4 Limitations/Challenges for RUE and RESTREND
Approaches

Instead of assuming proportionality or linearity between precipitation and produc-

tivity for the use of RUE as being criticised by Hein and de Ridder (2006) and Hein

et al. (2011) it was suggested by Fensholt et al. (2013) to restrict the analysis

applicable to the RUE approach to regions or pixels for which proportionality can

be shown to exist from remotely sensed data. This allows for maintaining the basic

simple notion of RUE (as formulated by Le Houérou (1984)) as a means of

normalizing for the effect rainfall on vegetation productivity and also helps in

defining the limits within which RUE should be applied, i.e. to regions where

rainfall is the primary constraint to vegetation growth. For a given pixel, however,

in the case of severe ongoing land degradation in the middle part of the time series

being studied, the linearity between rainfall and productivity may decline. This may

be captured in the RUE time series as gradual changes that may reverse over time

involving a trend break. Hence, if one applies strict statistical criteria at the per-

pixel level there is a risk of excluding pixels from the analysis that are in fact the

ones showing signs of human-induced land degradation. It is therefore suggested to

apply the statistical requirement of a significant correlation between precipitation

and vegetation productivity to be fulfilled at the regional level by a zonation/

stratification of the per-pixel relation.

Also the use of the RESTREND approach for assessing human induced influence

of vegetation changes is based on linearity between rainfall and productivity. For

pixels for which a high linear correlation between ΣNDVI (annual/seasonal) and
annual precipitation exists, meaningful estimations based on the RESTREND

technique is feasible. If, however, for a given pixel a weak relation between

ΣNDVI and annual rainfall exists, this approach is of little use, because the

uncertainty caused by estimating the NDVI residuals increases proportionally. As

pointed out by Wessels et al. (2012) this is likely to happen for a scenario, as above,

where human-induced land degradation starts in the middle of a time series. A

simulated degradation intensity �20 % was shown to cause an otherwise strong

relationship between NDVI and rainfall to break down, thereby making the

RESTREND an unreliable indicator of land human induced degradation.

A way to minimize the effects of fitting only one linear regression for the whole

time-series is the identification of gradual or abrupt changes in the RUE time series

using change detection method such as Breaks For Additive Seasonal and Trend

(BFAST) (Verbesselt et al. 2010a, b). As described in the previous chapter, the

basic principle of the BFAST algorithm is the decomposition of a time series into

seasonal, trend, and remainder components, coupled with the detection of abrupt

changes in both the trend and seasonal components. BFAST enables the detection

of trend changes within EO time series assuming that nonlinearity can be approx-

imated by piecewise linear models. This type of analysis can provide valuable

information on the occurrence of trend changes, as well as on the timing and
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magnitude of related break points in the time series (de Jong et al. 2012, 2013b;

Verbesselt et al. 2012). Land degradation assessment based on a joint analysis of

both long-term trends and abrupt changes in precipitation and vegetation time series

should therefore be more accurate as they will not be solely based on diagnosis of

long-term linear changes in ecosystem efficiencies but will also use more accurate

information on potential abrupt changes observed either in climate or in the

vegetation traits.

An example of the application of BFAST to address the issues of the RUE and

RESTREND approaches for land degradation assessment is an analysis for Sudan

(Fig. 9.6). Sudan is characterised by widespread and rapidly accelerating environ-

mental degradation, which is sufficiently severe to be amongst the factors triggering

tensions and conflicts (United Nations Environment Programme. 2007). This

example is based on the growing-season NDVI integral derived from the

GIMMS3g archive (1981 to the present) used as proxy for vegetation productivity

and annual precipitation from the Global Precipitation Climatology Project (GPCP)

(Table 9.1). Figure 9.6a shows the trends in RUE without taking into consideration

that there are large areas of the semi-arid Sudan where the preconditions for using

RUE are not fulfilled (lack of linearity between vegetation productivity and pre-

cipitation and/or residual correlations between RUE and precipitation are observed)

(Fig. 9.6b). However, breaks in the RUE time series detected by the BFAST

Fig. 9.6 (a) Direction and significance of 1982–2011 trends in RainUse Efficiency derived from

the GIMMS3g NDVI and the GPCP yearly totals for dryland areas of Sudan. Non vegetated areas

were masked out (light grey). (b) As in (a) but superimposed by pixels being masked due to lack of

correlation between rainfall and NDVI (medium grey) and residual correlation between RUE and

rainfall (dark grey). (c) Number of break points in Rain-Use Efficiency identified by BFAST

between 1982 and 2011
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(Fig. 9.6c) indicate that for many pixels (e.g. the region highlighted with a red

circle) the linearity assumption on which the RUE approach is based upon is not

fulfilled because of a distinct breakpoint within the period of analysis. Therefore the

rejection of these pixels based on a too strict statistical criteria of linearity may

actually lead to disregarding some of the regions that are most vulnerable and most

seriously hit by land degradation.

9.3 Assessment of the Roles of Climate on Anomalies
of Dryland Vegetation Productivity

9.3.1 Combining Dynamic Global Vegetation Models
and EO Data

Recent studies based on process-based modelling approaches (Dynamic Global

Vegetation Models; DGVM’s) have attempted to disentangle the climate and

human effects on the Sahelian greening (Hickler et al. 2005; Seaquist et al. 2009)

and greening at the global scale (Mao et al. 2013). The use of DGVM’s like the LPJ
(Lund-Potsdam-Jena) (Sitch et al. 2003) allows studying the causes for current and

historical variability and trends in vegetation productivity of global drylands when

comparing against time series of EO data for the same period (Hickler et al. 2005).

DGVM’s provide the potential vegetation properties and modelling includes atmo-

spheric CO2 fertilization, nitrogen/phosphorous deposition and land use and land

cover change (not accommodated in EO-based Light Use Efficiency (LUE)

approaches) as well as dryland resilience in the context of disturbance processes

from human influence like bush fires. Discrepancies between modelled and

EO-based observed productivity have therefore been used as means of inferring

information of drivers of changes (Seaquist et al. 2009). Combining process-based

ecosystem models with high-temporal resolution remote sensing using data assim-

ilation offers an interesting way forward adding insights about the patterns and

mechanisms driving observed vegetation dynamics at these spatial scales; yet it

remains an underutilized avenue of research (Seaquist et al. 2012).

9.3.2 Sea Surface Temperature and Vegetation Productivity
Teleconnections

Vegetation productivity across different dryland regions is known to be affected

locally by changes in precipitation as discussed in the previous sections. The causes

of inter-annual precipitation variability has also been related to variability in

regional climate driven by SST patterns. In the African Sahel, the reasons for the

large inter-annual and decadal fluctuations in rainfall are still not entirely

9 Assessing Drivers of Vegetation Changes in Drylands from Time Series. . . 195



understood, but early works by (Folland et al. (1986), Lamb (1978), Palmer 1986)

found a relationship (teleconnection) with regional and global SST conditions.

Sahelian precipitation and SST patterns have been related to the ENSO (El Nino

Southern Oscillation) and NAO (North Atlantic Oscillation) (Biasutti et al. 2008;

Palmer 1986; Shanahan et al. 2009; Ward 1998). Relationships between precipita-

tion and SST have been found also in the Pacific (Caminade and Terray 2010;

Janicot et al. 1998; Mohino et al. 2011), the Indian Ocean (Bader and Latif 2003;

Giannini et al. 2003; Lu 2009) and the Mediterranean (Philippon et al. 2007;

Raicich et al. 2003; Rowell 2003).

In the Sahel, the importance of SST on precipitation is still unclear. While

several studies have reported limited correlations (Anyamba and Eastman 1996;

Anyamba and Tucker 2005; Anyamba et al. 2001; Philippon et al. 2007; Propastin

et al. 2010), others have shown stronger relationships (Camberlin et al. 2001; Oba

et al. 2001; Ward 1998). Oba et al. (2001), attributed large parts of the inter-annual

variation of vegetation productivity during the 1980s to the NAO. Wang (2003), on

the other hand, did not find a consistent relationship. Other studies (e.g. Brown

et al. (2010)) have found significant relationships individually between the Pacific

Decadal Oscillation (PDO) and two phenological metrics of NDVI (start of season

and seasonal integrated NDVI) in West Africa but a limited influence of the Indian

Ocean Dipole (IOD). However, although Williams and Hanan (2011), found the

IOD and the Multivariate ENSO Index (MEI) to be related to rainfall individually,

(when taken together) interacting effects of the two indices removed the

correlations.

Direct relationships between SST and vegetation measurements from AVHRR

time series have also been demonstrated. For example, Huber and Fensholt (2011)

studied the direct correlations between the Sahelian dryland vegetation variability

and large-scale ocean–atmosphere phenomena causing changes in SST patterns. It

was concluded that over the last 3 decades, significant correlations existed between

global climate indices/SST anomalies and Sahelian productivity, however with

different characteristics in western, central and eastern Sahel. Whereas the vegeta-

tion productivity in the western Sahel could be associated with SST for large

oceanic areas of the Pacific, the Atlantic as well as the Indian Ocean (Fig. 9.7),

for the eastern Sahel only small areas in the Atlantic were found to be significantly

related to dynamics in NDVI.

Overall, these large scale climate indices and especially SST anomalies for

specific ocean areas were found to have predictive power expressed by a statisti-

cally significant relation between northern latitude winter/spring SSTs and summer

vegetation productivity in the Sahel (Fig. 9.8). This time lag of several months

could be of immense importance for forecasting annual vegetation productivity in

this region and possibly in other dryland areas across the globe, home to the world’s
poorest populations.

196 R. Fensholt et al.



9.4 Summary

The United Nations Convention to Combat Desertification (UNCCD) definition of

desertification (degradation in dryland areas) implies that change in vegetation

productivity is a key indicator (but not the only one) of land degradation. Spatially

and temporally consistent, long-term data on vegetation productivity is therefore of

great interest for the assessment of changes in environmental conditions in dryland

regions and Earth Observation (EO) satellite data provide the only suitable means

of consistent monitoring of changes at the global scale.

Current generalizations, claiming that land degradation is ongoing in dryland

areas worldwide are not supported by recent satellite based analysis of vegetation

and this chapter introduced some of the most widely used methods of inferring

Fig. 9.7 Maps of significant correlation coefficients (p< 0.05) between the Sahel NDVI anomaly

index (based on July–September NDVI (JAS)) for the West African Sahel sub-region and mean

SST anomalies from 1982 to 2007 for different intra-annual time lags (e.g., correlation between

JAS NDVI anomalies and JFM (January–March) SST anomalies)
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drivers of dryland vegetation changes observed from remote sensing time series

data. Trends in vegetation productivity may be related to climatic as well as non-

climatic causes of change (e.g. management), and it is of great policy relevance to

better understand the drivers and causal mechanisms of observed productivity

trends. However, one of the main challenges in dryland vegetation research remains

resolving and disentangling the impact from climate and human induced land use

change respectively. A strong coupling between EO-based vegetation dynamics

and precipitation and/or temperature was found in most dryland areas but also large

regions of non-significant correlation between rainfall/temperature and vegetation

growth was observed pointing towards human influence on vegetation from

changes in land use practices.

The Sahel (being one of the world’s largest dryland areas) has suffered from

recurrent droughts and large inter-annual variations in vegetation productivity over

recent decades. Sahel was used here as a showcase for two interrelated methods of

detecting the impact of non-rainfall related changes on vegetation; the concept of

RUE (Rain-Use Efficiency) and the RESTREND approach. Both approaches how-

ever are based on the assumption of a strong per-pixel linear relationship between

rainfall and productivity (over time) that might be compromised in the case of

escalating land degradation during the period under study. Rather than fitting only

one per-pixel linear regression for the whole time-series, it is suggested here to

combine a change detection method such as BFAST (Breaks For Additive Seasonal

Fig. 9.8 Maps of joint explained variance (r2) from partial correlation analysis of July-September

(JAS) NDVI anomalies and (a) the Multivariate ENSO Index (MEI) averaged over May–July

(MJJ) and the Pacific Decadal Oscillation (PDO) averaged over July–September (JAS), (b) the
SST indices extracted from the Atlantic and Pacific for January–March (JFM) and March–May

(MAM), respectively, and (c) the SST indices extracted from the Atlantic and Pacific for June–

August (JJA) and March–May (MAM), respectively
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and Trend) (see previous chapter) for identification of time series breakpoints in

combination with RUE/RESTREND approaches to overcome the problem of the

assumption of long-term rainfall/vegetation linearity that might be incompatible

with the manifestation of degradation.

Finally, global sea surface temperature (SST) anomalies (caused by large-scale

ocean–atmosphere phenomena) were shown to be teleconnected to regional scale

vegetation productivity in the Sahel, thereby being important for an improved

understanding of inter-annual changes in the Sahelian dryland productivity. Large

scale climate indices and especially SST anomalies for specific ocean areas were

found to have predictive power for the vegetation productivity in the Sahel and the

existence of a time lag of several months between SST anomalies and vegetation

productivity provides an important basis for forecasting annual vegetation produc-

tivity in this region and possibly in other dryland areas across the globe.
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