
Chapter 7

TIMESAT: A Software Package
for Time-Series Processing and Assessment
of Vegetation Dynamics

Lars Eklundh and Per J€onsson

Abstract Large volumes of data from satellite sensors with high time-resolution

exist today, e.g. Advanced Very High Resolution Radiometer (AVHRR) and

Moderate Resolution Imaging Spectroradiometer (MODIS), calling for efficient

data processing methods. TIMESAT is a free software package for processing

satellite time-series data in order to investigate problems related to global change

and monitoring of vegetation resources. The assumptions behind TIMESAT are

that the sensor data represent the seasonal vegetation signal in a meaningful way,

and that the underlying vegetation variation is smooth. A number of processing

steps are taken to transform the noisy signals into smooth seasonal curves, including

fitting asymmetric Gaussian or double logistic functions, or smoothing the data

using a modified Savitzky-Golay filter. TIMESAT can adapt to the upper envelope

of the data, accounting for negatively biased noise, and can take missing data and

quality flags into account. The software enables the extraction of seasonality

parameters, like the beginning and end of the growing season, its length, integrated

values, etc. TIMESAT has been used in a large number of applied studies for

phenology parameter extraction, data smoothing, and general data quality improve-

ment. To enable efficient analysis of future Earth Observation data sets, develop-

ments of TIMESAT are directed towards processing of high-spatial resolution data

from e.g. Landsat and Sentinel-2, and use of spatio-temporal data processing

methods.
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7.1 Introduction

Satellite-derived time-series data help us understand interactions of terrestrial

vegetation dynamics with climate and the carbon cycle, and their trends over

time (Keenan et al. 2014). Using efficient processing methods for analyzing

existing remotely sensed time-series data is important for monitoring and mapping

vegetation dynamics, thereby contributing to improved understanding of the global

climate system. We will in this chapter present and describe one available tool,

named TIMESAT, for processing time-series of satellite sensor data to enable

meaningful data extraction for modeling vegetation dynamics.

The first time-series of satellite imagery for studies of dynamic Earth processes

were made available from weather satellites. It was a series of satellites launched by

the American National Oceanic Administration (NOAA) that generated daily data

covering the entire Earth, and enabled the generation of global near-real time

vegetation data. The first of these weather satellites to have bands suitable for

vegetation mapping was NOAA-6, carrying an improved Advanced Very High

Resolution Radiometer (AVHRR) sensor (Zhu et al. 2012). Though the sensor

generated data at coarse spatial resolution (approx. 1� 1 km resampled into a

4� 4 km global product) the value of the data for global vegetation monitoring

soon became evident. A series of data products based on the Normalized Difference

Vegetation Index (NDVI), computed from the NOAA channels 1 and 2, were

developed and were used for studying the temporal dynamics of global land

vegetation (Justice et al. 1985; Townshend and Justice 1986). These were the

NOAA Pathfinder data set (James and Kalluri 1994), the University of Maryland

GIMMS data set (Tucker et al. 2005), and the recent, improved GIMMS (Global

Inventory Modeling and Mapping Studies) NDVI(3 g) data set (Jiang et al. 2013).

These data sets contain global images of NDVI from 1981 onwards at a time step of

10–15 days and a spatial resolution of ca 8� 8 km. This temporal and spatial

resolution is adequate for studying seasonal and interannual dynamics of vegetation

biomes. Hence, several studies from the mid-1980’s and onwards have demon-

strated how the information can be used for better understanding of vegetation

dynamics as well as aiding land cover classifications (Defries and Townshend 1994;

Running et al. 1994). In parallel, the increasing supply of high-spatial resolution

data from sensors with 10–30 m resolution (e.g. Landsat and SPOT), and later on

the development of satellites generating data at meter resolution (e.g. IKONOS,

Quickbird, and Worldview), led to much of the technical development focusing on

methods for classifying and quantifying high-resolution data. Hence, the develop-

ment of time-series methodology in remote sensing was initially slow. However, it

expanded quickly towards the beginning of the 2000’s with the need to process

large volumes of time-series data from the Terra and Aqua MODIS (Advanced

Very High Resolution Radiometer) sensors at 250 m spatial resolution.

The interest in developing the TIMESAT software package arose from a need to

manage time-series data in remote sensing in order to help tackle problems related

to global change and monitoring of vegetation resources. The research community
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was interested in solving a range of questions related to time-series: is vegetation in

the world’s drylands changing; can satellite data be used for issuing early warnings
of drought and famine; how does NDVI respond to changes in environmental

driving forces such as rainfall and temperature; can satellites be used for monitoring

carbon uptake from the vegetation; are growing seasons changing; and how does

vegetation respond to climate change? In fact, these and many other related

questions have been the focus of a large body of research during the last 30–

40 years. TIMESAT is just one of many approaches for data processing and

extraction of phenological information from Earth observation time-series data.

The background, theory and some future issues related to TIMESAT are

described in the remaining sections.

7.2 Handling Remotely Sensed Time-Series Data –
Assumptions and Some General Problems

The study of vegetation seasonality from space is based on two fundamental

assumptions. The first assumption is that the optical data correctly model biophys-

ical vegetation properties (such as leaf area index (LAI), green biomass, or frac-

tional absorbed photosynthetically active radiation (FAPAR)). Unfortunately this

assumption is not perfectly satisfied. It is true that many of the commonly used

vegetation indices are empirically related to biophysical vegetation properties, but

they are also affected by several other processes and disturbances. For example,

even when ignoring the effects of clouds, angular effects and the atmosphere, the

popular vegetation indices NDVI and Enhanced Vegetation Index (EVI) do not

only respond to vegetation variations, but are both very sensitive to e.g. snow or

moisture-induced background variations (Huete et al. 2002). Sensor degradation

and drift in satellite overpass times (particularly evident with the NOAA satellites)

are other examples of factors affecting the data reliability. All these influences

cause ambiguity in the interpretation of the signal, affecting the information value

and our ability to interpret the extracted seasonality data.

The second assumption is that the temporal signal from the vegetation is smooth.

The canopy leaf mass, and the bulk of pigmentation and leaf water strongly

dominate the optical signal from vegetation; these all tend to vary relatively

consistently with time in a seasonal pattern. The variation can be slow

(e.g. coniferous evergreen forest), or rapid (e.g. semi-arid grasslands), however it

is not random. On the other hand, some short-term variations do occur in vegeta-

tion, e.g. due to light saturation and plant stress, which may lead to short-term

variations in chlorophyll fluorescence that adds to the apparent reflectance. Though

this addition is generally small for broad wavelength bands it may add substantially

to certain wavelengths; up to 10–25 % at 685 nm and 2–6 % at 740 nm (Campbell

et al. 2008). Also reflectance at 631 nm can change rapidly with variations in

photosynthetic radiation-use efficiency (Gamon et al. 1997). Naturally, also some
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vegetation disturbances, caused by insect infestations, storms, and fires, can lead to

rapid decline in canopy foliage which affects the reflectance. Overall, however, the

seasonal canopy signal tends to change smoothly in a seasonal perspective, partic-

ularly in comparison with the many disturbing factors that may change rapidly from

image to image: the atmosphere, clouds, angular variations due to different viewing

and illumination angles, and geometric inaccuracies. Figure 7.1 shows daily

MODIS NDVI data for 3 years from a coniferous forest site in southern Sweden,

illustrating the noise in these data. The data in Fig. 7.1a seem to be more or less

fully made up of noise, and the seasonal variation is quite difficult to discern.

To transform the noisy data into an understandable signal, a number of

processing steps are necessary. These steps may include removing cloud interfer-

ence by applying cloud masks (often based on thresholds in visible and thermal

wavelengths), removing atmospheric absorption and scattering effects, and apply-

ing methods for correcting bi-directional illumination and viewing effects in the

data. Employing a perfect set of physically based methods would be the ideal way

of generating correct time-series data. However, with thousands of images having

to be corrected it is usually necessary from a practical point of view to clean up the

data using simple and rapid methods. One of these methods is maximum-value

compositing, in which data over a short time-period (8–15 days) are scanned, and

the maximum NDVI value retained to represent the time period (Holben 1986). The

method has proven to be surprisingly effective in reducing noise in NDVI data,

since cloud, atmospheric absorption, background color variations, etc., tend to

lower the NDVI values. The result of 8-day maximum-value compositing applied

to the coniferous MODIS data is seen in Fig. 7.1b.

A further way of managing noise is to use the quality flags, e.g. MODIS QA

(MODIS Quality assessment), which are delivered with many remotely sensed

products today, and which indicate the reliability of each observation. Though

these flags are useful for removing doubtful data they are not easily applied in a

more quantitative sense for improving the quality of the time-series.

Returning to Fig. 7.1, it can be seen from Fig. 7.1b that the maximum-value

compositing has not been able to remove all the noise. Several observations of

doubtful quality remain, and they have a clear negative bias. Thus, in most cases it

is necessary to smooth the time-series data further using filters or other smoothing

functions before extracting seasonality data. In doing so, the methods should take

the negative noise bias into account, and should be able to handle missing data.

Figure 7.1c shows the result of applying a smoothing function in the TIMESAT

software package. This has resulted in a smooth curve that fits to the upper envelope

of the data points. More information about data smoothing is given in the sections

below.

Once a smooth data set has been generated it is possible to extract growing

seasons and phenological parameters. Since vegetation indices are affected by a

range of different processes (compare discussion above), their biophysical meaning

is sometimes vague, and extraction of phenological parameters becomes somewhat

subjective. Given this uncertainty it is not possible to define universal thresholds for

defining the beginning and end of growing seasons. A further complication is that
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the time periods of most rapid shift in the sensed signal often coincide with

meteorological changes. In tropical drylands, for example, the rainy season marks

the onset of the growing season, but also brings cloudiness that affects signal

quality; in cold areas the period of snow melt overlaps with the leaf development

phase. Additionally, the understorey vegetation in many climate zones develops

before the tree canopies, making it hard to use remotely sensed data for

distinguishing the two processes.

Another complicating factor when mapping growing seasons is that, though the

seasons normally follow an annual rhythm, they do not necessarily occur within

single calendar years. In the Southern Hemisphere the growing season may begin in

one year and end the year after. Although we are used to describing annually

repeating phenomena, like agricultural production, with statistics for each calendar

year, vegetation growing seasons are not always well suited to this. In addition,

many areas of the world experience two (sometimes even three) growing seasons

per year. Hence, phenological statistics should preferably not be reported per year,

but per season (relative to a fixed starting date).

Last, but not least, it is necessary to consider the huge, and rapidly growing,

storages of digital Earth Observation data available. For example, processing the

whole of Africa at 250� 250 m resolution using MODIS 8-day data for the 2000–

2013 period means that roughly 523.6 billion points have to be analyzed; it is

obviously necessary to use fast and reliable computing algorithms when estimating

seasonality.

7.3 Processing Considerations and Common Methods

The problem of deriving precise seasonal information consists of three parts:

(1) using remotely sensed data that correctly represent vegetation phenology,

thereby fulfilling the first assumption above; (2) employing a smoothing method

that, following assumption two above, accurately filters noise without altering the

general shape of the seasonal curve; and (3) defining parameters of the growing

season.

1. Regarding remotely sensed data to be used, maximum-value composites of

vegetation indices like the NDVI, and in later years the EVI, have been the

most commonly used. These are normally derived from top-of-atmosphere

reflectance data from the MODIS or AVHRR sensors. However, there is reason

also to focus on other data sets. In particular, higher-order products developed

from the original satellite reflectances are important, such as the MODIS NBAR

(MODIS Nadir Bidirectional Reflectance Distribution Function Adjusted

Reflectance) and the MODIS albedo products, in which data have been corrected

for bi-directional effects. Also other derived products with a clear biophysical

meaning (e.g. LAI or FAPAR) make it easier to interpret the resulting seasonal

parameters from a vegetation phenology point of view (provided that the
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products accurately model these parameters). The development of new and

improved biophysically relevant data sets is a highly active and relevant research

field. For example, a recently developed plant phenology index (PPI), which is

linearly related to green LAI, has strong potential for more accurately mapping

of vegetation phenology than the traditionally used indices (Jin and Eklundh

2014).

2. A variety of smoothing methods have been developed and tested. Fourier series

were among the first methods to be tested for extracting seasonality information

from remotely sensed imagery (van Dijk et al. 1987; Menenti et al. 1993; Olsson

and Eklundh 1994). The parameters of the harmonic functions contain useful

information about the timing of seasons and the number of growing seasons per

year. However, the method is inflexible when modeling individual years; Fourier

series are better suited to data with less interannual variability than is often seen

for remotely sensed time-series data. Another line of development is the use of

various temporal filters for smoothing the time-series data. One early method

was the best index slope extraction (BISE) (Viovy et al. 1992). In this method

the upper envelope of the time-series is extracted by connecting the upper-most

data points in a sliding window. The method is based on the principle of

minimizing noise by consistently selecting the highest NDVI values; however

in doing so it neglects the fact that also positive noise, e.g. due to angular effects,

is present in the data. Also other smoothing filters have been used, e.g. the 4352H

filter (van Dijk et al. 1987) and median filters (Reed et al. 1994). More recently

various functions have been fitted to data: asymmetric Gaussian functions

(J€onsson and Eklundh 2002), logistic functions (Zhang et al. 2003; J€onsson
and Eklundh 2004; Fisher et al. 2006), and spline functions (Bradley

et al. 2007; Hermance et al. 2007). Also wavelet transforms have been shown

to be useful (Sakamoto et al. 2005; Lu et al. 2007; Campos and Di Bella 2012).

In general, the choice of smoothing method is related to the type of input data

and the desired result. If data are relatively smooth and the aim is to preserve

variations on the seasonal curve, local filtering methods can be employed. If data

are very noisy it might be necessary to enforce a general seasonal shape on the

data by employing a more global type of function (e.g. asymmetric Gaussian or

logistic function).

3. Regarding the extraction of phenological parameters, some different methods

have been used. Most are based on absolute or relative thresholds of the seasonal

amplitude. Others are purely mathematical parameters (inflexion points or

derivatives of different order). Common for all these methods is that they seldom

are based on any biological or physical understanding of the phenological

process, but rather on empirical relationships. A more elaborate method, based

on fitting shape models to smoothed data, yielded high fidelity for crop pheno-

logical parameters (Sakamoto et al. 2010). The choice of method cannot be

separated from the type of input data or the fitting method used. For example,

methods based on derivatives should not be used with data that are not very

smooth.
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It can be questioned whether it is possible to define a single set of smoothing and

parameter extraction methods that will work across all different ecosystems and

with all different types of remotely sensed data. White et al. (2009) made an

extensive study including ten different methods for estimating spring phenology

across the United States, concluding that the different methods did not behave

consistently, and that, in their study, there was no rational basis for selecting one

method over the other. Considerable inter-method differences were also

documented by Cong et al. (2013). It is likely that bias and random errors due to

cloud interference lead to temporally and spatially varying performance of different

smoothing and filtering methods (Chen et al. 2013). Furthermore, phenological

parameters are generally difficult to assess, as ground data have large variability

and are often observed over small areas. Hence, it is in general very difficult to

assess the reliability of processing methods; achieving smoothness is one thing,

accurately depicting true vegetation variations is not necessarily the same.

Intermediate-scale canopy data from phenocams and near-ground spectral sensors

serve an important means of understanding and validating satellite-derived pheno-

logical parameters (Richardson et al. 2007; Eklundh et al. 2011; Hufkens

et al. 2012).

7.4 The TIMESAT Approach

7.4.1 Processing Principles

TIMESAT has been developed with flexibility in mind, and is thus not oriented

towards any specific data source or format. Hence, users are required to pre-process

data before the actual TIMESAT processing can begin. Depending on the data

source different preparation steps may be necessary, e.g. converting image data into

the binary formats used in TIMESAT, organizing images in time stacks with equal

time step, preparing lists of file names, and converting quality information into rank

units that can be processed by TIMESAT. The actual TIMESAT processing

consists of a series of steps: (1) computing the trend in the data using the Seasonal

Trend decomposition by Loess (STL) method (Cleveland et al. 1990); (2) pre-

filtering of data, in which extreme outliers and pixels with too few data points are

removed; (3) computing a coarse seasonal fit to de-trended data based on sinusoidal

harmonics to determine the number and approximate location of growing seasons;

(4) smoothing the data using either of three different methods: adaptive Savitzky-

Golay filter, asymmetric Gaussian or double logistic functions; (5) computing

seasonal parameters for each extracted season; and (6) generating output data in

the form of single-pixel data or images. The output includes smoothed data for each

time step, and seasonality parameters for each identified growing season. The

processing is controlled from a graphical user interface in which the necessary

settings are determined based on visual control of sample time-series from the

image data stack. When suitable settings have been determined, the full image data
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can be processed. A summary of the processing steps is presented in Fig. 7.2; we

also refer to the TIMESAT manual for more detailed information (Eklundh and

J€onsson 2012).

All data values to be processed have an associated weight which can be derived

from product quality flag data or from STL. In the subsequent processing the

weights can be modified if the user wishes to fit data to the upper envelope. This

is done by reducing the weights of data points below the fitted functions, in up to a

maximum of three iterations. All data fitting is done using weighted least squares,

which means that short data gaps are handled without interpolation.

The first smoothing method implemented in TIMESAT was based on asymmet-

ric Gaussian functions (J€onsson and Eklundh 2002). The method consists of

seasonal functions fitted piecewise to the data and merged to a global continuous

data series. Subsequently, double logistic functions and Savitzky-Golay filtering

were added to TIMESAT (J€onsson and Eklundh 2004). An example of the results of

running the three smoothing methods in TIMESAT are shown in Fig. 7.3. It can be

seen that the Gaussian and logistic functions are very smooth and global in nature.

They are most useful when data are very noisy and the user wishes to enforce a bell-

shaped pattern on the data. The Gaussian functions adapt somewhat better than the

logistic functions to flat peaks, otherwise the two methods are very similar. The

Savitzky-Golay method, on the other hand, filters the data and follows local

Data preprocessing

Format conversion, image orga-

TIMESAT

Single pixel processing

Single pixel processing in 
graphical user interface

Full image processing

Processing of full images under 

Processing steps
1.
2. Data pre-filtering
3.
4. -Golay, asym-

5. -
meters

6.
pixels or images)

Fig. 7.2 Principle of TIMESAT work flow. The white boxes show tasks done outside of

TIMESAT, whereas the grey boxes show functionality in TIMESAT. The processing steps 1–6

are done for single pixels as well as for full images, and are further described in the text
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variations in the seasonal curve more closely. The Savitzky-Golay implementation

in TIMESAT is adaptive in that it iteratively tightens the search window in order to

capture very rapid increase or decrease in the data. This is useful when monitoring

e.g. semi-arid grasslands, where the ground can green-up in the course of a few

days, leading to a very rapid increase in vegetation index data. Smoothing very

noisy data requires an increased search window, which in turn can produce some

artefacts. Therefore, Savitzky-Golay filtering is best used with data that is not

extremely noisy.

Hird and McDermid (2009) showed that the methods in TIMESAT have good

performance, balancing the ability to reduce noise and maintain the signal integrity.

Several of the methods in TIMESAT require the user to make individual

settings, e.g. controlling the degree of smoothing or the envelope fitting. In small

areas it might be enough to do this once, but for large areas with diverse land cover

it might be necessary to define different settings for different areas. In order to

maintain flexibility it is possible to store several groups of settings, and then apply

these to different areas in the image, controlled by e.g. a land cover map.

After smoothing the data, TIMESAT proceeds to compute phenological param-

eters. The user determines thresholds for defining the start and end of seasons

(absolute values or fractions of the amplitude), and the following parameters are

then computed for each season: times of start and end of season; length of season;

base level; time of midpoint; maximum value; amplitude; rates of increase and

decrease; and large and small integrals. Examples of two phenological parameters,

mapped for West Africa from AVHRR data, are shown in Fig. 7.4. The definition
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and selection of phenological parameters in TIMESAT is somewhat arbitrary.

Though several studies have shown that many of them make sense from an

ecosystem perspective and are empirically related to inter-seasonal variations in

climatic driving forces, more research is clearly needed to more precisely establish

their actual value and ecological meaning.

7.4.2 Applications of TIMESAT

TIMESAT has been used in a wide variety of applications since the first version was

written in the early 2000’s. Our own interest was initially focused on mapping of

environmental changes in the African Sahel using the AVHRR data records from

1982 till today. Some of the first evidence of the increasing greenness in the Sahel,

from the droughts in the 1980’s, was presented by Eklundh and Olsson (2003); this

increase was subsequently linked to variations in climate drivers (Hickler

et al. 2005; Olsson et al. 2005; Seaquist et al. 2009). In these studies TIMESAT

was primarily used for computing seasonal amplitudes and integrals of NDVI.

However, Heumann et al. (2007) also studied the changes in other phenological

parameters in the Sahel, like the start and end of the growing seasons. Other

phenology studies using TIMESAT include those by Beck et al. (2007), who

mapped high-latitude forest phenology in Fennoscandia and the Kola Peninsula,

O’Connor et al. (2012), who mapped spatio-temporal patterns of growing seasons

on Ireland, and Boyd et al. (2011), who mapped phenology in S. England using the

MERIS terrestrial chlorophyll index (MTCI; Dash and Curran 2007). Other case

studies have been conducted in the US (Zhao et al. 2013), Europe (Han et al. 2013),

South America (van Leeuwen et al. 2013), and in Arctic areas (Zeng et al. 2013).

J€onsson et al. (2010) used TIMESAT while demonstrating the difficulties in

extracting phenological parameters from MODIS NDVI data over boreal conifer-

ous forests. Also disturbances in phenological patterns due to insect infestations

have been analyzed (Eklundh et al. 2009; Olsson et al. 2012; Buma et al. 2013).

TIMESAT has been used in several studies on vegetation classification and

phenological characterization of ecosystems (Tottrup et al. 2007; Clark

et al. 2010; van Leeuwen et al. 2010; Wessels et al. 2011; Zhang et al. 2013a;

Leinenkugel et al. 2013). It has furthermore been used for fire and fire risk modeling

(Verbesselt et al. 2006; Veraverbeke et al. 2010; Le Page et al. 2010), and for

investigating the impact of vegetation variability on predictability of a coupled

land-atmosphere model (Weiss et al. 2012). In agriculture, TIMESAT has been

used for estimation of sow dates (Lobell et al. 2013) and for mapping of abandoned

cropping fields (Alcantara et al. 2012).

TIMESAT has been used for estimating diurnal air temperature from MSG

SEVIRI data (Stisen et al. 2007), to study expansion of the thermal growing season

and associated change in the biospheric carbon uptake (Barichivich et al. 2012), and

to study the impact of extreme precipitation on reduction of terrestrial ecosystem

production (Zhang et al. 2013b).
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An important application field of TIMESAT is data smoothing to improve signal

quality: Improved MODIS data quality has, when calibrating models with eddy-

covariance flux tower data and other environmental data, led to generally better

possibilities to estimate carbon fluxes (Olofsson and Eklundh 2007; Olofsson

et al. 2007, 2008; Sj€ostr€om et al. 2009, 2011; Schubert et al. 2010, 2012; Tang

et al. 2013). TIMESAT has also been used for data quality improvement with

MODIS and AVHRR satellite products (Fensholt and Proud 2012), and for smooth-

ing of GIMMS NDVI(3G) data for high northern latitudes (Barichivich et al. 2013).

Data quality improvement is also the reason for using TIMESAT in an improved

reprocessed version of the global MODIS LAI data set for land surface and climate

modeling (Yuan et al. 2011).

7.5 Future Perspectives

We currently have over three decades of global AVHRR data, and over one decade

of MODIS data from the Terra and Aqua satellites available. New satellites will

continue to extend these time series into the future. As the data records grow, using

them for studying impacts of climate and human action on the environment will be

possible with increased confidence. This will increase the demand for the data, and

call for further improving the methods for time-series data management and for

exploiting the data, e.g. to extract linear and non-linear trends (Verbesselt

et al. 2010; Jamali et al. 2014, 2015).

Earth observation is now taking an important step into a new era, with growing

archives of time-series data at high spatial resolution. The release of the Landsat

archive into the open domain has opened up for a range of new applications

(Wulder et al. 2012); several new methods for exploiting these data, particularly

for forest monitoring, are being developed (e.g. Huang et al. 2010; Kennedy

et al. 2010; Zhu et al. 2012).

The next leap will be taken with the ESA Sentinel-2 satellites, to be launched in

2015 and 2017, generating Earth observation data at 10 m resolution with a 5-day

interval. This will present both enormous opportunities and challenges. First, the

high spatial resolution will mean that data validation against field measurements

will be much improved compared with the 250–1,000 m data presently used. At this

high resolution it will be possible to monitor vegetation at the scale of individual

forest stands rather than at the ecosystem scale. Second, the high time resolution

will mean that it will be possible to model seasonality more accurately than is

possible with Landsat, SPOT or the other existing high-resolution sensors. The

nature of data will present many new challenges, such as irregular time steps; hence

new methods for gap-filling, smoothing and data fusion will have to be explored.

Modification of TIMESAT to enable analysis of high-resolution data from Sentinel-

2 is ongoing (Eklundh et al. 2012). Third, the new satellites will generate enormous

volumes of data, calling for high-performance computing methods for processing
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all the data. A version of TIMESAT for parallel computing has been developed,

showing almost linear scaling with the number of processors.

A further line of development is the integration of spatial and temporal dimen-

sions. We have previously seen that incorporating the spatial domain will increase

the significance in estimation of trend parameters across time (Bolin et al. 2009). It

is likely that noise in time-series data can be reduced when estimating seasonal

trajectories by extending the analysis into the spatial domain. Hence, we are

currently exploring spline based methods in TIMESAT that can smooth the data

across both time and space (Eklundh and J€onsson 2013).

Remote sensing science has come a long way towards extraction of environ-

mentally meaningful time-series data during the last 10–20 years. With the new

data types being released, and new and efficient processing methods being devel-

oped, Earth observation is now being accepted as an established and accurate tool

for analyzing the Earth and its changes.

TIMESAT can freely be downloaded from http://www.nateko.lu.se/TIMESAT.
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