
Chapter 18

Land Surface Phenology Monitoring
with SeaWinds Scatterometer Time Series
in Eastern Asia

Linlin Lu, Huadong Guo, and Cuizhen Wang

Abstract Vegetation phenology tracks plants’ lifecycle events and reveals the

response of vegetation to global climate change. Microwave backscatter is insen-

sitive to signal degradation from solar illumination and atmospheric effects and

thus provides a useful tool for phenology monitoring. In this chapter, we analyzed a

time series of Ku-band radar backscatter measurements from the SeaWinds

scatterometer on board the Quick Scatterometer (QuickSCAT) to examine its

effectiveness for land surface phenology monitoring across eastern Asia. The

spatial pattern of annual mean backscatter follows regional vegetation type distri-

butions. The Start Of Season (SOS) and End Of Season (EOS) were derived from

the backscatter time series and compared with MODIS (Moderate Resolution

Imaging Spectroradiometer) phenology products from 2003 to 2007. The failure

of phenology metric detection for backscatter time series is caused by snow

coverage and limited vegetation activity in arid areas. For tropical and semi-arid

areas where optical observation is unavailable, backscatter data can provide valid

phenological information. Due to their sensitivity to different factors, temporal

discrepancies were observed between phenology products from backscatter and

MODIS time series. Overall, the results indicate that SeaWinds backscatter pro-

vides an alternative view of vegetation phenology that is independent of optical

sensors and can be applied to global phenology studies.
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18.1 Introduction

Vegetation phenology tracks plants’ lifecycle events such as bud break, flowering, and
leaf senescence as the cumulative effects of daily weather at different developmental

stages (Lieth 1974). Over the past century, phenological shifts have been observed in

association with warming climate across a diverse range of plant taxonomy (IPCC

2007; Richardson et al. 2013). Land Surface Phenology (LSP) may be defined as

seasonal patterns of variation in vegetated land surfaces observed from remote sensing

(de Beurs and Henebry 2004). Critical phenological dates or metrics, such as the onset

of greening, onset of senescence, timing of the maximum of the growing season and

growing season length can be derived from time series of remote sensing data.

These metrics are sensitive to the timing and duration of vegetation activity, which

significantly affect fluxes of carbon, water, energy, and other trace gases and therefore

are important to biosphere–atmosphere interactions (Morisette et al. 2009).

Satellite data at optical-infrared wavelengths from operational satellite sensors

such as AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate

Resolution Imaging Spectroradiometer) and SPOT-VGT (Satellite Pour

l’Observation de la Terre-Vegetation) and derived spectral vegetation indices

(VI) have been widely used to LSP monitoring at spatial resolutions of 500–

8,000 m (Ganguly et al. 2010). Cloud contamination and soil background in sparsely

vegetated areas, however, often cast high uncertainties on these phenology products.

Satellite microwave remote sensing records data at lower frequency wavelengths

which are sensitive to changes of water content, canopy structure and biomass (Ulaby

et al. 1982), and provides a useful alternative for phenology assessment. Microwave

backscatter is insensitive to signal degradation from solar illumination and atmo-

spheric effects. The wind scatterometer on ERS-l was compared with global VI data

for monitoring vegetation dynamics (Wagner et al. 1999) and examining the seasonal

vegetation development (Frison and Mougin 1996). The potential of passive and

active microwave measurements in vegetation monitoring was jointly investigated at

the global scale with the special sensor microwave/imager (SSM/I) and ERS

scatterometer (Macelloni et al. 2003). Several microwave Vis (MVIs) have been

retrieved from daily time-series brightness temperature of passive microwave radi-

ometers. Comparing with NDVI (Normalized Difference Vegetation Index), the

results proved that MVIs could provide significant new information of vegetation

development (Min and Lin 2006; Shi et al. 2008).

Though its primary mission is to observe ocean winds, the SeaWinds on Quick

Scatterometer (QuickSCAT) provides an opportunity for an active microwave

scatterometer to assess phenological features associated with seasonal changes of

vegetated landscapes. Hardin and Jackson (2003) modeled the monthly composites

of SeaWinds Ku-band backscatter as a function of savanna grass biomass and leaf

area, soil moisture, and other soil characteristics in South America, finding it

promising in monitoring the dynamics of savanna grasslands. In boreal and subal-

pine evergreen coniferous forests, Kimball et al. (2004) employed a temporal

change classification to detect the initiation and termination of the growing season

from daily radar backscatter measurements from the SeaWinds scatterometer.
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Frolking et al. (2005, 2006) found that the SeaWinds Ku-band backscatter and

MODIS leaf area index (LAI) were strongly correlated in North American grass-

lands in the growing season, and backscatter was sensitive to seasonal variability in

grassland biomass and productivity. Lu et al. (2013a) applied a three-year back-

scatter time series to vegetation phenology monitoring from 2003 to 2005 across

China. Eastern Asia is a large region encompassing a wide range of climate and

land cover types (Fig. 18.1). In this study, we extended the study by Lu

et al. (2013a) and evaluated the effectiveness of SeaWinds Ku-band backscatter

in vegetation phenology monitoring across eastern Asia. The spatial pattern and

variability of backscatter was mapped and analyzed from 2000 to 2009. The

phenology detection results from a 5-year backscatter time series were compared

with the MODIS phenology products at regional level.

18.2 Data and Methods

18.2.1 SeaWinds Backscatter Data

Launched in June 19, 1999, SeaWinds scatterometer on-board the QuickSCAT

satellite was originally intended to be a ‘quick recovery’ mission to fill the gap

created by the unexpected failure of the NASA scatterometer (NSCAT) (King and

Fig. 18.1 Land cover types in eastern Asia
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Greenstone 1999). The SeaWinds instrument consists of a rotating pencil-beam

antenna, which provides contiguous measurement swaths of 1,400 km (inner-beam)

and 1,800 km (outer-beam), coverage of approximately 70 % of Earth on a daily

basis and 90 % global coverage every 2 days. The SeaWinds radar transmits

microwave radiation at a 13.4 GHz (2.1 cm) wavelength and receives a surface

backscatter signal with a 0.25 dB relative accuracy (King and Greenstone 1999). It

records radar backscatter with dual polarization (vertical and horizontal) at two

nominal incidence angles, 46.0� and 54.1� corresponding to the inner and outer

beams. The inner beam has horizontal polarization while the outer beam has

vertical polarization. The data records span from July 1999 to November 2009,

and the standard processing of backscatter measurements yields a spatial resolution

of about 25 km.

The Scatterometer Image Reconstruction (SIR) technique is applied to the

overlapping passes to reduce noises for enhanced resolution measurements of the

surface characteristics (Early and Long 1996). Since the SeaWinds outer beam data

provide improved temporal coverage and an increased propagation path through

vegetation volume (Frolking et al. 2006), this study applied the composite 4 day

V-pol average backscatter time series of the SeaWinds L2A product at 4.5 km

resolution (Early and Long 2001). SeaWinds backscatter data from January 2000 to

November 2009 covering eastern Asia were downloaded from the NASA

Scatterometer Climate Record Pathfinder database at Brigham Young University

(http://www.scp.byu.edu) (Fig. 18.1). The Marine Geospatial Ecology Tools

(MGET) were used to convert SIR files to raster format (Roberts et al. 2010).

18.2.2 MODIS Phenology and Land Cover Products

The V005 MODIS Land Cover Dynamics (MCD12Q2) product (informally called

the MODIS Global Vegetation Phenology product) provides estimates of the timing

of vegetation phenology at global scales (Ganguly et al. 2010). MCD12Q2 primar-

ily uses the MODIS Enhanced Vegetation Index (EVI), which is computed from the

MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted

Reflectance (MODIS NBAR) product. The snow and ice flag included in the

MODIS NBAR product is used to filter out data points associated with snow-

covered surfaces from the input time series. In particular, a time series of EVI is

extracted for each pixel. Periods of sustained EVI increase or decrease are identified

after a gap-filling and smoothing process. Logistic models are fit to the time series

and transition dates including the onset of EVI increase, the onset of EVI maxi-

mum, the onset of EVI decrease, and the onset of EVI minimum are identified as

local maxima and minima in the rate of change of curvature of the fitted logistic

function (Ganguly et al. 2010). In our study, the onset of EVI increase and onset of

EVI decrease dates from 2003 to 2007 covering the study area are retrieved for the

comparative analysis.
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The MODIS 1 km land-cover product (MOD12Q1) was used to identify primary

land covers in the study area. With the International Geosphere-Biosphere

Programme (IGBP) land-cover legend (Friedl et al. 2002), the MODIS product of

2009 was downloaded and a total of 18 cover types were mapped and served as base

information in this study (Fig. 18.1).

The MODIS Re-projection Tool was used to mosaic and convert Hierarchical

Data Format (HDF) files to raster format. They were re-projected and resampled

to the same resolution as the SeaWinds backscatter products at a local radius

equal-area Lambert Projection.

18.2.3 Climate Data

In radar backscatter data, dielectric constants of land surfaces are strongly affected

by frozen and thaw conditions. To differentiate data in the frozen and nonfrozen

seasons and assign them different weights in the phenology model from the annual

time series, a temperature mask was generated using temperature data. The daily air

temperature grid data in a 2.5� spatial resolution was downloaded from the NCEP

Daily Global Analyses data provided by the NOAA/OAR/ESRL PSD, Boulder,

Colorado, USA, from their Web site at (http://www.esrl.noaa.gov/psd) (Trenberth

and Olson 1988a, b). The onset of the fully thawed season was determined to be the

last day of 6 consecutive days with mean air temperatures greater than 5 �C, and the
end of the thaw season as the first day of 6 consecutive days with mean air

temperature less than 50C (Karl et al. 1999; Peterson 2005). Gridded temperature

masks defining the start and end of the thaw season were produced for each year.

They were re-projected and spatially disaggregated to the same grid as the

SeaWinds data.

18.2.4 Means and Variability of Backscatter

In this study, the backscatter data was used to calculate derivative datasets on

annual basis, a common process for analyses of time series (Gessner et al. 2013;

Kuenzer et al. 2009). The mean monthly backscatter was calculated from the

monthly data based on the 2000–2009 time series. For a given pixel, the monthly

10-year arithmetic mean (Backscatterx, y ) was calculated using Eq. (18.1), with

n being the number of years and Backscatterx,y the monthly backscatter value for

pixel x, y. The mean annual backscatter was calculated accordingly from the annual

sums.

Backscatterx, y ¼ 1

n

X n

1
Backscatterx, y ð18:1Þ
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The deviation (DevBx, y) from the 2000–2009 mean annual backscatter at a

given spatial location for a certain year was calculated according to Eq. (18.2).

DevBx, y ¼ Backscatterx, y � Backscatterx, y ð18:2Þ

In addition, the relative annual backscatter deviation (rDevBx, y) was derived.

This describes the deviation as a percentage from the mean annual backscatter, as

given by Eq. (18.3).

rDevBx, y ¼ DevBx, y � 100
Backscatterx, y

ð18:3Þ

The mean annual variability (VBx, y) was derived according to Eq. (18.4) with

the relative annual backscatter deviation (rDevBx, y) and n being the number of

years.

VBx, y ¼ 1

n

Xn

1
rDevBx, y

�� �� ð18:4Þ

18.2.5 Phenology Metric Detection

According to Frolking et al. (2006) and Lu et al.(2013a), radar backscatter has a

significant relationship with LAI based on site-level linear regression analysis.

Therefore, a weighted phenological model was applied to the backscatter time

series to detect the timing of leaf flush and senescence in this study. The curve-

fitting method, Asymmetric Gaussian implemented in the TIMESAT software is a

common tool for time series analysis (Gao et al. 2008; Wang et al. 2011; Jones

et al. 2012). It was applied to fit local model functions to the backscatter data of a

vegetation growth cycle. The single growth cycle of vegetation typically consists of

a growth and senescence phase. The Gaussian type of function was used as the

following (J€onsson and Eklundh 2002, 2004):

f t; x1, x2, . . . x5ð Þ ¼ e
� t�x1

x2

� �x3

if t > x1

e
� x1�t

x4

� �x5

if t < x1

8><
>:

9>=
>;

ð18:5Þ

In this model, the coefficient x1 determines the position of the maximum or

minimum with respect to the independent time variable t. Coefficients x2 and x3
determine the width and flatness of the right half of the function, while x4 and x5
determine the width and flatness of the left half. In order to ensure smooth shapes of

the model functions and consistency with data observations, these coefficients were

restricted in certain conditions and were calculated using a separable Levenberg–

Marquardt method (Madsen et al. 2004).
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With the asymmetric Gaussian fitting model, two seasonality metrics, namely

the Start Of Season (SOS) and the End Of Season (EOS), were calculated. Assum-

ing the seasonal amplitude as the difference between the maximum value and base

level, the SOS was defined as the time when the left edge increased to 30 % of the

seasonal amplitude measured from the left minimum level, and the EOS was

defined as the time when the right edge has decreased to 30 % of the seasonal

amplitude from the right minimum level (J€onsson and Eklundh 2004). The phenol-

ogy detection of backscatter time series at a sample site is shown in Fig. 18.2. The

sample site is a homogenous area (3� 3 pixels) with main land cover as deciduous

forest. The backscatter time series from 2003 to 2005 was weighted and fitted with

the asymmetric Gaussian model. With this model, phenological metrics (SOS and

EOS) of all pixels were extracted from the backscatter time series to examine their

spatial patterns across the eastern Asia.

18.3 Results

18.3.1 Backscatter Mean and Variability

Figure 18.3 represents the spatial variation of the annual mean backscatter across

eastern Asia for the 2000–2009 period. Comparing with the land cover type

(Fig. 18.1), the spatial pattern of backscatter follows regional vegetation type

distributions. For grasslands and barren lands with sparse vegetation in Kazakhstan,

Mongolia, and northwestern China the backscatter value ranges from �20 to

�15 dB. For areas dominated by forests in the south of China, it ranges from

�15 to�11 dB. Agricultural lands in northern China exhibited medium backscatter

Fig. 18.2 An example of the 3-year SeaWinds backscatter times series and its curve-fitting results
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from �17 to �15 dB, whereas it shows higher value (�15 to �13 dB) in India and

southern China. The desert in western China shows extremely low value (�30 to

�26 dB). The mountain areas in the south western China are often covered with

snow and show highest values (�11 to �5 dB).

The Fig. 18.4 illustrates how the mean annual backscatter varies from year to

year for the 2000�2009 period. Areas with high variability show less stable

backscatter values than areas with low variability. In general, the mean annual

backscatter variability reveals moderate dynamic levels over the land surface

(<10 %, and mostly <5 % in Fig. 18.4). The northern area of the study region

shows higher variability than the southern. High variability can be observed in

northeastern China. Similar variability was detected in the arid areas of Kazakhstan

and the desert area of India. Fluctuation of backscatter is also observable for the

Tibetan Plateau.

18.3.2 Regional Comparison of Backscatter- and MODIS-
Derived Phenology Metrics

In order to reduce the uncertainties in phenological detection results, we used

detected phenology dates from 2003 to 2007 for the comparative analysis. The

Fig. 18.3 Mean annual backscatter for the 2000–2009 period across eastern Asia
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numbers of successful annual retrievals for phenological metrics from backscatter

and MODIS data are shown in Fig. 18.5. For backscatter data, missing values were

distributed mostly in high latitude areas and the Tibetan Plateau. The failure of

detection in MODIS data was distributed in the southern tropical and subtropical

area, the arid and semiarid area in northwestern China and Sichuan province in

southern China. For the multiple-cropping areas in eastern China, the phenological

metrics can be detected from MODIS time series in only 3 or 4 years.

The mean SOS dates derived from backscatter time series and MODIS prod-

ucts for 2003–2007 are shown in Fig. 18.6a, b. The SOS dates ranged widely

from approximately DOY 70 in the south to DOY 190 in the north. The grass-

lands extending from Kazakhstan to Mongolia (Fig. 18.1) showed an earlier SOS

than areas at the same latitude. It shows a gradient from east to west, with

southeastern Mongolia having a much later SOS from both datasets. Other

areas with much later SOS from backscatter time series are northern China and

northern India. The northern China is dominated by grassland and agriculture

lands. The northern India is dominated by vast irrigated drylands and has a

tropical desert climate.

Figure 18.7 shows the bias between backscatter SOS and MODIS greenup dates.

For the agricultural lands in central China (Fig. 18.1), the backscatter data shows

later greenup dates than MODIS data. For grasslands in the north, the backscatter

data detects earlier SOS dates. In the south of China where there are mixed land

covers of forest, shrub lands and croplands with a dominant subtropical and tropical

monsoon climate, the backscatter data also detects earlier SOS.

Fig. 18.4 Mean annual backscatter variability (%) for 2000�2009 across eastern Asia
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The end of season derived from backscatter time series and MODIS senescence

date for 2003–2007 are shown in Fig. 18.8. The MODIS EOS dates range from

DOY 100 to DOY 280, and backscatter EOS range from DOY 100 to DOY 360.

Though the EOS detected by backscatter data is later than MODIS, it shows a clear

spatial pattern from north to south regionally. A similar earlier EOS was detected in

Kazakhstan from both backscatter and MODIS datasets. The EOS gradient detected

by backscatter data across China shows an earlier growing season end in the north.

Figure 18.9 shows the bias between backscatter EOS and MODIS senescence

dates. For most areas, the backscatter data detected later EOS dates. In the grass-

lands in Kazakhstan, Mongolia and China, the EOS detected by MODIS occurs

later than that derived from backscatter. Another discrepancy occurred in the

agricultural lands in central China and northern India.

Fig. 18.5 Number of successful annual retrievals for phenology metrics derived from (a) back-
scatter time series and (b) MODIS phenology products at pixel level for 2003–2007 in eastern Asia
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Fig. 18.6 The mean start of season derived from (a) backscatter time series for 2003–2007 and (b)
MODIS greenup date for 2003–2007 in eastern Asia
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18.4 Discussion

The spatial patterns of backscatter and derived phenological metrics as reported in

this study reflect the controlling mechanisms of vegetation activity including both

broad-scale patterns related to climate and local factors related to land cover and

human activities. The backscatter and its variability (Figs. 18.3 and 18.4) reveal a

clear spatial variation across the eastern Asia region. The inter-annual variability of

backscatter in different areas might be attributed to different reasons. As reported

by Frolking et al. (2011), severe drought occurred in southwestern Amazonia can be

detected from the significant interannual variability in dry season monthly mean

backscatter. The variability in the arid area of Kazakhstan and the desert area of

India might be caused by variation of soil moisture that is strongly impacted by

precipitation. The fluctuation of snow coverage can cause backscatter variability in

the north of China and the Tibetan Plateau. Anthropogenic activities such as

cultivation and urban expansion can lead to the high variation in China northern

plain. With MODIS data, Zhang et al. (2006) studied global vegetation phenology

and found that the timing of crop phenology can be quite variable, depending

strongly on crop type and agricultural management. Frolking et al. (2013) reported

that the significant backscatter increase of SeaWinds backscatter in major cities

around the world was caused by changes of built-up infrastructure.

The numbers of successful annual retrievals for phenological metrics from time

series (Fig. 18.5) reveal the algorithm sensitivity to data noise and gaps. For

Fig. 18.7 The temporal bias between mean backscatter SOS and MODIS greenup date 2003–

2007 in eastern Asia
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SeaWinds backscatter time series, snow in the high latitude area and the Tibetan

Plateau results in the failure of phenology detection algorithms (Fig. 18.5a). For

MODIS phenology products, the persistent cloud cover, high levels of atmospheric

Fig. 18.8 The mean end of season derived from (a) backscatter time series for 2003–2007 and (b)
MODIS senescence date for 2003–2007 in eastern Asia
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aerosols and weak seasonality present substantial challenges for land surface

phenology algorithms (Ganguly et al. 2010). Missing values are observable in

tropical and subtropical area (Fig. 18.5b). In arid and semiarid area of China,

phenology detection failures are caused by the limited vegetation activities. In the

multiple-cropping areas in eastern China, multiple vegetation growth cycles exit in

1 year, which can also cause the failure of phenology detection. Only three or four

phenology cycles have been successfully detected in MODIS product (Fig. 18.5b).

In contrast, backscatter imagery provides effective phenological observations in

these areas.

The regional patterns of SOS and EOS from backscatter and MODIS (Figs. 18.6

and 18.8) show similar latitudinal shifts, which are related to large-scale climate

transitions. For example, the spatial variability of grassland phenology in Kazakh-

stan and Mongolia at the same latitude reflects the impacts of the precipitation

regimes. Agreeing with Begue et al (2014) and Zhang et al (2005), the SOS shifts

from MODIS phenological products are linked to the timing of seasonal rainfall in

the arid and semi-arid lands.

The backscatter-derived phenology metrics show different temporal bias from

MODIS products in different land cover types. The bias of backscatter SOS dates

and MODIS greenup dates is caused by the temporal shifts between backscatter

increase and canopy greenup. For boreal forests in Russia, an earlier SOS and EOS

were detected prior to greenup and senescence onset respectively. Kimball

et al. (2004) studied boreal and subalpine evergreen forests with SeaWinds

Fig. 18.9 The temporal bias between backscatter EOS and MODIS senescence date for 2003–

2007 in eastern Asia
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scatterometer, and revealed that radar remote sensing measurements of the initia-

tion of the growing season corresponded strongly with both site measurements and

ecosystem process model simulations. J€onsson et al. (2010) studied tree phenology

with MODIS vegetation index, and revealed that without a sharp increase in

greenness during spring, the seasonal changes in vegetation indices of evergreen

trees were more related to snow dynamics than to changes in needle biomass. As

seasonal thawing occurs, transpiration rates increase and water is allocated to

canopy branches or existing leaves prior to new leaf construction (Waring et al.

1979). This may lead to backscatter seasonal increase and SOS prior to MODIS

greenup date. For tropical and subtropical forests in southern China, an earlier

greenup onset and later senescence onset were detected from backscatter data. The

structural changes of the plants such as leaf fall and leaf flushing influence the

seasonal variation of backscatter signals. In the steppes in Kazakhstan and Mongo-

lia, the backscatter SOS and EOS generally precede the VI greenup. With low

vegetation cover and biomass, the backscatter is more related to the fluctuation of

soil moisture which is earlier than the increase of leaf greenness. In cropland-

dominated areas, planting and harvest times drive the vegetation phenology cycles

and the backscatter SOS generally follows NDVI greenup. Croplands are primarily

barren or covered with non-photosynthetic residues prior to tilling and planting.

Greenup occurs at seed germination or the initiation of visible above-ground

photosynthetic vegetation growth, which can occur prior to significant biomass

growth (Jones et al. 2011; Lu et al. 2014). The backscatter follows the initial VI

greenup by several weeks or more following delayed increase in vegetation water

content and development of above-ground biomass.

Despite these findings, there are significant limitations to our research. The data

noise and gap in the time series may lead to large uncertainties of the phenology

detection results. Different methods were used to detect phenological dates from

backscatter and MODIS time series, which may cause their discrepancy (White

et al. 2009). Moreover, time series of the eddy covariance measurements from

tower sites can be integrated in further studies, which would improve understanding

of our results (Jones et al. 2012; Melaas et al. 2013).

18.5 Conclusions

This study tested the feasibility and effectiveness of microwave backscatter data in

regional vegetation phenology monitoring. The mean and variability of backscatter

were derived from the SeaWinds Ku-band backscatter time series for the 2000–2009

period across eastern Asia. The vegetation phenology metrics (SOS and EOS) were

extracted for the 2003–2007 period and compared with contemporary MODIS

phenology products. The results can be summarized as follows.

The regional spatial patterns of annual mean backscatter in eastern Asia follow

the spatial distributions of vegetation types. The mean annual variability observed

in SeaWinds backscatter can be related to the dynamics of meteorological
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conditions such as drought and snowfall. Human activities, for example the inten-

sified agricultural practices and expanded urban developments, also lead to its high

variability.

In areas where optical time series is unavailable due to persistent cloud cover,

high levels of atmospheric aerosols and low VI values, backscatter imagery pro-

vides effective observations. Different temporal biases were found in different land

cover areas between the backscatter-extracted and the publishedMODIS phenology

metrics. For boreal forests and steppes, the backscatter-extracted SOS and EOS

preceded the MODIS greenup and senescence onsets, respectively. For tropical and

subtropical forests, an earlier SOS and later EOS dates were detected with the

backscatter data, while the SOS for croplands was found later than the MODIS

greenup.

Overall, the application of backscatter time series for LSP monitoring can

expand the breadth of the current optical satellites, thereby enhance our under-

standing of global vegetation dynamics and carbon cycle processes. However,

given the complexity of Ku-band backscatter behaviors on vegetated landscapes,

a critical challenge of our study is to understand the bio-ecological meaning of the

temporal variation of backscatter time series. The inconsistency of phenology

metric detection methodology should also be aware of. Our future research direc-

tion will focus on linking the variation of backscatter-extracted phenology metrics

to the dynamics of ecosystem and its response to climate change. The integration of

ground observation from tower sites will allow us to better interpret the remote

sensing results.
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