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Radar Time Series for Land Cover
and Forest Mapping

Christiane Schmullius, Christian Thiel, Carsten Pathe,

and Maurizio Santoro

Abstract Radar time series are powerful means to improve retrieval algorithms

about land surface characteristics in the following ways: (i) as information for

identification of land surface conditions, (ii) as source of multivariate statistics for

mapping methodologies, (iii) to select the right scene(s) for dedicated retrieval

procedures, or (iv) to train model parameters in physical retrievals. Albeit radar

data from air- and spaceborne platforms have been investigated since 40 years,

operational applications are limited – partly due to the non-intuitive handling of

complex microwave backscatter signals, and partly due to restricted geometric and

temporal resolutions or frequency and polarization constraints. This chapter gives

an overview of 20 years of pilot projects performed by the authors and their

collaborators with the goal of large-area radar data exploration. All studies lead

to innovative pre-operational applications, several with promising discoveries that

can now be realized with a new and expanding fleet of radar satellites. Four case

studies for land cover, forest mapping, forest cover change and savannah monitor-

ing conclude this chapter.

16.1 Introduction

Radar remote sensing applications for land surfaces have been investigated exten-

sively since the 1980s, when NASA deployed their airborne system AIRSAR over

various test sites to prepare and accompany a series of spaceborne Shuttle Imaging

Radar (SIR) experiments (1981: SIR-A, 1984: SIR-B, April and October 1994:

SIR-C/X-SAR) jointly with the German Aerospace Centre (DLR) and the Italian
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Space Agency (ASI). These Multi-sensor Airborne Campaigns (MACs) and SIR-

missions represent the first proof-of-concept of retrievals which have been devel-

oped with ground scatterometer systems in the decades before. A summary by

Ulaby et al. 1986 of these in situ backscatter time series under various environ-

mental conditions with explanations of the underlying physics still serves as a major

reference for applications with spaceborne data. This transferability of concepts is

based on the unique radar calibration procedure which allows comparisons over

time and between sensors as long as the same wavelength and polarisation is being

used. The fundamental relation between the characteristics of the radar system, the

transmitted signal, the target, and the received signal is called the radar equation.

Since radar systems actively emit microwave radiation, the illuminating geometry

and technical characteristics are known and can thus be accounted for in the

retrieval algorithm for a specific surface phenomenon (such as phenological state,

biomass, or soil moisture).

Albeit the information content in radar images corresponds to well-defined

surface parameters (i.e. volumetric moisture, surface roughness and structure of

the scattering medium), this remote sensing technique has only a limited user

community due to the complexity of the necessary pre-processing steps. These

procedures originate from the principle of using backscattered intensities of

actively emitted microwave pulses, thus causing speckle, corner reflections or

geometric obstacles such as layover, foreshortening and rectangular pixels – these

are all non-intuitive phenomena for the optically trained remote sensing expert.

Hence, radar image understanding needs specific training, especially for non-

engineers. This gap has for example been tackled in the Radar remote sensing

education initiative (SAR-EDU) of the German Space Administration (DLR

Raumfahrtmanagement) which provides educational material to interested univer-

sity teachers, federal agency employees and PhD students through a dedicated DLR

web-portal since December 2014: https://saredu.dlr.de. The reader is referred to this

portal for background material, since an introduction to radar theory would go

beyond the scope of this section.

The following paragraphs contain an overview of three concepts of how to use

radar time series as tools for land cover and forestry applications: (1) information

about what +where + state of land surface characteristics, (2) source of multivariate

statistics as mapping characteristics, (3) choosing the right scene for the product

retrieval. Four examples of operational applications for land cover, forest cover and

-change and savannah monitoring are given in the third section.

16.2 Radar Time Series as a Tool for Land Monitoring

Land surface properties unfold their characteristics in radar data sets – as for optical

images – when exploiting temporal information. Time series are of special impor-

tance for radar applications because of the limited spectral space (usually only one

wavelength and two polarisations) and because of the radar-specific suitability for
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multi-temporal exploitation due to the sensor’s high radiometric accuracies. Addi-

tionally, due to the capability of radar signals to penetrate the atmosphere even in

the presence of clouds and rain, radar time series allow to focus on the changing

surface constituents over months, years, and even decades as will be demonstrated.

16.2.1 Time Series for Information Retrieval About Land
Cover State

Operational land cover mapping with spaceborne radar data became possible with

the launch of the European satellite ERS-1 in 1991. For the first time, SAR images

became available globally and repeatedly. A first summary publication by the

European Space Agency (ESA) (Wooding et al. 1995) showed the remarkable

behaviour of C-band VV-polarized time series for crop mapping (Fig. 16.1). Back-

scatter and attenuation features, already described in Ulaby et al. 1986 (ibid.

Fig. 17.19.32, p. 1566), were now observable for large areas and thus their spatial

manifestation was proven.

Global C-Band time series were successfully continued through the launches of

ESA’s follow-up satellites ERS-2 (European Remote Sensing) in 1995 and ASAR

(Advanced Synthetic Aperture Radar) on ENVISAT (Environmental Satellite) in

2002. Providing over a decade of C-band data allowed the development of auto-

mated routines for land cover mapping. The German ENVILAND-1 and -2 pro-

jects, supported by DLR’s Space Administration from 2004 to 2012, investigated

the potential of radar-optical fusion techniques. The goal was the development of an

automated retrieval of land cover and biophysical characteristics through exploita-

tion of both sensor types. The proposed classification procedure consisted of three

main stages. The first processing step comprises the segmentation of the optical

Earth observation (EO) data. Next, potential training sites are being selected

automatically by applying a decision tree with flexible, scene-specific thresholds

that are calculated based on expert knowledge and histogram analyses. Finally, as

the third step, training samples are being used as input to a supervised classification.

The overall accuracy of the final land cover map increased by 6 % when C-band

texture and backscatter information was included during classification. The results

are illustrated in Fig. 16.2. A significant improvement was achieved for the classes

Urban and Grassland as well as for Forest. The absolute number of crop classes

could be increased (Riedel et al. 2008).

Radar time series not only support identification of phenological states and

improve classification accuracies; they can also be used innovatively in cloud

removal. Eckardt et al. (2013) reconstructed cloud-contaminated pixels in Landsat

images using the Synthetic Aperture Radar (SAR) data. Cloud contamination was

simulated with masks of varying size to systematically investigate the developed

technique. The authors used three radar images during 1 month of the growing

season to establish a small temporal signature. Each image, though, originated from
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a different radar satellite (ERS-2, TerraSAR-X and ALOS-1 (Advanced Land

Observing Satellite)). They developed a Closest Feature Vector (CFV) based on

the assumption of a physical relation between reflectances in the VIS/NIR (Visible/

near-infrared) part of the electromagnetic spectrum, the temporal microwave back-

scatter signature, and the respective plant conditions at the acquisition dates. SAR

data thus guided the selection of the needed reflectances as an integral part of the

processing procedure to fill cloudy image gaps. Figure 16.3 illustrates the informa-

tion content of radar false-colour composites compared to a Landsat VIS-band

colour composite.

16.2.2 Time Series as Source for Statistical Land Surface
Indicators

Comparable to coarse resolution optical image acquisitions (e.g. Medium Resolu-

tion Imaging Spectrometer (MERIS), Satellite Pour l’Observation de la Terre-

Vegetation (SPOT-VGT), National Oceanic and Atmospheric Administration

(NOAA) Advanced Very High Resolution Radiometer (AVHRR)), new ScanSAR

modes became available having a reduced geometric resolution but an improved

temporal repetition rate. The first ScanSAR-mode from a satellite was provided

from the Canadian RADARSAT-1 launched in 1995, followed by the ENVISAT

ASAR system in 2002. These new types of data sets enabled continental, wall-to-

Fig. 16.1 Multi-temporal signature of ERS-1 C-band backscatter signals (Wooding et al. 1995,

modified): the decrease between end of May and mid-June is characteristic for the increasing

attenuation of VV-polarized radar pulses during the lengthening of cereal stalks or, similarly, grass

canopies. With ripening and yellowing, attenuation is minimized and backscatter increases again.

This process is especially observable at C-band because of the correspondence in size between the

wavelength and geometry of the scattering objects
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Fig. 16.2 Land cover maps from multi-temporal Landsat, ASAR and ERS-2 scenes from 2005,

test site Nordhausen/Thuringia, Germany. The achieved overall accuracies are: optical & SAR:

83,7 %; optical only: 77,9 %; SAR only: 80,2 % (©Uni Jena, 2007). Only two Landsat scenes from

21. April and 10. July were available due to typical cloudy weather conditions during the growing

season, but nine SAR images could be used

Fig 16.3 Comparison of colour composites to illustrate the image information content: (a)
Landsat TM5 B3|B2|B1; (b) X-HH|L-HH|C-VV; (c) X-HH|X-HV|L-HH (Eckardt et al. 2013).

The radar scenes are being used as an additional source of spectral information to overcome the

problem of missing data due to cloud cover
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wall products from radar backscatter retrievals using “hyper-temporal” statistics, a

term introduced for radar applications by Schmullius and Santoro in 2007.

One of the first hyper-temporal retrievals for land cover applications had been

performed with a non-imaging system, the wind scatterometer on-board ERS-1 for

northern Eurasia (Schmullius 1997). Two indices had been introduced: the Slope

Index (representing the incidence angle dependence of daily scatterometer mea-

surements collected over 3 years), and the Radar Backscatter Index (RBSI) (defined

as the ratio of the mean backscatter from large incidence angles over the absolute

Slope Index). The RBSI is a measure of the amount of volume scattering from

vegetation and showed – despite the very coarse resolution of 50 km – convincing

correlations to the full range of canopy densities (best r¼ 0.93 for July). The RBSI

correlation coefficients were investigated month by month and showed a relatively

stable behaviour over the year (see Fig. 16.4). The dense time series revealed – for

the first time – spatio-temporal pattern of freeze/thaw-processes, and secondly, an

unexpected correspondence between 5-day interval backscatter time series anom-

alies with crop yield estimates for the former Soviet wheat belt.

About 10 years later, the hyper-temporal approach was extended to ScanSAR

radar imagery: stacks of hyper-temporal ASAR Wide-Swath data led to a new

retrieval approach – the BIOMASAR algorithm (Santoro et al. 2011). The algo-

rithm is based on the famous Water Cloud Model (Attema and Ulaby 1978) and its

extension to interferometry (Askne et al. 1997; Santoro et al. 2002). Collecting a

minimum of 60 individual backscatter acquisitions per location, the typical radar

noise is strongly reduced and a systematic sensitivity with even high forest densities

and thus forest growing stock volume (GSV) was found. This finding was of special

interest because C-band backscatter and coherence data were regarded to saturate at

low biomass levels (Balzter et al. 2002; Balzter and Schmullius 2001; Luckmann

et al. 2004; Schmullius et al. 2001; Wagner et al. 2003). Furthermore, the

BIOMASAR algorithm does not require in-situ reference data for model training

and completely relies on statistical estimates from backscatter data of unvegetated

areas versus dense forest plots. These can be found by using other canopy products,

e.g. MODIS Vegetation Continuous Fields (VCF). Validation showed that the

approach is performing very well and is comparable to conventional approaches

involving in-situ data for model training. No signal saturation is observed up to a

GSV level of 300 m3/ha and the relative root mean square error (RMSE) was

between 34.2 and 48.1 % at a 1 km pixel size and consistently between 20 and 30 %

at an 0.5� resolution as used by global vegetation models (Santoro et al. 2011,

2013a).

16.2.3 Time Series for Choosing the Right Scene(s)

Radar time series can also be used to select images of the most appropriate day-of-

year, season or temporal combination for a specific application. For example,

ASAR C-band time series were analysed as part of the ESA GMES (Global
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Monitoring for Environment and Security) Service Element (GSE) Project “Forest

Monitoring” with the unexpected result that April-scenes outperformed any other

month to map forest disturbances in the boreal zone due to the specific scattering

processes during the thawing period (Thiel et al. 2007, 2008). Ackermann (2015)

investigated a total of 222 radar satellite scenes from TerraSAR-X, Cosmo-SkyMed

(Constellation of small Satellites for Mediterranean basin Observation) and

PALSAR (Phased Array type L-band Synthetic Aperture Radar) of a Thuringian

forest site with an extensive set of ground data to quantify the impact of forest

structure and temporal influences. Figure 16.5 shows one of the evaluated X-band

time series, which can be summarized as temporally stable except major precipita-

tion events leading to an increase. The time series also reveal an unexpected

stability of the difference between spruce and beech forests – regardless of the

chosen co-polarization HH or VV- even in winter times under leafless conditions.

Fig. 16.4 Time series of correlation coefficients for four ERS-1 wind scatterometer parameters

with canopy densities at 20 meteorological stations in Siberia (Schmullius 1997): normalised

backscatter intensities at steep and large incidence angles, the slope of the incidence angle

dependencies per month, and the Radar Backscatter Index (explained in the text). Values are

monthly, three year averages (1992–1994). Canopy densities range from 5 to 90 %, the RBSI has a

dynamic range from 4 to 12
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L-band backscatter intensities are strongly impacted by meteorological influ-

ences on the land surface conditions due to its much longer wavelength and thus

deeper penetration into the canopy and, partly, into the upper soil layer. Moisture

changes and particularly freezing events alter the scattering process significantly

(compare Fig. 16.6). However, L-band coherence (coherence is the measure of

phase correlation between two radar acquisitions) had revealed a large sensitivity

and dynamic range to forest biomass (see Fig. 16.7). Coherence from winter

showed a clear correlation with forest GSV. For summer scenes, the spread in the

values was too large to give reliable results (Eriksson et al. 2003). Therefore,

Eriksson et al. (2005) evaluated coherence from eight 44-day image pairs acquired

with the Japanese Earth Resources Satellite 1 (JERS-1) during frozen winter

conditions over several test sites in Siberia. A simple empirical exponential

model was used for the retrieval. The results showed that under frozen winter

conditions L-band repeat-pass coherence is a useful data source for stem volume

retrieval, although accuracy decreases for higher stem volumes. The lowest

retrieval error was 59 m3/ha and with one exception the relative RMSE stayed

within the range 42–76 %.

With increasing availability of L-band coherence time series from JERS-1

(1992–1998) and PALSAR on-board ALOS-1 (2006–2011) and -2 (launch 2014)

a systematic investigation of the signal stability and influencing factors became

feasible to support selection of best scenes for forest retrievals. Thiel and

Schmullius extensively published on the retrieval performance under varying

environmental conditions, which is described in the following illustrations:

Fig. 16.5 TerraSAR-X backscatter time series over Thuringian forest test site. The signal stability

demonstrates the all-year capabilities of X-band data for species discrimination between spruce

needleleaf and beech broadleaf canopies (Ackermann et al. 2010). Major precipitation events

increase overall backscatter (red circle), but separability is maintained
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Fig. 16.6 PALSAR L-band time series from Thuringian forest test site exhibit very strong

dependency on frozen conditions due to attenuation (Ackermann 2015)

Fig. 16.7 Stem volume retrieval for the Siberian forest test site Chunsky East, Krasnoyarsk Kray.

This result belongs to the first large-area application of an inversion model applied to L-band

winter coherence values over a 1 mio km2 forest area between Lake Baikal and the river Yenisei

(Eriksson et al. 2005). This region represents commercially valuable forest stands that experience

increased logging activities (compare Sect. 16.3.2, ZAPÁS Study)

16 Radar Time Series for Land Cover and Forest Mapping 331



Figure 16.8 – a phase height difference from unfrozen (8 m above ground) to frozen

conditions (4 m above ground) has been determined from over 370 samples and

36 interferometric pairs (2013a),

Figure 16.9 – species-specific seasonal coherence behaviour was discovered and

quantified (2014),

Figure 16.10 – effects of season and perpendicular and temporal baselines were

summarized (2013b).

During frozen conditions an increased coherence over open areas was observed,

decreased coherence over dense forest, decreased spread of coherence, and an

improved correlation between |γ| and GSV. Furthermore, no indication was found

that the perpendicular baseline impacted coherence levels from dense forest,

whereas a difference was observed at unfrozen conditions. Consequently, at frozen

conditions temporal decorrelation is the major source for diminishing coherence

values of up to 0.3 points. Hence, |γ| acquired under frozen conditions has good and
consistent potential for GSV mapping. The relationship between GSV and |γ| was

Fig. 16.8 PALSAR interferometric phase image from Chunsky test site in Siberia (57�4901200 N,
97�204800 E). Bright areas are forest-covered, dark areas feature clear-cuts. (a) A–B defines the used

transect and (b) shows the selected areas for phase calculation. The bottom graphic illustrates the

location of the phase heights under unfrozen and frozen conditions. The difference in height

amounts to approximately 4 m (Thiel and Schmullius 2013a)
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found to have an average coefficient of determination R2 of 0.6. Saturation occurs at

about 250 m3/ha.

16.3 Case Studies

The results presented in Sect. 16.2 refer to discoveries and manifestations that have

already proven their operational character for land or forest cover monitoring for

large-area mapping – either through the sheer size of the investigated region or the

extremely large number of temporal data stacks. In this section, we present state-of-

the-art case studies which have not been tested in space or time for their

operationality, but that are ready for a proof-of-concept.

Fig. 16.9 Deviation Δ of species-specific coherences γ from average coherence values for dense

forests under frozen and non-frozen conditions for all sites (11 forest enterprises with a total of

12,243 stands covering 3,097 km2). Frozen conditions exhibit species-independent stable coher-

ence values, whereas intra-species variance and species-dependency increases for non-frozen

states (Thiel and Schmullius 2014)
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16.3.1 Land Cover Classification Using Multi-temporal
C-Band Data

Sentinel-1, the new European radar satellite launched on 3rd April 2014, represents

the start of ESA’s third decade of continuous C-band sensors in space: ERS-1 and-2
since 1991 and 1995 respectively, and ENVISAT ASAR from 2002 to 2012.

Compared to its predecessors, Sentinel-1 provides much shorter revisit times of

only 12 days and an increased geometric resolution of 10 m in its Interferometric

Wide-Swath Mode. These improved specifications represent an increased potential

for operational land cover products. Two ESA studies which specifically focussed

on the benefits of radar time series for land cover mapping to prepare the

Fig. 16.10 Summary of coherence characteristics based on 300 interferograms from ALOS-1

PALSAR data and 12,243 forest stands in central Siberia (Thiel and Schmullius 2013b): (a) |γ| for
forest, (b) |γ| for non-forest, (c) correlation coefficient for GSV and |γ|, and (d) saturation level for
GSV. All graphs are separated into three columns for frozen and six columns for unfrozen

conditions; unfrozen conditions are further divided into perpendicular baselines <1 km and

>2 km. Each of the three groups has one column representing a temporal Baseline of 46 days,

one for either 92 or 138 days, and one for more than 138 days. See the first row in (a) for the
number of available samples for each of the nine columns
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operational use of Sentinel-1 are presented in this section: AMOC-I (Acoustic

Monitoring of the Ocean Climate) (Cartus et al. 2008), and AMOC-II (Thiel

2010). Mapping approaches based on radar data need to consider the issue of

speckle respectively radiometric accuracy. For mono-temporal intensity images,

speckle reduction can only be achieved by using filters that reconstruct the local

radar cross section by means of spatial averaging causing a loss of geometric

resolution. For time series, Quegan and Yu (2001) suggested a multi-temporal

filtering approach, eventually leading to multi-temporal statistics. For the classifi-

cation of five basic (Level 1) land cover classes, i.e. Water, Forest, Settlement,

Grassland and Agriculture, Cartus et al. (2008) analysed four multi-temporal

metrics characterising the temporal variation of SAR backscatter:

– minimum / maximum / mean backscatter for each pixel in all images,

– mean annual variation (MVA).

MVA can be calculated as follows (Quegan et al. 2000):

mva ¼ 10 � log 2

N N � 1ð Þ
XN�1

i¼1

X

j>i

R ji

" #
Ri j ¼ max Ii=

I j
; I j=

Ii

� �
ð16:1Þ

where N represents the number of images and R the normalized ratio of intensities.

When calculating the MVA for the speckle filtered VV, HH and HV polarised data,

a clear difference between agricultural areas and the land cover classes forest,

settlement and grassland was found. This difference was most pronounced for the

HV data (Fig. 16.11).

Figure 16.12 shows histograms of the four multi-temporal metrics. The MVA

generally reflects the high temporal stability of backscatter over forest, settlements

and grassland. The best contrast between these classes and agricultural areas is

found using the HV polarization. Forest has an MVA<1 dB in the co-polarised and

<2 dB in the cross-polarised images. Settlements show very stable backscatter, but

for some dense built-up areas the MVA is high because of different ascending and

descending viewing directions (Henderson and Lewis 1998: p. 741). The very low

HV backscatter allows a simple discrimination of water from other classes. Differ-

entiation of forest and grassland is not possible using the MVA, but using the annual

mean, maximum and minimum backscatter in all three polarisations. Differentia-

tion of forest and settlement seems not to be possible based on multi-temporal

metrics. Thus, textural measures are needed.

The analysis of the multi-temporal statistics resulted in a procedure, which

classifies C-band data reliably into five Level-1 land cover classes by innovatively

using multi-temporal metrics instead of using only backscatter intensities (see

Fig. 16.13). Thinning studies about the amount of input data showed that the

requested overall accuracy of 85 % and individual class accuracies of at least

70 % can be reached when a minimum of four C-band acquisitions during the

growing season are available with HH/HV- or VV/VH-polarisations (Thiel

et al. 2009c). ESA’s Sentinel-1 satellite now consistently provides the required
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dual polarisation C-band measurements with short revisit times. These data sets

could be used stand-alone for operational land cover mapping as shown in

Fig. 16.14.

The results presented in Sect. 16.2 refer to discoveries and manifestations that

have already proven their operational character for land or forest cover monitoring

for large-area mapping – either through the sheer size of the investigated region or

the extremely large number of temporal data stacks. In this section, we present

state-of-the-art case studies which have not been tested in space or time for their

operationality, but that are ready for a proof-of-concept.

16.3.2 Forest Mapping Using Radar Time Series

Until multi-temporal C-band backscatter intensity and coherence acquisitions

became available, forest mapping capabilities were assigned to L-band data or

Fig. 16.11 Multi-temporal metrics of 14 ASAR AP HV polarimetric intensity images with (a)
MVA (explanation in text), (c) annual minimum σ0, (d) annual mean σ0. (b) shows for comparison

a Landsat ETM+ NIR-Red-Blue RGB-colour composite acquired Sep. 4th 1999 (Cartus

et al. 2008). The geographical area is the same as in Figs. 16.2 and 16.3 with UL coordinates

53�330N/10�440E, and LR 51�220N/11�020E
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even longer wavelengths (e.g. Dobson et al. 1992). Therefore, interpretation of

1-day repeat-pass “Tandem” coherence images from ESA’s ERS-1 and -2 satellites
in the late 1990s showed surprising results with stable correlations to forest

density – a feature which was then extensively applied for the first 1 million km2

radar-retrieved biomass map of Siberian forests (Schmullius and Rosenqvist 1997b;

Schmullius et al. 2001). A further discovery followed about 10 years later with the

availability of “hyper-temporal” C-band Wide-Swath and Global ScanSAR Mode

time series from ESA’s ASAR sensor on-board ENVISAT: the sensitivity to GSV

could be increased to over 300 m3/ha (Santoro and Cartus 2010).

Two case studies are hence described in this section: the application of the

former SIBERIA algorithm to forest mapping in China in the framework of the

ESA DRAGON-1 program (http://earth.esa.int/dragon/); and secondly, the produc-

tion of the first radar-retrieved continuous GSV map of the Northern Hemisphere

based on the BIOMASAR-algorithm (http://biomasar.org/).
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Fig. 16.12 Histograms of multi-temporal metrics for land cover classes Grassland ‘GL’
(magenta), Agriculture ‘AL’ (yellow), Forest ‘FO’ (green), Settlement ‘ST’ (red), and Water

‘WT’ (blue) (Cartus et al. 2008)
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16.3.2.1 DRAGON-1 Case Study

ERS-1 and -2 Tandem coherence has high potential for mapping boreal forest stem

volume (e.g. Askne and Santoro 2005). Large-scale application, however, is hin-

dered by the variability of coherence with meteorological and environmental

conditions. Retrieval procedures therefore need to be based on model training

Fig. 16.13 SAR pre-processing and classification chain in ESA AMOC II Study to prepare

operational use of Sentinel-1 data for land cover mapping (Thiel 2010). The resulting land cover

map of this procedure is illustrated in Fig. 16.14
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Fig. 16.14 In order to generate a large land cover map of ca. 75,000 km2 from SAR data (covering

parts of the Netherlands, Belgium and Germany), a knowledge-based decision tree has been

applied to 11 Envisat ASAR frames without any local adjustment. The incidence angles vary

between modes IS 1 and IS 3. The classification procedure is based on backscatter intensity, multi-

temporal metrics and texture features. The map was validated using 50 geo-referenced Quick Bird

snapshots with 496 reference points. The overall accuracy of the complete land cover map (with a

merged class containing grassland and agriculture, as originally intended by ESA) was found to be

89.72 % (Thiel 2010)
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relating coherence to stem volume by using forest inventory data, which is gener-

ally only available for a few small test sites. In the Forest-DRAGON project, a new

approach was developed that allows model training based on the MODIS Vegeta-

tion Continuous Fields canopy cover product (Hansen et al. 2003) without further

need for in situ information. A comparison is shown in Fig. 16.15.

As a test for wall-to-wall nation-wide applications, the retrieval method was

applied to a multi-seasonal Tandem dataset consisting of 223 ERS-1/-2 image pairs

covering northeast China (~1.5 million km2). The coverage is shown in Fig. 16.16.

Four stem volume classes were produced (0–20, 20–50, 50–80, and >80 m3/ha).

The agreement in terms of the kappa coefficient was between κ¼ 0.52–0.87 with a

standard deviation of 20 m3/ha. For images acquired in winter, κ was between 0.71
and 0.87; for images acquired in fall and spring it was between 0.52 and 0.78. The

producer and user accuracies of the intermediate volume classes reached >80 %.

Hence, a regression-based retrieval for forest stock discrimination with ERS-1/-2

Tandem coherence and the VCF-based model training approach appears justified.

16.3.2.2 BIOMASAR Case Study

Promising results from a hyper-temporal retrieval experiment concerning biomass

mapping for Sweden, Quebec and central Siberia by Santoro and Cartus (2010) led

to an unprecedented endeavor employing more than 647,000 ASAR ScanSAR

C-band backscatter data sets acquired between October 2009 and February 2011

over the North American and Eurasian continent: the production of the

BIOMASAR forest GSV map of the Northern Hemisphere (Santoro et al. 2013b).

Figure 16.17 gives an impression of the hyper-temporal data quantity. The innova-

tive aspect of the algorithm is its independence from in situ measurements for

model training. Model parameter estimates are obtained from tendency statistics of

Fig. 16.15 ERS-1/-2 Tandem coherence (left) and VCF tree cover (middle) for a forested area in

NE China. The coherence image is based on acquisitions from 3./4. Oct 1997. The right plot shows
the decrease of coherence with increasing VCF tree cover �1 standard deviation. VCF values end

at 80 % cover, hence higher density and biomass classes cannot be trained without inventory

information (Cartus et al. 2011)
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the backscatter measurements for unvegetated and dense forest areas, which can be

selected using a continuous tree canopy cover product, such as MODIS VCF.

Data processing included multi-looking to 1 km pixel size, terrain geocoding to a

pixel size of 0.01�, speckle filtering and correction for slope-induced effects on the

backscatter. Validation of the GSV maps was carried out at the full resolution of

0.01� as well as at the aggregated level by comparing against in situ and optically-

based official inventory information. Detailed validation at the full 1 km resolution

with the Swedish, Quebecan and central Siberian forest inventories proved consis-

tent GSV estimates with a good agreement up to 300 m3/ha and an underestimation

of GSV for biomass levels above 300 m3/ha. Overall, the RMSE is between

28.7�10.0 % at 1 km pixel size (Santoro et al. 2015). Larger errors were obtained

at 100 m spatial resolution because of local errors in the reference datasets.

Averaging GSV estimates over neighboring pixels improved the retrieval statistics

substantially. For an aggregation factor of 10� 10 pixels, the relative RMSE was

below 25 %. In general, the spatial patterns of the estimated SAR-based GSV

showed good agreement with those of existing reference data sets at a similar

spatial resolution. The resulting BIOMASAR map is shown in Fig. 16.18.

16.3.3 Forest Cover Change with Radar Time Series

Forest cover monitoring requires regular observations throughout the year,

depending on the biome and the respective fire and/or logging activities. The

Fig. 16.16 Left: Mosaicked ERS-1/-2 false-color composite of northeast China: R-Tandem

coherence, G-ERS-1 intensity, B-ERS-1/-2 intensity difference. The mosaic consists of 223 frames

with 50� 50 m2 pixel size. Color differences between different tracks are caused by environmen-

tal effects. Right: Mosaic of the classified GSV maps from ERS-1/-2 Tandem data. The adaptive

retrieval model has effectively removed the differences in the input data (Cartus et al. 2011)
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Fig. 16.17 Number of SAR observations used for the Growing Stock Volume (GSV) retrieval.

The color bar is constrained between 10 and 200, while the number of observations reached up to

601. Zero is assigned to unmapped pixel and pixels for which the number of SAR observations was

less than 10, i.e. represent unreliable estimates for the retrieval model (Santoro et al. 2013b)

Fig. 16.18 The BIOMASAR Growing Stock Volume (GSV) Map from ENVISAT, www.esa.int/

Our_Activities/Observing_the_Earth. The color bar is constrained between 0.1 and 450 m3/ha,

while the retrieved GSV reached up to 1,019 m3/ha (Santoro et al. 2013a)
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Japanese space agency Japan Aerospace Exploration Agency (JAXA) has been the

only SAR data provider offering a consistent observation strategy based on the

recommendations of its Kyoto and Carbon Panel for more than two decades since

its first radar sensor JERS-1 (e.g. Rosenqvist et al. 2007). These L-band data sets

reveal less temporal decorrelation when calculating interferometric coherence due

to the longer wavelength and thus larger and more stable scattering elements.

Hence, multi-temporal coherence and multi-temporal backscatter intensity can

both be exploited to build an operational change procedure, as demonstrated by

Thiel et al. (2009a, b) where ALOS-1 PALSAR summer intensities and winter

coherences led to segment-based classification accuracies of 93 % for a

100,000 km2 study area for seven classes: water, urban, arable, burnt, recent and

old clear-cuts.

The following two case studies extend the application of radar remote sensing to

multiple satellites. The first study describes how three radar time series products

have been jointly exploited to map forest cover change – independently of the fact

that they have been generated from different sensors (ERS-1/-2 vs. ASAR) and

different algorithms (SIBERIA vs. BIOMASAR). The two respective methods were

described in Sect. 16.3.2. The second study comprises a joint usage of the PALSAR

mosaic time series with the multi-temporal MODIS Enhanced Vegetation Index to

increase the reliability of disturbance mapping.

16.3.3.1 DRAGON-2 Case Study: Merging Space and Time

The forest project contributing to the second ESA cooperation program with China,

DRAGON-2 (https://saredu.dlr.de), focused on the evaluation of multi-temporal,

multi-sensor and multi-scale Earth Observation products of northeastern China.

First, the GSV map produced with ERS-1/-2 coherence images for 1995–1998

using the SIBERA-algorithm (Fig. 16.16) and the GSV map produced from Envisat

ASAR ScanSAR data from 2007 to 2008 with the BIOMASAR-algorithm

(Fig. 16.19) were compared with several land cover/forest cover products of optical

origin. These comparisons were used to assess the plausibility of the respective

GSV estimates to undertake the change study. The change analysis was carried out

in the regions of Daxinganling (~200� 200 km) and Xiaoxinganling

(~300� 300 km) in northeast China.

Leiterer et al. (2010) developed a multi-scale cross-comparison assessment

design that uses few in situ measurements and data quality flags and applies existing

land cover products such as GlobCover, MODIS VCF, GLC2000 (Global Land

Cover (GLC2000)) and the AVHRR LCC(Lambert conic conformal). The sampling

design for the comparison is based on the FAO (Food and Agriculture Organiza-

tion) Forest Resource Assessment 2010, which uses a 1� sampling grid with

10� 10 km sample plots. The results are shown in Table 16.1. Additionally, forest

GSV inventory data including >1,100 point measurements were available for a

small test site in northeast China showing good overall accuracy of 76 % for the

ERS-retrieved map.
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Fig. 16.19 (a) ASAR-retrieved GSV map 2007/2008 (pixel size 1 km) illustrating great amount

of heterogeneity; green tones: forest GSV, other colours non-forest land cover types. (b) scatter-
gram of ASAR GSV versus Vegetation Continuous Field percentages showing the known VCF-

threshold at 80 % cover and that the ASAR-product has not reached saturation yet (Reiche

et al. 2010)
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The Chinese national land cover product NLCD (National Land Cover Data-

base) (based on Landsat images) identified that misclassification of the ERS-maps

primarily took place at croplands. Thus, land cover information should be used to

support the radar-retrievals particularly for transition zones between forest and

shrub land. Cross-comparison for the ASAR forest maps revealed, that the spatial

variability was more reliably captured (using NLCD as reference again) than with

other land cover products. Figure 16.19a illustrates the heterogeneity of the forest

cover in the Xiaoxingaling test area as identified by the ASAR-retrieved GSV map

and Fig. 16.19b) shows the scatterplot comparison with VCF tree cover percentages

for the same area.

To undertake the forest change exercise, the ERS data were reprocessed to the

coarser ASAR Global Monitoring Mode resolution of 1 km. The resulting change

map is given in Fig. 16.20. It is the first 10-year forest stock change representation

from multiple SAR-sensor time series and thus a milestone in radar remote sensing.

Missing tracks are a result of missing ERS-Tandem acquisitions. Solely ASAR-

based GSV estimates for the time period 2005–2010 are shown in Fig. 16.21 and

have been checked for plausibility during field campaigns and using related Earth

observation products (compare Fig. 16.22). Patterns of increase and decrease in that

5-year period can be explained with growth models and fire events respectively.

However, a distributed geo-spatial error quantification could not be performed due

to missing in situ information.

16.3.3.2 ZAPÁS Case Study – Operational Radar-Optical Synergy

Forest cover disturbance rates of Siberian forests are increasing due to intensifica-

tion of human activities and changing climate conditions. Hüttich et al. (2014a)

used a radar-optical data concept to develop an automated forest cover change

detection: pre-classification change-detection techniques were applied to annual

ALOS PALSAR backscatter mosaics (2007–2010, see Fig. 16.23) to assess yearly

forest biomass loss; and time series of the MODIS Enhanced Vegetation Index

product (EVI, 2000–2014) were integrated in a web-based middleware system to

establish near-real time detection of forest disturbances using the Breaks For

Additive Season and Trend (BFAST) method. Using the Earth Observation Monitor

Table 16.1 Overall agreement (OA) between ERS-1/-2 GSV map (50 m resolution, Fig. 16.16)

and four optical land cover products for test areas 1-Daxinganling and 2-Xiaoxinganling in NE

China based on aggregated forest/non-forest classes (Leiterer et al. 2010)

LC-product Site 1 Site 2

NLCD 0.73 0.80

GlobCover 0.78 0.85

VCF (15 % CC) 0.91 0.89

GLC2000 0.89 0.83

AVHRR LCC 0.79 0.67
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(EOM, www.earth-observation-monitor.net) an operational monitoring system was

assessed for the capabilities to detect biomass loss and to analyze temporal patterns

of forest cover loss related to logging activities, fire events or other disturbances.

A pre-classification approach using a decision-tree classifier was implemented.

Only changes from forest to non-forest were considered. In order to identify

Fig. 16.20 Forest stock change of a ten year period is mapped in four Growing Stock Volume

classes using an ERS Tandem dataset and a hyper-temporal ASAR image stack. The tandem

product is based on the SIBERIA algorithm, the hyper-temporal method on the BIOMASAR

retrieval method. The twelve change classes correctly identify in green colors areas of extensive

re-forestation after very large forest fires in 1987; the brown regions indicate burnt zones as a result

of a 2006 fire (Reiche et al. 2010). This map represents the first published growing stock volume

change product from multiple radar sensors using different retrieval algorithms that combine

interferometric with hyper-temporal techniques. The Tandem GSV product with a geometric

resolution of 50 m was resampled for this purpose to the 1 km resolution of the ASAR hyper-

temporal GSV product. (© FSU Jena, GAMMA RS)
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common classification thresholds eight different multi-temporal metrics were ana-

lyzed (compare Fig. 16.24). The forest/non-forest change thresholds were detected

using non-parametric support vector machines (SVM).

The PALSAR-based average accuracy of forest loss detection was 70 %,

whereas the MODIS-based change assessment using breakpoint detection achieved

average accuracies of 50 % for trend-based breakpoints and 43.4 % for season-

based breakpoints. Time series tracking of phenological activities was realized

using the MODIS EVI product with a 16-day temporal resolution for additional

information on forest disturbances. Two years (2009 and 2010) showed higher user

accuracies of 80.0 %. It is assumed that the PALSAR input mosaics for those years

had been acquired under more stable radiometric conditions, which demonstrates

the need for free access to raw data rather than processed data products. The

sensor’s 46-day revisit time is not a limitation due to the stable environmental

conditions during winter (even for coherence estimates). This is of particular

importance for the development of an operational large-scale forest-monitoring

system for the boreal region: the mentioned accuracies are well in the range of

Fig. 16.21 Growing Stock Volume (GSV) change map from estimates obtained with the

BIOMASAR algorithm using Envisat ASAR ScanSAR images acquired in 2005 and 2010

(Schmullius et al. 2012). The study area has a total coverage of about 540,000 km2 including

forest and shrubland areas according to the GLC2000 land cover information. The map is

characterized by several changes through fire, logging and re-forestation. The GSV estimated

with the BIOMASAR algorithm presents an uncertainty quantified on the order of 10 % regardless

of the GSV level as proven with comparable inventory data from Siberia
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Fig. 16.22 MODIS Burned Area and ATSR World Fire Atlas overlaid on the GSV change map

(left) and GSV change map (right) for a fire detected in 2006 showing very good agreement for the

areas affected by stock volume losses. (Schmullius et al. 2012)

Fig. 16.23 False-color RGB composites of ALOS PALSAR 25 m mosaic images, acquisition

periods each year May-October, and incidence angle 34.3�. (a) Red: HH-intensity, Green:
HV-intensity, Blue: ratio HH/HV; same color scheme applies for zoomed area in 2007, 2008,

2009, and 2010 (Hüttich et al. 2014a, b). Change is shown for the zoom region as color composites

with (b1) Red-2007, Green-2008, Blue-2009; and (b2) Red-2008, Green-2009, Blue-2010. The
data were made available through the ALOS Kyoto and Carbon Initiative of JAXA

348 C. Schmullius et al.



-35 -30 302520151050-25
-25

-20

-20

-15

-15

Minimum backscatter [dB] Maximum difference

10987654321

7654321

0
NSTDEVSTDEV

LMNSTDEV MVA

Potential change/no-change areas

Potential change/no-change areas

Potential change/no-change areas

Potential change/no-change areas

Potential change/no-change areas
Potential change/no-change areas

Potential change/no-change areasPotential change/no-change areas

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

M
ea

n 
ba

ck
sc

at
te

r 
[d

B
]

-10

-10

-5

-5

0

-14 -12 -10 -8 -6 -4 -2 0

change
no-change

change
no-change

change
no-change

change
no-change

change
no-change

change
no-change

change
no-change

change
no-change

0

-25

-20

-15

-10

-5

0

0 0.1 0.2 0.3 0.4
MMR Saturation

0.5 0.6 0.7

0.2

1.3 1.4 1.5 1.6 1.7 1.8 1.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9

-25

-20

-15

-10

-5

0

-25

-20

-15

-10

-5

0

-25

-20

-15

-10

-5

0

-25

-20

-15

-10

-5

0

-25

-20

-15

-10

-5

0

-25

-20

-15

-10

-5

0

Fig. 16.24 Multi-temporal metrics to identify thresholds for forest change/no-change classifica-

tion with PALSAR data: maximum-minimum ratio (MMR), normalized standard deviation

(NSTDEV), mean average variability (MVA), and logarithmic measure based on normalized

standard deviation (LMNSTDEV). The largest class separability was calculated for

HV-polarization (Hüttich et al. 2014a, b)



inventory errors of 34–39 %, as has been investigated stand-wise in Hüttich

et al. (2014b).

It can be concluded, that the freely available PALSAR mosaics are an applicable

tool for up-to-date forest monitoring – even considering varying accuracies. Mon-

itoring can be enhanced through web-based middleware exploiting MODIS time

series and the BFAST-method to suggest the type of disturbance.

16.3.4 Special Seasonal Case: Savanna Systems

Woody vegetation cover affects a range of ecosystem processes such as carbon and

water cycling, energy fluxes, and fire regimes. Information on the spatial distribu-

tion of woody vegetation over large areas is needed to understand the dynamics of

savanna ecosystems. In this study, fractional woody cover was mapped using

ALOS PALSAR L-band HH- and HV-polarised backscatter time series. The SAR

backscatter intensity and two polarimetric decompositions were compared with

woody cover obtained from high-resolution airborne LiDAR (Light detection and

ranging) data using a semi-empirical exponential model. The SAR data were

acquired at different seasonal cycles between 2007 and 2010. The LiDAR survey

was carried out in April/May 2008 with the LiDAR component of the CAO

(Carnegie Airborne Observatory, USA). The overall aim of the study was to

analyze the capabilities and limitations of SAR data for woody cover mapping

and the investigation of the potential synergistic use of LiDAR jointly with radar

systems. Furthermore, the influence of seasonality for radar mapping of woody

vegetation cover was investigated. The LiDAR-based woody cover was used for

training and validation of the radar data.

The woody cover map based on the PALSAR L-band backscatter intensities

(Fig. 16.27) was calculated using a Random Forest algorithm. The highest correla-

tion to the reference data was obtained from the dry season satellite acquisitions

(Fig. 16.25). The retrieved map was validated at a resolution of 50 m with R2¼ 0.73

and RMSE¼ 7.62 %. The results show promising sensitivity of L-band backscatter

for mapping woody cover of savanna surfaces (compare Fig. 16.26).

16.4 Perspectives

Radar time series have led to innovative and unprecedented Earth observation

products such as extended crop type mapping and above-ground forest growing

stock (this Chapter), or – recently – global water bodies (Santoro and Wegmüller

2014) and the urban foot-print (Esch et al. 2013).

In the past, radar data were not available in the temporal or geometric resolution

needed – or too expensive. Therefore, the knowledge created since the 1980s could

not be transformed into operational routines – until now. With the new fleet of

350 C. Schmullius et al.



Fig. 16.25 Regression analysis between PALSAR L-band backscatter and airborne LiDAR-

retrieved woody cover: .(left) winter dry season, (right) summer wet season (Urbazaev

et al. 2013). Due to an increase of low vegetation and soil moisture during the wet season the

backscatter intensity from low woody cover regions is increased and sensitivity to the woody

components decreased. The dry season is therefore recommended for savanna woody cover

mapping with L-band sensors

Fig. 16.26 PALSAR L-band predicted vs. airborne LiDAR-observed woody cover of undisturbed

savanna vegetation in Kruger National Park, South Africa (Urbazaev et al. 2013). The red line

indicates the regression line. The typical exponential behavior can be observed with a slight

saturation effect above 60 % woody cover
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active radar sensors being launched during this 2nd decade of the new millennium

(ALOS-2 PALSAR, BIOMASS, COSMO-SkyMED Second Generation,

RADARSAT Constellation, Sentinel-1a/-1b, TerraSAR Next Generation, and

more planned), further very advanced analysis techniques such as differential and

polarimetric SAR interferometry (DInSAR, PolInSAR), persistent scatterer inter-

ferometry (PSI) or radar tomography will become operational from space. Now, all

advantages of microwave remote sensing such as independence from solar illumi-

nation, penetration capabilities through clouds and volumetric media, sensitivity to

water content, capability to measure surface movements, etc. will lead to reliable

Earth observation contributions. Such consistent observables are desperately

needed for environmental models and model-data fusion methods to develop

benchmarks (Thurner et al. 2013) or to constrain model calculations (Quegan

et al. 2011) in an increasingly fast changing and complex world. Hence, the famous

radar equation, which was mentioned in the introduction, will persist to be one of

the most fundamental descriptions for Earth observation.

Fig. 16.27 Comparison between PALSAR-retrieved woody cover (left) and CAO LiDAR-based

woody cover (right) for two sites in Kruger National Park, South Africa. Both spatial patterns are

in very good agreement (Urbazaev et al. 2013)
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Hüttich C, Stelmaszczuk-G�orska MA, Eberle J, Kotzerke P, Schmullius C (2014a) Operational

forest monitoring in Siberia using multi-source earth observation data. Sib J Forest Sci 5:38–53
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