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    Chapter 17   
 Myocardial Metabolic Abnormalities 
and Cardiac Dysfunction 

             Petra     C.     Kienesberger     

    Abstract     To sustain contractile function, the myocardium has a very high and con-
tinuous demand for ATP, which it generates from a variety of carbon sources, includ-
ing fatty acids, glucose, ketone bodies, pyruvate, and lactate. In the healthy adult 
heart, most of the ATP is generated via mitochondrial oxidation of fatty acids (50–
70 %), and the balance between fatty acid oxidation and other forms of ATP produc-
tion, such as glucose oxidation and glycolysis, is tightly regulated. In fact, dysregulation 
or infl exibility of myocardial energy metabolism has been linked to a number of major 
cardiac diseases including myocardial hypertrophy, heart failure, ischemic heart dis-
ease, and obesity and diabetes mellitus-associated cardiomyopathy. Deranged cardiac 
energy metabolism and impaired cardiac energetics have been suggested to contribute 
to these pathophysiological states, rendering metabolic modulators an attractive 
option for the management of various forms of heart disease. This chapter summarizes 
our current understanding of the role of cardiac energy metabolism in the develop-
ment and progression of heart failure, pressure overload-induced hypertrophy, and 
obesity-related cardiomyopathy. In addition, potential therapies to restore metabolic 
balance and effi ciency in the heart and ameliorate cardiac dysfunction are outlined.  

  Keywords     Cardiac metabolism   •   Cardiac energetics   •   Heart failure   • 
  Cardiomyopathy   •   Hypertrophy   •   Obesity   •   Lipotoxicity  

17.1         Introduction 

 To generate suffi cient ATP for contractile function, cardiomyocytes transport energy 
substrates, mainly fatty acids and glucose, from the circulation across the sarcolem-
mal membrane. Fatty acids are presented to the cardiomyocytes in the form of 
“free” fatty acids conjugated to serum albumin or triacylglycerol (TAG)-rich 
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very-low- density lipoproteins and chylomicrons [ 1 ,  2 ]. TAGs in lipoproteins are 
hydrolyzed to fatty acids by lipoprotein lipase in the coronary lumen [ 3 ,  4 ]. Fatty 
acids then enter cardiomyocytes mainly via transport proteins or carriers including 
fatty acid translocase (FAT/CD36), plasma membrane fatty acid-binding protein 
(FABPpm), and fatty acid transport protein 1/6 (FATP1/6) [ 5 – 9 ]. Fatty acid carriers 
can translocate to the sarcolemma to increase fatty acid uptake into cardiomyocytes 
[ 5 ]. For example, FAT/CD36, which is believed to facilitate approximately 50 % of 
fatty acid uptake into cardiomyocytes and controls 40–60 % of myocardial fatty 
acid oxidation in the working mouse heart [ 9 – 12 ], can translocate to the sarco-
lemma following insulin stimulation, activation of AMP-activated protein kinase 
(AMPK), and contraction [ 5 ]. Upon transport across the sarcolemma, fatty acids are 
subsequently converted to fatty acyl-coenzyme A esters (fatty acyl-CoA) by long- 
chain acyl-CoA synthetases (ACSL) in an ATP-dependent manner [ 1 ,  13 ]. This 
metabolic step traps fatty acids within cardiomyocytes and activates them so that 
they can be metabolized [ 13 ]. 

 In order to be transported across the mitochondrial membrane, fatty acyl-CoAs 
need to be converted to acylcarnitines by carnitine palmitoyltransferase 1 (CPT1) 
and are then transferred across the inner mitochondrial membrane via 
carnitine:acylcarnitine translocase, which exchanges carnitine for acylcarnitine [ 2 ]. 
Upon conversion of acylcarnitine back to long-chain acyl-CoA by CPT2 in the 
mitochondrial matrix, fatty acids enter β-oxidation, which is catalyzed by the 
sequential enzymatic action of acyl-CoA dehydrogenase, enoyl-CoA hydratase, 
hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. This shortens the 
fatty acyl moiety by two carbons in each cycle and produces reducing equivalents in 
the form of fl avin adenine dinucleotide (FADH 2 ) and nicotinamide adenine dinucle-
otide (NADH) [ 14 ]. The β-oxidation of unsaturated fatty acids, which represent the 
majority of fatty acids in circulation that enter the cardiomyocyte, involves addi-
tional enzymes, 2,4-dienoyl-CoA reductase and enoyl-CoA isomerase, to convert 
 cis  double bonds to  trans  double bonds [ 15 ]. It should be noted that saturated and 
unsaturated fatty acids are oxidized at comparable rates in the rodent and human 
heart [ 16 ,  17 ]. Enzymes involved in β-oxidation are under a high degree of tran-
scriptional control by peroxisome proliferator-activated receptor (PPAR) α and β/δ, 
as well as PPARγ coactivator (PGC) 1α and 1β [ 18 ,  19 ]. The reducing equivalents 
(NADH and FADH 2 ) generated via β-oxidation and subsequent delivery of acetyl- 
CoA to the tricarboxylic acid cycle are then converted to ATP through oxidative 
phosphorylation at the inner mitochondrial membrane. Since ATP cannot cross the 
mitochondrial membrane, creatine kinase transfers the high-energy phosphate bond 
in ATP to creatine, which is taken up from the circulation via a creatine transporter 
[ 20 ]. This leads to the formation of phosphocreatine and adenosine diphosphate 
(ADP) [ 21 ]. Phosphocreatine, which is smaller than ATP, can diffuse from the mito-
chondria to myofi brils, the contractile apparatus of cardiomyocytes [ 21 ]. The myo-
fi brillar creatine kinase converts phosphocreatine back to ATP to power contractions 
and the free creatine diffuses back to the mitochondria [ 21 ]. The creatine kinase 
system functions as an important energy buffer in the myocardium [ 21 ]. When 
energy demand is higher than energy supply, the phosphocreatine pool decreases to 
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maintain ATP levels [ 21 ]. This is an early adaptation to myocardial energy defi -
ciency. Also, under these conditions, ADP levels rise, which can impair a variety of 
intracellular processes and lead to defective contractile function [ 21 ]. 

 Similar to fatty acids, glucose is transported into the cardiomyocyte via proteins 
embedded in the sarcolemma. Glucose uptake is mediated mainly by two glucose 
transporters, Glut1 and Glut4 [ 22 ]. Glucose transport via Glut1 is insulin indepen-
dent and accounts for basal glucose uptake. Glut1 expression is reduced following 
birth but can increase again in pathophysiological states including cardiac hypertro-
phy [ 22 ] (Chap.   16    ). In contrast to Glut1, the insulin-sensitive glucose transporter 
Glut4 is abundantly expressed in the adult heart [ 23 ]. Glut4 translocation from stor-
age vesicles to the sarcolemma is stimulated by insulin and by contractions [ 23 ]. 
Upon uptake into the cell, glucose is phosphorylated by hexokinase, which commits 
glucose to further metabolism [ 24 ]. Glucose-6-phosphate is then catabolized 
through glycolysis, and the resulting pyruvate is shuttled into mitochondria, con-
verted to acetyl-CoA, and subjected to oxidation for ATP production. Glucose that 
is not immediately directed towards glycolysis and mitochondrial oxidation can be 
converted to glycogen for temporary storage [ 24 ]. The following sections outline 
how energy metabolism is altered in cardiac pathophysiology and highlight poten-
tial therapeutic avenues which could be pursued to restore energetic balance in the 
diseased heart.  

17.2     Myocardial Energy Starvation in Heart Failure 

 Heart failure is a multifactorial disorder that is fairly common – it affects more than 
2 % of people in the United States, and 30–40 % of heart failure patients die within 
1 year from the diagnosis [ 21 ]. Between 1979 and 2004, the United States was con-
fronted with a threefold increase in heart failure hospitalizations, with more than 
80 % of patients being at least 65 years old [ 25 ]. It is projected that the incidence of 
heart failure will increase in the future as the population continues to age. Despite the 
various causes of heart failure, which include hypertension, coronary artery disease, 
cardiomyopathy, and cardiac arrhythmias, impaired energy metabolism appears to be 
a fundamental characteristic that contributes to the progression of heart failure [ 21 , 
 25 ] (Fig.  17.1 ) (Chaps.   1     and   3    ). This concept is not new as it was fi rst described in 
1939 by Herrmann and Decherd that the failing heart is essentially energy-starved 
[ 26 ], meaning that there are not enough energy equivalents (ATP and phosphocre-
atine) to sustain contractile function in end-stage heart failure. Interestingly, the effi -
cacy of beta-blockers, angiotensin II blockers, or angiotensin- converting enzyme 
inhibitors in ameliorating heart failure is in part attributed to their effect in reducing 
cardiac energy demand and improving the metabolic balance [ 21 ] (Chaps.   8     and   18    ).  

 The derangement of cardiac energy metabolism in heart failure occurs at three 
stages – energy substrate utilization (uptake and oxidation), oxidative phosphoryla-
tion in mitochondria, and high-energy phosphate (ATP, phosphocreatine) metabo-
lism, as was evidenced in the rodent and human heart [ 21 ]. Previous studies have 
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generally shown that while fatty acid utilization is not substantially altered in early 
stages of heart failure [ 27 ,  28 ], it drops substantially in advanced heart failure [ 29 ] 
(Fig.  17.1 ). Glucose utilization has been reported to increase in early stages of heart 
failure [ 30 ] and decrease along with the development of insulin resistance in 
advanced heart failure [ 21 ,  31 – 33 ] (Fig.  17.1 ). Since the systemic metabolic milieu 
is drastically altered in heart failure with commonly increased circulating fatty 
acids, glucose, and insulin, and catabolic over activity, these results need to be 
viewed with caution as it is diffi cult to distinguish between the inherent impairment 
of substrate metabolism in the myocardium and metabolic adaptations due to altered 
substrate availability [ 21 ,  25 ]. Impaired structure and function of mitochondria are 
also commonly observed in failing hearts [ 34 ,  35 ], leading to reduced oxidative 
phosphorylation, oxygen consumption, and ATP/phosphocreatine production. 

 In addition, the creatine kinase system is substantially altered in heart failure [ 21 , 
 36 ,  37 ], which causes a drastic decline in ATP transfer and ATP starvation of myo-
fi brils. Interestingly, ATP concentrations are sustained in a normal range in earlier 
stages of heart failure and only decline by approximately 30–40 % in advanced 
heart failure [ 21 ,  38 – 40 ]. However, the decline in intracellular creatine and phos-
phocreatine due to impaired creatine transporter function precedes and is greater 
than the decline in ATP concentrations (30–70 %), representing an early sign of 
deranged cardiac energetics in heart failure [ 36 ,  39 ,  41 ,  42 ]. Hence, phosphocreatine-
to- ATP ratios are reduced in heart failure and correlate with heart failure classes 
according to the New York Heart Association [ 43 ] (Fig.  17.1 ). These changes in 
high-energy phosphate metabolism drastically limit the energetic reserve of the 
myocardium. For example, when failing hearts are challenged with high workload 
(e.g., by stimulation with catecholamines), free ADP increases to concentrations 
that are double compared to those in the healthy heart [ 44 ], thereby reducing the 
contractile reserve [ 21 ]. Given that impaired energy metabolism critically  contributes 
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  Fig. 17.1    Metabolic changes in advanced heart failure. Cardiovascular diseases such as hyperten-
sion, coronary artery disease, cardiomyopathy, and cardiac arrhythmia can lead to heart failure. In 
end-stage heart failure, typical metabolic changes are decreased fatty acid utilization, glucose uti-
lization, and overall oxidative metabolism, resulting in impaired energetics. Effects of heart failure 
on systemic metabolism include insulin resistance, increased catabolism, and altered adipokine 
secretion, which contribute to the progression of heart failure and further impair myocardial energy 
metabolism. PCr:ATP is phosphocreatine:adenosine triphosphate       
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to heart failure development and/or progression, modulators that improve the 
energetic reserve of the heart may become attractive options for the treatment of 
heart failure. 

 At present, there is no approved therapy available that specifi cally targets energy 
metabolism in heart failure [ 25 ]. Experimental metabolic therapies that are aimed at 
improving metabolic balance and effi ciency in the myocardium generally decrease 
fatty acid utilization and increase glucose oxidation [ 25 ]. For example, the pipera-
zine derivative, trimetazidine, is an experimental drug that selectively inhibits mito-
chondrial long-chain 3-ketoacyl-CoA thiolase, thereby decreasing fatty acid 
oxidation and increasing glucose utilization via secondary activation of pyruvate 
dehydrogenase [ 45 ]. Trimetazidine restores coupling between glycolysis and glu-
cose oxidation and leads to ATP production with less demand for oxygen [ 45 ]. 
While the results from clinical trials are promising [ 45 – 47 ], more clinical studies 
are required to demonstrate the effi cacy of this drug in ameliorating heart failure 
and angina (Chap.   22    ). 

 Heart failure not only affects myocardial energy metabolism but whole body 
metabolism via endocrine communication of the heart with other organs [ 25 ,  48 , 
 49 ]. For example, systemic insulin resistance is a characteristic feature of heart 
failure [ 48 ]. It develops in response to neurohormonal stimuli (catecholamines), 
infl ammatory cytokine release, oxidative stress, and tissue hypoperfusion as a con-
sequence of heart failure [ 25 ,  50 ]. Moreover, insulin resistance appears to predict 
severity of heart failure and reduced survival [ 25 ]. In addition, resistance to the 
anabolic hormone insulin, among other factors, leads to an overall catabolic envi-
ronment that contributes to muscle cachexia in heart failure patients [ 25 ,  49 ]. 
Overstimulation of adipose tissue lipolysis via increased catecholamines, infl amma-
tory cytokines, natriuretic peptides, and pressure overload also leads to a rise in 
circulating fatty acids and changes in adipokine secretion and thereby contributes to 
the systemic and cardiac metabolic imbalance in heart failure [ 25 ,  50 ,  51 ]. Therefore, 
therapies that target not only cardiac metabolism but whole body metabolism, for 
those individuals in heart failure, could hold promise in treating this debilitating 
disease (Chaps.   3     and   18    ).  

17.3     Metabolic Remodeling in Myocardial Hypertrophy 

 Cardiac hypertrophy is an initially adaptive response to cellular stress leading to 
cardiomyocyte enlargement, increased protein synthesis, re-induction of the so- 
called fetal gene program, and heightened sarcomeric organization [ 52 ,  53 ]. 
Chronically, cardiac hypertrophy can become maladaptive and trigger heart failure 
and malignant arrhythmia due to perturbations of cellular calcium homeostasis and 
ionic currents [ 52 ,  53 ]. Signifi cant morphological changes following long-term car-
diac hypertrophy include increased rates of programmed cell death, fi brosis, and 
cardiac chamber dilatation [ 52 ,  53 ]. Common stressors that lead to hypertrophic 
remodeling in cardiomyocytes are pressure or volume overload, mutations of 
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sarcomeric or other proteins, and loss of contractile mass from prior infarction 
[ 52 ,  53 ]. The following section describes metabolic changes following pressure 
overload hypertrophy as this type of hypertrophy is increasingly common due to the 
increasing prevalence of hypertension (Chap.   16    ). 

 One of the metabolic hallmarks of pressure overload-induced cardiac hypertro-
phy is that cardiac energy metabolism reverts to a fetal-like profi le, which is due to 
a decrease in fatty acid oxidation and increased reliance on carbohydrates for ATP 
production with an overall decrease in oxidative metabolism [ 54 ,  55 ] (Fig.  17.2 ). 
This substrate shift has been suggested to contribute to the progression of cardiac 
hypertrophy to overt heart failure [ 56 ], although it still remains elusive to what 
extent metabolic remodeling infl uences the development and progression of pres-
sure overload-induced cardiac hypertrophy. The reduction in fatty acid oxidation is 
attributed to a decrease in the expression of genes involved in β-oxidation and 
 oxidative phosphorylation [ 55 ]. A number of studies using animal models have 
shown that this is due to the downregulation of the transcriptional master regulators 
PPARα and PGC1 [ 55 ,  57 – 60 ] (Fig.  17.2 ). In addition, a reduction in membrane- 
bound fatty acid transporters and carnitine has also been observed in the hypertro-
phic heart [ 61 – 64 ]. The resulting energy insuffi ciency leads to the activation of the 
energy- sensing kinase, AMPK, which contributes to an increase in glucose uptake 
and glycolysis by promoting translocation of glucose transporters to the sarco-
lemma and stimulating the glycolytic enzyme, phosphofructokinase 2 [ 55 ,  65 – 67 ] 
(Fig.  17.2 ). Interestingly, the increase in glucose uptake is insulin-independent, and 
changes in glucose metabolism in the hypertrophic heart are not accompanied by 
marked changes in proteins involved in glucose transport or glycolysis [ 33 ,  55 ,  68 ]. 
In contrast to the increased glycolysis, many studies have reported that glucose 

Healthy heart Hypertrophy
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and PGC1
AMPK activation

Fatty acid utilization ↓

Glucose oxidation ↔ ⁄ ↓
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  Fig. 17.2    Metabolic changes in pressure overload-induced cardiac hypertrophy. Pressure 
overload- induced hypertrophy, triggered by hypertension or aortic stenosis, is associated with a 
decrease in fatty acid oxidation and overall oxidative metabolism and energetics, while anaerobic 
glucose metabolism (glycolysis) is increased. Glycolysis is uncoupled from glucose oxidation, and 
excess pyruvate is shuttled towards alternative pathways, such as anaplerosis. The decrease in fatty 
acid utilization is mostly due to the reactivation of the fetal gene program and downregulation of 
transcriptional regulators of fatty acid oxidation and mitochondrial biogenesis and function. 
AMPK activation has been suggested to underlie the increase in glucose uptake and glycolysis in 
cardiac hypertrophy       

 

P.C. Kienesberger

http://dx.doi.org/10.1007/978-3-319-15961-4_16


331

oxidation is either unchanged or decreased in the hypertrophied heart, suggesting 
that glucose oxidation and glycolysis are uncoupled in cardiac hypertrophy [ 55 , 
 69 – 71 ] (Fig.  17.2 ). As a result of this uncoupling in glucose metabolism, lactate 
dehydrogenase, which converts pyruvate into lactate, is activated to process the 
excess pyruvate. Consequently, increased secretion of lactate from the hypertro-
phied myocardium has been reported [ 55 ,  72 ,  73 ].  

 The excess pyruvate can also be shuttled towards anaplerosis, which refers to meta-
bolic processes that replenish tricarboxylic acid (TCA) cycle intermediates that are 
removed from the TCA cycle for biosynthetic pathways to produce glucose, fatty 
acids, and amino acids [ 74 ]. In this process, pyruvate is converted to oxaloacetate and 
malate through its carboxylation via pyruvate carboxylase and malic enzyme, respec-
tively [ 74 ]. Consistent with this notion, an 80–90 % increase in anaplerotic fl ux has 
been reported in the hypertrophied heart [ 75 ,  76 ] (Fig.  17.2 ). Although pyruvate can 
replenish TCA cycle substrates via anaplerosis, it is an energetically costly process as 
it reduces the effi ciency of ATP production from pyruvate [ 55 ]. Changes in other glu-
cose metabolism pathways were also observed in the hypertrophied heart, including 
pentose-phosphate pathway [ 77 – 79 ] and hexosamine pathway [ 80 ,  81 ]. To date, it 
remains unclear whether and to what extent these “alternative” glucose metabolism 
pathways contribute to the pathophysiology of cardiac hypertrophy. 

 The increase in the reliance on glucose utilization in the hypertrophic heart appears 
to be an adaptive process, at least in earlier stages of hypertrophic remodeling. This 
notion is inferred from studies with mutant mice where the expression of glucose trans-
porters has been altered. For example, mice overexpressing the insulin- independent glu-
cose transporter Glut1, specifi cally in the heart, exhibit increased glucose uptake and 
glycolysis that is partially uncoupled from glucose oxidation, as well as decreased fatty 
acid oxidation [ 82 ]. Importantly, these mice were protected from pressure overload-
induced cardiac dysfunction [ 82 ]. In contrast, mice with cardiac defi ciency of the insu-
lin-sensitive glucose transporter Glut4 exhibit reduced contractile function and 
cardiomyocyte hypertrophy [ 83 ]. Prevention of metabolic remodeling in pressure over-
load hypertrophy via cardiac-specifi c deletion of acetyl- CoA carboxylase 2, which pro-
duces the fatty acid oxidation inhibitor malonyl-CoA, attenuated cardiac hypertrophy, 
protected against fi brosis, and improved cardiac function [ 84 ]. These fi ndings suggest 
that metabolic remodeling contributes to the pathophysiology of cardiac hypertrophy. 

 Interestingly, cardiac-specifi c overexpression of PGC1α and the associated 
increase in mitochondrial size did not protect from cardiac remodeling induced by 
transverse aortic constriction [ 85 ]. Instead, it led to a greater impairment in contrac-
tile function and increase in left ventricular chamber dimension [ 85 ]. These data 
suggest that attempts to stimulate master regulators of mitochondrial biogenesis and 
size in cardiac hypertrophy to improve oxidative metabolism may in fact worsen 
outcomes following pressure overload-induced hypertrophy. Dietary and pharma-
cological strategies have also been pursued to ameliorate outcomes in pressure 
overload-induced hypertrophy [ 54 ,  86 ,  87 ]. Interestingly, feeding rats with a diet 
low in carbohydrates and high in fat attenuated cardiac hypertrophy and remodeling 
[ 86 ]. In contrast, activation of fatty acid metabolism via PPARα agonist (WY- 
14643) treatment augmented pressure overload-induced contractile dysfunction, 
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despite the prevention of substrate switching [ 87 ]. Since these interventions drasti-
cally infl uence whole body metabolism in addition to cardiac metabolism, their 
direct effects on metabolism and function in the hypertrophic heart remain unclear.  

17.4     Metabolic (Mal)adaptation of the Heart in Obesity 

 Obesity, defi ned as excess accumulation of body fat, and associated type 2 diabetes 
mellitus, is a signifi cant risk factor for the development of heart failure [ 88 ,  89 ]. 
Although the onset of heart failure in obesity is likely multifactorial, obesity- 
associated cardiomyopathy appears to be a major initiating factor and contributes to 
the increased morbidity and mortality among obese individuals [ 88 ]. This is exempli-
fi ed by the fi nding that even after correcting for hypertension and other common 
obesity-related risk factors, the presence of obesity still approximately doubles the 
risk of developing heart failure [ 90 ]. Chronic obesity commonly leads to systemic 
metabolic perturbances including insulin resistance and type 2 diabetes with con-
comitant hyperglycemia and hyperlipidemia. It has been hypothesized that this over-
supply of energy substrates to the heart initially leads to adaptive changes and 
ultimately precipitates contractile dysfunction [ 90 ]. Specifi cally, the increased avail-
ability of fatty acids resulting in augmented fatty acid uptake, in conjunction with 
inadequate activation of fatty acid oxidation, gives rise to excess accumulation of 
toxic lipid metabolites in the myocardium and a general increase in cardiac fat con-
tent [ 88 ,  90 ]. High fatty acid oxidation rates in obesity, as have been observed in both 
animal models and humans, inhibit cardiac glucose utilization via substrate competi-
tion, hence contributing to decreases in glycolysis and glucose oxidation as well as 
insulin resistance [ 19 ,  91 ] (Fig.  17.3 ). These metabolic changes also lead to a 
decrease in mechanical effi ciency [ 19 ,  91 ]. It has been suggested that the metabolic 
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  Fig. 17.3    Metabolic changes in obesity-associated cardiomyopathy. Obesity and obesity- 
associated systemic changes in energy metabolism (hyperlipidemia, insulin resistance, type 2 dia-
betes) and adipokine secretion lead to increased cardiac fatty acid oxidation, lipid accumulation, 
and lipotoxicity, which are paralleled by reduced glucose oxidation and mechanical effi ciency. 
Myocardial insulin resistance further promotes metabolic dysregulation in the heart       
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remodeling of the myocardium observed in obesity not only precedes but contributes 
to overt functional and structural changes of the heart in obesity [ 90 ,  92 ].  

 Increased accumulation of toxic lipid metabolites, a process that is also termed as 
“lipotoxicity,” has also been suggested to contribute to cardiac dysfunction during 
obesity [ 93 – 95 ] (Fig.  17.3 ). Examples for toxic lipid metabolites are long-chain acyl-
CoAs, ceramides, diacylglycerols, and acylcarnitines [ 96 ]. Lipotoxicity may lead to 
cardiac dysfunction by means of activating apoptosis, impairing insulin signaling, 
promoting endoplasmic reticulum stress, activating protein kinase C and mitogen-
activated protein kinase, as well as modulating PPAR signaling [ 96 ]. Studies using 
nonobese transgenic mice and obese-diabetic rat models show that accumulation of 
lipids in cardiomyocytes corresponds with a decrease in systolic and diastolic func-
tion and cardiac hypertrophy [ 4 ,  19 ,  93 ,  97 – 101 ]. However, the individual contribu-
tion of lipid subspecies to cardiac pathophysiology is unclear. Mechanisms for the 
lipotoxicity-induced insulin resistance in the heart have been suggested to involve 
diacylglycerol-mediated activation of protein kinase C, resulting in increased serine 
phosphorylation of insulin receptor substrate 1 and decreased activation of down-
stream insulin signaling mediators, such as phosphatidylinositol 3-kinase and Akt 
[ 19 ]. The implication of increased TAG accumulation in the obese heart is less under-
stood, but it may impair cardiac function by fueling the production of “toxic” lipid 
species [ 1 ]. Myocardial TAG content positively correlates with body mass index, 
suggesting that cardiac TAG deposition increases gradually with increased adiposity 
[ 102 ]. Elevated myocardial TAG content was also observed in individuals with 
impaired glucose tolerance and type 2 diabetes [ 1 ,  103 ,  104 ]. Moreover, the increase 
in cardiac TAG accumulation preceded the development of overt cardiac dysfunc-
tion, suggesting a causal relationship between elevated TAG levels in the heart and 
obesity/type 2 diabetes-associated myocardial dysfunction [ 1 ,  103 ]. 

 To date, drugs used to treat metabolic disturbances in obesity are mainly aimed 
at lowering circulating lipid levels and ameliorating insulin resistance. For example, 
there are two classes of PPAR agonists used to achieve this effect. These are ligands 
for PPARα and PPARγ, respectively. Both PPARα and PPARγ agonists lower circu-
lating lipid levels either by increasing fat storage in adipocytes or increasing fatty 
acid oxidation in the muscle and liver [ 19 ]. Despite the benefi cial systemic effect of 
PPARα and PPARγ agonists, their direct effect on the heart may not always be 
desirable. For example, cardiac-specifi c overexpression of PPARα induced a car-
diac phenotype similar to diabetic cardiomyopathy [ 105 ]. Myocardial fatty acid 
oxidation rates were increased in these transgenic mice, while glucose uptake and 
oxidation were decreased, concomitant with the development of pathological car-
diac hypertrophy, increased lipid accumulation, and cardiac dysfunction [ 105 ]. 
Similarly, cardiomyocyte-specifi c overexpression of PPARγ led to cardiac dysfunc-
tion in mice that was associated with increased myocardial lipid accumulation and 
expression of enzymes involved in fatty acid utilization [ 106 ]. In humans, PPARγ 
agonist treatment is also associated with peripheral edema and heart failure [ 106 , 
 107 ]. These fi ndings suggest that PPAR agonist treatment in obesity may have 
adverse effects on the heart by increasing cardiac lipid deposition. Interestingly, 
recent studies showed that inhibition of mitochondrial β-oxidation with trimetazidine, 
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which is widely used for the treatment of angina, can improve obesity-related car-
diac dysfunction [ 108 ]. Trimetazidine not only improves contractile effi ciency in 
obese humans but protects against obesity-induced systolic and diastolic dysfunc-
tion in mice without altering insulin sensitivity or exacerbating obesity-induced 
insulin resistance [ 108 ]. This suggests that trimetazidine, by improving the meta-
bolic balance in the heart, may be a viable therapy for the treatment of obesity- 
related cardiomyopathy. 

 Metabolic disturbances in adipose tissue initiate obesity-associated morbidity 
and cardiovascular disease [ 109 ,  110 ]. Besides fueling the systemic and cardiac 
lipid oversupply in obesity, the hypertrophic obese adipose tissue also changes its 
secretory profi le of hormones and cytokines, so-called adipokines, which promotes 
not only insulin resistance and infl ammation but likely has a direct effect on cardiac 
energy metabolism [ 19 ,  90 ,  111 ] (Fig.  17.3 ). However, more studies are required to 
better understand the direct effects of changes in circulating adipokines such as 
adiponectin, leptin, resistin, and retinol-binding protein 4 on cardiac metabolism 
and function during obesity in both animal models and humans.  

17.5     Concluding Remarks 

 Cardiac energy metabolism is tightly regulated to meet the high energy demands of 
myocardial contraction and to adapt to short-term fl uctuations in energy substrate sup-
ply and workload. When challenged by chronic stressors, including pressure overload 
and obesity, myocardial energy metabolism can initially adapt to counter- regulate but 
is eventually locked into a dysregulated and infl exible state with a major shift in sub-
strate utilization and/or cardiac energetics and effi ciency. Many studies have shown 
that this impairment in cardiac energy metabolism can promote the development of 
heart failure with a signifi cant drop in the heart’s energetics and premature death. 
Since there is evidence that maladaptive changes in cardiac energy metabolism con-
tribute at least in part to multiple forms of heart disease, drugs that aim to restore a 
balanced substrate utilization in the heart have the potential to become attractive 
options to treat these diseases and prevent their progression to overt heart failure.     
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