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Abstract. We devise a multiple (concurrent) commitment scheme
operating on large messages. It uses an ideal global setup functional-
ity in a minimalistic way. The commitment phase is non-interactive. It
is presented in a modular way so that the internal building blocks could
easily be replaced by others and/or isolated during the process of design
and implementation. Our optimal instantiation is based on the deci-
sional Diffie-Hellman (DDH) assumption and the (adversarially selected
group) Diffie-Hellman knowledge (DHK) assumption which was proposed
at CRYPTO 1991. It achieves UC security against static attacks in an
efficient way. Indeed, it is computationally cheaper than Lindell’s highly
efficient UC commitment based on common reference strings and on
DDH from EUROCRYPT 2011.
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1 Introduction

A neat way to design a secure cryptographic protocol is to show that, even in adver-
sarial environments, it emulates a target ideal functionality [1,3,21,25], i.e., a func-
tionality modelling the corresponding primitive implemented by the protocol. One
formalism that resides on this idea is the well-known framework of Canetti’s, i.e.,
the universal composability (UC) [9]. This model is compelling because it com-
prises a composability proof, i.e., protocols proven secure in the UC-setting are
guaranteed to remain secure if and when composed with themselves and/or other
protocols in a parallel or sequential manner. In order to UC-realize any multi-
party computation it suffices to UC-realize the functionality of (multiple) com-
mitment [11]. Thus, commitments became an essential asset within UC-security.

Communication Models in UC. In the original UC papers [9], it was assumed
that the channels were secure. However, this assumption was consequently [10]
dropped; we will henceforth refer to these two models as the secure-channel UC
and the insecure-channel UC, respectively. The latter means that in the case
of honest real-world executions, one can imagine man-in-the-middle adversaries
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mounting attacks. To bypass this issue, most UC-secure constructions assume
or intrinsically require authenticated channels. In this paper, we will place some
focus onto which protocols of interest achieve UC-security solely if authenticated
channels in the insecure-channel UC model are assumed, and which do so without
this assumption.

Requirements for UC Commitments. It should be clear that it is not straightfor-
ward to UC-realize commitments. Beyond seeking for a protocol that is hiding
and binding as in standard lines, we need the following properties. (A) Ideal
adversaries should be able to commit reliably to values that they (may) ignore at
the time at the commit. And, ideal adversaries should be able to open the simu-
lated commitments to whatever value needed later. (B) The ideal adversary also
needs to extract the message inside any commitment, particularly within those
generated by the adversary. Both should be done without rewinding. Damg̊ard
et al., in [16], refer to the former requirement above as equivocability and to
the latter as extractability. In fact, these requirements were first put forward
in [11,17], and [16] formalized a scheme that would clearly exhibit these con-
straints (and meet them when properly implemented). Moreover, such a scheme
had already been realized in [2] into a multi-commitment protocol. Nonetheless,
authenticated channels are needed if insecure-channel UC model is assumed.

Unrestricted Communication & UC Commitments. Unfortunately, UC commit-
ment cannot be realized in the standard, non-augmented, UC model. One way to
achieve this UC-realization is to use setups [2,11,12,23,24], i.e., to work in the
UC-hybrid model where all participants can interact with an ideal functionality
whilst carrying out their part.

Efficiency of UC Commitments & UC Authenticated Channels. At EUROCRYPT
2011, Lindell proposed a highly efficient version of UC commitments, in [24], in the
UC common reference string (CRS)-hybrid model, under the DDH assumption.
Lindell’s scheme required approximately 36 exponentiations for commitment and
opening, if security against adaptive corruptions is offered. For protection against
static corruptions only, 26 exponentiations are needed. Very recently, in [5], Blazy
et al. proposed new UC-secure commitment protocols, making the ones by Lindell
more efficient. In this line, they need 22 exponentiations in the static-corruption
case and 26 exponentiations, in the adaptive corruption case.

Both Lindell’s and Blazy’s protocols need the extra assumption of authenti-
cated channels, being cast in the insecure-channel UC model; this extra assump-
tion is often the case, even if it is not always clearly stated in the papers. To
see this, imagine the following setting. Let a sender S and a receiver R be both
honest. Suppose the environment sends an input x to S, who will play the com-
mitter on x. Let A be a MiM adversary that picks x′. Imagine that A plays a
sender session with R, committing on x′, and a receiver session with S. At the
end of the two openings, the honest receiver sends x′ to the environment. The
environment outputs 1 if x = x′. Clearly, this will happen in the above, real-
world execution with a probability 1

2 , but in the ideal world with probability 1.
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So, if no authentication is assumed, then this MiM creates the setting for two
distinguishable, real and ideal worlds. The CRS setup cannot prevent it.

In this line, we propose a solution that bypasses the need for authenticated
channels by using an unforgeable primitive. (Our proofs additionally rest on
the soundness of a proof-of-knowledge employed in our construction). We need
fewer exponentiations than in Lindell’s case, and (with authenticated channels)
the same number as in Blazy’s case. But, with our protocol, 10 of the 22 expo-
nentiations only need to be executed once, (even) in the case of multiple com-
mitments. We use a different setup, yielding more lightweight building blocks,
and a non-interactive commitment phase, to achieve UC-security over insecure
channels in the presence of static adversaries.

Isolation as a setup assumption. Damg̊ard et al. UC-realized multiple commit-
ments [16] by using a setup assumption that relaxes the tamper-resistant hard-
ware token to a functionality that models the partial isolation of a party, i.e.,
the restriction of input and output communication from that party. Damg̊ard
et al. offer in fact a general construction (rather than an instantiated protocol),
relying on the following fact: if a functionality of isolated parties is available,
then witness indistinguishable proofs of knowledge (WI-PoK) can be realized,
which further provide a type of PKI that makes UC multiple commitment pos-
sible. (See [20] for details on PoK.) In this general setting, the UC-realization
relies on the existence of one-way permutations and dense public key, IND-CPA
secure cryptosystems with ciphertexts pseudorandom (which can be considered
pretty heavy assumptions). In fact, the functionality of isolated parties had been
used before, in order to realize specifically proofs of knowledge [15]. In [15], the
authors motivated the isolation as a remedy to the fact that, in the PoK, the
prover could run a man-in-the-middle attack between a helper and the verifier
(resulting in the latter not being sure that a prover knows the due witness). This
setting applies to the UC-insecurity cases as well, where the simulation fails in
the case of simple relay attacks. Overall, we do find the idea behind the work
in [16] convincing indeed, in that computation made in guaranteed isolation may
alleviate fundamental shortcomings in UC simulators.

In [7], Boureanu et al. introduced atomic exchanges as a UC setup, being a
somewhat similar alternative to the isolated parties of Damg̊ard et al. The atomic
exchange functionality has a different formulation to Damg̊ard’s isolation prim-
itive. The main differences between the two functionalities can be summarized
as follows. 1. The atomic notion requires isolation of a single message exchange,
instead of an entire protocol session and it is used thus-wise. 2. If a responder R
is releasing a response to an atomic query, then –in between the query and the
response– R will have received no incoming messages from the environment (or
from another party). Yet, R can leak as much as he likes to the environment (or
to another party). At the same time, an R isolated à la Damg̊ard et al. would
have both incoming and outgoing communications blocked. 3. Atomicity implies
full isolation on the incoming tape (i.e., there is no bit received by an atomically
engaged R on its incoming tape). Isolation à la Damg̊ard et al. can be partial,
i.e., an isolated body can leak a fixed amount of bits. Linked to the requirements
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needed from UC commitments, the work in [7] formalizes input-aware equivocal
commitment, which is a primitive given initially outside of the UC framework,
encapsulating similar requirements to those above demanded from UC commit-
ments. The authors also construct a single, bit-commitment protocol (i.e., not
a multi-commitment and not working but on bits) emulating this primitive and
then prove that the protocol is UC-secure if two atomic exchanges are granted
and assuming secure channels. In this line, we will extend the work in [7], to
multiple group-element commitments without secure channels and generalize
the methodology therein. We will therefore employ some of the tools introduced
in [7].

To meet the requirements (A)–(B), and achieve extraction and (strong)
equivocability, the protocols use to public-private pairs of keys, (pkX , skX) and
(pkE , skE), respectively. So, we use atomic exchanges in a minimalistic way to
declare/register the public keys once for all. Then, these keys are used in multiple
commitments.

There are cases where isolation in atomic exchanges make practical sense.
E.g., by setting up a sharp time bound for the response and assuming that a
responder communicating with a third party would necessarily produce a time-
out [4]. We could use similar techniques as for distance-bounding [8,22]. Isolation
is also real when a biometric passport is being scanned inside an isolated reader,
or when a creditcard is being read in an ATM machine. It could also make sense
in a voting booth (equipped with a Faraday cage), in an airplane, in a tunnel, etc.
We could imagine hardware-oriented solutions such as a cell phone (responder)
registering a key in a secure booth (sender) preventing external radio communi-
cations. The advantages of atomic exchanges over, e.g., tamper-hardware devices
were discussed in [16].

Our Contribution. Our contribution is five-fold.

1. In this line of work, we further fine-tune restricted local computation, using
atomic exchanges [7]. We use these exchanges judiciously.

2. We formalize a design-scheme CLCOM that would achieve commitment in the
UC setting. This is more precise/specified than the one in [11,16]. The blocks
within CLCOM are similar to those in [24], but the decommitment block is less
heavy, i.e., ours is a witness indistinguishable proof of knowledge (PoK) and
not a zero-knowledge proof of knowledge1.

3. Linked to the above, we offer a different manner of obtaining extraction and
strong equivocability: it is based on the Diffie-Hellman knowledge (DHK)
assumption [14].

4. We advance a protocol UC-realizing FLCOM if a few atomic exchanges are
possible at the setup phase. This protocol enjoys even more efficiency than
the one in [24]. It is more concrete and it has a more judicious use of setups

1 In [16], a witness indistinguishable PoK is used to create a “weak PKI” as part of
a different block, i.e., the initialization/setup block. Our initialization/setup block
herein is also more lightweight than the one in [16].
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than its counterparts in [16]. We also show how to transform it into a protocol
with other global setups such as a public directory or a CRS.

5. We also bypass the need of assuming authenticated channels (intrinsic to our
predecessors [5,24]) by using a signature and a proof of knowledge, whose
soundness deters MiM.

Structure. Section 2 introduces the hardness assumptions needed for special
instances of our scheme. Section 3 presents atomic exchanges, i.e., the UC setups
used herein. A commitment-scheme is put forward in Sect. 4. We then give
the necessary requirements for this scheme to UC-realize (multi-)commitment.
Section 5 offers a concrete, efficient protocol that implements the aforementioned
compact scheme and UC-realizes commitment, with atomic exchanges used in a
limited way. Section 6 details on the efficiency of our protocol(s) by comparison
to existing ones. AppendixA discusses how to transform our protocol into one
based on a global public-key registration with no further ideal functionality to
be used between participants.

2 Hardness Assumptions

Definition 1 (DH Key Generator Gen). A DH key is a tuple K = (G, q, g)
such that G is a group, q is a prime dividing the order of G, g is an element of G
of order q. A DH key-generator is a ppt. algorithm Gen producing DH keys K
such that |K| = Poly(log q) and the operations (i.e., multiplication, comparison,
membership checking in the group 〈g〉 generated by g) over their domain can be
computed in time Poly(log q). We say that (S, S′) is a valid K-DH pair for gσ

if S ∈ 〈g〉 and S′ = Sσ, where σ ∈ Zq.

An example of a DH key is (Z∗
p, q, g) where p, q are primes and p = 2q + 1,

g ∈ QR(p), g �= 1.
In the descriptions below, we use an arbitrary ppt. algorithm B generating

some coins ρ and states state. Such ρ and state will be used as auxiliary inputs
to some other algorithms in the security games formalized below.

Definition 2 (ag-DDHGen). The ag-DDHGen assumption relative to a DH key
generator Gen states that for any polynomially bounded algorithms A and B in
the next game, the probability that b = b is 1

2 but something negligible, i.e.,
Pr[b = b] − 1

2 is negligible:

1: (ρ, state) := B(1λ; rB)
2: K := Gen(1λ; ρ), (G, q, g) = K
3: pick α, β, γ ∈U Zq

4: A := gα; B := gβ ; C0 := gγ ; C1 := gαβ

5: pick b ∈U {0, 1}
6: b := A(1λ, state, A,B,Cb; r)
The probability stands over the random coins rB, r, b ∈U {0, 1} and α, β, γ ∈U

Zq. The probability is negligible in terms of log q. The algorithms A and B
are ppt. in terms of log q.
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In the above definition, “ag” stands for “adversarially-chosen group”. This is a
weaker assumption than the usual DDH assumption [19] (which is supposed to
be hard for all generated groups).

We adopt the strengthening from [7] of the Diffie-Hellman knowledge (DHK0)
assumption [14] (for a summary of the latter, refer to [19]).

Definition 3 (ag-DHK0Gen). The ag-DHK0Gen assumption relative to a DH key
generator Gen states that for any polynomially bounded algorithms A and B,
there must exist a polynomially bounded algorithm E such that the following
experiment yields 1 with negligible probability:

1: (ρ, state) := B(1λ; rB)
2: K := Gen(1λ; ρ), (G, q, g) = K
3: pick σ ∈U Zq

4: (S, S′) := A(1λ, state, gσ; r)
5: if (S, S′) is not a valid K-DH pair for gσ, then return 0
6: s := E(1λ, state, gσ, r)
7: if S = gs, then return 0
8: return 1

The probability stands over the random coins rB, r and σ ∈U Zq. The probability
is negligible in terms of log q. The algorithms E and B are ppt. in terms of log q.

This assumption means that whatever the algorithm producing valid DH pairs
(S, S′) for a random gσ with σ unknown, this algorithm must know the discrete
logarithm s of their components except for some negligible cases.

What distinguishes these assumptions from the mainstream DDH and DHK0
assumptions [19] is that these should hold for all K selected by a B algorithm
(even by a malicious one) and not only for some K which is selected by an honest
participant. In fact, when it comes to selecting a DH key without a CRS in a
two party protocol, the above assumption must hold for any maliciously selected
K (since we ignore a priori which party is honest). Hence, the name we use: DH
assumptions in an adversarially-chosen group. The latter assumption is a special
case of the DH knowledge assumption required to hold in any group, introduced
by Dent in [19]. Here, we do not require the assumption to hold in any group
but rather in those groups G for which we can produce a seed for Gen.

In the next, for readability purposes, we will often omit the additional-input
1λ from the inputs of the machines that require it, its presence being implicit.

3 UC Functionalities

3.1 The Atomic Setup Functionality

We start with the setup functionality we are going to use in our construction.
This functionality is denoted Fatomic. Let poly be a polynomial. The Fatomic ideal
functionality involves some participants called Caller (C) and Responder (R). It
works as follows (upon receipt of the messages below).
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Ready(C,R,M) message from R. In this message, M denotes the description
of the Turing machine run by R and the functionality parses the message,
stores (C,R,M), and sends the message Ready(C) to the ideal adversary.
Any other tuple starting with (C,R) is erased.2

Note that –by the above– R can resend this command to Fatomic, possibly
with a different M .

Cancel(C) message from R. This counts for an abortion from the atomic ses-
sion. So, the functionality sends the message Cancelled(C) to the ideal adver-
sary and any tuple starting with (C,R) is erased.

Atomic(R, c) message from C. The functionality verifies the existence of a tuple
for the pair (C,R). If there is none, is aborts. Let (C,R,M) be the found
tuple. The functionality runs r = M(c) for no more than poly(|c|) steps, then
sends (response, C,R, r) to C and the ideal adversary, and (challenge-issued, C,
R, c) to R and the ideal adversary. Finally, the tuple is erased.

Our objective is to employ Fatomic as little as possible. It is actually required
only to set up public keys. So, we will use it in a key-setup/key-registration
block, which is executed between each pair of participants who want to run a
commitment protocol. This kind of block is bound to require a setup function-
ality. We could, for instance, rely instead on trusted third parties to whom we
could register keys and obtain the public key of participants in a reliable way. In
what immediately follows we describe the 2-party approach, without such PKI.
However, a version based on a public directory is discussed in AppendixA.2.

3.2 The Commitment Functionality

We now continue with the functionality of commitment we would like to UC-
realize. The (unusual) Init step denotes a part in which the parties involved
register some data (e.g., public-private keys) that would be used in the remainder
of the run of the protocol to carry out the final task.

The FLCOM ideal functionality works as follows (upon receipt of the messages
below). It involves some participants called Sender (S) and Receiver (R).

Init(R) message from S. If R and S are already defined, abort. Otherwise,
define (store) R and S, send an [initialized, R, S] message to R and to the
ideal adversary.

Commit(sid,m) message. If this does not come from S, or S is undefined, or sid is
not fresh, abort. Otherwise, store (sid,m, sealed) and send a [committed, sid]
message to R and to the ideal adversary.

Open(sid) message. If this does not come from S, or S is undefined, or sid is new,
abort. Otherwise, retrieve (sid,m, state). If state �= sealed, abort. Otherwise,

2 We note that the Turing machine M is deterministic (or an equivalent one, a prob-
abilistic one but with the necessary random coins hard-coded within).
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send an [open, sid,m] message to R and to the ideal adversary3, and replace
state by opened in the (sid,m, state) entry.

We note that the above functionality is cast in the insecure-channel UC
model. This is in the sense that the delayed outputs (i.e., having the functionality
send the opening messages to the ideal adversary as well) would not be needed
in the secure channels UC. However, they are needed in the insecure channel
UC, since without them the ideal simulator would have problems simulating a
real execution in which both parties are honest4. Unfortunately, in some cases
[15,16] where insecure-channel UC is the underlying model, this delayed output
is omitted (which would mean that the simulation of the honest, real-world case
is impossible). However, in these very case, it can easily be fixed, because their
settings rely on a step of a key-registration, and –in itself– this offers the means
for authentication.

We will eventually UC-realize this functionality. However, we can easily (with
a slightly more computationally expensive protocol) cast everything in terms of
the standard multi-commitment functionality FMCOM (see Appendix A.2); the
latter functionality can be seen, for instance, in [11].

Unlike FMCOM where there is no inner init-phase included and participants/
roles are defined upon Commit, FLCOM allows multiple commitments from the
same sender S to the same receiver R decided at its inner init-phase. In other
words, FLCOM allows multiple commitments at a link level, i.e., LCOM. So, to
UC-realize FMCOM with FLCOM, we just need to integrate the LCOM Init phase
in every Commit with a new S-R link.

4 Compact UC Commitments

4.1 A Compact Scheme for FLCOM

In Fig. 1, we show a design of a UC commitment scheme based on several building
blocks linked together.

These blocks are as follows: a parameter-generation procedure KeyGen yield-
ing the secret-public key pairs (skE , pkE) and (skX , pkX); a Register block emu-
lating key-registration; an unforgeable scheme CommpkX which is a commitment
in standard lines extractable under skX ; an interactive proof either of the mes-
sage inside the commitment or of the knowledge of the secret key skE . Note that
auth(· · · ) is a shorthand to stress that the input are messages to be protected,
either by some authenticated channel, or by means of a digital signature, with
a key registered like for skX . All these will be explained formally in the sequel
3 Sending to the ideal adversary is necessary for the simulation in the insecure-channel

UC model because commitment protocols send the committed message in clear dur-
ing opening and the ideal adversary must simulate such protocol when both partic-
ipants are honest, although he cannot get the message by any other mean.

4 It is often the case that, in the real-world execution, the committed input is eventu-
ally sent in clear, as part of the opening phase. To get a correct ideal world simulation,
this delayed output from the ideal functionality is needed.
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and an instantiation of each will be given (if not before, then in Sect. 5). We
will show that, under the right assumptions, these methods can be implemented
in a manner that is neither too expensive, nor does it involve many (atomic)
exchanges.

Informal Explanations about the Scheme. Before everything, the participants
generate their public and secret keys, e.g., pkX and skX for S. Note that we do
not assume a CRS to retrieve them from and –in general– we do not suppose
necessarily the same domain for the keys of S and those of R.

Then, the sender essentially registers his public key pkX to the receiver (while
storing the associated secret key skX for himself). The receiver does the same
for (pkE , skE), respectively. Further, based on some mechanism and on the setup
functionality, each demonstrates5 to the other that they hold the corresponding
secret-key counterparts. To achieve this phase, we use the Register block. This
phase, involving key generation (i.e., KeyGen) and key registration (i.e., Register),
is called the key-setup.

Fig. 1. A Compact Commitment-Scheme CLCOM with Atomic Exchanges

Assume that the sender would like to commit to a message m. Assume that
the message is embedded into some suitable domain (e.g., a domain where math-
ematical operations can be easily applied). The commitment phase proceeds as
follows. Using his public key pkX and some random coins r, the sender produces

5 No WI-PoK, as in [16], will be used in this the implementation of this assertion.
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W as the commitment to m using the block Comm. This block is an unforge-
able commitment in itself. If it were not unforgeable, we would need to assume
authenticated channels (like our predecessors [5,24]), so that a MiM were not
able to perturb the honest transactions. I.e., W = CommX(m; r) should be bind
S to m and hide m from R. But, to anticipate, if, e.g., an ideal adversary were
able to know skX for S he could run ExtractskX (CommpkX (m; r)) to obtain m.
This would ensure extractability or requirement (B) on page x.

An essential block of the opening phase of this scheme is a proof of knowledge,
denoted PoK. After sending m, the sender practically uses this block to prove
that either m is equal to m and r has been used in producing the commitment,
or that he knows skE ; as only R should know skE , this convinces R of the binding
character of the commitment. But, obviously, for someone that knows skE this
commitment becomes equivocal.

Then, for the ideal world to be indistinguishable from the real world, intu-
itively we need to make sure that the implementation of the blocks are such
that their outputs look the same under some coins and an adaptively chosen
respective counterpart of those. In the next sections, we will see a way in which
this can be achieved.

Note that in order to realize FLCOM, it is important that the sk and pk keys
are fresh for every new pair (S,R) of participants and that Register is run only
once for each key.6

We proceed with the formalization of these blocks.

4.2 Key Setup Block

We begin by the block of key-setup which includes key generation and key reg-
istration. Intuitively, KeyGen computes a public key pk out of a secret key sk.
Then, the Register protocol is used for a prover to demonstrate that he holds sk
to a verifier who has received pk from this prover. We are going to formalize the
semantics of these blocks.

Definition 4 (The KeyGen and Register Blocks). Let λ be a security para-
meter. The KeyGen block is a function from a domain Dsk to a domain Dpk

(depending on λ). The Register block is a ppt. protocol involving a prover P , a
verifier V , and an ideal functionality F . The value sk is the input for P (which
is denoted P (sk)). The value pk = KeyGen(1λ, sk) is the output of V (unless the
protocol aborts).

There must exist a polynomial time algorithm E such that for all ppt. adver-
sary A and ppt. algorithm B, in an experiment with V , A, and B having access
to F and V only interacting with A, we have that KeyGen(1λ, E(v)) = pk, except
with negligible probability, where v denotes the view of A and pk is the output
of V .
6 In the C-at protocol to be defined (see Fig. 4), a Register block could be maliciously

used as a z �→ zsk oracle, allowing an adversary either to extract or to equivocate a
commitment.



Compact and Efficient UC Commitments Under Atomic-Exchanges 391

For every ppt. algorithm V ∗ interacting with P (sk), with sk random, the
following happens with negligible probability: V ∗ outputs s, KeyGen(1λ, s) =
KeyGen(1λ, sk), and P will have not aborted.

We say that Register is authenticating if there is no man-in-the-middle attack
such that a honest verifier ends up with some pk such that pk �= KeyGen(1λ, sk),
where sk is the input of the honest prover.

This non-extractability property is cheaper than zero-knowledge. Note that it
implies that KeyGen must be a one-way function.7 In other words, over a domain
Dpk × Dsk generated as per KeyGen it is computationally hard to retrieve the
secret key sk ∈ Dsk, given the public key pk ∈ Dpk. In practice, the idea of such
a non-extractability of the secret key sk out of the public data pk can rely on
the hardness of some computational assumption.

Example 5. We now offer an example of this sort of key-setup. This example is
part of the C-at protocol on Fig. 4, page xx. A key-pair (pk, sk), with pk generated
by such an algorithm KeyGen can be given by ((ρ, gx), (ρ, x)), i.e., pk = (ρ, gx),
sk = (ρ, x), with ρ being some coins to generate (G, q, g) = Gen(ρ), and where
G is a group, q is a prime dividing the order of G, g is an element of G of order
q, and x ∈U Zq. One cannot obtain this sk out of this pk unless they break the
DLGen assumption (see Sect. 2).

We can define Register as follows (see Fig. 2): given sk = (ρ, x) and pk =
(ρ,X), P sends ρ to V , V computes (G, q, g) = Gen(ρ), picks α ∈U Zq, sends
an atomic8 X0 = gα to P . Then, P checks X0 ∈ G and sends back X and
X ′ = Xx

0 to V . The latter finally checks that X ′ = Xα. Finally, V sends α to P
for checking that X0 = gα.

Fig. 2. A Register Protocol

7 One-wayness here means for any ppt. algorithm A the following probability is neg-
ligible in λ: PrrA,sk[Gen(1

λ, A(1λ, pk; rA)) = pk | pk = Gen(1λ, sk)].
8 V sending an atomic X0 is a syntactic-sugar meaning that P sends a prior
Ready(V, M) to Fatomic where M is an algorithm to compute M(X0) = (X, X ′),
then V sends Atomic(P, X0) to Fatomic. (See [7].)
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Lemma 6. Under the ag-DHK0Gen and DLGen assumptions, the protocol in
Example 5 based on Fatomic is a Register block with KeyGen. It is further
authenticating.

The idea of this protocol is that by preparing the atomic response, the prover pro-
vides an algorithm from which we can extract X based on the DHK0
assumption.

Proof. Based on the ag-DHK0Gen assumption, the atomic response clearly leaks x.
So, P ’s view can provide sk and the first requirement is satisfied.

Furthermore, based on the DLGen assumption, the protocol does not leak
sk to V ∗. This comes from that we could run V ∗ with a genuine ρ from the
DLGen game, then continue with some dummy X̄ = gx̄ and X̄ ′ = X x̄

0 to get α
(otherwise, P aborts). Then, he rewind to when X and X ′ are submitted to V ∗.
He gets a genuine X from the DLGen game and sets X ′ = Xα. Clearly, this
experiment cannot extract x under the DLGen assumption.

The authentication comes from that the atomic functionality authenticates
X to the verifier. ��
We could also have a Register block based on a global CRS (à la [24]). The prover
simply sends σ = Enccrs(sk) and PoK{sk : σ = Enccrs(sk) ∧ pk = KeyGen(sk)}.

4.3 The Extractable Commitment Block

We mention the requirements needed from the Comm block (and the Extract
block) in the CLCOM scheme; consider the notations therein.

Definition 7 (Extractable Commitment). An extractable commitment for
the KeyGen and Register blocks is defined by a set of algorithms Comm and
Extract such that for all skX ∈ Dsk, m, and r, if pkX = KeyGen(1λ, skX), then
ExtractskX (CommpkX (m; r)) = m.

Further, we require that an extractable commitment is computationally hiding
with the Register block. I.e., any ppt. algorithm A has a probability of winning
the following game which is negligibly close to 1

2 :

1: pick skX ∈U Dsk and set pkX := KeyGen(1λ, skX)
2: run the Register block with A playing the role of the verifier
3: A selects two messages m0 and m1

4: flip a coin b, compute W = CommpkX (mb; r), and run A on W
5: A outputs b′ and wins if b′ = b

A may use the functionality F coming from Register as per Definition 4.

The reason why we introduced Register in the hiding notion is because we do
not necessarily assume any zero-knowledge property on Register. So, some infor-
mation may leak, but we want that it does not help to uncover the committed
message.
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4.4 The Equivocable Opening Block

Definition 8 (PoKBlock). Given the blocks KeyGen and Comm and an instance
described by (W, pkE) of an initialization and commitment phase, the PoK block
is a witness indistinguishable proof of knowledge9 from S to R for either r or skE

such that W = CommpkX (m; r) or pkE = KeyGen(skE).

By proof of knowledge, we mean that the protocol is polynomially bounded,
complete, and that there is an extractor who can compute a witness out of the
view of a successful malicious prover. By witness indistinguishable (WI), we mean
that the honest prover can use either r or skE as a witness to run his algorithm,
and that the respective cases cannot be distinguished by a malicious verifier.
(Again, see [20] for details on WI-PoK and PoK.) More concretely, and ppt.
algorithm A has a probability of winning negligibly close to 1

2 in the following
game:

1: A selects an instance inst and two possible witnesses w0 and w1 for PoK
2: flip a coin b and set wit = wb

3: run PoK with a prover for inst using wit as a witness and with A playing the
role of the verifier

4: A outputs b′ and wins if b′ = b

A may use the functionality F coming from Register as per Definition 4.

4.5 UC Security of the Compact Scheme

Theorem 9. Under the assumptions of Definition 4 (using a functionality F),
Definition 7, and Definition 8, in presence of a static adversary, the compact-
scheme CLCOM UC-realizes the FLCOM ideal functionality using F as a global
setup.10

In the insecure-channel UC model with authentication, the result holds when
auth(· · · ) is just transmitting messages through the authenticated channel. In
the insecure-channel UC model without authentication, the sender must register
an additional (authenticated) key and auth simply appends a digital signature
based on this key. So, we move the auth requirement to the initialization phase.
If the Register block is authenticating, this is solved.

Proof (sketch). Let S (sender) and R (receiver) be two participants running one
initialization Sinit/Rinit and multiple commitments Scommit/Rcommit and Sopen/
Ropen, upon activation by the environment. Note that S and R are paired by the
unique FLCOM initialization.11 In the ideal world, they run, if honest, the dummy S

9 See [20] for details on witness indistinguishable proofs of knowledge (WI-PoK).
10 By global setup, we mean that the environment can access to it as well. This is also

called GUC in the literature.
11 So, proving GUC reduces to proving EUC: in a multiparty setting, the participant

calling FLCOM with the identifier of another participant defines S and R. All other
participants can be glued into the environment.
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or dummy R algorithms forwarding inputs/outputs between the environment and
FLCOM. Otherwise, they behave as instructed by the ideal adversary I. While the
ideal-world experiment is running, I runs an internal simulation of the real world
experiment to make the interaction with the environment indistinguishable. So, I
runs a simulation of the adversary A, of the honest participants S or R supposed
to run their specific algorithms, and of the setup functionality F (in due turns).
He corrupts correspondingly to the real world the dummy S or R who then
behave following the A simulation.

In what follows, we describe, depending on the corruption state, how the
simulation of the honest participants is done. Our simulator will be straight-
line, but proving (and only proving) that the simulation is indistinguishable
may require rewinding, as allowed in the UC model.

Case where S and R are corrupted. There is no honest participant to simu-
late: A defines the behavior of S and R and the simulation is perfect. Actually,
there is no interaction with FLCOM in this case.

Case where S is honest. R may be corrupted or not. If R is honest, its
simulation is based on the normal algorithms Rinit, Rcommit, and Ropen. Clearly,
this simulation of R to A is perfect.

During initialization, the simulation of S is straightforward as it requires no
communication with the environment: he runs the same algorithms Sinit as in
the real world. This simulation is perfect.

We note that while the honest S is simulated, even though R may be honest
as well, his messages may be modified by A. In any case, we consider the honest
S interacting with some T where T is the complement of the simulation of S
in I. I.e., it includes the simulation of A and the one of R, no matter whether
R is honest or not. Let skX be the secret key selected by the simulator of the
honest S. Let pkE be the public key registered to S. Based on the property of
the Register block, I can extract skE corresponding to pkE based on the view
of T . (In Definition 4, T plays the role of A while the environment, the dummy
honest participants, and FLCOM play the role of B.)

During commitment,I simulatesS runningScommit on some randommessagem.
During the opening, FLCOM tells I the value of m̄ committed by the dummy

S. Then, I simulates S equivocating the commitment to m̄ by using skE in the
m �= m̄ case: I makes S send m̄ and run the PoK protocol with skE as a witness.
In the m = m̄ case, I simulates S normally: using Sopen.

Indistinguishability. In general, to prove indistinguishability, we have to prove
that all messages sent to the environment are indistinguishable in both worlds.
There are two types of messages: the output from the dummy (honest) par-
ticipants (in our case, there is only dummy R, if honest, and during opening,
which has content), and the messages from the corrupted ones, i.e., from A.
This reduces to proving that dummy R, if honest, opens to a correct message,
and that the simulation of honest participants is indistinguishable by A in both
worlds.
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Let us consider the honest R case. Clearly, dummy R sends the outcome m̄
to the environment, and it matches the input to dummy S. In the real world,
even though the adversary may corrupt the communication, we prove that R
ending the opening on m̄ while S began the commitment with a different message
happens with negligible probability. For that, we assume that these messages
are different. Thanks to the Register block and auth message, both S and R use
the same pkE and W . Since PoK is a sound proof of knowledge, from the prover
(i.e., the entire experiment except the simulation for R), we extract a witness,
possibly by rewinding. Since the commitment does not open to m̄, this witness
must be a secret key related to pkE . Now, since skE is only used in Register, this
shows that we can extract a preimage of KeyGen(skE) from the Register protocol.
But this is excluded by Definition 4. So, the outcome m̄ from a honest dummy R
matches the one of the real world experiment.

Then, we have to prove that the simulation of the interaction between S and
R (when honest) makes the simulation of A behave in an indistinguishable way
to the adversary in the real world. The case of a honest R is clear: the simulation
in the ideal world behaves exactly like in the real world. As for S, the result is
clear for m = m̄ as they run exactly the same algorithms. It remains to consider
the simulation of S in the m �= m̄ case.

Let Γ0 be the ideal world experiment producing the output of the environ-
ment, in the m �= m̄ case. We note that skX is only used by Register during
the initialization. So, we can use the hiding property of Comm to say that Γ0 is
indistinguishable to the game Γ1 in which we run Scommit(R, sid, m̄) for S instead
of Scommit(R, sid,m). Just as in Γ0, this game Γ1 is still using skE as a witness to
run PoK. Due to the witness indistinguishable property, Γ1 is indistinguishable
to the game Γ2 in which S uses r as a witness instead. This final game Γ2 cor-
responds to the real world experiment. So, the real and ideal world experiments
produce indistinguishable outcomes.

Case where S (but not R) is corrupted. During initialization, R is simulated
by running the normal algorithm Rinit interacting with A and F . So, thanks to
the property of the Register block I can extract skX based on his own view.

The simulation for the commitment phase starts normally by running the nor-
mal algorithm for R. After W is released, I computes ExtractskX (W ) to deduce
the committed value m by A. If extraction fails, m is set to a random message.
Then, the ideal adversary I makes the corrupted dummy S send a Commit(sid,m)
message to FLCOM.

The simulation for the opening phase starts normally with R running the
normal algorithm Ropen. If Ropen aborts, I aborts. If it succeeds and Ropen outputs
something, then the ideal adversary I makes dummy S send an Open(sid) message
to FLCOM.

Indistinguishability. Since R follows his algorithms, the simulation of the interac-
tion (to A) is perfect. We only have to prove that the outcome of dummy R (which
will be sent to the environment) matches the one by R. We observe that, due to
the extractability of the commitment, it is perfectly binding. So, if R in the real
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world ends up with the opened commitment m̄ and that ExtractskX (W ) �= m̄,
due to PoK being sound, we could extract (possibly by rewinding) a valid witness
skE . Since R is honest and only uses skE for Register, the properties of Register
make it impossible. So, this proves that ExtractskX (W ) �= m̄ with negligible prob-
ability. So, we have m̄ = m in the real world, which is also guaranteed by the
simulation. ��

5 Instantiated Compact Scheme

Given a group K = Gen(1λ, ρ), we define an injective function map from the set
of possible values to commit to the group K. The function map, as well as its
inverse, must be easy to compute. For instance, if 〈g〉 is the group of quadratic
residues in Z

∗
p and p = 2q +1 is a strong prime, we can set the message space to

{1, . . . , N} for N < q and define map(m) = (±m) mod p, specifically the only
one of the two values which is a quadratic residue.

In Fig. 4, on page xx, we present a protocol that implements the schema in
Fig. 1. Then, we prove that this protocol is UC-secure with atomic as a setup,
and under certain assumptions.

The KeyGen and Register blocks are as in Example 5. Based on pkX = (ρ,X)
and skX = (ρ, x), for r ∈ Zq, we have CommpkX (m; r) = (U, V ) with U = gr

and V = map(m)Xr. This is the ElGamal encryption. We let ExtractskX (U, V ) =
map−1(V U−x).

Lemma 10. Under the ag-DDHGen assumption, the above Comm and Extract
algorithms define an extractable commitment in the sense of Definition 7, for
KeyGen and Register from Example 5.

Proof. To show that Comm is hiding, we consider the game in Definition 7: the
adversary A receives ρ defining a group with a generator g, then sends some ran-
dom X0 in the group, receives X,X ′, sends α such that X0 = gα (otherwise,
fail), sends some m0 and m1, receives (U, V ) which is the ElGamal encryption of
map(mb) with key X, for some random b, and produces a bit b′. He wins if b = b′.

First, we play with A by submitting some X̄ = gx̄ for some random x̄, with
X̄ ′ = X x̄

0 . Then we can get α and rewind, by submitting some external X and
X ′ = Xα. This reduces to the semantic security of the ElGamal encryption. We
then use the standard result [6] that ElGamal encryption is IND-CPA secure
under the DDHGen assumption. ��
By using the standard construction [13] based on proofs of disjunctive state-
ments [13,18], we construct a PoK for our instances. The protocol is depicted on
Fig. 4 in which the prover uses r as a witness. To use skE = y as a witness (for
equivocation), the computations of the prover are replaced by

b ∈U Z
∗
q2 , c1 ∈U {0, 1, . . . , 2n − 1}, s1 ∈U Z

∗
q1

t1 := U c1gs1
1 , t2 = ( V

map(m̄) )
c1Xs1 , t3 := Y b

c2 := c ⊕ c1, s2 := (b − c2y) mod q2

We have the following result.
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Lemma 11. The 3-move protocol with the t, c, and s messages (in the opening
phase) in Fig. 4 defines a Σ-protocol for {(r, skE) : ((U, V ) = CommpkX (m; r)) ∨
(pkE = KeyGen(skE))}. It is a PoK block in the sense of Definition 8, for KeyGen
and Comm from above.

Theorem 9 and Lemma 6–11 wrap up into the following result.

Theorem 12. Under the ag-DHK0Gen and ag-DDHGen assumptions, the C-at
protocol on Fig. 4 UC-realizes FLCOM in the Fatomic-hybrid model considered,
under a static adversary.

In AppendixA, we discuss on possible extensions. I.e., relaxing the ag-DHK0Gen
assumption, implementing the atomic exchanges, and making a PKI for multiple
commitment.

6 Efficiency

To compare the efficiency of protocols, we count the number of exponentiations.
There are some which must be done during the setup and which could be used
for several commitments. There are some using small exponents (such as c1 or
c2) which are faster than others. If we are not satisfied by the DHK0 assumption,
we can use the ZK proof based on the DDH assumption as per AppendixA.1
(and if Hκ is say implemented via Pedersen commitment [27]). We compare the
protocols of [24] and [5] with ours below.

Protocol Setup Fast Regular

Lindell [24] 6 20

Blazy et al. [5] 2 20

our protocol with DHK0 10 4 8

our protocol with DDH 16 4 8

For 2-party protocols requiring many commitments, out protocol is thus at
least twice faster than others.

The reduction in the number of exponentiations resides mainly on our use
of the ag-DHK0Gen assumption. As aforementioned, it may be possible to select
adversarial groups where the ag-DHK0Gen assumption may hold and then effi-
ciently work in these groups. An example of this was given in Example 5. Also,
to this end, the atomic exchanges are very limited within (and see AppendixA.2
for possible, efficient implementations through, e.g., distance-bounding [22]).

To achieve security, the previous protocols in [5,24] assumed authenticated
channels, on top of the insecure-channel UC model. We can relax this assump-
tion by using a signature, at the cost of a few more exponentiations. (E.g., 3
more regular ones for signature and verification, and 5 more during setup for
registering verification key.)

All in all, in general, we yield a generally more efficient, very modular UC
commitment protocol.
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7 Conclusions

In this paper, we devised a design-scheme for multiple (concurrent) commitment-
scheme operating on large messages. It uses the ideal setup functionality of
atomic messages in a minimalistic way. We suggest how this functionality can
be achieved in practice, and we claim that it is indeed lighter than other UC
setups for commitments. Our scheme enjoys UC security under static attacks.
It is presented in a modular way so that the internal building blocks could
easily be replaced by others and/or isolated during the process of design and
implementation. Our optimal proposed instantiation is based on the decisional
Diffie-Hellman assumption and the adversarially selected group Diffie-Hellman
knowledge assumption. This outperforms other efficient UC commitments [24]
based on CRS and DDH. At the same time, it can be viewed as an alterna-
tive to the new protocol in [5], bypassing the need for authenticated channels,
but keeping in place the same number of exponentiations with a more modular
construction. However, our protocol can enjoy UC security without needing to
assume authentication on top of the UC insecure channels, unlike [5,24]. If the
adversarially selected group Diffie-Hellman knowledge assumption is dropped,
another instantiation of ours performs still slightly better than existent efficient
UC commitments.

A Extensions

A.1 A Variant Based on ag-DDHGen

We can drop the ag-DHK0Gen assumption and solely rely on the ag-DDHGen one.
For that, we construct a new Register protocol based on a zero-knowledge proof
with the Schnorr Σ-protocol. See Fig. 3 on page xx. This would get us closer
to [16], where a WI-PoK is used in the key-setup block.

Fig. 3. A ZK Variant for the Register Protocol
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Fig. 4. C-at: A UC-Secure Commitment Protocol with Atomic Exchanges

Namely, we enrich the Σ-protocol with a trapdoor commitment Hgen on
the challenge c, with the trapdoor σ released at the end. It is a trapdoor in
the sense that for all γ and all c′, Equivσ(γ, c′) has the same distribution as
u and Hκ(c′,Equivσ(γ, c′)) = γ. This is quite a standard technique [26]. By
making the challenge atomic, we obtain a ZK protocol in a regular sense. It is
further straightforward to see that Register satisfies all requirements, based on
the ag-DDHGen assumption. To make it authenticating, we can take advantage
of the Fatomic exchange to authenticate X at the same time as the response is
sent.

In general we prefer to use the ag-DHK0Gen to ascertain the private knowledge
of sk. This may be more efficient in practice than a full implementation of, e.g., a
WI-PoK. It essentially requires the selection of appropriate (and efficient) groups
to work in, as done in Example 5.
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A.2 Towards FMCOM

The FMCOM functionality is defined as follows:

Commit(sid, R,m) message from S. If sid is not fresh, abort. Otherwise, store
(sid, S,R,m, sealed) and send a [committed, sid, S] message to R and to the
ideal adversary.

Open(sid) message from S. If sid is new or the record (sid, S, ., ., .) has no match-
ing S, abort. Otherwise, retrieve (sid, S,R,m, state). If state �= sealed, abort.
Otherwise, send an [open, sid,m] message to R and to the ideal adversary,
and replace state by opened in the (sid, S,R,m, state) entry.

To realize this functionality, we use a similar assumption as in [16]: we assume
that a participant plays the role of a trusted certificate authority (who is honest
but curious), to whom participants register their keys skX and skE . The first
time a participant is involved in a commitment, he must register his keys to the
certificate authority (CA) and get the CA’s public key at the same time. The
CA would produce a certificate which could be verified with the CA’s public key.
Then, the Init phase between S and R would reduce to sending and verifying this
certificate, without any ideal functionality. Due to the extraction nature of our
Register block, all secret keys would become extractable by the ideal adversary
and the UC security would still hold.
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