
Security Analysis of Polynomial
Interpolation-Based Distributed Oblivious

Transfer Protocols

Christian L.F. Corniaux(B) and Hossein Ghodosi

James Cook University, Townsville 4811, Australia
chris.corniaux@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

Abstract. In an unconditionally secure Distributed Oblivious Transfer
(DOT) protocol, a receiver contacts at least k servers to obtain one of
the n secrets held by a sender. Once the protocol has been executed, the
sender does not know which secret was chosen by the receiver and the
receiver has not gained information on the secrets she did not choose. In
practical applications, the probability distribution of the secrets may not
be uniform, e.g., when DOT protocols are used in auctions, some bids
may be more probable than others.

In this kind of scenario, we show that the claim “a party cannot
obtain more than a linear combination of secrets” is incorrect; depending
on the probability distribution of the secrets, some existing polynomial
interpolation-based DOT protocols allow a cheating receiver, or a curious
server, who has obtained a linear combination of the secrets to determine
all the secrets.

Keywords: Cryptographic protocol · Distributed Oblivious Transfer ·
Linear combination of secrets · Probability distribution · Unconditional
security

1 Introduction

Unconditionally secure Distributed Oblivious Transfer (DOT) protocols allow a
receiver to obtain one of the n secrets held by a sender (see for example [3,8,9]),
like Oblivious Transfer (OT) protocols. But, unlike in OT protocols, the sender
and the receiver do not directly interact with each other; the sender distributes
information on his secrets to m servers and the receiver contacts k of them to
collect enough data to determine the secret she wishes to obtain.

The security level of a DOT protocol is characterized by the threshold para-
meter k, corresponding to the minimum number of servers the receiver has to
interact with, to obtain the chosen secret. The protocol itself is composed of two
phases. In a first phase (the set-up phase), the sender distributes parts — called
shares — of the secrets to the servers and does not intervene in the rest of the
protocol. In a second phase (the transfer phase), the receiver selects the index of
a secret, sends shares of this index to t servers (k ≤ t ≤ m) and receives back t
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shares allowing her to reconstruct the chosen secret. The security of a DOT pro-
tocol may be assessed thanks to the following informal security conditions based
on definitions given by Blundo, D’Arco, De Santis and Stinson [2,3]:

C1. Correctness – The receiver is able to determine the chosen secret once she
has received information from t contacted servers (t ≥ k).

C2. Receiver’s privacy – A coalition of up to λR servers (1 ≤ λR ≤ k − 1) cannot
obtain any information on the choice of the receiver.

C3. Sender’s privacy with respect to λS servers and the receiver – A coalition of
up to λS servers (1 ≤ λS ≤ k − 1) with the receiver does not obtain any
information about the secrets before the protocol is executed.

C4. Sender’s privacy with respect to a “greedy” receiver – Once the protocol has
been executed, a coalition of up to λC dishonest servers (0 ≤ λC ≤ k − 1)
and the receiver does not obtain any information about secrets which were
not chosen by the receiver. This security condition may be decomposed into
two parts; Given the transcript of the interaction with t servers (t ≥ k),
C4.1. The receiver does not obtain any information about secrets she did not

choose (λC = 0).
C4.2. A coalition of up to λC dishonest servers and the receiver does not

obtain any information about secrets which were not chosen by the receiver
(λC > 0).

Blundo et al. [3] define a DOT protocol as private if the following security
conditions are satisfied: C1, for t = k, C2, for λR = k − 1, C3, for λS = k − 1
and C4.1. A DOT protocol is defined as strongly private if it is private and if
condition C4.2 is satisfied for λC = k−1. Blundo et al. have shown that one-round
polynomial interpolation-based DOT protocols cannot reach strong privacy, i.e.,
if t = k and λR = k − 1, then condition C4.2 cannot be satisfied for λC = k − 1
(a round is a set of consistent requests/responses exchanged between the receiver
and t servers in the transfer phase). More generally, Nikov, Nikova, Preneel and
Vandewalle [9] have demonstrated that the relation λR + λC < k needs to be
satisfied for conditions C2 and C4.2 to be guaranteed.

In their OT protocol allowing a receiver to obtain one of the n secrets held
by a sender, Brassard, Crépeau and Robert [4] note that it should be impossi-
ble for the receiver to gain joint information on the secrets held by the sender.
This remark is the consequence that, in classical cryptography, shifting the let-
ters of an English message thanks to a secret word is not secure. For example,
an adversary can break the Vigenère cryptosystem, which basically produces a
cryptogram by shifting the letters of a message according to a secret key, in plain
English too. The non-uniform repartition of letters in the original message, and
in the key for some variants of Vigenère’s cryptosystem, allows an adversary to
retrieve both the original text and the key from a cryptogram (index of coinci-
dence technique [6] and Kasiski method [7]). Aware of this weakness, OT and
DOT protocols’ designers have taken a great care to construct protocols where
receivers cannot learn a linear combination of the secrets held by a sender.

In some instances, where the secrets are elements randomly selected in a
finite field, the precaution is useless. But when the probability distribution of
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each secret is not uniform (like for letters in English messages), the control is
essential.

In some polynomial interpolation-based DOT protocols, e.g. [3,8], it is
claimed that a party “cannot learn more than a linear combination of secrets”.
In this paper, we show that such claims are incorrect. Overall, the knowledge
of a linear combination of secrets combined with the knowledge of the probabil-
ity distributions of the same secrets may lead to the knowledge of the secrets
themselves. In other words, if a curious server obtains a linear combination of
secrets, security condition C3 cannot be satisfied and similarly, if a curious or
malicious receiver obtains a linear combination of secrets, security condition C4.1

cannot be satisfied. In addition, we demonstrate that in Blundo et al.’s sparse
polynomial interpolation-based DOT protocol, the two techniques preventing
the servers and the receiver from learning linear combinations of secrets make
the protocol insecure (in spite of Blundo et al.’s claim, security condition C4.1

is not satisfied); indeed, only one of the two techniques should be applied to
guarantee the security of the protocol.

The organization of the paper is as follows. In Sect. 2 we introduce a few nota-
tions and show that the combined knowledge of the probability distributions of
secrets and of a linear combination of these secrets may lead to the knowledge
of all of them. Then, in Sect. 3, we shortly describe the general form of poly-
nomial interpolation-based DOT protocols and show how in these protocols a
receiver is able to obtain a linear combination of secrets. Section 4 is devoted to
the analysis of some protocols [1,2,8,9] in the light of the previous section. In
Sect. 5, we show that even Blundo et al.’s sparse polynomial interpolation-based
DOT protocol [3], designed to protect the sender’s privacy against a malicious
receiver in presence of honest servers, does not satisfy security condition C4.1.
Our conclusion follows in Sect. 6.

2 Preliminaries

2.1 Notations and Definitions

The settings of the different DOT protocols described in this paper encompass
a sender S who owns n secrets ω1, ω2, . . . , ωn (n > 1), a receiver R who wishes
to learn a secret ωσ, and m servers Sj (j ∈ Im where Im ⊂ N is a set of m ≥ 2
indices).

The protocols require the availability of private communication channels
between the sender and the servers and between the receiver and the servers. We
assume that these communication channels are secure, i.e., any party is unable
to eavesdrop on them and they guarantee that communications cannot be tam-
pered with.

All operations are executed in a finite field K = Fp (p prime, p > 2). We
assume that p > max(n, ω1, ω2, . . . , ωn,m). By an abuse of language, a polyno-
mial and its corresponding polynomial function will not be differentiated. We
denote K∗ the set K \ { 0 }, [n] the set of natural numbers (or elements of the
prime finite field K) { 1, 2, . . . , n }, and δj

i the Kronecker’s symbol, equal to 0 if
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i �= j and to 1 if i = j. If u = ( u1, u2, . . . , un ) and v = ( v1, v2, . . . , vn ) are two
n-tuples of elements of K, we define u •v =

∑n
i=1 ui × vi.

We also formally define a quasi-random polynomial.

Definition 1. If (K[X],+,×) is the ring of polynomials over K and (Kd[X],+)
the additive group of polynomials of degree at most d over K, we say that a
polynomial F =

∑d
i=0 fiX

i of Kd[X] is quasi-random, if the coefficients fi (1 ≤
i ≤ d) are randomly selected in K and the constant term f0 ∈ K has a predefined
value.

In addition, we denote pω the probability mass function associated with the
secret ω taken in the finite field K.

2.2 Linear Combination of Two Secrets

In some DOT protocols, e.g. [3,8], it is claimed that the receiver cannot learn
more than a linear combination of secrets. Actually, the knowledge of a linear
combination of secrets combined with the knowledge of the probability distrib-
utions of the same secrets may lead to the knowledge of the secrets themselves,
as shown in the following basic example.

Example 1. Let ω1 and ω2 be two secrets in the prime finite field K = F11 with
the probability distributions:

{
pω1(0) = 0.5, pω1(1) = 0.5, pω1(i) = 0 if i �= 0 and i �= 1,

pω2(0) = 0.5, pω2(3) = 0.5, pω2(i) = 0 if i �= 0 and i �= 3.

We assume that a party is able to determine, for instance, the linear combi-
nation � = ω2 − ω1. From the probability distributions of the secrets, the only
possible values of � are:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ω1 = 0 and ω2 = 0,

3, if ω1 = 0 and ω2 = 3,

10, if ω1 = 1 and ω2 = 0, and
2, if ω1 = 1 and ω2 = 3.

In this scenario where all the potential values of � are different, the party
just has to compare � with the values 0, 3, 10 and 2 to determine the secrets ω1

and ω2.

2.3 Linear Combination of Secrets

More generally, we have

Lemma 1. Let ω1, ω2, . . . , ωn be n secrets in K = Fp (p prime) and s be the
integer such that 2s ≤ p < 2s+1. If n ≤ s and � ∈ V = { 0, 1, . . . , 2n − 1 } ⊂ K,
there exists probability distributions pω1 , pω2 , . . . , pωn

such that one and only one
n-tuple of secrets satisfies the linear combination � = ω1 + ω2 + . . . + ωn.
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Proof. Given an element � of K such that 0 ≤ � ≤ 2n − 1, we just have to
exhibit n probability distributions pω1 , pω2 , . . . , pωn

, such that only one n-tuple
( ω1, ω2, . . . , ωn ) allows the linear combination � = ω1 + ω2 + . . . + ωn to be
satisfied.

We define the probability distribution of the secret ωi (1 ≤ i ≤ n) by

pωi
(j) =

⎧
⎨

⎩

0.5, if j = 0
0.5, if j = 2i−1

0, otherwise.

If � ∈ V, let B� = b�
n−1b

�
n−2 . . . b�

1b
�
0 be the unique binary representation of

�. The n-tuple
(
b�
n−1, b

�
n−2, . . . , b

�
1, b

�
0

)
is denoted β� and the set U is defined by

U = {β0, β1, . . . , β2n−1 }. We also define the function

f : V −→ U
� �−→ β�

The sets U and V have the same size (2n elements) and the function f is
injective, since every element � ∈ V has a unique binary representation; therefore
f is bijective. We conclude that for any element � ∈ V, there exist a unique
n-tuple

(
b�
n−1, b

�
n−2, . . . , b

�
1, b

�
0

)
where b

(�)
i ∈ { 0, 1 } for i = 0, 1, . . . , n − 1 such

that � is written as a linear combination of the secrets ω1, ω2, . . . , ωn:

� = b�
n−1 × 2n−1 + b�

n−2 × 2n−2 + . . . + b�
1 × 21 + b�

0 × 20

= ωn + ωn−1 + . . . + ω2 + ω1

We conclude that ωi = b�
i−1 × 2i−1 for i = 1, 2, . . . , n. 	


Using this basic result, we review in the next section some polynomial
interpolation-based DOT protocols and show that their security is weaker than
expected.

3 Polynomial Interpolation-Based DOT Protocols

Each of the existing unconditional secure polynomial interpolation-based DOT
protocols, for example [1–3,5,8,9], follows the same principle.

– Before the protocol is executed, some details are made public: the number n
of secrets, the threshold parameter k, the sender’s privacy parameter λS , the
sender’s strong privacy parameter λC , the receiver’s privacy parameter λR,
the meaning of each secret ωi (1 ≤ i ≤ n), the joint probability pω1,ω2,...,ωn

of
the secrets, the encoding parameter e (e > 0), the encoding function E where
E : [n] −→ Ke encodes the index chosen by the receiver, the hiding parameter
N corresponding to the number of monomials of the hiding polynomial Q
(see set-up phase below) before reduction and N e-variate polynomials Vi

(1 ≤ i ≤ N) of K[Y1, Y2, . . . , Ye]. The degree of the multivariate polynomial
Vi is vi; it is the highest degree of the monomials of Vi, assuming that the
degree of a monomial is the sum of the degrees of its variables.



368 C.L.F. Corniaux and H. Ghodosi

– In the set-up phase, the sender S generates N quasi-random polynomials Ui

(1 ≤ i ≤ N) of Kui
[X] (ui ≤ k − 1) such that

∑N
i=1 Ui(0)Vi(E(j)) = ωj , for

j = 1, 2, . . . , n. The free coefficient of Ui is Ui(0) = ai,0 +
∑n

j=1 ai,jωj where
the coefficients ai,j (0 ≤ j ≤ n) are randomly selected in K. Then, S builds
an (e + 1)-variate polynomial:

Q(x, y1, y2, . . . , ye) =
N∑

i=1

Ui(x) × Vi(y1, y2, . . . , ye),

and distributes the N -tuple uj = ( U1(j), U2(j), . . . , UN (j) ) to the server Sj

(j ∈ Im).
– In the oblivious transfer phase, the receiver R who wishes to obtain the secret

ωσ prepares an e-tuple E(σ) = ( q1, q2, . . . , qe ) as well as e quasi-random
polynomial Zi (1 ≤ i ≤ e) of KλR

[X] (λR ≤ k−1) such that Zi(0) = qi. Then,
R selects a subset It ⊂ Im of t indices (k ≤ t ≤ m) and sends to each server
Sj (j ∈ It) the request zj = ( Z1(j), Z2(j), . . . , Ze(j) ). On reception of zj , Sj

calculates and returns uj •vj to R, where vj = ( V1(zj), V2(zj), . . . , VN (zj) ).
Because the relation ui + λR × vi ≤ k − 1 is satisfied for i = 1, 2, . . . , N , the
receiver R is able to interpolate a polynomial R ∈ Kk−1[X] from the t pairs
( ij ,uj •vj ) and to calculate ωσ = R(0).

The characteristics of the sparse polynomial interpolation-based DOT pro-
tocols analysed hereafter ([1–3,8,9]) are described in Annex A.

We note that if the receiver R does not follow the protocol and prepares,
instead of E(σ), the e-tuple ( γ1, γ2, . . . , γe ) such that Vi(γ1, γ2, . . . γe) = αi

(1 ≤ i ≤ N), then she is able to compute

R(0) =
N∑

i=1

Ui(0)Vi(γ1, γ2, . . . , γe)

=
N∑

i=1

(
αi

(
ai,0 +

n∑

j=1

ai,jωj

))

=
N∑

i=1

αiai,0 +
n∑

j=1

( N∑

i=1

αiai,j

)
ωj

Consequently, if R is able to determine an e-tuple ( γ1, γ2, . . . , γe ) such that
∑N

i=1 αiai,0 = 0, she obtains a linear combination of the secrets ω1, ω2, . . . , ωn.
In addition, if the values α1, α2, . . . , αN resulting from the choice of

(γ1, γ2, . . . , γe) are such that
∑N

i=1 αiai,j = 1, for j = 1, 2, . . . , n, then R is
able to establish the environment of the scenario of Sect. 2.3.

4 Weaknesses of Some DOT Protocols

4.1 Protocols Insecure Against Curious Servers

In 2000, Naor and Pinkas [8] introduced a sparse polynomial interpolation-based
unconditionally secure DOT protocol where the sender S holds two secrets ω1
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and ω2. In this protocol, the hiding parameter N described in Sect. 3 is N = 2
and the polynomials U1 and U2 are:

U1(x) = ω1 +
k−1∑

i=1

a1,ix
i

and
U2(x) = ω2 − ω1

where the coefficients a1,i (1 ≤ i ≤ k − 1) are randomly selected in K (see
Annex A.1). It follows that in the set-up phase, each server Sj (j ∈ Im) receives
a pair uj = ( U1(j), U2(j) = ω2 − ω1 ) from S. That is, every server receives a
linear combination of secrets and may (see Lemma 1) determine both secrets.
Consequently, security condition C3 is not guaranteed.

The sparse polynomial interpolation-based unconditionally secure DOT pro-
tocol proposed by Blundo et al. [2] in 2002 is an extension of Naor and Pinkas’s
protocol to n secrets ω1, ω2, . . . , ωn where n ≥ 2. The hiding parameter is N = n,
the free coefficient of U1 is U1(0) = ω1 and the free coefficient of Ui (2 ≤ i ≤ n)
is Ui(0) = ωi − ω1 (see Annex A.2). Each server Sj (j ∈ Im) receives an n-tuple
uj = ( U1(j), ω2 − ω1, ω3 − ω1, . . . , ωn − ω1 ) in the set-up phase and thus holds
linear combinations of the secrets. Again, according to Lemma 1, each server
may determine all the secrets of the sender and security condition C3 is not
satisfied.

Another polynomial interpolation-based unconditionally secure DOT proto-
col was introduced in 2002 by Nikov et al. [9]. In this protocol, like in Blundo
et al.’s protocol, the hiding parameter is N = n, the free coefficient of U1 is
U1(0) = ω1 and the free coefficient of Ui (2 ≤ i ≤ n) is Ui(0) = ωi − ω1. The
polynomial U1 belongs to Kk−1[X] and the polynomials U2, U3, . . . , Un belong to
KλC

[X] (see Annex A.4). We note that if λS = λC = 0, which is not allowed with
our security model since λS ≥ 1 (see security parameters in Sect. 1), each server
Sj (j ∈ Im) receives an n-tuple uj = ( U1(j), ω2 − ω1, ω3 − ω1, . . . , ωn − ω1 ) in
the set-up phase. Again, according to Lemma 1, each server may determine all
the secrets of the sender.

Similarly, in the interpolation-based unconditionally secure DOT protocol
constructed from a private information retrieval protocol presented by Beimel,
Chee, Wang and Zhang [1], each server may determine all the secrets of the
sender if λS = λC = 0. In this case, the hiding parameter is N = n + 1, the free
coefficient of U1 is U1(0) = a1,0, a random element of K and the free coefficient of
Ui (2 ≤ i ≤ n+1) is Ui(0) = ωi−1−a1,0. The polynomial U1 belongs to Kk−1[X]
and the polynomials U2, U3, . . . , Un belong to KλC

[X] (see Annex A.5). Again,
in our security model, security condition C3 is not guaranteed.

4.2 Protocols Insecure Against a Greedy Receiver

In the sparse polynomial interpolation-based unconditionally secure DOT proto-
col introduced by Naor and Pinkas [8], the encoding function is E(σ) =

(
1, δ1σ

)
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and the polynomials V1 and V2 are V1(y1, y2) = 1 and V2(y1, y2) = y2. As men-
tioned in the previous section, the free coefficient of U1 is U1(0) = ω1. If a cheat-
ing receiver sends a request1 zj = (1, 1/2 ) to each server Sj (j ∈ It), it receives
back

∑2
i=1 Ui(j)Vi(zj) = U1(j)+1/2(ω2−ω1). Interpolating a polynomial R from

t ≥ k collected values, the receiver calculates R(0) = U1(0) + 1/2(ω2 − ω1) =
1/2(ω2 + ω1). From this linear combination, the receiver may (see Lemma 1)
determine both secrets. Consequently, security condition C4.1 is not guaranteed.

The insecurity is the same in Blundo et al.’s protocol [2]; the receiver sends
the n-tuple request zj = ( 1, 1/n, 1/n, . . . , 1/n ) to each server Sj (j ∈ It). The
linear combination determined by the receiver is then R(0) = 1/n

∑n
i=1 ωi. Like

in Naor and Pinkas’s protocol, security condition C4.1 is not guaranteed.
In the DOT protocol introduced by Nikov et al. [9], the free coefficient of

U1 is U1(0) = ω1 and the free coefficient of Ui (2 ≤ i ≤ n) is Ui(0) = ωi − ω1,
exactly like in Blundo et al.’s protocol. Therefore, with the same n-tuple request
zj = ( 1, 1/n, 1/n, . . . , 1/n ) as above sent to servers Sj (j ∈ It), the receiver
determines a linear combination R(0) = 1/n

∑n
i=1 ωi and security condition C4.1

is not guaranteed.
The polynomial interpolation-based unconditionally secure DOT protocol

designed by Beimel et al. [1] assumes a semi-honest security model: the receiver
may be curious but has to follow the protocol. Thus, in this model, security
condition C4.1 is guaranteed.

5 A More Robust Protocol

In [3], Blundo et al. have ameliorated the protocol presented in [2] to prevent
(1) the servers and (2) the receiver from learning a linear combination of secrets.
We show below that in spite of three different improvements, the protocol is still
insecure regarding a greedy receiver.

5.1 First Improvement

To prevent servers from receiving a linear combination of secrets (see Sect. 4.1),
each secret ωi (2 ≤ i ≤ n) is multiplicatively masked by an element ri randomly
selected in K. More precisely, in the set-up phase, the sender S randomly selects
n − 1 masks r2, r3, . . . , rn in K and generates an (n + 1)-variate polynomial

Q(x, y1, y2, . . . , yn) =
n∑

i=1

Ui(x) × Vi(y1, y2, . . . , yn),

where

– U1 is a quasi-random polynomial of Kk−1[X] such that U1(0) = ω1,
– Ui is a constant polynomial defined as Ui(x) = riωi − ω1, for i = 2, 3, . . . , n,

and
1 Because the first term is constant and public, it is not included in the request.



Security Analysis of Polynomial Interpolation-Based Distributed 371

– Vi is an n-variate polynomial defined as Vi(y1, y2, . . . , yn) = yi, for i =
1, 2, . . . , n.

In the set-up phase, each server Sj (j ∈ Im) receives from the sender S
an n-tuple uj = ( U1(j), r2ω2 − ω1, r3ω3 − ω1, . . . , rnωn − ω1 ), but also shares,
generated by Shamir’s secret sharing scheme [10], of r2, r3, . . . , rn.

In the oblivious transfer phase, the receiver R selects the index σ ∈ [n] of the
secret she wishes to obtain, as well as a set Ik ⊂ Im of k servers’ indices. Then,
she prepares an n-tuple zj = ( 1, Z2(j), Z3(j), . . . , Zn(j) ) where Zi (2 ≤ i ≤ n)
is a quasi-random polynomial of Kk−1[X] such that Zi(0) = δi

σ. When a server
Sj (Sj ∈ Ik) receives a request zj , it calculates vj = zj and returns to R not
only uj

•vj but also its shares of r2, r3, . . . , rn. From the collected k responses,
R interpolates a polynomial R and calculates rσωσ = R(0) if σ �= 1 or ω1 = R(0)
if σ = 1. If the former case, R also calculates rσ from the collected shares and
with a simple division the chosen secret, ωσ.

We note that (1) the masks ri (2 ≤ i ≤ n) may be nil since they are selected
in K and that (2) ω1 is not masked.

Thus, if n = 2, each server Sj (j ∈ Im) receives a pair uj = (U1(j), r2ω2 − ω1)
in the set-up phase. It is clear that if R wishes to obtain ω2 and if r2 = 0, after
collecting k shares, she will determine r2ω2 = R(0) = 0 and will be unable to
calculate the value of ω2. Therefore, the correctness (security condition C1) of
the protocol is not guaranteed; it follows that multiplicative masks r2, r3, . . . , rn

need to be selected in K∗ and not in K.
In addition, not masking ω1 may provide the servers with information on ω1

like shown in the following example.

Example 2. In the prime finite field K = F11, we assume that n = 2 and that
the probability distributions of ω1 and ω2 are:

{
pω1(0) = 0.5, pω1(1) = 0.5, pω1(i) = 0 if i �= 0 and i �= 1,

pω2(1) = 0.5, pω2(3) = 0.5, pω2(i) = 0 if i �= 1 and i �= 3.

If the value received by the server Sj (j ∈ Im) in the set-up phase for
U2(j) = r2ω2 − ω1 is 0, Sj is able to infer that ω1 �= 0, hence ω1 = 1, because
r2ω2 = ω1, r2 �= 0 (r2 ∈ K∗ like shown above), ω2 �= 0 (ω2 = 1 or ω2 = 3), and
K is a field and consequently an integral domain.

It follows that in the sub-protocol presented by Blundo et al., the secret ω1

should be masked like other secrets ω2, ω3, . . . , ωn and that all masks should be
selected in K∗.

We observe that if the use of masks is a good technique to prevent the servers
from learning linear combinations of secrets, it does not change the situation of
a greedy receiver, since she can determine all the masks. Therefore, once the
protocol has been executed, the cheating receiver who has determined a linear
combination of masked secrets easily obtains a linear combination of secrets,
and from there, possibly all secrets (see Lemma 1). However, an advantage of
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the masks is that the receiver cannot choose the coefficients of the linear com-
bination of secrets she obtains by cheating. Indeed, each coefficient of the linear
combination is the product of a coefficient chosen by the receiver with a mask,
unknown from her at the time she prepares requests.

To conclude, the first improvement to Blundo et al.’s DOT protocol is insuf-
ficient to guarantee the sender’s privacy. This is a contradiction with Blundo
et al.’s claim ([3], Sect. 5, p. 350):

“Notice that, in [8], for the case of two secrets, a proof that the Receiver
can get no more than a single linear combination of the two secrets by
running the sub-protocol described in Fig. 3 with k Servers was given. It
is not difficult to show that the proof easily generalizes to our scheme for
n secrets, i.e., after receiving information from k servers, the Receiver
cannot learn more than a single linear combination of ω1, ω2, . . . , ωn.”

This is because, as stated by Lemma 1, the knowledge of a linear combination
of secrets and of the probability distribution of the secrets may lead to the
knowledge of all secrets.

5.2 Second Improvement

The major problem with the sub-protocol presented by Blundo et al. is that
the receiver R is able to determine a linear combination of secrets, and then,
depending on the probability distribution of secrets, the secrets themselves. How-
ever, if the secrets have a uniform distribution in the field K, even if R (resp.
a coalition of less than k servers) obtains a linear combination of secrets, she
(resp. the coalition) cannot infer any of the secrets. So, the main idea underlying
the second improvement is to transform a specific probability distribution into
a uniform probability distribution. To this end, using the technique proposed by
Naor and Pinkas [8], Blundo et al. have modified the sub-protocol so that it is
executed twice: a first time on masks randomly selected in K (uniform distrib-
ution) and a second time on the products of the secrets and of the masks. To
guarantee the consistency of receiver’s requests, the same request sent by R to
a server is used by the server for both the masks and the masked secrets.

The characteristics of the protocol are given in Annex A.3.
We observe that even if the protocol includes the technique suggested by

Naor and Pinkas, the receiver may still obtain, not only a linear combination of
secrets, but the secrets themselves (see example in Annex B).

In the demonstration proving that the protocol is secure, even with a greedy
receiver (but with honest servers), Blundo et al. require an additional assump-
tion: secrets cannot be identical. This assumption may be satisfied thanks to
pads. For example, if q is a prime number such that q ≥ np, the field Fp could
be replaced with a field Fq and the pad (i−1)×p added to secret ωi (1 ≤ i ≤ n).
We note that this additional assumption decreases the communication perfor-
mance, since the new field has a cardinality larger than the original one.

However, even with this additional assumption, the claim on the security
of the sender is incorrect (Condition (7) of Definition 2.2, p. 329 in [3], is not
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satisfied) against a greedy receiver. The case is illustrated with the same example
(Annex B), because according to the probability distributions chosen in the
example, the secrets are necessarily different.

This is actually due to the first improvement which is not taken into account
in Blundo et al.’s demonstration. Indeed, Naor and Pinkas demonstrated that
the receiver could obtain the system of equations:

{
α1c1ω1 + α2c2ω2 = R(1)(0)

α1c1 + α2c2 = R(2)(0)

where coefficients α1 and α2 are chosen by the receiver.

It is clear that if R(2)(0) = 0, the receiver can infer c1 =
−α2

α1
c2 which, repor-

ted in the first equation gives α2c2(ω2 − ω1) = R(1)(0). Then, if R1(0) = 0, then
the receiver can infer the linear combination ω2 − ω1 = 0, because c2 ∈ K∗ and
α2 can be chosen different from 0 by the receiver). This explains the additional
assumption.

However, in Blundo et al.’s protocol, each secret value is masked according
to the first improvement (see Sect. 5.1). Therefore, in the case n = 2, the system
of equations that the receiver is able to obtain is

{
α1r

(1)
1 c1ω1 + α2r

(1)
2 c2ω2 = R(1)(0)

α1r
(2)
1 c1 + α2r

(2)
2 c2 = R(2)(0)

Again, if we assume that R(2)(0) = 0, the receiver can infer c1 =
−α2r

(2)
2

α1r
(2)
1

c2

which, reported in the first equation gives α2c2(r
(1)
2 ω2 − r

(1)
1 r

(2)
2

r
(2)
1

ω1) = R(1)(0).

If R(1)(0) = 0, then the receiver can infer the linear combination r
(1)
2 r

(2)
1 ω2 −

r
(1)
1 r

(2)
2 ω1 = 0. The coefficients r

(i)
j (i = 1, 2, 1 ≤ j ≤ n) being randomly selected

in K∗, there is no way to prevent the receiver from obtaining such a linear
combination of the secrets.

However, it is easy to see that the first improvement is not useful when the
second improvement is applied. Indeed, with the second improvement, servers
do not receive linear combinations of secrets, but linear combination of masked
secrets (which is the result of the first improvement) and linear combination of
random masks. We conclude that only the second improvement of the protocol
is necessary.

5.3 Third Improvement

Concerned with the degree of randomness necessary for the protocol, Blundo
et al. suggest a simplification of the protocol to save a few random values ([3],
Sect. 5, Remark p. 353):



374 C.L.F. Corniaux and H. Ghodosi

“However, we can show that the same random values a1, a2, . . . , ak−1 can
be used in both instances of SubDot(.) and the values r

(2)
2 , r

(2)
3 , . . . , r

(2)
n

can be computed as a function of r
(1)
2 , r

(1)
3 , . . . , r

(1)
n .”

We show in the following example, that sharing polynomials with the same
coefficients a1, a2, . . . , ak−1 make the protocol insecure, regarding the sender’s
privacy.

Example 3. In the prime finite field K = F5, we assume that n = 2 and that the
probability distributions of ω1 and ω2 are:

{
pω1(1) = 0.5, pω1(2) = 0.5, pω1(i) = 0 if i �= 1 and i �= 2,

pω2(0) = 0.5, pω2(4) = 0.5, pω2(i) = 0 if i �= 1 and i �= 4.

Since the secrets are masked only once (see previous section), we can also
assume that

U
(1)
1 (x) = c1ω1 +

k−1∑

i=1

aix
i,

U
(2)
1 (x) = c1 +

k−1∑

i=1

aix
i,

U
(1)
2 (x) = c2ω2 − c1ω1,

and

U
(2)
2 (x) = c2 − c1

where a1, a2, . . . , ak−1 are randomly selected in K.
In the set-up phase, each server Sj (j ∈ Im) receives from the sender S

the pair u
(1)
j = (U

(1)
1 (j), U (1)

2 (j) ) (for the masked secrets) as well as the pair

u
(2)
j = (U

(2)
1 (j), U (2)

2 (j) ) (for the masks). The server Sj is able to calculate

dj = U
(1)
1 (j)−U

(2)
1 (j) = c1(ω1−1). We assume that dj �= 0. Therefore, ω1−1 �= 0

and so, ω1 = 2, according to the probability distribution pω1 . Hence, c1 =
dj/(ω1 − 1) = dj . Moreover, since Sj holds c2 − c1, the value of c2 can be
determined: c2 = (c2 − c1) + c1 = (c2 − c1) + dj . The server Sj has received
c2ω2 − c1ω1 from the sender and is able to determine c1, c2 and ω1; To calculate
ω2 is easy. It follows that, given the probability distribution pω1 described above
and assuming that dj �= 0, every server Sj is able to infer ω1 and ω2 in the set-up
phase and the sender’s privacy is not guaranteed (security condition C3 is not
satisfied).

This weakness extends to a greedy receiver and security condition C4.1 could not
be satisfied with this improvement. Indeed, if in the oblivious phase the receiver
sends the request zi = ( 1, 0 ) to k − 1 servers Si (i ∈ Ik−1 ⊂ Ik, |Ik−1| = k − 1)
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and z� = ( 1, 1 ) to the kth server S� (� ∈ Ik \ Ik−1), both secrets ω1 and ω2 can
be determined thanks to the following method (we denote P (x) the polynomial
∑k−1

i=1 aix
i):

– First, as soon as R has received from a server Sj (j ∈ Ik−1) a response
(u(1)

j
• vj ,u

(2)
j

• vj ), where vj = zj , she determines ω1 with the technique

described above. Thus, R receives U
(1)
1 (j)×1+U

(1)
2 (j)×0 = c1ω1 +P (j) and

U
(2)
1 (j) × 1 + U

(2)
2 (j) × 0 = c1 + P (j). She calculates dj = u

(1)
j

• vj − u
(2)
j

•

vj = c1(ω1 − 1). Because dj �= 0 and according to the probability distribution
pω1 , R determines ω1 = 2. Hence, c1 can be calculated too.

– Second, R determines P (j) from the response of Sj : P (j) = u
(1)
j

•vj − c1ω1.
The same operation can be executed from the responses of the other servers
of Ik−1, and R obtains k−1 values P (j). The free coefficient of P is P (0) = 0.
So, P may be written under the form P = xP ′ where the degree of P ′ is at
most k−2. With k−1 values 1/jP (j), the polynomial P ′ may be interpolated,
which allows R to compute P = xP ′.

– Finally, from the server S�, R obtains

(u(1)
�

•v�,u
(2)
�

•v� ) = ( c1ω1 + P (�) + c2ω2 − c1ω1, c1 + P (�) + c2 − c1 )
= (P (�) + c2ω2, P (�) + c2 )

Since P has been computed in the second step, R is able to calculate c2 from
the second element of the pair and then the second secret, ω2, from the first
element of the pair.

This example shows that if the third improvement is applied, security condition
C4.1 is not satisfied either.

6 Conclusion

The main result of this paper is that when a party is able to obtain a linear
combination of secrets, the sender’s privacy (security conditions C3 and C4.1)
may not be guaranteed for all secrets distributions. It follows that some weak-
nesses have been identified in the following polynomial interpolation-based DOT
protocols:

– Naor and Pinkas’s sparse polynomial interpolation-based protocol [8]: with-
out the technique described in Sect. 4, p. 214, security conditions C3 and C4.1

are not guaranteed (in particular, Theorem 1 is incorrect). If the technique is
applied, the size of the secrets space needs to be increased, and hence commu-
nication is less efficient (bigger shares need to be exchanged). The weakness is
the same in Blundo et al.’s sparse polynomial interpolation-based protocol [2]
which extends to n secrets Naor and Pinkas’s protocol.
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– Nikov et al.’s protocol [9] and Beimel et al.’s protocol [1]: for some values of
the protocols’ parameters, security condition C3 is not guaranteed. However,
this case is valid in regard to the security models presented by Nikov et al. and
Beimel et al.: the protocols are considered as private even though each server
holds the sender’s secrets, assuming no server colludes with the receiver. On
the other hand, Nikov et al.’s protocol [9] cannot guarantee security condition
C4.1, in spite of the claim of the designers.

– Blundo et al.’s protocol [3]: security condition C4.1 is not guaranteed because
of the combination of two techniques: the masking of secrets in the underlying
sub-protocol and the parallel execution of the protocol on masked secrets and
masks. If the masking of secrets in the underlying sub-protocol is removed, the
protocol reaches the same level of security as Naor and Pinkas’s protocol. In
addition, the simplification suggested by Blundo et al. (reuse of the coefficients
of the hiding polynomials) is a breach in the sender’s security.

We also observe that the DOT protocol introduced by Cheong, Koshiba and
Yoshiyama [5] is actually an application of the technique suggested by Naor and
Pinkas to Nikov et al’s DOT protocol; The level of security of the protocol is the
same as in Naor and Pinkas’s protocol.

A Characteristics of Some DOT Protocols

A.1 Naor and Pinkas’s DOT [8]

In the sparse polynomial interpolation-based DOT protocol introduced by Naor
and Pinkas [8], the number of secrets is n = 2, the threshold parameter is k, the
sender’s privacy and strong privacy parameters are λS = k − 1 and λC = 0, the
hiding parameter is N = 2 and the encoding parameter is e = 2. The encoding
function is E(s) =

(
1, δ2s

)
and the polynomials Ui and Vi (1 ≤ i ≤ N) are:

– U1(x) = ω1 +
∑k−1

i=1 aix
i, where coefficients ai are randomly selected in K,

and U2(x) = ω2 − ω1,
– Vi(y1, y2) = yi for i = 1, 2.

On the receiver’s side, the number of contacted servers is t = k, the receiver’s
privacy parameter is λR = k − 1 and the first element of the encoding function
being constant and public, it is not shared (i.e., Z1 = 1) and is not included in
the request transmitted by the receiver to the contacted servers.

A.2 Blundo Et Al.’s DOT [2]

The protocol introduced by Blundo, D’Arco, De Santis and Stinson [2] is an
extension of Naor and Pinkas’s sparse polynomial interpolation-based DOT pro-
tocol [8]. Only the following characteristics are different from those described in
AppendixA.1.
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– n ≥ 2,
– N = n,
– E(s) =

(
1, δ2s , δ3s , . . . , δn

s

)
,

– Ui(x) = ωi − ω1 for i = 2, 3, . . . , N ,
– Vi(y1, y2, . . . , ye) = yi for i = 1, 2, . . . , N .

A.3 Blundo Et Al.’s DOT [3]

The characteristics of the protocol introduced by Blundo, D’Arco, De Santis
and Stinson [3] are similar to those of the protocol they presented in 2002 (see
AppendixA.2). However, to improve the protocol, the secrets are masked twice:

– To prevent the servers from learning a linear combination of secrets, each
secret ωi (2 ≤ i ≤ n) is multiplied by a mask ri randomly selected in K.
Each mask is shared amongst the m servers involved in the protocol, thanks
to Shamir’s secret sharing schemes [10],

– To prevent the receiver from learning a linear combination of secrets, each
secret ωi (1 ≤ i ≤ n) is masked with a mask ci randomly selected in K∗

and the receiver needs, with one request only, to collect shares of the chosen
masked secret cσωσ, but also of the corresponding mask cσ.

More specifically, in the set-up phase, the sender S first selects masks ci (1 ≤
i ≤ n) in K∗, which gives him two lists of secret values: ( c1ω1, c2ω2, . . . , cnωn )
and ( c1, c2, . . . , cn ). Second, S selects random masks r

(1)
i and r

(2)
i (2 ≤ i ≤ n) in

K and builds two lists L1 =
(

c1ω1, r
(1)
2 c2ω2, r

(1)
3 c3ω3, . . . , r

(1)
n cnωn

)
and L2 =

(
c1, r

(2)
2 c2, r

(2)
3 c3, . . . , r

(2)
n cn

)
. Then, a set of N polynomials U

(1)
i (1 ≤ i ≤ N)

is generated to hide the secrets values of L1 and another set of of N polynomials
U

(2)
i (1 ≤ i ≤ N) is generated to hide the secrets values of L2:

– U
(1)
1 (x) = c1ω1 +

∑k−1
i=1 a

(1)
i xi, where coefficients a

(1)
i are randomly selected

in K, and for i = 2, 3, . . . , n, U
(1)
i (x) = r

(1)
i ciωi − c1ω1,

– U
(2)
1 (x) = c1 +

∑k−1
i=1 a

(2)
i xi, where coefficients a

(2)
i are randomly selected in

K, and for i = 2, 3, . . . , n, U
(2)
i (x) = r

(2)
i ci − c1,

The e-variate polynomials Vi (i = 1, 2, . . . , N) are the same as those defined in
AppendixA.2. Still in the set-up phase, each server Sj (j ∈ Im) receives

u
(1)
j =

(
U

(1)
1 (j), r(1)2 c2ω2 − c1ω1, r

(1)
3 c3ω3 − c1ω1, . . . , r

(1)
n cnωn − c1ω1

)

and
u
(2)
j =

(
U

(2)
1 (j), r(2)2 c2 − c1, r

(2)
3 c3 − c1ω1, . . . , r

(2)
n cn − c1

)
,

as well as the shares [r(1)2 ]j , [r
(1)
3 ]j , . . . , [r

(1)
n ]j and [r(2)2 ]j , [r

(2)
3 ]j , . . . , [r

(2)
n ]j (If F

(s)
t

is the hiding polynomial determined in Shamir’s secret sharing scheme to share
r
(s)
t , the share F

(s)
t (j) allocated to server Sj is denoted [r(s)t ]j .)
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In the oblivious phase, on reception of the request zj , a server Sj (j ∈ I)
calculates vj = ( V1(zj), V2(zj), . . . , VN (zj) ) and returns u1

j
• vj and u2

j
• vj ,

with the two sets of n−1 shares of
(

r
(1)
2 , r

(1)
3 , . . . , r

(1)
n

)
and

(
r
(2)
2 , r

(2)
3 , . . . , r

(2)
n

)

to the receiver. From the collected values, R interpolates two polynomials R(1)

and R(2) and, if σ = 1, calculates R(1)(0) = cσωσ and R(2)(0) = cσ. If σ �= 1,
R calculates R(1)(0) = cσr

(1)
σ ωσ and R(2)(0) = cσr

(2)
σ and also determines from

the k collected shares [r(1)σ ]j the value of r
(1)
σ and similarly, from the k collected

shares [r(2)σ ]j the value of r
(2)
σ . Then, with simple division(s), R determines cσ

first and ωσ second.

A.4 Nikov Et Al.’s DOT [9]

The sparse polynomial interpolation-based DOT protocol introduced by Nikov,
Nikova, Preneel and Vandewalle [9] is characterized by the following parameters:
the number of secrets n ≥ 2, the threshold parameter k, the sender’s privacy
parameter λS ≤ k − 1, the receiver’s privacy parameter λR ≤ k − 1, the hiding
parameter N = n and the encoding parameter e = n. The parameter λC is
defined such that λR + λC ≤ k − 1. In addition, the encoding function is E(s) =(
1, δ2s , δ3s , . . . , δn

s

)
and the polynomials Ui and Vi (1 ≤ i ≤ N) are:

– U1(x) = ω1 +
∑k−1

�=1 a1,�x
�, where coefficients a1,� are randomly selected in K,

and for i = 2, 3, . . . , N , Ui(x) = ωi − ω1 +
∑λC

�=1 ai,�x
�, where coefficients ai,�

are randomly selected in K,
– Vi(y1, y2, . . . , ye) = yi for i = 1, 2, . . . , N .

Like in Naor and Pinkas’s and in Blundo et al.’s DOT protocols (see Appen-
dices A.1 and A.2 above), on the receiver’s side, the number of contacted servers
is t = k and the first element of the encoding function being constant and public,
it is not shared (i.e., Z1 = 1) and is not included in the request transmitted by
the receiver to the contacted servers.

A.5 Beimel Et Al.’s DOT [1]

In [1], Beimel, Chee, Wang and Zhang propose a specific reduction from a DOT
protocol to a polynomial interpolation-based information-theoretic private infor-
mation retrieval protocol. The characteristics of the protocol are: the number of
secrets n ≥ 2, the threshold parameter k, the sender’s privacy and strong privacy
parameters λS = λC ≤ k − 1, the receiver’s privacy parameter λR ≤ k − 1, the
hiding parameter N = n+1 and the encoding parameter e > 0. The polynomials
Ui and Vi (1 ≤ i ≤ N) are:

– U1(x) =
∑k−1

i=0 a1,ix
i, where coefficients a1,i are randomly selected in K, and

for i = 2, 3, . . . , N , the polynomial Ui is defined by Ui(x) = (ωi−1 − a1,0) +
∑λC

j=1 ai,jx
j , where coefficients ai,j are randomly selected in K,
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– V1(y1, y2, . . . , ye) = 1 and for i = 2, 3, . . . , N , the polynomial Vi and the
encoding function E must satisfy Vi(E(�)) = δi−1

� for � ∈ [n].

On the receiver’s side, the number of contacted servers is t = k. In addition,
for efficiency purposes, each contacted server Sj (j ∈ It) transforms the share
uj

• vj into a split sj , which is sent back to the receiver. The receiver has just
to calculate the sum ωσ =

∑
j∈It

sj to obtain the chosen secret.

B Example of Insecurity in Blundo et al.’s DOT Protocol

—— Public Information ——

– Finite field F11

– Threshold k = 3
– Number of secrets n = 2
– pω1(6) = 0.5, pω1(2) = 0.5, pω1(i) = 0 if i �= 6 and i �= 2
– pω2(1) = 0.5, pω2(3) = 0.5, pω2(i) = 0 if i �= 1 and i �= 3

—— Set-up phase ——
Information private to the sender:

– ω1 = 6 and ω2 = 1

– c1 = 5 and c2 = 7

– r
(1)
1 = 1 and r

(1)
2 = 2

– r
(2)
1 = 4 and r

(2)
2 = 5

Intermediate calculus to prepare the sharing polynomials:

– r
(1)
1 × c1 × ω1 = 8

– r
(1)
2 × c2 × ω2 = 3

– r
(2)
1 × c1 = 9

– r
(2)
2 × c2 = 2

– Sharing polynomial U
(1)
1 = 8 + 2X + 9X2

– Sharing polynomial U
(2)
1 = 9 + X + 4X2

– S1 receives u
(1)
1 = ( 8, 6 ) and u

(2)
1 = ( 3, 4 )

– S2 receives u
(1)
2 = ( 4, 6 ) and u

(2)
2 = ( 5, 4 )

– S3 receives u
(1)
3 = ( 7, 6 ) and u

(2)
3 = ( 4, 4 )

—— Transfer phase ——

– Request generated by the receiver: zj = ( 1, 6 )
– vj = zj = ( 1, 6 )
– S1 replies with u

(1)
1

•v1 = 0 and u
(2)
1

•v1 = 5
– S2 replies with u

(1)
2

•v2 = 7 and u
(2)
2

•v2 = 7
– S3 replies with u

(1)
3

•v3 = 10 and u
(2)
3

•v3 = 6
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—— The receiver tries to obtain all secrets ——

– Interpolated polynomal from ( 1, 0 ), ( 2, 7 ), and ( 3, 10 ): R(1) = 2X + 9X2

– r
(1)
2 c2ω2 + r

(1)
1 c1ω1 = 2 × R(1)(0) = 0

– Interpolated polynomal from ( 1, 5 ), ( 2, 7 ), and ( 3, 6 ): R(2) = X + 4X2

– r
(2)
2 c2 + r

(2)
1 c1 = 2 × R(2)(0) = 0

– From the received mask shares, the receiver determines r
(1)
1 = 1, r

(1)
2 = 2,

r
(2)
1 = 4 and r

(2)
2 = 5.

So, the receiver can infer the two equations:
{

2 × c2ω2 + 1 × c1ω1 = 0
5 × c2 + 4 × c1 = 0

From the second equation, the receiver infers that c2 = 8 × c1. Reporting
the equality in the first equation, she obtains: c1 × (5 × ω2 + 1 × ω1) = 0. If
( ω1, ω2 ) =

– ( 6, 1 ), then 5 × ω2 + 1 × ω1 = 0,
– ( 2, 1 ), then 5 × ω2 + 1 × ω1 = 7,
– ( 6, 3 ), then 5 × ω2 + 1 × ω1 = 10,
– ( 2, 3 ), then 5 × ω2 + 1 × ω1 = 6.

The only pair of secrets which satisfies the first equation is: ( 6, 1 ). The greedy
receiver has obtained all secrets.
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