
Securely Solving Classical Network
Flow Problems

Abdelrahaman Aly(B) and Mathieu Van Vyve

Université catholique de Louvain, CORE, Voie du Roman Pays 34,
1348 Louvain-la-Neuve, Belgium

{abdelrahaman.aly,mathieu.vanvyve}@uclouvain.be

Abstract. We investigate how to solve several classical network flow
problems using secure multi-party computation. We consider the short-
est path problem, the minimum mean cycle problem and the minimum
cost flow problem. To the best of our knowledge, this is the first time
the two last problems have been addressed in a general multi-party com-
putation setting. Furthermore, our study highlights the complexity gaps
between traditional and secure implementations of the solutions, to later
test its implementation. It also explores various trade-offs between per-
formance and security. Additionally it provides protocols that can be
used as building blocks to solve complex problems. Applications of our
work can be found in: communication networks, routing data from rival
company hubs; distribution problems, retailer/supplier selection in multi-
level supply chains that want to share routes without disclosing sensible
information; amongst others.

Keywords: Network Flows · Multi-party computation · Secure
collaboration

1 Introduction

Secure Multi-party Computation (MPC), studies the problem where several play-
ers want to jointly compute a given function without disclosing their inputs; this
problem was first addressed by Yao [1]. Different adversary models can be con-
sidered. A semi-honest setting, where corrupted players try to learn only what
can be inferred from the information they have been provided with; or an active
setting, where they manipulate the data in order to learn from any possible
leakage caused. Several cryptographic primitives for secret sharing and homo-
morphic encryption, e.g. Shamir scheme [2] and Pailler encryption [3], have been
proposed to address the problem.

Applications have emerged naturally in different fields, for instance, where
all the secret information is sent by the players to a third trusted party who only
reveals the final output. For example, in auctions, the auctioneer can be seen as
a trusted third party. We study the scenario where no trusted third parties are
allowed.
c© Springer International Publishing Switzerland 2015
J. Lee and J. Kim (Eds.): ICISC 2014, LNCS 8949, pp. 205–221, 2015.
DOI: 10.1007/978-3-319-15943-0 13

206 A. Aly and M. Van Vyve

Classical network flow problems arise in real life applications in several areas
e.g. project planning, networking, supply chain management, production schedul-
ing. Combinatorial optimization, dynamic programing and mathematical pro-
gramming have yielded polynomial-time algorithms for many of these problems
(a detailed treatment can be found in Ahuja et al. [4]).

Our central objects of study are the shortest path problem on weighted
graphs, the Minimum Mean Cycle problem (MMC) and the the Minimum Cost
Flow problem (MCF). We present algorithms that address privacy preserving
constraints on these problems and solve them in polynomial time. We also empir-
ically test the performance of our implementations. Finally, we show how to use
our protocols as building blocks to solve more complex problems. For example, a
WLAN network constructed by competing agents that want to securely compute,
in a distributed fashion, their routing tables and the network flow configuration
that supports its maximum traffic volume at the minimum cost possible. The
routing algorithms could use our shortest path protocol to securely define the
routing tables. Moreover, a combination of the max flow algorithm [5] with our
minimum cost flow protocol could be used to obtain the desired flow distribu-
tion securely. Note that for these types of application the number of vertices e.g.
routers, is not necessarily very large.

1.1 Our Contributions

We provide algorithmic solutions to three classical network flow problems in a
secure, multi-party and distributed setting: the shortest path based on Dijkstra,
the minimum mean cycle using Karp’s solution and the minimum cost flow
using the Minimum Mean Cycle Canceling (MMCC) algorithm. To the best
of our knowledge, this is the first time the last two problems have been studied
under MPC security constraints. We also introduce a novel technique to hide the
vertex selected at each iteration of Dijkstra’s algorithm, avoiding the overhead
caused by the use of special data structures e.g. oblivious data structures. This is
particularly relevant on dense graphs. We refer the reader to Sect. 1.2 for further
analysis. Moreover, we show polynomial bounds for all three problems relying
only on black box operations. In our configurations, the secret information can
be distributed as pleased by the parties. Our work considers all input data to be
secret except for a bound on the number of vertices of the graphs.

Security and Correctness. The security of our algorithms comes from the fact
that we only use operations from the arithmetic black-box and prevent any
information leakage. This implies that the protocols are as secure as the MPC
primitives they are implemented over e.g. information-theoretic secure, (see also
Sect. 2.1). Furthermore the correctness of our algorithms is essentially inherited
from the correctness of the classical algorithms from which they are derived.
More specifically, we modify the previously known and correct algorithms to
avoid, in general, information leakage, while working on secret data, showing
that these modifications do not alter their output.

Securely Solving Classical Network Flow Problems 207

Table 1. Asymptotic bounds of original and privacy-preserving algorithmic versions

Advance Impl. Simple Impl. Complete Privacy Secure

Graphs Preserving Comparisons

Dijkstra |E| + |V | · log(|V |) |V |2 |V |2 |V |3 |V |2
MMC |E| · |V | |E| · |V | |V |3 |V |5 |V |3
MMCC |V |2 · |E|3log(|V |) |V |2 · |E|3log(|V |) |V |8 · log(|V |) |V |10 · log(|V |) |V |8 · log(|V |)

Complexity. We use atomic communication rounds as our main performance
unit to determine the complexity (round complexity) of our protocols. Besides,
because of the strong differences in performance between comparisons and mul-
tiplications we limit the use of comparisons in favor of more arithmetic opera-
tions. i.e. additions and multiplications. Table 1 presents the complexity bounds
we obtain. In all cases, the number of comparisons matches the complexity of
implementations on complete graphs. However, we need to introduce additional
multiplications to hide the branchings involved in the algorithms.

1.2 Related Works

Graph Theory Problems. Different alternatives to solve some graph theory prob-
lems have been studied by Aly et al. [5], namely the shortest path and max-
imum flow problems. They provide bounds on the Bellman-Ford and Dijkstra
algorithms. Our own bounds are slightly better with our version of Dijkstra’s
algorithm, using different approaches. Indeed, [5] uses a searching array tech-
nique, similar to the one proposed by Launchbury et al. [6], to keep track of
a secret shared index. Our proposed Dijkstra implementation does not require
the use of this technique, eliminating its overhead. Edmonds-Karp and push-
relabel bounds are provided as well for the maximum flow problem. As in our
case, their implementations are secure in the information-theoretic model rely-
ing on the same arithmetic black-box FABB . Brickell and Shmatikov [7] have
addressed the shortest path problem on a two-party case, limited to the hon-
est by curious model. They succeed by revealing at each iteration the new edge
of the shortest path added. Our approach attacks the problem in a different
fashion by eliminating this requirement. We also address the problem in a multi-
party setting and not limited to the two-party case. Moreover, Banton et al. [8]
have proposed a data-oblivious alternative for the Breath-First-Search (BFS)
algorithm, which is later used to solve the special case of the shortest path prob-
lem where all edges have the same weight e.g. all existing edges weight 1 and
non-existing 0. We consider instead the more general case with weighted edges.
Additionally, they use their BFS algorithm to provide bounds for the Max-Flow
problem, where weighted edges with a positive residual capacity are mapped as
1 and its counterparts as 0, extending the definition of an existing edge.

Oblivious data structures over ORAM. Data structures are used to speed-up
Dijkstra’s algorithm and achieve its optimal complexity. ORAM has been viewed
as a suitable mechanism to build oblivious distributed data structures with

208 A. Aly and M. Van Vyve

the corresponding overhead and configuration e.g. The work of Wang et al. [9]
designed to work on a client(s)-server configuration. Moreover, secure two-party
computation protocols have been developed to take advantage of the recent
advances on ORAM e.g. [10,11]. The two-party tool and algorithmic implemen-
tations of Liu et al. [12] securely address the shortest path and other combinato-
rial problems by using these kinds of data structures. More recently, Keller and
Scholl [13] show how to use oblivious data structures on a multi-party setting,
where none of the players have to fulfill the role of the server. Furthermore, they
use their data structures to implement Dijkstra’s algorithm. Their experimen-
tation shows how some MPC solutions in the absence of ORAM can perform
better for certain kinds of graphs than their proposed counterparts i.e. sam-
ples of smaller-to-medium sizes and complete graphs of any size. This is easily
explained by the fact that the overhead coming from the ORAM exceeds the
asymptotic advantage of the algorithms. Indeed, we address the problem differ-
ently, our Dijkstra algorithm is designed to work on plain vectors and matrices
and does not require any secure data structure construction, slightly improving
the bounds proposed by Aly et al. [5], who’s work is later used in Keller and
Scholl’s analysis. This allows us to avoid any overhead caused by the use of
ORAM or static secret sharing arrays. We refer to [13] for details.

1.3 Overview

Section 2 describes the notation we use, as well as the cryptographic primitives.
It also serves to introduce “building blocks” i.e. small algorithmic procedures
regularly used. In Sect. 3 we present a solution for Dijkstra. Section 4 introduces
the minimum mean cycle problem. Section 5 then explains the implementation
using MPC primitives. Section 6 gives an overview of the minimum flow prob-
lem and the minimum mean cycle-canceling algorithm. In the sections ahead,
details on the algorithm are presented. In Sect. 7, we present and discuss our
secure algorithmic solution. Section 8 shows the results of our computational
experimentation. Lastly, Sect. 9 provides general conclusions.

2 Preliminaries

2.1 Security

We use the terms “securely” and “privacy preserving” indistinctly. We can suc-
cinctly formalize their notion as follows: parties P1, ..., Pn want to jointly and
correctly compute the function y = f(x1, ..., xn) where xi is Pi secret input and
only y is allowed to be revealed to all parties. In other words, the security con-
straint is such that each player Pi learns y and what can be inferred from y, but
no more. In particular, any information given during the computation process
should not allow him to infer information about other secret inputs.

Modulo arithmetic for some M or ring arithmetic allows to simulate secure
integer arithmetic. Indeed, several multi-party computation solutions have been

Securely Solving Classical Network Flow Problems 209

designed to work on modulo arithmetic for an appropriate M e.g. a sufficiently
big prime number (transforming the ring in a finite field over some M, ZM),
such that no overflow occurs. This is true for secret sharing schemes the likes of
Shamir [2] sharing or additive sharing, as well for homomorphic threshold public
key encryption.

Primitives like addition between secret shared inputs on secret sharing, as
well as additions and multiplications of these by public values, are linear oper-
ations and do not require any information transmission between players. When
data is communicated between players it is called a communication round or
just round. For complexity analysis purposes, we require constant-round proto-
cols for multiplications. By extension, sharing and reconstruction are done in one
round as well. There are still local operations involved with all the primitives,
but the performance cost is mainly determined by the communication processes,
as explained by Maurer [14]. We assume that the execution flavor i.e. sequential
and parallel, does not compromise the security of the private data.

The concept of the arithmetic black-box FABB [15] embeds this behavior and
makes the process transparent for the algorithm designer. It creates an abstrac-
tion layer between the protocol construction and functionality specificities, and
at the same time it provides the security guarantees desired. Following [5,15]
amongst others, we assume the following functionalities are available: storage and
retrieval of ring ZM elements, additions, multiplications, equality and inequality
tests.

On a final note, all our protocols are designed under the information-theoretic
model in the presence of passive or active adversaries over FABB . This implies
that as long as the parties do not have access to other private data but their
own, unbounded computing power would not allow them to obtain any additional
information. This means in practice that they will be as secure as the underlying
MPC functionality and crypto-primitives they rely on.

2.2 Notation

We use the traditional square brackets e.g. [x], to denote secret shared or encrypted
values contained in the FABB . This notation is commonly used by secure appli-
cations e.g. [5]. Sometimes [∞] is used on our algorithms. Given that the FABB

is limited by the size of M , this value, has to be understood as a sufficiently large
constant smaller than M but much bigger than the values of the inputs. On the
size of M , it has to be noted that some comparison protocols require a security
parameter on the size of M that has to be taken into account when defining its
size. We also assume all values analyzed by our protocols, including intermediate
data, to be integers bounded to M to avoid overflows. Moreover, secure operations
are described using the infix operation e.g. [z] ← [x] + [y] for secure addition into
the FABB and [z] ← [x] · [y] for secure multiplication. The secret result of any
secure operation primitive is stored in [z] and onto the FABB . This notation cov-
ers all operations performed with secret values, including those performed between
public scalars and secret values. These operations are provided by the FABB .

210 A. Aly and M. Van Vyve

We define two repeatedly used subroutines to improve readability and sim-
plify expressions. They only use the primitives available in the FABB and work
under the same general assumptions.

conditional assignment: Overloaded functionality of the assignment opera-
tor represented by [z] ←[c] [x] : [y]. Much like in [5,13], the behavior of the
assignment is tied to a secretly shared binary condition [c]. If [c] is one, [x] is
assigned to [z] or [y] otherwise. The operation can be characterized as follows:
[z] ← [y]+[c] ·([x]− [y]). The subroutine can be extended for other mathematical
structures i.e. vectors, matrices.

conditional exchange: We define the operator condexch([c], i, j, [v]). It
exchanges the values held in position i and j of secretly shared vector [v] if
a secretly shared binary condition [c] is 1 and leaves the vector unchanged oth-
erwise. We describe the algorithm as Protocol 1. We also extend this operator to
work with matrices. In that case both ith and jth rows and columns are swapped.

Protocol 1. condexch: Exchanges the values of 2 different vector positions
Input: Any vector [v]. Indexes i, j
Output: The vector [v] with values i,j swapped if [c] true.

1 [a] ← [c] · ([v]j − [v]i);
2 [v]i ← [v]i + [a];
3 [v]j ← [v]j − [a];

2.3 On Network Flows and Matrix Representation

The number of vertices in the graph or at least an upper bound on them are
assumed to be publicly known with no restrictions on how the information is dis-
tributed amongst the players. Following [5,8,13] our protocols assume complete
graph representation for their inputs, as a tool to hide the graph structure. That
is why an adjacency matrix representation of the graph, using the bound as its
size, is preferred. Capacities and/or costs of the edges are represented as elements
in matrices. This allows the algorithm designer to decouple the graph represen-
tation from its topology. The application designer has to define how information
of the topology is actually distributed and what is hidden. For instance, if its
known that each player owns at most a single vertex, then, each player has to
secretly share a row of a capacity adjacency matrix where he places a [0] at
each unconnected vertex position or [∞] if its a cost matrix. We briefly describe
some general definitions on graph theory that are often used during the following
sections. Ahuja et al. [4] provides more formal notions.

Residual Graph: Is the associated network defined by all edges with positive
residual capacities.

Walk: Is a sequence of contiguous edges (v1, w1), ..., (vk, wk) such that wi = vi+1

for all 1 ≤ i ≤ n − 1 and (vi, wi) ∈ E for all 1 ≤ i ≤ n.

Securely Solving Classical Network Flow Problems 211

Path: A path is a walk of G where no vertex is visited more than once. Every
path, by definition is a walk, but not all paths are walks.

Cycle: A cycle is a special path (v1, w1)...(vd, wd) ∈ E where v1 = wd. Every
cycle by definition is a path, but not all paths are cycles.

3 Dijkstra’s Algorithm

The algorithm provides a greedy way to find the shortest path from a source
vertex s in a directed connected graph with non-negative capacities. Basically, it
selects the vertex with the smallest accumulated distance and then propagates
the path forward until all vertices have been explored. This ensures to get the
shortest path from a source vertex to all other vertices in the graph. To find
the shortest path to a single vertex is also possible. Our secure implementation
can be adapted to detect at each iteration whether the target vertex has been
reached to stop the algorithm.

Adapting Dijkstra to MPC. The input data in our case is a weighted adjacency
matrix [U] where non existing edges are represented by [∞]. Dijkstra’s algorithm
treats the vertices of the graph in an order that depends on the capacities of the
edges. The main challenge is to hide this order. Earlier work [5] has proposed
to hide the position of the vertex accessed by using a secretly shared unary
vector [0, 0, ..., 0, 1, 0, ..., 0]. We introduce a different technique. The basic idea
is to exploit the symmetry in the data structure. More precisely, the numbering
of the vertices or equivalently, the position of a vertex in the data structure
is indifferent for the algorithm. We exploit this by positioning at iteration i,
the vertex with the lowest distance in position i. That way we align the vertex
exploration of our protocol with the secret data stored in all the structures.
This enables us to gain in the number of operations performed because we can
avoid considering edges pointing to vertices already explored. The algorithm is
detailed as Protocol 2.

Correctness. Because the algorithm constantly reshuffles the positions of the
vertices in all matrices and vectors used, we need to (secretly) track the position
of the vertices. This is the role of the vector π. Throughout the algorithm πj

holds the node number that is currently in position j.
The loop on lines 5–8 determines the untreated vertex with current mini-

mum distance. This vertex is brought to position i in all data structures. Loop
on lines 9–14 scans all edges leaving node in position i to all other untreated
vertices (positioned after i). If the edge improves the current best path (Line 11),
the current best distances and predecessors are updated (Lines 12–13). The pre-
decessor of node i is recorded as Pj . If the path needs to be kept secret and
subsequently used in a parent protocol, then it would be more suitable to record
this information in a matrix with Pi,j = 1 indicating that the predecessor of i is
j (and 0 otherwise). It is easy to adapt the algorithm for this case.

Security. Following the correctness analysis, (i) it is easy to check that no inter-
mediate value is revealed. (ii) The execution flow only depends on publicly known

212 A. Aly and M. Van Vyve

Protocol 2. Shortest Path Protocol based on Dijkstra’s algorithm
Input: A matrix of shared weights [U]i,j for i, j ∈ {1, ..., |V |} and a unit vector

[S] encoding the source vertex.
Output: The vector of predecessors [P] and/or the vector of distances [d]i.

1 for i ← 1 to |V | do
2 [π]i ← i; [d]i ←[Si] [0] : [∞]; [P]i ← i[S]i;
3 end
4 for i ← 1 to |V | do
5 for j ← |V | to i + 1 do
6 [c] ← [d]j < [d]j−1;
7 ([π], [P], [d], [U]) ← condexch([c], j, j − 1, [π], [P], [d], [U]);

8 end
9 for j ← i + 1 to |V | do

10 [a] ← [d]i + [U]i,j ;
11 [c] ← [a] < [d]j ;
12 [d]j ←[c] [a] : [d]j ;
13 [P]j ←[c] [π]i : [P]j ;

14 end

15 end

values (the same follows for the execution time memory usage) and (iii) all oper-
ators on private data is provided by the FABB .

Complexity. The algorithm performs |V |2 + O(|V |) comparisons (at Lines 6 and
11) and 4·|V |3

3 +O(|V |2) multiplications, dominated by Line 7 (the 4/3 factor is 4
times the sum of the square of the integers 1 to |V |). This distinction is important
for small graph instances where the comparison complexity dominates over round
complexity. The performance of our privacy preserving version of Dijkstra has
an extra factor of |V | when compared with a vanilla implementation. Moreover,
it can also be extended to obtain the shortest path between any pair of vertices
(v, w) ∈ V .

4 Minimum Mean Cycle Problem

The Minimum Mean Cycle problem (MMC) is to determine on a directed graph
G = (V,E) with edge costs C, the cycle W with the minimum averaged cost
(total cost divided by the number of edges in W).

Our interest on the MMC problem comes from the fact that it is used as a
subroutine to solve the minimum cost flow problem by the minimum mean cycle
canceling algorithm [16]. It is also used by other algorithms of the same nature.
More details like applications, proofs and algorithms can be found in [4]. The
following analysis assumes strong connectivity on G. In case a graph instance
does not provide enough edges to fulfill this requirement, edges with a very
large cost can be added to the graph.

The solution we study was proposed by Karp [17] and can be divided in two
steps: First, we arbitrarily define a vertex s to be the origin of all paths to all

Securely Solving Classical Network Flow Problems 213

vertices in V . Let dk(i) be the smallest weighted walk from s to the vertex i that
contains exactly k edges. The walk obtained might contain one or several cycles.
Then, we calculate dk(v) ∀v ∈ V with k from 1 to |V |. The following shows how
to compute this recursively:

dk(j) = min
{i:(i,j)∈E}

{dk−1(i) + cij}, (1)

where d0(s) = 0 and d0(v) = ∞ ∀v ∈ {V − s}. Second, we calculate the cost of
the minimum mean cycle as follows:

μ∗ = min
j∈V

max
0≤k≤|V |−1

[
d|V |(j) − dk(j)

|V | − k

]
(2)

This expression can be intuitively explained as follows. Let j∗ and k∗ the indexes
achieving μ∗. Then d|V |(j∗) is the cost of a walk containing the cycle W and
dk

∗
(j∗) is the cost of the same walk with the cycle removed e.g. it is a path.

The difference between the two yields the cycle cost. Proofs can be found in [17].
A strictly positive or negative μ∗ means that at least a positive/negative cycle
is present with μ∗ as its mean. A case where the answer is 0 might also mean no
cycle was found in the graph. The algorithm can be extended to find the cycle
W as part of the answer. Overall algorithmic complexity is O(|V ||E|).

5 Privacy-Preserving Minimum Mean Cycle Solution

The privacy-preserving solution we introduce follows the steps provided by the
previous section. Moreover, each step and the whole protocol are designed to be
used as sub-routines. As usual, our approach assumes all input data is in secret
form, including the adjacency matrix of costs [C] (where non-existing edges are
represented by [∞]) except the upper bound on the number of vertices. The
final goal of the protocol is to obtain not only the mean cost of the minimum
cycle, but the cycle itself as well. We use the function getmincycle to refer to
the protocol.

Correctness. First, we have to replicate the result of Eq. (1). We select node 1
as the source node s. Implementing the recursion is fairly straightforward as the
order in which the edges are scanned does not depend on the input. The more
difficult task is to encode the walks. To that end, we define the 4-dimensional
matrix [walk] where [walk]i,j,k,l is the number of times the edge (i, j) is traversed
by the shortest walk of length k from s to l. Also, because of the specific way we
want to use our secure version of the MCC algorithm as a sub-routine, we define
an additional argument [b] to the protocol. Specifically, [b]i,j = 1 indicates that
the edge (i, j) is forbidden, i.e. cannot be part of the solution. The algorithm is
detailed as Protocol 3.

Loop 5–8 checks whether edge (i, j) improves the walk of length k from s to j.
This is done by comparing the best one found so far with cost [A]jk to [A]ik−1

214 A. Aly and M. Van Vyve

Protocol 3. First step of: MMC protocol based on Karp’s algorithm
Input: A matrix of shared costs [C]i,j for i, j ∈ {1, ..., |V |}, a binary matrix on

viable edges [b]i,j for i, j ∈ {1, ..., |V |}.
Output: A matrix of walk costs [A]i,k for i ∈ {1, ..., |V |} and k ∈ {0, ..., |V |}, a

walk matrix walksij for i, j ∈ {1, ..., |V |} encoding these walks.
1 [A] ← [∞]; [A]00 ← [0]; [C] ← [C] + [∞](1 − [b]);
2 for k ← 1 to |V | + 1 do
3 for j ← 1 to |V | do
4 for i ← 1 to |V | do
5 [c] ← [A]ik−1 + [C]ij < [A]jk;
6 [A]jk ←[c] [A]ik−1 + [C]ij : [A]jk;
7 [walks]··kj ←[c] [walks]··k−1i : [walks]··kj ;
8 [walks]ijkj ←[c] [walks]ijkj + 1 : [walks]ijkj ;

9 end

10 end

11 end

plus the cost of edge (i, j). Depending on the result, the best costs and walks
are updated.

Second, we adapt (2) to obtain the value of the minimum mean cycle, as well
as the encoding of the cycle. We achieve it by iterating over the matrices [A] and
[walks] generated in the first step. The only difficulty is to workaround the non-
integer division. In place of any costly procedure, we keep track of the numerators
and the denominators separately, and compare the cross multiplication instead.
The minimum mean cost cycle is encoded as a |V | × |V | matrix [min − cycle]
where [min − cycle]ij = 1 if the edge (i, j) is part of the minimum mean cycle.
The rest of the algorithm is a straightforward implementation of (2). The details
are provided as Protocol 4.

Security. Like with our Dijkstra implementation, no intermediate data is released
and the operations are provided by the FABB , following our definition of security.

Complexity. In total (Protocols 4 and 5), our implementation of MMC requires
O(|V |3) (Line 5 of Protocol 4) and O(|V |5) multiplications or communication
rounds (from the conditional assignments of Lines 7 and 8 of Protocol 4). One
might ask whether this could not be brought down to O(|V |4) by encoding the
walks in Protocol 4 as a 3-dimensional matrix holding the predecessor node of
each node. However, reconstructing the walks for the operation performed at
Line 9 of Protocol 5 would then need O(|V |5) conditional assignments instead
of the currently O(|V |4). So we prefer to stick with our simple and as efficient
approach.

6 Minimum Cost Flow Problem

The Minimum-Cost Flow problem (MCF) is of finding a feasible flow in a capac-
itated directed graph G = (E, V) that minimizes the costs (proportional to the

Securely Solving Classical Network Flow Problems 215

Protocol 4. Second step of: MMC protocol based on Karp’s algorithm
Input: A matrix of walk costs [A]i,k for i ∈ {1, ..., |V |} and k ∈ {0, ..., |V |}, a

walk matrix walksij for i, j ∈ {1, ..., |V |} encoding these walks.
Output: The cost of the minimum mean cycle [min − cost]. A matrix with the

minimum mean cycle [min-cycle]i,j for i, j ∈ {1, ..., |V |}.
1 for j ← 1 to |V | do
2 [max-cycle], [max-cost] ← ∅;
3 for k ← |V | to 1 do
4 [a-num] ← [A]j(|V |+1) − [A]jk;
5 [a-den] ← |V | − k;
6 [c] ← [k-num] · [k-den] < [a-num] · [k-den];
7 [k-num] ←[c] [a-num] : [k-num];
8 [k-den] ←[c] [a-den] : [k-den];
9 [max-cycle] ←[c] [walks]··|V |j − [walks]··kj : [max-cycle];

10 [max-cost] ←[c] [A]jk : [max-cost]

11 end
12 [c] ← [j-num] · [k-den] > [k-num] · [j-den];
13 [j-num] ←[c] [k-num] : [j-num];
14 [j-den] ←[c] [k-den] : [j-den];
15 [min-cycle] ←[c] [max-cycle] : [min-cycle];
16 [min-cost] ←[c] [max-cost] : [min-cost]

17 end

magnitude of the flows). The problem can be modeled as a linear program but
there exists more efficient and well known strongly polynomial time combinato-
rial algorithms, see [4] for details. The more traditional minimum capacitated
cost flow problem can be shown to be equivalent to the transshipment and the
minimum-cost circulation (MCC) problem.

Formally, the MCC problem is of finding a capacitated flow in a symmetric
graph G = (E, V) of minimum cost. The problem can be modeled as follows:

min
1
2

∑
v,w∈E

Cv,wfv,w (3)

subject to fv,w ≤ Uv,w ∀(v, w) ∈ E (4)
fv,w = −fw,v ∀(v, w) ∈ E (5)∑
v∈E(w)

fv,w = 0 ∀w ∈ V (6)

Here the graph is assumed to be symmetric, i.e. for every (v, w) ∈ E there is an
edge (w, v) ∈ E. Each edge (v, w) has a maximal capacity Uv,w and a cost Cv,w

per unit of flow. Additionally, all costs are antisymmetric, i.e. c(v, w) = −c(w, v)
∀(v, w) ∈ E. The variable f represents the amount of flow passing through
an edge. Using this notation, the residual capacity can be formally defined as
rv,w = Uv,w − fv,w.

216 A. Aly and M. Van Vyve

Constraints (4) are the capacity constraints. Constraints (5) are the flow
antisymmetry constraints. Constraints (6) are the flow conservation constraints
at each node. This characterization of the problem is the same used by Goldberg
and Tarjan [16] for their description of the MCC problem using the Minimum
Mean Cycle-Canceling algorithm (MMCC). It can be seen as a variant of the non-
polynomial cycle-canceling algorithm proposed by Klein in [18], but where the
next cycle to be canceled is chosen by finding the minimum mean cost cycle. The
change makes the algorithm strongly polynomial, i.e. its complexity only depends
on |V | and |E| and no other parameter.

The algorithm is based on the finding of Busacker and Saaty [19], which
asserts that a circulation with no residual negative cost cycles is of minimal
cost. Moreover, the algorithm can be characterized as follows:

1. Initialize the feasible circulation of as 0.
2. Obtain the minimum mean cycle W in the associated residual graph.
3. Set δ ← min{(v, w) ∈ Wrv,w}.
4. Augment the flow by δ along the cycle W .
5. If there are still negative cycles goto 2.

Basically, we compute the cycle with the minimum negative average cost W in
the associated residual graph. Then, we augment the flow along this cycle until
an edge reaches its capacity. This process is repeated until no negative cycle is
found. Its complexity is O(|V |2 · |E|3 · log |V |).

7 Privacy-Preserving Minimum-Cost Flow Problem

The input data are the capacity and cost adjacency matrices [U] and [C], where
non-existing edges are represented by [0] on the capacity matrix and by [∞] on
the cost matrix. As usual, all input data is secretly shared, except the bound
on the number of vertices.The solution is to be provided as the flow matrix [F]
and total cost [totcost]. The final composition of [F] might leak some details
on the graph’s topology depending on the answer. The protocol can be used
as a sub-routine for more complex applications in case the final output is kept
private. Once the MMF problem is modeled as a MCC problem, it is sufficient
to securely solve the minimum circulation problem using a privacy-preserving
implementation of the MMCC algorithm to obtain a flow of minimum cost.

Adapting the MMCC algorithm. If one wants to avoid any leakage of information,
an important difference between a standard implementation and a secure one is
that the augmenting flow process has to be repeated as many times as the worst
case analysis guarantees, instead of stopping it as soon as no negative cycle is
detected. We call each flow augmentation along the cycle a phase/iteration. We
use the bound provided by Goldberg and Tarjan on [16]: |V ||E|2 log |V | + |V | ·
|E| flow augmentations at most. Note that this is not an asymptotic bound.
Given that we also hide the graph structure, |E| has to be replaced by |V |2
in our capacities estimates. Our secure protocol requires to perform that many

Securely Solving Classical Network Flow Problems 217

iterations to guarantee correctness with no leakage. Possible stopping condi-
tions to reduce the number of iterations are considered later in this section.
Protocol 5 shows our privacy-preserving solution for the MMCC algorithm, which
is a straightforward translation of the algorithm outlined above.

Protocol 5. Privacy-preserving MMCC
Input: |V | × |V | matrices of shared capacities [U]i,j and shared costs [C]i,j .
Output: The |V | × |V | matrix of flows [F] and the associated total cost

[totcost].
1 [F], [b], [totcost] ← 0 ;
2 for k ← 1 to |V |5 log |V | + |V |3 do
3 [cost], [cycle] ← getmincycle([C], [b]);
4 δ ← [∞];
5 for (i, j) ∈ [U] do
6 [r] ← [U]ij − [F]ij ;
7 [c] ← [min − cycle]ij · ([δ] > [r]);
8 [δ] ←c [r] : [δ];

9 end
10 [δ] ← [δ] · ([cost] < 0);
11 [totcost] ← [totcost] + [δ] · [cost];
12 for (i, j) ∈ [F] do
13 [c] ← [cycle]ij ;
14 [F]ij ←c [F]ij + [δ] : [F]ij ;
15 [F]ji ←c [F]ji − [δ] : [F]ji;
16 [b]ij ← [U]ij − [F]ij > 0;

17 end

18 end

Correctness. The initial solution is set to zero at Line 1. The body of the main
loop is one flow augmentation phase. It starts by calling our secure implemen-
tation of the Min Mean Cycle problem, leaving out saturated edges. Loop 5-9
computes the maximum augmentation possible along the cycle identified. If the
cycle has non-negative cost, this augmentation is set to zero at Line 10, before
updating the cost of the solution. Then, the flow itself is augmented at Loop
12-17.

Security. Following the previous protocols, the current solution does not leak
intermediate values and uses FABB operations to calculate secret data, respect-
ing our definition of security.

Complexity. The most costly operation during one augmentation phase is the call
to getmincycle with O(|V |3) comparisons and O(|V |5) communication rounds.
The overall complexity is O(|V |8 log |V |) comparisons and O(|V |10 log |V |) com-
municational rounds. As mentioned above, one main difference between our
secure MCF algorithm described above and a standard implementation is that,
to guarantee no leakage of information, we have to execute as many iterations
as in the theoretical worst case. This makes the practical performance of the

218 A. Aly and M. Van Vyve

algorithm much worse than a standard implementation because, in most practi-
cal applications, it is expected that the number of iterations needed to find the
optimal solution is much smaller than the theoretical upper bound. Of course,
one could easily publicly reveal the outcome of the test performed at Line 10
of Protocol 5 and stop the algorithm if the cost of the cycle is non-negative.
But some information would be leaked. To limit it, several strategies are possi-
ble. One is to open the test every K iterations, with K being a publicly known
integer. Another solution is to multiply the result of the test by a random bit
(for = 1 with probability p) to statistically hide the result. These two would
also be combined. In both cases, the parameters (K and/or p) would control the
trade-off between performance and information leaked.

8 Computational Experiments

The theoretical bounds only give a rate of increase on the size of the instance.
They do not say anything about the actual computing time. Our interest is to
determine what is the size of the instances that can be solved in a “reasonable”
amount of time. Moreover, we want to determine the impact that the number
of players and the size of the graph instances have on CPU time performance.
We chose the Virtual Ideal Functionality Framework (VIFF) to run, given its
availability (open source) and easy coupling with larger applications, bearing in
mind its scalability is an additional concern.

VIFF benefits from passive security under the information theoretic model
on the multi-party case. VIFF provides access to Shamir secret sharing and basic
arithmetic secure functionality [20]. For comparisons we use the most recent Toft
comparison method implemented [21]. Additionally, for our experiments we use
randomly generated complete graphs. All results presented are averaged over 20
instances of the same size with 3 and 4 players.

Table 2. CPU time of protocol 2

Number of vertices 4 8 12 16 20

Execution times (in seconds) 3 Players 0.9 5 14 28 48

4 Players 1 7 17 34 57

All trials used the same workstation, an Intel Xeon CPUs X5550 (2.67GHz)
and 42 GB of memory, running Mac OS X 10.7. Additionally, every single process
had the same amount of CPU power and memory available.

8.1 Shortest Path Problem

Table 2 shows the results obtained by our shortest path prototype: Additionally,
we could run 64-vertex instances, using adjacency matrices, with a total of 4032
edges/matrix entries, taking around 18 minutes. The spike in computing time

Securely Solving Classical Network Flow Problems 219

while working with these big instances follows the fact of the difficulty to manage
the memory for large graph instances. Additional experimentation (where we
assume the performance cost added by the secure functionalities of our FABB

to be 0 and implemented on nothing but python) showed that roughly an extra
factor of 1.4|V | is needed when executing crypto-primitives have 0 cost. Figure 1
also shows the CPU time and the ratios calculated by comparing our Dijkstra
prototype against a vanilla implementation of the algorithm:

4 6 8 10 12 14 16 18

10

20

30

40

50

Number of vertices

T
im

e
(C

P
U

se
co
nd

s)

3 Players
4 Players

(a) CPU Time Dijkstra

4 6 8 10 12 14 16 18
2

4

6

8

·104

Number of vertices

R
at
io

(C
P
U

T
im

e)

3 players
4 players

(b) Ratio Dijkstra

4 5 6 7 8 9 10
20

40

60

80

100

120

140

Number of vertices

T
im

e
(C

P
U

se
co
nd

s)

3 players
4 players

(c) CPU Time MMCC

4 5 6 7 8 9 10

0.5

1

1.5

2

2.5 ·1010

Number of vertices

R
at
io

(C
P
U

T
im

e)

3 players
4 players

(d) Ratio MMCC

Fig. 1. Dijkstra CPU times and ratio analysis

From our experimentation we can conclude the following: We can solve securely,
in reasonable time, shortest path problems on complete graphs of sizes up to 64
vertices over VIFF. As expected, the number of players, have little incidence on
the general behavior, given that in VIFF performance cost increases linearly in
the number of players [20]. Compared to the standard implementation, roughly
a factor of 5000|V | is needed to securely solve the Dijkstra algorithm on VIFF.
Combining the previous remark and the results obtained by our experimentation,
we conclude that out of the 5000|V | overhead of our SMC implementation, the
factor |V | is explained by algorithmic design, a factor 1.4 is due to non-crypto
related VIFF implementation, and the rest (a factor of a few thousands) is due
to the crypto-related VIFF implementation.

8.2 Minimum Flow Problem

For the minimum flow problem, we measure the time a single phase (one iteration
of Protocol 5) takes to be executed, that is because stopping conditions with
some leakage can substantially reduce the number of phases needed e.g. A graph
with a single cycle would only take one phase to be completed. To estimate the
execution time of the full algorithm, it suffices to multiply this by the known
number of phases needed. Our analysis includes the ratio between the time it
takes a vanilla implementation to find an answer and the privacy preserving
versions full execution time to guarantee correctness with no leakage. The results
of these experiments can be found in Table 3 and Fig. 1.

From these we can conclude the following: The fully secure version of our
implementation is highly costly in terms of performance even for very small
instances. This highlights the necessity of using termination conditions. Once
again, the influence of the extra player has little incidence on the overall perfor-
mance time. The overhead of our secure implementation versus a standard one is

220 A. Aly and M. Van Vyve

Table 3. Execution times per phase MMCC Algorithm for a complete graph.

Number of vertices 4 5 6 7 8 9

Execution times (in seconds) MMCC Phase - 3 Players 11 21 35 56 84 125

MMCC Phase - 4 Players 13 24 42 65 100 147

of the order of 2.5 ·108|V |2. Note that both algorithms have different complexity
functions and vanilla versions of the algorithm typically converge towards an
answer before reaching its worst case complexity. Again, one can observe that
the multiplications absorb a larger fraction of the computing time as the size of
the instances increases.

9 Conclusions and Future Work

Strongly polynomial-time algorithms are appealing for MPC implementations
because, as the worst-case complexity is polynomial, it is possible to obtain fully
secure (i.e. no leakage) and theoretically efficient algorithms and implementa-
tions. We have demonstrated this for three classical network problems: Shortest
Path, Minimum Mean Cycle and Minimum Cost Flow. However, our computa-
tional experiments demonstrate that the price to pay for such security is very
high for the simplest problem (shortest path) and extremely penalizing for the
more complicated ones.

This research raises several questions for further research. A first one is
whether theoretically more efficient algorithms can be obtained for these prob-
lems. Another one is related to the development of more efficient MPC platforms
compared to the one we used for our computational experiments. Also one could
consider other classical optimization problems.

Acknowledgements. This research was supported by the WIST Walloon Region
project CAMUS and the Belgian IAP Program P7/36 initiated by the Belgian State,
Prime Minister’s Office, Science Policy Programming. The scientific responsibility is
assumed by the authors. The authors are grateful to Edouard Cuvelier, Sophie Mawet,
Olivier Pereira and the anonymous reviewers for their feedback.

References

1. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164. IEEE
(1982)

2. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
3. Paillier, P.: Public-Key cryptosystems based on composite degree residuosity

classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

4. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall Inc., Upper Saddle River (1993)

Securely Solving Classical Network Flow Problems 221

5. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 239–257. Springer, Heidelberg (2013)

6. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.:Efficient lookup-
table protocol in secure multiparty computation. In: Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2012, pp.
189–200. ACM, New York (2012)

7. Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-
honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252.
Springer, Heidelberg (2005)

8. Blanton, M., Steele, A., Alisagari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Proceedings of the 8th ACM SIGSAC Sympo-
sium on Information, Computer and Communications Security, ASIA CCS 2013,
pp. 207–218. ACM, New York (2013)

9. Wang, X., Nayak, K., Liu, C., Shi, E., Stefanov, E., Huang, Y.: Oblivious data
structures. Cryptology ePrint Archive, Report 2014/185 (2014). http://eprint.iacr.
org/

10. Lu, S., Ostrovsky, R.: Distributed oblivious ram for secure two-party computation.
Cryptology ePrint Archive, Report 2011/384 (2011). http://eprint.iacr.org/

11. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Security, CCS
2012, pp. 513–524. ACM, New York (2012)

12. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient ram-model
secure computation. In: 35th IEEE Symposium on Security and Privacy (2014)

13. Keller, M., Scholl, P.: Efficient, oblivious data structures for mpc. IACR Cryptology
ePrint Archive, 137 (2014)

14. Maurer, U.: Secure multi-party computation made simple. Discrete Appl. Math.
154(2), 370–381 (2006). Coding and Cryptography

15. Damg̊ard, I.B., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

16. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM 4, 873–886 (1989)

17. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete
Math. 3, 309–311 (1978)

18. Klein, M.: A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Manag. Sci. 14(3), 205–220 (1967)

19. Busacker, R., Saaty, T.: Finite Graphs and Networks: An Introduction with Appli-
cations. International Series in Pure and Applied Mathematics. McGraw-Hill,
New York (1965)

20. Geisler, M.: Cryptographic protocols: theory and implementation. Ph.D. thesis,
Aarhus University Denmark, Department of Computer Science (2010)

21. Toft, T.: Primitives and applications for multi-party computation. Ph.D. thesis,
Department of Computer Science, Aarhus University (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Securely Solving Classical Network Flow Problems
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works
	1.3 Overview

	2 Preliminaries
	2.1 Security
	2.2 Notation
	2.3 On Network Flows and Matrix Representation

	3 Dijkstra's Algorithm
	4 Minimum Mean Cycle Problem
	5 Privacy-Preserving Minimum Mean Cycle Solution
	6 Minimum Cost Flow Problem
	7 Privacy-Preserving Minimum-Cost Flow Problem
	8 Computational Experiments
	8.1 Shortest Path Problem
	8.2 Minimum Flow Problem

	9 Conclusions and Future Work
	References

